
To my two oldest children, Angel and
Tony. Thank you for inspiring me to write
this book and helping me see the software

development learning process through the

eyes of bright young teens.

And to my other four wonderful children.

Thank you for the countless hours of joyful

distractions.

www.mascotbooks.com

Code for Teens: The Awesome Beginner's Guide to Programming

©2018 Jeremy Moritz. All Rights Reserved. No part of this publication
may be reproduced, stored in a retrieval system or transmitted in any
form by any means electronic, mechanical, or photocopying, recording or
otherwise without the permission of the author.

For more information, please contact:
Mascot Books
620 Herndon Parkway #320
Herndon, VA 20170
info@mascotbooks.com

Library of Congress Control Number: 2018902079

CPSIA Code: PRTWP0218A
ISBN-13: 978-1-68401-960-1

Printed in Malaysia

The Awesome Beginner’s Guide to Programming

Written by
Jeremy Moritz

Illustrated by

Christine Moritz

Volume 1: JavaScript

!

Code
for Teens

1

Table of
Contents

Foreword...2

Introduction...4

A Word for Parents...8

Chapter 1: Hello World!...13
Write your first lines of code and make mistakes

Chapter 2: Time to Operate...29
Code with numbers and math operators

Chapter 3: Comment on the String Section...................45
Concatenate strings and make snide comments

Chapter 4: Have Some Functions...................................59
Declare and invoke functions

Chapter 5: Shall I Compare?..77
Use booleans, if blocks, conditionals, and comparison operators

Chapter 6: Logically Operational...................................93
Work with null, undefined, and logical operators

Chapter 7: Projects Galore..113
Practice methods in lots of short projects

Chapter 8: Hip Hip Array!...131
Introduce arrays and do stuff with 'em

Chapter 9: Loop a Round...151
Put your code on repeat with loops

Chapter 10: Make a Hangman Game..........................173
Combine concepts from every chapter to build a cool game

Conclusion..184

Answers...186

Glossary of Terms..214

2

When Jeremy first asked me about writing the foreword for his book, I was
excited and incredibly honored. Now, you should know that I am not a
programmer. What I bring to this conversation is knowledge of children. I
have been an elementary teacher for ten years now, and I developed a program
for my school district with a goal to introduce kids to computer science and
build an interest in pursuing it as they continue through school. I have done
a ton of research, attended technology education conferences and trainings,
and frequently consult with my personal software engineer: my husband.
My experience in teaching and understanding how kids learn has helped
me find resources and tools that are engaging and successful at teaching the
fundamentals of computer science, so I began sharing these resources in
technology conferences and children's STEM workshops around the country.

At one such conference and workshop, I met Jeremy and Christine and their
many children. From the oldest to the youngest, the Moritz kids are full of
enthusiasm for coding and learning in general. Their parents have inspired
a desire to learn about the world around them in a way I only hope I am
continually imparting to the students I teach.

Jeremy and I bonded in our belief that teaching kids programming is powerful.
As he says in this book, being able to program a computer is like a superpower.
The skills acquired in learning how to code go beyond just computer science,
however. Computational thinking builds problem solving and logic skills that can
be applied to nearly any subject. It gives kids an outlet to create and pushes them
to think outside the box. Beyond that, programming prepares them to thrive in a
global market. These are the skills for which employers will be searching.

Code for Teens is the perfect tool to help children and young teenagers learn
JavaScript, the most commonly used programming language in software
engineering. This book is entertaining and keeps the reader engaged. The text
is well organized and has a great balance of directed practice and independent
exploration with easy-to-follow exercises. Furthermore, Christine's amazing
drawings are eye-catching and clever!

Foreword
By Sarah Phelps, Computer Science Educator

3

But, most important of all, the book empowers children to teach themselves,
which is actually something I believe to be missing from much of the education
our children receive. Educators are often telling kids to wait—as though they
could not possibly understand something so impressive without the help of a
“smart” adult. This book proves to them that they can do just that—move at
their own pace and figure things out on their own.

The chapter quizzes provide a check-in for kids to test their knowledge. And don’t
worry: all the answers are in the back if, like me, you wouldn’t know where to
begin in helping. That being said, why not work alongside your child? As I was
reviewing the text, I couldn’t help opening up my own tab and trying it out myself.

Code for Teens is an excellent resource for any classroom, homeschool library, or a
gift for that inquisitive youngster who is ready to take on a new challenge. What
a remarkable feeling to discover one’s ability to change the world! I cannot wait
to share this book with the students I teach, and even more so with my own
children, who I hope continue to develop and maintain a positive “learnitude”
(as Jeremy calls it) throughout their lives!

4

Introduction

Why Learn to Code?
Starting with Chapter 1, every page of this book is in here with the goal of
teaching you how to read and write computer code. Hundreds of pages and
drills and dozens of projects and games are dedicated to this purpose. Before
you get much further, this might be a great time to ask yourself an important
question: Why should I even learn to code?

Well the long answer probably involves something about coding—also called
"software engineering"—being one of the fastest growing industries in the
world. There ought to be some comparison about this being a modern-day
equivalent to the value of learning a skilled trade in past generations. Perhaps it
should be mentioned that programmers are in extremely high demand, and this
leads to excellent pay, comfortable work environments, flexible hours, greater job
satisfaction, long-term career security, blah, blah, blah...

But really...the answer is simple:

Superpowers.

Harry Potter was whisked away to Hogwarts to hone his wizardry skills. Gifted
youngsters attended Professor X's school to master their mutant abilities. And
you, dear reader, will take control of the most valuable superpower in the
natural world: programmable code.

Have you ever had a great idea about what some company or person should invent
someday? Have you ever been asked to do some boring, repetitive task that you
knew would take a loooong time and you wished there were some machine that
could just do all that work for you? Have you seen the way some game works and
thought, "Yeah, it's good, but it would sure be a lot better if only…"?

When good ideas like these occur, most poor muggles have no choice but to just
sigh and let them float away. Such mysterious things are not for mere mortals,
right? Well, by the end of this book, you will come to learn that you are more
powerful than you know. You are designed with a remarkable brain capable of
harnessing the great superpower of talking to machines and making them obey
your commands.

5

By learning to code, you will open up a
world of possibilities. You will be able
to take the magical ideas in your head
and turn some of them—the best ones—
into reality.

Where to Start?
Once you've decided to learn how to program, you will
soon find that you have a whole heapin' ton of options in
front of you.

Learning to code is kinda like learning a new language. If you
wanted to learn how to speak a second language, you might first ask
yourself which language would be the most useful. Do your grandparents speak
Chinese? Do you have an aunt from Japan or close friends who speak French in
their home? Any of these factors might give you good insight on which language
you'd most like to learn. But if you live in the U.S.A., you might choose to learn
Spanish for the simple reason that it is much more commonly used than all other
languages in the country combined (except English of course).

In a similar way to spoken languages, there are dozens of marvelous
programming languages that you can learn—including Java, Python, C#, PHP,
Go, C++ and more—but there is one programming language that definitely
tops the list:

JavaScript!

JavaScript is the most common programming language of them all and is used
in over 90% of all websites! JavaScript makes websites move and respond to
what a user touches and types. And it's also a useful tool for games and mobile
apps! With more and more businesses going online and people browsing on
their phones, JavaScript is becoming more valuable every year.

So can you guess which programming language you will learn in this book?!

Wow! You guessed it! JavaScript!! (Gosh, you're good…I think I'll need to make
the questions harder next time...)

6

Maximatize Your Learnitude and Funhavingness!
When I wrote that header, I honestly thought I was making up the word
"learnitude"... turns out it's a real word! It means "the attitude of learning". That
actually works well, doesn't it? And I just learned something new myself. Awesome!

Anyway, where was I going with this?...Oh yeah!

This book is designed for you to teach yourself how to code without your parents'
or teachers' help. Because let's face it: most of them probably don't know anything
about how to code anyway. And if they do, they're probably so busy saving the
world with their superpowers that they don't have time to walk you through
everything step-by-step.

Well fear not, dear reader! This book moves at YOUR pace. Every chapter
includes a review section and lots of drills. If you don't understand something right
away, you should be able to get it by the end of the chapter review, and the coding
drills will help it stay planted firmly in your brain for the future. For some readers,
this book may contain more review and more drills than you need. If that's you,
then I recommend you still glance over each of them and be sure you can mentally
figure out the answer even if you don't write it down. Be honest with yourself
about what will help you the best.

Try typing the code along with the book and sometimes try making small changes
to see if the code functions a little differently.

The concepts you'll learn in this book build on each
other, so do your best to really understand each
topic before moving to later chapters. There's also
a glossary in the back if you see a word and you've

forgotten what it means (that's just brain hiccups—
happens to all of us).

Another piece of good news: if you are ever stuck on
a problem, ALL of the answers are in the back of the

book. It's like having the Teacher's Guide built right
in! Though you should know that sometimes there

could be more than one right answer. Definitely
try to understand how to do it the way the book
teaches, but don't sweat it if your version is a
little different and still works.

7

Lastly, programming should be fun! Maybe not all the time, but overall, it
should feel a lot like solving puzzles or working through a thinking game. Don't
get too down on yourself if you're struggling through a concept. Try your
best to figure it out, but don't stall on something if you feel you're not making
progress. Check the answers in the back, then just move on and come back to
the topic later. It's all part of the adventure.

Now let's remove the gloves and learn to use your special new abilities!

8

A Word for
Parents

Top Secret: No Kids Allowed!
The next couple pages contain a message to the parents! Kids, if you see this
confidential, highly classified, top secret, Level 5 clearance section, now is the
time to fulfill your contractual obligation to hand the book to your folks…and
get it back two pages later.

Parents, if you made the brilliant decision to buy this book for your child or
teenager, I'm going to assume you probably have some understanding of how
beneficial it is for him/her to learn how to code. Software engineering (a.k.a.
"coding") is one of the most in-demand, high-paying careers in the world right
now, and it's becoming even more valuable every year. By learning to code, your
child is developing his/her mind in practical ways, and taking an important step
toward building skills that could remain relevant throughout his/her adult life.

But knowing something is valuable and actually knowing what to do about it are
two very different things! Maybe you've never written a line of code in your life.
Maybe you don't know a computer monitor from a hall monitor or a browser
from a Schnauzer!

On the other hand, maybe you're an engineering professional, and you want
your kids to enjoy the same career freedom and security that you experience
every day. But who has the time and patience and know-how to teach what
you've learned? Teaching certainly requires a different set of skills than simply
knowing how to do the work.

Either way, this book is for YOU…to give to your kids and make them read it.

When I set out to write this book, my goal was to create a text that children and
teenagers (really, anyone with at least a 6th grade reading level) could use to
teach themselves to code without requiring input from knowledgeable parents or
teachers.

As an involved, homeschooling father of six, I have gained much practical
insight into how children learn. From my experience, it is very difficult to
find teaching materials that will teach a real multi-purpose coding language
consistently at a child's pace. My own children have often showed me the work

9

they've done from other resources without being able to explain their own code,
much less build any of it from scratch without copying from a book. The desire
to correct this for my own kids was the initial inspiration for this book.

When learning to code, children tend to benefit from more repetition, review,
and drilling than adults need. They often require less lecturing and more hands-
on work intermixed within the lessons. Knowledge and skills may be quickly
forgotten if not coupled with frequent opportunities to use them in practical
lessons and activities.

I think you'll find that this book is well suited to the pace at which your child or
teen learns naturally. Beyond that, it is filled with colorful, original illustrations
(designed by my talented wife Christine) and infused with humor—okay…"Dad
jokes"—on almost every page to help encourage the reader's attention and
enjoyment.

Now, even though the book is intended to make it possible for children to
learn without any help, I must acknowledge that it will be even better if
you, the parent who loves them, are available to provide a small degree of
accountability. I want to emphasize something strongly though: you do NOT
need to know ANYTHING about coding! Early in the training, your child will
be expected to create and save a document (we call it the "Workbook") to keep
his/her own answers to the quizzes and drills. All of the correct answers are
in the back of the book, so it's possible for the child to check his/her own work
without help.

However—and this may alarm you—sometimes when kids are given the
opportunity to check all their own work with no oversight, they don't follow

10

through to actually doing all of the assigned work. Hopefully, you were sitting
down when you read that. ;-) Seriously though, if you are checking your child's
answers against the key, this additional accountability will likely help him/her to
take the work more seriously and be more diligent about completing it all.

Another thing that will provide a huge benefit to your child's learning process:
ask to see his/her work. You don't have to even try to understand it; just
let your child explain it to you. And when you see the work, show a little
enthusiasm! You don't need to know one thing about coding in order to feign
some excitement about it.

Last thing: Please read the short Introduction that precedes this section. You will
get a clearer picture of the nature of this book and how your child may get the
most out of it.

I'm excited that your child or teenager has taken this huge first step in learning
the extremely useful and relevant skill of coding. I hope you find this book to be
a valuable resource to start the journey!

11

13

Are you ready to write your first line of code? We just need to
assemble a few materials, and we'll get right to it. Let's do this!

Computer, Browser, and Console
The first thing you'll need is a computer—either a desktop, laptop, or Chromebook (NOT a
smartphone or tablet!). If you don't have a computer with you, you can use one at the library
or something. Or ask a friend. Or build one out of pipe cleaners, redstone, and hardened
mash potatoes (...not recommended).

Your computer runs on an operating system: Windows (for PCs), MacOS (for Macs),
ChromeOS (for Chromebooks), or Linux (for nerds). You should know which of these
operating systems your computer uses.

Secondly, you'll need to have Google Chrome on this computer. Chrome is an internet
browser—a program that people use to go to websites. You might already have this installed
on your computer. The icon looks like a Poké Ball with four different colors.

By the way, did you notice how some of these words are in bold? That is how I indicate that
this word is important and defined in the glossary at the back of the book. What's a glossary
you ask? It's like a dictionary that only has terms from this book. Check it out in the back of
the book now!

If you don't have Chrome on your computer, you can download it by opening up some other
internet browser (Firefox, Safari, Edge, or IE), doing a Google search for "Download Chrome,"
then just following the directions in the first result.

Okay, now that you have Chrome on your computer, open it up, click into the address bar,
type about:blank, and press ENTER (or RETURN if you're on a Mac). You should now see
a blank screen. Note: the specific keys to type are also in bold, but they are CAPITALIZED
too. These don't have definitions in the glossary...cuz they're just keys on your keyboard.

C
ha

pt
er

 1

1 HELLO
WORLD!

14

Now it's time to open the console! The console is part of Chrome's top-secret developer tools. Now
that you're becoming a JavaScript developer, you get to use it too! Simply hold down the CTRL and
SHIFT keys (or the COMMAND and OPTION keys if you're on a Mac) and press the J key. Note:
For future reference, key combinations like this one will be shown this way "CTRL+SHIFT+J (or
COMMAND+OPTION+J on a Mac)".

After you press those keys, you should see a new lower section of the screen that has an angle
bracket in the upper left part of it. If you don't see this area when you use the CTRL+SHIFT+J
(or COMMAND+OPTION+J on a Mac) shortcut, you may also get to it by right-clicking on
any empty area of the page and selecting "Inspect" from the dropdown menu, then selecting the
"Console" tab as shown in the illustration.

As a side note, if you move your cursor over the light gray bar until you get a double-arrow symbol,
you should be able to click and drag this box up to make it as large as possible. Definitely do this to
give yourself more room to type.

Now that you've expanded that box a bit, click right next to the angle bracket. You should get a
blinking cursor and be able to type some text. Here is your first line of code. Type this (including the
quotes) and pay special attention to the semicolon key ; (near the middle-right of your keyboard) as
this will be used many times at the end of code statements:

"Hello World!";

15

Then press ENTER (or RETURN on a Mac). You should see a response from the console with the
words "Hello World!" repeated back to you. Notice, by the way, that the code you are expected to
type is colored with blue text while the console responses are colored in red. This should make
it easier to see what to type into the console. You'll later see examples of code with black type; this
is just meant for you to read (not type yourself).

Now try this: press the UP_ARROW key on the keyboard. You can see the "Hello World"; text on
the line again. Move the cursor to the front of that line and change it so it reads:

var greeting = "Hello World!";

Then press ENTER (if you're on a Mac, just remember from now on that ENTER always refers to
the RETURN key). The response you should get back from the console is undefined. So far so good!
Now type:

greeting;

and press ENTER. If you have done everything right so far, the console should return with the
message "Hello World!". And now, my friends, you can forever say that you've written and executed
a teensy-tiny bit of JavaScript!

Follow the Leader
So…what’s the point? What did we even do? THIS is coding?! I mean, who even cares if—

Whoa! Slow down there! I’m glad you asked. Really, I am! Believe me, I’m itching to explain it all to
you soon, but first I’d like us to do a little trust exercise. Just follow along like a game of Simon Says
or Follow the Leader. Type everything I show here (only the blue text with gray highlights) into
the console. End each line by pressing the ENTER key, and make sure you’re getting the expected
responses. Type this:

5 + 8;
Console should respond with: 13

7 - 3 + 6;
Response: 10

Type (notice this one uses the * which is
the multiplied by symbol in coding):
var x = 3; 4 * x;

Response: 12

x + x;

Response: 6

16

Notice on that last one the value of x carried over from previous statements.
Now try this:
x = 200;

This is assigning a new value to x. Now press UP_ARROW two times until you see this again:
x + x;

After pressing ENTER, you’ll see that the response is now 400 because the value of x has changed.
Okay just a few more, then I’ll explain what these are about.

Type (notice this one uses the / which is the divided by symbol in coding):
x / 100;
Response: 2

(x - 50) / 5;
Response: 30

(x - 50) / (5 - 1);
Response: 37.5

"I hope I grow to be " + x + " years old!";

Response: "I hope I grow to be 200 years old!"

"Hmm... maybe " + (x / 2) + " is old enough.";

Response: "Hmm... maybe 100 is old enough."

How was that? Were there any of these lines that surprised you? I haven’t explained any of them
yet, but I’ll bet you picked up on a few things already, right?

Did you make any mistakes along the way? I hope so. JavaScript engineers make mistakes almost
every single day. A major part of being a good programmer is learning how to identify our
mistakes (called “bugs”) and fix them (i.e., squash them). We’ll talk more about that in this chapter
and future chapters too. But first, let’s talk about what each of the pieces of your JavaScript code
means and how each is interpreted (read) by the computer.

Syntax
JavaScript—like every other programming language—follows a strict syntax. Syntax is like
the spelling and grammar of the language. Computers are not as smart as people. They can’t
figure out the general idea of what you mean the way a person can. Instead, the computer can only
understand what you want to tell it if you type it in exactly the way that the computer expects to see
it. The expected form is called the syntax.

17

We’re about to type more stuff in the console, but do this one favor for me, real quick. Even if you
still have your browser open from before, I’d like to start over to make sure we can easily get back
to a screen like this again. So close down Chrome, then open it up again. Type in the address bar
about:blank again, then use CONTROL+SHIFT+J (COMMAND+OPTION+J on a Mac) to open
the console (by the way, you should definitely memorize that keyboard shortcut; you’ll use it a lot!). The
console should be clear again and ready for you to type commands.

Here are some examples of proper JavaScript syntax. Type each of these blue text statements in the
console (be sure to type each line EXACTLY as written), and press ENTER after each one. Type:

var greetingFirstPart = "Hello";

Explanation: This is known as a JavaScript statement. Statements usually end with a semicolon
(;). The keyword var at the beginning tells the computer (well, technically, it’s not the computer, but
the browser’s JavaScript interpreter) that the next word greetingFirstPart will be a variable.
Then the equals sign (=) tells the computer (err… interpreter) that we are assigning the value of "Hello"
to the variable greetingFirstPart so it can be used later. Lots of big words in there, I know, but do
try to learn them as we will be using them over and over and over. If you forget what they mean,
remember that you can check the glossary in the back of the book for their definitions!

let greetingSecondPart = "World";

Console Response: undefined

Explanation: Another assignment statement. The keyword let does exactly the same thing as var.
Okay, there are very slight differences, but explaining it would be unnecessarily confusing at this
point, so don’t worry about it yet. Just know that we will use let most of the time in this book, but
you will still see var a lot in JavaScript code. In this assignment statement, we’re assigning a string
("World") to the new variable greetingSecondPart. The word "World" is known as a string because
it’s in quotes (we’ll talk more about this in the next chapter). You might have also noticed that
after you pressed ENTER, the console responded with undefined. That’s nothing to be concerned
about either. That simply means you have not told the JavaScript interpreter to RETURN (bring
back) anything yet. It’s like you told the interpreter “Write this down so we can use it later.” The
interpreter obeyed your command and is now patiently awaiting further instructions.

As a side note, if you find that you make a mistake while copying my code and you get unexpected
errors that you don't understand, simply refresh the Chrome browser window (look for a "looping
around" button near the top of the window) and try again. You'll learn other ways to deal with
mistakes later, but no need to worry about those just yet. Now type:

let singleSpace = " ";

Response: undefined

Explanation: Statement assigning a string (containing a single space between the quotes) to a new variable
called singleSpace. Notice also that assignments always have exactly one variable on the left side of the equals sign. For
example, let x = 2 + 2; is valid JavaScript, but 2 + 2 = let x; and 2 + 2 = x; are both not valid.

let fullGreeting = greetingFirstPart + singleSpace + greetingSecondPart;

Response: undefined

1818

Explanation: Yet another assignment statement. Did you notice, by the way, that the variable names—
greetingFirstPart, greetingSecondPart, singleSpace and fullGreeting—have a capital letter in each
of the inner words? And also no space between the inner words? That’s on purpose. Variable names
must never have a space in them. Also, they should ideally be in “camel case” (usually written as
camelCase), which means that they should start with a lowercase letter, and use a single capital letter
at the start of each word (or acronym) that is part of the variable. It’s called camelCase because the
capital letters in the middle of the word kinda look like the hump(s) on a camel’s back. If this confuses
you, keep reading. You’ll see so many examples of camelCase variables that it will look very natural to
you soon enough.

fullGreeting = fullGreeting + "!!";

Response: undefined

Explanation: In this assignment statement, we’re adding an extra string ("!!")
to the end of fullGreeting and then assigning that new, longer string to the
same variable called fullGreeting. Did you notice we’re not using the
keyword let? Why not? Because let indicates that we’re creating (also
called declaring) a new variable. In this case, we’re not creating
any new variables. The variable fullGreeting already exists
so we’re not going to use the let keyword anymore when we
reference it.

fullGreeting;

Response: "Hello World!!"

Explanation: Now that we’re not making another
assignment, the computer (d’oh! Interpreter!) actually had
something to RETURN (meaning, something to tell you)!
It’s like you ordered the interpreter, “Hey, go get the value
of that variable from before and RETURN it to me!” So the
response from the console was the actual value of the fullGreeting variable.

Simple Errors
Now that you know a bit of JavaScript syntax, let’s make some syntax mistakes! As a programmer,
syntax errors happen almost every day. The key is learning how to read the error messages you see,
so you can quickly find and fix the syntax problems in your code.

Okay now I’d like you to open a new tab in chrome. Press CONTROL+T (COMMAND+T on
a Mac). Type in the address bar about:blank again, then use the secret keyboard shortcut shared
earlier to open the console (go back and find it again if you forgot it—memorize it this time!). The
console should be clear again and ready for you to type commands. Type:

5 + ;

Response: Uncaught SyntaxError: Unexpected token ;

1919

Now that response looks downright bizarre, doesn’t it?
Uncaught SyntaxError? Unexpected token? Whaaaaa?!

But look again…a little more closely this time. Uncaught
SyntaxError just means there is something wrong with
the syntax. In other words, what you wrote isn’t actually
a valid line of JavaScript. The interpreter—oops, I mean
computer…No wait, interpreter IS what I meant! It’s a
JavaScript interpreter...Anyway, the interpreter can’t read it
and doesn’t know what to do with it. Unexpected token
; means that the interpreter read something it didn’t
expect: in this case it was the semicolon (;).

So as the JavaScript interpreter was reading your line
of code, it came to the semicolon, which signifies to the
interpreter that we’ve reached the end of the statement.
So the interpreter was all like, “That’s it?! 5 + ;? Huh?? 5 + WHAT?! That doesn’t make any sense!
That’s not a complete statement! I didn’t expect to see that ; here, and now I’m all confused!”

The more you learn JavaScript, the more you’ll come to appreciate these error messages.
They’re usually very helpful at pointing you to where you’ve made mistakes. Let’s try making a few
more mistakes. Type:

6 + 7);

Response: Uncaught SyntaxError: Unexpected token)

Explanation: You have a closing parenthesis “)” but no opening parenthesis! Parentheses (that’s the
plural form of parenthesis) always come in pairs. Also, they’re usually called “parens” (pronounced
“puh-RENZ”) by JavaScript engineers. So if you ever have an opening paren (“puh-REN”), you
need a closing paren too. And vice versa.

(1 + 2;)

Response: Uncaught SyntaxError: Unexpected token ;

Explanation: The semicolon ; tells the JavaScript interpreter that it reached the end of the line
BEFORE it got to the closing paren. That’s why the ; was an unexpected token. Get it?

3 + newVariable;

Response: Uncaught ReferenceError: newVariable is not defined

Explanation: Now this error is not a SyntaxError but rather a ReferenceError. Can you tell what the
problem is? Read the error message closely (that’s what it’s there for). It says: newVariable is not
defined. There’s your problem! You need to first declare the variable with something like this:

let newVariable = 24;

Response: undefined

Don’t be concerned about the undefined response from the console. That’s just because the console
doesn’t have anything to tell you right now. Next, press the UP_ARROW key two times until you

2020

get this statement again (then press ENTER to run the command):

3 + newVariable;

Response: 27

Explanation: Now that the variable is declared and defined (i.e., it actually means something), the
statement works just fine! What you did here is a simple example of debugging! You found an
error in your code (a “bug”), and you squashed/fixed it! Let’s squash one more bug, shall we?

let favoriteColor = "red";

Response: undefined // no problem yet (undefined just means “nothing to tell you”)

let favoriteColor = "blue";

Response: Uncaught SyntaxError: Identifier ‘favoriteColor’ has already been declared

Explanation: Can you figure out this problem by reading the error message? The problem in this case
is that we’re using the let keyword for a variable that has already been declared once. The first time we
used it, it was fine since favoriteColor was being declared for the first time. After that, we shouldn’t use
the let keyword again. The second statement will work just fine if we take it out, like so:

favoriteColor = "blue";
favoriteColor;

Response: "blue"

See how that works? By reading the error message and then trying the statement without the let
keyword, we changed the value of the variable (and possibly even changed your favorite color!) from
“red” to “blue”.

As you may have guessed, we’re only scratching the surface on the kinds of errors we will see when
programming, but the important takeaway is this: don’t be afraid of them. The error messages are your
friends. Read those things! If you have trouble understanding them, try copying the error message
and pasting it into a Google search. They will help you to quickly identify what you’re doing wrong
and fix it easily.

Follow Along: Average
Meal Price Calculator
This is the first of the “Follow Along”
projects you’ll do in this book. These
projects start off simple and will grow in
complexity (and fun!) as you learn more
about how to code.

Before going any further, please either close
down Chrome and open it up again or just
open a new tab and navigate to the all-blank

212121

screen like you did before (this might seem like a pointless interruption, but the frequent repetition
will help you remember all the steps tomorrow). Then open the console so it’s ready when you want
to type in your code.

Alright, with that out of the way, let’s check out our first assignment!

We need to calculate the average price for a combo meal at Freckly Fred’s Franks & Fries franchise
(because ya know…we just need to, okay?!). Here’s what we know:

Full Combo Menu:

Combo A - “Alpha Dog” (Hot Dog, Medium Fries, and a Drink) costs $6.75
Combo B - “Big Dog” (Hot Dog, Large Fries, and two Drinks) costs $7.50
Combo C - “Canine” (Hot Dog, 2 Small Fries, and a Dipping Sauce) costs $5.75
Combo D - “Double Dog” (Hot Dog, Large Fries, and a Smaller Hot Dog) costs $8

Now let’s do this together and we’ll show our work in the process. To start with, let’s define what we
want and what we don’t want: do we care about the special combo names? Nope! Does it matter
to us what’s in each combo meal? Not really (though I personally think Combo C could maybe use
an extra Dipping Sauce, but that’s just me). So it looks like all we care about for this project is price.
We’re looking for the AVERAGE price of all these meals.

To get the average of any set of numbers, we must add the numbers together (to get the sum), then
divide their sum by the number of items in the collection. For example, to get the average value of
the two numbers 3 and 5, we would add them together to get the sum (8), then divide that sum by
how many numbers there are (2 different numbers), giving us the average value of 4. In plain math,
it would be: (5 + 3) / 2 = 4.

For the first code that we’ll type, let’s assign each of the values to a variable,
which is almost always a good practice in JavaScript.

let comboAPrice = 6.75;
let comboBPrice = 7.5;
let comboCPrice = 5.75;
let comboDPrice = 8;

Now we have of all the prices individually for each combo.
What’s next? We need to add them together!

let sumOfComboPrices = comboAPrice + comboBPrice +
comboCPrice + comboDPrice;

Then divide that sum by the total number (the count) of
combos that there are to get the average (remember that /
means divided by)!

let numberOfCombos = 4;
let averagePrice = sumOfComboPrices / numberOfCombos;

Finally, let’s print out the value to the console!

averagePrice;

Response: 7

2222

So the average price for a combo meal at Freckly Fred’s is $7.00! Great to know! Our boss will be so
proud of us when we tell her tha—

Hey wait! This just in! It turns out Freckly Fred’s has added a new combo!

Combo E - “E. Coli Dog” (2 Uncooked Hot Dogs, Small Fries and a Mystery Prize) costs $8.25

So let’s make just a couple quick changes, and we’ll get the new average:

let comboEPrice = 8.25;
sumOfComboPrices = sumOfComboPrices + comboEPrice;

Notice that we did NOT use let in the second assignment statement. That’s because
sumOfComboPrices has already been declared! We can’t declare it a second time or we’ll get an error.
Instead, we’ll change the existing value to be the sum that it was before PLUS the price of the new
combo.

And let’s update the number of combos too (notice, we are NOT using the let keyword because
we’re changing this existing variable, not declaring a new variable, remember?):

numberOfCombos = 5;

Now press UP_ARROW as many times as you need to until you see this line in the console again
(don’t press ENTER yet though!):

let averagePrice = sumOfComboPrices / numberOfCombos;

Now move your cursor to the front of the line (far left side) and delete the let keyword (since the
variable already exists), so it should look like this (NOW you can press ENTER):

averagePrice = sumOfComboPrices / numberOfCombos;

Okay, now that we’ve made those changes, let’s print out the new value!

averagePrice;

Response: 7.25

Hooray! We have the final value, and now we know the NEW average price of a combo meal at
Freckly Fred’s Franks & Fries!

I hope you were able to follow along well with that little project. If not, I recommend you open a
new tab in Chrome, open the console, and try the project one more time before moving on.

CHAPTER 1: QUIZ

Each chapter in this Section has a little quiz at the end. I recommend you take this whole quiz
without looking back for any of the answers. This is meant to help you determine how well you
retained the key concepts of this chapter.

2323

Now pay special attention to this part: all of your answers need
to be typed out and saved in a document you can use again and
again. There are many ways to do this. If you or your parents
have a Google account—or if you’re willing to sign up for one
(they’re free)—I recommend opening a new tab in Chrome and
going to http://docs.google.com to create a new document
to keep all your quiz answers and review. This is something
your parents will probably know how to do if you’re unsure.
If you don’t have a Google account, you can use any
word processor such as Microsoft Word, iWork Pages,
or OpenOffice. If you prefer, you could even do this in
a basic text editor like Notepad or TextEdit. But you
should type out all of your answers to the Chapter
Quizzes, Reviews, and Do It Yourself (DIY) Projects
(and most of the Drills too). I’ll refer to this document

as your “Workbook.”

One important hint: Remove the “smart quotes” option!

If you are creating the Workbook in Google docs: go to the “Tools” menu (at the top of the page),
then click “Preferences…”, then UNCHECK the boxes for “Automatically capitalize words” and
“Use smart quotes.”

If you’re using Microsoft Word, OpenOffice, or Pages for your Workbook, you’ll need to remove
smart quotes a different way. Just do a Google search for “Turn off smart quotes in <name_of_
your_program_here>” and follow the directions.

Trust me on this one. Get a parent to help you if you need, but don’t skip this step. Your code will
give you unexpected errors in later chapters if you don’t do this!

There’s one more thing I want you to keep in mind: all of the answers are in the back of the
book. After you finish the quiz, you must check your answers to see if you missed anything. Even
if you’re pretty sure you got them all right, check them anyway. There are some questions that
are intentionally tricky (so you need to check to be sure). If you’re able to get a parent or another
person to check your answers, that’s even better!

Okay, I’ll stop talking now. It’s quiz time!

2424

1.	 What URL address should you go to in order to get a completely empty page in Chrome?

2.	 What is the shortcut key combination to open the Chrome console?

3.	 What are the two keywords we’ve shown that may be used to declare a new variable?

4.	 What single character is usually found at the end of a statement?

5.	 What character means divided by when writing code?

6.	 What is the shortened form of the word “parenthesis”?

7.	 What kind of error would you get if you tried to run this statement?
let sum = (9 + ; 3)

8.	 What kind of capitalization (i.e., casing) should you use with variable names in JavaScript?

9.	 Whenever you have an opening _____________________, you always need to also have a
closing ______________________.

10.	 Is this valid JavaScript syntax? If not, why not?
let myMood = "Curious about JavaScript";
let myMood = "Excited to use my new superpowers";
myMood;

11.	 What does a single equals sign imply in a statement?

CHAPTER 1: KEY CONCEPTS

Each chapter in this Section has this little breakdown of the key concepts. This is just meant to
reference a few simple ideas from the chapter (in roughly the order they were introduced). Glance
over this list and if there’s anything you don’t think you fully understand, look back in the chapter to
review it so you can be sure you’re ready to move on.
Okay now, here are the takeaways from this chapter:

•	 Required materials
•	 Opening blank page in new browser window or

tab in Chrome
•	 Using the console in Chrome
•	 Variables
•	 Simple math operations
•	 JavaScript syntax
•	 camelCase
•	 Error messages

2525

CHAPTER 1: DRILLS

Whenever you get to a Drills section, you should type each line in the console. Don’t hesitate to look
in the back of the book if you’d like any help. Even if you already know how to do this, the drills
will help you to continually remember these concepts going forward.

A. Try typing these valid code snippets in the console.
1.	 let myFaveTopping = "pepperoni";

let my2ndFaveTopping = "sausage";
let ultimatePizza = myFaveTopping + " and " + my2ndFaveTopping;
ultimatePizza;

2.	 var sumTotal = 6 + 7 + 8;
sumTotal;

3.	 (8 * 3) / 6;

4.	 var myBrotherAge = 11;
var mySisterAge = 13;
var numberOfSiblings = 2;
var mySiblingsAverageAge = (myBrotherAge + mySisterAge) / numberOfSiblings;
mySiblingsAverageAge;

5.	 let coolMathValue = 5;
let coolMathAnswer = (20 / coolMathValue) + ((8 * coolMathValue) / (6 - 2));
coolMathAnswer;

6.	 6 + “ Foot " + 7 + " Foot";

7.	 "Working " + 9 + " to " + 5;

8.	 7 + "3"; // this one may surprise you!

9.	 12 / 0; // this one may surprise you too!

B. What’s wrong with each of these code snippets?

In this section, you’re expected to determine what’s wrong with each line. You will need to open
your Workbook (the document you created yourself to store your answers) and write what you think
is wrong with each line. Then check your answers with the back of the book (don’t skip this step!).
Hint: if you’re not sure what’s wrong with it, try typing some of these in the console to see if your
good friends The Error Messages might show up to help!

1.	 myUndeclaredVariable = 5;

2.	 let famousQuote = "I like turtles;

3.	 5 + 3 = x;

2626

4.	 (4 * 7;)

5.	 var somethingsBroken = 2 + (9 / (1 + 2);

6.	 let somethingElseIsBroken = 4 + (5 - 2));

7.	 12 + x = 15;

8.	 let shouldntWeHaveASemicolon = "Yes we should"

9.	 let notreallycamelcase = "Hard to read variable name";

10.	 var ISTHISANYBETTER = "No, not really";

11.	 let how_about_this = "Easier to read, but still not following convention";

12.	 let IsThisCloseEnough = "So close, but not quite";

13.	 let surely-this-counts-right = "Are you kidding? Those are minus signs!";

14.	 let okayHowAboutThis = Good!

Note: Be sure to read the Chapter 1 Drills Answers in the back of the book for some fun bonus info
about the different casing examples in those snippets you just saw!

Do-It-Yourself (DIY): Average Age of Your Family
At the end of every chapter in the section, there is a special “Do It Yourself ” project (also called
a “DIY project”) that utilizes concepts we’ve learned in the current chapter (and any previous
chapters). You’re welcome to do this project in the console. When you’re done with it, highlight your
code, copy it by pressing CONTROL+C (or COMMAND+C on a Mac), and then paste it into your
Workbook by pressing CONTROL+V (or COMMAND+V on a Mac). Then compare your solution
with the one at the end of the book. Ideally, you should do this after you’re done, but it’s okay to
check it before you’re done if you’re struggling.

This DIY project is similar to the Follow Along project we did earlier. Here’s your mission:

Determine the average age of all of the members in your immediate family (mom, dad, siblings,
and you).

Close, then open Chrome, navigate to blank page, open the JavaScript console, and type all of your
code in the console. Be sure to use variables (ideally with descriptive names like ageOfBabyBrother)
for every number value.

If you ever get stuck trying to figure out any DIY project, consult the “Do It Yourself (DIY)
Recommended Solution” in the back of the book.

2727

29

C
ha

pt
er

 2

No matter what coding language you learn, you’ll need to know a little something
about data types. Every variable you set will have a certain data type to it, and the
ability to identify it is a valuable part of coding. This will help you to avoid coding

errors or to find and fix errors more quickly.

2 TIME TO
OPERATE

Numbers
Okay, let's start with an easy data type: numbers!

Numbers can be positive or negative (or 0 which is neither positive nor negative). They
can have decimals or not, but numbers are never shown with quotes. Here are a few simple
examples of numbers in JavaScript (don't forget to type blue text into the console! Check out
the beginning of Chapter 1 if you've forgotten how to open up the Chrome console):

4
282038273
-38
51.9
0
-0.000087

Super simple, right? Let's move on!

Operations with Numbers
Common Operations

Doctor! These numbers! They won't make it on their own like this much longer. We need to
OPERATE!

In Chapter 1, we played around a bit with these cool things called operators. We now get

30

to bring them back and introduce a few new ones! Here's a quick review of operators:

Plus sign (+) is for adding: 4 + 4;
Response: 8

Minus sign (-) is for subtracting: 7 - 6;
Response: 1

Asterisk (*) is for multiplying: 3 * 4;
Response: 12

Forward slash (/) is for dividing: 15 / 5;
Response: 3

When we put them together in coding, we use parens—(and)—to separate out each segment and
make things more readable. Type these statements in the console. Each one should give you a
single-digit number as the response:

3 * (2 + 1);
(3 + 9) / (10 - 6);
(2 + (3 * 4)) / (6 + 1);
(2 * (5 - (8 / 2))) * (3 + 1);

Okay, so there was your review of some basic math in the console. Hopefully you already know that
much easily because next we introduce a few new operators…

Augmented Assignments (Plus Equals, Minus Equals, etc.)

You've already seen mathematical operators used with assignment to a variable like this:

let sum = 5 + 2;	 // value of sum is 7

And you probably recalled that you could alter the value of an existing variable (as long as you don't
try to reuse the let keyword) like this:

sum = sum + 3;	 // value of sum is 10 now

But now you get to learn another handy little trick. You can use += (pronounced "plus equals") as a
shorthand way of making a variable add to itself ! This is known as an augmented assignment
because it first performs an operation on the variable (that's the "augment" part) and then assigns the
new value to that same variable. Here are some examples (be sure to type all of these):

let value = 5;

value += 2;	 // value is now 7 (this is the same as value = value + 2;)
value += 3;	 // value is now 10 (this is the same as value = value + 3;)
value = value + value;	 // 20 (though we could've just written value += value;)
value += value;	 // 40 (this is the same as value = value + value;)

As you may have guessed, this also works with the other math operators too!

31

value -= 25;	 // value is now 15 (same as typing value = value - 25;)
value *= 2;	 // value is now 30 (same as value = value * 2;)
value /= 3;	 // value is now 10 (same as value = value / 3;)
value;	 // Response: 10

Here are just a few more examples to work through. For each
line, try to guess the answer before you test it in the console:

let answer = 0;
answer += 2;
answer *= 30;
answer -= 12;
answer /= 6;
answer *= 7 - 5;
answer += answer;
answer;
answer /= 4;
answer -= answer;
answer;

Hopefully that was pretty intuitive (meaning, the responses were
what you expected). If you're still struggling with this concept,
try doing this section again. If you still don't understand it, just move on. There will be plenty of
review to help you get it soon enough.

Increment and Decrement Operators (Plus Plus or Minus Minus)

There are two more handy little shortcuts I'd like you to know. The increment operator
is a shortcut for taking a number and adding the number 1 to it (sometimes known as
"incrementing"). It looks like this (type in your console):

let counter = 0;
counter++;	 // add 1 (using the increment operator)

And the decrement operator is kind of like the opposite. It's a shortcut for taking a number and
subtracting the number 1 from it (a.k.a. "decrementing"). It looks like this:

counter--;	 // subtract 1 (using the decrement operator)
So just to make this concept a little clearer, here are three built-in ways to do the exact same addition
operation (in such cases, it's generally preferred to use the increment operator):

counter = counter + 1;
counter += 1;
counter++;	 // increment operator (preferred way)

And here are three built-in ways to do the exact same subtraction operation (in such cases, it's
generally preferred to use the decrement operator):

counter = counter - 1;
counter -= 1;
counter--;	 // decrement operator (preferred way)

32

The Modulo Operation

Ready for the hard one now? Okay.

Percent sign (%) is for modding: 9 % 2;
Response: 1

Ever seen that one before? It looks weird to most people at first, but it actually makes good sense
and is useful in coding! When used for programming, that percent sign (%)—which is made by
typing SHIFT+5 on your keyboard—is called modulo (or just mod), and we use it to get the
modulus (remainder) of an integer division problem! Got it?

What do you mean you're "Even more confused than before"?! Hmm…okay let me start over with
a different explanation...

In school, when you first learned how to divide, your teacher probably gave you division problems
that worked out evenly with no remainders, decimals, or fractions. You probably learned things like:

9 / 3 = 3
10 / 2 = 5
8 / 4 = 2

All of these problems are easy to divide. But what if the
numbers don't work out perfectly? Like this one:

5 / 2 = ?

You might say "5 divided by 2? That's easy! The answer
is 2.5 (two-and-a-half)!" Well, that is one way to answer
it. But what if decimals or fractions are not an option?

For instance, what if you have 5 people and they're
trying to share 2 cars? 2 people fit into each car, but
there's 1 person left over (a remainder of 1). You're
not just going to cut that person in half (at least…I hope
you're not!)!

This is an example of something called "Integer
Division" (or if you're Fancy Nancy, you might prefer to call it "Euclidean Division"). In integer
division, you don't make fractions or decimals (integers never have decimal points). You just see
how many times one number will evenly divide into another number and round down to the nearest
whole integer (number). Anything leftover is known as the remainder. So in math class, when you're
learning integer division you might have problems like this:

3 / 2 = 1 r1 // in math terms, this is "3 divided by 2 equals 1 with a remainder of 1"
4 / 2 = 2 r0 // in math terms: "4 divided by 2 equals 2 with a remainder of 0"
5 / 2 = 2 r1 // "5 divided by 2 = 2 with a remainder of 1"
6 / 2 = 3 r0 // "6 divided by 2 = 3 with a remainder of 0"
7 / 2 = 3 r1 // "7 divided by 2 = 3 with a remainder of 1"

33

8 / 2 = 4 r0 // "8 divided by 2 = 4 with a remainder of 0"

Did you follow the logic there? That's how basic integer division works with remainders (instead of
fractions). Now, when using modulo (%), you're only concerned with the remainder. Modulo does the
same basic integer division problem, then ignores the main result and only gives you what's left over
(the remainder).

Now let's do the same "basic math" problems we just did only let's use modulo to get the
remainder. Type these in the console (only type the part in blue):

3 % 2;

Response: 1 // "3 / 2 = 1 (this part is ignored) with a remainder of 1 (this part is returned)"

4 % 2; // Response: 0 // "4 divided by 2 = 2 (ignored) with a remainder of 0 (returned)"
5 % 2; // 1 // "5 divided by 2 = 2 with a remainder of 1"
6 % 2; // 0 // "6 divided by 2 = 3 with a remainder of 0"
7 % 2; // 1 // "7 divided by 2 = 3 with a remainder of 1"
8 % 2; // 0 // "8 divided by 2 = 4 with a remainder of 0"
9 % 2; // 1 // "9 divided by 2 = 4 with a remainder of 1"

Do you see how it works? Modulo gives the remainder and nothing else. Let's try some more
together. Type:

6 % 3;

Response: 0

Is that what you expected? 6 divided by 3 equals 2, right? Well how much is left over to be the
remainder? Nothing! 6 is divided evenly by 3 (no remainder), so the modulus is 0.

7 % 4;

Response: 3

Explanation: 7 divided by 4 (using integer division) = 1 with a remainder of 3.

4 % 5;

Response: 4

Explanation: 4 divided by 5 (using integer division) = 0 (because "5 goes into 4 zero times"). This
leaves us with a remainder of 4 (the amount left over after the failed attempt to divide 4).

15 % 2;

Response: 1

Explanation: 15 divided by 2 = 7 (ignored) with a remainder of 1. So the modulus is 1.

Now for these, I'd like you to type each statement in the console, try to guess what the result will

34

be—before you press the ENTER key—then press ENTER to see if you're correct:

3 % 3; // Response: 0
4 % 3; // Response: 1
5 % 3; // 2
6 % 3; // 0
7 % 3; // 1
8 % 3; // 2
9 % 3;

10 % 3;

11 % 3;

12 % 3;

13 % 3;

14 % 3;

15 % 3;

16 % 3;

17 % 3;

18 % 3;

Did you pick up on any pattern? 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2… That's no coincidence. That
pattern would continue even if you tried thousands of x % 3; statements. Similar behavior happens
with all modulus statements actually.

For instance, if you were doing a bunch of modulo 2 operations (x % 2; like we did earlier), the
responses would go like this:

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, …

If you're doing modulo 4 operations (x % 4;), the responses would go like this:

0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, …

If you're doing modulo 5 operations (x % 5), the responses would go like this:

0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, …

So in each modulo operation, you will get a number that is less than the divisor (the 2nd number in
the modulus equation).

One last thing: remember how the modulo 2 pattern goes like 0, 1, 0, 1, 0, 1…? Well, because of
this predictable pattern, modulo 2 is a fantastic way to find out if a number is even or odd! Any
number that returns a value of 0 after modding by 2 is an even number, and any number that
returns a value of 1 is an odd number! For instance:

8 % 2;		 //	 0: so 8 is an even number!
17 % 2;	 //	 1: so 17 is an odd number!
101 % 2;	 //	 1: so 101 is an odd number!
5590 % 2;	 //	 0: so 5590 is an even number!

35

41703 % 2;	 //	 1 : odd number!
826834 % 2;	 //	 0 : even number!

Thanks for sticking with me for that full explanation. It's not an easy concept to explain (my kids
tell me this may be the most confusing section in the whole book), but hopefully you understand
it now. If not, try this section one more time, and if it's still confusing, then keep moving on and
maybe you'll figure it out after we use it for a project!

Follow Along: Picking Teams in Dodgeball
If there's one thing to which developers have given a lot of thought, it's how to avoid the humiliation
of being the last kid picked in a game of dodgeball. So today, we're going to do that together. We'll
devise a simple, fair way to divide a group of students into even teams.

But first, open a new tab in Chrome, navigate to the all-blank screen and open the console—you
should be able to do this in your sleep by now!

Okay then, here's what we know about this game of dodgeball:

•	 The gym class has 12 kids in it.
•	 Each kid has a unique Student Identification Number (Student ID), which is an integer

between 1 and 12.
•	 This dodgeball game must contain THREE teams (yeah I know; just go with it) of equal size.
•	 We must assign each kid to a team based on his Student ID—NOT based on dodgeball skills

(or lack thereof)!
•	 We should use a single statement to tell any kid what team he is on.

So how do we go about this? Well, to begin with, let's name the teams! The whole class took a vote,
and the most popular team names were: "Team 1", "Team 2", and "Team 0"! (Did I mention this is
not a very imaginative class?)

Next, let's assign a variable in the console for the number of teams:
let numberOfTeams = 3;

And another variable to represent the Student ID for the first student Andrea:
let studentId = 1;

BTW, did you notice that the variable studentId has a lowercase D? Why isn't the D in uppercase
like studentID? Well, ID is an acronym—shortened words that are usually made from taking the
starting letters of other words…like LOL (laugh out loud) or BTW (by the way) or my personal
favorite TL;DR (which doesn't apply in the case of this book). The "I" in ID is short for "i" and
the "D" is short for "dentification." Anyway, ID is an acronym, and acronyms are most readable in
camelCase when they're capitalized the same way as any other normal word. You'll see more like
this in the future.

36

Now for something cool! Remember modulo? Maybe you thought we'd never find a good use for
him. Turns out we need him again in the very same chapter! What are the odds?!

This simple one-liner of code will tell our student exactly which team she is on.

studentId % numberOfTeams;

Response: 1

Team 1! Okay, so far so good. Here comes another student. This student, Terrell, says his
Student ID is 2. For the above line of code to work, we'll need to update the studentId and run it
again. Remember, since we're changing the studentId variable (not creating a new one), we need to
NOT have that let keyword.

studentId = 2;

Now that we've changed the studentId, we can press the UP_ARROW on the keyboard two times to
bring back the same line of code from before and run it:

studentId % numberOfTeams;

Response: 2

Team 2! Now here comes Terrell's best friend Suresh (Student ID of 12). He's hoping to be on the
same team as Terrell. We tell him that we don't play favorites, and we don't accept bribes (he didn't
bring any candy anyway). We will simply let our program determine the teams. Let's see if we
can change the studentId and then run the modulo statement in one line! We can do this because
there's a semicolon (;) in between the two statements:

studentId = 12; studentId % numberOfTeams;

Response: 0

Team 0! Well, Terrell and Suresh don't get to be on the same team, but at least our teams are even
so far. Let's assign teams for the rest of the kids in the class. For each of these statements, press the
UP_ARROW on the keyboard, then change the studentId input and press ENTER to execute the
statement:

studentId = 3; studentId % numberOfTeams;	 //	 0

studentId = 4; studentId % numberOfTeams;	 //	 1

studentId = 5; studentId % numberOfTeams;	 //	 2

studentId = 6; studentId % numberOfTeams;	 //	 0

studentId = 7; studentId % numberOfTeams;	 //	 1

studentId = 8; studentId % numberOfTeams;	 //	 2

studentId = 9; studentId % numberOfTeams;	 //	 0

studentId = 10; studentId % numberOfTeams;	 //	 1

studentId = 11; studentId % numberOfTeams;	 //	 2

Super! We've now used our program to appropriately assign all students to their respective teams,
and nobody's feelings were hurt! (At least…not before being hit in the face with a dodgeball.)

37

CHAPTER 2: QUIZ

As with any Chapter quiz, I recommend you take it
without looking back for any of the answers. Write your
answers down in your Workbook (see Ch. 1 Quiz for an
explanation of the Workbook). All of the correct answers
are in the back of the book. After you finish the quiz,
check your answers to see if you missed anything.

1.	 What does the + symbol mean when doing mathematical operations in JavaScript?

2.	 In JavaScript, what symbol is used for multiplication?

3.	 Which data type is this?
3456

4.	 What does the / symbol mean when doing mathematical operations in JavaScript?

5.	 What is the data type of the variable whatTypeAmI after running this statement?
let whatTypeAmI = 5;

6.	 What should be used to separate and group different math operations to improve readability
and ensure that your operations perform in the order in which you intended?

7.	 What special symbol could you use to simplify this assignment?
myVariable = myVariable * 2;

8.	 What symbol is used for modulo in JavaScript?

9.	 What is the simplest (i.e., shortest) way to write this (using a special symbol)? What is the
special symbol called?
myVariable = myVariable + 1;

10.	 What is the simplest (i.e., shortest) way to write this (using a special symbol)? What is the
special symbol called?
myVariable = myVariable - 1;

11.	 How would you change this statement to make it say "three times the sum of 4 plus 1" (Hint:
the response should be 15 when run in the console)?
3 * 4 + 1;

12.	 If you were writing a program to determine if a value was odd or even, what number would
you use after the modulo operator?

38

13.	 What special symbol could you use to simplify this assignment?
myValue = myValue - 8;

14.	 How many unique (i.e., different) values could you possibly get if you did a long series of integer
operations that all ended in "modulo 5" (example: 11 % 5; 12 % 5; 13 % 5; etc.)?

15.	 What is the collective name for the symbols that first perform an operation on a variable and
then assign the new value to that same variable (e.g. +=, -=, *=, and /=)?

16.	 Suppose you wanted to make a JavaScript program with hundreds of lights following a color
pattern of red, blue, green, red, blue, green, red, blue, green, etc. Which mathematical
operator might be most useful for you in your program?

CHAPTER 2: KEY CONCEPTS

As with the Key Concepts section of any chapters, glance over this list and if there's anything you
don't think you fully understand, look back in the chapter to review it before moving on. These are
roughly in the order they were introduced:

•	 Data Types
•	 Numbers
•	 Mathematical Operators
•	 Parens in mathematical operations
•	 Augmented Assignments
•	 Plus Equals
•	 Minus Equals
•	 Times Equals
•	 Divided by Equals
•	 Increment Operator (++)
•	 Decrement Operator (--)
•	 Modulo
•	 Operator Symbols
•	 Patterns in Modulo operations
•	 Finding even and odd

39

CHAPTER 2: DRILLS

Use these drills in whatever way will help you the most (I recommend putting the answers in your
Workbook). Feel free to try each of them in the console and don't hesitate to look in the back of
the book if you'd like any help. Even if you already know how to do this, the drills will help you to
continually remember these concepts going forward.

A. Try typing these valid code snippets in the console.
1.	 8 * (7 - 5);

2.	 15 / (6 - 4 + 1);

3.	 (7 + (3 * 1) - 2) / (3 - 1);

4.	 ((5 + 3) / (10 - 6)) * 3;

5.	 let sum = 6;
sum *= 5;
sum -= 10;
sum /= 4;
sum += sum * 3;
sum;

6.	 let coinsInMyPocket = 5;
coinsInMyPocket++;
coinsInMyPocket++;
coinsInMyPocket--;
coinsInMyPocket++;
coinsInMyPocket;

7.	 14 % 3;

8.	 (20 - 10) % (8 - 4);

9.	 4 * (500 % 5);

10.	 2018 % 100;

11.	 15 % (3 + 1);

12.	 let numberOfTeams = 4;
let studentIdToAssignToATeam = 17;
let teamNumber = studentIdToAssignToATeam % numberOfTeams;
teamNumber;

B. What's wrong with each of these code snippets?

Hint: type some of these in the console to see if any error messages show up to help!

1.	 let thisNumber % 2 = 0;

40

2.	 var 1 = 4 % 3;

3.	 let mySpecialValue = 5;
mySpecialValue = mySpecialValue += 6;

4.	 (4 + (3 * 1) % 2;

5.	 let myModValue == 5 % 5;

6.	 let thisModulus = modDividend % modDivisor;

7.	 let anotherModulus = 5 + 2) % 25;

8.	 6 +* 3;

9.	 5 % 25 = theFinalAnswer;

10.	 let greatNumber += 4;

11.	 let newerNumber = 5;
newerNumber * 3 += 6;

12.	 let notTechnicallyAnErrorButProbablyNotVeryUsefulInCoding = 5.25 % 4;

13.	 var ummmWhatAStrangeErrorMessage = 20 +/ 5;

CHAPTER 2: AGGREGATE REVIEW

This chapter introduces one more new concept that you will see in all future chapters: Aggregate
Review. "Aggregate" sorta means "all the separate pieces combined." These drills and questions
are like the Chapter Drills or Chapter Quizzes but instead of just reviewing this one chapter, drills/
questions in this section may include bits from anything you've learned up to this point.

In future chapters, these will be among the most valuable drills to make sure you haven't forgotten
any important concepts. Write down all of your answers in your Workbook. As with all drills and
questions, feel free to consult the answers at the back of the book!

1.	 What kind of casing is thisVariableWithSomeCapitalLettersInIt?

2.	 What keyboard shortcut is used for opening up the console in Chrome?

3.	 Is this a valid statement? (And if not, why not?)
var 1stStudentId = 1;

4.	 Is this a valid statement? (And if not, why not?)
let idForStudentNumber12 = 12;

5.	 True/False: Error messages are intended to help.

41

6.	 What kind of error message would result from an open paren that is never closed?

7.	 Which mathematical operator would be most useful for checking if a given value is evenly
divisible by 6?

8.	 What would you type into the URL address bar in order to get a completely empty page in
Chrome?

9.	 What symbol could you use to make this assignment say the same thing, but shorter?
mathyValue = 7 + mathyValue;

10.	 Is this valid JavaScript? (And if not, why not?)
var faveCereal = 'Kix'; faveCereal = 'Froot Loops'; faveCereal;

11.	 Is this valid JavaScript? (And if not, why not?)
let faveCereal = "Cap'n Crunch";
let faveCereal = "Lucky Charms";
faveCereal;

DIY: FourSquare
Oh boy! Another "Do It Yourself" project! Remember, all of these DIY projects will use concepts
we've learned in this chapter. It also may help to remember that DIY projects are often similar to
the chapter's Follow Along project, so that would
be a good place to look back if you get stuck.

Here's your mission:

The same gym class from our Follow Along
project earlier in the chapter (where every
student has a studentId of a consecutive number
from 1-12) now wants to play a few simultaneous
games of FourSquare. And get this: 4 new
students (with studentIds of 13, 14, 15, & 16)
have joined the class!

But now the kids can't seem to agree on which
FourSquare court each will play on! There are 4
courts (Numbered 0, 1, 2, and 3), and each court
has only enough space for exactly 4 students. Because you have proven your brilliance in selecting
dodgeball teams, they naturally depend on your leadership for equitably determining which kids will
go to which FourSquare court—based on each kid's studentId. Using a similar formula to the one
you used in Dodgeball, which court should each of the 16 students play in?

So here are the relevant pieces of information to consider:

•	 The gym class has 16 kids in it.

42

•	 Each kid has a unique Student Identification Number (Student ID), which is a number
between 1 and 16.

•	 This four square game must use all 4 courts.
•	 You must assign each kid to a FourSquare court based on his Student ID.
•	 You should use a single statement per kid to tell each kid what team he is on.

Close, then open Chrome, navigate to a blank page, open the JavaScript console, and type all of
your code in the console. Use variables (with descriptive names like numberOfCourts) whenever
appropriate. Also, remember to use the UP_ARROW key to bring back previous lines in the
console. This will make things faster and easier than retyping it all.

If you get stuck, don't just sit there. First, look back at the solution to the Follow Along (Dodgeball)
project as the solution to this problem will be very similar to that one. If you're still having trouble,
go ahead and look at the "Ch. 2 DIY Recommended Solution" in the back of the book. But don't
be lazy either! After looking at the answer, cover it back up, and try to work through the entire
problem from the beginning without glancing at the answer again until you're done. Repeat this as
often as necessary so you'll know you can really do this stuff !

43

45

C
ha

pt
er

 3

In the previous chapter, we introduced the concept of data types in JavaScript. We then
went on to give exactly one example of a data type: numbers. You might be thinking at
this point that JavaScript is merely used for making computers behave like calculators.

3 COMMENT ON
THE STRING

SECTION

Comments
As a developer, there will be times when you want to write something in your code that is
meant only for humans to read—NOT for computers to execute! Perhaps you'll want to make
a note to your future self (a.k.a. "Future You") about why you wrote something the way you
did. Or maybe you'll want to run most of your code but you'd like the interpreter to skip one
line or section. This is where you'll need to use comments. (Reminder: words that are first
introduced with bold typeface have definitions in the glossary in the back of the book).

We're going to do some more work in the console. Please close all of your programs again,
then open Chrome, go to the blank screen, and open the console (refer to Ch. 1 if you forget
any of the shortcuts).

Single-Line Comments

I've actually used single-line comments a few times in this book so far, but I was pretty
sneaky about it. A single-line comment looks like this (Type this in the console):

// Hey! I'm a comment!

Response: undefined

Well, you might be relieved to know that there are, in fact, other data types. In this chapter,
we'll be commenting on perhaps the most useful data type of them all: strings!

And speaking of comments, this would also be a great time to introduce you to another
valuable JavaScript language construct...

46

When the interpreter sees those two forward slashes (//), it will ignore anything from that point until
the end of the line. It also works if you have other code on the same line like so:

5 + 1; // this is easy... can't I just do this in my head?
3 * 4; // oh I see the point now.
8 + 2; // the interpreter runs the code, but ignores this comment after it

Do you see how that works?

Break Returns in the Console

We're just about to do more work with comments, but before you can properly type this next block
of code, you'll need to know how to make a break return in the console. A break return is just a
more technical term for a new line. Normally, when you're typing a document or an email, you press
the ENTER key (which, of course, is called the RETURN key on a Mac) whenever you want to make
a break return (move the cursor to a new line).

But as you've probably noticed, the ENTER key does something special in the console. It tells the
interpreter that you've finished your statement(s), and you'd like to see the response. We've been
using the ENTER key in all the previous chapters to see the console response. But what if you
just want to move to the next line (i.e., make a "break return")? Well for this, you simply use a key
combination: SHIFT+ENTER (hold down the SHIFT key when you press ENTER). Note: there are
two SHIFT keys on your keyboard—one on each side—so choose whichever one suits your fancy.

Type this block of code (including the comments) in the console with break returns:

// Press SHIFT+ENTER after this comment
var simpleMath = 2 + 2; // make another break return here
simpleMath; // now you can just press ENTER. Console should return 4!

If you did this correctly, you should have gotten a response from the console of 4 AND you should
have not gotten any undefined responses in the middle of your code block. Did that work properly
for you? If the console ever said undefined, that means you must not have used the SHIFT+ENTER
key combination. So if that's the case, try it again and be sure to use that combination to make a
break return every time.

Another thing to note: there's nothing exact about the syntax in the comments. Comments are for
humans to read, and you can't get syntax errors. Humans are way smarter than computers, so you
don't have to get every character correct as long as a human can figure out what you mean.

Another block of code for the console with break returns and single-line comments:

// my current salary (rounded up to nearest million)
let myAnnualSalary = 1000000;
// 365 is the number of days in a year
let dailyWage = myAnnualSalary / 365;
dailyWage; // my daily pay (maybe a little exaggerated)

We good? You ready to move on? Great! Now, let's finally get to the main point of this chapter:
strings!

47

Block Comments

What?? Block comments? Is this another interruption?! C'mooonnnn!!

Yes, it is. I'll try to keep this short, then we can move on to strings for realz.

Block comments are similar to single-line
comments, but instead of the interpreter just
ignoring one line, it will ignore every line until
it finds the end of the block comment. Let me
explain. Block comments start with /* and end
with */. When the interpreter sees /*, it thinks
"I will not pay attention to anything else until I
see a */". Here's an example (remember to use
SHIFT+ENTER for the break returns!):

/* here's a comment with a
break return. Interpreter will ignore this
until it sees...
*/
4 + 9; /* now this line will run! */

Did that work for you? Let's try another one:

let faveHero = "Green Lantern";
/* Just kidding!
Nobody's favorite hero is Green Lantern!
faveHero = "Batman"; // will the interpreter read this line of code? NO!
*/
faveHero; // Haha!
/* The console is still fooled because it ignores all these block comments!
I told you computers are not as smart as humans! */

Got it now? Okay, there's more that can be said about block comments, but I'm just as eager to get
moving on as you are, so let's keep going!

Strings
We touched on strings a little bit in the
first chapter but I didn't explain it fully
because there was already so much else to
explain, and I was too lazy didn't want to
overwhelm you.

You might use strings more than any
other basic data type. When creating
a new string, you'll use either 'single
quotes' or "double quotes." Here are
several examples of strings:

48

"Hello World!"
'Hi'
"You could have one word, an entire sentence, paragraph, or even multiple pages of
text in one string"
'12345'

Whoops! How did that last one get in there? How embarrassing! Isn't that a number?!

Actually, no it isn't! It's a string because it has single quotes around it! Did I fool you? (...maybe just
for a second?)

Pay close attention to your single and double quotes. If you start a string with a single quote ('), you
can have double quotes inside it, but it needs to end with another single quote ('). And of course
the reverse is true for double quotes ("). If you start with a double quote, you must end with another
double quote (").

Now before we get too big for our britches, I think it's about time we make a few mistakes, shall we?
But first, I'd like you to fully close (not just minimize) every program on your computer, so you're just
looking at the plain desktop. Then follow the steps you memorized from Chapter 1 again until you
have the console open.

Ready now? Okay, let's look at a couple errors and how to fix them. Type:

let somethingIsWrong = 'Oh My Darlin' Clementine.';

Console Response: Uncaught SyntaxError: Unexpected identifier

""Pop!" Goes the Weasel.";

Response: Uncaught SyntaxError: Unexpected identifier

Did you catch what was wrong with these statements? If not, look again at your console and pay
attention to the code coloring that happened when you typed the single or double quotes. It's very
subtle. In the first one, the single quote in Darlin' looked to the JavaScript interpreter like it was the
CLOSING single quote for the string! Similarly, in the second one, the double quote mark before
the Pop looked like the closing double quote for the string.

Fortunately, the fix for each of these is simple. Just change the outer quotes to be single quotes or
double quotes (whichever one you are NOT using in the middle of the string). Like this:

let nowItIsFine = "Oh My Darlin' Clementine"; // string is now in double quotes
'"Pop!" Goes the Weasel.'; // string is now wrapped in single quotes

Does that make sense? Here are two more examples with single and double quotes used properly in
statements. Type:

let singleQuotedString = 'Red Says "Stop!" Green Says "Go!"';
let doubleQuotedString = "I've Been Workin' on the Railroad.";

49

Characters

Strings are made up of individual pieces called characters. You could just say "letters" but
sometimes that might get confusing because a string could also have numbers and symbols in it
too. For example:

"a"; // one character string
"abc 123"; // 7 character string (space counts as a character too)
"secret_P@ssW0rd!!1"; // 18 character string

We also use the term character to describe any single letter, number, or symbol that is typed in a line of
code (even if it's not part of a string). Like this:

"where is the semicolon?"; // semicolon is the 26th character in this line of code
"where's the apostrophe?"; // apostrophe (') is the 7th character in this line

Escaping with Backslash

Now let's shake things up just a bit:

let hereComesAnError = 'Say "It ain't so"!';

Response: Uncaught SyntaxError: Unexpected identifier

Oh dear! The inner string has both double and single
quotes! What are we supposed to do now? Well, thankfully,
when you're really in need, there is one friend who always
has your back: \\\\\\\\\\\ BACKSLASH! \\\\\\\\\\\

The backslash (\) can be found above the ENTER key on
your keyboard. Some people don't trust your new friend
backslash. They're probably afraid that the minute they start
to get close, he'll slash them in the back! Well, relax. He's
here to help! Here's how to use a backslash in a string:

let backslashedString = 'Say "It ain\'t so"!';
let alternateBackslashedString = "Say \"It ain't so\"!";

In coding, we call that "escaping." So here's the gist: a string can be surrounded by single quotes
or double quotes. Either is fine. But if you want to use the same kind of quote marks in the middle
of the string that you have on the outsides, then you need to escape them using a backslash. Got
it? Here's a few more exercises to be sure this sinks in:

"My doctor said \"Mylanta!\"";
'I ain\'t gonna say "ain\'t" \'cuz "ain\'t" just ain\'t right.';
'Where\'d\'ya think you were goin\'?';
"I can't share my candy because mom said \"No.\"";

If you're still struggling with this, play with it a few times in the console before moving on.

50

Concatenating Strings

I'll now explain another thing we did in Chapter 1. When working with strings (those things
with single or double quotes around them, remember?), the plus sign (+) takes on a special
meaning. Instead of being used for adding, it gets used for concatenating! Try these in the console:

"Simon" + "says" + "no" + "spaces" + "allowed.";
'But ' + 'spaces ' + 'are ' + 'more ' + 'readable.';
"This " + "sentence " + "has " + 4 + " spaces.";
'Hey! the number "' + 7 + '" is concatenated to this string!';

Each of those statements would return a string. That's the data type. If you add two or more
numbers together you'll get a number. If you add (concatenate) two or more strings, you'll get a string.
Which data type will you get when you add/concatenate a string with a number (as we did just
now)? Another string!

That's why the return values on each of these statements will have the data type of string (you can
tell because the response for each has quotes around it). Type:

"1"; // string, NOT a number
'1' + '2';
"12" + 3;
'1' + ("2" + "3") + 4;
1 + ("234" + "5");
12 + '345' + 6;
var lastTwoDigits = 67; "12345" + lastTwoDigits;
'1234567' + (4 * 2);
let startingString = '1234'; startingString += 56 + ("78" + (3 * 3)); startingString;

Did you notice the += ("plus equals") in that last statement? In the previous chapter, we showed how
+= (called an augmented assignment) can be used to add a number to a variable and then assign the new
value back to the variable. Well, this is doing pretty much the same thing except with strings, which
means that instead of "adding," we're "concatenating" (connecting the strings together) and still
assigning the resulting value back to the original variable.

In all my years of coding, I don't think I've yet met a software developer who says that string
concatenation is his favorite part of the job. It's more like one of those basic skills that you need to
get out of the way in order to understand the other stuff. Hopefully, this chapter did that for you.

Follow Along: Famous Author Bio
Now for another fun Follow Along project! But first, please close everything down again and reopen
it all to get to a clean console. You may groan now, but in the future, you'll appreciate the fact that
all this repetition helped to ensure that you can do this stuff easily, and basic things like opening a
blank page to use the console don't trip you up.

Here's the mission:

Following the immense success of his new book I'll Go Second, famous author Hugo First wants a

51

dynamic bio for his website. He needs us to build a paragraph listing a few personal details his fans
need to know including his name, age, current book title, hobby, and a favorite quote from the latest
book. He also wants us to document our code with single-line and block comments (not sure why
this matters to him, but whatevs). Lastly, we need to keep the paragraph dynamic with variables so
he can use this same paragraph as a template for the other authors at the publishing company!

As with many projects, I like to start by typing out what we know (don't forget to use
SHIFT+ENTER for the break returns in the block comment!):

/*
Variables describing author
(for use in the paragraph)
*/
let authorFirstName = 'Hugo';
let authorLastName = 'First'; // this is only used to create the fullName
// let authorMiddleInitial = 'B'; // commenting this line out; we don't need it.
let authorFullName = authorFirstName + ' ' + authorLastName; // see?
let bookTitle = "I'll Go Second";
let age = 25; // a number, when concatenated to a string, becomes a string
let hobby = 'cliff diving';
let quote = 'If at first you don\'t succeed, maybe cliff diving isn\'t for you.';

Now, let's make that full bio and concatenate all the variables we've created here!

let bio = authorFullName + ' is the '
 + age + '-year-old author of the bestselling book "'
 + bookTitle + '". When not writing books, ' + authorFirstName
 + ' enjoys ' + hobby + ' and spending time with the family. '
 + authorFirstName + "'s favorite quote from \""
 + bookTitle + '" is "' + quote + '"';

You may have noticed all of the varied uses of single quotes, double quotes, and backslashes. I hope
that wasn't confusing. I included a variety here just to emphasize the point that you can do this
however you please. In general, I personally like to use single quotes for strings in JavaScript when
feasible, but I usually use double quotes when the string has an apostrophe in it. Some developers
prefer double quotes to be the default for strings. It's really fine either way.

Okay now, let's see if we did that correctly:

// display full bio
bio;

Response (hopefully): "Hugo First is the 25-year-old author of the bestselling book "I'll
Go Second". When not writing books, Hugo enjoys cliff diving and spending time with the
family. Hugo's favorite quote from "I'll Go Second" is "If at first you don't succeed,
maybe cliff diving isn't right for you.""

Did you get the proper response? If not, first see if there are any error messages as these can be
very helpful in tracking down bugs. Then go back and look carefully at every character you typed
to be sure that it is the same as in the book. Pay special attention to the single quotes (apostrophes),
double quotes, plus signs, and backslashes.

If that did work properly, try changing some of the variables and see if you can get it to work with a

52

new book title and author (perhaps the suspense novel I'm Fine by
Howard Yu)! Remember, that when changing existing variables,
you must remove the let keyword from the line (otherwise you'll
get a syntax error!).

CHAPTER 3: QUIZ

Write your answers down in your Workbook. Don't
look back at the chapter for answers. After you finish
the quiz, check your answers against the back of the
book (even if you're pretty sure you got them right).

1.	 Comments in code are intended for the ____________ to read.
a. JavaScript interpreter
b. human
c. console

2.	 Which data type is arguably the most commonly used data type in JavaScript?

3.	 The JavaScript interpreter will _____________ any comments it finds.
a. execute (run)
b. compile
c. ignore

4.	 What symbol indicates a single-line comment?

5.	 What is the key combination to create a break return when typing in the console?

6.	 A JavaScript string is usually surrounded by ______________.

7.	 Which characters must you type to start a block comment?

8.	 Which characters indicate the end of a block comment?

9.	 True/False: When dealing with strings, it's generally much better to use double quotes than to
use single quotes.

10.	 A string is made up of one or more individual ______________.

11.	 What does the + symbol mean when working with strings in JavaScript?

12.	 What single character can you add to this statement to avoid a Syntax Error?
let movieQuote = 'The name's Bond. James Bond.';

53

13.	 How can you change (not add) two existing characters in this next line to avoid a Syntax Error?
let differentMovieQuote = 'Here's looking at you, kid.';

CHAPTER 3: KEY CONCEPTS

As with the Key Concepts section of any chapter, glance over this list and if there's anything you
don't think you fully understand, look back in the chapter to review it before moving on. These are
roughly in the order they were introduced:

•	 Purpose of comments
•	 Single-line comments
•	 Break returns in the console
•	 Block comments
•	 String data type
•	 Single and double quotes surrounding strings
•	 Characters
•	 Backslash to escape characters
•	 Concatenating strings
•	 Plus equals operator with strings
•	 Concatenating numbers with strings

CHAPTER 3: DRILLS

A. Try typing these valid code snippets in the console.

1.	 // Single-line Comment

2.	 /* Block comment. Remember to use SHIFT+ENTER
when creating break returns in the console. */

3.	 /***********************
* Since block Comments *
* span multiple lines, *
* you can build pretty *
* boxes like this one! *
***********************/

4.	 var faveCandyBar = "Butterfinger"; // Hmm... not sure
faveCandyBar = 'Snickers'; // yeah I like this better
faveCandyBar += ' Fun Size'; // don't overdo it
// faveCandyBar = KitKat; // wrote this, then commented it out later
faveCandyBar; // "Snickers Fun Size" (because "KitKat" line is commented out)

5.	 let singleQuotedString = 'Are we there yet?';
singleQuotedString;

54

6.	 let threeCharacterString = 'No.'; threeCharacterString;

7.	 let concatenatedString = 'Are we there yet? '
+ 'Are we there yet? ' + 'Are ' + 'we ' + 'there ' + 'yet?';
concatenatedString;

8.	 let doubleQuotedString = "We'll get there when we get there.";
doubleQuotedString;

9.	 let singleQuotedStringWithQuotesInIt = 'But Mom said, "We will '
+ 'be there before you know it"!';
singleQuotedStringWithQuotesInIt;

10.	 let doubleQuotedStringWithBackslashesInIt = "I also said, "
+ "\"Quit pestering your father from the back seat\"!";
doubleQuotedStringWithBackslashesInIt;

11.	 let singleQuotedStringWithBackslashesInIt = 'But I\'m sooooo '
+ 'tired, and I can\'t sleep with my head on the window.';
singleQuotedStringWithBackslashesInIt;

12.	 let concatenatedStringsWithApostrophes = "If you don't quit your whinin'"
+ ", " + "I'm gonna stop this car!";
concatenatedStringsWithApostrophes;

B. What's wrong with each of these code snippets?

Hint: Type some of these in the console to see if any error messages show up to help!

1.	 // let whatCouldGoWrong = 'Uh oh';
whatCouldGoWrong;

2.	 let faveTvShow = 'Miraculous'; /* Cataclysm!
faveTvShow;

3.	 let inTheDaytime = 'I'm Marinette!';

4.	 //* Simply the best
 block comment
**/

5.	 /** another // block comment // ok ? **//

6.	 var upToTheTest = 'when ' + 'things ' * "go " + "wrong!";

7.	 var miraculous = 'the ' + 'luck' + i + 'est';

8.	 let whoLet = "The " + \""dogs\" out?";

55

CHAPTER 3: AGGREGATE REVIEW

Drills and questions in this section may include bits from anything you've learned up to this point. Feel
free to check any code with the console, but also write all answers in your Workbook. After you're
done, remember to check your answers against those at the back of the book!

1.	 What keyboard shortcut is used for opening up the console in Chrome?

2.	 Is this a valid statement? (And if not, why not?)
(10 + (4 * 2) - 5) / (6 - 7);

3.	 Is this a valid statement? (And if not, why not?)
let racerNumber8 = 8;

4.	 What URL address should you go to in order to get an empty page in Chrome?

5.	 Is this a valid statement? (And if not, why not?)
let validNumber % 4 = 2;

6.	 True/False: Error messages indicate that something is wrong.

7.	 What is a shorter way to write the 2nd line to achieve the same result?
let age = 12;
age = 1 + age;

8.	 Where can a developer type simple JavaScript commands to test them out and get immediate
responses.

9.	 What kind of error message would result from this code?
let letterBeforeM = 'N'; let letterBeforeM = 'L'; letterBeforeM;

10.	 Is this a valid statement? (And if not, why not?)
let dividend = 10;
let divisor = 3;
let remainderStatement = 'The Euclidean division of ' + dividend
 + ' by ' + divisor
 + ' yields a remainder of ' + (dividend % divisor);
remainderStatement;

11.	 Chrome, Firefox, Internet Explorer, Edge, and Safari are all examples of _____________.

12.	 What form of capitalization should you use with variable names in JavaScript?

13.	 What should be used to separate and group different math operations to improve readability
and ensure that your operations perform in the order in which you intended?

14.	 Which data type is this?
'2000'

56

15.	 Which data type is this?
"A cup of proper coffee from a copper coffee pot"

16.	 What does a single equals sign imply in a statement?

17.	 What is a shorter way to write this to achieve the same result?
let faveEntree = "Chicken";
faveEntree = faveEntree + " Burrito";

18.	 What is the percent sign called when used as a JavaScript operator?

19.	 Is this valid JavaScript? (And if not, why not?)
let faveChips = "Fritos";
// let faveChips = "Doritos";
// faveChips;

20.	 Is this valid JavaScript? (And if not, why not?)
/* let favePopcorn = "Butter";
let favePopcorn = "Caramel"; */
favePopcorn;

DIY: Your Personal Bio
Word has gotten out that you created the bio paragraph for some famous authors, so now you're
becoming quite the celebrity in your own right! As a soon-to-be-uber-famous JavaScript bio creator,
everyone now wants to learn about your hobby, your pet, your best skill, your grade in school, and
your favorite cartoon movie!

Include variables, single-line comments,
block comments, and string
concatenation (as you did in the
Follow Along project) to create a bio
for your now-famous self !

Remember: use that Workbook. If
you need help, go ahead and look at
the answer in the back. But if you do
that, try to look without typing (i.e.,
don't copy the answer), then go back
to the console and try to do it again
without looking. Repeat as many times
as necessary.

57

59

C
ha

pt
er

 4

If you've never learned a programming language before, the name "function" probably
doesn't do much for you. But as someone who works with them every day, I am super

excited to teach these to you! In fact, in all of the Follow-Along and DIY projects
we've done together up to this point, I kept thinking to myself, "The way I really want

to do this project is with a function, but we haven't discussed functions yet...Patience…
Chapter 4 is almost here!" Well, now we're in Chapter 4 (at last!), so let's dive right in!

4 HAVE SOME
FUNCTIONS

Functions: the Basics
"But what is a function?" I'm glad I asked! In programming, a function is a separated block
of code that can be called to perform a specific task. Before we go further, close all your
programs, then bring up the console again.

Declaring a Function

Here's what a very basic function looks like. When you type this in the console, you'll use the
curly braces which are close to the ENTER key. Also, remember to use SHIFT+ENTER to
make the break returns (new lines):

function getTheNumberFive() {
 return 5;
}

This is known as a function declaration. Now that this function is declared—introduced into
our code—it may be used later. Let's break down each part of it:

•	 The keyword function tells the interpreter that what follows will be a custom function
(i.e., one that you create yourself; not built-in).

•	 The camelCased name getTheNumberFive is the custom name of our function. Custom
means this is something we make up ourselves. It doesn't matter to the interpreter
what this function is called, but it's usually best to use a name that describes well what
the function does.

60

•	 The parens (parentheses) are required whenever we make a function. Sometimes there are
one or more variable names inside the parens, but for this particular function, they're empty.

•	 The curly braces—{ and } found above the [and] on the keyboard—surround the body of
the function (all the inside stuff).

•	 The body of the function is indented (i.e., tabbed over to the right…usually by clicking the TAB
key on your keyboard). This is by convention (meaning it's not required, but encouraged) and
makes it easier to see what all is inside the function.

•	 The keyword return indicates that the value immediately following—called "the return
value"—will be passed back (or "returned") to the interpreter whenever this function is called.

You may have noticed that the console's response was undefined. This, as you may recall, merely
indicates that the console didn't have anything more to tell you. All you did was declare the function,
so there's nothing to return yet (just like when declaring a variable).

Invoking a Function

Next, we're going to invoke the function. Invoking a function is a
fancy name for calling a function. Invoking a function looks like this:

getTheNumberFive();

Response: 5

By first declaring a function, and then later invoking the function, we
end up with the return value of the function we declared.

Function Parameters and Arguments

Let's create another function declaration. This one has a variable
name inside the parens. When that's the case, we call that variable a
parameter. Not all functions have parameters but probably most
of them do.

function addThree(startingNumber) {
 return startingNumber + 3;
}

Now that we've declared this function with a parameter, you can invoke it (i.e., call it) just the same
as the previous function except we'll be passing in a value to be assigned to that parameter. When we
pass in a value to be assigned, that value is called an argument:

addThree(4);

Response: 7

We passed the number 4 as an argument into the function. When the function received this
argument, it automatically assigned it to the variable name startingNumber (since that's the name of

61

the parameter in our function declaration). Then in the body of the function, some simple math was
done on the parameter and the final value was returned back to us.

Just for fun, try passing in a string as the argument. Can you guess what will happen?

addThree('My favorite number is ');
addThree('4');

Do you think you can explain the difference between parameters and arguments? Here's the
difference: arguments are the values passed in when the function is invoked (i.e., "called"); those values
are then assigned to the parameters of the function. Here's another way of putting it: parameters are
variable names in the function declaration that are waiting to receive values when the function is
called; arguments are those values that are passed in. Does that make sense now? Good. Lastly, you
should also know that many programmers use the two terms (arguments and parameters) interchangeably.
I...even had to look them up when writing this chapter because I forgot which was which.

Let's try declaring a function that expects two strings (note, when using more than one parameter,
the parameters must be separated by commas).

function heartfeltCompliment(personName, feature) {
 let compliment = 'Wow, ' + personName + '! Your '
 + feature + ' is looking great today!';
 return compliment;
}

When we invoke this function, we'll need to pass in two strings (Remember to use single or double
quotes for strings!) as arguments separated by a comma:

heartfeltCompliment('Jeremy', 'hair');

Response: "Wow, Jeremy! Your hair is looking great today!"

Why thank you, computer! Maybe I should sleep on the left side of the bed more often!

DRY (Don't Repeat Yourself)
One thing that all good developers try to do is to stay DRY. That means we follow the principle of
D.R.Y.: Don't Repeat Yourself.

Sometimes in our coding, there are
patterns that need to be followed over
and over again. If we type everything
out each time, it can make a simple
concept feel overly complicated and hard
to read. Functions are great tools for
helping us to avoid repeating ourselves.

Here's a silly example to help you
understand this concept:

62

Your Little Sister: How can you tell if a car is red?
You: Well, if the doors are red, the hood is red, the trunk is red, and the frame is red, then it's
probably safe to say that the car is red.
Your Little Sister: Okay. But how can you tell if a car is blue?
You: Well, if the doors are blue, the hood is blue, the trunk is blue, and the frame is blue, then it's
probably safe to say that the car is blue.
Your Little Sister: Okay. But how can you tell if a car is orange?
You: Well, if the doors are orange, the hood is orange, the trunk is orange, and the frame is orange,
then it's probably safe to say that the car is orange.
Your Little Sister: Okay. But how can you tell if a car is lavender?
You: Well, if the doors are lavender, the hood is lavender, the trunk is lav…hmm…I seem to be
repeating myself a lot…How many colors are you planning to ask about, sis?
Your Little Sister: I'm not sure yet. How many are in this box of crayons?

Did you notice how repetitive this exchange was becoming? This would be a good time to create
a custom function for your little sister (little sisters LOVE custom functions!). Remember to use
SHIFT+ENTER for the break returns!

function howCanYouTellIfACarIs(color) {
 return "Well, if the doors are " + color
 + ", the hood is " + color
 + ", the trunk is " + color
 + ", and the frame is " + color
 + ", then it's probably safe to say that the car is " + color + ".";
}

Now, whenever she needs to know this answer, she can call the function and just pass in any color
that she finds in her Crayoba Ultimate Big Box of crayons! Let's try a few together. Each time you
want to reuse the function, just click the UP_ARROW to bring back the previous line of code and
change the argument to a different string:

howCanYouTellIfACarIs('gray');

Response: "Well, if the doors are gray, the hood is gray, the trunk is gray, and the frame
is gray, then it's probably safe to say that the car is gray."
howCanYouTellIfACarIs('cerulean');
howCanYouTellIfACarIs('aquamarine');
howCanYouTellIfACarIs('burnt sienna');
howCanYouTellIfACarIs('robin\'s egg blue');
howCanYouTellIfACarIs('macaroni and cheese');
howCanYouTellIfACarIs('crushed vermillion'); // Disney channel, anyone?

Now that's a lot shorter and easier to read isn't it? With this function, you can now keep your little
sister well informed and entertained for hours, and you don't have to keep repeating yourself. What a
good older sibling you are!

You may have noticed that even with the function call doing most of the work, there is still quite a
bit of repetition happening here. Why can't we just enter the entire box of crayon names into one

63

function and get all of the answers instead of having
to call the function over and over for every crayon
name? If you thought that, then you are definitely
thinking like a software engineer! We can do that
with ease…in Chapter 9. When we start talking
about arrays and loops, you'll see how we can create
some terrific timesaving functions, and we'll be DRY-
er than ever before!

Built-in Functions
alert()

We showed examples of some basic functions
that you built yourself, but did you know that there
are some functions that JavaScript has already built for
you? These are baked right into the language, so you
can use these functions whenever you like. We call these
built-in functions, and they're super useful!

Go ahead and open a new tab in Chrome, then open up
the console on a blank page, and let's try these puppies out
together!

alert('Boo!');

Did I scare you? You'll notice that this follows the same format as the functions you created
yourself (camelCased word followed by parens and an argument passed in). But there's one major
difference: you didn't have to declare this function. The JavaScript language already created it for
you. A few more times to be sure we got it:

alert('Is this necessary?');
alert("If this were on a real website, wouldn't it be annoying?");
alert('Okay, you\'ve had your fun.');
alert('Hey! Cut it out!');

I'll be honest with you: most users (and developers) dislike the alert() function. They find the
popup annoying. It can be fun to play with our newfound superpowers a few times. Just be aware,
that the alert() function is a prime case of using your powers for evil. Don't be drawn in by the
dark side!

64

console.log()

Let's try using our powers for good instead! Here's a sneaky way to log information into the console
(i.e., display typed out info in the console window) so that only coders can read it (remember, most
people don't even know that the console exists!).

console.log('Top Secret! For developers only!');

As the function name might imply, we call this "logging a message into the console." This is a good
power that developers use constantly! When you received error messages in earlier chapters (or
maybe in this one if you made some mistakes), you saw an example of the JavaScript Interpreter
logging messages into the console so you could read them. Pretty useful, huh? You'll use the
console.log function many more times, so memorize this one!

console.log('Log any message you like');
console.log('just pass in a ' + "string");
let message = 'I can pass in a variable as an argument too!';
console.log(message);
let thingToSave = 'day'; console.log('I\'m here to save the ' + thingToSave);

While you're logging messages to the console, there's another trick I'd like to show you. And it uses
our old friend Backslash! You can use \n to create a new line like this:

console.log('Your text can span\n multiple\n lines.');
console.log("Here's the first line.\nHere's the 2nd Line.\n3rd\n4th\n5th!");

The \n has many practical business uses, such as creating teddy bear ASCII art in the console. Try
typing this with me all on a single line in the console (carefully type each character and space like
you're entering a password--notice the double/triple spaces):

console.log(" c___c\n /. .\\\n _T_/\n /' '\\\n(/ . \\)\n /';-;'\\\n()/ \\()");

Do you see why that works? Every \n creates a new line in the console so you can add more
symbols to the line below it. And voila! You have made a valuable contribution to society drawn a
cute teddy bear!

Math.random()

Here's another useful built-in function: Math.random(). Notice that this one starts with an uppercase
letter 'M'. There's a reason for this, but we're not going to get into it. Much like in English, there are
exceptions to many rules. This is one of them. All of the variables you write while using this book
will begin with a lowercase letter though. Just remember that the casing matters, so it won't work if
you don't capitalize it exactly the right way:

65

Math.random();
Math.random();
Math.random();
Math.random();

A different number every time! This function actually returns a random number between 0 and 1
every time. You'll find this helpful at times when you want some randomization.

Math.floor()

The Math.floor() function accepts a number as the argument and rounds it down to the nearest
integer (number that doesn't have a decimal point).

Math.floor(10.4);
Math.floor(5);
Math.floor(214.19723);
let almost33 = 32.99; Math.floor(almost33);

Put It Together
Let's try mixing a few of our functions together and see if we can get some useful things. You can
skip the //comments if you like, but use SHIFT+ENTER to make break returns (new lines) so that
all of this is typed in the console before you press ENTER to submit it (that's important for the next
part—all of this must be one big block of code):

let randomNumberBetween0And1 = Math.random();
// Multiply 100 times a number between 0 and 1 to receive a number between 0 and 100
let bigRandomNumber = randomNumberBetween0And1 * 100;
// Use Math.floor() to round this number DOWN to the nearest integer ("int")
let bigRandomInt = Math.floor(bigRandomNumber);
let pickNumber = 'Pick a number between 0 and 100: ';
console.log(pickNumber + bigRandomInt);

Hopefully you understood every step of that. If not, then read it again very carefully to see if it
makes sense. If it still doesn't, try rereading the whole "Built-in Functions" section again. If you
still don't understand it, then keep going on to the end of the chapter, and hopefully after the review
section, it'll become clearer to you.

Now I'd like you to do something that will cause an error. Press the UP_ARROW to get the same
large block of code again from before. Then press the ENTER key to submit it again. If you've
been following along, you should get this error:

Uncaught SyntaxError: Identifier 'randomNumberBetween0And1' has already been declared
at <anonymous>:1:1

Do you know why we're getting this error? If you're about to say "No," let me stop you and ask,
"Did you actually read the error message?" Remember, error messages are our friends. They're here to
help. Read those things!

66

If you did read the message, you'll probably discover that the
culprit is the first character on the first line (hence why the error
message references :1:1). The keyword let should only be used
for creating new variables, but we're trying to use it with a variable
name that has already been declared once.

You already know one way to fix this (remove the let keyword),
but I'm going to show you a new way. Pay close attention to this
part. Press the UP_ARROW to bring back that chunk of code
again. This time, I want you to add a closing curly brace } to
the bottom of the chunk of code (after the final ;). Then use the
arrow keys to move the cursor to the top of the chunk of code
(using SHIFT+ENTER to create a new line), and type this:

function logRandomNumber() {

So, just to be perfectly clear, after all of these instructions, the console should look like this:

function logRandomNumber() {
let randomNumberBetween0And1 = Math.random();
let bigRandomNumber = randomNumberBetween0And1 * 100;
let bigRandomInt = Math.floor(bigRandomNumber);
let pickNumber = 'Pick a number between 0 and 100: ';
console.log(pickNumber + bigRandomInt);
}

Now press ENTER to get the undefined response message. What you've done is taken a block of
code and wrapped it in a new custom function declaration. You've given it a name. Now you can call
this function whenever you like by simply typing:

logRandomNumber();

Try it yourself several times. You should get a different result every time:

logRandomNumber();
logRandomNumber();
logRandomNumber();

Did that work for you? I hope so! There was a lot of code in there, so if you didn't get the results
you were expecting, look very closely to be sure that every character you typed is correct. Paying
close attention to exact detail is a crucial skill for any software developer. "Close enough" is not
enough!

Follow Along: Time Machine Instructions
It's Follow Along time! Remember to start by closing down all your programs until you only see
the desktop. Then bring back the console from a blank page (also expand the console so you'll have
maximum room to write).

67

Professor Brainsley Von Geniusberg has nearly finished his
finest invention yet—a time machine for his cat, dog, ferret,
and parakeet! He has already calibrated the chrono-shifters,
decarborated the base plate, retrofitted the turbo encabulator, and
surmounted the pre-farbed amulite with a malleable logarithmic
casing. So the hardest part is already done!

The one thing Professor Von G. still needs is a method for
determining which year in time (sometime between 0 A.D. and 2500
A.D.) to send each of the pets. He can't reliably allow each pet to
decide this for herself because the professor's animal translator is still
in the shop. As he doesn't want to be accused of playing favorites,
the professor wishes the process to be randomized. He hasn't read
my book to learn randomization techniques yet, so he needs your
help! Oh, and this needs to be repeatable so that the pets can take
frequent trips to random time periods whenever they wish.

Here's what we know:

•	 We must determine a year in time between 0 and 2500 A.D.
•	 This should be a repeatable operation.

To begin, let's create a function together and fill it with hard-coded values (i.e., values that don't
change on their own):

function timeTravel() {
 let pet = 'cat';
 let year = 1950;
 return 'Your ' + pet + ' is traveling through time to the year ' + year + '!';
}

Now that we've declared this function, we can call it many times… \but the problem is that it always
returns the same message. Try it:

timeTravel();
timeTravel();
timeTravel();

To make this dynamic, let's first add the pet variable as a parameter (inside the parens):

function timeTravel(pet) {
 let year = 1950;
 return 'Your ' + pet + ' is traveling through time to the year ' + year + '!';
}

Now, when we call it, we can pass the pet as an argument into the function like this:

timeTravel('dog');
timeTravel('parakeet');
timeTravel('ferret');

Now we're able to send different animals through time, but the time period is always 1950. Now I

68

like a good sock hop as much as the next guy, but a little variety would be nice. We could fix this
in the same way we did with the pet by putting the year variable in as a parameter. But this would
mean that the year would need to be provided manually each time the function is called (such
as timeTravel('cat', 2250);), which would of course leave the professor open to accusations of
playing favorites, so this is out of the question.

Let's fix this by including some randomization in the function. To do this, we need to take Math.
random()—which you may recall will always give us a random number between 0 and 1—and
multiply it by the highest value we will accept (the year 2500 A.D.):

function timeTravel(pet) {
 let maxYear = 2500; // latest possible year we'll accept
 let year = Math.random() * maxYear;
 return 'Your ' + pet + ' is traveling through time to the year ' + year + '!';
}

Let's try it now:

timeTravel('dog');
timeTravel('ferret');

Oooh, we're so close, I can almost taste it! The only problem now is that the number for our
year still has a decimal point in it! Remember how to shave off that decimal point? Add in Math.
floor()! We can even put it right in the string concatenation if we want!

function timeTravel(pet) {
 let maxYear = 2500; // latest possible year we'll accept
 let year = Math.random() * maxYear;

 return 'Your ' + pet + ' is traveling through time to the year '
 + Math.floor(year) + '!';
}

Now try invoking it several times in different ways with different animals!

timeTravel('cat');
timeTravel('parakeet');
console.log(timeTravel('dog'));
console.log(timeTravel('ferret'));
alert(timeTravel("pair o' cleats"));
alert(timeTravel('neighbor\'s cat'));

Congratulations on literally making history!

One more note: Notice how in those last four examples, you're actually calling a function inside of
another function! These are referred to as nested functions (one function is inside of another just
like a smaller bird's nest might fit inside of a bigger nest) and are very common in JavaScript. When
dealing with nested functions, the interpreter will always evaluate the functions from the inside
out. To evaluate a function means to process the function—run it, invoke it, get the return value
from it. So to "evaluate functions from the inside out" means the interpreter (the computer) looks at
and runs the inner function first.

69

In one of the examples above, the inner function was timeTravel('neighbor\'s cat'). The
interpreter runs (evaluates) that function before running the outer alert() function. After running
the inner timeTravel function, it takes the return value of the inner function (in our case, the return
value was a string describing the pet's travel status) and passes that return value (string) as the
argument for the outer alert() function.

Did that make complete sense to you? If not, read those last two paragraphs slowly and carefully
two more times before moving on. This is an important concept, so do your best to understand
it. Now it's quiz time!

CHAPTER 4: QUIZ

Write your answers down in your Workbook. Don't look back at the chapter for answers. After you
finish the quiz, check your answers against the back of the book.

1.	 What is the name for a separated block of code that can be called to perform a specific task?

2.	 Which symbols surround the body of a function?

3.	 After creating a function, I can use it later. Calling the function is referred to as
______________ the function.

4.	 What kind of capitalization should be used for function names?

5.	 What part of the function sends something back when the function is called?

6.	 At the top of a function declaration, there may be variable names (called ____________)
inside of parens. When invoking this function, values (called _____________) may be
passed-in to be assigned to these variables.

7.	 What is the acronym used to describe the intention of good developers to avoid writing
similar blocks of code over and over again?

8.	 Which of the four built-in functions discussed in this chapter would probably annoy users if
they encountered it several times on a website?

9.	 If passing multiple values into a function, what symbol is used to separate them?

10.	 Which built-in function is good for sending secret messages to developers (or to yourself while
you're debugging your own website) that users probably won't see?

11.	 Even if a function accepts no input, it still needs what symbols in order to use it?

12.	 The built-in randomization function returns a value that is greater than ________ but less
than ______.

70

13.	 Which built-in function rounds any number down to the nearest integer?

14.	 True/False: A function can be wrapped inside another function.

15.	 True/False: When evaluating nested function calls, the interpreter will evaluate them from
the inside out.

16.	 True/False: When dealing with nested functions, the interpreter will use the parameter from
the inner function and pass it as an argument to the outer function.

17.	 Which key on the keyboard is used for indenting your code (for example, inside the body of a
function)?

18.	 What do you type in order to create a new line in the console?

CHAPTER 4: KEY CONCEPTS

Read this list and look back in the chapter to review anything you're not solid on before moving on:

•	 What is a function?
•	 Declaring functions
•	 Syntax and naming for each part of a function
•	 Return value
•	 Invoking functions
•	 Function parameters
•	 Passing arguments to functions
•	 D.R.Y.
•	 Built-in Functions
•	 alert()
•	 console.log()
•	 Math.random()

•	 Math.floor()

•	 Nested functions

71

CHAPTER 4: DRILLS

A. Try typing these valid code snippets in the console

Note: You can paraphrase or even ignore the //comments… don't need to be exact on those as long
as you're sure you understand them.

1.	 function getTheWeather() {
 return 'Sweltering with scattered snow flurries';
}

2.	 // Today's weather forecast
getTheWeather();

3.	 /*
Now we'll log the weather
to the console
*/
function logWeather() {
 let forecast = 'cloudy with a chance of meatballs';
 let weatherMessage = "Today's weather is " + forecast;
 console.log(weatherMessage);
 return forecast;
}

4.	 alert('The weather forecast says: \n' + logWeather());

5.	 function whatIsYourName(name) {
 let message = 'Your name is \n' + name;
 console.log(message);
 alert(message);
 return message;
}

6.	 whatIsYourName('<type_your_actual_name_here>');

7.	 function yourFavoriteToy(faveToy, age) {
 return 'You are ' + age + ', and you still enjoy ' + faveToy + '?';
}

8.	 yourFavoriteToy('<your_favorite_toy_here>', '<your_age>');

9.	 function getRandomSingleDieRoll() { // get 6-sided die roll
 /* we need to add 1 because otherwise Math.floor() will
 give us a number between 0 and 5 */
 return Math.floor(Math.random() * 6) + 1;
}

10.	 getRandomSingleDieRoll(); // try this several times to ensure it works

11.	 function getRandomDiceRoll() { // get result of two 6-sided dice
 let die1 = getRandomSingleDieRoll(); // using above function
 let die2 = getRandomSingleDieRoll();
 let sum = die1 + die2;
 console.log('You rolled ' + sum + '! (' + die1 + ' & ' + die2 + ')');

72

 return sum;
}

12.	 alert(getRandomDiceRoll()); // try several times (look at console message)

B. What's wrong with each of these code snippets?

1.	 function noDeclarationNeeded();

2.	 function whoNeedsEm()
 return "It's fine.";

3.	 function dentistOffice() [
 console.log('You may need braces');
]

4.	 function areDonutsTasty() {
 return 'Yes!';
}
areDonutsTasty(console.log());

5.	 console.log('Integer between 0 and 1: ' + Math.random(Math.floor()));

6.	 alert('Users love alert messages!');

7.	 console.log('Random value: ' + Math.random();)

8.	 function getColor {
 return 'purple';
}
console.log(getColor());

9.	 function faveFancyRestaurant() {
 return 'My favorite restaurant is ' + restaurant;
}
faveFancyRestaurant('McDonald\'s');

CHAPTER 4: AGGREGATE REVIEW

1.	 Which data type is surrounded by either single or double quotes?

2.	 What are the two keywords we've shown that may be used to declare a new variable?

3.	 True/False: Comments are ignored by the JavaScript interpreter

4.	 Is this a valid statement? (And if not, why not?)
var whyWas6AfraidOf7 = 'because 7 ate 9';

5.	 What single character can you add to this statement to avoid a Syntax Error?
let lovelySong = 'They Can't Take That Away From Me.';

73

6.	 True/False: Functions are effective tools for following the W.E.T. principle of coding.

7.	 Does this appear to accomplish the developer's intention? (And if not, why not?)
let daysInAYear = 365; /* we'll use this later

8.	 Which data type is this?
0

9.	 What symbol is used for single-line comments?

10.	 A JavaScript string is made up of individual ________________.

11.	 What symbol is used for modulo?

12.	 True/False: A string should not contain double quotes inside it unless single quotes are used
on the outside (surrounding the string).

13.	 What is a developer trying to arrive at when he/she uses modulo in an operation?

14.	 True/False: Error messages are for humans to read.

15.	 What is the color of grass?

16.	 Where can a developer type simple JavaScript commands to test them out and get immediate
responses?

17.	 Is this a valid statement (feel free to type it in the console)? (And if not, why not?)
function getRemainder(dividend, divisor) {
 let remainderStatement = 'The Euclidean division of ' + dividend
 + ' by ' + divisor
 + ' yields a remainder of ' + (dividend % divisor);
 return remainderStatement;
}
getRemainder(10, 3);

18.	 Which mathematical operator would be most useful for checking if a given value is evenly
divisible by 325?

19.	 What special symbol could you use to simplify this assignment?
largeNumber = largeNumber + 19;

20.	 Which data type is this?
'75'

21.	 Is this valid JavaScript? (And if not, why not?)
function requiredAge(5) {
 // must be at least 5 to ride;
 return 5;
}
requiredAge(5);

22.	 What does the key combination SHIFT+ENTER do in the console?

23.	 What key should you press to indent your code inside a function?

74

24.	 Is this correct? (And if not, why not?)
function giveRandomNumber(min, maxNumber) {
 return Math.floor(Math.random() * maxNumber);
}
giveRandomNumber(20); // looking for a number less than 20

25.	 If you call a function inside of another function, the inner function is said to be
_____________ within the outer function.

DIY: Town Lottery
Your town wants you to be in charge of choosing this year's lucky lottery numbers! It's very
important to each person involved that the numbers be totally random. There are 3 number slots,
and each entry has picked some one- or two-digit number between 0 and 99 (i.e., any integer less
than 100). So an example of a ticket might be "25-4-92", or "46-81-7", or "18-60-98", etc.

The town needs you to create one single function that will randomly return all three numbers
separated by dashes and log a message to the console with this result. Good luck! Actually, you
probably won't need luck, but those lottery players just might!

Remember: if you're struggling with this concept, check the back of the book for help! But then
cover up the answer and try doing it all yourself.

75

77

C
ha

pt
er

 5

This chapter has a lot of new information, but it shouldn't be too hard as everything is
focused around a simple theme: True & False.

5 SHALL I
COMPARE?

Booleans
The third primitive data type you need to know is called a "boolean" (rhymes with "truly
inn"). The value of a boolean is always either true or false. That's it! Nothing in between.
Either he's telling the truth or he's not. The light is on or it's off. Either it is or it isn't. You
either finished your homework or you didn't.

We're now going to go through all of the possible boolean values, and you'll get a chance to
type them all into the console! Close down all your windows and open the console back up
again to type along with these boolean statements (no quotes here):

true;
false;

Did you get all that? Those are all of the possible values a boolean may contain. Go ahead
and review them if you need to. Then let's move along.

Up to this point, we've discussed two different primitive data types: numbers and strings. You
might not have seen the word "primitive" in coding before. It basically means that these
data types are not objects (something you'll learn in a future chapter) and have no methods
(functions) in themselves.

In this book, we'll discuss all 5 of the different primitive data types (okay technically, there's a
6th one, but it's confusing, and you won't need it for years; so we're just going to pretend there
are only 5). Some good news: the last three data types are the easy ones!

78

Comparison Operators
Booleans become much more useful
when we're comparing things in
JavaScript. That's when we can call on
our highly skilled team of comparison
operators.

We'll show a total of eight comparison
operators here, but the thing to remember
is that no matter which of these operators
we're using and no matter which way we
use them, we will always end up with a result that is a boolean: either true or false. Let's type some
together in the console. Don't be lazy. Actually type all of these—as you should with everything in
this book that's written in blue text—and watch the console responses to make sure you get the same
answers I put here:

"Triple Equals", a.k.a. "Equals Equals Equals" (===):

'my house' === "my house"; // true
1 === true; // false
false === false; // true
false === 0; // false
"That's confusing" === 'That\'s confusing'; // true
3 === 3; // true
3 === '3'; // false

Notice that last one. === means "exactly equal to". It checks if the value is the same and the type is
the same. In the case of 3 === '3', the value is the same, but the data type is not. One is a number
while the other is a string.

"Double Equals", a.k.a. "Equals Equals" (==):

3 == 3; // true
3 == '3'; // true
0 == 'zero'; // false
1 == true; // true
5 == true; // false
false == 0; // true

Did any of those surprise you? == means "pretty much equal to". So false is pretty much equal to 0,
and 3 is pretty much equal to "3" even though they're different types.

"Not Equals Equals", a.k.a. "Bang Equals Equals" (!==):

5 !== 8; // true
true !== 1; // true

79

0 !== false; // true
"That's confusing" !== 'That\'s confusing'; // false
3 !== 3; // false
3 !== '3'; // true

In coding, the exclamation point (!) is sometimes called a "bang" and it always means "not." It's a
way of taking the negation (or opposite) of something. So !== will always give you the opposite of
===. Just like ===, it pays attention to data types as well as values. You might read it as "NOT exactly
equal to".

"Not Equals," a.k.a. "Bang Equals" (!=):

5 != 8; // true
true != 1; // false
0 != false; // false
3 != 3; // false
3 != '3'; // false

Hopefully this one was pretty intuitive. != always gives you the opposite of the result you would get
from ==. You might read it as "NOT even pretty much equal to."

To help you better understand the difference between !== and !=, imagine your teacher put this
statement on the board:

"True/False: The number 1 is NOT exactly equal to true." (1 !== true)
If you're clever, you'd say that's a true statement. On the other hand, the teacher might change the
statement to read thusly:

"True/False: The number 1 is NOT even pretty much equal to true." (1 != true)
You would have to say that is now a false statement as these values are pretty much equal to one
another (in coding, at least) even though they're different data types.

One more thing: while I want you to understand what == and != do (because you might see them
in code), I don't want you to ever use them in your own JavaScript code. Why not? Because there's
never a good reason to. Any scenario where you might use them could instead use the stricter
versions: === or !==. If you find that you actually want to be more lenient (for instance, if you want
to accept a 1 or a '1' or a value of true), then you can explicitly write your code to allow for all of
these values (using ===), and it is easier for developers reading it to know your intentions instead of
assuming that you're just writing a sloppy shorthand. Don't worry if you don't fully understand the
reasoning behind this yet (you will in the future), just remember this one simple rule: Never ever use ==
or !=.

"Greater Than" (>):

8 > 5; // true
3 > 5; // false
'8' > 5; // true
2 > 2; // false

80

This is probably an easy concept to understand. The "greater than" sign (>) tests if the value on the
left side of the comparison is larger—greater—than the value on the right. If so, true. If not, false.

"Less Than" (<):

8 < 5; // false
3 < 5; // true
2 < 2; // false

Another easy one. The "less than" sign (<) tests if a smaller value is on the left side of the
comparison. If that value is smaller, then this resolves to true. Otherwise, it's false.

"Greater Than or Equal To" (>=):

8 >= 5; // true
3 >= 5; // false
2 >= 2; // true

Another simple one. This is exactly the same as "greater than" except it will also resolve to the
boolean true if the two values are equal.

"Less Than or Equal To" (<=):

8 <= 5; // false
3 <= 5; // true
2 <= 2; // true

And last but not least is the "less than or equal to" comparison operator (<=) which works exactly like
"less than" except it also resolves to true if the two compared values are equal.

Quick recap: you've now learned all 8 of the comparison operators, which test for equality,
inequality, or greatness comparison. There are 6 that you will use frequently in your JavaScript
coding career: ===, !==, <, <=, >, and >=. And there are two that you will see in other people's code
but never use in your own code: == and !=.

Do you remember what each one does? If you're not sure what all 8 of these do, go back and read
once more the section explaining it and try several examples—including any examples you can think of
yourself—in the console. Remember, "getting through" a book is meaningless. What matters is what
goes in your head. Go as slow as you need to go, but focus on getting this information into your head.

Conditionals
It might be tempting to think that booleans are such a simple concept that they may not be very
useful in coding. Actually, booleans are used constantly and usually in the form of conditionals.

81

What is a Conditional?

That's a good question! A conditional statement in coding is used to perform certain blocks
of code based on a given condition. The condition (for example, a comparison operator like x
=== y) results in a boolean value (true or false). If the boolean value is true, the code is executed
(run). Otherwise, the code block is skipped over (doesn't run). Let's look at a practical example.

The if Statement

The most common example of a conditional in JavaScript is the if statement. Type these:

if (true) {
 console.log('the boolean value in parens is true! this code will run!');
}

if (false) {
 console.log('the boolean value is false; won\'t be logged to the console.');
}

The if statement checks for a boolean value inside the parens to determine whether or not to run
the code inside the block. Seems simple enough right? It also works with variables that resolve to
boolean values like this:

let booleanVariable = true;
if (booleanVariable) {
 console.log("Hopefully it's no surprise that this code block runs.");
}

Truthy and Falsy

It can even work if the value is not a boolean. In these next examples, the variables are not booleans
(so they're not exactly true or false). But we can say that they're more generally "truthy" or
"falsy." So if you use these inside the parens of an if block, they will resolve in the same way as
actual boolean values (true or false). Try these with me:

let truthyValue = 1; // still truthy, even though it's a number (not a boolean)
if (truthyValue) {
 console.log('It\'s truthy!');
}

if (0) { // zero is a number (not boolean) but its value is falsy
 console.log('Not going to run this');
}

if ('a string of any positive length is truthy') {
 console.log('works!');
}

if ('') { // this string is empty, so it is falsy
 console.log('nope.'); // this will not run
}

if (-3) { // all integer numbers (except zero) are truthy
 console.log('Yes!');
}

82

Comparison Operators in if Statements

So far in this chapter, you've learned about comparison operators and about if statements. But
we haven't yet put them together. But comparison operators and if statements are meant to be
together: like cars and tires or printers and ink!

Open the console in a new about:blank tab in Chrome. Then let's do these together:

// comparisons resolve to boolean values. will this be true or false?
let comparison = 3 < 9;
if (comparison) {
 console.log('will this line of code be run?');
}

if ('string' === "string") { // put comparison operator right in the parens
 console.log('are they EXACTLY the same?');
}

if (4 !== '4') { // this will resolve to true if these are not identical
 console.log('is it true?');
}

// the if block can be entirely on one line if you like
if (8 <= 7) {console.log('is 8 less-than-or-equal-to 7?');}

if ('abc' > '') {console.log('is short string greater than an empty string? Yes!');}

let numberOfKidsOnTeam1 = 5;
let numberOfKidsOnTeam2 = 6;
if (numberOfKidsOnTeam1 < numberOfKidsOnTeam2) {
 console.log('Team 1 is outnumbered!');
}

if...else

The if statement is great when you want some code
to run only if the given condition is true. But a good
operative understands that he usually must have a backup
plan. That is when we get to use another conditional:
if...else.

let doYouLikeGreenEggsAndHam = false;
if (doYouLikeGreenEggsAndHam) {
 console.log("You could eat them with a goat!"); // skip this
} else {
 console.log("Could you would you on a train?"); // run this
}

If the condition is true (or truthy), the interpreter will run the block of code inside the top part. If
the condition resolves false (or falsy), it will run the code in the else block section.

Now let's change the value and try again. Press UP_ARROW to bring up previous code snippets
and make changes as needed:

83

doYouLikeGreenEggsAndHam = true; // don't use let keyword
if (doYouLikeGreenEggsAndHam) {
 console.log("You could eat them with a goat!"); // now this will run!
} else {
 console.log("Could you would you on a train?"); // not this
}

Wrap it in a Function

Let's wrap some of this if...else logic into a function! Do you remember how to define a
function? Try this (include the //TODO: comment as that tells what we still need "to do"):

function mayIOrderAKidsMeal() {
 //TODO: add guts of the function later
}

Now you've defined a function! Only problem is that there is nothing in it. Press the UP_ARROW
key and replace the //TODO: comment to fill in the guts (the middle part) of the function like so:

function mayIOrderAKidsMeal() {
 let maxAgeToOrderKidsMeal = 10;
 let customerAge = 11; // you may use your real age here if you like
 if (customerAge <= maxAgeToOrderKidsMeal) {
 console.log("You may order a kid's meal!");
 } else {
 console.log('Sorry. You need to order from the adult menu.');
 }
}

Now invoke the function by typing its name with parens after it
like this:

mayIOrderAKidsMeal();

Response: "Sorry. You need to order from the adult menu."

Bummer! We missed it by just one year!

But wait! What if a younger kid asks this question? Then what
will the answer be?

let youngKidAge = 5;
mayIOrderAKidsMeal();

Response: "Sorry. You need to order from the adult menu."

Are you kidding me?! You're gonna turn down a 5-year-old kid who merely wants to order from the
kid's menu?! How could such a travesty happen?!

Well the problem is that our function is hardcoded with the customerAge set to 11. We should fix this
in the function declaration itself. Press the UP_ARROW key as many times as you need to in order
to bring up the function declaration and change it in two places (add a parameter in the parens and
remove the line hardcoding the customerAge) so it looks like this:

84

function mayIOrderAKidsMeal(customerAge) {
 let maxAgeToOrderKidsMeal = 10;
 if (customerAge <= maxAgeToOrderKidsMeal) {
 console.log("You may order a kid's meal!");
 } else {
 console.log('Sorry. You need to order from the adult menu.');
 }
}

Instead of hardcoding customerAge inside the function, it is now an parameter in the function that
should be passed in as an argument when we call the function! Now try this:

// youngKidAge is called an "argument" because we're passing it in
mayIOrderAKidsMeal(youngKidAge);

Response: "You may order a kid's meal!" // Hooray!

mayIOrderAKidsMeal(48); // We have standards here

Response: "Sorry. You need to order from the adult menu."

mayIOrderAKidsMeal(10); // Will it work for 10 year olds?
mayIOrderAKidsMeal(11); // C'mon, her birthday was just last week!

So that's hopefully a thorough enough explanation of if...else blocks to get you started. We'll be doing
a lot more work with these and other conditionals in the rest of this book, so I hope you paid good
attention. Now it's time to move on to a fun project we can do together that uses these principles! Close
everything down, then open up an about:blank page with a console window in Chrome.

Follow Along: Minimum Height to Ride
The fair is in town! Hooray!

Oh wait…Look again…It's only for giraffes. :-(

Bummer! Well, maybe we can help out at least. The giraffe ferris wheel and bumper cars are open
to anyone, but the giraffe tilt-a-whirl has a minimum height requirement of 102 inches tall. Your
mission is to create a program that can accept the giraffe's height (in feet and inches, like 6'3") and
respond with a message letting the giraffe know if he is tall enough to ride!

Sounds reasonable enough! Let's start by creating the function declaration with the parameters we
expect to receive (include the //TODO: comment below):

function isGiraffeTallEnoughToRide(heightInFeet, additionalInches) {
 //TODO: add code here soon
}

Next, we need to convert our giraffe's height into just inches. We know that there are 12 inches in a
foot, so let's first make that conversion (put all of these indented lines inside the function in place of
the //TODO: comment):

 let numberOfInchesInAFoot = 12;

85

 let giraffeHeight = heightInFeet * numberOfInchesInAFoot;

And we also need to add the additional inches, which are passed in to our function:

 giraffeHeight += additionalInches; // remember what += does?

Now we use a comparison operator in an if statement to see if the giraffe is tall enough:

 let minimumHeight = 102;
 if (giraffeHeight >= minimumHeight) {
 console.log("You're tall enough to ride the tilt-a-whirl!");
 }

Let's also add an else block so that we'll have code that runs whenever the comparison operator
condition resolves to false:

 } else {
 console.log("You're too short for this ride. Try the ferris wheel.");
 }

So here's how the function should look all together:

function isGiraffeTallEnoughToRide(heightInFeet, additionalInches) {
 let numberOfInchesInAFoot = 12;
 let giraffeHeight = heightInFeet * numberOfInchesInAFoot;
 giraffeHeight += additionalInches;
 let minimumHeight = 102;
 if (giraffeHeight >= minimumHeight) {
 console.log("You're tall enough to ride the tilt-a-whirl!");
 } else {
 console.log("You're too short for this ride. Try the ferris wheel.");
 }
}

With such a finely made function, we can now call it with each giraffe we need to test out!

Our lineup is in! The giraffes are 7'4" (that means 7 feet and 4 inches tall), 13'5" (13 ft. 5 in.), 10'9",
18'2", 6'11", 8'6", and 19'0". We can actually test them all out together with just one line at a time!

isGiraffeTallEnoughToRide(7, 4); // is 7 feet, 4 inches tall enough?
isGiraffeTallEnoughToRide(13, 5); //what about 13 ft, 5 in.?
isGiraffeTallEnoughToRide(10, 9); //10'9"
isGiraffeTallEnoughToRide(18, 2);
isGiraffeTallEnoughToRide(6, 11);
isGiraffeTallEnoughToRide(8, 6);
isGiraffeTallEnoughToRide(19, 0);

How did you do? If done perfectly, you should've
found that only two of these seven giraffes were
too short for the tilt-a-whirl (though one made it
without an inch to spare!). Is that what you got?

And isn't it cool how you were able to make
one nicely designed function and then call it as
many times as you needed to in order to solve a

86

repeated problem? That is one of the most useful concepts in coding. Build a program once and
then use it as many times as you like after that. Some programs are used thousands or even millions
of times!

CHAPTER 5: QUIZ

Do the whole quiz in your Workbook without looking back at the chapter. After you're finished,
check your answers against the back of the book.

1.	 What is the name for the primitive data type that must always be one of two values: either
true or false?

2.	 What is the symbol for the comparison operator that checks if the value on the left side is
smaller than the value on the right side?

3.	 True/False: "This one's tricky." !== 'This one\'s tricky.';

4.	 What is the preferred comparison operator for checking if two values are not equivalent?

5.	 Which are the two comparison operators that I recommend you should not use in any of your
own code?

6.	 Which comparison operator checks if the value on the right is less than or equal to the value
on the left?

7.	 What general kind of statement in coding is used to perform certain blocks of code based on
a given condition?

8.	 If a value isn't an exact boolean data type (i.e., it's not either true or false), but when placed
inside of the parens in an if block, it still causes that block of code to run, it can be said
that this value is generally ____________. If the if block would not be run based on this
condition, then the value is said to be generally ______________.

9.	 What kind of statement is run only when the condition for an if block has resolved to false?

10.	 True/False: Comparison operators always result in a value of true or false.

11.	 True/False: Comparison operators are often used inside the parens of an if block.

12.	 True/False: Comparison operators may sometimes be used inside the parens of an else
statement.

13.	 True/False: An if/else statement may only be used outside of a function.

87

CHAPTER 5: KEY CONCEPTS

Read this list and look back in the chapter to review anything you're not solid on before moving on:

•	 Boolean values
•	 All 8 Comparison Operators
•	 "Triple Equals" & "Not Equals Equals"
•	 "Greater Than" & "Less Than"
•	 "Greater Than or Equal To" & "Less Than or Equal To"
•	 Never Use "Double Equals" or "Not Equals"
•	 Conditionals
•	 if Statement
•	 Truthy & Falsy
•	 if...else

CHAPTER 5: DRILLS

A. Try typing these valid code snippets in the console

As you type the comparisons into the console, ask yourself if you expect the value to be true or
false. Then look at the response from the console. If it's different from what you expected, see if
you can determine why.

1.	 'This string' === "This String";

2.	 if (5 !== '5') {
 alert("didn't think so.");
}

3.	 7 >= 7;

4.	 9 <= 12;

5.	 if ('abc' > 'ab') {
 console.log('truthy');
} else {
 console.log('falsy');
}

6.	 0 !== false;

7.	 if (false != 0) {
 console.log('easy peasy');
} else {
 console.log('kinda confusing');
}

88

8.	 true == 5;

9.	 if (1 == true) {
 alert('See why we don\'t use this? Confusing!');
} else {
 alert('I thought it was true!');
}

10.	 -7 > 0;

11.	 4 < -20;

12.	 true === 'true';

13.	 if (1 === '1') {
 console.log('true dat');
}

14.	 // pay close attention to this one. make sure you understand it!
function whichNumberIsGreater(firstNumber, secondNumber) {
 if (firstNumber > secondNumber) {
 console.log(firstNumber + ' is greater than ' + secondNumber);
 } else {
 if (firstNumber < secondNumber) {
 console.log(secondNumber + ' is greater than ' + firstNumber);
 } else {
 console.log('Both numbers are equal!');
 }
 }
}

15.	 whichNumberIsGreater(212, 301);

16.	 whichNumberIsGreater(155, -800);

17.	 whichNumberIsGreater(12, 12);

18.	 whichNumberIsGreater('abcd', 'efg');

19.	 whichNumberIsGreater('24', 24);

B. What's wrong with each of these code snippets?
1.	 function whichIsSmaller(numberA, numberB) {

 if (numberA < numberB) {
 console.log(a + ' is smaller!');
 } else {
 console.log(b + ' is smaller!');
 }
}

2.	 if {
 true;
} else {
 false;
}

89

3.	 if (true) {
 console.log('truthy');
} else (false) {
 console.log('falsy');
}

4.	 3 === 3 < 4;

5.	 5 = 5;

6.	 let numberValue === 5;

7.	 let anotherNumber != 3;

CHAPTER 5: AGGREGATE REVIEW

1.	 True/False: Block comments cause the JavaScript interpreter to ignore everything from the
start of the comment to the end of the current line.

2.	 Is this a valid statement? (And if not, why not?)
let isPizzaDelicious = 'Chef' !== 'Oscar the Grouch';

3.	 What characters can you add to this statement to avoid a Syntax Error?
let sadSong = "It's So Hard to Say "Goodbye" to Yesterday";

4.	 What does D.R.Y. stand for in coding?

5.	 What general kind of statement in coding is used to perform certain blocks of code based on
a given condition?

6.	 Does this appear to accomplish the developer's intention? (And if not, why not?)
let daysPerWeek = 7; // used in calculations

7.	 Which data type is this?
'true'

8.	 What symbol(s) is/are used for block comments?

9.	 A value that isn't a boolean, but is treated as false for the purpose of conditional statements
is said to be generally ____________. If it were treated as true (though not a boolean), it is
said to be generally ______________.

10.	 What does the % operator indicate in JavaScript?

11.	 What form of capitalization should you use with function names in JavaScript?

12.	 True/False: An effective way to handle a string containing apostrophes is to use double
quotes on the outside (surrounding the string).

90

13.	 What kind of error message would result from this code?
let firstInitial = 'J';
let firstInitial = "M";

14.	 What is a developer trying to arrive at when he/she uses modulo in an operation?

15.	 Is this a valid statement? (And if not, why not?)
(15 + (7 * 9) - 4) / 8 - 57);

16.	 True/False: Error messages are intended to obscure (hide) the cause of their errors in an
attempt to stop hackers.

17.	 What does a single equals sign imply in a statement?

18.	 What keyboard shortcut is used for opening up the console in Chrome?

19.	 Is this valid code (feel free to type it in the console)? (And if not, why not?)
function isOldEnoughToEnlist(age) {
 let minimumAge = 18;
 if (age > minimumAge) {
 console.log('Old enough!');
 } else {
 console.log('Too young!');
 }
}
let myCurrentAge = 18;
isOldEnoughToEnlist(myCurrentAge);

20.	 What special symbol could you use to simplify this assignment?
greeting = greeting + ', ' + firstName;

21.	 Which data type is this?
false

22.	 Is this valid JavaScript? (And if not, why not?)
function returnANumber(startingNumber) {
 return startingNumber + 4;
 startingNumber += 3;
 console.log('New number: ' + startingNumber);
}
returnANumber(15);

23.	 What URL address should you go to in order to get an empty page in Chrome?

24.	 Chrome, Internet Explorer, Edge, Firefox, and Safari are all examples of _____________.

25.	 Which two comparison operators should you avoid using in your own code?

26.	 Which comparison operator checks if the value on the right is greater than or equal to the
value on the left?

27.	 What key should you press to indent your code inside a function?

28.	 Is this correct? (And if not, why not?)

91

let booleanCondition = true !== false;
if (booleanCondition) {
 console.log('It\'s truthy!');
} else {
 console.log("It's falsy!");
}

29.	 If you call a function inside of another function, the inner function is said to be
_____________ within the outer function.

30.	 True/False: Comparison operators always result in a boolean value.

31.	 What built-in function can you use to generate a random number between 0 and 1?

DIY: Children's Church
Pastor Preachit has just announced the grand opening of a new children's church, and it seems that
everyone in the congregation wants to attend—including the adults and the babies! Of course there
isn't enough space for everybody, so it's important to the Pastor that the children's church is limited
exclusively to children between the ages of 6 and 13.

Build a function that can help Pastor Preachit by accepting a person's age (as an argument), then
logging a message to the console stating whether or not that person meets the minimum and
maximum age requirements to attend children's
church.

Try passing in many different ages to make sure your
function works in the console. After you're done with
this project (or before you're done if you're struggling
with it), check to see how your answer compares with
the one in the back of the book.

9393

C
ha

pt
er

 6

If you were able to follow and understand all of the last chapter, then this
one should be a breeze! In the last chapter, we introduced the third of the five
different primitive data types, and in this chapter, you'll learn the last two. And

guess what! They're the easiest ones of all!

6 LOGICALLY
OPERATIONAL

Null
The fourth primitive data type is a simple one: null. Null basically means nothing. Is it
0? No, zero is a number. Is it ""? No, that's an empty string. Is it false? No, false is a
boolean. So which is it? It's null. Nothing. The fourth data type. Here's an example of
how you might use it:

let myVariable = null;
myVariable;

Response: null

This is a useful way of setting a value on something that is intended to be changed sometime
in the future. By setting it to a null value, you're kind of making a statement that this
variable will need to be changed in the future or ignored.

As an example, suppose you'd like to create a form for a user to fill out. The form has three
fields in it: name, age, and carColor. In creating the form, you might need to set some initial
values for each of these variables. You might set the initial values like this:

let name = null;
let age = null;
let carColor = null;

After the user fills out the form, you'll have values that can be used for these:

name = 'Kaori';
age = 13;

94

But wait! Kaori is too young to drive a car, so she has no carColor! No problem. We'll keep
that value as null (because Kaori didn't fill in that field). Now when we're processing the form
(we'll show how to do that in the next volume when we talk about forms), we'll know to ignore the
carColor field, which has the value of null.

Another thing to note about null is that it is falsy. Do you remember what that means? If not, look
it up in the glossary! Don't be lazy! Type this in the console to see what I mean:

let testCondition = null;
if (testCondition) {
 console.log('Looks like ' + testCondition + ' is truthy after all! '
 + 'I guess Jeremy doesn\'t know what he\'s talking about!');
} else {
 console.log(testCondition + ' is indeed falsy. '
 + 'I never should have doubted such a brilliant author.');
}

So this primitive data type is quite simple. The null data type has exactly one possible value: null.
It will become more useful in the future when we learn about JavaScript objects because, in some
ways, null is considered to be the simplest of all objects.

Ya know what? That's confusing. Forget that last part; I'm getting ahead of myself.

You've now learned four of the five primitive data types. Let's finish out the list, shall we?

Undefined
The fifth—and final—primitive data type is...undefined!

Whoa!! What a plot twist! The final data type is one you've
been seeing in this book ever since Chapter 1!

As a data type, undefined means that no other value has
been assigned to a variable, not even null. This is the default
value for a variable. Type this in your console for example:

let myCoolNewVariable;
myCoolNewVariable;

This is probably the first time we've used the let keyword in a line
that did not have an = sign. That's because if we want the value
undefined, we simply don't have to assign any other value. The
variable receives the value undefined by default!

Finally, what would you guess would happen if we put undefined
in a conditional statement? Do you think it would resolve truthy or
falsy? Let's try it in the console to see:

95

let newUndefinedVariable;
if (newUndefinedVariable) {
 console.log(newUndefinedVariable + ' is truthy! ' + 'Just as I suspected!');
} else {
 console.log('I knew it! ' + newUndefinedVariable + ' is falsy!');
}

Was that what you expected? I hope so!

Well now you've learned all five of the primitive data types in JavaScript! You'll get many
opportunities to use all five of them throughout this book. But for now, let's move on to some new
useful tools for your JavaScript toolbox!

Logical Operators
In the last chapter, you learned about comparison operators such as <, >=, ===, and !==. In this
chapter, I'll introduce you to some of their close relatives called logical operators.

There are three logical operators: &&, ||, and !. Similar to the comparison operators, the logical
operators are often used with boolean values. They can also be used with other data types (such as
strings and numbers). Unlike comparison operators, their results are not always boolean (true or false),
but as with all possible values, they are still always truthy or falsy (which means they can be treated like
they're true or false). For this reason, they work great in conditional statements like if...else.

Gosh, that last paragraph went through several rewrites, and it still sounds confusing! I think we'd
better look at a few examples to show you what I mean.

Logical AND (&&)

The first logical operator is represented by the ampersand symbol (& —which is located above the 7 key
on your keyboard) doubled, so it looks like this: &&. We refer to this as "logical AND" (though I think
most developers just say "and and"). This is used to determine if two different values are both truthy.

Before we try this out, let's think through a real-life scenario that could use the logical AND
(&&). Suppose your mom wants to know if you're ready for school. She says, "To be ready for
school, you need your backpack AND your lunch. Are you ready for school?"

"Mom, what if I have neither my backpack nor my lunch?"
"Um... you're not ready (obvi)."
"Okay, I have my backpack, just not my lunch. We good?"
"Nope!"
"Alright, I went back to get my lunch and left my backpack on the counter."
(Facepalm)
"Mom! I've got my backpack AND my lunch!"
"Yes! You're [finally] ready for school!"

96

Notice that only in the last scenario was the result a passing one (i.e.,
"truthy"). It was falsy in all the other cases.

Close down all the programs on your computer, then open up a
blank console window in Chrome. Type out these examples, and
pay close attention to the results (see if you can guess what the
console response will be for each!):

false && false;
true && true;
true && false;
false && true;

The result of the second line is true because the values on both sides of the && are truthy. All the
other three lines have at least one falsy value, so you can't say that both sides are truthy. Get it?

Another way of saying it is that && will return falsy if the value on either side is falsy. This might
sound strange at first, but if you look at the example above, you'll see that's correct.

Let's try this out in the console using a function. Also, I just remembered that your teacher explicitly
told me you must start wearing shoes to school. (Hey, I don't make the rules around here!) So let's
add that one more parameter:

function amIReadyForSchool(haveBackpack, haveLunch, haveShoes) {
 if (haveBackpack && haveLunch && haveShoes) {
 console.log('You\'re ready for school!');
 } else {
 console.log("You're not ready yet! Hurry or we'll be late!");
 }
}

/* the order of the values (called "arguments") corresponds to
* the parameters in the function definition above.
* i.e. the first boolean stands for haveBackpack, the second for haveLunch, etc.
*
* BTW, when writing comments, you don't need to type every word I have here
* Just a couple words is fine to get the idea
*/
amIReadyForSchool(false, false, true);
amIReadyForSchool(true, false, true);
// leaving out an argument is the same as passing in undefined for that argument
amIReadyForSchool(true, true);
amIReadyForSchool(true, true, true);

Logical OR (||)

The second logical operator is represented by the pipe symbol (| —which is located above the
BACKSLASH key on your keyboard) doubled, so it looks like this: ||. We refer to this as "logical
OR" (though I think most developers just say "or or"). This is used to determine if either of two
different values are truthy. Let's use a basic example again:

false || false;
true || true;

97

true || false;
false || true;

The result of the first line is false because neither of the values on either side of the || are truthy. All
the other three lines have at least one truthy value, so you can correctly say that at least one of the two
sides is truthy. Get it?

Another way of saying it is that || will only return falsy if both sides are falsy. This might sound
strange at first, but if you look at the example above, you'll see that's correct.

Here's a simple real-life scenario that could use the logical OR (||). Before leaving for school, your mom
says you have to eat breakfast. You can eat eggs or cereal (or both). But you must eat something; it's the
most important meal of the day! So, have you eaten breakfast? Type this out in the console:

function isBreakfastEaten(ateEggs, ateCereal) {
 if (ateEggs || ateCereal) {
 console.log("You've eaten breakfast!");
 } else {
 console.log('You have not eaten breakfast
yet! Hop to it');
 }
}

Remember, you can use the UP_ARROW key to bring up
previous lines of code. Can you guess the results of each
line here?

isBreakfastEaten(false, true);
isBreakfastEaten(true, true);
isBreakfastEaten(true, false);
isBreakfastEaten(false, false);

Do you see the difference between && and ||?

Now, let's try putting them together. If you want to leave
the house in the morning, you should know by now all the
requirements your mom has for you. In order to leave the
house, you must eat breakfast (either eggs OR cereal) AND
have your backpack AND lunch AND shoes.

Can you figure out how to make a single function for all of
your requirements? If so, do it now in the console before
reading further. If you don't think you can do it yet, then
read on and type along with me, but try to see how much of
it you can come up with on your own. Either way, you must
type it all into the console.

function canWeLeaveNow(ateEggs, ateCereal, haveBackpack, haveLunch, haveShoes) {
 if ((ateEggs || ateCereal) && (haveBackpack && haveLunch && haveShoes)) {
 console.log('We can leave! Great job!');
 } else {
 console.log("Not yet! You're not ready!");
 }
}

98

Now try to guess what the result will be for each of these:

canWeLeaveNow(false, true, true, true, false);
canWeLeaveNow(true, true, false, true, true);
canWeLeaveNow(true, false, true, true, true);
// leaving out an argument is the same as passing in undefined (which is falsy)
canWeLeaveNow(true, true, true, true);
canWeLeaveNow(false, true, true, true, true);

Make sense? Great!

Always Truthy/Falsy... Not Always True/False

In looking at the provided examples, you may have asked yourself "Why does he keep writing
'truthy' and 'falsy'? Why not just write 'true' and 'false'?" Or maybe that thought never crossed your
mind. Either way, I'll answer that for you now.

In the case of both && and ||, the value returned will not always be true or false. It will actually be
one of the values on one of the two sides of the logical operator! Try these (you don't need to type
the comments unless you want to):

true && 5;
0 && 5; // 0 is falsy, so the 5 is ignored
'hi' && undefined && true; // returns the first falsy value (ignores the rest)
true && 1 && null && 'good';
true && 'good' && 'honest' && 'noble'; // no falsy values, so returns last value

true || 5; // returns the first truthy value (ignores the rest);
0 || 5;
'loyal' || 'kind' && 'honest' || false; // returns the first truthy value
false || 0 || undefined || "" || null; // no truthy values, so returns last value

So the values that are returned aren't always booleans. But because all values are either truthy or
falsy, this still works fine as a substitute for the actual booleans (true and false).

Okay, I hope that helped to clear up that question you probably weren't asking. Now let's move on
to the last logical operator!

Logical NOT (!)

The third and final logical operator is represented by the exclamation point symbol (! —which is
achieved with the SHIFT+1 key combination on your keyboard). We refer to this as "logical NOT"
(though most developers just say "not" or sometimes "bang"). Try it out:

!true; // false

!false; // true

Logical NOT is downright contrarian! This means that it's almost like whatever you give him, he says
the opposite! You say, "Isn't this a beautiful, warm, sunny day?" and logical NOT will probably say,
"No, it's an ugly, cold, rainy night,"...or more accurately, its closest boolean equivalent: false.

99

One interesting thing to note is that, unlike logical AND and logical OR, logical NOT always
returns a boolean (either true or false). Try typing these examples and notice the results:

!0; // true (because 0 is a falsy value, ! makes it boolean true)
!5; // false (because 5 is truthy)
!(100 > 1);

!(5 !== 5);

!'string of any length';

!""; // empty string (use double or single quotes)
!(true && true);

!(false || false);

!!true; // two !'s (pronounced "not not")

!!0; // this is the same as !(!0);

Let's try using logical NOT in a function. The first thing
we'll need to...Oh, hold on...that's my cell phone...I better
take this. I'll be right back...

Okay, I'm back. That was your teacher. Turns out the
school is concerned about sickness—specifically fevers and
throwing up. The new rule is that a student should NOT
come to school if she has a temperature of MORE THAN
100 degrees OR if she has puked all over herself. It's
embarrassing to have to put that right here in my book,
but...teacher's orders. Can you think of a formula (using logical NOT) for determining if you're
healthy enough to go to school? If you can write it on your own, do it; otherwise try this one:

function amIHealthyEnough(myTemperature, havePukedAllOverMyself) {
 let maxHealthyTemperature = 100;
 if (!(myTemperature > maxHealthyTemperature || havePukedAllOverMyself)) {
 console.log("You're healthy enough for school!");
 } else {
 console.log("Go back to bed! You're too sick for school!");
 }
}

Notice that the first parameter expects a number and the second parameter expects a boolean. Let's
invoke this function together with different arguments:

amIHealthyEnough(100, false);
amIHealthyEnough(99.8, true); // yuck... who's gonna clean this up?
amIHealthyEnough(150, false); // hmm... let me see that thermometer...
amIHealthyEnough(98.6, false); // Thought so! Probably just a math test.

Okay! Now let's go ahead and add all these together. You may have guessed that this example is a
little more convoluted, or complicated, than you would likely have in a real program. You'll learn
a better way to organize this stuff in a later volume when we talk about refactoring. In the meantime
though, let's just tack on the new stuff to our old function. If it's still in the console history from
before, you can bring it up again by click the UP_ARROW key several times. Then change it as
follows:

100

function canWeLeaveNow(myTemperature, havePukedAllOverMyself, ateEggs, ateCereal,
haveBackpack, haveLunch, haveShoes) {
 let maxHealthyTemperature = 100;
 if (!(myTemperature > maxHealthyTemperature || havePukedAllOverMyself)
 && (ateEggs || ateCereal)
 && (haveBackpack && haveLunch && haveShoes)) {
 console.log('Hooraaayyyy! We can leave for school! Great job!');
 } else {
 console.log("No way, Jose! You're either too sick or not ready!");
 }
}

/**
* Pay special attention to the order of the values being passed in ("arguments").
* Each argument corresponds with the parameters in the function declaration above.
*/
canWeLeaveNow(97.9, false, false, true, true, true, true);
canWeLeaveNow(101, false, true, false, true, true, true);
canWeLeaveNow(98.6, true, true, true, true, true, true);
canWeLeaveNow(98.6, false, true, true, false, true, true);
canWeLeaveNow(100, false, true, false, true, true, true);

Phew! That was a big one! Now on to one more new concept. If you understood the stuff before,
this next one should be a breeze.

if...else if...else
By now, you probably feel like an if...else expert! Well, I'm afraid that's only partly true. One thing
every if...else expert needs to learn is else if!

Suppose you just got a new alarm clock for your birthday. You'd like to write a program to wake
you up on time. On school days (Monday–Friday), you need to wake up by 6:30 to get to school
on time. But on Saturdays, you can sleep in as long as you like! Here's how you can write your
function:

function timeToWakeUp(dayOfTheWeek) {
 if (dayOfTheWeek === 'Saturday') {
 return null; // no alarm today
 } else {
 return '6:30';
 }
}
timeToWakeUp('Tuesday');
timeToWakeUp('Saturday');

That works great! Oh, but wait...on Sundays, you need a 7:30 alarm to get to church on time. So
now there are three possibilities. This looks like a job for else if! Press the UP_ARROW a few
times to get your function back and change it like so:

function timeToWakeUp(dayOfTheWeek) {
 if (dayOfTheWeek === 'Saturday') {
 return null; // no alarm today
 } else if (dayOfTheWeek === 'Sunday') {

101

 return '7:30';
 } else {
 return '6:30';
 }
}
timeToWakeUp('Sunday');
timeToWakeUp('Friday');
timeToWakeUp('Saturday');

So you see that if we use else if, we also need to put another conditional statement inside the
parens after that second if (the one that immediately follows else). If this statement is truthy, we'll
run the code in that if block, else we run the code in the else block below it.

Hey, I just thought of something! Let's use the new else if knowledge we've just acquired to make
our canWeLeaveNow function even more helpful by giving more meaningful error messages! Let's
retype the whole thing with many changes to incorporate what we've learned! Remember to use
SHIFT+ENTER for break returns. Type along with me:

function canWeLeaveNow(myTemperature, havePukedAllOverMyself, ateEggs, ateCereal,
haveBackpack, haveLunch, haveShoes) {
 let maxHealthyTemperature = 100;
 let message; // undefined (for now);

 if (myTemperature > maxHealthyTemperature) {
 message = "You're running a fever. You should be in bed today.";
 } else if (havePukedAllOverMyself) {
 message = 'You really want to go to school with puke on your shirt? '
 + 'Get in the bath.';
 } else {
 if (ateEggs || ateCereal) {
 if (!haveBackpack) {
 message = 'Get your backpack!';
 } else if (!haveLunch) {
 message = 'Get your lunch!';
 } else if (!haveShoes) {
 message = 'Get your shoes!';
 } else {
 message = 'We can leave for school! Great job!';
 }
 } else {
 message = 'You need breakfast--the most important meal of the day!";
 }
 }

 console.log(message);
}

Now I recognize that this function is huge. It's the biggest one we've created so far in this book. But
it's also very logical, and in some ways it should be more readable than the smaller version we made
before. We're now going to invoke the function several times with different arguments. For each
of these lines, I'd like you to mentally walk through the function and see if you can guess what the
exact response will be before you press ENTER.
canWeLeaveNow(99.1, false, true, true, false, true, true);
canWeLeaveNow(102, false, true, false, true, false, true);
canWeLeaveNow(98.1, false, true, true, true, true);

102

canWeLeaveNow(98.6, true, true, true, true, true, true);
canWeLeaveNow(99.9, false, true, false, true, false, true);
canWeLeaveNow(98.6, false, false, false, true, true, true);
canWeLeaveNow(100.0, false, false, true, true, true, true);

Alrighty! How did you do with that?! Do you feel that you understood it all? If not, please go back
and try this chapter again from the beginning one more time before moving on. Trust me, you'll
be able to move much faster the second time through it. Also, if you come across words that you've
forgotten, try looking them up in the glossary. Remember, the purpose of reading this book is not so
you can get through it and complete a book report. The important thing is to understand and retain
the knowledge. You can do it!

Follow Along: Movie Tickets
Your local movie theater needs your help! They
need a program that will determine for them if a
child is old enough to watch any given movie. The
movies that are playing now are rated G, PG-13,
and R. At this theater, moviegoers of all ages are
allowed to watch the G-rated movies; anyone over
the age of 10 may watch the PG-13 movies; but
R-rated movies are restricted to patrons who are at
least 17 years old. What kind of function can we
write to determine if the customer may buy a ticket?

If you think you know how to solve this (or at least
how to get started), I would encourage you to try it
out on your own before moving on. If you're not
sure where to begin, then by all means, do some of
this along with me. But first, please close down all
programs, then reopen the blank Chrome page with
a console. Ready? Okay:

function isAllowedToWatchTheMovie(movieRating, customerAge) {
 let minAgeForR = 17;
 let minAgeForPg13 = 10;
 let msg = null; // "msg" is a common shorthand for "message"

 if (movieRating === 'R' && customerAge >= minAgeForR) {
 msg = 'You may watch this R-rated film.';
 } else if (movieRating === 'PG-13' && !(customerAge < minAgeForPg13)) {
 msg = 'You may watch this PG-13-rated film.';
 } else if (movieRating === 'G') {
 msg = 'Anyone may watch this G-rated film.';
 } else {
 msg = 'Sorry, you are not allowed to watch.';
 }

 console.log(msg);
}

103

To make sure this works, try out different combinations of arguments on your own such as:

isAllowedToWatchTheMovie('PG-13', 10);
isAllowedToWatchTheMovie('R', 15);
isAllowedToWatchTheMovie('G', 7);
isAllowedToWatchTheMovie('R', 17);

Did that work for you? Great! Once again, the day is saved, thanks to...What's that? Oh! Okay...
turns out, the movie theater has got some complaints for us. Apparently, the rules state that the
age restrictions do not apply for any patrons who are here with their parents. So the rule is that kids
can enter any movies as long as they're accompanied by an adult. Okay so that shouldn't be too
hard, right? Go ahead and bring up your function definition and let's make a few alterations to it
(remember, there's more than one way to do this; also, if you can make these changes on your own
without looking, that's even better!):

function isAllowedToWatchTheMovie(movieRating, customerAge, withAdult) {
 let minAgeForR = 17;
 let minAgeForPg13 = 10;
 let msg = null; // "msg" is a common shorthand for "message"

 if (movieRating === 'R' && (customerAge >= minAgeForR || withAdult)) {
 msg = 'You may watch this R-rated film.';
 } else if (movieRating === 'PG-13'
 && (!(customerAge < minAgeForPg13) || withAdult)) {
 msg = 'You may watch this PG-13-rated film.';
 } else if (movieRating === 'G') {
 msg = 'Anyone may watch this G-rated film.';
 } else {
 msg = 'Sorry, you are not allowed to watch.';
 }

 console.log(msg);
}

isAllowedToWatchTheMovie('PG-13', 9, false);
isAllowedToWatchTheMovie('PG-13', 9, true);
isAllowedToWatchTheMovie('G', 7); // leaving an argument out = undefined
isAllowedToWatchTheMovie('R', 16);
isAllowedToWatchTheMovie('R', 15, true);

And just like that, you're the town hero once again! All in a day's work. Whoosh!

104

CHAPTER 6: QUIZ

Do the whole quiz in your Workbook without looking back at the chapter. After you're finished,
have a parent check your answers against the back of the book (or check them yourself if no parent
is available).

1.	 What is the name for the primitive data type that means no other value has been assigned?

2.	 Similar to the comparison operators, the ______________ operators (&&, ||, and !) work
great in conditional statements.

3.	 What is the name for the primitive data type that basically means nothing (not zero, not empty
string, not undefined, not false, etc.)?

4.	 If a function definition has four parameters, but only two arguments are passed in, what are
the values that the third and fourth parameters receive?

5.	 What is the name for the logical operator that will only return falsy if it has falsy values on
both sides? What is the symbol for this logical operator?

6.	 How many possible values are there for the null data type?

7.	 True/False: 53 >= 53 && !(51 <= 52);

8.	 If the condition inside the parens of an if block returns falsy, what syntax might you use to
check a different condition before resolving to the else block?

9.	 What is the name for the only logical operator that always returns a boolean? What is the
symbol for this logical operator?

10.	 True/False: Any/Every value in JavaScript can either be considered truthy or falsy?

11.	 What is the name for the logical operator that will return truthy if it has a truthy value on
either side? What is the symbol for this logical operator?

12.	 True/False: true || false;

13.	 True/False: false || (true && false);

14.	 True/False: null and undefined are both falsy values.

15.	 What is the name for the logical operator that will return falsy if it has a falsy value on either
side? What is the symbol for this logical operator?

16.	 True/False: null || false !== undefined;

17.	 What is the value of myMessage after this line?
let myMessage;

105

18.	 How many possible values are there for the undefined data type?

19.	 True/False: (null || false) || ((0 || true) || undefined);

20.	 What is the value of imFeeling after this line?
var imFeeling = !'sure' || !!'confused';

21.	 What is the name for the logical operator that will only return truthy if it has truthy values on
both sides? What is the symbol for this logical operator?

22.	 The values null, false, '', 0, and undefined are all ___________; whereas true, 'string',
and 1 are all __________ values.

23.	 What's the value of theGreatestOfThese after this line?
		 var theGreatestOfThese = 'faith' && 'hope' && 'love';

CHAPTER 6: KEY CONCEPTS

Read this list and look back in the chapter to review anything you're not solid on before moving on:

•	 Null data type with its one possible value: null
•	 Undefined data type with its one possible value: undefined
•	 All 3 Logical Operators
•	 Logical AND (&&)
•	 Logical OR (||)
•	 Logical NOT (!)
•	 Different return values of &&, || and !
•	 if...else if...else

CHAPTER 6: DRILLS

A. Try typing these valid code snippets in the console

As you type the comparisons into the console, ask yourself what exactly you expect the value to
be. Then look at the response from the console to see if you're correct.

1.	 true && false && true;

2.	 true || false || true;

3.	 if (5 < 4) {
 console.log('A');
} else if (5 > 4) {
 console.log('B');

106

} else {
 console.log('C');
}

4.	 3 && (null || ((15 / 3) - 5));

5.	 if ('abc' > 'd') {
 console.log('A');
} else if (0) {
 console.log('B');
} else {
 console.log('C');
}

6.	 if (5 && 'dime' && null) {
 console.log('A');
} else if (0 || undefined || '') {
 console.log('B');
} else if (false || -1 || !0) {
 console.log('C');
} else {
 console.log('D');
}

7.	 // pay close attention to this one. make sure you understand it!
function eldersFirst(person1Age, person2Age) {
 let whoseTurn;
 if ((!person2Age && person1Age) || person1Age > person2Age) {
 whoseTurn = 1;
 } else if ((!person1Age && person2Age) || person2Age > person1Age) {
 whoseTurn = 2;
 } else {
 whoseTurn = null;
 }
 if (whoseTurn) {
 console.log('Person' + whoseTurn + ' is older and goes first.');
 } else if (!(person1Age || person2Age)) {
 console.log('No ages have been passed as arguments!');
 } else {
 console.log("Both are the same age. Let's randomly decide Person"
 + (Math.floor(Math.random() * 2) + 1) + ' goes first!');
 }
}

8.	 eldersFirst(80, 10);

9.	 eldersFirst(15, 17);

10.	 eldersFirst(20);

11.	 eldersFirst(null, null);

12.	 eldersFirst(13, 13);

13.	 eldersFirst();

14.	 eldersFirst(null, 5);

107

15.	 eldersFirst(7, 7);

16.	 function unknownMan(nameTag) {
 console.log('His name is ' + (nameTag || 'John Doe') + '.');
}

17.	 unknownMan('Justin Thyme');

18.	 unknownMan();

19.	 unknownMan('Rusty Karr');

20.	 unknownMan(null);

B. What's wrong with each of these code snippets?
1.	 function notNot(anyArgument) {

 if (!!anyArgument) {
 console.log('anyArgument value is falsy');
 } else if (!anyArgument) {
 console.log('anyArgument value is falsy');
 } else {
 console.log('anyArgument value is truthy');
 }
}

2.	 if (25 > 14) {
 'Yes';
} else if {
 'no';
}

3.	 let !yourHearts = 'be troubled';

4.	 true && false = false;

5.	 let x || 5 = !true;

CHAPTER 6: AGGREGATE REVIEW

1.	 Is this a valid statement? (And if not, why not?)
let isMamasCookingTheBestInTown = !!'you bet it is!';

2.	 What are the data types (in order) for each of these falsy values?
false; ""; null; 0; ''; undefined;

3.	 What does the % operator indicate in JavaScript?

4.	 A JavaScript string is made up of individual ________________.

5.	 True/False: Single-line comments cause the JavaScript interpreter to ignore everything from
the start of the comment to the end of the current line.

108

6.	 There are three different ______________ operators (&&, ||, and !).

7.	 The ______________ operators we use are ===, !==, >, >=, <, and <=.

8.	 What general kind of statement in coding is used to perform certain blocks of code based on
a given condition?

9.	 If you call a function inside of another function, the inner function is said to be
_____________ within the outer function.

10.	 Is this valid code (feel free to type it in the console)? (And if not, why not?)
function isAcceptableHeightForKidsPlayArea(height) {
 let minHeight = 24; // inches
 let maxHeight = 48;
 let verdict;
 if (height > minHeight && height < maxHeight) {
 verdict = 'Acceptable Height!';
 } else if (height > maxHeight) {
 verdict = 'Too tall!';
 } else {
 verdict = 'Too short!';
 }
 console.log(verdict);
}
isAcceptableHeightForKidsPlayArea(21);
isAcceptableHeightForKidsPlayArea(35);
isAcceptableHeightForKidsPlayArea(53);
isAcceptableHeightForKidsPlayArea(48);

11.	 True/False: Logical operators always result in a boolean value.

12.	 What special symbol could you use to simplify this assignment?
currentScore = currentScore + 10;

13.	 Which mathematical operator would be most useful for checking if a given value is evenly
divisible by 52?

14.	 Which of these values are truthy? And what are the data types (in order) for each of the
values?
" "; -1; true; 15.3; 'false'; '0';

15.	 Is this valid JavaScript? (And if not, why not?)
function tellMeHello(myName) {
 return myName + '!';
 console.log('Hello, ' + myName);
}
tellMeHello('Jeremy');

16.	 Which comparison operator returns false if the value on the left is greater than or equal to
the value on the left?

17.	 Where can a developer type simple JavaScript commands to test them out and get immediate
responses?

109

18.	 What day comes after Tuesday?

19.	 What key should you press to indent your code inside a function?

20.	 True/False: When there are multiple parens nested inside of one another, you should always
evaluate the statements from the outside in (i.e. process the results of the values for the outer
parens before processing those for the inner parens).

21.	 True/False: Comparison operators always result in a boolean value.

22.	 Is this valid JavaScript? (And if not, why not?)
function gimmeFive(5) {
 return 5;
}
gimmeFive(5);

23.	 What built-in function can you use to round a float (number with a decimal point) down to
the nearest integer (number without a decimal point)?

24.	 True/False: 31 >= -31 && !(38 <= 38) || !!(-39 < 39);

25.	 True/False: Code that is in comments is ignored by the JavaScript interpreter.

26.	 What key combination can you press to get a break return (new line) in the console?

DIY: Adventures of Lunk
A new adventure game is being released soon: The Legend of Zebra: Wildly Bad Breath! The game
designers are almost ready to put it in production, but they're struggling to work out a bug in the
logic of the final temple: the Temple of Stripes. Here's how they need the Temple Door to behave:

•	 If Lunk is missing any of the 6 Bi-Force pieces, the templeDoor should send him away with a
message telling him to get the rest of the pieces.

•	 If he has all the Bi-Force pieces, then he must show that he possesses both the halitosisWand
and the masterKey (or 10 regularKeys if he doesn't have the masterKey).

•	 If he possesses the required wand and key(s), display a message congratulating him and letting
him enter the Temple of Stripes.

•	 If he is missing the required wand and/or key(s), send him away with a cryptic, mostly
unhelpful message saying to come back when he's more prepared. (The only way Lunk will
learn what he still needs is if he randomly happens to bring onion stew to the mageSquire in
obscureTown...Good luck with that.)

Build a single function—using if...else if...else blocks—that can properly work out this logic by
accepting the required inventory items (as individual arguments like hasMasterKey, etc.) and using
logical operators on them. Then try running the function with different arguments to ensure that
it logs the appropriate message to the console for each scenario. (Note: the mageSquire stuff is not
part of the solution; that's just to be silly.)

110

After you're done with this project (or before you're done if you're struggling with it), check to see
how your answer compares with the one in the back of the book. Remember, there are several
ways to get a correct answer. It just needs to work with all of the different possible inventory
combinations that Lunk may have.

111

113113

C
ha

pt
er

 7

Congratulations on getting this far! I hope you can appreciate how
much you've learned in the last six chapters. It's quite extraordinary!

7 PROJECTS
GALORE

Methods in the Madness
For some of these projects, you will use these cool things called properties and
methods. Here's a simple example of a property:

'abcdefg'.length; // .length = how many characters are in this string?

Response: 7

When you see that tiny little dot (the period) between the string and the word following it,
that tells you that the next word represents a property. A property is a named value that is

Well I think you'll find this chapter to be the most fun chapter we've done so far.
You'll learn a few new small things, but mostly you'll get to exercise what you've learned
already. This is your chance to flex your muscles and try out the concepts you've been
learning on many different projects!

The format for this chapter is simple: I'll teach a small concept, then we'll do a project
together. Then you'll do one by yourself. Then I'll teach another small concept, and we'll do
another project together and you'll do one by yourself, etc. My challenge to you is to keep
using your brain! By that, I mean don't check out on me and start just typing along to get
through each project. I want you to really think through the projects and try to see if you
can guess how to solve each one (maybe even try it yourself) before using the answer I give
you. That's a major part of the job of a real developer (all that...ya know, like...thinking and
stuff), and the more you can do that now, the better you will be!

Now before moving on, please close down every program on your computer, so you just see
the desktop. Then open the blank page in Chrome (as we've done since Chapter 1) and
open the Chrome developer tools console. Once you've done that, let's start with learning an
important, fundamental JavaScript concept; then we can move on to the easier ones.

114

attached to an object. What is an object? Hmm...ya had to ask, didn't you?

Okay...well...The following paragraph will probably sound confusing. It would take me a few pages
to explain this concept fully, but I'm going to try to cram it into one paragraph because I don't want
to divert our attention away from the projects, which are the main point of this chapter. I'll just
put it this way: objects are a crucial part of JavaScript. JavaScript is full of objects. An object in
JavaScript is a collection of properties (which are named values). Remember Math.random()? Math
is an object and that dot (.) tells us that the next word random is a property. And because random is
followed by parens (()), that tells us random must be a function (all functions have parens). When a
property is a function, there's a special name for it: we call it a method.

Anyway, we're getting ahead of ourselves. You'll learn all about objects later. For now, just know
that a string is one kind of object, so it has properties like length that will tell you stuff about it.

Objects also have methods (attached functions), which allow you to do stuff with them. When
working with strings, a couple examples are the .concat() and .repeat() methods:

'The sky'.concat(' is blue.'); // behaves like using the + to concatenate
'Why? '.repeat(50); // can you guess what this will do? Test it out!

Now you can annoy your friends with a simple little line of code! You'll learn a bunch more new
and useful properties and methods soon enough.

Phew! Sorry to get off on a long tangent like that. I have a hard time passing up those teachable
moments sometimes—especially when it's something important to JavaScript like understanding
objects, properties, and methods. But there's a process for learning effectively, and I really should
get back to it. Now, where was I?

Oh yes! We're about to learn a couple new methods to prepare for our first project!

Changing Cases: toUpperCase() and toLowerCase()
We get to START with an EASY one! Have YOU ever NOTICED how some MESSAGES appear
with TOO MUCH CAPITALIZATION? Doesn't it sometimes seem like people are SHOUTING
at YOU when they CAPITALIZE EACH WORD?! Have you EVER WONDERED if you could
CALM DOWN those people who LOVE THAT CAPS_LOCK KEY? Well...now you can.

You can take any string and return a new version of it in all capital letters by using the built-in string
method .toUpperCase(). Similarly, you can return a new version of any string with all lower case
letters with the built-in .toLowerCase() method. Remember, a method is simply a function attached
to an object—in this case, a string. They work like this:

'I like pizza!'.toUpperCase();
"SERIOUSLY, STOP SHOUTING SO MUCH.".toLowerCase();

let nameOfUser = 'Frank';
let greeting = "It's so good to see you again, " + nameOfUser + '!';
console.log(greeting.toUpperCase() + ' I missed you so much!');

115

Any questions? No? Okay, let's do a project!

Follow Along: Shout Muffler
One of City Hall's most prominent financial
donors, Grum P. Oldman, gets anxious when
he reads shouted messages in the town's online
forum. It's important to keep him content,
so we'd like to install a shout muffler on his
machine. Whenever someone posts a message in
the forum, we'd like it to be converted to lowercase
letters. This will muffle the sound of people shouting to help Mr. Oldman remain calm. (...You're
right, this doesn't actually make much sense; just play along, okay?)

function shoutMuffler(message) {
 return message.toLowerCase();
}
// test it out
shoutMuffler("HERE'S AN OBNOXIOUS MESSAGE WRITTEN IN ALL CAPS!!");
shoutMuffler("emAil-AddrESSes@uSUAlly-wOrK-wiTH-anY-capITalizaTIOn.cOM");

Simple, right? Now try a project on your own!

DIY: Spam Email Formatter
You've been hired to help out a spam email distributor who works in the remote country of
Farawaynia. He has strict quality standards for his spam emails involving large sums of money,
required spelling and grammatical errors, a strong sense of urgency, and most of all: capitalization
of every letter. Most of these requirements have been outsourced to other developers (so you don't
need to worry about them). But the one thing you must do yourself is write a function that will
convert all messages to be fully capitalized.

Creating Variables with const
Alright now, this is one of the most important concepts of this chapter, so please pay close
attention. Remember how in chapter 1, I showed you how you could create a new variable using
the var keyword? Then remember how I told you that we would usually be using let instead of var
even though they do almost exactly the same thing (but I annoyingly did not tell you what actually
made them different)? Remember that time? Yeah...good times.

Well now you get to learn a new keyword that you can use to create variables...since you were always
itching to learn a third way to accomplish the same simple task! It's the const keyword (short for
"constant" which means an unchangeable value), and it is used like so:

116

const daysInAWeek = 7;

daysInAWeek;

Response: 7

You may be tempted to think that this const keyword is not necessary. Couldn't you accomplish
the same task using let or var? Well, yes and no. You could write that same block of code using
let or var and you'd get the same response, but there's something quite different when you use
const. Type this in the console to see what I mean:

daysInAWeek = 8;

Response: Uncaught TypeError: Assignment to constant variable.

See? If you had created the daysInAWeek variable using either var or let, the interpreter would've
had no problem letting you change it from 7 to 8. But because you used the const keyword,
you've told the interpreter that this variable will keep the same value as a constant—it cannot be
changed. Now if you type daysInAWeek; in the console, you'll get the same original result of 7.

So const should be used any time you do not want the value of the variable to be changed. As a
developer, I personally find I use const about 3 or 4 times as often as I use let—and I never use var
for anything anymore. Type these constant values to get the hang of using the const keyword:

const monthsPerYear = 12;
const myBirthday = '1981-06-30';
const milesAroundTheEquator = 24901;
const kilometersPerMile = 1.61;
const capitalOfPoland = 'Warsaw';

All of those examples are things that will not change (at least not through the course of running
your code). So here's the rule of thumb when creating new variables: If you know that the value
will not change, use const. If it might change, use let. And there's no good reason to use var for
any of your code. var is a thing of the past; it's only in this book because you'll still see it in lots of
code. Of the three, you should be using const the most.

Follow Along: Temperature Converter
(Celsius to Fahrenheit)
Time for another little project! As with all of the projects in this chapter, if
you're able to do it yourself, you should try that first. If not, then feel free to
type along with my solution. However, if you need to follow along with my
answer—i.e., you wouldn't be able to do it entirely on your own—then at the
end of it, I would like you to go back and see if you can do the whole thing
again on your own from the beginning.

Here's the task: Your science project requires you to heat up liquids to different
temperatures. The problem is that all of the temperatures are written in Celsius,
and your thermometer only shows Fahrenheit. You need to create a function that
will convert the given celsius temperature into a Fahrenheit temperature.

117

It might not surprise you to learn that Google did the hard work for us. Doing a quick Google search,
we can determine that the formula for converting a Celsius temperature into Fahrenheit is this:

(celsiusTemp * 1.8) + 32;

So now we can just put that into a function like so:

function convertCelsiusToFahrenheit(celsiusTemp) {
 return (celsiusTemp * 1.8) + 32;
}

Let's test that out a couple times like this:

convertCelsiusToFahrenheit(45);
convertCelsiusToFahrenheit(0);

You could just call this done now. And you wouldn't necessarily be wrong to do so. But there's just
a little problem. If you or someone else in the future were to look at this function, you might notice
that the values seem...well...a little arbitrary. By that, I mean that 1.8 and 32 just look like some
random numbers. Why those numbers? What do they mean? Could it work with 2.9 and 42 just as
well? It seems like there should really be some explanations, don't ya think?

This is not uncommon. Sometimes, when there are confusing numbers like this, it's valuable for
developers to write out explanations in a document—like an instruction manual. Where we find
these code explanations typed out, we call this documentation.

This is a good time to introduce another good little rule-of-thumb. When you're dealing with
numbers, it's almost always best to assign them to variable names. That way, when you or anyone
else looks at your code, they'll be able to understand why you chose the numbers you did. It makes
your code easier to read and understand, without the need for all the wordy documentation or many
comments explaining what everything does. When code is written with useful variable names and
function names, the code can basically explain its own purpose. We call this self-documenting
code, and it's a good way to write.

So what do the 1.8 and 32 mean? Well, in this case, the 1.8 is what's known as the "conversion
ratio" from Celsius to Fahrenheit. That just means it's "the number you need to multiply it by" when
you're converting values to a different form. The 32 is the freezing point of water for Fahrenheit.
The freezing point of water for Celsius is 0. For this lesson, it's not important why this works. Just
note what the numbers represent, and note that these numbers do not change—they remain constant.

Once you know this, it's actually fairly easy to change the code to make it self-documenting. Simply
press the UP_ARROW key a few times and update your function like so:

function convertCelsiusToFahrenheit(celsiusTemp) {
 const conversionRatio = 1.8;
 const fahrenheitFreezingPoint = 32;
 return (celsiusTemp * conversionRatio) + fahrenheitFreezingPoint;
}

Because we knew these numbers (1.8 and 32) would never change, we can call them constants—thus
we initialized them with the const keyword and used explanatory variable names to make the code

118

self-documenting (i.e., easy to read and understand what the values represent). Now let's try it out:

convertCelsiusToFahrenheit(100);	 // 100
convertCelsiusToFahrenheit(15);	 // 59

How did you do? Did you understand the thing about "self-documenting"? If not, just keep on
reading. It's not a hugely important concept, but it is useful if you can figure it out.

DIY: Temperature Converter (Fahrenheit to Celsius)
Now that you've written a function to convert Celsius values to Fahrenheit, see if you can do the
exact reverse! Write a function that will convert Fahrenheit values to Celsius. Hint: Your function
will need to first subtract the fahrenheitFreezingPoint (which is the number 32) and then divide by
the conversionRatio (1.8).

If you do this properly, then you should be able to take the value from the first temperature
converter and pass it in as an argument to the second temperature converter and get the original
value back (or extremely close to it)!

Let me confirm()
Remember how I showed you the alert() function in chapter 4? And remember how I said that
you should not include it in your code because your users would find it annoying? Seriously, what
was the point of me teaching you something only to tell you not to use it?!

Hey, now that I think of it, there are two more built-in functions I'd like to teach you before telling you
not to use them! The first one is called confirm() and you use it like this (type in the console):

confirm('Are you sure you wanna jump in a Minnesota lake on the 1st day of spring?');

Cool, huh? Now you might be asking yourself, "Why am I expected to learn something that I'll
be told not to use?!" Well if so, you would be wrong. Now you might be thinking to yourself,
"Huh? Wrong?! That doesn't make any sense!" And about that, you'd be right.

Here is another way that you might use this confirm() function:

if (confirm('Did your mom say "Yes"?')) {
 console.log("Great! Grab your swimsuit and let's go!");
} else {
 console.log('Well, she prolly has your best in mind.');
}

So confirm() is a function that freezes everything in place in order to get confirmation from the
user. The value returned by confirm() is always a boolean. If the user clicks the "OK" button, it's
true; if he clicks the "Cancel" button, it's false. This is useful in code if, for example, the user clicks
a delete button on a website. By using confirm('Are you sure you want to delete this?'), you can
help the user avoid accidentally deleting something important. You'll see similar behavior on your
own computer if you try to delete a file.

119

Follow Along: Did You Brush?
The local dentist Dr. Seymour N. Sizors has
had just about enough of patients with bad
breath. From now on, before any patient comes to
see him, he'd like them to confirm that they brushed
their teeth this morning. Can you create a simple
function to help him out?

This'll be a quick one. If you think you might already know how to do this, try it on your own
first. Otherwise, follow along with me:

function confirmTeethBrushed() {
 if (confirm('Did you brush your teeth this morning?')) {
 return 'Dr. Sizors will see you now.';
 } else {
 return 'Go brush your teeth first. You can use the sink over there.';
 }
}
confirmTeethBrushed();
confirmTeethBrushed();

Simple as that!

DIY: Did You Also Floss?
Hmm...Now Dr. Sizors wants every patient to brush and floss before they come see him. What's
next? Are the patients going to have to drill their own root canals? Sheesh...

So here's the gist of the requirements for this DIY: First, the patient must confirm whether or
not she has brushed her teeth. If she hasn't, tell her to brush. If she has brushed her teeth, then
confirm whether or not she has flossed. If she hasn't, tell her to floss. If she has, then she can see
the dentist. If you get stuck, check the answer in the back of the book.

Listening for the prompt()
Alrighty now, there's one more built-in function I'd like to teach you before telling you not to use it (I'll
explain why soon)! It's called prompt() and it goes like this:

prompt('What is your name?');
'Hello, ' + prompt('What is your name?') + '!';
'You are ' + prompt('How old are you?') + ' years old.';

So prompt() is a function that freezes everything in place and prompts the user to enter a value and
then either click the "OK" button or the "Cancel" button. It's similar to confirm() except that
prompt() returns a string (user input) whereas confirm() always returns a boolean. If the user clicks
the "OK" button, the prompt() function will return a string containing the value he typed. If the
user clicks the "Cancel" button, the prompt() function will return null.

120

Follow Along: Short-Order Cook
Open a new browser tab to start this project in the console
on the about:blank page.

Your dad's best friend just started a new job as a short-
order cook and he wants to practice his cooking skills with
you! He can make anything you want! Create a function
that will ask (a.k.a. "prompt") you, the user, to tell him
your favorite meal and then log a message to the console
affirming that he will make that for you!

If you'd like to try it yourself first, go for it! Otherwise,
we can do this one together:

function cookThis() {
 const faveMeal = prompt("What's your favorite meal?");
 console.log("Great! I'll start cooking your " + faveMeal + ' right now!');
}
cookThis();
cookThis();
cookThis();

By the third time you ran that cookThis() function, did you consider pressing the "Cancel"
button? Or perhaps pressing "OK" without filling in the value? If you did, you might've noticed it
said "Great! I'll start cooking your null right now!" That's not ideal.

We can improve on this one with a simple if...else block to account for the various inputs the user
might try. Press the UP_ARROW a few times and change the function thusly:

function cookThis() {
 const faveMeal = prompt("What's your favorite meal?");

 if (faveMeal) {
 console.log("Great! I'll start cooking your " + faveMeal + ' right now!');
 } else {
 console.log("Do you not have a favorite meal? Okay, plate-of-dirt then!");
 }
}
cookThis();	 // try using "Cancel" button
cookThis();	 // try leaving the field empty

How'd you do? Did you follow all that logic? I hope so!

Okay so the question may still remain in your mind: "Why shouldn't we use confirm() and
prompt()?" Well, the most correct answer is because they both block everything. No other code can
continue to run until you get user input. I don't expect that to seem like a big deal to you at this
early stage in your coding. Just know that it will be very meaningful to you farther in the future.

Admittedly, there is probably better reason to sometimes use confirm() than to use prompt(), and
that's because confirm() can be a last line of defense before the user does something permanent

121

(like if she clicks the button to delete her social media account). On the other hand, prompt() is just
simply a bad user experience.

The other answer for why you shouldn't use prompt() in particular is because there are many better
ways to make a comfortable experience for the user than to have a box pop up in his face and make
him type in an answer before the box can go away.

However, the "better ways" to do this are a little more complicated than you're ready for just yet (I'll
cover them in Volume 2 of the Code for Teens series). This is why I teach you to use prompt() and
confirm() for now. Until we get to the more complicated ways, you can go ahead and continue to
use prompt() to get user input. In fact, you should probably use it for the rest of the DIY projects in
this section.

DIY: Exotic Soup Chef
Create a function that prompts the user three times asking for a different ingredient each
time. Once the user has responded to all prompts (inputting three different ingredients), then
return (or log to the console) the name of the special soup that is being prepared. The name should
include all three ingredients such as "Carrot, Potato and Onion soup."

How toFixed() the Decimal Places
Here's another built-in function that helps with a simple little concept. If you ever need to round
out a number to some exact number of decimal places, you'll find this function useful. It's called
toFixed() and it's used like this (type along):

(8.111111).toFixed(); // invoked with no arguments (rounds to nearest integer)
(8.111111).toFixed(2); // invoked with a 2 passed-in
(8.8899).toFixed(); // invoked with no arguments (rounds to nearest integer)
(5.666667).toFixed(1);
let preciseNumber = 2 / 3; // 0.6666666666666666
preciseNumber.toFixed(3) // round to 3 digits = "0.667"

Notice that the return value after using toFixed() is always a string. See how it's surrounded by
quotes? That's how you know.

This is a good way to deal with money. For instance, if you were trying to estimate the tax on a
large purchase, you know that the final amount will never be less than a penny. So if taxes are 0.09
for every dollar, then the taxes for various items could be shown like this:

const taxRate = 0.09;
const decimalPoints = 2;
(2.35 * taxRate).toFixed(decimalPoints); // tax charged on a $2.35 item
(15.59 * taxRate).toFixed(decimalPoints);
(9.99 * taxRate).toFixed(decimalPoints);

Overall, toFixed() should be a relatively easy concept. You won't use it too much, but you'll often
want it when doing any kind of math with money.

122

Follow Along: Tip Calculator (Constant Rate)
Open a new browser tab to start this project in the console on the about:blank page.

The manager at the local Thai restaurant, The Thai Tanic,
is concerned that his customers aren't tipping their waitresses
enough. He wants you to build a tip calculator to help them quit
being so stingy. Here's how it should behave: When the function
is invoked, the customer is prompted to input the total amount for
her meal. When she does this, she should get a message stating the
suggested tip amount (18% of the total meal cost).

In this project, the manager wants the rate to remain at 18% all
the time. We can say this value is constant because it does not ever
change. If it were to change based on different user input, we
might call it variable or dynamic. Such as the case for the total
price of the meal. That value is variable because it varies based
on the user's input.

Note: Any percentage is actually a fraction of 100. This means
that 18% is the same as 18/100. Another way of writing 18/100
is 0.18. So if you want 18% of some number, you can get it by multiplying that number by 0.18.

Now before going any further, ask yourself this question: "Could I possibly do this entirely on my
own?" If so, then please read no further until you've given it your best shot. If you don't think you
can do it entirely on your own, then I want you to do this: read the previous paragraph slowly and
carefully. Do your best to understand everything that paragraph is trying to explain. Then, if you
think you can at least do some of it on your own, then please do as much as you can before reading on.

Okay now, let's do this together! Hopefully, you've already tried this on your own, so we will see how
close your version and mine turned out to be. We will start by creating a function that uses prompt()
to get the total cost of the customer's meal.

function recommendedTip() {
 const tipPercentage = 18/100; // this could also be written as 0.18
 const totalMealCost = prompt('What is the total cost of your meal?');
 const decimalPlaces = 2; // money is usually rounded to 2 decimal places
 const tipAmount = (totalMealCost * tipPercentage).toFixed(decimalPlaces);

 return 'We recommend you tip $' + tipAmount;
}
recommendedTip();
recommendedTip();
recommendedTip();

So that's enough to solve the Follow Along project. Now see if you can improve on it with this DIY
project...

123

DIY: Tip Calculator (Variable Rate)
For this DIY project, you may use the previous function as a starting place. Your task is to see if
you can modify this function so that the 18% is not a hardcoded value. The improved tip calculator
should prompt the user to give the tip percentage (in addition to the total meal cost) and then
calculate the value based on that. Try it out now!

I hope you had fun with all these projects! The full-time job of a software engineer often involves
similar kinds of projects—they're more complex, of course, and often more fun, but they're similar
in the problem-solving approach. On top of that, engineers get to work as a team, so that makes it
even more fun...and to top it all off, we get paid really well to do it! Now it's quiz time!

CHAPTER 7: QUIZ

The quiz this time is shorter since there weren't many new concepts. As always, write your answers
down in your Workbook. When finished, check them against the back of the book.

1.	 True/False: In JavaScript, an object is a collection of properties (named values).

2.	 What method (function) can you use to convert a string to using all capital letters?

3.	 What keyword should you use to create any variable that you know will not be changed?

4.	 What glossary term refers to written-out explanations and examples for what code does and/
or how to use it?

5.	 When should you use the let keyword in your own code?

6.	 What built-in function(s) will cause the JavaScript interpreter to wait for the user to click a
button before continuing with the rest of the code?

7.	 What glossary term refers to code that has helpfully-named variables and descriptive function
names so that it's easy for a developer to understand the purpose of the code as he reads it
(without much need for explanatory comments)?

8.	 What method can you use to convert a string to using all non-capital letters?

9.	 When should you use the var keyword in your own code?

10.	 True/False: when an object's property is a function, it goes by a special name: "mothered".

11.	 What built-in function will cause the JavaScript interpreter to wait for the user to type
information before continuing with the rest of the code?

12.	 Which keyword will you probably use most of the time to create variables?

124

13.	 True/False: The prompt() function always returns a boolean.

14.	 True/False: Numbers in coding should usually be assigned to descriptive variable names to
make their purpose easier to understand.

15.	 True/False: The alert(), confirm(), and prompt() functions are widely used by professionals
because they create an elegant user experience.

CHAPTER 7: KEY CONCEPTS

Read this list and look back in the chapter to review anything you're not solid on:

•	 Object
•	 Property
•	 Method
•	 toUpperCase()

•	 toLowerCase()

•	 const

•	 Documentation
•	 Self-documenting code
•	 confirm()

•	 prompt()

•	 toFixed()

CHAPTER 7: DRILLS

A. Try typing these valid code snippets in the console

There isn't much mystery in the console responses this time. The more important point is that you
should get used to typing these so that you'll remember them in the future.

1.	 const litersPerGallon = 3.7854; // this ratio is constant (doesn't change)
litersPerGallon.toFixed(1);

2.	 "uSerNAmeWiThWeirdCapITALizATioN".toLowerCase();

3.	 let moneyValue = 1.5999; // this uses let keyword because it might change
if (confirm('Want to round this value to the nearest penny?')) {
 moneyValue = moneyValue.toFixed(2); // see? changing.
}
console.log('Money value is $' + moneyValue);

125

4.	 const averageMilesToTheMoon = 239000;

5.	 const yourName = prompt("What's your name again?");
console.log("It's great to see you again, " + yourName + '!');

6.	 const anyVariableThatWillNotChange = 'should be initialized with const';

7.	 (18.5).toFixed();

8.	 'official patent office of the u.s.a.'.toUpperCase();

9.	 let anyVariableThatMayChange = 'should be initialized with';
anyVariableThatMayChange += ' the let keyword';
anyVariableThatMayChange;

10.	 const cleanAllTheThings = confirm('Clean ALL the things?');
if (cleanAllTheThings) {
 console.log('All the things have been cleaned!');
} else {
 console.log('Keep things as they are.');
}

11.	 /* pay attention to how this code is self-documenting;
the variable names basically explain the code's purpose */
const preTaxPrice = 17.99;
const taxRate = 0.08;
const costOfTaxAlone = preTaxPrice * taxRate;
const fullPriceWithTax = preTaxPrice + costOfTaxAlone;
const priceRounded = fullPriceWithTax.toFixed(2);
if (confirm('Ready to pay this amount? ($' + priceRounded + ')')) {
 console.log('Thank you for your purchase!');
} else {
 console.log("Okay, we'll cancel this order then.");
}

12.	 function isItSafeToShakeYourHand() {
 let safeToShake = false; // using let because it might change
 if (confirm('Are you someone I trust?')) {
 if (confirm('Are you feeling well today?')) {
 safeToShake = true;
 } else {
 const disease = prompt('What are you sick with?');
 /* notice the NOT character (!) in the next line...
 that makes it confirm the OPPOSITE (NOT contagious). */
 if (!confirm('Is ' + disease + ' contagious?')) {
 safeToShake = true;
 } // no else is required because safeToShake is false already
 }
 }
 if (safeToShake) {
 return "Sure! I'll shake your hand!";
 } else {
 return "I think I'll keep my distance.";
 }
}

13.	 isItSafeToShakeYourHand();

126

14.	 isItSafeToShakeYourHand(); // choose different responses

15.	 isItSafeToShakeYourHand(); // choose different responses

16.	 isItSafeToShakeYourHand(); // choose different responses

B. What's wrong with each of these code snippets?
1.	 const timeOfDay = '1:30';

timeOfDay = '2:15'z;

2.	 let abrahamLincolnDateOfBirth = '1809-02-12';
var georgeWashingtonDateOfBirth = '1732-02-22';

3.	 const birthYear = confirm('What year were you born?');

4.	 const allCapitalizedWords = 'all in caps'.toCapitalized();

5.	 const exactDegreesForLaunchingMissileToSpace = 88.726484293724;
const extraPreciseAngle = exactDegreesForLaunchingMissileToSpace.toFixed();

6.	 const x = 365; // remember, "x" is representing the days in a year;
const y = 7; // from now on, variable "y" is the number of days in a week;
const z = 24; // 24 is the hours in a day. let's use "z" for that;

7.	 if (prompt('Are you sure?')) {
 console.log('Okay!');
}

CHAPTER 7: AGGREGATE REVIEW

1.	 A value that isn't a boolean, but is treated as false for the purpose of conditional statements
is said to be generally ____________. If it were treated as true (though not a boolean), it is
said to be generally ______________.

2.	 What character can you add to this statement to avoid a Syntax Error?
const oldEricClaptonSong = 'I Can't Stand It';

3.	 What does DRY stand for in coding?

4.	 Is this a valid statement? (And if not, why not?)
const ninjaSkills = 'steps' !== 'can be heard';

5.	 What code might you use to get a string that represents a random number between 0 and 20
that is rounded to the nearest 2 decimal places?

6.	 Does this appear to accomplish the developer's intention? (And if not, why not?)
const secondsInAMinute = 60;

127

7.	 True/False: Block comments cause the JavaScript interpreter to ignore everything from the
start of the comment to the end of the current line.

8.	 Which data type is this?
'false'

9.	 What is the name for the primitive data type that means no value has been assigned?

10.	 What form of capitalization should you use with function names in JavaScript?

11.	 True/False: An effective way to handle a string containing apostrophes is to use double
quotes on the outside (surrounding the string).

12.	 Is this a valid block of code? (And if not, why not?)
const faveLetter = 'K';
faveLetter = "R"; // changed my mind

13.	 What is a developer trying to arrive at when she uses modulo in an operation?

14.	 What's the value of chosenActivity after this line?
const chosenActivity = 'homework' || 'eat snack' || 'play outside';

15.	 True/False: Error messages are intended to be human-readable so that developers can have
clues to help in resolving the errors.

16.	 What does a single equals sign imply in a statement?

17.	 True/False: The alert(), confirm(), and prompt() functions are often avoided because they
block all code from running until the user responds.

18.	 True/False: Users often find the behavior of the built-in functions alert(), confirm(), and
prompt() to be annoying, so most professional web developers use alternative means to
accomplish similar purposes.

19.	 What are the three keywords that may be used to declare a new variable?

20.	 What do you type in order to create a new line in the console (note: This also works in
alert(), confirm(), and prompt() messages)?

21.	 Similar to the comparison operators, the ______________ operators (&&, ||, and !) work well
in conditional statements.

22.	 Is this valid code (feel free to type it in the console)? (And if not, why not?)
function isOldEnoughToStartKindergarten(childAge) {
 const minimumAge = 5;
 if (age > minimumAge) {
 console.log('Old enough!');
 } else {
 console.log('Too young!');
 }
}
isOldEnoughToStartKindergarten(5);

128

23.	 Is this valid JavaScript? (And if not, why not?)
function turnNumberIntoMoney(number) {
 return number.toFixed(2);
 console.log('Money version = $' + number.toFixed(2));
}
turnNumberIntoMoney(10 / 3);

24.	 What URL address should you go to in order to get an empty page in Chrome?

25.	 Chrome, Internet Explorer, Edge, Firefox, and Safari are all examples of _____________.

26.	 True/False: 122 >= 122 && !(67 <= 68);

27.	 What glossary term refers to code that has helpfully-named variables and descriptive function
names so that it's easy for a developer to understand the purpose of the code as he reads it
(without the need for explanatory comments)?

28.	 What is the symbol for the logical operator that always returns a boolean (when placed before
a falsy value, it returns true; before a truthy value, it returns false)?

29.	 The values null, false, '', 0, and undefined are all ___________; whereas true, 'string',
and 1 are all __________ values.

30.	 True/False: Comparison operators always result in a boolean value.

DIY: Letter Grade Generator
Create a function that prompts the user for a number grade and returns a letter grade. The user
should input a number value between 0 and 100. If the value is greater than or equal to 90, return
the message stating that the user earned a grade of "A". Otherwise (else), if the value is greater
than or equal to 80, the user gets a "B". If it's 70 or above, "C". If it's 60 or higher, "D". Anything

else should result in an "F" grade. You should be able to
do this on your own, but if you need help, my answer

is in the back of the book for your reference. Enjoy!

129

131131

C
ha

pt
er

 8

Wasn't it fun doing all those projects in the last chapter? Projects are a great way to test out
what you know and improve on some of the practical skills.

8 HIP HIP
ARRAY!

Arrays: The Basics
What is an Array?

Okay now, lean in close 'cuz this is a big one! An array in JavaScript (and other
programming languages) is basically a list of values in a specific order. An array is used to
store multiple values in a single variable.

An array looks like this (type along in the console):
const zooAnimals = ['lion', 'tiger', 'bear'];

The name of the variable is usually plural because it's a collection of items. Now that you
have created an array, you can view it in the console by typing its name:

zooAnimals;

Response: (3) ["lion", "tiger", "bear"]

In this chapter, we'll learn about one of the most
fundamental skills in all programming languages—the
skill of working with lists of things. Let's get started!

Oh! I almost forgot! Before we start, close down all
programs. Then open the browser console on a blank
page again (as always, if you forget a step in here, refer
to chapter 1).

Done? Okay, NOW let's get started!

132

Let's analyze this response from the console for a bit. It begins with a 3 inside of parens: (3). Can
you guess what that is?...You can? Great! What's your guess?...The number of wheels on a
tricycle?! Umm...While that is technically true, that's really not the answer I was looking for, sorry. In
this example, the (3) represents the length—the number of items in the array. That's a little more
practical for our purposes, isn't it?

Now look closely at the console. Do you notice a little triangle to the left of the (3)? That triangle
is pointing to the right like a "play" button on a DVD player...a DVD player? Oh...that's an old-
time device that would play physical discs that usually only contained one movie on them and some
special features. Ask your parents about it sometime.

Go ahead and click on that triangle. It now points down, and the array is shown vertically. Now
each item in the array has a number to the left of it. That number represents that specific item's
index. The index of an array is the number representing any given item's position in that
array. And get this: it starts with the number 0 (not the number 1)! So the item at position 0 is
what you would call the first item in the array. You'll also see the length of the array as a property in
there. Remember this, and we'll come back to it.

In the case of this zooAnimals array, the items are all strings, but they wouldn't have to be. The
items in an array might be any data type or even a mix of data types. Here are some other valid
arrays:

const booleanValues = [true, false];
const primeNumbers = [2, 3, 5, 7, 11, 13];
const allTheFalsyValues = [// mixed array (notice this one is on multiple lines)
 false, // boolean data type
 0, // number data type

133

 null, // null data type
 "", // string data type
 undefined // undefined data type
];
const inceptionArray = [// array with arrays inside of it!! Crazy, huh?
 ['first', 'inner', 'array'],
 ['second', 'inner', 'array'],
 ['inner', 'array', ['even', 'deeper']]
];

How Do You Access Items in an Array?

Once you have an array you like, you can access each of its
items individually by using brackets with the specific item's index
(remember from the screenshot above?). This index position
goes inside of square brackets [] when retrieving the item.
Try this:

zooAnimals[0]; // lion
zooAnimals[1]; // tiger
zooAnimals[2]; // bear

What's the third prime number? (Remember that the "third"
number would be at index 2 since indexing always starts with 0.)

primeNumbers[2]; // 3rd number in the array is at index 2
primeNumbers[5]; // 6th number in the sequence is at index
5

You can even put a variable inside of the square brackets as long as the variable resolves to an
integer (a whole number without a fraction) that is equal to or greater than zero.

let itemIndex = 2; // using 'let' keyword because we intend to change it
zooAnimals[itemIndex]; // bear
itemIndex = 0;
zooAnimals[itemIndex]; // lion

So this is what's known as "accessing members of an array." Do you understand how to do that? If
not, read it one more time before continuing on. It's important.

How Do You Change Items in an Array?

If you were paying close attention to the arrays we created before, you may have noticed that the
zooAnimals array was created using the const keyword. So this means that it's constant, right? And
if it's constant, that means it can't be changed, right? Of course it does. What else could it mean?

Hey...wanna see a trick? Type this in the console:

zooAnimals[0] = 'kitten';
zooAnimals;

134

Whoa! How did that happen?! The zooAnimals array has been changed?! I thought zooAnimals
was a constant! We used the const keyword and everything! What's going on here? It's like the
whole world has gone topsy-turvy! Up is down; left is right; what are we to think—?

Snap out of it! There's no need to overreact. Here's what happened:
the zooAnimals constant points to a specific array. You can't reassign
the variable to anything else. Try this, and you'll still get the error
you've come to expect:

zooAnimals = ['some', 'different', 'array'];

Response: Uncaught TypeError: Assignment to constant variable.

The constant zooAnimals is still constantly pointing to one array. All
you've done is changed one of the members of the array. As long as
you're not trying to assign a different value to the zooAnimals variable,
you're fine. In fact, you can go even further. Keep reading...

How Do You Count the Number of Items in an Array?

Let's create a new array and do some fancy things with it!

const rockBandInstruments = [
 'guitar',
 'drums',
 'bass'
];

So we know that there are three items in this array, right? We
can count them easily. Well, what if we could not count them

easily? Like what if there were hundreds of
items? How would we know exactly how long the
list is? That's where we bring in a cool little built-
in property of arrays called length (remember
this from the screenshot above?).

rockBandInstruments.length // 3

As you'll hopefully recall from the last chapter, when you see that little dot (the
period) between the object (in this case, the array) and the word following it, that
tells you that the next word represents a property (a named value that is attached
to an object). You may also remember the length property (sometimes written
as .length) from the last chapter when we used it to see how many characters
were in a string. Well now that we're working with arrays, the length property
instead shows us how many items are in the array.

Also, just like with strings, arrays have some built-in properties that are
functions to be called with parens. Whenever a property is a function,
there's a special name for it. Remember what that name is? No? Okay,

135

I'll remind you this time, but after this, I expect you to remember it on your own
because it's important! A function that is attached to an object (a string, an array,
etc.) is called a method.

Now, back to subject at hand: we know that rockBandInstruments has a .length
property of 3—this means there are 3 items in the array.

How Do You Add Items to an Array?

We have already seen that we can change one of the items like so:

rockBandInstruments[2] = 'bass guitar';

Now here's another cool trick: we can add items to the list like this:

rockBandInstruments[3] = 'keyboard';
rockBandInstruments.length;
rockBandInstruments;

We just added a 4th item to the array by simply assigning a new string to position 3!

Here's another good way to add an item to an array: we'll use a method called .push()--remember, we
know it's a method (function) because it has parens.

rockBandInstruments.push('microphone');
rockBandInstruments;

This .push() method is nice because it doesn't require
you to know what index position the new item is going in
at. It just adds the new item to the end of the array.

How Do You Remove Items from an Array?

Just like you can add items to the end of an array with the .push() method, you can also remove
items from the end of the array with the .pop() method. Using .pop() will remove the last item
from the array (thus reducing the length of the array by one item):

rockBandInstruments.length; // 5 items
rockBandInstruments.pop(); // this will return the last item ("microphone")
rockBandInstruments.length; // 4 items in the array

Another thing to know about .pop() is that it also has a return value. This means that when you
use .pop(), the method will not only modify the array (removing the last item), but it will also return
the last item in the array. When a function has a return value, you can then assign that value to a
variable like this:

rockBandInstruments.length; // 4 instruments in the array
const angelWillPlay = rockBandInstruments.pop(); // assign "keyboard"
const nehaWillPlay = rockBandInstruments.pop(); // assign "bass guitar"
const tonyWillPlay = rockBandInstruments.pop(); // assign "drums" to tonyWillPlay

136

const iWillPlay = rockBandInstruments.pop(); // assign "guitar"
rockBandInstruments.length; // 0 instruments left in the array
console.log("Our band has four members: Angel (" + angelWillPlay + "), "
 + "Neha (" + nehaWillPlay + "), "
 + "Tony (" + tonyWillPlay + "), "
 + " and me (" + iWillPlay + "). Are you ready to rock?!");

Arrays: Some Fancy Stuff
Is There Anything Else I Can Do With an Array?

Are you kidding? There's tons of stuff you can do with an array! I don't want to get bogged down
in too many details, but here are a few.

You saw how you could use .pop() to take an item from the end of the array. You can also use
.shift() to take an item from the beginning of the array.

// we're using the keyword "let" because we're actually going to change it later
let laundryHamper = ['pants', 'shirt', 'underwear', 'socks'];
const wearAgain = laundryHamper.shift(); // still clean
console.log('What are these ' + wearAgain + " doing in the hamper? They're clean!");
laundryHamper; // notice that the first item is no longer in the list

Remember how you used .push() to add an item to the end of the array? Well, you can use
.unshift() to add an item to the beginning of the array.

laundryHamper.unshift('towel');
laundryHamper;

So remember these rules of thumb when working with arrays:

.push(newArrayItem) is used to add a new item to the end of the array.

.pop() is used to remove—and return—the item at the end of the array.

.unshift(newArrayItem) is used to add a new item to the beginning of the array.

.shift() is used to remove—and return—the item at the beginning of the array.

You can use .toString() to quickly turn the array into a string with each of the values separated by
commas:

console.log('Here are all the items in the hamper: ' + laundryHamper.toString());

If you want to make a string out of all of the items in the array, but you don't want commas as the
separator (the string that goes in between each item), you can use .join() and pass in a string
argument to tell the interpreter what you would like to be the separator instead.

console.log('My laundry hamper contains a ' + laundryHamper.join(' and ') + '.');

Once you've converted an array into a string, you can use any of the available string methods. We
discussed a handful of these methods in the last chapter, such as .repeat(), .toUpperCase(),
.toLowerCase(), etc.

137

As a side note, I want to be clear about something. When
I use phrases such as "convert an array to a string,"
you should know that the .join() method isn't actually
converting anything. The laundryHamper variable still
holds an array. The .join() method actually creates and
returns a new string. But we can then assign that string to a
variable or otherwise use it for any purpose we need. This
might sound like splitting hairs, but it will sometimes be an
important distinction to understand when you're writing
your own code.

Nice! What else?

You can also combine two arrays together using the built-in .concat() method like so:

const yesterdaysLaundry = ['sweatshirt', 'underwear', 'striped socks', 'headband'];
laundryHamper.concat(yesterdaysLaundry); // notice the long array that was returned!
laundryHamper; // Huh?! It's the same clothes as before?!

Gotcha! The laundryHamper array was not actually changed by the .concat() method! The .concat()
method returned a new array with both arrays combined, but we didn't do anything with it, so both
arrays remained the same. Remember how we initialized the laundryHamper variable with the let
keyword instead of const? This is why. We're actually going to overwrite it with the longer array
that is returned from the .concat() method.

laundryHamper = laundryHamper.concat(yesterdaysLaundry); // reassign it!
laundryHamper; // look at how many more clothes we have in the hamper now!

Did that make sense? You might want to read it again as that's kind of a tricky part.

By the way, since your mom is super picky about your laundry hamper being sorted in alphabetical
order (That's a thing, right?), we have a .sort() method for arrays! Unlike the .concat() method,
this one actually modifies the original array (in addition to returning it).

laundryHamper.sort();
console.log("Here's my sorted laundry: " + laundryHamper.join(', '));

Also, keep in mind that a sorted array still functions just like any other array, so you can still return
items from it by using their index positions:

laundryHamper.sort()[0]; // return the 1st item in the sorted array
laundryHamper.sort()[3]; // return the 4th item in the sorted array

Is That All?

And that's not all! You can get a new array from any string by calling the .split() method on it
and passing in the string that you want to separate on. For example, if your string has asterisks
between each word ('my*starry*string') and you want an array with three items in it (['my',

138

'starry', 'string']), you can simply use .split('*') passing in the asterisk. Then the JavaScript
interpreter will return a new array based on the string and will look for each asterisk in the string to
know where one array item ends and the next begins.

Try out these examples in the console and notice the arrays that are returned for each:

'my*starry*string'.split('*');
'string,wishes,it were,an array'.split(','); // every comma starts a new array item
'make each word into an array item'.split(' '); // pass in a single space
'Leonardo|Donatello|Rafael|Michaelangelo'.split('|');

And here is arguably the most useful application of the .split() method. Call .split('') (passing
in an empty string) to divide your string into an array of individual characters!

'ABCDEFGHIJKLM'.split(''); // pass in an empty string for an array of characters!

While we’re on the subject of usefulness, I must tell you about another very useful trick called
chaining methods (functions). Chaining is repeatedly calling one method after another on an
object, in one continuous line of code. Try it out:

/* convert this string 'bfdagec' to UPPERCASE // 'BFDAGEC'
* split it into an array of characters // ['B', 'F', 'D', 'A', 'G', 'E', 'C']
* sort the array in alphabetical order // ['A', 'B', 'C', 'D', 'E', 'F', 'G']
* join back together with a dash between each character // 'A-B-C-D-E-F-G'
* all in a single line of code! Awesome!!
*/
'bfdagec'.toUpperCase().split('').sort().join('-'); // 'A-B-C-D-E-F-G';

Isn't that cool? Now at this point, it would be wise to ask
yourself: "Why does this work?" This is a good question
that will serve you well in your future. Understanding

why concepts like chaining work will help you to discover lots of new concepts on your own. But it
starts with fully understanding what each of the methods do individually.

For example, even if I had never taught you about chaining, there is a way you might have figured
it out on your own. I'd like to walk you through that thought process. Please read this next part
carefully.

Suppose your teacher asks for help sorting and displaying your classmates' letter grades on a recent
quiz. She wants to display a breakdown of how the class did overall. She currently has a string of
text representing each of the grades like this: "c,a,f,b,c,d,f,c,b,a,f,d,f,c,d,a,f,d". But she
wants a string sorted and formatted like "A | A | A | B | B | C ... (etc.)".

That sounds like kind of a tedious job, right? But oh well, you could probably do it manually with a
piece of paper in a few minutes. Just be sure that you're very careful when you count the letters and
everything. Oh but wait...This isn't a one-time job. Your teacher just said she needs this done every
week following your class's Friday afternoon quiz. And five other teachers want the exact same work
done for their classes. And it's crucial that you make no mistakes! Gosh, this tedious job just got
downright exhausting!

Thankfully, if you understand what I've taught so far, you should be able to create one single line of

139

chained JavaScript methods to do the job! So let's walk through this. At first, you want to convert
all the lowercase letters to uppercase, right? That's easy:

const letterGrades = 'c,a,f,b,c,d,f,c,b,a,f,d,f,c,d,a,f,d';
letterGrades.toUpperCase(); // returns "C,A,F,B,C,D,F,C,B,A,F,D,F,C,D,A,F,D"

Now think about this for a moment: What did that .toUpperCase() method actually do? You
might be tempted to say, "It converted the letterGrades to uppercase...d’uh." Well, you would be
wrong. The letterGrades string is a const—it can't be changed! Instead of changing letterGrades,
the .toUpperCase() method actually returned a new string.

Now why is that significant? Because once we have a new string, we can run any string methods we
can think of on that new string. So both of these two methods should produce the same result:

'C,A,F,B,C,D,F,C,B,A,F,D,F,C,D,A,F,D'.split(','); // returns the same thing as...
letterGrades.toUpperCase().split(',');

Response: ["C", "A", "F", "B", "C", "D", "F", "C", "B", "A", "F", "D", "F", "C", "D", "A",
"F", "D"]

Now ask yourself this question: "If the .toUpperCase() method always returns a new string, what does
the .split() method always do?"

If you said, "It always returns a new array!" then go to the head of the class! (...and stand at your
teacher's desk awkwardly until she sends you back to your assigned seat.) You're correct! The
.split() method always returns a new array. And once you have a new array, you can use any
array methods or properties you can think of on that array. For instance:

letterGrades.toUpperCase().split(',').length; // returns number of items in the array
letterGrades.toUpperCase().split(',')[0]; // returns the first item
letterGrades.toUpperCase().split(',')[9]; // returns the tenth item
letterGrades.toUpperCase().split(',').toString(); // convert to string
letterGrades.toUpperCase().split(',').push('K'); // add new item
letterGrades.toUpperCase().split(',').pop(); // remove and return the last item

So there are many things we can do with an array, right? But what specifically did our teacher say
she wants next? She wants them sorted! Remember how to sort an array?

letterGrades.toUpperCase().split(',').sort(); // sort alphabetically

Because .sort() returns an array, we have another new array that is sorted alphabetically. All we
have left to do is turn it back into a string with " | " (a space followed by a pipe followed by another
space) in between each element. Remember how to do that?

letterGrades.toUpperCase().split(',').sort().join(' | ');

Response: "A | A | A | B | B | C | C | C | C | D | D | D | D | F | F | F | F | F"

And just like that, we have the solution to your teacher's problem! We can even put this in a
function so the other teachers can use it whenever they need to format letter grades!

function formatGrades(mixedUpLetterGrades) {
 return mixedUpLetterGrades.toUpperCase().split(',').sort().join(' | ');
}

140

formatGrades('d,b,b,a,a,c,f,d,b,f,a,b,b,c,a,d'); // Ms. Balanseen's class
formatGrades('a,b,a,a,c,a,a,a,b,a,b,a,a,b,b,a,a'); // Mrs. Eeziay's class
formatGrades('c,d,f,b,f,d,f,c,f,d,d,f,f,c,d,b,f'); // Dr. Wade Tootuff's class

With chaining, you can do lots of useful things with arrays and strings. In this short example, we
used a string as the basis for returning a new modified (uppercase) string; then we used that string
to create an array; then used that array to create a new (sorted) array; then used that new array to
create another string! All in a single line! Try out some of these other cool chaining tricks in the
console:

'How many words are in this sentence?'.split(' ').length
'1-2-3-'.repeat(6).split('-').sort().toString();
const sentences = 'Here are two sentences. How many words are in each?';
sentences.split('. ')[0].split(' ').length; // words in 1st sentence
sentences.split('. ')[1].split(' ').length; // words in 2nd sentence
'She loves me... not :-('.split('...')[0].concat(' a lot!').toUpperCase();

Pretty nifty huh? But read on...There's even more that you can do with arrays!!

Okay, That's Enough! Array Overload!

Oh...hmm...I guess we have covered a lot so far, haven't we? Believe it or not, there are many more
useful things you can do with arrays. This chapter is just scratching the surface. To be honest, I
actually haven't even mentioned the very best use for arrays yet...but I suppose I can save that for
the next chapter.

My 11-year-old son helped me test out this book, and he pointed out that we've covered a lot of
ground in the last few pages. This would probably be a good time to go back and just skim over
each of the various array methods just to be sure you recognize them when you see them. Do
you know what each of these methods does: .push(), .pop(), .shift(), .unshift(), .toString(),
.join(), .concat(), .sort(), and .split()?

If you feel pretty good about these methods, then let's try a project using some of the things we've
learned! Before moving on, open the console in a new about:blank tab in Chrome.

Follow Along: Track Team Tryouts
It's time for track team tryouts! And guess who's been chosen to keep track of the results for the
qualifying race? You! Your school has asked you to keep a running list (no pun intended) of the
racers in the order that they finish the qualifying race. You'll need to add a name to the list each
time a racer crosses the finish line.

Well, I don't know about you, but anytime I hear the word "list," I think of an array. So let's start by
making an empty array for results (note: We'll do this project without creating a custom function).

let raceResults = []; // using 'let' keyword because we'll be reassigning it

Hey look! Our first racer, Alan, just crossed the finish line! Let's add him to the results!

raceResults[0] = 'Alan';

141

Alright! Four more racers—Bernardo, Cecil, Derrek, and Emilio—have finished! Let's add all four
of them in a single line. (Good thing we used the let keyword earlier!)

raceResults = raceResults.concat(['Bernardo', 'Cecil', 'Derrek', 'Emilio']);

And here come the last two racers—Friedrick and Gordon—huffing and puffing across the finish
line. Let's add them one at a time to the end of our list:

raceResults.push('Friedrick');
raceResults.push('Gordon');

Hold it! The coach says that our team can only consist of the top 5 racers to finish. How many do
we have so far?

console.log('We currently have ' + raceResults.length + ' racers on the list.');

Seven? Oh gosh...This is going to break Friedrick's heart. He trained for this all month. Well, we
have to do what we have to do. Let's remove our racers from the end of the list.

raceResults.pop(); // there goes Gordon (he didn't care anyway... he hates running)
// now it's time for the hard one... poor Friedrick...

Wait! This just in! Turns out Alan was taking performance-enhancing drugs! Jeez, Alan, why can't
you play by the rules? Alan is disqualified! Remove him from the front of the list!

const disqualifiedCheater = raceResults.shift();

Now, how many racers do we have?

console.log('We currently have ' + raceResults.length + ' racers on the list.');

We're down to five! So Friedrick made the cut! Hooray! We ready to post the list?

Oops! Not yet...We have a spelling error. Turns out one of our racers is named "Derrick" (not
"Derrek"). Hmm...How can we correct the spelling of his name? Well, first we need to determine
what index position he is at. Now that Alan is gone, the name "Derrek" is the third item in the
array. Since the index positions start with 0, this puts the third item at position 2. Let's use that to
update his name:

raceResults[2] = 'Derrick';

Okay, now we're ready to post the list!

console.log("Our new track team: " + raceResults.join(', ') + ". Congratulations!");

So how was it? Were you able to follow along well with that project? There are some concepts
that are crucial to understand when learning any programming language. Arrays is one of those
concepts. If you don't feel like you understand all this yet, please go back and try this chapter
again from the beginning before moving on (it won't take you nearly as long the second time
because you've already done most of the time-consuming stuff). Also go ahead and play around
in the console. Create your own arrays and manipulate them using the methods we've explored so
far. When you feel you're ready, then move on to the quiz section.

142

CHAPTER 8: QUIZ

Do the whole quiz in your Workbook without looking
back at the chapter. After you're finished, ask a parent to
check your answers against the back of the book (or check
them yourself if no parent is available). Then go back
and fix any that you missed.

1.	 What is the JavaScript name for a list of values in a specific order?

2.	 What does the .length of an array refer to?

3.	 The ____________ in an array is the number representing any given item's position in the
array.

4.	 To retrieve the first item in an array, what value should go between the square brackets?
myArray[];

5.	 True/False: An array may contain a mix of different data types.

6.	 What built-in method can you use to add a new item to the end of an array?

7.	 True/False: When using myArray.toString() on an array, the return value will be a string that
includes all of the items from the array separated by semicolons.

8.	 Using the .pop() method on an array will _____________ and _____________ the last item
of the array.

9.	 True/False: After running this code, the textbooks array will have a .length of 4.

const textbooks = ['english', 'biology'];
textbooks.concat(['math', 'spanish']);

10.	 What glossary term refers to the practice of repeatedly calling one method after another on
an object, in one continuous line of code?

11.	 Answer this before testing it out in the console: What will be the result of this code?
const sewingSupplies = ['thread', 'needle', 'thimble'];
sewingSupplies.sort()[1];

12.	 True/False: When using myArray.join("\n") on an array, the string "\n" is known as the
separator: the string that will go between each array item.

13.	 The .unshift() method can be used to add an item to the beginning of the array while the
____________ method will take an item off the beginning of the array.

14.	 What value will be returned from the following line?

143

const hairProducts = ['shampoo', 'hairspray', 'gel'];
const myFaveProductIndex = 2;
hairProducts[myFaveProductIndex];

15.	 True/False: When using myArray.join(' or ') on an array, the return value will be a new
array that includes all of the items from the original array separated by the string " or ".

16.	 Answer this before testing it out in the console: what will be the result of this code?
['D', 'C', 'A', 'B'].toString().toLowerCase().split(',').sort()[3];

17.	 True/False: On a technical level, the .join() method does not actually convert an array to a
string, but rather creates a new string based on the values from the array.

18.	 Answer this before testing it out in the console: What will be the result of this code?
const beatboxingLyrics = 'boots & cats & boots & cats & boots & cats';
beatboxingLyrics.split(' & ').sort()[2].length;

CHAPTER 8: KEY CONCEPTS

Read this list and look back in the chapter to review anything you're not solid on:

•	 Array
•	 .length

•	 Index
•	 .push()

•	 .pop()

•	 .shift()

•	 .unshift()

•	 .toString()

•	 .join()

•	 Separator
•	 .concat()
•	 .sort()
•	 .split()

•	 Chaining

144

CHAPTER 8: DRILLS

A. Try typing these valid code snippets in the console

Type these in the console and pay attention to the syntax (look up this word in the glossary if you've
forgotten what it means). Try to guess what the response will be for each.

1.	 const morningRoutine = [
 'wake up',
 'shower',
 'get dressed',
 'brush teeth'
];

2.	 morningRoutine.shift(); // this one is obvious; no need to schedule it.

3.	 morningRoutine.sort(); // hmm... why are my clothes soaking wet?...
alert("Here's my routine so far: " + morningRoutine.join(' then ') + '.');

4.	 morningRoutine.push('make my own lunch');

5.	 morningRoutine[0] = 'shower'; // let's swap the order of these two
morningRoutine[2] = 'brush teeth';

6.	 morningRoutine.pop(); // mom says she can do this one for me! Thanks, mom!

7.	 morningRoutine.unshift('eat breakfast'); // before brushing teeth

8.	 'I have ' + morningRoutine.length + ' things to do in the morning.';

9.	 const indexOfThingIKeepForgetting = 3;
"Don't forget to " + morningRoutine[indexOfThingIKeepForgetting] + '!';

10.	 const stuffIForgot = ['get books', 'make bed', 'fix hair'];

11.	 console.log('My old morning routine included "' + morningRoutine.toString()
 + '" but now it\'s "'
 + morningRoutine.concat(stuffIForgot).join(', ') + '".');

12.	 'Head, Shoulders, Knees, and Toes'.split(', ').sort().join(', ');

13.	 const songLyric = 'There was a farmer had a dog, and Bingo was his name-o';
songLyric.split(' ')[8].toUpperCase().split('').join('-');

14.	 'Rockabye, Baby '.split(', ')[1].concat('Grandpa Shark'.split(' ')[1]);

B. What's wrong with each of these code snippets?
1.	 const nuts = ['cashew', 'almond', 'peanut'];

console.log('The list includes ' + nuts.size + ' different kinds of nuts!');

145

2.	 //retrieve the third item in the nuts array
'The third kind of nut is ' + nuts[3];

3.	 nuts.pull('hazelnut'); // add to the end

4.	 console.log('array has ' + nuts.pop().length + ' items in it.');

5.	 nuts.unpop('brazil nut'); // add to beginning

6.	 let fullList = nuts.toString();
fullList.shift(); // remove the first nut in the list

7.	 const moreNuts = ['walnut', 'pecan', 'pine nut'];
nuts.concat(moreNuts);
console.log('We have added more nuts to the list!: ' + nuts.join(', '));

8.	 let alphabeticalNuts = nuts.order();

9.	 nuts = nuts.concat(moreNuts).sort().toString();

CHAPTER 8: AGGREGATE REVIEW

1.	 Is this a valid statement? (And if not, why not?)
const haveYourCake = !!'And eat it too';

2.	 What are the data types (in order) for each of these falsy values?
0; null; undefined; ''; false;

3.	 A JavaScript string is made up of individual ________________.

4.	 What function can you use to convert a string to using all capital letters?

5.	 There are three different ______________ operators (&&, ||, and !).

6.	 The ______________ operators we use are ===, !==, >, >=, <, and <=.

7.	 What keyword should you use to create any variable that you know will not be changed?

8.	 What general kind of statement in coding is used to perform certain blocks of code based on
a given condition?

9.	 If you call a function inside of another function, the inner function is said to be
_____________ within the outer function.

10.	 Is this valid code (feel free to type it in the console)? (And if not, why not?)
function shouldIWearALightJacket(temperature) {
 const minTemp = 45; // degrees fahrenheit
 const maxTemp = 67;
 if (temperature >= minTemp && temperature <= maxTemp) {
 return 'Perfect weather for a light jacket!';

146

 }
 if (temperature > maxTemp) {
 return 'Too hot for a jacket.';
 }
 return 'Too cold for a light jacket. Wear a heavy coat!';
}
shouldIWearACoat(70);
shouldIWearACoat(55);
shouldIWearACoat(40);
shouldIWearACoat(67);

11.	 True/False: logical operators always result in a boolean value.

12.	 What built-in function(s) will cause the JavaScript interpreter to wait for the user to click a
button before continuing with the rest of the code?

13.	 What special symbol could you use to simplify this assignment?
currentRound = currentRound + 1;

14.	 Which mathematical operator would be most useful for checking if a given value is evenly
divisible by 14?

15.	 When should you use the var keyword in your own code?

16.	 Which of these values are truthy? And what are the data types (in order) for each of the
values?
-1; ' '; true; 5; '0'; 'false';

17.	 Is this valid code? (And if not, why not?)
function nameGame(name) {
 return "Let's play the name game with " + name + '!';
 return name + ', ' + name + ', Bo ' + name + '...';
}
nameGame('Benjamin McGillicutty III');

18.	 Which comparison operator returns false if the value on the left is greater than or equal to
the value on the right?

19.	 Where can a developer type simple JavaScript commands to test them out and get immediate
responses?

20.	 What part of your face is used for seeing things?

21.	 True/False: Numbers in coding should usually be assigned to descriptive variable names to
make their purpose easier to understand. For example, instead of rideBus(5), better to write
const schoolDays = 5; rideBus(schoolDays);.

22.	 _______________ refers to the process of repeatedly calling one method after another on an
object, in one continuous line of code.

23.	 What key should you press to indent your code inside a function?

24.	 What built-in property can you use to find out how many items are in an array?

147

25.	 True/False: When there are multiple parens nested inside of one another, you should always
evaluate the statements from the inside out (i.e. process the results of the values for the inner
parens before processing those for the outer parens).

26.	 True/False: Comparison operators always result in a boolean value.

27.	 Is this valid JavaScript? (And if not, why not?)
function gimmeFive(number) {
 return 5;
}
gimmeFive(8);

28.	 What built-in function can you use to round a float (number with a decimal point) down to
the nearest integer (number without a decimal point)?

29.	 What built-in method can you use to add a new item to the end of an array?

30.	 True/False: 215 >= -622 && !(812 <= 812) || !!(-389 < 389);

31.	 True/False: The JavaScript interpreter ignores Code that is in comments.

32.	 What's the value of anyGuy after this line?
const anyGuy = 'Tom' || 'Dick' || 'Harry';

33.	 What key combination can you press to get a break return (new line) in the console?

34.	 What can you type to retrieve the name "Naomi"?
const popularRichGirls = ['Jennifer', 'Vanessa', 'Naomi', 'Priscilla'];

35.	 True/False: The confirm() function always returns a boolean.

DIY: Trick-or-Treat!
For this DIY project, you'll create several individual lines of code; each one will use at least one of
the array concepts discussed in this chapter. If you struggle with any aspect, refer back to the Follow
Along project for help as this project is very similar to that one. For bonus points, try wrapping all
the logic in a function declaration; then call it at the end!

It's Halloween! You are so excited to show off your costume this year and go trick-or-treating with
your friends! Last year, some of your candy mysteriously disappeared, so you intend to keep a close
eye on it this year! Here's what happens with your list of candy (write JavaScript code representing
each event).

•	 Before leaving your house, you put a Kit-Kat and Twizzlers in your Halloween bucket.
•	 At the first house you get a Snickers bar.
•	 At the next house, you get a Butterfinger, then an Almond Joy.
•	 At the next house, you get M&M's! Your favorite! You put this at the top of your candy stash

so it's easy to see and remind you how lucky you are!

148

•	 You decide to eat the Almond Joy (the last candy bar on the list).
•	 Your friend Fletcher asks if he could trade you his full size Starburst packet for your

Twizzlers. You happily make that trade, since you got the way better end of that deal! (Note:
Just replace the name of the item in the array with a new string)

•	 Fletcher just remembered he's allergic to chocolate, so he decides to give you all the chocolate
he's collected so far—Milky Way, Peanut M&M's, Three Musketeers, and a Hershey's
bar! Isn't it great having friends like Fletcher around on Halloween?! (note: Add all of
Fletcher's candy at once using only a single method)

•	 You can't wait any longer, so you go ahead and eat the M&M's.
•	 When you get home, you sort all of your remaining candy in alphabetical order.
•	 Now that it's all sorted, you count it and announce the final figure to your mom.
•	 Your mom asks what candy specifically, so you tell her (console.log) about all of them at once

(single string with " and " in between each candy).

After you're done with this project (or before you're done if you're struggling with it), check to see
how your answer compares with mine in the back of the book. Remember, there may be several
ways to get a correct answer. It just needs to work with all of the different array changes and finish
with the correct candy in the correct order.

149

151

C
ha

pt
er

 9

In the last chapter, you learned five cool things about arrays (plus two more things that were
kinda "meh")! In this chapter, you'll learn the most useful thing of all that you can do with

an array. Now is a time of discovery. Now you will learn...the loop!

9 LOOP A
ROUND

The Illustrious while Loop
No programming language would be complete without some way to loop. A loop in
JavaScript (and in other programming languages) is a block of code that will repeat itself over
and over again as long as some condition remains true. The condition is anything that you
want the program to check before each and every time it loops. Whenever the condition is
truthy, the program knows to repeat. Once that condition is no longer truthy (i.e., it's falsy),
then it's time to stop repeating.

Basic while

Here's a simplified example of a while loop (open a new blank Chrome tab and try this out in
the console):

let counter = 0;
while (counter < 10) {
 console.log('counter is at ' + counter + ". Let's add 1 to it.");
 counter++; // the ++ incrementer is the same as `counter = counter + 1;`
}
console.log('Stop counting!');

So what's happening here? Well, first I'd like to ask you: "Can you figure it out just by reading
the code?" If so, that's awesome! If not, don't worry; I'll break it down for you.

•	 The counter in this example starts at 0.
•	 The condition for the while loop (the part in parens) states that this block of code should be

repeated over and over as long as (i.e., "while") the counter is less than 10.

152

•	 Because the initial value of 0 is less than 10, we run this block of code.
•	 Each time the block of code is run, the interpreter goes back up to the top and checks the

condition again. If the condition is still truthy, the code will be run again (that's why we call this
a "loop").

•	 Inside this block of code, we increase the value of the counter by 1. This is important because
without this incrementer, the counter would stay at 0. Then the condition (counter < 10) would
always remain true and the code would continue to loop forever! (Note: If you accidentally do
that at some point, you may need to restart your Chrome browser to get it to stop so you can
begin working again).

•	 Because the counter keeps getting increased by 1 in every loop, eventually (after 10 loops), the
counter will equal 10.

•	 After that happens, the interpreter will check the condition (counter < 10) and see that it now
resolves to false. At this point, the interpreter will quit looping and move on to the final line of
our code.

Following Conventions

Now I'll write the same piece of code but I'll change the variable name from counter to i.

let i = 0;
while (i < 10) {
 console.log('i is at ' + i);
 i++;
}
console.log('Stop counting!');

Okay, so what was the point of that? Was it necessary to change the variable name? Not at all. So
why do it? While it's true that there's nothing special about the variable name i, a good reason to use
it is simply that it is common practice among software developers to use the lowercase letter i as a
variable name to represent something that counts up or down in a loop. When a decision or style is
not required, but it is a common accepted practice in the industry, we call this a coding convention.

Many of the things I've taught you in this book so far are not actual requirements but rather are done
by convention. One example of this is camelCase variables. Your programs will still work if you write
your variables in UPPERCASE, lowercase, or snake_case. But by following the convention of writing in
camelCase, your code will look more similar to that of professionals, and other developers will have an
easier time reading and understanding it.

So as I mentioned above, it is by convention that we use the letter i as the incrementer to count up
(using the ++ increment operator) or down (using the -- decrement operator) in a loop. If you continue
with your software development career, you will see the variable i used for this purpose hundreds of
times. I want you to be comfortable seeing it.

Real Life while Loop

Now here's how a while loop might apply to a real-life situation...

153

Suppose you're 3 years old. (You were 3 years old
once, right?) You've been playing with building
bricks all morning, but now your mom wants you to
put them all back in the bucket. There are literally
hundreds of these building blocks on the floor. You
realize quickly that you couldn't possibly carry them
all at once. So you do the only sensible thing you
can think of: you start to cry. Just then, your mom,
in all her brilliance, shows you an amazing trick for
accomplishing this seemingly insurmountable task:
pick up just a few of the building bricks at a time,
put them in the bucket, then go back and do this
again. You should keep doing this until all of the
building bricks are off the floor and in the bucket.

You think through the plan...The math checks out! This just might work! Let's break down the
various facets of your mom's plan:

•	 Assume that you have constantly found your brickCarryingCapacity (the number of building
bricks you can hold at one time) to be about 10 bricks.

•	 let us also assume that there are 230 building bricksOnTheFloor.
•	 The instructions are to grab all the bricks you can carry and remove them from the floor (i.e.,

subtract your brickCarryingCapacity from the total of bricksOnTheFloor).
•	 while there are any building bricks left on the floor (i.e. as long as this condition remains true), you

need to keep repeating (i.e., "looping") those same instructions.

Here's how the plan might be drawn up using JavaScript:

const brickCarryingCapacity = 10;
let bricksOnTheFloor = 230;
console.log('There are ' + bricksOnTheFloor + ' bricks on the floor.');
while (bricksOnTheFloor > 0) {
 // augmented assignment (from ch. 2): `x -= y;` is the same as `x = x - y;`
 bricksOnTheFloor -= brickCarryingCapacity;
 console.log('After putting away ' + brickCarryingCapacity
 + ' bricks, I now have ' + bricksOnTheFloor + ' bricks left.');
}
console.log('Hooray! All the bricks have been put away!');

Did you follow all that? Now here's something cool about that loop: You could do it with any number
of bricksOnTheFloor, and it would be pretty much the same amount of code! To make it more
flexible, we're going to turn this into a function that accepts one parameter. If you think you can do
this on your own, please try it out. If not, then type along with me.

First press the UP_ARROW in the console to bring back the code, then wrap it in a named function
call like this:
function cleanUpBuildingBricks() {
 // ... (the code from above goes here)
}

154

Then remove the bricksOnTheFloor line and instead add bricksOnTheFloor as a new parameter
inside the parens. When you're done, your function should look like this:

function cleanUpBuildingBricks(bricksOnTheFloor) {
 const brickCarryingCapacity = 10;
 console.log('There are ' + bricksOnTheFloor + ' bricks on the floor.');
 while (bricksOnTheFloor > 0) {
 bricksOnTheFloor -= brickCarryingCapacity;
 console.log('After putting away ' + brickCarryingCapacity
 + ' bricks, I now have ' + bricksOnTheFloor + ' bricks left.');
 }
 console.log('Hooray! All the bricks have been put away!');

}

Now you can call the function by simply "passing in an argument" (remember, an argument is passed
into a function and its value is assigned to that function's parameter). The argument is a number that
will become the new bricksOnTheFloor like so:

cleanUpBuildingBricks(400);
cleanUpBuildingBricks(30);

cleanUpBuildingBricks(1020);

See how that works? Now before moving on, I'll pose a little challenge for you: What if your
brickCarryingCapacity wasn't a constant value? Can you think of a way to add an additional
parameter to the function so that it accepts two numbers (separated by a comma)? The two
numbers should become the bricksOnTheFloor and brickCarryingCapacity respectively. I think you
can probably do that one on your own, so I'll leave you to it (refer to Chapter 4 if you need help).

The Famous for Loop
When creating our first while loop in this chapter, remember how we included that counter
variable? I told you that it's really important that you remember to keep adding to the counter
variable (we used a ++ increment operator to do this) in the body of the loop. If you forget to
add to the counter variable, the program could get stuck in the loop forever, right?

Well, this situation is such a common occurrence with while loops that the JavaScript inventors
created a close relative of the while loop for just such occasions. It's called the for loop. It's like a
while loop with a built-in counter variable!

for Loop Syntax

The syntax for the for loop looks a little odd when you first see it. But take the time to learn it
anyway because you may see this exact syntax thousands of times in your coding career. Type this
in the console of a new blank Chrome tab:

for (let i = 0; i < 10; i++) {
 console.log('i is at ' + i);
}
console.log('Stop counting!');

155

Did that seem familiar to you? It should have. This is basically the exact same process that I used
when introducing the while loop, but it's been shortened into a for loop! The three parts of the for
loop are separated by semicolons. Each part was also in the while loop but in a different place. Let's
examine each.

1.	 First we initialized the counting variable.
2.	 Next we included the condition that will be checked before every iteration of the loop (to

determine if we should run the code block again). An iteration simply means a single pass
through of the looped code block (i.e., if we loop 10 times, then the code has undergone 10
iterations).

3.	 The third part is the incrementer (or decrementer). This piece of code is run at the end of
each iteration to ensure that our counting variable continues to change.

Practice for Loops

Pretty much any time you know how many looping iterations you wish to perform, you will want
to use a for loop instead of a while loop. Because for loops are very common (considerably more
common than while loops actually), I want you to have a lot of practice creating the syntax. Write
code for each of these scenarios (pretend situations) in a new console window. Feel free to try these
on your own or work along with me.

Loop Scenario: Run Laps

Your gym teacher, Mr. Payne, tells you to run 5 laps around the gym counting each out loud.

function runLaps(totalLaps) {
 for (let i = 0; i < totalLaps; i++) {
 console.log('Lap ' + i + '!');
 }
}
runLaps(5); // pass in the 5 as an argument to become totalLaps

Hmm..."Lap 0"? That doesn't seem right...Let's fix this so it has the correct number for each
lap. But how? Well, think it through. Instead of "Lap 0" on the first iteration, we want it to say
"Lap 1", right? And on the second iteration, we want it to say "Lap 2" (instead of "Lap 1").

So what's the pattern here? In each case, we want to display a number that is exactly 1 more than
the variable i. Well we can do that with a simple i + 1. Once you clearly articulate (describe) what
it is that you want, it suddenly seems easy! Update the inside of the function as follows:

156

 for (let i = 0; i < totalLaps; i++) {
 console.log('Lap ' + (i + 1) + '!');
 }

Uh oh...The next day, Mr. Payne is in a bad mood. Now he wants
everyone to run 8 laps! Good thing we did this in a function! Now all
we need to do is pass in the number 8 as the argument instead of the
number 5!

runLaps(8); // next day
runLaps(10); // third day
runLaps(15); // fourth day (gosh! your gym teacher is fierce!)

Loop Scenario: Monkeys on the Bed

There's some nursery rhyme that utilizes a decrementing (backward
counting) for loop. I don't remember the exact details, but I'm pretty
sure this is the gist of it: 10 monkeys continue to jump on a bed despite
clear instructions from their doctor. Each monkey in turn falls off,
prompting their somewhat negligent mother to seek medical attention.

function monkeysOnBed(totalMonkeys) {
 for (let i = totalMonkeys; i > 0; i--) {
 console.log(i + " little monkeys jumpin' on the bed. "
 + 'One fell off and suffered a mild concussion.');
 }
 console.log('The badly injured monkeys declined further comment.');
}
monkeysOnBed(10);

Loop Scenario: Powerball Lottery

Your town lottery has instituted a new Powerball lottery game. They need you to generate 6
random numbers between 1 and 20. Note: This will use the built-in Math.random() and Math.
floor() functions introduced in chapter 4. Refer back to that chapter if you need a refresher on
how these work together.

function getPowerballNumbers(totalLotteryPositions, minValue, maxValue) {
 for (let i = 0; i < totalLotteryPositions; i++) {
 console.log(Math.floor(Math.random() * maxValue) + minValue);
 }
}
getPowerballNumbers(6, 1, 20);
getPowerballNumbers(6, 1, 20); // should be a different set of 6 numbers
getPowerballNumbers(7, 1, 20); // different set of 7 numbers now

157

Loop Scenario: Count Very High

You have asked your dad too many times today if you can have a bowl of ice cream. Now, as a stall
tactic, he has ordered you to count all the numbers from 1 to 300 before you're allowed to ask him
for ice cream again (note: This one will use an array!).

function countEm(highestNumber) {
 const allTheNumbers = []; // initialize empty array
 for (let i = 0; i < highestNumber; i++) {
 allTheNumbers.push(i + 1); // add 1, 2, 3... etc. to the
array
 }
 console.log(allTheNumbers.join(', '));
 console.log('... NOW may I have some ice cream?');
}
countEm(300);
countEm(500);
countEm(1000); // Okay! Okay! You can have some ice cream! (Sheesh!)

Looping Through Arrays
At the beginning of this chapter, I promised to show you the coolest thing (or maybe I said "most
useful thing" or something like that...) that you can do with arrays. But first, you had to learn about
how loops work in order to understand it. Well, now that you've learned
about loops and arrays, you will discover that these two programming
concepts were practically made for each other! It's like I've taught you how
to spread peanut butter and how to spread jelly separately, but now...IT'S
PEANUT BUTTER JELLY TIME!

And you know what else is cool about this? From now until the end of the
chapter, I'm not even going to teach you anything new! I'm only going to
use the things you already know and show you how to put them together in
useful ways. Let's get started!

Array with a while Loop

We'll look at the less common one first: the while loop. We will create an array of the steps you
need to take to play your new video game: Yourscraft (now with Story Mode!). Then we'll use the
while loop to make sure each step has been done. Go ahead and close all of your programs, then
get to the console of a blank Chrome tab and type this:

let stepsToPlay = [
 'Plug the TV into the wall',
 'Plug the ZCrate One Z console into the wall',
 'Plug the HDMI cable into both the TV and the ZCrate',
 'Turn on the TV',
 'Turn on the ZCrate',
 'Click the Yourscraft icon',
 'Play the game (watch out for exploding stalkers!)'
];

158

So the goal is to use a while loop to print off each one of these items on its own line in the
console. Knowing what you've learned in the last chapter and this one so far, it's
possible you'll be able to do this without any further instructions (hint:
remember the .shift() method from the last chapter). If you think you
can do this on your own, go ahead and try it now! If you're not ready
yet, then read on and we'll do it together.

We want to begin by logging to the console the first item of the
stepsToPlay array. We can do this in one of two ways (don't type these
yet, just read them):

stepsToPlay[0]; // returns first item (array is unchanged)
stepsToPlay.shift(); // returns first item (and REMOVES it from the array!)

Because the second option actually changes the number of items in the array (removing the first item
each time it's called), we can put this in a loop and there will be a different item coming out during
each iteration.

But remember: whenever you're working with any loop, you need be extra careful that it doesn't
repeat forever! You need to have a condition that you know will not always remain true. And we
can do that by checking the array's length. If the array loses an item every time, then the .length of
the array will keep getting smaller until it's at 0. Try this:

while (stepsToPlay.length > 0) {
 const nextStep = stepsToPlay.shift();
 console.log(nextStep);
}

If you did that correctly, all of the steps should've been printed out to the console! And another
thing—let's see how many steps we have left:

stepsToPlay;

An empty array. Because the while loop kept removing items from the array, we don't have any left
to look at.

But I'd like us to do this again and make some minor adjustments. So press the UP_ARROW
about 3 times or so until you get the initialized array again (the one that starts with let stepsToPlay
= [). Then remove the let keyword. As you may recall, this now means that we're changing this
variable instead of creating it brand new. Now run that code (press the ENTER key) to change the
array to have all the original steps again.

Now let's simplify the while loop a bit. Try out this new while loop (it should behave exactly the
same way), and then compare the changes to the old version:

while (stepsToPlay.length) { // old way had (stepsToPlay.length > 0)
 console.log(stepsToPlay.shift()); // old way had an extra variable
}

Does it seem strange to you that we removed the "> 0" from the condition? Think about it this way:
stepsToPlay.length returns the number of items in the array. That number of items is always a

159

positive integer—unless it's the number zero—right? Well every possible integer (whole number) is
truthy...with one exception. You guessed it! Zero!

As long as the number of items in the array is not zero, then the condition is truthy, and the while
loop will continue to run. As soon as the number of items drops to zero, then the condition is falsy
(0 is a falsy value, remember?), so we break out of the while loop.

As for middle part (inside the while loop), all we did there was combine two lines into one. Because
stepsToPlay.shift() returns a string, we can immediately log it to the console. Remember that
whenever a function is called inside of another function, the interpreter will evaluate the functions
from the inside out—i.e., the inner function will be run first!

Array with a for Loop

As I mentioned before, for loops are even more popular than while loops. In this next example,
we're going to loop through an array using a for loop. And unlike our while loop example above,
we are going to do this without actually changing the array itself.

const cookieSteps = [
 'Preheat oven to 350 degrees',
 'Mix margarine, sugar, brown sugar, vanilla, and eggs',
 'Mix flour, cornstarch, salt, baking soda, and chocolate chips',
 'Place dough on cookie sheet',
 'Cook for 12 minutes',
 'Remove cookies from oven',
 'Eat cookies!'
];

for (let i = 0; i < cookieSteps.length; i++) {
 const stepNumber = i + 1; // 1st step will be "Step 1" instead of "Step 0";
 const thisStep = cookieSteps[i];
 console.log(stepNumber + '. ' + thisStep);
}

Full disclosure: I've never made cookies in my life. But I got this recipe from my daughter, and she
makes delicious cookies!

Were you able to understand why that works? As the code gets looped over and over, the value of i
increases by 1 on each iteration. So in the first pass through, the value of i is 0. Now we know that
cookieSteps[0] returns 'Preheat oven to 350 degrees' right? Well since i represents 0 in the first pass
through, cookieSteps[i] will return the same value as cookieSteps[0].

Then on the second pass through, the value of i is the number 1, and on the third pass through,
the value of i is 2, etc. So cookieSteps[i] ends up being the same as typing cookieSteps[1],
cookieSteps[2], and so on with each iteration. Get it?

And because our for loop doesn't state the
exact number of times it needs to repeat, we
can add to or subtract from the array all we
like, and it will still work just fine!

160

cookieSteps.push('Pour yourself two quarts of milk');
cookieSteps.push('Finish eating every last cookie');
cookieSteps.push('Feel guilty for not sharing any with your sister');
cookieSteps.push('Get a tummy ache');

for (let i = 0; i < cookieSteps.length; i++) { // slightly simplified; still works
 console.log((i + 1) + '. ' + cookieSteps[i]);
}

And check this out! We can do something more to simplify this code even further and still get it to
return the exact same information. I probably wouldn't write it this way in my own code, but I'm
going to do this here because I want you to be comfortable seeing how for loops work. Compare this
code block to the one we wrote before and see if you can spot all the changes (note: We don't have to
reset the array this time because we never actually changed the array when we used the for loop).

for (let k = 1; k <= cookieSteps.length; k++) {
 console.log(k + '. ' + cookieSteps[k - 1]);
}

Did you spot all the differences? Here are the ones I most want you to notice:

1.	 We used a k instead of an i. No reason other than to show you that there's nothing uniquely
special about i. It works with any other variable name as well.

2.	 We changed the initializer to k = 1; instead of k = 0; (or i = 0;). That means the value of k
will go 1-7 instead of 0-6. Again, in most of my code, I would start with 0. I just want you to
know you can start with 1—or any other value—if needed.

3.	 We changed the < to <=. This is important if we are starting with 1. Otherwise, we would
break out of the loop without getting to the last array item.

4.	 We used cookieSteps[k - 1]. Maybe you can guess why we did this. Because our k
starts with 1, we need to subtract 1 from it at this point or else we would be starting with
cookieSteps[1] ("Mix margarine, sugar, brown sugar, vanilla, and eggs"). If we did that,
we would never get around to preheating the oven, and we would end up eating unbaked
cookie dough. Hmm...actually...that doesn't sound too bad!

So here's the big takeaway: Arrays and loops (especially for loops) go together all the time in
multiple programming languages. Learn the syntax and start thinking of using arrays any time you
have a list of something. And use for loops almost any time you want to do something with each
item of the list. If you structure your for loops correctly, then you get the freedom to alter your list
however you—or your users—see fit, and your code will still work as intended.

Follow Along: Movie Spoilerator
Stella is one of your more eccentric friends. She loves watching movies, but she sometimes gets
the endings mixed up in her head. This causes embarrassment for her at parties. Lucky for her,
Stella has a good friend who has promised to make for her a movie ending generator to help her
remember...and as you probably guessed, that friend is you.

161

You agreed to create a function that will allow Stella to type in a movie title and return back that
movie's ending...*sigh*...How do you get yourself talked into these things?

Oh well. What kind of friend would I be if I didn't at least try to help you? So you want my
advice? Here's the plan: you're going to make two lists (hint: Whenever you hear the word "list,"
you should think "array"). One list will
have the titles of several well-known
movies while the other will contain a short
description of the endings of each of these
movies. It is important that the two lists
be in the same order (e.g., the third movie
on the first list should correspond with the
third ending on the other list).

const movieTitles = [
 'Annie',
 'Shrek',
 'Toy Story',
 'Star Wars',
 'Frozen',
 'Hamlet',
 'Cinderella'
];

const movieEndings = [
 'Mr. Warbucks adopts Annie.',
 'Fiona stays an ogre.',
 "Buzz accepts that he's a toy.",
 'The Death Star is destroyed.',
 'Elsa stops ruining everything.',
 'Everybody dies.',
 'They all live happily ever after.'
];

Now wrap both of these arrays in one function (hint: Either use the UP_ARROW in the console to
bring back your lists or copy/paste them). This function should have one parameter (i.e., it expects
one argument to be passed in) and that will be the title of the movie that the user wishes to have
spoiled. Include the //TODO: comments too:

function getMovieSpoiler(chosenMovie) {
 // ... (your arrays go here now)

 //TODO: logic will go here soon
 //TODO: your return statement will go here
}

Okay now. Just to make sure that the function is working properly, put a return statement at the
bottom of the function in place of the last //TODO: comment (just above the final closing curly
brace). Assume that your user called this function without passing in a proper movie title, or maybe
one that's not on the list or something. What should the function return in that case? Perhaps
something exciting and witty like this:

 return "Sorry, we don't have that movie on our list.";

162

Go ahead and test out your function:

getMovieSpoiler('Fake Movie Title'); // No surprise there.
getMovieSpoiler('Annie'); // Huh? But I was almost sure...
getMovieSpoiler('Toy Story'); // Wait a minute...

So the function should work...ish. The problem is that it always returns the same message. Now
press the UP_ARROW in the console a few times to bring back the function and make edits on
it. You can now add in the logic to compare the movie title against your list of titles and return
the correct spoiler. By the way, remember to press SHIFT+ENTER if you need to make new lines
inside the function).

Important: You must include this logic piece above the existing return statement. This is because as
soon as the JavaScript interpreter executes (runs) a return statement in your code, it will jump out of
the function and not read anything else inside the function after that. So, above the return statement
(in place of the remaining //TODO: comment), type:

 for (let i = 0; i < movieTitles.length; i++) {
 if (movieTitles[i] === chosenMovie) {
 return movieEndings[i];
 }
 }

Now look at that code block carefully. It's not easy (at this stage in the book, you are past the point
of easy coding), but it does make sense and it uses only things you've already learned so far. Can
you figure out the logic? Do you know why it works?

If you've done everything correctly so far, your function should look something like this:

Try it out a few times to be sure the function works as expected:

getMovieSpoiler('Annie'); // Much better.
getMovieSpoiler('Hamlet'); // Oh, how sad. :-(
getMovieSpoiler('Cinderella'); // Hooray! :-)

On a high level, your function is looping through all of the items in the movieTitles list and
comparing them to the chosenMovie parameter. If it finds a match, it runs a return statement
returning the movieEnding that exists at the same index point as the matching movieTitle (that's
why the same variable i is used). And once a return statement is executed, no other code is
run after that, so you never get to the final return statement saying, "Sorry, we don't have that
movie..." Get it?

163

Now this is good enough to put a fork in it and call it done. But sometimes we developers like to
add a little extra pizazz...

Suppose instead of just being able to call this with a single movie, Stella wants a function where she
can pass in a list of movies and get the spoilers back for each. Now keep in mind that you should
not make any changes to the existing function. You will create a new function that calls the existing
one (perhaps multiple times inside of a loop). If you think you might be able to do this on your own,
please try before reading on.

Still with me? Okay, here's the code for one possible solution. Type it in the console and verify that
it works:

function spoilTheseMovies(listOfChosenMovies) {
 console.log('SPOILER ALERT! Here are the endings of some famous movies...');
 for (let i = 0; i < listOfChosenMovies.length; i++) {
 const movie = listOfChosenMovies[i];
 console.log(movie + ': ' + getMovieSpoiler(movie));
 }
}

spoilTheseMovies(['Toy Story', 'Frozen', 'Hotel Rwanda', 'Annie']);
spoilTheseMovies(['Star Wars', 'Shrek', 'Boring Talking Movie for Grown-Ups']);

Now assuming you got it to work, don't stop there. Look back at it carefully. Play with it and
change it if you like. See if you can figure out on your own why it works. Don't just copy working
code. Dissect it until you understand it. Learning to read and understand code when you see it
is a huge part of being a professional software engineer...the other huge part is looking up stuff in
Google. (That probably sounds like a joke, but every engineer I know will tell you it's true.)

CHAPTER 9: QUIZ

Do the whole quiz in your Workbook without looking back at the chapter. After you're finished,
have a parent check your answers against the back of the book (or check them yourself if no parent
is available).

1.	 What is the term for a block of code that will repeat itself over and over again as long as
some condition remains truthy?

2.	 What word could you put in the blank space in this block of code?
let i = 0;
_____ (i < 5) {
 console.log(i);
 i++;

3.	 Of the two kinds of loops that we discussed in this chapter, which is more commonly used for
arrays?

164

4.	 Your code may get trapped in a never-ending _____________ if the ______________ always
remains truthy.

5.	 How many individual messages (lines) will be logged to the console using this code?
const countyNums = [1, 2, 3, 5, 6];
for (let j = 0; j < countyNums.length; j++) {
 console.log(j + ' => ' + countyNums[j]);
}

6.	 When a decision or style is not required, but it is a common accepted practice in the industry,
we call this a coding ________________.

7.	 How many individual messages (lines) will be logged to the console using this code?
let k = 0;
while (k < 7) {
 console.log('line!');

8.	 What character is used to separate each of the three sections inside the parens of a for loop?

9.	 Of the three sections inside the parens of a for loop, what is the middle section called?

10.	 Will any message(s) be logged to the console as a result of running this code? If not, why
not? If so, what will be logged to the console? (Answer before testing it out!)
const top40Hits = ['Hey Jude', 'Billie Jean', 'Imagine', 'Hotel Calif.'];
for (let m = 1; m <= top40Hits.length; m++) {
 if (top40Hits[m] === 'The Chicken Dance') {
 console.log('Excellent choice!');
 } else if (top40Hits[m] === undefined) {
 console.log('Big mistake.');
 } else if (top40Hits[m] === 'Hey Jude') {
 console.log("Oh hey! Didn't see ya there!");
 }
}

11.	 How many individual messages (lines) will be logged to the console using this code?
const maxCounter = 17;
let n = 0;
while (n <= maxCounter) {
 console.log('count it! ' + n);
 n++;
}

12.	 What word refers to a single pass through of a looped code block?

13.	 What should you put in the blank space in this block of code?
const hats = ['cowboy', 'bowler', 'chef', 'top'];
for (let p = 0; p < __________________; p++) {
 console.log('I like to wear a ' + hats[p] + ' hat.');
}

165

CHAPTER 9: KEY CONCEPTS

Read this list and look back in the chapter to review anything you're not solid on before moving on:

•	 Loop
•	 while loop
•	 Condition
•	 Coding conventions
•	 for loop
•	 Iterations
•	 Incrementer in a for loop
•	 Arrays with while loop
•	 Arrays with for loop
•	 Calling a function within a loop

CHAPTER 9: DRILLS

A. Try typing these valid code snippets in the console

As you type the comparisons into the console, ask yourself what exactly you expect the value to
be. Then look at the response from the console to see if you're correct.

1.	 let i = 0;
while (i < 6) {
 console.log(i);
 i++;
}

2.	 const sevens = [];
for (let i = 0; i < 10; i++) {
 sevens.push(i * 7);
}
sevens.join('|');

3.	 while (sevens.length) {
 console.log(sevens.shift());
}

4.	 for (let j = 0; j < 20; j++) {
 if (j % 2) {
 console.log(j + ' is an odd number.');
 } else {
 console.log(j + ' is an even number.');
 }
}

5.	 const letters = 'abcdefghijklmnopqrstuvwxyz'.toUpperCase().split('');
const backwardAlphabet = []; // initialize empty array

166

for (let k = letters.length; k > 0; k--) { // counting down (not up)
 backwardAlphabet.push(letters[k - 1]); // add letter to array
}
backwardAlphabet;

6.	 const vowels = 'aeiou'.toUpperCase().split(''); // create array of vowels
while (backwardAlphabet.length) { // keep looping till other array is empty
 const thisLetter = backwardAlphabet.pop(); // remove letter from array
 for (let m = 0; m < vowels.length; m++) { // loop through the 5 vowels
 if (vowels[m] === thisLetter) { // check if this letter is a vowel
 console.log(thisLetter + ' is a vowel.');
 }
 }
}

7.	 for (let i = 0; i < 30; i+= 3) {
 console.log(i);
}

8.	 function whichNumbersAreDivisible(maxNumber, divisor) {
 console.log('Which numbers less than ' + maxNumber
 + ' are divisible by ' + divisor + '?');
 for (let n = 0; n < maxNumber; n++) {
 if (!(n % divisor)) {
 console.log(n + ' is divisible by ' + divisor + '!');
 }
 }
}

9.	 whichNumbersAreDivisible(100, 10);

10.	 whichNumbersAreDivisible(60, 5);

11.	 whichNumbersAreDivisible(90, 3);

12.	 let p = 0;
while (p < 52) {
 console.log(p);
 p += 5;
}

13.	 function multiplicationChartLine(baseNumber) {
 const chartColumns = [];
 for (let i = 1; i <= 10; i++) {
 chartColumns.push(baseNumber * i);
 }
 return chartColumns.join(' | ');
}

14.	 multiplicationChartLine(3);

15.	 multiplicationChartLine(5);

16.	 multiplicationChartLine(7);

17.	 function fullMultiplicationChart(baseNumber) {
 const chartRows = [];
 for (let i = 1; i <= baseNumber; i++) {
 chartRows.push(multiplicationChartLine(i));
 }

167

 return chartRows.join('\n');
}

18.	 fullMultiplicationChart(2);

19.	 fullMultiplicationChart(6);

20.	 fullMultiplicationChart(10);

B. What's wrong with each of these code snippets?
1.	 while (let i = 0; i < 6; i++) {

 console.log(i);
}

2.	 let q = 10;
for (q > 0) {
 console.log(q--);
}

3.	 let trafficLightColors = 'red-yellow-green'.split('-');
for (const r = 0; r < trafficLightColors.length; r++) {
 console.log(trafficLightColors[r]);
}

4.	 function getAllTheRainbowColors() {
 const colors = 'red,orange,yellow,green,blue,indigo,violet'.split();
 for (let i = 0; i < colors.length; i++) {
 console.log('one of the colors is: ' + colors[i]);
 }
 console.log("And that's all the colors of the rainbow!");
}
getAllTheRainbowColors();

5.	 function countByTwos() {
 for (let r = 0; r <= 10; r+= 2) {
 return console.log(r);
 }
}

6.	 function countByTwos() {
 for (let s = 0; s <= 10; s++) {
 if (s % 2) {
 console.log(s);
 }
 }
}

168

CHAPTER 9: AGGREGATE REVIEW

This is the last Aggregate Review for the whole book! I know it's super long, but look at it this way:
almost every question represents a different thing that you've learned over the course of this book
(and of course there are many more things not listed). Look at everything you've learned! Isn't that
amazing?! If you've gotten this far, you're amazing too! You're in the home stretch now with this
final aggregate review. Make it count!

1. 	 The ______________ operators we use are ===, !==, >, >=, <, and <=.

2. 	 A value that isn't necessarily a boolean, but is treated as true for the purpose of conditional
statements is said to be generally ____________. If it were treated as false (though not a
boolean), it is said to be generally ______________.

3. 	 True/False: Logical operators always result in a boolean value.

4. 	 What does DRY stand for in coding?

5. 	 True/False: When there are functions nested inside of one another, the interpreter will always
evaluate the functions from the inside out (i.e. process the results of the values for the inner
functions before processing those for the outer functions).

6. 	 What code might you use to get a random integer between 0 and 40?

7. 	 What does the .length of an array refer to? What does .length of a string refer to?

8. 	 Does this appear to accomplish the developer's intention? (And if not, why not?)
	 const hoursInADay = 24;

9. 	 The ____________ in an array is the number representing any given item's position in the
array.

10. 	 True/False: Block comments cause the JavaScript interpreter to ignore everything from the
first /* until the next /*.

11. 	 What built-in method can you use to add a new item to the end of an array?

12. 	 What is the name for the primitive data type that means no value has been assigned?

13. 	 What glossary term refers to the practice of repeatedly calling one method after another on
an object, in one continuous line of code?

14. 	 By convention, most developers use what form of capitalization for function names in
JavaScript?

15. 	 True/False: Calling myArray.join('\n') on an array will return a string with a newline

169

character (a.k.a. break return) between each item of myArray.

16. 	 Is this a valid block of code? (And if not, why not?)
	 const tonightsBand = 'Three Wheels of Cheese';
	 tonightsBand = "Sal Monella and the Disease"; // TWoC couldn't make it

17. 	 What code should go in the blanks to generate a random value from the array?
	 const coldPlacesToLive = ['Antarctica', 'the North Pole', 'Canada'];
	 const randomIndex = Math._____(Math.______() * coldPlacesToLive.______);
	 const coldPlace = coldPlacesToLive[randomIndex];
	 console.log('You should have a warm coat if you live in ' + coldPlace);

18. 	 What is a developer trying to arrive at when she uses modulo in an operation?

19. 	 Answer this before testing it out in the console: what will be the result of this code?
	 ['Z', 'Y', 'W', 'X'].toString().toLowerCase().split(',').sort()[1];

20. 	 What's the value of mobileDevice after this line?
	 const mobileDevice = 'phone' || ('tablet' && 'PDA');

21. 	 What's the value of nonMobileDevice after this line?
	 const nonMobileDevice = 'TV' && ('laptop' || 'Desktop');

22. 	 What are two different ways to shorten (simplify) this line of code?
	 opponentsScore = opponentsScore + 1;

23. 	 Which mathematical operator would be most useful for checking if a given value is evenly
divisible by 5?

24. 	 True/False: Error messages are intended to be human-readable so that developers can have
clues to help in resolving the errors.

25. 	 Which comparison operator returns false if the value on the right is less than or equal to the
value on the left?

26. 	 True/False: After running this code, the trainCars array will have a .length of 5.
	 const trainCars = ['engine', 'freight car'];
	 trainCars.push(['passenger car', 'baggage car', 'caboose']);

27. 	 What built-in function can you use to round a float (number with a decimal point) down to
the nearest integer (number without a decimal point)?

28. 	 What does a single equals sign imply in a statement?

29. 	 What key combination can you press to get a break return (new line) in the console?

30. 	 True/False: The alert(), confirm(), and prompt() functions are often avoided because they
block all code from running until the user responds.

31. 	 True/False: The confirm() function always returns a boolean.

170

32. 	 What are the three keywords that may be used to declare a new variable? Which keyword
will you probably use most of the time? Which one might you never use?

33. 	 Your code may get trapped in a never-ending _____________ if the ______________ always
remains truthy.

34. 	 What do you type in order to create a new line in the console (note: this also works with any
plain text formats such as alert(), confirm(), and prompt() messages)?

35. 	 When a decision or style is not required, but it is a common accepted practice in the industry,
we call this a coding ________________.

36. 	 Similar to the comparison operators, the ______________ operators (&&, ||, and !) work
well in conditional statements.

37. 	 What word refers to a single pass through of a looped code block?

38. 	 Is this valid code (feel free to type it in the console)? (And if not, why not?)
	 function hasEnoughMoneyToBuy(walletMoney) {
	 	 const cost = 10.30;
	 if (walletMoney > cost) {
 	 console.log('You have enough money!');
	 } else {
 	 console.log("You can't afford it!");
 	 }
	 }

hasEnoughMoneyToBuy(10.30);

39. 	 How many individual messages (lines) will be logged to the console using this code?
let x = 10;
while (x > 0) {
 console.log('value of x is ' + x);
 x++;
}

40. 	 Is this valid JavaScript? (And if not, why not?)
function fixThePrecisionTo3Decimals(number) {
 return number;
 const preciseNumber = number.toFixed(3);
 console.log('More precise amount = $' + preciseNumber);
 return preciseNumber;
}
fixThePrecisionTo3Decimals(25.98765);

41. 	 How many individual messages (lines) will be logged to the console using this code?
const colors = ['red', 'orange', 'yellow', 'green', 'blue', 'purple'];
for (let i = 0; i < colors.length; i++) {
 const color = colors [i];
 if (color.length >= 5) {
 console.log(color);
 }
}

42. 	 True/False: !!('clever' && 'handsome'); // (from my personal profile)

171

43. 	 What glossary term refers to code that has helpfully-named variables and descriptive function
names so that it's easy for a developer to understand the purpose of the code as he reads it
(without the need for explanatory comments)?

44. 	 What is the symbol for the logical operator that always returns a boolean (when placed before
a falsy value, it returns true; before a truthy value, it returns false)?

45. 	 True/False: Comparison operators always result in a boolean value.

46. 	 The values null, false, '', 0, and undefined
are all ___________; whereas true, 'string',
and 1 are all __________ values.

DIY: Strange Allergies
Your doctor just called. The test results are in. I
hate to break it to you, but you have a very unusual
food allergy. It turns out you are allergic to all
candy bars whose names end in the letter "s". And
here you were just about to sit down and enjoy all
the candy that you got while you were out trick-or-
treating (your DIY from the last chapter)!

For this DIY project, I'd like for you to loop through
the list of candy from the previous chapter and
log messages regarding the safety of eating each
piece of candy. As a reminder, your list of candy
includes: Butterfinger, Hershey's, Kit-Kat, Milky
Way, Peanut M&M's, Snickers, Starburst and Three
Musketeers. Create a custom function that will log 8
separate messages (one for each piece) stating whether or not you may eat each given piece of candy
from this list. As always, you may refer to my solution in the back if you get stuck.

173

C
ha

pt
er

 1
0

You have come such a long way to get here! Everything you have learned in this book
is specific to the JavaScript language, but most of it applies to many other programming

languages as well. By that, I mean that in addition to JavaScript, you have already built the
foundations for learning how to program in Ruby, Python, PHP, Java, C#, and many other
languages that are used in famous websites and powerful companies around the world. You

are well on your way to having the skills you need to make an awesome career.

10 MAKE A
HANGMAN

GAME

Up to this point, you've been working hard and learning new things in each chapter. Now the
learning is done. You've earned a break! I'd like us to have a little fun together. So in this, the final
chapter, I will not teach anything new. Instead, we'll use many of the concepts you've already learned
and put them together to create something cool: a Hangman game!

Have you ever played Hangman before? It's a game that is often played between friends on a bus
ride or something. Here's the basic concept: The game picks a random word from a word bank. It's
the player's goal to guess that word by picking individual letters from the alphabet. But with every
wrong guess, the player gets closer to losing the game (and hanging the innocent man!). Can the
player guess the whole word before it's too late?!

I'm going to explain my thought process through every single step, so you should be able to follow
along with me to create this game yourself. I also show the full, complete code in the Answers
section in the back of the book, so if you ever get lost, you can compare your code to mine and fix
any bugs you see. If there is any piece of this you don't fully understand while I'm writing, just do
your best to copy it down correctly as it may make more sense after you see the completed game.

But remember this: Every single line of this whole game uses concepts we have already discussed
in this book—no exceptions! I hope as you work
through this with me, you'll start to get a glimpse
of the awesome new powers that are available at
your fingertips. I mean think about it: how many
of your friends would be able to build a working
video game from scratch and actually understand
every single line of code in it?! You are amazing!

174

Setup
Most of the work you've done so far has been directly in the console. You can build this entire game
in the console too if you like (the final game will run there), but I actually recommend you write
your code in your Workbook (or any text editor if you prefer). When this game is finished, there will
be around 85 lines of code. I think you'll find it easier if you can type it in your Workbook, so that it
is easy to make changes and fixes as you go along.

Several times, I'll have you test out your code in the JavaScript console. When it's time for that, I'd
like you to simply copy and paste your code into the console. You're probably familiar with copy/
pasting at this point (see Chapter 1), but if not, here's a refresher:

1.	 Use your mouse to highlight the lines of code in your Workbook.
2.	 Copy the lines of code with CONTROL+C (or COMMAND+C on a Mac).
3.	 Paste the code inside the console with CONTROL+V (or COMMAND+V on a Mac).

One important word of warning though: when copying your code from your Workbook, it is crucial
that you followed the directions from Chapter 1 and turned OFF "smart quotes" in your Google
Docs or Microsoft Word preferences. Smart quotes are turned on by default in both of these
programs, but your code will not work unless you turned that setting off.

Okay, that's enough setup I think. You ready to get started? Let's have some fun!

Create the Goal: generateHangmanSolution()

In this game, we'll create three separate functions (which are, as always, named following the same
camelCase conventions we've been using since Chapter 1). You should be able to call them all
individually to make sure they work in the console. The first function will generate a Hangman
solution for you. Go ahead and type all this in your Workbook or text editor, then copy/paste it into
your console to test it out.

function generateHangmanSolution() {
 const possibleSolutions = [
 'watermelon',
 'volleyball',
 'homecoming',
 'strawberry',
 'retirement',
 'television',
 'friendship',
 'cinderella',
 'restaurant',
 'helicopter',
 'skateboard',
 'leadership',
 'antarctica'
];
 const randomIndex = Math.floor(Math.random() * possibleSolutions.length);

 return possibleSolutions[randomIndex].toUpperCase();
}

175

If you copied all of this properly, this function should select a random word from the supplied word
bank and that word should be in all capital letters. Example responses might be: "HELICOPTER",
"STRAWBERRY", "VOLLEYBALL", etc. Test it out in the console:

generateHangmanSolution();
generateHangmanSolution();
generateHangmanSolution();

Hopefully, most of this function already makes sense to you. I'm going to explain it to you now,
but before I do, I'd like you to look it over and see if perhaps you can figure out every line on your
own. If you can, that's even better! If you need some help though, don't sweat it. This is meant to
be fun after all. Just do your best to follow my explanations, okay?

•	 For the first part of this function (beginning with const possibleSolutions), create a simple
array of possible words. I've included 13 possible words here, and they're all 10 letters
long. There's nothing special about these. You don't have to use any of them if you don't
want to. I actually recommend you add many more words to this list. Use any words you
like, but ideally they should be common and kinda long.

•	 For the second part (beginning with const randomIndex) generate a random integer between
0 and 12 (all the possible valid indexes for the array). As we saw in Chapter 8, if we put any
of those numbers in square brackets after the array name, we'll be sure that we are getting a
value that exists in the array (e.g., possibleSolutions[1] would give us 'volleyball').

•	 For the last part (return statement), grab a random value from the array using the
randomIndex and convert that value toUpperCase() before returning it. Easy peasy.

Skip to the End: gameOver()
Now we're going to jump straight to the end! We'll create
a gameOver function that should give our user (the player) a
message. When creating a game, I think it's a very good practice
to create the ending before fleshing out the middle. The reason
for this is that as you create the game, you have a clear end goal
in mind, and you can continue to test that your code is working
properly at each intermediate step. Without this end goal, you'll
end up writing a lot more code before testing it. Then when you
finally do test it out and it doesn't work as expected (code almost

never works correctly the first time), there'll be so many lines of code
at once that it may become hard to identify where the bugs are.

So here's the code. Most of this function should be easy to understand. The part I'll explain first
though is the asciiHangman line. That is just a tiny piece of ASCII art (art created using characters
on your keyboard). It's like the teddy bear we created in Chapter 4. You don't have to memorize it
or anything. Just type it out carefully and you'll see the little picture it creates. Type this function in
your Workbook, then copy/paste it into the console:

176

function gameOver(solution, won) {
 const asciiHangman = '____\n|/ |\n| @\n| /|\\\n| / \\\n|\n=====';
 let message = '';
 if (won) { // if `won` parameter is missing, this will be falsy (undefined)
 message = 'YOU WIN!';
 } else {
 message = 'GAME OVER\n\n' + asciiHangman;
 }
 message += '\n\nThe correct answer was ' + solution + '!';
 alert(message);
 return message;
}

This is a function that expects up to two parameters. The first parameter, solution, is the correct
solution to the puzzle. The second parameter, won, is a boolean value stating whether the player
has won or lost. As you may recall from Chapter 4, if you call the function without passing in
two arguments, then any parameters that don't get a value will automatically have the value of
undefined. And because undefined is a falsy value, it will behave the same as passing in false! Let's
test this out in the console:

gameOver('WATERMELON', true); // YOU WIN!
gameOver('ANTARCTICA', false); // GAME OVER
gameOver('FLUFFYBUNNIES'); // GAME OVER
const tempSolution = generateHangmanSolution();
gameOver(tempSolution, true); // YOU WIN!
gameOver(tempSolution); // GAME OVER
gameOver(generateHangmanSolution(), true); // YOU WIN!
gameOver(generateHangmanSolution()); // GAME OVER

Time to break it down!

•	 I already explained the first line (about the ASCII art).
•	 In the next 7 lines, create the message to be displayed to the user. If the function is invoked

passing in true for the won parameter, the first line of the message will be positive ("YOU
WIN!"). Otherwise, it's negative ("GAME OVER" plus the hangman art).

•	 Because the second part of the message is the same regardless of whether the player won
or lost, we use an augmented assignment (Remember from Chapter 2?) to add the rest of the
message. Also, note that the \n creates a newline character, which helps in our formatting.

•	 For the remaining two lines, simply alert() this message and then return it. You might
be asking yourself: "Why are we using alert()? Didn't Jeremy say that users find it
annoying?" Well, truth be told, we will be using all three of the functions I told you that users
find annoying: alert(), confirm(), and prompt(). I wouldn't ordinarily use these myself, but I
was determined to create this whole game using only the techniques I've taught so far in this
book. And these three functions are the only methods of user-interaction I've taught you so
far, so that's why we're using them. In my next book, I plan to teach you some more elegant
options, and you can use those from that point on.

177

The Main Function: playHangman()
Now we come to the main event. For this section, I'll show you a little at a time, and we'll keep
working our way to the end. At the end of each subsection, you should be able to run the main
function without any errors (even if it's unwinnable initially). Pay attention to this kind of workflow
as it is one that you'll want to use in your own projects in the future.

Structure

Type this function in your Workbook then copy/paste it into
the console. Be sure to actually type out all of the //TODO:
comments as these will help you when we add more code to
know exactly where it needs to be added.

function playHangman() {
 const solution = generateHangmanSolution();

 //TODO: add other initialization variables here

 //TODO: add confirmation message here

 //TODO: add game loop here

 return gameOver(solution, false); // if player gets here, Game Over (fail)
}

This is the scaffolding (the structure) for our main game. Right now, all it does is what you were
doing manually earlier:

•	 Generate a solution.
•	 Then invoke the gameOver function passing that solution in as the first argument.

You should be able to test it out right now by invoking this function in the console:

playHangman();

Note that it is error-free right now. If you add something later and it causes an error for you, try
backtracking to the latest point when you knew it was working. Continually test your code like this
and you'll save yourself time and headaches!

Variables

Now type this in your Workbook or text editor in place of the //TODO: add other initialization
variables here comment:

 const solutionLetters = solution.split('');
 const wrongGuesses = [];
 const maxWrongGuesses = 7;
 const progressSoFar = '_'.repeat(solution.length).split('');

178

Once you've done that, then highlight the whole playHangman() function in your Workbook (from
the word function to the final closing curly brace) and copy/paste it in your console. Here's an
explanation of each line in order:

•	 Generate the solution to the game and store the string to an unchangeable variable.
•	 Create an array of individual characters (we will use this later when we capture the player's

letter guesses).
•	 Make an empty array to store the player's wrongly guessed letters.
•	 Decide how many wrongGuesses (strikes) the player gets before he's out. Feel free to adjust this

up or down to reduce or increase difficulty.
•	 Create an array of underscores (_) that has exactly as many items as there are characters in

the solution word (if you haven't added any of your own words yet, then we know this will be
10 items in length because all the possible solutions are 10 characters long). This is what the
player starts with. We intend to change each of these underscores to correctly guessed letters
as the game progresses.

And just to be on the safe side, go ahead and test that the function works without errors:

playHangman();

Troubleshooting

Hopefully, that function worked properly and without any errors... But what if it didn't? What
if you got an unexpected error? Or worse: what if you didn't get any errors, but the code didn't
execute as you expected? Well, if that's the case, you'll need to do some troubleshooting (looking
for the cause of a problem and fixing it).

To begin with, if you got an error message, try to use that to fix the problem (that's the easiest
solution most of the time). If that's not enough, compare each line of your code to the lines in the
book. Also, make sure that your quote marks and apostrophes are not "smart quotes" or "smart
apostrophes" (i.e. they should not curl one way or the other).

You might also try putting chunks of your code in comments to make sure that the rest of it runs
properly. Get the simplest version of running code that you can. Then, one by one, start adding
in the commented lines (i.e. uncomment the lines) and testing the code several times along the way.
You do this to make sure that the code still runs properly. Eventually, you'll add in a line or two,
and the code will not run. When that happens, that will tell you to look extra carefully at that line.
Hope this helps you troubleshoot! If your code works properly now, remember this section and refer
back to it if you need it in the future.

Confirmation

Now in your Workbook, in place of the //TODO: add confirmation message here comment, put this
block of code:

 const confirmPlay = confirm("Let's play Hangman!\n\n"
 + "Pick letters to guess the word I'm thinking of.\n"

179

 + "It's a common word with " + solution.length + ' letters.\n'
 + 'Are you ready to play?');
 if (!confirmPlay) {
 return gameOver(solution, false);
 }

Here are our goals for each of these lines:
•	 Invoke a confirm() dialog box asking the user if he wants to play. As you may recall from

Chapter 7, confirm() requires the user to click a button (either "OK" or "Cancel") and will
return either true or false accordingly. We take this return value (true or false) and assign
it to a variable so that we can test for it next.

•	 In this if statement, check if the user confirmed (true or false). You may remember from
Chapter 6 that when there's a ! in front of it, it will resolve the opposite. So it will run the
code inside the curly braces only if the user clicked the "Cancel" button.

•	 If the user clicked "Cancel," send him straight to the gameOver function and pass in false
for the second argument. This means that the user did not win, so they'll get the "GAME
OVER" message without success. (Note: This will work just as well if you leave out the second
argument so it would look like return gameOver(solution);.)

Once again, copy the entire playHangman() function from your Workbook and paste it in the
console. Now try it out—fix any error messages if you see them—and click the "Cancel" button
when you're offered the confirm():

playHangman();
playHangman();

If you're curious, you might have also tried clicking the "OK" button on the confirm() message.
If you did that, then the interpreter would've skipped over the first if block, but you still would've
gotten the failing gameOver message at the bottom. That's only because we haven't written the rest
of the game yet. Don't worry about that.

At this point, we've established what will happen if the user clicks "Cancel," so you might be
expecting an else block to show what happens if the user doesn't cancel. It might surprise you
to know that the else block is actually unnecessary here. Why is that? Because of the return
statement we've already written! If the condition inside the if block were to resolve true, then
the return statement would be run, and nothing else inside a function can happen after running a return
statement. Therefore, everything we write after this block can only be run if the if statement resolves
false! So there's no need for an else block! It behaves the same as if all the rest of the code in the
function were already inside a giant else block. This isn't new information, but it may be looking at
old information in a new way.

The Game Loop

There's something interesting to know about pretty much all video games: They're written to run in
a loop. The game shows the player some situation, then takes her input (key presses, button presses,
etc.), then changes the situation based on that input (sometimes only slightly) and accepts her input
again. The loop continues to run—perhaps thousands or millions of times—until some condition

180

causes the end to happen. Perhaps, the player runs out of lives (Game Over)
or perhaps she gets all the stars and wins or perhaps she just decides to quit
playing. Either way, the same pattern is there: loop loop loop until something
breaks the cycle.

Knowing that concept should help you a lot in understanding how to write
this or any other game. So let me break down for you what we're trying to
accomplish in our game loop:
1.	 Set up the loop to continue as long as the player hasn't made too many

wrong guesses (wrongGuesses.length < maxWrongGuesses). Check this
condition at the start of every loop and kick the player out of the loop if need be.

2.	 Show the player his progressSoFar (e.g. "_ _ _ _ _ _ _ _ _ _", or "S T _ _ W B _ _ _ _", etc.).
3.	 Show the player his wrongGuesses (so he doesn't guess them again).
4.	 Ask the player to pick a letter.

a. If he cancels, exit the loop and send him to gameOver (failure).
b. If he submits a letter, continue on...

We'll get to the rest later. But let's write the code for that much first. Type this part in your
Workbook in place of the //TODO: add game loop here comment:

 while (wrongGuesses.length < maxWrongGuesses) {
 const promptMessage = 'Here is your progress on the word so far: \n'
 + progressSoFar.join(' ') + '\n'
 + 'Wrong Guesses: [' + wrongGuesses.toString() + ']\n\n'
 + 'Pick a letter!';
 const userInput = prompt(promptMessage);

 if (!userInput) {
 return gameOver(solution);
 }

 //TODO: process user's guess here
 }

Now copy/paste the playHangman() function into your console to test it. It's not possible to win yet,
but it shouldn't get stuck in an infinite loop either. You should be able to exit at any time by pressing
the "Cancel" button or submitting an empty string at the prompt().

playHangman();

So we've now created a promptMessage by simply concatenating several strings the same way we've
been doing since in Chapter 3. Then we passed in the promptMessage string variable to the built-
in prompt() function that will be shown to the user at the start of each loop iteration. If the user
cancels or enters an empty string, we kick him out of the loop and into the gameOver function with
another return statement!

Does this make sense so far? If it doesn't, I recommend you continue on until the whole project is
done and you've had the chance to try the code. Sometimes the big picture can seem a little fuzzy
with all these details. When you have tested out the game a few times, come back and read this stuff
again, and it will probably make much more sense to you.

181

So what's next in our loop?
5.	 Collect the letter that the player submits and assign that to the variable guess.
6.	 Check if the solution has that letter (guess) in it.

a. As long as there is at least one match, make a note that his guess was correct (it doesn't add
to his wrongGuesses).
b. For each matched letter, update the progressSoFar to include the guess.

We'll do the rest soon. But for now, put this code in place of the //TODO: process user's guess
here comment in your Workbook:

 const guess = userInput.toUpperCase();
 let goodGuess = false;

 for (let i = 0; i < solutionLetters.length; i++) {
 if (solutionLetters[i] === guess) {
 goodGuess = true;
 progressSoFar[i] = guess;
 }
 }

 //TODO: Add logic for right or wrong guess here

Most of this should be fairly readable to you now. Here are the steps:
•	 Convert the player's input toUpperCase() and assigned it to the guess variable.
•	 Create a new boolean variable (using let since it will be changeable) called goodGuess and

give it the default value of false (we'll make it true later if we find the player's guess is in the
solution word).

•	 After that, use a for loop (as seen in Chapter 9) to loop through each of the letters of the
solution word and compare it to the player's guess.

•	 If any one letter matches the guess, change the goodGuess variable to true and also
update the progressSoFar array so that the item in that position will no longer be an
underscore ("_") but will instead be that guessed letter!

For example, suppose the solution is "STRAWBERRY" and the progressSoFar array is ['S',
'T', '_', '_', 'W', 'B', '_', '_', '_', '_']. If the player's guess is "R", then this code will loop through
every character of "STRAWBERRY" (the solution) in order, comparing it to the guess. When
it finds a match at position 2 (the variable i will represent the number 2 at that point), it will
run progressSoFar[2] = "R". The same will happen for the other two appropriate positions:
progressSoFar[7] = "R" and progressSoFar[8] = "R". When this code block is done, the
progressSoFar array will be ['S', 'T', 'R', '_', 'W', 'B', '_', 'R', 'R',
'_'].

You should be able to test out what you have so far—even
though the game is still unwinnable. Try this out and see if it
shows progress when you guess letters.
playHangman();

Did that kinda work? No error messages? Okay, so what comes

182

next? Well, we have that goodGuess variable that was initialized as false. If there were any letter
matches, it would be true at this point. So let's test it and react accordingly. Here's what we want to do:

7.	 Check the goodGuess boolean to see if the player's guess was correct.
a. If true:

i. Check to see if he has completely solved the puzzle.
•	 If he has, return successful gameOver ("YOU WIN!").
•	 Otherwise, continue on...

ii. alert() the player that his guess was right.
b. If false:

i. Add the player's guess to the array of wrongGuesses.
ii. alert() the player that his guess was wrong, and tell him how many strikes he has left.

So let's see what this looks like in code. Put this block of code in place of the //TODO: Add logic for
right or wrong guess here comment in your Workbook:

 if (goodGuess) {
 if (progressSoFar.join('') === solution) {
 return gameOver(solution, true);
 }

 alert('Good guess!');
 } else {
 wrongGuesses.push(guess);
 alert('Sorry, ' + guess + ' is incorrect.\nYou have '
 + (maxWrongGuesses - wrongGuesses.length) + ' strikes left.');
 }

See if you can read and understand this on your own. I think you can, but just in case, I'll explain
the lines here. (Might as well be thorough, right?) I hope this feels repetitive to you because that
implies that you have a good understanding of how to read code!

•	 If goodGuess is true...
	 Open another if statement to compare the solution to our progressSoFar array. Because

we're comparing a string to an array, we use the .join() method and pass in an empty
string so that it will combine each of the array items into a string of characters with no
other strings in between them.

•	 If this is a perfect match, run a return statement, which of course will boot our
player out of this whole playHangman function (not running any further code
here) and into the gameOver function. But this time, pass in true as the second
argument. When the gameOver function reads this, it will execute the "YOU WIN!"
version of the message (refer to the gameOver function declaration to see what I
mean).

•	 If this is not a match, continue on...
	 alert() the player that his guess was a "Good guess!".

•	 If goodGuess is false...
	 .push() the guess into the wrongGuesses array. Remember that wrongGuesses.length

will be compared against maxWrongGuesses (using the "less than" comparative operator

183

discussed in Chapter 5) before every iteration of this while loop. If the .length is ever too
high, the player will be forced out of the while loop which will lead him to the final return
gameOver() statement (FAILURE).

	 alert() the player that his guess was incorrect and show how many strikes he has
remaining before the [presumably] innocent man will be hanged.

And that, my friends, was the FINAL block of code for the whole game! Copy/paste all of your
code in the console and test it out as many times as you like!

playHangman(); // try to reach all of the possible outcomes!
playHangman(); // try solving the puzzle!
playHangman(); // try canceling at the start!
playHangman(); // try running out of guesses!
playHangman(); // try canceling partway through it!
playHangman(); // test it out with a parent or sibling!

Improvements
At this point, your Hangman game should
completely work. If it doesn't work properly, try
out some of the error resolution steps we explored
in Chapter 1. If that doesn't help, then check the
Answers section in the back of the book because I
put the full solution in there. Compare your code to
mine line-by-line to see if there's any section that is
missing or doesn't add up.

If you have gotten it to work, congratulations! Next, I encourage you to look back through the
code to ensure that you fully understand every single line. The code touches on many different
concepts that were first introduced in every chapter leading up to this point! I actually didn't even
plan that! It just worked out that way because programming languages continue to build upon
themselves much like spoken languages do (think about it: just today, you probably used words you
first learned at every different year of your life!).

If you have a working Hangman game and you understand the code, feel free to call it done! Or if
you're still eager for more, consider making minor improvements to the game on your own. Perhaps
you'd like to try some of these ideas?

•	 Add a dozen or more words to the solutions word bank.
•	 Change the text presented to the player.
•	 Add helpful comments to explain the code more fully.
•	 Add in the Hangman ASCII art in other places.
•	 Create your own ASCII art to be displayed when the player wins.
•	 Adjust the input collection to elegantly handle situations where the player inputs more than

one character (perhaps only use the first letter of his input?).
•	 Anything else you can think of...

This Hangman game is all yours now, so however you wish to use it is up to you! Have fun
exploring!

184

Conclusion

I hope you've enjoyed this small introduction to your newfound abilities. But
even more, I hope you'll continue to expand them and improve your skills. All
of this volume has focused on JavaScript, and that's a great foundation for
learning to code. But a balanced programmer should also know a little bit about
some other languages too. This is just the beginning. There is so much more
that you can do!

For instance, did you notice that in this whole book, we never displayed any
actual images? You learned a ton about programming and creating functions,
but we never did anything with colors. We didn't create a web page or embed a
video or build something you could email to your friends. Is that because those
concepts are too difficult? Absolutely not!

You can learn all of those things and so many more after that! The reason we
didn't touch on any of them in this book is because they all fall into the subjects
of HTML (Hypertext Markup Language) and CSS (Cascading Style Sheets). If
you can learn JavaScript, you can definitely learn both of these skills as well! In
fact, most developers agree that they are considerably easier to learn than
JavaScript.

So if HTML and CSS are easier to learn, why didn't I start with them? Well,
the truth is that I could've started with them. The development concepts that
arise when studying HTML, CSS, and JavaScript all build on one another,
and different people learn them at
different times. I had a teaching
approach with JavaScript that I was
excited about exploring, so I started
with that.

185

I wanted to help you learn to think through problems and create solutions like a
real engineer. I wanted you to tap into the new skill of programming computers,
and I believe JavaScript is the best place to start that new discovery.

But I still want you to learn HTML and CSS so that you can develop entire
websites, involve your JavaScript in creative new ways, and build projects that
will last!

That's why I strongly encourage you to check out Volume 2 of my Code for
Teens series. In Volume 2, I'll introduce you to HTML and CSS and show
you how JavaScript becomes so much cooler when you weave it in with these
concepts. You'll build interactive web pages and games, manipulate images,
and save and share your work with your family and friends! You can say
goodbye that sad feeling of "Well, it was a cool project, but I did it all in the
console, and I can't find it anymore..."

If you enjoyed this book, I guarantee you'll enjoy the sequel too! Either way
though, do continue to learn and grow. Never stop improving. I hope you'll
continue your journey of discovery and develop your superpowers beyond what
you ever thought possible!

186

Answers

Chapter 1 Answers
Ch. 1 Quiz Answers:

1.	 about:blank

2.	 CONTROL+SHIFT+J
(COMMAND+OPTION+J on a Mac)

3.	 let and var
4.	 ;

5.	 /

6.	 paren (parens is the plural form)
7.	 SyntaxError (the ; was unexpected there. It should've been moved to the right side of the

closing paren).
8.	 camelCase (or camelCasing)
9.	 paren (would also accept quote mark)
10.	 Not valid because the let keyword should not be there in the second line.
11.	 Assignment—a value is being assigned to a variable (example: let myAge = 10;)

Ch. 1 Drills Answers:
A. Try typing these valid code snippets in the console

1.	 "pepperoni and sausage"
2.	 21
3.	 4
4.	 12
5.	 14
6.	 "6 Foot 7 Foot"
7.	 Working 9 to 5"
8.	 "73" // the "3" is a string so the 7 is concatenated

(attached) to it instead of the value added to it.
9.	 Infinity

B. What's wrong with each of these code snippets?

1.	 Needs var or let keyword before using the variable.
2.	 Missing closing quote mark (")

187

3.	 The single equals sign implies assignment. Assignments always need to have exactly one
variable on the left side (like let x = 3 + 5;). Also, it needs the let or var keyword when
declaring a variable for the first time.

4.	 SyntaxError. The semicolon is unexpected. The closing paren should come first.
5.	 Missing closing paren (or has extra opening paren)
6.	 Missing opening paren (or has extra closing paren)
7.	 The single equals sign implies assignment. Assignments always need to have exactly one

variable on the left side (like let x = 15 - 12;). Also, it needs the let or var keyword when
declaring a variable for the first time.

8.	 Missing semicolon (;) on the end (note: this will not actually throw an error)
9.	 The variable notreallycamelcase is in lowercase. It should instead be in camelCase like

this: notReallyCamelCase (note: This is by convention; no error would be thrown here).
10.	 The variable ISTHISANYBETTER is in UPPERCASE. It should instead be in camelCase like

this: isThisAnyBetter
11.	 The variable how_about_this is in snake_case. It should instead be in camelCase like this:

howAboutThis.
12.	 The variable IsThisCloseEnough is in PascalCase. It should instead be in camelCase like

this: isThisCloseEnough (lowercase letter to start the variable).
13.	 The variable surely-this-counts-right is in kabob-case. This is NOT valid JavaScript at

all as the dashes would appear to the interpreter to be minus signs! It should instead be in
camelCase like this: surelyThisCountsRight.

14.	 Missing quotes around the string "Good!" (and better to also end with a semicolon).

Ch. 1 Do It Yourself (DIY) Recommended Solution:

Here is one possible solution to the DIY Project (try copying/pasting this whole block into the
console to see the final return value):

let ageOfDad = 36;
let ageOfMom = 36;
let ageOfAngel = 13;
let ageOfTony = 11;
let ageOfHarmony = 8;
let ageOfCharity = 7;
let ageOfChase = 5;
let ageOfSymphony = 0;
let sumOfAllAges = ageOfDad + ageOfMom + ageOfAngel + ageOfTony + ageOfHarmony
 + ageOfCharity + ageOfChase + ageOfSymphony;
let numberOfFamilyMembers = 8;
let averageAgeOfFamilyMembers = sumOfAllAges / numberOfFamilyMembers;
averageAgeOfFamilyMembers;

188

Chapter 2 Answers
Ch. 2 Quiz Answers:

1.	 Plus sign indicates addition—adding numbers together
2.	 *

3.	 Number
4.	 Forward slash indicates division—dividing one number by another number
5.	 Number
6.	 Parens—(and)
7.	 *= (myVariable *= 2;)
8.	 % (percent sign)
9.	 myVariable++; (increment operator)
10.	 myVariable--; (decrement operator)
11.	 3 * (4 + 1);

12.	 2

13.	 -= (myValue -= 8;)
14.	 5 different values (0, 1, 2, 3, or 4).
15.	 Augmented assignments
16.	 Modulo (%). In this case, you would use % 3 because there are only three different possible

values you're looking for (red, green, or blue).

Ch. 2 Drills Answers:
A. Try typing these valid code snippets in the console

1.	 16

2.	 5

3.	 4

4.	 6

5.	 20

6.	 7

7.	 2

8.	 2

9.	 0

10.	 18 // note: this is one way to get the shortened 2-digit form of any given year
11.	 3

12.	 1

B. What's wrong with each of these code snippets?

1.	 In JavaScript, math operations should never appear on the left side of a single equals sign
(=) because that sign indicates that a value is being assigned.

2.	 A variable name cannot be a number (nor even start with a number!).

189

3.	 While this statement isn't technically invalid, it probably indicates a logical mistake on the
part of the developer. She probably intended to write:
mySpecialValue = mySpecialValue + 6; or even cleaner:
mySpecialValue += 6; (both would arrive at the same result)

4.	 Missing closing paren
5.	 Variable assignment requires a single equals sign (=), not a double equals sign (==)
6.	 modDividend and modDivisor must both be defined before they can be used on the right side

of an assignment statement.
7.	 Missing opening paren
8.	 +* isn't a valid operator (it doesn't make sense).
9.	 In JavaScript, math operations should never appear on the left side of a single equals sign (=)

because that sign indicates that a value is being assigned. Besides that, even if the right side and
left side were switched, theFinalAnswer would still need a let or var keyword in front of it.

10.	 A += symbol cannot be used along with a let statement. The keyword let indicates that
a new variable is being created. A += symbol cannot be used at the time a variable is first
being created because it can't be added to itself (as it's not yet been defined when the
addition would need to take place).

11.	 Operations should never appear on the left side of an assignment statement (remember
that -= does indicate that a value is being assigned to a variable).

12.	 This doesn't throw an error, but for practical purposes, % should usually only be used with
integers (positive or negative whole numbers) and usually positive ones at that (or 0). There
are some cases where it would be useful outside of this, but these cases are rare.

13.	 +/ isn't a valid operator (it doesn't make sense)

Ch. 2 Aggregate Review Answers:

1.	 camelCase (or camelCasing)
2.	 CONTROL+SHIFT+J (COMMAND+OPTION+J on a Mac)
3.	 No. A variable name cannot start with a number.
4.	 Yes
5.	 True. Error messages are there to help you figure out what went wrong so you can fix

it. That's why you should read those error messages!
6.	 SyntaxError
7.	 % (modulo)
8.	 about:blank

9.	 += (mathyValue += 7;)
10.	 Yes. Multiple statements may appear on one line if separated by semicolons (;).
11.	 Not valid because the let keyword should not be there in the second line.

Ch. 2 DIY Recommended Solution:

Here is one possible solution to the DIY Project (try typing these lines into the console and
running them one-at-a-time to see the final return value):

190

let numberOfCourts = 4;

let studentId = 1; 	 // first studentId (we'll change this with each line)
studentId % numberOfCourts; 	 // any number modded by 4 will return a value between 0
and 3. In this case, it returns 1 (as in, court #1)
studentId = 2; studentId % numberOfCourts; 	 // 2 (court #2)
studentId = 3; studentId % numberOfCourts; 	 // 3 (court #3)
studentId = 4; studentId % numberOfCourts; 	 // 0 (court #0)
studentId = 5; studentId % numberOfCourts; 	 // 1
studentId = 6; studentId % numberOfCourts; 	 // 2
studentId = 7; studentId % numberOfCourts; 	 // 3
studentId = 8; studentId % numberOfCourts; 	 // 0
studentId = 9; studentId % numberOfCourts; 	 // 1
studentId = 10; studentId % numberOfCourts; 	 // 2
studentId = 11; studentId % numberOfCourts; 	 // 3
studentId = 12; studentId % numberOfCourts; 	 // 0
studentId = 13; studentId % numberOfCourts; 	 // 1
studentId = 14; studentId % numberOfCourts; 	 // 2
studentId = 15; studentId % numberOfCourts; 	 // 3
studentId = 16; studentId % numberOfCourts; 	 // 0

Chapter 3 Answers
Ch. 3 Quiz Answers:

1.	 b. human
2.	 String
3.	 c. ignore
4.	 //

5.	 SHIFT+ENTER
6.	 quotes (single quotes or double quotes)
7.	 /*

8.	 */

9.	 False. It doesn't matter which quotes you use.
10.	 characters (though if you said "strings," you wouldn't technically be wrong either)
11.	 concatenation
12.	 Add a \ before the apostrophe: 'The name\'s Bond. James Bond.'
13.	 Change the single quotes to double quotes: "Here's looking at you, kid.";

Ch. 3 Drills Answers:
A. Try typing these valid code snippets in the console

1.	 (type in the console. nothing to see here)

191

2.	 (type in the console. nothing to see here)
3.	 (type in the console. nothing to see here)
4.	 KitKat

5.	 "Are we there yet?"

6.	 "No."

7.	 "Are we there yet? Are we there yet? Are we there yet?"

8.	 "We'll get there when we get there."

9.	 "But Mom said, "We will be there before you know it"!"

10.	 "I also said, "Quit pestering your father from the back seat"!"

11.	 "But I'm sooooo tired, and I can't sleep with my head on the window."

12.	 "If you don't quit your whinin', I'm gonna stop this car!"

B. What's wrong with each of these code snippets?

1.	 The line that should've defined the variable is commented out (so the interpreter will ignore
it). This leads to a ReferenceError because we're trying to use a variable that isn't defined.

2.	 The block comment is never closed.
3.	 Needs to escape the apostrophe in I'm with a backslash (or use double quotes on the string).
4.	 This will not be read as a block comment at all because the // will cause the rest of the line

to be ignored.
5.	 There is an extra / at the end.
6.	 There is an errant * that should really be a +.
7.	 The i should be in quotes: 'i'.
8.	 The backslash is in the wrong place. It should be moved one character to the right:

"The " + "\"dogs\" out?".

Ch. 3 Aggregate Review Answers:

1.	 CONTROL+SHIFT+J (COMMAND+OPTION+J on a Mac)
2.	 Yes
3.	 Yes
4.	 about:blank

5.	 No. In JavaScript, operators should never appear on the left side of a single equals sign (=)
because that sign indicates that a value is being assigned.

6.	 True. Error messages are your friends. They're there to help you figure out what went
wrong so you can fix it. Read those error messages!

7.	 let age = 12;
age += 1;

8.	 In the console (in Chrome developer tools)
9.	 SyntaxError (using let with the same variable more than once)
10.	 Yes
11.	 internet browsers (or just browsers)
12.	 camelCase (or camelCasing)
13.	 Parens—(and)
14.	 String (notice the quotes)

192

15.	 String (notice the quotes)
16.	 Assignment (assigning to a variable)
17.	 let faveEntree = "Chicken";

faceEntree += " Burrito";

18.	 Modulo (or mod)
19.	 Yes (though it won't do much good since a value is assigned to a variable that is never used).
20.	 No. favePopcorn is never defined (the defining code is commented out).

Ch. 3 DIY Recommended Solution:

Here is one possible solution to the DIY Project (try typing this into the console or copy/pasting
the whole block if you have a digital version of this book):

/* Variables */
let name = 'Jeremy';
let hobby = 'musical theater';
let pet = 'none (more of a children person)';
let skill = 'playing chess';
let grade = 31; // (good thing grades don't keep counting every year)
let faveCartoonMovie = 'Tangled';
let pronoun = 'he'; // as opposed to 'she'
let possessivePronoun = 'his'; // as opposed to 'her'
/* Now we'll add everything to one paragraph */
let bio = 'Even though ' + name + ' is super famous, ' + pronoun
 + ' still finds time to hone ' + possessivePronoun + ' skill of '
 + skill + ' and relax with ' + possessivePronoun
 + ' lovable pet named "' + pet + '". In ' + possessivePronoun
 + ' free time, ' + pronoun + ' enjoys ' + hobby + ', watching "'
 + faveCartoonMovie + '", and studying to be on the honor roll at '
 + possessivePronoun + ' school where ' + pronoun + ' is in the '
 + grade + 'th grade.';
bio; // should print a long paragraph

Chapter 4 Answers
Ch. 4 Quiz Answers:

1.	 Function
2.	 Curly braces { and }
3.	 invoking (or calling)
4.	 camelCase
5.	 return

6.	 parameters / arguments
7.	 D.R.Y. (Don't Repeat Yourself)
8.	 alert()

9.	 Comma ,
10.	 console.log()

11.	 Parens ()

193

12.	 0 and 1 (referring to Math.random())
13.	 Math.floor()

14.	 True
15.	 True
16.	 False. It will use the return value (also known as the "result") from the inner function and

pass it as an argument to the outer function.
17.	 TAB
18.	 \n

Ch. 4 Drills Answers:
A. Try typing these valid code snippets in the console

1.	 (type in the console. nothing to see here)
2.	 "Sweltering with scattered snow flurries"

3.	 (type in the console. nothing to see here)
4.	 "The weather forecast says:

cloudy with a chance of meatballs"

5.	 (type in the console. nothing to see here)
6.	 "Your name is Jeremy" //your results may vary
7.	 (type in the console. nothing to see here)
8.	 "You are 36, and you still enjoy playing Xbox One?" //your results may vary
9.	 (type in the console. nothing to see here)
10.	 3 //any integer from 1 and 6; your results may vary
11.	 (type in the console. nothing to see here)
12.	 You rolled 11! (5 & 6) //your results may vary

B. What's wrong with each of these code snippets?

1.	 Function declaration is needed.
2.	 Curly braces are needed { }.
3.	 Curly braces are needed { } instead of square brackets [].
4.	 console.log() should've been the outer function with areDonutsTasty() passed in as the

argument (since it will return a string that can be logged to the console).
5.	 Math.random() should be the inner function nested inside of Math.floor() as the return

value of Math.random() would then be passed in as the argument to the outer function Math.
floor(). Also, the value would be guaranteed to be exactly 0 in that case as any return
value from Math.random() would be rounded down to the nearest integer: 0.

6.	 This…is just wrong. Users hate alert() messages and find them annoying.
7.	 The semicolon cannot be inside of the console.log() function. It needs to be at the end of

the statement.
8.	 Needs parens after getColor.
9.	 Needs a parameter called restaurant inside of the parens on the first line in order to use it

in the return value.

194

Ch. 4 Aggregate Review Answers:

1.	 String
2.	 let and var
3.	 True
4.	 Yes
5.	 Add a backslash before the apostrophe in Can't.
6.	 False. It's the D.R.Y. principle (Don't Repeat

Yourself).
7.	 No. Developer probably wants a single-line

comment, so it should be // instead of /*. The /*
indicates a block comment so it must be closed with
*/.

8.	 Number
9.	 //

10.	 characters
11.	 %

12.	 False. It is fine to have double quotes inside of a string surrounded by double quotes as
long as the developer uses backslash to escape the inner quote marks like so: "The children
sang \"Jesus Loves Me\"".

13.	 The remainder (or modulus) [of a Euclidian division problem]
14.	 True
15.	 Green
16.	 Console
17.	 Yes
18.	 Modulo %
19.	 += (largeNumber += 19;)
20.	 String
21.	 No. The function declaration cannot use a number to represent the parameter. It should

have a variable name there instead (and variable names cannot start with a number).
22.	 Create a break return (new line)
23.	 TAB
24.	 No. The function declaration shows two parameters in the function: min and

maxNumber. When being invoked, only one number is passed into the function as an
argument, so this number will be used as the first parameter (min), which is never used in
the body of the function. The second parameter (maxNumber) is used in the function, but it
will have the value of undefined, which will not achieve the stated goal of an integer less
than 20.

25.	 nested

Ch. 4 DIY Recommended Solution:

Here is one possible solution to the DIY Project (try typing this into the console):

195

/*
 Town Lottery!
*/
function getRandomTwoDigitNumber() {
 let maxNumber = 100; // guaranteed less than this
 let randomNumberWithDecimal = Math.random() * maxNumber;
 let roundedDownToNearestInteger = Math.floor(randomNumberWithDecimal);

 return roundedDownToNearestInteger;
}
function getLotteryNumbers() {
 let part1 = getRandomTwoDigitNumber();
 let part2 = getRandomTwoDigitNumber();
 let part3 = getRandomTwoDigitNumber();
 let winningNumbers = part1 + '-' + part2 + '-' + part3;

 console.log('Your winning lottery numbers are: ' + winningNumbers + '!');
}
// Should be different every time
getLotteryNumbers();
getLotteryNumbers();
getLotteryNumbers();

Chapter 5 Answers
Ch. 5 Quiz Answers:

1.	 Boolean
2.	 < ("less than")
3.	 False
4.	 !== ("not equals equals" or "bang equals equals")
5.	 == and !=
6.	 >= // the wording on this one was tricky
7.	 Conditional
8.	 truthy / falsy
9.	 else

10.	 True
11.	 True
12.	 False (else block has no parens)
13.	 False

Ch. 5 Drills Answers:
A. Try typing these valid code snippets in the console

1.	 false
2.	 undefined // code inside if block doesn't run
3.	 true
4.	 true

196

5.	 truthy
6.	 true
7.	 kinda confusing
8.	 false
9.	 "See why we don't use this? Confusing!"
10.	 false
11.	 false
12.	 false
13.	 undefined // code inside if block doesn't run
14.	 (type in the console. nothing to see here)
15.	 301 is greater than 212
16.	 155 is greater than -800
17.	 Both numbers are equal!
18.	 efg is larger than abcd
19.	 Both numbers are equal!

B. What's wrong with each of these code snippets?

1.	 It's not invalid, but it should account for the possibility of the two numbers being the same
value. As it is written, the console would log that one of the numbers is smaller even if
they're the same.

2.	 The if block needs parens.
3.	 The else block should not have parens.
4.	 Having two comparison operators in one statement probably doesn't accomplish a very

meaningful check.
5.	 Should be ===.
6.	 This is an assignment, so it should be =.
7.	 This is an assignment, so it should be =.

Ch. 5 Aggregate Review Answers:

1.	 False. Block comments cause the JavaScript interpreter to ignore everything from the start of
the comment with /* until the close of the comment with */.

2.	 Yes
3.	 Put a backslash before each of the quote marks that surround the word "Goodbye" like this

\"Goodbye\"

4.	 Don't Repeat Yourself
5.	 Conditional
6.	 Yes
7.	 String
8.	 /* and */
9.	 falsy / truthy
10.	 A modulo operation (looking for the remainder)
11.	 camelCase

197

12.	 True
13.	 SyntaxError
14.	 Remainder of an integer division problem
15.	 No. There is an extra closing paren.
16.	 False. Error messages are intended to make it easier to see what's wrong.
17.	 Assignment
18.	 CONTROL+SHIFT+J (COMMAND+OPTION+J on a Mac)
19.	 Yes, it's valid, but it won't give you the result you're looking for. The > should be changed to

>=.
20.	 += // like this… greeting += ', ' + firstName;
21.	 Boolean
22.	 Yes, it's valid, but it won't do what the developer probably wants. None of the code after the

return statement gets run. For this reason, return should be the last line of the function.
23.	 about:blank

24.	 browsers
25.	 == and !=
26.	 <= // this was a tricky question. Look again if you got it wrong.
27.	 TAB
28.	 Yes
29.	 nested
30.	 True
31.	 Math.random()

Ch. 5 DIY Recommended Solution:

Here is one possible solution to the DIY Project (try typing this into the console):

/*
 Children's Church!
*/
function isInAgeRange(currentAge) {
 let minimumAge = 6;
 let maximumAge = 13;
 if (currentAge < minimumAge) {
 console.log("You're too young for Children's Church.");
 } else {
 if (currentAge <= maximumAge) {
 console.log("You may attend Children's Church!");
 } else {
 console.log("You're too old for Children's Church.");
 }
 }
}

// Now let's test it out
isInAgeRange(5); // too young
isInAgeRange(15); // too old
isInAgeRange(9); // just right!
isInAgeRange(13); // just right!

198

Chapter 6 Answers
Ch. 6 Quiz Answers:

1.	 Undefined
2.	 logical
3.	 Null
4.	 undefined, undefined
5.	 Logical OR, ||
6.	 1 possible value (null)
7.	 False
8.	 else if

9.	 Logical NOT, !
10.	 True
11.	 Logical OR, ||
12.	 True
13.	 False
14.	 True
15.	 Logical AND, &&
16.	 True
17.	 undefined

18.	 1 possible value (undefined)
19.	 True
20.	 true (remember, ! always returns a boolean)
21.	 Logical AND, &&
22.	 falsy / truthy
23.	 "love"

Ch. 6 Drills Answers:
A. Try typing these valid code snippets in the console

1.	 false

2.	 true

3.	 B

4.	 0

5.	 C

6.	 C

7.	 (type in the console. nothing to see here)
8.	 Person1 is older and goes first.

9.	 Person2 is older and goes first.

10.	 Person1 is older and goes first.

11.	 No ages have been passed as arguments!

12.	 Both are the same age. Let's randomly decide Person1 (or Person2) goes first!

199

13.	 No ages have been passed as arguments!

14.	 Person2 is older and goes first.

15.	 Person2 is older and goes first.

16.	 (type in the console. nothing to see here)
17.	 His name is Justin Thyme.

18.	 His name is John Doe.

19.	 His name is Rusty Karr.

20.	 His name is John Doe.

B. What's wrong with each of these code snippets?

1.	 It's not invalid, but the final else block could never be run. Also, the console.log() statement
in the first if block is misleading because anyArgument would have to be truthy for that block
to run.

2.	 The else if block needs parens.
3.	 This is an assignment (that's what the = implies). In an assignment, there should only be one

variable on the left side of the = with no operators or logic on that side.
4.	 This is an assignment (that's what the = implies). In an assignment, there should only be one

variable on the left side of the = with no operators or logic on that side.
5.	 This is an assignment (that's what the = implies). In an assignment, there should only be one

variable on the left side of the = with no operators or logic on that side.

Ch. 6 Aggregate Review Answers:

1.	 Yes.
2.	 Boolean, string, null (or object if you prefer), number, string,

undefined
3.	 A modulo operation (looking for the remainder)
4.	 characters
5.	 True
6.	 logical
7.	 comparison
8.	 Conditional
9.	 nested
10.	 Yes, it's valid, but it won't give you the result you're looking

for. The if block should use >= and <= so as to include those
exact heights instead of excluding them.

11.	 False. ! always results in a boolean value, but && and || often result in non-boolean values.
12.	 += // like this… currentScore += 10;
13.	 Modulo (%)
14.	 They're all truthy. The data types in order are: string, number, boolean, number, string,

string.

200

15.	 Yes, it's valid, but it won't do what the developer probably wants. None of the code after the
return statement gets run. For this reason, return should be the last line of the function.

16.	 < // this was a tricky question. look again if you got it wrong.
17.	 The console
18.	 Wednesday
19.	 TAB
20.	 False. Nested parens and functions should always be resolved from the inside out (i.e. always

resolve values for the innermost parens first).
21.	 True
22.	 No. The function declaration cannot use a number to represent the parameter. It should

have a variable name there instead (and variable names cannot start with a number).
23.	 Math.floor()

24.	 True
25.	 True
26.	 SHIFT+ENTER

Ch. 6 DIY Recommended Solution:

Here is one possible solution to the DIY Project (try typing this into the console):

/*
 Temple of Stripes
*/
function templeDoorMessage(biForcePieces, halitosisWand, masterKey, regKeys) {
 let totalBiForcePieces = 6;
 let minRegKeys = 10;
 let msg;

 if (!(biForcePieces >= totalBiForcePieces)) {
 let numberMissing = totalBiForcePieces - biForcePieces;
 msg = 'You need ' + numberMissing + ' more Bi-Force pieces to enter.';
 } else if (halitosisWand && (masterKey || regKeys >= minRegKeys)) {
 msg = 'You may enter the Temple of Stripes!';
 } else {
 // let helpfulMessage = 'Bring stew to the mageSquire in obscureTown.';
 let crypticMessage = "Come back when you're more prepared.";
 msg = 'You are not ready. ' + crypticMessage;
 }

 console.log(msg);
}

// Now let's test it out
templeDoorMessage(4, true, true); // missing pieces
templeDoorMessage(6, true, false, 9); // not ready
templeDoorMessage(6, false, true); // not ready
templeDoorMessage(6, true, false, 12); // you're in!
templeDoorMessage(6, true, true); // you're in!

201

Chapter 7 Answers
Note: All Ch. 7 DIY recommended solutions are at the end of the answers section.

Ch. 7 Quiz Answers:

1.	 True
2.	 toUpperCase()

3.	 const

4.	 Documentation
5.	 When you know that the value of a variable might change.
6.	 confirm(), prompt(), and alert()
7.	 Self-documenting
8.	 toLowerCase()

9.	 Never
10.	 False. It goes by a special name: "method".
11.	 prompt()

12.	 const

13.	 False. It always returns a string (or null).
14.	 True
15.	 False. They create a poor user experience and block the rest of the code from running. For

these reasons, professionals don't often use these functions anymore.

Ch. 7 Drills Answers:
A. Try typing these valid code snippets in the console

1.	 "3.8"

2.	 "usernamewithweirdcapitalization"

3.	 Money value is $1.60

4.	 undefined

5.	 It's great to see you again, Jeremy! // your results may vary

6.	 undefined

7.	 "19"

8.	 "OFFICIAL PATENT OFFICE OF THE U.S.A."

9.	 "should be initialized with the let keyword"

10.	 All the things have been cleaned! // your results may vary

11.	 Thank you for your purchase! // your results may vary

12.	 undefined

13.	 "Sure! I'll shake your hand!" // your results may vary

14.	 "I think I'll keep my distance." // your results may vary

15.	 "I think I'll keep my distance." // your results may vary

16.	 "Sure! I'll shake your hand!" // your results may vary

202

B. What's wrong with each of these code snippets?

1.	 You can't use const with a value that will change. Use let instead.
2.	 It's not invalid, but it's better to use const for both of these variables (instead of let or var)

because they're not going to change.
3.	 Should use prompt() instead of confirm() since it requires the user's typed input.
4.	 C'mon, toCapitalized() is not a built-in function. Should be toUpperCase().
5.	 This is not technically invalid, but it's probably not a good time to use toFixed() because it's

rounding out a precise value and claiming that it's getting an "extraPreciseAngle". If you're
launching a missile into space, you probably shouldn't round out your angles without decimal
places like that.

6.	 This is not invalid, but it's a poor example of self-documenting code. It would be better to
name the variables with names like daysPerYear, daysInAWeek, and hoursPerDay. That way,
the code would be self-documenting and wouldn't need those single-line comments by it.

7.	 This should be a confirm() instead of a prompt() because it's asking for a simple confirmation
with only two possible values.

Ch. 7 Aggregate Review Answers:

1.	 falsy / truthy
2.	 Put a backslash before the apostrophe in Can't (like this: Can\'t).
3.	 Don't Repeat Yourself
4.	 Yes
5.	 (Math.random() * 20).toFixed(2);

6.	 Yes (and it's self-documenting)
7.	 False. Block comments start with /* and continue (often over multiple lines) until the first

occurrence of */.
8.	 String
9.	 undefined

10.	 camelCase
11.	 True
12.	 No. If the value of the variable will change, you should use let instead of const.
13.	 The remainder
14.	 "homework" (when using ||, the first truthy value will be used, ignoring the rest)
15.	 True
16.	 assignment // look it up in the glossary if you're not sure what this means
17.	 True
18.	 True
19.	 const, let, and var (but try not to ever use var)
20.	 \n

21.	 logical

203

22.	 No, it's not valid because the parameter to receive is called childAge, and this parameter is
never used. Instead a variable called age is used but it has never been defined. If you change
the age to childAge, then the code would be valid. However, even after you do that, the code
would still not work exactly as intended because the > should be changed to >= in order to not
turn away 5-year-olds (minimum age).

23.	 Yes, it's valid, but it won't do what the developer probably wants. None of the code after the
return statement gets run. For this reason, return should be the last line of the function.

24.	 about:blank

25.	 browsers
26.	 False
27.	 Self-documenting
28.	 !

29.	 falsy / truthy
30.	 True

Ch. 7 DIY Recommended Solutions:

Here are possible solutions to each of the DIY projects. Remember, your results may vary.

DIY [Spam Email Formatter]:

function formatSpamEmail(emailMessage) {
 return emailMessage.toUpperCase();
}

// Now let's test it out
formatSpamEmail('I am in much urgently needing of your help!');
formatSpamEmail('There shall is 42$-million USD in bank account for withdraw.');
formatSpamEmail('Send fast 2000$ Western Union to split millions half with you!');

DIY [Temperature Converter (Fahrenheit to Celsius)]:

function convertFahrenheitToCelsius(fahrenheitTemp) {
 const conversionRatio = 1.8;
 const fahrenheitFreezingPoint = 32;

 return (fahrenheitTemp - fahrenheitFreezingPoint) / conversionRatio;
}

// Now let's test it out
convertFahrenheitToCelsius(100);
convertFahrenheitToCelsius(32);
convertFahrenheitToCelsius(212);

DIY [Did You Also Floss?]:

function confirmTeethBrushedAndFlossed() {
 if (confirm('Did you brush your teeth this morning?')) {
 if (confirm('Did you also floss?')) {
 return 'Dr. Sizors will see you now.';
 } else {
 return "Use this dental floss and come back when you're done.";

204

 }
 } else {
 return 'Go brush your teeth first. You can use the sink over there.';
 }
}

// Now let's test it out
confirmTeethBrushed();
confirmTeethBrushed();

DIY [Exotic Soup Chef]:

function makeFancySoup() {
 const ingredient1 = prompt("What's the first ingredient?");
 const ingredient2 = prompt("What's the second ingredient?");

 return 'Here is your ' + ingredient1 + ', ' + ingredient2 + ', and '
 + prompt("What's the third ingredient?") + ' soup!';
}

// Now let's test it out
makeFancySoup();
makeFancySoup();

DIY [Tip Calculator (Variable Rate)]:

function calculateTip() {
 const totalMealCost = prompt('What is the total cost of your meal?');
 const tipPercentage = prompt('What percent would you like to tip?') / 100;
 const decimalPlaces = 2; // money is usually rounded to 2 decimal places
 const tipAmount = (totalMealCost * tipPercentage).toFixed(decimalPlaces);

 return 'Your tip amount comes to $' + tipAmount;
}

// Now let's test it out
calculateTip();
calculateTip();

DIY [Letter Grade Generator]:

function generateLetterGrade() {
 const percentCorrect = prompt('What percent did you get correct?');
 if (percentCorrect >= 90) {
 return 'A';
 } else if (percentCorrect >= 80) {
 return 'B';
 } else if (percentCorrect >= 70) {
 return 'C';
 } else if (percentCorrect >= 60) {
 return 'D';
 }

 return 'F'; // this will only be run if no other return statements were reached
}

// Now let's test it out
generateLetterGrade(); // use 80
generateLetterGrade(); // use 53
generateLetterGrade(); // use 62

205

Chapter 8 Answers
Ch. 8 Quiz Answers:

1.	 Array
2.	 Number of items in the array
3.	 index
4.	 0

5.	 True
6.	 .push()

7.	 False. The return value will be a string that includes all of the items separated by commas.
8.	 remove / return
9.	 False. The textbooks array will not be changed. It will still have a .length of 2.
10.	 chaining
11.	 "thimble"

12.	 True
13.	 .shift()

14.	 "gel"

15.	 False. The return value will be a string that includes all of the items from the original array
separated by the string " or ".

16.	 d

17.	 True
18.	 5 (because there are 5 characters in the word "boots")

Ch. 8 Drills Answers:
A. Try typing these valid code snippets in the console

1.	 undefined

2.	 "wake up"

3.	 "Here's my routine so far: brush teeth then get dressed then shower."

4.	 4 // array length
5.	 "shower"

"brush teeth"

6.	 "make my own lunch"

7.	 4 // array length
8.	 "I have 4 things to do in the morning."

9.	 "Don't forget to brush teeth!"

10.	 undefined

11.	 My old morning routine included "eat breakfast,shower,get dressed,brush teeth" but now

it's "eat breakfast, shower, get dressed, brush teeth, get books, make bed, fix hair".

12.	 "Head, Knees, Shoulders, and Toes"

13.	 "B-I-N-G-O"

14.	 "Baby Shark"

206

B. What's wrong with each of these code snippets?

1.	 Use nuts.length instead of nuts.size.
2.	 You need nuts[2] to retrieve the third item (because indexes start at zero).
3.	 Should be nuts.push('hazelnut');
4.	 nuts.pop() will remove and return the last item in the array—'peanut', which is a string, not

an array, so the .length will not give the result you're looking for (it will only show the number
of characters in the string "peanut").

5.	 Should be .unshift('brazil nut');
6.	 fullList is a string, so the .shift() array method won't work on it.
7.	 nuts.concat() returns a NEW array. This array was never assigned to anything so it was lost.

The nuts array has not changed, so it will not look any longer than before.
8.	 Should be nuts.sort();
9.	 All of this would be just fine if nuts had been initialized with the let keyword. Because it was

initialized with const, that variable name cannot be reassigned.

Ch. 8 Aggregate Review Answers:

1.	 Yes.
2.	 Number, null (or object if you prefer), undefined, string, boolean
3.	 characters
4.	 toUpperCase()

5.	 logical
6.	 comparison
7.	 const

8.	 Conditional
9.	 nested
10.	 Yes it's valid!
11.	 False. ! always results in a boolean value, but && and || often result in non-boolean values.
12.	 confirm(), prompt(), and alert()
13.	 ++ or += 1; // like this… currentRound++; or currentRound += 1;
14.	 Modulo (%)
15.	 Never
16.	 They're all truthy. The data types in order are: number, string, boolean, number, string, string
17.	 Yes, it's valid, but it won't do what the developer probably wants. None of the code after the

first return statement gets run. For this reason, return should usually be the last line of the
function (unless it's the return is inside of an if block).

18.	 < // this was a tricky question. look again if you got it wrong.
19.	 The console
20.	 Eyes
21.	 True
22.	 Chaining
23.	 TAB
24.	 .length // like this ['simple', 'array'].length;

207

25.	 True
26.	 True
27.	 Yes. But the function declaration receives a parameter and then does nothing with it. It

would be better for this function to take no parameters if it isn't going to use them.
28.	 Math.floor()

29.	 .push()

30.	 True
31.	 True
32.	 "Tom"
33.	 SHIFT+ENTER
34.	 popularRichGirls[2];

35.	 True

Ch. 8 DIY Recommended Solution:

Here is one possible solution to the DIY Project (try typing this into the console):

/*
* Candy on Halloween!
*/

// note: this doesn't have to be written inside a function!
function halloweenCandyStory() {
 let halloweenCandy = ['Kit-Kat', 'Twizzlers'];
 halloweenCandy[2] = 'Snickers';
 halloweenCandy.push('Butterfinger'); halloweenCandy.push('Almond Joy');
 halloweenCandy.unshift("M&M's");
 console.log("I think I'll eat this delicious " + halloweenCandy.pop() + '!');
 halloweenCandy[2] = 'Starburst';
 const fletchersChocolate = [
 'Milky Way',
 "Peanut M&M's",
 'Three Musketeers',
 "Hershey's"
];
 halloweenCandy = halloweenCandy.concat(fletchersChocolate);
 halloweenCandy.shift(); // Yum!
 halloweenCandy.sort();
 console.log('I now have ' + halloweenCandy.length + ' pieces of candy!\n'
 + 'My candy includes: ' + halloweenCandy.join(' and ') + '!');
}
halloweenCandyStory();

The response I got (log messages only):

I think I'll eat this delicious Almond Joy!
I now have 8 pieces of candy!
My candy includes: Butterfinger and Hershey's and Kit-Kat and Milky Way and Peanut M&M's and
Snickers and Starburst and Three Musketeers!

208

Chapter 9 Answers
Ch. 9 Quiz Answers:

1.	 Loop
2.	 while

3.	 for

4.	 loop / condition
5.	 5
6.	 convention
7.	 Infinite! there is no incrementer, so code will be trapped in a never-ending loop!
8.	 ; (semicolon)
9.	 Condition
10.	 Yes. / Big mistake. (the reason for this is because the m starts with 1 and continues until it

equals the length of the array. When that happens, top40Hits[m] would be the same as
top40Hits[4] which is undefined)

11.	 18 (remember that it starts at 0)
12.	 Iteration
13.	 hats.length

Ch. 9 Drills Answers:
A. Try typing these valid code snippets in the console

1.	 (too many lines to show here; just test this in the console)
2.	 "0|7|14|21|28|35|42|49|56|63"

3.	 (too many lines to show here; just test this in the console)
4.	 (too many lines to show here; just test this in the console)
5.	 ["Z", "Y", "X", ... "C", "B", "A"] // (abbreviated)

"brush teeth"

6.	 A is a vowel. // includes the other vowels too
7.	 (too many lines to show here; just test this in the console)
8.	 (type in the console. nothing to see here)
9.	 0 is divisible by 10! // includes 10, 20, 30, etc. also
10.	 0 is divisible by 5! // includes 5, 10, 15, 20, etc. also
11.	 0 is divisible by 3! // includes 6, 9, 12, 15, etc. also
12.	 (too many lines to show here; just test this in the console)
13.	 (type in the console. nothing to see here)
14.	 "3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30"

15.	 "5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50"

16.	 "7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63 | 70"

17.	 "10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100"

18.	 (type in the console. nothing to see here)
19.	 "1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10

2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20"

209

20.	 (too many lines to show here; just test this in the console)
21.	 (too many lines to show here; just test this in the console)

B. What's wrong with each of these code snippets?

1.	 Should be for instead of while.
2.	 Should be while instead of for.
3.	 Should be const instead of let.
4.	 .split() should have a string passed in (e.g. .split(','))
5.	 There will only be one iteration. The return statement causes the interpreter to immediately

exit the whole function so no more looping may occur.
6.	 This will actually show all of the odd numbers instead of the even numbers. If the developer

wants even numbers, she should've used if (!(s % 2)) because this would resolve to true if
the number is evenly divisible by 2.

Ch. 9 Aggregate Review Answers:

1.	 comparison
2.	 truthy / falsy
3.	 False
4.	 Don't Repeat Yourself
5.	 True
6.	 Math.floor(Math.random() * 40); // note: this cannot give you exactly 40
7.	 Number of items in the array / number of characters in the string
8.	 Yes.
9.	 index
10.	 False. Block comments start with /* and end with */.
11.	 .push('new_item_goes_here');

12.	 Undefined
13.	 Chaining
14.	 camelCase
15.	 True
16.	 No. You can't reassign a value to a const variable.
17.	 floor / random / length
18.	 Remainder (of an integer division problem)
19.	 x // note that it is lowercase!
20.	 "phone"

21.	 "laptop"

22.	 opponentsScore++; or opponentsScore += 1;
23.	 % (modulo)
24.	 True
25.	 < // this one was tricky. read it carefully if you got this wrong
26.	 False. trainCars.length will be 3

210

27.	 Math.floor()

28.	 Assignment--a value is being assigned to a variable (example: let ferrets = 2;)
29.	 SHIFT+ENTER
30.	 True
31.	 True
32.	 var, let, const / const / var
33.	 loop / condition
34.	 \n

35.	 convention
36.	 logical
37.	 Iteration
38.	 It is valid, but it probably won't do what the developer

wants. It should use a >= sign so that it would state "You have
enough money!" if called with the exact amount.

39.	 Infinite! This code would get stuck in an infinite loop because the value of x would continue
to increase and thus the condition (x > 0) would always be true!

40.	 It is valid, but it has a bug. Nothing after the first return statement would get run.
41.	 4 lines
42.	 True
43.	 Self-documenting
44.	 !

45.	 True
46.	 falsy / truthy

Ch. 9 DIY Recommended Solution:

Here is one possible solution to the DIY Project (try typing this into the console):

function amIAllergic() {
 const candyBars = [
 'Butterfinger',
 "Hershey's",
 'Kit-Kat',
 'Milky Way',
 "Peanut M&M's",
 'Snickers',
 'Starburst',
 'Three Musketeers'
];
 for (let i = 0; i < candyBars.length; i++) {
 const candy = candyBars[i];
 const lastLetterOfCandyBarName = candy.split('').pop();
 if (lastLetterOfCandyBarName === 's') {
 console.log("Don't eat " + candy + "! You're allergic!");
 } else {
 console.log(candy + ' is safe for you to eat!');
 }
 }
}

211

amIAllergic();

The response I got:

Butterfinger is safe for you to eat!
Don't eat Hershey's! You're allergic!
Kit-Kat is safe for you to eat!
Milky Way is safe for you to eat!
Don't eat Peanut M&M's! You're allergic!
Don't eat Snickers! You're allergic!
Starburst is safe for you to eat!
Don't eat Three Musketeers! You're allergic!

Chapter 10 Hangman Game
Here is all of my full code for the full Hangman game. Try this out in your console!

function generateHangmanSolution() {
 const possibleSolutions = [
 'watermelon',
 'volleyball',
 'homecoming',
 'strawberry',
 'retirement',
 'television',
 'friendship',
 'cinderella',
 'restaurant',
 'helicopter',
 'skateboard',
 'leadership',
 'antarctica'
];
 const randomIndex = Math.floor(Math.random() * possibleSolutions.length);

 return possibleSolutions[randomIndex].toUpperCase();
}

function gameOver(solution, won) {
 const asciiHangman = '____\n|/ |\n| @\n| /|\\\n| / \\\n|\n=====';
 let message = '';
 if (won) {
 message = 'YOU WIN!';
 } else {
 message = 'GAME OVER\n\n' + asciiHangman;
 }
 message += '\n\nThe correct answer was ' + solution + '!';
 alert(message);
 return message;
}

212

/*************************************
* Main Function for Playing Hangman! *
*************************************/
function playHangman() {
 const solution = generateHangmanSolution();
 const solutionLetters = solution.split('');
 const wrongGuesses = [];
 const maxWrongGuesses = 7;
 const progressSoFar = '_'.repeat(solution.length).split('');

 const confirmPlay = confirm("Let's play Hangman!\n\n"
 + "Pick letters to guess the word I'm thinking of.\n"
 + "It's a common word with " + solution.length + ' letters.\n'
 + 'Are you ready to play?');
 if (!confirmPlay) {
 return gameOver(solution, false);
 }

 while (wrongGuesses.length < maxWrongGuesses) {
 const promptMessage = 'Here is your progress on the word so far: \n'
 + progressSoFar.join(' ') + '\n'
 + 'Wrong Guesses: [' + wrongGuesses.toString() + ']\n\n'
 + 'Pick a letter!';
 const userInput = prompt(promptMessage);

 if (!userInput) {
 return gameOver(solution);
 }

 const guess = userInput.toUpperCase();
 let goodGuess = false;

 for (let i = 0; i < solutionLetters.length; i++) {
 if (solutionLetters[i] === guess) {
 goodGuess = true;
 progressSoFar[i] = guess;
 }
 }

 if (goodGuess) {
 if (progressSoFar.join('') === solution) {
 return gameOver(solution, true);
 }

 alert('Good guess!');
 } else {
 wrongGuesses.push(guess);
 alert('Sorry, ' + guess + ' is incorrect.\nYou have '
 + (maxWrongGuesses - wrongGuesses.length) + ' strikes left.');
 }
 }

213

 return gameOver(solution, false); // if player gets here, Game Over (fail)
}

playHangman();
playHangman();
playHangman();

214

•	 acronym [ch. 2] - shortened words that are usually made from
taking the starting letters of other words…like LOL (laugh out loud)
or BTW (by the way).

•	 argument [ch. 4] - value passed into a function to be assigned
to the function's parameters. When a function is called and
values are "passed in" (by putting those values in the parens
while invoking the function), these "passed-in" values are called
arguments.

•	 array [ch. 8] - a list of values in a specific order. An array is used
to store multiple values in a single variable.

•	 assignment [ch. 1] - JavaScript statement involving a variable on
the left side, and a value on the right side. The variable takes on the value that is assigned to it.

•	 augmented assignment [ch. 2] - A shorthand way of writing both an operation and an
assignment. It first performs an operation on the variable and then assigns the new value to that
same variable. Examples: +=, -=, *=, and /=.

•	 block comment [ch. 3] - may span multiple lines; causes the interpreter to ignore everything
from the /* until it finds */.

•	 bold [ch. 1] - thicker darker text.

•	 boolean [ch. 5] - One of the 5 primitive data types. Rhymes with "truly inn." The value of a
boolean is always either true or false.

•	 break return [ch. 3] - technical term for a new line in coding.

•	 bugs [ch. 1] - mistakes or unintended results in code.

•	 built-in [ch. 4] - provided by the JavaScript language itself (not custom made by the developer
or a third-party library).

•	 camelCase [ch. 1] - a readable form for writing function and variable names—starting with a

Glossary of Terms
(technical term [chapter in which it was introduced] - definition.)

215

lowercase letter and containing a capital letter at the start of each word (or acronym). It's called
camelCase because the capital letters in the middle of the word kinda look like the hump(s) on a
camel's back.

•	 chaining [ch. 8] - repeatedly calling one method after another on an object, in one continuous
line of code.

•	 character [ch. 3] - individual single piece of a string (a single letter, digit, or symbol).

•	 Chrome [ch. 1] - the internet browser of choice for working through this book.

•	 code [ch. 1] - [When used as a noun:] instructions that a computer reads and follows to produce
a program or display a page. [When used as a verb:] to write instructions for the computer to
follow.

•	 comment [ch. 3] - single-line or block comments; the interpreter ignores these lines in the
code. Used for human-readable statements or to temporarily hide lines of code from the
interpreter if you don't want them run.

•	 comparison operator [ch. 5] - symbol used for comparing two values; always results in a
boolean value. Example comparison operators: ===, !==, <, <=, >, and >=.

•	 computer [ch. 1] - the physical thing that you do your work on--either a desktop, laptop, or
Chromebook (for the purposes of this book, NOT a smartphone or tablet!)

•	 concatenate [ch. 3] - combine two or more strings (or numbers with strings) to create one
longer string.

•	 condition [ch. 5 & 9] - (when referring to a comparison operator) results in a boolean value
and determines if the code is executed; (when referring to a loop) the thing that let's you know to
keep repeating the block of code that's being looped. Once the condition is not met (no longer
truthy), it's time to stop repeating the looped code.

•	 conditional [ch. 5] - A conditional statement in coding is used to perform certain blocks of
code based on a given condition. The condition (for example, a comparison operator like x
=== y) results in a boolean value (true or false). If the boolean value results in true, the code is
executed (run). Otherwise, the code block is skipped (doesn't run).

•	 console [ch. 1] - part of Chrome's top-secret developer tools. Used for testing out bits of
JavaScript and even interacting with the webpage you're on.

•	 constant [ch. 7] - an unchangeable value.

•	 convention [ch. 9] - A guideline that recommends a specific programming style, decision,

216

or standard—not because it's required but because it is a common, accepted practice in the
industry. Example: camelCase.

•	 custom [ch. 4] - created yourself (not built-in the language itself or created by a third-party
library).

•	 data type [ch. 2] - What kind of value a variable represents. There are 5 data types covered in
this book: number, string, boolean, null, and undefined.

•	 debugging [ch. 1] - walking through your code looking for errors ("bugs") in order to fix them
(squash them).

•	 declare [ch. 1] - define (introduce) a brand new named variable or function into your
code. This only happens once per variable or function.

•	 decrement operator [ch. 2] - a shortcut for taking a number and subtracting the number 1
from it (sometimes known as "decrementing"). Example: myNumber--;.

•	 define [ch. 1] - a value is given to a variable or function name. Afterward, that variable or
function name can be used to represent that value.

•	 developer [ch. 1] - person who writes code (a.k.a. programmer or engineer).

•	 DIY [ch. 1] - "Do It Yourself" project. You can do this on your own, then compare your code to
my solution in the Answers section.

•	 documentation [ch. 7] - written-out explanations for what code does or how to use it.

•	 DRY [ch. 4] - "Don't Repeat Yourself". Principle in coding where you try to define things only
once and reuse functions, variables, code blocks, and class libraries instead of retyping the same
code again and again.

•	 e.g. [ch. 2] - short for "example."

•	 engineer [ch. 1] - person who has a full-time job as a developer (a.k.a. programmer).

•	 error message [ch. 1] - response from the console that tells you what is wrong with your
code. This is your friend.

•	 escape [ch. 3] - to use a backslash (\) before a character that might normally have specific
instructional meaning in code (such as a quote mark or apostrophe) to make the interpreter read
it just like part of the string. Example of escaping an apostrophe: let wordWithApostrophe =
'can\'t';

•	 Euclidian division [ch. 2] - fancy name for integer division (see glossary definition).

•	 evaluate [ch. 4] - to process something like a function or a variable. When the JavaScript
interpreter invokes (runs) a function to get its return value, it can be said to be evaluating that
function.

217

•	 falsy [ch. 5] - Not actually a boolean data type, but treated the same as a boolean false for
purposes of conditional statements such as if...else blocks. E.g., empty string ("").

•	 function [ch. 4] - a separated block of code that can be called to perform a specific task.

•	 glossary [ch. 1] - it's like a dictionary that only has terms from this book.

•	 i.e. [ch. 1] - short for "in other words."

•	 increment operator [ch. 2] - a shortcut for taking a number and adding the number 1 to it
(sometimes known as "incrementing"). Example: myNumber++;.

•	 index [ch. 8] - when working with arrays, it's the number representing any given item's position
in that array (beginning with 0). So the first item in an array has an index of 0, the second item
has an index of 1, etc.

•	 internet browser [ch. 1] - a program that you use to go to websites. Chrome is the one we
use for this book. Other internet browsers are Firefox, Safari, Edge, or Internet Explorer (IE).

•	 integer division [ch. 2] - (a.k.a. "Euclidian division") division that ignores all fractions
(rounding down) and ignores the remainder (or separates out the remainder to be returned from
modulo operation).

•	 interpreter [ch. 1] - inner program that reads and executes (runs) your code.

•	 invoke [ch. 4] - a fancy name for calling a function (actually running the function by typing its
function name followed immediately by parens).

•	 iteration [ch. 9] - a single pass through of a looped code block.

•	 JavaScript [ch. 1] - front-end programming language used in all browsers (and the only
programming language used in this book).

•	 log [ch. 4] - write down info somewhere (often displayed in the console window).

•	 logical AND [ch. 6] - logical operator that determines if the values on both sides of && are
truthy. If left side is truthy, it returns the value for the right side. If left side is falsy, it returns the
left side value (ignoring the right side). E.g., (5 > 2) && 12; returns 12.

•	 logical NOT [ch. 6] - logical operator that returns a boolean (true or false). It will return true
if placed before a falsy value and false if placed before a truthy value. Example: !true; returns
false and !(3 > 5); returns true.

•	 logical operator [ch. 6] - evaluates an expression to test if it is truthy or falsy. May result in
non-boolean values. Example logical operators: &&, ||, and !.

•	 logical OR [ch. 6] - logical operator that determines if the value on either side of || is truthy. If
the left side is truthy, it returns the value for the left side (ignoring the right side). If left side is
falsy, it returns the right side value. E.g., 5 || (1 === 0); returns 5.

218

•	 loop [ch. 9] - a block of code that will repeat itself over and over again until some condition is
met.

•	 method [ch. 7] - a function belonging to an object or class. Any property of an object that
points to a function is called a method.

•	 modulo [ch. 2] - (or mod or modding) operator—represented by a % sign—used to get the
modulus (remainder) of an integer division problem. Example: 5 % 3 === 2;

•	 modulus [ch. 2] - remainder of an integer division problem.

•	 negative [ch. 2] - less than zero.

•	 nested [ch. 4] - one function inside of another function, or for loop inside of another for loop,
or HTML element inside another HTML element, etc.)

•	 null [ch. 6] - one of the 5 primitive data types in JavaScript—it basically means nothing. It also
resolves falsy.

•	 number [ch. 2] - one of the JavaScript data types. Pretty much any number you can think
of (even infinity). May be positive, negative or zero and may or may not have a decimal in
it. Never shown with quotes.

•	 object [ch. 7] - a collection of properties (name/value pairs).

•	 operating system [ch. 1] - The software that runs all of the programs on your computer. If
you're using a PC, your operating system is Windows. If you're using a Mac, it's MacOS. If
you're using a Chromebook, it's ChromeOS.

•	 operator [ch. 2] - (+, -, *, /, and %) used for adding, subtracting, multiplying, dividing, and
modding numbers as well as concatenating strings.

•	 parameter [ch. 4] - variable within the parens in a function's definition. When the function is
called, different values--called arguments--are passed in and assigned to each of the temporary
variables of that function (called "parameters").

•	 paren [ch. 1] - short form of the word "parenthesis" (and "parens" is short for two or more
"parentheses"). Examples: (and).

•	 positive [ch. 2] - greater than zero.

•	 primitive [ch. 5] - data type that is not an object and has no methods (functions) in itself.

•	 programmer [ch. 1] - person who writes code.

•	 programming language [ch. 1] - set of words and symbols that the computer understands
and interprets in a certain way when reading a program. Examples are: JavaScript, Python,
Java, PHP, and many more.

•	 property [ch. 7] - a named value that is attached to an object.

219

•	 self-documenting [ch. 7] - when the names of variables and functions explain well what your
code does. This makes it easier to read and understand, without the need for many comments
or lengthy documentation explaining things.

•	 separator [ch. 8] - when converting an array to a string, this is the small string that is placed in
between each item of the array.

•	 single-line comment [ch. 3] - causes the interpreter to ignore everything from the // to the
end of the line.

•	 statement [ch. 1] - a single piece (usually one line) of instruction in JavaScript code.

•	 string [ch. 1] - one of the 5 primitive data types in JavaScript—made up of individual
characters and usually shown with quotes.

•	 syntax [ch. 1] - it's like the spelling and grammar of the programming language—the form and
order that the computer expects to see the code.

•	 troubleshooting [ch. 10] - looking for the cause of a problem and fixing it.

•	 truthy [ch. 5] - Not actually a boolean data type, but treated in the same way as the boolean
true for purposes of conditional statements such as if...else blocks. Example: any non-zero
integer.

•	 undefined [ch. 6] - one of the 5 primitive data types in JavaScript. It's the default value of a
variable and implies that no other value has been assigned. It also resolves falsy.

•	 variable [ch. 1] - a named location that can store different values in a JavaScript program. It
can often be changed.

•	 Workbook [ch. 1] - the name I use to refer to the document (usually in Google docs) that you
use to type out all your answers to quizzes, drills, and DIY projects.

221

ABOUT THE AUTHOR
Jeremy Moritz has been developing software since 2004
and currently works as a senior software engineer in the
Midwest. Along with computers, Jeremy has coached
chess and has an extensive background as a musical
theater director, choreographer, and performer, having
been involved in the production of over 100 musicals
with children and adults of all ages. As a longtime teacher
and homeschooling father of six children, Jeremy has
valuable insight into common learning habits and hang-
ups of children and teenagers. With his background as
a performer, he exhibits a flare for comedic writing that
is sharp and entertaining. Jeremy and Christine—his
illustrator and devoted wife of 16 years—live with their
children in Kansas City, Kansas. Feel free to contact him
at www.CodeForTeens.com!

ABOUT THE ILLUSTRATOR
Christine Moritz has been drawing since she could

hold a crayon and is a lifelong lover of all things
creative. When she’s not doodling, she can be

found expressing her creativity through her love
of piano, cooking, and power tools. Code for Teens is
the first book she has ever illustrated, but it is one

of many collaborative projects she has undertaken
with her husband, Jeremy.

	Foreword
	Introduction
	A Word for Parents
	Chapter 1: Hello World!
	Chapter 2: Time to Operate
	Chapter 3: Comment On the String Section
	Chapter 4: Have Some Functions
	Chapter 5: Shall I Compare?
	Chapter 6: Logically Operational
	Chapter 7: Projects Galore
	Chapter 8: Hip Hip Array!
	Chapter 9: Loop A Round
	Chapter 10: Make A Hangman Game
	Conclusion
	Answers
	Glossary of Terms

		2018-07-09T21:57:37+0000
	Preflight Ticket Signature

