
Neal Ford, Rebecca Parsons & Patrick Kua

 Building
 Evolutionary
Architectures
SUPPORT CONSTANT CHANGE

Neal Ford, Rebecca Parsons, and Patrick Kua

Building Evolutionary
Architectures

Support Constant Change

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-98636-3

[LSI]

Building Evolutionary Architectures
by Neal Ford, Rebecca Parsons, and Patrick Kua

Copyright © 2017 Neal Ford, Rebecca Parsons, and Patrick Kua. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Rachel Roumeliotis
Production Editor: Justin Billing
Copyeditor: Christina Edwards
Proofreader: Matthew Burgoyne

Indexer: WordCo, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

October 2017: First Edition

Revision History for the First Edition
2017-09-15: First Release

See http://www.oreilly.com/catalog/errata.csp?isbn=9781491986363 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Building Evolutionary Architectures, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com/safari
mailto:corporate@oreilly.com
http://www.oreilly.com/catalog/errata.csp?isbn=9781491986363

Table of Contents

Foreword. vii

Preface. ix

1. Software Architecture. 1
Evolutionary Architecture 3

How Is Long-term Planning Possible When Everything Changes All the
Time? 3

Once I’ve Built an Architecture, How Can I Prevent It from Gradually
Degrading Over Time? 6

Incremental Change 6
Guided Change 7
Multiple Architectural Dimensions 8
Conway’s Law 11
Why Evolutionary? 13
Summary 14

2. Fitness Functions. 15
What is a Fitness Function? 17
Categories 18

Atomic Versus Holistic 19
Triggered Versus Continual 19
Static Versus Dynamic 20
Automated Versus Manual 20
Temporal 21
Intentional Over Emergent 21
Domain-specific 21

Identify Fitness Functions Early 22

iii

Review Fitness Functions 23

3. Engineering Incremental Change. 25
Building Blocks 28

Testable 29
Deployment Pipelines 31
Combining Fitness Function Categories 35
Case Study: Architectural Restructuring while Deploying 60 Times/Day 37
Conflicting Goals 39
Case Study: Adding Fitness Functions to PenultimateWidgets’ Invoicing

Service 40
Hypothesis- and Data-Driven Development 42
Case Study: What to Port? 44

4. Architectural Coupling. 47
Modularity 47
Architectural Quanta and Granularity 48
Evolvability of Architectural Styles 51

Big Ball of Mud 52
Monoliths 53
Event-Driven Architectures 60
Service-Oriented Architectures 65
“Serverless” Architectures 76

Controlling Quantum Size 78
Case Study: Guarding Against Component Cycles 79

5. Evolutionary Data. 83
Evolutionary Database Design 83

Evolving Schemas 83
Shared Database Integration 85

Inappropriate Data Coupling 89
Two-Phase Commit Transactions 90
Age and Quality of Data 92

Case Study: Evolving PenultimateWidgets’ Routing 93

6. Building Evolvable Architectures. 95
Mechanics 95

1. Identify Dimensions Affected by Evolution 95
2. Define Fitness Function(s) for Each Dimension 96
3. Use Deployment Pipelines to Automate Fitness Functions 96

Greenfield Projects 97
Retrofitting Existing Architectures 97

iv | Table of Contents

Appropriate Coupling and Cohesion 97
Engineering Practices 98
Fitness Functions 98
COTS Implications 99

Migrating Architectures 100
Migration Steps 101
Evolving Module Interactions 104

Guidelines for Building Evolutionary Architectures 107
Remove Needless Variability 107
Make Decisions Reversible 109
Prefer Evolvable over Predictable 110
Build Anticorruption Layers 111
Case Study: Service Templates 113
Build Sacrificial Architectures 114
Mitigate External Change 115
Updating Libraries Versus Frameworks 117
Prefer Continuous Delivery to Snapshots 118
Version Services Internally 119

Case Study: Evolving PenultimateWidgets’ Ratings 119

7. Evolutionary Architecture Pitfalls and Antipatterns. 123
Technical Architecture 123

Antipattern: Vendor King 123
Pitfall: Leaky Abstractions 125
Antipattern: Last 10% Trap 127
Antipattern: Code Reuse Abuse 128
Case Study: Reuse at PenultimateWidgets 130
Pitfall: Resume-Driven Development 131

Incremental Change 131
Antipattern: Inappropriate Governance 132
Case Study: Goldilocks Governance at PenultimateWidgets 134
Pitfall: Lack of Speed to Release 134

Business Concerns 136
Pitfall: Product Customization 136
Antipattern: Reporting 137
Pitfall: Planning Horizons 138

8. Putting Evolutionary Architecture into Practice. 141
Organizational Factors 141

Cross-Functional Teams 141
Organized Around Business Capabilities 143
Product over Project 144

Table of Contents | v

Dealing with External Change 145
Connections Between Team Members 146

Team Coupling Characteristics 147
Culture 148
Culture of Experimentation 149

CFO and Budgeting 151
Building Enterprise Fitness Functions 152

Case Study: PenultimateWidgets as a Platform 153
Where Do You Start? 153

Low-Hanging Fruit 153
Highest-Value 154
Testing 154
Infrastructure 155
Case Study: Enterprise Architecture at PenultimateWidgets 156

Future State? 157
Fitness Functions Using AI 157
Generative Testing 157

Why (or Why Not)? 157
Why Should a Company Decide to Build an Evolutionary Architecture? 158
Case Study: Selective Scale at PenultimateWidgets 160
Why Would a Company Choose Not to Build an Evolutionary

Architecture? 161
Convincing Others 162
Case Study: Consulting Judo 163

The Business Case 163
“The Future Is Already Here…” 163
Moving Fast Without Breaking Things 164
Less Risk 164
New Capabilities 164

Building Evolutionary Architectures 164

Index. 167

vi | Table of Contents

Foreword

For a long time, the software industry followed the notion that architecture was
something that ought to be developed and completed before writing the first line of
code. Inspired by the construction industry, it was felt that the sign of a successful
software architecture was something that didn’t need to change during development,
often a reaction to the high costs of scrap and rework that would occur due to a re-
architecture event.

This vision of architecture was rudely challenged by the rise of agile software meth‐
ods. The pre-planned architecture approach was founded on the notion that require‐
ments should also be fixed before coding began, leading to a phased (or waterfall)
approach where requirements was followed by architecture which itself was followed
by construction (programming). The agile world, however, challenged the very
notion of fixed requirements, observing that regular changes in requirements were a
business necessity in the modern world, and providing project planning techniques
to embrace controlled change.

In this new agile world, many people questioned the role of architecture. And cer‐
tainly the pre-planned architecture vision couldn’t fit in with modern dynamism. But
there is another approach to architecture, one that embraces change in the agile man‐
ner. In this view architecture is an constant effort, one that works closely with pro‐
gramming so that architecture can react both to changing requirements but also to
feedback from programming. We’ve come to call this evolutionary architecture, to
highlight that while the changes are unpredictable, the architecture can still move in a
good direction.

At ThoughtWorks, we’ve been immersed in this architectural world-view. Rebecca led
many of our most important projects in the early years of this millenium, and devel‐
oped our technical leadership as our CTO. Neal has been a careful observer of our
work, synthesizing and conveying the lessons we’ve learned. Pat has combined his
project work with developing our technical leads. We’ve always felt that architecture
is vitally important, and can’t be left to idle chance. We’ve made mistakes, but learned

vii

from them, growing a better understanding of how to build a code base that can
respond gracefully to the many changes in its purpose.

The heart of doing evolutionary architecture is to make small changes, and put in
feedback loops that allow everyone to learn from how the system is developing. The
rise of Continuous Delivery has been a crucial enabling factor in making evolutionary
architecture practical. The authorial trio use the notion of fitness functions to moni‐
tor the state of the architecture. They explore different styles of evolvability for archi‐
tecture, and put emphasis on the issues around long-lived data—often a topic that
gets neglected. Conway’s Law towers over much of the discussion, as it should.

While I’m sure we have much to learn about doing software architecture in an evolu‐
tionary style, this book marks an essential road map on the current state of under‐
standing. As more people are realizing the central role of software systems in our
twenty-first century human world, knowing how best to respond to change while
keeping on your feet will be an essential skill for any software leader.

— Martin Fowler
martinfowler.com

September 2017

viii | Foreword

Preface

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

ix

http://oreilly.com/safari

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/2eY9gT6.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Additional Information
The authors maintain a companion website for this book at http://evolutionaryarchitec
ture.com

Acknowledgments
Neal would like to thank all the attendees of the various conferences at which he has
spoken over the last few years to help hone and revise this material live. He would
also like to thank the technical reviewers who went above and beyond to provide

x | Preface

http://oreilly.com/safari
http://oreil.ly/2eY9gT6
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://evolutionaryarchitecture.com
http://evolutionaryarchitecture.com

excellent feedback and advice, especially Venkat Subramanium, Eoin Woods, Simon
Brown, and Martin Fowler. Neal would also like to thank his cats Winston, Parker,
and Isabella for providing useful distractions that always lead to insights. He thanks
his friend John Drescher, all his ThoughtWorks colleagues, Norman Zapien for his
crafty ear, his yearly Pasty Geeks vacation group and neighborhood Cocktail Club for
support and friendship. And finally, he’d like to thank his long-suffering wife, who
endures his travel and other professional indignities with a smile.

Rebecca would like to thank all of the colleagues, conference attendees and speakers,
and authors who have, over the years, contributed ideas, tools, and methods and
asked clarifying questions about the field of evolutionary architecture. She would
echo Neal’s thanks to the technical reviewers for their careful reading and commen‐
tary. Further, Rebecca would like to thank her co-authors for all the enlightening con‐
versations and discussions while we worked together on this book. In particular, she
thanks Neal for the great discussion, or perhaps debate, they had several years ago
regarding the distinction between emergent and evolutionary architecture. These
ideas have come a long way since that first conversation.

Patrick would like to thank all of his colleagues and customers at ThoughtWorks,
who have driven the need and provided the testbed to articulate the ideas in building
evolutionary architecture. He would also like to echo Neal and Rebecca’s thanks to
the technical reviewers, whose feedback helped to improve the book immensely.
Finally, he would like to thank his co-authors for the past several years and for the
opportunity to work closely together on this topic, despite the numerous time zones
and flights that made meeting in person the rare occasion.

Preface | xi

CHAPTER 1

Software Architecture

Developers have long struggled to coin a succinct, concise definition of software
architecture because the scope is large and ever-changing. Ralph Johnson famously
defined software architecture as “the important stuff (whatever that is).” The archi‐
tect’s job is to understand and balance all of those important things (whatever they
are).

An initial part of an architect’s job is to understand the business or domain require‐
ments for a proposed solution. Though these requirements operate as the motivation
for utilizing software to solve a problem, they are ultimately only one factor that
architects should contemplate when crafting an architecture. Architects must also
consider numerous other factors, some explicit (e.g., performance service-level agree‐
ments) and others implicit to the nature of the business (e.g., the company is embark‐
ing on a mergers and acquisition spree). Therefore, the craft of software architecture
manifests in the ability of architects to analyze business and domain requirements
along with other important factors to find a solution that balances all concerns opti‐
mally. The scope of software architecture is derived from the combination of all these
architectural factors, as shown in Figure 1-1.

1

Figure 1-1. The entire scope of architecture encompasses requirements plus “-ilities”

As seen in Figure 1-1, business and domain requirements exist alongside other archi‐
tecture concerns (defined by architects). This includes a wide range of external fac‐
tors that can alter the decision process on what and how to build a software system.
For a sampling, check out the list in Table 1-1:

Table 1-1. Partial list of “-ilities”
accessibility accountability accuracy adaptability administrability

affordability agility auditability autonomy availability

compatibility composability configurability correctness credibility

customizability debugability degradability determinability demonstrability

dependability deployability discoverability distributability durability

effectiveness efficiency usability extensibility failure transparency

fault tolerance fidelity flexibility inspectability installability

integrity interoperability learnability maintainability manageability

mobility modifiability modularity operability orthogonality

portability precision predictability process capabilities producibility

provability recoverability relevance reliability repeatability

reproducibility resilience responsiveness reusability robustness

safety scalability seamlessness self-sustainability serviceability

securability simplicity stability standards compliance survivability

sustainability tailorability testability timeliness traceability

When building software, architects must determine the most important of these
“-ilities.” However, many of these factors oppose one another. For example, achieving
both high performance and extreme scalability can be difficult because achieving

2 | Chapter 1: Software Architecture

1 Clarke, G. M., Gross, S., Matthews, M., Catling, P. C., Baker, B., Hewitt, C. L., Crowther, D., & Saddler, S. R.
2000, Environmental Pest Species in Australia, Australia: State of the Environment, Second Technical Paper
Series (Biodiversity), Department of the Environment and Heritage, Canberra.

both requires a careful balance of architecture, operations, and many other factors.
As a result, the necessary analysis in architecture design and the inevitable clash of
competing factors requires balance, but balancing the pros and cons of each architec‐
tural decision leads to the tradeoffs so commonly lamented by architects. In the last
few years, incremental developments in core engineering practices for software devel‐
opment have laid the foundation for rethinking how architecture changes over time
and on ways to protect important architectural characteristics as this evolution
occurs. This book ties those parts together with a new way to think about architecture
and time.

We want to add a new standard “-ility” to software architecture—evolvability.

Evolutionary Architecture
Despite our best efforts, software becomes harder to change over time. For a variety
of reasons, the parts that comprise software systems defy easy modification, becom‐
ing more brittle and intractable over time. Changes in software projects are usually
driven by a reevaluation of functionality and/or scope. But another type of change
occurs outside the control of architects and long-term planners. Though architects
like to be able to strategically plan for the future, the constantly changing software
development ecosystem makes that difficult. Since we can’t avoid change, we need to
exploit it.

How Is Long-term Planning Possible When Everything Changes All
the Time?
In the biological world, the environment changes constantly from both natural and
man-made causes. For example, in the early 1930s, Australia had problems with cane
beetles, which rendered the production and harvesting sugar cane crops less profita‐
ble. In response, in June 1935, the then Bureau of Sugar Experiment Stations intro‐
duced a predator, the cane toad, previously only native to south and middle America.1

After being bred in captivity a number of young toads were released in North
Queensland in July and August 1935. With poisonous skin and no native predators,
the cane toads spread widely; there are an estimated 200 million in existence today.
The moral: introducing changes to a highly dynamic (eco)system can yield unpre‐
dictable results.

The software development ecosystem consists of all the tools, frameworks, libraries,
and best practices—the accumulated state of the art in software development. This

Evolutionary Architecture | 3

ecosystem forms an equilibrium—much like a biological system—that developers can
understand and build things within. However, that equilibrium is dynamic—new
things come along constantly, initially upsetting the balance until a new equilibrium
emerges. Visualize a unicyclist carrying boxes: dynamic because she continues to
adjust to stay upright and equilibrium because she continues to maintain balance. In
the software development ecosystem, each new innovation or practice may disrupt
the status quo, forcing the establishment of a new equilibrium. Metaphorically, we
keep tossing more boxes onto the unicyclist’s load, forcing her to reestablish balance.

In many ways, architects resemble our hapless unicyclist, constantly both balancing
and adapting to changing conditions. The engineering practices of Continuous Deliv‐
ery represent such a tectonic shift in the equilibrium: Incorporating formerly siloed
functions such as operations into the software development lifecycle enabled new
perspectives on what change means. Enterprise architects can no longer rely on static
5-year plans because the entire software development universe will evolve in that
timeframe, rendering every long-term decision potentially moot.

Disruptive change is hard to predict even for savvy practitioners. The rise of contain‐
ers via tools like Docker is an example of an unknowable industry shift. However, we
can trace the rise of containerization via a series of small, incremental steps. Once
upon a time, operating systems, application servers, and other infrastructure were
commercial entities, requiring licensing and great expense. Many of the architectures
designed in that era focused on efficient use of shared resources. Gradually, Linux
became good enough for many enterprises, reducing the monetary cost of operating
systems to zero. Next, DevOps practices like automatic machine provisioning via
tools like Puppet or Chef made Linux operationally free. Once the ecosystem became
free and widely used, consolidation around common portable formats was inevitable;
thus, Docker. But containerization couldn’t have happened without all the evolution‐
ary steps leading to that end.

The programming platforms we use exemplify constant evolution. Newer versions of
a programming language offer better application programming interfaces (APIs) to
improve the flexibility or applicability toward new problems; newer programming
languages offer a different paradigm and different set of constructs. For example, Java
was introduced as a C++ replacement to ease the difficulty of writing networking
code and to improve memory management issues. When we look at the past 20 years,
we observe that many languages still continually evolve their APIs while totally new
programming languages appear to regularly attack newer problems. The evolution of
programming languages is demonstrated in Figure 1-2.

4 | Chapter 1: Software Architecture

https://www.docker.com
https://puppet.com/
https://www.chef.io/

Figure 1-2. The evolution of popular programming languages

Regardless of which particular aspect of software development—the programming
platform, languages, the operating environment, persistence technologies, and so on
—we expect constant change. Although we cannot predict when changes in the tech‐
nical or domain landscape will occur, or which changes will persist, we know change
is inevitable. Consequently, we should architect our systems knowing the technical
landscape will change.

If the ecosystem constantly changes in unexpected ways, and predictability is impos‐
sible, what is the alternative to fixed plans? Enterprise architects and other developers
must learn to adapt. Part of the traditional reasoning behind making long-term plans
was financial; software changes were expensive. However, modern engineering prac‐
tices invalidate that premise by making change less expensive by automating formerly
manual processes and other advances such as DevOps.

For years, many smart developers recognized that some parts of their systems were
harder to modify than others. That’s why software architecture is defined as the “parts
hard to change later.” This convenient definition partitioned the things you can mod‐
ify without much effort from truly difficult changes. Unfortunately, this definition
also evolved into a blind spot when thinking about architecture: Developers’ assump‐
tion that change is difficult becomes a self-fulfilling prophecy.

Several years ago, some innovative software architects revisited the “hard to change
later” problem in a new light: what if we build changeability into the architecture? In
other words, if ease of change is a bedrock principle of the architecture, then change is
no longer difficult. Building evolvability into architecture in turn allows a whole new
set of behaviors to emerge, upsetting the dynamic equilibrium again.

Even if the ecosystem doesn’t change, what about the gradual erosion of architectural
characteristics that occurs? Architects design architectures, but then expose them to

Evolutionary Architecture | 5

the messy real world of implementing things atop the architecture. How can architects
protect the important parts they have defined?

Once I’ve Built an Architecture, How Can I Prevent It from Gradually
Degrading Over Time?
An unfortunate decay, often called bit rot, occurs in many organizations. Architects
choose particular architectural patterns to handle the business requirements and
“-ilities,” but those characteristics often accidentally degrade over time. For example,
if an architect has created a layered architecture with presentation at the top, persis‐
tence at the bottom, and several layers in between, developers who are working on
reporting will often ask permission to directly access persistence from the presenta‐
tion layer, bypassing the other layers, for performance reasons. Architects build layers
to isolate change. Developers then bypass those layers, increasing coupling and inva‐
lidating the reasoning behind the layers.

Once they have defined the important architectural characteristics, how can archi‐
tects protect those characteristics to ensure they don’t erode? Adding evolvability as an
architectural characteristics implies protecting the other characteristics as the system
evolves. For example, if an architect has designed an architecture for scalability, she
doesn’t want that characteristic to degrade as the system evolves. Thus, evolvability is
a meta-characteristic, an architectural wrapper that protects all the other architectural
characteristics.

In this book, we illustrate that a side effect of an evolutionary architecture is mecha‐
nisms to protect the important architecture characteristics. We explore the ideas
behind continual architecture: building architectures that have no end state and are
designed to evolve with the ever-changing software development ecosystem, and
including built-in protections around important architectural characteristics. We
don’t attempt to define software architecture in totality; many other definitions exist.
We focus instead on extending current definitions to adding time and change as first-
class architectural elements.

Here is our definition of evolutionary architecture:
An evolutionary architecture supports guided, incremental change across multiple
dimensions.

Incremental Change
Incremental change describes two aspects of software architecture: how teams build
software incrementally and how they deploy it.

During development, an architecture that allows small, incremental changes is easier
to evolve because developers have a smaller scope of change. For deployment, incre‐

6 | Chapter 1: Software Architecture

https://martinfowler.com/ieeeSoftware/whoNeedsArchitect.pdf

mental change refers to the level of modularity and decoupling for business features
and how they map to architecture. An example is in order.

Let’s say that PenultimateWidgets, a large seller of widgets, has a catalog page backed
by a microservice architecture and modern engineering practices. One of the page’s
features is the ability of users to rate different widgets with star ratings. Other services
within PenultimateWidgets’ business also need ratings (customer service representa‐
tives, shipping provider evaluation, and so on), so they all share the star rating ser‐
vice. One day, the star rating team releases a new version alongside the existing one
that allows half-star ratings—a small but significant upgrade. The other services that
require ratings aren’t required to move to the new version, but rather gradually
migrate as convenient. Part of PenultimateWidgets’ DevOps practices include archi‐
tectural monitoring of not only the services but also the routes between services.
When the operations group observes that no one has routed to a particular service
within a given time interval, they automatically disintegrate that service from the eco‐
system.

This is an example of incremental change at the architectural level: the original ser‐
vice can run alongside the new one as long as other services need it. Teams can
migrate to new behavior at their leisure (or as need dictates), and the old version is
automatically garbage collected.

Making incremental change successful requires coordination of a handful of Contin‐
uous Delivery practices. Not all these practices are required in all cases but rather
commonly occur together in the wild. We discuss how to achieve incremental change
in Chapter 3.

Guided Change
Once architects have chosen important characteristics, they want to guide changes to
the architecture to protect those characteristics. For that purpose, we borrow a con‐
cept from evolutionary computing called fitness functions. A fitness function is an
objective function used to summarize how close a prospective design solution is to
achieving the set aims. In evolutionary computing, the fitness function determines
whether an algorithm has improved over time. In other words, as each variant of an
algorithm is generated, the fitness functions determine how “fit” each variant is based
on how the designer of the algorithm defined “fit.”

We have a similar goal in evolutionary architecture—as architecture evolves, we need
mechanisms to evaluate how changes impact the important characteristics of the
architecture and prevent degradation of those characteristics over time. The fitness
function metaphor encompasses a variety of mechanisms we employ to ensure archi‐
tecture doesn’t change in undesirable ways, including metrics, tests, and other verifi‐
cation tools. When an architect identifies an architectural characteristic they want to

Guided Change | 7

protect as things evolve, they define one or more fitness functions to protect that fea‐
ture.

Historically, a portion of architecture has often been viewed as a governance activity,
and architects have only recently accepted the notion of enabling change through
architecture. Architectural fitness functions allow decisions in the context of the
organization’s needs and business functions, while making the basis for those deci‐
sions explicit and testable. Evolutionary architecture is not an unconstrained, irre‐
sponsible approach to software development. Rather, it is an approach that balances
the need for rapid change and the need for rigor around systems and architectural
characteristics. The fitness function drives architectural decision making, guiding the
architecture while allowing the changes needed to support changing business and
technology environments.

We use fitness functions to create evolutionary guidelines for architectures; we cover
them in detail in Chapter 2.

Multiple Architectural Dimensions
There are no separate systems. The world is a continuum. Where to draw a boundary
around a system depends on the purpose of the discussion.

—Donella H. Meadows

Classical Greek physics gradually learned to analyze the universe based on fixed
points, culminating in Classical Mechanics. However, more precise instruments and
more complex phenomena gradually refined that definition toward relativity in the
early 20th century. Scientists realized that what they previously viewed as isolated
phenomenon in fact interact relative to one another. Since the 1990s, enlightened
architects have increasingly viewed software architecture as multidimensional. Con‐
tinuous Delivery expanded that view to encompass operations. However, software
architects often focus primarily on technical architecture, but that is only one dimen‐
sion of a software project. If architects want to create an architecture that can evolve,
they must consider all parts of the system that change affects. Just like we know from
physics that everything is relative to everything else, architects know there are many
dimensions to a software project.

To build evolvable software systems, architects must think beyond just the technical
architecture. For example, if the project includes a relational database, the structure
and relationship between database entities will evolve over time as well. Similarly,
architects don’t want to build a system that evolves in a manner that exposes a secu‐
rity vulnerability. These are all examples of dimensions of architecture—the parts of
architecture that fit together in often orthogonal ways. Some dimensions fit into what
are often called architectural concerns (the list of “-ilities” above), but dimensions are
actually broader, encapsulating things traditionally outside the purview of technical

8 | Chapter 1: Software Architecture

http://farside.ph.utexas.edu/teaching/301/lectures/node3.html

architecture. Each project has dimensions the architect must consider when thinking
about evolution. Here are some common dimensions that affect evolvability in
modern software architectures:

Technical
The implementation parts of the architecture: the frameworks, dependent libra‐
ries, and the implementation language(s).

Data
Database schemas, table layouts, optimization planning, etc. The database
administrator generally handles this type of architecture.

Security
Defines security policies, guidelines, and specifies tools to help uncover deficien‐
cies.

Operational/System
Concerns how the architecture maps to existing physical and/or virtual infra‐
structure: servers, machine clusters, switches, cloud resources, and so on.

Each of these perspectives forms a dimension of the architecture—an intentional par‐
titioning of the parts supporting a particular perspective. Our concept of architectural
dimensions encompasses traditional architectural characteristics (“-ilities”) plus any
other role that contributes to building software. Each of these forms a perspective on
architecture that we want to preserve as our problem evolves and the world around
us changes.

A variety of partitioning techniques exist for conceptually carving up architectures.
For example, the 4 + 1 architecture View Model, which focuses on different perspec‐
tives from different roles and was incorporated into the IEEE definition of software
architecture, splits the ecosystem into logical, development, process, and physical views.
In the well-known book Software Systems Architecture, the authors posit a catalog of
viewpoints on software architecture, spanning a larger set of roles. Similarly, Simon
Brown’s C4 notation partitions concerns for aid in conceptual organization. In this
text, in contrast, we don’t attempt to create a taxonomy of dimensions but rather rec‐
ognize the ones extant in existing projects. Pragmatically, regardless of which cate‐
gory a particular important concern falls into, the architect must still protect that
dimension. Different projects have differing concerns, leading to unique sets of
dimensions for a given project. Any of these techniques provide useful insight, partic‐
ularly in new projects, but existing projects must deal with the realities of what exists.

When architects think in terms of architectural dimensions, it provides a mechanism
by which they can analyze the evolvability of different architectures by assessing how
each important dimension reacts to change. As systems become more intertwined
with competing concerns (scalability, security, distribution, transactions, and so on),
architects must expand the dimensions they track on projects. To build an evolvable

Multiple Architectural Dimensions | 9

https://en.wikipedia.org/wiki/4%2B1_architectural_view_model
http://www.viewpoints-and-perspectives.info/home/
http://www.codingthearchitecture.com/

system, architects must think about how the system might evolve across all the
important dimensions.

The entire architectural scope of a project consists of the software requirements plus
the other dimensions. We can use fitness functions to protect those characteristics as
the architecture and the ecosystem evolve together through time, as illustrated in
Figure 1-3.

Figure 1-3. An architecture consists of both requirements and other dimensions, each
protected by fitness functions

In Figure 1-3, the architects have identified auditability, data, security, performance,
legality, and scalability as the additional architectural characteristics important for
this application. As the business requirements evolve over time, each of the architec‐
tural characteristics utilize fitness functions to protect their integrity as well.

While the authors of this text stress the importance of a holistic view of architecture,
we also realize that a large part of evolving architecture concerns technical architec‐
ture patterns and related topics like coupling and cohesion. We discuss how technical
architecture coupling affects evolvability in Chapter 4 and the impacts of data cou‐
pling in Chapter 5.

10 | Chapter 1: Software Architecture

Coupling applies to more than just structural elements in software projects. Many
software companies have recently discovered the impact of team structure on surpris‐
ing things like architecture. We discuss all aspects of coupling in software, but the
team impact comes up so early and often that we need to discuss it here.

Conway’s Law
In April 1968, Melvin Conway submitted a paper to Harvard Business Review called,
“How Do Committees Invent?”. In this paper, Conway introduced the notion that the
social structures, particularly the communication paths between people, inevitably
influence final product design.

As Conway describes, in the very early stage of the design, a high-level understanding
of the system is made to understand how to break down areas of responsibility into
different patterns. The way that a group breaks down a problem affects choices that
they can make later. He codified what has become known as Conway’s Law:

Organizations which design systems … are constrained to produce designs which are
copies of the communication structures of these organizations.

—Melvin Conway

As Conway notes, when technologists break down problems into smaller chunks to
delegate, we introduce coordination problems. In many organizations, formal com‐
munication structures or rigid hierarchy appear to solve this coordination problem
but often lead to inflexible solutions. For example, in a layered architecture where the
team is separated by technical function (user interface, business logic, and so on),
solving common problems that cut vertically across layers increases coordination
overhead. People who have worked in startups and then have joined joined large mul‐
tinational corporations have likely experienced the contrast between the nimble,
adaptable culture of the former and the inflexible communication structures of the
latter. A good example of Conway’s Law in action might be trying to change the con‐
tract between two services, which could be difficult if the successful change of a ser‐
vice owned by one team requires athecoordinated and agreed-upon effort of another.

In his paper, Conway was effectively warning software architects to pay attention not
only to the architecture and design of the software, but also the delegation, assign‐
ment, and coordination of the work between teams.

In many organizations teams are divided according to their functional skills. Some
common examples include:

Front-end developers
A team with specialized skills in a particular user interface (UI) technology (e.g.,
HTML, mobile, desktop).

Conway’s Law | 11

http://www.melconway.com/research/committees.html

Back-end developers
A team with unique skills in building back-end services, sometimes API tiers.

Database developers
A team with unique skills in building storage and logic services.

In organizations with functional silos, management divides teams to make their
Human Resources department happy without much regard to engineering efficiency.
Although each team may be good at their part of the design (e.g., building a screen,
adding a back-end API or service, or developing a new storage mechanism), to
release a new business capability or feature, all three teams must be involved in build‐
ing the feature. Teams typically optimize for efficiency for their immediate tasks
rather than the more abstract, strategic goals of the business, particularly when under
schedule pressure. Instead of delivering an end-to-end feature value, teams often
focus on delivering components that may or may not work well with each other.

In this organizational split, a feature dependent on all three teams takes longer as
each team works on their component at different times. For example, consider the
common business change of updating the Catalog page. That change entails the UI,
business rules, and database schema changes. If each team works in their own silo,
they must coordinate schedules, extending the time required to implement the fea‐
ture. This is a great example of how team structure can impact architecture and the
ability to evolve.

As Conway noted in his paper by noting every time a delegation is made and some‐
body’s scope of inquiry is narrowed, the class of design alternatives which can be effec‐
tively pursued is also narrowed. Stated another way, it’s hard for someone to change
something if the thing she wants to change is owned by someone else. Software archi‐
tects should pay attention to how work is divided and delegated to align architectural
goals with team structure.

Many companies who build architectures such as microservices structure their teams
around service boundaries rather than siloed technical architecture partitions. In the
ThoughtWorks Technology Radar, we call this the Inverse Conway Maneuver. Orga‐
nization of teams in such a manner is ideal because team structure will impact myriad
dimensions of software development and should reflect the problem size and scope.
For example, when building a microservices architecture, companies typically struc‐
ture teams that that resemble the architecture by cutting across functional silos and
including team members who cover every angle of the business and technical aspects
of the architecture.

12 | Chapter 1: Software Architecture

https://www.thoughtworks.com/radar
https://www.thoughtworks.com/radar/techniques/inverse-conway-maneuver:

Structure teams to look like your target architecture, and it will be
easier to achieve it.

Introducing PenultimateWidgets and Their Inverse Conway Moment
Throughout this book, we use the example company, PenultimateWidgets, the Second
to Last Widget Dealer, a large online seller of widgets (a variety of little unspecified
things). The company is gradually updating much of their IT infrastructure. They
have some legacy systems they want to keep around for a while, and new strategic sys‐
tems that require more iterative approaches. Throughout the chapters, we’ll highlight
many of the problems and solutions PenultimateWidgets develops to address those
needs.

The first observation their architects made concerned the software development
teams. The old monolithic applications utilized a layered architecture, separating pre‐
sentation, business logic, persistence, and operations. Their team mirrors these func‐
tions: All the UI developers sit together, developers and database administrators have
their own silo, and operations is outsourced to a third party.

When the developers started working on the new architectural elements, a microser‐
vices architecture with fine-grained services, the coordination costs skyrocketed.
Because the services were built around domains (such as CustomerCheckout) rather
than technical architecture, making a change to a single domain required a crippling
amount of coordination across their silos.

Instead, PenultimateWidgets applied the Inverse Conway Maneuver and built cross-
functional teams that matched the purview of the service: each service team consists
of service owner, a few developers, a business analyst, a database administrator
(DBA), a quality assurance (QA) person, and an operations person.

Team impact shows up in many places throughout the book, with examples of how
many consequences it has.

Why Evolutionary?
A common question about evolutionary architecture concerns the name itself: why
call it evolutionary architecture and not something else? Other possible names
include incremental, continual, agile, reactive, and emergent, to name just a few. But
each of these terms misses the mark here. The definition of evolutionary architecture
that we state here includes two critical characteristics: incremental and guided.

Why Evolutionary? | 13

The terms continual, agile, and emergent all capture the notion of change over time,
which is clearly a critical characteristic of an evolutionary architecture, but none of
these terms explicitly capture any notion of how an architecture changes or what the
desired end state architecture might be. While all the terms imply a changing envi‐
ronment, none of them cover what the architecture should look like. The guided part
of our definition reflects the architecture we want to achieve—our end goal.

We prefer the word evolutionary over adaptable because we are interested in architec‐
tures that undergo fundamental evolutionary change, not ones that have been
patched and adapted into increasingly incomprehensible accidental complexity.
Adapting implies finding some way to make something work regardless of the ele‐
gance or longevity of the solution. To build architectures that truly evolve, architects
must support genuine change, not jury-rigged solutions. Going back to our biological
metaphor, evolutionary is about the process of having a system that is fit for purpose
and can survive the ever-changing environment in which it operates. Systems may
have individual adaptations, but as architects, we should care about the overall evolv‐
able system.

Summary
An evolutionary architecture consists of three primary aspects: incremental change,
fitness functions, and appropriate coupling. In the remainder of the book, we discuss
each of these factors separately, then combine them to address what it takes to build
and maintain architectures that support constant change.

14 | Chapter 1: Software Architecture

CHAPTER 2

Fitness Functions

An evolutionary architecture supports guided, incremental change across multiple
dimensions.

—our definition

As noted, the word guided indicates that some objective exists that architecture
should move toward or exhibit. The authors borrow a concept from evolutionary
computing called “fitness functions,” used in genetic algorithm design to define suc‐
cess. Evolutionary computing includes a number of mechanisms that allow a solution
to gradually emerge via small changes in each generation of the software. At each
generation of the solution, the engineer assesses the current state: Is it closer to or fur‐
ther away from the ultimate goal? For example, when using a genetic algorithm to
optimize wing design, the fitness function assess wind resistance, weight, air flow, and
other characteristics desirable to good wing design. Architects define a fitness func‐
tion to explain what better is and to help measure when the goal is met. In software,
fitness functions check that developers preserve important architectural characteris‐
tics.

We use this concept to define architectural fitness functions:
An architectural fitness function provides an objective integrity assessment of some
architectural characteristic(s).

—our definition

The fitness function protects the various architectural characteristics required for the
system. The specific architectural requirements differ greatly across systems and
organizations, based on business drivers, technical capabilities, and a host of other
factors. Some systems require intense security; others require significant throughput
or low latency. Whereas some might need to be more resilient to failure. These con‐
siderations form the “-ilities” that architects care about. Conceptually, an architec‐

15

tural fitness function embodies a protection mechanism for the “-ilities” of a given
system.

We can also think about the systemwide fitness function as a collection of fitness func‐
tions with each function corresponding to one or more dimensions of the architec‐
ture. Using a systemwide fitness function aids our understanding of necessary
tradeoffs when individual elements of the fitness function conflict with each other. As
is common with multifunction optimization problems, we might find it impossible to
optimize all values simultaneously, forcing us to make choices. For example, in the
case of architectural fitness functions, issues like performance might conflict with
security due to the cost of encryption. This is a classic example of the bane of archi‐
tects everywhere—the tradeoff. Tradeoffs dominate much of an architect’s headaches
during the struggle to reconcile opposing forces, such as scalability and performance.
However, architects have a perpetual problem of comparing these different character‐
istics because they fundamentally differ (an apples to oranges comparison) and all
stakeholders believe their concern is paramount. Systemwide fitness functions allow
architects to think about divergent concerns using the same unifying mechanism of
fitness functions, capturing and preserving the important architectural characteris‐
tics. The relationship between the systemwide fitness function and its constituent
smaller fitness functions is illustrated in Figure 2-1.

Figure 2-1. Systemwide versus individual fitness functions

The systemwide fitness function is crucial for an architecture to be evolutionary, as
we need some basis to allow architects to compare and evaluate architectural charac‐
teristics against one another. Unlike the more directed fitness functions, architects

16 | Chapter 2: Fitness Functions

will likely never try to “evaluate” this systemwide fitness function. Rather, it provides
guidelines for prioritizing decisions about the architecture in the future.

A system is never the sum of its parts. It is the product of the interactions of its parts.
—Dr. Russel Ackoff

Without guidance, evolutionary architecture becomes simply a reactionary architec‐
ture. Thus, a crucial early architectural decision for any system is to define important
dimensions such as scalability, performance, security, data schemas, and so on. Con‐
ceptually, this allows architects to weigh the importance of a fitness function based on
its importance to the system’s overall behavior.

We first define fitness functions more rigorously, and then examine conceptually how
they guide the evolution of the architecture.

What is a Fitness Function?
Mathematically speaking, a function takes input from some allowed set of input val‐
ues and produces an output in some allowed set of output values. In software, we also
generally use the term function to refer to something that is actually implementable.
However, as with acceptance criteria in agile software development, the fitness func‐
tions for evolutionary architecture may not be implementable in software (e.g., a
required manual process for regulatory reasons), but architects must still define man‐
ual fitness functions to help guide the evolution of the system. While automated
checks are preferable, some projects cannot automate all fitness functions. Thus, it is
still useful for architects to elucidate architectural verifications explicitly as fitness
functions for many reasons that will become evident.

As discussed in Chapter 1, real-world architecture consists of many different dimen‐
sions, including requirements around performance, reliability, security, operability,
coding standards, and integration, to name a few. We want a fitness function to repre‐
sent each requirement for the architecture. Developers commonly express fitness
functions using different kinds of mechanisms, such as tests or metrics. We’ll look at a
few examples and then consider the different kinds of functions more broadly.

Performance requirements make good use of fitness functions. Consider a require‐
ment that all service calls must respond within 100ms. We can implement a test (i.e.,
fitness function) that measures the response to a service request and fails if the result
is greater than 100ms. To this end, every new service should have a corresponding
performance test added to the suite. Developers writing the tests must decide what
level of comprehensiveness of the range and types of inputs establish confidence in
the passing test. They must also decide when to run these tests and how to handle test
failures. Performance testing should be conducted early and frequently, in particular
to pick up inflection points when performance changes radically (usually in the
wrong direction) because of an update to code.

What is a Fitness Function? | 17

Fitness functions can also be used to maintain coding standards. A common code
metric is cyclomatic complexity, a measure of function or method complexity. An
architect may set a threshold for an upper value, guarded by a unit test running in
continuous integration, using one of the many tools to evaluate that metric. In the
previous example, architects decide when to run the fitness functions to assess per‐
formance. For coding standards, developers want violations to fail the build immedi‐
ately and to address the problem aggressively.

Despite need, developers cannot always implement some fitness functions completely
because of complexity or other constraints. Consider something like a failover for a
database from a hard failure. While the recovery itself might be fully automated (and
should be), triggering the test itself is likely best done manually. Additionally, it might
be far more efficient to determine the success of the test manually, although scripts
and automation are still encouraged.

These examples highlight the different myriad forms fitness functions can take, the
immediate response to failure of a fitness function, and even when and how develop‐
ers might run them. While we can’t necessarily run a single script and say “our archi‐
tecture currently has a composite fitness score of 42,” we can have precise and
unambiguous conversations about the state of the architecture relative to the system‐
wide fitness function. We can also entertain discussions about the changes that might
incur on the architecture’s fitness.

Finally, when we say an evolutionary architecture is guided by the fitness function, we
mean we evaluate individual architectural choices against the individual and the sys‐
temwide fitness function to determine the impact of the change. The fitness functions
collectively denote what matters to us in our architecture, allowing us to make the
kinds of trade-off decisions that are both crucial and vexing during the development
of software systems.

Fitness functions unify many existing concepts into a single mechanism, allowing
architects to think in a uniform way about many existing (often ad hoc) “non-
functional requirements” tests. Collecting important architecture thresholds and
requirements as fitness functions allows for a more concrete representation for previ‐
ously fuzzy, subjective evaluation criteria. We leverage a large number of existing
mechanisms to build fitness functions, including traditional testing, monitoring, and
other tools. Not all tests are fitness functions, but some tests are—if the test helps ver‐
ify the integrity of architectural concerns, we consider it a fitness function.

Categories
Fitness functions exist across a variety of categories related to their scope, frequency,
dynamics, and other factors, including combinations of categories where useful.

18 | Chapter 2: Fitness Functions

https://en.wikipedia.org/wiki/Cyclomatic_complexity

Atomic Versus Holistic
Atomic fitness functions run against a singular context and exercise one particular
aspect of the architecture. An excellent example of an atomic fitness function is a unit
test that verifies some architectural characteristic, such as modular coupling (we
show an example of this type of fitness function in Chapter 4). Thus, some
application-level testing falls under the heading of fitness functions, but not all unit
tests serve as fitness functions—only the ones that verify architecture characteris‐
tic(s).

For some architectural characteristics, developers must test more than each architec‐
tural dimension in isolation. Holistic fitness functions run against a shared context
and exercise a combination of architectural aspects such as security and scalability.
Developers design holistic fitness functions to ensure that combined features that
work atomically don’t break in real-world combinations. For example, imagine an
architecture has fitness functions around both security and scalability. One of the key
items the security fitness function checks is staleness of data, and a key item for the
scalability tests is number of concurrent users within a certainly latency range. To
achieve scalability, developers implement caching, which allows the atomic scalability
fitness function to pass. When caching isn’t turned on, the security fitness function
passes. However, when run holistically, enabling caching makes data too stale to pass
the security fitness function, and the holistic test fails.

We obviously cannot test every possible combination of architecture elements, so
architects use holistic fitness functions selectively to test important interactions. This
selectivity and prioritization also allows architects and developers to assess the diffi‐
cultly implementing a particular testing scenario (via fitness functions), thus allowing
an assessment of how valuable that characteristic is. Frequently, the interactions
between architectural concerns determines the quality of the architecture, which
holistic fitness functions address.

Triggered Versus Continual
Execution cadence is another distinguishing factor between fitness functions. Trig‐
gered fitness functions run based on a particular event, such as a developer executing
a unit test, a deployment pipeline running unit tests, or a QA person performing
exploratory testing. This encompasses traditional testing such as unit, functional,
behavior-driven development (BDD), and other tests developers.

Continual tests don’t run on a schedule, but instead execute constant verification of
architectural aspect(s) such as transaction speed. For example, consider a microservi‐
ces architecture where the architects want to build a fitness function around transac‐
tion time—how long does it take for a transaction to complete on average? Building
any kind of triggered test provides sparse information about real-world behavior.
Thus, instead of using a triggered test, developers build a fitness function that simu‐

Categories | 19

lates a transaction in production while all the other real transactions run. This allows
developers to verify behavior and gather real data about the system “in the wild.”

Monitoring-driven development (MDD) is another testing technique gaining popu‐
larity. Rather than relying solely on tests to verify system results, MDD uses monitors
in production to assess both technical and business health. These continual fitness
functions are more dynamic than standard triggered tests.

Static Versus Dynamic
Static fitness functions have a fixed result, such as the binary pass/fail of a unit test.
This type encompasses any fitness function that has a predefined desirable value:
binary, a number range, set inclusion, and so on. Metrics are often used for fitness
functions. For example, an architect may define acceptable ranges for average cyclo‐
matic complexity of methods in the code base, graded upon checkin using a metrics
tool wired into the deployment pipeline.

Dynamic fitness functions rely on a shifting definition based on extra context. Some
values may be contingent on circumstances, and most architects will accept lower
performance metrics when operating at high scale. For example, a company might
build a sliding value for performance based on scalability—more scale means slower
performance is permitted, but only within a range.

Automated Versus Manual
Clearly, architects like automated things—part of incremental change includes auto‐
mation, which we delve into deeply in Chapter 3. Thus, it’s not surprising that devel‐
opers will execute most fitness functions within an automated context: continuous
integration, deployment pipelines, and so on. Indeed, developers and DevOps have
performed a tremendous amount of work under the auspices of Continuous Delivery
to automate many parts of the software development ecosystem previous thought
impossible. This beneficial trend should continue.

However, as much as we’d like to automate every single aspect of software develop‐
ment, some aspects of software resist automation. Sometimes, a critical dimension
within a system, such as legal requirements, defies automation. For example, develop‐
ers building applications in some problem domains must have manual certification
for changes for legal reasons, which cannot be automated away. Similarly, a project
may have aspirations to become more evolutionary evolutionary but not yet have
appropriate engineering practices in place. For example, perhaps most QA is still
manual on a particular project and must remain so for the near future. In both these
cases (and others), we need manual fitness functions that are verified by a person-
based process.

20 | Chapter 2: Fitness Functions

http://benjiweber.co.uk/blog/2015/03/02/monitoring-check-smells/

Clearly, the path to better efficiency eliminates as many manual steps as possible, but
many projects still require necessary manual procedures. We still define fitness func‐
tions for those characteristics and verify them using manuals stages in deployment
pipelines (covered in more detail in Chapter 3).

Temporal
While most fitness functions trigger on change, architects may want to build a time
component into assessing fitness. For example, if a project uses an encryption library,
the architect may want to create a temporal fitness function as a reminder to check to
see if important updates have been performed. Another common use of this type of
fitness function is a break upon upgrade test. In platforms like Ruby on Rails, some
developers can’t wait for the tantalizing new features coming in the next release, so
they add a feature to the current version via a back port, a custom implementation of
a future feature. Problems arise when the project finally upgrades to the new version
because the back port is often incompatible with the “real” version. Developers use
break upon upgrade tests to wrap back ported features to force re-evaluation when the
upgrade occurs.

Intentional Over Emergent
While architects will define most fitness functions at project inception as they eluci‐
date the characteristics of the architecture, some fitness functions will emerge during
development of the system. Architects never know all important parts of the architec‐
ture at the beginning (the classic unknown unknowns problem we address in Chap‐
ter 6) and thus must identify fitness functions as the system evolves.

Domain-specific
Some architectures have specific concerns, such as special security or regulatory
requirements. For example, a company that handles international fund transfers
might design a specific, continuous, holistic fitness function that stress tests security,
modeled after the way that the Simian Army (covered in Chapter 3) stresses infra‐
structure. Many problem domains contain drivers that lead architects toward one or
more set of important characteristics. Architects and developers should capture those
drivers as fitness functions to ensure that those important characteristics don’t
degrade over time.

We show examples of combining these dimensions when it comes time to evaluate
fitness functions in Chapter 3.

Categories | 21

Identify Fitness Functions Early
Teams should identify fitness functions as part of their initial understanding of the
overall architecture concerns that their design must support. They should also iden‐
tify their system fitness function early to help determine the sort of change that they
want to support. Discussions comparing the value and difficulty of implementing dif‐
ferent architecture characteristics (along with their fitness functions) help prioritize
riskier work earlier to understand how to design for change.

Teams that do not identify their fitness functions face the following risks:

• Making the wrong design choices that ultimately lead to building software that
fails in its environment

• Making design choices that cost time and/or money but are unnecessary
• Not being able to evolve the system easily in the future when the environment

changes

For each software system, teams should focus on identifying and prioritizing the
most important fitness functions as early as possible. Early identification of fitness
functions help architects plan for breaking a large system into smaller systems, each
dealing with a smaller set of fitness functions.

For example, some companies deal with security-sensitive data such as a credit card
or payment details. Depending on the industry and/or job, storing these sorts of
information imply stronger regulatory requirements, which may shift because of
changes in legislation or standards that impact regulations or because of expansion
into new states, territories, or countries with different legislative requirements.

If architects determine that security and payment play a significant role in the system‐
wide fitness function, it may lead the team to design an architecture that keeps these
concerns together. Without identifying fitness functions this early, a team may end up
with these responsibilities scattered throughout the entire codebase, requiring a
broader impact analysis to understand change and driving up the overall cost of
modification.

Fitness functions can be classified into three simple categories:

Key
These dimensions are critical in making technology or design choices. More
effort should be invested to explore design choices that make change around
these elements significantly easier. For example, for a banking application, per‐
formance and resiliency are key dimensions.

22 | Chapter 2: Fitness Functions

Relevant
These dimensions need to be considered at a feature level, but are unlikely to
guide architecture choices. For example, code metrics around the quality of code
base are important but not key.

Not Relevant
Design and technology choices are not impacted by these types of dimensions.
For example, process metrics such as cycle time (the amount of time to move
from design to implementation, may be important in some ways but is irrelevant
to architecture. As a result, fitness functions for it are not necessary.

Keep knowledge of key and relevant fitness functions alive by post‐
ing the results of executing fitness functions somewhere visible or
in a shared space so that developers remember to consider them in
day-to-day coding.

Classifying fitness functions into categories helps prioritize design decisions. If a
decision design has specific implications for a key fitness function, it will be worth
spending more time and effort conducting spikes (timed-boxed, experimental coding
projects) to validate the archtectural aspects of the design. Some teams adopt set-
based development, a practice in lean and agile processes for designing several solu‐
tions in parallel, leaving options open for future decisions in exchange for the cost of
building multiple solutions.

Review Fitness Functions
A fitness function review is a meeting with key business and technical stakeholders
with the goal of updating fitness functions to meet design goals. Events, such as sig‐
nificant market or customer growth, a new area of functionality or business capabil‐
ity, or an overhaul of an existing part of the system can warrant a fitness function
review.

A fitness function review generally includes the following:

• Reviewing existing fitness functions
• Checking the relevancy of the current fitness functions
• Determining change in the scale or magnitude of each fitness function
• Deciding if there are better approaches for measuring or testing the system’s fit‐

ness functions
• Discovering new fitness functions that the system might need to support

Review Fitness Functions | 23

https://en.wikipedia.org/wiki/Flexible_product_development
https://en.wikipedia.org/wiki/Flexible_product_development

Review your fitness functions at least once a year.

PenultimateWidgets and the Enterprise Architecture Spreadsheet
When the architects for PenultimateWidgets decided to build a new project platform
they first created a spreadsheet of all the desirable characteristics: scalability, security,
resiliency, and a host of other “-ilities.” But then they faced an age-old question: If
they built the new architecture to support those features, how can they ensure that it
maintains that support? As developers add new features, how would they keep unex‐
pected degradation of these important characteristics from occurring?

The solution was to create fitness functions for each of the concerns in the spread‐
sheet, reformulating some of them to meet objective evaluation criteria. Rather than
occasional, ad hoc verification of their important criteria, they wired the fitness func‐
tions into their deployment pipeline (discussed more fully in Chapter 3).

While software architects are interested in exploring evolutionary architectures, we
aren’t attempting to model biological evolution. Theoretically, we could build an
architecture that randomly changed one of its bits (mutation) and redeployed itself.
After a few million years, we would likely have a very interesting architecture. How‐
ever, we don’t have millions of years to wait.

We want our architecture to evolve in a guided way, so we place constraints on differ‐
ent aspects of the architecture to reign in undesirable evolutionary directions. A good
example is dog breeding: By selecting the characteristics we want, we can create a vast
number of different shaped canines in a relatively short amount of time.

We cover more aspects of operationalizing fitness functions in the next chapter. In
Chapter 6, we combine fitness functions with all the other architecture dimensions.

24 | Chapter 2: Fitness Functions

CHAPTER 3

Engineering Incremental Change

An evolutionary architecture supports guided, incremental change across multiple
dimensions.

—our definition

In 2010, Jez Humble and Dave Farley released Continuous Delivery, a collection of
practices to enhance the engineering efficiency in software projects. They provided
the mechanism for building and releasing software via automation and tools but not
the structure of how to design evolvable software. Evolutionary architecture assumes
these engineering practices as prerequisites but addresses how to utilize them to help
design evolvable software.

Our definition of evolutionary architecture implies incremental change, meaning the
architecture should facilitate change in small increments. This chapter describes
architectures that support incremental change along with some of the engineering
practices used to achieve incremental change, an important building block of evolu‐
tionary architecture. We discuss two aspects of incremental change: development,
which covers how developers build software, and operational, which covers how
teams deploy software.

Here is an example of the operational side of incremental change. We start with the
fleshed out example of incremental change from Chapter 1, which includes additional
details about the architecture and deployment environment. PenultimateWidgets, our
seller of widgets, has a catalog page backed by a microservice architecture and engi‐
neering practices, as illustrated in Figure 3-1.

25

http://continuousdelivery.com

Figure 3-1. Initial configuration of PenultimateWidgets’ component deployment

PenultimateWidgets’ architects have implemented microservices that are operation‐
ally isolated from other services. Microservices implement a share nothing architec‐
ture: Each service is operationally distinct to eliminate technical coupling and
therefore promote change at a granular level. PenultimateWidgets deploys all their
services in separate containers to trivialize operational changes.

The website allows users to rate different widgets with star ratings. But other parts of
the architecture also need ratings (customer service representatives, shipping pro‐
vider evaluation, and so on), so they all share the star rating service. One day, the star
rating team releases a new version alongside the existing one that allows half-star rat‐
ings—a significant upgrade, as shown in Figure 3-2.

Figure 3-2. Deploying with an improved star rating service showing the addition of the
half-star rating

The services that utilize ratings aren’t required to migrate to the improved rating ser‐
vice but can gradually transition to the better service when convenient. As time pro‐
gresses, more parts of the ecosystem that need ratings move to the enhanced version.
Part of PenultimateWidgets’ DevOps practices include architectural monitoring—
monitoring not only the services, but also the routes between services. When the
operations group observes that no one has routed to a particular service within a

26 | Chapter 3: Engineering Incremental Change

given time interval, they automatically disintegrate that service from the ecosystem,
as shown in Figure 3-3.

Figure 3-3. All services now use the improved star rating service

The mechanical ability to evolve is one the key components of an evolutionary archi‐
tecture. Let’s dig one level deeper in the abstraction above.

PenultimateWidgets has a fine-grained microservices architecture, where each service
is deployed using a container (like Docker) and using a service template to handle
infrastructure coupling. Applications within PenultimateWidgets consist of routes
between instances of services running—a given service may have multiple instances
to handle operational concerns like on-demand scalability. This allows architects to
host different versions of services in production and control access via routing. When
a deployment pipeline deploys a service, it registers itself (location and contract) with
a service discovery tool. When a service needs to find another service, it uses the dis‐
covery tool to learn the location and version suitability via the contract.

When the new star rating service is deployed, it registers itself with the service dis‐
covery tool and publishes its new contract. The new version of the service supports a
broader range of values—specifically, half-point values—than the original. That
means the service developers don’t have to worry about restricting the supported val‐
ues. If the new version requires a different contract for callers, it is typical to handle
that within the service rather than burden callers with resolving which version to call.
We cover that contract strategy in “Version Services Internally” on page 119.

When the team deploys the new service, they don’t want to force the calling services
to upgrade to the new service immediately. Thus, the architect temporarily changes
the star-service endpoint into a proxy that checks to see which version of the service
is requested and routes to the requested version. No existing services must change to
use the rating service as they always have, but new calls can start taking advantage of
the new capability. Old services aren’t forced to upgrade and can continue to call the
original service as long as they need it. As the calling services decide to use the new
behavior, they change the version they request from the endpoint. Over time, the
original version falls into disuse, and at some point, the architect can remove the old

Engineering Incremental Change | 27

https://www.docker.com/

version from the endpoint when it is no longer needed. Operations is responsible for
scanning for services that no other services call anymore (within some reasonable
threshold) and garbage collecting the unused services.

All the changes to this architecture, including the provisioning of external compo‐
nents such as the database, happen under the supervision of a deployment pipeline,
removing the responsibility of coordinating the disparate moving parts of the deploy‐
ment from DevOps.

This chapter covers the characteristics, engineering practices, team considerations,
and other aspects of building architectures that support incremental change.

Building Blocks
Many of the building blocks required for agility at the architecture level have become
mainstream over the last few years under the umbrella of Continuous Delivery and
its engineering practices.

Software architects have to determine how systems fit together, often by creating dia‐
grams, with varying degrees of ceremony. Architects often fall into the trap of seeing
software architecture as an equation they must solve. Much of the commercial tooling
sold to software architects reinforces the mathematical illusion of certainty with
boxes, lines, and arrows. While useful, these diagrams offer a 2D view—a snapshot of
an ideal world—but we live in a 4D world. To flesh out that 2D diagram, we must add
specifics. The ORM label Figure 3-4 becomes JDBC 2.1, evolving into a 3D view of the
world, where architects prove their designs in a real production environment using
real software. As Figure 3-4 illustrates, over time, changes in business and technology
require architects to adopt a 4D view of architecture, making evolution a first-class
concern.

Nothing in software is static. Take a computer, for example. Install an operating sys‐
tem and a nontrivial set of software on it, then lock it in a closet for a year. At the end
of the year, retrieve it from the closet and plug it into the wall and Internet…and
watch it install updates for a long time. Even though no one changed a single bit on
the computer, the entire world kept moving; this is the dynamic equilibrium we
described earlier. Any reasonable architecture plan must include evolutionary
change.

When we know how to put architecture into production and upgrade it to incorpo‐
rate inevitable changes (security patches, new versions of software, evolutions of the
architecture, and so on) as needed, we’ve graduated to a 4D world. Architecture isn’t a
static equation but rather a snapshot of an ongoing process, as illustrated in
Figure 3-4.

28 | Chapter 3: Engineering Incremental Change

Figure 3-4. Modern architecture must be deployable and changeable to survive the real
world

Continuous Delivery and the DevOps movement illustrate the need to implement an
architecture and keep it current. There is nothing wrong with modeling architecture
and capturing those efforts, but the model is merely the first step.

Architecture is abstract until operationalized, when it becomes a
living thing.

Figure 3-4 illustrates the natural evolution of version upgrades and new tool choices.
Architectures evolve in other ways as well, as we’ll see in Chapter 6.

Architects cannot judge the long-term viability of any architecture until design, imple‐
mentation, upgrade, and inevitable change are successful. And perhaps even enabled
the architecture to withstand unusual occurrences based on incipient unknown
unknowns, which we cover in Chapter 6.

Testable
One of the oft ignored “-ilities” of software architecture is testability—can characteris‐
tics of the architecture submit to automated tests to verify veracity? Unfortunately, it
is often difficult to test architecture parts due to lack of tool support.

However, some aspects of an architecture do yield to easy testing. For example, devel‐
opers can test concrete architectural characteristics like coupling, develop guidelines,
and eventually automate those tests.

Building Blocks | 29

Here is an example of a fitness function defined at the technical architecture dimen‐
sion to control the directionality of coupling between components. In the Java ecosys‐
tem, JDepend is a metrics tool that analyzes the coupling characteristics of packages.
Because JDepend is written in Java, it has an API that developers can leverage to build
their own analysis via unit tests.

Consider the fitness function in Example 3-1, expressed as a JUnit test:

Example 3-1. JDepend test to verify the directionality of package imports

public void testMatch() {
 DependencyConstraint constraint = new DependencyConstraint();

 JavaPackage persistence = constraint.addPackage("com.xyz.persistence");
 JavaPackage web = constraint.addPackage("com.xyz.web");
 JavaPackage util = constraint.addPackage("com.xyz.util");

 persistence.dependsUpon(util);
 web.dependsUpon(util);

 jdepend.analyze();

 assertEquals("Dependency mismatch",
 true, jdepend.dependencyMatch(constraint));
 }

In Example 3-1, we define the packages in our application and then define the rules
about imports. One of the bedeviling problems in component-based systems is com‐
ponent cycles—i.e., when component A references component B, which in turn refer‐
ences component A again. If a developer accidentally writes code that imports into
util from persistence, this unit test will fail before the code is committed. We pre‐
fer building unit tests to catch architecture violations over using strict development
guidelines (with the attendant bureaucratic scolding): It allows developers to focus
more on the domain problem and less on plumbing concerns. More importantly, it
allows architects to consolidate rules as executable artifacts.

Fitness functions can have any owner, including shared ownership. In the example
shown in Example 3-1, the application team may own the directionality fitness func‐
tion because it is a particular concern for that project. In the same deployment pipe‐
line, fitness functions common across multiple projects may be owned by the security
team. In general, the definition and maintenance of fitness functions is a shared
responsibility between architects, developers, and any other role concerned with
maintaining architectural integrity.

Many things about architecture are testable. Tools exist to test the structural charac‐
teristics of architecture such as JDepend (or a similar tool in the .NET ecosystem
NDepend). Tools also exist for performance, scalability, resiliency, and a variety of

30 | Chapter 3: Engineering Incremental Change

http://clarkware.com/software/JDepend.html
http://junit.org
http://www.ndepend.com/

other architectural characteristics. Monitoring and logging tools also qualify: Any
tool that helps assess some architectural characteristic qualifies as a fitness function.

Once they have defined fitness functions, architects must ensure that they are evalu‐
ated in a timely manner. Automation is the key to continual evaluation. A deployment
pipeline is often used to evaluate tasks like this. Using a deployment pipeline, archi‐
tects can define which, when, and how often fitness functions execute.

Deployment Pipelines
Continuous Delivery describes the deployment pipeline mechanism. Similar to a con‐
tinuous integration server, a deployment pipeline “listens” for changes, then runs a
series of verification steps, each with increasing sophistication. Continuous Delivery
practices encourage using a deployment pipeline as the mechanism to automate com‐
mon project tasks, such as testing, machine provisioning, deployments, etc. Open
source tools such as GoCD facilitate building these deployment pipelines.

Continuous Integration Versus Deployment Pipelines
Continuous integration is a well-known engineering practice in agile projects that
encourages developers to integrate as early and as often as possible. To facilitate con‐
tinuous integration, tools such as ThoughtWorks CruiseControl and other commer‐
cial and open source offerings have emerged. Continuous integration provides an
“official” build location, and developers enjoy the concept of a single mechanism to
ensure working code. However, a continuous integration server also provides a per‐
fect time and place to perform common project tasks such as unit testing, code cover‐
age, metrics, functional testing, and so on. For many projects, the continuous
integration server includes a list of tasks to perform whose successful culmination
indicates build success. Large projects eventually build an impressive list of tasks.

Deployment pipelines encourage developers to split individual tasks into stages. A
deployment pipeline includes the concept of multi-stage builds, allowing developers
to model as many post-checkin tasks as necessary. This ability to separate tasks dis‐
cretely supports the broader mandates expected of a deployment pipeline—to verify
production readiness—compared to a continuous integration (CI) server primarily
focused on integration. Thus, a deployment pipeline commonly includes application
testing at multiple levels, automated environment provisioning, and a host of other
verification responsibilities.

Some developers try to “get by” with a continuous integration server but soon find
they lack the level of separation of tasks and feedback necessary.

Building Blocks | 31

https://www.go.cd/
http://cruisecontrol.sourceforge.net/

A typical deployment pipeline automatically builds the deployment environment (a
container like Docker or a bespoke environment generated by a tool like Puppet or
Chef) as shown in Figure 3-5.

Figure 3-5. Deployment pipeline stages

By building the deployment image that the deployment pipeline executes, developers
and operations have a high degree of confidence: The host computer (or virtual
machine) is declaratively defined, and it’s a common practice to rebuild it from noth‐
ing.

The deployment pipeline also offers an ideal way to execute the fitness functions
defined for an architecture: It applies arbitrary verification criteria, has multiple
stages to incorporate differing levels of abstraction and sophistication of tests, and
runs every single time the system changes in any way. A deployment pipeline with
fitness functions added is shown in Figure 3-6.

32 | Chapter 3: Engineering Incremental Change

https://www.docker.com/
https://puppet.com/
https://www.chef.io/chef/

Figure 3-6. A deployment pipeline with fitness functions added as stages

Figure 3-6 shows a collection of atomic and holistic fitness functions with the latter in
a more complex integration environment. Deployment pipelines can ensure the rules
defined to protect architectural dimensions execute each time the system changes.

PenultimateWidgets Deployment Pipelines
In Chapter 2, we described PenultimateWidgets’ spreadsheet of requirements. Once
they adopted some of the Continuous Delivery engineering practices, they realized
that nonfunctional platform requirements work better in an automated deployment
pipeline. To that end, service developers created a deployment pipeline to validate the
fitness functions created both by the enterprise architects and by the service team.
Now, each time the team makes a change to the service, a barrage of tests validates
both the correctness of the code and its overall fitness within the architecture.

Another common practice in evolutionary architecture projects is continuous
deployment—using a deployment pipeline to put changes into production contingent
on successfully passing the pipeline’s gauntlet of tests and other verifications. While
continuous deployment is ideal, it requires sophisticated coordination: Developers
must ensure changes deployed to production on an ongoing basis don’t break things.

Building Blocks | 33

To solve this coordination problem, a fan out operation is commonly used in deploy‐
ment pipelines where the pipeline runs several jobs in parallel, as shown in
Figure 3-7.

Figure 3-7. Deployment pipeline fan out to test multiple scenarios

As shown in Figure 3-7, when a team makes a change, they have to verify two things:
They haven’t negatively affected the current production state (because a successful
deployment pipeline execution will deploy code into production) and their changes
were successful (affecting the future state environment). A deployment pipeline fan
out allows tasks (testing, deploy, and so on) to execute in parallel, saving time. Once
the series of concurrent jobs illustrated in Figure 3-7 completes, the pipeline can eval‐
uate the results and if everything is successful, perform a fan in, consolidating to a
single thread of action to perform tasks like deployment. Note that the deployment
pipeline may perform this combination of fan out and fan in numerous times when‐
ever the team needs to evaluate a change in multiple contexts.

Another common issue with continuous deployment is business impact. Users don’t
want a barrage of new features showing up on a regular basis but would rather have
them staged in a more traditional way such as a “Big Bang” deployment. A common
way to accommodate both continuous deployment and staged releases is to use fea‐
ture toggles. By implementing new features hidden underneath feature toggles, devel‐
opers can safely deploy the feature to production without worrying about users
seeing it prematurely.

34 | Chapter 3: Engineering Incremental Change

QA in Production
One beneficial side effect of habitually building new features using feature toggles is
the ability to perform QA tasks in production. Many companies don’t realize they can
use their production environment for exploratory testing. Once a team becomes com‐
fortable using feature toggles, they can deploy those changes to production since most
feature toggle frameworks allow developers to route users based on wide variety of
criteria (IP address, access control list (ACL), etc.). If a team deploys new features
within feature toggles to which only the QA department has access, they can test in
production.

Using deployment pipelines in engineering practices, architects can easily apply
project fitness functions. Figuring out which stages are needed is a common chal‐
lenge for developers designing a deployment pipeline. Casting the project’s architec‐
tural concerns (including evolvability) as fitness functions provides many benefits:

• Fitness functions are designed to have objective, quantifiable results
• Capturing all concerns as fitness function creates a consistent enforcement

mechanism
• Having a list of fitness functions allows developers to most easily design deploy‐

ment pipelines

Determining when in the project’s build cycle to run fitness functions, which ones to
run, and the proper context is a nontrivial undertaking. However, once the fitness
functions inside a deployment pipeline are in place, architects and developers have a
high level of confidence that evolutionary changes won’t violate the project guide‐
lines. Architectural concerns are often poorly elucidated and sparsely evaluated, often
subjectively; creating them as fitness functions allows better rigor and therefore better
confidence in the engineering practices.

Combining Fitness Function Categories
Fitness function categories often intersect when implementing them in mechanisms
like deployment pipelines. Here are some common mashups of fitness function cate‐
gories, along with examples.

atomic + triggered
This type of fitness function is exemplified by unit and functional tests run as
part of software development. Developers run them to verify changes, and an
automation mechanism, such as a deployment pipeline, applies continuous inte‐
gration to ensure timeliness. A common example of this type of fitness function

Building Blocks | 35

is a unit test that verifies some aspect of the architectural integrity of the applica‐
tion architecture, such as circular dependencies or cyclomatic complexity.

holistic + triggered
Holistic, triggered fitness functions are designed to run as part of integration test‐
ing via a deployment pipeline. Developers design these tests specifically to test
how different aspects of the system interact in well-defined ways. For example,
developers may be curious to see what kind of impact tighter security has on scal‐
ability. Architects design these tests to intentionally test some integration charac‐
teristic in the code base because breakages indicate some architectural
shortcoming. Like all triggered tests, developers typically run these fitness func‐
tions both during development and as part of a deployment pipeline or continu‐
ous integration environment. Generally, these are tests and metrics that have
well-known outcomes.

atomic + continual
Continual tests run as part of the architecture, and developers design around
their presence. For example, architects might be concerned that all REST end‐
points support the proper verbs, exhibit correct error handling, and support
metadata properly and therefore build a tool that runs continually to call REST
endpoints (just as normal clients would) to verify the results. The atomic scope of
these fitness functions suggests that they test just one aspect of the architecture,
but continual indicates that the tests run as part of the overall system.

holistic + continual
Holistic, continual fitness functions test multiple parts of the system all the time.
Basically, this mechanism represents an agent (or another client) in a system that
constantly assesses a combination of architectural and operational qualities. An
outstanding example of a real-world continual holistic fitness function is Netflix’s
Chaos Monkey. When Netflix designed their distributed architecture, they
designed it to run on the Amazon Cloud. But engineers were concerned what
sort of odd behavior could occur because they have no direct control over their
operations, such as high latency, availability, elasticity, and so on, in the Cloud. To
assuage their fears, they created Chaos Monkey, eventually followed by an entire
open source Simian Army. Chaos Monkey “infiltrates” an Amazon data center
and starts making unexpected things happen: Latency goes up, reliability goes
down, and other chaos ensues. By designing with Chaos Monkey in mind, each
team must build resilient services. The RESTful verification tool mentioned in in
the previous section exists as the Conformity Monkey, which checks each service
for architect-defined best practices.

Note that Chaos Monkey isn’t a testing tool run on a schedule—it runs continuously
within Netflix’s ecosystem. Not only does this force developers to build systems that
withstand problems, it tests the system’s validity continually. Having this constant

36 | Chapter 3: Engineering Incremental Change

https://github.com/netflix/chaosmonkey
https://github.com/Netflix/SimianArmy
https://github.com/Netflix/SimianArmy/wiki/Conformity-Home

verification built into the architecture has allowed Netflix to build one of the the most
robust systems in the world. The Simian Army provides an excellent example of a
holistic continual operational fitness function. It runs against multiple parts of the
architecture at once, ensuring architectural characteristics (resiliency, scalability, etc.)
are maintained.

Holistic, continual fitness functions are the most complex fitness functions for devel‐
opers to implement but can provide great power, as the following case study illus‐
trates.

Case Study: Architectural Restructuring while Deploying 60
Times/Day
GitHub is a well-known developer-centric website with aggressive engineering practi‐
ces, deploying on average 60 times a day. They describe a problem in their blog
“Move Fast and Fix Things” that will make many architects shudder in horror. It
turns out that GitHub has long used a shell script wrapped around command-line Git
to handle merges, which works correctly but doesn’t scale well enough. The Git engi‐
neering team built a replacement library for many command-line Git functions called
libgit2 and implemented their merge functionality there, thoroughly testing it locally.

But now they must deploy the new solution into production. This behavior has been
part of GitHub since its inception and has worked flawlessly. The last thing the devel‐
opers want to do is introduce bugs in existing functionality, but they must address
technical debt as well.

Fortunately, GitHub developers created and open sourced Scientist, a framework that
provides holistic, continual testing to vet changes to code. Example 3-2 gives us the
structure of a Scientist test.

Example 3-2. Scientist setup for an experiment

require "scientist"

class MyWidget
 include Scientist

 def allows?(user)
 science "widget-permissions" do |e|
 e.use { model.check_user(user).valid? } # old way
 e.try { user.can?(:read, model) } # new way
 end # returns the control value
 end
end

Building Blocks | 37

http://github.com
http://githubengineering.com/move-fast/
https://github.com/github/scientist

In Example 3-2, the developer takes the existing behavior and encapsulates it with the
use block (called the control) and adds the experimental behavior to the try block
(called the candidate). The science block handles the following details during the
invocation of the code:

Decides whether to run the try block
Developers configure Scientist to determine how the experiment runs. For exam‐
ple, in this case study—the goal of which was to update their merge functionality
—1% of random users tried the new merge functionality. In either case, Scientist
always returns the results of the use block, ensuring the caller always receives the
existing behavior in case of differences.

Randomizes the order that use and try blocks run
Scientist does this to prevent accidentally masking bugs due to unknown depen‐
dencies. Sometimes the order or other incidental factors can cause false positives;
by randomizing their order, the tool makes those faults less likely.

Measures the durations of all behaviors
Part of Scientist’s job is A/B performance testing, so monitoring performance is
built in. In fact, developers can use the framework piecemeal—for example, they
can use it to measure calls without performing experiments.

Compares the result of try to the result of use
Because the goal is refactoring existing behavior, Scientist compares and logs the
results of each call to see if differences exist.

Swallows (but logs) any exceptions raised in the try block
There’s always a chance that new code will throw unexpected exceptions. Devel‐
opers never want end users to see these errors, so the tool makes them invisible
to the end user (but logs it for developer analysis).

Publishes all this information
Scientist makes all its data available in a variety of formats.

For the merge refactoring, the GitHub developers used the following invocation to
test the new implementation (called create_merge_commit_rugged), as shown in
Example 3-3.

Example 3-3. Experimenting with a new merge algorithm

def create_merge_commit(author, base, head, options = {})
 commit_message = options[:commit_message] || "Merge #{head} into #{base}"
 now = Time.current

 science "create_merge_commit" do |e|
 e.context :base => base.to_s, :head => head.to_s, :repo => repository.nwo

38 | Chapter 3: Engineering Incremental Change

 e.use { create_merge_commit_git(author, now, base, head, commit_message) }
 e.try { create_merge_commit_rugged(author, now, base, head, commit_message) }
 end
end

In Example 3-3, the call to create_merge_commit_rugged occurred in 1% of invoca‐
tions, but, as noted in this case study, at GitHub’s scale, all edge cases appear quickly.

When this code executes, end users always receive the correct result. If the try block
returns a different value from use, it is logged, and the use value is returned. Thus,
the worse case for end users is exactly what they would have gotten before the refac‐
toring. After running the experiment for 4 days and experiencing no slow cases or
mismatched results for 24 hours, they removed the old merge code and left the new
in place.

From our perspective, Scientist is a fitness function. This case study is an outstanding
example of the strategic use of a holistic, continous fitness function to allow develop‐
ers to refactor a critical part of their infrastructure with confidence. They changed a
key part of their architecture by running the new version alongside the existing,
essentially turning the legacy implementation into a consistency test.

In general, most architectures will have a large number of atomic fitness functions
and a few key holistic ones. The determining factor of atomicity comes down to what
developers are testing and how broad are the results.

Conflicting Goals
The agile software development process has taught us that the sooner a developer can
detect problems, the less effort is required to fix them. One of the side effects of
broadly considering all the dimensions in software architecture is the early identifica‐
tion of goals that conflict across dimensions. For example, developers at an organiza‐
tion may want to support the most aggressive pace of change to support new features.
Fast change to code implies fast changes to database schemas, but the database
administrators are more concerned about stability because they are building a data
warehouse. The two evolution goals conflict across the technical and data architec‐
ture.

Obviously, some compromise must occur, taking into account the myriad factors that
affect the underlying business. Using architecture dimensions as a technique for iden‐
tifying portions of concern in architecture (plus fitness functions to evaluate them)
allows an apples-to-apples comparison, making the prioritization exercise more
informed.

Conflicting goals are inevitable. However, discovering and quantifying those conflicts
early allows architects to make better informed decisions and create more clearly
defined goals and principles.

Building Blocks | 39

Case Study: Adding Fitness Functions to PenultimateWidgets’
Invoicing Service
Our exemplar company, PenultimateWidgets, has an architecture that includes a ser‐
vice to handle invoicing. The invoicing team wants to replace outdated libraries and
approaches but wants to ensure these changes don’t impact other teams ability to
integrate with them.

The invoicing team identified the following needs:

Scalability
While performance isn’t a big concern for PenultimateWidgets, they handle
invoicing details for several resellers, so the invoicing service must maintain
availability service-level agreements.

Integration with other services
Several other services in the PenultimateWidgets ecosystem use invoicing. The
team wants to make sure integration points don’t break while making internal
changes.

Security
Invoicing means money, and security is always an ongoing concern.

Auditability
Some state regulations require that changes to taxation code be verified by an
independant accountant.

The invoicing team uses a continuous integration server and recently upgraded to on-
demand provisioning of the environment that runs their code. To implement evolu‐
tionary architecture fitness functions, they implement a deployment pipeline to
replace the continuous integration server, allowing them to create several stages of
execution, as shown in Figure 3-8.

40 | Chapter 3: Engineering Incremental Change

Figure 3-8. PenultimateWidgets deployment pipeline

PenultimateWidgets’ deployment pipeline consists of six stages.

Stage 1—Replicating CI
The first stage replicates the behavior of the former CI server, running unit, and
functional tests.

Stage 2—Containerize and Deploy
Developers use the second stage to build containers for their service, allowing
deeper levels of testing, including deploying the containers to a dynamically cre‐
ated test environment.

Stage 3—Atomic Fitness Functions
In the third stage atomic fitness functions, including automated scalability tests
and security penetration testing, are executed. This stage also runs a metrics tool
that flags any code within a certain package that developers changed, pertaining
to auditability. While this tool doesn’t make any deteriminations, it assists a later
stage in narrowing in on specific code.

Building Blocks | 41

Stage 4—Holistic Fitness Functions
The fourth stage focuses on holistic fitness functions, including testing contracts
to protect integration points and some further scalability tests.

Stage 5a—Security Review (manual)
This stage includes a manual stage by a specific security group within the organi‐
zation to review, audit, and assess any security vulnerabilities in the codebase.
Deployment pipelines allow the definition of manual stages, triggered on
demand by the relevant security specialist.

Stage 5b—Auditing (manual)
PenultimateWidgets is based in Springfield, where the state mandates specific
auditing rules. The invoicing team builds this manual stage into their deployment
pipeline, which offers several benefits. First, treating auditing as a fitness function
allows developers, architects, auditors, and others to think about this behavior in
a unified way—a necessary evaluation to deterimine the system’s correct func‐
tion. Second, adding the evaluation to the deployment pipeline allows developers
to assess the engineering impact of this behavior compared equally to other auto‐
mated evaluations within the deployment pipeline.

For example, if the security review happens weekly but auditing happens only
monthly, the bottleneck to faster releases is clearly the auditing stage. By treating
both security and audit as stages in the deployment pipeline, decisions concern‐
ing both can be addressed more rationally: Is it worth value to the company to
increase release cadence by having consultants perform the necessary audit more
often?

Stage 6—Deployment
The last stage is deployment into the production environment. This is a automa‐
ted stage for PenultimateWidgets and is triggered only if the two upstream man‐
ual stages (security review and audit) report success.

Interested architects at PenultimateWidgets receive a weekly automatically generated
report about the success/failure rate of the fitness functions, helping them gauge
health, cadence, and other factors.

Hypothesis- and Data-Driven Development
The GitHub example in “Case Study: Architectural Restructuring while Deploying 60
Times/Day” on page 37 using the Scientist framework is an example of data-driven
development—allow data to drive changes and focus efforts on technical change. A
similar approach that incorporates the business rather than technical concerns is
hypothesis-driven development.

42 | Chapter 3: Engineering Incremental Change

In the week between Christmas 2013 and New Year’s Day 2014, Facebook encoun‐
tered a problem: More photos were uploaded to Facebook in that week than all the
photos on Flickr, and more than a million of them were flagged as offensive. Face‐
book allows users to flag photos they believe potentially offensive and then reviews
them to determine objectively if they are. But this dramatic increase in photos created
a problem: There was not enough staff to review the photos.

Fortunately, Facebook has modern DevOps and the ability to perform experiments
on their users. When asked about the chances a typical Facebook user has been
involved in an experiment, one Facebook engineer claimed “Oh, one hundred percent
—we routinely have more than twenty experiments running at time.” They used this
experimental capability to ask users follow-up on questions about why photos were
deemed offensive and discovered many delightful quirks of human behavior. For
example, people don’t like to admit that they look bad in a photo but will freely admit
that the photographer did a poor job. By experimenting with different phrasing and
questions, the engineers could query their actual users to determine why they flagged
a photo as offensive. In a relatively short amount of time, Facebook shaved off
enough false positives to restore offensive photos to a manageable problem by build‐
ing a platform that allowed for experimentation.

In the book Lean Enterprise (O’Reilly, 2014), Barry O’Reilly describes the modern
process of hypothesis-driven development. Under this process, rather than gathering
formal requirements and spending time and resources building features into applica‐
tions, teams should leverage the scientific method instead. Once teams have created
the minimal viable product version of an application (whether as a new product or by
performing maintenance work on an existing application), they can build hypotheses
during new feature ideation rather than requirements. Hypothesis-driven devlopment
hypotheses are couched in terms of the hypothesis to test, what experiments can
determine the results, and what validating the hypothesis means to future application
development.

For example, rather than change the image size for sales items on a catalog page
because a business analyst thought it was a good idea, state it as a hypothesis instead:
If we make the sales images bigger, we hypothesize that it will lead to a 5% increase in
sales for those items. Once the hypothesis is in place, run experiments via A/B testing
—one group with bigger sales images and one without—and tally the results.

Even agile projects with engaged business users incrementally build themselves into a
bad spot. An individual decision by a business analyst may make sense in isolation,
but when combined with other features may ultimately degrade the overall experi‐
ence. In an excellent case study, mobile.de followed a logical path of accruing new
features haphazardly to the point where sales were diminishing, at least in part
because their UI had become so convoluted, as is often the result of development
continuing on mature software products. Several different philosophical approaches

Hypothesis- and Data-Driven Development | 43

http://www.radiolab.org/story/trust-engineers/
http://www.radiolab.org/story/trust-engineers/
http://bit.ly/hypothesis-driven-ux-design
http://mobile.de

were: more listings, better prioritization, or better grouping. To help them make this
decision, they built three versions of the UI and allowed their users to decide.

The engine that drives agile software methodologies is the nested feedback loop: test‐
ing, continuous integration, iterations, etc. And yet, the part of the feedback loop that
incorporates the ultimate users of the application has eluded teams. Using
hypothesis-driven development, we can incorporate users in an unprecedented way,
learning from behavior and building what users really find valuable.

Hypothesis-driven development requires the coordination of many moving parts:
evolutionary architecture, modern DevOps, modified requirements gathering, and
the ability to run multiple versions of an application simultaneously. Service-based
architectures (like microservices) usually achieve side-by-side versions by intelligent
routing of services. For example, one user may execute the application using a partic‐
ular constellation of services while another request may use an entirely different set of
instances of the same services. If most services include many running instances (for
scalability, for example), it becomes trivial to make some of those instances slightly
different with enhanced functionality, and to route some users to those features.

Experiments should run long enough to yield significant results. Generally, it is pref‐
erable to find a measurable way to determine better outcomes rather than annoy
users with things like pop-up surveys. For example, does one hypothesized workflow
allow the user to complete a task with fewer keystrokes and clicks? By silently incor‐
porating users into the development and design feedback loop, you can build much
more functional software.

Case Study: What to Port?
One particular PenultimateWidgets application has been a workhorse, developed as a
Java Swing application over the better part of a decade and continually growing new
features. The company decided to port it to the web application. However, now the
business analysts face a difficult decision: How much of the existing sprawling func‐
tionality should they port? And, more practically, what order should they implement
the ported features of the new application to deliver the most functionality quickly?

One of the architects at PenultimateWidgets asked the business analysts what the
most popular features were, and they had no idea! Even though they have been speci‐
fying the details of the application for years, they had no real understanding of how
users used the application. To learn from users, the developers released a new version
of the legacy application with logging enabled to track which menu features users
actually used.

After a few weeks, they harvested the results, providing an excellent road map of what
features to port and in what order. They discovered that the invoicing and customer
lookup features were most commonly used. Surprisingly, one subsection of the appli‐

44 | Chapter 3: Engineering Incremental Change

cation that had taken great effort to build had very little use, leading the team to
decide to leave that functionality out of the new web application.

Case Study: What to Port? | 45

CHAPTER 4

Architectural Coupling

Discussions about architecture frequently boil down to coupling: how the pieces of
the architecture connect and rely on one another. Many architects decry coupling as a
necessary evil, but it’s difficult to build complex software without relying on (and
coupling with) other components. Evolutionary architecture focuses on appropriate
coupling—how to identify which dimensions of the architecture should be coupled to
provide maximum benefit with minimal overhead and cost.

Modularity
First, let’s untangle some of the common terms used and overused in discussions
about architecture. Different platforms offer different reuse mechanisms for code, but
all support some way of grouping related code together into modules. Modularity
describes a logical grouping of related code. Modules in turn may be packaged in dif‐
ferent physical ways. Components are the physical packaging of modules. Modules
imply logical grouping, while components imply physical partitioning.

Developers find it useful to further subdivide components based on engineering prac‐
tices, including build and deployment considerations. One kind of component is a
library, which tends to run in the same memory address as the calling code and com‐
municates via language function call mechanisms. Libraries are usually compile-time
dependencies. Most concerns around libraries exist in application architecture, as
most complex applications consist of a variety of components. The other type of com‐
ponent, called a service, tends to run in its own address space and communicates via
low-level networking protocols like TCP/IP or higher-level formats like simple object
access protocol (SOAP) or representational state transfer (REST). Concerns around
services tend to come up most commonly in integration architecture, making these
runtime dependencies.

47

All module mechanisms facilitate code reuse, and it is wise to try to reuse code at all
levels, from individual functions all the way up to encapsulated business platforms.

Architectural Quanta and Granularity
Software systems are bound together in a variety of ways. As software architects, we
analyze software using many different perspectives. But component-level coupling
isn’t the only thing that binds software together. Many business concepts semantically
bind parts of the system together, creating functional cohesion. To successfully evolve
software, developers must consider all the coupling points that could break.

As defined in physics, the quantum is the minimum amount of any physical entity
involved in an interaction. An architectural quantum is an independently deployable
component with high functional cohesion, which includes all the structural elements
required for the system to function properly. In a monolithic architecture, the quan‐
tum is the entire application; everything is highly coupled and therefore developers
must deploy it en mass.

Domain-Driven Design’s Bounded Context
Eric Evans’s book Domain-Driven Design has deeply influenced modern architectural
thinking. Domain-driven design (DDD) is a modeling technique that allows for
organized decomposition of complex problem domains. DDD defines the bounded
context, where everything related to the domain is visible internally but opaque to
other bounded contexts. Before DDD, developers sought holistic reuse across com‐
mon entities within the organization. Yet, creating common shared artifacts causes a
host of problems, such as coupling, more difficult coordination, and increased com‐
plexity. The bounded context concept recognizes that each entity works best within a
localized context. Thus, instead of creating a unified Customer class across the entire
organization, each problem domain can create their own, and reconcile differences at
integration points. DDD influenced several modern architectural styles, along with
related factors like team organization (described in “Introducing PenultimateWidgets
and Their Inverse Conway Moment” on page 13 in Chapter 1).

In contrast, a microservices architecture defines physical bounded contexts between
architectural elements, encapsulating all the parts that might change. This type of
architecture is designed to allow incremental change. In a microservices architecture,
the bounded context serves as the quantum boundary and includes dependent com‐
ponents such as database servers. It may also include architecture components such
as search engines and reporting tools—anything that contributes to the delivered
functionality of the service, as shown in Figure 4-1.

48 | Chapter 4: Architectural Coupling

http://www.domaindrivendesign.org/books/evans_2003

Figure 4-1. The architectural quantum in microservices encompasses the service and all
its dependent parts

In Figure 4-1, the service includes code components, a database server, and a search
engine component. Part of the bounded context philosophy of microservices opera‐
tionalizes all the pieces of a service together, leaning heavily on modern DevOps
practices. In the following section, we investigate some common architectural pat‐
terns and their typical quantum boundaries.

Traditionally isolated roles such as architect and operations must coordinate in an
evolutionary architecture. Architecture is abstract until operationalized; developers
must pay attention to how their components fit together in the real world. Regardless
of which architecture pattern developers choose, architects should also explicitly
define their quantum size. Small quanta implies faster change because of small scope.
Generally, small parts are easier to work with than big ones. Quantum size deter‐
mines the lower bound of the incremental change possible within an architecture.

As in physics, four fundamental interactions exist in nature: gravitational, electromag‐
netic, strong, and weak. The strong nuclear force, which holds atoms (and therefore
ordinary matter) together, is notable for its strength. Breaking it unleashes much of
the power of nuclear fission. Similarly, some architectural components are extremely
difficult to break into smaller pieces. Metaphorically, they exhibit strong nuclear
force. One of the keys to building evolutionary architectures lies in determining natu‐
ral component granularity and coupling bewteen components to fit the capabilities
they want to support via the software architecture.

Architectural Quanta and Granularity | 49

In evolutionary architecture, architects deal with architectural quanta, the parts of a
system held together by hard-to-break forces. For example, transactions act like a
strong nuclear force, binding together otherwise unrelated pieces. While it is possible
for developers to break apart a transactional context, it is a complex process and often
leads to incidental complications like distributed transactions. Similarly, parts of a
business might be highly coupled, and breaking the application into smaller architec‐
tural components may not be desirable.

Figure 4-2 summarizes the relationship between these terms.

Monolithic Listing
We worked on a project for several years centered around automobile auctions. Not
surprising, one of the large classes in the system was Listing, which grew into a
monster. Developers undertook several technical refactoring exercises to find ways to
break up the huge class because it was causing coordination problems. Finally, a
scheme was hatched to break out one of the key parts, Vendor, into its own class.
While the technical refactoring was a success, problems emerged between the interac‐
tions by developers and business analysts: developers kept talking about changes to
Vendor, which wasn’t a separate entity in their world. Developers violated what Eric
Evans in DDD calls ubiquitous language on the project—make sure that all the terms
on the team mean the same thing. While it made a few things more convenient for
developers to split the functionality, the semantic coupling that defined the business
process was violated, making our job more difficult.

Eventually, we unrefactored the Listing class back into a single large entity, because
the software project revolved around it. We solved the coordination problem by treat‐
ing Listing differently. Changes to Listing caused the continuous integration server
to automatically generate a message to interested teams to encourage aggressive inte‐
gration. Thus, we solved the coordination problem with an engineering practice
rather than an architectural structure.

50 | Chapter 4: Architectural Coupling

Figure 4-2. The relationship between modules, components, and quanta

As shown in Figure 4-2, the outermost container is the quantum: the deployable unit
that includes all the facilities required for the system to function properly, including
data. Within the quantum, several components exist, each consisting of code (classes,
packages, namespaces, functions, and so on). An external component (from an open
source project) also exists as a library, a component packaged for reuse within a given
platform. Of course, developers can mix and match all possible combinations of these
common building blocks.

Evolvability of Architectural Styles
Software architecture exists at least partially to enable certain types of evolution
across specific dimensions—easier change is one of the reasons for architecture pat‐
terns. Different architectural patterns have different inherent quantum sizes, which
impact their ability to evolve. In this section, we investigate several popular architec‐
ture patterns and evaluate their inherent quantum size, along with their impact on
the architecture’s natural ability to evolve based on our three evolutionary criteria:
incremental change, fitness functions, and appropriate coupling.

Note that while the architectural pattern is critical for successful evolution, it isn’t the
only determining factor. The inherent characteristics of the pattern must be com‐
bined with the additional characteristics defined for the system to fully define the
dimensions of evolvability.

Evolvability of Architectural Styles | 51

Big Ball of Mud
First, consider the degenerate case of a chaotic system with no discernible architec‐
ture, colloquially known as the Big Ball of Mud antipattern. While typical architec‐
tural elements like frameworks and libraries may exist, developers haven’t built
structure on purpose. These systems are highly coupled, leading to rippling side
effects when changes occur. Developers created highly coupled classes with poor
modularity. Database schemas snaked into the UI and other parts of the system, effec‐
tively insulating them against change. DBAs spent the last decade avoiding refactor‐
ing by stitching together tightly bound join tables. Likely driven by draconian budget
constraints, operations crams as many systems together as possible and deals with the
operational coupling.

Figure 4-3 shows a class coupling diagram that exemplifies the Big Ball of Mud: each
node represents a class, the lines represent coupling (either inward or outward) and
the boldness of the line indicates the number of connections.

Figure 4-3. Afferent and efferent coupling for a dysfunctional architecture

Changing any part of the application depicted in Figure 4-3 (taken from a real
project) presents intense challenges. Because so much exuberant coupling exists
between classes, it is virtually impossible to modify one part of the application
without impacting other parts. Thus, from an evolvability standpoint, this architec‐
ture scores extremely low. Developers who need to change data access throughout the
application must hunt down all the places it exists and change them, risking missing
some places.

From an evolution standpoint, this architecture fails each criteria drastically:

Incremental change
Making any change in this architecture is difficult. Related code is scattered
throughout the system, meaning changes to one component will cause unexpec‐
ted breakages in other components. Fixing those breakages will generate more
breakage, a rippling effect that never ends.

52 | Chapter 4: Architectural Coupling

https://en.wikipedia.org/wiki/Big_ball_of_mud

Guided change with fitness functions
Building fitness functions for this architecture is difficult because no clearly
defined partitioning exists. To build protective functions, developers must be able
to identify parts to protect, and no structure exists in this architecture outside
low-level functions or classes.

Appropriate coupling
This architectural style is a good example of inappropriate coupling. No architec‐
tural advantages result from building software like this.

In this dire state, change is difficult and expensive. Essentially, because each part of
the system is highly coupled to every other part, the quantum is the entire system—
no part is easy to change because every part affects every other part.

Monoliths
Monolithic architectures often contain a large amount of highly coupled code. We
investigate several variations of this architectural style, based on organization.

Unstructured monoliths
This architectural pattern includes several different variations, including systems with
essentially independent classes coordinating as seen in Figure 4-4.

Figure 4-4. Monolith architectures sometimes contain a collection of loosely related
classes

Evolvability of Architectural Styles | 53

In Figure 4-4, different modules handle different tasks independently, utilizing shared
classes for common functionality. A lack of coherent overarching structure hinders
change in this architecture.

Incremental change
Large quantum size hinders incremental change because high coupling requires
deploying large chunks of the application. Deploying a single component is diffi‐
cult because each component is highly coupled to others, requiring change to
those components as well.

Guided change with fitness functions
Building fitness functions for monoliths is difficult but not impossible. Because
this architectural pattern has existed for a long time, many tools and testing prac‐
tices have grown around it that can be used to create fitness functions. However,
common guided change targets, such as performance and scalability, have tradi‐
tionally been the Achilles’ heel of monolithic architectures. While developers
easily understand monoliths, building good scalability and performance is diffi‐
cult, largely due to inherent coupling.

Appropriate coupling
A monolithic architecture, with little internal structure outside simple classes,
exhibits coupling almost as bad as a Big Ball of Mud. Thus, changes in one por‐
tion of the code may have unanticipated side effects in sometimes far-reaching
parts of the code base.

Though the evolvability of this architecture is a milder version of the “Big Ball of
Mud” on page 52. It is quite easy for this architecture to degenerate because there are
few structural constraints to prevent it.

Layered architecture
Other monolith architectures utilize a more structured approach to creating a layered
architecture, one variation of which appears in Figure 4-5.

54 | Chapter 4: Architectural Coupling

Figure 4-5. Typical layered monolith architecture

In Figure 4-5, each layer represents a technical capability, allowing developers to swap
out technical architecture functionality easily. The primary design criteria for the lay‐
ered architecture separates different technical capabilities into layers, each with a dis‐
tinct responsibility. The primary advantages of this architecture are isolation and
separation of concerns. Each layer is isolated from the others, accessible via a well-
defined interface. This allows for implementation changes within the layer without
affecting the other layers and grouping of similar code together, making space for
specialization and separation within the layer. For example, a persistence layer typi‐
cally encapsulates all implementation details of how data is saved, allowing other lay‐
ers to ignore those details.

In all cases of monolith architecture, the quantum is the application, including
dependent components like database servers. Evolving systems with large quantum
size is difficult:

Incremental change
Developers find it easy to make some changes in this architecture, particularly if
those changes are isolated to existing layers. Cross-layer changes can cause coor‐
dination challenges, especially if the organization’s workforce resembles the layers
of the architecture (a reflection of “Conway’s Law” on page 11). For example, a
team can swap one persistence framework for another with little disruption to
other teams because they can perform that work behind the well-defined inter‐
face. If, on the other hand, the business is required to change something like Ship
ToCustomer, that change will affect all the layers, requiring coordination.

Evolvability of Architectural Styles | 55

Guided change with fitness functions
Developers find it easier to write fitness functions in a more structured version of
a monolith because the structure of the architecture is more apparent. The sepa‐
ration of concerns in layers also allows developers to test more parts in isolation,
making it easier to create fitness functions.

Appropriate coupling
One of the virtues of monolith architectures is easy understandability. Develop‐
ers who understand concepts such as design patterns can easily apply that knowl‐
edge to layered architectures. A large portion of understandability is convenient
access to all parts of the code. Layered architectures allow for easy evolution of
the technical architecture partitions defined by the layers. For example, a well-
designed (and implemented) layered architecture makes it easy to swap out the
database, business rules, or any other layer with minimal side effects.

Monolith architectures tend to have high coupling, both intentional and uninten‐
tional. When developers use layered architectures for separation of concerns (e.g.,
using a persistence layer to simplify data access), the layer typically exhibits high
internal and low external coupling. Within the layer, each component is cooperating
towards a single goal, so they tend toward high coupling. In contrast, developers typi‐
cally define the interfaces between layers more carefully, creating lower coupling
between layers.

Modular monoliths
Many of the benefits architects tout about microservices—isolation, independence,
small unit of change—can be achieved in monolithic architectures…if developers are
extremely disciplined about coupling. Note that this discipline must extend beyond
just technical architecture, encompassing other dimensions (notably data) equally.
Modern tools make code reuse so convenient that developers struggle to achieve
appropriate coupling in environments where coupling is easy. Fitness functions like
the one in Example 4-1 allow architects to build safety nets into their deployment
pipelines to keep monolith component dependencies clean.

Most modern languages allow building strict visibility and connection rules. If archi‐
tects and developers build a modular monolith using those rules, they will have a
much more malleable architecture, as demonstrated by a well modularized monolith
depicted in Figure 4-6.

56 | Chapter 4: Architectural Coupling

Figure 4-6. A modular monolith contains logical grouping of functionality with well-
defined isolation between modules

Incremental change
Incremental change is easy in this type of architecture because developers can
enforce modularity. However, despite the logical separation of functionality into
modules, if the components containing the modules are difficult to individually
deploy, the quantum size is still large. In a modular monolith, the degree of
deployability of the components determines the rate of incremental change.

Guided change with fitness functions
Tests, metrics, and other fitness function mechanisms are easier to design and
implement in this architecture because of good separation of components, allow‐
ing easier mocking and other testing techniques that rely on isolation layers.

Appropriate coupling
A well-designed modular monolith is a good example of appropriate coupling.
Each component is functionally cohesive, with good interfaces between them and
low coupling.

Monolithic architectures, particularly layered architectures, are a common choice
when starting a project because developers understand the structure easily. However,

Evolvability of Architectural Styles | 57

many monoliths reach end of life and must be replaced because of decreasing perfor‐
mance, size of code base, and a host of other factors. A current common target for
monolith migration is microservices-style architectures, which are more complex
than monolithic architectures in areas like service and data granularity, operationali‐
zation, coordination, transactions, and so on. If a development team has a hard time
building one of the simplest architectures, how will moving to a more complex archi‐
tecture solve their problems?

If you can’t build a monolith, what makes you think microservices are the answer?
—Simon Brown

Before embarking on an expensive architecture restructuring exercise, architects may
benefit from improved modularization of what’s already present. If nothing else, it’s
an excellent starting point for the more serious restructuring that follows.

Microkernel
Consider another popular monolithic architectural style, the microkernal architec‐
ture, commonly found in browsers and integrated development environments
(IDEs), as shown in Figure 4-7.

Figure 4-7. A microkernel architecture

The microkernel architecture shown in Figure 4-7 defines a core system with an API
that allows plug-in enhancements. Two architectural quantum sizes exist for this
architecture: one for the core system and another for the plug-ins. Architects typi‐
cally design the core system as a monolith, creating hooks for well-known extension
points for plug-ins. Plug-ins are usually designed to be self-contained and independ‐
ently deployable. Thus, this architecture supports positive, incremental change, and
developers can design for testability and facilitate fitness function definition. From a
technical coupling standpoint, architects tend to design these systems with low cou‐
pling for practical reasons, which is related to keeping the plug-ins independent from
one another to simplify them.

The primary challenge architects face in microkernel architectures revolves around
contracts, a form of semantic coupling. To perform useful work, plug-ins must pass

58 | Chapter 4: Architectural Coupling

information in and out of the core system. As long as the plug-ins don’t need to coor‐
dinate between each other, developers can focus on information and versioning with
the core system. For example, most browser plug-ins interact only with the browser,
not other plug-ins.

More complex microkernel systems, such as the Eclipse Java IDE, must support
intraplug-in communication. The core of Eclipse offers no specific language support
beyond interacting with text files. All complex behavior comes via plug-ins that pass
information between each other. For example, the compiler and debugger must
closely coordinate during a debugging session. Because the plug-ins shouldn’t rely on
other plug-ins to work, the core system must handle the communication, making
contract coordination and common tasks like versioning complex. While this level of
isolation is desirable because it makes the system less stateful, it is often not possible.
For example, in Eclipse, plug-ins often require dependent plug-ins to function, creat‐
ing another level of transitive dependency management around the architectural
quantum of the plug-in.

Typically, microkernel architectures include a registry that tracks installed plug-ins
and the contracts they support. Building explicit coupling between plug-ins increases
semantic coupling between parts of the system and therefore increases the architec‐
tural quantum.

While the microkernel architecture is popular with tools such as IDEs, it is also appli‐
cable for a wide variety of business applications. For example, consider an insurance
company. The standard business rules for handling claims exist companywide, yet
each state may have special rules. Building this system as a microkernel allows devel‐
opers to add support for new states as needed and to upgrade individual state behav‐
ior without affecting any other state because of the inherent isolation of the plug-ins.

Microkernel architectures offer reasonably good if limited opportunities to evolve the
technical architecture via plug-ins. Systems with completely isolated plug-ins make
evolution easier because no coupling exists between plug-ins; plug-ins that must col‐
laborate increase coupling and therefore hinder evolution. If you design a system
with interacting plug-ins, you should also build fitness functions to protect the inte‐
gration points, modeled after consumer-driven contracts. The core system in micro‐
kernel architectures is typically large but stable—most changes in this architecture
should occur in plug-ins (otherwise, the architect may have poorly partitioned the
application). Thus, incremental change is straightforward: deployment pipelines trig‐
ger change to plug-ins to validate changes.

Architects don’t traditionally include data dependencies within the technical architec‐
ture for microkernels, so developers and DBAs must consider data evolution inde‐
pendently. Treating each plug-in as a bounded context improves the evolvablilty of
the architecture because it decreases external coupling. For example, if all the plug-ins
use the same database as the core system, developers must worry about coupling

Evolvability of Architectural Styles | 59

http://eclipse.org
https://martinfowler.com/articles/consumerDrivenContracts.html

occurring between plug-ins at the data level. If each plug-in is completely independ‐
ent, this data coupling cannot occur.

From an evolutionary standpoint, microkernels have many desirable characteristics,
including the following:

Incremental change
Once the core system is complete, most behavior should come from plug-ins,
small units of deployment. If the plug-ins are independent, incremental change
becomes even easier.

Guided change with fitness functions
Fitness functions are typically easy to create in this architecture because of the
isolation between the core and plug-ins. Developers maintain two sets of fitness
functions for systems like this: core and plug-ins. The core fitness functions guard
against changes to the core, including deployment concerns like scalability. Gen‐
erally, plug-in testing is simpler as the domain behavior is tested in isolation.
Developers will want a good mock or stub version of the core to make testing
plug-ins easier.

Appropriate coupling
The coupling characteristics in this architecture are well defined by the micro‐
kernel pattern. Building independent plug-ins makes change trivial from a cou‐
pling standpoint. Dependent plug-ins make coordination more difficult.
Developers should use fitness functions to ensure dependent components inte‐
grate properly.

These architectures should also include holistic fitness functions to ensure that devel‐
opers maintain key architectural characteristics. For example, individual plug-ins
might affect a systematic property like scalability. Thus, developers should plan to
have a suite of integration tests to act as a holistic fitness function. In systems with
dependent plug-ins, developers should also have a holistic fitness function to ensure
contract and message consistency.

Event-Driven Architectures
Event-driven architectures (EDA) usually integrate several disparate systems together
using message queues. There are two common implementations of this type of archi‐
tecture: the broker and mediator patterns. Each pattern has different core capabilities,
thus we discuss the pattern and evolution implications separately.

Brokers
In a broker EDA, the architectural components consist of the following elements:

60 | Chapter 4: Architectural Coupling

message queues
Message queues implemented via a wide variety of technologies such as JMS
(Java Messaging Service).

initiating event
The event that starts the business process.

intra-process events
Events passed between event processors to fulfill a business process.

event processors
The active architecture components, which perform actual business processing.
When two processors need to coordinate, they pass messages via queues.

A typical broker EDA workflow is illustrated in Figure 4-8, in which a customer of an
insurance company changes their address.

Figure 4-8. An asynchronous workflow to capture the “client moved” workflow

Evolvability of Architectural Styles | 61

As seen in Figure 4-8, the initiating event is client moved. The first interested event
processor is the Customer process, which updates the internal address record. Upon
completion, it posts a message to a address changed message queue. Both the Quote
and Claims processes respond to this event, updating their respective characteristics.
Note that because the services need no coordination, these operations can occur in
parallel, a key benefit of this architecture. Once completed, each processor posts to
relevant queues, such as Notification.

Broker EDAs offer some design challenges when building robust asynchronous sys‐
tems. For example, coordination and error handling are difficult because of a lack of a
centralized mediator. Because the architectural parts are highly decoupled, developers
must restore the functional cohesion of business processing to this architecture.
Thus, behaviors such as transactions are more difficult.

Despite the implementation challenges, these are extremely evolvable architectures.
Developers can add new behaviors to the system by adding new listeners on existing
event queues, without affecting existing behavior. For example, let’s say the insurance
company wanted to add auditing to all claims updates. Developers can add an Audit
listener on the Claims event queue without affecting the existing workflow.

Incremental change
Broker EDAs allow incremental change in multiple forms. Developers typically
design services to be loosely coupled, making independent deployment easier.
Decoupling in turn makes it easier for developers to make nonbreaking changes
in the architecture. Building deployment pipelines for broker EDAs can be chal‐
lenging because the essence of the architecture is asynchronous communication,
which is notoriously difficult to test.

Guided change with fitness functions
Atomic fitness functions should be easy for developers to write in this architec‐
ture because the individual behaviors of event processors is simple. However,
holistic fitness functions are both necessary and complex in this architecture.
Much of the behavior of the overall system relies on the communication between
loosely coupled services, making testing multifaceted workflows difficult. Con‐
sider the workflow in Figure 4-8. Developers can easily test the individual parts
of the workflow by unit testing the event processors, but testing all processes is
more challenging. There are a variety of ways to mitigate testing challenges in
architectures like this. For example, correlation IDS, where each request is tagged
with a unique identifier, helps track cross-service behavior. Similarly, synthetic
transactions allow developers to test coordination logic without actually, for
example, ordering washing machines.

62 | Chapter 4: Architectural Coupling

Appropriate coupling
Broker EDAs exhibit a low degree of coupling, enhancing the ability to make
evolutionary change. For example, to add new behavior to this architecture, new
listeners are added to existing endpoints without affecting existing listeners. The
coupling that does occur in this architecture is between services and the message
contracts they maintain, a form of functional cohesion. Fitness functions using
techniques like consumer-driven contracts help manage integration points and
avoid breakages.

In business processes that lend themselves toward broker EDAs, the event processors
are typically stateless, decoupled, and own their own data, making evolution easier
because of fewer external coupling issues such as with databases, discussed in Chap‐
ter 5.

Mediators
The other common EDA pattern is the mediator, where an additional component
appears: a hub that acts as a coordinator, shown in Figure 4-9.

Figure 4-9. The “client moved” workflow in a mediator architecture

The mediator handles the initiating “client moved” event in Figure 4-9 and has the
workflow defined within: change address, recalc quotes, update claims, adjust
claims, and notify insured. The mediator posts messages to queues which in turn
trigger the appropriate event processors. While the mediator handles coordination,

Evolvability of Architectural Styles | 63

this is still an EDA, enabling most of the processing to occur in parallel. For example,
the recalc quotes and update claims processes run in parallel. Once all the tasks
are complete, the mediator generates a message to the notify insured queue to gen‐
erate a single status message. Any event process that needs to communicate with
another processor does so via the mediator. Generally, event processors do not call
one another in this type of architecture because the mediator defines important
workflow information direct communication would bypass. Notice the vertical bars
depicted in the mediator in Figure 4-9, indicating both parallel execution and coordi‐
nation of service requests and responses.

This transactional coordination is the primary advantage of the mediator architec‐
ture. The mediator can ensure errors don’t occur during the process, and generate a
single status message to the insured. In a broker EDA, this type of coordination is
more difficult. To generate a single notification message, for example, the coordina‐
tion would occur at the Notification event processor or via an explicit message
queue to handle this aggregation. While asynchronous architectures create challenges
around coordination and transactional behavior they offer fantastic parallel scale.

Incremental change
Similar to broker EDAs, the services in a mediator EDA are typically small and
self-contained. Thus, this architecture shares many of the operational advantages
of the broker version.

Guided change with fitness functions
Developers find it easier to build fitness functions for the mediator than for the
broker EDA. The tests for individual event processors don’t differ much from the
broker version. However, holistic fitness functions are easier to build because
developers can rely on the mediator to handle coordination. For example, in the
insurance workflow, a developer can write a test and easily tell if the entire pro‐
cess was successful because the mediator coordinates it.

Appropriate coupling
While many testing scenarios become easier with mediators, coupling increases,
harming evolution. The mediator includes important domain logic, increasing
the size of the architectural quantum to encompass it, which in turn couples each
service to one another. In this architecture, when a developer makes a change,
other developers must consider the side effects for the other services in the work‐
flow, increasing coupling.

From an evolutionary standpoint, the broker architecture has clear advantages
because of reduced coupling. In the mediator pattern, the coordinator acts as a cou‐
pling point, binding all the affected services together. In a broker topology, behavior
can evolve by adding new processors to existing message queues without affecting the
others (except in cases of overburdening the queue with traffic, which is solvable by a

64 | Chapter 4: Architectural Coupling

variety of architectural patterns and/or fitness functions). Because broker topologies
are inherently decoupled, evolution is easier.

This is a classic example of an architectural tradeoff. Broker EDAs offer many advan‐
tages in terms of evolvability, asynchronicity, scale, and a host of other desirable char‐
acteristics. However, common tasks like transactional coordination become more
difficult.

Service-Oriented Architectures
There are a variety of service-oriented architectures (SOAs) in existence, including
many hybrids. Here are some common architectural patterns.

ESB-driven SOA
A particular manner of creating SOAs became popular several years ago, building an
architecture based around services and coordination via a service bus—typically
called an Enterprise Service Bus (ESB). The service bus acts as a mediator for complex
event interactions and handles various other typical integration architecture chores
such as message transformation, choreography, and so on.

While ESB architectures typically use the same building blocks as EDAs, the organi‐
zation of services differs, and is based on a strictly defined service taxonomy. The ESB
style differs from organization to organization, but all are based on segregating serv‐
ices based on reusability, shared concepts, and scope. A representative ESB SOA is
shown in Figure 4-10.

Figure 4-10. Typical service taxonomy for an ESB SOA

Evolvability of Architectural Styles | 65

In Figure 4-10, each layer of the architecture has specific responsibilities. The busi‐
ness services define the coarse-grained functionality of the business as abstract defini‐
tions, sometimes defined by business users using standards like BPEL (Business
Processing Execution Language). The goal of business services is to capture what the
company does in an abstract way. To determine whether you have defined these serv‐
ices at the correct level of abstraction, ask yourself, “Are we in the business of…” affir‐
matively for each of the service names (like CreateQuote or ExecuteTrade). While a
developer might invoke a CreateCustomer service in order to create a quote, that isn’t
the main thrust of the business but rather a necessary intermediate step.

The abstract business services must call code to implement their behavior, which are
enterprise services: concrete implementations meant for sharing, owned by a distinct
service teams. The goal of this team is to create reusable services integration archi‐
tects can “stitch together” using choreography to form business implementations.
Developers aim for high reuse and design enterprise services accordingly (to under‐
stand why this often fails, see “Antipattern: Code Reuse Abuse” on page 128).

Some services don’t need a high degree of reuse. For example, one part of the system
may need geolocation, but it isn’t important enough to devote resources to make it a
full blown enterprise service. The Application Services at the bottom left in
Figure 4-10 handle these cases. These are bound to a specific application context and
not meant for reuse, and are typically owned by a specific application team.

Infrastructure services are shared services owned by an infrastructure team to handle
nonfunctional requirements such as monitoring, logging, authentication/authoriza‐
tion, and so on.

The defining characteristic of an ESB-driven SOA is the message bus architectural
component, responsible for a wide variety of tasks as follows:

Mediation and routing
The message bus knows how to locate and communicate with services. Typically,
it maintains a registry of physical location, protocols, and other information
needed to invoke services.

Process choreography and orchestration
The message bus composes enterprise services together and manages tasks like
invocation order.

Message enhancement and transformation
One of the benefits of an integration hub is its ability to handle protocol and
other transformations on behalf of applications. For example, ServiceA may
“speak” HTTP and needs to call ServiceB, which only “speaks” RMI/IIOP. Devel‐
opers can configure the message bus to handle this transformation invisibly any‐
time this conversion is needed.

66 | Chapter 4: Architectural Coupling

https://en.wikipedia.org/wiki/Business_Process_Execution_Language:
https://en.wikipedia.org/wiki/Business_Process_Execution_Language:

The architectural quantum for ESB-driven SOA is massive! It basically encompasses
the entire system, much like a monolith, but is much more complex because it is a
distributed architecture. Making singular evolutionary change is extraordinarily diffi‐
cult in ESB-driven SOA because the taxonomy, while assisting reuse, harms common
change. For example, consider the CatalogCheckout domain concept within an SOA
—it is smeared throughout the technical architecture. Making a change to only
CatalogCheckout requires coordination between the parts of the architecture, com‐
monly owned by different teams, generating a tremendous amount of coordination
friction.

Contrast this representation of CatalogCheckout with the bounded context partition‐
ing of microservices. In a microservices architecture, each bounded context repre‐
sents a business process or workflow. Thus, developers would build a bounded
context around something like CatalogCheckout. It is likely that CatalogCheckout
will need details about Customer, but each bounded context “owns” their own entities.
If other bounded contexts also have the notion of Customer, developers make no
attempt to unify around a single, shared Customer class, which would be the prefer‐
red approach in an ESB-driven SOA. If the CatalogCheckout and ShipOrder boun‐
ded contexts need to share information about their customers, they do so via
messaging rather than trying to unify around a single representation.

ESB-driven SOA was never designed to exhibit evolutionary properties, so it’s no sur‐
prise that none of the evolutionary facets score well here:

Incremental change
While having a well-established technical service taxonomy allows for reuse and
segregation of resources, it greatly hampers making the most common types of
change to business domains. Most SOA teams are as partitioned as the architec‐
ture, requiring herculean amounts of coordination for common changes. ESB-
driven SOA is notoriously difficult to operationalize as well. It typically consists
of multiple physical deployment units, making coordination and automation
challenging. No one chooses ESBs for agility and operational ease of use.

Guided change with fitness functions
Testing in general is difficult within ESB-driven SOA. No one piece is complete—
every piece is part of a larger workflow and isn’t typically designed for isolated
testing. For example, an enterprise service is designed for reuse, but testing its
core behavior is challenging because it is only a portion of potentially a variety of
workflows. Building atomic fitness functions is virtually impossible, leaving most
verification chores to large-scale holistic fitness functions that do end-to-end
testing.

Evolvability of Architectural Styles | 67

Appropriate coupling
From a potential enterprise reuse standpoint, extravagant taxonomy makes sense.
If developers can manage to capture the reusable essence of each workflow, they
will eventually write all the company’s behavior once and for all, and future appli‐
cation development consists of connecting existing services. However, in the real
world this isn’t always possible. ESB-driven SOA isn’t built to allow independent
evolvable parts, so it has extremely poor support for it. Designing for categorical
reuse harms the ability to make evolutionary change at the architectural level.

Software architectures aren’t created in a vacuum—they always reflect the ecosystem
in which they were defined. For example, when SOA was a popular architectural
style, companies didn’t use tools like open-source operating systems—all infrastruc‐
ture was commercial, licensed, and expensive. A decade ago, a developer proposing a
microservices architecture, where every service runs on its own instance of an operat‐
ing system and machine, would be laughed out of the operations center because the
architecture would have been ludicrously expensive. Because of the dynamic equili‐
brium of the software development ecosystem, new architectures arise because of a
literal new environment.

While architects may still choose ESB-driven SOA for integration heavy environ‐
ments, scale, taxonomy, or other legitimate reasons, they choose it for those features
rather than evolvability, for which it is spectacularly unsuited.

Microservices
Combining the engineering practices of Continuous Delivery with the logical parti‐
tioning of bounded context forms the philosophical basis for the microservice style of
architecture, along with our architectural quantum concept.

In a layered architecture, the focus is on the technical dimension, or how the mechan‐
ics of the application work: persistence, UI, business rules, etc. Most software archi‐
tectures focus primarily on these technical dimensions. However, an additional
perspective exists. Suppose that one of the key bounded contexts in an application is
Checkout. Where does it live in the layered architecture? Domain concepts like
Checkout smear across the layers in this architecture. Because the architecture is seg‐
regated via technical layers, there is no clear concept of the domain dimension in this
architecture, as can be seen in Figure 4-11.

68 | Chapter 4: Architectural Coupling

Figure 4-11. The domain dimension is embedded within technical architecture

In Figure 4-11, some portion of Checkout exists in the UI, another portion lives in the
business rules, and persistence is handled by the bottom layers. Because layered
architecture isn’t designed to accomodate domain concepts, developers must modify
each layer to make changes to domains. From a domain perspective, a layered archi‐
tecture has zero evolvability. In highly coupled architectures, change is difficult
because coupling between the parts developers want to change is high. Yet, in most
projects, the common unit of change revolves around domain concepts. If a software
development team is organized into silos resembling their role in the layered archi‐
tecture, then changes to Checkout require coordination across many teams.

In contrast, consider an architecture where the domain dimension is the primary seg‐
regation of the architecture, as shown in Figure 4-12.

Evolvability of Architectural Styles | 69

Figure 4-12. Microservices architectures partition across domain lines, embedding the
technical architecture

As shown in Figure 4-12, each service is defined around DDD domain concept,
encapsulating the technical architecture and all other dependent components (like
databases) into a bounded context creating a highly decoupled architecture. Each ser‐
vice “owns” all parts of its bounded context, and communicates with other bounded
contexts via messaging (such as REST or message queues). Thus, no service is allowed
to know the implementation details of another service (such as database schemas),
preventing inappropriate coupling. The operational goal of this architecture is to
replace one service with another without disrupting other services.

Microservices architectures generally follow seven principles, as discussed in Building
Microservices Architectures:

Modeled around the business domain
The emphasis in microservices design is on the business domain, not technical
architecture. Thus, the quantum reflects the bounded context. Some developers
make the mistaken association that a bounded context represents a single entity
such as Customer; instead, it represents a business context and/or workflow such
as CatalogCheckout. The goal in microservices isn’t to see how small developers
can make each service but rather to create a useful bounded context.

Hide implementation details
The technical architecture in microservices is encapsulated within the service
boundary, which is based on the business domain. Each domain forms a physical

70 | Chapter 4: Architectural Coupling

bounded context. Services integrate with each other by passing messages or
resources, not by exposing details like database schemas.

Culture of automation
Microservices architectures embrace Continuous Delivery, by using deployment
pipelines to rigorously test code and automate tasks like machine provisioning
and deployment. Automated testing in particular is extremely useful in fast-
changing environments.

Highly decentralized
Microservices form a shared nothing architecture—the goal is to decrease cou‐
pling as much as possible. Generally, duplication is preferable to coupling. For
example, both the CatalogCheckout and ShipToCustomer services have a con‐
cept called Item. Because both teams have the same name and similar properties,
developers try to reuse it across both services, thinking it will save time and
effort. Instead, it increases effort because changes must now propagate between
all the teams that share the component. And, whenever a service changes, devel‐
opers must worry about changes to the shared component. If, on the other hand,
each service has their own Item and passes information they need from Catalog
Checkout to ShipToCustomer without coupling to the component, they can each
change independently.

Deployed independently
Developers and operations expect that each service component will be deployed
independently from other services (and other infrastructure), reflecting the phys‐
ical manifestation of the bounded context. The ability for developers to deploy
one service without affecting any other service is one of the defining benefits of
this architectural style. Moreover, developers typically automate all deployment
and operations tasks, including parallel testing and Continuous Delivery.

Isolate failure
Developers isolate failure both within the context of a microservices and in the
coordination of services. Each service is expected to handle reasonable error sce‐
narios and recover if possible. Many DevOps best practices (such as the circuit
breaker pattern, bulkheads, and so on) commonly appear in these architectures.
Many microservices architectures adhere to the Reactive Manifesto, a list of
operational and coordination principles that lead to more robust systems.

Highly observable
Developers cannot hope to manually monitor hundreds or thousands of services
(how many multicast SSH terminal sessions can one developer observe?). Thus,
monitoring and logging become first-class concerns in this architecture. If opera‐
tions cannot monitor one of these services, it might as well not exist.

Evolvability of Architectural Styles | 71

https://martinfowler.com/bliki/CircuitBreaker.html
https://martinfowler.com/bliki/CircuitBreaker.html
http://www.reactivemanifesto.org/

The main goals of microservices are isolation of domains via physical bounded con‐
text and emphasis on understanding the problem domain. Therefore, the architec‐
tural quantum is the service, making this an excellent example of an evolutionary
architecture. If one service needs to evolve to change its database, no other service is
affected because no other service is allowed to know implementation details like sche‐
mas. Of course, the developers of the changing service will have to deliver the same
information via the integration point between the services (hopefully protected by a
fitness function like consumer-driven contracts), allowing the calling service develop‐
ers the bliss of never knowing the change occurred.

Given that microservices is our exemplar for an evolutionary architecture, it is unsur‐
prising that it scores well from an evolutionary standpoint.

Incremental change
Both aspects of incremental change are easy in microservices architectures. Each
service forms a bounded context around a domain concept, making it easy to
make changes that only affect that context. Microservices architectures rely heav‐
ily on automation practices from Continuous Delivery, utilizing deployment pipe‐
lines and modern DevOps practices.

Guided change with fitness functions
Developers can easily build both atomic and holistic fitness functions for micro‐
services architectures. Each service has a well-defined boundary, allowing a vari‐
ety of levels of testing within the service components. Services must coordinate
via integration, which also requires testing. Fortunately, sophisticated testing
techniques grew alongside the development of microservices.

Appropriate coupling
Microservices architectures typically have two kinds of coupling: integration and
service template. Integration coupling is obvious—services need to call each other
to pass information. The other type of coupling, service templates, prevents
harmful duplication. Developers and operations benefit if a variety of facilities
are consistent and managed within microservices. For example, each service
needs to include monitoring, logging, authentication/authorization, and other
“plumbing” capabilities. If left to the responsibility of each service team, ensuring
compliance and lifecycle management like upgrades will likely suffer. By defining
the appropriate technical architecture coupling points in service templates, an
infrastructure team can manage that coupling while freeing individual service
teams from worrying about it. Domain teams merely extend the template and
write their behavior. When upgrades to infrastructure changes, the template
picks it up automatically during the next deployment pipeline execution.

The physical bounded context in microservices correlates exactly to our concept of
architectural quantum—it is a physically decoupled deployable component with high
functional cohesion.

72 | Chapter 4: Architectural Coupling

One of the key principles of the microservices style of architecture is strict partition‐
ing across domain-bounded contexts. The technical architecture is embedded within
the domain parts, honoring DDD’s bounded context principle by making each service
physically separate, which leads to a share nothing architecture from the technical
perspective. Physical separation is expected for each service, allowing easy replace‐
ment and evolution. Because each microservice embeds the technical architecture
within the bounded context, any service may evolve in any way necessary. Thus, the
dimensions of evolvability for microservices corresponds to the number of services,
each of which developers can treat independently because each service is highly
decoupled.

“Share Nothing” and Appropriate Coupling
Architects often call microservices a “share nothing” architecture. The primary
advantage of this architecture style is no coupling at the technical architecture layer.
But people who decry coupling are usually talking about “inappropriate coupling.”
After all, a software system with no coupling isn’t very capable. “Share nothing” really
means “no entangling coupling points.” Even in microservices, some things need to be
shared and coordinated, such as tools, frameworks, libraries, and so on. For instance,
logging, monitoring, service discovery, etc. A service team forgetting to add monitor‐
ing capabilities to their service is a disaster at deployment time. In a microservices
architecture, if a service can’t be monitored, it disappears into a black hole.

Service templates (such as DropWizard and Spring Boot) are common solutions to
this problem in microservices. These frameworks allow a DevOps team to build con‐
sistent tools, frameworks, versions, etc., into the service template. Service teams use
the template to “snap in” their business behavior. When the monitoring tool updates,
the service team can coordinate the update to the service template without bothering
other teams.

If there are clear benefits, then why haven’t developers embraced this style before? A
decade ago, automatic provisioning of machines wasn’t possible. Operating systems
were commercial and licensed, with little support for automation. Real-world con‐
straints like budgets impact architectures, which is one of the reasons developers
build more and more elaborate shared resources architectures, segregated at the tech‐
nical layers. If operations is expensive and cumbersome, architects build around it, as
they did in ESB-SOAs.

The Continuous Delivery and DevOps movements added a new factor into the
dynamic equilibrium. Now, machine definitions live in version control and support
extreme automation. Deployment pipelines spin up multiple test environments in
parallel to support safe continuous deployment. Because much of the software stack is
open source, licensing and other concerns no longer impact architectures. The com‐

Evolvability of Architectural Styles | 73

http://www.dropwizard.io/
http://projects.spring.io/spring-boot/

munity reacted to the new capabilities emergent in the software development ecosys‐
tem to build more domain-centric architectural styles.

In microservices architecture, the domain encapsulates technical and other architec‐
tures, making evolution across domain dimensions easy. No one perspective on
architecture is “correct,” but rather a reflection on the goals developers build into
their projects. If the focus is entirely on technical architecture, then making changes
across that dimension is easier. However, if the domain perspective is ignored, then
evolving across that dimension is no better than the Big Ball of Mud.

One of the major factors that impacts the ability to evolve an application at the archi‐
tectural level is how unintentionally coupled each part of the system is. For example, in
a layered architecture, architects specifically couple layers together in an intentional
way. However, the domain dimension is unintentionally coupled, making evolution
in that dimension difficult, because the architecture is designed around technical
architecture layers, not the domain. Thus, one of the important aspects of an evolva‐
ble architecture is appropriate coupling across dimensions. We discuss how to identify
and utilize quantum boundaries for practical purposes in Chapter 8.

Service-based architectures
A more commonly used architectural style for migration is a service-based architec‐
ture, which is similar to but differs from microservices in three important ways: ser‐
vice granularity, database scope, and integration middleware. Service-based
architectures are still domain-centric but address some challenges developers face
when restructuring existing applications toward more evolutionary architectures.

Larger service granularity
The services in this architecture tend to be larger, more “portion of a monolith”
granularity than purely around domain concepts. While they are still domain-
centric, the larger size makes the unit of change (development, deployment, cou‐
pling, and a host of other factors) larger, diminishing the ability to make change
easily. When architects evaluate a monolithic application, they often see coarse-
grained divisions around common domain concepts such as CatalogCheckout or
Shippping, which form a good first-pass at partitioning the architecture. The
goals of operational isolation are the same in service-based architectures as in
microservices but are more difficult to achieve. Because the service size is bigger,
developers must consider more coupling points and the complications inherent
in larger chunks of code. Ideally, the architecture should support the same kind
of deployment pipeline and small unit of change as microservices: when a devel‐
oper changes a service, it should trigger the deployment pipeline to rebuild the
dependent services, including the application.

74 | Chapter 4: Architectural Coupling

Database scope
Service-based architectures tend towards a monolithic database, regardless of
how well-factored the services are. In many applications, it isn’t feasible or possi‐
ble to restructure years (or decades) of intractable database schemas into atomic-
sized chunks for microservices. While the inability to atomize the data may be
inconvenient in some situations, it is impossible in some problem domains.
Heavily transactional systems are a poor match for microservices because coordi‐
nation between services, transactional behavior is too costly. Systems with com‐
plex transactional requirements map more cleanly to service-based architectures
because of less stringent database requirements.

While the database remains unpartitioned, the components that rely on the database
will likely change, becoming more granular. Thus, while the mapping between the
services and the underlying data may change, it requires less restructuring. We cover
evolutionary database design in Chapter 5.

Integration middleware
The third difference between microservices and service-based architectures con‐
cerns externalized coordination via a mediator like a service bus. Building green‐
field microservices applications allows developers to not worry about old
integration points, but those horrors describe many environments rife with leg‐
acy systems that still perform useful work. Integration hubs, like enterprise ser‐
vice buses, excel at forming glue between disparate services with different
protocols and message formats. If architects find themselves in environments
where integration architecture is the top priority, using an integration hub makes
adding and changing dependent services easier.

Using an integration hub is a classic architectural tradeoff: by using a hub, developers
need to write less code to glue applications together, and may use it to mimic transac‐
tion coordination between services. However, using a hub increases the architectural
coupling between components—developers can no longer make changes independ‐
ently without coordinating with other teams. Fitness functions can mitigate some of
this coordination cost, but the more developers increase coupling, the harder the sys‐
tem is to evolve.

Here is how a service-based architecture measures against our evolutionary architec‐
ture evaluation:

Incremental change
Incremental change is relatively functional in this architecture because each ser‐
vice is domain centric. Most changes in software projects occur around domains,
providing alignment between unit of change and quantum of deployment. While
not as agile as microservices because the service size tends to be larger, many of
the advantages of microservices is preserved.

Evolvability of Architectural Styles | 75

Guided change with fitness functions
Developers typically find it more difficult to write fitness functions in service-
based architectures than in microservices because of increased coupling (typi‐
cally at the database) and a larger bounded context. Increased code coupling
often makes writing tests more difficult, and increased data coupling creates its
own host of problems. The larger bounded context of service-based architectures
creates more opportunities for developers to create internal coupling points,
complicating testing and other diagnostics.

Appropriate coupling
Coupling is often the reason developers pursue a service-based architecture
rather than microservices: difficulties deconstructing database schemas, high
degree of coupling within a monolith targeted for restructuring, and so on. Cre‐
ating domain-centric services helps ensure appropriate coupling, and service
templates help create the appropriate level of technical architecture coupling.

Serverless BaaS architectures allow limited evolution but attractive operational char‐
acteristics. Service-based architectures are certainly more inherently evolvable than
ESB SOA architectures. The degree to which developers have deviated from bounded
context largely determines the quantum size and how much damaging coupling
appears.

Service-based architectures are a good compromise between the philosophical purity
of microservices and the pragmatic realities of many projects. By loosening the stric‐
tures on service size, database independence, and incidental but useful coupling, this
architecture solves the most painful aspects of microservices while preserving many
of the benefits.

“Serverless” Architectures
“Serverless” architectures are a recent shift in the software development equilibrium,
with two broad meanings, both applicable to evolutionary architecture.

Applications that significantly or primarily depend on third-party applications and/or
services in “the cloud” are called BaaS (Backend as a Service). For example, consider
the simplified example shown in Figure 4-13.

76 | Chapter 4: Architectural Coupling

Figure 4-13. Serverless BaaS

In Figure 4-13, the developer writes little or no code. Instead, the architecture con‐
sists of wiring together services, including things like authentication, data transfer,
and other integration architecture pieces. This type of architecture is appealing
because, the fewer lines of code an organization writes, the fewer it must maintain.
However, integration-heavy architectures come with their own challenges.

The other type of serverless architectures is FaaS (Function as a Service), which
eschews infrastructure entirely (at least from the developer’s standpoint), provision‐
ing infrastructure per request, automatically handling scaling, provisioning, and a
host of other management duties. Functions in FaaS are triggered by event types
defined by the service provider. For example, Amaazon Web Services (AWS) is a
common FaaS provider, supplying events triggered by file updates (on S3), time
(scheduled tasks), and messages added to a message bus (e.g., Kinesis). Providers
often limit the amount of time a request may take along with other restrictions, pri‐
marily around state. The general assumption is that FaaS functions are stateless, plac‐
ing the burden of managing state on the caller.

Incremental change
Incremental change in serverless architectures should consist of redeploying
code—all the infrastructure concerns exist behind the abstraction of “serverless.”
These types of architecture are natural fits for deployment pipelines, to handle
testing and incremental deployment as developers make changes.

Guided change via fitness functions
Fitness functions are critical in this type of architecture to ensure integration
points stay consistent. Because coordination between services is key, developers
can expect to write a larger percentage of holistic fitness functions, which must
run in the context of several integration points, to ensure third-party APIs
haven’t drifted. Architects frequently build anticorruption layers between integra‐

Evolvability of Architectural Styles | 77

https://aws.amazon.com/kinesis/

tion points to avoid the Vendor King antipattern, discussed in “Antipattern: Ven‐
dor King” on page 123.

Appropriate coupling
From an evolutionary architecture standpoint, FaaS is attractive because it elimi‐
nates several different dimensions from consideration: technical architecture,
operational concerns, and security issues, among others. While this architecture
may be easy to evolve, it suffers from serious constraints around practical consid‐
erations, offloading much of the complexity to the invoker. For example, while
FaaS will handle elastic scalability, the caller must handle any transactional
behavior and other complex coordination. In a traditional application, transac‐
tional coordination is typically handled by the back-end. However, if the BaaS
doesn’t support that behavior, coordination must move to the user interface (the
invoker of the service).

Architects shouldn’t choose an architecture without evaluating it against the real
problems they must solve.

Make sure your architecture matches the problem domain. Don’t
try to force fit an unsuitable architecture.

While serverless architectures have many appealing features, they also have limita‐
tions. In particular, all-encompassing solutions often suffer from the “Antipattern:
Last 10% Trap” as discussed on on page 127. Most of what a team needs to build is
quick and easy, but other times, building a complete solution can be frustrating.

Controlling Quantum Size
The quantum size of an architecture largely determines how easy it will be for devel‐
opers to make evolutionary changes. Large quanta like monoliths and ESB SOA are
difficult to evolve because of the coordination required for each change. More decou‐
pled architectures like broker event-driven and microservices offer many more ave‐
nues for easy evolution.

The structural constraints on evolving architecture depend on how well developers
have handled coupling and functional cohesion. Evolution is easier if developers have
created a modular component system with well-defined integration points. For exam‐
ple, if developers build a monolith, but are diligent about good modularity and com‐
ponent isolation, that architecture will offer more opportunities to evolve because the
size of the architectural quantum is smaller due to decoupling.

78 | Chapter 4: Architectural Coupling

The smaller your architectural quanta, the more evolvable your
architecture will be.

Case Study: Guarding Against Component Cycles
PenultimateWidgets has several monolithic applications under active development.
When designing components, one of the architect’s goals is to create self-contained
components—the more isolated the code, the easier it is to make changes. A common
problem in many languages with powerful IDEs is the package dependency cycle,
which describes the common scenario illustrated in Figure 4-14.

Figure 4-14. Package dependency cycle

In Figure 4-14, the package com.company.data imports from com.company.utils,
and com.company.utils imports from com.company.data—neither component can
be used without dragging the other along, creating a component cycle. Obviously,
cycles hurt changeability because an elaborate network of cycles makes incremental
change difficult. Languages like Java or C# have development environments that
assist developers (via code insight helpers built into the IDE) by suggesting missing
imports. Because developers implicitly import so many things in the course of daily
coding with the help of the IDE, preventing package dependency cycles is difficult
because the tooling fights against this effort.

The PenultimateWidgets architects on these systems worry about developers acciden‐
tally introducing cycles between components. Fortunately, they have a mechanism to
help guard against factors that harm the evolvability of applications—fitness func‐
tions. Rather than abandon the benefits of IDEs because they encourage bad habits,
an engineering safety net via fitness functions can be built instead. Both commercial
and open source tools exist for many popular platforms to help untangle cycles. Many
take the form of a static code analysis tool that looks for cycles, while others provide
“to-do” lists of refactorings to assist developers in fixing them.

After the cycles have been removed, how can you prevent a developers’s idle habits
from introducing new ones? Coding standards don’t help for this type of problem

Case Study: Guarding Against Component Cycles | 79

because developers have a hard time remembering bureaucratic policies in the heat of
coding. Instead, they prefer to establish tests and other verification mechanisms to
guard against too-helpful tools.

The PenultimateWidgets developers use a popular open source tool for the Java plat‐
form called JDepend, which includes both textual and graphical interfaces to help
analyze dependencies. Because JDepend is written in Java, developers can utilize its
API to write structural tests of their own. Consider the test case in Example 4-1.

Example 4-1. Using JDepend to identify cycles programmatically

import java.io.*;
import java.util.*;
import junit.framework.*;

public class CycleTest extends TestCase {
 private JDepend jdepend;

 protected void setUp() throws IOException {
 jdepend = new JDepend();
 jdepend.addDirectory("/path/to/project/util/classes");
 jdepend.addDirectory("/path/to/project/web/classes");
 jdepend.addDirectory("/path/to/project/thirdpartyjars");
 }

 /**
 * Tests that a single package does not contain
 * any package dependency cycles.
 */
 public void testOnePackage() {
 jdepend.analyze();
 JavaPackage p = jdepend.getPackage("com.xyz.thirdpartyjars");
 assertEquals("Cycle exists: " + p.getName(),
 false, p.containsCycle());
 }

 /**
 * Tests that a package dependency cycle does not
 * exist for any of the analyzed packages.
 */
 public void testAllPackages() {
 Collection packages = jdepend.analyze();
 assertEquals("Cycles exist",
 false, jdepend.containsCycles());
 }
 }

In Example 4-1, the developer adds the directories containing packages to jdepend.
Then, the developer can test either a single package for cycles or the entire codebase,
as shown in the unit test testAllPackages(). Once the project has gone through the

80 | Chapter 4: Architectural Coupling

http://clarkware.com/software/JDepend.html

laborious task of identifying and removing cycles, put the testAllPackages() unit
test in place as an application architecture fitness function to guard against future
cycle occurrence.

Case Study: Guarding Against Component Cycles | 81

CHAPTER 5

Evolutionary Data

with contributions from Pramod Sadalage

Relational and other types of data stores are ubiquitous in modern software projects,
a form of coupling that is often more problematic than architectural coupling. Data is
an important dimension to consider when creating an evolvable architecture. It is
beyond the scope of this book to cover all the aspects of evolutionary database design.
Fortunately, our colleage Pramod Sadalage, along with Scott Ambler, wrote Refactor‐
ing Databases, subtitled Evolutionary Database Design. We cover only the parts of
database design that impact evolutionary architecture and encourage readers to read
this book.

When we refer to the DBA, we mean anyone who designs the data structures, writes
code to access the data and use the data in an application, writes code that executes in
the database, maintains and performance tunes the databases, and ensures proper
backup and recovery procedures in the event of disaster. DBAs and developers are
often the core builders of applications, and should coordinate closely.

Evolutionary Database Design
Evolutionary design in databases occurs when developers can build and evolve the
structure of the database as requirements change over time. Database schemas are
abstractions, similar to class hierarchies. As the underlying real world changes, those
changes must be reflected in the abstractions developers and DBAs build. Otherwise,
the abstractions gradually fall out of synchronization with the real world.

Evolving Schemas
How can architects build systems that support evolution but still use traditional tools
like relational databases? The key to evolving database design lies in evolving schemas
alongside code. Continuous Delivery addresses the problem of how to fit the tradi‐

83

http://databaserefactoring.com/
http://databaserefactoring.com/

tional data silo into the continuous feedback loop of modern software projects.
Developers must treat changes to database structure the same way they treat source
code: tested, versioned, and incremental.

Tested
DBAs and developers should rigorously test changes to database schemas to
ensure stability. If developers use a data mapping tool like an object-relational
mapper (ORM), they should consider adding fitness functions to ensure the
mappings stay in sync with the schemas.

Versioned
Developers and DBAs should version database schemas alongside the code that
utilizes it. Source code and database schemas are symbiotic—neither functions
without the other. Engineering practices that artificially separate these two neces‐
sarily coupled things cause needless inefficiencies.

Incremental
Changes to the database schemas should accrue just as source code changes build
up: incrementally as the system evolves. Modern engineering practices eschew
manual updates of database schemas, preferring automated migration tools
instead.

Database migration tools are utilities that allow developers (or DBAs) to make small,
incremental changes to a database that are automatically applied as part of a deploy‐
ment pipeline. They exist along a wide spectrum of capabilities from simple
command-line tools to sophisticated proto-IDEs. When developers need to make a
change to a schema, they write small delta scripts, as illustrated in Example 5-1.

Example 5-1. A simple database migration

CREATE TABLE customer (
 id BIGINT GENERATED BY DEFAULT AS IDENTITY (START WITH 1) PRIMARY KEY,
 firstname VARCHAR(60),
 lastname VARCHAR(60)
);

The migration tool takes the SQL snippet shown in Example 5-1 and automatically
applies it to the developer’s instance of the database. If the developer later realizes
they forgot to add date of birth rather than change the original migration, they can
create a new one that modifies the original structure, as shown in Example 5-2.

Example 5-2. Adding date of birth to existing table using a migration

ALTER TABLE customer ADD COLUMN dateofbirth DATETIME;

--//@UNDO

84 | Chapter 5: Evolutionary Data

ALTER TABLE customer DROP COLUMN dateofbirth;

In Example 5-2, the developer modifies the existing schema to add a new column.
Some migration tools support undo capabilities as well. Supporting undo allows
developers to easily move forward and backward through the schema versions. For
example, suppose a project is on version 101 in the source code repository and needs
to return to version 95. For the source code, developers merely check out version 95
from version control. But how can they ensure the database schema is correct for ver‐
sion 95 of the code? If they use migrations with undo capabilities, they can “undo”
their way backwards to version 95 of the schema, applying each migration in turn to
regress back to the desired version.

However, most teams have moved away from building undo capabilities for three rea‐
sons. First, if all the migrations exist, developers can build the database just up to the
point they need without backing up to a previous version. In our example, developers
would build from 1 to 95 to restore version 95. Second, why maintain two versions of
correctness, both forward and backward? To confidently support undo, developers
must test the code, sometimes doubling the testing burden. Third, building compre‐
hensive undo sometimes presents daunting challenges. For example, imagine that the
migration dropped a table—how would the migration script preserve all data in the
case of an undo operation?

Once developers have run migrations, they are considered immutable—changes are
modeled after double-entry bookkeeping. For example, suppose that Danielle the
developer ran the migration in Example 5-2 as the 24th migration on the project.
Later, she realizes dateofbirth isn’t needed after all. She could just remove the 24th
migration, and the end result on the table is no column. However, any code written
between the time Danielle ran the migration and now assumes the presence of the
dateofbirth column, and will no longer work if for some reason the project needs to
back up to an intermediate point (e.g., to fix a bug). Instead, to remove the no-longer
needed column, she runs a new migration that removes the column.

Database migrations allow both database admins and developers to manage changes
to schema and code incrementally, by treating each as parts of a whole. By incorpo‐
rating database changes into the deployment pipeline feedback loop, developers have
more opportunities to incorporate automation and earlier verification into the proj‐
ect’s build cadence.

Shared Database Integration
A common integration pattern highlighted here is Shared Database Integration,
which uses a relational database as a sharing mechanism for data, as illustrated in
Figure 5-1.

Evolutionary Database Design | 85

http://www.enterpriseintegrationpatterns.com/patterns/messaging/SharedDataBaseIntegration.html

Figure 5-1. Using the database as an integration point

In Figure 5-1, each of the three applications share the same relational database.
Projects frequently default to this integration style—every project is using the same
relational database because of governance, so why not share data across projects?
Architects quickly discover, however, that using the database as an integration point
fossilizes the database schema across all sharing projects.

What happens when one of the coupled applications needs to evolve capabilities via a
schema change? If ApplicationA makes changes to the schema, this could potentially
break the other two applications. Fortunately, as discussed in the aforementioned
Refactoring Databases book, a commonly utilized refactoring pattern is used to
untangle this kind of coupling called the expand/contract pattern. Many database
refactoring techniques avoid timing problems by building a transition phase into the
refactoring, as illustrated in Figure 5-2.

Figure 5-2. The expand/contract pattern for database refactoring

86 | Chapter 5: Evolutionary Data

Using this pattern, developers have a starting state and an end state, maintaining both
the old and new states during the transition. This transition state allows for back‐
wards compatibility and also gives other systems in the enterprise enough time to
catch up with the change. For some organizations, the transition state can last from a
few days to months.

Here is an example of expand/contract in action. Consider the common evolutionary
change of splitting a name column into firstname and lastname, which Penultimate‐
Widgets needs to do for marketing purposes. For this change, developers have the
start state, the expand state, and the final state, as shown in Figure 5-3.

Figure 5-3. The three states of the expand/contract refactoring

In Figure 5-3, the full name appears as a single column. During the transition, Penul‐
timateWidgets DBAs must maintain both versions to prevent breaking possible inte‐
gration points in the database. They have several options on how we proceed to split
the name column into firstname and lastname.

Option 1: No integration points, no legacy data
In this case, the developers have no other systems to think about and no existing data
to manage, so they can add the new columns and drop the old column, as shown in
Example 5-3.

Evolutionary Database Design | 87

Example 5-3. The simple case with no integration points and no legacy data

ALTER TABLE customer ADD firstname VARCHAR2(60);
ALTER TABLE customer ADD lastname VARCHAR2(60);
ALTER TABLE customer DROP COLUMN name;

For Option 1, the refactoring is straightforward—DBAs make the relevant change and
get on with life.

Option 2: Legacy data, but no integration points
In this scenario, developers assume existing data to migrate to new columns but they
have no external systems to worry about. They must create a function to extract the
pertinent information from the existing column to handle migrating the data, as
shown in Example 5-4.

Example 5-4. Legacy data but no integrators

ALTER TABLE Customer ADD firstname VARCHAR2(60);
ALTER TABLE Customer ADD lastname VARCHAR2(60);
UPDATE Customer set firstname = extractfirstname (name);
UPDATE Customer set lastname = extractlastname (name);
ALTER TABLE customer DROP COLUMN name;

This scenario requires DBAs to extract and migrate the existing data but is otherwise
straightforward.

Option 3: Existing data and integration points
This is the most complex and, unfortunately, most common scenario. Companies
need to migrate existing data to new columns while external systems depend on the
name column, which their developers cannot migrate to use the new columns in the
desired timeframe. The required SQL appears in Example 5-5.

Example 5-5. Complex case with legacy data and integrators

ALTER TABLE Customer ADD firstname VARCHAR2(60);
ALTER TABLE Customer ADD lastname VARCHAR2(60);

UPDATE Customer set firstname = extractfirstname (name);
UPDATE Customer set lastname = extractlastname (name);

CREATE OR REPLACE TRIGGER SynchronizeName
BEFORE INSERT OR UPDATE
ON Customer
REFERENCING OLD AS OLD NEW AS NEW
FOR EACH ROW
BEGIN

88 | Chapter 5: Evolutionary Data

 IF :NEW.Name IS NULL THEN
 :NEW.Name := :NEW.firstname||' '||:NEW.lastname;
 END IF;
 IF :NEW.name IS NOT NULL THEN
 :NEW.firstname := extractfirstname(:NEW.name);
 :NEW.lastname := extractlastname(:NEW.name);
 END IF;
END;

To build the transition phase in Example 5-5, DBAs add a trigger in the database that
moves data from the old name column to the new firstname and lastname columns
when the other systems are inserting data into the database, allowing the new system
to access the same data. Similarly, developers or DBAs concatenate the firstname
and lastname into a name column when the new system inserts data so that the other
systems have access to their properly formatted data.

Once the other systems modify their access to use the new structure (with separate
first and last names), the contraction phase can be executed and the old column drop‐
ped:

ALTER TABLE Customer DROP COLUMN name;

If a lot of data exists and dropping the column will be time consuming, DBAs can
sometimes set the column to “not used” (if the database supports this feature):

ALTER TABLE Customer SET UNUSED name;

After dropping the legacy column, if a read-only version of the previous schema is
needed, DBAs can add a functional column so that read access to the database is pre‐
served.

ALTER TABLE CUSTOMER ADD (name AS
 (generatename (firstname,lastname)));

As illustrated in each scenario, DBAs and developers can utilize the native facilities of
databases to build evolvable systems.

Expand/contract is a subset of a pattern called parallel change, a broad pattern used
to safely implement backward-incompatible changes to an interface.

Inappropriate Data Coupling
Data and databases form an integral part of most modern software architectures—
developers who ignore this key aspect when trying to evolve their architecture suffer.

Databases and DBAs form a particular challenge in many organizations because, for
whatever reason, their tools and engineer practices are antiquated compared to the
traditional development world. For example, the tools DBAs use on a daily basis are
extremely primitive compared to any developer’s IDE. Features that are common for

Inappropriate Data Coupling | 89

https://martinfowler.com/bliki/ParallelChange.html

developers don’t exist for DBAs: refactoring support, out-of-container testing, unit
testing, mocking and stubbing, and so on.

DBAs, Vendors, and Tool Choices
Why has the data world lagged so far behind the engineering practices of the software
development world? DBAs have many of the same needs as developers: testing, refac‐
toring, and so on. Yet, while developer tools continue to advance, the same level of
innovation hasn’t penetrated the data world. It’s not like tools aren’t available—several
third-party tools now exist to add better engineering support—but they don’t sell
well. Why?

Database vendors have created an interesting relationship between themselves and
their consumers. For example, a DBA for DatabaseVendorX has an almost irrational
level of dedication to that vendor, because the DBA’s next job comes at least in part
from the fact they are a certified DatabaseVendorX DBA, not necessarily from their
existing job. Thus, database vendors have secreted armies within enterprises all over
the world, where loyalties lie with the vendor rather than the company. DBAs in this
situation ignore tools and other development artifacts that don’t come from the
mothership. The result is stagnation at the innovation level for engineering practices.

DBAs view their database vendors as the source of all heat and light in the universe,
and don’t care what comes from other dark matter in their universe. The unfortunate
side effect of this phenomenon is stagnation in tool advancement compared to devel‐
oper tools. Consequently, the impedance mismatch between developers and DBAs
grows even bigger, as they don’t share common engineering techniques. Convincing
DBAs to adopt Continuous Delivery practices forces them to use new tools, distanc‐
ing them from the mothership, which they try to avoid.

Fortunately, the popularity of open source and NoSQL databases has started breaking
the hegemony of database vendors.

Two-Phase Commit Transactions
When architects discuss coupling, the conversation usually revolves around classes,
libraries, and other aspects of the technical architecture. However, other avenues of
coupling exist in most projects, including transactions.

Transactions are a special form of coupling because transactional behavior doesn’t
appear in traditional technical architecture-centric tools. Architects can easily deter‐
mine the afferent and efferent coupling between classes with a variety of tools. They
have a much harder time determining the extent of transactional contexts. Just as
coupling between schemas harms evolution, transactional coupling binds the constit‐
uent parts together in concrete ways, making evolution more difficult.

90 | Chapter 5: Evolutionary Data

Transactions appear in business systems for a variety of reasons. First, business ana‐
lysts love the idea of transactions—an operation that stops the world for some context
briefly—regardless of the technical challenges. Global coordination in complex sys‐
tems is difficult, and transactions represent a form of it. Second, transactional bound‐
aries often tell how business concepts are really coupled together in their
implementation. Third, DBAs may own the transactional contexts, making it hard to
coordinate breaking the data apart to resemble the coupling found in the technical
architecture.

Developers encounter transactions as coupling points when attempting to translate
heavily transactional systems to inappropriate architectural patterns like microservi‐
ces, which impose heavy decoupling burdens. Service-based architectures, with much
less strict service boundary and data partitioning requirements, fit transactional sys‐
tems better. We discuss pertinent differences between these architectural styles in
“Service-Oriented Architectures” on page 65.

In Chapters 1 and 4, we discussed the architectural quantum boundary concept defi‐
nition: the smallest architectural deployable unit, which differs from traditional
thinking about cohesion by encompassing dependent components like databases. The
binding created by databases is more imposing than traditional coupling because of
transactional boundaries, which often define how business processes work. Architects
sometimes err in trying to build an architecture with a smaller level of granularity
than is natural for the business. For example, microservices architectures aren’t par‐
ticularly well suited for heavily transactional systems because the goal service quan‐
tum is so small. Service-based architectures tend to work better because of less strict
quantum size requirements.

Architects must consider all the coupling characteristics of their application: classes,
package/namespace, library and framework, data schemas, and transactional con‐
texts. Ignoring any of these dimensions (or their interactions) creates problems when
trying to evolve an architecture. In physics, the strong nuclear force that binds atoms
together is one of the strongest forces yet identified. Transactional contexts act like a
strong nuclear force for architecture quanta.

Database transactions act as a strong nuclear force, binding quanta
together.

While systems often cannot avoid transactions, architects should try to limit transac‐
tional contexts as much as possible because they form a tight coupling knot, hamper‐
ing the ability to change components or services without affecting others. More

Inappropriate Data Coupling | 91

importantly, architects should take aspects like transactional boundaries into account
when thinking about architectural changes.

As discussed in Chapter 8, when migrating a monolithic architectural style to a more
granular one, start with a small number of larger services first. When building a
greenfield microservices architecture, developers should be diligent about restricting
the size of service and data contexts. However, don’t take the name microservices too
literally—each service doesn’t have to be small, but rather capture a useful bounded
context.

When restructuring an existing database schema, it is often difficult to achieve appro‐
priate granularity. Many enterprise DBAs spend decades stitching a database schema
together and have no interest in performing the reverse operation. Often, the neces‐
sary transactional contexts to support the business define the smallest granularity
developers can make into services. While architects may aspire to create a smaller
level of granularity, their efforts slip into inappropriate coupling if it creates a mis‐
match with data concerns. Building an architecture that structurally conflicts with the
problem developers are trying to solve represents a damaging version of meta-work,
described in “Migrating Architectures” on page 100.

Age and Quality of Data
Another dysfunction that manifests in large companies is the fetishization of data and
databases. We have heard more than one CTO say, “I don’t really care that much
about applications because they have a short lifespan, but my data schemas are pre‐
cious because they live forever!” While it’s true that schemas change less frequently
than code, database schemas still represent an abstraction of the real world. While
inconvenient, the real world has a habit of changing over time. DBAs who believe
that schemas never change ignore reality.

But if DBAs never refactor the database to make schema changes, how do they make
changes to accommodate new abstractions? Unfortunately, adding another join table
is a common process DBAs use to expand schema definitions. Rather than make a
schema change and risk breaking existing systems, they instead just add a new table,
joining it to the original using relational database primitives. While this works in the
short term, it obfuscates the real underlying abstraction—in the real world, one entity
is represented by multiple things. Over time, DBAs who rarely genuinely restructure
schemas build an increasingly fossilized world, with byzantine grouping and bunch‐
ing strategies. When DBAs don’t restructure the database, they’re not preserving a
precious enterprise resource, they’re instead creating the concretized remains of every
version of the schema, all overlaid upon one another via join tables.

Legacy data quality presents another huge problem. Often, the data has survived
many generations of software, each with their own persistence quirks, resulting in
data that is inconsistent at best, and garbage at worst. In many ways, trying to keep

92 | Chapter 5: Evolutionary Data

every scrap of data couples the architecture to the past, forcing elaborate work‐
arounds to make things operate successfully.

Before trying to build an evolutionary architecture, make sure developers can evolve
the data as well, both in terms of schema and quality. Poor structure requires refac‐
toring, and DBAs should perform whatever actions are necessary to baseline the
quality of data. We prefer fixing these problems early rather than building elaborate,
ongoing mechanisms to handle these problems in perpetuity.

Legacy schemas and data have value, but they also represent a tax on the ability to
evolve. Architects, DBAs, and business representatives need to have frank conversa‐
tions about what represents value to the organization—keeping legacy data forever or
the ability to make evolutionary change. Look at the data that has true value and pre‐
serve it, and make the older data available for reference but out of the mainstream of
evolutionary development.

Refusing to refactor schemas or eliminate old data couples your
architecture to the past, which is difficult to refactor.

Case Study: Evolving PenultimateWidgets’ Routing
PenultimateWidgets has decided to implement a new routing scheme between pages,
providing a navigational breadcrumb trail to users. Doing so means changing the way
routing between pages has been done (using an in-house framework). Pages that
implement the new routing mechanism require more context (origin page, workflow
state, and so on), and thus require more data.

Within the routing service quantum, PenultimateWidgets currently has a single table
to handle routes. For the new version, developers need more information, so the table
structure will be more complex. Consider the starting point illustrated in Figure 5-4.

Figure 5-4. Starting point for new routing implementation

Not all pages at PenultimateWidgets will implement the new routing at the same time
because different business units work at different speeds. Thus, the routing service

Case Study: Evolving PenultimateWidgets’ Routing | 93

must support both old and new versions. We will see how that is handled via routing
in Chapter 6. In this case, we must handle the same scenario at the data level.

Using the expand/contract pattern, a developer can create the new routing structure
and make it available via the service call. Internally, both routing tables have a trigger
associated with the route column, so that changes to one are automatically replicated
to the other, as shown in Figure 5-5.

Figure 5-5. The transitional state, where the service supports both versions of routing

As seen in Figure 5-5, the service can support both APIs as long as developers need
the old routing service. In essence, the application now supports two versions of rout‐
ing information.

When the old service is no longer needed, the routing service developers can remove
the old table and the trigger, as shown in Figure 5-6.

Figure 5-6. The ending state of the routing tables

In Figure 5-6, all services have migrated to the new routing capability, allowing the
old service to be removed. This matches the workflow shown in Figure 5-2.

The database can evolve right alongside the architecture as long as developers apply
proper engineering practices such as continuous integration, source control, and so
on. This ability to easily change the database schema is critical: a database represents
an abstraction based on the real world, which can change unexpectedly. While data
abstractions resist change better than behavior, they must still evolve. Architects must
treat data as a primary concern when building an evolutionary architecture.

Refactoring databases is an important skill and craft for DBAs and developers to
hone. Data is fundamental to many applications. To build evolvable systems, develop‐
ers and DBAs must embrace effective data practices alongside other modern engi‐
neering practices.

94 | Chapter 5: Evolutionary Data

CHAPTER 6

Building Evolvable Architectures

Until now, we’ve addressed the three primary aspects of evolutionary architecture—
fitness functions, incremental change, and appropriate coupling—separately. Now we
have enough context to tie them together.

Many of the concepts we discussed aren’t new ideas, but rather viewed through a new
lens. For example, testing has existed for years, but not with the fitness function
emphasis on architectural verification. Continuous Delivery defined the idea of
deployment pipelines. Evolutionary architecture shows architects the real utility of
that capability.

Many organizations pursue Continuous Delivery practices as a way to increase engi‐
neering efficiency for software development, a worthy goal in itself. However, we’re
taking the next step, using those capabilities to create something more sophisticated
—architectures that evolve with the real world.

So how can developers take advantage of these techniques on projects, both existing
and new?

Mechanics
Architects can operationalize these techniques for building an evolutionary architec‐
ture in three steps:

1. Identify Dimensions Affected by Evolution
First, architects must identify which dimensions of the architecture they want to pro‐
tect as it evolves. This always includes technical architecture, and usually things like
data design, security, scalability, and the other “-ilities” architects have deemed
important. This must involve other interested teams within the organization, includ‐

95

ing business, operations, security, and other affected parties. The Inverse Conway
Maneuver (described in “Conway’s Law” on page 11) is helpful here because it
encourages multirole teams. Basically, this is the the common behavior of architects
at the onset of projects when identifying the architectural characteristics they want to
support.

2. Define Fitness Function(s) for Each Dimension
A single dimension often contains numerous fitness functions. For example, archi‐
tects commonly wire a collection of code metrics into the deployment pipeline to
ensure architectural characteristics of the code base, such as preventing component
dependency cycles. Architects document decisions about which dimensions deserve
ongoing attention in a lightweight format such as a wiki. Then, for each dimension,
they decide what parts may exhibit undesirable behavior when evolving, eventually
defining fitness functions. Fitness functions may be automated or manual, and ingen‐
uity will be necessary in some cases.

3. Use Deployment Pipelines to Automate Fitness Functions
Lastly, architects must encourage incremental change on the project, defining stages
in a deployment pipeline to apply fitness functions and managing deployment practi‐
ces like machine provisioning, testing, and other DevOps concerns. Incremental
change is the engine of evolutionary architecture, allowing aggressive verification of
fitness functions via deployment pipelines and a high degree of automation to make
mundane tasks like deployment invisible. Cycle time is the Continuous Delivery
measure of engineering efficiency. Part of the responsibility of developers on projects
that support evolutionary architecture is to maintain good cycle time. Cycle time is
an important aspect of incremental change because many other metrics derive from
it. For example, the velocity of new generations appearing in an architecture is pro‐
portional to its cycle time. In other words, if a project’s cycle time lengthens, it slows
down how fast the project can deliver new generations, which affects evolvability.

While the identification of dimensions and fitness functions occurs at the beginning
of a new project, it is also an ongoing activity for both new and existing projects.
Software suffers from the unknown unknowns problem: developers cannot anticipate
everything. During construction, some part of the architecture often shows troubling
signs, and building fitness functions can prevent this dysfunction from growing.
While some fitness functions will naturally come to light at the beginning of a project,
many won’t reveal themselves until an architectural stress point appears. Architects
must vigilantly watch for situations where nonfunctional requirements break and ret‐
rofit the architecture with fitness functions to prevent future problems.

96 | Chapter 6: Building Evolvable Architectures

Greenfield Projects
Building evolvability into new projects is much easier than retrofitting existing ones.
First, developers have the opportunity to utilize incremental change right away, build‐
ing a deployment pipeline at project inception. Fitness functions are easier to identify
and plan before any code exists, making it easier to accommodate complex fitness
functions because scaffolding has existed since inception. Second, architects don’t
have to untangle any undesirable coupling points that creep into existing projects.
The architect can also put metrics and other verifications in place to ensure architec‐
tural integrity as the project changes.

Building new projects that handle unexpected change is easier if a developer chooses
the correct architectural patterns and engineering practices to facilitate evolutionary
architecture. For example, microservices architectures offer extremely low coupling
and a high degree of incremental change, making that style an obvious candidate
(and another contributing factor to its popularity).

Retrofitting Existing Architectures
Adding evolvability to existing architectures depends on three factors: component
coupling, engineering practice maturity, and developer ease in crafting fitness func‐
tions.

Appropriate Coupling and Cohesion
Component coupling largely determines the evolvability of the technical architecture.
Yet the best possible evolvable technical architecture is doomed if the data schema is
rigid and fossilized. Cleanly decoupled systems make evolution easy; nests of exuber‐
ant coupling harm it. To build truly evolvable systems, architects must consider all
affected dimensions of an architecture.

Beyond the technical aspects of coupling, architects must also consider and defend
the functional cohesion of the components of their system. When migrating from one
architecture to another, the functional cohesion determines the ultimate granularity
of restructured components. That doesn’t mean architects can’t decompose compo‐
nents to a ridiculous level, but rather that components should have an appropriate
size based on the problem context. For example, some business problems are more
coupled than others, such as in the case of heavily transactional systems. Trying to
build an extremely decoupled architecture that is counter to the problem is unpro‐
ductive.

Greenfield Projects | 97

Understand the business problem before choosing an architecture.

While this advice seems obvious, we constantly see teams that have chosen the shini‐
est new architectural pattern rather than the most appropriate one suffer. Part of
choosing an architecture lies in understanding where the problem and physical archi‐
tecture come together.

Engineering Practices
Engineering practices matter when defining how evolvable an architecture can be.
While Continuous Delivery practices don’t guarantee evolutionary architecture, it is
almost impossible without them.

Many teams embark on improved engineering practices for the sake of efficiency.
However, once those practices cement, they become building blocks for advanced
capabilities such as evolutionary architecture. Thus, the ability to build an evolution‐
ary architecture is an incentive to improving efficiency.

Many companies reside in the transition zone between older practices and new. They
may have solved low hanging fruit like continuous integration but still have largely
manual testing. While it slows cycle time, it is important to include manual stages in
deployment pipelines. First, it treats each stage of an application’s build the same—as
a stage in the pipeline. Second, as teams slowly automate more pieces of deployment,
manual stages may become automated ones with no disruption. Third, elucidating
each stage brings awareness about the mechanical parts of the build, creating a better
feedback loop and encouraging improvements.

The biggest single common impediment to building evolutionary architecture is
intractable operations. If developers cannot easily deploy changes, all parts of the
feedback cycle are hampered.

Fitness Functions
Fitness functions form the protective substrate of an evolutionary architecture. If
architects design a system around particular characteristics, those features may be
orthogonal to testability. Fortunately, modern engineering practices have vastly
improved around testability, making formerly difficult architectural characteristics
automatically verifiable. This is the area of evolutionary architecture that requires the
most work, but fitness functions allows equal treatment for formerly disparate con‐
cerns.

98 | Chapter 6: Building Evolvable Architectures

We encourage architects to start thinking of all kinds of architectural verification
mechanisms as fitness functions, including things they have previously considered ad
hocly. For example, many architectures have a service-level agreement around scala‐
bility and corresponding tests. They also have rules around security requirements,
with accompanying verification mechanisms. Architects often think of these as sepa‐
rate categories, but both intents are the same: verify some feature of the architecture.
By thinking of all architectural verification as fitness functions, there is more consis‐
tency when automation and other beneficial synergistic interactions are defined.

Refactoring Versus Restructuring
Developers sometimes co-opt terms that sound cool and make them into broader
synonyms, as is the case for refactoring. As defined by Martin Fowler, refactoring is
the process of restructuring existing computer code without changing its external
behavior. For many developers, refactoring has become synonymous with change, but
there are key differences.

It is exceedingly rare that a team refactors an architecture; rather, they restructure it,
making substantive changes to both structure and behavior. Architecture patterns
exist in part to make certain architectural characteristics primary in an application.
Switching patterns entails switching priorities, which isn’t refactoring. For example,
architects might choose an EDA for scalability. If the team switches to a different
architectural pattern, it likely won’t support the same level of scalability.

COTS Implications
In many organizations, developers don’t own all the parts that make up their ecosys‐
tem. COTS (Commercial off-the-shelf) and package software is prevalent in large
companies, creating challenges for architects building evolvable systems.

COTS systems must evolve alongside other applications within an enterprise.
Unfortunately, these systems don’t support evolution well.

Incremental change
Most commercial software falls woefully short of industry standards for automa‐
tion and testing. Architects and developers must often ring fence integration
points and build whatever testing is possible, frequently treating the entire system
as a black box. Enforcing agility in terms of deployment pipelines, DevOps, and
other modern practices offers challenges to development teams.

Appropriate coupling
Package software often commits the worst sins in terms of coupling. Generally,
the system is opaque, with a defined API developers use to integrate. Inevitably,
that API suffers from the problem described in “Antipattern: Last 10% Trap” on

Retrofitting Existing Architectures | 99

page 127, allowing almost (but not quite) enough flexibility for developers to get
useful work done.

Fitness functions
Adding fitness functions to package software is perhaps the biggest hurdle to
enable evolvability. Generally, tools of this ilk don’t expose enough internals to
allow unit or component testing, making behavioral integration testing the last
resort. These tests are less desirable because they are necessarily coarse grained,
must run in a complex environment, and must test a large swath of behavior of
the system.

Work diligently to hold integration points to your level of maturity.
If that isn’t possible, realize that some parts of the system will be
easier for developers to evolve than others.

Another worrisome coupling point introduced by many package software vendors is
opaque database ecosystems. In the best-case scenarios, the package software man‐
ages the state of the database entirely, exposing selected appropriate values via inte‐
gration points. In the worst case, the vendor database is the integration point to the
rest of the system, vastly complicating changes on either side of the API. In this case,
architects and DBAs must wrestle control of the database away from the package soft‐
ware for any hope of evolvability.

If trapped with necessary package software, architects should build as robust a set of
fitness functions as possible and automate their running at every possible opportu‐
nity. Lack of access to internals relegates testing to less desirable techniques.

Migrating Architectures
Many companies end up migrating from one architectural style to another. For exam‐
ple, architects choose simple-to-understand architecture patterns at the beginning of
a company’s IT history, often layered architecture monoliths. As the company grows,
the architecture comes under stress. One of the most common paths of migration is
from monolith to some kind of service-based architecture, for reasons of the general
domain-centric shift in architectural thinking, covered in “Microservices” on page 68.
Many architects are tempted by the highly evolutionary microservices architecture as
a target for migration, but this is often quite difficult, primarily because of existing
coupling.

When architects think of migrating architecture, they typically think of the coupling
characteristics of classes and components, but ignore many other dimensions affected
by evolution, such as data. Transactional coupling is as real as coupling between

100 | Chapter 6: Building Evolvable Architectures

classes, and just as insidious to eliminate when restructuring architecture. These
extra-class coupling points become a huge burden when trying to break the existing
modules into too-small pieces.

Many senior developers build the same types of applications year after year, and
become bored with the monotony. Most developers would rather write a framework
than use a framework to create something useful: Meta-work is more interesting than
work. Work is boring, mundane, and repetitive, whereas building new stuff is excit‐
ing.

This manifests in two ways. First, many senior developers start writing the infrastruc‐
ture that other developers use, rather than using existing (often open source) soft‐
ware. We once worked with a client who had once been on the cutting edge of
technology. They built their own application server, web framework in Java, and just
about every other bit of infrastructure. At one point, we asked if they had built their
own operating system, too, and when they said, “No,” we asked, “Why not?!? You
built everything else from scratch!”

Upon reflection, the company needed capabilities that weren’t available. However,
when open-source tools became available, they already owned their lovingly hand-
crafted infrastructure. Rather than cut over to the more standard stack, they opted to
keep their own because of minor differences in approach. A decade later, their best
developers worked in full-time maintenance mode, fixing their application server,
adding features to their web framework, and other mundane chores. Rather than
applying innovation on building better applications, they permanently slaved away on
plumbing.

Architects aren’t immune to the “meta-work is more interesting than work” syn‐
drome, which manifests in choosing inappropriate but buzz-worthy architectural
styles like microservices.

Don’t build an architecture just because it will be fun meta-work.

Migration Steps
Many architects find themselves faced with the challenge of migrating an outdated
monolithic application to a more modern service-based approach. Experienced archi‐
tects realize that a host of coupling points exist in applications, and one of the first
tasks when untangling a code base is understanding how things are joined. When
decomposing a monolith, the architect must take coupling and cohesion into account
to find the appropriate balance. For example, one of the most stringent constraints of

Migrating Architectures | 101

the microservices architectural style is the insistance that the database reside inside
the service’s bounded context. When decomposing a monolith, even if it is possible to
break the classes into small enough pieces, breaking the transactional contexts into
similar pieces may present an unsurmountable hurdle.

When restructuring architecture, consider all the affected dimen‐
sions.

Many architects end up migrating from monolithic applications to service-based
architectures. Consider the starting point architecture shown in Figure 6-1.

Figure 6-1. A monolith architecture as the starting point for migration, a “share every‐
thing” architecture

Building extremely granular services is easier in new projects but difficult in existing
migrations. So, how can we migrate the architecture in Figure 6-1 to the service-
based architecture shown in Figure 6-2?

102 | Chapter 6: Building Evolvable Architectures

Figure 6-2. The service-based, “share as little as possible” end result of the migration

Performing the kind of migration shown in Figures 6-1 and 6-2 comes with a host of
challenges: service granularity, transactional boundaries, database issues, and things
like how to handle shared libraries. Architects must understand why they want to
perform this migration, and it must be a better reason than “it’s the current trend.”
Splitting the architecture into domains, along with better team structure and opera‐
tional isolation, allows for easier incremental change, one of the building blocks of
evolutionary architecture, because the focus of work matches the physical work arti‐
facts.

When decomposing a monolithic architecture, finding the correct service granularity
is key. Creating large services alleviates problems like transactional contexts and
orchestration, but does little to break the monolith into smaller pieces. Too-fine-
grained components lead to too much orchestration, communication overhead, and
interdependency between components.

For the first step in migrating architecture, developers identify new service bound‐
aries. Teams may decide to break monoliths into services via a variety of partitioning
as follows:

Business functionality groups
A business may have clear partitions that mirror IT capabilities directly. Building
software that mimics the existing business communication hierarchy falls dis‐
tinctly into an applicable use of Conway’s Law (see “Conway’s Law” on page 11).

Migrating Architectures | 103

Transactional boundaries
Many businesses have extensive transaction boundaries they must adhere to.
When decomposing a monolith, architects often find that transactional coupling
is the hardest to break apart, as discussed in “Two-Phase Commit Transactions”
on page 90.

Deployment goals
Incremental change allows developers to selectively release code on different
schedules. For example, the marketing department might want a much higher
cadence of updates than inventory. Partitioning services around operational con‐
cerns like speed to release makes sense if that criteria is highly important. Simi‐
larly, a portion of the system may have extreme operational characteristics (like
scalability). Partitioning services around operational goals allows developers to
track (via fitness functions) health and other operational metrics of the service.

Coarser service granularity means many of the coordination problems inherent in
microservices go away because more of the business context resides inside a single
service. However, the larger the service, the more operational difficulties tend to esca‐
late (another architectural tradeoff).

Evolving Module Interactions
Migrating shared modules (including components) is another common challenge
faced by developers. Consider the structure shown in Figure 6-3.

Figure 6-3. Modules with efferent and afferent coupling

In Figure 6-3, all three modules share the same library. However, the architect needs
to split these modules into separate services. How can she maintain this dependency?

Sometimes, the library may be split cleanly, preserving the separate functionality each
module needs. Consider the situtation shown in Figure 6-4.

104 | Chapter 6: Building Evolvable Architectures

Figure 6-4. Modules with a common dependency

In Figure 6-4, both modules need the conflicting one shown in red. If developers are
lucky, the functionality may be cleanly split down the middle, partitioning the shared
library into the relevant parts needed by each dependent, as shown in Figure 6-5.

Figure 6-5. Splitting the shared dependency

However, it’s more likely the shared library won’t split that easily. In that case, devel‐
opers can extract the module into a shared library (such as a JAR, DLL, gem, or some
other component mechanism) and use it from both locations, as shown in Figure 6-6.

Figure 6-6. Sharing a dependency via a JAR file

Sharing is a form of coupling, which is highly discouraged in architectures like
microservices. An alternative to sharing a library is replication, as illustrated in
Figure 6-7.

Migrating Architectures | 105

Figure 6-7. Duplicating a shared library to eliminate a coupling point

In a distributed environment, developers may achieve the same kind of sharing using
messaging or service invocation.

When developers have identified the correct service partitioning, the next step is sep‐
aration of the business layers from the UI. Even in microservices architectures, the
UIs often resolve back to a monolith—after all, developers must show a unified UI at
some point. Thus, developers commonly separate the UIs early in the migration, cre‐
ating a mapping proxy layer between UI components and the back-end services they
call. Separating the UI also creates an anticorruption layer, insulating UI changes
from architecture changes.

The next step is service discovery, allowing services to find and call one another. Even‐
tually, the architecture will consist of services that must coordinate. By building the
discovery mechanism early, developers can slowly migrate parts of the system that are
ready to change. Developers often implement service discovery as a simple proxy
layer: each component calls the proxy, which in turn maps to the specific implemen‐
tation.

All problems in computer science can be solved by another level of indirection, except
of course for the problem of too many indirections.

—Dave Wheeler and Kevlin Henney

Of course, the more levels of indirection developers add, the more confusing navigat‐
ing the services becomes.

When migrating an application from a monolithic application architecture to a more
services-based one, the architect must pay close attention to how modules are con‐
nected in the existing application. Naive partitioning introduces serious performance
problems. The connection points in application become integration architecture con‐
nections, with the attendant latency, availability, and other concerns. Rather than
tackle the entire migration at once, a more pragmatic approach is to gradually
decompose the monolithic into services, looking at factors like transaction bound‐
aries, structural coupling, and other inherent characteristics to create several restruc‐

106 | Chapter 6: Building Evolvable Architectures

turing iterations. At first, break the monolith into a few large “portions of the
application” chunks, fix up the integration points, and rinse and repeat. Gradual
migration is preferred in the microservices world.

When migrating from a monolith, build a small number of larger services first.
—Sam Newman, Building Microservices

Next, developers choose and detach the chosen service from the monolith, fixing any
calling points. Fitness functions play a critical role here—developers should build fit‐
ness functions to make sure the newly introduced integration points don’t change,
and add consumer-driven contracts.

Guidelines for Building Evolutionary Architectures
We’ve used a few biology metaphors throughout the course of the book, and here is
another. Our brains evolved not in a nice, pristine environment where each capability
was carefully built. Instead, each layer is based on primeval layers beneath. Much of
our core autonomic behavior (like breathing, hunger, and so on) resides in parts of
our brain not very different from reptilian brains. Instead of wholesale replacement
of core mechanisms, evolution builds new layers on top.

Software architecture in large enterprises follows a similar pattern. Rather than
rebuild each capability anew, most companies try to adapt whatever is present. As
much as we like to talk about architecture in pristine, idealized settings, the real
world often exhibits a contrary mess of technical debt, conflicting priorities, and limi‐
ted budgets. Architecture in large companies is built like the human brain—lower-
level systems still handle critical plumbing details but have some old baggage.
Companies hate to decommission something that works, leading to escalating inte‐
gration architecture challenges.

Retrofitting evolvability into an existing architecture is challenging—if developers
never built easy change into the architecture, it is unlikely to appear spontaneously.
No architect, now matter how talented, can transform a Big Ball of Mud into a
modern microservices architecture without immense effort. Fortunately, projects can
receive benefits without changing their entire architecture by building some flexibil‐
ity points into the existing one.

Remove Needless Variability
One of the goals of Continuous Delivery is stability—building on known good parts.
A common manifestation of this goal is the modern DevOps perspective on building
immutable infrastructure. We discussed the dynamic equilibrium of the software
development ecosystem in Chapter 1—nowhere is that more apparent in how much
the foundation shifts around software dependencies. Software systems undergo con‐
stant change, as developers update capabilities, issue service packs, and generally

Guidelines for Building Evolutionary Architectures | 107

tweak their software. Operating systems are a great example, as they endure constant
change.

Modern DevOps has solved the dynamic equilibrium problem locally by replacing
snowflakes with immutable infrastructure. Snowflake computers are ones that have
been manually crafted by an operations person, and all future maintenance is done by
hand. Chad Fowler coined the term immutable infrastructure in his blog post, “Trash
Your Servers and Burn Your Code: Immutable Infrastructure and Disposable Compo‐
nents”. Immutable infastructure refers to systems defined entirely programmatically.
All changes to the system must occur via the source code, not by modifying the run‐
ning operating system. Thus, the entire system is immutable from an operational
standpoint—once the system is bootstrapped, no other changes occur.

While immutability may sound like the opposite of evolvability, quite the opposite is
true. Software systems comprise thousands of moving parts, all interlocking in tight
dependencies. Unfortunately, developers still struggle with unanticipated side effects
of changes to one of those parts. By locking down the possibility of unanticipated
change, we control more of the factors that make systems fragile. Developers strive to
replace variables in code with constants to reduce vectors of change. DevOps intro‐
duced this concept to operations, making it more declarative.

Immutable infrastructure follows our advice to remove needless variables. Building
software systems that evolve means controlling as many unknown factors as possible.
It is virtually impossible to build fitness functions that can anticipate how the latest
service pack of the operating system might affect the application. Instead, developers
build the infrastructure anew each time the deployment pipeline executes, catching
breaking changes as aggressively as possible. If developers can remove known foun‐
dational, changeable parts such as the operating system as a possibility, they have less
ongoing testing burden to carry.

Architects can find all sorts of avenues to convert changeable things to constants.
Many teams extend the immutable infrastructure advice to the development environ‐
ment as well. How many times has some team member exclaimed, “But it works on
my machine!”? By ensuring every developer has the exact same image, a host of need‐
less variables disappear. For example, most development teams automate the update
of development libraries through repositories, but what about updates to tools like
IDEs? By capturing the development environment as immutable infrastructure,
developers always work on the same foundation.

Building an immutable development environment also allows useful tools to spread
throughout projects. Pair programming is a common practice in many agile
engineering-focused development teams, including pair rotation, where each team
member changes on a regular basis, from every few hours to every few days. How‐
ever, it’s frustrating when a tool appears on the computer a developer used yesterday

108 | Chapter 6: Building Evolvable Architectures

http://chadfowler.com/2013/06/23/immutable-deployments.html
http://chadfowler.com/2013/06/23/immutable-deployments.html
http://chadfowler.com/2013/06/23/immutable-deployments.html

that isn’t present today. By building a single source for developer systems, it becomes
easy to add useful tools to all systems at once.

The Hazards of Snowflakes
A story in a popular blog called, “Knightmare: A DevOps Cautionary Tale” serves as a
cautionary tale of snowflake servers. A financial services company previously had an
algorithm called PowerPeg that handled trading details, but that code hadn’t been
used in a number of years. However, the developers never removed the code. It resi‐
ded underneath a feature toggle that remained off. Because of regulatory changes,
developers implemented a new trading algorithm called SMARS. Because they were
lazy, they decided to reuse the old PowerPeg feature flag to implement the new
SMARS code. On August 1, 2012, developers deployed the new code to seven servers.
Unfortunately, their system ran on eight servers and one of them wasn’t updated.
When they enabled the PowerPeg feature toggle, seven servers started selling…and
the other started buying! Developers had accidentally set up the worst market sce‐
nario—they had automated selling low and buying high. Convinced that the new code
was the culprit, developers rolled back the new code on the seven servers, but left the
feature toggle on, meaning the PowerPeg code now ran on all servers. It took them 45
minutes to reign in the chaos, with a loss of over $400 million. Luckily, an angel
investor saved them, as that was more than the company was worth.

This story highlights the problems with unknown variability. Reusing an old feature
flag is reckless—the best practice for feature flags is removing them aggressively as
soon as their purpose is fulfilled. Not automating deploying critical software to
servers is also considered reckless in modern DevOps environments.

Identify and remove needless variability.

Make Decisions Reversible
Inevitably, systems that aggressively evolve will fail in unanticipated ways. When
these failures occur, developers need to craft new fitness functions to prevent future
occurrences. But how do you recover from a failure?

Many DevOps practices exist to allow reversible decisions—decisions that need to be
undone. For example blue/green deployments, where operations have two identical
(probably virtual) ecosystems—blue and green ones—common in DevOps. If the cur‐
rent production system is running on blue, green is the staging area for the next
release. When the green release is ready, it becomes the production system and blue

Guidelines for Building Evolutionary Architectures | 109

http://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/

temporarily shifts to backup status. If something goes awry with green, operations can
go back to blue without too much pain. If green is fine, blue becomes the staging area
for the next release.

Feature toggles are another common way developers make decisions reversible. By
deploying changes underneath feature toggles, developers can release them to a small
subset of users (called canary releasing) to vet the change. If a feature behaves unex‐
pectedly, developers can switch the toggle back to the original and correct the fault
before trying again. Make sure you remove the outdated ones!

Using feature toggles greatly reduces risk in these scenarios. Service routing—routing
to a particular instance of a service based on request context—is another common
method to canary release in microservices ecosystems.

Make as many decisions as possible reversible (without over-
engineering).

Prefer Evolvable over Predictable
…because as we know, there are known knowns; there are things we know we know.
We also know there are known unknowns; that is to say we know there are some things
we do not know. But there are also unknown unknowns—the ones we don’t know we
don’t know.

—former US Secretary of Defense Donald Rumsfeld

Unknown unknowns are the nemesis of software systems. Many projects start with a
list of known unknowns: things developers know they must learn about the domain
and technology. However, projects also fall victim to unknown unknowns: things no
one knew were going to crop up yet have appeared unexpectedly. This is why all Big
Design Up Front software efforts suffer—architects cannot design for unknown
unknowns.

All architectures become iterative because of unknown unknowns; agile just recognizes
this and does it sooner.

—Mark Richards

While no architecture can survive the unknown, we know that dynamic equilibrium
renders predictability useless in software. Instead, we prefer to build evolvability into
software: if projects can easily incorporate changes, architects don’t need a crystal
ball. Architecture is not a solely upfront activity—projects constantly change in both
explicit and unexpected ways throughout their life. One technique commonly used
by developers to insulate themselves from change is to use an anticorruption layer.

110 | Chapter 6: Building Evolvable Architectures

http://martinfowler.com/bliki/CanaryRelease.html

Build Anticorruption Layers
Projects often need to couple themselves to libraries that provide incidental plumb‐
ing: message queues, search engines, and so on. The abstraction distraction anti-
pattern describes the scenario where a project “wires” itself too much to an external
library, either commercial or open source. Once it becomes time for developers to
upgrade or switch the library, much of the application code utilizing the library has
baked-in assumptions based on the previous library abstractions. Domain-driven
design includes a safeguard against this phenomenon called an anticorruption layer.
Here is an example.

Agile architects prize the last responsible moment principle when making decisions,
which is used to counter the common hazard in projects of buying complexity too
early. We worked intermittently on a Ruby on Rails project for a client who managed
wholesale car sales. After the application went live, an unexpected workflow arose. It
turned out that used car dealers tended to upload new cars to the auction site in large
batches, both in number of cars and number of pictures per car. We realized that, as
much as the general public doesn’t trust used-car dealers, dealers really don’t trust
each other; thus, each car must include a photo covering essentially every molecule of
the car. Users wanted a way to begin an upload, then either get progress via some UI
mechanism like a progress bar or check back later to see if the batch was done. Trans‐
lated to technical terms, they wanted asynchronous upload.

A message queue is one traditional architectural solution to this problem, and the
team discussed whether to add an open source queue to the architecture. A common
trap at this juncture for many projects is the attitude of, “We know we’ll need a mes‐
sage queue for lots of stuff eventually, so let’s get the fanciest one we can now and
grow into it later.” The problem with this approach is technical debt: stuff that’s part of
your project that isn’t supposed to be there and is in the way of stuff that is supposed
to be there. Most developers treat crufty old code as the only form of technical debt,
but projects can inadvertently buy technical debt as well via premature complexity.

For the project, the architect encouraged developers to find a simpler way. One devel‐
oper discovered BackgrounDRb, an extraordinarily simple open source library that
simulates a single message queue backed by a relational database. The architect knew
this simple tool would probably never scale to other future problems, but she didn’t
have other objections. Rather than try to predict future usage, she instead made it rel‐
atively easy to replace by placing it behind an API. In the last responsible moment
answer questions such as “Do I have to make this decision now?”, “Is there a way to
safely defer this decision without slowing any work?”, and “What can I put in place
now that will suffice but I can easily change later if needed?”

Around the one-year anniversary, a second request for asynchronicity appeared in
the form of timed events around sales. The architect evaluated the situation and deci‐
ded that a second instance of BackgrounDRb would suffice, put it in place, and

Guidelines for Building Evolutionary Architectures | 111

https://github.com/gnufied/backgroundrb

moved on. At around the two-year anniversary, a third request appeared for con‐
stantly updating values like caches and summaries. The team realized that the current
solution couldn’t handle the new workload. However, they now had a good idea about
what kind of asynchronous behavior the application needed. At that point, the project
switched over to Starling, a simple but more traditional message queue. Because the
original solution was isolated behind an interface, it took one pair of developers less
than one iteration (one week on that project) to complete the transition—without
disrupting other developers’ work on the project.

Because the architect put an anticorruption layer in place with an interface, replacing
one piece of functionality became a mechanical exercise. Building an anticorruption
layer encourages the architect to think about the semantics of what they need from
the library, not the syntax of the particular API. But this is not an excuse to abstract
all the things! Some development communities love preemptive layers of abstraction
to a distracting degree but understanding suffers when you must call a Factory to get
a proxy to a remote interface to a Thing. Fortunately, most modern languages and
IDEs allow developers to be just in time when extracting interfacs. If a project finds
themselves bound to an out-of-date library in need of change, the IDE can extract
interface on behalf of the developer, making a Just In Time (JIT) anticorruption layer.

Build just-in-time anticorruption layers to insulate against library
changes.

Controlling the coupling points in an application, especially to external resources, is
one of the key responsibilities of an architect. Try to find the pragmatic time to add
dependencies. As an architect, remember dependencies provide benefits but also
impose constraints. Make sure the benefits outweigh the cost in updates, dependency
management, and so on.

Developers understand the benefits of everything and the tradeoffs of nothing!
—Rich Hickey, creator of Clojure

Architects must understand both benefits and tradeoffs and build engineering practi‐
ces accordingly.

Using anticorruption layers encourages evolvability. While architects can’t predict the
future, we can at least lower the cost of change so that it doesn’t impact us so nega‐
tively.

112 | Chapter 6: Building Evolvable Architectures

https://github.com/starling/starling

Case Study: Service Templates
Microservices architectures are designed to be share nothing architectures—each
component is as decoupled as possible from other components, adhering to the
bounded context principle. However, the shunning of coupling between services per‐
tains primarily to domain classes, database schemas, and other coupling points that
harm the ability to evolve. Development teams often want to manage some aspects of
the technical coupling uniformly—adhering to our remove needless variables advice—
to ensure uniformity. For example, monitoring, logging, and other diagnostics are
critical in this architectural style due to the profusion of moving parts. When opera‐
tions must manage thousands of services, when service teams forget to add monitor‐
ing capabilities to their service the results can be disasterous. Upon deployment, the
service will disappear into a black hole, because in these environments, if it can’t be
monitored, it is invisible. Yet, in a highly decoupled environment, how can teams
enforce consistency?

Service templates are one common solution for ensuring consistency. These are pre‐
configured sets of common infrastructure libraries like service discovery, monitoring,
logging, metrics, authentication/authorization, and so on. In large organizations, a
shared infrastructure team manages the service templates. Service implementation
teams use the template as scaffolding, writing their behavior within. If the logging
tool requires an upgrade, the shared infrastructure team can mange it orthogonally
from the service teams—they should never know (or care) that the change occurred.
If a breaking change occurs, it fails during the provisioning phase of the deployment
pipeline, alerting developers to the problem as soon as possible.

This is a good example of what we mean when we espouse appropriate coupling.
Duplicating technical architecture functionality across services creates a slew of well-
known problems. By finding exactly the level of coupling we need, we can free evolu‐
tion without creating new problems.

Use service templates to couple just the appropriate parts of archi‐
tecture together—the infrastructure elements that allow teams to
benefit from coupling.

Service templates exemplify adaptability. Eliminating the technical architecture as the
primary structure of the system makes it easier to target changes to just that dimen‐
sion of architecture. When developers build a layered architecture, change is easy
within each layer but highly coupled across layers. While a layered architecture parti‐
tions the technical architecture parts together, it entangles other concerns like
domain, security, operations, etc. By building a part of the architecture solely for
technical architecture concerns (e.g., service templates), developers can isolate and

Guidelines for Building Evolutionary Architectures | 113

unify change to that entire dimension. We discuss how to think about architectural
elements as deployable units in Chapter 4.

Build Sacrificial Architectures
In his book Mythical Man Month, Fred Brooks says to Plan to Throw One Away when
building a new software system.

The management question, therefore, is not whether to build a pilot system and throw
it away. You will do that. […] Hence plan to throw one away; you will, anyhow.

—Fred Brooks

His point was that once a team has built a system, they know all the unknown
unknowns and proper architecture decisions that are never clear from the outset—
the next version will profit from all those lessons. At an architectural level, developers
struggle to anticipate radically changing requirements and characteristics. One way to
learn enough to choose a correct architecture is build a proof of concept. Martin
Fowler defines a sacrificial architecture as an architecture designed to be thrown away
if the concept proves successful. For example, eBay started as a set of Perl scripts in
1995, migrated to C++ in 1997, and then to Java in 2002. Obviously, eBay has been a
resounding success in spite of rearchitecting their system several times. Twitter is
another good example of successful utilization of this approach. When Twitter
released, it was written in Ruby on Rails to achieve fast time-to-market. However, as
Twitter became popular, the platform couldn’t support the scale, resulting in frequent
crashes and limited availability. Many early users became all too familiar with their
failure beacon, shown in Figure 6-8.

Figure 6-8. Twitter’s famous Fail Whale

Thus, Twitter restructured their architecture to replace the backend with something
more robust. However, it could be argued that this tactic is the reason the company
survived. If the Twitter engineers had built the final, robust platform from the begin‐
ning, it would have delayed their entry into the market long enough for Snitter or
some alternative short-form messaging service to beat them to market. Despite the
growing pains, starting with a sacrificial architecture eventually paid off.

114 | Chapter 6: Building Evolvable Architectures

http://wiki.c2.com/?PlanToThrowOneAway
https://martinfowler.com/bliki/SacrificialArchitecture.html

Cloud environments make sacrificial architecture more attractive. If developers have
a project they want to test, building the initial version in the cloud greatly reduces the
resources required to release the software. If the project is successful, architects can
take the time to build a more suitable architecture. If developers are careful about
anticorruption layers and other evolutionary architecture practices, they can mitigate
some of the pains of the migration.

Many companies build a sacrificial architecture to achieve a minimum viable product
to prove a market exists. While this is a good strategy, the team must eventually allo‐
cate time and resources to build a more robust architecture, hopefully less visibly
than Twitter.

One other aspect of technical debt impacts many initially successful projects, elucida‐
ted again by Fred Brooks, when he refers to the second system syndrome—the ten‐
dency of small, elegant, and successful systems to evolve into giant, feature-laden
monstrosities due to inflated expectations. Business people hate to throw away func‐
tioning code, so architecture tends toward always adding, never removing, or decom‐
missioning.

Technical debt works effectively as a metaphor because it resonates with project expe‐
rience, and represents faults in design, regardless of the driving forces behind them.
Technical debt aggravates inappropriate coupling on projects—poor design fre‐
quently manifests as pathological coupling and other antipatterns that make restruc‐
turing code difficult. As developers restructure architecture, their first step should be
to remove the historical design compromises that manifest as technical debt.

Mitigate External Change
A common feature of every development platform is external dependencies: tools,
frameworks, libraries, and other assets provided by and (more importantly) updated
via the Internet. Software development sits on a towering stack of abstractions, each
built on the abstractions before. For example, operating systems are an external
dependency outside the developer’s control. Unless companies want to write their
own operating system and all other supporting code, they must rely on external
dependencies.

Most projects rely on a dizzying array of third-party components, applied via build
tools. Developers like dependencies because they provide benefits, but many develop‐
ers ignore the fact that they come with a cost as well. When relying on code from a
third party, developers must create their own safeguards against unexpected occur‐

Guidelines for Building Evolutionary Architectures | 115

https://en.wikipedia.org/wiki/Minimum_viable_product

rences: breaking changes, unannounced removal, and so on. Managing these external
parts of projects is critical to creating evolutionary architecture.

The Eleven Lines of Code that Broke the Internet
In early 2016, JavaScript developers learned a harsh lesson about the hazards of
depending on trivial things. A developer who had created a large number of small
utilities became disgruntled because one of his modules clashed with the name of a
commercial software project, which asked him to rename his module. Rather than
comply, he removed more than 250 of his modules, including one library called left
pad.io, eleven lines of code to pad strings with zeros or spaces (if 11 lines of code can
be called a “library”). Unfortunately, many major JavaScript projects (including
node.js) relied on this dependency. When it disappeared, everyone’s JavaScript
deployments broke.

The repository administrator for JavaScript packages took the unprecedented move of
restoring the code to restore the ecosystem, but it spawned a deeper conversation in
the community about the wisdom of the trends around dependency management.

This story contains two valuable lessons for architects. First, remember external libra‐
ries provide both benefits and cost. Make sure the benefits justify the cost. Second,
don’t allow external forces to affect the stability of your builds. If an upstream
required dependency suddenly disappears, you should reject that change.

Edsger Dijkstra, a legendary figure in computer science, famously observed in 1968
that “Go To Statement Considered Harmful,” where he punctured the existing best
practice of unstructured coding, leading eventually to the structured programming
revolution. Since that time, “considered harmful” has become a trope in software
development.

Transitive dependency management is our “considered harmful” moment.
—Chris Ford (no relation to Neal)

Chris’ point is that, until we recognize the severity of the problem, we cannot deter‐
mine a solution. While we’re not offering a solution to the problem, we need to high‐
light it because it critically affects evolutionary architecture. Stability is one of the
foundations of both Continuous Delivery and evolutionary architecture. Developers
cannot build repeatable engineering practices atop uncertainty. Allowing third parties
to make changes to core dependencies defies this principle.

We recommend that developers take a more proactive approach to dependency man‐
agement. A good start on dependency management models external dependencies
using a pull model. For example, set up an internal version-control repository to act
as a third-party component store, and treat changes from the outside world as pull

116 | Chapter 6: Building Evolvable Architectures

requests to that repository. If a beneficial change occurs, allow it into the ecosystem.
However, if a core dependency disappears suddenly, reject that pull request as a desta‐
bilizing force.

Using a Continuous Delivery mindset, the third-party component repository utilizes
its own deployment pipeline. When an update occurs, the deployment pipeline incor‐
porates the change, then performs a build and smoke test on the affected applications.
If successful, the change is allowed into the ecosystem. Thus, third-party dependen‐
cies use the same engineering practices and mechanisms of internal development,
usefully blurring the lines across this often unimportant distinction between in-house
written code and dependencies from third parties—at the end of the day, it’s all code
in a project.

Updating Libraries Versus Frameworks
Architects make a common distinction between libraries and frameworks, with the
colloquial definition of “a developer’s code calls library whereas the framework calls a
developer’s code.” Generally, developers subclass from frameworks (which in turn
calls those derived classes), thus the distinction that the framework calls code. Con‐
versely, library code generally comes as a collection of related classes and/or functions
developers call as needed. Because the framework calls the developer’s code, it creates
a high degree of coupling to the framework. Contrast that with library code, which is
generally more utilitarian code (like XML parsers, network libraries, etc.) and has a
lower degree of coupling.

We prefer libraries because they introduce less coupling to your application, making
them easier to swap out when the technical architecture needs to evolve.

One reason to treat libraries and frameworks differently comes down to engineering
practices. Frameworks include capabilities such as UI, object-relational mapper, scaf‐
folding like model-view-controller, and so on. Because the framework forms the scaf‐
folding for the remainder of the application, all the code in the application is subject
to impact by changes to the framework. Many of us have felt this pain viscerally—any
time a team allows a fundamental framework to become outdated by more than two
major versions, the effort (and pain) to finally update it is excruciating.

Because frameworks are a fundamental part of applications, teams must be aggressive
about pursuing updates. Libraries generally form less brittle coupling points than
frameworks do, allowing teams to be more casual about upgrades. One informal gov‐
ernance model treats framework updates as push updates and library updates as pull
updates. When a fundamental framework (one whose afferent/efferent coupling
numbers are above a certain threshold) updates, teams should apply the update as
soon as the new version is stable and the team can allocate time for the change. Even
though it will take time and effort, the time spent early is a fraction of the cost if the
team perpetually procrastinates on the update.

Guidelines for Building Evolutionary Architectures | 117

Because most libraries provide utilitarian functionality, teams can afford to update
them only when new desired functionality appears, using more of an “update when
needed” model.

Update framework dependencies aggressively; update libraries pas‐
sively.

Prefer Continuous Delivery to Snapshots
Many dependency management tools use a mechanism called snapshots to model in-
flight development. A snapshot build was originally meant to indicate a component
almost ready for release but still under development, the implication being that the
code might change on a regular basis. Once a component is “blessed” with a version
number, the -SNAPSHOT moniker drops away.

Developers use snapshots because of the historical assumption that testing is difficult
and time consuming, leading developers to try to segregate things changing from
things not changing.

In evolutionary architecture, we expect all things to change all the time, and build
engineering practices and fitness functions to accommodate change. For example,
when a project has excellent test coverage and a deployment pipeline, developers test
every change to every component via the automated deployment pipeline. Developers
have no reason to keep a “special” repository for each part of the project.

Prefer Continuous Delivery over snapshots for (external) depen‐
dencies.

Snapshots are an artifact from a development era where comprehensive testing wasn’t
common, storage was expensive, and verification was difficult. Today’s updated engi‐
neering practices avoid inefficient handling of component dependencies.

Continuous Delivery suggested a more nuanced way to think about dependencies,
repeated here. Currently, developers only have static dependencies, linked via version
numbers captured as metadata in a build file somewhere. However, this isn’t sufficient
for modern projects, which need a mechanism to indicate speculative updating. Thus,
as the book suggests, developers should introduce two new designations for extern‐
mal dependencies: fluid and guarded. Fluid dependencies try to automatically update
themselves to the next version, using mechanisms like deployment pipelines. For

118 | Chapter 6: Building Evolvable Architectures

example, say that order fluidly relies on version 1.2 of framework. When framework
updates itself to version 1.3, order tries to incorporate that change via its deployment
pipeline, which is set up to rebuild the project anytime any part of it changes. If the
deployment pipeline runs to completion, the fluid dependency between the compo‐
nents is updated. However, if something prevents successful completion—failed test,
broken diamond dependency, or some other problem—the dependency is updated to
a guarded reliance on framework1.2, which means the developer should try to deter‐
mine and fix the problem, restoring the fluid dependency. If the component is truly
incompatible, developers create a permanent static reference to the old version,
eschewing future automatic updates.

None of the popular build tools support this level of functionality yet—developers
must build this intelligence atop existing build tools. However, this model of depen‐
dencies works extremely well in evolutionary architectures, where cycle time is a crit‐
ical foundational value, being proportional to many other key metrics.

Version Services Internally
In any integration architecture, developers inevitably must version service endpoints
as the behavior evolves. Developers use two common patterns to version endpoints,
version numbering or internal resolution. For version numbering, developers create a
new endpoint name, often including the version number, when a breaking change
occurs. This allows older integration points to call the legacy version while newer
ones call the newer version. The alternative is internal resolution, where callers never
change the endpoint—instead, developers build logic into the endpoint to determine
the context of the caller, returning the correct version. The advantage of retaining the
name forever is less coupling to specific version numbers in calling applications.

In either case, severely limit the number of supported versions. The more versions,
the more testing and other engineering burdens. Strive to support only two versions
at a time, and only temporarily.

When versioning services, prefer internal versioning to numbering;
support only two versions at a time.

Case Study: Evolving PenultimateWidgets’ Ratings
PenultimateWidgets has a microservices architecture so developers can make small
changes. Let’s look closer at details of one of those changes, switching star ratings, as
outlined in Chapter 3. Currently, PenultimateWidgets has a star rating service, whose
parts are shown in Figure 6-9.

Case Study: Evolving PenultimateWidgets’ Ratings | 119

Figure 6-9. The internals of Widgetco’s StarRating service

As shown in Figure 6-9, the star rating service consists of a database and a layered
architecture, with persistence, business rules, and a UI. Not all of PenultimateWidg‐
ets’ microservices include the UI. Some services are primarily informational, whereas
others have UIs tightly coupled to the service’s behavior, as is the case with star rat‐
ings. The database is a traditional relational database that includes a column to track
ratings for a particular item ID.

When the team decided to update the service to support half-star ratings, they modi‐
fied the original service as shown in Figure 6-10.

120 | Chapter 6: Building Evolvable Architectures

Figure 6-10. The transitional phase, where StarRating supports both types

In Figure 6-10, they added a new column to the database to handle the additional
data—whether a rating has an additional half star. The architects also added a proxy
component to our service to resolve the return differences at the service boundary.
Rather than force calling services to “understand” the version numbers of this service,
the star rating service resolves the request type, sending back whichever format is
requested. This is an example of using routing as an evolutionary mechanism. The
star rating service can exist in this state as long as some services still want star ratings.

Once the last dependent service has evolved away from whole-star ratings, developers
can remove the old code path, as shown in Figure 6-11.

Case Study: Evolving PenultimateWidgets’ Ratings | 121

Figure 6-11. The ending state of StarRating, supporting only the new type of rating

As shown in Figure 6-11, developers can remove the old code path, and perhaps
remove the proxy layer to handle version differences (or perhaps leave it to support
future evolution).

In this case, PenultimateWidgets’ change wasn’t difficult from a data evolution stand‐
point because the developers were able to make an additive change, meaning they can
add to the database schema rather than change it. What about the case where the
database must change as well because of a new feature? Refer back to the discussion
on evolutionary data design in Chapter 5.

122 | Chapter 6: Building Evolvable Architectures

CHAPTER 7

Evolutionary Architecture
Pitfalls and Antipatterns

We’ve spent a lof of time discussing appropriate levels of coupling in architectures.
However, we also live in the real world, and see lots of coupling that harms a project’s
ability to evolve.

We identify two kinds of bad engineering practices that manifest in software projects
—pitfalls and antipatterns. Many developers use the word antipattern as jargon for
“bad,” but the real meaning is more subtle. A software antipattern has two parts. First,
an antipattern is a practice that initially looks like a good idea, but turns out to be a
mistake. Second, better alternatives exist for most antipatterns. Architects notice
many antipatterns only in hindsight, so they are hard to avoid. A pitfall looks superfi‐
cially like a good idea but immediately reveals itself to be a bad path. We cover both
pitfalls and antipatterns in this chapter.

Technical Architecture
In this section, we focus on common practices in the industry that specifically harm a
team’s ability to evolve the architecture.

Antipattern: Vendor King
Some large enterprises buy Enterprise Resource Planning (ERP) software to handle
common business tasks like accounting, inventory management, and other common
chores. This works if companies are willing to bend their business processes and
other decisions to accommodate the tool, and can be used strategically when archi‐
tects understand limitations as well as benefits.

123

However, many organizations become overambitious with this category of software,
leading to the vendor king antipattern, an architecture built entirely around a vendor
product that pathologically couples the organization to a tool. Companies who buy
vendor software plan to augment the package via its plug-ins to flesh out the core
functionality to match their business. However, a lot of the time ERP tools can’t be
customized enough to fully implement what is needed, and developers find them‐
selves hamstrung by the limitations of the tool and the fact that they have centered
the architectural universe around it. In other words, architects have made the vendor
the king of the architecture, dictating future decisions.

To escape this antipattern, treat all software as just another integration point, even if it
initially has broad responsibilities. By assuming integration at the outset, developers
can more easily replace behavior that isn’t useful with other integration points,
dethroning the king.

By placing an external tool or framework at the heart of the architecture, developers
severely restrict their ability to evolve in two key ways, both technically and from a
business process standpoint. Developers are technically constrained by choices the
vendor makes in terms of persistence, supported infrastructure, and a host of other
constraints. From a business standpoint, large encapsulating tools ultimately suffer
from the “Antipattern: Last 10% Trap” on page 127. From a business process stand‐
point, the tool simply can’t support the optimal workflow; this is a side effect of the
Last 10% Trap. Most companies end up knuckling under the framework, modifying
their processes rather than trying to customize the tool. The more companies do that,
the less differentiators exist between companies, which is fine as long as that differen‐
tiation isn’t a competitive advantage.

The Let’s Stop Working and Call It A Success principle is one developers commonly
encounter when dealing with ERP packages in the real world. Because they require
huge investments of both time and money, companies are reluctant to admit when
they don’t work. No CTO wants to admit they wasted millions of dollars, and the tool
vendor doesn’t want to admit to a bad multiyear implementation. Thus, each side
agrees to stop working and call it a success, with much of the promised functionality
unimplemented.

Don’t couple your architecture to a vendor king.

Rather than fall victim to the vendor king antipattern, treat vendor products as just
another integration point. Developers can insulate vendor tool changes from impact‐
ing their architecture by building anticorruption layers between integration points.

124 | Chapter 7: Evolutionary Architecture Pitfalls and Antipatterns

Pitfall: Leaky Abstractions
All non-trivial abstractions, to some degree, are leaky.

—Joel Spolsky

Modern software resides on a tower of abstractions: operating systems, frameworks,
dependencies, and a host of other pieces. As developers, we build abstractions so that
we don’t have to perpetually think at the lowest levels. If developers were required to
translate the binary digits that come from hard drives into text to program, they
would never get anything done! One of the triumphs of modern software is how well
we can build effective abstractions.

But abstractions come at a cost because no abstraction is perfect—if it was, it wouldn’t
be an abstraction, it would be the real thing. As Joel Spolsky put it, all non-trivial
abstractions leak. This is a problem for developers because we come to trust that
abstractions are always accurate, but they often break in surprising ways.

Increased tech stack complexity has made the abstraction distraction problem worse
recently. Consider the typical technology stack, circa 2005, shown in Figure 7-1.

Figure 7-1. A typical technology stack in 2005

Figure 7-1 represents a typical software stack in 2005, where the vendor names on the
boxes change depending on local conditions. Over time, as software has increasingly
specialized, our technology stack has become more complex, as illustrated in
Figure 7-2.

Technical Architecture | 125

Figure 7-2. A typical software stack in 2016, with lots of moving parts

As seen in Figure 7-2, every part of the software ecosystem has expanded and become
more complex. As the problems developers face have become more complex, so have
their solutions.

126 | Chapter 7: Evolutionary Architecture Pitfalls and Antipatterns

Primordial abstraction ooze, where a breaking abstraction at a low level causes unex‐
pected havoc, is one of the side effects of increasing complexity in the technology
stack. What if one of the abstractions at the lowest level exhibits a fault—for example,
some unexpected side effect from a seemingly harmless call to the database? Because
so many layers exist, the fault will wind its way to the top of the stack, perhaps meta‐
stasizing along the way, manifesting in a deeply embedded error message at the UI.
Debugging and forensic analysis becomes more difficult the more complex the tech‐
nology stack.

Always fully understand at least one abstraction layer below the one you normally
work in.

—Many software sages

While understanding the layer below is good advice, this becomes more difficult as
the software becomes more specialized and therefore more complex.

Increased technology stack complexity is an example of the dynamic equilibrium
problem. Not only does the ecosystem change, but the constituent parts become more
complex and intertwined over time as well. Our mechanism for protecting evolution‐
ary change—fitness functions—can protect the fragile join points of architecture.
Architects define invariants at key integration points as fitness functions, which run
as part of a deployment pipeline, ensuring abstractions don’t start to leak in undesira‐
ble ways.

Understand the fragile places within your complex technology
stack and automate protections via fitness functions.

Antipattern: Last 10% Trap
Another kind of reusability trap exists at the other end of the abstraction spectrum,
with package software, platforms, and frameworks.

Neal once was the CTO of a consulting firm that built projects for clients in a variety
of 4GLs, including Microsoft Access. He eventually assisted in the decision to elimi‐
nate Access and eventually all the 4GLs from the business after observing that every
Access project started as a booming success but ended in failure, and he wanted to
understand why. He and a colleague observed that, in Access and other 4GLs popular
at the time, 80% of what the client wanted was quick and easy to build. These envi‐
ronments were modeled as rapid application development tools, with drag-and-drop
support for UIs and other niceties. However, the next 10% of what the client wanted
was, while possible, extremely difficult—because that functionality wasn’t built into
the tool, framework, or language. So clever developers figured out a way to hack tools

Technical Architecture | 127

to make things work: adding a script to execute where static things were expected,
chaining methods, and other hacks. The hack only gets you from 80% to 90%. Ulti‐
mately the tool can’t solve the problem completely—a phrase we coined as the Last
10% Trap—leaving every project a disappointment. While 4GLs made it easy to build
simple things fast, they didn’t scale to meet the demands of the real world. Developers
returned to general purpose languages.

The IBM San Francisco Project
In the late 1990s, IBM embarked on an ambitious plan to write the last piece of busi‐
ness software. A team of developers embarked on the designing of a set of reusable
business components, written in that generation’s Java Enterprise flavor, that would
encapsulate all business functionality in broad categories: ledger, inventory, sales, etc.
At one point, IBM claimed that this project constituted the largest Java project on
earth. The project delivered the first few core modules, and developers started using
the framework, which lead to its demise. Many features were superfluous, and many
critical features were absent.

The San Francisco Project illustrates the ultimate hubris of architects and developers
who try to follow their inherent instinct to categorize and taxonimize everything.
Some messy real-world things defy neat solutions, including all business processes!

The San Francisco Project ultimately failed because they gradually realized a sobering
fact—no matter how hard developers try, they can never distill everything to granular
enough properties, part of the infinite regress problem: a series of propositions that
continue to rely on other propositions to be true, into infinity. In software, infinite
regress manifests as trying to specify anything in the ultimate level of detail—there is
always another layer of granularity below any existing detail.

Antipattern: Code Reuse Abuse
As an industry, we have benefited greatly from reusable frameworks and libraries
built by others, often open source and freely available. Clearly, the ability to reuse
code is good. However, like all good ideas, many companies abuse this idea and create
problems for themselves. Every corporation desires code reuse because software
seems so modular, like electronics components. However, despite the promise that
exists for truly modular software, it has consistently evaded us.

Software reuse is more like an organ transplant than snapping together Lego blocks.
—John D. Cook

While language designers have promised developers Lego blocks for a long time, we
still seem to have organs. Software reuse is difficult and doesn’t come automatically.
Many optimistic managers assume any code that developers write is inherently reusa‐

128 | Chapter 7: Evolutionary Architecture Pitfalls and Antipatterns

http://www.drdobbs.com/ibms-san-francisco-project/184415597
http://www.drdobbs.com/ibms-san-francisco-project/184415597

ble, but this is not always the case. Many companies have attempted and succeeded in
writing truly reusable code, but it is intentional and difficult. Developers often spend
a lot of time trying to build reusable modules that turn out to have little practical
reuse.

In service-oriented architectures, the common practice was to find commonalities
and reuse as much as possible. For example, imagine that a company has two con‐
texts: Checkout and Shipping. In an SOA, architects observe that both contexts
include the concept of Customer. This in turn encouraged them to consolidate both
customers into a single Customer service, coupling both Checkout and Shipping to
the shared service. Architects worked towards a goal of ultimate canonicality in SOA
—everything concept has a single (shared) home.

Ironically, the more effort developers put into making code reusable the harder it is to
use. Making code reusable involves adding additional options and decision points to
accommodate the different uses. The more developers add hooks to enable reusability
the more they harm the basic usability of the code.

The more reusable code is, the less usable it is.

In other words, ease of code use is often inversely proportional to how reusable that
code is. When developers build code to be reusable, they must add features to accom‐
odate the myriad ways developers will will eventually use the code. All that future-
proofing makes it more difficult for developers to use the code for a single purpose.

Microservices eschew code reuse, adopting the philosophy of prefer duplication to
coupling: reuse implies coupling, and microservices architectures are extremely
decoupled. However, the goal in microservices isn’t to embrace duplication but rather
to isolate entities within domains. Services that share a common class are no longer
independent. In a microservices architecture, Checkout and Shipping would each
have their own internal representation of Customer. If they need to collaborate on
customer-related information, they send the pertinent information to each other.
Architects don’t try to reconcile and consolidate the disparate versions of Customer in
their architecture. The benefits of reuse are illusory and the coupling it introduces
comes with its disadvantages. Thus, while architects understand the downsides of
duplication, they offset that localized damage to the architectural damage too much
coupling introduces.

Code reuse can be an asset but also a potential liability. Make sure the coupling points
introduced in your code don’t conflict with other goals in the architecture. For exam‐
ple, microservices architectures typically use service templates (covered in “Case

Technical Architecture | 129

Study: Service Templates” on page 113) to couple the parts of services together that
help unify a particular architectural concern, such as monitoring or logging.

Case Study: Reuse at PenultimateWidgets
PenultimateWidgets has highly specific requirements for data input in a specialized
grid for their administration functionality. Because the application required this view
in multiple places, PenultimateWidgets decided to build a reusable component,
including UI, validation, and other useful default behaviors. By using this component,
developers can build new, rich administration interfaces easily.

However, virtually no architecture decision comes without some tradeoff baggage.
Over time, the component team has become their own silo within the organization,
tying up several of PenultimateWidgets’ best developers. Teams that use the compo‐
nent must request new features through the component team, which is swamped with
bug fixes and feature requests. Worse, the underlying code hasn’t kept up with
modern web standards, making new functionality hard or impossible.

While the PenultimateWidgets architects achieved reuse, it eventually resulted in a
bottleneck effect. One advantage of reuse is that developers can build new things
quickly. Yet, unless the component team can keep up with the innovation pace of the
dynamic equilibrium, technical architecture component reuse is doomed to eventu‐
ally become an antipattern.

We’re not suggesting teams avoid building reusable assets, but rather evaluate them
continually to ensure they still deliver value. In the case of PenultimateWidgets, once
architects realized that the component was a bottleneck, they broke the coupling
point. Any team that wants to fork the component code to add their own new features
is allowed (as long as the application development team supports the changes), and
any team that wants to opt out to use a new approach is unshackled from the old code
entirely.

Two pieces of advice emerge from PenultimateWidgets experience:

When coupling points impede evolution or other importance
architectural characteristics, break the coupling by forking or
duplication.

In PenultimateWidgets’ case, they broke the coupling by allowing teams to take own‐
ership of the shared code themselves. While adding to their burden, it released the
drag on their ability to deliver new features. In other cases, perhaps some shared code
can be abstracted from the larger piece, allowing more selective coupling and gradual
decoupling.

130 | Chapter 7: Evolutionary Architecture Pitfalls and Antipatterns

Architects must continually evaluate the fitness of the “-ilities” of
the architecture to ensure they still add value and haven’t become
antipatterns.

All too often architects make a decision that is the correct decision at the time but
becomes a bad decision over time because of changing conditions like dynamic equi‐
librium. For example, architects design a system as a desktop application, yet the
industry herds them toward a web application as users’ habits change. The original
decision wasn’t incorrect, but the ecosystem shifted in unexpected ways.

Pitfall: Resume-Driven Development
Architects become enamored of exciting new developments in the software develop‐
ment ecosystem and want to play with the newest toys. However, to choose an effec‐
tive architecture, they must look closely at the problem domain and choose the most
suitable architecture that delivers the most desired capabilities with the fewest dam‐
aging constraints. Unless, of course, the goal of the architecture is the Resume-Driven
Development pitfall—utilizing every framework and library possible to tout that
knowledge on a resume.

Don’t build architecture for the sake of architecture—you are try‐
ing to solve a problem.

Always understand the problem domain before choosing an architecture rather than
the other way around.

Incremental Change
Many factors in software development make incremental change difficult. For many
decades, software wasn’t written with the goal of agility in mind but rather around
goals like cost reduction, shared resources, and other external constraints. Conse‐
quently, many organizations don’t have the building blocks in place to support evolu‐
tionary architectures.

As discussed in the Continuous Delivery book, many modern engineering practices
support evolutionary architecture.

Incremental Change | 131

http://continuousdelivery.com

Antipattern: Inappropriate Governance
Software architecture never exists in a vacuum; it is often a reflection of the environ‐
ment in which it was designed. A decade ago, operating systems were expensive,
commercial offerings. Similarly, database servers, application servers, and the entire
infrastructure for hosting applications was commercial and expensive. Architects
responded to these real-world pressures by designing architectures to maximize
shared resources. Many architecture patterns like SOA flourished in that era. A com‐
mon governance model evolved in that environment to maximize shared resources as
a cost-saving measure. Many of the commercial motivations for tools like application
servers grew from this tendency. However, packing multiple resources on machines is
undesirable from a development standpoint because of inadvertent coupling. No mat‐
ter how good the isolation between shared resources, resource contention eventually
rears its head.

Over the last decade, changes have occurred to the dynamic equilibrium of the devel‐
opment ecosystem. Now, developers can build architectures where components have
a high degree of isolation (like microservices), eliminating the accidental coupling
exacerbated by shared environments. But many companies still adhere to the old gov‐
ernance playbook. A governance model that values shared resources and homogen‐
ized environments makes less sense because of recent improvements such as the
DevOps movement.

Every company is now a software company.
—Forbes Magazine, Nov. 30, 2011

What Forbes means in their famous quote is that if an airline company’s iPad applica‐
tion is terrible, it will eventually impact the company’s bottom line. Software compe‐
tency is required for any cutting edge company, and increasingly for any company
who wishes to remain competitive. Part of that competency includes how they man‐
age development assets like environments.

When developers can create resources like virtual machines and containers for no
cost (either monetary or time), a governance model that values a single solution
becomes innappropriate governance. A better approach appears in many microservi‐
ces environments. One common characteristic of microservices architectures is the
embrace of polyglot environments, where each service team can choose a suitable
technology stack to implement their service rather than try to homogenize on a cor‐
porate standard. Traditional enterprise architects cringe when they hear that advice,
which is polar opposite of the traditional approach. However, the goal in most micro‐
services projects isn’t to pick different technologies cavalierly, but rather to right-size
the technology choice for the size of the problem.

In modern environments, it is inappropriate governance to homogenize on a single
technology stack. This leads to the inadvertant overcomplication problem, where

132 | Chapter 7: Evolutionary Architecture Pitfalls and Antipatterns

governance decisions add useless multipliers to the effort required to implement a
solution. For example, standardizing on a single vendor’s relational database is a com‐
mon practice in large enterprises, for obvious reasons: consistency across projects,
easily fungible staff, and so on. However, a side effect of that approach is that most
projects suffer from overengineering. When developers build monolith architectures,
governance choices affect everyone. Thus, when choosing a database, the architect
must look at the requirements of every project that will use this capability, and make a
choice that will serve the most complex case. Unfortunately, many projects won’t have
the most complex case or anything like it. A small project may have simple persis‐
tence needs yet must take on the full complexity of an industrial strength database
server for consistency.

With microservices, because none of the services are coupled via technical or data
architecture, different teams can choose the right level of complexity and sophistica‐
tion required to implement their service. The ultimate goal is simplification, to align
service stack complex to technical requirements. This partitioning tends to work best
when the team wholly owns their service, including the operational aspects.

Forced Decoupling
One of the goals of the microservices architecture style is extreme decoupling of the
technical architecture, allowing services to be replaced with no side effects. However,
if developers all share the same code base or even platform, not coupling requires
some degree of developer discipline (because the temptation to reuse existing code is
strong) and safeguards to make sure coupling doesn’t happen by accident. Building
services in different technology stacks is one way to achieve technical architecture
decoupling. Many companies try to avoid this approach because they fear it hurts the
ability to move employees across projects. However, Chad Fowler, an architect at
Wunderlist, took the opposite approach: he insisted that teams use different technol‐
ogy stacks to avoid inadvertent coupling. His philosophy is that accidental coupling is
a bigger problem than developer portability.

Many companies are encapsulating distinct functionality into a Platform as a Service
for use internally, hiding technology choices (and therefore coupling opportunities)
behind well-defined interfaces.

From a practical governance standpoint in large organizations, we find the Goldilocks
Governance model works well: pick three technology stacks for standardization—
simple, intermediate, and complex—and allow individual service requirements to
drive stack requirements. This gives teams the flexibility to choose a suitable technol‐
ogy stack while still providing the company some benefits of standards.

Incremental Change | 133

http://chadfowler.com/
https://www.wunderlist.com/
https://en.wikipedia.org/wiki/Platform_as_a_service

Case Study: Goldilocks Governance at PenultimateWidgets
For years, architects at PenultimateWidgets tried to standardize all development on
Java and Oracle. However, as they built more granular services, they realized that this
stack imposed a great deal of complexity on small services. But they didn’t want to
fully embrace the “every project chooses their own technology stack” approach of
microservices because they still wanted some portability of knowledge and skills
across projects. In the end, they chose the Goldilocks Governance route with three
technology stacks:

Small
For very simple projects without stringent scalability or performance require‐
ments, they chose Ruby on Rails and MySQL.

Medium
For medium projects, they chose GoLang and one of Cassandra, MongoDB, or
MySQL as the backend, depending on the data requirements.

Large
For large projects, they stayed with Java and Oracle, as they work well with vari‐
able architecture concerns.

Pitfall: Lack of Speed to Release
The engineering practices in continuous delivery address the factors that slow down
software releases, and those practices should be considered axiomatic for evolution‐
ary architecture to be successful. While the extreme version of Continuous Delivery,
continuous deployment, isn’t required for an evolutionary architecture, a strong cor‐
relation exists between the ability to release software and the ability to evolve that
software design.

If companies build an engineering culture around continuous deployment, expecting
that all changes will make their way to production only if they pass the gauntlet laid
out by the deployment pipeline, developers become accustomed to constant change.
On the other hand, if releases are a formal process that require a lot of specialized
work, the chances of being able to leverage evolutionary architecture diminishes.

Continuous Delivery strives for data-driven results, employing metrics to learn how
to optimize projects. Developers must be able to measure things to understand how
to make them better. One of the key metrics Continuous Delivery tracks is cycle time,
a metric related to lead time: the time between the initiation of an idea and that idea
manifesting in working software. However, lead time includes many subjective activi‐
ties, such as estimation, prioritization, and others, making it a poor engineering met‐
ric. Instead, Continuous Delivery tracks cycle time: the elapsed time between the
initiation and completion of a unit of work, which in this case is software develop‐

134 | Chapter 7: Evolutionary Architecture Pitfalls and Antipatterns

http://continuousdelivery.com

ment. The cycle time clock starts when a developer starts working on a new feature
and expires when that feature is running in a production environment. The goal of
cycle time is to measure engineering efficiency; the reduction of cycle time is one of
the key goals of Continuous Delivery.

Cycle time is critical for evolutionary architecture as well. In biology, fruit flies are
commonly used in experiments to illustrate genetic characteristics partially because
they have a rapid life cycle—new generations appear fast enough to see tangible
results. The same is true in evolutionary architecture—faster cycle time means the
architecture can evolve more quickly. Thus, a project’s cycle time determines how fast
the architecture can evolve. In other words, evolution speed is proportional to cycle
time, as expressed by

v ∝ c

where v represents velocity of change and c is cycle time. Developers cannot evolve
the system faster than the project’s cycle time. In other words, the faster teams can
release software, the faster they can evolve parts of their system.

Cycle time is therefore a critical metric in evolutionary architecture projects—faster
cycle time implies a faster ability to evolve. In fact, cycle time is an excellent candidate
for an atomic, process-based fitness function. For example, developers set up a
project with a deployment pipeline with automation, achieving a cycle time of three
hours. Over time, the cycle time gradually increases as developers add more verifica‐
tions and integration points to the deployment pipeline. Because time to market is an
important metric on this project, they establish a fitness function to raise an alarm if
the cycle time creeps beyond four hours. Once it has hit the threshold, developers
may decide to restructure how their deployment pipeline works or decide that a four
hour cycle time is acceptable. Fitness functions can map to any behavior developers
want to monitor on projects, including project metrics. Unifying project concerns as
fitness functions allows developers to set up future decision points, also known as the
last responsible moment, to reevaluate decisions. In the previous example, developers
now must decide which is more important: three hour cycle time or the set of tests
they have in place. On most projects, developers make this decision implicitly by
never noticing a gradually rising cycle time and thus never prioritizing conflicting
goals. With fitness functions, they can install thresholds around anticipated future
decision points.

Speed of evolution is a function of cycle time; faster cycle time
allows faster evolution.

Incremental Change | 135

Good engineering, deployment, and release practices are critical to success with an
evolutionary architecture, which in turn allows new capabilities for the business via
hypothesis-driven development.

Business Concerns
Finally, we talk about inappropriate coupling driven by business concerns. Most of
the time, business people aren’t nefarious characters trying to make things difficult
for developers, but rather have priorities that drive inappropriate decisions from an
architectural standpoint, which inadvertently constrain future options. We cover a
handful of business pitfalls and antipatterns.

Pitfall: Product Customization
Salespeople want options to sell. The caricature of sales people has them selling any
requested feature before determining if their product actually contains that feature.
Thus, sales people want infinitely customizable software to sell. However, that capa‐
bility comes at a cost along a spectrum of implementation techniques.

Unique build for each customer
In this scenario, salespeople promise unique versions of features on a tight time
scale, forcing developers to use techniques like version control branches and tag‐
ging to track versions.

Permanent feature toggles
We introduced feature toggles in Chapter 3, which are sometimes used strategi‐
cally to create permanent customizations. Developers can use feature toggles to
build either different versions for different clients or to create a “freemium” ver‐
sion of a product—a free version that allows users to unlock premium features
for a cost.

Product-driven customization
Some products go so far as to add customization via the UI. Features in this case
are permanent parts of the application and require the same care as all other
product features.

With both feature toggles and customization, the testing burden increases signifi‐
cantly because the product contains many permutations of possible pathways. Along
with testing scenarios, the number of fitness functions developers need to develop
likely increases as well, to protect possible permutations.

Customization also impedes evolvability, but this shouldn’t discourage companies
from building customizable software, but rather to realistically assess the associated
costs.

136 | Chapter 7: Evolutionary Architecture Pitfalls and Antipatterns

Antipattern: Reporting
Most applications have different uses depending on the business function. For exam‐
ple, some users need order entry, while others require reports for analysis. Organiza‐
tions struggle to provide all the possible perspectives (e.g., order entry versus
monthly reporting) required by businesses, especially if everything must come from
the same monolithic architecture and/or database structure. Architects struggled in
the service-oriented architecture era trying to support every business concern via the
same set of “reusable” services. They found that the more generic the service, the
more developers needed to customize it to be of use.

Reporting is a good example of inadvertent coupling in monolithic architectures.
Architects and DBAs want to use the same database schema for both system of record
and reporting, but encounter problems because a design to support both is optimized
for neither. A common pitfall developers and report designers conspire to create in
layered architecture illustrates the tension between concerns. Architects build layered
architecture to cut down on incidental coupling, creating layers of isolation and sepa‐
ration of concerns. However, reporting doesn’t need separate layers to support its
function, just data. Additionally, routing requests through layers adds latency. Thus,
many organizations with good layered architectures allow report designers to couple
reports directly to database schemas, destroying the ability to make changes to the
schema without wrecking reports. This is a good example of conflicting business
goals subverting the work of architects and making evolutionary change extremely
difficult. While no one set out to make the system hard to evolve, it was the cumula‐
tive effect of decisions.

Many microservices architectures solve the reporting problem by separating behav‐
ior, where the isolation of services benefits separation but not consolidation. Archi‐
tects commonly build these architectures using event streaming or message queues to
populate domain “system of record” databases, each embedded within the architec‐
tural quantum of the service, using eventual consistency rather than transactional
behavior. A set of reporting services also listens to the event stream, populating a
denormalized reporting database optimized for reporting. Using eventual consistency
frees architects from coordination—a form of coupling from an architectural stand‐
point—allowing different abstractions for different uses of the application.

For example, in PenultimateWidgets’ microservices architecture, they have domains
separated into bounded contexts, each owning the “system of record” data for that
domain. Developers at PenultimateWidgets use eventual consistency and message
queues to populate and communicate, and have a set of reporting services, separate
from the domain services, as shown in Figure 7-3.

Business Concerns | 137

Figure 7-3. PenultimateWidgets’ separation of domain and reporting services, coordina‐
ted via message queues

As seen in Figure 7-3, when the UI reports a Create, Read, Update, Define (CRUD)
operation, both the domain microservice and reporting service listen to the notifica‐
tion and take appropriate action. Thus, the set of reporting services handles reporting
concerns without affecting the domain services. Removing the inappropriate cou‐
pling introduced by conflating domains and reporting allows each team to focus on
more specific yet simpler tasks.

Pitfall: Planning Horizons
Budgeting and planning processes often drive the need for assumptions and early
decisions as the basis for those assumptions. However, the larger the planning hori‐
zon without an opportunity to revisit the plan means many decisions (or assump‐
tions) are made with the least amount of information. In the early planning phases,
developers spend significant effort on activities like research, often in the form of
reading, to validate their assumptions. Based on their studies, what is “best practice”
or “best in class” at that time form part of the basic fundamental assumptions before
developers write any code or release software to end users. More and more effort put
into the assumptions, even if they turn out to be false in six months, leads to a strong
attachment to them. The Sunk Cost Fallacy describes decisions affected by emotional
investment. Put simply, the more someone invests time or effort into something, the

138 | Chapter 7: Evolutionary Architecture Pitfalls and Antipatterns

https://en.wikipedia.org/wiki/Sunk_costs

harder it becomes to abandon it. In software, this is seen in the form of the irrational
artifact attachment—the more time and effort you invest in planning or a document,
the more likely you will protect what’s contained in the plan or document even in the
face of evidence that it is inaccurate or outdated.

Don’t become irrationally attached to handcrafted artifacts.

Beware of long planning cycles that force architects into irreversible decisions and
find ways to keep options open. Breaking large programs of work into smaller, early
deliverables tests the feasibility of both the architectural choices and the development
infrastructure. Architects should avoid following technologies that require a signifi‐
cant upfront investment before software is actually built (e.g., large licenses and sup‐
port contracts) before they have validated through end-user feedback that the
technology actually fits the problem they are trying to solve.

Business Concerns | 139

CHAPTER 8

Putting Evolutionary Architecture
into Practice

Finally, we look at the steps required to implement the ideas around evolutionary
architecture. This includes both technical and business concerns, including organiza‐
tion and team impacts. We also suggest where to start and how to sell these ideas to
your business.

Organizational Factors
The impact of software architecture has a surprisingly wide breadth on a variety of
factors not normally associated with software, including team impacts, budgeting,
and a host of others.

Teams structured around domains rather than technical capabilities have several
advantages when it comes to evolutionary architecture and exhibit some common
characteristics.

Cross-Functional Teams
Domain-centric teams tend to be cross-functional, meaning every project role is cov‐
ered by someone on the project. The goal of a domain-centric team is to eliminate
operational friction. In other words, the team has all the roles needed to design,
implement, and deploy their service, including traditionally separate roles like opera‐
tions. But these roles must change to accommodate this new structure, which
includes the following roles:

Business Analysts
Must coordinate the goals of this service with other services, including other ser‐
vice teams.

141

Architecture
Design architecture to eliminate inappropriate coupling that complicates incre‐
mental change. Notice this doesn’t require an exotic architecture like microservi‐
ces. A well-designed modular monolithic application may display the same
ability to accommodate incremental change (although architects must design the
application explicitly to support this level of change).

Testing
Testers must become accustomed to the challenges of integration testing across
domains, such as building integration environments, creating and maintaining
contracts, and so on.

Operations
Slicing up services and deploying them separately (often alongside existing serv‐
ices and deployed continuously) is a daunting challenge for many organizations
with traditional IT structures. Naive old school architects believe that component
and operational modularity are the same thing, but this is often not the case in
the real world. Automating DevOps tasks like machine provisioning and deploy‐
ment are critical to success.

Data
Database administrators must deal with new granularity, transaction, and system
of record issues.

One goal of cross-functional teams is to eliminate coordination friction. On tradi‐
tional siloed teams, developers often must wait on a DBA to make changes or wait for
someone in operations to provide resources. Making all the roles local eliminates the
incidental friction of coordination across silos.

While it would be luxurious to have every role filled by qualified engineers on every
project, most companies aren’t that lucky. Key skill areas are always constrained by
external forces like market demand. So, many companies aspire to create cross-
functional teams but cannot because of resources. In those cases, constrained resour‐
ces may be shared across projects. For example, rather than have one operations
engineer per service, perhaps they rotate across several different teams.

By modeling architecture and teams around the domain, the common unit of change
is now handled within the same team, reducing artificial friction. A domain-centric
architecture may still use layered architecture for its other benefits, such as separation
of concerns. For example, the implementation of a particular microservice might
depend on a framework that implements the layered architecture, allowing that team
to easily swap out a technical layer. Microservices encapsulate the technical architec‐
ture inside the domain, inverting the traditional relationship.

142 | Chapter 8: Putting Evolutionary Architecture into Practice

Finding New Resources via Automating DevOps
Neal once consulted for a company that offered a hosted service. They had a dozen
development teams, all with well-defined modules. However, they had an operations
group who managed all maintenance, provisioning, monitoring, and other common
tasks. The manager commonly received complaints from developers who wanted
faster turnaround on needed resources like database and web servers. To alleviate
some of the pressure, he started assigning an operations person one day a week to
each project. During that day, the developers were happy as can be—no waiting
around for resources! Alas, the manager didn’t have enough resources to do that reg‐
ularly.

Or so he thought. We discerned that much of the manual work performed by opera‐
tions was accidental complexity: misconfigured machines, a hodgepodge of manufac‐
turers and brands, and many other repairable offenses. Once everything was well
cataloged, we helped them automate the provisioning of new machines using Puppet.
After this work, the operations team had enough members to permanently embed an
operations engineer on each project and still have enough people to manage the auto‐
mated infrastructure.

They didn’t hire new engineers, nor did they significantly change their job roles.
Instead, they applied modern engineering practices to automate things that humans
shouldn’t deal with on a regular basis, freeing them to be better partners in develop‐
ment efforts.

Organized Around Business Capabilities
Organizing teams around domains implicitly means organizing them around busi‐
ness capabilities. Many organizations expect their technical architecture to represent
its own complex abstraction, loosely related to business behavior because architect’s
traditional emphasis has been around purely technical architecture, that is typically
segregated by functionality. For example, a layered architecture is designed to make
swapping technical architecture layers easier, not make working on a domain entity
like Customer easier. Most of this emphasis was driven by external factors. For exam‐
ple, many architectural styles of the past decade focused heavily on maximizing
shared resources because of expense.

Architects have gradually detangled themselves from commercial restrictions via the
embrace of open source in all corners of most organizations. Shared resource archi‐
tecture has inherent problems around inadvertent interference between parts. Now
that developers have the option of creating custom-made environments and func‐
tionality, it is easier for them to shift emphasis away from technical architectures and

Organizational Factors | 143

http://puppetlabs.com

focus more on domain-centric ones to better match the common unit of change in
most software projects.

Organize teams around business capabilities, not job functions.

Product over Project
One mechanism many companies use to shift their team emphasis is to model their
work around products rather than projects. Software projects have a common work‐
flow in most organizations. A problem is identified, a development team is formed,
and they work on the problem until “completion,” at which time they turn the soft‐
ware over to operations for care, feeding, and maintenance for the rest of its life.
Then the project team moves on to the next problem.

This causes a slew of common problems. First, because the team has moved on to
other concerns, bug fixes and other maintenance work is often difficult to manage.
Second, because the developers are isolated from the operational aspects of their
code, they care less about things like quality. In general, the more layers of indirection
between a developer and their running code, the less connection they have to that
code. This sometimes leads to an “us versus them” mentality between operational
silos, which isn’t surprising, as many organizations have incentivized workers to exist
in conflict.

By thinking of software as a product, it shifts the company’s perspective in three ways.
First, products live forever, unlike the lifespan of projects. Cross-functional teams
(frequently based on the Inverse Conway Maneuver) stay associated with their prod‐
uct. Second, each product has an owner who advocates for its use within the ecosys‐
tem and manages things like requirements. Third, because the team is cross-
functional, each role needed by the product is represented: business analyst,
developers, QA, DBA, operations, and any other required roles.

The real goal of shifting from a project to a product mentality concerns long-term
company buy-in. Product teams take ownership responsibility for the long-term
quality of their product. Thus, developers take ownership of quality metrics and pay
more attention to defects. This perspective also helps provide a long-term vision to
the team.

144 | Chapter 8: Putting Evolutionary Architecture into Practice

Amazon’s “Two Pizza” Teams
Amazon became famous for their product team approach, which they called two-
pizza teams. Their philosophy is that no team shall be larger than can be fed with two
large pizzas. The motivation behind this partitioning is more about communication
than team size—the larger the team, the more people each team member must com‐
municate with. Each team is cross-functional, and they also embrace the philosophy
of “you build it, you run it,” meaning each team has complete ownership of their ser‐
vice, including operationalizing it.

Having small, cross-functional teams also takes andvantage of human nature. Ama‐
zon’s “two-pizza team” mimics small group primate behavior. Most sports teams have
around 10 players, and anthropologists believe that preverbal hunting parties were
also around this size. Building highly responsible teams leverages innate social behav‐
ior, making team members more responsible. For example, suppose a developer in a
traditional project structure wrote some code two years ago that blew up in the mid‐
dle of the night, forcing someone in operations to respond to a pager in the night and
fix it. The next morning, our careless developer may not even realize they accidentally
caused a panic in the middle of the night. On a cross-functional team, if the developer
wrote code that blew up in the night and someone from his team had to respond to it,
the next morning, our hapless developer has to look across the table at the sad, tired
eyes of their team member they inadvertently affected. It should make our errant
developer want to be a better teammate.

Creating cross-functional teams prevents finger pointing across silos and engenders a
feeling of ownership in the team, encouraging team members to do their best work.

Dealing with External Change
We advocate building components that are highly decoupled in terms of technical
architecture, team structure, and so on to allow maximum opportunities for evolu‐
tion, in the real world, components must interact with one another to share informa‐
tion that collaboratively solves domain problems. So how can we build components
that can freely evolve yet make sure we can maintain the integrity of our integration
points?

For any dimension in our architecture that requires protection from the side effects
of evolution, we create fitness functions. A common practice in microservices archi‐
tectures is the use of consumer-driven contracts, which are atomic integration archi‐
tecture fitness functions. Consider the illustration shown in Figure 8-1.

Organizational Factors | 145

http://martinfowler.com/articles/consumerDrivenContracts.html

Figure 8-1. Consumer-driven contracts use tests to establish contracts between a pro‐
vider and consumer(s)

In Figure 8-1, the provider team is supplying information (typically data in a light‐
weight format) to each of the consumers, C1 and C2. In consumer-driven contracts,
the consumers of information put together a suite of tests that encapsulate what they
need from the provider and hand off those tests to the provider, who promises to
keep those tests passing at all times. Because the tests cover the information needed
by the consumer, the provider can evolve in any way that doesn’t break these fitness
functions. In the scenario shown in Figure 8-1, the provider runs tests on behalf of all
three consumers in addition to their own suite of tests. Using fitness functions like
this is informally known as an engineering safety net. Maintaining integration proto‐
col consistency shouldn’t be done manually when it is easy to build fitness functions
to handle this chore.

One implicit assumption included in the incremental change aspect of evolutionary
architecture is a certain level of engineering maturity amongst the development
teams. For example, if a team is using consumer-driven contracts but they also have
broken builds for days at time, they can’t be sure their integration points are still
valid. Using engineering practice to police practices via fitness functions relieves lots
of manual pain from developers but requires a certain level of maturity to be success‐
ful.

Connections Between Team Members
Many companies have found anecdotally that large development teams don’t work
well, and J. Richard Hackman, a famous expert on team dynamics, offers an explana‐
tion as to why. It’s not the number of people but the number of connections they must

146 | Chapter 8: Putting Evolutionary Architecture into Practice

maintain. He uses the formula shown in Equation 8-1 to determine how many con‐
nections exist between people, where n is the number of people.

Equation 8-1. Number of connections between people
n n − 1

2

In Equation 8-1, as the number of people grows, the number of connections grows
rapidly, as shown in Figure 8-2.

Figure 8-2. As the number of people grows, the connections grow rapidly.

In Figure 8-2, when the number of people on a team reaches 20, they must manage
190 links; when it reaches 50 team members, the number of links is a daunting 1225.
Thus, the motivation to create small teams revolves around the desire to cut down on
communication links. And these small teams should be cross-functional to eliminate
artificial friction imposed by coordinating across silos.

Each team shouldn’t have to know what other teams are doing, unless integration
points exist between the teams. Even then, fitness functions should be used to ensure
integrity of integration points.

Strive for a low number of connections between development
teams.

Team Coupling Characteristics
The way firms organize and govern their own structures significantly influences the
way that software is built and architected. In this section, we explore the different
organizational and team aspects that make building evolutionary architectures easier

Team Coupling Characteristics | 147

or harder. Most architects don’t think about how team structure affects the coupling
characteristics of the architecture, but it has a huge impact.

Culture
Culture, (n.): The ideas, customs, and social behavior of a particular people or society.

—Oxford Dictionary

Architects should care about how engineers build their system and watch out for the
behaviors their organization rewards. The activities and decision-making processes
architects use to choose tools and create designs can have a big impact on how well
software endures evolution. Well-functioning architects take on leadership roles, cre‐
ating the technical culture and designing approaches for how developers build sys‐
tems. They teach and encourage in individual engineers the skills necessary to build
evolutionary architecture.

An architect can seek to understand a team’s engineering culture by asking questions
like:

• Does everyone on the team know what fitness functions are and consider the
impact of new tool or product choices on the ability to evolve new fitness func‐
tions?

• Are teams measuring how well their system meets their defined fitness func‐
tions?

• Do engineers understand cohesion and coupling?
• Are there conversations about what domain and technical concepts belong

together?
• Do teams choose solutions not based on what technology they want to learn, but

based on its ability to make changes?
• How are teams responding to business changes? Do they struggle to incorporate

small changes, or are they spending too much time on small business change?

Adjusting the behavior of the team often involves adjusting the process around the
team, as people respond to what is asked of them to do.

Tell me how you measure me, and I will tell you how I will behave.
—Dr. Eliyahu M. Goldratt (The Haystack Syndrome)

If a team is unaccustomed to change, an architect can introduce practices that start
making that a priority. For example, when a team considers a new library or frame‐
work, the architect can ask the team to explicitly evaluate, through a short experi‐
ment, how much extra coupling the new library or framework will add. Will
engineers be able to easily write and test code outside of the given library or frame‐

148 | Chapter 8: Putting Evolutionary Architecture into Practice

work, or will the new library and framework require additional runtime setup that
may slow down the development loop?

In addition to the selection of new libraries or frameworks, code reviews are a natural
place to consider how well newly changed code supports future changes. If there is
another place in the system that will suddenly use another external integration point,
and that integration point will change, how many places would need to be updated?
Of course, developers must watch out for overengineering, prematurely adding addi‐
tional complexity or abstractions for change. The Refactoring book contains relevant
advice:

Three strikes and you refactor

The first time you do something, you just do it. The second time
you do something similar, you wince at the duplication, but you do
the duplicate thing anyway. The third time you do something simi‐
lar, you refactor.

Many teams are driven and rewarded most often for delivering new functionality,
with code quality and the evolvable aspect considered only if teams make it a priority.
An architect that cares about evolutionary architecture needs to watch out for team
actions that prioritize design decisions that help with evolvability or to finds ways to
encourage it.

Culture of Experimentation
Successful evolution demands experimentation, but some companies fail to experi‐
ment because they are too busy delivering to plans. Successful experimentation is
about running small activities on a regular basis to try out new ideas (both from a
technical and product perspective) and to integrate successful experiments into exist‐
ing systems.

The real measure of success is the number of experiments that can be crowded into 24
hours.

—Thomas Alva Edison

Organizations can encourage experimentation in a variety of ways:

Bringing ideas from outside
Many companies send their employees to conferences and encourage them to
find new technologies, tools, and approaches that might solve a problem better.
Other companies bring in external advice or consultants as sources of new ideas.

Team Coupling Characteristics | 149

https://refactoring.com/

Encouraging explicit improvement
Toyota is most famous for their culture of kaizen, or continuous improvement.
Everyone is expected to continually seek constant improvements, particularly
those closest to the problems and empowered to solve them.

Spike and stabilize
A spike solution is an extreme programming practice where teams generate a
throw-away solution to quickly learn a tough technical problem, explore an unfa‐
miliar domain, or increase confidence in estimates. Using spike solutions increa‐
ses learning speed at the cost of software quality; no one would want to put a
spike solution straight into production because it would lack the necessary
thought and time to make it operational. It was created for learning, not as the
well engineered solution.

Creating innovation time
Google is well known for their 20% time, where employees can work on any
project for 20% of their time. Other companies organize Hackathons and allow
teams to find new products or improvements to existing products. Atlassian
holds regular 24-hour sessions called ShipIt days.

Following set-based development
Set-based development focuses on exploring multiple approaches. At first glance,
multiple options appear costly because of extra work, but in exploring several
options simultaneously, teams end up with a better understanding of the problem
at hand and discover real constraints with tooling or approach. The key to effec‐
tive set-based development is to prototype several approaches in a short time-
period (i.e., less than a few days) to build more concrete data and experience. A
more robust solution often appears after taking into account several competing
solutions.

Connecting engineers with end-users
Experimentation is only successful when teams understand the impact of their
work. In many firms with an experimentation mindset, teams and product peo‐
ple see first-hand the impact of decisions on end-customers and are encouraged
to experiment to explore this impact. A/B testing is one such practice companies
use with this experimentation mindset. Another practice companies implement
is sending teams and engineers to observe how users interact with their software
to achieve a certain task. This practice, taken from the pages of the usability com‐
munity, builds empathy with end-users and engineers often return with a better
understanding of user needs, and with new ideas to better fulfill them.

150 | Chapter 8: Putting Evolutionary Architecture into Practice

https://en.wikipedia.org/wiki/Hackathon
https://www.atlassian.com/company/shipit
https://en.wikipedia.org/wiki/A/B_testing

CFO and Budgeting
Many traditional functions of enterprise architecture, such as budgeting, must reflect
changing priorities in an evolutionary architecture. In the past, budgeting was based
on the ability to predict long-term trends in a software development ecosystem. How‐
ever, as we’ve suggested throughout this book, the fundamental nature of dynamic
equilibrium destroys predictability.

In fact, an interesting relationship exists between architectural quanta and the cost of
architecture. As the number of quanta rises, the cost per quantum goes down, until
architects reach a sweet spot, as illustrated in Figure 8-3.

Figure 8-3. The relationship between architectural quanta and cost

In Figure 8-3, as the number of architectural quanta rises, the cost of each diminishes
because of several factors. First, because the architecture consists of smaller parts, the
separation of concerns should be more discrete and defined. Second, rising numbers
of physical quanta require automation of their operational aspects because, beyond a
certain point, it is no longer practical for people to handle chores manually.

However, it is possible to make quanta so small that the shear numbers become more
costly. For example, in a microservices architecture, it is possible to build services at
the granularity of a single field on a form. At that level, the coordination cost between
each small part starts dominating other factors in the architecture. Thus, at the
extremes of the graph, the sheer number of quanta drives benefit per quantum down.

In an evolutionary architecture, architects strive to find the sweet spot between the
proper quantum size and the corresponding costs. Every company is different. For
example, a company in an aggressive market may need to move faster and therefore
desire a smaller quantum size. Remember, the speed at which new generations appear
is proportional to cycle time, and smaller quanta tend to have shorter cycle times.

CFO and Budgeting | 151

Another company may find it pragmatic to build a service-based architecture (cov‐
ered in Chapter 4) with larger “portion of the application” quantum sizes because it
more closely models common change.

As we face an ecosystem that defies planning, many factors determine the best match
between architecture and cost. This reflects our observation that the role of architect
has expanded: Architectural choices have more impact than ever.

Rather than adhere to decades-old “best practice” guides about enterprise architec‐
ture, modern architects must understand the benefits of evolvable systems along with
the inherent uncertainty that goes with them.

Building Enterprise Fitness Functions
In an evolutionary architecture, the role of the enterprise architect revolves around
guidance and enterprise-wide fitness functions. Microservices architectures reflect this
changing model. Because each service is operationally decoupled from the others,
sharing resources isn’t a consideration. Instead, architects provide guidance around
the purposeful coupling points in the architecture (such as service templates) and
platform choices. Enterprise architecture typically owns this shared infrastructure
function and constrains platform choices to those supported consistently enterprise
wide.

Case Study: Legality of Open Source Libraries
At one point, the PenultimateWidgets lawyers started questioning the legal use of the
open source libraries at the company. They pored over the licenses of each of the
frameworks and libraries and determined that PenultimateWidgets wasn’t using any‐
thing that causes problems. But then one of the lawyers asked, “How will we know if
there is a change in the licensing terms?” There was no such service.

However, once the legal team certified the current libraries, developers located the
license text within the library and created a temporal fitness function that always
checks for changes in that string. Thus, every time the library license changes (for any
reason), the fitness function triggers that something has changed. Of course, the fit‐
ness function won’t be sophisticated enough to determine if the change is appropriate
—someone will be stuck with that chore—but architects can build fitness functions
that trigger directed attention rather than automating a solution.

The other new role that evolutionary architecture creates has enterprise architects
defining enterprise-wide fitness functions. Enterprise architects are typically respson‐
sible for enterprise-wide nonfunctional requirements, such as scalability and security.
Many organizations lack the ability to automatically assess how well projects perform
individually and in aggregate for these characteristics. Once projects adopt fitness

152 | Chapter 8: Putting Evolutionary Architecture into Practice

functions to protect parts of their architecture, enterprise architects can utilize the
same mechanism to verify that enterprise-wide characteristics remain intact.

If each project uses a deployment pipeline to apply fitness functions as part of their
build, enterprise architects can insert some of their own fitness functions as well. This
allows each project to verify cross-cutting concerns, such as scalability, security, and
other enterprise-wide concerns, on a continual basis, discovering flaws as early as
possible. Just as projects in microservices share service templates to unify parts of
technical architecture, enterprise architects can use deployment pipelines to drive
consistent testing across projects.

Case Study: PenultimateWidgets as a Platform
Business at PenultimateWidgets is going so well they have decided to sell part of their
platform to other sellers of things like widgets. Part of the appeal of the Penultimate‐
Widgets platform is its proven scalability, resiliency, performance, and other assets.
However, their architects don’t want to sell the platform only to start hearing stories
of failures because users extend it in damaging ways.

To help preserve the important characteristics of the platform, the PenultimateWidg‐
ets architects provide a deployment pipeline along with the platform with built-in fit‐
ness functions around important dimensions. To remain certified, users of the
platform must preserve the existing fitness functions and (hopefully) add their own
as they extend the platform.

Where Do You Start?
Many architects with existing architectures that resemble Big Balls of Mud struggle
with where to start adding evolvability. While appropriate coupling and using modu‐
larity are some of the first steps you should take, sometimes there are other priorities.
For example, if your data schema is hopelessly coupled, determining how DBAs can
achieve modularity might be the first step. Here are some common strategies and rea‐
sons to adopt the practices around building evolutionary architectures.

Low-Hanging Fruit
If an organization needs an early win to prove the approach, architects may choose
the easiest problem that highlights the evolutionary architecture approach. Generally,
this will be part of the system that is already decoupled to a large degree and hope‐
fully not on the critical path to any dependencies. Increasing modularity and decreas‐
ing coupling allows teams to demonstrate other aspects of evolutionary architecture,
namely fitness functions and incremental change. Building better isolation allows
more focused testing and the creation of fitness functions. Better isolation of deploya‐

Where Do You Start? | 153

ble units makes building deployment pipelines easier and provides a platform for
building more robust testing.

Metrics are a common adjunct to the deployment pipeline in incremental change
environments. If teams use this effort as a proof-of-concept, developers should gather
appropriate metrics for both before and after scenarios. Gathering concrete data is
the best way to for developers to vet the approach; remember the adage that demon‐
stration defeats discussion.

This “easiest first” approach minimizes risk at the possible expense of value, unless a
team is lucky enough to have easy and high value align. This is a good strategy for
companies that are skeptical and want to dip their toes in the metaphorical water of
evolutionary architecture.

Highest-Value
An alternative approach to “easiest first” is “highest value first”—find the most critical
part of the system and build evolutionary behavior around it first. Companies may
take this approach for several reasons. First, if architects are convinced that they want
to pursue an evolutionary architecture, choosing the highest value portion first indi‐
cates commitment. Second, for companies still evaluating these ideas, their architects
may be curious as to how applicable these techniques are within their ecosystem.
Thus, by choosing the highest value part first, they demonstrate the long-term value
proposition of evolutionary architecture. Third, if architects have doubts that these
ideas can work for their application, vetting the concepts via the most valuable part of
the system provides actionable data as to whether they want to proceed.

Testing
Many companies lament the lack of testing their systems have. If developers find
themselves in a code base with anemic or no testing, they may decide to add some
critical tests before undertaking the more ambitious move to evolutionary architec‐
ture.

It is generally frowned upon for developers to undertake a project that only adds tests
to a code base. Management looks upon this activity with suspicion, especially if new
feature implementation is delayed. Rather, architects should combine increasing
modularity with high-level functional tests. Wrapping functionality with unit tests
provides better scaffolding for engineering practices such as test-driven development
(TDD) but takes time to retrofit into a code base. Instead, developers should add
coarse-grained functional tests around some behavior before restructuring the code,
allowing you to verify that the overall system behavior hasn’t changed because of the
restructuring.

154 | Chapter 8: Putting Evolutionary Architecture into Practice

Testing is a critical component to the incremental change aspect of evolutionary
architecture, and fitness functions leverage tests aggressively. Thus, at least some level
of testing enables these techniques, and a strong correlation exists between compre‐
hensiveness of testing and ease of implementing an evolutionary architecture.

Infrastructure
New capabilities come slow to some companies, and the operations group is a com‐
mon victim of lack of innovation. For companies that have a dysfunctional infrastruc‐
ture, getting those problems solved may be a precursor to building an evolutionary
architecture. Infrastructure issues come in many forms. For example, some compa‐
nies outsource all their operational responsibilities to another company and thus
don’t control that critical piece of their ecosystem; the difficultly of DevOps rises
orders of magnitude when saddled with the overhead of cross-company coordina‐
tion.

Another common infrastructure dysfunction is an impenetrable firewall between
development and operations, where developers have no insight into how code even‐
tually runs. This structure is common in companies rife with politics across divisions,
where each silo acts autonomously.

Lastly, architects and developers in some organizations have ignored good practices
and consequently built massive amounts of technical debt that manifests within infra‐
structure. Some companies don’t even have a good idea of what runs where and other
basic knowledge of the interactions between architecture and infrastructure.

Infrastructure Can Impact Architecture
Neal once did consulting work for a company that ran a hosted service for users. The
company a large number of servers (approximately 2500 at the time), and had built
silos within the operations group: One team installed hardware, another installed
operating systems, and a third team installed applications. Needless to say, when a
developer wanted a resource, they cast a ticket into the black hole of operations,
where more tickets were generated and bounced around for weeks until resources
appeared. To exacerbate the problem, the company’s CIO had left the year before, and
the CFO was handling his department. Of course, the CFO was concerned primarily
with cost savings, not modernizing what he viewed as merely overhead.

While investigating operation weaknesses, one of the developers mentioned that each
server only accommodated about five users, which was shocking considering the sim‐
plicity of the application. Sheepishly, developers explained that they had abused
HTTP session state to legendary degrees, essentially treating it as a huge in-memory
database. Thus, they could only host a few users per server. The problem was that
their operations group could not produce a realistic production-like environment for
debugging purposes, and they absolutely forbade developers from debugging (or even

Where Do You Start? | 155

extensive monitoring) for production, mostly because of political forces. Without the
ability to interact with a realistic version of the application, developers couldn’t
untangle the mess they had gradually created.

Performing some back of the envelope calculations, we ascertained that the company
could likely run on an order of magnitude fewer servers, more like 250. Yet, the com‐
pany was too busy buying new servers, installing operating systems, and so on. The
grand irony, of course, is that their cost-saving measures actually cost the company a
huge sum.

Ultimately, the besieged developers created their own guerilla DevOps group and
started managing servers themselves, bypassing the traditional operations organiza‐
tion entirely. A fight loomed in the future between the two groups, but in the short
term, the developers started making progress in restructuring their application.

Ultimately, the advice parallels the annoying-but-accurate consultant’s answer of It
Depends! Only architects, developers, DBAs, DevOps, testing, security, and the other
host of contributors can ultimately determine the best roadmap toward evolutionary
architecture.

Case Study: Enterprise Architecture at PenultimateWidgets
PenultimateWidgets is considering revamping a major part of their legacy platform,
and a team of enterprise architects generated a spreadsheet listing all the properties
the new platform should exhibit: security, performance metrics, scalability, deploya‐
bility, and a host of other properties. Each category contained 5 to 20 cells, each with
some specific criteria. For example, one of the uptime metrics insisted that each ser‐
vice offer five nines (99.999) of availability. In total, they identified 62 discrete items.

But they realized some problems with this approach. First, would they verify each of
these 62 properties on projects? They could create a policy, but who would verify that
policy on an ongoing basis? Verifying all these things manually, even on an ad hoc
basis, would be a considerable challenge.

Second, would it make sense to impose strict availability guidelines across every part
of the system? Is it critical that the administrator’s management screens offer five
nines? Creating blanket policies often leads to egregious overengineering.

To solve these problems, the enterprise architects defined their criteria as fitness
functions and created a deployment pipeline template each project starts with. Within
the deployment pipeline, the architects designed fitness functions to automatically
check critical features such as security, leaving individual teams to add specific fitness
functions (like availability) for their service.

156 | Chapter 8: Putting Evolutionary Architecture into Practice

Future State?
What is the future state of evolutionary architecture? As teams become more familiar
with the ideas and practices, they will subsume them into business as usual and start
using these ideas to build new capabilities, such as data-driven development.

Much work must be done around the more difficult kinds of fitness functions, but
progress is already occurring as organizations solve problems and open source many
of their solutions. In the early days of agility, people lamented that some problems
were just too hard to automate, but intrepid developers kept chipping away and now
entire data centers have succumbed to automation. For instance, Netflix has made
tremendous innovations in conceptualizing and building tools like the Simian Army,
supporting holistic continuous fitness functions (but not yet calling them that).

There are a couple of promising areas.

Fitness Functions Using AI
Gradually, large open source artificial intelligence frameworks are becoming available
for regular projects. As developers learn to utilize these tools to support software
development, we envision fitness functions based on AI that look for anomalous
behavior. Credit card companies already apply heuristics such as flagging near-
simultaneous transactions in different parts of the world; architects can start to build
investigatory tools to look for odd behaviors in architecture.

Generative Testing
A practice common in many functional programming communities gaining wider
acceptance is the idea of generative testing. Traditional unit tests include assertions of
correct outcomes within each test case. However, with generative testing, developers
run a large number of tests and capture the outcomes then use statistical analysis on
the results to look for anomalies. For example, consider the mundane case of bound‐
ary checking ranges of numbers. Traditional unit tests check the known places where
numbers break (negatives, rolling over numerical sizes, and so on) but are immune to
unanticipated edge cases. Generative tests check every possible value and report on
edge cases that break.

Why (or Why Not)?
No silver bullets exist, including in architecture. We don’t recommend that every
project take on the extra cost and effort of evolvability unless it benefits them.

Future State? | 157

Why Should a Company Decide to Build an Evolutionary Architecture?
Many businesses find that the cycle of change has accelerated over the past few years,
as reflected in the aforementioned Forbes observation that every company must be
competent at software development and delivery.

Predictable versus evolvable
Many companies value long-term planning for resources and other strategic matters;
companies obviously value predictability. However, because of the dynamic equili‐
brium of the software development ecosystem, predictability has expired. Enterprise
architects may still make plans, but they may be invalidated at any moment.

Even companies in staid, established industries shouldn’t ignore the perils of systems
that cannot evolve. The taxi industry was a multicentury, international institution
when it was rocked by ride-sharing companies that understood and reacted to the
implications of the shifting ecosystem. The phenomenon known as The Innovators
Dilemma predicts that companies in well-established markets are likely to fail as
more agile startups address the changing ecosystem better.

Building evolvable architecture takes extra time and effort, but the reward comes
when the company can react to substantive shifts in the marketplace without major
rework. Predictability will never return to the nostalgic days of mainframes and dedi‐
cated operations centers. The highly volatile nature of the development world
increasingly pushes all organizations toward incremental change.

Scale
For a while, the best practice in architecture was to build transactional systems
backed by relational databases, using many of the features of the database to handle
coordination. The problem with that approach is scaling—it becomes hard to scale
the backend database. Lots of byzantine technologies spawned to mitigate this prob‐
lem, but they were only bandaids to the fundamental problem of scale: coupling. Any
coupling point in an architecture eventually prevents scale, and relying on coordina‐
tion at the database eventually hits a wall.

Amazon faced this exact problem. The original site was designed with a monolithic
frontend tied to a monolithic backend modeled around databases. When traffic
increased, they had to scale up the databases. At some point, they reached the limits
of database scale, and the impact on their site was decreasing performance—every
page loaded more slowly.

Amazon realized that coupling everything to one thing (whether a relational database,
enterprise service bus, and so on) ultimately limited scalability. By redesigning their
architecture in a more microservices style that eliminated inappropriate coupling,
they allowed their overall ecosystem to scale.

158 | Chapter 8: Putting Evolutionary Architecture into Practice

https://en.wikipedia.org/wiki/The_Innovator’s_Dilemma
https://en.wikipedia.org/wiki/The_Innovator’s_Dilemma

A side benefit of that level of decoupling is enhanced evolvability. As we have illustra‐
ted throughout the book, inappropriate coupling represents the biggest challenge to
evolution. Building a scalable system also tends to correspond to an evolvable one.

Advanced business capabilities
Many companies look with envy at Facebook, Netflix, and other cutting-edge tech‐
nology companies because they have sophisticated features. Incremental change
allows well-known practices such as hypotheses and data-driven development. Many
companies yearn to incorporate their users into their feedback loop via multivariate
testing. A key building block for many advanced DevOps practices is an architecture
that can evolve. For example, developers find it difficult to perform A/B testing if a
high degree of coupling exists between components, making isolation of concerns
more daunting. Generally, an evolutionary architecture allows a company better tech‐
nical responsiveness to inevitable but unpredictable changes.

Cycle time as a business metric
In “Deployment Pipelines” on page 31, we made the distinction between Continuous
Delivery, where at least one stage in the deployment pipeline performs a manual pull,
and Continuous Deployment, where every stage automatically promotes to the next
upon success. Building continuous deployment takes a fair amount of engineering
sophistication—why would a company go quite that far?

Because cycle time has become a business differentiator in some markets. Some large
conservative organizations view software as overhead and thus try to minimize cost.
Innovative companies see software as a competitive advantage. For example, if Acme‐
Widgets has created an architecture where the cycle time is three hours, and Penulti‐
mateWidgets still has a six-week cycle time, AcmeWidgets has an advantage they can
exploit.

Many companies have made cycle time a first-class business metric, mostly because
they live in a highly competitive market. All markets eventually become competitive
in this way. For example, in the early 1990s, some big companies were more aggres‐
sive in moving toward automating manual workflows via software and gained a huge
advantage as all companies eventually realized that necessity.

Isolating architectural characteristics at the quantum level
Thinking of traditional nonfunctional requirements as fitness functions and building
a well-encapsulated architectural quantum allows architects to support different char‐
acteristics per quantum, one of the benefits of a microservices architecture. Because
the technical architecture of each quantum is decoupled from other quanta, architects
can choose different architectures for different use cases. For example, developers on
one small service may choose a microkernel architecture because they want to sup‐

Why (or Why Not)? | 159

port a small core that allows incremental addition. Another team of developers may
choose an event-driven architecture for their service because of scalability concerns.
If both services were part of a monolith, architects would have to make tradeoffs to
attempt to satisfy both requirements. By isolating technical architecture at a small
quantum level, architects are free to focus on the primary characteristics of a singular
quantum, not analyzing the tradeoffs for competing priorities.

Case Study: Selective Scale at PenultimateWidgets
PenultimateWidgets has some services that require little in the way of scale and are
therefore written in simple technology stacks. However, a couple of services stand
out. The Import service must import inventory figures from brick-and-mortar stores
every night for the accounting system. Thus, the architectural characteristics and fit‐
ness functions the developers built into Import include scalability and resiliency,
which greatly complicate the technical architecture of that service. Another service,
MarketingFeed, is typically called by each store at opening to get daily sales and mar‐
keting updates. Operationally, MarketingFeed needs elasticity to be able to handle the
burst of requests as stores open across time zones.

A common problem in highly coupled architectures is inadvertent overengineering.
In a more coupled architecture, developers would have to build scalability, resiliency,
and elasticity into every service, complicating the ones that don’t need those capabili‐
ties. Architects are accustomed to choosing architectures against a spectrum of trade‐
offs. Building architectures with clearly defined quantum boundaries allows exact
specification of the required architectural characteristics.

Adaptation versus evolution
Many organizations fall into the trap of gradually increasing technical debt and reluc‐
tance to make needed restructuring modifications, which in turns makes systems and
integration points increasingly brittle. Companies try to pave over this brittleness
with connection tools like service buses, which alleviates some of the technical head‐
aches but doesn’t address deeper logical cohesion of business processes. Using a ser‐
vice bus is an example of adapting an existing system to use in another setting. But as
we’ve highlighted previously, a side effect of adaptation is increased technical debt.
When developers adapt something, they preserve the original behavior and layer new
behavior alongside it. The more adaptation cycles a component endures, the more
parallel behavior there is, increasing complexity, hopefully strategically.

The use of feature toggles offers a good example of the benefits of adaptation. Often,
developers use toggles when trying several alternate alternatives via hypotheses-
driven development, testing their users to see what resonates best. In this case, the
technical debt imposed by toggles is purposeful and desirable. Of course, the engi‐

160 | Chapter 8: Putting Evolutionary Architecture into Practice

neering best practices around these types of toggles is to remove them as soon as the
decision is resolved.

Alternatively, evolving implies fundamental change. Building an evolvable architec‐
ture entails changing the architecture in situ, protected from breakages via fitness
functions. The end result is a system that continues to evolve in useful ways without
an increasing legacy of outdated solutions lurking within.

Why Would a Company Choose Not to Build an Evolutionary
Architecture?
We don’t believe that evolutionary architecture is the cure for all ailments! Companies
have several legitimate reasons to pass on these ideas.

Can’t evolve a ball of mud
One of the key “-ilities” architects neglect is feasibility—should the team undertake
this project? If an architecture is a hopelessly coupled Big Ball of Mud, making it pos‐
sible to evolve it cleanly will take an enormous amount of work—likely more than
rewriting it from scratch. Companies loath throwing anything away that has per‐
ceived value, but often rework is more costly than rewrite.

How can companies tell if they’re in this situation? The first step to converting an
existing architecture into an evolvable one is modularity. Thus, a developer’s first task
requires finding whatever modularity exists in the current system and restructuring
the architecture around those discoveries. Once the architecture becomes less entan‐
gled, it becomes easier for architects to see underlying structures and make reason‐
able determinations about the effort needed for restructuring.

Other architectural characteristics dominate
Evolvability is only one of many characteristics architects must weigh when choosing
a particular architecture style. No architecture can fully support conflicting core
goals. For example, building high performance and high scale into the same architec‐
ture is difficult. In some cases, other factors may outweigh evolutionary change.

Most of the time, architects choose an architecture for a broad set of requirements.
For example, perhaps an architecture needs to support high availability, security, and
scale. This leads towards general architecture patterns, such as monolith, microservi‐
ces, or event-driven. However, a family of architectures known as domain-specific
architectures that attempt to maximize a single characteristic.

An excellent example of a domain-specific architecture is LMAX, a custom trading
solution. Their primary goal was fast transaction throughput, and they experimented
with a variety of techniques with no success. Ultimately, by analyzing at the lowest
level, they discovered the key to scalability was making their logic small enough to fit

Why (or Why Not)? | 161

http://martinfowler.com/articles/lmax.html

in the CPU’s cache, and preallocating all memory to prevent garbage collection. Their
architecture achieved a stunning 6 million transactions per second on a single Java
thread!

Having built their architecture for such a specific purpose, evolving it to accomodate
other concerns would present difficulties (unless developers are extraordinarily lucky
and architectural concerns overlap). Thus, most domain-specific architectures aren’t
concerned with evolution because their specific purpose overrides other concerns.

Sacrificial architecture
Martin Fowler defined a sacrificial architecture as one designed to throw away. Many
companies need to build simple versions initially to investigate a market or prove via‐
bility. Once proven, they can build the real architecture to support the characteristics
that have manifested.

Many companies do this strategically. Often, companies build this type of architecture
when creating a minimum viable product to test a market, anticipating building a
more robust architecture if the market approves. Building a sacrificial architecture
implies that architects aren’t going to try to evolve it but rather replace it at the appro‐
priate time with something more permanent. Cloud offerings make this an attractive
option for companies experimenting with the viability of a new market or offering.

Planning on closing the business soon
Evolutionary architecture helps businesses adapt to changing ecosystem forces. If a
company doesn’t plan to be in business in a year, there’s no reason to build evolvabil‐
ity into their architecture.

Some companies are in this position; they just don’t realize it yet.

Convincing Others
Architects and developers struggle to make nontechnical managers and coworkers
understand the benefits of something like evolutionary architecture. This is especially
true of parts of the organization most disrupted by some of the necessary changes.
For example, developers who lecture the operations group about doing their job
incorrectly will generally find resistance.

We introduced the best solution to this problem in Chapter 6. Rather than try to con‐
vince reticent parts of the organization, demonstrate how these ideas improve their
practices.

162 | Chapter 8: Putting Evolutionary Architecture into Practice

http://martinfowler.com/bliki/SacrificialArchitecture.html
https://en.wikipedia.org/wiki/Minimum_viable_product

Case Study: Consulting Judo
A colleague was working with a big retailer trying to convince the enterprise archi‐
tects and operations group to embrace more modern DevOps practices, such as auto‐
mated machine provisioning, better monitoring, and so on. Yet her pleas fell on deaf
ears because of two common refrains: “We don’t have time” and “Our setup is so
complex, those things will never work here.”

She applied an excellent technique called consulting judo. Judo as a martial art has
numerous techniques that use the opponent’s weight against them. Consulting judo
entails finding a particular pain point and fixing it as an exemplar. The pain point at
the retailer was QA environments: There were never enough of them. Consequently,
teams would attempt to share environments, but that caused major headaches. Hav‐
ing found her case study, she received approval to creating QA environments using
modern DevOps tools and techniques.

When she was complete, she demonstrated the falseness of both previous assump‐
tions. Now, any team that needs a QA environment can provision one trivially. Her
effort in turn convinced operations to invest more fully into modern techniques
because of demonstrable value. Demonstration defeats discussion.

The Business Case
Business people are often wary of ambitious IT projects, which sound like expensive
replumbing exercises. However, many businesses find that many desirable capabilities
have their basis in more evolutionary architectures.

“The Future Is Already Here…”
The future is already here—it’s just not very evenly distributed.

—William Gibson

Many companies view software as overhead, like the heating system. When software
architects talk to executives at those companies about innovation in software, they
imagine plumbers upselling them on pretty but expensive overhead. However, that
antiquated view of the strategic importance of software is discredited. Consequently,
decision makers who control software purchases tend to became institutionally con‐
servative, valuing cost savings over innovation. Enterprise architects make this mis‐
take for understandable reasons—they look at other companies within their
ecosystem to see how they approach these decisions. But that approach is dangerous
because a disruptive company that has modern software architecture may move into
the existing company’s realm and suddenly dominate because they have better infor‐
mation technology.

The Business Case | 163

Moving Fast Without Breaking Things
Most large enterprises complain about the pace of change within the organization.
One side effect of building an evolutionary architecture manifests as better engineer‐
ing efficiency. All the practices we call incremental change improve automation and
efficiency. Defining top-level enterprise architecture concerns as fitness functions
both unifies a disparate set of concerns under one umbrella and forces developers to
think in terms of objective outcomes.

Building an evolutionary architecture implies that teams can make incremental
changes at the architectural level with confidence. In Chapter 2, we described a Git‐
Hub case study where a foundational component of an architecture with no regres‐
sions (while uncovering other undiscovered bugs). Business people fear breaking
change. If developers build an architecture that allows incremental change with better
confidence than older architectures, both business and engineering win.

Less Risk
With improved engineering practices comes decreased risk. Evolutionary architec‐
ture forces modern practices on teams in the guise of incremental change, a beneficial
side effect. Once developers have confidence that their practices will allow them to
make changes in the architecture without breaking things, companies can increase
their release cadence.

New Capabilities
The best way to sell the ideas of evolutionary architecture to the business revolves
around the new business capabilities it delivers, such as hypothesis-driven develop‐
ment. Business people glaze over when architects wax poetic about technical
improvements, so it is better to couch the impact in their terms.

Building Evolutionary Architectures
Our ideas about building evolutionary architectures build upon and rely on many
existing things: testing, metrics, deployment pipelines, and a host of other supporting
infrastructure and innovation. We’re creating a new perspective to unify previously
diversified concepts using fitness functions. For us, anything that verifies the archi‐
tecture is a fitness function, and treating all those mechanisms uniformly makes auto‐
mation and verification easier.

We want architects to start thinking of architectural characteristics as evaluable things
rather than ad hoc aspirations, allowing them to build more resilient architectures.

Making some systems more evolvable won’t be easy, but we don’t really have a choice:
The software development ecosystem is going to continue to churn out new ideas

164 | Chapter 8: Putting Evolutionary Architecture into Practice

from unexpected places. Organizations who can react and thrive in that environment
will have a serious advantage.

Building Evolutionary Architectures | 165

Index

A
A/B testing, 150
abstraction distraction antipattern, 111
abstractions, leaky, 125-127
accidental (unintentional) coupling, 74, 133,

137
Ackoff, Russel, 17
adaptation, evolution vs., 14, 160
Amazon

scaling problems, 158
two-pizza teams, 145

Amazon Cloud, 36
Ambler, Scott, 83
anticorruption layers, 77, 111
antipatterns, 123-139

abstraction distraction, 111
Big Ball of Mud, 52, 161
coupling (see inappropriate coupling)
inappropriate governance, 132
incremental change, 131-133
reporting, 137
Vendor King, 77, 123

application programming interfaces (APIs), 4
application services, 66
appropriate coupling

in Big Ball of Mud, 53
in broker EDAs, 63
in COTS software, 99
in ESB-driven SOA, 68
in layered monolithic architecture, 56
in mediator EDAs, 64
in microkernels, 60
in microservices, 72
in modular monoliths, 57

in monolithic architectures, 54
in serverless architectures, 78
in service-based architectures, 76
service templates for, 113

architectural concerns, 8
architectural coupling, 47-68

appropriate (see appropriate coupling)
architectural quanta and granularity, 48-51
controlling quanta size, 78
modularity, 47
PenultimateWidgets case study, 79-81
serverless architectures, 76-78

architectural quanta, 48-51
controlling size of, 78
cost of architecture and, 151
defined, 48
for ESB-driven SOA, 67
in microservices architecture, 48-51
isolating architectural characteristics at level

of, 159
architectural styles

Big Ball of Mud, 52
event-driven architectures, 60-65
evolvability of, 51-60
monoliths, 53-58
service-oriented architectures, 65-68

artificial intelligence (AI), 157
atomic fitness functions, 19, 62
automation

of DevOps, 143
of fitness functions, 20, 96

B
BaaS (Backend as a Service), 76

167

back port, 21
Big Ball of Mud antipattern, 52, 161
bit rot, 6
blue/green deployments, 109
bounded context

as quantum boundary in microservices
architecture, 48-51

defined, 48
break upon upgrade test, 21
broker EDA, 60-63
Brooks, Fred

on sacrificial architecture, 114
on second system syndrome, 115

Brown, Simon, 9, 58
budgeting, 151
building evolutionary architecture, 141-165

building enterprise fitness functions, 152
business case for, 163
CFO and budgeting, 151
connections between team members, 146
convincing others of benefits, 162
cross-functional teams, 141-143
culture of experimentation, 149
easiest-first starting point, 153
external change, 145
fitness functions using AI, 157
future state of, 157
generative testing, 157
highest-value-first starting point, 154
infrastructure as starting point, 155
organizational factors, 141-147
organizing teams around business capabili‐

ties, 143
PenultimateWidgets as platform, 153
PenultimateWidgets case study, 156
product over project, 144
reasons for building, 158-161
reasons not to build, 161
reasons to build, 158-161
starting points, 153-156
team coupling characteristics, 147-150
team culture, 148
testing as starting point, 154

business capabilities
as basis for team organization, 143
as reason for building evolutionary architec‐

ture, 159, 164
business case for evolutionary architecture, 163
business concerns

inappropriate data coupling, 136-139
microservices and, 70
planning horizons pitfall, 138
product customization pitfall, 136
reporting antipattern, 137

business metric, cycle time as, 159

C
change

as constant in software development, 5
long-term planning and, 3
pace of, 164

Chaos Monkey, 36
cloud environments, sacrificial architecture

and, 115
code reuse

abuse of, 128-130
code usability vs., 129
microservices and, 129
PenultimateWidgets case study, 130

coding standards, fitness functions and, 18
component cycles, 30, 79-81
components, defined, 47
Conformity Monkey, 36
considered harmful, 116
consulting judo, 163
continual architecture, 6
continual fitness functions, 19
Continuous Delivery

Continuous Deployment vs., 159
cycle time and, 134
deployment pipelines and, 31-35
microservices and, 71
origins of, 25
snapshots vs., 118
with microservices, 73

Continuous Deployment, 33, 159
continuous integration (CI), 31
contracts, 58
Conway's Law, 11
Conway, Melvin, 11
Cook, John D., 128
coordination friction, 142
COTS (Commercial Off The Shelf) software, 99
coupling, 30

(see also appropriate coupling; architectural
coupling; inappropriate coupling)

analyzing with JDepend, 30
Big Ball of Mud, 52

168 | Index

duplication vs., 129
cross-functional teams, 141-143
culture

of experimentation, 149
team, 148

customization pitfall, 136
cycle time

and engineering efficiency, 96
as reason for building evolutionary architec‐

ture, 159
Continuous Delivery and, 134
fitness functions and, 135

cyclomatic complexity, 18

D
data (see evolutionary data)
data coupling, inappropriate (see inappropriate

coupling)
data-driven development, 42
database migration tools, 84
databases

evolutionary design, 83-89
evolving schemas, 83-85
Shared Database Integration, 85-89

DBAs
defined, 83
vendors and tool choices, 90

decoupling, forced, 133
dependences, external, 115-117
deployment pipelines

at Penultimate Widgets, 33, 41
combining fitness functions categories,

35-37
continuous integration vs., 31
incremental change and, 31-35
with fitness functions, 32

DevOps
automating, 143
with microservices, 73

Dijkstra, Edsger, 116
dimensions

identifying when building evolvable archi‐
tectures, 95

of evolutionary architecture, 8-11
partitioning techniques for, 9

disruptive change, 4
Docker, 4
domain dimension, microservices and, 68-74
domain-centric teams, 141-143

domain-driven design (DDD)
and bounded context, 48
ubiquitous language in, 50

domain-specific architectures, 161
domain-specific fitness functions, 21
duplication, coupling vs., 129
dynamic equilibrium, 4
dynamic fitness functions, 20

E
easiest-first approach, 153
eBay, 114, 162
Eclipse Java IDE, 59
ecosystem, software development, 3
Edison, Thomas Alva, 149
emergent fitness functions, 21
endpoints, versioning, 119
engineering safety net, 146
enterprise architecture, 156
Enterprise Resource Planning (ERP) software,

123
enterprise services, 66
enterprise-wide fitness functions, 152
Evans, Eric, 48, 50
event-driven architectures (EDA), 60-65

broker, 60-63
mediator, 63-65

evolution, adaptation vs., 14, 160
evolutionary architecture (generally)

adaptable architecture vs., 14
balancing long-term planning with constant

change, 3
basics, 3
Conway's Law and, 11
defined, 6
dimensions of, 8-11
evolvability of architectural styles, 51-60
future state of, 157
guided change and, 7
in practice, 14, 141-165

(see also building evolutionary architec‐
ture)

incremental change and, 6
pitfalls and antipatterns, 123-139

(see also inappropriate coupling)
preventing degradation of, 6
reasons for name, 13
reasons not to build, 161
reasons to build, 158-161

Index | 169

evolutionary data, 83-94
database design for, 83-89
inappropriate data coupling, 89-93
PenultimateWidgets case study, 93

evolvability
as meta-characteristic, 6
conflicting core goals and, 161
predictability vs., 110, 158

evolvable architectures
anticorruption layers, 111
avoiding snowflake servers, 109
building, 95-107
Continuous Delivery vs. snapshots, 118
COTS implications, 99
coupling and cohesion for, 97
defining fitness functions for each dimen‐

sion, 96
engineering practices, 98
fitness functions, 98
guidelines for building, 107-119
identifying dimensions affected by evolu‐

tion, 95
in new projects, 97
making decisions reversible, 109
mechanics of building, 95-96
migrating architectures, 100-107
mitigating external change, 115-117
PenultimateWidgets case study, 119-122
prefer evolvable over predictable, 110
refactoring vs. restructuring, 99
removing needless variability, 107-109
retrofitting existing architectures, 97-100
sacrificial architectures, 114
service template case study, 113
updating libraries vs. frameworks, 117
using deployment pipelines to automate fit‐

ness functions, 96
versioning, 119

expand/contract pattern, 86
experimentation, culture of, 149
external change, 145
external dependences, 115-117

F
FaaS (Function as a Service), 77
Facebook, 43
fan in operation, 34
fan out operation, 34
Farley, Dave, 25

feature toggles, 34, 110, 136, 160
fitness functions, 15-24

adding to PenultimateWidgets' invoicing
service, 40-42

AI for, 157
and retrofitting existing architectures, 98
atomic vs. holistic, 19
automated vs. manual, 20
basics, 17
brief definition, 15
categories of, 18-21
combining categories of, 35-37
cycle time and, 135
defined, 7
deployment pipelines with, 32
domain-specific, 21
engineering safety net, 146
enterprise-wide, 152
guided change with (see guided change with

fitness functions)
importance of early identification, 22-23
in COTS software, 100
intentional over emergent, 21
key, 22
not relevant, 23
ownership and maintenance of, 30
relevant, 23
review of, 23
static vs. dynamic, 20
systemwide, 16
temporal, 21
triggered vs. continual, 19

fluid dependencies, 118
forced decoupling, 133
Fowler, Chad, 108, 133
Fowler, Martin, 114, 162
frameworks, libraries vs., 117
functional cohesion, 48
functionality, porting of, 44
future state of evolutionary architecture, 157

fitness functions using AI, 157
generative testing, 157

G
generative testing, 157
Gibson, William, 163
GitHub, architectural restructuring at, 37-39
Goldilocks Governance

at PenultimateWidgets, 134-136

170 | Index

defined, 133
Google, 20% time at, 150
governance

Goldilocks, 134-136
inappropriate, 132

greenfield projects, 97
guarded dependencies, 119
guided change with fitness functions, 7

in Big Ball of Mud, 53
in broker EDAs, 62
in COTS software, 100
in ESB-driven SOA, 67
in layered monolithic architecture, 56
in mediator EDAs, 64
in microkernels, 60
in microservices, 72
in modular monoliths, 57
in monolithic architectures, 54
in serverless architectures, 77
in service-based architectures, 76

H
Hackman, J. Richard, 146
Hickey, Rich, 112
highest-value-first approach, 154
holistic fitness functions, 19
Humble, Jez, 25
hypothesis-driven development, 42-44

I
IBM (San Francisco Project), 128
immutable infrastructure, 108
inadvertent (accidental) coupling, 74, 133, 137
inappropriate coupling, 89-93, 123

(see also appropriate coupling)
age/quality of data, 92
Big Ball of Mud as example of, 53
business concerns, 136-139
code reuse abuse, 128-130
incremental change antipatterns, 131-133
Last 10% trap, 127
leaky abstractions, 125-127
PenultimateWidgets case study, 130,

134-136
planning horizons pitfall, 138
product customization pitfall, 136
reporting antipattern, 137
Resume-Driven Development, 131
technical architecture, 123-130

two-phase commit transactions, 90-92
vendor king antipattern, 123

inappropriate governance, 132
incremental change

antipatterns, 131-133
basics, 6
building blocks for agility at architecture

level, 28-39
combining fitness functions categories,

35-37
deployment pipelines and, 31-35
engineering of, 25-45
GitHub case study, 37-39
hypothesis- and data-driven development,

42-44
identifying conflicting evolution goals, 39
in Big Ball of Mud, 52
in broker EDAs, 62
in COTS software, 99
in ESB-driven SOA, 67
in layered monolithic architecture, 55
in mediator EDAs, 64
in microkernels, 60
in microservices, 72
in modular monoliths, 57
in monolithic architectures, 54
in serverless architectures, 77
in service-based architectures, 75
inappropriate governance antipattern, 132
PenultimateWidgets case studies, 25-28,

40-42, 44
testability of architecture, 29-31

indirection, 106
infrastructure dysfunction, 155
infrastructure services, 66
integration coupling, 72
intentional fitness functions, 21
internal resolution, 119
Inverse Conway Maneuver

for identifying protected dimensions, 96
PenultimateWidgets and, 13

irrational artifact attachment, 139
isolation of layers, 55

J
Java, 4, 30, 80
JavaScript, 116
JDepend, 30, 80
Johnson, Ralph, 1

Index | 171

just in time anticorruption layer, 112

K
kaizen (continuous improvement), 150
Kenney, Kevlin, 106
key fitness functions, 22

L
Last 10% trap, 124, 127
last responsible moment principle, 111, 135
layered architecture, 6, 54
lead time, 134
leaky abstractions, 125-127
legacy data, 92
Let's Stop Working and Call It A Success Con‐

cession principle, 124
libraries

as component, 47
frameworks vs., 117

Linux, 4
LMAX, 161
long-term planning, 3-6

M
manual fitness functions, 20
Meadows, Donella H., 8
mediator EDA, 63-65
message bus, 66
microkernel, 58-60
microservices architecture, 68-74

bounded context as quantum boundary,
48-51

duplication over coupling in, 129
forced decoupling, 133
governance and, 133
principles of, 70-72
service-based architecture vs., 74
share nothing architecture, 26
transactional systems and, 91

migration
from one architectural style to another,

100-107
steps in, 101-104

modularity, architectural coupling and, 47
monitoring-driven development (MDD), 20
monolithic architectures, 53-58

layered architecture, 54
microkernel, 58-60

migrating to service-based architecture,
101-104

quanta in, 48
reporting antipattern and inadvertent cou‐

pling, 137

N
naive partitioning, 106
nested feedback loop, 44
Netflix, 36
Newman, Sam, 107

O
open-source libraries, legal issues with, 152

P
package dependency cycles, 79-81
pair programming, 108
PenultimateWidgets (fictional case study)

adding fitness functions to invoicing ser‐
vice, 40-42

deployment pipelines at, 33, 41
evolving routing, 93
functionality porting decisions, 44
Goldilocks Governance, 134-136
guarding against component cycles, 79-81
Inverse Conway Maneuver, 13
legality of open-source libraries, 152
operational aspects of incremental change

at, 25-28
reusable components, 130
selective scaling, 160
selling platform, 153
separation of domain services and reporting

services, 137
star rating service upgrade, 7, 26-28,

119-122
performance requirements, fitness functions

and, 17
pitfalls, 123-139

planning horizons, 138
product customization, 136

plug-ins, 58-60
porting of functionality, 44
predictability, evolvability vs., 110, 158
primordial abstraction ooze, 127
product customization pitfall, 136
product, project vs., 144

172 | Index

production environment, exploratory testing
in, 35

proof of concept, 114
provider team, 146
pull model, 116
pull updates, 117
push updates, 117

Q
QA (quality assurance), 35

R
refactoring, restructuring vs., 99
registry, 59
relevant fitness functions, 23
reporting services antipattern, 137
Resume-Driven Development, 131
retrofitting existing architectures, 97-100

COTS implications, 99
coupling and cohesion for, 97
engineering practices, 98
fitness functions, 98
refactoring vs. restructuring, 99

reusability trap, 127
reusable frameworks

abuse of, 128-130
PenultimateWidgets case study, 130

reuse of code (see code reuse)
reversible decisions, 109
Richards, Mark, 110
risk, managing with incremental change, 164
routing

as evolutionary mechanism, 121
PenultimateWidgets case study, 93

Rumsfeld, Donald, 110

S
sacrificial architectures, 114, 162
Sadalage, Pramod, 83
San Francisco Project, 128
scaling

as reason for building evolutionary architec‐
ture, 158

at PenultimateWidgets, 160
schemas

age/quality of data and, 92
with evolutionary database design, 83-85

Scientist (GitHub framework), 37-39

second system syndrome, 115
selective scaling, 160
separation of concerns, 55
serverless architectures, 76-78

BaaS, 76
FaaS, 77

servers, snowflake, 109
service discovery, 106
service endpoints, versioning, 119
service templates

case study, 113
with microservices, 72

service, as component, 47
service-based architectures, 74-76

migrating monolithic architectures to,
101-104

transactional systems and, 91
service-oriented architectures (SOA), 65-68

code reuse in, 129
microservices, 68-74
service-based architectures, 74-76

set-based development, 150
share nothing architecture, 26, 71, 73
Shared Database Integration, 85-89

with existing data and integration points, 88
with legacy data but no integration points,

88
with no integration points and no legacy

data, 87
Simian Army, 36
snapshots, 118
snowflake computers, 108
snowflake servers, 109
software architecture, 1

Conway's Law and, 11-14
defined, 5
dimensions of, 8-11
Ralph Johnson's definition, 1

software development ecosystem, 3
speculative updating, 118
spike solutions, 150
Spolsky, Joel, 125
static fitness functions, 20
Sunk Cost Fallacy, 138
systemwide fitness functions, 16

T
Taylor, Jeffrey, 43
teams

Index | 173

connections between members, 146
coupling characteristics, 147-150
cross-functional, 141-143
culture of experimentation, 149
dealing with external change, 145
engineering culture, 148
ideal size, 146
organizational factors, 141-147
organizing around business capabilities, 143
product over project, 144
risks of not identifying fitness functions, 22
structured by functional skills, 11
structured by service boundaries, 12

(see also Inverse Conway Maneuver)
two-pizza, 145

technical architecture
code reuse abuse, 128-130
Last 10% trap, 127
leaky abstractions, 125-127
Resume-Driven Development, 131
vendor king antipattern, 123

technical debt, 111, 115, 160
temporal fitness functions, 21, 152
testability, 29-31
testing

as starting point, 154
generative, 157

Toyota, 150
tradeoffs, 16
transactions, 90-92
triggered fitness functions, 19
Twitter, 114
two-pizza teams, 145

U
ubiquitous language, 50
undo, 85
unintentional (accidental) coupling, 74, 133,

137
unknown unknowns, 96, 110

V
Vendor King antipattern, 77, 123
vendors, DBA tool choices and, 90
version numbering, 119

W
Wheeler, Dave, 106

174 | Index

About the Authors
Neal Ford is Director, Software Architect, and Meme Wrangler at ThoughtWorks, a
software company and a community of passionate, purpose-led individuals who
think disruptively to deliver technology to address the toughest challenges, all while
seeking to revolutionize the IT industry and create positive social change. Before
joining ThoughtWorks, Neal was the Chief Technology Officer at The DSW Group,
Ltd., a nationally recognized training and development firm.

Neal has a degree in Computer Science from Georgia State University specializing in
languages and compilers and a minor in mathematics specializing in statistical analy‐
sis. He is an internationally recognized expert on software development and delivery,
especially in the intersection of agile engineering techniques and software architec‐
ture. Neal has authored magazine articles, seven books (and counting), and dozens of
video presentations and has spoken at hundreds of developers conferences world‐
wide. The topics of these works include software architecture, continuous delivery,
functional programming, and cutting edge software innovations, as well as a
business-focused book and video in improving technical presentations. His primary
consulting focus is the design and construction of large-scale enterprise applications.
If you have an insatiable curiosity about Neal, visit his web site at nealford.com.

Dr. Rebecca Parsons is ThoughtWorks’ Chief Technology Officer with decades-long
applications development experience across a range of industries and systems. Her
technical experience includes leading the creation of large-scale distributed object
applications, the integration of disparate systems, and working with architecture
teams. Separate from her passion for deep technology, Dr. Parsons is a strong advo‐
cate for diversity in the technology industry.

Before coming to ThoughtWorks, Dr. Parsons worked as an assistant professor of
computer science at the University of Central Florida where she taught courses in
compilers, program optimization, distributed computation, programming languages,
theory of computation, machine learning, and computational biology. She also
worked as a Director’s Postdoctoral Fellow at the Los Alamos National Laboratory
researching issues in parallel and distributed computation, genetic algorithms, com‐
putational biology, and nonlinear dynamical systems.

Dr. Parsons received a Bachelor of Science degree in Computer Science and Econom‐
ics from Bradley University, a Master’s of Science in Computer Science from Rice
University, and her Ph.D. in Computer Science from Rice University. She is also the
co-author of Domain-Specific Languages, The ThoughtWorks Anthology, and Building
Evolutionary Architectures.

Patrick Kua is a Principal Technical Consultant at ThoughtWorks, having worked in
the technology industry for over 15 years. He is well known for bringing a balanced

http://nealford.com/

blend between technology, people, and process to improve the effectiveness of soft‐
ware delivery. You can also find him speaking at many conferences on the topics of
technical leadership, architecture, and building strong engineering cultures.

He is author of The Retrospective Handbook: A Guide for Agile Teams and Talking with
Tech Leads: From Novices to Practitioners and established a regular training program
to support developers transitioning into the role of a Tech Lead and/or Architect.

You can discover more about him at his website, thekua.com or reach out to him on
twitter at @patkua

Colophon
The animal on the cover of Building Evolutionary Architectures is the open brain coral
(Trachyphyllia geoffroyi). Also known as a “folded brain” or “crater” coral, this large-
polyp stony (LPS) coral is native to the Indian Ocean. Known for its distinctive folds,
bright colors, and hardiness, this free-living coral subsists on the photosynthetic out‐
put of a surface layer of zooxanthellae during the day, while at night it extends tenta‐
cles from its polyps to steer prey, which include various plankton as well as small fish,
into one of its mouths (some open brain corals have two or three of them).

Because of its striking appearance and easy-to-accomodate diet, Trachyphyllia geof‐
froyi is a popular choice for aquariums, where it thrives in the bottom layer of sand
and/or silt resembling the shallow seafloors of its native habitat. They benefit from an
environment with moderate water flow and rich with plant and animal matter to con‐
sume.

Trachyphyllia geoffroyi is listed on the IUCN Red List at Near Threatened status.
Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Jean Vincent Félix Lamouroux’s Exposition Methodique des
genres de L’Ordre des Polypiers. The cover fonts are URW Typewriter and Guardian
Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

http://www.thekua.com
http://twitter.com/patkua
http://animals.oreilly.com

	Copyright
	Table of Contents
	Foreword
	Preface
	Conventions Used in This Book
	O’Reilly Safari
	How to Contact Us
	Additional Information
	Acknowledgments

	Chapter 1. Software Architecture
	Evolutionary Architecture
	How Is Long-term Planning Possible When Everything Changes All the Time?
	Once I’ve Built an Architecture, How Can I Prevent It from Gradually Degrading Over Time?

	Incremental Change
	Guided Change
	Multiple Architectural Dimensions
	Conway’s Law
	Why Evolutionary?
	Summary

	Chapter 2. Fitness Functions
	What is a Fitness Function?
	Categories
	Atomic Versus Holistic
	Triggered Versus Continual
	Static Versus Dynamic
	Automated Versus Manual
	Temporal
	Intentional Over Emergent
	Domain-specific

	Identify Fitness Functions Early
	Review Fitness Functions

	Chapter 3. Engineering Incremental Change
	Building Blocks
	Testable
	Deployment Pipelines
	Combining Fitness Function Categories
	Case Study: Architectural Restructuring while Deploying 60 Times/Day
	Conflicting Goals
	Case Study: Adding Fitness Functions to PenultimateWidgets’ Invoicing Service

	Hypothesis- and Data-Driven Development
	Case Study: What to Port?

	Chapter 4. Architectural Coupling
	Modularity
	Architectural Quanta and Granularity
	Evolvability of Architectural Styles
	Big Ball of Mud
	Monoliths
	Event-Driven Architectures
	Service-Oriented Architectures
	“Serverless” Architectures

	Controlling Quantum Size
	Case Study: Guarding Against Component Cycles

	Chapter 5. Evolutionary Data
	Evolutionary Database Design
	Evolving Schemas
	Shared Database Integration

	Inappropriate Data Coupling
	Two-Phase Commit Transactions
	Age and Quality of Data

	Case Study: Evolving PenultimateWidgets’ Routing

	Chapter 6. Building Evolvable Architectures
	Mechanics
	1. Identify Dimensions Affected by Evolution
	2. Define Fitness Function(s) for Each Dimension
	3. Use Deployment Pipelines to Automate Fitness Functions

	Greenfield Projects
	Retrofitting Existing Architectures
	Appropriate Coupling and Cohesion
	Engineering Practices
	Fitness Functions
	COTS Implications

	Migrating Architectures
	Migration Steps
	Evolving Module Interactions

	Guidelines for Building Evolutionary Architectures
	Remove Needless Variability
	Make Decisions Reversible
	Prefer Evolvable over Predictable
	Build Anticorruption Layers
	Case Study: Service Templates
	Build Sacrificial Architectures
	Mitigate External Change
	Updating Libraries Versus Frameworks
	Prefer Continuous Delivery to Snapshots
	Version Services Internally

	Case Study: Evolving PenultimateWidgets’ Ratings

	Chapter 7. Evolutionary Architecture Pitfalls and Antipatterns
	Technical Architecture
	Antipattern: Vendor King
	Pitfall: Leaky Abstractions
	Antipattern: Last 10% Trap
	Antipattern: Code Reuse Abuse
	Case Study: Reuse at PenultimateWidgets
	Pitfall: Resume-Driven Development

	Incremental Change
	Antipattern: Inappropriate Governance
	Case Study: Goldilocks Governance at PenultimateWidgets
	Pitfall: Lack of Speed to Release

	Business Concerns
	Pitfall: Product Customization
	Antipattern: Reporting
	Pitfall: Planning Horizons

	Chapter 8. Putting Evolutionary Architecture into Practice
	Organizational Factors
	Cross-Functional Teams
	Organized Around Business Capabilities
	Product over Project
	Dealing with External Change
	Connections Between Team Members

	Team Coupling Characteristics
	Culture
	Culture of Experimentation

	CFO and Budgeting
	Building Enterprise Fitness Functions
	Case Study: PenultimateWidgets as a Platform

	Where Do You Start?
	Low-Hanging Fruit
	Highest-Value
	Testing
	Infrastructure
	Case Study: Enterprise Architecture at PenultimateWidgets

	Future State?
	Fitness Functions Using AI
	Generative Testing

	Why (or Why Not)?
	Why Should a Company Decide to Build an Evolutionary Architecture?
	Case Study: Selective Scale at PenultimateWidgets
	Why Would a Company Choose Not to Build an Evolutionary Architecture?
	Convincing Others
	Case Study: Consulting Judo

	The Business Case
	“The Future Is Already Here…”
	Moving Fast Without Breaking Things
	Less Risk
	New Capabilities

	Building Evolutionary Architectures

	Index
	About the Authors
	Colophon

