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Introduction

Thank you for purchasing Classic Computer Science Problems in Swift: Essential
techniques for practicing programmers. Swift is at an exciting stage in its
development. As the language continues to stabilize and its popularity soars, there is a
need to bring traditional computer science education to the language. The problems in
this intermediate book will help seasoned programmers learn the language and new
programmers accelerate their CS education. This book covers such a diversity of

problem-solving techniques that there is truly something for everyone.

This book is not an introduction to Swift. Apple publishes an excellent free book serving

that purpose.[ H Instead, this book assumes that you have already obtained a basic
working knowledge of Swift’s syntax. Mastery of Swift is by no means assumed. In fact,
the book’s content was created with the assumption that it would serve as learning
material to help one achieve such mastery. On the other hand, this book is not

appropriate for complete beginners.

1

Apple Inc., The Swift Programming Language, http://mng.bz/6{Ki.

WHY SWIFT?

Swift is an exciting new programming language from Apple that toes the line between
the object-oriented and functional paradigms. Swift’s creators have achieved a
remarkable balance that, for many, is the best of both worlds. Due to its wide
deployment via Apple’s developer tools, its modern syntax, its amalgamation of great
features from other languages, its careful paradigm balance, and its future as the main
language of development for iOS and Mac applications, now is a great time to learn
Swift.

Apple has called Swift the first protocol-oriented language, due to its powerful protocol

. . . [2]
feature set and the extensive use of that set in its standard library. Yet, many long-
time Objective-C and Java developers have little experience with functional

programming, let alone protocol-oriented programming. At the same time, there are



functional programmers coming into the Swift community who try to do everything the
same way they would in Haskell or Scheme. They are sometimes missing more elegant,

object-oriented solutions.

2

Dave Abrahams, “Protocol-Oriented Programming in Swift” (WWDC 2015, Session 408, Apple Inc.),
http://mng.bz/zWP3.

This book aims to serve as a bridge between these worlds by approaching classic
problems that experienced programmers should be familiar with (and new
programmers should become familiar with), without being dogmatic about fitting
within a single paradigm in Swift. Instead, you will get a taste of all of them. A
combination is the right way to approach Swift. Building bridges is the community’s

way forward.

WHAT IS A CLASSIC COMPUTER SCIENCE PROBLEM?

Some say that computers are to computer science as telescopes are to astronomy. If
that’s the case, then is a programming language like a telescope lens? In any event, the
term “computer science problems” is used here to mean “programming problems

typically taught in an undergraduate computer science curriculum.”

There are certain programming problems that are given to new programmers to solve,
whether in a classroom setting during the pursuit of a bachelor’s degree (in computer
science, software engineering, etc.) or within the confines of an intermediate
programming textbook (for example, a first book on artificial intelligence or
algorithms), that have become commonplace enough to be deemed “classic.” A

selection of such problems is what you will find in this book.

The problems range from the trivial, which can be solved in a few lines of code, to the
complex, which require the buildup of systems over multiple chapters. Some problems
touch on artificial intelligence, and others simply require common sense. Some

problems are practical, and other problems are fanciful.

WHAT KINDS OF PROBLEMS ARE IN THIS BOOK?

Chapter 1 introduces problem-solving techniques that will likely look familiar to most
readers. Things like recursion, memoization, and simulation are essential building

blocks of other techniques explored in later chapters.

This gentle introduction is followed by chapter 2, which focuses on search problems.

Search is such a large topic that you could arguably place most problems in the book



under its banner. Chapter 2 introduces the most essential search algorithms, including
binary search, depth-first search, breadth-first search, and A*. These algorithms are
reused throughout the rest of the book.

In chapter 3, you will build a framework for solving a broad range of problems that can
be abstractly defined by variables of limited domains that have constraints between
them. This includes such classics as the eight queens problem, the Australian map-
coloring problem, and the cryptarithmetic SEND+MORE=MONEY.

Chapter 4 explores the world of graph algorithms, which to the uninitiated are
surprisingly broad in their applicability. In this chapter, you will build a graph data

structure and then use it to solve several classic optimization problems.

Chapter 5 explores genetic algorithms, a technique that is less deterministic than most
covered in the book, but that sometimes can solve a problem traditional algorithms

cannot in a reasonable amount of time.

Chapter 6 covers k-means clustering and is perhaps the most algorithmically specific
chapter in the book. This clustering technique is simple to implement, easy to

understand, and broadly applicable.

Chapter 7 aims to explain what a neural network is, and to give the reader a taste of what
a very simple neural network looks like. It does not aim to provide comprehensive

coverage of this exciting and evolving field.

Finally, chapter 8 covers interesting (and fun) problems that did not quite fit anywhere

else in the book.

WHO IS THIS BOOK FOR?

This book is for both intermediate and experienced programmers. Experienced
programmers who want to learn Swift will find comfortably familiar problems from
their computer science or programming education. Fairly new programmers will be
introduced to these classic problems in the language of their choice—Swift. Developers
getting ready for coding interviews will likely find this book to be valuable preparation

material.

In addition to professional programmers, students enrolled in undergraduate computer
science programs who have an interest in Swift will likely find this book helpful. It
makes no attempt to be a rigorous introduction to data structures and algorithms. This

is not a data structures and algorithms textbook—you will not find proofs or extensive



use of big-O notation within its pages. Instead, it is positioned as an approachable,
hands-on tutorial to the problem-solving techniques that should be the end product of

taking data structure, algorithm, and artificial intelligence classes.

Once again, a basic knowledge of Swift’s syntax and semantics is assumed. A reader
with zero programming experience will get little out of this book. And a programmer
with zero Swift experience will almost certainly struggle. In other words, we could call

Classic Computer Science Problems in Swift a great second book on Swift.

SWIFT VERSIONING AND TOOLS

The source code in this book was written to adhere to version 4.1 of the Swift language.
This version was released alongside Xcode 9.3 by Apple in early 2018. A GitHub
repository with the code for the book is available:
https://github.com/davecom/ClassicComputerScienceProblemsInSwift.

Most of the source code in this book will run on Linux (and other platforms Swift is
ported to) without modification, as it only relies on Foundation (not AppKit/UIKit).
The source code files are distributed as part of a Swift playground for Xcode, but the
raw .swift files contained therein can be extracted for use on Linux. Cross-platform
compatibility was a goal for this book, but convenience on the Mac for the majority of

readers was an even greater goal.

This book does not explain how to use Xcode, build Swift projects, or use Playgrounds.
There are plenty of great resources on those topics available online and in print. The

ability to do these tasks is assumed throughout.

NO GRAPHICS, NO Ul CODE

This book is not about learning UIKit or AppKit. The examples in the book do not
require the use of either. There are no examples in this book that produce graphical
output. Why? The goal is to solve the posed problems with solutions that are as concise
and readable as possible. Often, doing graphics gets in the way, or makes solutions
significantly more complex than they need to be to illustrate the technique or algorithm

in question.

Further, to achieve cross-platform compatibility with Swift on Linux, UIKit and AppKit
could not be used. At the time of writing, only Foundation was ported to Linux. The
solutions here largely rely on the Swift standard library alone, with Foundation acting

as a supplement in areas where the standard library is weak.

This is not a book that will teach you how to write full-scale apps. It is a book that will



help you with the fundamentals of software development under Swift. It is a book that’s

written to stay within its scope.



Chapter 1. Small problems

To get started, we will explore some simple problems that can be solved with no more
than a few relatively short functions. Although these problems are small, they will still
allow us to explore some interesting problem-solving techniques. Think of them as a

good warmup.

1.1. THE FIBONACCI SEQUENCE

The Fibonacci sequence is a series of numbers such that any number, except for the

first and second, is the sum of the previous two:

The value of the first Fibonacci number in the series is 0. The value of the fourth
Fibonacci number is 2. It follows that to get the value of any Fibonacci number, n, in

the series, one can use the formula

fib(n) = fib(n - 1) + fib(n - 2)

1.1.1. Afirst recursive attempt

The preceding formula for computing a number in the Fibonacci sequence (illustrated
in figure 1.1), a form of pseudocode, can be trivially translated into a recursive Swift
function (a recursive function is a function that calls itself). This mechanical translation
will serve as the first version of our attempt at writing a function to return a given value

of the Fibonacci sequence:

func fibl(n: UInt) -> UInt {
return fibl(n: n - 1) + fibl(n: n - 2)

Figure 1.1. The height of each stickman is the addition of the previous two
stickmen’s heights added together.



I'm as tall as
the previous two
stickmen added

together.

Note

fibl () uses UInt instead of Int because the Fibonacci sequence does not exist in the

realm of negative integers.

If you run this function by calling it with a value, it will run forever without returning a
final result. We call such a circumstance infinite recursion, and it is analogous to an
infinite loop.

Figure 1.2. The recursive function £ib (n) calls itself with the arguments n-2 and
n-1.



In recursion, we go
around and around...

1.1.2. Utilizing base cases

Notice that Xcode produces no errors regarding this Fibonacci function, fib1 (). Itis
the duty of the programmer to avoid infinite recursion. The reason for the infinite
recursion is that we never specified a base case. In a recursive function, a base case

serves as a stopping point.

In the case of the Fibonacci function, we have natural base cases in the form of the
special first two sequence values, 0 and 1. Neither 0 nor 1 is the sum of the previous
two numbers in the sequence. Instead, they are the special first two values. Let’s try

specifying them as base cases:

func fib2(n: UInt) -> UInt {
if (n < 2) { // base cases
return n
}

return fib2(n: n - 2) + fib2(n: n - 1) // recursive cases

Note

The £ib2 () version of the Fibonacci function returns 0 as the zeroth number

(fib2 (n: 0)), rather than the first number, as in our original proposition. In a



programming context, this kind of makes sense because we are used to sequences (such

as Swift’s Array type) starting with a zeroth element.

fib2 () can be called successfully and will return correct results. Try calling it with

some small values:

fib2 (n: 5)
fib2(n: 10)

Do not try calling £ib2 (n: 50). It will never finish executing! Why? Every call to
fib2 () results in two more calls to £ib2 () by way of the recursive calls fib2 (n: n
- 1) and fib2 (n: n - 2) (see figure 1.3). In other words, the call tree grows

exponentially. For example, a call of £ib2 (n: 4) results in this entire set of calls:

fib2(n: 4) -> fib2(n: 3), fib2(n: 2)
fib2(n: 3) -> fib2(n: 2), fib2(n: 1)
fib2(n: 2) -> fib2(n: 1), fib2(n: 0)
fib2(n: 2) -> fib2(n: 1), fib2(n: 0)
fib2(n: 1) -> 1
fib2(n: 1) -> 1
fib2(n: 1) -> 1
fib2(n: 0) -> 0
fib2(n: 0) -> 0
Figure 1.3. Every non-base-case call of £ib2 () results in two more calls of
fib2 ().
fib2(4
fib2(3) fib2(2)
fib2(2) fib2(1) fib2(1) fib2(0
fib2(1) fib2(0) 1 1 0
1 0

If you count them (and as you can see if you call fib2 (n: 4) in an Xcode



playground), there are 9 calls to £ib2 () just to compute the 4th element! It gets worse.
There are 15 calls required to compute element 5, 177 calls to compute element 10, and

21,891 calls to compute element 20. We can do better.

1.1.3. Memoization to the rescue

Memoization is a technique in which you store the results of computational tasks when

they are completed, so that when you need them again, you can look them up instead of

[
needing to compute them a second (or millionth) time (see figure 1.4).

Donald Michie, a famous British computer scientist, coined the term memoization. Donald Michie, Memo
functions: a language feature with “rote-learning” properties (Edinburgh University, Department of Machine
Intelligence and Perception, 1967).

Figure 1.4. The human memoization machine

Do you
know n? = &

Look n up
in my memaory.

Calculate n.

Let’s create a new version of the Fibonacci function that utilizes a Swift Dictionary

for memoization purposes.

var fibMemo: [UInt: UInt] = [0: O, 1: 1] // our old base cases
func fib3(n: UInt) -> UInt {
if let result = fibMemo[n] { // our new base case
return result
} else {
fibMemo[n] = fib3(n: n - 1) + fib3(n: n - 2) // memoization



return fibMemo[n]'!

Warning

Using ! to force unwrap optionals is ugly, but I do it here for convenience because it is
provable that £ ibMemo will already contain a result by the time the final return

statement is called.

You can now safely call fib3 (n: 50).Acallto fib3 (n: 20) will result in just 39
calls of £ib3 () as opposed to the 21,891 of fib2 () resulting from the call fib2 (n:
20). fibMemo is prefilled with the earlier base cases of 0 and 1, saving £ib3 () from

the complexity of another i £ statement.

1.1.4. Keep it simple, Fibonacci

There is an even more performant option. We can solve Fibonacci with an old fashioned

iterative approach.

func fib4 (n: UInt) -> UInt {
if (n == 0) { // special case
return n

}
var last: Ulnt

0, next: UInt = 1 // initially set to fib(0) & fib(1l
for in 1..<n {

(last, next) = (next, last + next)

}

return next

Warning

The body of the for loop in £ib4 () uses tuples in perhaps a bit of an overly clever
way. Some may feel that it sacrifices readability for conciseness. Others may find the
conciseness in and of itself more readable. The gist is, 1ast is being set to the previous
value of next, and next is being set to the previous value of 1ast plus the previous
value of next. This avoids the creation of a temporary variable to hold the old value of

next after 1ast is updated, but before next is updated.



With this approach, the body of the for loop will only run a maximum of n - 1 times. In
other words, this is the most efficient version yet. Compare 19 runs of the for loop
body to 21,891 recursive calls of fib2 () for the 20th Fibonacci number. That could

make a serious difference in a real-world application!

In the recursive solutions, we worked backward. In this iterative solution, we work
forward. Sometimes recursion is the most intuitive way to solve a problem. For
example, the meat of fib1 () and fib2 () is pretty much a mechanical translation of
the original Fibonacci formula. However, naive recursive solutions can also come with
significant performance costs. Remember, any problem that can be solved recursively

can also be solved iteratively.

1.2. TRIVIAL COMPRESSION

Saving space (virtual or real) is often important. It is more efficient to use less space,
and it can save money. If you are renting an apartment that is bigger than you need for
your things and family, then you may “downsize” to a smaller place that is less
expensive. If you are paying by the byte to store your data on a server, then you may
want to compress it so that its storage costs you less. Compression is the act of taking
data and encoding it (changing its form) in such a way that it takes up less space.

Decompression is reversing the process, returning the data to its original form.

If it is more storage-efficient to compress data, then why is all data not compressed?
There is a tradeoff between time and space. It takes time to compress a piece of data
and to decompress it back into its original form. Therefore, data compression only
makes sense in situations where small size is prioritized over fast execution. Think of
large files being transmitted over the internet. Compressing them makes sense because
it will take longer to transfer the files than it will to decompress them once received.
Further, the time taken to compress the files for their storage on the original server only

needs to be accounted for once.

The easiest way to compress data is to realize that its storage type uses more bits than
are strictly required for its contents. For instance, if an unsigned integer that will never
exceed 65,535 is being stored as a UInt (64-bit unsigned integer on most Swift
platforms), it is being stored inefficiently. It could instead be stored as a UInt16 (16-bit
unsigned integer). This would reduce the space consumption for the actual number by
75% (16 bits instead of 64 bits). If there are millions of such numbers being stored

inefficiently, it can add up to megabytes of wasted space.



Note

If you are a little rusty regarding binary, recall that a bit is a single value that is either a
10r a 0. A sequence of 1s and 0s is read in base 2 to represent a number. For the
purposes of this section, you do not need to do any math in base 2, but you do need to
understand that the number of bits that a type stores determines how many different
values it can represent. For example, 1 bit can represent 2 values (0 or 1), 2 bits can

represent 4 values (00, 01, 10, 11), 3 bits can represent 8 values, and so on.

If the number of possible different values that a type is meant to represent is less than

the number of values that the bits being used to store it can represent, it can likely be

more efficiently stored. Consider the nucleotides that form a gene in DNA.[ 2 Each
nucleotide can only be one of four values: A, C, G, or T (there will be more about this in
chapter 2). Yet, if the gene is stored as a St ring, which can be thought of as a collection
of characters, each nucleotide will be represented by a character, which generally
requires 8 bits of storage. In binary, just 2 bits are needed to store a type with four
possible values: 00, 01, 10, and 11 are the four different values that can be represented
by 2 bits. If A is assigned 00, C is assigned 01, G is assigned 10, and T is assigned 11,
then the storage required for a string of nucleotides can be reduced by 75% (8 bits to 2

bits per nucleotide).

This example is inspired by Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne (Addison-Wesley
Professional, 2011), page 819.

Instead of storing our nucleotides as a St ring, they can be stored as a bit string (see
figure 1.5). A bit string is exactly what it sounds like—an arbitrary length sequence of 1s
and os. Unfortunately, the Swift standard library contains no off-the-shelf construct for
working with bit strings of arbitrary length, but the low-level C library Core
Foundation, available from Swift, contains CFMutableBitVector. The following code
converts a String composed of As, Cs, Gs, and Ts into a CFMutableBitVector and
back again.

Figure 1.5. Compressing a String representing a gene into a 2-bit-per-nucleotide
bit string.
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struct CompressedGene {

let

length: Int

private let bitVector: CFMutableBitVector

init (original: String) {

length = original.count

// default allocator, need 2 * length number of bits

bitVector = CFBitVectorCreateMutable (kCFAllocatorDefault, length *

CFBitVectorSetCount (bitVector, length * 2) // fills the bit vector
with Os

compress (gene: original)

A CompressedGene internally stores a sequence of nucleotides as a bit string. The

init () method’s main responsibility is to initialize the bit-string construct

CFMutableBitVector and call compress () to do the dirty work of actually

converting the provided String of nucleotides into a bit string.

CFBitVectorCreateMutable () takes an allocator and a capacity. The capacity

needs to be length * 2 because we need 2 bits for every nucleotide. Confusingly, the

size (how many bits are in it) of a CFMutableBitVector is different from its capacity

(how many bits can be in it). CFBitVectorSetCount () sets the bit vector’s size and

initializes all of the bits to 0.



Next, let’s look at how we can actually perform the compression.

Tip

Core Foundation constructs like CFMutableBitVector are implemented in portable
C and are available in Swift on Linux. You may need to import CoreFoundation on

Linux, whereas on macOS import Foundation includes it implicitly.

private func compress (gene: String) {
for (index, nucleotide) in gene.uppercased() .enumerated() {
let nStart = index * 2 // start of each new nucleotide
switch nucleotide {
case "A": // 00
CFBitVectorSetBitAtIndex (bitVector, nStart, O0)
CFBitVectorSetBitAtIndex (bitVector, nStart + 1, 0)
case "C": // 01
CFBitVectorSetBitAtIndex (bitVector, nStart, O0)
CFBitVectorSetBitAtIndex (bitVector, nStart + 1, 1)
case "G": // 10
CFBitVectorSetBitAtIndex (bitVector, nStart, 1)
CFBitVectorSetBitAtIndex (bitVector, nStart + 1, 0)
case "T": // 11
CFBitVectorSetBitAtIndex (bitVector, nStart, 1)
CFBitVectorSetBitAtIndex (bitVector, nStart + 1, 1)
default:

print ("Unexpected character \ (nucleotide) at \ (index)")

The compress () method looks at each Character in the String of nucleotides
sequentially. When it sees an A, it adds 00 to the bit string. When it sees a C, it adds o1.
And so on. Remember that 2 bits are needed for each nucleotide. As a result, the index
of each Character in the initial String is multiplied by 2 to find the start of each

nucleotide in the bit string.

Finally, we will implement decompression.

func decompress () -> String {
var gene: String = ""
for index in 0..<length {
let nStart = index * 2 // start of each nucleotide
let firstBit = CFBitVectorGetBitAtIndex (bitVector, nStart)
let secondBit = CFBitVectorGetBitAtIndex (bitVector, nStart + 1



switch (firstBit, secondBit) {
case (0, 0): // 00 A

gene += "A"
case (0, 1): // 01 C

gene += "C"

case (1, 0): // 10 G
gene += "G"

case (1, 1): // 11 T
gene += "T"

default:

break // unreachable, but need default

}

return gene

Finally, decompress () reads 2 bits from the bit string at a time. It assembles those
bits into a tuple that is evaluated using Swift’s built-in switch pattern-matching
statement. The original String is reassembled and returned, completing the cycle.

Let’s test it out.

print (CompressedGene (original: "ATGAATGCC") .decompress())

The original St ring should appear in the console after going through the

compression/decompression cycle.

1.3. UNBREAKABLE ENCRYPTION

A one-time pad is a way of encrypting a piece of data by combining it with meaningless
random dummy data in such a way that the original cannot be reconstituted without
access to both the product and the dummy data. In essence, this leaves the encrypter
with a key pair (one key is the product, one key is the random dummy data). One key on
its own is useless—only the combination of both keys can unlock the original data.
When performed correctly, a one-time pad is a form of unbreakable encryption. Figure

1.6 shows the process.

Original Data + Dummy Data -Encryption> Key-Pair (Dummy Data, Product)

-Decryption> Original Data

Figure 1.6. A one-time pad results in two keys that can be separated and then
recombined to recreate the original data.
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1.3.1. Getting the data in order

In this example, we will encrypt a St ring using a one-time pad. One way of thinking
about a Swift String is as a sequence of UTF-8 bytes (with UTF-8 being a Unicode
character encoding). A String provides a view of itself as a sequence of UTF-8 bytes
through the ut £8 instance variable. This “view” is really of a sequence of UInt8, such
that each UTF-8 byte is represented by one UInt8. We can therefore define a type for

both our one-time pad keys and key pairs.

typealias OTPKey = [UInt8]
typealias OTPKeyPair = (keyl: OTPKey, key2: OTPKey)

There are three criteria that the dummy data used in a one-time pad encryption
operation must meet for the resulting product to be unbreakable. The dummy data
must be the same length as the original data, truly random, and completely secret. The
first and third criteria make common sense. If the dummy data repeats, because it is
too short, there could be an observed pattern. If one of the keys is not truly secret
(perhaps it is reused elsewhere or partially revealed), then an attacker has a clue. The
second criteria poses a question all its own—can we produce truly random data? The

answer for most computers is no.

In this example we will use the pseudo-random number generating function
arc4random uniform (), so our data will not be truly random (but close enough for

our purposes). Let’s work on generating a random OTPKey for use as dummy data.



func randomOTPKey (length: Int) -> OTPKey {
var randomKey: OTPKey = OTPKey ()
for in 0..<length {
let randomKeyPoint = UInt8 (arcd4random uniform(UInt32 (UInt8.max)))
randomKey.append (randomKeyPoint)

}

return randomKey

This function creates an OTPKey (a UInt8 array) filled with 1ength random numbers
that are generated using an upper bound that is the maximum value of a UTnt 8. There
is a little annoying conversion between various integer types due to the requirements

and output of arc4random uniform() and our need of UInt8s. In other words, the

ultimate output of randomOTPKey () is a sequence of random UIntS8s.

1.3.2. Encrypting and decrypting

How will the dummy data be combined with the original data that we want to encrypt?
The XOR operation will serve this purpose. XOR is a logical bitwise (operates at the bit
level) operation that returns true when either of its operands is true, but not when both

are true or neither is true. As you may have guessed, XOR stands for exclusive or.

In Swift, the XOR operator is ~. In the context of the bits of binary numbers, XOR
returns 1 for o * 1and 1 * 0, but 0 for 0 * 0 and 1 * 1. If the bits of two numbers are
combined using XOR, a helpful property is that the product can be recombined with

either of the operands to produce the other operand.

A "~*B-=2C¢C
C ~ B =A
C ~A =8B

This key insight forms the basis of one-time pad encryption. To form our product, we
will simply XOR each UInt8 in our original String with each UTnt8 in our dummy

data. Our returned key pair will be the dummy data and the product.

func encryptOTP (original: String) -> OTPKeyPair {
let dummy = randomOTPKey (length: original.utf8.count)
let encrypted: OTPKey = dummy.enumerated().map { i, e in
return e * original.utf8[original.utf8.index(original.utf8
.startIndex, offsetBy: 1i)]
}

return (dummy, encrypted)



Note

enumerated () is used before map () here to get the index (i) along with each element
(e) being mapped. We need the index to pull specific bytes from the original String
that correspond to the bytes in the dummy data. We must use startIndex and

of fsetBy instead of raw integers because the index type must match the expected type

for the subscript.

Decryption is simply a matter of recombining the key pair we generated with
encrypt-OTP (). This is achieved once again by doing an XOR operation between
each and every UInt8 in the two keys. The ultimate output must be converted back to a
String from an OTPKey ([UInt8]) using a Foundation init method that is an
extension to St ring. This init method returns an optional, so our method will too
(hypothetically, if an invalid key-pair were provided, we might not be able to produce a

valid UTF-8 string, so this makes sense).

func decryptOTP (keyPair: OTPKeyPair) -> String? {
let decrypted: OTPKey = keyPair.keyl.enumerated().map { i, e in
e " keyPair.key2[1i]
}
return String(bytes: decrypted, encoding:String.Encoding.utf8)

If our one-time pad encryption truly works, we should be able to encrypt and decrypt

the same Unicode string without issue.

decryptOTP (keyPair: encryptOTP(original: ";j;Vamos Swift!"))

To further explore, try examining the two keys that make up the key pair produced by
encryptOTP ().

1.4. CALCULATING PI

The mathematically significant number pi (7t or 3.14159...) can be derived using many
formulas. One of the most simple is the Leibniz formula. It posits that the convergence

of the following infinite series is equal to pi:



n=4/1 - 4/3 + 4/5 - 4/7 + 4/9 - 4/11...

You will notice that the infinite series’ numerator remains 4 while the denominator
increases by 2, and the operation on the terms alternates between addition and

subtraction.

We can model the series in a straightforward way by translating pieces of the formula
into variables in a function. The numerator can be a constant 4. The denominator can
be a variable that begins at 1 and is incremented by 2. The operation can be represented
as either -1 or 1 based on whether we are adding or subtracting. Finally, the answer can

be collected in a variable where each term of the series is added.

func calculatePi (nTerms: UInt) -> Double {

let numerator: Double = 4

var denominator: Double = 1

var operation: Double = -1

var pi: Double = 0

for in 0..<nTerms {
pi += operation * (numerator / denominator)
denominator += 2
operation *= -1

}

return abs (pi)

Tip

The abs () function returns the absolute value (always positive) of a number.

This function is an example of how rote conversion between formula and programmatic
code can be both simple and effective in modeling or simulating an interesting concept.
Rote conversion is a useful tool, but we must keep in mind that it is not necessarily the
most efficient solution. Certainly the Leibniz formula for pi can be implemented with

more efficient or compact code.

Note

The more terms in the infinite series (the higher the value of nTerms when

calculatePi () is called), the more accurate the ultimate calculation of pi will be.



1.5. THE TOWERS OF HANOI

Three vertical pegs (henceforth “towers”) stand tall. We will label them A, B, and C.
Donut-shaped discs are around tower A. The widest disc is at the bottom, and we will
call it disc 1. The rest of the discs above disc 1 are labeled with increasing numerals and
get progressively narrower. For instance, if we were to work with three discs, the widest
disc, the one on the bottom, would be 1. The next widest disc, disc 2, would sit on top of
disc 1. And finally, the narrowest disc, disc 3, would sit on top of disc 2. Our goal is to

move all of the discs from tower A to tower C given the following constraints:

e Only one disc can be moved at a time.
e The topmost disc of any tower is the only one available for moving.

e A wider disc can never be atop a narrower disc.

Figure 1.7 summarizes the problem.

Figure 1.7. The challenge is to move the three discs, one at a time, from tower A to
tower C. A larger disc may never be on top of a smaller disc.
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1.5.1. Modeling the towers

A stack is a data structure that is modeled on the concept of Last-In-First-Out (LIFO).
The last thing put into it is the first thing that comes out of it. The two most basic
operations on a stack are push and pop. A push puts a new item into a stack, whereas a
pop removes and returns the last item put in. We can easily model a stack in Swift using

an Array as a backing store.

public class Stack<T>: CustomStringConvertible {

private var container: [T] = [T] ()
public func push(_ thing: T) { container.append(thing) }
public func pop() -> T { return container.removelLast () }
public var description: String { return container.description }
}
Note

This Stack class implements CustomStringConvertible so that we can easily
explore the contents of a tower. description is what will be output when print () is

applied to a stack.

Stacks are perfect stand-ins for the towers in The Towers of Hanoi. When we want to
put a disc onto a tower, we can just push it. When we want to move a disc from one

tower to another, we can pop it from the first and push it onto the second.

Let’s define our towers as Stacks and fill the first tower with discs.

var numDiscs = 3

var towerA = Stack<Int> ()

var towerB = Stack<Int> ()

var towerC = Stack<Int> ()

for 1 in 1...numDiscs { // initialize the first tower

towerA.push (i)

1.5.2. Solving The Towers of Hanoi

How can The Towers of Hanoi be solved? Imagine we were only trying to move 1 disc.
We would know how to do that, right? In fact, moving one disc is our base case for a

recursive solution to The Towers of Hanoi. The recursive case is moving more than 1



disc. Therefore, the key insight is that we essentially have two scenarios we need to
codify: moving 1 disc (the base case) and moving more than one disc (the recursive

case).

Let’s look at a specific example to understand the recursive case. Say we have three
discs (top, middle, and bottom) on tower A that we want to move to tower C (it may
help to sketch out the problem as you follow along). We could first move the top disc to
tower C. Then we could move the middle disc to tower B. Then we could move the top
disc from tower C to tower B. Now we have the bottom disc still on tower A and the
upper two discs on tower B. Essentially, we have now successfully moved two discs
from one tower (A) to another tower (B). Moving the bottom disc from A to C is our
base case (moving a single disc). Now we can move the two upper discs from B to C in
the same procedure that we did from A to B. We move the top disc to A, the middle disc
to C, and finally the top disc from A to C.

Tip

In a computer science classroom, it is not uncommon to see a little model of the towers
built using dowels and plastic donuts. You can build your own model using three

pencils and three pieces of paper. It may help you visualize the solution.

In our three-disc example, we had a simple base case of moving a single disc, and

recursive case of moving all of the other discs (two in this case), using the third tower

[ 3]
temporarily. We could break the recursive case into three steps:

3

“About the Towers of Hanoi,” in Surveying the Field of Computing by Carl Burch (1999), http:/mng.bz/c1i2.

1. Move the upper n-1 discs from tower A to B (the temporary tower) using C as

the in-between.
2. Move the single lowest disc from A to C.
3. Move the n-1 discs from tower B to C.

The amazing thing is that this recursive algorithm not only works for three discs, but
for any number of discs. We will codify it as a function called hanoi () thatis

responsible for moving discs from one tower to another, given a third temporary tower.



func hanoi (from: Stack<Int>, to: Stack<Int>, temp: Stack<Int>, n: Int) {

if n == 1 { // base case
to.push (from.pop()) // move 1 disk
} else { // recursive case

hanoi (from: from, to: temp, temp: to, n: n-1)
hanoi (from: from, to: to, temp: temp, n: 1)

hanoi (from: temp, to: to, temp: from, n: n-1)

After calling hanoi (), you should examine towers A, B, and C to verify that the discs

were moved successfully.

hanoi (from: towerA, to: towerC, temp: towerB, n: numDiscs)

print (towerA)

towerB)

(
(
print (
(

print (towezrC)

You will find that they were. In codifying the solution to the Towers of Hanoi, we did
not necessarily need to understand every step required to move multiple discs from
tower A to tower C. But we came to understand the general recursive algorithm for
moving any number of discs, and we codified it, letting the computer do the rest. This is
the power of formulating recursive solutions to problems—we often can think of
solutions in an abstract manner without the drudgery of negotiating every individual

action in our minds.

Incidentally, the hanoi () function will execute an exponential number of times, which
makes solving the problem for even 64 discs untenable. This is where the legend of the
Towers of Hanoi that you can read more about in any number of sources comes from.
You may also be interested in reading more about the mathematics behind its recursive
solution: See Carl Burch’s explanation in “About the Towers of Hanoi,”
http://mng.bz/c1i2.

1.6. REAL-WORLD APPLICATIONS

The various techniques presented in this chapter (recursion, memoization,
compression, and manipulation at the bit level) are so common in modern software
development that it is impossible to imagine the world of computing without them.
Although problems can be solved without them, it is often more logical or performant

to solve problems with them.

Recursion, in particular, is at the heart of not just many algorithms, but even whole



programming languages. In some functional programming languages, like Scheme and
Haskell, recursion takes the place of loops in procedural languages. It is worth
remembering, though, that anything accomplishable with a recursive technique is also

accomplishable with an iterative technique.

Memoization has been applied successfully to speed up the work of parsers (programs
that interpret languages). It is useful in all fields where the result of a recent calculation
will likely be asked for again. Another application of memoization is in language
runtimes. Some language runtimes (versions of Prolog, for instance) will store the
results of function calls automatically (auto-memoization), so that the function need

not execute the next time the same call is made.

Compression has made an internet-connected world constrained by bandwidth more
tolerable. The bit-string technique examined in section 1.2 is usable for real-world
simple data types that have a limited number of possible values for which even a byte is
overkill. The majority of compression algorithms, however, operate by finding patterns
or structure within a data set that allow for repeated information to be eliminated. They

are significantly more complicated than what is covered in section 1.2.

One-time pads are not practical for general encryption. They require both the encrypter
and the decrypter to have possession of one of the same keys (the dummy data in our
example) for the original data to be reconstructed, which is cumbersome and defeats
the goal of most encryption schemes (keeping keys secret). But you may be interested to
know that the name “one-time pad” comes from spies using real paper pads with

dummy data on them to create encrypted communications during the Cold War.

These techniques are programmatic building blocks that other algorithms are built on

top of. In future chapters you will see them applied liberally.

1.7. EXERCISES

1. Write yet another function that solves for element n of the Fibonacci sequence using
a technique of your own design. Write unit tests that evaluate its correctness and
performance relative to the other versions in this chapter.

2. The Core Foundation construct CFMutableBitVector used in section 1.2 hasa C
API. Write an ergonomic Swift wrapper around it. Reimplement CompressedGene
using the wrapper.

3. Write a solver for The Towers of Hanoi that works for any number of towers.

4. Use a one-time pad to encrypt and decrypt images.



Chapter 2. Search problems

“Search” is such a broad term that this entire book could be called “Classic Search
Problems in Swift.” This chapter is about core search algorithms that every
programmer should know. It does not claim to be comprehensive, despite the

declaratory title.

2.1. DNA SEARCH

Genes are commonly represented in computer software as a sequence of the characters
A, C, G, and T. Each letter represents a nucleotide, and the combination of three
nucleotides is called a codon. This is illustrated in figure 2.1. A codon codes for a specific
amino acid that together with other amino acids can form a protein. A classic task in

bioinformatics software is to find a particular codon within a gene.

Figure 2.1. A nucleotide is represented by one of the letters A, C, G, and T. A codon
is composed of three nucleotides, and a gene is composed of multiple codons.
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We can represent a nucleotide as a simple enum with four cases.



enum Nucleotide: Character, Comparable {
case A = "All, C = HC", G = "G", T = "T"

Nucleotide needs to implement the Comparable interface so that Nucleotides
can be put in order. An entity that implements Comparable must override the <
operator. This can be done either as a freestanding function, or as a static method

inside the Comparable entity.

Here, we implement < as a freestanding function by comparing one Nucleotide’s raw

Character value against another’s. Character has a built-in alphabetical ordering.

func < (lhs: Nucleotide, rhs: Nucleotide) -> Bool {

return lhs.rawValue < rhs.rawValue

Codons can be defined as a tuple of three Nucleotides. And finally, a gene may be

defined as an array of Codons.

typealias Codon = (Nucleotide, Nucleotide, Nucleotide)
typealias Gene = [Codon]
Note

Although we will later need to compare one Codon to another, we do not need to define
the < operator for Codon. This is because Swift 2.2 introduced a generic

implementation of < for any tuple type that contains elements of type Comparable.

Typically, genes that you find on the internet will be in a file format that contains a
giant string representing all of the nucleotides in the gene’s sequence. We will define

such a string for an imaginary gene and call it geneSequence.

let geneSequence = "ACGTGGCTCTCTAACGTACGTACGTACGGGGTTTATATATACCCTAGGACTCCC!

4 »

We will also need a utility function to convert a String into a Gene.



func stringToGene( s: String) -> Gene {

var gene = Gene ()
for i in stride(from: 0, to: s.count, by: 3) {
guard (i + 2) < s.count else { return gene }
if let nl = Nucleotide.init (rawValue: s[s.index(s.startIndex,
offsetBy: 1)]), let n2 = Nucleotide.init (rawValue:
s[s.index (s.startIndex, offsetBy: i + 1)]), let n3 =
Nucleotide.init (rawValue: s[s.index(s.startIndex,
offsetBy: 1 + 2)]1) {
gene.append((nl, n2, n3))

}

return gene

stringToGene () continually goes through the provided st ring and converts its next
three characters into Codons that it adds to the end of a new Gene. If it finds that there
is no Nucleotide two places into the future of the current place in s that it is
examining (see the guard statement within the loop), then it knows it has reached the

end of an incomplete gene, and it skips over those last one or two nucleotides.

stringToGene () can be used to convert the String geneSequence into a Gene.

var gene = stringToGene (geneSequence)

2.1.2. Linear search

One basic operation we may want to perform on a gene is to search it for a particular

codon. The goal is to simply find out whether the codon exists within the gene or not.

A linear search goes through every element in a search space, in the order of the
original data structure, until what is sought is found or the end of the data structure is
reached. In effect, a linear search is the most simple, natural, and obvious way to search
for something. In the worst case, a linear search will require going through every
element in a data structure, so it is of O(n) complexity, where n is the number of

elements in the structure. This is illustrated in figure 2.2.

Figure 2.2. In the worst case of a linear search, you’ll sequentially look through
every element of the array.
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It is trivial to define a function that performs a linear search. It simply must go through
every element in a data structure and check for its equivalence to the item being sought.
The following code defines such a function for a Gene and a Codon and then tries it out

for gene and a Codon called acg.

func linearContains(_ array: Gene, item: Codon) -> Bool ({
for element in gene where item == element ({
return true

}

return false

let acg: Codon = (.A, .C, .G)

linearContains (gene, item: acq)

Note

The built-in Swift method on Sequence called contains () does a linear search and
returns t rue if the element in question is found or false if it is not. It should be

preferred to writing your own linear search function in most circumstances.

2.1.3. Binary search

There is a faster way to search than looking at every element, but it requires us to know
something about the order of the data structure ahead of time. If we know that the
structure is sorted, and we can instantly access any item within it by its index, then we
can perform a binary search. Based on this criteria, a sorted Swift Array is a perfect

candidate for a binary search.

A binary search works by looking at the middle element in a sorted range of elements,
comparing it to the element sought, and then reducing the range by half based on that

comparison, and starting the process over again. Let’s look at a concrete example.



Suppose we have an Array of alphabetically sorted words like ["cat™, "dog",
"kangaroo", "llama", "rabbit", "rat", "zebra"] and we are searching for

the word “rat”:
1. We could determine that the middle element in this seven-word list is “llama.”

2. We could determine that “rat” comes after “llama” alphabetically, so it must be
in the approximately half of the list that comes after “llama.” (If we had found “rat”
in this step, we could have returned its location, or if we had found that our word
came before the middle word we were checking, we could be assured that it was in

the approximately half of the list before “llama.”)

3. We could rerun steps 1 and 2 for the half of the list that we know “rat” is still
possibly in. In effect, this half becomes our new base list. Steps 1 through 3
continually run until “rat” is found or the range we are looking in no longer

contains any elements to search, meaning “rat” does not exist within the word list.

Figure 2.3 illustrates a binary search. Notice that it does not involve searching every

element, unlike a linear search.

Figure 2.3. In the worst case of a binary search, you’ll look through just lg(n)
elements of the array.
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A binary search continually reduces the search space by half, so it has a worst-case
runtime of O(lg n). There is a sort-of catch, though. Unlike a linear search, a binary
search requires a sorted data structure to search through. Sorting takes time. In fact,
sorting takes O(n Ig n) time for the best sorting algorithms. If we are only going to run
our search once, and our original data structure is unsorted, it probably makes sense to
just do a linear search. However, if the search is going to be performed many times, the
time cost of doing the sort itself is worth it to reap the benefit of the greatly reduced

time cost of each individual search.

Writing a binary search function for a gene and a codon is not unlike writing one for
any other type of data, because the Codon type can be compared to others of its type,

and the Gene type is just an Array.



func binaryContains(_ array: Gene, item: Codon) -> Bool ({

var low = 0
var high = array.count - 1
while low <= high {

let mid = (low + high) / 2

if array[mid] < item {
low = mid + 1

} else if array[mid] > item {
high = mid - 1

} else {

return true

}

return false

Let’s walk through this function line by line.

var low = 0

var high = array.count - 1

We start by looking at a range that encompasses the entire array.

while low <= high {

We keep searching as long as there is a still a range to search within. When 1ow is
greater than high, it means that there are no longer any slots to look at within the

array.

let mid = (low + high) / 2

We calculate the middle, mi d, by using integer division and the simple mean formula

you learned in grade school.

if array[mid] < item {

low = mid + 1

If the element we are looking for is after the middle element of the range we are looking
at, then we modify the range that we will look at during the next iteration of the loop by
moving 1ow to be one past the current middle element. This is where we halve the

range for the next iteration.



else if array[mid] > item {
high = mid - 1

Similarly, we halve in the other direction when the element we are looking for is less

than the middle element.

else {

return true

If the element in question is not less than or greater than the middle element, that
means we found it! And, of course, if the loop ran out of iterations, we return false

(not reproduced here), indicating that it was never found.

We can try running our function with the same gene and codon, but we must remember

to sort first:

let sortedGene = gene.sorted(by: <)

binaryContains (sortedGene, item: acgqg)

2.1.4. A generic example

The functions 1inearContains () and binaryContains () can be generalized to
work with any type that implements Comparable. These generalized versions are

nearly identical to the versions you saw before, with only their type signatures changed.

Note

As of Swift 4.0, tuples cannot be made to explicitly implement Comparable, so our

prior types Gene and Codon cannot be used with these generic implementations.

func linearContains<T: Equatable>(_ array: [T], item: T) -> Bool {
for element in array where item == element {
return true
}

return false

func binaryContains<T: Comparable>( array: [T], item: T) -> Bool {



var low = 0
var high = array.count - 1
while low <= high {
let mid = (low + high) / 2
if array[mid] < item {
low = mid + 1
} else if array[mid] > item {
high = mid - 1
} else {

return true

}

return false

Now you can try doing searches on other types of data.

linearContains ([1,5,15,15,15,15,15], item: 5)

binaryContains(["a", "d", neu, nfn, "g"J, item: "f")

2.2. MAZE SOLVING

Finding a path through a maze is analogous to many common search problems in
computer science. Why not literally find a path through a maze then, to illustrate the

breadth-first search, depth-first search, and A* algorithms?

Our maze will be a two-dimensional array of Ce11. A Cel1 is an enum with raw
Character values where O will represent an empty space and X will represent a
blocked space. There are also various other cases for illustrative purposes when

printing a maze.

// A Cell represents the status of a grid location in the maze

enum Cell: Character {

case Empty = "O"
case Blocked = "X"
case Start = "S"
case Goal = "G"
case Path = "p"

typealias Maze [[Cell]]

2.2.1. Generating a random maze

The maze that is generated should be fairly sparse so that there is almost always a path

from a given starting node to a given ending node (this is for testing our algorithms,



after all). We'll let the caller of generateMaze () decide on the exact sparseness.
When a random number beats the threshold of the sparseness parameter in
question, we’ll simply replace an empty space with a wall. If we do this for every
possible place in the maze, statistically the sparseness of the maze as a whole will

approximate the sparseness parameter supplied.

srand48 (time(nil)) // seed random number generator

// sparseness is the approximate percentage of walls represented
// as a number between 0 and 1
func generateMaze (rows: Int, columns: Int, sparseness: Double) -> Maze {
// initialize maze full of empty spaces
var maze: Maze = Maze (repeating: [Cell] (repeating: .Empty, count:
columns), count: rows)
// put walls in
for row in 0..<rows {
for col in 0..<columns {
if drand48() < sparseness { //chance of wall

maze[row] [col] = .Blocked

}

return maze

Now that we have a maze, we also want a way to print it succinctly to the console. We

want its characters to be close together so it looks like a real maze.

func printMaze( maze: Maze) {
for i in 0..<maze.count ({

print (String (maze[i] .map{ $0.rawValue }))

Go ahead and test these maze functions.

var maze = generateMaze (rows: 10, columns: 10, sparseness: 0.2)

printMaze (maze)

2.2.2. Miscellaneous maze minutiae

We'll need a way to refer to an individual location in the maze. This could be a tuple of
row and column, but later we will want to store a maze location in data structures that

require their keys to be Hashable. Instead, therefore, we will define a custom struct



for maze locations (tuples do not conform and cannot be made to conform to

Hashable). All Hashable conforming types must also implement the == operator.

struct Mazelocation: Hashable {
let row: Int
let col: Int

var hashValue: Int { return row.hashValue * col.hashValue }
}
func == (lhs: MazeLocation, rhs: MazeLocation) -> Bool {

return lhs.row == rhs.row && lhs.col == rhs.col

It will be handy later to have a function that checks whether we have reached our goal
during the search. In other words, we want to check whether a particular
MazeLocation that the search has reached is the goal. We'll arbitrarily define the goal

as always being at location 9, 9 for now.

let goal = MazeLocation(row: 9, col: 9)
func goalTest (ml: Mazelocation) -> Bool {
return ml == goal

How can one move within our mazes? Let’s say that one can move horizontally and
vertically one space at a time from a given space in the maze. Using these criteria, a
successors () function can find the possible next locations from a given
MazeLocation. However, the successors () function will differ for every Maze
because every Maze has a different size and set of walls. Therefore, we will define a
successorsForMaze () function that returns an appropriate successors ()

function for the Maze in question.

func successorsForMaze (_ maze: Maze) -> (MazeLocation) -> [MazeLocation] ({
func successors(ml: MazelLocation) -> [MazelLocation] { //no diagonals

var newMLs: [MazelLocation] = [MazeLocation] ()

if (ml.row + 1 < maze.count) && (maze[ml.row + 1] [ml.col] != .Blocked)

newMLs.append (MazeLocation(row: ml.row + 1, col: ml.col))

}

if (ml.row - 1 >= 0) && (maze[ml.row - 1][ml.col] != .Blocked) {
newMLs.append (MazeLocation(row: ml.row - 1, col: ml.col))

}

if (ml.col + 1 < maze[0].count) && (maze[ml.row][ml.col + 1] != .Block

newMLs.append (MazeLocation(row: ml.row, col: ml.col + 1))

}
if (ml.col - 1 >= 0) && (maze[ml.row] [ml.col - 1] != .Blocked) {

newMLs.append (MazeLocation(row: ml.row, col: ml.col - 1))



return newMLs

return successors

successors () simply checks above, below, to the right, and to the left of a
MazeLocation in a Maze to see if it can find empty spaces that can be gone to from
that location. It also avoids checking locations beyond the edges of the Maze. Every
possible Mazelocation that it finds it puts into an array that it ultimately returns to

the caller.

The pattern of successors (), a function returning a function, is unusual in
Objective-C and in most pure object-oriented programming languages, but it is
common in functional languages. The inner function captures data from the outer
function. In this case, successors () captures maze from successorsForMaze ().
Such a pattern can sometimes be confusing to implement, but ultimately it can offer
more convenience for the user of an API. An alternative, equally convenient pattern
would be to create a Maze class (instead of using a raw typealias) and add a
successors () method to it. Neither approach is inherently wrong or right. The fact
that both are possible in Swift shows its flexibility and that it straddles both the

functional and object-oriented worlds.

2.2.3. Depth-first search

A depth-first search (DFS) is what its name suggests—a search that goes as deeply as it
can before backtracking to its last decision point if it reaches a dead end. We will

implement a generic depth-first search that can solve our maze problem. It will also be
reusable for other problems. Figure 2.4 illustrates an in-progress depth-first search of a

maze.

Figure 2.4. In depth-first search, the search proceeds along a continuously deeper
path until it hits a barrier and must backtrack to the last decision point.
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The depth-first search algorithm relies on a data structure known as a stack. (If you
read about stacks in chapter 1, feel free to skip this section). A stack is a data structure
that operates under the Last-In-First-Out (LIFO) principle. Imagine a stack of papers.
The last paper placed on top of the stack is the first paper pulled off the stack. It is
common for a stack to be implemented on top of a more primitive data structure like a

linked list. We will implement our stack on top of Swift’s Array type.
Stacks generally have at least two operations:

e push () —Places an item on top of the stack

* pop () —Removes the item on the top of the stack and returns it

We will implement both of these, as well as an i sEmpty property to check if the stack

[ 1]
has any more items in it.

1

These examples are based on prior code I wrote for the SwiftGraph open source project:
https://github.com/davecom/SwiftGraph.



public class Stack<T> {
private var container: [T] = [T] ()
public var isEmpty: Bool { return container.isEmpty }
public func push(thing: T) { container.append(thing) }

public func pop() -> T { return container.removelast() }

Note that implementing a stack using a Swift Array is as simple as always appending
items onto its right end, and always removing items from its extreme right end. The
removeLast () method on Array will fail if there are no longer any items in the array,

so pop () will fail on a Stack if it is empty as well.
The DFS algorithm

We will need one more little tidbit before we can get to implementing DFS. We need a
Node class that will be used to keep track of how we got from one state to another state
(or from one place to another place) as we search. You can think of a Node as a wrapper
around a state. In the case of our maze-solving problem, those states are of type
MazeLocation. We'll call the Node that a state came from its parent. We will also
define our Node class as having cost and heuristic properties and as being

Comparable and Hashable, so we can reuse it later in the A* algorithm.

class Node<T>: Comparable, Hashable {

let state: T

let parent: Node?

let cost: Float

let heuristic: Float

init (state: T, parent: Node?, cost: Float = 0.0, heuristic: Float = 0.
self.state = state
self.parent = parent
self.cost = cost

self.heuristic = heuristic

var hashValue: Int { return Int (cost + heuristic) }

func < <T>(lhs: Node<T>, rhs: Node<T>) -> Bool {

return (lhs.cost + lhs.heuristic) < (rhs.cost + rhs.heuristic)

func == <T>(lhs: Node<T>, rhs: Node<T>) -> Bool {

return lhs === rhs



An in-progress depth-first search needs to keep track of two data structures: the stack
of states (or “places”) that we are considering searching, which we will call the
frontier; and the set of states that we have already searched, which we will call
visited. As long as there are more states to visit in the frontier, DFS will keep
checking whether they are the goal (if a state is the goal, it will stop and return it) and
adding their successors to the frontier. It will also mark each state that has already been
searched as visited, so that it does not get caught in a circle, reaching states that have
prior visited states as successors. If the frontier is empty, it means there is nowhere left

to search.

func dfs<StateType:
Hashable>(initialState: StateType, goalTestFn: (StateType)
-> Bool, successorFn: (StateType) -> [StateType]) -> Node<StateType>? ({
// frontier is where we've yet to go
let frontier: Stack<Node<StateType>> = Stack<Node<StateType>> ()
frontier.push (Node (state: initialState, parent: nil))
// explored is where we've been
var explored: Set<StateType> = Set<StateType>()

explored.insert (initialState)

// keep going while there is more to explore
while !frontier.isEmpty {
let currentNode = frontier.pop ()
let currentState = currentNode.state
// if we found the goal, we're done
if goalTestFn (currentState) { return currentNode }
// check where we can go next and haven't explored
for child in successorFn (currentState) where
lexplored.contains (child) {
explored.insert (child)

frontier.push (Node (state: child, parent: currentNode))

}

return nil // never found the goal

If dfs () is successful, it returns the Node encapsulating the goal state. The path from
the start to the goal can be reconstructed by working backward from this Node and its

priors using the parent property.

func nodeToPath<StateType>(_ node: Node<StateType>) -> [StateType] {
var path: [StateType] = [node.state]
var node = node // local modifiable copy of reference
// work backwards from end to front
while let currentNode = node.parent {

path.insert (currentNode.state, at: 0)



node = currentNode

}

return path

For display purposes, it will be useful to mark up the maze with the successful path, the

start state, and the goal state.

func markMaze( maze: inout Maze, path: [MazeLocation], start: MazeLocatio
goal: MazeLocation) {

for ml in path {

maze[ml.row] [ml.col] = .Path
}
maze[start.row] [start.col] = .Start
maze[goal.row] [goal.col] = .Goal
}
4 »
Note

inout indicates that the original object passed as maze will be modified by

markMaze () instead of simply being copied into a temporary variable within
markMaze () and forgotten about. At optimization time, inout is analogous to “call by
reference” in other programming languages. To be clear—markMaze () modifies the
original maze it is passed. The changes that are made to that maze will persist after the
function ends. At call time, inout arguments are passed with a preceding ampersand,

&.

It has been a long journey, but we are finally ready to solve the maze.

let start = MazeLocation(row: 0, col: 0)
if let solution = dfs(initialState: start, goalTestFn: goalTest, successor
successorsForMaze (maze)) {

let path = nodeToPath (solution)
markMaze (&émaze, path: path, start: start, goal: goal)

printMaze (maze)

A successful solution will look something like this:



SPX0000X00
OPPPPPPPPO
XO000000OPO
OO000OXPPPPX
OXXOXPXOXO
OXPPPPOOOO
PPPXXX0O00X
POOOXO0O00X
PPPPPPPPPP
000X00000G

Remember, because each maze is randomly generated, not every maze has a solution.

2.2.4. Breadth-first search

You may notice that the solution paths to the mazes found by depth-first traversal seem
unnatural. They are usually not the shortest paths. Breadth-first search (BFS) always
finds the shortest path by systematically looking one layer of nodes further away from
the start state each iteration of the search. There are particular problems in which a
depth-first search is likely to find a solution prior to a breadth-first search, and vice
versa. Therefore, choosing between the two is sometimes a trade-off between the
possibility of finding a solution quickly and the certainty of finding the shortest path to
the goal (if one exists). Figure 2.5 illustrates an in-progress breadth-first search of a

maze.

Figure 2.5. In a breadth-first search, the closest elements to the starting location
are searched first.
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breadth-first search, imagine looking for a marking on a particular layer of an onion. A
searcher using a depth-first strategy may plunge a knife into the center of the onion and
haphazardly examine the chunks cut out. If the marked layer happens to be near the
chunk cut out, there is a chance that the searcher will find it more quickly than another
searcher using a breadth-first strategy who painstakingly peels back the onion one layer

at a time.

To get a better picture of why breadth-first search always finds the shortest solution
path where one exists, consider trying to find the path with the fewest number of stops
between Boston and New York by train. If you keep going in the same direction and
backtracking when you hit a dead end (as in depth-first search), you may first find a
route all the way to Seattle before it connects back to New York. However, in a breadth-
first search, you will first check all of the stations one stop away from Boston. Then you
will check all of the stations two stops away from Boston. Then you will check all of the
stations three stops away from Boston. This will keep going until you find New York.
Therefore, when you do find New York, you will know you have found the route with
the fewest stops, because you already checked all of the stations that are fewer stops

away from Boston, and none of them were New York.

Queues



To implement BFS, a data structure known as a queue is required. Whereas a stack is
LIFO, a queue is FIFO—First-In-First-Out. A queue is like a line to use a restroom. The
first person who got in line goes to the restroom first. At a minimum, a queue has the

same push () and pop () methods as a stack. In fact, our implementation for Queue

(backed by a Swift Array) is almost identical to our implementation of Stack, with the

only change being the removal of elements from the left end of the Array instead of the

right end. The elements on the left end are the oldest elements still in the Array (in

[2]
terms of arrival time), so they are the first elements popped.

These examples are based on prior code I wrote for the SwiftGraph open source project:
https://github.com/davecom/SwiftGraph.

public class Queue<T> {
private var container: [T] = [T] ()
public var isEmpty: Bool { return container.isEmpty }
public func push(thing: T) { container.append(thing) }

public func pop() -> T { return container.removeFirst() }

The BFS algorithm

Amazingly, the algorithm for a breadth-first search is identical to the algorithm for a
depth-first search, with the frontier changed from a stack to a queue. Changing the
frontier from a stack to a queue changes the order in which states are searched and

ensures that the states closest to the start state are searched first.

func bfs<StateType:
Hashable>(initialState: StateType, goalTestFn: (StateType)
-> Bool, successorfn: (StateType) -> [StateType]) -> Node<StateType>?
// frontier 1s where we've yet to go
let frontier: Queue<Node<StateType>> = Queue<Node<StateType>> ()
frontier.push (Node (state: initialState, parent: nil))
// explored is where we've been
var explored: Set<StateType> = Set<StateType>()
explored.insert(initialState)
// keep going while there is more to explore
while !frontier.isEmpty {
let currentNode = frontier.pop ()
let currentState = currentNode.state
// 1f we found the goal, we're done
if goalTestFn(currentState) { return currentNode }
// check where we can go next and haven't explored
for child in successorFn (currentState) where
lexplored.contains (child) {

explored.insert (child)

{



frontier.push (Node (state: child, parent: currentNode))

}

return nil // never found the goal

If you try running bfs (), you will find it always finds the shortest solution to the maze

in question.

var maze?2 = generateMaze (rows: 10, columns: 10, sparseness: 0.2)
if let solution = bfs(initialState: start, goalTestFn: goalTest, successor
successorsForMaze (maze2)) {

let path = nodeToPath (solution)
markMaze (&maze2, path: path, start: start, goal: goal)

printMaze (maze?2)

2.2.5. A* search

It can be very time consuming to peel back an onion, layer-by-layer, as a breadth-first
search does. Like a BFS, an A* search aims to find the shortest path from a start state to
a goal state. Unlike the preceding BFS implementation, an A* search uses a
combination of a cost function and a heuristic function to focus its search on pathways

most likely to get to the goal quickly.

The cost function, g(n), examines the cost to get to a particular state. In the case of our
maze, this would be how many previous steps we had to go through to get to the state in
question. The heuristic function, h(n), gives an estimate of the cost to get from the state
in question to the goal state. It can be proven that if h(n) is an admissible heuristic,
then the final path found will be optimal. An admissible heuristic is one that never

overestimates the cost to reach the goal. (On a two-dimensional plane, one example is a

[3]
straight-line distance heuristic, because a straight line is always the shortest path.)

For more information on heuristics, see Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern

Approach, third edition (Pearson, 2010), page 94.

The total cost for any state being considered is f(n), which is simply the combination of
g(n) and h(n). In fact, f(n) = g(n) + h(n). When choosing the next state to explore off of
the frontier, A* search picks the one with the lowest f(n). This is how it distinguishes
itself from BFS and DFS.



Priority queues

To pick the state on the frontier with the lowest f(n), an A* search uses a priority queue
as the data structure for its frontier. A priority queue keeps its elements in an internal
order, such that the first element popped out is always the highest priority element (in
our case, the highest priority item is the one with the lowest f(n)). Usually this means

the internal use of a binary heap, which results in O(Ig n) pushes and O(Ig n) pops.

Although the standard libraries of many modern programming languages contain a
built-in priority queue, Swift’s does not. We will not implement a priority queue from

scratch. Instead we will utilize the open source project SwiftPriorityQueue, which I

[ 4]
built.

These examples are based on prior code I wrote for the SwiftPriorityQueue open source project:
https://github.com/davecom/SwiftPriorityQueue.

To determine the priority of a particular element versus another of its kind,
SwiftPriorityQueue requires that the type of its elements implements the Swift standard
library protocol Comparable. This is why the Node class was defined as Comparable
and therefore had to implement the < operator. A Node is compared to another by
looking at its respective f(n), which is simply the sum of the properties cost and

heuristic.

Heuristics

A heuristic is an intuition about the way to solve a problern.[ > In the case of maze
solving, a heuristic aims to choose the best maze location to search next, in the quest to
get to the goal. In other words, it is an educated guess about which nodes on the
frontier are closest to the goal. As was mentioned previously, if a heuristic used with an
A* search produces an accurate relative result and is admissible (never overestimates
the distance), then A* will deliver the shortest path. Heuristics that calculate smaller
values end up leading to a search through more states, whereas heuristics closer to the
exact real distance (but not over it, which would make them inadmissible) lead to a
search through fewer states. Therefore, ideal heuristics come as close to the real

distance as possible without ever going over it.

For more about heuristics for A* pathfinding, check out the “Heuristics” chapter in Amit Patel's Amit’s Thoughts
on Pathfinding, http://mng.bz/z704.

Euclidean distance



As we learn in geometry, the shortest path between two points is a straight line. It
makes sense, then, that a straight-line heuristic will always be admissible for the maze-
solving problem. The Euclidean distance, derived from the Pythagorean theorem, states
that distance =V ((difference in x) ’ + (difference in vy) 2) . For our
mazes, the difference in x is equivalent to the difference in columns of two maze

locations, and the difference in y is equivalent to the difference in rows.

func euclideanDistance (ml: MazelLocation) -> Float {
let xdist = ml.col - goal.col
let ydist
return sqgrt(Float ((xdist * xdist) + (ydist * ydist)))

ml.row - goal.row

Figure 2.6 illustrates Euclidean distance within the context of a grid, like the streets of
Manhattan.

Figure 2.6. Euclidean distance is the length of a straight line from the starting
point to the goal.

Manhattan distance

Euclidean distance is great, but for our particular problem (a maze in which you can
move only in one of four directions) we can do even better. The Manhattan distance is
derived from navigating the streets of Manhattan, the most famous of New York City’s
boroughs, which is laid out in a grid pattern. To get from anywhere to anywhere in
Manhattan, one needs to walk a certain number of horizontal blocks and a certain
number of vertical blocks (there are almost no diagonal streets in Manhattan). The
Manhattan distance is derived by simply finding the difference in rows between two
maze locations and summing it with the difference in columns. Figure 2.7 illustrates

Manhattan distance.



func manhattanDistance (ml: MazelLocation) -> Float ({
let xdist = abs(ml.col - goal.col)
let ydist = abs(ml.row - goal.row)
return Float (xdist + ydist)

Figure 2.7. In Manhattan distance, there are no diagonals. The path must be along
parallel or perpendicular lines.

Because this heuristic more accurately follows the actuality of navigating our mazes
(moving vertically and horizontally instead of in diagonal straight lines), it comes closer
to the actual distance from any maze location to the goal than Euclidean distance does.
Therefore, when an A* search is coupled with Manhattan distance, it will result in
searching through fewer states than when an A* search is coupled with Euclidean
distance for our mazes. Solution paths will still be optimal, because Manhattan distance
is admissible (never overestimates distance) for mazes in which only four directions of

movement are allowed.
The A* algorithm

To go from BFS to A* search, we need to make several small modifications. The first is
changing the frontier from a queue to a priority queue. Now the frontier will pop nodes
with the lowest f(n). The second is changing the explored set to a dictionary. A
dictionary will allow us to keep track of the lowest cost (g(n)) of each node we may visit.
With the heuristic function now at play, it is possible some nodes may be visited twice if
the heuristic is inconsistent. If the node found through the new direction has a lower

cost to get to than the prior time we visited it, we will prefer the new route.

For the sake of simplicity, the function astar () does not take a cost-calculation

function as a parameter. Instead, we just consider every hop in our maze to be a cost of



1. Each new Node gets assigned a cost based on this simple formula, as well as a
heuristic score using a new function passed as a parameter to the search function called

heuristicFn (). Other than these changes, astar () is remarkably similartobfs ().

[ 6]
Examine them side by side for comparison.

These examples are based on prior code I wrote for the SwiftPriorityQueue open source project:
https://github.com/davecom/SwiftPriorityQueue.

func astar<StateType:
Hashable>(initialState: StateType, goalTestFn: (StateType)
-> Bool, successorfFn: (StateType) -> [StateTypel,
heuristicFn: (StateType) -> Float) -> Node<StateType>? {
// frontier is where we've yet to go
var frontier: PriorityQueue<Node<StateType>> =
PriorityQueue<Node<StateType>> (ascending:
true, startingValues: [Node(state: initialState, parent:
nil, cost: 0, heuristic: heuristicFn(initialState))])
// explored is where we've been

var explored = Dictionary<StateType, Float>()

explored[initialState] = 0
// keep going while there is more to explore
while let currentNode = frontier.pop() {

let currentState = currentNode.state

// 1if we found the goal, we're done
if goalTestFn (currentState) { return currentNode }
// check where we can go next and haven't explored
for child in successorFn (currentState) {
let newcost = currentNode.cost + 1 //1 assumes a grid, there
should be a cost function for more sophisticated applications
if (explored[child] == nil) || (explored[child]! > newcost) {
explored[child] = newcost
frontier.push (Node (state: child, parent: currentNode,
cost: newcost, heuristic: heuristicFn (child)))

}

}

return nil // never found the goal

Congratulations. If you have followed along this far, you have not only learned how to
solve a maze, but also some generic search functions that you can use in many different
search applications. DFS and BFS are suitable for many smaller data sets and state
spaces where performance is not critical. In some situations, DFS will outperform BFS,
but BFS has the advantage of always delivering an optimal path. Interestingly, BFS and

DFS have identical implementations, only differentiated by the use of a queue instead



of a stack for the frontier. The slightly more complicated A* search, coupled with a
good, consistent, admissible heuristic, not only delivers optimal paths but also far

outperforms BFS.

Go ahead and try out astar ().

var maze3 = generateMaze (rows: 10, columns: 10, sparseness: 0.2)

if let solution = astar(initialState: start, goalTestFn: goalTest,
successorfFn: successorsForMaze (maze3), heuristicFn: manhattanDistance)
let path = nodeToPath(solution)
markMaze (&maze3, path: path, start: start, goal: goal)

printMaze (maze3)

2.3. MISSIONARIES AND CANNIBALS

Three missionaries and three cannibals are on the west bank of a river. They have a
canoe that can hold two people, and they all must cross to the east bank of the river.
There may never be more cannibals than missionaries on either side of the river or the
cannibals will eat the missionaries. Further, the canoe must have at least one person on
board to cross the river. What sequence of crossings will successfully take the entire
party across the river? Figure 2.8 illustrates the problem.

Figure 2.8. The missionaries and cannibals must use their single canoe to take

everyone across the river from west to east. If the cannibals ever outnumber the
missionaries, they will eat them.
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2.3.1. Representing the problem

We will represent the problem by having a structure that keeps track of the west bank.
How many missionaries and cannibals are on the west bank? Is the boat on the west
bank? Once we have this knowledge, we can figure out what is on the east bank,

because anything not on the west bank is on the east bank.

First, we will create a little convenience variable for keeping track of the maximum

number of missionaries or cannibals. Then we will define the main structure.

let maxNum = 3 // max number of missionaries or cannibals

struct MCState: Hashable, CustomStringConvertible {
let missionaries: Int
let cannibals: Int
let boat: Bool
var hashValue: Int { return missionaries * 10 + cannibals + (boat ? 10
: 2000) 1}

var description: String {



let wm = missionaries // west bank missionaries

let wc = cannibals // west bank cannibals

let em = maxNum - wm // east bank missionaries

let ec = maxNum - wc // east bank cannibals

var description = "On the west bank there are \ (wm) missionaries a:

\ (wc) cannibals.\n"

description += "On the east bank there are \ (em) missionaries and
\ (ec) cannibals.\n"

description += "The boat is on the \ (boat ? "west" : "east") bank.

return description

func ==(lhs: MCState, rhs: MCState) -> Bool {
return lhs.hashValue == rhs.hashValue

The struct MCState implements Hashable and CustomStringConvertible. It
implements Hashable because we want to be able to use it within the framework of
our existing search functions and because we want to be able to distinguish one state
from another. It implements CustomStringConvertible because we want to be

able to print out a nicely formatted description of a given state in our program.

Working within the confines of our existing search functions means that we must define
a function for testing whether a state is the goal state and a function for finding the
successors from any state. The goal test function, as in the maze-solving problem, is
quite simple. The goal is simply when there are no longer any people on the west bank

of the river.

func goalTestMC (state: MCState) -> Bool {

return state == MCState (missionaries: 0, cannibals: 0, boat: false)

To create a successors function, it is necessary to go through all of the possible moves
that can be made from one bank to another, and then check if each of those moves will
result in a legal state. Recall that a legal state is one in which cannibals do not
outnumber missionaries on either bank. To determine this, we can define a

convenience function that checks if a state is legal.

func isLegalMC (state: MCState) -> Bool {

let wm = state.missionaries // west bank missionaries
let wc = state.cannibals // west bank cannibals
let em = maxNum - wm // east bank missionaries

let ec = maxNum - wc // east bank cannibals



// check there's not more cannibals than missionaries

if wm < we && wm > 0 { return false }

if em < ec && em > 0 { return false }

return true

The actual successors function is a bit verbose for the sake of clarity. It tries adding

every possible combination of one or two people moving across the river from the bank

where the canoe currently resides. Once it has added all possible moves, it filters for the

ones that are actually legal.

func successorsMC (state: MCState) ->

[MCState]

{

let wm = state.missionaries // west bank missionaries
let wc = state.cannibals // west bank cannibals

let em = maxNum - wm // east bank missionaries

let ec = maxNum - wc // east bank cannibals

var sucs: [MCState] = [MCState] () // next states

if state.boat { // boat on west bank
if wm > 1 {

sucs.append (MCState (missionaries:

!state.boat))

if wm > 0 {

sucs.append (MCState (missionaries:

!state.boat))

if we > 1 {

sucs.append (MCState (missionaries:

!state.boat))

if we > 0 {

sucs.append (MCState (missionaries:

!state.boat))

if (wec > 0) && (wm > 0){

sucs.append (MCState (missionaries:

!state.boat))

{ // boat on east bank
if em > 1 {

} else

sucs.append (MCState (missionaries:

!state.boat))

if em > 0 {

sucs.append (MCState (missionaries:

!state.boat))

if ec > 1 {

sucs.append (MCState (missionaries:

!state.boat))

wm - 2, cannibals:
wm - 1, cannibals:
wm, cannibals: wc

wm, cannibals: wc

wm - 1,

wm + 2,

wm + 1,

wm, cannibals: wc

cannibals:

cannibals:

cannibals:

wc, boat:

boat:

we,

2, boat:

1, boat:

wec - 1, b

wc, boat:

boat:

wc,

2, boat:



}
if ec > 0 {
sucs.append (MCState (missionaries: wm, cannibals: wc + 1, boat:
Istate.boat))

}
if (ec > 0) && (em > 0) {
sucs.append (MCState (missionaries: wm + 1, cannibals: wc + 1, Db
!state.boat))

return sucs.filter{ isLegalMC (state: $0) }

2.3.2. Solving

We now have all of the ingredients in place to solve the problem. Recall that when we
solve a problem using the search functions bfs (), dfs (),and astar (), we get back a
Node that ultimately we convert using nodeToPath () into an array of states that leads
to a solution. What we still need is a way to convert that array into a comprehensible

printed sequence of steps to solve the missionaries and cannibals problem.

The function printMCSolution () converts a solution path into printed output—a
human-readable solution to the problem. It works by iterating through all of the states
in the solution path while keeping track of the last state as well. It looks at the
difference between the last state and the state it is currently iterating on to find how

many missionaries and cannibals moved across the river and in what direction.

func printMCSolution (path: [MCState]) {
var oldState = path.first!
print (oldState)
for currentState in path[l..<path.count] {

let wm = currentState.missionaries // west bank missionaries
let wc = currentState.cannibals // west bank cannibals

let em = maxNum - wm // east bank missionaries

let ec = maxNum - wc // east bank cannibals

if !currentState.boat {
print ("\ (oldState.missionaries - wm) missionaries and
\ (oldState.cannibals - wc) cannibals moved from the west be
to the east bank.™")
} else {
print ("\ (maxNum - oldState.missionaries - em) missionaries
and \ (maxNum - oldState.cannibals - ec) cannibals moved frc
the east bank to the west bank.")
}
print (currentState)
oldState = currentState



The printMCSolution () function takes advantage of the fact that MCState is

CustomStringConvertible to print out a state’s description with print ().

The last thing we need to do is actually solve the missionaries and cannibals problem.
To do so we could use any of our previously implemented search functions. This

solution uses bfs ().

let startMC = MCState(missionaries: 3, cannibals: 3, boat: true)

if let solution = bfs(initialState: startMC, goalTestFn: goalTestMC,
successorFn: successorsMC) {
let path = nodeToPath (solution)
printMCSolution (path: path)

It is great to see how flexible our generic search functions can be. They can easily be

adapted for solving a diverse set of problems.

2.4. REAL-WORLD APPLICATIONS

Search plays some role in all useful software. In some cases it is the central element
(Google Search, Spotlight, Lucene); in others it is the basis for using the structures that
underlie data storage. Knowing the correct search algorithm to apply to a data structure
is essential for performance. For example, it would be very costly to use linear search,

instead of binary search, on a sorted data structure.

A* is one of the most widely deployed path-finding algorithms. It is only beaten by
algorithms that do precalculation in the search space. For a blind search, A* is yet to be
reliably beaten in all scenarios, and this has made it an essential component of
everything from route planning to figuring out the shortest way to parse a
programming language. Most directions-providing map software (think Google Maps)
uses Dijkstra’s Algorithm (which A* is a variant of) to navigate (there is more about
Dijkstra’s Algorithm in chapter 4). Whenever an Al character in a game is finding the
shortest-path from one end of the world to the other without human intervention, it is

probably using A*.

Breadth-first search and depth-first search are often the basis for more complex search
algorithms like uniform-cost search and backtracking search (which you will see in the

next chapter). Breadth-first search is often a sufficient technique for finding the



shortest path in a fairly small graph. But due to its similarity to A*, it is easy to swap out

for A* if a good heuristic exists for a larger graph.

2.5. EXERCISES

1. Show the performance advantage of binary search over linear search by creating an
array of one million numbers and timing how long it takes the 1inearContains ()
and binaryContains () functions defined in this chapter to find various numbers
in the array.

2. Add a countertodfs (),bfs (), and astar () to see how many states each
searches through for the same maze. Find the counts for 100 different mazes to get
statistically significant results.

3. Find a solution to the missionaries and cannibals problem for a different number of

starting missionaries and cannibals.



Chapter 3. Constraint-satisfaction problems

A large number of problems that computational tools are used to solve can be broadly
categorized as constraint-satisfaction problems (CSPs). CSPs are composed of variables
with possible values that fall into ranges known as domains. Constraints between the
variables must be satisfied in order for constraint-satisfaction problems to be solved.
Those three core concepts—variables, domains, and constraints—are simple to
understand, and their generality underlies the wide applicability of constraint-

satisfaction problem solving.

Let’s consider an example problem. Suppose you are trying to schedule a Friday
meeting for Joe, Mary, and Sue. Sue has to be at the meeting with at least one other
person. For this scheduling problem, the three people—Joe, Mary, and Sue—may be the
variables. The domain for each variable may be their respective hours of availability.
For instance, the variable Mary has the domain 2 P.M., 3 P.M., and 4 P.M. This
problem also has two constraints. One is that Sue has to be at the meeting. The other is
that at least two people must attend the meeting. A constraint-satisfaction problem
solver will be provided with the three variables, three domains, and two constraints,
and it will then solve the problem without having the user explain exactly how. Figure

3.1 illustrates this example.

Figure 3.1. Scheduling problems are a classic application of constraint-
satisfaction frameworks.



Friday meeting

Variables
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Programming languages like Prolog and Picat have facilities for solving constraint-
satisfaction problems built in. The usual technique in other languages is to build a
framework that incorporates a backtracking search and several heuristics to improve
the performance of that search. In this chapter we will first build a framework for CSPs
that solves them using a simple recursive backtracking search. Then we will use the

framework to solve several different example problems.

3.1. BUILDING A CONSTRAINT-SATISFACTION PROBLEM FRAMEWORK

The centerpiece of our constraint-satisfaction framework will be a struct called csPp.



CsP is the gathering point for variables, domains, and constraints. It uses generics to
make itself flexible enough to work with any kind of variables (type v, which must be
Hashable so that the variables can be used as keys in a Dictionary) and domain
values (V keys and D domain values). Within CSP, the definitions of the collections
variables, domains, and constraints are of types that you would expect. The
variables collection is an Array of variables, domains isa Dictionary mapping
variables to arrays of possible values (the domains of those variables), and
constraintsisaDictionary that maps each variable to an Array of the

constraints imposed on it.

Note

The framework described in this section, and the examples that follow it, is largely
based on a simplified version of my SwiftCSP open source project
(https://github.com/davecom/SwiftCSP). SwiftCSP includes a couple of more advanced

optimization techniques.

/// Defines a constraint-satisfaction problem. V is the type of the variab
and D is the type of the domains.
public struct CSP <V: Hashable, D> {
/// The variables in the CSP to be constrained.
let variables: [V]
/// The domains - every variable should have an associated domain.
let domains: [V: [D]]
/// The constraints on the variables.

var constraints = Dictionary<V, [Constraint<V, D>]>()

/// You should create the variables and domains before initializing th

(ESIEP
public init (variables: [V], domains:[V: [D]]) {
self.variables = variables
self.domains = domains

for variable in variables {
constraints[variable] = [Constraint] ()
if domains|[variable] == nil {

print ("Error: Missing domain for variable \ (variable).")

/// Add a constraint to the CSP. It will automatically be applied to
all the variables it includes. It should only include variable
actually in the CSP.
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/// - parameter constraint: The constraint to add.

public mutating func addConstraint( constraint: Constraint<V, D>) ({

for variable in constraint.vars {
if !variables.contains (variable) {
print ("Error: Could not find variable \ (variable)
from constraint \ (constraint) in CSP.")

}

constraints[variable] ?.append(constraint)

The init () initializer creates the constraintsDictionary. The
addConstraint () method goes through all of the variables touched by a given
constraint and adds itself to the constraints mapping for each of them. Both
methods have error-checking in place, but there is no formal failure, other than an
error printout, when a variable is missing a domain or a constraint ison a
nonexistent variable. In a more formal system it would make sense to have a failable

initializer and an exception-raising addConstraint () method.

Constraints are defined using a Constraint class. Each Constraint consists of the
variables it constrains (titled vars, so as not to be confused with variables on CSP)
and a method that checks whether it is satisfied. The determination of whether a
constraint is satisfied is the main logic that goes into defining a specific constraint-
satisfaction problem. The default implementation should be overridden. It just returns

true.

/// The base class of all constraints.
open class Constraint <V: Hashable, D> {
/// All subclasses should override this method. It defines whether a
constraint has successfully been satisfied
/// - parameter assignment: Potential domain selections for
variables that are part of the constraint.
/// - returns: Whether the constraint is satisfied.
func isSatisfied(assignment: Dictionary<V, D>) -> Bool {
return true
}
/// The variables that make up the constraint.

var vars: [V] { return [] }

This constraint-satisfaction framework will use a simple backtracking search to find

solutions to problems. Backtracking is the idea that once you hit a wall in your search,



you go back to the last known point where you made a decision before the wall, and
choose a different path. If you think that sounds like depth-first search from chapter 2,
you are perceptive. The backtracking search implemented in the following

backtrackingSearch () function is a kind of recursive depth-first search.

public func backtrackingSearch<V, D>(csp: CSP<V, D>, assignment:
Dictionary<V, D> = Dictionary<V, D>()) -> Dictionary<V, D>?

// assignment is complete if it has as many assignments as there
are variables
if assignment.count == csp.variables.count { return assignment } // ba

case

// what are the unassigned variables?

let unassigned = csp.variables.lazy.filter ({ assignment[$0] == nil })

// get the domain of the first unassigned variable
if let variable: V = unassigned.first, let domain =
csp.domains[variable] {
// try each value in the domain
for value in domain {
var localAssignment = assignment
localAssignment [variable] = wvalue
// i1f the value is consistent with the current assignment
we continue
if isConsistent (variable: variable, value: value, assignment:
localAssignment, csp: csp) {
// 1f as we go down the tree we get a complete assignment,
return it
if let result = backtrackingSearch(csp: csp, assignment:
localAssignment) {

return result

}

return nil // no solution

Let’s walk through backtrackingSearch (), line by line.

if assignment.count == csp.variables.count { return assignment }

The base case for the recursive search is having found a valid assignment for every
variable. Once we have, we return the first instance of a solution that was valid (we do

not keep searching).



let unassigned = csp.variables.lazy.filter ({ assignment[$0] == nil })

if let variable: V = unassigned.first, let domain = csp.domains|[variable]

To select a new variable whose domain we will explore, we simply go through all of the
variables and find the first that does not have an assignment. To do this, we create a
lazy version of the array of variables, called unassigned. When unassigned’s
first property is later accessed, it will only search the array (due to 1azy) as far as

necessary to find the first value that has no assignment.

for value in domain {
var localAssignment = assignment

localAssignment [variable] = value

We try assigning every possible domain value for that variable, one at a time. The new

assignment for each is stored in a local dictionary called 1ocalAssignment.

if isConsistent (variable: variable, value: value, assignment:
localAssignment, csp: csp) {
// 1f as we go down the tree we get a complete assignment, return it
if let result = backtrackingSearch(csp: csp, assignment:
localAssignment) {

return result

If the new assignment in 1ocalAssignment is consistent with all of the constraints
(that is what i sConsistent () checks for), we continue recursively searching with the
new assignment in place. If the new assignment turns out to be complete (the base

case), we return the new assignment up the recursion chain.

return nil // no solution

Finally, if we have gone through every possible domain value for a particular variable,
and there is no solution utilizing the existing set of assignments, we return nil,
indicating no solution. This will lead to backtracking up the recursion chain to the point

where a different prior assignment could have been made.

There is one last bit missing. We need to implement the i sConsistent () function.



/// check if the value assignment is
consistent by checking all constraints of the variable
func isConsistent<V, D>(variable: V, value: D, assignment:
Dictionary<V, D>, csp: CSP<V,D>) -> Bool {
for constraint in csp.constraints[variable] 2?2 [] {
if !constraint.isSatisfied(assignment: assignment) ({

return false

}

return true

isConsistent () goes through every constraint for a given variable (it will always be
the variable that was just added to the assignment) and checks if the constraint is
satisfied, given the new assignment. If the assignment satisfies every constraint, true
is returned. If any constraint imposed on the variable is not satisfied, false is

returned.

Note

The 2 ? operator, also known as the nil coalescing operator, says “if this thing is nil,
then use this other thing instead.” A dictionary lookup, as in csp
.constraints[variable], can potentially return ni1l if no value is found in the
dictionary for the provided key, and the ? 2 operator indicates a replacement if a value
isnil. In the case of a ni1 value, if no constraints are found in the dictionary, the loop
will be going through an empty array, which means it will not go through any iterations
(no constraints, no iterations). An unsafe alternative, if we knew for sure that the csp
contained constraints for every variable, would be to force unwrap the constraints, as in
csp.constraints [variable]!.But, again, this would be unsafe—what if there

were actually no constraints for the given variable?

3.2. THE AUSTRALIAN MAP-COLORING PROBLEM

Imagine you have a map of Australia that you want to color by state/territory (which we
will collectively call “regions”). No two adjacent regions should share a color. Can you

color the regions with just three different colors?

The answer is yes. Try it out on your own (the easiest way is to print out a map of

Australia with a white background). As human beings, we can quickly figure out the



solution by inspection and a little trial and error. It is a trivial problem, really, and a

great first problem for our backtracking constraint-satisfaction solver. The problem is

Figure 3.2. In a solution to the Australian map-coloring problem, no two adjacent
parts of Australia can be colored with the same color.
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To model the problem as a CSP, we need to define the variables, domains, and
constraints. The variables are the seven regions of Australia (at least the seven that we
will restrict ourselves to): Western Australia, Northern Territory, South Australia,
Queensland, New South Wales, Victoria, and Tasmania. In our CSP, they can be
modeled with strings. The domain of each variable is the three different colors that can
possibly be assigned (we will use red, green, and blue). The constraints are the tricky
part. No two adjacent regions can be colored with the same color, so our constraints
will be dependent on which regions border one another. We can use what are called
binary constraints (constraints between two variables). Every two regions that share a
border will also share a binary constraint indicating they cannot be assigned the same

color.



To implement these binary constraints in code, we need to subclass the Constraint
class. The MapColoringConstraint subclass will take two variables in its
constructor (therefore being a binary constraint): the two regions that share a border.
Its overridden isSatisfied () method will check first whether the two regions both
have a domain value (color) assigned to them—if either does not, the constraint is
trivially satisfied until they do (there cannot be a conflict when one does not yet have a
color). Then it will check whether the two regions are assigned the same color
(obviously there is a conflict, meaning the constraint is not satisfied, when they are the

same).

The class is presented here in its entirety. MapColoringClass itself is not generic, but
it subclasses a parameterized version of the generic class Constraint that indicates

both variables and domains are of type String.

final class MapColoringConstraint: Constraint <String, String> {
let placel: String
let place2: String

final override var vars: [String] { return [placel, place2] }

init (placel: String, place2: String) {
self.placel = placel
self.place2 = place?2

override func isSatisfied(assignment:
Dictionary<String, String>) -> Bool {
// 1f either variable is not in the assignment then it must be
consistent
// since they still have their domain
if assignment[placel] == nil || assignment[place2] == nil {
return true
}
// check that the color of varl does not equal var?2

return assignment[placel] != assignment[place2]

Tip

MapColoringConstraint is marked as final to let the compiler know that it will
have no further subclasses (in fact, marking a class as final explicitly disallows
subclasses). This enables the compiler to implement some optimizations at compile

time.



Now that we have a way of implementing the constraints between regions, fleshing out

the Australian map-coloring problem with our CSP solver is simply a matter of filling in

domains and variables, and then adding constraints.

let

var

for

var

csp.

csp

csp.

csp.

csp.

csp

csp.

csp.

csp.

variables: [String] = ["Western

Australia", "Northern Territory", "South Australia",

"Queensland", "New South Wales", "Victoria", "Tasmania"]

domains = Dictionary<String, [String]>()

variable in variables {

domains[variable] = ["x", "g", "b"]

csp = CSP<String, String>(variables: variables, domains: domains)
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Finally, backtrackingSearch () is called to find a solution.

if let solution = backtrackingSearch (csp: csp)

print (solution)

} else { print("Couldn't find solution!") }

{

A correct solution will include an assigned color for every region.

["Victoria": "r", "Queensland": "zx",

"Northern Territory": "g", "South Australia":

"b", "New South

Wales": "g", "Tasmania": "r", "Western Australia": "r"]



3.3. THE EIGHT QUEENS PROBLEM

A chessboard is an eight-by-eight grid of squares. A queen is a chess piece that can
move on the chessboard any number of squares along any row, column, or diagonal. A
queen is attacking another piece if in a single move it can move to the square the piece
is on without jumping over any other piece (in other words, if the other piece is in the
line of sight of the queen, then it is attacked by it). The eight queens problem poses the
question of how eight queens can be placed on a chessboard without any queen

attacking another queen. The problem is illustrated in figure 3.3.

Figure 3.3. In a solution to the eight queens problem (there are many solutions),
no two queens can be threatening one another.
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To represent squares on the chess board, we will assign each an integer row and an
integer column. We can ensure each of the eight queens is not on the same column by
simply assigning them sequentially the columns 1 through 8. The variables in our
constraint-satisfaction problem can just be the column of the queen in question. The

domains can be the possible rows (again 1 through 8).

let cols: [Int] = [Int] (1...8)
var rows = Dictionary<Int, [Int]>()
for variable in cols {

rows [variable] = [Int] (1...8)



var gcsp = CSP<Int, Int>(variables: cols, domains: rows)

To solve the problem, we will need a constraint that checks whether any two queens are
on the same row or diagonal (they were all assigned different sequential columns to
begin with). Checking for the same row is trivial, but checking for the same diagonal
requires a little bit of math. If any two queens are on the same diagonal, the difference
between their rows will be the same as the difference between their columns. Can you

see where these checks take place in QueensConstraint?

final class QueensConstraint: Constraint <Int, Int> {

let columns: [Int]

final override var vars: [Int] { return columns }

init (columns: [Int]) {
self.columns = columns

}

override func isSatisfied(assignment: Dictionary<Int, Int>) -> Bool {
for (glc, glr) in assignment { // glc = queen 1 column, glr = quee

1 row

if (glc >= vars.count) {

break
}
for g2c in (glc + 1)...vars.count { // queen 2 column
if let g2r = assignment[g2c] { // queen 2 row
if glr == g2r { return false } // rows same?
if abs(glr - g2r) == abs(glc - g2c) { return false }

// same diagonal?

return true

All that is left is to add the constraint and run the search.

gcsp.addConstraint (QueensConstraint (columns: cols))
if let solution = backtrackingSearch(csp: gcsp) {
print (solution)

} else { print("Couldn't find solution!") 1}

Notice that we were able to reuse the constraint-satisfaction problem-solving



framework that we built for map coloring fairly easily for a completely different type of
problem. This is the power of writing code generically! Algorithms should be
implemented in as broadly applicable a manner as possible, unless a performance

optimization for a particular application requires specialization.

A correct solution will assign a column and row to every queen.

3.4. WORD SEARCH

A word search is a grid of letters with hidden words placed along rows, columns, and
diagonals. A player of a word-search puzzle attempts to find the hidden words by
carefully scanning through the grid. Finding places to put the words so that they all fit
on the grid is a kind of constraint-satisfaction problem. The variables are the words,

and the domains are the possible locations of those words. The problem is illustrated in

figure 3.4.
Figure 3.4. A classic word search, such as you might find in a children’s puzzle
book
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For the purposes of expediency, our word search will not include words that overlap.

You can improve it to allow for overlapping words as an exercise.



The grid of this word-search problem is not entirely dissimilar from the mazes of

chapter 2. Some of the following data types should look familiar.

// notice not too dissimilar from our Maze code from chapter 2

typealias Grid = [[Character]]

// A point on the grid

struct GridLocation: Hashable {
let row: Int
let col: Int

var hashValue: Int { return row.hashValue * col.hashValue }
}
func == (lhs: GridLocation, rhs: GridLocation) -> Bool {

return lhs.row == rhs.row && lhs.col == rhs.col

Initially, we will fill the grid with the letters of the English alphabet.

// All the letters in our word search
let ALPHABET = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

// randomly inserted letters
func generateGrid(rows: Int, columns: Int) -> Grid {
// initialize grid full of empty spaces
var grid: Grid = Grid(repeating: [Character] (repeating: " ",
count: columns), count: rows)
// replace spaces with random letters
for row in 0..<rows {
for col in 0..<columns {
let loc = ALPHABET.index (ALPHABET.startIndex, offsetBy:
Int (arc4random uniform(UInt32 (ALPHABET.count))))

grid[row] [col] = ALPHABET[loc]

}

return grid

func printGrid(_ grid: Grid) {
for i in 0..<grid.count {

print (String (grid[i]))

var grid = generateGrid(rows: 9, columns: 9)

To figure out where words can fit in the grid, we will generate their domains. The
domain of a word is an array of arrays of the possible locations of all of its letters

([ [GridLocation]]). Words cannot just go anywhere, though. They must stay within



a row, column, or diagonal that is within the bounds of the grid. In other words, they
should not be going off the end of the grid. The purpose of generatebDomain () is to

build these arrays for every word.

func generateDomain (word: String, grid: Grid) -> [[GridLocation]] {
var domain: [[GridLocation]] = [[GridLocation]] ()
let height = grid.count
let width = grid[0].count
let wordLength = word.count
for row in 0..<height {
for col in 0..<width {
let columns = col...(col + wordLength)
let rows = row...(row + wordLength)
if (col + wordLength <= width) {
// left to right
domain.append (columns.map ({GridLocation (row: row, col: $0)
// diagonal towards bottom right
if (row + wordLength <= height) {
domain.append (rows.map ({GridLocation (row: $0, col:
col + (80 - row))}))

}
if (row + wordLength <= height) {
// top to bottom
domain.append (rows.map ({GridLocation (row: $0, col: col)}))
// diagonal towards bottom left
if (col - wordLength >= 0) {
domain.append (rows.map ({GridLocation (row: $0, col:
col - ($0 - row))}))

}

return domain

You will notice a slightly clever use of map () .[ H For the range of potential locations of
a word (along a row, column, or diagonal), map () translates the range into an array of

GridLocation by using that struct’s constructor. Because generateDomain () loops
through every grid location from the top left through to the bottom right for every word,
it involves a lot of computation. Can you think of a way to do it more efficiently? What if

we looked through all of the words of the same length at once, inside the loop?

Thanks goes to an anonymous reviewer of an early version of this chapter who sent in a slightly clearer version of
this function than I originally presented.



To check if a potential solution is valid, we must implement a custom constraint for the
word search. The isSatisfied () method of WordSearchConstraint simply
checks whether any of the locations proposed for one word are the same as a location
proposed for another word. It does this using a Set. Converting an Array into a Set
will remove all duplicates. If there are fewer items in a Set converted from an Array
than there were in the original Array, that means the original Array contained some
duplicates. To prepare the data for this check, we will use £1atMap () to combine
multiple subarrays of locations for each word in the assignment into a single larger

array of locations.

final class WordSearchConstraint: Constraint <String, [GridLocation]> {
let words: [String]

final override var vars: [String] { return words }

init (words: [String]) {

self.words = words

override func isSatisfied(assignment: Dictionary<String,

[GridLocation]>) -> Bool {
if Set<GridLocation> (assignment.values.flatMap ({$0})) .count
< assignment.values.flatMap ({$0}) .count {

return false

return true

Finally, we are ready to run. For this example, we have five words in a nine-by-nine
grid. The solution we get back should contain mappings between each word and the

locations where its letters can fit in the grid.

let words: [String] = ["MATTHEW", "JOE", "MARY", "SARAH", "SALLY"]
var locations = Dictionary<String, [[GridLocation]]> ()

for word in words {

locations[word] = generateDomain (word: word, grid: grid)

}

var wordsearch = CSP<String, [GridLocation]>(variables: words, domains:
locations)

wordsearch.addConstraint (WordSearchConstraint (words: words))
if let solution = backtrackingSearch (csp: wordsearch) {
for (word, gridLocations) in solution {
let gridLocs = arcd4random uniform(2) > 0 ? gridLocations
gridLocations.reversed() // randomly reverse word half the time

for (index, letter) in word.enumerated() {



let (row, col) = (gridLocs[index].row, gridLocations[index].co

grid[row] [col] = letter

}
printGrid(grid)
} else { print("Couldn't find solution!") }

There is a finishing touch in the code that fills the grid with words. Some words are
randomly chosen to be reversed. This is valid, because this example does not allow
overlapping words. Your ultimate output should look something like the following. Can
you find Matthew, Joe, Mary, Sarah, and Sally?

SALLYUSGUJ
MEPZEZEKAYDO
FACOOARRE
NPTEFJKARAE
DYTTUPGHMN
LRCRHBHED
KPZQIZEPZS
ODNVWEFWYY
IYMGREWEE

3.5. SEND+MORE=MONEY

SEND+MORE=MONEY is a cryptarithmetic puzzle, meaning it is about finding digits
that replace letters to make a mathematical statement true. Each letter in the problem
represents one digit (0—9). No two letters can represent the same digit. When a letter

repeats, it means a digit repeats in the solution.

To solve this puzzle by hand, it helps to line up the words.

SEND
+MORE
MONEY

It is absolutely solvable by hand, with a bit of algebra and intuition. But a fairly simple
computer program can solve it faster by brute forcing many possible solutions. Let’s
represent SEND+MORE=MONEY as a constraint-satisfaction problem.

final class SendMoreMoneyConstraint: Constraint <Character, Int> {
let letters: [Character]
final override var vars: [Character] { return letters }

init (variables: [Character]) {



letters = variables

override func isSatisfied(assignment:
Dictionary<Character, Int>) -> Bool {
// 1f there are duplicate values then it's not correct
let d = Set<Int>(assignment.values)
if d.count < assignment.count {

return false

// 1f all variables have been assigned, check if it adds up correc
if assignment.count == letters.count {

if let s = assignment["S"], let e = assignment["E"], let n =

assignment ["N"], let d assignment ["D"], let m

assignment ["M"], let o = assignment["0O"], let r =
assignment ["R"], let y = assignment["Y"] {

let send: Int = s * 1000 + e * 100 + n * 10 + d

let more: Int = m * 1000 + o * 100 + r * 10 + e

let money: Int = m * 10000 + o * 1000 + n * 100 + e * 10 +
if (send + more) == money {

return true // answer found

}

return false // this full assignment doesn't work

// until we have all of the variables assigned, the assignment
is valid

return true

SendMoreMoneyConstraint’s isSatisfied () method does a few things. First, it
checks if there are any letters representing the same digits. If there are, that’s an invalid
solution, and it returns false. Next, it checks if all letters have been assigned. If they
have, it checks to see if the formula (SEND+MORE=MONEY) is correct with the given
assignment. If it is, a solution has been found, and it returns t rue. Otherwise, it
returns false. Finally, if all letters have not yet been assigned, it returns t rue. This is

to ensure that a partial solution continues to be worked on.

Let’s try running it:
let letters: [character] = ["S"’ "E", "N"’ "D", "M"’ "Oll, "R"’ "Y"]
var possibleDigits = Dictionary<Character, [Int]>()

for letter in letters {
possibleDigits[letter] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]



possibleDigits["S"] = [9]

possibleDigits["M"] = [1]

possibleDigits["0O"] = [0]

var smmcsp = CSP<Character, Int>(variables: letters, domains: possibleDigi
let smmcon = SendMoreMoneyConstraint (variables: letters)

smmcsp.addConstraint (smmcon)

if let solution = backtrackingSearch (csp: smmcsp) {
print (solution)

} else { print("Couldn't find solution!") }

You will notice that we preassigned the answers for the letters S, M, and O. This was to
ensure that the program executes in a reasonable amount of time in a Swift Playground.
If you are working in a compiled environment, feel free to try it out without those three

assignments.

The solution should look something like this:

["D": 7, "N": 6, "Y": 2, "R": 8, "O": O, "M": 1, "S": 9, "E": 5]

3.6. CIRCUIT BOARD LAYOUT

A manufacturer needs to fit certain rectangular chips onto a rectangular circuit board.
Essentially, this problem asks, “how can several different-sized rectangles all fit snugly
inside of another rectangle?” A constraint-satisfaction problem solver can find the

solution. The problem is illustrated in figure 3.5.

Figure 3.5. The circuit board layout problem is very similar to the word-search
problem, but the rectangles are of variable width.



The circuit board layout problem is similar to the word-search problem. Instead of 1xN
rectangles (words), the problem presents MxN rectangles. Like in the word-search
problem, the rectangles cannot overlap. The rectangles cannot be put on diagonals, so

in that sense the problem is actually simpler than the word search.

On your own, try rewriting the word-search solution to accommodate circuit board
layout. You can reuse much of the code, including the code for the grid. For an example
of a working circuit board layout solution, check out the sample Mac app that comes
with SwiftCSP: https://github.com/davecom/SwiftCSP.

3.7. REAL-WORLD APPLICATIONS

As was mentioned in the introduction to this chapter, constraint-satisfaction problem
solvers are commonly used in scheduling. Several people need to be at a meeting, and
they are the variables. The domains consist of the open times on their calendars. The

constraints may involve what combinations of people are required at the meeting.

Constraint-satisfaction problem solvers are also used in motion planning. Imagine a
robot arm that needs to fit inside of a tube. It has constraints (the walls of the tube),

variables (the joints), and domains (possible movements of the joints).

There are also applications in computational biology. You can imagine constraints
between molecules required for a chemical reaction. And, of course, as is common with

Al there are applications in games. Writing a Sudoku solver is one of the following



exercises, but many logic puzzles can be solved using constraint-satisfaction problem

solving.

In this chapter, we built a simple backtracking, depth-first search, problem-solving
framework. But it can be greatly improved by adding heuristics (remember A*?)—
intuitions that can aid the search process. A newer technique than backtracking, known
as constraint propagation, is also an efficient avenue for real-world applications. For
more information, check out chapter 6 of Stuart Russell and Peter Norvig’s Artificial

Intelligence: A Modern Approach, third edition (Pearson, 2010).

3.8. EXERCISES

1. Revise WordSearchConstraint so that overlapping letters are allowed.

2. Build the circuit board layout problem solver described in section 3.6, if you have not
already.

3. Build a program that can solve Sudoku problems using this chapter’s constraint-

satisfaction problem framework.



Chapter 4. Graph problems

A graph is an abstract mathematical construct that is used for modeling a real-world
problem by dividing the problem into a set of connected nodes. We call each of the
nodes a vertex and each of the connections an edge. For instance, a subway map can be
thought of as a graph representing a transportation network. Each of the dots
represents a station, and each of the lines represents a route between two stations. In

graph terminology, we would call the stations “vertices” and the routes “edges.”

Why is this useful? Not only do graphs help us abstractly think about a problem, they
also let us apply several well-understood and performant search and optimization
techniques. For instance, in the subway example, suppose we want to know the shortest
route from one station to another. Or, suppose we wanted to know the minimum
amount of track needed to connect all of the stations. Graph algorithms that you will
learn in this chapter can solve both of those problems. Further, graph algorithms can be
applied to any kind of network problem—not just transportation networks. Think of
computer networks, distribution networks, and utility networks. Search and

optimization problems across all of these spaces can be solved using graph algorithms.

In this chapter, we won’t work with a graph of subway stations, but instead cities of the
United States and potential routes between them. Figure 4.1 is a map of the continental

United States and the fifteen largest metropolitan statistical areas (MSAs) in the
[ 1]
country, as estimated by the U.S. Census Bureau.

1

Data from the United States Census Bureau’s American Fact Finder, https:/factfinder.census.gov/.

Figure 4.1. A map of the 15 largest MSAs in the United States
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Famous entrepreneur Elon Musk has suggested building a new high-speed
transportation network composed of capsules traveling in pressurized tubes. According

to Musk, the capsules would travel at 700 miles per hour and be suitable for cost-

2]
effective transportation between cities less than 900 miles apart. He calls this new
transportation system the “Hyperloop.” In this chapter we will explore classic graph

problems in the context of building out this transportation network.

Elon Musk, “Hyperloop Alpha,” http://mng.bz/chmu.

Musk initially proposed the Hyperloop idea for connecting Los Angeles and San
Francisco. If one were to build a national Hyperloop network, it would make sense to
do so between America’s largest metropolitan areas. In figure 4.2 the state outlines from
figure 4.1 are removed. In addition, each of the MSAs is connected with some of its
neighbors (not always its nearest neighbors, to make the graph a little more
interesting).

Figure 4.2. A graph with the vertices representing the 15 largest MSAs in the

United States and the edges representing potential Hyperloop routes between
them



Seattle

Detroit ' Boston
New York

o Philadelphia
an Francisco Washington
Angeles
Miami

Figure 4.2 is a graph with vertices representing the 15 largest MSAs in the United States
and edges representing potential Hyperloop routes between cities. The routes were
chosen for illustrative purposes. Certainly other potential routes could be part of a new

Hyperloop network.

This abstract representation of a real-world problem highlights the power of graphs.
Now that we have an abstraction to work with, we can ignore the geography of the
United States and concentrate on thinking about the potential Hyperloop network
simply in the context of connecting cities. In fact, as long as we keep the edges the
same, we can think about the problem with a different looking graph. In figure 4.3, the
location of Miami has moved. The graph in figure 4.3, being an abstract representation,
can still address the same fundamental computational problems as the graph in figure
4.2, even if Miami is not where we would expect it. But for our sanity, we will stick with

the representation in figure 4.2.

Figure 4.3. An equivalent graph to that in figure 4.2, with the location of Miami
moved
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4.1. BUILDING A GRAPH FRAMEWORK

Swift has been promoted as enabling a protocol-oriented style of programming (as

opposed to the traditional object-oriented or functional paradigms).[ H Although the
orthodoxy of this new paradigm is still being fleshed-out, what is clear is that it puts
interfaces and composition ahead of inheritance. Whereas the class is the fundamental
building block in the object-oriented paradigm, and the function is the fundamental
building block in functional programming, the protocol is the fundamental building
block in protocol-oriented programming. In that light, we will try building a graph

framework in a protocol-first style.

3

Dave Abrahams, “Protocol-Oriented Programming in Swift,” WWDC 2015, Session 408, Apple Inc.,
http://mng.bz/zWP3.

Note

The framework described in this section, and the examples that follow it, are largely
based on a simplified version of my SwiftGraph open source project
(https://github.com/davecom/SwiftGraph). SwiftGraph includes several features that go
beyond the scope of this book.

We want this graph framework to be as flexible as possible, so that it can represent as
many different problems as possible. To achieve this goal, we will use generics to

abstract away the type of the vertices, and we will define an easy-to-adopt protocol for



edges. Every vertex will ultimately be assigned an integer index, but it will be stored as

the user-defined generic type.

Let’s start work on the framework by defining the Edge protocol.

public protocol Edge: CustomStringConvertible {
var u: Int { get set } // index of the "from" vertex
var v: Int { get set } // index of the "to" vertex

var reversed: Edge { get }

An Edge is defined as a connection between two vertices, each of which is represented
by an integer index. By convention, u is used to refer to the first vertex, and v is used to
represent the second vertex. You can also think of u as “from” and v as “to.” In this
chapter, we are only working with bidirectional edges (edges that can be travelled in
both directions), but in directed graphs, also known as digraphs, edges can also be
oneway, and the reversed property is meant to return an Edge that travels in the
opposite direction. All Edge adoptees must implement CustomStringConvertible

so they can be easily printed to the console.

The Graph protocol is about the essential role of a graph: associating vertices with
edges. Again, we want to let the actual types of the vertices and edges be whatever the
user of the framework desires. This lets the framework be used for a wide range of
problems without needing to make intermediate data structures that glue everything
together. In this light, we will use the Swift keyword associatedtype to define types
that adopters of Graph can configure. For example, in a graph like the one for
Hyperloop routes, we might define VertexType to be String, because we would use
strings like “New York” and “Los Angeles” as the vertices. The only requirement of a
potential VertexType is that it implements Equatable. String implements

Equatable, soitis avalid VertexType.

protocol Graph: class, CustomStringConvertible {
associatedtype VertexType: Equatable
associatedtype EdgeType: Edge
var vertices: [VertexType] { get set }

var edges: [[EdgeType]] { get set }

The vertices array can be an array of any type that adopts Equatable. Each vertex
will be stored in the array, but we will later refer to them by their integer index in the

array. The vertex itself may be a complex data type, but its index will always be an Int,



which is easy to work with. On another level, by putting this index between graph
algorithms and the vertices array, it allows us to have two vertices that are equal in
the same graph (imagine a graph with a country’s cities as vertices, where the country
has more than one city named “Springfield”). Even though they are the same, they will

have different integer indexes.

There are many ways to implement a graph data structure, but the two most common
are to use a vertex matrix or adjacency lists. In a vertex matrix, each cell of the matrix
represents the intersection of two vertices in the graph, and the value of that cell
indicates the connection (or lack thereof) between them. Our graph data structure uses
adjacency lists. In this graph representation, every vertex has an array (or list) of
vertices that it is connected to. Our specific representation uses an array of arrays of
edges, so for every vertex there is an array of edges via which the vertex is connected to

other vertices. edges is this two-dimensional array.

Notice, as well, that anything that adopts Graph must also adopt class and
CustomStringConvertible. We want graph data structures to be reference types
for memory-management purposes. It will also be slightly easier to write some of the
protocol extensions if we know the adopters will be classes. c1ass ensures that all
graphs adopters are classes. CustomStringConvertible forces adopters of the

protocol to be printable.

Introduced in Swift 2, protocol extensions allow fully fleshed out functions to be a part
of a protocol. Amazingly, this will allow us to implement most of the functionality a
graph needs before we actually define a concrete adopter of Graph. The following code
shows the entirety of the protocol extension that adds this basic functionality, with in-

source comments describing each of the functions.

extension Graph ({
/// How many vertices are in the graph?

public var vertexCount: Int { return vertices.count }

/// How many edges are in the graph?

public var edgeCount: Int { return edges.joined() .count }

/// Get a vertex by its index.

///
/// - parameter index: The index of the vertex.
/// - returns: The vertex at i.

public func vertexAtIndex( index: Int) -> VertexType {

return vertices[index]



/// Find the first occurrence of a vertex if it exists.
/17
/// - parameter vertex: The vertex you are looking for.
/// - returns: The index of the vertex. Return nil if it can't find it
public func indexOfVertex( vertex: VertexType) -> Int? ({
if let i = vertices.index(of: vertex) ({
return i

}

return nil

/// Find all of the neighbors of a vertex at a given index.

/77

/// - parameter index: The index for the vertex to find the neighbors
/// - returns: An array of the neighbor vertices.
public func neighborsForIndex( index: Int) -> [VertexTypel] {

return edges[index] .map({self.vertices[$0.v]})

/// Find all of the neighbors of a given Vertex.
/7
/// - parameter vertex: The vertex to find the neighbors of.
/// - returns: An optional array of the neighbor vertices.
public func neighborsForVertex( vertex: VertexType) -> [VertexType]-?
if let 1 = indexOfVertex (vertex) {
return neighborsForIndex (i)

}

return nil

/// Find all of the edges of a vertex at a given index.

/]

/// - parameter index: The index for the vertex to find the children o
public func edgesForIndex( index: Int) -> [EdgeType] {

return edges[index]

/// Find all of the edges of a given vertex.
/7
/// - parameter vertex: The vertex to find the edges of.
public func edgesForVertex( vertex: VertexType) -> [EdgeType]? {
if let i = indexOfVertex (vertex) {
return edgesForIndex (i)

}

return nil

/// Add a vertex to the graph.

/17

/// - parameter v: The vertex to be added.

/// - returns: The index where the vertex was added.
public func addVertex( v: VertexType) -> Int ({

vertices.append (v)

edges.append ([EdgeType] ())



return vertices.count - 1

/// Add an edge to the graph.

/77

/// - parameter e: The edge to add.
public func addEdge( e: EdgeType) {

edges[e.u] .append(e)
edges[e.v] .append(e.reversed as! EdgeType)

Let’s step back for a moment and consider why this protocol has two versions of most of
its functions. We know from the protocol definition that the array verticesis an
array of elements of type VertexType, which can be anything that implements
Equatable. So we have vertices of type VertexType that are stored in the vertices
array. But if we want to retrieve or manipulate them later, we need to know where they
are stored in that array. Hence, every vertex has an index in the array (an integer)
associated with it. If we don’t know a vertex’s index, we need to look it up by searching
through vertices. That is why there are two versions of every function. One operates
on Int indexes, and one operates on VertexType itself. The functions that operate on

VertexType look up the relevant indices and call the index-based function.

Most of the functions are fairly self-explanatory, but neighborsForIndex () deserves
a little unpacking. It returns the neighbors of a vertex. A vertex’s neighbors are all of
the other vertices that are directly connected to it by an edge. For example, in figure 4.2,
New York and Washington are neighbors (the only neighbors) of Philadelphia. We find
the neighbors for a vertex by looking at the ends (the vs) of all of the edges going out

from it.

public func neighborsForIndex( index: Int) -> [VertexType] {

return edges[index] .map({self.vertices[$0.v]})

edges [index] is the adjacency list, the list of edges through which the vertex in
question is connected to other vertices. In the closure of the map call, $0 represents one
particular edge, and $0 . v represents the neighbor that the edge is connected to. map ()
will return all of the vertices (as opposed to just their indices), because $0 . v is passed

as an index into the vertices array.

Another important thing to note is the way addEdge () works. addEdge () first adds



an edge to the adjacency list of the “from” vertex (u), and then adds a reversed version
of itself to the adjacency list of the “to” vertex (). The second step is necessary because
this graph is not directed. We want every edge added to be bidirectional—that means

that u will be a neighbor of v in the same way that v is a neighbor of u.

public func addkEdge( e: EdgeType) {

edges[e.u] .append(e)
edges[e.v] .append(e.reversed as! EdgeType)

4.1.1. A concrete implementation of Edge

As was mentioned earlier, we are only dealing with bidirectional edges in this chapter.
Beyond being bidirectional or unidirectional, edges can also be unweighted or
weighted. A weighted edge is one that has some comparable value (usually numeric,
but not always) associated with it. We could think of the weights in our potential
Hyperloop network as being the distances between the stations. For now, though, we
will deal with an unweighted version of the graph. An unweighted edge is simply a
connection between two vertices. Another way of putting it is that in an unweighted
graph we know which vertices are connected, whereas in a weighted graph we know

which vertices are connected and we know something about those connections.

Our implementation of an unweighted edge, UnweightedEdge, will of course
implement the Edge protocol. It must have a place for a “from” vertex (u), a place for a
“to” vertex (v), and a way to reverse itself. It also must implement CustomString-

Convertible, as required by Edge, which means having a description property.

open class UnweightedEdge: Edge {
public var u: Int // "from" vertex
public var v: Int // "to" vertex
public var reversed: Edge {

return UnweightedEdge (u: v, v: u)

public init (u: Int, v: Int) {
self.u =

u
self.v = v

//MARK: CustomStringConvertable
public var description: String {
return "\ (u) <-> \(v)"



4.1.2. A concrete implementation of Graph

UnweightedEdge is pretty simple. Surprisingly, so is our concrete implementation of
Graph. An UnweightedGraph is a Graph whose vertices can be any Equatable type
(as per the Graph protocol) and whose edges are of type UnweightedEdge. By
defining the types of the vertices and edges arrays, we are implicitly filling in the

associated types VertexType and EdgeType in the Graph protocol.

open class UnweightedGraph<V: Equatable>: Graph {
var vertices: [V] = [V] ()

var edges: [[UnweightedEdge]] = [[UnweightedEdge]] () //adjacency lists

public init () {
}

public init (vertices: [V]) {
for vertex in vertices {

= self.addVertex (vertex)

/// This is a convenience method that adds an unweighted edge.

///
/// - parameter from: The starting vertex's index.
/// - parameter to: The ending vertex's index.

public func addkEdge (from: Int, to: Int) {
addEdge (UnweightedEdge (u: from, v: to))

/// This is a convenience method that adds an unweighted, undirected

edge between the first occurrence of two vertices.

/17
/// - parameter from: The starting vertex.
/// - parameter to: The ending vertex.

public func addkEdge (from: V, to: V) {
if let u = indexOfVertex (from) {
if let v = indexOfVertex (to) {
addEdge (UnweightedEdge (u: u, v: v))

/// MARK: Implement CustomStringConvertible
public var description: String {
var d: String = ""
for i in 0..<vertices.count {
d += "\ (vertices[i]) -> \ (neighborsForIndex (i))\n"
}

return d



The new abilities in UnweightedGraph are init methods, convenience methods for

adding UnweightedEdges to the graph, and the property description for

conformance with CustomStringConvertible.

Now that we have concrete implementations of Edge and Graph we can actually create

a representation of the potential Hyperloop network. The vertices and edges in

cityGraph correspond to the vertices and edges represented in figure 4.2.

var cityGraph: UnweightedGraph<String>

= UnweightedGraph<String> (vertices: ["Seattle", "San
Francisco", "Los Angeles", "Riverside", "Phoenix", "Chicago",
"Boston", "New York", "Atlanta", "Miami", "Dallas", "Houston",
"Detroit", "Philadelphia"™, "Washington"])
cityGraph.addEdge (from: "Seattle", to: "Chicago")
cityGraph.addEdge (from: "Seattle", to: "San Francisco")
cityGraph.addEdge (from: "San Francisco", to: "Riverside")
cityGraph.addEdge (from: "San Francisco", to: "Los Angeles")
cityGraph.addEdge (from: "Los Angeles", to: "Riverside")
cityGraph.addEdge (from: "Los Angeles", to: "Phoenix")
cityGraph.addEdge (from: "Riverside", to: "Phoenix")
cityGraph.addEdge (from: "Riverside", to: "Chicago")
cityGraph.addEdge (from: "Phoenix", to: "Dallas")
cityGraph.addEdge (from: "Phoenix", to: "Houston")
cityGraph.addEdge (from: "Dallas", to: "Chicago")
cityGraph.addEdge (from: "Dallas", to: "Atlanta")
cityGraph.addEdge (from: "Dallas", to: "Houston")
cityGraph.addEdge (from: "Houston", to: "Atlanta")
cityGraph.addEdge (from: "Houston", to: "Miami")
cityGraph.addEdge (from: "Atlanta", to: "Chicago")
cityGraph.addEdge (from: "Atlanta", to: "Washington")
cityGraph.addEdge (from: "Atlanta", to: "Miami")
cityGraph.addEdge (from: "Miami", to: "Washington")
cityGraph.addEdge (from: "Chicago", to: "Detroit")
cityGraph.addEdge (from: "Detroit", to: "Boston")
cityGraph.addEdge (from: "Detroit", to: "Washington")
cityGraph.addEdge (from: "Detroit", to: "New York")
cityGraph.addEdge (from: "Boston", to: "New York")
cityGraph.addEdge (from: "New York", to: "Philadelphia")
cityGraph.addEdge (from: "Philadelphia", to: "Washington")

cityGraph has vertices of type St ring, and we indicate each vertex with the name of

the MSA that it represents. It is irrelevant in what order we add the edges to

cityGraph. Because we implemented CustomStringConvertible in

UnweightedGraph with a nicely printed description of the graph, we can now pretty-



print (that’s a real term!) the graph.

print (cityGraph)

You should get output similar to the following;:

Seattle -> ["Chicago", "San Francisco"]

San Francisco -> ["Seattle", "Riverside", "Los Angeles"]

Los Angeles -> ["San Francisco", "Riverside", "Phoenix"]

Riverside -> ["San Francisco", "Los Angeles", "Phoenix", "Chicago"]
Phoenix -> ["Los Angeles", "Riverside", "Dallas", "Houston"]
Chicago -> ["Seattle", "Riverside", "Dallas", "Atlanta", "Detroit"]
Boston -> ["Detroit", "New York"]

New York -> ["Detroit", "Boston", "Philadelphia"]

Atlanta -> ["Dallas", "Houston", "Chicago", "Washington", "Miami"]
Miami -> ["Houston", "Atlanta", "Washington"]

Dallas -> ["Phoenix", "Chicago", "Atlanta", "Houston"]

Houston -> ["Phoenix", "Dallas", "Atlanta", "Miami"]

Detroit -> ["Chicago", "Boston", "Washington", "New York"]
Philadelphia -> ["New York", "Washington"]

Washington -> ["Atlanta", "Miami", "Detroit", "Philadelphia"]

4.2. FINDING THE SHORTEST PATH

The Hyperloop is so fast that, for optimizing travel time from one station to another, it
probably matters less how long the distances are between the stations and more how
many hops it takes (how many stations need to be visited) to get from one station to
another. Each station may involve a layover, so just like with flights, the fewer stops the

better.

In graph theory, a set of edges that connects two vertices is known as a path. In other
words, a path is a way of getting from one vertex to another vertex. In the context of the
Hyperloop network, a set of tubes (edges) represents the path from one city (vertex) to
another (vertex). Finding optimal paths between vertices is one of the most common

problems that graphs are used for.

4.2.1. Defining a path

In our graphs, a path can simply be thought of as an array of edges.

public typealias Path = [Edge]

Every Edge knows the index of its “from” vertex (u) and its “to” vertex (v), so given a



Graph, it is easy to deduce the vertices that it connects. There’s a method in Graph for
that, vertexAtIndex (). It would be nice to have a method to pretty-print a Path

within a Graph. We can do that in a short extension to Graph.

extension Graph {
/// Prints a path in a readable format
public func printPath(_ path: Path) {
for edge in path {
print ("\ (vertexAtIndex (edge.u)) > \ (vertexAtIndex (edge.v))")

4.2.2. Revisiting breadth-first search (BFS)

In an unweighted graph, finding the shortest path means finding the path that has the
fewest edges between the starting vertex and the destination vertex. To build out the
Hyperloop network, it might make sense to first connect the furthest cities on the
highly populated seaboards. That raises the question, “what is the shortest path

between Boston and Miami?”

Luckily, we already know an algorithm for finding shortest paths, and we can reuse it to
answer this question. Breadth-first search, introduced in chapter 2, is just as viable for
graphs as it is for mazes. In fact, the mazes we worked with in chapter 2 really are
graphs. The vertices are the locations in the maze, and the edges are the moves that can
be made from one location to another. In an unweighted graph, a breadth-first search

will find the shortest path between any two vertices.

We can rewrite the breadth-first search implementation from chapter 2 to suit working

with Graph. We can even reuse the same Queue class, unchanged.

public class Queue<T> {
private var container: [T] = [T] ()
public var isEmpty: Bool { return container.isEmpty }

public func push( thing: T) { container.append(thing) }

public func pop() -> T { return container.removeFirst() }

The new version of bfs () will be an extension to Graph. It will no longer operate on
Nodes, as in chapter 2, but instead on vertices, referred to by their indices (Ints). Recall
from chapter 2 that we used the Node class to keep track of the parent of each new Node

we found. There was also a function, nodeToPath (), that used the parent property



of each node to generate a path from the goal back to the start node (but reversed to
start at the start). We will use a similar function, pathDictToPath (), to generate a

Path from our starting vertex to the destination vertex.

/// Takes a dictionary of edges to reach each node and returns an array
of edges

/// that goes from  from® to “to’

public func pathDictToPath (from: Int, to: Int, pathDict:

[Int: Edge]) -> Path {
if pathDict.count == 0 {
return []

}
var edgePath: Path = Path()
var e: Edge = pathDict[to]!
edgePath.append(e)
while (e.u != from) {
e = pathDict[e.u]!
edgePath.append(e)
}

return Array(edgePath.reversed())

In the new version of bfs (), in lieu of having access to the parent property on Node,
we will use a dictionary associating each vertex index with the Edge that got us to it.
This is what we will call pathDict. pathDictToPath () extrapolates from this
dictionary the Path that connects the from vertex to the to vertex by looking at every

Edge between to and fromin pathDict.

As you study the implementation of bfs () on Graph, it may be helpful to flip back to
the implementation of bfs () you are already familiar with from chapter 2. How has it
changed? What has stayed the same? All of the basic machinery, aside from pathDict,

is essentially the same, but several of the parameter types and generic types have been
modified.

extension Graph {

//returns a path to the goal vertex

func bfs(initialVertex: VertexType, goalTestFn:
(VertexType) -> Bool) -> Path? {
guard let startIndex = indexOfVertex (initialVertex)

else { return nil }

// frontier is where we've yet to go
let frontier: Queue<Int> = Queue<Int> ()
frontier.push (startIndex)
// explored is where we've been
var explored: Set<Int> = Set<Int>()

explored.insert (startIndex)



// how did we get to each vertex
var pathDict: [Int: EdgeType] = [Int: EdgeType] ()
// keep going while there is more to explore
while !frontier.isEmpty {
let currentIndex = frontier.pop ()
let currentVertex = vertexAtIndex (currentIndex)
// if we found the goal, we're done
if goalTestFn (currentVertex) {
return pathDictToPath (from: startIndex, to: currentIndex,
pathDict: pathDict)
}
// check where we can go next and haven't explored
for edge in edgesForIndex (currentIndex)
where !explored.contains (edge.v) {
explored.insert (edge.v)
frontier.push (edge.v)

pathDict[edge.v] = edge

}

return nil // never found the goal

The new bfs () takes a starting vertex, initialVertex, a function that will
determine if the goal is reached, goalTestFn (), and returns an optional Path. The
returned optional Path willbe nil if initialVertex is not actually in the Graph
(this is determined by the guard statement). It will also return nil if goalTestFn ()
never returns true for any of the searched vertices in the graph. frontier and
explored are much the same as they were in chapter 2, except that now the generic
type of each is set to Int—the index of a vertex in a Graph. This version of bfs () has
no successorFn (). Instead, edgesForIndex () brings the next unexplored vertices
onto the frontier. Finally, the last main difference between this version and the prior
one is the use of pathDict, which gets updated when a new vertex is added to the
queue, and which is used to return the final Path when the goal is found by calling

pathDictToPath ().

We are now ready to find the shortest path (in terms of number of edges) between
Boston and Miami. We can pass a closure to bfs () that tests for a goal of a vertex
equivalent to the String "Miami".Ifa Path is found, we can print it using the

printPath () method introduced earlier as a protocol extension to Graph.

if let bostonToMiami = cityGraph.bfs(initialVertex: "Boston",
goalTestFn: { $0 == "Miami" }) {
cityGraph.printPath (bostonToMiami)



The output should look something like this:

Boston > Detroit
Detroit > Washington

Washington > Miami

Boston to Detroit to Washington to Miami, composed of three edges, is the shortest
route between Boston and Miami in terms of number of edges. Figure 4.4 highlights this

route.

Figure 4.4. The shortest route between Boston and Miami, in terms of number of
edges, is highlighted.
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4.3. MINIMIZING THE COST OF BUILDING THE NETWORK

Imagine we want to connect all 15 of the largest MSAs to the Hyperloop network. Our
goal is to minimize the cost of rolling out the network, so that means using a minimum
of track. The question is then, “how can we connect all of the MSAs using the minimum

amount of track?”

4.3.1. Workings with weights

To understand the amount of track that a particular edge may require, we need to know
the distance that the edge represents. This is an opportunity to re-introduce the concept
of weights. In the Hyperloop network, the weight of an edge is the distance between the
two MSAs that it connects. Figure 4.5 is the same as figure 4.2, except it has a weight

added to each edge, representing the distance in miles between the two vertices that the



edge connects.

Figure 4.5. A weighted graph of the 15 largest MSAs in the United States, where
each of the weights represents the distance between two MSAs in miles
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To handle weights, we will need a new implementation of Edge and a new
implementation of Graph. Once again, we want to design our framework in as flexible a
way as possible. To this end, we will allow the type of the weights associated with edges
in our new WeightedEdge and WeightedGraph to be generic and therefore
determined at creation time. But in order to execute several algorithms on weighted
graphs, we do need the weights to have two properties: It must be possible to compare

them, and it must be possible to add them together.

Any type that implements Comparable can be compared using operators like == and
<. There is no built-in protocol in Swift for specifying that a type can be added, so we

will create our own.

public protocol Summable {
static func +(lhs: Self, rhs: Self) -> Self

If a type implements Summable, it means that instances of it can be added together. All
of our weights must be Summable, meaning it must be possible to add them together,
so they must implement the + operator. Of course, one category of types that can be
added is numbers. Because the built-in number types in Swift already implement the +

operator, it is possible to add Summab1le support to them without any work.



extension Int: Summable {}
extension Double: Summable {}

extension Float: Summable {}

A WeightedEdge will have a generic type, W, representing the type of its weight. It will
also implement the protocols Edge and Comparable. Why does it implement
Comparable? The reason is that Jarnik’s algorithm, which we will cover shortly,

requires the ability to compare one edge with another.

open class WeightedEdge<W: Comparable & Summable>: Edge, Comparable ({
public var u: Int
public var v: Int

public let weight: W

public var reversed: Edge {

return WeightedEdge (u: v, v: u, weight: weight)

public init(u: Int, v: Int, weight: W) {
self.weight = weight
self.u = u

self.v = v

//Implement CustomStringConvertible protocol
public var description: String ({
return "\ (u) <\ (weight)> \(v)"

//MARK: Operator Overloads for Comparable
static public func == <W>(lhs: WeightedEdge<wWw>,
rhs: WeightedEdge<W>) -> Bool {
return lhs.u == rhs.u && lhs.v == rhs.v && lhs.weight == rhs.weigh

static public func < <W>(lhs: WeightedEdge<W>, rhs:
WeightedEdge<W>) -> Bool {
return lhs.weight < rhs.weight

The implementation of WeightedEdge is not immensely different from the
implementation of UnweightedEdge. It just has a new weight property and the
implementation of Comparable via the == and < operators. The < operator is only

interested in looking at weights, because Jarnik’s algorithm is interested in finding the

smallest edge by weight.



AWeightedGraph isalotlike an UnweightedGraph: It has init methods, it has
convenience methods for adding WeightedEdges, and it implements Custom-
StringConvertible via a description property. Where it differs is in the new
generic type, W, that matches the type its weighted edges take. There is also a new
method, neighborsForIndexWithWeights (), that returns not only each neighbor
but also the weight of the edge that got to it. This method is useful for the new version

of description.

open class WeightedGraph<V: Equatable & Hashable, W: Comparable & Summable

Graph {
var vertices: [V] = [V] ()
var edges: [[WeightedEdge<W>]] = [[WeightedEdge<W>]] () //adjacency lis

public init () {
}

public init (vertices: [V]) {
for vertex in vertices {

= self.addVertex (vertex)

/// Find all of the neighbors of a vertex at a given index.

/]
/// - parameter index: The index for the vertex to find the neighbors
/// - returns: An array of tuples including the vertices as the first

element and the weights as the second element.
public func neighborsForIndexWithWeights( index: Int) -> [(V, W)] {
var distanceTuples: [(V, W)] = [(V, W)] ()
for edge in edges[index] {
distanceTuples += [ (vertices[edge.v], edge.weight)]

}

return distanceTuples

/// This is a convenience method that adds a weighted edge.

/7
/// - parameter from: The starting vertex's index.
/// - parameter to: The ending vertex's index.

/// - parameter weight: the Weight of the edge to add.
public func addkEdge (from: Int, to: Int, weight:W) {
addEdge (WeightedEdge<W> (u: from, v: to, weight: weight))

/// This is a convenience method that adds a weighted edge between the

first occurrence of two vertices. It takes O(n) time.

///
/// - parameter from: The starting vertex.
/// - parameter to: The ending vertex.

/// - parameter weight: the Weight of the edge to add.



public func addkEdge (from: V, to: V, weight: W) {
if let u = indexOfVertex (from) {
if let v = indexOfVertex (to) {
addEdge (WeightedEdge<W> (u: u, v: v, weight:weight))

//Implement Printable protocol
public var description: String {
var d: String = ""
for i in 0..<vertices.count {
d += "\ (vertices[i]) -> \(neighborsForIndexWithWeights (i))\n"
}

return d

| | »

It is now possible to actually define a weighted graph. The weighted graph we will work

with is a representation of figure 4.5, called cityGraph?2.

let cityGraph2: WeightedGraph<String,
Int> = WeightedGraph<String, Int>(vertices:
["Seattle", "San Francisco", "Los Angeles", "Riverside",
"Phoenix", "Chicago", "Boston", "New York", "Atlanta",

"Miami", "Dallas", "Houston", "Detroit", "Philadelphia", "Washington"])

cityGraph2.addEdge (from: "Seattle", to: "Chicago", weight: 1737)
cityGraph2.addEdge (from: "Seattle", to: "San Francisco", weight: 678)
cityGraph2.addEdge (from: "San Francisco", to: "Riverside", weight: 386)
cityGraph2.addEdge (from: "San Francisco", to: "Los Angeles", weight: 348)
cityGraph2.addEdge (from: "Los Angeles", to: "Riverside", weight: 50)
cityGraph2.addEdge (from: "Los Angeles", to: "Phoenix", weight: 357)
cityGraph2.addEdge (from: "Riverside", to: "Phoenix", weight: 307)
cityGraph2.addEdge (from: "Riverside", to: "Chicago", weight: 1704)
cityGraph2.addEdge (from: "Phoenix", to: "Dallas", weight: 887)
cityGraph2.addEdge (from: "Phoenix", to: "Houston", weight: 1015)
cityGraph2.addEdge (from: "Dallas", to: "Chicago", weight: 805)
cityGraph2.addEdge (from: "Dallas", to: "Atlanta", weight: 721)
cityGraph2.addEdge (from: "Dallas", to: "Houston", weight: 225)
cityGraph2.addEdge (from: "Houston", to: "Atlanta", weight: 702)
cityGraph?2.addEdge (
cityGraph2.addEdge (from: "Atlanta", to: "Chicago", weight: 588)
cityGraph2.addEdge (from: "Atlanta", to: "Washington", weight: 543)
cityGraph2.addEdge (from: "Atlanta", to: "Miami", weight: 604)
(
(
(
(
(

from: "Houston", to: "Miami", weight: 968)

cityGraph2.addEdge (from: "Miami", to: "Washington", weight: 923)
cityGraph2.addEdge (from: "Chicago", to: "Detroit", weight: 238)
cityGraph2.addEdge (from: "Detroit", to: "Boston", weight: 613)
cityGraph2.addEdge (from: "Detroit", to: "Washington", weight: 396)
cityGraph2.addEdge (from: "Detroit", to: "New York", weight: 482)



cityGraph2.addEdge (from: "Boston", to: "New York", weight: 190)

cityGraph?2.addEdge (from: "New York", to: "Philadelphia", weight: 81)

cityGraph2.addEdge (from: "Philadelphia", to: "Washington", weight:

Because WeightedGraph implements CustomStringConvertible, we can print

out cityGraph?.

print (cityGraph?2)

123)

In the output, you will see both the vertices each vertex is connected to and the weight

of those connections.

Seattle -> [("Chicago", 1737), ("San Francisco", 678)]

San Francisco -> [("Seattle", 678), ("Riverside", 386), ("Los Angeles",
Los Angeles -> [("San Francisco", 348), ("Riverside", 50), ("Phoenix",
Riverside -> [("San Francisco", 386), ("Los Angeles", 50), ("Phoenix",

("Chicago", 1704)]

Phoenix -> [ ("Los Angeles", 357), ("Riverside", 307), ("Dallas", 887),
("Houston", 1015)]

Chicago -> [("Seattle", 1737), ("Riverside", 1704), ("Dallas", 805),
("Atlanta", 588), ("Detroit", 238)]

Boston -> [ ("Detroit", 613), ("New York", 190)]

New York -> [("Detroit", 482), ("Boston", 190), ("Philadelphia"™, 81)]

Atlanta -> [("Dallas", 721), ("Houston", 702), ("Chicago", 588),
("Washington", 543), ("Miami", 604)]

Miami -> [ ("Houston", 968), ("Atlanta", 604), ("Washington", 923)]

Dallas -> [ ("Phoenix", 887), ("Chicago", 805), ("Atlanta", 721),
("Houston", 225)]

Houston -> [ ("Phoenix", 1015), ("Dallas", 225), ("Atlanta", 702),
("Miami", 968)]

Detroit -> [("Chicago", 238), ("Boston", 613), ("Washington", 396),
("New York", 482)]

Philadelphia -> [ ("New York", 81), ("Washington", 123)]

Washington -> [ ("Atlanta", 543), ("Miami", 923), ("Detroit"™, 396),

("Philadelphia"™, 123)]

4.3.2. Finding the minimum spanning tree

A tree is a special kind of graph that has one, and only one, path between any two

34
357
307

vertices. This implies that there are no cycles in a tree (which is sometimes called being

acyclic). A cycle can be thought of as a circle (in the common sense, not the geometrical

sense): If it is possible to traverse a graph from a starting vertex, never repeat any

edges, and get back to the same starting vertex, then it has a cycle. Any graph that is not

a tree can become a tree by pruning edges. Figure 4.6 illustrates pruning an edge to turn



a graph into a tree.

Figure 4.6. In (a), a cycle exists between vertices B, C, and D, so it is not a tree. In
(b), the edge connecting C and D has been pruned, so the graph is a tree.
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A connected graph is a graph that has some way of getting from any vertex to any other
vertex (all of the graphs we are looking at in this chapter are connected). A spanning
tree is a tree that connects every vertex in a graph. A minimum spanning tree is a tree
that connects every vertex in a weighted graph with the minimum total weight
(compared to other spanning trees). For every weighted graph, it is possible to

efficiently find its minimum spanning tree.

Whew, that was a lot of terminology! The point is that finding a minimum spanning
tree is the same as finding a way to connect every vertex in a weighted graph with the
minimum weight. This is an important and practical problem for anyone designing a
network (transportation network, computer network, and so on)—how can every node
in the network be connected for the minimum cost? That cost may be in terms of wire,
track, road, or anything else. For instance, for a telephone network, another way of
posing the problem is, “what is the minimum length of cable one needs to connect every

phone?”
Calculating the total weight of a weighted path

Before we develop a method for finding a minimum spanning tree, we will develop a
function we can use to test our future development. The solution to the minimum
spanning tree problem will consist of an array of weighted edges that compose the tree.
The function totalWeight () takes an array of WeightedEdge<W> and finds the

total weight, w, that results from adding all of its edges’ weights together.

public func totalWeight<W>( edges: [WeightedEdge<wW>]) -> W? {
guard let firstWeight = edges.first?.weight else { return nil }
return edges.dropFirst () .reduce(firstWeight) { (result, next) -> W in

return result + next.weight



reduce () is a higher-order function built in to most programming languages that can
be programmed in a functional style. It takes a sequence of values and combines them
via a closure. The closure is passed the result of each prior combination (the parameter
result here) and the next value to be combined (next here). There’s one problem
—reduce () also requires a starting value. For most numbers, this would be 0, but
because we don’t know if W actually represents a number, we pull the first element out
of edges and use it as the starting value. Because we do not want to re-add the first
element after using it as the starting value, we call dropFirst () to ensure it is not

added twice.

Tip

reduce () is also known as “fold” in many other programming languages.

Jarnik’s algorithm

Jarnik’s algorithm for finding a minimum spanning tree works by dividing a graph into
two parts: the vertices in the still-being-assembled minimum spanning tree, and the

vertices not yet in the minimum spanning tree. It takes the following steps:
1. Pick an arbitrary vertex to be in the minimum spanning tree.

2. Find the lowest-weight edge connecting the minimum spanning tree to the

vertices not yet in the minimum spanning tree.
3. Add the vertex at the end of that minimum edge to the minimum spanning tree.

4. Repeat steps 2 and 3 until every vertex in the graph is in the minimum

spanning tree.

Note

Jarnik’s algorithm is commonly referred to as Prim’s algorithm. Two Czech
mathematicians, Otakar Bortivka and Vojtéch Jarnik, interested in minimizing the cost
of laying electric lines in the late 1920s, came up with algorithms to solve the problem

of finding a minimum spanning tree. Their algorithms were “rediscovered” decades

[ 4]
later by others.



Helena Durnova, “Otakar Boruvka (1899-1995) and the Minimum Spanning Tree” (Institute of Mathematics of
the Czech Academy of Sciences, 2006), https://dml.cz/handle/10338.dmlcz/500001.

To run Jarnik’s algorithm efficiently, a priority queue is used. Every time a new vertex
is added to the minimum spanning tree, all of its outgoing edges that link to vertices
outside the tree are added to the priority queue. The lowest-weight edge is always
popped off the priority queue, and the algorithm keeps executing until the priority
queue is empty. This ensures that the lowest-weight edges are always added to the tree

first. Edges that connect to vertices already in the tree are ignored when they are

popped.

[5]
The following code for mst () is the full implementation of Jarnik’s algorithm,

along with a utility function for printing a WeightedPath and a new type defined in
this extension of WeightedGraph.

Robert Sedgewick and Kevin Wayne, Algorithms, 4th Edition (Addison-Wesley Professional, 2011), p. 619.

Warning

Jarnik’s algorithm will not necessarily work correctly in a graph with directed edges. It

also will not work in a graph that is not connected.

/// Extensions to WeightedGraph for building a Minimum-Spanning Tree (MST)
public extension WeightedGraph {
typealias WeightedPath = [WeightedEdge<W>]

/// Find the minimum spanning tree in a weighted graph. This is the se
of edges

/// that touches every vertex in the graph and is of minimal combined
weight. This function

/// uses Jarnik's algorithm (aka Prim's algorithm) and so assumes the
graph has

/// undirected edges. For a graph with directed edges, the result may
be incorrect. Also,

/// if the graph is not fully connected, the tree will only span the
connected component from which

/// the starting vertex belongs.

/]



/// - parameter start: The index of the vertex to start creating
the MST from.

/// - returns: An array of WeightedEdges containing the minimum
spanning tree, or nil if the starting vertex is invalid. If
there are is only one vertex connected to the starting vertex,
an empty list is returned.

public func mst(start: Int = 0) -> WeightedPath? {

if start > (vertexCount - 1) || start < 0 { return nil }

var result: [WeightedEdge<W>] = [WeightedEdge<W>] () // the final
MST goes in here

var pq: PriorityQueue<WeightedEdge<W>> =
PriorityQueue<WeightedEdge<W>> (ascending: true) // minPQ

var visited: [Bool] = Array<Bool>(repeating: false, count:

vertexCount) // already been to these

func visit(_  index: Int) {
visited[index] = true // mark as visited
for edge in edgesForIndex (index) { // add all edges coming fro
here to pg
if !visited[edge.v] { pg.push(edge) }

visit(start) // the first vertex is where everything begins

while let edge = pg.pop() { // keep going as long as there are
edges to process
if visited[edge.v] { continue } // if we've been both places,
ignore
result.append(edge) // otherwise this is the current smallest
so add it to the result set

visit (edge.v) // visit where this connects

return result

/// Pretty-print an edge list returned from an MST
/// - parameter edges The edge array representing the MST
public func printWeightedPath( weightedPath: WeightedPath) {

for edge in weightedPath {

print ("\ (vertexAtIndex (edge.u)) \ (edge.weight)>
\ (vertexAtIndex (edge.v))")
}
if let tw = totalWeight (weightedPath) {

print ("Total Weight: \ (tw)")

4| »

Let’s walk through mst (), line by line.



public func mst(start: Int = 0) -> WeightedPath? {

if start > (vertexCount - 1) || start < 0 { return nil }

The algorithm returns an optional WeightedPath representing the minimum
spanning tree. It does not matter where the algorithm starts (assuming the graph is
connected and undirected), so the default is set to vertex index 0. If it so happens that

the start isinvalid, mst () returns nil.

var result: [WeightedEdge<W>] = [WeightedEdge<W>] () // the final MST goes
in here

var pg: PriorityQueue<WeightedEdge<W>> =
PriorityQueue<WeightedEdge<W>> (ascending: true) // minPQ

var visited: [Bool] = Array<Bool> (repeating: false, count: vertexCount)

// already been to these

result will ultimately hold the weighted path containing the minimum spanning tree.
This is where we will add WeightedEdges, as the lowest-weight edge is popped off and
takes us to a new part of the graph. Jarnik’s algorithm is considered a greedy algorithm
because it always selects the lowest-weight edge. pg is where newly discovered edges
are stored and the next-lowest-weight edge is popped. visited keeps track of vertex
indices that we have already been to. This could also have been accomplished with a

Set, similar to exploredinbfs ().

func visit( index: Int) {
visited[index] = true // mark as visited
for edge in edgesForIndex (index) { // add all edges coming from here
to pg
if !visited[edge.v] { pg.push(edge) }

visit () is an inner convenience function that marks a vertex as visited and adds all of
its edges that connect to vertices not yet visited to pg. Note how easy the adjacency-list

model makes finding edges belonging to a particular vertex.

visit(start) // the first vertex is where everything begins

It does not matter which vertex is visited first, unless the graph is not connected. If the

graph is not connected, but is instead made up of disconnected components, mst () will



return a tree that spans the particular component that the starting vertex belongs to.

while let edge = pg.pop() { // keep going as long as there are edges to
process
if visited[edge.v] { continue } // if we've been both places, ignore

result.append(edge) // otherwise this is the current smallest so add
it to the result set
visit (edge.v) // visit where this connects

}

return result

While there are still edges on the priority queue, we pop them off and check if they lead
to vertices not yet in the tree. Because the priority queue is ascending, it pops the
lowest-weight edges first. This ensures that the result is indeed of minimum total
weight. Any edge popped that does not lead to an unexplored vertex is ignored.
Otherwise, because the edge is the lowest seen so far, it is added to the result set, and
the new vertex it leads to is explored. When there are no edges left to explore, the result

1s returned.

Let’s finally return to the problem of connecting all 15 of the largest MSAs in the United
States by Hyperloop, using a minimum amount of track. The route that accomplishes
this is simply the minimum spanning tree of cityGraph2. Let’s try running mst () on

cityGraph?2.

if let mst = cityGraph2.mst () {
cityGraph2.printWeightedPath (mst)

Thanks to the pretty-printing printWeightedPath () method, the minimum

spanning tree is easy to read.

Seattle 678> San Francisco
San Francisco 348> Los Angeles
Los Angeles 50> Riverside
Riverside 307> Phoenix
Phoenix 887> Dallas

Dallas 225> Houston

Houston 702> Atlanta

Atlanta 543> Washington
Washington 123> Philadelphia
Philadelphia 81> New York
New York 190> Boston
Washington 396> Detroit
Detroit 238> Chicago



Atlanta 604> Miami
Total Weight: 5372

In other words, this is the cumulatively shortest collection of edges that connects all of
the MSAs in the weighted graph. The minimum length of track needed to connect all of

them is 5372 miles. Figure 4.7 illustrates the minimum spanning tree.

Figure 4.7. The highlighted edges represent a minimum spanning tree that
connects all 15 MSAs.
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4.4. FINDING SHORTEST PATHS IN A WEIGHTED GRAPH

As the Hyperloop network gets built, it is unlikely the builders will have the ambition to
connect the whole country at once. Instead, it is likely the builders will want to
minimize the cost to lay track between key cities. The cost to extend the network to

particular cities will obviously depend on where the builders start.

Finding the cost to any city from some starting city is a version of the “single-source
shortest path” problem. That problem asks, “what is the shortest path (in terms of total

edge weight) from some vertex to every other vertex in a weighted graph?”

4.4.1. Dijkstra’s algorithm

Dijkstra’s algorithm solves the single-source shortest path problem. It is provided a
starting vertex, and it returns the lowest-weight path to any other vertex on a weighted
graph. It also returns the minimum total weight to every other vertex from the starting
vertex. Dijkstra’s algorithm starts at the single-source vertex, and then continually

explores the closest vertices to the start vertex. For this reason, like Jarnik’s algorithm,



Dijkstra’s algorithm is greedy. When Dijkstra’s algorithm encounters a new vertex, it
keeps track of how far it is from the start vertex, and updates this value if it ever finds a
shorter path. It also keeps track of what edge got it to each vertex, like a breadth-first

search.
Here are all of the algorithm’s steps:
1. Add the start vertex to a priority queue.

2. Pop the closest vertex from the priority queue (at the beginning this is just the

start vertex)—we’ll call it the current vertex.

3. Look at all of the neighbors connected to the current vertex. If they have not
previously been recorded, or the edge offers a new shortest path to them, then for
each of them record its distance from the start, record the edge that produced this

distance, and add the new vertex to the priority queue.
4. Repeat steps 2 and 3 until the priority queue is empty.

5. Return the shortest distance to every vertex from the start vertex and the path

to get to each of them.

The extension to WeightedGraph for Dijkstra’s algorithm includes DijkstraNode, a
simple data structure for keeping track of costs associated with each vertex explored so
far and for comparing them. This is not dissimilar to the Node class in chapter 2. It also
includes utility functions for converting the returned array of distances to something
easier to use for looking up by vertex, and for calling dijkstra () without vertex

indices.

Without further ado, here is the code for the extension. We will go over it line by line

after.

public extension WeightedGraph ({

/// Represents a node in the priority queue used
/// for selecting the next
struct DijkstraNode: Comparable, Equatable {

let vertex: Int

let distance: W

public static func < (lhs: DijkstraNode, rhs: DijkstraNode) -> Boo

return lhs.distance < rhs.distance
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public static func == (lhs: DijkstraNode, rhs: DijkstraNode)
-> Bool {

return lhs.distance == rhs.distance

Finds the shortest paths from some route vertex to every other

vertex in the graph.

- parameter graph: The WeightedGraph to look within.

- parameter root: The index of the root node to build the shortest
paths from.

- parameter startDistance: The distance to get to the root node
(typically 0).

- returns: Returns a tuple of two things: the first, an array
containing the distances, the second, a dictionary containing
the edge to reach each vertex. Use the function
pathDictToPath () to convert the dictionary into something

useful for a specific point.

public func dijkstra(root: Int, startDistance: W) -> ([W?],

[Int: WeightedEdge<W>]) {

var distances: [W?] = [W?] (repeating: nil, count: vertexCount)
// how far each vertex is from start

distances|[root] = startDistance // the start vertex is
startDistance away

var pq: PriorityQueue<DijkstraNode> =
PriorityQueue<DijkstraNode> (ascending: true)

var pathDict: [Int: WeightedEdge<W>] = [Int: WeightedEdge<W>] ()
// how we got to each vertex

pg.push (DijkstraNode (vertex: root, distance: startDistance))

while let u = pg.pop()?.vertex { // explore the next closest verte
guard let distU = distances[u] else { continue } // should
already have seen it
for we in edgesForIndex(u) { // look at every edge/vertex
from the vertex in question
let distV = distances[we.v] // the old distance to
this vertex
if distV == nil || distV! > we.weight + distU { // if
we have no old distance or we found a shorter path
distances[we.v] = we.weight + distU
// update the distance to this vertex
pathDict[we.v] = we // update the edge on the shortest
path to this vertex
pg.push (DijkstraNode (vertex: we.v, distance:

we.weight + distU)) // explore it soon

return (distances, pathDict)



/// A convenience version of dijkstra() that allows the supply of
the root
/// vertex instead of the index of the root vertex.
public func dijkstra(root: V, startDistance: W)
-> ([W?], [Int: WeightedEdge<W>]) {
if let u = indexOfVertex (root) {
return dijkstra(root: u, startDistance: startDistance)
}

return ([], [:])

/// Helper function to get easier access to Dijkstra results.
public func distanceArrayToVertexDict (distances: [W?]) -> [V : W?] {
var distanceDict: [V: W?] = [V: W?] ()
for i in 0..<distances.count {
distanceDict[vertexAtIndex (i)] = distances|[i]
}

return distanceDict

< | | »

The first few lines of di jkstra () use data structures you have become familiar with,
except for distances, which is a placeholder for the distances to every vertex in the
graph from the root. Initially all of these distances are ni 1, because we do not yet
know how far each of them is—that is what we are using Dijkstra’s algorithm to figure
out!

public func dijkstra(root: Int, startDistance: W) -> ([W?],
[Int: WeightedEdge<W>]) {
var distances: [W?] = [W?] (repeating: nil, count: vertexCount)
// how far each vertex is from start
distances[root] = startDistance // the start vertex is startDistance a
var pqg: PriorityQueue<DijkstraNode> =
PriorityQueue<DijkstraNode> (ascending: true)
var pathDict: [Int: WeightedEdge<W>] = [Int: WeightedEdge<W>] ()
// how we got to each vertex

pg.push (DijkstraNode (vertex: root, distance: startDistance))

< | | »

The first node pushed onto the priority queue contains the root vertex.

while let u = pg.pop()?.vertex { // explore the next closest vertex
guard let distU = distances[u] else { continue } // should already hav
seen it

4| »




We keep running Dijkstra’s algorithm until the priority queue is empty. u is the current
vertex we are searching from, and distU is the stored distance for getting to u along
known routes. Every vertex explored at this stage has already been found, so it must

have a known distance. If it doesn’t, something is wrong, hence the guard statement.

for we in edgesForIndex (u) { // look at every edge/vertex from the vertex
in question

let distV = distances[we.v] // the old distance to this vertex

Next, every edge connected to u is explored. di stV is the distance to any known vertex

attached by an edge to u.
if distV == nil || distVv! >
we.weight + distU { // if we have no old distance or we found a

shorter path
distances|[we.v] = we.weight + distU // update the distance to this ver
pathDict[we.v] = we // update the edge on the shortest path to
this vertex
pg.push (DijkstraNode (vertex: we.v, distance: we.weight + distU))

// explore it soon

If we have found a vertex that has not yet been explored (distVv == nil), or we have
found a new, shorter path to it, we record that new shortest distance to v and the edge

that got us there. It is okay to force unwrap di stV here, because the second part of the
“or” operator (| |) is short-circuited, and we know if we get to it that distvisnotnil.

Finally, we push any vertices that have new paths to them to the priority queue.

return (distances, pathDict)

dijkstra () returns both the distances to every vertex in the weighted graph from the
root vertex, and the pathDict that can unlock the shortest paths to them. It is safe to
run Dijkstra’s algorithm now. Let’s start by finding the distance from Los Angeles to

every other MSA in the graph.

let (distances, pathDict) = cityGraph2.dijkstra(root: "Los Angeles",
startDistance: 0)

var nameDistance: [String: Int?] =
cityGraph2.distanceArrayToVertexDict (distances: distances)

for (key, value) in nameDistance {



print ("\ (key) : \(String(describing: value!))")

Your output should look something like this:

Phoenix : 357
Detroit : 1992
Houston : 1372
Washington : 2388
Riverside : 50
Chicago : 1754
Dallas : 1244
Atlanta : 1965

New York : 2474
Philadelphia : 2511
Boston : 2605

San Francisco : 348
Seattle : 1026

Los Angeles : O
Miami : 2340

We can use our old friend, pathDictToPath (), to find the shortest path between Los
Angeles and a specific other MSA—say Boston. Finally, we can use

printWeightedPath () to pretty-print the result.

let path = pathDictToPath (from:
cityGraph2.indexOfVertex ("Los Angeles")!, to:
cityGraph2.indexOfVertex ("Boston") !, pathDict: pathDict)

cityGraph2.printWeightedPath (path as! [WeightedEdge<Int>])

The shortest path from Los Angeles to Boston is

Los Angeles 50> Riverside
Riverside 1704> Chicago
Chicago 238> Detroit
Detroit 613> Boston

Total Weight: 2605

You may have noticed that Dijkstra’s algorithm has some resemblance to Jarnik’s
algorithm. They are both greedy, and it is possible to implement them using quite
similar code if one is sufficiently motivated. Another algorithm that Dijkstra’s
algorithm resembles is A* from chapter 2. A* can be thought of as a modification of
Dijkstra’s algorithm. Add a heuristic and restrict Dijkstra’s algorithm to finding a single

destination, and the two algorithms are the same.



4.5. REAL-WORLD APPLICATIONS

A huge amount of our world can be represented using graphs. You have seen in this
chapter how effective they are for working with transportation networks, but many
other kinds of networks have the same essential optimization problems: telephone
networks, computer networks, utility networks (electricity, plumbing, and so on). As a
result, graph algorithms are essential for efficiency in the telecommunications,

shipping, transportation, and utility industries.

Retailers must handle complex distribution problems. Stores and warehouses can be
thought of as vertices and the distances between them as edges. The algorithms are the
same. The internet itself is a giant graph, with each connected device a vertex and each
wired or wireless connection being an edge. Whether a business is saving fuel or wire,
minimum spanning tree and shortest path problem-solving are useful for more than
just games. Some of the world’s most famous brands became successful by optimizing
graph problems: think of Walmart building out an efficient distribution network,
Google indexing the web (a giant graph), and FedEx finding the right set of hubs to

connect the world’s addresses.

Some obvious applications of graph algorithms are social networks and map
applications. In a social network, people are vertices, and connections (friendships on
Facebook, for instance) are edges. In fact, one of Facebook’s most prominent developer
tools is known as the “Graph API” (https://developers.facebook.com/docs/graph-api). In
map applications like Apple Maps and Google Maps, graph algorithms are used to

provide directions and calculate trip times.

Several popular video games also make explicit use of graph algorithms. MiniMetro and
Ticket to Ride are two examples of games that closely mimic the problems solved in this

chapter.

4.6. EXERCISES

=

Add support to the graph framework for removing edges and vertices.
Add support to the graph framework for directed graphs (digraphs).
Add an extension to Graph for depth-first search (see chapter 2).

H ¥ N

Use this chapter’s graph framework to prove or disprove the classic Bridges of

Konigsberg problem.



Chapter 5. Genetic algorithms

Genetic algorithms are not used for everyday programmatic problems. They are called
upon when traditional algorithmic approaches are insufficient for arriving at a solution
to a problem in a reasonable amount of time. In other words, genetic algorithms are
usually reserved for complex problems without easy solutions. If you need a sense of
what some of these complex problems might be, feel free to read ahead in section 5.7

before proceeding.

5.1. BIOLOGICAL BACKGROUND

In biology, the theory of evolution is an explanation of how genetic mutation coupled
with the constraints of an environment leads to changes in organisms over time
(including speciation—the creation of new species). The mechanism by which the well-
adapted organisms succeed and the less well-adapted organisms fail is known as
natural selection. Each generation of a species will include individuals with different
(and sometimes new) traits that come about through genetic mutation. All individuals
compete for limited resources to survive, and because there are more individuals than

there are resources, some individuals must die.

An individual with a mutation that makes it better adapted for survival in its
environment will have a higher probability of living and reproducing. Over time, the
better-adapted individuals in an environment will have more children, and through
inheritance will pass on their mutations to those children. Therefore, a mutation that

benefits survival is likely to eventually proliferate amongst a population.

For example, if bacteria are being killed by a specific antibiotic, and one individual
bacterium in the population has a mutation in a gene that makes it more resistant to
the antibiotic, it is more likely to survive and reproduce. If the antibiotic is continually
applied over time, the children who have inherited the gene for antibiotic resistance will
also be more likely to reproduce and have children of their own. Eventually the whole
population may gain the mutation, as continued assault by the antibiotic kills off the
individuals without the mutation. The antibiotic does not cause the mutation to

develop, but it does lead to the proliferation of individuals with the mutation.



Natural selection has been applied in spheres beyond biology. Social Darwinism is
natural selection applied to the sphere of social theory. In computer science, genetic

algorithms are a simulation of natural selection to solve computational challenges.

A genetic algorithm includes a population (group) of individuals known as
chromosomes. The chromosomes, each composed of genes that specify their traits, are
competing to solve some problem. How well a chromosome solves a problem is defined
by a fitness function.

The genetic algorithm goes through generations. In each generation, the chromosomes
that are more fit are more likely to be selected to reproduce. There is also a probability
in each generation that two chromosomes will have their genes merged. This is known
as crossover. And finally, there is the important possibility in each generation that a

gene in a chromosome may mutate (randomly change).

After the fitness function of some individual in the population crosses some specified
threshold, or the algorithm runs through some specified maximum number of
generations, the best individual (the one that scored highest in the fitness function) is

returned.

Genetic algorithms are not a good solution for all problems. They depend on three
partially or fully stochastic (randomly determined) operations: selection, crossover, and
mutation. Therefore, they may not find an optimal solution in a reasonable amount of
time. For most problems, more deterministic algorithms exist with better guarantees.
But there are problems for which no fast deterministic algorithm exists. In these cases,

genetic algorithms are a good choice.

5.2. PRELIMINARIES

Genetic algorithms require a lot of random number generation. The Swift standard
library does not include a facility for random number generation, but both macOS and
Linux do. When you import Foundation, by extension you import the system
libraries that random number generation relies on. This includes Darwin on macOS
and G1libc on Linux. These libraries include two pseudo-random number generation

functions (“pseudo” because they are generated by an algorithm, not random from

nature) that we already used in chapters 1 and 2 : arc4random uniform() and

drand48 ().

Tip



arc4random uniform () is not available on Linux. If you are working on Linux, you
can approximate its functionality with your own function that multiplies the result of

drand48 () by some maximum parameter and converts the result to an integer.

arc4random uniform () finds a pseudo-random UInt32 between o (inclusive) and a
provided upper bound (exclusive). drand48 () finds a pseudo-random Double
between o (inclusive) and 1 (exclusive). drand48 () requires a seed—a beginning value
used at the startup of the pseudo-random number generation algorithm. The seed
function is srand48 (). If the same seed is used, drand48 () will return the same
sequence of numbers. Generally, the current time is used, because it is always different
and therefore will not result in the same sequence of numbers during subsequent runs

of the program. This can be accomplished using the time () function.

Hence, this is the first preliminary code we need:

import Foundation // for arc4random uniform() and drand48 ()

srand48 (time(nil)) // seed random number generator for drand48 ()

It will also be helpful in this chapter to have a way of randomly shuffling values in an
Array. Many programming language standard libraries offer a shuffle () method on
their built-in list or array types. Unfortunately, Swift does not, so we will create our
own. The naive algorithm for shuffling is to go through every item in the array, generate
a random location, and swap it with the item at the random location. Unfortunately, for
mathematical reasons beyond the scope of this chapter, the naive approach does not
result in randomly distributed items. An algorithm called the Fisher-Yates shuffle does.

Here it is implemented as an extension to Array.

extension Array {
public func shuffled() -> Array<Element> {
var shuffledArray = self // value semantics (Array is Struct)
makes this a copy
if count < 2 { return shuffledArray } // already shuffled
for i in (1..<count) .reversed() { // count backwards
let position = Int(arcd4random uniform(UInt32(i + 1)))
// random to swap
if 1 != position { // swap with the end, don't bother with
self swaps

shuffledArray.swapAt (i, position)



return shuffledArray

shuffledArray is a duplicate of the array that shuffled () is called on. An array
that is of length 0 or 1 is considered already shuffled. The algorithm runs through
locations backward from the end of the array. At each iteration, it swaps the element at
the current location with the element at a randomly selected location between 0 and the
current location. This is the key difference between Fisher-Yates and the naive
approach. The naive approach swaps every element with any other element in the array.
Fisher-Yates will only swap an element with another at a location below it numerically
(notice the argument passed to arc4random uniform(), and recall that it is a non-

inclusive maximum; hence the + 1).

5.3. AGENERIC GENETIC ALGORITHM

Genetic algorithms are often highly specialized and tuned for a particular application.
In this chapter, we will define a generic genetic algorithm that can be used with
multiple problems, while not being particularly well tuned for any of them. It will
include some configurable options, but the goal is to show the algorithm’s

fundamentals instead of its tunability.

We will start by defining an interface for the individuals that the generic algorithm can
operate on. The protocol Chromosome defines six essential components. A
chromosome must be able to do the following:

e Determine its own fitness

e Copy itself

e Create a random instance of itself (for use in filling the first generation)

e Implement crossover (combine itself with another of the same type to create

children)—in other words, mix itself with another chromosome
e Mutate—make a small, fairly random change in itself

e Print itself for human digestion

Here is the code for Chromosome, codifying these six needs.

public protocol Chromosome {
var fitness: Double { get } // how well does this individual solve
the problem?
init (from: Self) // must be able to copy itself



static func randomInstance () -> Self
func crossover (other: Self)

-> (childl: Self, child2: Self) // combine with other to form chilc
func mutate() // make a small change somewhere

func prettyPrint ()

Warning

You may wonder why prettyPrint () is a requirement of Chromosome instead of
conformance to CustomStringConvertible, the Swift standard library protocol for
making something printable. The reason is for performance in Playgrounds. This code
is meant to run in an Xcode Playground, and the behavior of Xcode Playgrounds (at the
time of writing) is to call description () on CustomStringConvertible items
every time they are manipulated internally. This massively degrades performance, and
the genetic algorithm problems in this chapter need significant performance to run in a

reasonable amount of time.

We will implement the algorithm itself (the code that will manipulate chromosomes) as
a generic class that is open to subclassing for future specialized applications. Before we
do so, though, let’s revisit the description of a genetic algorithm from the beginning of

the chapter, and clearly define the steps that a generic algorithm takes:

1. Create an initial population of random chromosomes that represents the first

generation of the algorithm.

2. Measure the fitness of each chromosome in this generation of the population. If

any exceeds the threshold, return it and the algorithm ends.

3. Select some individuals to reproduce, with a higher probability of selecting
those with the highest fitness.

4. Crossover (combine), with some probability, some of the selected chromosomes

to create children that represent the population of the next generation.

5. Mutate, usually with a low probability, some of those chromosomes. The
population of the new generation is now complete, and it replaces the population

of the last generation.



6. Return to step 2 unless the maximum number of generations has been reached.

If that is the case, return the best chromosome found so far.

This general outline of a genetic algorithm (illustrated in figure 5.1) is missing a lot of
important details. How many chromosomes should be in the population? What is the
threshold that stops the algorithm? How should the chromosomes be selected for

reproduction? How should they be combined (crossover) and at what probability? At

what probability should mutations occur? How many generations should be run?

Figure 5.1. The general outline of a genetic algorithm

Measure Select
If fitness is above some For reproduction, with a
threshold, we're done higher probability of selecting
Create fitter chromosomes
Start of a new generation f \
Mutate Crossover
Some chromosomes have Combine some of the
random changes selected chromosomes

All of these points will be configurable in our GeneticAlgorithm class. We will

define it piece by piece so we can talk about each piece separately.

open class GeneticAlgorithm<ChromosomeType: Chromosome> {
enum SelectionType {
case roulette
case tournament (UInt) // the UInt is the number of participants

in the tournament

GeneticAlgorithm takes a generic type that conforms to Chromosome, and in its init

method, it will create a population of this type. The enum SelectionType is an



internal type used for specifying the selection method used by the algorithm. The two
most common genetic algorithm selection methods are known as roulette-wheel
selection (sometimes called “fitness proportionate selection”) and tournament
selection. The former gives every chromosome a chance of being picked, proportionate
to its fitness. In tournament selection, a certain number of random chromosomes are
challenged against one another, and the one with the best fitness is selected. In this
enum, the associated value of type UInt that goes with tournament is the number of

random chromosomes that should participate in the tournament.

private let threshold: Double // at what fitness level to stop running

private let maxGenerations: UInt // number of generations to run

private let mutationChance: Double // probability of mutation for each
individual in each generation

private let crossoverChance: Double // probability of any two children
being crossed each generation

private let selectionType: SelectionType // which selection method?

The preceding are all properties of the genetic algorithm that will be configured at the
time of creation, through init. threshold is the fitness level that indicates that a
solution has been found for the problem the genetic algorithm is trying to solve.
maxGenerations is the maximum number of generations to run. If we have run that
many generations and no solution with a fitness level beyond threshold has been
found, the best solution that has been found will be returned. mutationChance is the
probability of each chromosome in each generation mutating. crossoverChanceis
the probability that two parents selected to reproduce have children that are a mixture
of their genes; otherwise the children are just duplicates of the parents. Finally,
selectionType is the type of selection method to use, as delineated by the enum

SelectionType.

private var population: [ChromosomeType] // all of the individuals in
a generation

private var fitnessCache: [Double] // the fitness of each individual
in the current generation

private var fitnessSum: Double = -Double.greatestFiniteMagnitude

// summed generation fitness

The preceding three instance variables represent the chromosomes and their fitness in
any generation. population is the actual chromosomes. fitnessCache is an array
of fitnesses that correspond to the chromosomes in population. It is useful to cache

these values so that they do not need to be recalculated in various other methods



multiple times per generation. fitnessSum is what it sounds like—the sum of the

fitnesses of all of the chromosomes in a given generation.

init(size: UInt, threshold: Double,

maxGenerations: UInt = 100, mutationChance: Double = 0.01,
crossoverChance: Double = 0.7, selectionType:
SelectionType = SelectionType.tournament (4)) {

self.threshold = threshold
self.maxGenerations = maxGenerations
self.mutationChance = mutationChance
self.crossoverChance = crossoverChance

self.selectionType = selectionType

population = [ChromosomeType] () // initialize the population with
random chromosomes

for in 0..<size {

population.append (ChromosomeType.randomInstance () )
}

fitnessCache = [Double] (repeating: -Double.greatestFiniteMagnitude
count: Int(size))

The preceding init method takes a long list of parameters, most of which have default
values. They set up the configurable properties we just discussed. populationis
initialized with a random set of chromosomes using the Chromosome protocol’s
random-Instance () static method. In other words, the first generation of
chromosomes is just composed of random individuals. This is a point of potential
optimization for a more sophisticated genetic algorithm. Instead of starting with purely
random individuals, the first generation could contain individuals that are closer to the

solution, through some knowledge of the problem.

Now we will examine the two selection methods that our class supports.

// pick based on the proportion of summed total fitness that each
individual represents
private func pickRoulette (wheel: [Double]) -> ChromosomeType {
var pick = drand48() // chance of picking a particular one
for (index, chance) in wheel.enumerated () {
pick -= chance
if pick <= 0 { // we had one that took us over, leads to a pic

return population[index]

}

return population[0]



Roulette-wheel selection is based on each chromosome’s proportion of fitness of the
sum of all fitnesses in a generation. The chromosomes with the highest fitness have a
better chance of being picked. The values that represent each chromosome’s percentage
of total fitness are provided in the parameter wheel. These percentages are
represented by floating-point values between 0 and 1. A random number (pick)
between 0 and 1 is used to figure out which chromosome to select. The algorithm works
by decreasing pick by each chromosome’s proportional fitness value sequentially.

When it crosses 0, that’s the chromosome to select.

Does it make sense to you why this process results in each chromosome being pickable
by its proportion? If not, think about it on pencil and paper. Consider drawing a

proportional roulette wheel, as in figure 5.2.

Figure 5.2. An example of roulette-wheel selection in action
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The most basic form of tournament selection is simpler than roulette-wheel selection.
Instead of figuring out proportions, we simply pick k chromosomes from the whole

population at random. The chromosome with the best fitness wins.

// find k random individuals in the population and pick the best one

private func pickTournament (numParticipants: UInt) -> ChromosomeType {



var best: ChromosomeType = ChromosomeType.randomInstance ()
var bestFitness: Double = best.fitness
for in O..<numParticipants { // find the best participant
let test = Int(arcd4random uniform(UInt32 (population.count)))
if fitnessCache[test] > bestFitness {
bestFitness = fitnessCache[test]

best = population[test]

}

return best

The code for pickTournament () is self-explanatory. What is the right number for
numParticipants? Like many parameters in a genetic algorithm, trial and error may
be the best way to determine it. One thing to keep in mind is that a higher number of

participants in the tournament leads to less diversity in the population (because

: . .. . [ 1]
chromosomes with poor fitness are more likely to be eliminated in matchups).

More sophisticated forms of tournament selection may pick individuals that are not the

best, but second- or third-best, based on some kind of decreasing probability model.

Artem Sokolov and Darrell Whitley, “Unbiased Tournament Selection,” GECCO’05 (June 25—-29, 2005,
Washington, D.C., U.S.A.), http:/mng.bz/S716.

These two methods, pickRoulette () and pickTournament (), are used for
selection, which occurs during reproduction. Reproduction is implemented in
reproduceAndReplace (), and it also takes care of ensuring a new population of an

equal number of chromosomes replaces the chromosomes in the last generation.

private func reproduceAndReplace () {
var newPopulation: [ChromosomeType] = [ChromosomeType] ()
// replacement population
var chanceEach: [Double] = [Double] () // used for pickRoulette,
chance of each individual being picked
if case .roulette = selectionType {
chanceEach = fitnessCache.map ({return $0/fitnessSum})

}
while newPopulation.count < population.count {
var parents: (parentl: ChromosomeType, parent2: ChromosomeType
switch selectionType { // how to pick parents
case let .tournament (k) :
parents = (parentl: pickTournament (numParticipants: k),
parent2: pickTournament (numParticipants: k))
default: // don't have a case for roulette because no other op
parents = (parentl: pickRoulette (wheel: chanceEach), paren
pickRoulette (wheel: chanceEach))



}

if drand48() < crossoverChance { // if crossover, produce chil
let children = parents.parentl.crossover (other:
parents.parent?2)
newPopulation.append(children.childl)
newPopulation.append(children.child?2)
} else { // no crossover, just use parents
newPopulation.append (parents.parentl)

newPopulation.append (parents.parent?2)

}

if newPopulation.count > population.count { // in case we had an
odd population

newPopulation.removelast ()

}

population = newPopulation

In reproduceAndReplace (), the following steps occur in broad strokes:

1. Two chromosomes, called parents, are selected for reproduction using one of

the two selection methods.

2. There is crossoverChance that the two parents will be combined to produce
two new chromosomes, children, in which case children are added to
newPopulation. If there are no children, the two parents are just added to

newPopulation.

3. If newPopulation has as many chromosomes as population, it replaces it.

Otherwise, we return to step 1.

The method that implements mutation, mutate (), is very simple, with the details of

how to perform a mutation being left to individual chromosomes.

private func mutate () {
for individual in population { // every individual could possibly
be mutated each generation
if drand48 () < mutationChance {

individual .mutate ()

We now have all of the building blocks needed to run the genetic algorithm. run ()



coordinates the measurement, reproduction (which includes selection), and mutation
steps that bring the population from one generation to another. It also keeps track of

the best (fittest) chromosome found at any point in the search.

public func run() -> ChromosomeType {
var best: ChromosomeType = ChromosomeType.randomInstance ()
// best in any run so far
var bestFitness: Double = best.fitness
for generation in 1...maxGenerations { // try maxGenerations of
the genetic algorithm
print ("generation \ (generation) best \ (best.fitness) avg
\ (fitnessSum / Double (fitnessCache.count))")
for (index, individual) in population.enumerated() {
fitnessCache[index] = individual.fitness
if fitnessCache[index] >= threshold { // early end;
found something great
return individual
}
if fitnessCache[index] > bestFitness {

// best so far in any iteration

bestFitness = fitnessCache[index]
best = ChromosomeType (from: individual)
}
}
fitnessSum = fitnessCache.reduce (0, +)

reproduceAndReplace ()
mutate ()

}

return best

best and bestFitness keep track of the best chromosome (and its fitness) found so
far. The main loop executes maxGenerations times. At the beginning of the loop, it
calculates, and caches, the fitness of every chromosome. If any chromosome exceeds
threshold in fitness, it is returned and the method ends. Otherwise, it calls
reproduce-AndReplace () aswell asmutate () to create the next generation and

run the loop again. If maxGenerations is reached, the best chromosome found so far

is returned.

5.4. A NAIVE TEST

The generic genetic algorithm, GeneticAlgorithm, will work with any type that
implements Chromosome. As a test, we will start by implementing a simple problem
that can be easﬂy solved usmg traditional methods. We will try to maximize the

equation 6x — x + 4y — y In other words, what values for x and y in that equation will



yield the largest number? The maximizing values can be found, using calculus, by
taking partial derivatives and setting each equal to zero. The resultisx = 3 and y = 2.

Can our genetic algorithm, using no calculus, find the same result? Let’s dig in.

final class SimpleEquation: Chromosome {

var x: Int = Int(arcd4random uniform(100))

var y: Int Int (arcd4random uniform(100))

var fitness: Double { // 6x - x"2 + 4y - y"2

return Double(6 * x - x * x + 4 * y — y * y)

init (from: SimpleEquation) { // like making a copy
= from.x

b4
y = from.y

init () {}

static func randomInstance() -> SimpleEquation {

return SimpleEquation ()

func crossover (other: SimpleEquation)

-> (childl: SimpleEquation, child2: SimpleEquation) {

let childl = SimpleEquation (from: self)
let child2 = SimpleEquation (from: other)
childl.y = other.y

child2.y = self.y
return (childl: childl, child2: child?2)

func mutate () {
if drand48() > 0.5 { // mutate x
if drand48() > 0.5 {

x += 1
} else {
x -=1

}

} else { // otherwise mutate y
if drand48() > 0.5 {

y +=1
} else {
y =1

func prettyPrint () {
print ("x:\ (x) y:\(y) fitness:\ (fitness)")



SimpleEquation conforms to Chromosome, and, true to its name, it does so as
simply as possible. The genes of a SimpleEquation chromosome can be thought of as
x and y. The property fitness evaluates x and y using the equation 6x — x + 4y — y
The higher the value, the more fit the individual chromosome is, according to
GeneticAlgorithm. x and y are initially set to be random integers between 0 and
100, so randomInstance () does not need to do anything other than instantiate a new
SimpleEquation. To combine one SimpleEquation with another in

crossover (), the y values of the two instances are simply swapped to create the two
children. mutate () randomly increments or decrements x or y. And that is pretty

much it.

Because SimpleEquation conforms to Chromosome, we can already plug it into

GeneticAlgorithm.

let se = GeneticAlgorithm<SimpleEquation>(size: 10, threshold: 13.0,
maxGenerations: 100, mutationChance: 0.1, crossoverChance: 0.7)
let resultl = se.run()

resultl.prettyPrint ()

The parameters used here were derived through guess-and-check. You can try others.
threshold is set to 13.0 because we already know the correct answer. When x = 3 and

y = 2, the equation evaluates to 13.

If you did not previously know the answer, you might want to see the best result that
could be found in a certain number of generations. In that case, you would set
threshold to some arbitrarily large number. Remember, because genetic algorithms

are stochastic, every run will be different.

Here is some sample output from a run in which the genetic algorithm solved the

equation in 18 generations.

generation 1 best -8080.0 avg -1.79769313486232e+307
generation 2 best -892.0 avg -5699.1

generation 3 best -52.0 avg -1626.3

generation 4 best -51.0 avg -187.1

generation 5 best -37.0 avg -70.2

generation 6 best -37.0 avg -37.0

generation 7 best -24.0 avg -35.6

generation 8 best -13.0 avg -31.9

generation 9 best 11.0 avg -19.6

generation 10 best 11.0 avg -6.1



generation 11 best 11.0 avg 8.6
generation 12 best 11.0 avg 10.1
generation 13 best 11.0 avg 10.7
generation 14 best 11.0 avg 11.0
generation 15 best 11.0 avg 11.0
generation 16 best 11.0 avg 11.0
generation 17 best 12.0 avg 11.3
generation 18 best 12.0 avg 11.7

x:3 y:2 fitness:13.0

As you can see, it came to the proper solution derived earlier with calculus, x = 3 and y
= 2. You may also note that almost every generation, it got closer to the right answer.
Take into consideration that the genetic algorithm took more computational power
than other methods would have to find the solution. In the real world, such a simple
maximization problem would not be a good use of a genetic algorithm. But its simple

implementation at least suffices to prove that our genetic algorithm works.

5.5. SEND+MORE=MONEY REVISITED

In chapter 3, we solved the classic cryptarithmetic problem SEND+MORE=MONEY
using a constraint-satisfaction framework. (For a refresher on what the problem is all
about, please look back to the description in chapter 3.) However, we cheated a bit in
that earlier solution. Because the fairly naive backtracking search would take an
incredibly long time to execute in a Swift Playground, we presupplied the answers to
the letters S, M, and O. The problem can be solved in a reasonable amount of time in a

Swift Playground, without any cheating, using a genetic algorithm.

One of the largest difficulties in formulating a problem for a genetic algorithm solution

is determining how to represent it. A convenient representation for cryptarithmetic

[ 2]
problems is to use array indices as digits. Hence, to represent the 10 possible digits

(0,1,2,3,4,5,6,7,8,9), a10-element array is required. The characters to be searched
within the problem can then be shifted around from place to place. For example, if it is
suspected that the solution to a problem includes the character “E” representing the
digit 4, then array[4] = “E”. SEND+MORE=MONEY has 8 distinct letters (S, E, N, D,
M, O, R, Y), leaving two slots in the array empty. They can be filled with spaces

indicating no letter.

Reza Abbasian and Masoud Mazloom, “Solving Cryptarithmetic Problems Using Parallel Genetic Algorithm,”
2009 Second International Conference on Computer and Electrical Engineering, http:/mng.bz/RQ7V.

A chromosome that represents the SEND+MORE=MONEY problem is represented in



SendMoreMoney. Note how the fitness property is strikingly similar to

isSatisfied () from SendMoreMoneyConstraint in chapter 3.

final class SendMoreMoney: Chromosome {

var genes: [Character]
static let letters: [Character] = ["S", "E", "N", "D", "M", "O", "R",
" Y LAl P " " . " " ]

var fitness: Double {

if let s = genes.index(of: "S"), let e = genes.index(of: "E"), let
n = genes.index(of: "N"), let d = genes.index(of: "D"),
let m = genes.index(of: "M"), let o = genes.index(of: "O"),
let r = genes.index(of: "R"), let y = genes.index(of: "Y") {

let send: Int = s * 1000 + e * 100 + n * 10 + d

let more: Int = m * 1000 + o * 100 + r * 10 + e

let money: Int = m * 10000 + o * 1000 + n * 100 + e * 10 + y
let difference = abs(money - (send + more))

return 1 / Double (difference + 1)

}

return O

init (from: SendMoreMoney) {

genes = from.genes
}
init (genes: [Character]) {
self.genes = genes
}
static func randomInstance () -> SendMoreMoney {

return SendMoreMoney (genes: letters.shuffled())

func crossover (other: SendMoreMoney)

-> (childl: SendMoreMoney, child2: SendMoreMoney) {

let crossingPoint = Int(arc4random uniform(UInt32 (genes.count)))

let childGenesl = genes[0..<crossingPoint] +
other.genes[crossingPoint..<other.genes.count]

let childGenes2 = other.genes[0..<crossingPoint] +
genes|[crossingPoint. .<genes.count]

return (childl: SendMoreMoney(genes: Array(childGenesl)), child2:
SendMoreMoney (genes: Array(childGenes2)))

func mutate () {
// put a random letter in a random place
let positionl =
Int (arcd4random _uniform(UInt32 (SendMoreMoney.letters.count)))
let position2 = Int (arc4random uniform(UInt32 (genes.count)))
if drand48() < 0.5 { // half the time random letter
genes |[position2] = SendMoreMoney.letters|[positionl]



} else { // half the time random swap

if positionl != position2 { genes.swapAt(positionl, position2)

func prettyPrint () {

if let s = genes.index(of: "S"), let e = genes.index(of: "E"),
let n = genes.index(of: "N"), let d = genes.index(of: "D"),
let m = genes.index(of: "M"), let o = genes.index(of: "O"),
let r = genes.index(of: "R"), let y = genes.index(of: "Y") {

let send: Int = s * 1000 + e * 100 + n * 10 + d
let more: Int = m * 1000 + o * 100 + r * 10 + e
let money: Int = m * 10000 + o * 1000 + n * 100 + e * 10 + vy
print ("\ (send) + \ (more) =
\ (money) difference:\ (money - (send + more))")
} else {

print ("Missing some letters")

There is, however, a major difference between isSatisfied () in chapter 3 and
fitness here. Look at the final return values. At the very end, we return 0 if a letter is
missing. That is not fit at all! If we do have all of the letters, though, we return 1 /
Double (difference + 1).difference isthe absolute value of the difference
between MONEY and SEND+MORE. This represents how far off the chromosome is
from solving the problem. If we were trying to minimize the fitness this would be a
fine number to return. But because GeneticAlgorithm tries to maximize the value of
fitness, it needs to be flipped (so smaller values look like larger values), and that is
why 11is divided by difference. 1is added to di f ference first, so that a
difference of 0 does not yield a fitness of 0 but instead of 1. Table 5.1 should help.

Table 5.1. How the equation 1 / (difference + 1) yields fitnesses for maximization

difference difference + 1 fitness (1/(difference + 1))
0) 1 1

1 2 0.5

2 3 0.25

3 4 0.125

Remember, lower differences are better and higher fitnesses are better. Because this
formula causes those two facts to line up, it works well. Dividing 1 by a fitness value is a

simple way to convert a minimization problem into a maximization problem. It does




introduce some biases, though, so it is not foolproof.

randomInstance () makes use of the shuffled () extension to Array introduced at
the beginning of the chapter. crossover () selects a random point in the genes array
of both chromosomes, and divides both at that point. It swaps the pieces of the two
arrays so that the children are a combination. For example, if crossingPoint is 4, it
takes the first 4 elements of the first parent and merges that with the latter 6 elements
of the second parent to create the first child. It then takes the first 4 elements of the
second parent and merges that with the latter 6 elements of the first parent to create
the second child. mutate () either swaps two random locations in a genes array or

puts a random letter into a random slot in the array.

We can plug SendMoreMoney into GeneticAlgorithm just as easily as we plugged in
SimpleEquation. But be forewarned: this is a fairly tough problem, and it will take a
long time to execute in a Swift Playground if the population size is set to about 100 or
greater. The problem may be solved in a few seconds or a few minutes. Unfortunately,

that is the nature of genetic algorithms!

let smm: GeneticAlgorithm<SendMoreMoney> =
GeneticAlgorithm<SendMoreMoney>(size: 100, threshold: 1.0,
maxGenerations: 1000, mutationChance: 0.3, crossoverChance: 0.7,
selectionType: .tournament (5))

let result2 = smm.run ()

result2.prettyPrint ()

The following output is from a run that solved the problem in 38 generations. See if you
can mess around with the configurable parameters of GeneticAlgorithm to get this

number down.

generation 1 best 4.40606274233345e-05 avg -1.79769313486232e+306
generation 2 best 0.00662251655629139 avg 0.000149274918883093
generation 3 best 0.00662251655629139 avg 7.54324207922214e-05
generation 4 best 0.00662251655629139 avg 0.000179701356382686
generation 5 best 0.00662251655629139 avg 0.000191508227007907
generation 6 best 0.00662251655629139 avg 0.000427770153261289
generation 7 best 0.00662251655629139 avg 0.000451925157998017
generation 8 best 0.00662251655629139 avg 0.000773980169008364
generation 9 best 0.00662251655629139 avg 0.00127997518255647

generation 32 best 0.2 avg 0.0551205015837618
.25 avg 0.0902090428070604
.5 avg 0.12896873861678
.5 avg 0.160618496435873

.5 avg 0.150776355741466

generation 33 best
generation 34 best

generation 35 best

o O O O o

generation 36 best



generation 37 best 0.5 avg 0.181086928014186
6419 + 724 = 7143 difference:0

This solution indicates that SEND = 6419, MORE = 724, and MONEY = 7143. How is
that possible? It looks like letters are missing from the solution. In fact, if M = 0, there
are several solutions to the problem not possible in the version from chapter 2. MORE is
actually 0724 here, and MONEY is 07143. The o is just ignored.

5.6. CHALLENGES FOR GENETIC ALGORITHMS

Genetic algorithms are not a panacea. In fact, they are not suitable for most problems.
For any problem in which a fast deterministic algorithm exists, a genetic algorithm
approach does not make sense. Their inherently stochastic nature makes their runtimes
unpredictable. To solve this problem, they can be cut off after a certain number of

generations. But then it is not clear if a truly optimal solution has been found.

Steven Skiena, author of one of the most popular texts on algorithms, even went so far

as to write this:

I have never encountered any problem where genetic algorithms seemed to me

the right way to attack it. Further, I have never seen any computational results

[ 3]
reported using genetic algorithms that have favorably impressed me.

3

Steven Skiena, The Algorithm Design Manual, 2nd edition (Springer, 2009), p. 267

Skiena’s view is a little extreme, but it is indicative of the fact that genetic algorithms
should only be chosen when you are reasonably confidant that a better solution does
not exist. Another issue with genetic algorithms is determining how to represent a
potential solution to a problem as a chromosome. The traditional practice is to
represent most problems as binary strings (sequences of 1’s and 0’s, raw bits). This is
often optimal in terms of space usage, and it lends itself to easy crossover functions. But

most complex problems are not easily represented as divisible bit strings.

In short, for most problems large enough to warrant using them, genetic algorithms
cannot guarantee the discovery of an optimal solution in a predictable amount of time.
For this reason, they are best utilized in situations that do not call for an optimal
solution, but instead a “good enough” solution. They are fairly easy to implement, but

tweaking their configurable parameters can take a lot of trial and error.

5.7. REAL-WORLD APPLICATIONS



Despite what Skiena wrote, genetic algorithms are frequently and effectively applied in
a myriad of problem spaces. They are often used on hard problems that do not require
perfectly optimal solutions, such as constraint-satisfaction problems too large to be

solved using traditional methods. One example is complex scheduling problems.

Genetic algorithms have found many applications in computational biology. They have
been used successfully for protein-ligand docking, which is a search for the
configuration of a small molecule when it is bound to a receptor. This is used in

pharmaceutical research and to better understand mechanisms in nature.

The Traveling Salesman problem is one of the most famous problems in computer
science. A traveling salesman wants to find the shortest route on a map that visits every
city exactly once and brings him back to his starting location. It may sound like
minimum spanning trees in chapter 4, but it is different. In the Traveling Salesman, the
solution is a giant cycle that minimizes the cost to traverse it, whereas a minimum
spanning tree minimizes the cost to connect every city. A person traveling a minimum
spanning tree of cities may have to visit the same city twice to reach every city. Even
though they sound similar, there is no reasonably timed algorithm for finding a
solution to the Traveling Salesman problem for an arbitrary number of cities. Genetic
algorithms have been shown to find suboptimal, but pretty good, solutions in short
periods of time. The problem is widely applicable to the efficient distribution of goods.
For example, dispatchers of FedEx and UPS trucks use software to solve the Traveling
Salesman problem every day. Algorithms that help solve the problem can cut costs in a

large variety of industries.

In computer-generated art, genetic algorithms are sometimes used to mimic
photographs using stochastic methods. Imagine fifty polygons placed randomly on a
screen and gradually twisted, turned, moved, resized, and changed in color until they
match a photograph as closely as possible. The result looks like the work of an abstract

artist, or if more angular shapes are used, a stained glass window.

Genetic algorithms are part of a larger field called evolutionary computation. One area
of evolutionary computation closely related to genetic algorithms is genetic
programming, in which programs use the selection, crossover, and mutation
operations to modify themselves to find non-obvious solutions to programming
problems. Genetic programming is not a widely used technique, but imagine a future

where programs write themselves.

A benefit of genetic algorithms is that they lend themselves to easy parallelization. In

the most obvious form, each population can be simulated on a separate processor. In



the most granular form, each individual can be mutated, crossed, and have its fitness

calculated in a separate thread. There are also many possibilities in between.

5.8. EXERCISES

1. Add support to GeneticAlgorithm for an advanced form of tournament selection
that may sometimes choose the second or third best chromosome, based on a
diminishing probability.

2. Add a new function to the constraint-satisfaction framework from chapter 3 that
solves any arbitrary CSP using a genetic algorithm. A possible measure of fitness is
the number of constraints that are resolved by a chromosome.

3. Create a struct, Bi tString, that implements Chromosome.



Chapter 6. K-means clustering

Humanity has never had more data about more facets of society than it does today.
Computers are great for storing data sets, but they need humans to draw meaning
through their analysis. Clustering is a computational technique that divides the points
in a data set into groups. A successful clustering results in groups that contain points
that are related to one another, and whether those relationships are meaningful

generally requires human verification.

In clustering, the group (a.k.a. cluster) that a data point belongs to is not
predetermined, but instead is decided during the run of the clustering algorithm. In
fact, the algorithm is not guided to place any particular data point in any particular
cluster by presupposed information. For this reason, clustering is sometimes
considered an unsupervised method within the realm of machine learning. You can

think of “unsupervised” as meaning “not guided by foreknowledge.”

Clustering is a useful technique when you want to learn about the structure of a data
set, but you do not know ahead of time its constituent parts. For example, imagine you
own a grocery store, and you collect data about customers and their transactions. You
want to run mobile advertisements of specials at relevant times of the week to bring
customers into your store. You could try clustering your data by day of the week and
demographic information. Perhaps you will find a cluster that indicates younger
shoppers prefer to shop on Tuesdays, and you could use that information to run an ad

specifically targeting them on that day.

6.1. PRELIMINARIES

Clustering algorithms require some statistical primitives (mean, standard deviation,
and so on). The Swift standard library does not provide these primitives, but it is not
unheard of for standard libraries to do so (Python since version 3.4 and Java since
version 8 do, for instance). We will implement these primitives from scratch, but in a
production system it would make sense to use a well-tested open source library instead

of rolling your own, because their performance is critical for any sizable data set.

For simplicity’s sake, the data points in this chapter consist exclusively of dimensions



defined by type Double, so there will be many operations on arrays of Doubles. The
statistical primitives sum, mean, variance, std, and zscored are defined in this
context. Their definitions follow directly from the formulas you would find in a

statistics textbook.

import Foundation // for pow(), srand48(), drand48()

extension Array where Element == Double {
var sum: Double {

return self.reduce (0.0, +)

// Find the average (mean)
var mean: Double {

return sum / Double (self.count)

// Find the variance sum((Xi - mean)”2) / N
var variance: Double {
let mean = self.mean // cache so not recalculated for every elemen

return self.map { pow(($0 - mean), 2) }.mean

// Find the standard deviation sqgrt (variance)
var std: Double {

return sqrt(variance)

// Convert elements to respective z-scores (formula z-score =
(x - mean) / std)
var zscored: [Double] {
let mean = self.mean
let std = self.std
return self.map{ std != 0 ? (($SO0 -
mean) / std) : 0.0 } // avoid divide by =zero

< »

Tip

Swift has no built-in operator for calculating arbitrary powers. pow (), like random-
number generation functions, is actually defined in the Darwin module (G1ibc on

Linux). The import of Foundation takes care of the import of Darwin or Glibc.




Because these primitives are implemented as an extension of Array, they will work
with any array of Doub1es. Notice how they build on one another. mean uses sum,
variance uses mean, std uses variance, and zscored uses std and mean. By
breaking up the properties into small parts, it makes them easier to test and reason
about. All of the properties return a single Double except zscored, which returns a
copy of the whole array converted into z-scores. There will be more about z-scores later

in the chapter.

Note

It is beyond the purview of this book to teach elementary statistics, but you do not need
more than a rudimentary understanding of mean and standard deviation to follow the
rest of the chapter. If it has been a while, and you need a refresher, or you never
previously learned these terms, it may be worthwhile to quickly peruse a statistics

resource that explains these two fundamental concepts.

It is worth quickly testing the fundamentals.

let test: [Double] = [600, 470, 170, 430, 300]
test.sum

test.mean

test.variance

test.std

test.zscored

If you use the preceding test data, you should get the following results:

e sum: 1970
* mean: 394

® variance: 21704

* std:147.3227748856232

* zscored: [1.398290251863176, 0.5158740735029193, -1.520470953482288,
0.2443614032382249, -0.6380547751220317]
The most basic form of the k-means algorithm uses random guesses to seed the centers

of each cluster (more on the algorithm itself shortly). Therefore, we again need

pseudorandom number generators, but for this chapter we need floating-point



pseudorandom numbers that fall within a certain range. Instead of using drand48 ()

directly, here we will define a more convenient means of access.

struct Random ({

private static var seeded = false

// a random Double between *from* and *to*, assumes *from* < *to*
static func double(from: Double, to: Double) -> Double {
if !Random.seeded {
srand48 (time (nil))

Random.seeded = true

return (drand48() * (to - from)) + from

In prior chapters, we placed a call to srand48 () seemingly randomly near the top of
an example. By using a static Boolean variable, seeded, that will be “remembered”
between calls to the static function Random.double (), we can accomplish seeding in
the first call of Random.double (). The rest of the code in Random.double () uses
some simple arithmetic to ensure a random number falls within a certain range. Recall
that drand48 () returns a Double between 0 and 1. This method will always work as

long as to is greater than from.

All clustering algorithms work with points of data, and our implementation of k-means

will be no exception. We will define a common interface called DataPoint.

public protocol DataPoint: CustomStringConvertible, Equatable {

static var numDimensions: UInt { get }
var dimensions: [Double] { get set }
init (values: [Double])

Every data point must be comparable to other data points of the same type
(Equatable), and human-readable for printing (CustomStringConvertible).
Every data point type has a certain number of dimensions (numDimensions), and this
property is static because data points of the same type will always have the same
number of dimensions. The array dimensions stores the actual values for each of
those dimensions as Doubles. Finally, an init () method that takes an array of values
for the dimensions is required, because we will need a way of initializing random

DataPoints within a certain range in the initialization of k-means.



One final preliminary we need, before we can dig into k-means, is a way of calculating
the distance between any two data points of the same type. There are many ways to
calculate distance, but the form most commonly used with k-means is Euclidean
distance. This is the distance formula familiar to most from a grade school course in
geometry, derivable from the Pythagorean theorem. In fact, we already discussed the
formula and derived a version of it for two-dimensional spaces in chapter 2, where we
used it to find the distance between any two locations within a maze. Our version for
DataPoint needs to be more sophisticated, because a DataPoint can involve any

number of dimensions.

extension DataPoint {
// Euclidean distance
func distance<PointType: DataPoint>(to: PointType) -> Double {
return sqrt(zip(dimensions, to.dimensions) .map ({
pow (($S0.1 - $0.0), 2) }).sum)

This version of distance () is especially compact and will work with bataPoint
types with any number of dimensions. The zip () call creates tuples filled with pairs of
each dimension of the two points, combined into a sequence. The map () call finds the
difference between each point at each dimension, and squares that value, storing the
squares in a new sequence. sum adds all of these values together, and the final value

returned by distance () is the square root of this sum.

To test distance (), let’s define a generic implementation of DataPoint that will
work for any three-dimensional problem. Point 3D can represent a point in a 3D space.

It refers to each of the dimensions using the classic variables x, y, and z.

public struct Point3D: DataPoint {
public static let numDimensions: UInt = 3
public let x: Double
public let y: Double
public let z: Double

public var dimensions: [Double]

public init (x: Double, y: Double, z: Double) {

self.x = x

self.y =

self.z = z

dimensions = [x, y, z]

public init(values: [Double]) {



self.x = values|[0]

self.y = values|[1]
self.z = values|[2]
dimensions = values

// Implement Equatable
public static func == (lhs: Point3D, rhs: Point3D) -> Bool {
return lhs.x == rhs.x && lhs.y == rhs.y && lhs.z == rhs.z

// Implement CustomStringConvertible
public var description: String ({
return "(\(x), \(y), \(z))"

It is time for a quick test of distance ().

let 7 Point3D(x: 2.0, y: 1.0, z: 1.0)
let k = Point3D(x: 2.0, y: 2.0, z: 5.0)
j.distance (to: k)

The distance should be ~4.123

6.2. THE K-MEANS CLUSTERING ALGORITHM

K-means is a clustering algorithm that attempts to group data points into a certain
predefined number of clusters, based on each point’s relative distance to the center of
the cluster. In every round of k-means, the distance between every data point and every
center of a cluster (a point known as a centroid) is calculated. Points are assigned to the
cluster whose centroid they are closest to. Then the algorithm recalculates all of the
centroids, finding the mean of each cluster’s assigned points and replacing the old
centroid with the new mean. The process of assigning points and recalculating
centroids continues until the centroids stop moving or a certain number of iterations

OCcurs.

Each dimension of the initial points provided to k-means needs to be comparable in
magnitude. If they are not, k-means will skew toward clustering based on dimensions
with the largest differences. The process of making different types of data (in our case,
different dimensions) comparable is known as normalization. One common way of
normalizing data is to evaluate each value based on its z-score (also known as standard
score) relative to the other values of the same type. A z-score is calculated by taking a

value, subtracting the mean of all of the values from it, and dividing that result by the



standard deviation of all of the values. The zscored property devised near the
beginning of the previous section does exactly this for every value in an array of
Double.

The main difficulty with k-means is choosing how to assign the initial centroids. In the
most basic form of the algorithm, which is what we will be implementing, the initial
centroids are placed randomly within the range of the data. Another difficulty is
deciding how many clusters to divide the data into (the “k” in k-means). In the classical
algorithm, that number is determined by the user, but the user may not know the right

number, and this will require some experimentation. We will let the user define “k.”

Putting all of these steps and considerations together, here is our k-means clustering

algorithm:
1. Initialize all of the data points and “k” empty clusters.
2. Normalize all of the data points.
3. Create random centroids associated with each cluster.
4. Assign each data point to the cluster of the centroid it is closest to.

5. Recalculate each centroid so it is the center (mean) of the cluster it is associated
with.

6. Repeat steps 4 and 5 until a maximum number of iterations is reached or the

centroids stop moving (convergence).

Conceptually, k-means is actually quite simple: In each iteration, every data point is
associated with the cluster that it is closest to in terms of the cluster’s center. That

center moves as new points are associated with the cluster.

We will implement a class for maintaining state and running the algorithm, similar to

GeneticAlgorithmin chapter 5.

public final class KMeans<PointType: DataPoint> {
public final class Cluster {
var points: [PointType] = [PointType] ()
var centroid: PointType
init (centroid: PointType) {

self.centroid = centroid



KMeans is a generic class. It works with any type that implements DataPoint. It has
an internal type, Cluster, that keeps track of the individual clusters in the operation.

Each Cluster has data points and a centroid associated with it.

private var points: [PointType]l
private var clusters: [Cluster]
private var centroids: [PointType] {

return clusters.map{ $0.centroid }

KMeans has an array, points, associated with it. This is all of the points in the data
set. The points are further divided between the clusters, which are stored in the
appropriately titled c1usters variable. The computed centroids property returns

all of the centroids associated with the clusters that are associated with the algorithm.

init(k: UInt, points: [PointTypel]) {
self.points = points
clusters = [Cluster] ()
zscoreNormalize ()
for in 0..<k { // initialize a random centroid for each cluster
let randPoint = randomPoint ()

clusters.append(Cluster (centroid: randPoint))

When KMeans is instantiated, it needs to know how many clusters it will be trying to
divide the data into (k). Every cluster initially has a random centroid. All of the data

points that will be used in the algorithm are normalized by z-score.

private func dimensionSlice( index: Int) -> [Double] {

return points.map{ $0.dimensions[index] }

dimensionSlice () is a convenience method that can be thought of as returning a
column of data. It will return an array composed of every value at a particular index in
every data point. For instance, if the data points were of type Point3D, then
dimensionSlice[0] would return an array of every x value of every data point in the

points array.

private func zscoreNormalize () {



for dimension in 0..<Int (PointType.numDimensions) {
for (index, zscore)
in dimensionSlice (dimension) .zscored.enumerated() {

points[index].dimensions[dimension] = zscore

zscoreNormalize () replaces the values in the dimensions array of every data
point with its z-scored equivalent. This uses the zscored property that we defined for
arrays of Double earlier. Although the values in the dimensions array are replaced,
individual properties not specified in the DataPoint protocol are not. If, for example,
an array of points composed of Point3D was zscoreNormalized (), the values in
its dimensions array would change, but the values of its properties x, y, and z would
not. This is useful—the user of the algorithm can still retrieve the original values of the
dimensions before normalization after the algorithm runs if they are stored in both

places.

private func randomPoint () -> PointType {

var randDimensions = [Double] ()

for dimension in 0..<Int (PointType.numDimensions) {
let values = dimensionSlice (dimension)
let randValue = Random.double(from: values.min() !,

to:values.max () !)

randDimensions.append (randvValue)

}

return PointType (values: randDimensions)

The preceding randomPoint () function is used in the init () method to create the
initial random centroids for each cluster. It constrains the random values of each point
to be within the range of the existing data points’ values. It uses the constructor we

specified earlier on DataPoint to create a new point from an array of values.

// Find the closest cluster centroid to each point and assign the poin
to that cluster
private func assignClusters () {

for point in points {

var lowestDistance = Double.greatestFiniteMagnitude // tempora
var closestCluster = clusters.first!
for (index, centroid) in centroids.enumerated () {

if centroid.distance(to: point) < lowestDistance {
lowestDistance = centroid.distance(to: point)

closestCluster = clusters[index]



}

closestCluster.points.append (point)

Throughout the book, we have created several functions that find the minimum or find
the maximum in an array. This one is not dissimilar. In this case we are looking for the
cluster centroid that has the minimum distance to each individual point. The point is

then assigned to that cluster.

// find the center of each cluster and move the centroid to there
private func generateCentroids () {
for cluster in clusters {
var means: [Double] = [Double] ()
for dimension in 0..<Int (PointType.numDimensions) {
means.append (cluster.points.map ({
$0.dimensions[dimension] }) .mean)
}

cluster.centroid = PointType (values: means)

After every point is assigned to a cluster, the new centroids are calculated. This involves
calculating the mean of each dimension of every point in the cluster. The means of each
dimension are then combined to find the “mean point” in the cluster, which becomes
the new centroid. Note that we cannot use dimensionSlice () here, because the
points in question are a subset of all of the points (just those belonging to a particular

cluster). How could dimensionSlice () be rewritten to be more generic?

Now, let’s look at the method that will actually execute the algorithm.

public func run (maxIterations: UInt = 100) -> [Cluster] {
for iteration in 0..<maxIterations {
clusters.forEach{ $0.points.removeAll () } // clear all cluster
assignClusters () // find clusters each is closest to - assign
let lastCentroids = centroids // record centroids
generateCentroids () // find new centroids
if lastCentroids == centroids { // have centroids moved?
print ("Converged after \(iteration) iterations.")

return clusters // they haven't moved, so we've converged

return clusters



Finally, there is run (), which is the most pure expression of the original algorithm.
The only change to the algorithm you may find unexpected is the removal of all points
at the beginning of each iteration. If this were not to occur, the assignClusters ()

method, as written, would end up putting duplicate points in each cluster.

You can perform a quick test using the test Point3Ds from before and k set to 1. You

should see a single cluster containing both points.

let kmeansTest = KMeans<Point3D>(k: 1, points: [j, kI)
let testClusters = kmeansTest.run ()
for (index, cluster) in testClusters.enumerated () {

print ("Cluster \ (index): \(cluster.points)")

This is the expected result:

Converged after 1 iterations.
Cluster 0: [(2.0, 1.0, 1.0), (2.0, 2.0, 5.0)]1

6.3. CLUSTERING GOVERNORS BY AGE AND LONGITUDE

Every American state has a governor. In June 2017, those governors ranged in age from
42 to 79. If we take the United States from east to west, looking at each state by its
longitude, perhaps we can find clusters of states with similar longitudes and similar age
governors. Figure 6.1 is a scatter plot of all 50 governors. The x-axis is state longitude

and the y-axis is governor age.

Figure 6.1. State governors plotted by state longitude and governor age
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Are there any obvious clusters in figure 6.1? In this figure, the axes are not normalized.

Instead, we are looking at raw data. If clusters were always obvious, there would be no

need for clustering algorithms.

Let’s try running this data set through k-means. First, we will need a way of

representing an individual data point.

struct Governor: DataPoint {
public
let

let

public longitude: Double

public age: Double

public var dimensions:

let

[Double]

public state: String

public init (longitude: Double,

longitude

self.longitude

self.age
self.state

age

state

dimensions [longitude,

[Double]) {

values [0]

public init(values:

self.longitude

self.age
self.state

values|[1]

mww

dimensions values

static let numDimensions:

age:

UInt 2

Double, state: String) {

age]



// Implement Equatable

public static func == (lhs: Governor, rhs: Governor) -> Bool {
return lhs.longitude == rhs.longitude && lhs.age == rhs.age &&
lhs.state == rhs.state

// Implement CustomStringConvertible
public var description: String {

return "\ (state): (longitude: \ (longitude), age: \ (age))"

A Governor has two dimensions—1ongitude and age—rather than the three in
Point3D. Other than that, Governor is almost identical to Point3D in
implementation. It would be pretty unreasonable to enter the following data manually,

so check out the Playground that accompanies this book.

let governors = [Governor (longitude: -86.79113, age: 72, state: "Alabama")
Governor (longitude: -152.404419, age: 66, state: "Alaska"),
Governor (longitude: -111.431221, age: 53, state: "Arizona"),
Governor (longitude: -92.373123, age: 66, state: "Arkansas"),
Governor (longitude: -119.681564, age: 79, state: "California"),
Governor (longitude: -105.311104, age: 65, state: "Colorado"),
Governor (longitude: -72.755371, age: 61, state: "Connecticut"),
Governor (longitude: -75.507141, age: 61, state: "Delaware"),
Governor (longitude: -81.686783, age: 64, state: "Florida"),
Governor (longitude: -83.643074, age: 74, state: "Georgia"),
Governor (longitude: -157.498337, age: 60, state: "Hawaii"),
Governor (longitude: -114.478828, age: 75, state: "Idaho"),
Governor (longitude: -88.986137, age: 60, state: "Illinois"),
Governor (longitude: -86.258278, age: 49, state: "Indiana"),
Governor (longitude: -93.210526, age: 57, state: "Iowa"),
Governor (longitude: -96.726486, age: 60, state: "Kansas"),
Governor (longitude: -84.670067, age: 50, state: "Kentucky"),

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

Governor (longitude: -91.867805, age: 50, state: "Louisiana"),

Governor (longitude: -69.381927, age: 68, state: "Maine"),

Governor (longitude: -76.802101, age: 61, state: "Maryland"),

Governor (longitude: -71.530106, age: 60, state: "Massachusetts"),

Governor (longitude: -84.536095, age: 58, state: "Michigan"),

Governor (longitude: -93.900192, age: 70, state: "Minnesota"),

Governor (longitude: -89.678696, age: 62, state: "Mississippi"),

Governor (longitude: -92.288368, age: 43, state: "Missouri"),

Governor (longitude: -110.454353, age: 51, state: "Montana"),

Governor (longitude: -98.268082, age: 52, state: "Nebraska"),

Governor (longitude: -117.055374, age: 53, state: "Nevada"),

Governor (longitude: -71.563896, age: 42, state: "New Hampshire"),

Governor (longitude: -74.521011, age: 54, state: "New Jersey"),

Governor (longitude: -106.248482, age: 57, state: "New Mexico"),

Governor (longitude: -74.948051, age: 59, state: "New York"),
(

Governor (longitude: -79.806419, age: 60, state: "North Carolina"),



Governor (longitude: -99.784012, age: 60, state: "North Dakota"),
Governor (longitude: -82.764915, age: 65, state: "Ohio"),

Governor (longitude: -96.928917, age: 62, state: "Oklahoma"),
Governor (longitude: -122.070938, age: 56, state: "Oregon"),
Governor (longitude: -77.209755, age: 68, state: "Pennsylvania"),
Governor (longitude: -71.51178, age: 46, state: "Rhode Island"),
Governor (longitude: -80.945007, age: 70, state: "South Carolina"),
Governor (longitude: -99.438828, age: 64, state: "South Dakota"),

(
(
(
(
(
(
(
(
Governor (longitude: -86.692345, age: 58, state: "Tennessee"),
Governor (longitude: -97.563461, age: 59, state: "Texas"),
Governor (longitude: -111.862434, age: 70, state: "Utah"),
Governor (longitude: -72.710686, age: 58, state: "Vermont"),
Governor (longitude: -78.169968, age: 60, state: "Virginia"),
Governor (longitude: -121.490494, age: 66, state: "Washington"),
Governor (longitude: -80.954453, age: 66, state: "West Virginia"),
Governor (longitude: -89.616508, age: 49, state: "Wisconsin"),

(

Governor (longitude: -107.30249, age: 55, state: "Wyoming") ]

d | »

We will run k-means with k set to 2.

let kmeans = KMeans<Governor>(k: 2, points: governors)

let govClusters = kmeans.run ()

for (index, cluster) in govClusters.enumerated () {
print ("Cluster \ (index): \ (cluster.points)")

Because it starts with randomized centroids, every run of KMeans may potentially
return different clusters. It takes some human analysis to see if the clusters are actually

relevant. The following result is from a run that did have an interesting cluster.

Converged after 2 iterations.

Cluster 0: [Alabama: (longitude: -86.79113, age: 72.0), Arizona:
(longitude: -111.431221, age: 53.0), Arkansas: (longitude: -92.373123,
age: 66.0), Colorado: (longitude: -105.311104, age: 65.0), Connecticut:
(longitude: -72.755371, age: 61.0), Delaware: (longitude: -75.507141, age:
61.0), Florida: (longitude: -81.686783, age: 64.0), Georgia: (longitude:
-83.643074, age: 74.0), Illinois: (longitude: -88.986137, age: 60.0),
Indiana: (longitude: -86.258278, age: 49.0), Iowa: (longitude: -93.21052¢6,
age: 57.0), Kansas: (longitude: -96.726486, age: 60.0), Kentucky:
(longitude: -84.670067, age: 50.0), Louisiana: (longitude: -91.867805,
age: 50.0), Maine: (longitude: -69.381927, age: 68.0), Maryland:
(longitude: -76.802101, age: 61.0), Massachusetts: (longitude: -71.530106,
age: 60.0), Michigan: (longitude: -84.536095, age: 58.0), Minnesota:
(longitude: -93.900192, age: 70.0), Mississippi: (longitude: -89.67869¢6,
age: 62.0), Missouri: (longitude: -92.288368, age: 43.0), Montana:
(longitude: -110.454353, age: 51.0), Nebraska: (longitude: -98.268082,
age: 52.0), Nevada: (longitude: -117.055374, age: 53.0), New Hampshire:
(longitude: -71.563896, age: 42.0), New Jersey: (longitude: -74.521011,



age: 54.0), New Mexico: (longitude: -106.248482, age: 57.0), New York:
(longitude: -74.948051, age: 59.0), North Carolina: (longitude: -79.806419
age: 60.0), North Dakota: (longitude: -99.784012, age: 60.0), Ohio:
(longitude: -82.764915, age: 65.0), Oklahoma: (longitude: -96.928917,

age: 62.0), Pennsylvania: (longitude: -77.209755, age: 68.0), Rhode Island
(longitude: -71.51178, age: 46.0), South Carolina: (longitude: -80.945007,
age: 70.0), South Dakota: (longitude: -99.438828, age: 64.0), Tennessee:
(longitude: -86.692345, age: 58.0), Texas: (longitude: -97.563461, age:
59.0), Vermont: (longitude: -72.710686, age: 58.0), Virginia: (longitude:
-78.169968, age: 60.0), West Virginia: (longitude: -80.954453, age: 66.0),
Wisconsin: (longitude: -89.616508, age: 49.0), Wyoming: (longitude:
-107.30249, age: 55.0)]

Cluster 1: [Alaska: (longitude: -152.404419, age: 66.0), California:
(longitude: -119.681564, age: 79.0), Hawaii: (longitude: -157.498337, age:
60.0), Idaho: (longitude: -114.478828, age: 75.0), Oregon: (longitude:
-122.070938, age: 56.0), Utah: (longitude: -111.862434, age: 70.0),
Washington: (longitude: -121.490494, age: 66.0)]

Cluster 1 represents the extreme Western states, all geographically next to each other (if

you consider Alaska and Hawaii next to the Pacific coast states). They all have relatively

old governors and hence formed an interesting cluster. Do folks on the Pacific rim like

older governors? We cannot determine anything conclusive from these clusters beyond

a correlation. Figure 6.2 illustrates the result. Squares are cluster 1 and circles are cluster

Tip

It cannot be emphasized enough that your results with k-means using random

initialization of centroids will vary. Be sure to try running k-means multiple times with

any data set.

Figure 6.2. Data points in cluster 0 are designated by circles, and data points in
cluster 1 are designated by squares.
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6.4. K-MEANS CLUSTERING PROBLEMS AND EXTENSIONS

When k-means clustering is implemented using random starting points, it may
completely miss useful points of division within the data. This often results in a lot of
trial and error for the operator. Figuring out the right value for “k” (the number of
clusters) is also difficult and error prone if the operator does not have good insight into

how many groups of data should exist.

There are more sophisticated versions of k-means that can try to make educated
guesses or do automatic trial and error regarding these problematic variables. One
popular variant is k-means++, which attempts to solve the initialization problem by
choosing centroids based on a probability distribution of distance to every point,
instead of pure randomness. An even better option for many applications is to choose
good starting regions for each of the centroids based on information about the data that
is known ahead of time. In other words, a version of k-means where the user of the

algorithm chooses the initial centroids.

The runtime for k-means clustering is proportional to the number of data points, the
number of clusters, and the number of dimensions of the data points. It can become
unusable in its basic form when there are a high number of points that have a large
number of dimensions. There are extensions that try to not do as much calculation

between every point and every center by evaluating whether a point really has the



potential to move to another cluster before doing the calculation. Another option for
numerous-point or high-dimension data sets is to run just a sampling of the data points
through k-means. This will approximate the clusters that the full k-means algorithm

may find.

Outliers in a data set may result in strange results for k-means. If an initial centroid

happens to fall near an outlier, it could form a cluster of one. K-means may run better

[1]
with outliers removed.

Hantao Zhang, “Unsupervised Learning,” The University of Iowa, http:/mng.bz/W0pn.

Finally, the mean is not always considered a good measure of the center. K-medians
looks at the median of each dimension and k-medoids uses an actual point in the data
set as the middle of each cluster. There are statistical reasons beyond the scope of this
book for choosing each of these centering methods, but common sense dictates that for
a tricky problem it may be worth trying each of them and sampling the results. The

implementations of each are not that different.

6.5. REAL-WORLD APPLICATIONS

Clustering is often the purview of data scientists and statistical analysts. It is used
widely as a way to interpret data in a variety of fields. K-means clustering, in particular,

is a useful technique when little is known about the structure of the data set.

In data analysis, clustering is an essential technique. Imagine a police department that
wants to know where to put cops on patrol. Imagine a fast food franchise that wants to
figure out where its best customers are, to send promotions. Imagine a boat rental
operator that wants to minimize accidents by analyzing when they occur and who

causes them. Now, imagine how they could solve their problems using clustering.

Clustering helps with pattern recognition. A clustering algorithm may detect a pattern
that the human eye misses. For instance, in biology clustering is sometimes used to

identify groups of discongruous cells.

In image recognition, clustering helps to identify non-obvious features. Individual
pixels can be treated as data points with their relationship to one another being defined

by distance and color difference.

In political science, clustering is sometimes used to find voters to target. Can a political

party find disenfranchised voters concentrated in a single district that they should focus



their campaign dollars on? What issues are similar voters likely to be concerned about?

6.6. EXERCISES

1. Create a function that can import data from a CSV file into DataPoints.

2. Create a graphical program that plots the results of k-means on a chart.

3. Create a new initializer for KMeans that takes initial centroid positions instead of
assigning them randomly.

4. Research and implement the k-means++ algorithm.



Chapter 7. Fairly simple neural networks

In the late 2010s, when we hear about advances in artificial intelligence, they generally
concern a particular subdiscipline known as machine learning (computers learning
some new information without being explicitly told it). More often than not those
advances are being driven by a particular machine-learning technique known as neural
networks. Although invented decades ago, neural networks have been going through a
kind of renaissance as improved hardware and newly discovered research-driven

software techniques enable a new paradigm known as deep learning.

Deep learning has turned out to be a broadly applicable technique. It has been found
useful in everything from hedge fund algorithms to bioinformatics. Two deep-learning
applications that consumers have become familiar with are image recognition and
speech recognition. If you have ever asked your digital assistant what the weather is, or
had a photo program recognize your face, there was probably some deep learning going

on.

Deep-learning techniques utilize the same building blocks as simpler neural networks.
In this chapter we will explore those blocks by building a simple neural network. It will
not be state of the art, but it will give you a basis for understanding deep learning
(which is based on more complex neural networks than we will build). Most
practitioners of machine learning do not build neural networks from scratch. Instead,
they use popular, highly optimized, off-the-shelf frameworks that do the heavy lifting.
Although this chapter will not help you learn how to use any specific framework, and
the network we will build will not be useful for an actual application, it will help you

understand how those frameworks work at a low level.

7.1. BIOLOGICAL BASIS?

The human brain is the most incredible computational device in existence. It cannot
crunch numbers as fast as a microprocessor, but its ability to adapt to new situations,
learn new skills, and be creative is unsurpassed by any known machine. Since the dawn
of computers, scientists have been interested in modeling the brain’s machinery. Each

nerve cell in the brain is known as a neuron. Neurons in the brain are networked to one



another via connections known as synapses. Electricity passes through synapses to

power these networks of neurons—also known as neural networks.

Note

The preceding description of biological neurons is a gross oversimplification for
analogy’s sake. In fact, biological neurons have parts like axons, dendrites, and nuclei
that you may remember from high school biology. And synapses are actually spaces

where neurotransmitters are secreted to enable those electrical signals to pass.

Although scientists have identified the parts and functions of neurons, the details of
how biological neural networks form complex thought patterns are still not well
understood. How do they process information? How do they form original thoughts?
Most of our knowledge of how the brain works comes from looking at it on a macro
level. Functional magnetic resonance imaging (fMRI) scans of the brain show where
blood flows when a human is doing a particular activity or thinking a particular thought
(illustrated in figure 7.1). This and other macro-techniques can lead to inferences about
how the various parts are connected, but they do not explain the mysteries of how

individual neurons aid in the development of new thoughts.

Figure 7.1. Aresearcher studies fMRI images of the brain. fMRI images do not tell
us much about how individual neurons function, nor how neural networks are

[1]

organized.

Public Domain. U.S. National Institute for Mental Health

Teams of scientists are racing around the globe to unlock the brain’s secrets, but



consider this: The human brain has approximately 100,000,000,000 neurons, and
each of them may have connections with as many as tens of thousands of other
neurons. Even for a computer with billions of logic gates and terabytes of memory, a
single human brain would be impossible to model using today’s technology. Humans
will still likely be the most advanced general-purpose learning entities for the

foreseeable future.

Note

A general-purpose learning machine that is equivalent to human beings in abilities is
the goal of so-called “strong AI” (also known as “artificial general intelligence”). At this
point in history, it is still the stuff of science fiction. “Weak AI” is the type of Al you see
every day—computers intelligently solving specific tasks they were preconfigured to

accomplish.

If biological neural networks are not fully understood, then how has modeling them
been an effective computational technique? Although digital neural networks, known as
artificial neural networks, are inspired by biological neural networks, inspiration is
where the similarities end. Modern artificial neural networks do not claim to work like
their biological counterparts. In fact, that would be impossible, since we do not

completely understand how biological neural networks work to begin with.

7.2. ARTIFICIAL NEURAL NETWORKS

In this section we will look at what is arguably the most common type of neural
network, a feed-forward network with backpropagation—the same type we will later
be developing. “Feed-forward” means the signal is generally moving in one direction
through the network. “Backpropagation” means we will determine errors at the end of
each signal’s traversal through the network, and try to distribute fixes for those errors
back through the network, especially affecting the neurons that were most responsible
for them. There are many other types of artificial neural networks, and hopefully this

chapter will pique your interest in exploring further.

7.2.1. Neurons

The smallest unit in an artificial neural network is a neuron. It holds a vector of
weights, which are just floating-point numbers. A vector of inputs (also just floating-

point numbers) is passed to the neuron. It combines those inputs with its weights using



a dot product. It then runs an activation function on that product and spits the result

out as its output.

An activation function is a transformer of the neuron’s output. The activation function
is almost always nonlinear, which allows neural networks to represent solutions to
nonlinear problems. If there were no activation functions, the entire neural network
would just be a linear transformation. Figure 7.2 shows a single neuron and its

operation.

Note

There are some math terms in this section that you may not have seen since a
precalculus or linear algebra class. Explaining what vectors or dot products are is
beyond the scope of this chapter, but you will likely get an intuition of what a neural
network does by following along in this chapter, even if you do not understand all of the
math. Later in the chapter there will be some calculus, including a discussion of
derivatives and partial derivatives, but even if you do not understand all of the math,
you should be able to follow the code. In fact, this chapter will not explain how to derive

the formulas using calculus. Instead, it will focus on using the derivations.

Figure 7.2. A single neuron combines its weights with input signals to produce an
output signal that is modified by an activation function.

Inside the neuron the inputs and
weights are combined into a single
output by taking the dot product.
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7.2.2. Layers

In a typical feed-forward artificial neural network, neurons are organized in layers.
Each layer consists of a certain number of neurons lined up in a row or column
(depending on the diagram—the two are equivalent). In a feed-forward network, which
is what we will be building, signals always pass in a single direction from one layer to
the next. The neurons in each layer send their output signal to be used as input to the
neurons in the next layer. Every neuron in each layer is connected to every neuron in

the next layer.

The first layer is known as the input layer, and it receives its signals from some external
entity. The last layer is known as the output layer, and its output typically must be
interpreted by an external actor to get an intelligent result. The layers between the
input and output layers are known as hidden layers. In simple neural networks, like the
one we will be building in this chapter, there is just one hidden layer, but deep-learning
networks have many. Figure 7.3 shows the layers working together in a simple network.
Note how the outputs from one layer are used as the inputs to every neuron in the next
layer.

Figure 7.3. A simple neural network with one input layer of two neurons, one

hidden layer of four neurons, and one output layer of three neurons. The number
of neurons in each layer in this figure is arbitrary.

Hidden layer

Output layer

Input layer

—C O\
> )1“‘0
—O 057X

O——-

These layers are just manipulating floating-point numbers. The inputs to the input

layer are floating-point numbers, and the outputs from the output layer are floating-



point numbers.

Obviously, these numbers must represent something meaningful. Imagine that the
network was designed to classify small black and white images of animals. Perhaps the
input layer has 100 neurons representing the grayscale intensity of each pixel in a 10x10
pixel animal image, and the output layer has 5 neurons representing the likelihood that
the image is of a mammal, reptile, amphibian, fish, or bird. The final classification
could be determined by the output neuron with the highest floating-point output. If the
output numbers were 0.24, 0.65, 0.70, 0.12, and 0.21 respectively, the image would be

determined to be an amphibian.

7.2.3. Backpropagation

The last piece of the puzzle, and the part that is most confusing, is backpropagation.
Backpropagation finds the error in a neural network’s output and uses it to modify the
weights of neurons. The neurons most responsible for the error are most heavily
modified. But where does the error come from? How can we know the error? The error

comes from a phase in the use of a neural network known as training.

Tip

There are steps written out (in English) for several mathematical formulas in this
section. Pseudo formulas (not using proper notation) are in the accompanying figures.
This approach will make the formulas readable for those uninitiated in (or out of
practice with) mathematical notation. If the more formal notation (and the derivation

of the formulas) interests you, check out chapter 18 of Norvig and Russell’s Artificial

. [2]
Intelligence.

Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, third edition (Pearson, 2010).

Before they can be used, most neural networks must be trained. We must know the
right outputs for some inputs so that we can use the difference between expected
outputs and actual outputs to find errors and modify weights. In other words, neural
networks know nothing until they are told the right answers for a certain set of inputs,
so that they can prepare themselves for other inputs. Backpropagation only occurs

during training.




Note

Because most neural networks must be trained, they are considered a type of
supervised machine learning. Recall from chapter 6 that the k-means algorithm and
other cluster algorithms are considered a form of unsupervised machine learning
because once they are started, no outside intervention is required. There are other types
of neural networks than the one described in this chapter that do not require

pretraining and are considered a form of unsupervised learning.

The first step in backpropagation is to calculate the error between the neural network’s
output for some input and the expected output. This error is spread across all of the
neurons in the output layer (each neuron has an expected output and its actual output).
The derivative of the output neuron’s activation function is then applied to what was
output by the neuron before its activation function was applied (we cache its pre-
activation function output). This result is multiplied by the neuron’s error to find its
delta. This formula for finding the delta uses a partial derivative, and its calculus
derivation is beyond the scope of this book, but we are basically figuring out how much
of the error each output neuron was responsible for. See figure 7.4 for a diagram of this

calculation.

Figure 7.4. The mechanism by which an output neuron’s delta is calculated during
the backpropagation phase of training
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Deltas must then be calculated for every neuron in the hidden layer(s) in the network.
We must determine how much each neuron was responsible for the incorrect output in

the output layer. The deltas in the output layer are used to calculate the deltas in the



hidden layer(s). For each previous layer, the deltas are calculated by taking the dot
product of the next layer’s weights with respect to the particular neuron in question and
the deltas already calculated in the next layer. This value is multiplied by the derivative
of the activation function applied to a neuron’s last output (cached before the activation
function was applied) to get the neuron’s delta. Again, this formula is derived using a
partial derivative, which you can read about in more mathematically focused texts.
Figure 7.5 shows the actual calculation of deltas for neurons in hidden layers. In a
network with multiple hidden layers, neurons O1, O2, and O3 could be neurons in the

next hidden layer instead of in the output layer.

Figure 7.5. How a delta is calculated for a neuron in a hidden layer
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Last, but most importantly, all of the weights for every neuron in the network must be
updated by multiplying each individual weight’s last input with the delta of the neuron
and something called a learning rate, and adding that to the existing weight. This
method of modifying the weight of a neuron is known as gradient descent. It is like
climbing down a hill representing the error function of the neuron toward a point of
minimal error. The delta represents the direction we want to climb, and the learning
rate affects how fast we climb. It is hard to determine a good learning rate for an
unknown problem without trial and error. Figure 7.6 shows how every weight in the
hidden layer and output layer is updated.

Figure 7.6. The weights of every hidden layer and output layer neuron are updated

using the deltas calculated in the previous steps, the prior weights, the prior
inputs, and a user-determined learning rate.



Every weight will be updated according to the formula:

w = w + learningRate * lastinput * delta

where lastinput is the last input a weight was multiplied with in the
last round of forward-propagation. $o, Nlwl would be:

Niwl = Niwl + learningRate * lastinputl * NiDelta.

lastinput1

neuron
(N1)
lastinput2

Input
neuron
(2)

Recall that NiDelta was calculated in the previous
step. See figure 7.5.

The learning rate is determined by the user of the
network, often through some trial and error.

Once the weights are updated, the neural network is ready to be trained again with
another input and expected output. This process repeats until the network is deemed
well trained by the neural network’s user. This can be determined by testing it against

inputs with known correct outputs.

The explanation in this section may not give you enough information to understand
why backpropagation works, but it does tell you how. As we implement our neural
network and backpropagation, keep in mind this overarching theme: Backpropagation
is a way of adjusting each individual weight in the network according to its

responsibility for an incorrect output.

7.2.4. The big picture

We covered a lot of ground in this section. Even if the details do not yet make sense, it
is important to keep the main themes in mind for a feed-forward network with

backpropagation:
e Signals (floating-point numbers) move through neurons organized in layers in one
direction. Every neuron in each layer is connected to every neuron in the next layer.

e Each neuron (except in the input layer) processes the signals it receives by
combining them with weights (also floating-point numbers) and applying an

activation function.

e During a process called training, network outputs are compared with expected



outputs to calculate errors.

e Errors are backpropagated through the network (back toward where they came

from) to modify weights, so that they are more likely to create correct outputs.

There are more methods for training neural networks than the one explained here.
There are also many other ways for signals to move within neural networks. The
method explained here, and that we will be implementing, is just a particularly
common form that serves as a decent introduction. Appendix B lists further resources
for learning more about neural networks (including other types) and more about the

math.

7.3. PRELIMINARIES

Neural networks utilize mathematical mechanisms that require a lot of fast floating-
point operations. Before we develop the actual structures of our simple neural network,
we will need some mathematical primitives. You have seen a couple of these in previous
chapters. To build new primitives, we will use Apple’s Accelerate framework to speed
up some floating-point arithmetic. We will also need some utility methods offered in

Foundation.

Note

The source code examples in this chapter are based on my SwiftSimpleNeuralNetwork

open source project (https://github.com/davecom/Swift-SimpleNeuralNetwork).

Warning

The complexity of the code in this chapter is arguably greater than any other in the
book. There is a lot of build-up, with actual results seen only at the very end. There are
many resources about neural networks that help you build one in very few lines of code,
but this example is aimed at exploring the machinery and how the different
components work together in a readable and extensible fashion. That is our goal, even if

the code is a little longer and more expressive.

We will start by importing Foundation and Accelerate.



import Foundation

import Accelerate

7.3.1. Help with randomization

In chapter 5 we discussed how to shuffle an Array using the Fisher-Yates method. We
will shuffle arrays later in this chapter too, when we want to randomize the order of our

input data. We will use that code verbatim from chapter 5.

// A derivative of the
Fisher-Yates algorithm to shuffle an array
extension Array {
public func shuffled() -> Array<Element> ({
var shuffledArray = self // value semantics (Array is Struct) make
this a copy
if count < 2 { return shuffledArray } // already shuffled

for i in (1..<count) .reversed() { // count backwards
let position = Int(arc4random uniform(UInt32(i + 1))) // rando
to swap
if 1 != position { // swap with the end, don't bother with sel
swaps

shuffledArray.swapAt (i, position)

}
return shuffledArray

In chapter 6 we built a little convenience struct for generating random Doubles. We will

need random Doubles to seed our neural network, so we will reuse that snippet too.

struct Random ({

private static var seeded = false

// a random Double between *from* and *to*, assumes *from* < *to*
static func double(from: Double, to: Double) -> Double {
if !Random.seeded {
srand48 (time (nil))

Random.seeded = true

return (drand48() * (to - from)) + from

Specifically, seeding our neural network will require an Array of random Doubles



between 0.0 and 1.0. This short function will do just that:

/// Create *number* of random Doubles between 0.0 and 1.0
func randomWeights (number: Int) -> [Double] {

return (0..<number).map{ _ in Random.double (from: 0.0, to: 1.0) }

That one-liner is dense. It takes a range of integers (0. . <number) and maps it to the
same number of random Doubles. If it does not make sense to you, try coding an
equivalent iterative solution and work through the elements of the iterative approach

that map to this more functional approach.

7.3.2. Fast arithmetic

Neural networks require a lot of vector/matrix math. Essentially, this means taking a
list of numbers, such as an array, and doing an operation on all of them at once.
Libraries for optimized, performant vector/matrix math are increasingly important as
machine learning continues to permeate our society. Many of these libraries take
advantage of GPUs, because GPUs are somewhat optimized for this role
(vectors/matrices are at the heart of computer graphics). An older library specification
you may have heard of is BLAS (Basic Linear Algebra Subprograms). A BLAS

implementation is included with Apple’s Accelerate framework.

Warning

The code in this chapter is the only code in the book that will not run on Linux with
minor modifications. Unfortunately, the Accelerate framework is macOS only (as is the
assumption that the CSV files mentioned at the end of the chapter are in the
Playground’s Bundle). You might find an equivalent library on Linux and replace the
arithmetic functions presented in this chapter. You can also just use the Swift standard

library’s arithmetic and suffer a performance hit.

Beyond the GPU, CPUs also have extensions that can speed up vector/matrix
processing. Accelerate includes functions that make use of single instruction, multiple
data (SIMD) instructions. SIMD instructions are special microprocessor instructions
that allow multiple pieces of data to be processed at once. They are sometimes known

as vector instructions.



Different microprocessors include different SIMD instructions. For example, the SIMD
extension to the G4 (a PowerPC architecture processor found in early ’'00s Macs) was
known as AltiVec. ARM microprocessors, like those found in iPhones, have an
extension known as NEON. And modern Intel microprocessors include SIMD
extensions known as MMX, SSE, SSE2, and SSE3. Luckily, you do not need to know the
differences. A library like Accelerate will automatically choose the right instructions for

the underlying architecture that your program is compiled for.

Note

The following four short functions are based on examples originally presented in the

Surge open source project by Mattt Thompson (https://github.com/mattt/Surge).

We will need to do one thing particularly fast with vectors: dot products. As you will
recall, dot products are required both for the feed-forward phase and for the
backpropagation phase. Luckily, there is a built-in function for computing dot products
in Accelerate. The function we are adding to our source just makes using it a little

friendlier.

/// Find the dot product of two vectors

/// assuming that they are of the same length

/// using SIMD instructions to speed computation

func dotProduct(_ xs: [Double],  ys: [Double]) -> Double {
var answer: Double = 0.0
vDSP_dotprD(xs, 1, ys, 1, &answer, vDSP Length (xs.count))

return answer

We will not explicitly use the next three SIMD accelerated functions in our code unless
we are printing error rates, in which case they are useful for quickly summarizing total

error across the entire output layer.

/// Subtract one vector from another

public func sub(_ x: [Double],  y: [Double]) -> [Double] ({
var results = [Double] (y)
catlas_daxpby(Int32(x.count), 1.0, x, 1, -1, &results, 1)

return results

/// Multiply two vectors together
public func mul(_ x: [Double], _ y: [Double]) -> [Double] {



var results = [Double] (repeating: 0.0, count: x.count)
vDSP_vmulD(x, 1, y, 1, é&results, 1, vDSP Length (x.count))

return results

/// Sum a vector

public func sum( x: [Double]) -> Double {

var result: Double = 0.0
vDSP sveD(x, 1, &result, vDSP Length(x.count))

return result

7.4. THE ACTIVATION FUNCTION

Recall that the activation function transforms the output of a neuron before the signal
passes to the next layer (see figure 7.2). The activation function has two purposes: It
allows the neural network to represent solutions that are not just linear
transformations (as long as the activation function itself is not just a linear
transformation) and it can keep the output of each neuron within a certain range. An
activation function should have a computable derivative, so that it can be used for

backpropagation.

A popular set of activation functions are known as sigmoid functions. One particularly
popular sigmoid function (often just referred to as “the sigmoid function”) is illustrated
in figure 7.7 (referred to in the figure as S(x)), along with its equation and derivative
(S’(x)). The result of the sigmoid function will always be a value between 0 and 1.
Having this consistency is useful for the network.

Figure 7.7. The Sigmoid activation function (S(x)) will always returns a value
between 0 and 1. Note that its derivative is easy to compute as well (S’(x)).
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There are other activation functions, but we will use the sigmoid function. Here is a

straightforward conversion of the formulas in figure 7.7 into code.

/// the classic sigmoid activation function

func sigmoid( x: Double) -> Double {

return 1.0 / (1.0 + exp(-x))

// as derived at http://www.ai.mit.edu/courses/6.892/lecture8-html/s1d015.

func derivativeSigmoid( x: Double) -> Double {

return sigmoid(x) * (1 - sigmoid(x))

7.5. BUILDING THE NETWORK

We will create classes to model all three organizational units in the network: neurons,
layers, and the network itself. For the sake of simplicity, we will start from the smallest

(neurons), move to the central organizing component (layers), and build up to the



largest (the whole network). As we go from smallest component to largest component,
we will encapsulate the previous level. Neurons only know about themselves. Layers
know about the neurons they contain and other layers. And the network knows about

all of the layers.

7.5.1. Implementing neurons

Let’s start with a neuron. An individual neuron will store many pieces of state,
including its weights, its delta, its learning rate, a cache of its last output, and its
activation function, along with the derivative of that activation function. Some of these
elements could be more efficiently stored up a level (in the future Layer class), but

they are included in the following Neuron class for illustrative purposes.

/// An individual node in a layer

class Neuron {

var weights: [Double]
var activationFunction: (Double) -> Double
var derivativeActivationFunction: (Double) -> Double

var outputCache: Double = 0.0
var delta: Double = 0.0

var learningRate: Double

init (weights: [Double], activationFunction: (@escaping (Double) ->
Double, derivativeActivationFunction: @escaping (Double) -> Double,
learningRate: Double) {

self.weights = weights

self.activationFunction = activationFunction
self.derivativeActivationFunction = derivativeActivationFunction
self.learningRate = learningRate

/// The output that will be going to the next layer

/// or the final output if this is an output layer

func output (inputs: [Double]) -> Double {
outputCache = dotProduct (inputs, weights)

return activationFunction (outputCache)

Most of these parameters are initialized in the init () method. Because delta and
outputCache are not known when a Neuron is first created, they are just initialized to
0. All of these variables are marked as var instead of 1et. In the life of the neuron (as
we will be using it) their values may never change, but there is still a reason to make

them mutable—flexibility. If this Neuron class were to be used with other types of



neural networks, it is possible that some of these values might change on the fly. There
are neural networks that change the learning rate as the solution approaches and that
automatically try different activation functions. Here we are trying to keep the Neuron

class maximally flexible for other neural network applications.

The only other method, other than init (),is output (). output () takes the input
signals (inputs) coming to the neuron and applies the formula discussed earlier in the
chapter (see figure 7.2). The input signals are combined with the weights via a dot
product, and this is cached in outputCache. Recall from the section on
backpropagation that this value, obtained before the activation function is applied, is
used to calculate delta. Finally, before the signal is sent on to the next layer (by being

returned from output () ), the activation function is applied to it.

That is it! An individual neuron in this network is fairly simple. It cannot do much
beyond take an input signal, transform it, and send it off to be processed further. It

maintains several elements of state that are used by the other classes.

Note

Have you seen an @escaping modifier in Swift before? It indicates that the closures
passed to init () for activationFunction and derivative-
ActivationFunction will be used outside of the init () method itself. In earlier
versions of Swift, you had to mark the opposite: closures that would not “escape.” Since
Swift 3, one must mark “escaping” closures. The @escaping modifier helps the Swift
compiler optimize and is required. If you forget it, you will get a helpful hint before

compilation is successful.

7.5.2. Implementing layers

A layer in our network will need to maintain three pieces of state: its neurons, the layer
that preceded it, and an output cache. The output cache is similar to that of a neuron,
but up one level. It caches the outputs (after activation functions are applied) of every

neuron in the layer.

class Layer {
let previousLayer: Layer?
var neurons: [Neuron]

var outputCache: [Double]



At creation time, a layer’s main responsibility is to initialize its neurons. Our Layer
class’s init () method therefore needs to know how many neurons it should be
initializing, what their activation functions should be, and what their learning rates

should be. In this simple network, every neuron in a layer has the same activation
function and learning rate.

init (previousLayer: Layer? = nil, numNeurons: Int, activationFunction:

@escaping (Double) -> Double, derivativeActivationFunction: @escapi

(Double) -> Double, learningRate: Double) {

self.previouslLayer = previousLayer

self.neurons = Array<Neuron> ()

for in 0..<numNeurons {

self.neurons.append (Neuron (weights: randomWeights (number:

previouslayer?.neurons.count ?? 0), activationFunction:
activationFunction, derivativeActivationFunction:
derivativeActivationFunction, learningRate: learningRate))

}

self.outputCache = Array<Double> (repeating: 0.0,

count: neurons.count)

As signals are fed forward through the network, the Layer must process them through
every neuron (remember that every neuron in a layer receives the signals from every
neuron in the previous layer). outputs () does just that. outputs () also returns the
result of processing them (to be passed by the network to the next layer) and caches the

output. If there is no previous layer, that indicates the layer is an input layer, and it just
passes the signals forward to the next layer.

func outputs (inputs: [Double]) -> [Double] {
if previousLayer == nil { // input layer (first layer)
outputCache = inputs

} else { // hidden layer or output layer

outputCache = neurons.map { $0.output (inputs: inputs) }

}

return outputCache

There are two distinct types of deltas to calculate in backpropagation: deltas for
neurons in the output layer, and deltas for neurons in hidden layers. The formulas are
described in figures 7.4 and 7.5, and the following two methods are rote translations of

those formulas. These methods will later be called by the network during
backpropagation.



// should only be called on an output layer
func calculateDeltasForOutputlLayer (expected: [Double]) {
for n in 0..<neurons.count {
neurons[n] .delta =
neurons[n] .derivativeActivationFunction (neurons[n]

.outputCache) * (expected[n] - outputCache[n])

// should not be called on output layer

func calculateDeltasForHiddenLayer (nextLayer: Layer) {

for (index, neuron) in neurons.enumerated() {
let nextWeights = nextlayer.neurons.map { $0.weights[index] }
let nextDeltas = nextlayer.neurons.map { $0.delta }

let sumOfWeightsXDeltas = dotProduct (nextWeights, nextDeltas)
neuron.delta = neuron.derivativeActivationFunction (neuron

.outputCache) * sumOfWeightsXDeltas

7.5.3. Implementing the network

The network itself has only one piece of state—the layers that it manages. The Network

class is responsible for initializing its constituent layers.

The init () method takes an Int array describing the structure of the network. For
example, the array [2, 4, 3] describes a network with 2 neurons in its input layer, 4
neurons in its hidden layer, and 3 neurons in its output layer. In this simple network,
we will assume that all layers in the network will make use of the same activation

function for their neurons and the same learning rate.

/// Represents an entire neural network. From largest to smallest we go
/// Network -> Layers -> Neurons

class Network {

var layers: [Layer]

init (layerStructure: [Int], activationFunction: @escaping (Double) ->
Double = sigmoid, derivativeActivationFunction: @escaping (Double)
Double = derivativeSigmoid, learningRate: Double) {

if (layerStructure.count < 3) {
print ("Error: Should be at least 3 layers (1 input, 1 hidden,
1 output)")
}
layers = [Layer] ()
// input layer
layers.append (Layer (numNeurons: layerStructurel[0],

activationFunction: activationFunction,



derivativeActivationFunction: derivativeActivationFunction,

learningRate: learningRate))

// hidden layers and output layer
for x in layerStructure.enumerated() where x.offset != 0 {
layers.append (Layer (previouslLayer: layers[x.offset - 1],
numNeurons: X.element, activationFunction:
activationFunction, derivativeActivationFunction:

derivativeActivationFunction, learningRate: learningRate))

The outputs of the neural network are the result of signals running through all of its
layers. Note how compactly reduce () is used in outputs () to pass signals from one

layer to the next repeatedly through the whole network.

/// pushes input data to the first layer

/// then output from the first as input to the second
/// second to the third, etc.

func outputs (input: [Double]) -> [Double] {

return layers.reduce (input) { $1l.outputs (inputs: $0) }

The backpropagate () method is responsible for computing deltas for every neuron
in the network. It uses the Layer methods calculateDeltasForOutputLayer ()
and calculateDeltasForHiddenLayer () in sequence (recall that in
backpropagation, deltas are calculated backwards). It passes the expected values of
output for a given set of inputs to calculateDeltasForOutputLayer (). That

method uses the expected values to find the error used for delta calculation.

/// Figure out each neuron's changes based on the errors

/// of the output versus the expected outcome

func backpropagate (expected: [Double]) {
//calculate delta for output layer neurons
layers.last?.calculateDeltasForOutputlLayer (expected: expected)
//calculate delta for prior layers
for 1 in 1..<layers.count - 1 {

layers[l].calculateDeltasForHiddenLayer (nextLayer: layers[l +

backpropagate () is responsible for calculating all deltas, but it does not actually

modify any of the network’s weights. updateWeights () must be called after



backpropagate (), because weight modification depends on deltas. This method

follows directly from the formula in figure 7.6.

/// backpropagate () doesn't actually change any weights
/// this function uses the deltas calculated in backpropagate ()
/// to actually make changes to the weights
func updateWeights () {
for layer in layers.dropFirst() { // skip input layer
for neuron in layer.neurons {
for w in 0..<neuron.weights.count {
neuron.weights[w] = neuron.weights[w] +
(neuron.learningRate * (layer.previousLayer?

.outputCache[w])! * neuron.delta)

Neuron weights are actually modified at the end of each round of training. Training sets
(inputs coupled with expected outputs) must be provided to the network. The train ()
method takes an array of arrays of inputs and an array of arrays of expected outputs. It
runs each input through the network and then updates its weights by calling
backpropagate () with the expected output (and updateWeights () after that).
train () can also optionally print out the error rate as it goes through a training set.
Try turning this on to see how the network gradually decreases its error rate as it rolls

down the hill in gradient descent.

/// train() uses the results of outputs() run over
/// many *inputs* and compared against *expecteds* to feed

/// backpropagate () and updateWeights ()

func train (inputs: [[Double]], expecteds: [[Double]], printError: Bool
false, threshold: Double? = nil) {
for (location, xs) in inputs.enumerated() {
let ys = expecteds[location]
let outs = outputs (input: xs)

if (printError) ({
let diff = sub(outs, ys)
let error = sqgrt(sum(mul (diff, diff)))
print ("\ (error) error in run \ (location)")
}
backpropagate (expected: ys)
updateWeights ()



Finally, after a network is trained, we need to test it. validate () takes inputs and
expected outputs (not too much unlike train () ), but uses them to calculate an
accuracy percentage rather than perform training. It is assumed the network is already
trained. validate () also takes a function, interpretOutput (), that is used for
interpreting the output of the neural network to compare it to the expected output
(perhaps the expected output is a string like “Amphibian” instead of a set of floating-
point numbers). interpretOutput () must take the floating-point numbers it gets as
output from the network and convert them into something comparable to the expected
outputs. It is a custom function specific to a data set. validate () returns the number
of correct classifications, the total number of samples tested, and the percentage of

correct classifications.

/// for generalized results that require classification
/// this function will return the correct number of trials
/// and the percentage correct out of the total
func validate<T: Equatable> (inputs: [[Double]], expecteds:[T],
interpretOutput: ([Double]) -> T)
-> (correct: Int, total: Int, percentage: Double) {
var correct = 0
for (input, expected) in zip (inputs, expecteds) {
let result = interpretOutput (outputs (input: input))
if result == expected {

correct += 1

}
let percentage = Double (correct) / Double (inputs.count)

return (correct, inputs.count, percentage)

The neural network is done! It is ready to be tested with some actual problems.
Although the architecture we built is general purpose enough to be used for a variety of

problems, we will concentrate on a popular kind of problem—classification.

7.6. CLASSIFICATION PROBLEMS

In chapter 6 we categorized a data set with k-means clustering using no preconceived
notions about where each individual piece of data belonged. In clustering, we know we
want to find categories of data, but we do not know ahead of time what those categories
are. In a classification problem, we are also trying to categorize a data set, but there are
preset categories. For example, if we were trying to classify a set of pictures of animals,
we might ahead of time decide on categories like mammal, reptile, amphibian, fish, and
bird.



There are many machine-learning techniques that can be used for classification
problems. Perhaps you have heard of support vector machines, decision trees, or naive
Bayes classifiers (there are others too). Recently, neural networks have become widely
deployed in the classification space. They are more computationally intensive than
some of the other classification algorithms, but their ability to classify seemingly
arbitrary kinds of data makes them a powerful technique. Neural network classifiers are
behind much of the interesting image classification that powers modern photo

software.

Why is there a renewed interest in using neural networks for classification problems?
Hardware has become fast enough that the extra computation involved, compared to

other algorithms, makes the benefits worthwhile.

7.6.1. Normalizing data

The data sets that we want to work with generally require some “cleaning” before they
are input into our algorithms. Cleaning may involve removing extraneous characters,
deleting duplicates, fixing errors, and other menial tasks. The aspect of cleaning we will
need to perform for the two data sets we are working with is normalization. In chapter 6
we did this via the zscoreNormalize () method in the KMeans class. Normalization
is about taking attributes recorded on different scales, and converting them to a

common scale.

Every neuron in our network outputs values between 0 and 1 due to the sigmoid
activation function. It sounds logical that a scale between 0 and 1 would make sense for
the attributes in our input data set as well. Converting a scale from some range to a
range between 0 and 1 is not challenging. For any value, v, in a particular attribute
range with maximum, max, and minimum, min, the formula is just newv = (oldv -
min) / (max - min).This operation is known as feature scaling. Here is a Swift

implementation.

/// assumes all rows are of equal length
/// and feature scale each column to be in the range 0-1
func normalizeByFeatureScaling(dataset: inout [[Double]]) {

for colNum in 0..<dataset[0].count {

let column = dataset.map { $0[colNum] }
let maximum = column.max () !
let minimum = column.min () !

for rowNum in 0..<dataset.count {
dataset [rowNum] [colNum] = (dataset[rowNum] [colNum]

- minimum) / (maximum - minimum)



Look at the dataset parameter. It is marked as i nout, indicating that the values in
the original two-dimensional array can be changed directly in the function. In other
words, normalizeByFeatureScaling () does not receive a copy of the data set. It
receives a reference to the original data set. This is good for performance and also for
situations where we want to make changes to a value rather than receive back a

transformation.

Note also that our program assumes that data sets are two-dimensional arrays of

Doubles.

7.6.2. The classic iris data set

Just as there are classic computer science problems, there are classic data sets in
machine learning. These data sets are used to validate new techniques and compare
them to existing ones. They also serve as good starting points for people learning
machine learning for the first time. Perhaps the most famous is the iris data set.
Originally collected in the 1930s, the data set consists of 150 samples of iris plants
(pretty flowers), split amongst three different species (50 of each). Each plant is
measured on four different attributes: sepal length, sepal width, petal length, and petal
width.

It is worth noting that a neural network does not care what the various attributes
represent. Its model for training makes no distinction between sepal length and petal
length in terms of importance. If such a distinction should be made, it is up to the user

of the neural network to make appropriate adjustments.

The Playground that accompanies this book contains a comma-separated values (CSV)

file that features the iris data set.[ H The iris data set is from the University of
California’s UCI Machine Learning Repository: M. Lichman, UCI Machine Learning
Repository (Irvine, CA: University of California, School of Information and Computer
Science, 2013), http://archive.ics.uci.edu/ml. A CSV file is just a text file with values
separated by commas. It is a common interchange format for tabular data, including

spreadsheets.

The Playground is available from GitHub at https://github.com/davecom/ClassicComputerScienceProblemsInSwift

Here are a few lines from iris.csv:
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Each line represents one data point. The four numbers represent the four attributes

(sepal length, sepal width, petal length, petal width), which, again, are arbitrary to us in

terms of what they actually represent. The name at the end of each line represents the

particular iris species. All five lines are for the same species because this sample was

taken from the top of the file, and the three species are clumped together, with fifty

lines each.

To read the CSV file from disk, we will use a few methods from Foundation. The

Bundle class will help us access data within a Playground. Foundation adds a method

to String that can read a text file from disk. Beyond those two lines, the rest of the

following function just uses the Swift standard library and functions previously defined

in this chapter.

func parselIrisCSV () -> (parameters: [[Double]], classifications: [[Double]

species: [String]l) {

let
let
let
let
var
var

var

let

for

}

urlpath = Bundle.main.path (forResource: "iris", ofType: "csv")
url = URL(fileURLWithPath: urlpath!)

csv = try! String.init(contentsOf: url)

lines = csv.components (separatedBy: "\n")

irisParameters: [[Double]] = [[Double]] ()

irisClassifications: [[Double]] = [[Double]] ()

irisSpecies: [String] = [String] ()

shuffledLines = lines.shuffled()
line in shuffledLines {
if line == "" { continue } // skip blank lines
let items = line.components (separatedBy: ",")
let parameters = items[0...3].map{ Double ($0)! }
irisParameters.append (parameters)
let species = items|[4]
if species == "Iris-setosa" {
irisClassifications.append([1.0, 0.0, 0.07])
} else if species == "Iris-versicolor" ({
irisClassifications.append([0.0, 1.0, 0.07])
} else {
irisClassifications.append([0.0, 0.0, 1.017)
}

irisSpecies.append (species)

normalizeByFeatureScaling (dataset: &irisParameters)

return (irisParameters, irisClassifications, irisSpecies)



irisParameters represents the collection of four attributes per sample that we are
using to classify each iris. irisClassifications is the actual classification of each
sample. Our neural network will have three output neurons, with each representing one
possible species. For instance, a final set of outputsof [0.9, 0.3, 0.1] will
represent a classification of iris-setosa, because the first neuron represents that species
and it is the largest number. For training, we already know the right answers, so each
iris has a premarked answer. For a flower that should be iris-setosa, the entry in
irisClassificationswillbe [1.0, 0.0, 0.0].These values will be used to
calculate the error after each training step. i risSpecies corresponds directly to what
each flower should be classified as in English. An iris-setosa will be marked as "Iris-

setosa" in the data set.

Warning

The lack of error-checking code and the use of force-unwrapped optionals makes
parseIrisCSV () a dangerous function. It is not suitable as-is for production, but it is

fine for testing in a Playground.

Ultimately, parseIrisCSV () returns the parameters, classifications, and species
arrays to its caller. We will use the same nomenclature for the variables that will

ultimately be fed into the neural network.

let (irisParameters, irisClassifications, irisSpecies) = parselrisCSV ()

Let’s define the neural network itself.

let irisNetwork: Network = Network(layerStructure: [4, 6, 3],

learningRate: 0.3)

The layerStructure argument specifies a network with three layers (one input layer,
one hidden layer, and one output layer) with [4, 6, 3].The input layer has 4
neurons, the hidden layer has 6 neurons, and the output layer has 3 neurons. The 4
neurons in the input layer map directly to the 4 parameters that are used to classify

each specimen. The 3 neurons in the output layer map directly to the 3 different species



that we are trying to classify each input within. The hidden layer’s 6 neurons are more
the result of trial and error than some formula. The same is true of learningRate.
These two values (the number of neurons in the hidden layer and the learning rate) can

be experimented with if the accuracy of the network is suboptimal.

func irisInterpretOutput (output: [Double]) -> String {
if output.max()! == output[0] {
return "Iris-setosa"
} else if output.max()! == output[l] {
return "Iris-versicolor"
} else {

return "Iris-virginica"

irisInterpretOutput () is a utility function that will be passed to the network’s

validate () method to help identify correct classifications.

The network is finally ready to be trained.

// train over first 140 irises in data set 20 times
let irisTrainers = Array(irisParameters[0..<140])
let irisTrainersCorrects = Array(irisClassifications[0..<140])
for in 0..<20 {
irisNetwork.train (inputs: irisTrainers, expecteds: irisTrainersCorrect

printError: false)

We train on the first 140 irises out of the 150 in the data set. Recall that in parse-
IrisCsV (), the lines read from the CSV file were shuffled. This ensures that every
time we run the program, we will be training on a different subset of the data set. Note
that we train over the 140 irises 20 times. Modifying this value will have a large effect
on how long it takes your neural network to train. Generally, the more training, the
more accurately the neural network will perform. The final test will be to verify the

correct classification of the final 10 irises from the data set.

// test over the last 10 of the irises in the data set

let irisTesters = Array(irisParameters[140..<150])
let irisTestersCorrects = Array(irisSpecies[140..<150])
let irisResults = irisNetwork.validate (inputs: irisTesters, expecteds:

irisTestersCorrects, interpretOutput: irisInterpretOutput)
print ("\ (irisResults.correct) correct of \(irisResults.total) =

\ (irisResults.percentage * 100)%")



All of the work leads up to this final question: Out of 10 randomly chosen irises from
the data set, how many can our neural network correctly classify? Because there is
randomness in the starting weights of each neuron, different runs may give you
different results. You can try tweaking the learning rate, the number of hidden neurons,

and the number of training iterations to make your network more accurate.

Ultimately you should see a result like this:

9 correct of 10 = 90.0%

Tip

It will take a long time to train your neural network in both this problem and the next.
So much so that Xcode can become unresponsive. For that reason, in the Playground
that you download to accompany the book, you will find one of the two problems
commented out. You should do the same. When you work on the wine problem,

comment out the iris problem.

7.6.3. Classifying wine
We are going to test our neural network with another data set—one based on the

[ 4]
chemical analysis of wine cultivars from Italy. There are 178 samples in the data set.
The machinery of working with it will be much the same as with the iris data set, but

the layout of the CSV file is slightly different. Here is a sample:

M. Lichman, UCI Machine Learning Repository (Irvine, CA: University of California, School of Information and
Computer Science, 2013), http://archive.ics.uci.edu/ml.

1,14.23,1.71,2.43,15.6,127,2.8,3.06,.28,2.29,5.64,1.04,3.92,1065
1,13.2,1.78,2.14,11.2,100,2.65,2.76, .26,1.28,4.38,1.05,3.4,1050
1,13.16,2.36,2.67,18.6,101,2.8,3.24,.3,2.81,5.68,1.03,3.17,1185
1,14.37,1.95,2.5,16.8,113,3.85,3.49,.24,2.18,7.8,.86,3.45,1480
1,13.24,2.59,2.87,21,118,2.8,2.69,.39,1.82,4.32,1.04,2.93,735

The first value on each line will always be an integer between 1 and 3 representing one
of three cultivars that the sample may be a kind of. Notice how many more parameters

there are for classification. In the iris data set there were just four. In this wine data set,



there are 13.

Our neural network model will scale just fine. We simply need to increase the number
of input neurons. parseWineCSsV () is analogous to parseIrisCSV (), but there are

some minor changes to account for the different layouts of the respective files.

func parseWineCSV () -> (parameters: [[Double]], classifications:
[[Double]], species: [Int]) {
let urlpath = Bundle.main.path (forResource: "wine", ofType: "csv")

let url = URL(fileURLWithPath: urlpath!)

let csv = try! String.init (contentsOf: url)

let lines = csv.components (separatedBy: "\n")

var wineParameters: [[Double]] = [[Double]] ()

var wineClassifications: [[Double]] = [[Double]] ()

var wineSpecies: [Int] = [Int] ()

let shuffledLines = lines.shuffled()

for line in shuffledLines {

if line == "" { continue } // skip blank lines
let items = line.components (separatedBy: ",")
let parameters = items[1l...13].map{ Double($0)! }

wineParameters.append (parameters)
let species = Int(items[0])'!
if species == {
wineClassifications.append([1.0, 0.0, 0.0])
} else if species == 2 {
wineClassifications.append([0.0, 1.0, 0.0])
} else {
wineClassifications.append([0.0, 0.0, 1.0])
}
wineSpecies.append (species)
}
normalizeByFeatureScaling (dataset: &wineParameters)

return (wineParameters, wineClassifications, wineSpecies)

let (wineParameters, wineClassifications, wineSpecies) = parseWineCSV ()

The layer configuration for the wine-classification network needs 13 input neurons, as
was already mentioned (one for each parameter). It also needs three output neurons
(there are three cultivars of wine, just as there were three species of iris). Interestingly,
the network works well with fewer neurons in the hidden layer than in the input layer.
One possible intuitive explanation is that some of the input parameters are not actually
helpful for classification, and it is useful to cut them out during processing. This is not,
in fact, exactly how having fewer neurons in the hidden layer works, but it is an

interesting intuitive idea.



let wineNetwork: Network = Network(layerStructure:
[13, 7, 31, learningRate: 0.9)

Once again, it can be interesting to experiment with a different number of hidden layer

neurons or a different learning rate.

func wineInterpretOutput (output: [Double]) -> Int {
if output.max()! == output[0] {
return 1
} else if output.max()! == output[l] {
return 2
} else {

return 3

wineInterpretOutput () is analogousto irisInterpretOutput (). Because we
do not have names for the wine cultivars, we are just working with the integer

assignment in the original data set.

// train over the first 150 samples 5 times

let wineTrainers = Array(wineParameters.dropLast (28))
let wineTrainersCorrects = Array(wineClassifications.dropLast (28))
for in 0..<5 {

wineNetwork.train (inputs: wineTrainers, expecteds: wineTrainersCorrect

printError: false)

We will train over the first 150 samples in the data set, leaving the last 28 for validation.
We train 5 times over the samples, significantly less than the 20 for the iris data set. For
whatever reason (perhaps innate qualities of the data set, or tuning of parameters like
the learning rate and number of hidden neurons), this data set requires less training to
achieve significant accuracy than the iris data set. In the sample code for the iris data
set’s training, we used the range operator (0. .<140) to specify the training set. In this
data set, we instead use the Sequence method dropLast (). In the next code snippet

we will also use dropFirst (). Choose the option that is more readable to you.

let wineTesters = Array(wineParameters.dropFirst (150))

let wineTestersCorrects = Array(wineSpecies.dropFirst (150))

let results = wineNetwork.validate (inputs: wineTesters, expecteds:
wineTestersCorrects, interpretOutput: winelnterpretOutput)

print ("\ (results.correct) correct of \(results.total) =



\ (results.percentage * 100)%")

With a little luck, your neural network should be able to classify the 28 samples quite

accurately.

27 correct of 28 = 96.4285714285714%

7.7. NEURAL NETWORK PROBLEMS AND EXTENSIONS

Neural networks are all the rage right now, thanks to advances in deep learning, but
they have some significant shortcomings. The biggest problem is that a neural network
solution to a problem is something of a black box. Even when neural networks work
well, they do not give the user much insight into how they solve the problem. For
instance, the iris data set classifier we worked on in this chapter does not clearly show
how much each of the four parameters in the input affects the output. Was sepal length

more important than sepal width for classifying each sample?

It is possible that careful analysis of the final weights for the trained network could
provide some insight, but such analysis is nontrivial and does not provide the kind of
insight that, say, linear regression does in terms of the meaning of each variable in the
function being modeled. In other words, a neural network may solve a problem, but it

does not explain how the problem is solved.

Another problem with neural networks is that to become accurate they often require
very large data sets. Imagine an image classifier for outdoor landscapes. It may need to
classify thousands of different types of images (forest, valley, mountains, stream,
steppes, and so on). It will potentially need millions of training images. Not only are
such large data sets hard to come by, but for some applications they may be completely
non-existent. It tends to be large corporations and governments that have the data-

warehousing and technical facilities for collecting and storing such massive data sets.

Finally, neural networks are computationally expensive. As you probably noticed, just
training on the iris data set brings a Swift Playground to its knees. A Playground is not a
computationally performant environment, but on any computational platform that
neural networks are used, it is the sheer number of calculations that have to be
performed in training the network, more than anything else, that takes so much time.
Many tricks abound to make neural networks more performant (like using SIMD
instructions or GPUs), but ultimately training a neural network requires a lot of

floating-point operations.



One nice caveat is that training is much more computationally expensive than actually
using the network. Some applications do not require ongoing training. In those
instances, a trained network can just be dropped into an application to solve a problem.
For example, the first version of Apple’s Core ML framework does not even support
training. It only supports helping app developers run pretrained neural network models
in their apps. An app developer creating a photo app can download a freely licensed
image-classification model, drop it into Core ML, and start using performant machine

learning in their app instantly.

In this chapter we only worked with a single type of neural network: a feed-forward
network with backpropagation. As has been mentioned, many other kinds of neural
networks exist. Convolutional neural networks are also feed-forward, but they have
multiple different types of hidden layers, different mechanisms for distributing weights,
and other interesting properties that make them especially well designed for image
classification. In recurrent neural networks, signals do not just travel in one direction.
They allow feedback loops and have proven useful for continuous input applications

like handwriting recognition and voice recognition.

A simple extension to our neural network that would make it more performant would
be the inclusion of bias neurons. A bias neuron is like a dummy neuron in a layer that
allows the next layer’s output to represent more functions by providing a constant input
(still modified by a weight) into it. Even simple neural networks used for real-world
problems usually contain bias neurons. If you add bias neurons to our existing network,

you will likely find that it requires less training to achieve a similar level of accuracy.

7.8. REAL-WORLD APPLICATIONS

Although first imagined in the middle of the twentieth century, artificial neural
networks did not became commonplace until the last decade. Their widespread
application was held back by a lack of sufficiently performant hardware. Today,
artificial neural networks have become the most explosive growth area in machine

learning because they work!

Artificial neural networks have enabled some of the most exciting user-facing
computing applications in decades. These include practical voice recognition (practical
in terms of sufficient accuracy), image recognition, and handwriting recognition. Voice
recognition is present in typing aids like Dragon Naturally Speaking and digital
assistants like Siri, Alexa, and Cortana. A specific example of image recognition is
Facebook’s automatic tagging of people in a photo using facial recognition. In recent

versions of i0OS, you can search works within your notes, even if they are handwritten,



by employing handwriting recognition.

An older recognition technology that can be powered by neural networks is OCR
(optical character recognition). OCR is used every time you scan a document and it
comes back as selectable text instead of an image. OCR enables toll booths to read

license plates and envelopes to be quickly sorted by the postal service.

In this chapter you have seen neural networks used successfully for classification
problems. Similar applications that neural networks work well in are recommendation
systems. Think of Netflix suggesting a movie you might like to watch, or Amazon
suggesting a book you might want to read. There are other machine learning techniques
that work well for recommendation systems too (Amazon and Netflix do not necessarily
use neural networks for these purposes—the details of their systems are likely
proprietary), so neural networks should only be selected after all options have been

explored.

Neural networks can be used in any situation where an unknown function needs to be
approximated. This makes them useful for prediction. Neural networks can be
employed to predict the outcome of a sporting event, election, or the stock market (and
they are). Of course, their accuracy is a product of how well they are trained, and that
has to do with how large a data set relevant to the unknown-outcome event is available,
how well the parameters of the neural network are tuned, and how many iterations of
training are run. With prediction, like most neural network applications, one of the
hardest parts is deciding upon the structure of the network itself, which is often

ultimately determined by trial and error.

7.9. EXERCISES

1. Use the neural network framework developed in this chapter to classify items in
another data set.

2. Create a generic function, parseCsvV (), with flexible enough parameters that it
could replace both of the CSV parsing functions in this chapter.

3. Try running the examples with a different activation function (remember to also
find its derivative). How does the change in activation function affect the accuracy
of the network? Does it require more or less training?

4. Take the problems in this chapter and recreate their solutions using a popular
neural network framework like Caffe or Keras (both supported by Apple’s Core ML).

5. Use Metal to accelerate the execution of the neural network developed in this
chapter by taking advantage of the GPU’s computational advantages for

matrix/vector math.



Chapter 8. Miscellaneous problems

Throughout this book we have covered a myriad of problem-solving techniques relevant
to modern software development tasks. To study each technique, we have explored
famous computer science problems. But not every famous problem fits the mold of the
prior chapters. This chapter is a gathering point for famous problems that did not quite
fit into any other chapter. Think of these problems as a bonus—more interesting

problems with less scaffolding around them.

8.1. THE KNAPSACK PROBLEM

The knapsack problem is an optimization problem that takes a common computational
need—finding the best use of limited resources given a finite set of usage options—and
spins it into a fun story. A thief enters a home with the intent to rob it. He has a
knapsack, and he is limited in what he can steal by the capacity of the knapsack. How
does he figure out what to put into the knapsack? The problem is illustrated in figure
8.1.

Figure 8.1. The robber must carefully decide what items to steal because the
capacity of the knapsack is limited.
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If the thief could take any amount of any item, he could simply divide each item’s value

by its weight to figure out the most valuable items for the available capacity. But to



make the scenario more realistic, let’s say that the thief cannot take half of an item
(such as 2.5 televisions). Instead, we will come up with a way to solve the “0/1 variant”
of the problem, so-called because it enforces another rule—the thief may only take one

or none of each item.

First, let’s define a st ruct to hold our items:

struct Item {
let name: String
let weight: Int
let value: Float

If we tried to solve this problem using a brute force approach, we would look at every
combination of items available to be put in the knapsack. For the mathematically
inclined, this is known as a powerset, and a powerset of a set (in our case, the set of
items) has 2N different possible subsets, where N is the number of items. Therefore,
we would need to analyze 2”N combinations (0 (2~N) ). This is okay for a small number
of items, but it is untenable for a large number. Any approach that solves a problem

using an exponential number of steps is an approach we want to avoid.

Instead, we will use a technique known as dynamic programming, which is similar in
concept to memoization (chapter 1). Instead of solving a problem outright with a brute-
force approach, in dynamic programming one solves subproblems that make up the
larger problem, stores those results, and utilizes those stored results to solve the larger
problem. As long as the capacity of the knapsack is considered linearly, the problem can

be solved with dynamic programming.

For instance, to solve the problem for a knapsack with a 3 lb. capacity and three items,
we can first solve the problem for a 1 1b. capacity and one possible item, 2 Ib. capacity
and one possible item, and 3 Ib. capacity and one possible item. We can then use the
results of that solution to solve the problem for 1 lb. capacity and two possible items, 2
Ib. capacity and two possible items, and 3 Ib. capacity and two possible items. And

finally we can solve for all three possible items.

All along the way we will fill in a table that tells us the best possible solution for each

combination of items and capacity. Our function will first fill in the table, and then it

1]
will figure out the solution based on the table.
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I studied several resources to write this solution, the most authoritative of which was Algorithms, 2nd edition,
by Robert Sedgewick (p. 596). I looked at several examples on Rosetta Code of the 0/1 knapsack problem, most
notably the Python dynamic programming solution (http://mng.bz/kx8C), which this function is largely a port of.

func knapsack(items: [Item], maxCapacity: Int) -> [Item] {
//build up dynamic programming table
var table: [[Float]] = [[Float]] (repeating: [Float] (repeating: 0.0,
count: maxCapacity + 1), count: items.count + 1) //initialize tabl
overshooting in size
for (i, item) in items.enumerated() {
for capacity in 1...maxCapacity {
let previousItemsValue = table[i] [capacity]
if capacity >= item.weight { // item fits in knapsack
let valueFreeingWeightForItem = table[i] [capacity - item.w
table[i + 1] [capacity] = max(valueFreeingWeightForItem +
item.value, previousItemsValue) // only take if more
valuable than previous combo
} else { // no room for this item
table[i + 1] [capacity] = previousItemsValue

//use prior combo

}

// figure out solution from table

var solution: [Item] = [Item] ()
var capacity = maxCapacity
for i in stride(from: items.count, to: 0, by: -1) { // work backwards
if table[i - 1] [capacity] != table[i] [capacity] {
// did we use this item?
solution.append(items([i - 1])
capacity -= items[i - 1].weight

// if we used an item, remove its weight

}

return solution

The inner loop of the first part of this function will execute N * C times, where N is the
number of items and C is the maximum capacity of the knapsack. Therefore, the
algorithm performs in O(N * C) time, a significant improvement over the brute-force
approach for a large number of items. For instance, for the 11 items that follow, a brute-
force algorithm would need to examine 2”11 or 2,048 combinations. The preceding
dynamic programmatic function will execute 825 times, because the maximum capacity
of the knapsack in question is 75 arbitrary units (11 * 75). This difference would grow

exponentially with more items.

let items = [Item(name: "television", weight: 50, wvalue: 500),

Item(name: "candlesticks", weight: 2, wvalue: 300),



Item(name: "stereo", weight: 35, wvalue: 400),
Item(name: "laptop", weight: 3, wvalue: 1000),
Item(name: "food", weight: 15, wvalue: 50),
Item(name: "clothing", weight: 20, wvalue: 800),
Item(name: "jewelry", weight: 1, wvalue: 4000),
Item(name: "books", weight: 100, wvalue: 300),
Item(name: "printer", weight: 18, wvalue: 30),
Item(name: "refrigerator", weight: 200, wvalue: 700),
Item(name: "painting", weight: 10, wvalue: 1000)]

(

knapsack (items: items, maxCapacity: 75)

If you inspect, in the Playground, the results of calling knapsack (items: items,
maxCapacity: 75),you will see that the optimal items to take are the painting,

jewelry, clothing, laptop, stereo, and candlesticks.

To get a better idea of how this all worked, let’s look at some of the particulars of the

function.

for (i, item) in items.enumerated() {

for capacity in 1...maxCapacity {

For each possible number of items, we loop through all of the capacities in a linear
fashion, up to the maximum capacity of the knapsack. Notice that I say “each possible
number of items” instead of each item. When i equals 2, it does not just represent item
2. It represents the possible combinations of the first two items for every explored

capacity. i tem is the next item that we are considering stealing.

let previousItemsValue = table[i] [capacity]

if capacity >= item.weight { // item fits in knapsack

previousItemsValue is the value of the last combination of items at the current
capacity being explored. For each possible combination of items, we consider if

adding in the latest “new” item is even plausible.

If the item weighs more than the knapsack capacity we are considering, we simply copy
over the value for the last combination of items that we considered for the capacity in

question:

else { // no room for this item

table[i + 1] [capacity] = previousItemsValue //use prior combo



Otherwise, we consider whether adding in the “new” item will result in a higher value
than the last combination of items at that capacity that we considered. We do this by
adding the value of the item to the value already computed in the table for the previous
combination of items at a capacity equal to the item’s weight subtracted from the
current capacity we are considering. If this value is higher than the last combination of

items at the current capacity, we insert it; otherwise we insert the last value:

let valueFreeingWeightForItem = table[i] [capacity - item.weight]

table[i + 1] [capacity] = max(valueFreeingWeightForItem + item.value,
previousItemsValue) // only take if more valuable than previous combo
»
Tip

max () is a Swift standard library function that returns the greater of the Comparable

arguments supplied to it.

That concludes building up the table. To actually find which items are in the solution,
though, we need to work backward from the highest capacity and the final explored

combination of items.

for i in stride(from: items.count, to: 0, by: -1) { // work backwards
if table[i - 1] [capacity] !'= table[i] [capacity] {

// did we use this item?

We start from the end and loop through our table from right to left, checking whether
there was a change in the value inserted into the table at each stop. If there was, that
means we added the new item that was considered in a particular combination because
the combination was more valuable than the prior one. Therefore, we add that item to
the solution. Also, capacity is decreased by the weight of the item, which can be thought

of as moving up the table.

solution.append(items[i - 1])

capacity -= items[i - 1].weight // if we used an item, remove its weight
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Note



Throughout both the build-up of the table and the solution search, you may have
noticed some manipulation of iterators and table size by 1. This is done for convenience

from a programmatic perspective.

Are you still confused? Table 8.1 is the table the knapsack () function builds. It would
be quite a large table for the preceding problem, so instead let’s look at a table for a
knapsack of 3 1b. capacity and three items: matches (1 1b.), flashlight (2 1bs.), and book

(11b.). Assume those items are valued at $5, $10, and $15, respectively.

Table 8.1. An example of a knapsack problem of three items

Weight 0 1 2 3
Matches (11b, $5) 0 5 5 5
Flashlight (2 lbs, $10) o0 5 10 15
Book (11b, $15) 0 15 20 25

As you look across the table from left to right, the weight is increasing (how much you
are trying to fit in the knapsack). As you look down the table from top to bottom, the
number of items you are attempting to fit is increasing. On the first row, you are only
trying to fit the matches. On the second row, you fit the most valuable combination of
the matches and the flashlight that the knapsack can hold. On the third row, you fit the

most valuable combination of all three items.

As an exercise to facilitate your understanding, try filling in a blank version of this table
yourself, using the algorithm described in the knapsack () function with these same
three items. Then use the algorithm at the end of the function to read back the right

items from the table. This table corresponds to the table variable in the function.

8.2. THE TRAVELING SALESMAN PROBLEM

The traveling salesman problem is one of the most classic and talked-about problems in
all of computing. A salesman must visit all of the cities on a map exactly once, returning
to his start city at the end of the journey. There is a direct connection from every city to

every other city, and the salesman may visit the cities in any order. What is the shortest

path for the salesman?

The problem can be thought of as a graph problem (chapter 4), with the cities being the
vertices, and the connections between them being the edges. Your first instinct might

be to find the minimum spanning tree, as described in chapter 4. Unfortunately, the




solution to the traveling salesman problem is not so simple. The minimum spanning
tree is the shortest way to connect all of the cities, but it does not provide the shortest

path for visiting all of them exactly once.

Although the problem, as posed, appears fairly simple, there is no algorithm that can
solve it quickly for an arbitrary number of cities. What do I mean by “quickly”? I mean
that the problem is what is known as NP hard. An NP-hard (non-deterministic
polynomial hard) problem is a problem for which no polynomial time algorithm exists
(the time it takes is a polynomial function of the size of the input). As the number of
cities that the salesman needs to visit increases, the difficulty of solving the problem
grows exceptionally quickly. It is much harder to solve the problem for 20 cities than
10. It is impossible (to the best of current knowledge), in a reasonable amount of time,

to solve the problem perfectly (optimally) for millions of cities.

8.2.1. The naive approach

The naive approach to the problem is simply to try every possible combination of cities.
Attempting the naive approach will illustrate the difficulty of the problem and this

approach’s unsuitability for brute-force attempts at larger scales.
Our sample data

In our version of the traveling salesman problem, the salesman is interested in visiting
five of the major cities of Vermont. We will not specify a starting (and therefore ending)
city. Figure 8.2 illustrates the five cities and the driving distances between them. Note

that there is a distance listed for the route between every pair of cities.

Figure 8.2. Five cities in Vermont and the driving distances between them
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Perhaps you have seen driving distances in table form before. In a driving-distance
table, one can easily look up the distance between any two cities. Table 8.2 lists the

driving distances for the five cities in the problem.

Table 8.2. Driving distances between cities in Vermont

. White River .
Rutland Burlington . Bennington Brattleboro
Junction



Rutland 0 67 46
Burlington 67 0 o1
White River

. 46 o1 0
Junction
Bennington 55 122 08
Brattleboro 75 153 65

55 75
i2% 153
98 65
0 40
40 0

We will need to codify both the cities and the distances between them for our problem.

To make the distances between cities easy to look up, we will use a dictionary of

dictionaries, with the outer set of keys representing the first of a pair, and the inner set

of keys representing the second. This will be the type [String:

[String: Int]],

and it will allow lookups like vtDistances ["Rutland"] ["Burlington"], which

should return 67.

let vtCities = ["Rutland", "Burlington", "White River Junction",
"Bennington", "Brattleboro"]
let vtDistances = [
"Rutland":
["Burlington": 67, "White River Junction": 46, "Bennington":
55, "Brattleboro": 757,
"Burlington":
["Rutland": 67, "White River Junction": 91, "Bennington": 122,
"Brattleboro": 153],
"White River Junction":
["Rutland": 46, "Burlington": 91, "Bennington": 98, "Brattleboro":
65],
"Bennington":
["Rutland": 55, "Burlington": 122, "White River Junction": 98,
"Brattleboro": 40],
"Brattleboro":
["Rutland": 75, "Burlington": 153, "White River Junction": 65,
"Bennington": 40]

Finding all permutations

The naive approach to solving the traveling salesman problem requires generating

every possible permutation of the cities. There are many permutation-generation

algorithms—they are simple enough to ideate that you could almost certainly come up

with one on your own.

One common approach is backtracking. You first saw backtracking in chapter 3 in the

context of solving a constraint-satisfaction problem. In constraint-satisfaction problem




solving, backtracking is used after a partial solution is found that does not satisfy the
problem’s constraints. In such a case, you revert to an earlier state and continue the

search along a different path than that which led to the incorrect partial solution.

To find all of the permutations of the items in an array (eventually, our cities), we will
also use backtracking. After we make a swap between elements and go down a path of
further permutations, we will backtrack to the state before the swap was made so we

can make a different swap and go down a different path.

// backtracking permutations algorithm

func allPermutationsHelper<T> (contents: [T], permutations: inout [[T]], n:
Int) {
guard n > 0 else { permutations.append(contents); return }
var tempContents = contents

for i in 0..<n {
tempContents.swapAt (i, n - 1) // move the element at i to the end
// move everything else around, holding the end constant
allPermutationsHelper (contents: tempContents, permutations:
&permutations, n: n - 1)

tempContents.swapAt (i, n - 1) // backtrack

This recursive function is labeled a “helper” because it will actually be called by another
function that takes fewer arguments. The parameters of al1Permutations-

Helper () are the contents of the original array to be permuted, the current
permutations generated so far, and the number of remaining items in the original array
to swap around. permutations is declared inout because the same array will be

modified by various calls of a11PermutationsHelper ().

A common pattern for recursive functions that need to keep multiple items of state
across calls is to have a separate outward facing function with fewer parameters that is

easier to use. al1Permutations () is that simpler function.

// find all of the permutations of a given array
func allPermutations<T>(_ original: [T]) -> [[T]] {
var permutations = [[T]] ()
allPermutationsHelper (contents: original, permutations: &permutations,
original.count)

return permutations



allPermutations () takes just a single argument: the array for which the
permutations should be generated. It calls al1PermutationsHelper () to find those
permutations. This saves the user of al1Permutations () from having to provide the

parameters permutations and nto allPermutationsHelper ().

The backtracking approach to finding all permutations presented here is fairly efficient.
Finding each permutation requires just two swaps within the array. However, it is
possible to find all the permutations of an array with just one swap per permutation.
One efficient algorithm that accomplishes that task is Heap’s algorithm (not to be

confused with the heap data structure—Heap, in this case, is the name of the inventor

[ 2]
of the algorithm). This difference in efficiency may be important for very large data

sets (which is not what we are dealing with here).

Robert Sedgewick, “Permutation Generation Methods” (Princeton University), http://mng.bz/87Te.

A quick test of our permutation generator would seem in order.

// test allPermutations

let abc = ["a","b","c"]

let testPerms = allPermutations (abc)
print (testPerms)

print (testPerms.count)

In the console, you should see all of the possible combinations of “a”, “b”, and “c.” In

addition, the total number of generated permutations, 6, should appear.

[["b", "C", "a"], ["C", "b", "a"], ["C", "a", "b"J, ["a", "C", "b"], ["bvv,

"a", "C"], [lla", "b", "C"}J

Brute-force search

We can now generate all of the permutations of the city list, but this is not quite the
same as a traveling salesman problem path. Recall that in the traveling salesman
problem, the salesman must return (at the end) to the same city that he started in. We
can define a simple function that takes an array of arrays and adds the first item in each
to the end of each. This can convert our permutations to proper traveling salesman

problem paths.



// make complete paths for tsp
func tspPaths<T>(_ permutations: [[T]]) -> [[T]] {
return permutations.map {
if let first = $0.first {
return ($0 + [first]) // append first to end
} else {

return [] // empty is Jjust itself

Let’s quickly test it using our test data from before.

print (tspPaths (testPerms))

You should see the same letter at the beginning and end of each path.

[["b", "C", "a", "b"], [Hcll, "b", "a", "C"], ["C", "a", "b", "C"], ["a"

llcll, "b", "a"], ["b", lla", "Cll, llbll}’ ["a", llb"’ "C", "a"}]

We are now ready to try testing the paths we have permuted. solveTSP ()
painstakingly looks at every path in an array of paths and uses a two-dimensional
distance array (the distance between two cities lookup table) to calculate each path’s
total distance. It returns both the shortest path and that path’s total distance.

func solveTSP<T>(cities: [T], distances: [T: [T: Int]]) -> (solution: [T],
distance: Int) {
let possiblePaths = tspPaths(allPermutations(cities))
// all potential paths
var bestPath: [T] = [] // shortest path by distance
var minDistance: Int = Int.max // distance of the shortest path
for path in possiblePaths {
if path.count < 2 { continue }
// must be at least one city pair to calculate
var distance = 0
var last = path.first! // we know there is one because of above 1i
for next in path[l..<path.count] { // add up all pair distances
distance += distances[last]![next]!
last = next
}
if distance < minDistance { // found a new best path
minDistance = distance

bestPath = path



return (solution: bestPath, distance: minDistance)

}
< I EEEEEEEEEEE——————, »

We finally can brute-force the cities of Vermont, finding the shortest path to reach all

five.

let vtTSP = solveTSP(cities: vtCities, distances: vtDistances)

print ("The shortest path is \ (vtTSP.solution) in \(vtTSP.distance) miles."

«

The output should look something like the following, and the best path is illustrated in

The shortest path is ["Bennington", "Brattleboro", "White River Junction",
L3 "Burlington", "Rutland", "Bennington"] in 318 miles.

< I EEEEEEEEEEEEEE—————————,

Figure 8.3. The shortest path for the salesman to visit all five cities in Vermont is
illustrated.
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8.2.2. Taking it to the next level

There is no easy answer to the traveling salesman problem. Our naive approach quickly
becomes infeasible. The number of permutations generated is n factorial (n!), where n
is the number of cities in the problem. If we were to include just one more city (6
instead of 5), the number of evaluated paths would grow by a factor of 6. Then it would
be 7 times harder to solve the problem for just one more city after that. This is not a

scalable approach!



In the real world, the naive approach to the traveling salesman problem is seldom used.
Most algorithms for instances of the problem with a large number of cities are
approximations. They try to solve the problem for a near-optimal solution. The near-
optimal solution may be within a small known band of the perfect solution (for

example, perhaps they will be no more than 5% less efficient).

Two techniques that have already appeared in this book have been used to attempt the
traveling salesman problem on large data sets. Dynamic programming, which we used
in the knapsack problem earlier in this chapter, is one approach. Another is genetic
algorithms, as described in chapter 5. Many journal articles have been published
attributing genetic algorithms to near-optimal solutions for the traveling salesman with

large numbers of cities.

8.3. PHONE NUMBER MNEMONICS

Before there were smartphones with built-in address books, telephones included letters
on each of the keys on their number pads. The reason for these letters was to provide
easy mnemonics by which to remember phone numbers. In the United States, typically
the 1 key would have no letters, 2 would have ABC, 3 DEF, 4 GHI, 5 JKL, 6 MNO, 7
PQRS, 8 TUV, 9 WXYZ, and 0 no letters. For example, 1-800-MY-APPLE corresponds
to the phone number 1-800-69-27753. Once in a while you will still find these
mnemonics in place in advertisements, so the numbers on the keypad have made their

way into modern smartphone apps, as evidenced by figure 8.4.

Figure 8.4. The Phone app in iOS retains the letters on keys that its telephone
forebears contained.
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How does one come up with a new mnemonic for a phone number? In the 1990s there
was popular shareware to help with the effort. These pieces of software would generate
every permutation of a phone number’s letters and then look through a dictionary to
find words that were contained in the permutations. They would then show the
permutations with the most complete words to the user. We will do the first half of the

problem. The dictionary lookup will be left as an exercise.

In the last problem, we looked at permutation generation. We used backtracking to
generate the potential paths for the traveling salesman problem. However, as was
mentioned, there are many different ways to generate permutations. For this problem

in particular, instead of swapping two positions in an existing permutation to generate



a new one, we will generate each permutation from the ground up. We will do this by
looking at the potential letters that match each numeral in the phone number, and

continually add more options to the end as we go to each successive numeral.

First, we will define a mapping of numerals to potential letters. We will work with our

phone number split up into Characters, so the mapping will be between

Characters.
let phoneMapping: [Character: [Character]] = ["1": ["1"], "2": ["a", "b",
"cll], "3": [lld", "eH, llf"}, "4": ["g", "h", lli"}, H5": ["j"’ "k", "l"]’
"6": ["m", "n", "o"], "7": ["p", llq", "rH, "S"J, "8": ["t", "u", "V"J,
"9": ["w", "x", "y", "le], "O": [IIO"JJ

For readability, we will break up the permutation generator into two functions. The first
prepares an initial list of possible letters for each place in the original string containing

the phone number. It then passes that initial list of lists to the second function that does

the real permutation generation.

Here’s the first function.

// return all of the possible characters combos, given a mapping, for a
given number
func stringToPossibilities( s: String, mapping: [Character: [Character]])
-> [[Character]]{
let possibilities = s.flatMap{ mapping[$0] }

return combineAllPossibilities (possibilities)

It does not do much. The temporary variable possibilities would look like [ ["g"

"h", "i"], ["t", "u", "v"]] ifit were provided the string "48" as a starting

point.

The next function combines all of those possibilities for each numeral into a list of

possible mnemonics.

// takes a set of possible characters for each position and finds all
possible permutations
func combineAllPossibilities( possibilities: [[Character]])
-> [[Character]] {
guard let possibility = possibilities.first else { return [[]] }
var permutations: [[Character]] = possibility.map { [$0] }

// turn each into an array



for possibility in possibilities[l..<possibilities.count] where
possibility != [] {
let toRemove = permutations.count // temp
for permutation in permutations {
for ¢ in possibility { // try adding every letter
var newPermutation: [Character] = permutation
// need a mutable copy
newPermutation.append(c) // add character on the end

permutations.append (newPermutation) // new combo ready

}
permutations.removeFirst (toRemove) // remove combos missing new
last letter
}

return permutations

Rather than making swaps, like the earlier permutation generator, this permutation
generator keeps adding a new letter onto the end until it runs out of letters. It is a less
efficient method, but in some ways it is easier to understand. Every iteration of the
main loop looks at the existing permutations and extends them by one letter. If there
are three potential next letters, there will be three times as many permutations when
that iteration finishes. It needs to do some cleanup, though. It needs to take all of the
permutations that existed from the last iteration out, because they are now too short
(they are missing the last letter). This is the purpose of the toRemove variable. It keeps
track of how many permutations there were just before the latest letter was added to
create all of the new permutations. It is used to remove that number of old

permutations at the end of each iteration.

Now we can find all of the possible mnemonics for a phone number.

let permutations = stringToPossibilities("1440787", mapping: phoneMapping)
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It turns out that the phone number “1440787” can also be written as “1GH0OSTS”. That

1s easier to remember.

8.4. TIC-TAC-TOE

Tic-tac-toe is a simple game, but it can be used to illustrate the same minimax
algorithm that can be applied in advanced strategy games like Connect Four, checkers,

and chess. We will build a tic-tac-toe Al that plays perfectly using minimax.




Note

This section assumes that you are familiar with the game tic-tac-toe and its standard

rules. If not, a quick search on the web should get you up to speed.

8.4.1. Managing state

Let’s develop some structures to keep track of the state of the game as it progresses.

First, we need a way of representing each square on the tic-tac-toe board. We will use
an enum called Piece. A piece can either be X, O, or empty (represented by E in the

enum).

enum Piece: String {

case X = "X"
case O = "O"
case E = " "

var opposite: Piece {
switch self {
case .X:
return .0
case .0O:
return .X
case .E:

return .E

The enum Piece has a computed property, opposite, that returns another Piece.
This will be useful for flipping from one player’s turn to the other player’s turn after a
tic-tac-toe move. To represent moves, we will just use an integer that corresponds to a

square on the board where a piece is placed.

// a move 1is an integer, 0-8, indicating a place to put a piece

typealias Move = Int

A tic-tac-toe board has 9 positions organized in 3 rows and 3 columns. For simplicity,
these 9 positions can be represented using a one-dimensional array. Which squares
receive which numeric designation (a.k.a., “index” in the array) is arbitrary, but we will

follow the scheme outlined in figure 8.5.

Figure 8.5. The one-dimensional array indices that correspond to each square in



the tic-tac-toe board

0 1 .
3 4 5
6 7 8

The main holder of state will be a struct, Board. Board keeps track of three different
pieces of state: the position (represented by the aforementioned one-dimensional
array), the player whose turn it is, and the last move made. The last move made will

come in handy later when we implement minimax.

struct Board {
let position: [Piece]
let turn: Piece

let lastMove: Move

A default board is one where no moves have yet been made (an empty board). The
constructor for Board has default parameters that initialize such a position, with X to
move (the usual first player in tic-tac-toe), and 1astMove being set to the sentinel

value -1.

// by default the board is empty and X goes first

// lastMove being -1 is a marker of a start position

init (position: [Piece] = [.E, .E, .E, .E, .E, .E, .E, .E, .E], turn:
Piece = .X, lastMove: Int = -1) {
self.position = position
self.turn = turn
self.lastMove = lastMove

As you probably noticed, all of the instance variables of Board are defined with 1et.
Board is an immutable data structure—Boards will not be modified. Instead, every
time a move needs to be played, a new Board with the position changed to

accommodate the move will be generated.

// location can be 0-8, indicating where to move
// return a new board with the move played
func move (_  location: Move) -> Board {

var tempPosition = position



tempPosition[location] = turn
return Board(position: tempPosition, turn: turn.opposite, lastMove

location)

A legal move in tic-tac-toe is any empty square. The following computed property,
legalMoves, uses filter () to efficiently generate potential moves for a given

position.

// the legal moves in a position are all of the empty squares
var legalMoves: [Move] {

return position.indices.filter { position[$0] == .E }

The indices that filter () acts on are Int indexes into the position array.
Conveniently (and purposely), a Move is also defined as an Int, allowing this definition

of legalMoves to be so succinct.

There are many ways to scan the rows, columns, and diagonals of a tic-tac-toe board to
check for wins. The following implementation of the computed property i swin does so
with a hard-coded seemingly endless amalgamation of &¢, | |, and ==. It is not the

prettiest code, but it does the job in a straightforward manner.

var isWin: Bool {

return

position[0] == position[l] && position[0] == position[2]
&& position[0] != .E || // row O

position[3] == position[4] && position[3] == position[5]
&& position[3] != .E || // row 1

position[6] == position[7] && position[6] == position[8]
&& position[6] != .E || // row 2

position[0] == position[3] && position[0] == position[6]
&& position[0] != .E || // col 0

position[l] == position[4] && position[l] == position[7]
&& position[l] != .E || // col 1

position[2] == position[5] && position[2] == position[8]
&& position[2] != .E || // col 2

position[0] == position[4] && position[0] == position[8]
&& position[0] != .E || // diag O

position[2] == position[4] && position[2] == position[6]
&& position[2] != .E // diag 1

If all of a row’s, column’s, or diagonal’s squares are not empty, and they contain the



same piece, the game has been won.

A game is drawn if it is not won and there are no more legal moves left. The computed

property isDraw closes out the implementation of Board.

var isDraw: Bool {

return !isWin && legalMoves.count == 0

8.4.2. Minimax

Minimax is a classic algorithm for finding the best move in a two-player, zero-sum

game with perfect information, like tic-tac-toe, checkers, or chess. It has been extended
and modified for other types of games as well. Minimax is typically implemented using
a recursive function in which each player is designated either the maximizing player or

the minimizing player.

The maximizing player aims to find the move that will lead to maximal gains. However,
the maximizing player must account for moves by the minimizing player. After each
attempt to maximize the gains of the maximizing player, minimax is called recursively
to find the opponent’s reply that minimizes the maximizing player’s gains. This
continues back and forth (maximizing, minimizing, maximizing, and so on) until a base
case in the recursive function is reached. The base case is a terminal position (a win or a

draw).

Minimax will return an evaluation of the starting position for the maximizing player. If
the best possible play by both sides will result in a win for the maximizing player, a
score of 1 will be returned (in our version, the exact number is arbitrary). If best play

will result in a loss, -1 is returned. A 0 is returned if best play is a draw.

These numbers are returned when a base case is reached. They then “bubble-up”
through all of the recursive calls that led to the base case. For each recursive call to
maximize, the best evaluations one level further down bubble up. For each recursive
call to minimize, the worst evaluations one level further down bubble up. In this way, a
decision tree is built. Figure 8.6 illustrates this tree that facilitates bubbling-up for a

game with two moves left.

Tip



For games that have too deep a search space to reach a terminal position (checkers,
chess), minimax is stopped after a certain depth (the number of moves deep to search,
sometimes called ply). Then an evaluation function kicks in, using heuristics to score
the state of the game. The better the game is for the originating player, the higher the

score that is awarded.

Figure 8.6. A minimax decision tree for a tic-tac-toe game with two moves left. To
maximize the likelihood of winning, the initial player, O, will choose to play O in
the bottom center.
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Hereis minimax () in its entirety.

// Find the best possible outcome for originalPlayer

func minimax(_ board: Board, maximizing: Bool, originalPlayer: Piece)
-> Int {
// Base case -- evaluate the position if it is a win or a draw
if board.isWin && originalPlayer == board.turn.opposite { return 1 }
// win
else if board.isWin && originalPlayer != board.turn.opposite

{ return -1 } // loss

else if board.isDraw { return 0 } // draw

// Recursive case -- maximize your gains or minimize the opponent's ga
if maximizing {

var bestEval = Int.min



for move in board.legalMoves { // find the move with the highest
evaluation
let result = minimax (board.move (move), maximizing: false,
originalPlayer: originalPlayer)
bestEval = max (result, bestEval)
}
return bestEval
} else { // minimizing
var worstEval = Int.max
for move in board.legalMoves {
let result = minimax (board.move (move), maximizing: true,
originalPlayer: originalPlayer)
worstEval = min(result, worstEval)

}

return worstEval

In each recursive call, we need to keep track of the board position, whether we are
maximizing or minimizing, and who we are trying to evaluate the position for
(original-Player). The first few lines of minimax () deal with the base case—a
terminal node (a win, loss, or draw). This could alternatively go inside a separate

“evaluation” function. The rest of the function is the recursive cases.

One recursive case is maximization. In this situation, we are looking for a move that
yields the highest possible evaluation. The other recursive case is minimization, where
we are looking for the move that results in the lowest possible evaluation. Either way,

the two cases alternate until we reach a terminal state (base case).

Unfortunately, we cannot use our implementation of minimax () as-is to find the best
move for a given position. It returns an evaluation (an Int value). It does not tell us

what best first move led to that evaluation.

Instead, we will create a helper function, findBestMove (), that loops through calls to
minimax () for each legal move in a position to find the move that evaluates to the
highest value. You can think of findBestMove () as the first maximizing call to

minimax (), but with us keeping track of those initial moves.

// Run minimax on every possible move to find the best one

func findBestMove( board: Board) -> Move ({
var bestEval = Int.min
var bestMove = -1

for move in board.legalMoves {
let result = minimax (board.move (move), maximizing: false,

originalPlayer: board.turn)



if result > bestEval {
bestEval = result

bestMove = move

}

return bestMove

We now have everything ready to find the best possible move for any tic-tac-toe

position. Let’s try a few examples, starting with an easy win-in-one position.

// win in 1 move

let toWinEasyPosition: [Piece] = [.X, .0, .X,
X, .E, o,
B, ol&y, 0]
let testBoardl: Board = Board(position: toWinEasyPosition, turn: .X,

lastMove: 8)
let answerl = findBestMove (testBoardl)

print (answerl)

You should see 6 printed to the console, indicating X should play in location 6 to win,

which is correct.

Now let’s try a position that requires the next move to be a block to stop the opponent

from winning,.

// must block O's win

let toBlockPosition: [Piece] = [.X, .E, .E,
olBp olEp oQp
LE, WX, 0]
let testBoard2: Board = Board(position: toBlockPosition, turn: .X,

lastMove: 8)
let answer?2 = findBestMove (testBoard2)

print (answer?2)

Again, the right answer, location 2, should be printed to the console.

Finally, here is a harder position that requires planning ahead.

// find the best move to win in 2 moves

let toWinHardPosition: [Piece] = [.X, .E, .E,
.E, .E, .0,
.0, .X, .E]
let testBoard3: Board = Board(position: toWinHardPosition, turn: .X,

lastMove: 6)

let answer3 = findBestMove (testBoard3)



print (answer3)

You should see location 1 being selected for the win.

It does not take much code to implement minimax, and it will work for many more
games than just tic-tac-toe. If you plan to implement minimax for another game, it is
important to set yourself up for success by creating data structures that work well for
the way minimax is designed, like the Board struct. A common mistake for students
learning minimax is to use a modifiable data structure that gets changed by a recursive

call to minimax and then cannot be rewound to its original state for additional calls.

8.5. REAL-WORLD APPLICATIONS

Dynamic programming, as used with the knapsack problem, is a widely applicable
technique that can make seemingly intractable problems solvable by breaking them
into constituent smaller problems and building up a solution from those parts. The
knapsack problem, itself, is related to other optimization problems where a finite
amount of resources (the capacity of the knapsack) must be allocated amongst a finite
but exhaustive set of options (the items to steal). Imagine a college that needs to
allocate its athletic budget. It does not have enough money to fund every team, and it
has some expectation of how much alumni donations each team will bring in. It can run
a knapsack-like problem to optimize the budget’s allocation. Problems like this are

common in the real world.

The traveling salesman problem is an everyday occurrence for shipping and
distribution companies like UPS and FedEx. Package delivery companies want their
drivers to travel the shortest routes possible. Not only does this make the drivers’ jobs
more pleasant, it also saves fuel and maintenance costs. We all travel for work or for
pleasure, and finding optimal routes when visiting many destinations can save
resources. But the traveling salesman problem is not just for routing travel; it comes up
in almost any routing scenario that requires singular visits to nodes. Although a
minimum spanning tree (chapter 4) may minimize the amount of wire needed to
connect a neighborhood, it does not tell us the optimal amount of wire if every house
must be forward-connected to just one other house as part of a giant circuit that returns

to its origination. The traveling salesman problem does.

Permutation-generation techniques like the ones used in the naive approach to the
traveling salesman problem and the phone number mnemonics problem are useful for
testing all sorts of brute-force algorithms. For instance, if you were trying to crack a

short password, you could just generate every possible permutation of the characters



that could potentially be in the password. Practitioners of such large-scale permutation-

generation tasks would be wise to use an especially efficient permutation-generation

[31]
algorithm, like Heap’s algorithm.

3

Robert Sedgewick, “Permutation Generation Methods” (Princeton University), http://mng.bz/87Te.

Minimax, combined with further extensions like alpha-beta pruning, is the basis of
most modern chess engines. It has been applied to a wide variety of strategy games with
great success. The deeper the search space for a game, the less effective minimax will
be. This is why recent advances in computer play of the board game Go have required
exploration of other domains, like machine learning. The search space for Go is simply
overwhelming for minimax-based algorithms that attempt to generate trees containing
future positions. But Go is the exception rather than the rule. Most traditional board
games (checkers, chess, Connect Four, Scrabble, and the like) have search spaces small

enough that minimax-based techniques can work well.

8.6. EXERCISES

1. Reprogram the naive approach to the traveling salesman problem using the graph
framework from chapter 4.

2. Implement a genetic algorithm, as described in chapter 5, to solve the traveling
salesman problem. Start with the simple data set of Vermont cities described in this
chapter. Can you get the genetic algorithm to arrive at the optimal solution in a
short amount of time? Then attempt the problem with an increasingly large number
of cities. How well does the genetic algorithm hold up? You can find a large number
of data sets specifically made for the traveling salesman problem by searching the
web. Develop a testing framework for checking the efficiency of your method.

3. Use a dictionary with the phone number mnemonics program and return only
permutations that contain valid dictionary words.

4. Add a method to the Board class in tic-tac-toe that pretty-prints the position.

5. Add tests to tic-tac-toe to ensure that the properties 1egalMoves, i sWin, and
isDraw work correctly.

6. Use minimax to make a simple Connect Four engine.



Appendix A. Glossary

This appendix defines a selection of key terms from throughout the book.

activation function

A function that transforms the output of a neuron in an artificial neural network,
generally to render it capable of handling nonlinear transformations or to ensure its

output value is clamped within some range (chapter 7).

acyclic

A graph with no cycles (chapter 4).

admissible heuristic

A heuristic for the A* search algorithm that never overestimates the cost to reach the

goal (chapter 2).

artificial neural network

A simulation of a biological neural network using computational tools to solve
problems not easily reduced into forms amenable to traditional algorithmic
approaches. Note that the operation of an artificial neural network generally strays

significantly from its biological counterpart (chapter 7).

auto-memoization

A version of memoization implemented at the language level, in which the results of
function calls without side effects are stored for lookup upon further identical calls
(chapter 1).

backpropagation

A technique used for training neural network weights according to a set of inputs with
known correct outputs. Partial derivatives are used to calculate each weight’s
“responsibility” for the error between actual results and expected results. These “deltas”

are used to update the weights for future runs (chapter 7).

backtracking

Returning to an earlier decision point (to go a different direction than was last pursued)



after hitting a wall in a search problem (chapter 3).

bit string

A data structure that stores a sequence of 1’s and 0’s represented using a single bit of

memory for each. This is sometimes referred to as a “bit vector” or “bit array” (chapter
1).

centroid

The center point in a cluster. Typically, each dimension of this point is the mean of the
rest of the points in that dimension (chapter 6).

chromosome

In a genetic algorithm, each individual in the population is referred to as a
chromosome (chapter 5).

cluster

See clustering (chapter 6).

clustering

An unsupervised learning technique that divides a data set into groups of related
points, known as clusters (chapter 6).

codon

A combination of three nucleotides that together form an amino acid (chapter 2).

compression

Encoding data (changing its form) to require less space (chapter 1).

connected

A graph property that indicates there is a path from any vertex to any other vertex
(chapter 4).

constraint

A requirement that must be fulfilled in order for a constraint-satisfaction problem to be

solved (chapter 3).

crossover

In a genetic algorithm, combining individuals from the population to create offspring
that are a mixture of the parents, and that will be a part of the next generation (chapter
5).

Ccsv



A text interchange format in which rows of data sets have their values separated by
commas, and the rows themselves are generally separated by newline characters. CSV
stands for “comma-separated values.” CSV is a common export format from
spreadsheets and databases (chapter 7).

cycle

A path in a graph that visits the same vertex twice without backtracking (chapter 4).

decompression

Reversing the process of compression, returning the data to its original form (chapter 1).

deep learning

Something of a buzzword, deep learning can refer to any of several techniques that use
advanced machine-learning algorithms to analyze “big data.” Most commonly, deep
learning refers to using multilayer artificial neural networks to solve problems using
large data sets (chapter 7).

delta

A value that is representative of a gap between the expected value of a weight in a
neural network and its actual value. The expected value is determined through the use
of training data and backpropagation (chapter 7).

digraph

See directed graph (chapter 4).

directed graph

Also known as a digraph, a directed graph is a graph in which edges may only be
traversed in one direction (chapter 4).

domain

The possible values of a variable in a constraint-satisfaction problem (chapter 3).

dynamic programming

Instead of solving a large problem outright using a brute-force approach, in dynamic
programming the problem is broken up into smaller subproblems that are each more
manageable (chapter 8).

edge

A connection between two vertices (nodes) in a graph (chapter 4).

exclusive or

See XOR (chapter 1).



feed-forward

A type of neural network in which signals propagate in one direction (chapter 7).

fitness function

A function that evaluates the effectiveness of a potential solution to a problem (chapter
5).

generation

One round in the evaluation of a genetic algorithm. Also used to refer to the population

of individuals active in a round (chapter 5).

genetic programming

Programs that modify themselves using the selection, crossover, and mutation

operators to find solutions to programming problems that are non-obvious (chapter 5).

gradient descent

The method of modifying an artificial neural network’s weights using the deltas

calculated during backpropagation and the learning rate (chapter 7).

graph

An abstract mathematical construct that is used for modeling a real-world problem by
dividing the problem into a set of connected nodes. The nodes are known as vertices,

and the connections are known as edges (chapter 4).

greedy algorithm

An algorithm that always selects the best immediate choice at any decision point,
hopeful that it will lead to the globally optimal solution (chapter 4).

heuristic

An intuition about the way to solve a problem that points in the right direction (chapter
2).

hidden layer

Any layers between the input layer and the output layer in a feed-forward artificial
neural network (chapter 7).

infinite loop

Aloop that does not terminate (chapter 1).

infinite recursion

A set of recursive calls that does not terminate, but instead continues to make

additional recursive calls. Analogous to an infinite loop. Usually caused by the lack of a



base case (chapter 1).

input layer

The first layer of a feed-forward artificial neural network that receives its input from

some kind of external entity (chapter 7).

learning rate

A value, usually a constant, used to adjust the rate at which weights are modified in an

artificial neural network, based on calculated deltas (chapter 7).

memoization

A technique in which the results of computational tasks are stored for later retrieval

from memory, saving additional computation time to recreate the same results (chapter
1).

minimum spanning tree

A spanning tree that connects all vertices using the minimum total weight of edges
(chapter 4).

mutate

In a genetic algorithm, randomly changing some property of an individual before it is
included in the next generation (chapter 5).

natural selection

The evolutionary process by which well adapted organisms succeed and poorly adapted
organisms fail. Given a limited set of resources in the environment, the organisms best
suited to leverage those resources will survive and propagate. Over several generations,
this leads to helpful traits being propagated amongst a population, hence being
naturally selected by the constraints of the environment (chapter 5).

neural network

A network of multiple neurons that act in concert to process information. The neurons
are often thought about as being organized in layers (chapter 7).

neuron

An individual nerve cell, such as those in the human brain (chapter 7).

normalization

The process of making different types of data comparable (chapter 6).

NP-hard

A problem that belongs to a class of problems for which there is no known polynomial



time algorithm to solve (chapter 8).

nucleotide

One instance of one of the four bases of DNA: adenine (A), cytosine (C), guanine (G),
and thymine (T) (chapter 2).

output layer

The last layer in a feed-forward artificial neural network that is used for determining

the result of the network for a given input and problem (chapter 7).

path

A set of edges that connects two vertices in a graph (chapter 4).

ply

A turn (often thought of as a move) in a two-player game (chapter 8).

population

In a genetic algorithm, the population is the collection of individuals (each representing

a potential solution to the problem) competing to solve the problem (chapter 5).

priority queue

A data structure that pops items based on a “priority” ordering. For instance, a priority
queue may be used with a collection of emergency calls in order to respond to the

highest priority calls first (chapter 2).

queue

An abstract data structure that enforces the ordering FIFO (First-In-First-Out). A
queue implementation provides at least the operations “push” and “pop” for adding and

removing elements, respectively (chapter 2).

recursive function

A function that calls itself (chapter 1).

selection

The process of selecting individuals in a generation of a genetic algorithm for

reproduction, to create individuals for the next generation (chapter 5).

sigmoid function

One of a set of popular activation functions used in artificial neural networks. The
eponymous sigmoid function always returns a value between 0 and 1. It is also useful
for ensuring results beyond just linear transformations can be represented by the

network (chapter 7).



SIMD instructions

Microprocessor instructions optimized for doing calculations using vectors, also
sometimes known as “vector instructions.” SIMD stands for “single instruction,

multiple data” (chapter 7).

spanning tree

A tree that connects every vertex in a graph (chapter 4).

stack

An abstract data structure that enforces the Last-In-First-Out (LIFO) ordering. A stack
implementation provides at least the operations “push” and “pop” for adding and

removing elements, respectively (chapter 2).

synapses

Gaps between neurons in which neurotransmitters are released to allow for the
conduction of electrical current. In layman’s terms, these are the connections between

neurons (chapter 7).

supervised learning

Any machine-learning technique in which the algorithm is somehow guided toward
correct results using outside resources (chapter 7).

training

A phase in which an artificial neural network has its weights adjusted by using
backpropagation with known correct outputs for some given inputs (chapter 7).

tree

A graph that has only one path between any two vertices. A tree is acyclic (chapter 4).

unsupervised learning

Any machine-learning technique that does not use foreknowledge to reach its
conclusions. In other words, a technique that is not guided, but instead runs “on its

own” (chapter 6).

variable

In the context of a constraint-satisfaction problem, a variable is some parameter that
must be solved for as part of the problem’s solution. The possible values of the variable

are its domain. The requirements for a solution are one or more constraints (chapter 3).

vertex

A single node in a graph (chapter 4).



XOR

Alogical bitwise operation that returns t rue when either of its operands is true, but
not when both are true or neither is true. The abbreviation stands for exclusive or. In
Swift, the ~ operator is used for XOR (chapter 1).

Z-score

The number of standard deviations a data point is away from the mean of a data set

(chapter 6).



Appendix B. More resources

Where should you go next? This book covered a wide swath of topics, and this appendix

will connect you with great resources that will help you explore them further.

SWIFT

As was stated in the introduction, Classic Computer Science Problems in Swift assumes
you have a foundational knowledge of the syntax and semantics of the Swift language.
Hence, we call it “a great second book on Swift.” If you feel like your Swift

fundamentals are still a bit shaky, you should check out these books.
e Apple, The Swift Programming Language (Apple, 2018), http://mng.bz/8A3K.

e Free
e Available both on the web and as an eBook

e Comprehensive, up-to-date coverage of the entire language, suitable for both

beginners and experienced programmers
e Tjeerd in ‘t Veen, Swift in Depth (Manning, 2018), www.manning.com/books/swift-in-

depth.

e A new offering from Manning that covers design patterns and advanced Swift

features

10S DEVELOPMENT

Although Swift can be used for more than just iOS development, iOS development
remains its bread and butter. Here are some resources that offer a tutorial-style

approach to teaching iOS development.

e Craig Grummitt, iOS Development with Swift (Manning, 2017),

www.manning.com/books/ios-development-with-swift.

e An up-to-date tutorial from Manning



e Christian Keur and Aaron Hillegass, iOS Programming: The Big Nerd Ranch
Guide, 6th edition (Pearson, 2017), www.bignerdranch.com/books/ios-programming/.
e A classic iOS text co-written by one of the Apple world’s most famous developers

e Paul Hudson, Hacking with Swift, www.hackingwithswift.com/read.

¢ Free version available (with ads)
* A wide swath of different application types approached
* Consistently updated for the latest versions of Swift

* RayWenderlich.com

* A huge number of high-quality tutorials on every aspect of iOS development

e Video tutorials also available on many topics

MAC DEVELOPMENT

It might not be quite as popular as the iPhone, but the Mac is still an exciting
environment for Swift development. UIKit, the UI framework on iOS, was originally an
evolution of AppKit, the Mac’s UI framework. As a rule of thumb, writing a Mac app is
slightly more complicated than writing an iOS app, simply because the UI paradigm

encompasses more modes of interaction.

e Aaron Hillegass, Adam Preble, and Nate Chandler, Cocoa Programming for OS X:
The Big Nerd Ranch Guide, 5th edition (Pearson, 2015).

e The definitive guide to Mac programming co-written by a legend in the industry

e Unfortunately it has somewhat outdated examples (built around Swift 1);

hopefully a new edition of the book will come out

ALGORITHMS AND DATA STRUCTURES

To quote this book’s introduction, “This is not a data structures and algorithms
textbook.” There is little use of big-O notation in this book, and no mathematical
proofs. This is more of a hands-on tutorial to important programming techniques, and
there is value in having a real textbook too. Not only will it provide you with a more
formal explanation of why certain techniques work, it will also serve as a useful
reference. Online resources are great, but sometimes it is good to have information that

has been meticulously vetted by academics and publishers.



e Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein, Introduction
to Algorithms, third edition (MIT Press, 2009),

https://mitpress.mit.edu/books/introduction-algorithms.
e This is one of the most-cited texts in computer science, so definitive that it is
often just referred to by the initials of its authors: CLRS

e Comprehensive and rigorous in its coverage

 [ts teaching style is sometimes seen as less approachable than other texts, but it

is still an excellent reference
e Pseudocode is provided for most algorithms
e Robert Sedgewick and Kevin Wayne, Algorithms, fourth edition (Addison-Wesley
Professional, 2011), http://algs4.cs.princeton.edu/home/.
* A very approachable yet comprehensive introduction to algorithms and data
structures
e Well organized with full examples of all algorithms in Java
e Popular in college algorithms classes
e Steven Skiena, The Algorithm Design Manual, second edition (Springer, 2011),
www.algorist.com.
e Very different in its approach than other textbooks in this discipline

e Offers less code but more descriptive discussion of appropriate uses of each

algorithm

e Offers a “choose your own adventure”-like guide to a wide range of algorithms

e Aditya Bhargava, Grokking Algorithms (Manning, 2016),

www.manning.com/books/grokking-algorithms.

e A very graphical approach to teaching basic algorithms, with cute cartoons to
boot

* Not a reference textbook, but instead a guide to learning some basic selected

topics for the first time

e Erik Azar and Mario Eguiluz Alebicto, Swift Data Structures and Algorithms
(Packt, 2016), https://www.packtpub.com/application-development/swift-data-structure-

and-algorithms.



* One of the only algorithms and data structures texts entirely in Swift

e Swift Algorithm Club, https://github.com/raywenderlich/swift-algorithm-club.

e Very wide in its breadth, so a great starting point for most topics
e Updated for new Swift versions

e Explanations and code vary in quality and are provided by many different

authors, so there is no unified voice or ability to presume reader knowledge

ARTIFICIAL INTELLIGENCE

Artificial intelligence is changing our world. In this book you not only were introduced
to some traditional artificial intelligence search techniques like A* and Minimax, but
also to techniques from its exciting subdiscipline, machine learning, like k-means and
neural networks. Learning more about artificial intelligence is not only interesting, it

also will ensure you are prepared for the next wave of computing.

e Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, third
edition (Pearson, 2009), http://aima.cs.berkeley.edu.
e The definitive textbook on Al, often used in college courses
e Wide in its breadth

* Excellent source code repositories (implemented versions of the pseudocode in
the book) available online

e Stephen Lucci and Danny Kopec, Artificial Intelligence in the 21st Century, second

edition (Mercury Learning and Information, 2015), http://mng.bz/1N46.

e An approachable text for those looking for a more down-to-earth and colorful
guide than Russell and Norvig

e Interesting vignettes on practitioners and many references to real-world

applications
e Andrew Ng, “Machine Learning” course (Stanford University),

www.coursera.org/learn/machine-learning/.

e A free online course that covers many of the fundamental algorithms in machine

learning
e Taught by a world-renowned expert

* Often referenced as a great starting point in the field by practitioners



FUNCTIONAL PROGRAMMING

Swift can be programmed in a functional style, and indeed this style is popular amongst
many Swift enthusiasts. Delving into the reaches of functional programming is possible
in Swift itself, but it can also be helpful to work in a purely functional language and

then take some of the ideas one learns from that experience back to Swift.

e Harold Abelson and Gerald Jay Sussman with Julie Sussman, Structure and
Interpretation of Computer Programs (MIT Press, 1996),
https://mitpress.mit.edu/sicp/.

* A classic introduction to functional programming often used in introductory

computer science college classes
e Teaches in Scheme, an easy-to-pick-up, purely functional language
e Available online for free

e Aslam Khan, Grokking Functional Programming (Manning, 2018),

www.manning.com/books/grokking-functional-programming.

e A very graphical and friendly introduction to functional programming

e Chris Eidhof, Florian Kugler, and Wouter Swierstra, Functional Swift (objc.io,

2016), www.objc.io/books/functional-swift/.

e A deep dive into functional programming in Swift

OPEN SOURCE PROJECTS MENTIONED IN THIS BOOK

I maintain several open source projects that chapters in this book were built from. The

projects offer more features and utility than could be made use of in the book.
e SwiftPriorityQueue by David Kopec, https://github.com/davecom/SwiftPriorityQueue.
e A generic priority queue useful with A* and Dijkstra’s algorithm

e Used in chapters 2 and 4

e SwiftCSP by David Kopec, https://github.com/davecom/SwiftCSP.

e Chapter 3’s constraint-satisfaction problem framework is based on SwiftCSP

e SwiftGraph by David Kopec, https://github.com/davecom/SwiftGraph.

e A complete library for graph data structures and algorithms



e The graph framework in chapter 4 is a mini-version of SwiftGraph

* SwiftSimpleNeuralNetwork by David Kopec,
https://github.com/davecom/SwiftSimpleNeuralNetwork.

e Chapter 7’s simple neural network is based on SwiftSimpleNeuralNetwork



Appendix C. A brief history of Swift

Where did Swift come from, and where is it going? This appendix aims to answer both
of these questions. To fully appreciate Swift’s purpose requires understanding the
ecosystem that it emerged from. Swift is a young language, but it incorporates many old

ideas.

Warning

This appendix is not meant to provide reference-quality material. It contains

speculation, suppositions, and opinion.

A BRIEF HISTORY OF PROGRAMMING LANGUAGE PARADIGMS
INCORPORATED IN SWIFT

Swift contains all of the features that have become standard in class-based, object-
oriented programming languages. These are features like objects, inheritance,
polymorphism, and many more that are exposed when you build using the class
reference semantics in Swift. Object-oriented programming languages can trace their
history to at least as far back as Simula 67 from 1967, and they were influenced by ideas
from even earlier languages, like Lisp (1958). Simula 677 was not a particularly widely
used language, but its ideas emerged in popular programming languages of the 1970s,

1980s, and 1990s.

Object-oriented programming found perhaps its most pure expression in Smalltalk
(1972). Smalltalk, in turn, was highly influential on Objective-C (1984), which Swift is a
replacement for. Objective-C did not find large-scale adoption outside of NeXT and
later Apple (after its purchase of NeXT). Objective-C is a thin superset of C (1972),
providing Smalltalk-like message-passing, but C++ (1983), another object-oriented
evolution of C with a much larger feature set, found far wider industry adoption.

Android’s main programming language, Java (1995), was heavily influenced by C++.



Although C++, Java, and other similar languages have made object-oriented
programming the dominant paradigm in software development since the 1990s,
another thread of language development has also sought to succeed procedural code.
Functional programming emphasizes the primacy of functions acting on immutable
data structures, without global state changes. In other words, in pure functional
languages, a function’s return value only depends on the arguments supplied to its
parameters (with no global state affecting the outcome). Functional programming

languages ironically also sometimes trace their lineage to Lisp.

Functional programming languages have long been popular in the academic world,
where languages like Scheme (1970), a dialect of Lisp, and ML (1973) continue to be
seen in the computer science classroom and in research. Their close proximity to the
mathematical models that underlie code is sometimes cited as the attraction. More
recently, ideas from the world of functional programming have started to find their way
into mainstream emerging languages. Although it is unlikely that pure functional
programming languages like Haskell (1990) and Clojure (2007) will ever be completely
mainstream, ideas from the functional world can be seen in popular modern languages

like JavaScript (1995) and Swift.

In particular, the value semantics when working with enum and struct types in Swift
have functional programming roots. Functions are first-class citizens in Swift. The
standard library has built-in support for popular functional programming methods like
map, reduce, and filter. In other words, Swift has all of the tools you need to program in
a fully functional style. This strong support has attracted functional programming
devotees from other functional language communities into the Swift world. Sometimes
they have clashed with the old guard of object-oriented developers coming from

Objective-C backgrounds.

But the truth is that Swift is a multi-paradigm language. Like other modern emerging
languages, such as Rust (2010) and Dart (2011), it draws inspiration from a myriad of
prior languages. The great thing about developing a programming language today is
that there are decades of hindsight. Modern language designers can pick and choose
from what has worked well for other languages, and can remix their features into a
cohesive whole. And there is still room for experimentation. Swift even introduces a

paradigm of its own—“protocol-oriented programming,” as was described in chapter 4.

Some Swift practitioners are adamant about programming in a functional style,
protocol-oriented style, or object-oriented style. Perhaps the best way to approach
programming in Swift is like the language designers did with the language itself,

picking and choosing the best features of the language for the particular app in



question. Swift enables flexibility, and there is no reason to use a flexible language in a

rigid style.

PROGRAMMING LANGUAGES AT APPLE BEFORE SWIFT

In Apple’s four-decade history, many programming languages have come and gone
from their day of sunshine and Apple’s stamp of approval. The Apple II (1977), like
most personal computers of its day, included a built-in BASIC (1964) interpreter. A lot
of serious development was done in 6502 (the name of the microprocessor in the Apple
IT) assembly, and there was some high-level development in popular languages of the
day, like Pascal. The Macintosh (1984) was a Pascal (1970) stronghold in the 1980s
through the early 1990s, by which time C and C++ began to become industry standards,

and they eventually displaced Pascal, even on the Mac.

The acquisition of NeXT in 1997 brought Objective-C and the advanced object-oriented
frameworks that underlay NeXTStep/OpenStep to the Mac, with the release of Mac OS
X in 2001. Apple supplied a path for older C/C++ apps to be updated for Mac OS X with
the release of Carbon, but future development using the updated frameworks from
NeXT (Objective-C using the Cocoa APIs) was promoted. From 2001 through the public
release of Swift in 2014, Objective-C was the first-class language for both macOS and

iOS development.

Apple made two major updates to Objective-C’s programming model during this time.
The introduction of Objective-C 2.0 alongside Mac OS X 10.5 (2007) brought some
modern syntax sugar to make life in Objective-C a little more succinct (it is notoriously
verbose). Traditional memory management in Objective-C was done using manual
reference counting (programmers littering their code with retain and release calls).
Apple experimented with a garbage collector for Objective-C, but eventually replaced it
with Automatic Reference Counting (ARC), which involves the compiler inserting retain
and release calls at compile time in the appropriate places. ARC lives on as the memory

management model in Swift.

Apple has also had many interesting programming language detours in its lifetime.
Hypercard (1987), Apple’s famous multimedia, card-based development environment
for regular people, included the English-like HyperTalk (1987) language. Apple also
brought an English-like dialect to scripting the Macintosh with AppleScript (1993),
which lives on in the modern macOS. During the development of the Newton (1993),
Apple developed both the Dylan (1992) and NewtonScript (1993) programming
languages, neither of which ever achieved widespread use. At the time of Mac OS X’s

introduction, Java was the hot industry programming language. For several years,



Apple supplied a bridge between Java and Objective-C, enabling developers to program
Cocoa apps in Java (similar to how we now interact with Cocoa from Swift, in a sense).
The Java route was never especially popular, and Apple eventually deprecated the

bridge.

SWIFT HISTORY

[ 1]
Swift was started as a project by Chris Lattner in 2010. For some time, Mac (and

later iOS) developers had been clamoring for a modern replacement for Objective-C,
given some of its perceived limitations. Due to its nature as a superset of C, Objective-C
lacks language-level memory and type safety. Its syntax is sometimes seen as too
verbose and different from other mainstream programming languages, especially for
those new to it. Message-passing is at the core of Objective-C and enables its incredible

dynamism, but is also responsible for some performance limitations.

1

Chris Lattner’s Homepage is at http:/nondot.org/sabre/.

Lattner had achieved notoriety for the development of LLVM, a compiler infrastructure
project that serves as the backend for not only Swift but many other programming
language compilers as well. Lattner was also the lead developer of LLVM’s most famous
front end, Clang, which compiles C, C++, and Objective-C code. By the time Swift was
in heavy development, Lattner had risen to be a senior manager in Apple’s developer
tools group. In 2013, Swift became a major focus of the group, leading to its eventual

release the following year.

Milestones

In its short public history, Swift has already achieved several major milestones,

including four production (by version number, not necessarily by readiness!) releases.
Swift’s unveiling

Swift was unveiled to the world in a surprise announcement at Apple’s World Wide
Developer Conference (WWDC) in June 2014. Initial reactions were mostly positive,
including surprise and excitement. Swift Playgrounds were a major feature promoted
by Apple at WWDC, allowing a kind of interactive programming environment not
previously seen in many mainstream platforms. At its announcement, Apple’s Vice
President of Software Engineering, Craig Federighi, called Swift “fast, modern, and

designed for safety.” He contrasted this with Objective-C by calling Swift “Objective-C

[ 2]
without the C.” Swift was made available to developers in beta form during the



conference.

Harrison Weber, “Apple announces ‘Swift,” a new programming language for OS X & i0S,” VentureBeat (June
2, 2014), http://mng.bz/98s0.

It was clear during the announcement of Swift that Objective-C was not going
anywhere. Apple’s frameworks on both macOS and iOS were built over decades using
Objective-C. Apple and third-party developers had millions of lines of Objective-C code
that needed to be supported going forward. It is not as if Apple announced Swift and
had rewritten their operating systems in it. Therefore, another major feature of Swift
promoted during WWDC and responsible for several design decisions in the language is
Objective-C interoperability. It is common for languages to offer interoperability with
other languages. For instance, many programming languages offer C interoperability
(including Swift) because C is so ubiquitous. Languages that run in the JVM usually
have full Java interoperability. What was interesting at the unveiling of Swift was the
depth of Objective-C interoperability. Apple clearly designed Swift to be as seamless as

possible for use with its existing Objective-C frameworks.

Part of working with Apple’s Objective-C frameworks meant bridging between the
Foundation types in Objective-C (NSString, NSArray, NSDictionary, and so on)
and their equivalents in Swift’s standard library. This “toll-free” bridging happens
seamlessly when working with Objective-C frameworks and was a large part of enabling
Swift’s easy adoption by iOS and Mac app developers. It is an underappreciated
technology, but imagine having to constantly convert between types every time a Cocoa

API is accessed.
Swift 1

Swift 1 came out of beta and shipped in “final” form alongside Xcode 6 in September

2014. This first “production” release of the Swift language and compiler was criticized

[3]
for slow compile times, crashing support tools, and a lack of perceived dynamism.

The language itself was not so much the issue (except with regards to dynamism) as
much as the tooling built around the language. Apple warned developers that future
versions of Swift might break syntax compatibility with this first release, and this was to

happen several times in Swift’s future.

3

Maxim Zaks, “Is Swift dynamic enough?” Medium (August 19, 2014), http://mng.bz/Q117.

The discussion surrounding the support of dynamism in the language (or lack thereof)



would be a theme of critique from old-guard Objective-C developers for years to come.
In fact, since its first release, Swift has supported many of the dynamic features of
Objective-C for Objective-C interoperability when code is explicitly marked as usable
from the Objective-C runtime. In modern releases of Swift, one turns on these features
by marking it with @ob-c. However, running code inside of the Objective-C runtime is

not the long-term goal of the language (and is not even supported on Linux).
Swift 2

Swift 2, released in final form in September 2015, made major syntactic and semantic

changes to the language.[ * Swift 2 added support for error handling with do, try,
and catch. It added the guard and defer statements. It included significant renames
to major portions of the standard library. However, perhaps most significantly, it added
support for protocol extensions to the language (protocols can have actual method

definitions), enabling protocol-oriented programming.

4

Greg Heo, “What’s New in Swift 2?” raywenderlich.com (June 12, 2015), http://mng.bz/P2Ue.

Swift 2 was a major step in maturing the language, giving it syntactic and semantic
features that set it apart from some of its predecessor languages. However, Swift
continued to suffer from troubled tooling. Developers continued to complain about
slow build times and notorious crashes of SourceKitService during development.
At this point in Swift’s development, it became common for third-party developers to
do all new development in Swift, whereas during the Swift 1 era, many Objective-C

developers held off.

Xcode included a migration tool for taking Swift 1 code and updating it for Swift 2. This
important tool was the only help developers had for dealing with the numerous syntax
changes between Swift 1 and 2, and later Swift 2 and 3. The repeated changes to syntax
were one reason developers cited for holding off on Swift adoption. In the Swift 4
release cycle, Apple included explicit support for compiling with the last revision of the

language (Swift 3).
Swift goes open source

In December 2015, Apple released Swift and its supporting infrastructure as an open
source project hosted at Swift.org, with source code repositories available on GitHub.
Apple maintained control of Swift, but developed a community proposal process for
non-Apple employees to get changes included in the language. Swift was released under

a permissive open source license (Apache 2.0). Swift was promised to be released in an



open source form since its early days, and Apple’s follow-through was applauded. Since
its open source release, Swift has accumulated many contributors outside of Apple, and

it has been ported to numerous other platforms.
Swift 3

Swift 3, released alongside Xcode 8 in September 2016, did not include as many

breaking changes and new pieces of syntax as Swift 2 did, but nonetheless Swift 3 was a

major upgrade to the language that included significant cleanup.[ i Part of that
cleanup eliminated legacy syntax, like C-style for loops as well as the ++ and --
operators. This caused some consternation, but it ultimately enabled Swift to develop
its own unique style. Swift 3 made many changes to the way that standard library
functions and properties are named and how calls to Objective-C system libraries are

named.

Ted Kremenek, “Swift 3.0 Released,” Swift blog (September 13, 2016), https:/swift.org/blog/swift-3-0-released/.

Swift 3 also marked the first official release of the Swift Package Manager, an important
tool for working with the language on larger multimodule, interdependent, and even
multiplatform projects. The previous package management situation in the Cocoa
world involved the use of the third-party tools CocoaPods and Carthage. But neither
tool had official, sanctioned, Apple support, and each would sometimes break with new
releases of Xcode. Swift Package Manager aims to unify package management in the

Swift world, but it has yet to fully displace the use of CocoaPods and Carthage.

Swift 3 included numerous other changes, but it will probably be best remembered by
developers as the point at which Swift began to mature. By the release of Swift 3, Swift
had overtaken Objective-C in both programmer rankings of language popularity, and
certainly in mindshare. Swift 3 included more extensive support for Swift on Linux and
began to see actual adoption of Swift on the server side. Many of the early tooling issues

with Swift had been resolved, or at least improved, by the Swift 3 release.

Not every change made in a Swift release cycle has been for the better. Some changes to
access control in Swift 3 (fileprivate vs. private, for instance) were derided and
modified in the Swift 4 cycle. There have been other reversals in Swift’s short history,

including various changes to the String APIs between Swift 1 and Swift 4.
Swift 4

Compared to the Swift 2 and Swift 3 releases, Swift 4, released in September 2017, was



a more muted affair. Perhaps a sign of increasing maturity, few syntax changes were

present in Swift 4. But although the language itself did not include many changes, many

[ 6]
improvements were made to the standard library and the Swift Package Manager.

One of the most notable improvements was the inclusion of a fairly easy-to-use,
standard interface for serialization and archiving, a much debated topic in earlier
versions of Swift (numerous JSON parsers, for instance, were developed by third
parties). Other notable improvements were related to the String and Collection APIs in

the standard library.

6

Ted Kremenek, “Swift 4.0 Released,” Swift blog (September 19, 2017), https:/swift.org/blog/swift-4-0-released/.

Swift 4 was the first release of the compiler to include backward compatibility. A special
version of Swift 3, Swift 3.2, can be compiled with the Swift 4 compiler. This enables
developers to stick with Swift 3 while still upgrading to the latest version of the tools.
Ironically, developers likely needed to do less of this with Swift 4, because most Swift 3
code compiles with little change in Swift 4, unlike prior version upgrades of the

language.

Swift on other platforms

As Swift has advanced, it has been ported to multiple other platforms. Apple itself
ported Swift to Linux and released the port at the same time that Swift went open
source. Unfortunately, the port is only officially supported on a few releases of the
Ubuntu Linux distribution. Third-party developers have gotten Swift building on
Raspberry Pi, where there is something of a community, and a Windows port is in
development. There is a group working on Swift support for Android, and there was

even speculation at one point that major companies like Facebook and Google were

[7]
encouraging the effort. Google later adopted Kotlin, a language with syntax similar
to Swift, although significantly divergent in semantics, as a first-class alternative to
Java on Android.

Nate Swanner, “Google is said to be considering Swift as a ‘first class’ language for Android,” The Next Web
(April 277, 2016), http://mng.bz/38MR.

Swift on Linux led to an interest in server-side Swift. There is an official work group
cooperating to create standards for server-side APIs. In the meantime, three fairly
popular high-level frameworks have sprung up for building back ends (especially of web

apps) in Swift—Perfect, Vapor, and Kitura. Kitura is backed by IBM and is part of a



larger initiative by the company to build products using Swift technologies. Apple has a

high-level alliance with IBM as well.

SWIFT’S FUTURE DIRECTIONS

It seems Swift has begun to mature. Developers can likely expect the fewer breaking
changes in the Swift 4 release cycle to be more of the norm going forward. Publicly
stated goals for Swift in the future include ABI stability, concurrency primitives, and
more fine-grained control of memory. These will likely all be additive features that will
not break existing code. ABI stability will bring the ability to distribute precompiled
frameworks that work across Swift versions. Grand Central Dispatch, the current
concurrency solution on Apple platforms, is a C library that does not take advantage of
any specific language features. Adding language primitives will hopefully enable even
more transparent use of concurrency—think of what Go Routines are to the Go
programming language, or Async/Await is to C#/Python/JavaScript. There is
discussion of bringing Async/Await to Swift and/or an Actor-based model, similar to
Erlang. Fine-grained memory control enables performance optimizations for high-
demand programs. Rust has such control built into the language, and there is talk of

bringing similar constructs for “ownership” to Swift.

Swift is at an exciting point in its evolution. It has surpassed Objective-C in popularity
and is beginning to gain steam as it branches out beyond the Apple ecosystem and
entrenches on Linux with server-side Swift. As additional features continue to add to
the capabilities of the language, its tooling continues to mature, performance continues
to improve, and it gets ported to further platforms, Swift is on a trajectory for
tremendous growth. As of early 2018, it has already cracked the top 10 list, according to
several indicators of the most popular programming languages in the world. Where it
will end up long term is anyone’s guess, but keep in mind that the language is still only

a few years old!
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