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preface

You’re probably reading this book, Concurrency in .NET, because you want to build 
blazingly fast applications, or learn how to dramatically increase the performance of 
an existing one. You care about performance because you’re dedicated to producing 
faster programs, and because you feel excited when a few changes in your code make 
your application faster and more responsive. Parallel programming provides endless 
possibilities for passionate developers who desire to exploit new technologies. When 
considering performance, the benefits of utilizing parallelism in your programming 
can’t be overstated. But using imperative and object-oriented programming styles to 
write concurrent code can be convoluted and introduces complexities. For this reason, 
concurrent programming hasn’t been embraced as common practice writ large, lead-
ing programmers to search for other options.

When I was in college, I took a class in functional programming. At the time, I was 
studying Haskell; and even though there was a steep learning curve, I enjoyed every 
lesson. I remember watching the first examples and being amazed by the elegance of 
the solutions as well as their simplicity. Fifteen years later, when I began searching for 
other options to enhance my programs utilizing concurrency, my thoughts returned to 
these lessons. This time, I was able to fully realize how powerful and useful functional 
programming would be in designing my daily programs. There are several benefits to 
using a functional approach in your programming style, and I discuss each of them in 
this book.
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My academic adventures met my professional work when I was challenged to build 
a software system for the health care industry. This project involved making an appli-
cation to analyze radiological medical images. The image processing required several 
steps such as image noise reduction, Gaussian algorithm, image interpolation, and 
image filtering to apply color to the gray image. The application was developed using 
Java and initially ran as anticipated. Eventually the department increased the demand, 
as often happens, and problems started to appear. The software didn’t have any prob-
lems or bugs, but with the increasing number of images to analyze, it became slower. 

Naturally, the first proposed solution to this problem was to buy a more powerful 
server. Although this was a valid solution at the time, today if you buy a new machine 
with the intention of gaining more CPU computation speed, you’ll be disappointed. 
This is because the modern CPU has more than one core, but the speed of a single core 
isn’t any faster than a single core purchased in 2007. The better and more enduring 
alternative to buying a new server/computer was to introduce parallelism to take advan-
tage of multicore hardware and all of its resources, ultimately speeding up the image 
processing.

In theory, this was a simple task, but in practice it wasn’t so trivial. I had to learn how 
to use threads and locking; and, unfortunately, I gained firsthand experience in what a 
deadlock is.

This deadlock spurred me to make massive changes to the code base of the applica-
tion. There were so many changes that I introduced bugs not even related to the original 
purpose of my changes. I was frustrated, the code base was unmaintainable and fragile, 
and the overall process was prone to bugs. I had to step back from the original problem 
and look for a solution from a different perspective. There had to be a better way.

The tools we use have a profound (and devious!) influence on our thinking habits, and, 
therefore, on our thinking abilities.

—Edsger Dijkstra

After spending a few days looking for a possible solution to solve the multithreading 
madness, I realized the answer. Everything I researched and read was pointing toward 
the functional paradigm. The principles I had learned in that college class so many 
years ago became my mechanism for moving forward. I rewrote the core of the image 
processing application to run in parallel using a functional language. Initially, transi-
tioning from an imperative to a functional style was a challenge. I had forgotten almost 
all that I learned in college, and I’m not proud to say that during this experience, I 
wrote code that looked very object-oriented in functional language; but it was a success-
ful decision overall. The new program compiled and ran with a dramatic performance 
improvement, and the hardware resources were completely utilized and bug free. 
Above all, an unanticipated and fantastic surprise was that functional programming 
resulted in an impressive reduction in the number of lines of code: almost 50% fewer 
than the original implementation using object-oriented language.
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This experience made me reconsider OOP as the answer for all my programming 
problems. I realized that this programming model and approach to problem solv-
ing had a limited perspective. My journey into functional programming began with a 
requirement for a good concurrent programming model. 

Ever since, I’ve had a keen interest in functional programming applied to multi-
threading and concurrency. Where others saw a complex problem and a source of 
issues, I saw a solution in functional programming as a powerful tool that could use 
the available hardware to run faster. I came to appreciate how the discipline leads to a 
coherent, composable, beautiful way of writing concurrent programs.

I first had the idea for this book in July 2010, after Microsoft introduced F# as part 
of Visual Studio 2010. It was already clear at that time that an increasing number of 
mainstream programming languages supported the functional paradigm, including 
C#, C++, Java, and Python. In 2007, C# 3.0 introduced first-class functions to the lan-
guage, along with new constructs such as lambda expressions and type inference to 
allow programmers to introduce functional programming concepts. Soon to follow was 
Language Integrate Query (LINQ), permitting a declarative programming style. 

In particular, the .NET platform has embraced the functional world. With the intro-
duction of F#, Microsoft has full-featured languages that support both object-oriented 
and functional paradigms. Additionally, object-oriented languages like C# are becom-
ing more hybrid and bridging the gap between different programming paradigms, 
allowing for both programming styles.

Furthermore, we’re facing the multicore era, where the power of CPUs is measured 
by the number of cores available, instead of clock cycles per second. With this trend, sin-
gle-threaded applications won’t achieve improved speed on multicore systems unless 
the applications integrate parallelism and employ algorithms to spread the work across 
multiple cores.

It has become clear to me that multithreading is in demand, and it has ignited my 
passion to bring this programming approach to you. This book combines the power 
of concurrent programming and functional paradigm to write readable, more mod-
ular, maintainable code in both the C# and F# languages. Your code will benefit from 
these techniques to function at peak performance with fewer lines of code, resulting in 
increased productivity and resilient programs.

It’s an exciting time to start developing multithreaded code. More than ever, software 
companies are making tools and capabilities available to choose the right programming 
style without compromise. The initial challenges of learning parallel programming will 
diminish quickly, and the reward for your perseverance is infinite. No matter what your 
field of expertise is, whether you’re a backend developer or a frontend web developer, 
or if you build cloud-based applications or video games, the use of parallelism to obtain 
better performance and to build scalable applications is here to stay. 

This book draws on my experience with functional programming for writing concur-
rent programs in .NET using both C# and F#. I believe that functional programming is 
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becoming the de facto way to write concurrent code, to coordinate asynchronous and 
parallel programs in .NET, and that this book will give you everything you need to be 
ready and master this exciting world of multicore computers.
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about this book

Concurrency in .NET provides insights into the best practices necessary to build con-
current and scalable programs in .NET, illuminating the benefits of the functional 
paradigm to give you the right tools and principles for handling concurrency easily 
and correctly. Ultimately, armed with your newfound skills, you’ll have the knowledge 
needed to become an expert at delivering successful high-performance solutions.

Who should read this book 
If you’re writing multithreaded code in .NET, this book can help. If you’re interested 
in using the functional paradigm to ease the concurrent programming experience to 
maximize the performance of your applications, this book is an essential guide. This 
book will benefit any .NET developers who want to write concurrent, reactive, and 
asynchronous applications that scale and perform by self-adapting to the current hard-
ware resources wherever the program runs.

This book is also suitable for developers who are curious about exploiting functional 
programming to implement concurrent techniques. Prior knowledge or experience 
with the functional paradigm isn’t required, and the basic concepts are covered in 
appendix A.

The code examples use both the C# and F# languages. Readers familiar with C# will 
feel comfortable right away. Familiarity with the F# language isn’t strictly required, and 
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a basic overview is covered in appendix B. Functional programming experience and 
knowledge isn’t required; the necessary concepts are included in the book. 

A good working knowledge of .NET is assumed. You should have moderate experi-
ence in working with .NET collections and knowledge of the .NET Framework, with 
a minimum of .NET version 3.5 required (LINQ, Action<>, and Func<> delegates). 
Finally, this book is suitable for any platform supported by .NET (including .NET Core).

How this book is organized: a roadmap
The book’s 14 chapters are divided into 3 parts. Part 1 introduces functional concur-
rent programming concepts and the skills you need in order to understand the func-
tional aspects of writing multithreaded programs:

¡	Chapter 1 highlights the main foundations and purposes behind concurrent 
programming and the reasons for using functional programming to write multi-
threaded applications. 

¡	Chapter 2 explores several functional programming techniques to improve the 
performance of a multithreaded application. The purpose of this chapter is to 
provide concepts used during the rest of the book, and to make you familiar with 
powerful ideas that have originated from the functional paradigm.

¡	Chapter 3 provides an overview of the functional concept of immutability. It 
explains how immutability is used to write predictable and correct concurrent 
programs, and how it’s applied to implement and use functional data structures, 
which are intrinsically thread safe.

Part 2 dives into the different concurrent programming models of the functional par-
adigm. We’ll explore subjects such as the Task Parallel Library (TPL), and implement-
ing parallel patterns such as Fork/Join, Divide and Conquer, and MapReduce. Also 
discussed are declarative composition, high-level abstraction in asynchronous opera-
tions, the agent programming model, and the message-passing semantic:

¡	Chapter 4 covers the basics of processing a large amount of data in parallel, 
including patterns such as Fork/Join.

¡	Chapter 5 introduces more advanced techniques for parallel processing massive 
data, such as aggregating and reducing data in parallel and implementing a par-
allel MapReduce pattern.

¡	Chapter 6 provides details of the functional techniques to process real-time 
streams of events (data), using functional higher-order operators with .NET 
Reactive Extensions to compose asynchronous event combinators. The tech-
niques learned are used to implement a concurrent friendly and reactive pub-
lisher-subscriber pattern.

¡	Chapter 7 explains the task-based programming model applied to functional 
programming to implement concurrent operations using the Monadic pattern 
based on a continuation-passing style. This technique is then used to build a con-
current- and functional-based pipeline. 
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¡	Chapter 8 concentrates on the C# asynchronous programming model to imple-
ment unbounded parallel computations. This chapter also examines error han-
dling and compositional techniques for asynchronous operations.

¡	Chapter 9 focuses on the F# asynchronous workflow, explaining how the deferred 
and explicit evaluation of this model permits a higher compositional semantic. 
Then, we explore how to implement custom computation expressions to raise 
the level of abstraction, resulting in a declarative programming style.

¡	Chapter 10 wraps up the previous chapters and culminates in implementing 
combinators and patterns such as Functor, Monad, and Applicative to compose 
and run multiple asynchronous operations and handle errors, while avoiding 
side effects.

¡	Chapter 11 delves into reactive programming using the message-passing pro-
gramming model. It covers the concept of natural isolation as a complementary 
technique with immutability for building concurrent programs. This chapter 
focuses on the F# MailboxProcessor for distributing parallel work using the 
agent model and the share-nothing approach.

¡	Chapter 12 explains the agent programming model using the .NET TPL Data-
flow, with examples in C#. You’ll implement both a stateless and stateful agent 
using C# and run multiple computations in parallel that communicate with each 
other using (passing) messages in a pipeline style

Part 3 puts into practice all the functional concurrent programming techniques 
learned in the previous chapters:

¡	Chapter 13 contains a set of reusable and useful recipes to solve complex con-
current issues based on real-world experiences. The recipes use the functional 
patterns you’ve seen throughout the book.

¡	Chapter 14 presents a full application designed and implemented using the func-
tional concurrent patterns and techniques learned in the book. You’ll build a 
highly scalable, responsive server application, and a reactive client-side program. 
Two versions are presented: one using Xamarin Visual Studio for an iOS (iPad)-
based program, and one using WPF. The server-side application uses a combina-
tion of different programming models, such as asynchronous, agent-based, and 
reactive, to ensure maximum scalability.

The book also has three appendices:

¡	Appendix A summarizes the concepts of functional programming. This appen-
dix provides basic theory about functional techniques used in the book. 

¡	Appendix B covers the basic concepts of F#. It’s a basic overview of F# to make you 
feel comfortable and help you gain familiarity with this programming language.

¡	Appendix C illustrates few techniques to ease the interoperability between the F# 
asynchronous workflow and the .NET task in C#.
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About the code 
This book contains many examples of source code, both in numbered listings and 
inline with normal text. In both cases, source code is formatted in a fixed-width font 
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light the topic under discussion.

In many cases, the original source code has been reformatted; we’ve added line 
breaks and reworked indentation to accommodate the available page space in the 
book. In some cases, even this was not enough, and listings include line-continuation 
markers (➥). Additionally, comments in the source code have often been removed 
from the listings when the code is described in the text. Code annotations accompany 
many of the listings, highlighting important concepts.

The source code for this book is available to download from the publisher’s web-
site (www.manning.com/books/concurrency-in-dotnet) and from GitHub (https://
github.com/rikace/fConcBook ). Most of the code is provided in both C# and F# ver-
sions. Instructions for using this code are provided in the README file included in the 
repository root.

Book forum
Purchase of Concurrency in .NET includes free access to a private web forum run by 
Manning Publications where you can make comments about the book, ask techni-
cal questions, and receive help from the author and from other users. To access the 
forum, go to https://forums.manning.com/forums/concurrency-in-dotnet. You can 
also learn more about Manning’s forums and the rules of conduct at https://forums.
manning.com/forums/about.

Manning’s commitment to our readers is to provide a venue where a meaningful dia-
logue between individual readers and between readers and the author can take place. It 
is not a commitment to any specific amount of participation on the part of the author, 
whose contribution to the forum remains voluntary (and unpaid). We suggest you try 
asking the author some challenging questions, lest his interest stray! The forum and the 
archives of previous discussions will be accessible from the publisher’s website as long as 
the book is in print.

 

www.manning.com/books/concurrency-in-dotnet
https://github.com/rikace/fConfBook
https://github.com/rikace/fConcBook
https://forums.manning.com/forums/concurrency-in-dotnet
https://forums.manning.com/forums/about
https://forums.manning.com/forums/about
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about the cover illustration

The figure on the cover of Concurrency in .NET is a man from a village in Abyssinia, 
today called Ethiopia. The illustration is taken from a Spanish compendium of regional 
dress customs first published in Madrid in 1799, engraved by Manuel Albuerne (1764-
1815). The book’s title page states 

Coleccion general de los Trages que usan actualmente todas las Nacionas del Mundo 
desubierto, dibujados y grabados con la mayor exactitud por R.M.V.A.R. Obra muy util y 
en special para los que tienen la del viajero universal 

which we translate, as literally as possible, thus: 

General collection of costumes currently used in the nations of the known world, designed 
and printed with great exactitude by R.M.V.A.R. This work is very useful especially for 
those who hold themselves to be universal travelers 

Although little is known of the engraver, designers, and workers who colored this 
illustration by hand, the exactitude of their execution is evident in this drawing. The 
Abyssinian is just one of many figures in this colorful collection. Their diversity speaks 
vividly of the uniqueness and individuality of the world’s towns and regions just 200 
years ago. This was a time when the dress codes of two regions separated by a few dozen 
miles identified people uniquely as belonging to one or the other. The collection 
brings to life a sense of isolation and distance of that period—and of every other his-
toric period except our own hyperkinetic present. 
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Dress codes have changed since then, and the diversity by region, so rich at the time, 
has faded away. It’s now often hard to tell the inhabitant of one continent from another. 
Perhaps, trying to view it optimistically, we have traded a cultural and visual diversity for a 
more varied personal life—or a more varied and interesting intellectual and technical life. 

We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on the rich diversity of regional life of two centu-
ries ago‚ brought back to life by the pictures from this collection. 

 



Part 1 

Benefits of functional 
programming applicable to 

concurrent programs  

Functional programming is a programming paradigm that focuses on abstrac-
tion and composition. In these first three chapters you’ll learn how to treat 
computations as the evaluation of expressions to avoid the mutation of data. To 
enhance concurrent programming, the functional paradigm provides tools and 
techniques to write deterministic programs. Output only depends upon input 
and not on the state of the program at execution time. The functional paradigm 
also facilitates writing code with fewer bugs by emphasizing separation of con-
cerns between purely functional aspects, isolating side effects, and controlling 
unwanted behaviors.  

This part of the book introduces the main concepts and benefits of functional 
programming applicable to concurrent programs. Concepts discussed include 
programming with pure functions, immutability, laziness, and composition.

 



 



3

1Functional concurrency 
foundations

This chapter covers
¡	Why you need concurrency 

¡	Differences between concurrency, parallelism, 
and multithreading 

¡	Avoiding common pitfalls when writing 
concurrent applications 

¡	Sharing variables between threads

¡	Using the functional paradigm to develop 
concurrent programs

In the past, software developers were confident that, over time, their programs 
would run faster than ever. This proved true over the years due to improved hard-
ware that enabled programs to increase speed with each new generation. 

For the past 50 years, the hardware industry has experienced uninterrupted 
improvements. Prior to 2005, the processor evolution continuously delivered faster 
single-core CPUs, until finally reaching the limit of CPU speed predicted by Gordon 
Moore.  Moore, a computer scientist, predicted in 1965 that the density and speed of 
transistors would double every 18 months before reaching a maximum speed beyond 
which technology couldn’t advance. The original prediction for the increase of CPU 
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speed presumed a speed-doubling trend for 10 years. Moore’s prediction, known as 
Moore’s Law, was correct—except that progress continued for almost 50 years (decades 
past his estimate). 

Today, the single-processor CPU has nearly reached the speed of light, all the while 
generating an enormous amount of heat due to energy dissipation; this heat is the lim-
iting factor to further improvements. 

CPU has nearly reached the speed of light 
The speed of light is the absolute physical limit for electric transmission, which is also 
the limit for electric signals in the CPU. No data propagation can be transmitted faster 
than the light medium. Consequentially, signals cannot propagate across the surface of 
the chip fast enough to allow higher speeds. Modern chips have a base cycle frequency 
of roughly 3.5 GHz, meaning 1 cycle every 1/3,500,000,000 seconds, or 2.85 nanosec-
onds. The speed of light is about 3e8 meters per second, which means that data can be 
propagated around 0.30 cm (about a foot) in a nanosecond. But the bigger the chip, the 
longer it takes for data to travel through it. 

A fundamental relationship exists between circuit length (CPU physical size) and pro-
cessing speed: the time required to perform an operation is a cycle of circuit length and 
the speed of light. Because the speed of light is constant, the only variable is the size of 
the CPU; that is, you need a small CPU to increase the speed, because shorter circuits 
require smaller and fewer switches. The smaller the CPU, the faster the transmission. 
In fact, creating a smaller chip was the primary approach to building faster CPUs with 
higher clock rates. This was done so effectively that we’ve nearly reached the physical 
limit for improving CPU speed.

For example, if the clock speed is increased to 100 GHz, a cycle will be 0.01 nanosec-
onds, and the signals will only propagate 3 mm in this time. Therefore, a CPU core ideally 
needs to be about 0.3 mm in size. This route leads to a physical size limitation. In addi-
tion, this high frequency rate in such a small CPU size introduces a thermal problem in 
the equation. Power in a switching transistor is roughly the frequency ^2, so in moving 
from 4 GHz to 6 GHz there is a 225% increase of energy (which translates to heat). The 
problem besides the size of the chip becomes its vulnerability to suffer thermal damage 
such as changes in crystal structure.

 

Moore’s prediction about transistor speed has come to fruition (transistors cannot run 
any faster) but it isn’t dead (modern transistors are increasing in density, providing 
opportunities for parallelism within the confines of that top speed). The combination 
of multicore architecture and parallel programming models is keeping Moore’s Law 
alive! As CPU single-core performance improvement stagnates, developers adapt by 
segueing into multicore architecture and developing software that supports and inte-
grates concurrency. 

The processor revolution has begun. The new trend in multicore processor design 
has brought parallel programming into the mainstream. Multicore processor architec-
ture offers the possibility of more efficient computing, but all this power requires addi-
tional work for developers. If programmers want more performance in their code, they 
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must adapt to new design patterns to maximize hardware utilization, exploiting multi-
ple cores through parallelism and concurrency. 

In this chapter, we’ll cover general information about concurrency by examining 
several of its benefits and the challenges of writing traditional concurrent programs. 
Next, we’ll introduce functional paradigm concepts that make it possible to overcome 
traditional limitations by using simple and maintainable code. By the end of this chap-
ter, you’ll understand why concurrency is a valued programming model, and why the 
functional paradigm is the right tool for writing correct concurrent programs.

1.1 What you’ll learn from this book
In this book I’ll look at considerations and challenges for writing concurrent multi-
threaded applications in a traditional programming paradigm. I’ll explore how to 
successfully address these challenges and avoid concurrency pitfalls using the func-
tional paradigm. Next, I’ll introduce the benefits of using abstractions in functional 
programming to create declarative, simple-to-implement, and highly performant con-
current programs. Over the course of this book, we’ll examine complex concurrent 
issues providing an insight into the best practices necessary to build concurrent and 
scalable programs in .NET using the functional paradigm. You’ll become familiar with 
how functional programming helps developers support concurrency by encouraging 
immutable data structures that can be passed between threads without having to worry 
about a shared state, all while avoiding side effects. By the end of the book you’ll master 
how to write more modular, readable, and maintainable code in both C# and F# lan-
guages. You’ll be more productive and proficient while writing programs that function 
at peak performance with fewer lines of code. Ultimately, armed with your newfound 
skills, you’ll have the knowledge needed to become an expert at delivering successful 
high-performance solutions.

Here’s what you’ll learn:

¡	How to combine asynchronous operations with the Task Parallel Library
¡	How to avoid common problems and troubleshoot your multithreaded and asyn-

chronous applications
¡	Knowledge of concurrent programming models that adopt the functional para-

digm (functional, asynchronous, event-driven, and message passing with agents 
and actors)

¡	How to build high-performance, concurrent systems using the functional paradigm
¡	How to express and compose asynchronous computations in a declarative style
¡	How to seamlessly accelerate sequential programs in a pure fashion by using 

data-parallel programming
¡	How to implement reactive and event-based programs declaratively with Rx-style 

event streams
¡	How to use functional concurrent collections for building lock-free multi-

threaded programs
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¡	How to write scalable, performant, and robust server-side applications
¡	How to solve problems using concurrent programming patterns such as the 

Fork/Join, parallel aggregation, and the Divide and Conquer technique
¡	How to process massive data sets with parallel streams and parallel Map/Reduce 

implementations

This book assumes you have knowledge of general programming, but not functional 
programming. To apply functional concurrency in your coding, you only need a subset 
of the concepts from functional programming, and I’ll explain what you need to know 
along the way. In this fashion, you’ll gain the many benefits of functional concurrency 
in a shorter learning curve, focused on what you can use right away in your day-to-day 
coding experiences.

1.2 Let’s start with terminology 
This section defines terms related to the topic of this book, so we start on common 
ground. In computer programming, some terms (such as concurrency, parallelism, and 
multithreading) are used in the same context, but have different meanings. Due to their 
similarities, the tendency to treat these terms as the same thing is common, but it is 
not correct. When it becomes important to reason about the behavior of a program, 
it’s crucial to make a distinction between computer programming terms. For example, 
concurrency is, by definition, multithreading, but multithreading isn’t necessarily con-
current. You can easily make a multicore CPU function like a single-core CPU, but not 
the other way around. 

This section aims to establish a common ground about the definitions and terminol-
ogies related to the topic of this book. By the end of this section, you’ll learn the mean-
ing of these terms:

¡	Sequential programming 
¡	Concurrent programming
¡	Parallel programming
¡	Multitasking 
¡	Multithreading 

1.2.1 Sequential programming performs one task at a time

Sequential programming is the act of accomplishing things in steps. Let’s consider a sim-
ple example, such as getting a cup of cappuccino at the local coffee shop. You first 
stand in line to place your order with the lone barista. The barista is responsible for 
taking the order and delivering the drink; moreover, they are able to make only one 
drink at a time so you must wait patiently—or not—in line before you order. Making a 
cappuccino involves grinding the coffee, brewing the coffee, steaming the milk, froth-
ing the milk, and combining the coffee and milk, so more time passes before you get 
your cappuccino. Figure 1.1 shows this process.
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Combine coffee
and milk

Froth milk

Steam milk

Brew coffee

Grind coffee

Figure 1.1  For each person in line, the barista is sequentially repeating the same set of instructions 
(grind coffee, brew coffee, steam milk, froth milk, and combine the coffee and the milk to make a 
cappuccino).

Figure 1.1 is an example of sequential work, where one task must be completed before 
the next. It is a convenient approach, with a clear set of systematic (step-by-step) 
instructions of what to do and when to do it. In this example, the barista will likely 
not get confused and make any mistakes while preparing the cappuccino because the 
steps are clear and ordered. The disadvantage of preparing a cappuccino step-by-step 
is that the barista must wait during parts of the process. While waiting for the coffee to 
be ground or the milk to be frothed, the barista is effectively inactive (blocked). The 
same concept applies to sequential and concurrent programming models. As shown 
in figure 1.2, sequential programming involves a consecutive, progressively ordered 
execution of processes, one instruction at a time in a linear fashion. 

 Process 1  Process 2  Process 3  Process 4  Action

Figure 1.2  Typical sequential coding involving a consecutive, progressively ordered execution of 
processes

In imperative and object-oriented programming (OOP) we tend to write code that 
behaves sequentially, with all attention and resources focused on the task currently 
running. We model and execute the program by performing an ordered set of state-
ments, one after another.

1.2.2 Concurrent programming runs multiple tasks at the same time

Suppose the barista prefers to initiate multiple steps and execute them concurrently? 
This moves the customer line along much faster (and, consequently, increases gar-
nered tips). For example, once the coffee is ground, the barista can start brewing the 
espresso. During the brewing, the barista can take a new order or start the process of 
steaming and frothing the milk. In this instance, the barista gives the perception of 
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doing multiple operations at the same time (multitasking), but this is only an illusion. 
More details on multitasking are covered in section 1.2.4. In fact, because the barista 
has only one espresso machine, they must stop one task to start or continue another, 
which means the barista executes only one task at a time, as shown in figure 1.3. In 
modern multicore computers, this is a waste of valuable resources. 

Combine coffee
and milk

Steam milk

Froth milk

Brew coffee

Grind coffee

Figure 1.3  The barista switches between the operations (multitasking) of preparing the coffee (grind 
and brew) and preparing the milk (steam and froth). As a result, the barista executes segments of 
multiple tasks in an interleaved manner, giving the illusion of multitasking. But only one operation is 
executed at a time due to the sharing of common resources. 

Concurrency describes the ability to run several programs or multiple parts of a program 
at the same time. In computer programming, using concurrency within an application 
provides actual multitasking, dividing the application into multiple and independent 
processes that run at the same time (concurrently) in different threads. This can hap-
pen either in a single CPU core or in parallel, if multiple CPU cores are available. The 
throughput (the rate at which the CPU processes a computation) and responsiveness 
of the program can be improved through the asynchronous or parallel execution of a 
task. An application that streams video content is concurrent, for example, because it 
simultaneously reads the digital data from the network, decompresses it, and updates 
its presentation onscreen.     

Concurrency gives the impression that these threads are running in parallel and 
that different parts of the program can run simultaneously. But in a single-core envi-
ronment, the execution of one thread is temporarily paused and switched to another 
thread, as is the case with the barista in figure 1.3. If the barista wishes to speed up pro-
duction by simultaneously performing several tasks, then the available resources must 
be increased. In computer programming, this process is called parallelism.

1.2.3 Parallel programming executes multiples tasks simultaneously   

From the developer’s prospective, we think of parallelism when we consider the ques-
tions, “How can my program execute many things at once?” or “How can my program 
solve one problem faster?” Parallelism is the concept of executing multiple tasks at once 
concurrently, literally at the same time on different cores, to improve the speed of 
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the application. Although all parallel programs are concurrent, we have seen that not 
all concurrency is parallel. That’s because parallelism depends on the actual runtime 
environment, and it requires hardware support (multiple cores). Parallelism is achiev-
able only in multicore devices (figure 1.4) and is the means to increasing performance 
and throughput of a program.

Core 1

Core 2

Core 3

Core 4

Processor

To return to the coffee shop example, imagine that you’re the manager and wish to 
reduce the waiting time for customers by speeding up drink production. An intuitive 
solution is to hire a second barista and set up a second coffee station. With two baristas 
working simultaneously, the queues of customers can be processed independently and 
in parallel, and the preparation of cappuccinos (figure 1.5) speeds up.

Combine coffee
and milk

Froth milk

Steam milk

Brew coffee

Grind coffee

Figure 1.5  The production of cappuccinos is faster because two baristas can work in parallel with two 
coffee stations.

No break in production results in a benefit in performance. The goal of parallelism is 
to maximize the use of all available computational resources; in this case, the two baris-
tas are working in parallel at separate stations (multicore processing). 

Figure 1.4  Only multicore machines allow parallelism for 
simultaneously executing different tasks. In this figure, each 
core is performing an independent task.
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Parallelism can be achieved when a single task is split into multiple independent 
subtasks, which are then run using all the available cores. In figure 1.5, a multicore 
machine (two coffee stations) allows parallelism for simultaneously executing different 
tasks (two busy baristas) without interruption.

The concept of timing is fundamental for simultaneously executing operations in 
parallel. In such a program, operations are concurrent if they can be executed in parallel, 
and these operations are parallel if the executions overlap in time (see figure 1.6).

Start

End

For i = 0 to n
Evaluate model

Sequential approach

Start

End

Evaluate
model

Evaluate
model

Evaluate
model

Evaluate
model

Parallel approach

Figure 1.6  Parallel computing is a type of computation in which many calculations are carried out 
simultaneously, operating on the principle that large problems can often be divided into smaller ones, 
which are then solved at the same time.

Parallelism and concurrency are related programming models. A parallel program 
is also concurrent, but a concurrent program isn’t always parallel, with parallel pro-
gramming being a subset of concurrent programming. While concurrency refers to 
the design of the system, parallelism relates to the execution. Concurrent and paral-
lel programming models are directly linked to the local hardware environment where 
they’re performed. 

1.2.4 Multitasking performs multiple tasks concurrently over time

Multitasking is the concept of performing multiple tasks over a period of time by exe-
cuting them concurrently. We’re familiar with this idea because we multitask all the 
time in our daily lives. For example, while waiting for the barista to prepare our cap-
puccino, we use our smartphone to check our emails or scan a news story. We’re doing 
two things at one time: waiting and using a smartphone.

Computer multitasking was designed in the days when computers had a single CPU 
to concurrently perform many tasks while sharing the same computing resources. Ini-
tially, only one task could be executed at a time through time slicing of the CPU. (Time 
slice refers to a sophisticated scheduling logic that coordinates execution between mul-
tiple threads.) The amount of time the schedule allows a thread to run before sched-
uling a different thread is called thread quantum. The CPU is time sliced so that each 
thread gets to perform one operation before the execution context is switched to 
another thread. Context switching is a procedure handled by the operating system to 
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multitask for optimized performance (figure 1.7). But in a single-core computer, it’s 
possible that multitasking can slow down the performance of a program by introducing 
extra overhead for context switching between threads.

Context switching on
a single-core machine

Figure 1.7  Each task has a different shade, indicating that the context switch in a single-core machine 
gives the illusion that multiple tasks run in parallel, but only one task is processed at a time. 

There are two kinds of multitasking operating systems:

¡	Cooperative multitasking systems, where the scheduler lets each task run until it fin-
ishes or explicitly yields execution control back to the scheduler

¡	Preemptive multitasking systems (such as Microsoft Windows), where the scheduler 
prioritizes the execution of tasks, and the underlying system, considering the pri-
ority of the tasks, switches the execution sequence once the time allocation is 
completed by yielding control to other tasks

Most operating systems designed in the last decade have provided preemptive mul-
titasking. Multitasking is useful for UI responsiveness to help avoid freezing the UI 
during long operations. 

1.2.5 Multithreading for performance improvement 

Multithreading is an extension of the concept of multitasking, aiming to improve 
the performance of a program by maximizing and optimizing computer resources. 
Multithreading is a form of concurrency that uses multiple threads of execution. 
Multithreading implies concurrency, but concurrency doesn’t necessarily imply multi-
threading. Multithreading enables an application to explicitly subdivide specific tasks 
into individual threads that run in parallel within the same process. 

NOTE   A process is an instance of a program running within a computer system. 
Each process has one or more threads of execution, and no thread can exist 
outside a process.

A thread is a unit of computation (an independent set of programming instructions 
designed to achieve a particular result), which the operating system scheduler inde-
pendently executes and manages. Multithreading differs from multitasking: unlike 
multitasking, with multithreading the threads share resources. But this “sharing 
resources” design presents more programming challenges than multitasking does. We 
discuss the problem of sharing variables between threads later in this chapter in sec-
tion 1.4.1.
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The concepts of parallel and multithreading programming are closely related. But 
in contrast to parallelism, multithreading is hardware-agnostic, which means that it can 
be performed regardless of the number of cores. Parallel programming is a superset 
of multithreading. You could use multithreading to parallelize a program by sharing 
resources in the same process, for example, but you could also parallelize a program by 
executing the computation in multiple processes or even in different computers. Fig-
ure 1.8 shows the relationship between these terms.

Computer with two or more CPUs

Multitasking

Concurrency Concurrency

Computer with one CPU

Multitasking

Concurrency Concurrency

Multithreading

Parallelism

Multithreading

Parallelism

Figure 1.8  Relationship between concurrency, parallelism, multithreading, and multitasking in a single 
and a multicore device 

To summarize:

¡	Sequential programming refers to a set of ordered instructions executed one at a 
time on one CPU.

¡	Concurrent programming handles several operations at one time and doesn’t 
require hardware support (using either one or multiple cores).

¡	Parallel programming executes multiple operations at the same time on multiple 
CPUs. All parallel programs are concurrent, running simultaneously, but not all 
concurrency is parallel. The reason is that parallelism is achievable only on multi-
core devices.

¡	Multitasking concurrently performs multiple threads from different processes. 
Multitasking doesn’t necessarily mean parallel execution, which is achieved only 
when using multiple CPUs.

¡	Multithreading extends the idea of multitasking; it’s a form of concurrency that 
uses multiple, independent threads of execution from the same process. Each 
thread can run concurrently or in parallel, depending on the hardware support.

1.3 Why the need for concurrency?
Concurrency is a natural part of life—as humans we’re accustomed to multitasking. 
We can read an email while drinking a cup of coffee, or type while listening to our 
favorite song. The main reason to use concurrency in an application is to increase 
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performance and responsiveness, and to achieve low latency. It’s common sense that if 
one person does two tasks one after another it would take longer than if two people did 
those same two tasks simultaneously. 

It’s the same with applications. The problem is that most applications aren’t written 
to evenly split the tasks required among the available CPUs. Computers are used in 
many different fields, such as analytics, finance, science, and health care. The amount 
of data analyzed is increasing year by year. Two good illustrations are Google and Pixar. 

In 2012, Google received more than 2 million search queries per minute; in 2014, that 
number more than doubled. In 1995, Pixar produced the first completely computer- 
generated movie, Toy Story. In computer animation, myriad details and information must 
be rendered for each image, such as shading and lighting. All this information changes 
at the rate of 24 frames per second. In a 3D movie, an exponential increase in changing 
information is required. 

The creators of Toy Story used 100 connected dual-processor machines to create their 
movie, and the use of parallel computation was indispensable. Pixar’s tools evolved 
for Toy Story 2; the company used 1,400 computer processors for digital movie editing, 
thereby vastly improving digital quality and editing time. In the beginning of 2000, 
Pixar’s computer power increased even more, to 3,500 processors. Sixteen years later, 
the computer power used to process a fully animated movie reached an absurd 24,000 
cores. The need for parallel computing continues to increase exponentially.

Let’s consider a processor with N (as any number) running cores. In a single-threaded 
application, only one core runs. The same application executing multiple threads will be 
faster, and as the demand for performance grows, so too will the demand for N to grow, 
making parallel programs the standard programming model choice for the future. 

If you run an application in a multicore machine that wasn’t designed with con-
currency in mind, you’re wasting computer productivity because the application as 
it sequences through the processes will only use a portion of the available computer 
power. In this case, if you open Task Manager, or any CPU performance counter, you’ll 
notice only one core running high, possibly at 100%, while all the other cores are 
underused or idle. In a machine with eight cores, running non-concurrent programs 
means the overall use of the resources could be as low as 15% (figure 1.9).

Figure 1.9  Windows Task Manager 
shows a program poorly utilizing CPU 
resources.
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Such waste of computing power unequivocally illustrates that sequential code isn’t 
the correct programming model for multicore processers. To maximize the use of the 
available computational resources, Microsoft’s .NET platform provides parallel execu-
tion of code through multithreading. By using parallelism, a program can take full 
advantage of the resources available, as illustrated by the CPU performance counter in 
figure 1.10, where you’ll notice that all the processor cores are running high, possibly 
at 100%. Current hardware trends predict more cores instead of faster clock speeds; 
therefore, developers have no choice but to embrace this evolution and become paral-
lel programmers.

1.3.1 Present and future of concurrent programming

Mastering concurrency to deliver scalable programs has become a required skill. Com-
panies are interested in hiring and investing in engineers who have a deep knowledge 
of writing concurrent code. In fact, writing correct parallel computation can save 
time and money. It’s cheaper to build scalable programs that use the computational 
resources available with fewer servers, than to keep buying and adding expensive hard-
ware that is underused to reach the same level of performance. In addition, more 
hardware requires more maintenance and electric power to operate.

This is an exciting time to learn to write multithreaded code, and it’s rewarding to 
improve the performance of your program with the functional programming (FP) 
approach. Functional programming is a programming style that treats computation 
as the evaluation of expressions and avoids changing-state and mutable data. Because 
immutability is the default, and with the addition of a fantastic composition and declar-
ative programming style, FP makes it effortless to write concurrent programs. More 
details follow in section1.5.

While it’s a bit unnerving to think in a new paradigm, the initial challenge of learning 
parallel programming diminishes quickly, and the reward for perseverance is infinite. 
You’ll find something magical and spectacular about opening the Windows Task Man-
ager and proudly noticing that the CPU usage spikes to 100% after your code changes. 
Once you become familiar and comfortable with writing highly scalable systems using 
the functional paradigm, it will be difficult to go back to the slow style of sequential code.

Concurrency is the next innovation that will dominate the computer industry, and it 
will transform how developers write software. The evolution of software requirements 

Figure 1.10  A program written with 
concurrency in mind can maximize 
CPU resources, possibly up to 100%.
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in the industry and the demand for high-performance software that delivers great user 
experience through non-blocking UIs will continue to spur the need for concurrency. 
In lockstep with the direction of hardware, it’s evident that concurrency and parallel-
ism are the future of programming. 

1.4 The pitfalls of concurrent programming 
Concurrent and parallel programming are without doubt beneficial for rapid respon-
siveness and speedy execution of a given computation. But this gain of performance 
and reactive experience comes with a price. Using sequential programs, the execu-
tion of the code takes the happy path of predictability and determinism. Conversely, 
multithreaded programming requires commitment and effort to achieve correctness. 
Furthermore, reasoning about multiple executions running simultaneously is difficult 
because we’re used to thinking sequentially. 

Determinism 
Determinism is a fundamental requirement in building software as computer programs 
are often expected to return identical results from one run to the next. But this prop-
erty becomes hard to resolve in a parallel execution. External circumstances, such as 
the operating system scheduler or cache coherence (covered in chapter 4), could influ-
ence the execution timing and, therefore, the order of access for two or more threads 
and modify the same memory location. This time variant could affect the outcome of the 
program.

 

The process of developing parallel programs involves more than creating and spawn-
ing multiple threads. Writing programs that execute in parallel is demanding and 
requires thoughtful design. You should design with the following questions in mind:  

¡	How is it possible to use concurrency and parallelism to reach incredible compu-
tational performance and a highly responsive application?

¡	How can such programs take full advantage of the power provided by a multicore 
computer?

¡	How can communication with and access to the same memory location between 
threads be coordinated while ensuring thread safety? (A method is called thread-
safe when the data and state don’t get corrupted if two or more threads attempt to 
access and modify the data or state at the same time.)  

¡	How can a program ensure deterministic execution?
¡	How can the execution of a program be parallelized without jeopardizing the 

quality of the final result?

These aren’t easy questions to answer. But certain patterns and techniques can help. 
For example, in the presence of side effects,1 the determinism of the computation 
is lost because the order in which concurrent tasks execute becomes variable. The 

1 A side effect arises when a method changes some state from outside its scope, or it communicates with 
the “outside world,” such as calling a database or writing to the file system.
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obvious solution is to avoid side effects in favor of pure functions. You’ll learn these 
techniques and practices during the course of the book.

1.4.1 Concurrency hazards 

Writing concurrent programs isn’t easy, and many sophisticated elements must be con-
sidered during program design. Creating new threads or queuing multiple jobs on the 
thread pool is relatively simple, but how do you ensure correctness in the program? 
When many threads continually access shared data, you must consider how to safeguard 
the data structure to guarantee its integrity. A thread should write and modify a memory 
location atomically,2 without interference by other threads. The reality is that programs 
written in imperative programming languages or in languages with variables whose val-
ues can change (mutable variables) will always be vulnerable to data races, regardless of 
the level of memory synchronization or concurrent libraries used. 

NOTE  A data race occurs when two or more threads in a single process access 
the same memory location concurrently, and at least one of the accesses 
updates the memory slot while other threads read the same value without using 
any exclusive locks to control their accesses to that memory.

Consider the case of two threads (Thread 1 and Thread 2) running in parallel, both 
trying to access and modify the shared value x as shown in figure 1.11. For Thread 1 
to modify a variable requires more than one CPU instruction: the value must be read 
from memory, then modified and ultimately written back to memory. If Thread 2 tries 
to read from the same memory location while Thread 1 is writing back an updated 
value, the value of x changed. More precisely, it’s possible that Thread 1 and Thread 2 
read the value x simultaneously, then Thread 1 modifies the value x and writes it back 
to memory, while Thread 2 also modifies the value x. The result is data corruption. 
This phenomenon is called race condition.

Thread 1 x = 42

Mutable shared state x = 42 x = 43 x = 43

x = x + 1

Modify value

Thread 2 x = 42 x = x + 1

Modify value

Time

Read valueRead value

Write value Write value

Figure 1.11  Two threads (Thread 1 and Thread 2) run in parallel, both trying to access and modify the 
shared value x. If Thread 2 tries to read from the same memory location while Thread 1 writes back an 
updated value, the value of x changes. This result is data corruption or race condition.

2 An atomic operation accesses a shared memory and completes in a single step relative to other threads. 
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The combination of a mutable state and parallelism in a program is synonymous with 
problems. The solution from the imperative paradigm perspective is to protect the 
mutable state by locking access to more than one thread at a time. This technique 
is called mutual exclusion because the access of one thread to a given memory loca-
tion prevents access of other threads at that time. The concept of timing is central as 
multiple threads must access the same data at the same time to benefit from this tech-
nique. The introduction of locks to synchronize access by multiple threads to shared 
resources solves the problem of data corruption, but introduces more complications 
that can lead to deadlock. 

Consider the case in figure 1.12 where Thread 1 and Thread 2 are waiting for each 
other to complete work and are blocked indefinitely in that waiting. Thread 1 acquires 
Lock A, and, right after, Thread 2 acquires Lock B. At this point, both threads are wait-
ing on a lock that will never be released. This is a case of deadlock. 

Thread 1

Thread 2

Lock Lock

Lock attempt Lock attempt

Deadlock

Time

Lock A

Lock B

Figure 1.12. In this scenario, Thread 1 acquires Lock A, and Thread 2 acquires Lock B. Then, Thread 2 
tries to acquire Lock A while Thread 1 tries to acquire Lock B that is already acquired by Thread 2, which 
is waiting to acquire Lock A before releasing Lock B. At this point, both threads are waiting at the lock 
that’ll never be released. This is a case of deadlock.

Here is a list of concurrency hazards with a brief explanation. Later, you’ll get more 
details on each, with a specific focus on how to avoid them:

¡	Race condition is a state that occurs when a shared mutable resource (a file, 
image, variable, or collection, for example) is accessed at the same time by multi-
ple threads, leaving an inconsistent state. The consequent data corruption makes 
a program unreliable and unusable.

¡	Performance decline is a common problem when multiple threads share state 
contention that requires synchronization techniques. Mutual exclusion locks (or 
mutexes), as the name suggests, prevent the code from running in parallel by 
forcing multiple threads to stop work to communicate and synchronize memory 
access. The acquisition and release of locks comes with a performance penalty, 
slowing down all processes. As the number of cores gets larger, the cost of lock 
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contention can potentially increase. As more tasks are introduced to share the 
same data, the overhead associated with locks can negatively impact the compu-
tation. Section 1.4.3 demonstrates the consequences and overhead costs due to 
introducing lock synchronization.  

¡	Deadlock is a concurrency problem that originates from using locks. It occurs 
when a cycle of tasks exists in which each task is blocked while waiting for another 
to proceed. Because all tasks are waiting for another task to do something, 
they’re blocked indefinitely. The more that resources are shared among threads, 
the more locks are needed to avoid race condition, and the higher the risk of 
deadlocks.

¡	Lack of composition is a design problem originating from the introduction of 
locks in the code. Locks don’t compose. Composition encourages problem dis-
mantling by breaking up a complex problem into smaller pieces that are easier to 
solve, then gluing them back together. Composition is a fundamental tenet in FP. 

1.4.2 The sharing of state evolution 

Real-world programs require interaction between tasks, such as exchanging infor-
mation to coordinate work. This cannot be implemented without sharing data that’s 
accessible to all the tasks. Dealing with this shared state is the root of most problems 
related to parallel programming, unless the shared data is immutable or each task has 
its own copy. The solution is to safeguard all the code from those concurrency prob-
lems. No compiler or tool can help you position these primitive synchronization locks 
in the correct location in your code. It all depends on your skill as a programmer.

Because of these potential problems, the programming community has cried out, 
and in response, libraries and frameworks have been written and introduced into 
mainstream object-oriented languages (such as C# and Java) to provide concurrency 
safeguards, which were not part of the original language design. This support is a 
design correction, illustrated with the presence of shared memory in imperative and 
object-oriented, general-purpose programming environments. Meanwhile, functional 
languages don’t need safeguards because the concept of FP maps well onto concurrent 
programming models.

1.4.3 A simple real-world example: parallel quicksort    

Sorting algorithms are used generally in technical computing and can be a bottleneck. 
Let’s consider a Quicksort algorithm,3 a CPU-bound computation amenable to paralleliza-
tion that orders the elements of an array. This example aims to demonstrate the pitfalls of 
converting a sequential algorithm into a parallel version and points out that introducing 

parallelism in your code requires extra thinking before making any decisions. Otherwise, 
performance could potentially have an opposite outcome to that expected. 

Quicksort is a Divide and Conquer algorithm; it first divides a large array into two 
smaller sub-arrays of low elements and high elements. Quicksort can then recursively 
sort the sub-arrays, and is amenable to parallelization. It can operate in place on an 
array, requiring small additional amounts of memory to perform the sorting. The algo-
rithm consists of three simple steps, as shown in figure 1.13:

1 Select a pivot element.

2 Partition the sequence into subsequences according to their order relative to the 
pivot.

3 Quicksort the subsequences. 
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Figure 1.13. The recursive function divides and conquers. Each block is divided into equal halves, where 
the pivot element must be the median of the sequence, until each portion of code can be executed 
independently. When all the single blocks are completed, they send the result back to the previous caller 
to be aggregated. Quicksort is based on the idea of picking a pivot point and partitioning the sequence 
into sub-sequence elements smaller than the pivot and bigger than the pivot elements before recursively 
sorting the two smaller sequences.

Recursive algorithms, especially ones based on a form of Divide and Conquer, are a 
great candidate for parallelization and CPU-bound computations.

The Microsoft Task Parallel Library (TPL), introduced after the release of .NET 4.0, 
makes it easier to implement and exploit parallelism for this type of algorithm. Using 
the TPL, you can divide each step of the algorithm and perform each task in parallel, 
recursively. It’s a straight and easy implementation, but you must be careful of the level 
of depth to which the threads are created to avoid adding more tasks than necessary. 

To implement the Quicksort algorithm, you’ll use the FP language F#. Due to its 
intrinsic recursive nature, however, the idea behind this implementation can also be 3 Tony Hoare invented the Quicksort algorithm in 1960, and it remains one of the most acclaimed algo-

rithms with great practical value.
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The Microsoft Task Parallel Library (TPL), introduced after the release of .NET 4.0, 
makes it easier to implement and exploit parallelism for this type of algorithm. Using 
the TPL, you can divide each step of the algorithm and perform each task in parallel, 
recursively. It’s a straight and easy implementation, but you must be careful of the level 
of depth to which the threads are created to avoid adding more tasks than necessary. 

To implement the Quicksort algorithm, you’ll use the FP language F#. Due to its 
intrinsic recursive nature, however, the idea behind this implementation can also be 3 Tony Hoare invented the Quicksort algorithm in 1960, and it remains one of the most acclaimed algo-
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applied to C#, which requires an imperative for loop approach with a mutable state. C# 
doesn’t support optimized tail-recursive functions such as F#, so a hazard exists of rais-
ing a stack overflow exception when the call-stack pointer exceeds the stack constraint. 
In chapter 3, we’ll go into detail on how to overcome this C# limitation. 

Listing 1.1 shows a Quicksort function in F# that adopts the Divide and Conquer 
strategy. For each recursive iteration, you select a pivot point and use that to partition 
the total array. You partition the elements around the pivot point using the List.par-
tition API, then recursively sort the lists on each side of the pivot. F# has great built-in 
support for data structure manipulation. In this case, you’re using the List.parti-
tion API, which returns a tuple containing two lists: one that satisfies the predicate and 
another that doesn’t. 

Listing 1.1  Simple Quicksort algorithm

let rec quicksortSequential aList =
    match aList with
    | [] -> []
    | firstElement :: restOfList ->
        let smaller, larger =
            List.partition (fun number -> number < firstElement) restOfList
        quicksortSequential smaller @ (firstElement :: 
➥ quicksortSequential larger)

Running this Quicksort algorithm against an array of 1 million random, unsorted inte-
gers on my system (eight logical cores; 2.2 GHz clock speed) takes an average of 6.5 
seconds. But when you analyze this algorithm design, the opportunity to parallelize is 
evident. At the end of quicksortSequential, you recursively call into quicksortSe-
quential with each partition of the array identified by the (fun number -> number < 
firstElement) restOfList. By spawning new tasks using the TPL, you can rewrite in 
parallel this portion of the code. 

Listing 1.2  Parallel Quicksort algorithm using the TPL

let rec quicksortParallel aList =
    match aList with
    | [] -> []
    | firstElement :: restOfList ->
        let smaller, larger =
            List.partition (fun number -> number < firstElement) restOfList
        let left  = Task.Run(fun () -> quicksortParallel smaller) 
        let right = Task.Run(fun () -> quicksortParallel larger)  
        left.Result @ (firstElement :: right.Result)              

Task.Run executes the recursive calls in tasks that can run in 
parallel; for each recursive call, tasks are dynamically created.

Appends the result for each 
task into a sorted array
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The algorithm in listing 1.2 is running in parallel, which now is using more CPU resources 
by spreading the work across all available cores. But even with improved resource utiliza-
tion, the overall performance result isn’t meeting expectations.

Execution time dramatically increases instead of decreases. The parallelized Quick-
sort algorithm is passed from an average of 6.5 seconds per run to approximately 12 sec-
onds. The overall processing time has slowed down. In this case, the problem is that the 
algorithm is over-parallelized. Each time the internal array is partitioned, two new tasks are 
spawned to parallelize this algorithm. This design is spawning too many tasks in relation 
to the cores available, which is inducing parallelization overhead. This is especially true 
in a Divide and Conquer algorithm that involves parallelizing a recursive function. It’s 
important that you don’t add more tasks than necessary. The disappointing result demon-
strates an important characteristic of parallelism: inherent limitations exist on how much 
extra threading or extra processing will help a specific algorithmic implementation. 

To achieve better optimization, you can refactor the previous quicksortParallel 
function by stopping the recursive parallelization after a certain point. In this way, the 
algorithm’s first recursions will still be executed in parallel until the deepest recursion, 
which will revert to the serial approach. This design guarantees taking full advantage of 
cores. Plus, the overhead added by parallelizing is dramatically reduced.

Listing 1.3 shows this new design approach. It takes into account the level where the 
recursive function is running; if the level is below a predefined threshold, it stops par-
allelizing. The function quicksortParallelWithDepth has an extra argument, depth, 
whose purpose is to reduce and control the number of times a recursive function is 
parallelized. The depth argument is decremented on each recursive call, and new tasks 
are created until this argument value reaches zero. In this case, you’re passing the value 
resulting from Math.Log(float System.Enviroment.ProcessorCount, 2.) + 4. for 
the max depth. This ensures that every level of the recursion will spawn two child tasks 
until all the available cores are enlisted. 

Listing 1.3  A better parallel Quicksort algorithm using the TPL

let rec quicksortParallelWithDepth depth aList =    
    match aList with
    | [] -> []
    | firstElement :: restOfList ->
        let smaller, larger =
            List.partition (fun number -> number < firstElement) restOfList
        if depth < 0 then   
            let left  = quicksortParallelWithDepth depth smaller  
            let right = quicksortParallelWithDepth depth larger   
            left @ (firstElement :: right)
        else
            let left  = Task.Run(fun () -> 
➥	quicksortParallelWithDepth (depth - 1) smaller) 
            let right = Task.Run(fun () -> 
➥	quicksortParallelWithDepth (depth - 1) larger)  
            left.Result @ (firstElement :: right.Result)

Tracks the function 
recursion level with 
the depth parameter 

If the value of depth 
is negative, skips the 

parallelization 

Sequentially executes the Quicksort using the current thread

If the value of depth is 
positive, allows the function 
to be called recursively, 
spawning two new tasks
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One relevant factor in selecting the number of tasks is how similar the predicted run 
time of the tasks will be. In the case of quicksortParallelWithDepth, the duration of 
the tasks can vary substantially, because the pivot points depend on the unsorted data. 
They don’t necessarily result in segments of equal size. To compensate for the uneven 
sizes of the tasks, the formula in this example calculates the depth argument to pro-
duce more tasks than cores. The formula limits the number of tasks to approximately 
16 times the number of cores because the number of tasks can be no larger than 2 ^ 
depth. Our objective is to have a Quicksort workload that is balanced, and that doesn’t 
start more tasks than required.  Starting a Task during each iteration (recursion), when 
the depth level is reached, saturates the processors. 

In most cases, the Quicksort generates an unbalanced workload because the frag-
ments produced are not of equal size. The conceptual formula log2(ProcessorCount) 
+ 4 calculates the depth argument to limit and adapt the number of running tasks 
regardless of the cases.4 If you substitute depth = log2(ProcessorCount) + 4 and 
simplify the expression, you see that the number of tasks is 16 times ProcessorCount. 
Limiting the number of subtasks by measuring the recursion depth is an extremely 
important technique.5 

For example, in the case of four-core machines, the depth is calculated as follows: 

depth = log2(ProcessorCount) + 4
depth = log2(2) + 4
depth = 2 + 4

The result is a range between approximately 36 to 64 concurrent tasks, because during 
each iteration two tasks are started for each branch, which in turn double in each itera-
tion. In this way, the overall work of partitioning among threads has a fair and suitable 
distribution for each core.

1.4.4 Benchmarking in F# 

You executed the Quicksort sample using the F# REPL (Read-Evaluate-Print-Loop), 
which is a handy tool to run a targeted portion of code because it skips the compilation 
step of the program. The REPL fits quite well in prototyping and data-analysis devel-
opment because it facilitates the programming process. Another benefit is the built-in 
#time functionality, which toggles the display of performance information. When it’s 
enabled, F# Interactive measures real time, CPU time, and garbage collection infor-
mation for each section of code that’s interpreted and executed. 

Table 1.1 sorts a 3 GB array, enabling the 64-bit environment flag to avoid size restric-
tion. It’s run on a computer with eight logical cores (four physical cores with hyper-thread-
ing). On an average of 10 runs, table 1.1 shows the execution times in seconds.

4 The function log2 is an abbreviation for Log in base 2. For example, log2(x) represents the logarithm of 
x to the base 2.

5 Recall that for any value a, 2 ̂  (a + 4) is the same as 16 × 2^a; and that if a = log2(b), 2^a = b.
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Table 1.1  Benchmark of sorting with Quicksort

Serial Parallel Parallel 4 threads Parallel 8 threads

6.52 12.41 4.76 3.50

It’s important to mention that for a small array, fewer than 100 items, the parallel sort 
algorithms are slower than the serial version due to the overhead of creating and/or 
spawning new threads. Even if you correctly write a parallel program, the overhead 
introduced with concurrency constructors could overwhelm the program runtime, 
delivering the opposite expectation by decreasing performance. For this reason, it’s 
important to benchmark the original sequential code as a baseline and then continue 
to measure each change to validate whether parallelism is beneficial. A complete strat-
egy should consider this factor and approach parallelism only if the array size is greater 
than a threshold (recursive depth), which usually matches the number of cores, after 
which it defaults back to the serial behavior. 

1.5 Why choose functional programming for concurrency?

The trouble is that essentially all the interesting applications of concurrency involve the 
deliberate and controlled mutation of shared state, such as screen real estate, the file system, 
or the internal data structures of the program. The right solution, therefore, is to provide 
mechanisms which allow the safe mutation of shared state section.

—Peyton Jones, Andrew Gordon, and Sigbjorn Finne (“Concurrent Haskell,” 
Proceedings of the 23rd ACM Symposium on Principles of Programming 

Languages, St. Petersburg Beach, FL, January 1996)

FP is about minimizing and controlling side effects, commonly referred to as pure func-
tional programming. FP uses the concept of transformation, where a function creates a 
copy of a value x and then modifies the copy, leaving the original value x unchanged 
and free to be used by other parts of the program. It encourages considering whether 
mutability and side effects are necessary when designing the program. FP allows muta-
bility and side effects, but in a strategic and explicit manner, isolating this area from 
the rest of the code by utilizing methods to encapsulate them. 

The main reason for adopting functional paradigms is to solve the problems that 
exist in the multicore era. Highly concurrent applications, such as web servers and 
data-analysis databases, suffer from several architectural issues. These systems must be 
scalable to respond to a large number of concurrent requests, which leads to design 
challenges for handling maximum resource contention and high-scheduling fre-
quency. Moreover, race conditions and deadlocks are common, which makes trouble-
shooting and debugging code difficult. 

In this chapter, we discussed a number of common issues specific to developing con-
current applications in either imperative or OOP. In these programming paradigms, 
we’re dealing with objects as a base construct. Conversely, in terms of concurrency, deal-
ing with objects has caveats to consider when passing from a single-thread program to 
a massively parallelizing work, which is a challenging and entirely different scenario. 
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NOTE  A thread is an operating system construct that functions like a virtual 
CPU. At any given moment, a thread is allowed to run on the physical CPU for 
a slice of time. When the time for a thread to run expires, it’s swapped off the 
CPU for another thread. Therefore, if a single thread enters an infinite loop, it 
cannot monopolize all the CPU time on the system. At the end of its time slice, 
it will be switched out for another thread.

The traditional solution for these problems is to synchronize access to resources, 
avoiding contention between threads. But this same solution is a double-edged sword 
because using primitives for synchronization, such as lock for mutual exclusion, leads 
to possible deadlock or race conditions. In fact, the state of a variable (as the name 
variable implies) can mutate. In OOP, a variable usually represents an object that’s lia-
ble to change over time. Because of this, you can never rely on its state and, consequen-
tially, you must check its current value to avoid unwanted behaviors (figure 1.14). 
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Figure 1.14  In the functional paradigm, due to immutability as a default construct, concurrent 
programming guarantees deterministic execution, even in the case of a shared state. Conversely, 
imperative and OOP use mutable states, which are hard to manage in a multithread environment, and this 
leads to nondeterministic programs.

It’s important to consider that components of systems that embrace the FP concept 
can no longer interfere with each other, and they can be used in a multithreaded envi-
ronment without using any locking strategies. 

Development of safe parallel programs using a share of mutable variables and side- 
effect functions takes substantial effort from the programmer, who must make critical 
decisions, often leading to synchronization in the form of locking. By removing those 
fundamental problems through functional programming, you can also remove those 
concurrency-specific issues. This is why FP makes an excellent concurrent program-
ming model. It is an exceptional fit for concurrent programmers to achieve correct 
high performance in highly multithreaded environments using simple code. At the 
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heart of FP, neither variables nor state are mutable and cannot be shared, and functions 
may not have side effects. 

FP is the most practical way to write concurrent programs. Trying to write them in 
imperative languages isn’t only difficult, it also leads to bugs that are difficult to dis-
cover, reproduce, and fix.

How are you going to take advantage of every computer core available to you? The 
answer is simple: embrace the functional paradigm!  

1.5.1 Benefits of functional programming

There are real advantages to learning FP, even if you have no plans to adopt this style 
in the immediate future. Still, it’s hard to convince someone to spend their time on 
something new without showing immediate benefits. The benefits come in the form 
of idiomatic language features that can initially seem overwhelming. FP, however, is a 
paradigm that will give you great coding power and positive impact in your programs 
after a short learning curve. Within a few weeks of using FP techniques, you’ll improve 
the readability and correctness of your applications. 

The benefits of FP (with focus on concurrency) include the following:

¡	Immutability —A property that prevents modification of an object state after cre-
ation. In FP, variable assignment is not a concept. Once a value has been asso-
ciated with an identifier, it cannot change. Functional code is immutable by 
definition. Immutable objects can be safely transferred between threads, lead-
ing to great optimization opportunities. Immutability removes the problems of 
memory corruption (race condition) and deadlocks because of the absence of 
mutual exclusion.

¡	Pure function —This has no side effects, which means that functions don’t change 
any input or data of any type outside the function body. Functions are said to be 
pure if they’re transparent to the user, and their return value depends only on 
the input arguments. By passing the same arguments into a pure function, the 
result won’t change, and each process will return the same value, producing con-
sistent and expected behavior.

¡	Referential transparency —The idea of a function whose output depends on and 
maps only to its input. In other words, each time a function receives the same 
arguments, the result is the same. This concept is valuable in concurrent pro-
gramming because the definition of the expression can be replaced with its value 
and will have the same meaning. Referential transparency guarantees that a set 
of functions can be evaluated in any order and in parallel, without changing the 
application's behavior. 

¡	Lazy evaluation —Used in FP to retrieve the result of a function on demand or to 
defer the analysis of a big data stream until needed. 

¡	Composability —Used to compose functions and create higher-level abstractions 
out of simple functions. Composability is the most powerful tool to defeat com-
plexity, letting you define and build solutions for complex problems. 
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Learning to program functionally allows you to write more modular, expression- 
oriented, and conceptually simple code. The combinations of these FP assets will let 
you understand what your code is doing, regardless of how many threads the code is 
executing.

Later in this book, you’ll learn techniques to apply parallelism and bypass issues 
associated with mutable states and side effects. The functional paradigm approach to 
these concepts aims to simplify and maximize efficiency in coding with a declarative 
programming style.

1.6 Embracing the functional paradigm 
Sometimes, change is difficult. Often, developers who are comfortable in their domain 
knowledge lack the motivation to look at programming problems from a different per-
spective. Learning any new program paradigm is hard and requires time to transition 
to developing in a different style. Changing your programming perspective requires a 
switch in your thinking and approach, not solely learning new code syntax for a new 
programming language.

Going from a language such as Java to C# isn’t difficult; in terms of concepts, they’re 
the same. Going from an imperative paradigm to a functional paradigm is a far more 
difficult challenge. Core concepts are replaced. You have no more state. You have no 
more variables. You have no more side effects. 

But the effort you make to change paradigms will pay large dividends. Most develop-
ers will agree that learning a new language makes you a better developer, and liken that 
to a patient whose doctor prescribes 30 minutes of exercise per day to be healthy. The 
patient knows the real benefits in exercise, but is also aware that daily exercise implies 
commitment and sacrifice. 

Similarly, learning a new paradigm isn’t hard, but does require dedication, engage-
ment, and time. I encourage everyone who wants to be a better programmer to con-
sider learning the FP paradigm. Learning FP is like riding a roller coaster: during the 
process there will be times when you feel excited and levitated, followed by times when 
you believe that you understand a principle only to descend steeply—screaming—but 
the ride is worth it. Think of learning FP as a journey, an investment in your personal 
and professional career with guaranteed return. Keep in mind that part of the learning 
is to make mistakes and develop skills to avoid those in the future.

Throughout this process, you should identify the concepts that are difficult to under-
stand and try to overcome those difficulties. Think about how to use these abstractions 
in practice, solving simple problems to begin with. My experience shows that you can 
break through a mental roadblock by finding out what the intent of a concept is by using 
a real example. This book will walk you through the benefits of FP applied to concur-
rency and a distributed system. It’s a narrow path, but on the other side, you’ll emerge 
with several great foundational concepts to use in your everyday programming. I am 
confident you’ll gain new insights into how to solve complex problems and become a 
superior software engineer using the immense power of FP.
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1.7 Why use F# and C# for functional concurrent programming?
The focus of this book is to develop and design highly scalable and performant sys-
tems, adopting the functional paradigm to write correct concurrent code. This doesn’t 
mean you must learn a new language; you can apply the functional paradigm by using 
tools that you’re already familiar with, such as the multipurpose languages C# and F#. 
Over the years several functional features have been added to those languages, making 
it easier for you to shift to incorporating this new paradigm. 

The intrinsically different approach to solving problems is the reason these lan-
guages were chosen. Both programming languages can be used to solve the same prob-
lem in very different ways, which makes a case for choosing the best tool for the job. 
With a well-rounded toolset, you can design a better and easier solution. In fact, as soft-
ware engineers, you should think of programming languages as tools. 

Ideally, a solution should be a combination of C# and F# projects that work together 
cohesively. Both languages cover a different programming model, but the option to 
choose which tool to use for the job provides an enormous benefit in terms of produc-
tivity and efficiency. Another aspect to selecting these languages is their different con-
current programming model support, which can be mixed. For instance:

¡	F# offers a much simpler model than C# for asynchronous computation, called 
asynchronous workflows. 

¡	Both C# and F# are strongly typed, multipurpose programming languages with 
support for multiple paradigms that encompass functional, imperative, and 
OOP techniques. 

¡	Both languages are part of the .NET ecosystem and derive a rich set of libraries 
that can be used equally by both languages. 

¡	F# is a functional-first programming language that provides an enormous pro-
ductivity boost. In fact, programs written in F# tend to be more succinct and lead 
to less code to maintain. 

¡	F# combines the benefits of a functional declarative programming style with sup-
port from the imperative object-oriented style. This lets you develop applications 
using your existing object-oriented and imperative programming skills. 

¡	F# has a set of built-in lock-free data structures, due to default immutable con-
structors. An example is the discriminated union and the record types. These 
types have structural equality and don’t allow nulls that lead to “trusting” the 
integrity of the data and easier comparisons.

¡	F#, different from C#, strongly discourages the use of null values, also known as 
the billion-dollar mistake, and, instead, encourages the use of immutable data 
structures. This lack of null reference helps to minimize the number of bugs in 
programming.
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The null reference origin
Tony Hoare introduced the null reference in 1965, while he was designing the ALGOL 
object-oriented language. Some 44 years later, he apologized for inventing it by calling it 
the billion-dollar mistake. He also said this:

“. . . I couldn't resist the temptation to put in a null reference, simply because it was 
so easy to implement. This has led to innumerable errors, vulnerabilities, and system 
crashes . . ..” 6

 

¡	F# is naturally parallelizable because it uses immutably as a default type construc-
tor, and because of its .NET foundation, it integrates with the C# language with 
state-of-the-art capability at the implementation level. 

¡	C# design tends toward an imperative language, first with full support for OOP. (I 
like to define this as imperative OO.) The functional paradigm, during the past 
years and since the release of .NET 3.5, has influenced the C# language with the 
addition of features like lambda expressions and LINQ for list comprehension.

¡	C# also has great concurrency tools that let you easily write parallel programs and 
readily solve tough real-world problems. Indeed, exceptional multicore devel-
opment support within the C# language is versatile, and capable of rapid devel-
opment and prototyping of highly parallel symmetric multiprocessing (SMP) 
applications. These programming languages are great tools for writing concur-
rent software, and the power and options for workable solutions aggregate when 
used in coexistence. SMP is the processing of programs by multiple processors 
that share a common operating system and memory.

¡	F# and C# can interoperate. In fact, an F# function can call a method in a C# 
library, and vice versa.

In the coming chapters, we’ll discuss alternative concurrent approaches, such as data 
parallelism, asynchronous, and the message-passing programming model. We’ll build 
libraries using the best tools that each of these programming languages can offer and 
compare those with other languages. We’ll also examine tools and libraries like the 
TPL and Reactive Extensions (Rx) that have been successfully designed, inspired, and 
implemented by adopting the functional paradigm to obtain composable abstraction. 

It’s obvious that the industry is looking for a reliable and simple concurrent pro-
gramming model, shown by the fact that software companies are investing in libraries 
that remove the level of abstraction from the traditional and complex memory-synchro-
nization models. Examples of these higher-level libraries are Intel’s Threading Building 
Blocks (TBB) and Microsoft’s TPL. 

There are also interesting open source projects, such as OpenMP (which provides 
pragmas [compiler-specific definitions that you can use to create new preprocessor 

6 From a speech at QCon London in 2009: http://mng.bz/u74T.
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functionality or to send implementation-defined information to the compiler] that you 
can insert into a program to make parts of it parallel) and OpenCL (a low-level language 
to communicate with Graphic Processing Units [GPUs]). GPU programming has traction 
and has been sanctioned by Microsoft with C++ AMP extensions and Accelerator .NET. 

Summary
¡	No silver bullet exists for the challenges and complexities of concurrent and 

parallel programming. As a professional engineer, you need different types of 
ammunition, and you need to know how and when to use them to hit the target. 

¡	Programs must be designed with concurrency in mind; programmers cannot 
continue writing sequential code, turning a blind eye to the benefits of parallel 
programming. 

¡	Moore’s Law isn’t incorrect. Instead, it has changed direction toward an increased 
number of cores per processor rather than increased speed for a single CPU. 

¡	While writing concurrent code, you must keep in mind the distinction between 
concurrency, multithreading, multitasking, and parallelism.

¡	The share of mutable states and side effects are the primary concerns to avoid 
in a concurrent environment because they lead to unwanted program behaviors 
and bugs.

¡	To avoid the pitfalls of writing concurrent applications, you should use program-
ming models and tools that raise the level of abstraction.

¡	The functional paradigm gives you the right tools and principles to handle con-
currency easily and correctly in your code. 

¡	Functional programming excels in parallel computation because immutability is 
the default, making it simpler to reason about the share of data. 
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2Functional programming 
techniques for concurrency

This chapter covers
¡	Solving complex problems by composing simple 

solutions

¡	Simplifying functional programming with 
closures

¡	Improving program performance with functional 
techniques

¡	Using lazy evaluation 

Writing code in functional programming can make you feel like the driver of fast 
car, speeding along without the need to know how the underlying mechanics work. 
In chapter 1, you learned that taking an FP approach to writing concurrent applica-
tions better answers the challenges in writing those applications than, for example, 
an object-oriented approach does. Key concepts, such as immutable variables and 
purity, in any FP language mean that while writing concurrent applications remains 
far from easy, developers can be confident that they won’t face several of the tradi-
tional pitfalls of parallel programming. The design of FP means issues such as race 
conditions and deadlocks can’t happen. 
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2
In this chapter we’ll look in more detail at the main FP principles that help in our 

quest to write high-quality concurrent applications. You’ll learn what the principles are, 
how they work in both C# (as far as possible) and in F#, and how they fit into the pat-
terns for parallel programming. 

In this chapter, I assume that you have a familiarity with the basic principles of FP. If 
you don’t, see appendix A for the detailed information you need to continue. By the 
end of this chapter, you’ll know how to use functional techniques to compose simple 
functions to solve complex problems and to cache and precompute data safely in a 
multi threaded environment to speed up your program execution.

2.1 Using function composition to solve complex problems 
Function composition is the combining of functions in a manner where the output from 
one function becomes the input for the next function, leading to the creation of a new 
function. This process can continue endlessly, chaining functions together to create 
powerful new functions to solve complex problems. Through composition, you can 
achieve modularization to simplify the structure of your program. 

The functional paradigm leads to simple program design. The main motivation 
behind function composition is to provide a simple mechanism for building easy-to- 
understand, maintainable, reusable, and succinct code. In addition, the composition of 
functions with no side effects keeps the code pure, which preserves the logic of parallel-
ism. Basically, concurrent programs that are based on function composition are easier 
to design and less convoluted than programs that aren’t. 

Function composition makes it possible to construct and glue together a series of 
simple functions into a single massive and more complex function. Why is it important 
to glue code together? Imagine solving a problem in a top-down way. You start with the 
big problem and then deconstruct it into smaller problems, until eventually it’s small 
enough that you can directly solve the problem. The outcome is a set of small solutions 
that you can then glue back together to solve the original larger problem. Composition 
is the glue to piece together big solutions.

Think of function composition as pipelining in the sense that the resulting value 
of one function supplies the first parameter to the subsequent function. There are 
differences: 

¡	Pipelining executes a sequence of operations, where the input of each function 
is the output of the previous function.

¡	Function composition returns a new function that’s the combination of two or 
more functions and isn’t immediately invoked (input -> function -> output).

2.1.1 Function composition in C# 

The C# language doesn’t support function composition natively, which creates seman-
tic challenges. But it’s possible to introduce the functionality in a straightforward man-
ner. Consider a simple case in C# (shown in listing 2.1) using a lambda expression to 
define two functions.
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Listing 2.1  HOFs grindCoffee and brewCoffee to Espresso in C#

Func<CoffeeBeans, CoffeeGround> grindCoffee = coffeeBeans 
                      => new CoffeeGround(coffeeBeans); 
Func<CoffeeGround, Espresso> brewCoffee = coffeeGround 
                      => new Espresso(coffeeGround); 

The first function, grindCoffee, accepts an object coffeeBeans as a parameter and 
returns an instance of a new CoffeeGround. The second function, brewCoffee, takes 
as a parameter a coffeeGround object and returns an instance of a new Espresso. The 
intent of these functions is to make an Espresso by combining the ingredients result-
ing from their evaluation. How can you combine these functions? In C#, you have the 
option of executing the functions consecutively, passing the result of the first function 
into the second one as a chain.

Listing 2.2  Composition function in C# (bad)

CoffeeGround coffeeGround = grindCoffee(coffeeBeans); 
Espresso espresso = brewCoffee(coffeeGround); 

Espresso espresso = brewCoffee(grindCoffee(coffeeBeans)); 

First, execute the function grindCoffee, passing the parameter coffeeBeans, then 
pass the result coffeeGround into the function brewCoffee. A second and equivalent 
option is to concatenate the execution of both grindCoffee and brewCoffee, which 
implements the basic idea of function composition. But this is a bad pattern in terms of 
readability because it forces you to read the code from right to left, which isn’t the nat-
ural way to read English. It would be nice to read the code logically from left to right. 

A better solution is to create a generic, specialized extension method that can be 
used to compose any two functions with one or more generic input arguments. The 
following listing defines a Compose function and refactors the previous example. (The 
generic arguments are in bold.) 

Listing 2.3  Compose function in C#

static Func<A, C> Compose<A, B, C>(this Func<A, B> f, Func<B, C> g) 
                              => (n) => g(f(n)); 

Func<CoffeeBeans, Espresso> makeEspresso =  
➥ grindCoffee.Compose(brewCoffee); 
Espresso espresso = makeEspresso(coffeBeans);

A higher-order function, grindCoffee, returns a Func delegate that 
takes CoffeeBeans as an argument and then returns CoffeeGround.

A higher-order function brewCoffee returns an Espresso 
and takes a coffeeGround object as a parameter.

Shows the bad 
function composition 
that reads inside out 

Creates a generic extension 
method for any generic 
delegate Func<A,B>, which 
takes as an input argument a 
generic delegate Func<B,C> 
and returns a combined 
function Func<A,C>The F# compiler has deduced that 

the function must use the same 
type for both input and output.
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As shown in figure 2.1, the higher-order function Compose chains the functions grind-
Coffee and brewCoffee, creating a new function makeEspresso that accepts an argu-
ment coffeeBeans and executes brewCoffee (grindCoffee(coffeeBeans). 

input A output C

Compose<A, B, C>

Func<A, B> funcOne Func<B, C> funcTwo

input
CoffeeBeans

output
Espresso

Compose<CoffeeBeans, CoffeeGround, Espresso>

Func<CoffeeBeans,
CoffeeGround> grindCoffee

Func<CoffeeGround,
Espresso> brewCoffee

Figure 2.1  Function composition from function Func<CoffeeBeans, CoffeeGround> 
grindCoffee to function Func<CoffeeGround, Espresso> brewCoffee. Because the output of 
function grindCoffee matches the input of function brewCoffee, the functions can be composed in 
a new function that maps from input CoffeeBeans to output Espresso.

In the function body, you can easily see the line that looks precisely like the lambda 
expression makeEspresso. This extension method encapsulates the notion of compos-
ing functions. The idea is to create a function that returns the result of applying the 
inner function grindCoffee and then applying the outer function brewCoffee to the 
result. This is a common pattern in mathematics, and it would be represented by the 
notation brewCoffee of grindCoffee, meaning grindCoffee applied to brewCoffee. 
It’s easy to create higher-order functions (HOFs)1 using extension methods to raise the 
level of abstraction defining reusable and modular functions. 

Having a compositional semantic built into the language, such as in F#, helps struc-
ture the code in a declarative nature. It’s unfortunate that there’s no similarly sophisti-
cated solution in C#. In the source code for this book, you’ll find a library with several 
overloads of the Compose extension methods that can provide similar useful and reus-
able solutions. 

2.1.2 Function composition in F# 

Function composition is natively supported in F#. In fact, the definition of the compose 
function is built into the language with the >> infix operator. Using this operator in F#, 
you can combine existing functions to build new ones. 

Let’s consider a simple scenario where you want to increase by 4 and multiply by 3 
each element in a list. The following listing shows how to construct this function with 
and without the help of function composition so you can compare the two approaches. 

Listing 2.4  F# support for function composition

let add4 x = x + 4            

1  A higher-order function (HOF) takes one or more functions as input and returns a function as its result.

The F# compiler can infer the argument types 
for each function without explicit notation.
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let multiplyBy3 x = x * 3          

let list = [0..10]           

let newList = List.map(fun x ->  
➥ multiplyBy3(add4(x))) list 

let newList = list |>  
➥ List.map(add4 >> multiplyBy3)

The example code applies the function add4 and multiplyBy3 to each element of the 
list using the map, part of the List module in F#. List.map is equivalent to the Select 
static method in LINQ. The combination of the two functions is accomplished using a 
sequential semantic approach that forces the code to read unnaturally from inside out: 
multiplyBy3(add4(x)). The function composition style, which uses a more idiomatic 
F# with the >> infix operator, allows the code to read from left to right as in a textbook, 
and the result is much more refined, succinct, and easier to understand. 

Another way to achieve function composition with simple and modular code seman-
tics is by using a technique called closures.

2.2 Closures to simplify functional thinking
A closure aims to simplify functional thinking, and it allows the runtime to manage 
state, releasing extra complexity for the developer. A closure is a first-class function 
with free variables that are bound in the lexical environment. Behind these buzzwords 
hides a simple concept: closures are a more convenient way to give functions access 
to local state and to pass data into background operations. They are special functions 
that carry an implicit binding to all the nonlocal variables (also called free variables or 
up- values) referenced. Moreover, a closure allows a function to access one or more non-
local variables even when invoked outside its immediate lexical scope, and the body 
of this special function can transport these free variables as a single entity, defined in 
its enclosing scope. More importantly, a closure encapsulates behavior and passes it 
around like any other object, granting access to the context in which the closure was 
created, reading, and updating these values. 

Free variables and closures
The notion of a free variable refers to a variable referenced in a function that has neither 
the local variables nor the parameters of that function. The purpose of closures is to 
make these variables available when the function is executed, even if the original vari-
ables have gone out of scope. 

 

In FP or in any other programming language that supports higher-order functions, 
without the support of closures the scope of the data could create problems and 

The F# compiler has deduced that the function 
must use the same type for both input and output.

Defines a range of numbers from 0 to 10. In F#, you can define a collection 
using a range indicated by integers separated by the range operator.

In F#, you can apply HOF operations using 
list comprehension. The HOF map applies the 
same function projection to each element of 
the given list. In F#, the collection modules, 
like List, Seq, Array, and Set, take the 
collection argument as the last position.

Applies HOF operations combining the function 
add4 and multiplyBy3 using function composition
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disadvantages. In the case of C# and F#, however, the compiler uses closures to increase 
and expand the scope of variables. Consequently, the data is accessible and visible in 
the current context, as shown in figure 2.2.

Increment() Outer function

Local variable

X = 42

return X++;

Inner function

Func<int> incr = Increment();
int a = incr();
int b = incr();
int c = incr();

Figure 2.2. In this example using a closure, the local variable X, in the body of the outer function 
Increment, is exposed in the form of a function (Func<int>) generated by the inner function. The 
important thing is the return type of the function Increment, which is a function capturing the enclosed 
variable X, not the variable itself. Each time the function reference incr runs, the value of the captured 
variable X increases. 

In C#, closures have been available since .NET 2.0; but the use and definition of 
closures is easier since the introduction of lambda expressions and the anonymous 
method in .NET, which make for a harmonious mixture. 

This section uses C# for the code samples, though the same concepts and techniques 
apply to F#. This listing defines a closure using an anonymous method. 

Listing 2.5  Closure defined in C# using an anonymous method 

string freeVariable = "I am a free variable";     
Func<string, string> lambda = value => freeVariable + " " + value;     

In this example, the anonymous function lambda references a free variable freeVariable 
that’s in its enclosing scope. The closure gives the function access to its surrounding state 
(in this case, freeVariable), providing clearer and more readable code. Replicating the 
same functionality without a closure probably means creating a class that you want the 
function to use (and that knows about the local variable), and passing that class as an 
argument. Here, the closure helps the runtime to manage state, avoiding the extra and 
unnecessary boilerplate of creating fields to manage state. This is one of the benefits of a 
closure: it can be used as a portable execution mechanism for passing extra context into 
HOFs. Not surprisingly, closures are often used in combination with LINQ. You should 
consider closures as a positive side effect of lambda expressions and a great programming 
trick for your toolbox.

Indicates the free variable

Shows the anonymous function referencing a free variable
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2.2.1 Captured variables in closures with lambda expressions 

The power of closures emerges when the same variable can be used even when it would 
have gone out of scope. Because the variable has been captured, it isn’t garbage col-
lected. The advantage of using closures is that you can have a method-level variable, 
which is generally used to implement techniques for memory caching to improve com-
putational performance. These functional techniques of memoization and functional pre-
computation are discussed later in this chapter.

Listing 2.6 uses an event programming model (EPM) to download an image that 
asynchronously illustrates how captured variables work with closures. When the down-
load completes, the process continues updating a client application UI. The imple-
mentation uses an asynchronous semantic API call. When the request completes, the 
registered event DownloadDataCompleted fires and executes the remaining logic. 

Listing 2.6  Event register with a lambda expression capturing a local variable 

void UpdateImage(string url)
{
    System.Windows.Controls.Image image = img; 

    var client = new WebClient();
    client.DownloadDataCompleted += (o, e) =>  
    {
        if (image != null)
            using (var ms = new MemoryStream(e.Result))
            {
                var imageConverter = new ImageSourceConverter();
                image.Source = (ImageSource) 
➥ imageConverter.ConvertFrom(ms);
            }
    };
    client.DownloadDataAsync(new Uri(url));    
}

First, you get a reference of the image control named img. Then you use a lambda 
expression to register the handler callback for the event DownloadDataCompleted to 
process when DownloadDataAsync completes. Inside the lambda block, the code can 
access the state from out of scope directly due to closures. This access allows you to 
check the state of the image pointer, and, if it isn’t null, update the UI. 

This is a fairly straightforward process, but the timeline flow adds interesting behav-
ior. The method is asynchronous, so by the time data has returned from the service and 
the callback updates the image, the method is already complete. 

If the method completes, should the local variable image be out of scope? How is the 
image updated then? The answer is called a captured variable. The lambda expression 
captures the local variable image, which consequently stays in scope even though nor-
mally it would be released. From this example, you should consider captured variables 
as a snapshot of the values of the variables at the time the closure was created. If you 
built the same process without this captured variable, you’d need a class-level variable to 
hold the image value. 

Captures an instance of the 
local image control into 
the variable image

Registers the event 
DownloadDataCompleted using 
an inline lambda expression

Starts DownloadDataAsync 
asynchronously
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NOTE  The variable captured by the lambda expression contains the value at 
the time of evaluation, not the time of capture. Instance and static variables 
may be used and changed without restriction in the body of a lambda. 

To prove this, let’s analyze what happens if we add a line of code at the end of listing 
2.6, changing the image reference to a null pointer (in bold).

Listing 2.7  Proving the time of captured variable evaluation 

void UpdateImage(string url)
{
    System.Windows.Controls.Image image = img;

    var client = new WebClient();
    client.DownloadDataCompleted += (o, e) =>
    {
        if (image != null) {
            using (var ms = new MemoryStream(e.Result))
            {
                var imageConverter = new ImageSourceConverter();
                image.Source = (ImageSource) 
➥ imageConverter.ConvertFrom(ms);
            }
        }
    };
    client.DownloadDataAsync(new Uri(url));

    image = null; 
}

By running the program with the applied changes, the image in the UI won’t update 
because the pointer is set to null before executing the lambda expression body. Even 
though the image had a value at the time it was captured, it’s null at the time the code 
is executed. The lifetime of captured variables is extended until all the closures refer-
encing the variables become eligible for garbage collection.

In F#, the concept of null objects doesn’t exist, so it isn’t possible to run such unde-
sirable scenarios. 

2.2.2 Closures in a multithreading environment

Let’s analyze a use case scenario where you use closures to provide data to a task that 
often runs in a different thread than the main one. In FP, closures are commonly used 
to manage mutable state to limit and isolate the scope of mutable structures, allowing 
thread-safe access. This fits well in a multithreading environment.

In listing 2.8, a lambda expression invokes the method Console.WriteLine from 
a new Task of the TPL (System.Threading.Tasks.Task). When this task starts, the 
lambda expression constructs a closure that encloses the local variable iteration, 
which is passed as an argument to the method that runs in another thread. In this case, 
the compiler is automatically generating an anonymous class with this variable as an 
exposed property. 

Variable image is nulled; consequently, it 
will be disposed when out of scope. This 
method completes before the callback 
executes because the asynchronous 
function DownloadDataAsync doesn’t 
block, provoking unwanted behavior.  
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Listing 2.8  Closure capturing variables in a multithreaded environment 

for (int iteration = 1; iteration < 10; iteration++)
{
     Task.Factory.StartNew(() => Console.WriteLine("{0} - {1}", 
➥ Thread.CurrentThread.ManagedThreadId, iteration));
}

Closures can lead to strange behaviors. In theory, this program should work: you 
expect the program to print the numbers 1 to 10. But in practice, this isn’t the case; the 
program will print the number 10 ten times, because you’re using the same variable in 
several lambda expressions, and these anonymous functions share the variable value. 

Let’s analyze another example. In this listing, you pass data into two different threads 
using lambda expressions. 

Listing 2.9  Strange behavior using closures in multithreaded code 

Action<int> displayNumber = n => Console.WriteLine(n);
int i = 5;
Task taskOne =  Task.Factory.StartNew(() => displayNumber(i));
i = 7;
Task taskTwo =  Task.Factory.StartNew(() => displayNumber(i));

Task.WaitAll(taskOne, taskTwo);

Even if the first lambda expression captures the variable i before its value changes, 
both threads will print the number 7 because the variable i is changed before both 
threads start. The reason for this subtle problem is the mutable nature of C#. When a 
closure captures a mutable variable by a lambda expression, the lambda captures the 
reference of the variable instead of the current value of that variable. Consequently, if 
a task runs after the referenced value of the variable is changed, the value will be the 
latest in memory rather than the one at the time the variable was captured. 

This is a reason to adopt other solutions instead of manually coding the parallel 
loop. Parallel.For from the TPL solves this bug. One possible solution in C# is to 
create and capture a new temporary variable for each Task. That way, the declaration of 
the new variable is allocated in a new heap location, conserving the original value. This 
same sophisticated and ingenious behavior doesn’t apply in functional languages. Let’s 
look at a similar scenario using F#.

Listing 2.10  Closures capturing variables in a multithreaded environment in F# 

let tasks = Array.zeroCreate<Task> 10

for index = 1 to 10 do
    tasks.[index - 1] <- Task.Factory.StartNew(fun () -> 
➥ Console.WriteLine index)
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Running this version of the code, the result is as expected: the program prints the 
numbers 1 to 10. The explanation is that F# handles its procedural for loop differ-
ently than does C#. Instead of using a mutable variable and updating its value during 
each iteration, the F# compiler creates a new immutable value for every iteration with 
a different location in memory. The outcome of this functional behavior of preferring 
immutable types is that the lambda captures a reference to an immutable value that 
never changes.

Multithreading environments commonly use closures because of the simplicity of 
capturing and passing variables in different contexts that require extra thinking. The 
following listing illustrates how the .NET TPL library can use closures to execute multi-
ple threads using the Parallel.Invoke API.

Listing 2.11  Closures capturing variables in a multithreaded environment 

public void ProcessImage(Bitmap image) {
   byte[] array = image.ToByteArray(ImageFormat.Bmp); 
   Parallel.Invoke(
     () => ProcessArray(array, 0, array.Length / 2),
     () => ProcessArray(array, array.Length / 2, array.Length)); 
}

In the example, Parallel.Invoke spawns two independent tasks, each running the 
ProcessArray method against a portion of the array whose variable is captured and 
enclosed by the lambda expressions. 

TIP  Keep in mind that the compiler handles closures by allocating an object 
underneath that encapsulates the function and its environment. Therefore, 
closures are heavier in terms of memory allocations than regular functions, 
and invoking them is slower. 

In the context of task parallelism, be aware of variables captured in closures: because 
closures capture the reference of a variable, not its actual value, you can end up shar-
ing what isn’t obvious. Closures are a powerful technique that you can use to imple-
ment patterns to increase the performance of your program. 

2.3 Memoization-caching technique for program speedup
Memoization, also known as tabling, is an FP technique that aims to increase the perfor-
mance of an application. The program speedup is achieved by caching the results of 
a function, and avoiding unnecessary extra computational overhead that originates 
from repeating the same computations. This is possible because memoization bypasses 
the execution of expensive function calls by storing the result of prior computations 
with the identical arguments (as shown in figure 2.3) for retrieval when the arguments 
are presented again. A memoized function keeps in memory the result of a computa-
tion so it can be returned immediately in future calls. 

Shows the functions 
that convert an image 
to byte array format

Shows the functions to process in 
parallel the byte array split in half
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Input

Result

Memoize

Function
initializer

Function initializer
inputTable

Figure 2.3  Memoization is a technique to cache values for a function, ensuring a run of only one 
evaluation. When an input value is passed into a memoized function, the internal table storage verifies 
if an associated result exists for this input to return immediately. Otherwise, the function initializer runs 
the computation, and then it updates the internal table storage and returns the result. The next time the 
same input value is passed into the memoized function, the table storage contains the associated result 
and the computation is skipped.

This concept may sound complex at first, but it’s a simple technique once applied. 
Memoization uses closures to facilitate the conversion of a function into a data structure 
that facilitates access to a local variable. A closure is used as a wrapper for each call to a 
memoized function. The purpose of this local variable, usually a lookup table, is to store 
the results of the internal function as a value and to use the arguments passed into this 
function as a key reference.

The memoization technique fits well in a multithreaded environment, providing an 
enormous performance boost. The main benefit arises when a function is repeatedly 
applied to the same arguments; but, running the function is more expensive in terms 
of CPU computation than accessing the corresponding data structure. To apply a color 
filter to an image, for example, it’s a good idea to run multiple threads in parallel. Each 
thread accesses a portion of the image and modifies the pixels in context. But it’s pos-
sible that the filter color is applied to a set of pixels having identical values. In this case, 
if the computation will get the same result, why should it be re-evaluated? Instead, the 
result can be cached using memoization, and the threads can skip unnecessary work 
and finish the image processing more quickly.

Cache 
A cache is a component that stores data so future requests for that data can be served 
faster; the data stored in a cache might be the result of an earlier computation or a dupli-
cate of data stored elsewhere. 

 

The following listing shows a basic implementation of a memoized function in C#.
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Listing 2.12  Simple example that clarifies how memoization works 

static Func<T, R> Memoize<T, R>(Func<T, R> func)       
where T : IComparable
{
    Dictionary<T, R> cache = new Dictionary<T, R>();   

    return arg => {                                    

          if (cache.ContainsKey(arg))                  

             return cache[arg];                        

          return (cache[arg] = func(arg));             
                };
}

First, you define the Memoize function, which internally uses the generic collection 
Dictionary as a table variable for caching. A closure captures the local variable so it 
can be accessed from both the delegate pointing to the closure and the outer function. 
When the HOF is called, it first tries to match the input to the function to validate 
whether the parameter has already been cached. If the parameter key exists, the cache 
table returns the result. If the parameter key doesn’t exist, the first step is to evaluate 
the function with the parameter, add the parameter and the relative result to the cache 
table, and ultimately return the result. It’s important to mention that memoization is 
an HOF because it takes a function as input and returns a function as output.

TIP  Dictionary lookups occur in constant time, but the hash function used by 
the dictionary can be slow to execute in certain circumstances. This is the case 
with strings, where the time it takes to hash a string is proportional to its length. 
Unmemoized functions perform better than the memoized ones in certain sce-
narios. I recommend profiling the code to decide if the optimization is needed 
and whether memoization improves performance.

This is the equivalent memoize function implemented in F#.

Listing 2.13  memoize function in F#

let memoize func =
    let table = Dictionary<_,_>()
    fun x ->   if table.ContainsKey(x) then table.[x]
               else
                    let result = func x
                    table.[x] <- result
                    result

This is a simple example using the previously defined memoize function. In listing 2.14, 
the Greeting function returns a string with a welcoming message for the name passed 

Shows the generic Memoize 
function, which requires the generic 
type of T to be comparable because 
this value is used for lookups

Lists an instance of a mutable collection dictionary to store and look up values

Uses a lambda expression that captures the local table with a closure

Verifies that the value arg has been 
computed and stored in the cache

If the key passed as an argument 
exists in the table, then the value 
associated is returned as the result.

If the key doesn’t exist, then the value is computed, 
stored in the table, and returned as the result.
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as an argument. The message also includes the time when the function is called, which 
is used to keep track of time when the function runs. The code applies a two-second 
delay between each call for demonstration purposes. 

Listing 2.14  Greeting example in C# 

public static string Greeting(string name) 
{
      return $"Warm greetings {name}, the time is 
➥ {DateTime.Now.ToString("hh:mm:ss")}";    
}                                    

Console.WriteLine(Greeting ("Richard")); 
System.Threading.Thread.Sleep(2000);
Console.WriteLine(Greeting ("Paul"));
System.Threading.Thread.Sleep(2000);
Console.WriteLine(Greeting ("Richard"));  

// output
Warm greetings Richard, the time is 10:55:34
Warm greetings Paul, the time is 10:55:36
Warm greetings Richard, the time is 10:55:38 

Next, the code re-executes the same messages but uses a memoized version of the func-
tion Greeting.

Listing 2.15  Greeting example using a memoized function

var greetingMemoize = Memoize<string, string>(Greeting); 

Console.WriteLine(greetingMemoize ("Richard")); 
System.Threading.Thread.Sleep(2000);
Console.WriteLine(greetingMemoize ("Paul"));
System.Threading.Thread.Sleep(2000);
Console.WriteLine(greetingMemoize("Richard"));     

// output
Warm greetings Richard, the time is 10:57:21     
Warm greetings Paul, the time is 10:57:23        
Warm greetings Richard, the time is 10:57:21     

The output indicates that the first two calls happened at different times as anticipated. 
But what happens in a third call? Why does the third function call return the message 
with the exact same time as the first one? The answer is memoization. 

The first and third function greetingMemoize("Richard") calls have the same 
arguments, and their results have been cached only once during the initial call by the 
function greetingMemoize. The result from the third function call isn’t the effect of its 
execution, but is the stored result of the function with the same argument, and conse-
quently the time matches.

This is how memoization works. The memoized function’s job is to look up the argu-
ment passed in an internal table. If it finds the input value, it returns the previously 
computed result. Otherwise, the function stores the result in the table. 

Memoize is an HOF, so you 
pass a function as an 
argument that constrains the 
signature of the former 
function. In this way, the 
memoized function can 
replace the original one, 
injecting caching functionality.

The time of the Greeting function 
is the same because the 
computation happens only once 
and then the result is memoized.
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2.4 Memoize in action for a fast web crawler
Now, you’ll implement a more interesting example using what you learned in the pre-
vious section. For this example, you’ll build a web crawler that extracts and prints into 
the console the page title of each website visited. Listing 2.16 runs the code without 
memoization. Then you’ll re-execute the same program using the memoization tech-
nique and compare the outcome. Ultimately, you’ll download multiple websites’ con-
tents, combining parallel execution and memoization.

Listing 2.16  Web crawler in C# 

public static IEnumerable<string> WebCrawler(string url) {  
       string content = GetWebContent(url);
       yield return content;

       foreach (string item in AnalyzeHtmlContent(content))
       yield return GetWebContent(item);
}

static string GetWebContent(string url) { 
       using (var wc = new WebClient())
           return wc.DownloadString(new Uri(url));
}

static readonly Regex regexLink =
         new Regex(@"(?<=href=('|""))https?://.*?(?=\1)");

static IEnumerable<string> AnalyzeHtmlContent(string text) { 
         foreach (var url in regexLink.Matches(text))
               yield return url.ToString();
}

static readonly Regex regexTitle = 
        new Regex("<title>(?<title>.*?)<\\/title>", RegexOptions.Compiled);

static string ExtractWebPageTitle(string textPage) { 
        if (regexTitle.IsMatch(textPage))
               return regexTitle.Match(textPage).Groups["title"].Value;
        return "No Page Title Found!";
}

The WebCrawler function downloads the content of the web page URL passed as an 
argument by calling the method GetWebContent. Next, it analyzes the content down-
loaded and extracts the hyperlinks contained in the web page, which are sent back to 
the initial function to be processed, repeating the operations for each of the hyper-
links. Here is the web crawler in action.

Listing 2.17  Web crawler execution 

List<string> urls = new List<string> { 
    @"http://www.google.com",
    @"http://www.microsoft.com",

Shows the function that 
recursively fetches and 
analyzes the content of a 
website and sub-websites

Downloads the content of 
a website in string format

Extracts sub-links from 
the content of a website

Extracts the page title of a website

Initializes a website list to analyze
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    @"http://www.bing.com",
    @"http://www.google.com"
};

var webPageTitles = from url in urls 
                    from pageContent in WebCrawler(url)
                    select ExtractWebPageTitle(pageContent);

foreach (var webPageTitle in webPageTitles)
    Console.WriteLine(webPageTitle);     
            
// OUTPUT 
Starting Web Crawler for http://www.google.com...
Google
Google Images
 ...
Web Crawler completed for http://www.google.com in 5759ms
Starting Web Crawler for http://www.microsoft.com...
Microsoft Corporation
Microsoft - Official Home Page
Web Crawler completed for http://www.microsoft.com in 412ms
Starting Web Crawler for http://www.bing.com...
Bing
Msn
...
Web Crawler completed for http://www.bing.com in 6203ms
Starting Web Crawler for http://www.google.com...
Google
Google Images
...
Web Crawler completed for http://www.google.com in 5814ms

You’re using LINQ (Language Integrated Query) to run the web crawler against a col-
lection of given URLs. When the query expression is materialized during the foreach 
loop, the function ExtractWebPageTitle extracts the page title from each page’s con-
tent and prints it to the console. Because of the cross-network nature of the operation, 
the function GetWebContent requires time to complete the download. One problem 
with the previous code implementation is the existence of duplicate hyperlinks. It’s com-
mon that web pages have duplicate hyperlinks, which in this example cause redundant 
and unnecessary downloads. A better solution is to memoize the function WebCrawler. 

Listing 2.18  Web crawler execution using memoization

static Func<string, IEnumerable<string>> WebCrawlerMemoized = 
➥Memoize<string, IEnumerable<string>>(WebCrawler);    

var webPageTitles = from url in urls         
                    from pageContent in WebCrawlerMemoized(url)
                    select ExtractWebPageTitle(pageContent);

Uses a LINQ expression to analyze the 
websites from the URL collection 

Memoized version of the function WebCrawler

Uses a LINQ expression in combination with 
the memoize function to analyze the websites
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foreach (var webPageTitle in webPageTitles)
             Console.WriteLine(webPageTitle);    
            
// OUTPUT 
Starting Web Crawler for http://www.google.com...
Google
Google Images
 ...
Web Crawler completed for http://www.google.com in 5801ms
Starting Web Crawler for http://www.microsoft.com...
Microsoft Corporation
Microsoft - Official Home Page
Web Crawler completed for http://www.microsoft.com in 4398ms
Starting Web Crawler for http://www.bing.com...
Bing
Msn
...
Web Crawler completed for http://www.bing.com in 6171ms
Starting Web Crawler for http://www.google.com...
Google
Google Images
...
Web Crawler completed for http://www.google.com in 02ms

In this example, you implemented the HOF WebCrawlerMemoized, which is the 
memoized version of the function WebCrawler. The output confirms that the 
memoized version of the code runs faster. In fact, to extract the content a second time 
from the web page www.google.com took only 2 ms, as opposed to more than 5 seconds 
without memoization.

A further improvement should involve downloading the web pages in parallel. For-
tunately, because you used LINQ to process the query, only a marginal code change is 
required to use multiple threads. Since the advent of the .NET 4.0 framework, LINQ has 
an extension method AsParallel() to enable a parallel version of LINQ (or PLINQ). 
The nature of PLINQ is to deal with data parallelism; both topics will be covered in 
chapter 4.

LINQ and PLINQ are technologies designed and implemented using functional 
programming concepts, with special attention to emphasizing a declarative program-
ming style. This is achievable because the functional paradigm tends to raise the level 
of abstraction in comparison with other program paradigms. Abstraction consents to 
write code without the need to know the implementation details of the underlying 
library, as shown here.

Listing 2.19  Web crawler query using PLINQ

    var webPageTitles = from url in urls.AsParallel()     
                     from pageContent in WebCrawlerMemoized(url)
                     select ExtractWebPageTitle(pageContent);

Implements an 
extension method 
that enables LINQ 
to use multiple 
threads to process 
the query

 

http://www.google.com
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PLINQ is easy to use and can give you substantial performance benefits. Although we only 
showed one method, the AsParallel extension method, there’s more to it than that. 

Before running the program, you have one more refactoring to apply—caches. 
Because they must be accessible by all threads, caches tend to be static. With the intro-
duction of parallelism, it’s possible for multiple threads to simultaneously access the 
memoize function, causing a race-condition problem due to the underlying mutable 
data structure exposed. The race-condition problem is discussed in the previous chap-
ter. Fortunately, this is an easy fix, as shown in this listing.

Listing 2.20  Thread-safe memoization function 

public Func<T, R> MemoizeThreadSafe<T, R>(Func<T, R> func) 
                                                 where T : IComparable
{
  ConcurrentDictionary<T, R> cache = new ConcurrentDictionary<T, R>(); 
  return arg => cache.GetOrAdd(arg, a => func(a));
}

public Func<string, IEnumerable<string>> WebCrawlerMemoizedThreadSafe =   
                MemoizeThreadSafe<string, IEnumerable<string>>(WebCrawler);

var webPageTitles = 
                 from url in urls.AsParallel()
                 from pageContent in WebCrawlerMemoizedThreadSafe(url) 
                 select ExtractWebPageTitle(pageContent);  

The quick answer is to replace the current Dictionary collection with the equivalent 
thread-safe version ConcurrentDictionary. This refactoring interestingly requires less 
code. Next, you implement a thread-safe memoized version of the function GetWeb-
Content, which is used for the LINQ expression. Now you can run the web crawler in 
parallel. To process the pages from the example, a dual-core machine can complete 
the analysis in less than 7 seconds, compared to the 18 seconds of the initial imple-
mentation. The upgraded code, besides running faster, also reduces the network I/O 
operations.

2.5 Lazy memoization for better performance
In the previous example, the web crawler allows multiple concurrent threads to access 
the memoized function with minimum overhead. But it doesn’t enforce the function 
initializer func(a) from being executed multiple times for the same value, while eval-
uating the expression. This might appear to be a small issue, but in highly concur-
rent applications, the occurrences multiply (in particular, if the object initialization 
is expensive). The solution is to add an object to the cache that isn’t initialized, but 
rather a function that initializes the item on demand. You can wrap the result value 
from the function initializer into a Lazy type (as highlighted with bold in listing 2.21). 
The listing shows the memoization solution, which represents a perfect design in terms 
of thread safety and performance, while avoiding duplicate cache item initialization. 

Shows thread-safe memoization using the 
Concurrent collection ConcurrentDictionary

Uses a PLINQ expression to analyze the websites in parallel 
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Listing 2.21  Thread-safe memoization function with safe lazy evaluation 

static Func<T, R> MemoizeLazyThreadSafe<T, R>(Func<T, R> func) 
where T : IComparable
{
    ConcurrentDictionary<T, Lazy<R>> cache = 
➥ new ConcurrentDictionary<T, Lazy<R>>(); 
    return arg => cache.GetOrAdd(arg, a => 
➥ new Lazy<R>(() => func(a))).Value;
}

According to the Microsoft documentation, the method GetOrAdd doesn’t prevent the 
function func from being called more than once for the same given argument, but it 
does guarantee that the result of only one “evaluation of the function” is added to the 
collection. There could be multiple threads checking the cache concurrently before 
the cached value is added, for example. Also, there’s no way to enforce the function 
func(a) to be thread safe. Without this guarantee, it’s possible that in a multithreaded 
environment, multiple threads could access the same function simultaneously—mean-
ing func(a) should also be thread safe itself. The solution proposed, avoiding prim-
itive locks, is to use the Lazy<T> construct in .NET 4.0. This solution gives you the 
guarantee of full thread safety, regardless of the implementation of the function func, 
and ensures a single evaluation of the function. 

2.5.1 Gotchas for function memoization

The implementations of memoization introduced in the previous code examples are 
a somewhat naive approach. The solution of storing data in a simple dictionary works, 
but it isn’t a long-term solution. A dictionary is unbounded; consequently, the items 
are never removed from memory but only added, which can, at some point, lead to 
memory leak issues. Solutions exist to all these problems. One option is to implement 
a memoize function that uses a WeakReference type to store the result values, which 
permits the results to be collected when the garbage collector (GC) runs. Since the 
introduction of the collection ConditionalWeakDictionary with the .NET 4.0 frame-
work, this implementation is simple: a dictionary takes as a key a type instance that’s 
held as a weak reference. The associated values are kept as long as the key lives. When the 
key is reclaimed by the GC to be collocated, the reference to the data is removed, mak-
ing it available for collection. 

Weak references are a valuable mechanism for handling references to managed 
objects. The typical object reference (also known as a strong reference) has a deter-
ministic behavior, where as long as you have a reference to the object, the GC won’t 
collect the object that consequently stays alive. But in certain scenarios, you want to 
keep an invisible string attached to an object without interfering with the GC’s ability 
to reclaim that object’s memory. If the GC reclaimed the memory, your string becomes 
unattached and you can detect this. If the GC hasn’t touched the object yet, you can 
pull the string and retrieve a strong reference to the object to use it again. This facility 
is useful for automatically managing a cache that can keep weak references to the least 

Uses thread-safe and lazy-
evaluated memoization 
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recently used objects without preventing them from being collected and inevitably opti-
mizing the memory resources.

An alternative option is to use a cache-expiration policy by storing a timestamp 
with each result, indicating the time when the item is persisted. In this case, you have 
to define a constant time to invalidate the items. When the time expires, the item is 
removed from the collection. The downloadable source code for this book holds both 
of these implementations.

TIP  It’s good practice to consider memoization only when the cost to evaluate 
a result is higher than the cost to store all the results computed during run-
time. Before making the final decision, benchmark your code with and without 
memoization, using a varying range of values.

2.6 Effective concurrent speculation to amortize the cost 
of expensive computations
Speculative Processing (precomputation) is a good reason to exploit concurrency. Specula-
tive Processing is an FP pattern in which computations are performed before the actual 
algorithm runs, and as soon as all the inputs of the function are available. The idea behind 
concurrent speculation is to amortize the cost of expensive computation and improve the 
performance and responsiveness of a program. This technique is easily applicable in par-
allel computing, where multicore hardware can be used to precompute multiple opera-
tions spawning a concurrently running task and have the data ready to read without delay. 

Let’s say you’re given a long list of input words, and you want to compute a function 
that finds the best fuzzy match2 of a word in the list. For the fuzzy-match algorithm, 
you’re going to apply the Jaro-Winkler distance, which measures the similarity between 
two strings. We’re not going to cover the implementation of this algorithm here. You 
can find the complete implementation in the online source code.

Jaro-Winkler algorithm
The Jaro-Winkler distance is a measure of similarity between two strings. The higher the 
Jaro-Winkler distance, the more similar the strings. The metric is best suited for short 
strings, such as proper names. The score is normalized so that 0 equates to no similarity 
and 1 is an exact match.

 

This listing shows the implementation of the fuzzy-match function using the Jaro-Winkler 
algorithm (highlighted in bold).

Listing 2.22  Implementing a fuzzy match in C#

public static string FuzzyMatch(List<string> words, string word)
{

2 Fuzzy matching is a technique  of finding segments of text and corresponding matches that may be less 
than 100% perfect.
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    var wordSet = new HashSet<string>(words);   

    string bestMatch =
        (from w in wordSet.AsParallel()         
            select JaroWinklerModule.Match(w, word))
            .OrderByDescending(w => w.Distance)
            .Select(w => w.Word)
            .FirstOrDefault();
    return bestMatch;                           
}

The function FuzzyMatch uses PLINQ to compute in parallel the fuzzy match for the 
word passed as an argument against another array of strings. The result is a HashSet 
collection of matches, which is then ordered by best match to return the first value 
from the list. HashSet is an efficient data structure for lookups. 

The logic is similar to a lookup. Because List<string> words could contain dupli-
cates, the function first instantiates a data structure that’s more efficient. Then the 
function utilizes this data structure to run the actual fuzzy match. This implementation 
isn’t efficient, as the design issue is evident: FuzzyMatch is applied each time it’s called 
to both of its arguments. The internal table structure is rebuilt every time FuzzyMatch is 
executed, wasting any positive effect. 

How can you improve this efficiency? By applying a combination of a partial function 
application or a partial application and the memoization technique from FP, you can 
achieve precomputation. For more details about partial application, see appendix A. 
The concept of precomputation is closely related to memoization, which in this case 
uses a table containing pre-calculated values. The next listing shows the implementa-
tion of a faster fuzzy-match function (as highlighted in bold). 

Listing 2.23  Fast fuzzy match using precomputation 

static Func<string, string> PartialFuzzyMatch(List<string> words) 
{
    var wordSet = new HashSet<string>(words);   

    return word =>
        (from w in wordSet.AsParallel()
            select JaroWinklerModule.Match(w, word))
            .OrderByDescending(w => w.Distance)
            .Select(w => w.Word)
            .FirstOrDefault();                  
}

Func<string, string> fastFuzzyMatch =  
➥ PartialFuzzyMatch(words); 

string magicFuzzyMatch = fastFuzzyMatch("magic");
string lightFuzzyMatch = fastFuzzyMatch("light");   

Removes possible word duplicates by creating a HashSet collection 
from the word list. HashSet is an efficient data structure for lookups.

Uses PLINQ to run in parallel 
the best match algorithm

Returns the best match 

A partial applied function takes only one parameter and 
returns a new function that performs a clever lookup.

Efficient lookup data 
structure is kept in a 
closure after instantiation 
and is used by the lambda 
expression.

New function that uses the same 
lookup data for each call, 
reducing repetitive computation

Shows the function that precomputes 
the List<string> words passed and 
returns a function that takes the 
word argument

Uses the fastFuzzyMatch function
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First, you create a partial applied version of the function PartialFuzzyMatch. This new 
function takes as an argument only List<string> words and returns a new function 
that handles the second argument. This is a clever strategy because it consumes the first 
argument as soon as it’s passed, by precomputing the efficient lookup structure. 

Interestingly, the compiler uses a closure to store the data structure, which is accessi-
ble through the lambda expression returned from the function. A lambda expression is 
an especially handy way to provide a function with a precomputed state. Then, you can 
define the fastFuzzyMatch function by supplying the argument List<string> words, 
which is used to prepare an underlying lookup table, resulting in faster computation. 
After supplying List<string> words, fastFuzzyMatch returns a function that takes 
the string word argument, but immediately computes the HashSet for the lookup. 

NOTE  The function fuzzyMatch in listing 2.22 is compiled as a static function 
that constructs a set of strings on every call. Instead, fastFuzzyMatch in list-
ing 2.23 is compiled as a static read-only property, where the value is initialized 
in a static constructor. This is a fine difference, but it has a massive effect on 
code performance. 

With these changes, the processing time is reduced by half when performing the fuzzy 
match against the strings magic and light, compared to the one that calculates these 
values as needed.

2.6.1 Precomputation with natural functional support

Now let’s look at the same fuzzy-match implementation using the functional language 
F#. Listing 2.24 shows a slightly different implementation due to the intrinsic func-
tional semantic of F# (the AsParallel method is highlighted in bold). 

Listing 2.24  Implementing a fast fuzzy match in F#

let fuzzyMatch (words:string list) =
    let wordSet = new HashSet<string>(words)    
    let partialFuzzyMatch word =                
        query { for w in wordSet.AsParallel() do
                    select (JaroWinkler.getMatch w word) }
        |> Seq.sortBy(fun x -> -x.Distance)
        |> Seq.head

    fun word -> partialFuzzyMatch word          

let fastFuzzyMatch = fuzzyMatch words           

let magicFuzzyMatch = fastFuzzyMatch "magic"
let lightFuzzyMatch = fastFuzzyMatch "light”"   

Creates an efficient lookup data structure 
HashSet that also removes duplicate words

In F#, all the functions are 
curried as a default: the 
signature of the FuzzyMatch 
function is (string set -> string 
-> string), which implies that it 
can be directly partially 
applied. In this case, by 
supplying only the first 
argument, wordSet, you create 
the partial applied function 
partialFuzzyMatch.

Returns a function that uses a lambda 
expression to “closure over” and 
exposes the internal HashSet 

Applies the precomputation 
technique by supplying the 
first argument to the function 
fuzzyMatch, which immediately 
computes the HashSet with the 
values passed

Uses the fastFuzzyMatch function
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The implementation of fuzzyMatch forces the F# runtime to generate the internal set 
of strings on each call. In opposition, the partial applied function fastFuzzyMatch 
initializes the internal set only once and reuses it for all the subsequent calls. Precom-
putation is a caching technique that performs an initial computation to create, in this 
case, a HashSet<string> ready to be accessed.

The F# implementation uses a query expression to query and transform the data. 
This approach lets you use PLINQ as in the equivalent C# in listing 2.23. But in F# 
there’s a more functional style to parallelize operations on sequences—adopting the 
parallel sequence (PSeq). Using this module, the function fuzzyMatch can be rewritten 
in a compositional form:

let fuzzyMatch (words:string list) =
    let wordSet = new HashSet<string>(words)
    fun word ->
        wordSet
        |> PSeq.map(fun w -> JaroWinkler.getMatch w word)
        |> PSeq.sortBy(fun x -> -x.Distance)
        |> Seq.head

The code implementations of fuzzyMatch in C# and F# are equivalent, but the former 
functional language is curried as a default. This makes it easier to refactor using partial 
application. The F# parallel sequence PSeq used in the previous code snippet is cov-
ered in chapter 5.

It’s clearer by looking at the fuzzyMatch signature type: 

string set -> (string -> string)

The signature reads as a function that takes a string set as an argument, returns a func-
tion that takes a string as an argument, and then returns a string as a return type. 
This chain of functions lets you utilize the partial application strategy without thinking 
about it.

2.6.2 Let the best computation win 

Another example of speculative evaluation is inspired by the unambiguous choice 
operator,3 created by Conal Elliott (http://conal.net)  for his functional reactive pro-
gramming (FRP) implementation (http://conal.net/papers/push-pull-frp). The idea 
behind this operator is simple: it’s a function that takes two arguments and concur-
rently evaluates them, returning the first result  available. 

This concept can be extended to more than two parallel functions. Imagine that 
you’re using multiple weather services to check the temperature in a city. You can simul-
taneously spawn separate tasks to query each service, and after the fastest task returns, 
you don’t need to wait for the other to complete. The function waits for the fastest task 
to come back and cancels the remaining tasks. The following listing shows a simple 
implementation without support for error handling.

3 Conal Elliott, “Functional Concurrency with Unambiguous Choice,” November 21, 2008, http://
mng.bz/4mKK. 

 

http://conal.net
http://conal.net/papers/push-pull-frp
http://mng.bz/4mKK
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Listing 2.25  Implementing the fastest weather task

public Temperature SpeculativeTempCityQuery(string city, 
➥ params Uri[] weatherServices)
{
    var cts = new CancellationTokenSource();    
    var tasks =
    (from uri in weatherServices
        select Task.Factory.StartNew<Temperature>(() =>
                queryService(uri, city), cts.Token)).ToArray(); 

    int taskIndex = Task.WaitAny(tasks);        
    Temperature tempCity = tasks[taskIndex].Result;
    cts.Cancel();                               
    return tempCity;
}

Precomputation is a crucial technique for implementing any kind of function and ser-
vice, from simple to complex and more advanced computation engines. Speculative 
evaluation aims to consume CPU resources that would otherwise sit idle. This is a con-
venient technique in any program, and it can be implemented in any language that 
supports closure to capture and expose these partial values. 

2.7 Being lazy is a good thing
A common problem in concurrency is having the ability to correctly initialize a shared 
object in a thread-safe manner. To improve the startup time of an application when 
the object has an expensive and time-consuming construct, this need is even more 
accentuated. 

Lazy evaluation is a programming technique used to defer the evaluation of an 
expression until the last possible moment, when it’s accessed. Believe it or not, laziness 
can lead to success—and in this case, it’s an essential tool for your tool belt. Somewhat 
counterintuitive, the power of lazy evaluation makes a program run faster because it 
only provides what’s required for the query result, preventing excessive computations. 
Imagine writing a program that executes different long-running operations, possibly 
analyzing large amounts of data to produce various reports. If these operations are eval-
uated simultaneously, the system can run into performance issues and hang. Plus, it’s 
possible that not all of these long-running operations are immediately necessary, which 
provokes a waste of resources and time if they begin right away. 

A better strategy is to perform long-running operations on demand and only as 
needed, which also reduces memory pressure in the system. In effect, lazy evaluation 
also leads to efficient memory management, improving performance due to lower 
memory consumption. Being lazy in this case is more efficient. Reducing unnecessary 
and expensive garbage collection cleanups in managed programming languages—
such as C#, Java, and F#—makes the programs run faster.

Uses a cancellation token to cancel 
a task when the fastest completes

Uses LINQ to spawn in parallel one task for each weather service 

Waits for the fastest 
task to come back

Cancels remaining 
slower tasks
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2.7.1 Strict languages for understanding concurrent behaviors

The opposite of lazy evaluation is eager evaluation, also known as strict evaluation, which 
means that the expression is evaluated immediately. C# and F#, as well as the majority 
of other mainstream programming languages, are strict languages. 

Imperative programming languages don’t have an internal model for containing 
and controlling side effects, so it’s reasonable that they’re eagerly evaluated. To under-
stand how a program executes, a language that’s strictly evaluated must know the order 
in which side effects (such as I/O) run, making it easy to understand how the program 
executes. In fact, a strict language can analyze the computation and have an idea of the 
work that must be done.

Because both C# and F# aren’t purely FP languages, there’s no guarantee that every 
value is referentially transparent; consequently, they cannot be lazily evaluated pro-
gramming languages.

In general, lazy evaluation can be difficult to mix with imperative features, which 
sometimes introduce side effects, such as exception and I/O operation, because the 
order of operations becomes non-deterministic. For more information, I recommend 
“Why Functional Programming Matters,” by John Hughes (http://mng.bz/qp3B).

In FP, lazy evaluation and side effects cannot coexist. Despite the possibility of add-
ing the notion of lazy evaluation in an imperative language, the combination with side 
effects makes the program complex. In fact, lazy evaluation forces the developer to 
remove the order of execution constraints and dependencies according to which parts 
of the program are evaluated. Writing a program with side effects can become difficult 
because it requires the notion of function order of execution, which reduces the oppor-
tunity for code modularity and compositionality. Functional programming aims to be 
explicit about side effects, to be aware of them, and to provide tools to isolate and con-
trol them. For instance, Haskell uses the functional programming language convention 
of identifying a function with side effects with the IO type. This Haskell function defini-
tion reads a file, causing side effects:

readFile :: IO ()     

This explicit definition notifies the compiler of the presence of side effects, and the 
compiler then applies optimization and validation as needed.

Lazy evaluation becomes an important technique with multicore and multithread-
ing programs. To support this technique, Microsoft introduced (with Framework 4.0) a 
generic type constructor called Lazy<T>, which simplifies the initialization of objects with 
deferred creation in a thread-safe fashion. Here’s the definition of a lazy object Person.

Listing 2.26  Lazy initialization of the Person object

class Person     {    
    public readonly string FullName;     
    public Person(string firstName, string lastName)
    {
        FullName = firstName + " " + lastName;

Defines the Person class

Shows the read-only field for 
the full name of the person 
assigned in the constructor 
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        Console.WriteLine(FullName);    
    }
} 

Lazy<Person> fredFlintstone = new Lazy<Person>(() => 
➥ new Person("Fred", "Flintstone"), true);          

Person[] freds = new Person[5]; 
for(int i = 0;i < freds.Length;i++)   
        freds[i] = fredFlintstone.Value; 

// output
Fred Flintstone

In the example, you define a simple Person class with a read-only field, which also 
causes FullName to print on the console. Then, you create a lazy initializer for this 
object by supplying a factory delegate into Lazy<Person>, which is responsible for the 
object instantiation. In this case, a lambda expression is convenient to use in place of 
the factory delegate. Figure 2.4 illustrates this.

Lazy
Value

InitializationPerson
Value

Value

Value

Value

Lazy Person

Lazy Person

Lazy Person

Lazy Person

person
array

Figure 2.4. The value of the Person object is initialized only once, when the Value property is accessed 
the first time. Successive calls return the same cached value. If you have an array of Lazy<Person> 
objects, when the items of the array are accessed, only the first one is initialized. The others will reuse 
the cache result.

When the actual evaluation of the expression is required to use the underlying object 
Person, you access the Value property on the identifier, which forces the factory del-
egate of the Lazy object to be performed only one time if the value isn’t materialized 
yet. No matter how many consecutive calls or how many threads simultaneously access 
the lazy initializer, they all wait for the same instance. To prove it, the listing creates an 
array of five Persons, which is initialized in the for loop. During each iteration, the 
Person object is retrieved by calling the identifier property Value, but even if it’s called 
five times, the output (Fred Flintstone) is called only once. 

2.7.2 Lazy caching technique and thread-safe Singleton pattern

Lazy evaluation in .NET is considered a caching technique because it remembers the 
result of the operation that has been performed, and the program can run more effi-
ciently by avoiding repetitive and duplicate operations. 

Because the execution operations are done on demand and, more importantly, only 
once, the Lazy<T> construct is the recommended mechanism to implement a Single-
ton pattern. The Singleton pattern creates a single instance of a given resource, which is 

Initializes the lazy object 
Person; the return value is 
Lazy<Person>, which isn’t 
evaluated until it’s forced

Shows the array of five people

The instance of the underlying 
lazy object is available via the 
Value property.
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shared within the multiple parts of your code. This resource needs to be initialized only 
once, the first time it’s accessed, which is precisely the behavior of Lazy<T>. 

You have different ways of implementing the Singleton pattern in .NET, but certain 
of these techniques have limitations, such as unguaranteed thread safety or lost lazy 
instantiation.4 The Lazy<T> construct provides a better and simpler singleton design, 
which ensures true laziness and thread safety, as shown next. 

Listing 2.27  A Singleton pattern using Lazy<T>

public sealed class Singleton
{
    private static readonly Lazy<Singleton> lazy =
        new Lazy<Singleton>(() => new Singleton(), true);    

    public static Singleton Instance => lazy.Value;

    private Singleton()
    { }
}

The Lazy<T> primitive also takes a Boolean flag, passed after the lambda expression, as 
an optional argument to enable thread-safe behavior. This implements a sophisticated 
and light version of the Double-Check Locking pattern. 

NOTE  In software engineering, Double-Checked Locking (also known as dou-
ble-checked locking optimization) is a software design pattern used to reduce 
the overhead of acquiring a lock by first testing the locking criterion (the “lock 
hint”) without acquiring the lock. 

This property guarantees that the initialization of the object is thread safe. When the 
flag is enabled, which is the default mode, no matter how many threads call the Sin-
gleton LazyInitializer, all the threads receive the same instance, which is cached 
after the first call. This is a great advantage, without which you’d be forced to manually 
guard and ensure the thread safety for the shared field. 

It’s important to emphasize that if the lazy-evaluated object implementation is thread-
safe, that doesn’t automatically mean that all its properties are thread safe as well.

LazyInitializer
In .NET, LazyInitializer is an alternative static class that works like Lazy<T>, but 
with optimized initialization performance and more convenient access. In fact, there’s no 
need for the new object initialization to create a Lazy type due to the exposure of its func-
tionality through a static method. Here’s a simple example showing how to lazily initialize 
a big image using LazyInitializer:

 private BigImage bigImage;
 public BigImage BigImage => 
     LazyInitializer.EnsureInitialized(ref bigImage, () => new 
BigImage());

 

4 See “Implementing Singleton in C#,” MSDN, http://mng.bz/pLf4. 

Calls the Singleton 
constructor delegate 
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2.7.3 Lazy support in F# 

F# supports the same Lazy<T> type with the addition of lazy computation, which is of 
type Lazy<T>, where the actual generic type that is used for T is determined from the 
result of the expression. The F# standard library automatically enforces mutual exclu-
sion, so that pure function code is thread safe when simultaneously forcing the same 
lazy value from separate threads. The F# use of the Lazy type is a little different from 
C#, where you wrap the function around a Lazy data type. This code example shows 
the F# Lazy computation of a Person object:

let barneyRubble = lazy( Person("barney", "rubble") ) 
printfn "%s" (barneyRubble.Force().FullName)          

The function barneyRubble creates an instance of Lazy<Person>, for which the value 
isn’t yet materialized. Then, to force the computation, you call the method Force that 
retrieves the value on demand.

2.7.4 Lazy and Task, a powerful combination 

For performance and scalability reasons, in a concurrent application it’s useful to com-
bine a lazy evaluation that can be executed on demand using an independent thread. 
The Lazy initializer Lazy<T> can be utilized to implement a useful pattern to instanti-
ate objects that require asynchronous operations. Let’s consider the class Person that 
was used in the previous section. If the first and second name fields are loaded from a 
database, you can apply a type Lazy<Task<Person>> to defer the I/O computation. It’s 
interesting that between Task<T> and Lazy<T> there’s a commonality: both evaluate a 
given expression exactly once. 

Listing 2.29  Lazy asynchronous operation to initialize the Person object

Lazy<Task<Person>> person =
    new Lazy<Task<Person>>(async () =>      
    {
        using (var cmd = new SqlCommand(cmdText, conn))
        using (var reader = await cmd.ExecuteReaderAsync())
        {
            if (await reader.ReadAsync())
            {
                string firstName = reader["first_name"].ToString();
                string lastName = reader["last_name"].ToString();
                return new Person(firstName, lastName);
            }
        }
        throw new Exception("Failed to fetch Person");
    });

async Task<Person> FetchPerson()
{
    return await person.Value;              
}

Shows the asynchronous lambda 
constructor for the Lazy type

Materialized asynchronously 
the Lazy type
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In this example, the delegate returns a Task<Person>, which asynchronously deter-
mines the value once and returns the value to all callers. These are the kind of designs 
that ultimately improve the scalability of your program. In the example, this feature 
implements asynchronous operations using the async-await keywords (introduced in 
C# 5.0). Chapter 8 covers in detail the topics of asynchronicity and scalability.

This is a useful design that can improve scalability and parallelism in your program. 
But there’s a subtle risk. Because the lambda expression is asynchronous, it can be exe-
cuted on any thread that calls Value, and the expression will run within the context. A 
better solution is to wrap the expression in an underlying Task, which will force the asyn-
chronous execution on a thread-pool thread. This listing shows the preferred pattern.

Listing 2.30  Better pattern 

Lazy<Task<Person>> person =
    new Lazy<Task<Person>>(() => Task.Run(
        async () =>
        {
            using (var cmd = new SqlCommand(cmdText, conn))
            using (var reader = await cmd.ExecuteReaderAsync())
            {
                if(await reader.ReadAsync())
                {
                    string firstName = reader["first_name"].ToString();
                    string lastName = reader["last_name"].ToString();
                    return new Person(firstName, lastName);
                } else throw new Exception(“No record available”);
            }
        }
    ));

Summary
¡	Function composition applies the result of one function to the input of another, 

creating a new function. You can use it in FP to solve complex problems by 
decomposing them into smaller and simpler problems that are easier to solve 
and then ultimately piece together these sets of solutions.

¡	Closure is an in-line delegate/anonymous method attached to its parent method, 
where the variables defined in the parent’s method body can be referenced from 
within the anonymous method. Closure provides a convenient way to give a func-
tion access to local state (which is enclosed in the function), even if it’s out of 
scope. It’s the foundation to designing functional programming code segments 
that include memoization, lazy initialization, and precomputation to increase 
computation speed.

¡	Memoization is a functional programming technique that maintains the results 
of intermediate computations instead of recomputing them. It’s considered a 
form of caching.
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¡	Precomputation is a technique to perform an initial computation that gener-
ates a series of results, usually in the form of a lookup table. These precomputed 
values can be used directly from an algorithm to avoid needless, repetitive, and 
expensive computations each time your code is executed. Generally, precom-
putation replaces memoization and is used in combination with partial applied 
functions. 

¡	Lazy initialization is another variation of caching. Specifically, this technique 
defers the computation of a factory function for the instantiation of an object 
until needed, creating the object only once. The main purpose of lazy initializa-
tion is to improve performance by reducing memory consumption and avoiding 
unnecessary computation.
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3Functional data structures 
and immutability

This chapter covers
¡	Building parallel applications with functional 

data structures

¡	Using immutability for high-performant, lock-
free code

¡	Implementing parallel patterns with functional 
recursion

¡	Implementing immutable objects in C# and F#

¡	Working with tree data structures

Data comes in a multitude of forms. Consequently, it’s not surprising that many 
computer programs are organized around two primary constraints: data and data 
manipulation. Functional programming fits well into this world because, to a large 
extent, this programming paradigm is about data transformation. Functional trans-
formations allow you to alter a set of structured data from its original form into 
another form without having to worry about side effects or state. For example, 
you can transform a collection of countries into a collection of cities using a map 
function and keep the initial data unchanged. Side effects are a key challenge for 
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concurrent programming because the effects raised in one thread can influence the 
behavior of another thread. 

Over the past few years, mainstream programming languages have added new fea-
tures to make multithreaded applications easier to develop. Microsoft, for example, has 
added the TPL and the async/await keywords to the .NET framework to reduce pro-
grammers’ apprehension when implementing concurrent code. But there are still chal-
lenges with keeping a mutable state protected from corruption when multiple threads 
are involved. The good news is that FP lets you write code that transforms immutable 
data without side effects.

In this chapter, you’ll learn to write concurrent code using a functional data struc-
ture and using immutable states, adopting the right data structure in a concurrent 
environment to improve performance effortlessly. Functional data structures boost per-
formance by sharing data structures between threads and running in parallel without 
synchronization. 

As a first step in this chapter, you’ll develop a functional list in both C# and F#. These 
are great exercises for understanding how immutable functional data structures work. 
Next, we’ll cover immutable tree data structures, and you’ll learn how to use recursion 
in FP to build a binary tree structure in parallel. Parallel recursion is used in an example 
to simultaneously download multiple images from the web.

By the end of the chapter, you’ll exploit immutability and functional data structures 
to run a program faster in parallel, avoiding the pitfalls, such as race conditions, of 
shared mutable of state. In other words, if you want concurrency and a strong guaran-
tee of correctness, you must give up mutation.

3.1 Real-world example: hunting the thread-unsafe object
Building software in a controlled environment usually doesn’t lead to unwelcome sur-
prises. Unfortunately, if a program that you write on your local machine is deployed to 
a server that isn’t under your control, this might introduce different variables. In the 
production environment, programs can run into unanticipated problems and unpre-
dictable heavy loads. I’m sure that more than once in your career, you’ve heard, “It 
works on my machine.”

When software goes live, multiple factors can go wrong, causing the programs to 
behave unreliably. A while ago, my boss called me to analyze a production issue. The 
application was a simple chat system used for customer support. The program was using 
web sockets to communicate from the frontend directly with the Windows server hub 
written in C#. The underlying technology to establish the bidirectional communication 
between client and server was Microsoft SignalR (http://mng.bz/Fal1). See figure 3.1.

SignalR from MSDN documentation
ASP.NET SignalR is a library for ASP.NET developers that simplifies the process of adding 
real-time web functionality to applications. Real-time web functionality has server code 
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push content to connected clients instantly as it becomes available, rather than having 
the server wait for a client to request new data. SignalR can be used to add any sort of real-
time web functionality to your ASP.NET application. While chat is often used as an example, 
you can do much more. Any time a user refreshes a web page to see new data, or the page 
implements long pooling to retrieve new data, it’s a candidate for using SignalR. Exam-
ples include dashboards and monitoring applications, collaborative applications (such as 
simultaneous editing of documents), job progress updates, and real-time forms.

 

Before being deployed in production, the program had passed all the tests. Once 
deployed, however, the server’s resources were stressed. The CPU usage was contin-
ually between 85% to 95% of capacity, negatively affecting overall performance by 
preventing the system from being responsive to incoming requests. The result was 
unacceptable, and the problem needed a quick resolution. 

IIS server
web application

Request

Response

Static shared
lookup table

SignalR server hub

Clients
connected

As Sherlock Holmes said, “When you have eliminated the impossible, whatever 
remains, however improbable, must be the truth.” I put on my super-sleuth hat and 
then, using a valued lens, I began to look at the code. After debugging and investiga-
tion, I detected the portion of code that caused the bottleneck. 

I used a profiling tool to analyze the application’s performance. Sampling and pro-
filing the application is a good place to start looking for bottlenecks in the application. 
The profiling tool samples the program when it runs, examining the execution times 
to inspect as conventional data. The data collected is a statistical profiling representa-
tion of the individual methods that are doing the most work in the application. The 
final report shows these methods, which can be inspected by looking for the hot path 
(http://mng.bz/agzj) where most of the work in the application is executed. 

The high CPU-core utilization problem originated in the OnConnected and OnDis-
connected methods due to the contention of a shared state. In this case, the shared 
state was a generic Dictionary type, used to keep the connected users in memory. A 
Thread contention is a condition where one thread is waiting for an object, being held 

Figure 3.1  Architecture of a 
web server chat application 
using a SignalR hub. The 
clients connected are 
registered in a local static 
dictionary (lookup table) 
whose instance is shared. 
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by another thread, to be released. The waiting thread cannot continue until the other 
thread releases the object (it’s locked). This listing shows the problematic server code. 

Listing 3.1  SignalR hub in C# that registers connections in context

static Dictionary<Guid, string> onlineUsers =
    new Dictionary<Guid, string>(); 

public override Task OnConnected() {
    Guid connectionId = new Guid (Context.ConnectionId); 
    System.Security.Principal.IPrincipal user = Context.User;
    string userName;
    if (!onlineUsers.TryGetValue(connectionId, out userName)){ 
        RegisterUserConnection (connectionId, user.Identity.Name);
        onlineUsers.Add(connectionId, user.Identity.Name); 
    }
    return base.OnConnected();
}
public override Task OnDisconnected() {
    Guid connectionId = new Guid (Context.ConnectionId);
    string userName;
    if (onlineUsers.TryGetValue(connectionId, out userName)){ 
        DeregisterUserConnection(connectionId, userName);
        onlineUsers.Remove(connectionId); 
    }
    return base.OnDisconnected();
}

The operations OnConnected and OnDisconnected rely on a shared global dictionary, 
communally used in these types of programs to maintain a local state. Notice that each 
time one of these methods is executed, the underlying collection is called twice. The 
program logic checks whether the User Connection Id exists and applies some behav-
ior accordingly:

string userName;
if (!onlineUsers.TryGetValue(connectionId, out userName)){

Can you see the issue? For each new client request, a new connection is established, 
and a new instance of the hub is created. The local state is maintained by a static vari-
able, which keeps track of the current user connection and is shared by all instances 
of the hub. According to the Microsoft documentation, “A static constructor is only 
called one time, and a static class remains in memory for the lifetime of the application 
domain in which your program resides.”1 

Here’s the collection used for user-connection tracking:

static Dictionary<Guid, string> onlineUsers =  
new Dictionary<Guid, string>();

Shares an instance of a static dictionary 
to handle the state of online users

Each connection is 
associated with a 
unique identifier Guid. 

Checks if the current user is already connected 
and stored in the dictionary 

Both operations of 
adding and removing a 
user are performed 
after checking the 
state of the dictionary. 

1 For more information on static classes and static class members, see http://mng.bz/agzj.
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Guid is the unique connection identifier created by SignalR when the connection 
between client and server is established. The string represents the name of the user 
defined during login. In this case, the program clearly runs in a multithreaded envi-
ronment. Every incoming request is a new thread; consequently, there will be several 
requests simultaneously accessing the shared state, which eventually leads to multi-
threading problems. 

The MSDN documentation is clear in this regard. It says that a Dictionary collection 
can support multiple readers concurrently, as long as the collection isn’t modified.2 
Enumerating through the collection is intrinsically not thread safe because a thread 
could update the dictionary while another thread is changing the state of the collection.

Several possible solutions exist to avoid this limitation. The first approach is to 
make the collection thread safe and accessible by multiple threads for both read and 
write operations using lock primitive. This solution is correct but downgrades 
performance. 

The preferred alternative is to achieve the same level of thread safety without syn-
chronization; for example, using immutable collections.

3.1.1 .NET immutable collections: a safe solution

Microsoft introduced immutable collections, found in the namespace System.Collec-
tions.Immutable, with .NET Framework 4.5. This is part of the evolution of threading 
tools after TPL in .NET 4.0 and the async and await keywords after .NET 4.5. 

The immutable collections follow the functional paradigm concepts covered in this 
chapter, and provide implicit thread safety in multithreaded applications to overcome 
the challenge to maintain and control mutable state. Similar to concurrent collections, 
they’re also thread safe, but the underlying implementation is different. Any operations 
that change the data structures don’t modify the original instance. Instead, they return 
a changed copy and leave the original instance unchanged. The immutable collections 
have been heavily tuned for maximum performance and use the Structural Sharing 3 
pattern to minimize garbage collector (GC) demands. As an example, this code snip-
pet creates an immutable collection from a generic mutable one (the immutable com-
mand is in bold). Then, by updating the collections with a new item, a new collection is 
created, leaving the original unaffected:

var original = new Dictionary<int, int>().ToImmutableDictionary();
var modifiedCollection = original.Add(key, value);

Any changes to the collection in one thread aren’t visible to the other threads, because 
they still reference the original unmodified collection, which is the reason why 
immutable collections are inherently thread safe. 

Table  3.1 shows an implementation of an immutable collection for each of the 
related mutable generic collections.

2 For more information on thread safety, see http://mng.bz/k8Gg.
3 “Persistent Data Structure,” https://en.wikipedia.org/wiki/Persistent_data_structure. 
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Table 3.1  Immutable collections for .NET Framework 4.5

Immutable collection Mutable collection 

ImmutableList<T> List<T>

ImmutableDictionary<TKey, TValue> Dictionary<TKey, TValue>

ImmutableHashSet<T> HashSet<T>

ImmutableStack<T> Stack<T>

ImmutableQueue<T> Queue<T>

NOTE  The previous version of .NET attempted to provide collections with 
immutable capabilities using the generic ReadOnlyCollection and the exten-
sion method AsReadOnly, which transforms a given mutable collection into 
a read-only one. But this collection is a wrapper that prevents modifying the 
underlying collection. Therefore, in a multithreaded program, if a thread 
changes the wrapped collection, the read-only collection reflects those 
changes. Immutable collections resolve this issue. 

Here are two ways to create an immutable list.

Listing 3.2  Constructing .NET immutable collections

var list = ImmutableList.Create<int>(); 
list = list.Add(1); 
list = list.Add(2);
list = list.Add(3);

var builder = ImmutableList.CreateBuilder<int>(); 
builder.Add(1); 
builder.Add(2);
builder.Add(3);
list = builder.ToImmutable(); 

The second approach simplifies the construction of the list by creating a temporary 
list builder, which is used to add an element to the list and then seals (freezes) the ele-
ments into an immutable structure. 

In reference to the data corruption (race condition) problem in the original chat 
program, immutable collections can be used in a Windows server hub to maintain the 
state of the open SignalR connections. This is safely accomplished with multithread 
access. Luckily, the System.Collections.Immutable namespace contains the equiva-
lent version of Dictionary for lookups: ImmutableDictionary. 

You may ask, “But if the collection is immutable, how it can be updated while pre-
serving thread safety?” You can use lock statements around operations that involve 
reading or writing the collection. Building a thread-safe collection using locks is 
straightforward; but it is a more expensive approach than required. A better option is 
to protect the writes with a single compare-and-swap (CAS) operation, which removes 

Creates an empty immutable list

Adds a new item to the list 
and returns a new list Creates a list builder to construct  

a list definition, with mutable 
semantics, then freezes the collection 

Adds a new item to the list builder, 
which mutates the collection in place Closes the list builder to 

create the immutable list 
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the need for locks and leaves the read operation unguarded. This lock-free technique 
is more scalable and performs better than the counterpart (one that uses a synchroni-
zation primitive). 

cas operations

CAS is a special instruction used in multithreaded programming as a form of synchro-
nization that atomically performs an operation on memory locations. An atomic oper-
ation either succeeds or fails as a unit. 

Atomicity refers to operations that alter a state in a single step in such a way that the 
outcome is autonomous, observed as either done or not done, with no in-between state. 
Other parallel threads can only see the old or the new state. When an atomic opera-
tion is performed on a shared variable, threads cannot observe its modification until it 
completes. In fact, an atomic operation reads a value as it appears at a single moment 
in time. Primitive atomic operations are machine instructions and can be exposed by 
.NET in the System.Threading.Interlocked class, such as the Interlocked.Compare-
Exchange and the Interlocked.Increment methods.

The CAS instruction modifies shared data without the need to acquire and release a 
lock and allows extreme levels of parallelism. This is where immutable data structures 
really shine because they minimize the chances of incurring ABA problems (https://
en.wikipedia.org/wiki/ABA_problem).

The ABA problem 
The ABA problem occurs when executing an atomic CAS operation: one thread is sus-
pended before executing the CAS, and a second thread modifies the target of the CAS 
instruction from its initial value. When the first thread resumes, the CAS succeeds, 
despite the changes to the target value.

 

The idea is to keep the state that has to change contained into a single and, most 
importantly, isolated immutable object (in this case, the ImmutableDictionary). 
Because the object is isolated, there’s no sharing of state; therefore, there’s nothing to 
synchronize. 

The following listing shows the implementation of a helper object called Atom. The 
name is inspired by the Clojure atom (https://clojure.org/reference/atoms), which 
internally uses the Interlocked.CompareExchange operator to perform atomic CAS 
operations.

Listing 3.3  Atom object to perform CAS instructions 

public sealed class Atom<T> where T : class 
{
    public Atom(T value)
    {
        this.value = value;
    }

Creates a helper object for 
atomic CAS instructions

 

https://en.wikipedia.org/wiki/ABA_problem
https://en.wikipedia.org/wiki/ABA_problem
https://clojure.org/reference/atoms


66 chapter 3 Functional data structures and immutability

    private volatile T value;
    public T Value => value; 

    public T Swap(Func<T, T> factory) 
    {
        T original, temp;
        do {
            original = value;
            temp = factory (original);
        }
        while (Interlocked.CompareExchange(ref value, temp, original) 
➥ != original); 
        return original;
    }
}

The Atom class encapsulates a reference object of type T marked volatile,4 which must 
be immutable to achieve the correct behavior of value swapping. The property Value 
is used to read the current state of a wrapped object. The purpose of the Swap func-
tion is to execute the CAS instruction to pass to the caller of this function a new value 
based on the previous value using the factory delegate. The CAS operation takes an 
old and a new value, and it atomically sets the Atom to the new value only if the current 
value equals the passed-in old value. If the Swap function can’t set the new value using 
Interlocked.CompareExchange, it continues to retry until it’s successful.

Listing 3.4 shows how to use the Atom class with the ImmutableDictionary object 
in the context of a SignalR server hub. The code implements only the OnConnected 
method. The same concept applies to the OnDisconnected function.

Listing 3.4  Thread-safe ImmutableDictionary using an Atom object 

Atom<ImmutableDictionary<Guid, string>> onlineUsers =
    new Atom<ImmutableDictionary<Guid, string>>
        (ImmutableDictionary<Guid, string>.Empty); 

public override Task OnConnected() {
    Grid connectionId = new Guid (Context.ConnectionId);
    System.Security.Principal.IPrincipal user = Context.User;

    var temp = onlineUsers.Value; 
    if(onlineUsers.Swap(d => {    
                    if (d.ContainsKey(connectionId)) return d;
                    return d.Add(connectionId, user.Identity.Name);
                    }) != temp) { 
        RegisterUserConnection (connectionId, user.Identity.Name);
    }
    return base.OnConnected();
}

Gets the current 
value of this instance

Computes a new value based on 
the current value of the instance

Repeats the CAS instruction 
until it succeeds 

4 For more information on the volatile keyword, see https://msdn.microsoft.com/en-us/library/
x13ttww7.aspx. 

Passes an empty ImmutableDictionary 
as the argument to the Atom object to 

initialize the first state

Creates a temporary copy of the original 
ImmutableDictionary and calls the Value property

Updates atomically the underlying 
immutable collection with the swap 
operation if the key connectionId isn’t found 

Registers the new user connection, if the 
original ImmutableDictionary and the collection 

returned from the Swap function are different 
and an update has been performed
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The Atom Swap method wraps the call to update the underlying Immutable-
Dictionary. The Atom Value property can be accessed at any time to check the 
current open SignalR connections. This operation is thread safe because it’s read-
only. The Atom class is generic, and it can be used to update atomically any type. But 
immutable collections have a specialized helper class (described next).

the immutableinterlocked class

Because you need to update the immutable collections in a thread-safe manner, Mic-
rosoft introduced the ImmutableInterlocked class, which can be found in the System 
.Collections.Immutable namespace. This class provides a set of functions that 
handles updating immutable collections using the CAS mechanism previously men-
tioned. It exposes the same functionality of the Atom object. In this listing, Immutable-
Dictionary replaces Dictionary.

Listing 3.5  Hub maintaining open connections using ImmutableDictionary

static ImmutableDictionary<Guid, string> onlineUsers =
    ImmutableDictionary<Guid, string>.Empty; 

public override Task OnConnected() {
    Grid connectionId = new Guid (Context.ConnectionId);
    System.Security.Principal.IPrincipal user = Context.User;

    if(ImmutableInterlocked.TryAdd (ref onlineUsers, 
➥ connectionId, user.Identity.Name)) { 
        RegisterUserConnection (connectionId, user.Identity.Name);
    }
    return base.OnConnected();
}
public override Task OnDisconnected() {
    Grid connectionId = new Guid (Context.ConnectionId);
    string userName;
    if(ImmutableInterlocked.TryRemove (ref onlineUsers, 
➥ connectionId, out userName)) { 
        DeregisterUserConnection(connectionId, userName);
    }
    return base.OnDisconnected();
}

Updating an ImmutableDictionary is performed atomically, which means in this case 
that a user connection is added only if it doesn’t exist. With this change, the SignalR 
hub works correctly and is lock free, and the server didn’t spike high percentages of 
CPU utilization. But there’s a cost to using immutable collections for frequent updates. 
For example, the time required to add 1 million users to the ImmutableDictionary 
using ImmutableInterlocked is 2.518 seconds. This value is probably acceptable in 
most cases, but if you’re aiming to produce a highly performant system, it’s important 
to do the research and employ the right tool for the job. 

In general, the use of immutable collections fits perfectly for shared state among 
different threads, when the number of updates is low. Their value (state) is guaranteed 

Shows an instance of an 
empty ImmutableDictionary

ImmutableInterlocked tries 
to add a new item to the 
immutable collections in a 
thread-safe manner.

ImmutableInterlocked removes 
an item. If the item exists, the 
function returns true.
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to be thread safe; it can be safely passed among additional threads. If you need a collec-
tion that has to handle many updates concurrently, a better solution is to exploit a .NET 
concurrent collection.

3.1.2 .NET concurrent collections: a faster solution 

In the .NET framework, the System.Collections.Concurrent namespace provides a 
set of thread-safe collections designed to simplify thread-safe access to shared data. 
Concurrent collections are mutable collection instances that aim to increase the per-
formance and scalability of multithreaded applications. Because they can be safely 
accessed and updated by multiple threads at the same time, they’re recommended 
for multithreaded programs instead of the analogous collections in System.Collec-
tions.Generic. Table 3.2 shows the concurrent collections available in .NET.

Table 3.2  Concurrent collection details 

Concurrent collection Implementation details Synchronization techniques 

ConcurrentBag<T> Works like a generic list If multiple threads are detected, 
a primitive monitor coordinates 
their access; otherwise, the 
synchronization is avoided.

ConcurrentStack<T> Generic stack implemented 
using a singly linked list

Lock free using a CAS technique.

ConcurrentQueue<T> Generic queue implemented 
using a linked list of array 
segments

Lock free using CAS technique.

ConcurrentDictionary<K, V> Generic dictionary imple-
mented using a hash table 

Lock free for read operations; 
lock synchronization for updates.

Back to the SignalR hub example of “Hunt the thread-unsafe object,” Concurrent-
Dictionary is a better option than the not-thread-safe Dictionary, and due to the 
frequent and wide number of updates, it’s also a better option than ImmutableDic-
tionary. In fact, System.Collections.Concurrent has been designed for high per-
formance using a mix of fine-grained5 and lock-free patterns. These techniques ensure 
that threads accessing the concurrent collection are blocked for a minimum amount 
of time or, in certain cases, completely avoid the blocking. 

ConcurrentDictionary can ensure scalability while handling several requests per 
second. It’s possible to assign and retrieve values using square-bracket indexing like 
the conventional generic Dictionary, but ConcurrentDictionary also offers a num-
ber of methods that are concurrency friendly such as AddOrUpdate or GetOrAdd. The 
AddOrUpdate method takes a key and a value parameter, and another parameter that is a 

5 For more information on parallel computing, see https://en.wikipedia.org/wiki/Parallel 
_computing.
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delegate. If the key isn’t in the dictionary, it’s inserted using the value parameter. If the 
key is in the dictionary, the delegate is called and the dictionary is updated with the 
resulting value. Providing what you do in the delegate is also thread safe, this removes 
the danger of another thread coming in and changing the dictionary between you read-
ing a value out of it and writing another back. 

NOTE  Be aware that regardless of whether the methods exposed by Concurrent-
Dictionary are atomic and thread safe, the class has no control over the del-
egates called by AddOrUpdate and GetOrAdd, which could be implemented 
without a thread-safety guard.

In the following listing, the ConcurrentDictionary keeps the state of open connec-
tions in the SignalR hub.

Listing 3.6  Hub maintaining open connections using ConcurrentDictionary

static ConcurrentDictionary<Guid, string> onlineUsers =
        new ConcurrentDictionary<Guid, string>(); 

public override Task OnConnected() {
    Grid connectionId = new Guid (Context.ConnectionId);
    System.Security.Principal.IPrincipal user = Context.User;

    if(onlineUsers.TryAdd(connectionId, user.Identity.Name)) { 
        RegisterUserConnection (connectionId, user.Identity.Name);
    }
    return base.OnConnected();
}

public override Task OnDisconnected() {
    Grid connectionId = new Guid (Context.ConnectionId);
    string userName;
    if(onlineUsers.TryRemove (connectionId, out userName)) { 
        DeregisterUserConnection(connectionId, userName);
    }
    return base.OnDisconnected();
}

The code looks similar to the code listing using the ImmutableDictionary, (listing 
3.5), but the performance of adding and removing many connections (connection) is 
faster. For example, the time required to add 1 million users to the ConcurentDictio-
narry is only 52 ms, in comparison to the 2.518 s of the ImmutableDictionary. This 
value is probably fine in many cases, but if you want to produce a highly performant 
system, it’s important to research and employ the right tool.

You need to understand how these collections work. Initially, it seems the collections 
are used without any FP style, due to their mutable characteristics. But the collections 
create an internal snapshot that mimics a temporary immutability to preserve thread 
safety during their iteration, allowing the snapshot to be enumerated safely. 

Shows the instance of an 
empty ConcurrentDictionary

The onlineUsers ConcurrentDictionary 
tries to add a new item; if the item doesn’t 
exist, it’s added and the user is registered.

The onlineUsers ConcurrentDictionary 
removes the connectionId if it exists.

 



70 chapter 3 Functional data structures and immutability

Concurrent collections work well with algorithms that consider the producer/con-
sumer6 implementation. A Producer/Consumer pattern aims to partition and balance the 
workload between one or more producers and one or more consumers. A producer gen-
erates data in an independent thread and inserts it into a queue. A consumer runs a 
separate thread concurrently, which consumes the data from the queue. For example, 
a producer could download images and store them in a queue that’s accessed by a con-
sumer that performs image processing. These two entities work independently, and if 
the workload from the producer increases, you can spawn a new consumer to balance 
the workload. The Producer/Consumer pattern is one of the most widely used parallel 
programming patterns, and it will be discussed and implemented in chapter 7.

3.1.3 The agent message-passing pattern: a faster, better solution 

The final solution for “Hunt the thread-unsafe object” was the introduction of a local 
agent into the SignalR hub, which provides asynchronous access to maintain high scal-
ability during high-volume access. An agent is a unit of computation that handles one 
message at a time, and the message is sent asynchronously, which means the sender 
doesn’t have to wait for the answer, so there’s no blocking. In this case, the dictionary 
is isolated and can be accessed only by the agent, which updates the collection in a sin-
gle-thread fashion, eliminating the hazard of data corruption and the need for locks. 
This fix is scalable because the agent’s asynchronous semantic operation can process 
3 million messages per second, and the code runs faster because it removes the extra 
overhead from using synchronizations. 

Programming with agents and message passing is discussed in chapter 11. Don’t 
worry if you don’t completely understand the code; it will become clear during this jour-
ney, and you can always reference appendix B. This approach requires fewer changes in 
the code compared to the previous solutions, but application performance isn’t jeopar-
dized. This listing shows the implementation of the agent in F#.

Listing 3.7  F# agent that ensures thread-safe access to mutable states

type AgentMessage = 
    | AddIfNoExists of id:Guid * userName:string
    | RemoveIfNoExists of id:Guid

type AgentOnlineUsers() =
    let agent = MailboxProcessor<AgentMessage>.Start(fun inbox ->
        let onlineUsers = Dictionary<Guid, string>() 
        let rec loop() = async {
            let! msg = inbox.Receive()
            match msg with
            | AddIfNoExists(id, userName) -> 
                let exists, _ = onlineUsers.TryGetValue(id)  

6 For more information on the producer-consumer problem, also known as the bounded-buffer prob-
lem, see https://en.wikipedia.org/wiki/Producer–consumer_problem. 

Uses a discriminated union that represents 
the type of messages for the agent

Inside the body of the 
agent, even a mutable 

collection is thread safe 
because it’s isolated.

The message received is 
pattern-matched to branch out to 
the corresponding functionality.

The lookup operation is thread safe because 
it’s executed by the single-thread agent.
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                if not exists = true then
                    onlineUsers.Add(id, userName)
                    RegisterUserConnection (id, userName)
            | RemoveIfNoExists(id) -> 
                let exists, userName = onlineUsers.TryGetValue(id) 
                if exists = true then
                    onlineUsers.Remove(id) |> ignore
                    DeregisterUserConnection(id, userName)
            return! loop() }
        loop() )

In the following listing, the refactored C# code uses the final solution. Because of 
the interoperability between .NET programming languages, it’s possible to develop a 
library using one language that’s accessed by the other. In this case, C# is accessing the 
F# library with the MailboxProcessor (Agent) code. 

Listing 3.8  SignalR hub in C# using an F# agent

static AgentOnlineUsers onlineUsers = new AgentOnlineUsers() 

public override Task OnConnected() {
    Guid connectionId = new Guid (Context.ConnectionId);
    System.Security.Principal.IPrincipal user = Context.User;

    onlineUsers.AddIfNoExists(connectionId, user.Identity.Name); 
    return base.OnConnected();
}
public override Task OnDisconnected() {
    Guid connectionId = new Guid (Context.ConnectionId);

    onlineUsers.RemoveIfNoExists(connectionId); 
    return base.OnDisconnected();
}

In summary, the final solution solved the problem by dramatically reducing the CPU 
consumption to almost zero (figure 3.2). 

The takeaway from this experience is that sharing a mutable state in the multithread-
ing environment isn’t a good idea. Originally, the Dictionary collection had to main-
tain the user connections currently online; mutability was almost a necessity. You could 
use a functional approach with an immutable structure, but instead create a new col-
lection for each update, which is probably overkill. A better solution is to use an agent 
to isolate mutability and make the agent accessible from the caller methods. This is a 
functional approach that uses the natural thread safety of agents.

The result of this approach is an increase of scalability because access is asynchro-
nous without blocking, and it allows you to easily add logic in the agent body, such as 
logging and error handling.

The message received is 
pattern-matched to branch 

out to the corresponding 
functionality.

The lookup operation is 
thread safe because it’s 

executed by the 
single-thread agent.

Uses a static instance of the F# 
agent from the referenced library

Methods that 
asynchronously, with 

no blocking, send a 
message to the agent to 

perform thread-safe 
update operations
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IIS server
web application

Request

Response

Static shared
lookup table

SignalR server hub

Clients
connected

Agent

If multiple connections arrived
simultaneously, they’re queued
and guaranteed to be processed
in order, one at a time.

The connected clients are
registered in an internal
agent state, which provides
isolation and thread safety.

Figure 3.2  Architecture of a web server for a chat application using a SignalR hub. This solution, 
compared to figure 3.1, removes the mutable dictionary that was shared between multiple threads to 
handle the incoming requests. To replace the dictionary, there is a local agent that guarantees high 
scalability and thread safety in this multithreaded scenario.  

3.2 Safely sharing functional data structures 
among threads
A persistent data structure (also known as a functional data structure) is a data structure 
in which no operations result in permanent changes to the underlying structure. Per-
sistent means that all versions of the structure that are modified endure over time. In 
other words, such a data structure is immutable because update operations don’t mod-
ify the data structure but return a new one with the updated values.

Persistent, in terms of data, is commonly misconstrued as storing data in a physical 
entity, such as a database or filesystem. In FP, a functional data structure is long lasting. 
Most traditional imperative data structures (such as those from System.Collections 
.Generic: Dictionary, List, Queue, Stack, and so forth) are ephemeral because their 
state exists only for a short time between updates. Updates are destructive, as shown in 
figure 3.3.

A functional data structure guarantees consistent behavior regardless of whether the 
structure is accessed by different threads of execution or even by a different process, 
with no concern for potential changes to the data. Persistent data structures don’t sup-
port destructive updates, but instead keep the old versions of a data structure. 

Understandably, when compared to traditional imperative data structures, purely 
functional data structures are notoriously memory allocation intensive, which leads 
to substantial performance degradation. Fortunately, persistent data structures are 
designed with efficiency in mind, by carefully reusing a common state between versions 
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of a data structure. This is possible by using the immutable nature of the functional 
data structures: Because they can never be changed, reusing different versions is effort-
less. You can compose a new data structure from parts of an old one by referring to the 
existing data rather than copying it. This technique is called structural sharing (see sec-
tion 3.3.5). This implementation is more streamlined than creating a new copy of data 
every time an update is performed, leading to improved performance. 

A new list is created with the
value 5 replacing the value 3.
The original list isn’t mutated.

Updating the value 3 with
number 5, mutating the
list in place
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3.3 Immutability for a change
In Working Effectively with Legacy Code, author Michael Feathers compares OOP and FP 
as follows: 

Object-oriented programming makes code understandable by encapsulating moving parts. 
Functional programming makes code understandable by minimizing moving parts.

— Michael Feathers, Working Effectively with Legacy Code (Prentice Hall, 2004)

What this means is that immutability minimizes the parts of code that change, making 
it easier to reason about how those parts behave. Immutability makes the functional 
code free of side effects. A shared variable, which is an example of a side effect, is a 
serious obstacle for creating parallel code and results in non-deterministic execution. 
By removing the side effect, you can have a good coding approach.

In .NET, for example, the framework designers decided to construct strings as 
immutable objects, using a functional approach, to make it easier to write better code. 
As you recall, an immutable object is one whose state cannot be modified after it’s cre-
ated. The adoption of immutability in your coding style and the learning curve required 
by this necessitates extra attention; but the resulting cleaner code syntax and devolu-
tion (reducing unnecessary boilerplate code) will be well worth the effort. Moreover, 
the outcome of adopting this transformation of data versus the mutation of data signifi-
cantly reduces the likelihood of bugs in your code, and the interactions and dependen-
cies between different parts of your code base become easier to manage. 

The use of immutable objects as part of your programming model forces each thread 
to process against its own copy of data, which facilitates writing correct, concurrent 
code. In addition, it is safe to have multiple threads simultaneously accessing shared 

Figure 3.3  Destructive update vs. 
a persistent update of a list. The 
list at right is updating in place to 
mutate the value 3 with the value 
5, without preserving the original 
list. This process is also known as 
destructive. At left, the functional 
list doesn’t mutate its values, but 
creates a new list with the updated 
value. 
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data if that access is read-only. In fact, because you do not need locks or synchronization 
techniques, the hazards of possible deadlocks and race conditions will never occur (fig-
ure 3.4). We discussed these techniques in chapter 1.

Mutability

Unshared mutable
data doesn’t need
synchronization.

Immutability

SharedUnshared

Shared mutable
data needs

synchronization.

Unshared immutable
data doesn’t need
synchronization.

Shared immutable
data doesn’t need
synchronization.

Functional languages, such as F#, are immutable by default, which makes them perfect 
for concurrency. Immutability won’t instantaneously cause your code to run faster or 
make your program massively scalable, but it does prepare your code to be parallelized 
with small changes in the code base. 

In object-oriented languages, such as C# and Java, writing concurrent applications 
can be difficult because mutability is the default behavior, and there’s no tool to help 
prevent or offset it. In imperative programming languages, mutable data structures are 
considered perfectly normal and, although global state isn’t recommended, mutable 
state is commonly shared across areas of a program. This is a recipe for disaster in par-
allel programming. Fortunately, as mentioned earlier, C# and F# when compiled share 
the same intermediate language, which makes it easy to share functionality. You can 
define the domain and objects of your program in F# to take advantage of its types and 
conciseness (most importantly, its types are immutable by default), for example. Then, 
develop your program in C# to consume the F# library, which guarantees immutable 
behavior without extra work.

Immutability is an important tool for building concurrent applications, but using 
immutable types doesn’t make the program run faster. But it does make the code ready 
for parallelism; immutability facilitates increased degrees of concurrency, which in a 
multicore computer translates into better performance and speed. Immutable objects 
can be shared safely among multiple threads, avoiding the need of lock synchroniza-
tion, which can keep programs from running in parallel.

Figure 3.4  A Cartesian 
representation of the implications 
of using a mutable or immutable 
state in combination with a shared 
or unshared state 
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The .NET framework provides several immutable types—some are functional, some 
can be used in multithreaded programs, and some both. Table 3.3 lists the characteris-
tics of these types, which will be covered later in this chapter.

Table 3.3  Characteristics of .NET framework immutable types

Type .NET lang.
Is it 

functional?
Characteristics Thread safe? Utilization

F# list F# Yes Immutable linked 
list with fast append 
insertion

Yes Used in combination 
with recursion to build 
and traverse n-ele-
ment lists 

Array C# and F# No Zero-indexed mutable 
array type stored in a 
continuous memory 
location 

Yes with 
partitiona

Efficient data storage 
for fast access

Concurrent 
collections

C# and F# No Set of collections 
optimized for multi-
threaded read/ write 
access 

Yes Shared data in multi-
threaded program; 
perfect fit for the 
Producer/Consumer 
pattern

Immutable 
collections

C# and F# Yes Set of collections that 
make it easier to work 
with a parallel com-
puting environment; 
their value can be 
passed freely between 
different threads with-
out generating data 
corruption 

Yes Keeping state under 
control when multiple 
threads are involved

Discrim-
inated 
union (DU)

F# Yes Represents a data type 
that stores one of sev-
eral possible options 

Yes Commonly used to 
model domains and to 
represent hierarchical 
structures like an 
abstract syntax tree 

Tuple C# and F# Yes Type that groups two 
or more values of any 
(possibly different) type

No Used to return mul-
tiple values from 
functions

F# tuple F# Yes Yes

Record 
type

F# Yes Represents aggregates 
of named value prop-
erties; can be viewed 
as a tuple with named 
members that can be 
accessed using dot 
notation 

Yes Used in place of 
conventional classes 
providing immutable 
semantics; fits well in 
domain design like DU 
and can be used in C#

a Each thread works on a separate part of the array.
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3.3.1 Functional data structure for data parallelism 

Immutable data structures are a perfect fit for data parallelism because they facilitate 
sharing data among otherwise isolated tasks in an efficient zero-copy manner. In fact, 
when multiple threads access partitionable data in parallel, the role of immutability is 
fundamental to safely processing chunks of data that belong to the same structure but 
that appear isolated. It’s possible to achieve the same grade of correct data parallelism 
by adopting functional purity, which means instead of immutability using a function 
that avoids side effects. 

The underlying functionality of PLINQ, for instance, promotes purity. A function is 
pure when it has no side effects and its return value is only determined by its input values.

PLINQ is a higher-level abstraction language that lies on top of multithreading com-
ponents, abstracting the lower-level details while still exposing a simplified LINQ seman-
tic. PLINQ aims to reduce the time of execution and increase the overall performance 
of the query, using all available computer resources. (PLINQ is covered in chapter 5.)

3.3.2 Performance implications of using immutability

Certain coders assume that programming with immutable objects is inefficient and 
has severe performance implications. For example, the pure functional way to append 
something to a list is to return a new copy of the list with the new element added, leav-
ing the original list unchanged. This can involve increased memory pressure for the 
GC. Because every modification returns a new value, the GC must deal with a large 
number of short-lived variables. But, because the compiler knows that existing data is 
immutable, and because the data will not change, the compiler can optimize memory 
allocation by reusing the collection partially or as a whole. Consequently, the perfor-
mance impact of using immutable objects is minimum, almost irrelevant, because a 
typical copy of an object, in place of a traditional mutation, creates a shallow copy. In 
this way, the objects referenced by the original object are not copied; only the refer-
ence is copied, which is a small bitwise replica of the original.

GC’s origin in functional programming
In 1959, in response to memory issues found in Lisp, John McCarthy invented the GC. 
The GC attempts to reclaim garbage (memory) occupied by objects that are no longer 
useful to the program. It’s a form of automatic memory management. Forty years later, 
mainstream languages such as Java and C# adopted the GC. The GC provides enhance-
ments in terms of shared data structures, which can be difficult to accomplish correctly 
in unmanaged programming languages like C and C++, because certain pieces of code 
must be responsible for deallocation. Because the elements are shared, it isn’t obvious 
which code should be responsible for deallocation. In memory-managed programming 
languages such as C# and F#, the garbage collector automates this process. 

 

With the speed of CPUs today, this is almost an irrelevant price to pay in comparison 
to the benefits achieved as a thread-safety guarantee. A mitigating factor to consider 
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is that, currently, performance translates into parallel programming, which requires 
more copying of objects and more memory pressure. 

3.3.3 Immutability in C#

In C#, immutability isn’t a supported construct. But it isn’t difficult to create immutable 
objects in C#; the problem is that the compiler doesn’t enforce this style and the pro-
grammer must do so with code. Adopting immutability in C# requires additional effort 
and extra diligence. In C#, an immutable object can be created by using the keyword 
const or readonly. 

Any field can be decorated with the const keyword; the only precondition is that the 
assignment and declaration are a single-line statement. Once declared and assigned, 
the const value cannot be changed, and it belongs at the class level, accessing it directly 
and not by an instance. 

The other option, decorating a value with the readonly keyword, can be done 
inline or through the constructor when the class is instantiated. After the initializa-
tion of a field marked readonly, the field value cannot be changed, and its value is 
accessible through the instance of the class. More important, to maintain the object as 
immutable when there are required changes to properties or state, you should create a 
new instance of the original object with the updated state. Keep in mind that readonly 
objects in C# are first-level immutable and shallow immutable only. In C#, an object is 
shallow immutable when the immutability isn’t guaranteed to all its fields and proper-
ties, but only to the object itself. If an object Person has a read-only property Address, 
which is a complex object exposing properties such as street, city, and ZIP code, then 
these properties don’t inherit the immutability behavior if not marked as read-only. 
Conversely, an immutable object with all the fields and properties marked as read-only 
is deeply immutable. 

This listing shows immutable class Person in C#.

Listing 3.9  Shallow immutable class Person in C#

class Address{
    public Address(string street, string city, string zipcode){
        Street = street;
        City = city;
        ZipCode = zipcode;
    }
    public string Street;  
    public string City;    
    public string ZipCode; 
}
class Person {
    public Person(string firstName, string lastName, int age, 
➥ Address address){
        FirstName = firstName;
        LastName = lastName;
        Age = age;
        Address = address;
    }

Fields of the Address object 
that aren’t marked read-only
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    public readonly string FirstName; 
    public readonly string LastName;  
    public readonly int Age;          
    public readonly Address Address;  
}

In this code, the Person object is shallow immutable because, despite the field Address 
being immune to modification (it’s marked read-only), its underlying fields can be 
changed. In fact, you can create an instance of the object Person and Address as

Address address = new Address("Brown st.", "Springfield", "55555");
Person person = new Person("John", "Doe", 42, address);

Now, if you try to modify the field Address, the compiler throws an exception (in 
bold), but you can still change the fields of the object address.ZipCode:

person.Address = // Error
person.Address.ZipCode = "77777";

This is an example of a shallow immutable object. Microsoft realized the impor-
tance of programming with immutability in a modern context and introduced a 
feature to easily create an immutable class with C# 6.0. This feature, called getter-only 
auto-properties, lets you declare auto-properties without a setter method, which 
implicitly creates a readonly backing field. This, unfortunately, implements the 
shallow immutable behavior.

Listing 3.10  Immutable class in C# with getter-only auto-properties

class Person {
    public Person(string firstName, string lastName, int age, 
➥ Address address){
        FirstName = firstName;
        LastName = lastName;
        Age = age;
        Address = address;
    }

    public string FirstName {get;}  
    public string LastName {get;}   
    public int Age {get;}           
    public Address Address {get;}   

    public Person ChangeFirstName(string firstName) {    
        return new Person(firstName, this.LastName, this.Age, this.Address);
    }
    public Person ChangeLstName(string lastName) {       
        return new Person(this.FirstName, lastName, this.Age, this.Address);
    }
    public Person ChangeAge(int age) {                   
        return new Person(this.FirstName, this.LastName, age, this.Address);
    }
    public Person ChangeAddress(Address address) {       
        return new Person(this.firstName, this.LastName, this.Age, address);
    }
}

Fields of the Person object 
that are marked read-only

The getter-only property is 
assigned directly to the underlying 
field from the constructor.

Shows the functions to update the fields of a Person object 
by creating a new instance without changing the original
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In this immutable version of the class Person, it’s important to notice that the methods 
responsible for updating the FirstName, LastName, Age, and Address don’t mutate any 
state; instead, they create a new instance of Person. In OOP, objects are instantiated 
by invoking the constructor, then setting the state of the object by updating properties 
and calling methods. This approach results in an inconvenient and verbose construc-
tion syntax. This is where the functions added to Change the properties of the Person 
object come into play. Using these functions, it’s possible to adopt a chain pattern, 
which is known as fluent interface. Here’s an example of such a pattern by creating an 
instance of a class Person and changing the age and address:

Address newAddress = new Address("Red st.", "Gotham", "123459");
Person john = new Person("John", "Doe", 42, address);
Person olderJohn = john.ChangeAge(43).ChangeAddress(newAddress);

In summary, to make a class immutable in C#, you must: 

¡	Always design a class with a constructor that takes the argument that’s used to set 
the state of the object. 

¡	Define the fields as read-only and utilize properties without a public setter; the 
values will be assigned in the constructor. 

¡	Avoid any method designed to mutate the internal state of the class.

3.3.4 Immutability in F#

As mentioned, the programming language F# is immutable by default. Therefore, the 
concept of a variable doesn’t exist because, by definition, if a variable is immutable, 
then it isn’t a variable. F# replaces a variable with an identifier, which associates (binds) 
with a value using the keyword let. After this association, the value cannot change. 
Besides a full set of immutable collections, F# has a built-in series of helpful immutable 
constructs, designed for pure functional programming, as shown in listing 3.11. These 
built-in types are tuple and record, and they have a number of advantages over the 
CLI types:

¡	They are immutable.
¡	They cannot be null.
¡	They have built-in structural equality and comparison.

This listing shows use of an immutable type in F#.

Listing 3.11  F# immutable types 

let point = (31, 57)        
let (x,y) = point              

type Person= { First : string; Last: string; Age:int}    
let person = { First="John"; Last="Doe"; Age=42}        

The type tuple is a set of unnamed ordered values, which can be of different het-
erogeneous (https://en.wikipedia.org/wiki/Homogeneity_and_heterogeneity) types. 

Uses a tuple that defines two values It’s possible to deconstruct the 
tuple and access its values.

Uses a record type to 
define a person type

Shows an instance 
of a person using a 
record type

 

https://en.wikipedia.org/wiki/Homogeneity_and_heterogeneity
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Tuple has the advantage of being usable on the fly, and is perfect for defining tempo-
rary and lightweight structures containing an arbitrary number of elements. For exam-
ple, (true, “Hello”, 2, 3.14) is a four tuple.

The type record is similar to tuple, where each element is labeled, giving a name 
to each of the values. The advantage of record over tuple is that the labels help to 
distinguish and to document what each element is for. Moreover, the properties of a 
record are automatically created for the fields defined, which is convenient because it 
saves keystrokes. A record in F# can be considered as a C# class with all properties read-
only. Most valuable is the ability to correctly and quickly implement immutable classes 
in C# by using this type. In fact, it’s possible to create an F# library in your solution by 
creating your domain model using the record type and then reference this library into 
your C# project. Here’s how C# code looks when it references the F# library with the  
record type:

Person person = new Person("John", "Doe", 42)

This is a simple and effective way to create an immutable object. Additionally, the F# 
implementation requires only one line of code, compared to the equivalent in C# (11 
lines of code using read-only fields).

3.3.5 Functional lists: linking cells in a chain

The most common and generally adopted functional data structure is the list, which 
is a series of homogeneous types used to store an arbitrary number of items. In FP, 
lists are recursive data structures composed by two linked elements: Head or Cons and  
Tail. The purpose of Cons is to provide a mechanism to contain a value and a connec-
tion to other Cons elements via an object reference pointer. This pointer reference is 
known as the Next pointer. 

Lists also have a special state called nil to represent a list with no items, which is the 
last link connected to anything. The nil, or empty, case is convenient during a recur-
sive traverse of a list to determine its end. Figure 3.5 shows a constructed list of four 
Cons cells and an empty list. Each cell (Head) contains a number and a reference to 
the remaining list (Tail), until the last Cons cell, which defines an empty list. This data 
structure is similar to a singly linked list (https://en.wikipedia.org/wiki/Linked_list), 
where each node in the chain has a single link to another node, representing a series of 
nodes linked together into a chain.

1

Head

3 3 [ ]2

Tail

Figure 3.5  Functional list of integers composed by four numbers and an empty list (the last box [ ] on 
the right). Each item has a reference, the black arrow, linked to the rest of the list. The first item on the 
left is the head of the list, which is linked to the rest of the list, the tail. 

 

https://en.wikipedia.org/wiki/Linked_list
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In functional lists, the operations to add new elements or remove existing elements don’t 
modify the current structure but return a new one with the updated values. Under the 
hood, immutable collections can safely share common structures, which limits memory 
consumption. This technique is called structural sharing. Figure 3.6 shows how structural 
sharing minimizes memory consumption to generate and update functional lists.

Tail list C

Tail list A

Tail list B

1

6List C

5

List A

List B

2

4

3 [ ]

Figure 3.6  The structural sharing technique to create new lists optimizing memory space. In summary, 
List A has three items plus an empty cell, List B has five, and List C six. Each item is linked to the rest of 
the list. For example, the head item of List B is the number 4, which is linked to the tail (the numbers 5,1, 
2, 3, and [ ]).

In figure 3.6, List A is composed of three numbers and an empty list. By adding two 
new items to List A, the structural sharing technique gives the impression that a new 
List B is created, but in reality it links a pointer from the two items to the previous and 
unmodified List A. The same scenario repeats for List C. At this point, all three lists (A, 
B, and C) are accessible, each with its own elements. 

Clearly, functional lists are designed to provide better performance by adding or remov-
ing items from the head. In fact, lists work well for linear traversal, and appending per-
forms in constant time O(1) because the new item is added to the head of the previous list. 
But it isn’t efficient for random access because the list must be traversed from the left for 
each lookup, which has O(n) time, where n is the number of elements in the collection. 

Big O notation 
Big O notation, also known as asymptotic notation, is a way of summarizing the perfor-
mance of algorithms based on problem size. Asymptotic describes the behavior of a func-
tion as its input size approaches infinity. If you have a list of 100 elements, appending a 
new item to the front of the list has constant time of O(1) because the operation involves 
a single step, regardless of the size of the list. Conversely, if you’re searching for an item, 
then the cost of the operation is O(100) because the worst-case scenario requires 100 
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iterations through the list to find the element. The problem size is usually designated as 
n, and the measure is generalized as O(n).

What about the complexity of parallel programs? 

Big O notation measures the complexity of running an algorithm sequentially, but in the 
case of a parallel program, this measure doesn’t apply. It’s possible, though, to express 
complexity of a parallel algorithm by introducing a parameter P that represents the num-
ber of cores on a machine. For example, the cost complexity of a parallel search is O(n/P) 
because you can break the list into a segment for each core to simultaneously execute 
the search. 

This list represents the most common types of complexity, which are in order, starting 
with the least expensive:

¡	O(1) constant —The time is always 1, regardless of the size of the input.
¡	O(log n) logarithmic —Time increases as a fraction of the input size.
¡	O(n) linear —Time increases linearly with input size.
¡	O(n log n) log linear —Time increases by multiplying the input by a fraction of its 

size.
¡	O(n2) quadratic —Time increases with the square of the input size.

 

A new list is created by prepending a new element to an existing list by taking an empty 
list as initial value, and then linking the new element to the existing list structure. This 
operation to Cons onto the head of the list is repeated for all items, and consequently, 
every list terminates with an empty state. 

One of the biggest attractions of functional lists is the ease with which they can be 
used to write thread-safe code. In fact, functional data structures can be passed by refer-
ence to a callee with no risk of it being corrupted, as shown in figure 3.7.

Original
list

Multiple threads can access the
reference to the list without
generating corrupt data.

[ ]

3

2
Thread 1

Thread 2

Thread 3
1

Reference
to the list

[ ]

Function caller

3

2

1

Pass by
reference

Figure 3.7  The list is passed by reference to the function caller (callee). Because the list is immutable, 
multiple threads can access the reference without generating any data corruption.

(continued)

 



 83Immutability for a change

By definition, to be thread safe, an object must preserve a consistent state every time 
it’s observed. You shouldn’t observe a data structure collection removing an item from 
it while in the middle of a resize, for example. In a multithreaded program, applying 
the execution against an isolated portion of a functional data structure is an excellent 
and safe way to avoid sharing data. 

functional lists in f#
F# has a built-in implementation of an immutable list structure, which is represented 
as a linked list (a linear data structure that consists of a set of items linked together in 
a chain). Every programmer has written a linked list at one point. In the case of func-
tional lists, however, the implementation requires a little more effort to guarantee the 
immutable behavior that the list never changes once created. Fortunately, the repre-
sentation of a list in F# is simple, taking advantage of the support for algebraic data 
types (ADT) (https://en.wikipedia.org/wiki/Algebraic_data_type) that let you define 
a generic recursive List type.

An ADT is a composite type, which means that its structure is the result of combin-
ing other types. In F#, ADTs are called discriminated unions (DU), and they’re a precise 
modeling tool to represent well-defined sets of data shapes under the same type. These 
different shapes are called cases of a DU.

Think about a representation of the motor vehicle domain, where the types Car and 
Truck belong to the same base type Vehicle. DUs fit well for building complicated data 
structures (like linked lists and a wide range of trees) because they’re a simpler alter-
native to a small-object hierarchy. For example, this is a DU definition for the domain 
Vehicle:

type Vehicle=
    | Motorcycle of int
    | Car of int
    | Truck of int

You can think of DUs as a mechanism to provide additional semantic meaning over a 
type. For example, the previous DU can be read as “A Vehicle type that can be a Car, a 
Motorcycle, or a Truck.”

The same representation in C# should use a Vehicle base class with derived types for 
Car, Truck, and Motorcycle. The real power of a DU is when it’s combined with pattern 
matching to branch to the appropriate computation, depending on the discriminated 
case passed. The following F# function prints the number of wheels for the vehicle passed: 

let printWheels vehicle =
    match vehicle with
    | Car(n) -> Console.WriteLine("Car has {0} wheels", n)
    | Motorcycle(n) -> Console.WriteLine("Motorcycle has {0} wheels", n)
    | Truck(n) -> Console.WriteLine("Truck has {0} wheels", n)

This listing represents a recursive list, using the F# DU that satisfies the definition given 
in the previous section. A list can either be empty or is formed by an element and an 
existing list.

 

https://en.wikipedia.org/wiki/Algebraic_data_type
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Listing 3.13  Representation of a list in F# using discriminated unions

type FList<'a> =
    | Empty                             
    | Cons of head:'a * tail:FList<'a>  

let rec map f (list:FList<'a>) =        
    match list with
    | Empty -> Empty
    | Cons(hd,tl) -> Cons(f hd, map f tl)

let rec filter p (list:FList<'a>) =
    match list with
    | Empty -> Empty
    | Cons(hd,tl) when p hd = true -> Cons(hd, filter p tl)
    | Cons(hd,tl) -> filter p tl

You can now create a new list of integers as follows:

let list = Cons (1, Cons (2, Cons(3, Empty))) 

F# already has a built-in generic List type that lets you rewrite the previous imple-
mented FList using the following two (equivalent) options:

let list  = 1 :: 2 :: 3 :: []
let list = [1; 2; 3]

The F# list is implemented as a singly linked list, which provides instant access to the 
head of the list O(1) and linear time O(n) for element access, where (n) is the index 
of the item.

functional lists in c#
You have several ways to represent a functional list in OOP. The solution adopted in C# 
is a generic class FList<T>, so it can store values of any type. This class exposes read-
only auto-getter properties for defining the head element of the list and the FList<T> 
tail linked list. The IsEmpty property indicates if the current instance contains at least 
a value. The following listing shows the full implementation.

Listing 3.14  Functional list in C#

public sealed class FList<T>
{
    private FList(T head, FList<T> tail) 
    {
        Head = head;
        Tail = tail.IsEmpty
                ? FList<T>.Empty : tail;
        IsEmpty = false;
    }
    private FList()                     
    {
        IsEmpty = true;
    }
    public T Head { get; }              
    public FList<T> Tail { get; }       

Empty case
Cons case has the head 
element and the tail

Recursive function that traverses 
a list using pattern matching to 
deconstruct and performs a 
transformation on each item

Creates a list with a value 
and a reference to tail

Creates a new list that’s empty

The Head property returns the 
first element from the list.

The Tail property returns the rest of the linked list.
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    public bool IsEmpty { get; }        
    public static FList<T> Cons(T head, FList<T> tail)      
    {
        return tail.IsEmpty
            ? new FList<T>(head, Empty)
            : new FList<T>(head, tail);
    }
    public FList<T> Cons(T element)     
    {
        return FList<T>.Cons(element, this);
    }
    public static readonly FList<T> Empty = new FList<T>(); 
}

The FList<T> class has a private constructor to enforce its instantiation using either 
the static helper method Cons or the static field Empty. This last option returns an 
empty instance of the FList<T> object, which can be used to append new elements 
with the instance method Cons. Using the FList<T> data structure, it’s possible to cre-
ate functional lists in C# as follows:

FList<int> list1 = FList<int>.Empty;
FList<int> list2 = list1.Cons(1).Cons(2).Cons(3);
FList<int> list3 = FList<int>.Cons(1, FList<int>.Empty);
FList<int> list4 = list2.Cons(2).Cons(3);

The code sample shows a few important properties for building an FList of integers. 
The first list1 is created from an initial state of empty list using the field Empty 
FList<int>.Empty, which is a common pattern used in immutable data structures. 
Then, with this initial state, you can use the fluent semantic approach to chain a series 
of Cons to build the collection as shown with list2 in the code example. 

laziness values in functional lists 
In chapter 2, you saw how lazy evaluation is an excellent solution to avoid excessive 
duplicate operations by remembering operation results. Moreover, lazily evaluated 
code benefits from a thread-safe implementation. This technique can be useful in the 
context of functional lists by deferring computations and consequently gaining in per-
formance. In F#, lazy thunks (computations that have been deferred) are created using 
the lazy keyword:

let thunkFunction = lazy(21 * 2)

This listing defines a generic lazy list implementation.

Listing 3.15  Lazy list implementation using F# 

type LazyList<'a> =
    | Cons of head:'a * tail:Lazy<'a LazyList>  
    | Empty
let empty = lazy(Empty)                         

let rec append items list =                     
    match items with

This property indicates the state of the list.

A static method provides a 
nicer syntax for creating lists.

This Cons function provides a fluent 
semantic to chain an item to a given list.

This static constructor 
instantiates an empty list.

Uses a DU to define a list 
with a lazy evaluated tail

Uses a helper function to 
represent an empty list

Shows the function that appends 
an item at the top of a given list
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    | Cons(head, Lazy(tail)) ->
        Cons(head, lazy(append tail list))      
    | Empty -> list

let list1 = Cons(42, lazy(Cons(21, empty)))      
// val list1: LazyList<int> = Cons (42,Value is not created.)

let list = append (Cons(3, empty)) list1        
// val list : LazyList<int> = Cons (3,Value is not created.)

let rec iter action list =                      
    match list with
    | Cons(head, Lazy(tail)) ->
        action(head)
        iter action tail
    | Empty -> ()

list |> iter (printf "%d .. ")                  
// 3 .. 42 .. 21 ..

To be more efficient in handling empty states, the lazy list implementation shifts the 
laziness into the tail of the Cons constructor, improving performance for the succes-
sive data structures. For example, the append operation is delayed until the head is 
retrieved from the list. 

3.3.6 Building a persistent data structure: an immutable binary tree 

In this section, you’ll learn how to build a binary tree (B-tree) in F#, using recursion and 
multithreaded processes. A tree structure is, in layman’s terms, a collection of nodes that 
are connected in such a way that no cycles are allowed. A tree tends to be used where 
performance matters. (It’s odd that the .NET Framework never shipped with a tree in 
its collection namespaces.) Trees are the most common and useful data structures in 
computer programming and are a core concept in functional programming languages. 

A tree is a polymorphic recursive data structure containing an arbitrary number of 
trees—trees within a tree. This data structure is primarily used to organize data based on 
keys, which makes it an efficient tool for searches. Due to its recursive definition, trees 
are best used to represent hierarchical structures, such as a filesystem or a database. 
Moreover, trees are considered advanced data structures, which are generally used in 
subjects such as machine learning and compiler design. FP provides recursion as a pri-
mary constructor to iterate data structures, making it complementary for this purpose.

Tree structures allow representing hierarchies and composing complex structures 
out of simple relationships and are used to design and implement a variety of efficient 
algorithms. Common uses of trees in XML/Markup are parsing, searching, compress-
ing, sorting, image processing, social networking, machine learning, and decision trees. 
This last example is widely used in domains such as forecasting, finance, and gaming. 

The ability to express a tree in which each node may have an arbitrary number of 
branches, like n-ary and B-tree, turns out to be an impediment rather than a benefit. 

The append function reclusively adds an item 
to a list; it can be used to append two lists.

Creates a list with two 
elements: 42 and 21

Appends the value 3 to 
list1 previously created

Uses a function to iterate 
recursively through a list

Prints the values of the list 
using the iter function
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This section covers the B-tree, which is a self-balancing tree where every node has 
between zero to two child nodes at most, and the difference in depth (called height) 
of the tree between any leaves is at most one. Depth of a node is defined as the number 
of edges from the node to the root node. In the B-tree, each node points to two other 
nodes, called the left and right child nodes. 

A better tree definition is provided by figure 3.8, which shows key properties of the 
data structure. 

4

6

4 5 8

5 76

8

A tree has a special node call root, which has no parent (node 4 in figure 3.8), and may 
be either a leaf or a node with two or more children. A parent node has at least one 
child, and each child has one parent. Nodes with no children are treated as leaves 
(nodes 6, 5, 5, 7 in the figure), and children of the same parent are known as siblings.

b-trees in functional f#
With F#, it’s easy to represent a tree structure because of the support of ADTs and dis-
criminated unions. In this case, DU provides an idiomatic functional way to represent 
a tree. This listing shows a generic DU-based binary tree definition with a special case 
for empty branches. 

Listing 3.16  Immutable B-tree representation in F# 

type Tree<'a> = 
    | Empty     
    | Node of leaf:'a * left:Tree<'a> * right:Tree<'a> 

let tree =      
    Node (20,
        Node (9, Node (4, Node (2, Empty, Empty), Empty),
                 Node (10, Empty, Empty)),
        Empty)

The elements in a B-tree are stored using the Node type constructor, and the Empty case 
identifier represents an empty node that doesn’t specify any type information. The 
Empty case serves as a placeholder identifier. With this B-tree definition, you can create 
helper functions to insert or to verify an item in the tree. These functions are imple-
mented in idiomatic F#, using recursion and pattern matching. 

Figure 3.8  Binary tree representation where every 
node has between zero and two child nodes. In this 
figure, node 4 is the root from which two branches 
start, nodes 8 and 6. The left branch is a link to the 
left subtree and the right branch is a link to the right 
subtree. The nodes without child nodes, 6, 5, 5, and 7, 
are called leaves.

Uses a DU that defines the generic tree

Shows an empty case

Uses a node case that defines 
a generic value leaf, and 
recursively branches out to 
left and right sub-trees

Shows an instance of a tree of integers
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Listing 3.17  B-tree helper recursive functions 

let rec contains item tree = 
    match tree with
    | Empty -> false
    | Node(leaf, left, right) ->
        if leaf = item then true
        elif item < leaf then contains item left
        else contains item right

let rec insert item tree = 
    match tree with
    | Empty -> Node(item, Empty, Empty)
    | Node(leaf, left, right) as node ->
        if leaf = item then node
        elif item < leaf then Node(leaf, insert item left, right)
        else Node(leaf, left, insert item right)

let ``exist 9`` = tree |> contains 9
let ``tree 21`` = tree |> insert 21
let ``exist 21`` = ``tree 21`` |> contains 21

Because the tree is immutable, the function insert returns a new tree, with the copy of 
only the nodes that are in the path of the node being inserted. Traversing a DU tree in 
functional programming to look at all the nodes involves a recursive function. Three 
main approaches exist to traversing a tree: in-order, post-order, and pre-order traversal 
(https://en.wikipedia.org/wiki/Tree_traversal). For example, in the in-order tree nav-
igation, the nodes on the left side of the root are processed first, then the root, and 
ultimately the nodes on its right as shown here.

Listing 3.18  In-order navigation function

let rec inorder action tree = 
    seq {
        match tree with
        | Node(leaf, left, right) ->
            yield! inorder action left
            yield action leaf
            yield! inorder action right
        | Empty -> ()
    }

tree |> inorder (printfn "%d") |> ignore 

The function inorder takes as an argument a function to apply to each value of the 
tree. In the example, this function is an anonymous lambda that prints the integer 
stored in the tree.

3.4 Recursive functions: a natural way to iterate
Recursion is calling a function on itself, a deceptively simple programming concept. 
Have you ever stood in between two mirrors? The reflections seem to carry on for-
ever—this is recursion. Functional recursion is the natural way to iterate in FP because 

Uses recursion to define functions that 
walk through a tree structure

Uses a function that traverses the tree 
structure from the root to the left sub-nodes 
and then moving to the right sub-nodes

Uses the inorder function to print 
all node values in the tree

 

https://en.wikipedia.org/wiki/Tree_traversal
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it avoids mutation of state. During each iteration, a new value is passed into the loop 
constructor instead to be updated (mutated). In addition, a recursive function can be 
composed, making your program more modular, as well as introducing opportunities 
to exploit parallelization.

Recursive functions are expressive and provide an effective strategy to solve complex 
problems by breaking them into smaller, although identical, subtasks. (Think in terms 
of Russian nesting dolls, with each doll being identical to the one before, only smaller.) 
While the whole task may seem daunting to solve, the smaller tasks are easier to solve 
directly by applying the same function to each of them. The ability to split the task into 
smaller tasks that can be performed separately makes recursive algorithms candidates 
for parallelization. This pattern, also called Divide and Conquer,8 leads to dynamic task 
parallelism, in which tasks are added to the computation as the iteration advances. For 
more information, reference the example in section 1.4.3. Problems with recursive data 
structures naturally use the Divide and Conquer strategy due to its inherent potential 
for concurrency.

When considering recursion, many developers fear performance penalties for the 
execution time of a large number of iterations, as well as receiving a Stackoverflow 
exception. The correct way to write recursive functions is using the techniques of tail 
recursion and CPS. Both strategies are good ways to minimize stack consumption and 
increase speed, as you’ll see in the examples to come.

3.4.1 The tail of a correct recursive function: tail-call optimization

A tail call, also known as tail-call optimization (TCO), is a subroutine call performed as 
the final action of a procedure. If a tail call might lead to the same subroutine being 
called again in the call chain, then the subroutine is said to be tail recursive, a special case 
of recursion. Tail-call recursion is a technique that converts a regular recursive function 
into an optimized version that can handle large inputs without any risks and side effects. 

NOTE  The primary reason for a tail call as an optimization is to improve data 
locality, memory usage, and cache usage. By doing a tail call, the callee uses 
the same stack space as the caller. This reduces memory pressure. It marginally 
improves the cache because the same memory is reused for subsequent callers 
and can stay in the cache, rather than evicting an older cache line to make 
room for a new cache line.

With tail-call recursion, there are no outstanding operations to perform within the 
function it returns, and the last call of the function is a call to itself. You’ll refactor the 
implementation of a factorial number function into a tail-call optimized function. The 
following listing shows the tail-call optimized recursive function implementation. 

8 The Divide and Conquer pattern solves a problem by recursively dividing it into subproblems, 
solving each one independently, and then recombining the sub-solutions into a solution to the 
original problem.
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Listing 3.19  Tail-call recursive implementation of a factorial in F#

let rec factorialTCO (n:int) (acc:int) =
    if n <= 1 then acc
    else factorialTCO (n-1) (acc * n) 

let factorial n = factorialTCO n 1

In this implementation of the recursive function, the parameter acc acts as an accumu-
lator. By using an accumulator and ensuring that the recursive call is the last operation 
in the function, the compiler optimizes the execution to reuse a single-stack frame, 
instead of storing each intermediate result of the recursion onto different stack frames 
as shown in figure 3.9.

factorialTCO(4)

factorialTCO(24)

factorialTCO( 4, 3)

factorialTCO(12, 2)

factorialTCO(24, 1)

24

The figure illustrates the tail-recursive definitions of factorials. Although F# supports 
tail-call recursive functions, unfortunately, the C# compiler isn’t designed to opti-
mize tail-call recursive functions. 

3.4.2 Continuation passing style to optimize recursive function

Sometimes, optimized tail-call recursive functions aren’t the right solution or can be 
difficult to implement. In this case, one possible alternative approach is CPS, a tech-
nique to pass the result of a function into a continuation. CPS is used to optimize 
recursive functions because it avoids stack allocation. Moreover, CPS is used in the 
Microsoft TPL, in async/await in C#, and in async-workflow in F#.

CPS plays an important role in concurrent programming. This following code exam-
ple shows how the CPS pattern is used in a function GetMaxCPS:

static void GetMaxCPS(int x, int y, Action<int> action) 
                                        => action(x > y ? x : y);

GetMaxCPS (5, 7, n => Console.WriteLine(n));

The argument for the continuation passing is defined as a delegate Action<int>, 
which can be used conveniently to pass a lambda expression. The interesting part is 
that the function with this design never returns a result directly; instead, it supplies 

The last operation of the function 
recursively calls itself without 
computing any other operations. 

Figure 3.9  Tail-recursive definition of 
a factorial, which can reuse a single 
stack frame
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the result to the continuation procedure. CPS can also be used to implement recursive 
functions using tail calls. 

recursive functions with cps
At this point, with basic knowledge about CPS, you’ll refactor the factorial example 
from listing 3.19 to use the CPS approach in F#. (You can find the C# implementation 
in the downloadable source code for this book.)

Listing 3.20  Recursive implementation of factorials using CPS in F#

let rec factorialCPS x continuation =
    if x <= 1 then continuation() 
    else factorialCPS (x - 1) (fun () -> x * continuation()) 

let result = factorialCPS 4 (fun () -> 1) 

This function is similar to the previous implementation with the accumulator; the dif-
ference is that the function is passed instead of the accumulator variable. In this case, 
the action of the function factorialCPS applies the continuation function to its result. 

b-tree structure walked in parallel recursively 
Listing 3.21 shows an example that iterates recursively through a tree structure to per-
form an action against each element. The function WebCrawler, from chapter 2, builds 
a hierarchy representation of web links from a given website. Then it scans the HTML 
content from each web page, looking for image links that download in parallel. The 
code examples from chapter 2 (listings 2.16, 2.17, 2.18, and 2.19) were intended to 
be an introduction to a parallel technique rather than a typical task-based parallelism 
procedure. Downloading any sort of data from the internet is an I/O operation; you’ll 
learn in chapter 8 that it’s best practice to perform I/O operations asynchronously. 

Listing 3.21  Parallel recursive divide-and-conquer function 

let maxDepth = int(Math.Log(float System.Environment.ProcessorCount,
➥ 2.)+4.) 

let webSites : Tree<string> =
    WebCrawlerExample.WebCrawler("http://www.foxnews.com")
    |> Seq.fold(fun tree site -> insert site tree ) Empty 

let downloadImage (url:string) =
    use client = new System.Net.WebClient()
    let fileName = Path.GetFileName(url)
    client.DownloadFile(url, @"c:\Images\" + fileName)    

let rec parallelDownloadImages tree depth =               
    match tree with
    | _ when depth = maxDepth ->
        tree |> inorder downloadImage |> ignore
    | Node(leaf, left, right) ->
        let taskLeft  = Task.Run(fun() ->
            parallelDownloadImages left (depth + 1))
        let taskRight = Task.Run(fun() ->
            parallelDownloadImages right (depth + 1))

The value of result is 24. 

Uses a threshold to avoid the creation of too many 
tasks in comparison with the number of cores

Uses a fold constructor to create 
the tree structure representing 

the website hierarchy

Downloads the image 
into a local file

Shows the recursive function that walks 
the tree structure in parallel to download  
simultaneously multiple images 
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        let taskLeaf  = Task.Run(fun() -> downloadImage leaf)
        Task.WaitAll([|taskLeft;taskRight;taskLeaf|])     
    | Empty -> ()

The Task.Run constructor is used to create and spawn the tasks. The parallel recursive 
function parallelDownloadImages takes the argument depth, which is used to limit 
the number of tasks created to optimize resource consumption. 

In every recursive call, the depth value increases by one, and when it exceeds the 
threshold maxDepth, the rest of the tree is processed sequentially. If a separate task is 
created for every tree node, then the overhead of creating new tasks would exceed the 
benefit gained from running the computations in parallel. If you have a computer with 
eight processors, then spawning 50 tasks will impact the performance tremendously 
because of the contention generated from the tasks sharing the same processors. The 
TPL scheduler is designed to handle large numbers of concurrent tasks, but its behavior 
isn’t appropriate for every case of dynamic task parallelism (http://mng.bz/ww1i), and 
in some circumstances, as in the previous parallel recursive function, a manual tune-up 
is preferred.

Ultimately, the Task.WaitAll construct is used to wait for the tasks to complete. Fig-
ure 3.10 shows the hierarchy representation of the spawned tasks running in parallel. 

Task B

Task C

2 6

Task A

7 98 5

Root

Figure 3.10  From the root node, Task C is created to process the right side of the subtree. This process 
is repeated for the subtree running Task A. When it completes, the left side of the subtree is processed 
by Task B. This operation is repeated for all the subtrees, and for each iteration, a new task is created. 

The execution time to complete the recursive parallel operation parallelDownload-
Images has been measured against a sequential version. The benchmark is the average 
of downloading 50 images three times (table 3.4). 

Table 3.4  Benchmark of downloading 50 images using parallel recursion

Serial Parallel

19.71 4.12

Waits for the tasks to complete

 

http://mng.bz/ww1i
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parallel calculator 
Another interesting way to use a tree structure is building a parallel calculator. After 
what you’ve learned, the implementation of such a program isn’t trivial. You can use 
ADTs in the form of F# DUs to define the type of operations to perform:

type Operation = Add | Sub | Mul | Div | Pow

Then, the calculator can be represented as a tree structure, where each operation is a 
node with the details to perform a calculation:

type Calculator =
    | Value of double
    | Expr of Operation * Calculator * Calculator

Clearly, from this code, you can see the resemblance to the tree structure previously used: 

type Tree<'a> =    
    | Empty        
    | Node of leaf:'a * left:Tree<'a> * right:Tree<'a> 

The only difference is that the Empty case in the tree structure is replaced with the 
value case in the calculator. To perform any mathematical operation you need a value. 
The leaf of the tree becomes the Operation type, and the left and right branches recur-
sively reference the calculator type itself, exactly as the tree did. 

Next, you can implement a recursive function that iterates through the calculator 
tree and performs the operations in parallel. This listing shows the implementation of 
the eval function and its use. 

Listing 3.23  Parallel calculator 

let spawn (op:unit->double) = Task.Run(op)    

let rec eval expr =
    match expr with                           

    | Value(value) -> value                   

    | Expr(op, lExpr, rExpr) ->               

        let op1 = spawn(fun () -> eval lExpr) 
        let op2 = spawn(fun () -> eval rExpr) 

        let apply = Task.WhenAll([op1;op2])   
        let lRes, rRes = apply.Result.[0], apply.Result.[1]
        match op with                         
        | Add -> lRes + rRes
        | Sub -> lRes - rRes
        | Mul -> lRes * rRes
        | Div -> lRes / rRes
        | Pow -> System.Math.Pow(lRes, rRes)

The function eval recursively evaluates in parallel a set of operations defined as a tree 
structure. During each iteration, the expression passed is pattern matched to extract 
the value if the case is a Value type, or to compute the operation if the case is an Expr 

Uses a helper function to spawn a 
Task to run an operation

Pattern-matches against the calculator DU to branch the evolution

If the expr case is a Value, extracts the value and returns it

If the expr case is an Expr, extracts the 
operation and recursively reevaluates 
the branches to extract the values

Spawns a task for each reevaluation, which 
could be another operation to compute

Waits for the 
operations to 
complete 

After having evaluated the 
values, which could be the 
result from other operations, 
performs the current operation
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type. Interestingly, the recursive re-evolution for each branch of the node case Expr is 
made in parallel. Each branch Expr returns a value type, which is calculated in each 
child (sub-nodes) operation. Then, these values are used for the last operation, which 
is the root of the operation tree passed as argument for the final result. Here is a sim-
ple set of operations in the shape of a calculator tree, which compute the operations 
2^10 / 2^9 + 2 * 2:

let operations =          
  Expr(Add,
    Expr(Div,
      Expr(Pow, Value(2.0), Value(10.0)),
      Expr(Pow, Value(2.0), Value(9.0))),
    Expr(Mul, Value(2.0), Value(2.0)))

let value = eval operations    

In this section, the code for defining a tree data structure and performing a recursive 
task-based function is shown in F#; but the implementation is feasible in C# as well. 
Rather than showing all the code here, you can download the full code from the book’s 
website.

Summary 
¡	Immutable data structures use intelligent approaches, such as structural sharing, 

to minimize the copy-shared elements to minimize GC pressure.
¡	It’s important to dedicate some time to profiling application performance to 

avoid bottlenecks and bad surprises when the program runs in production and 
under heavy payloads.

¡	Lazy evaluation can be used to guarantee thread safety during the instantiation 
of an object and to gain performance in functional data structures by deferring 
computation to the last moment.

¡	Functional recursion is the natural way to iterate in functional programming 
because it avoids mutation of state. In addition, a recursive function can be com-
posed, making your program more modular.

¡	Tail-call recursion is a technique that converts a regular recursive function into 
an optimized version that can handle large inputs without any risks or side effects.

¡	Continuation passing style (CPS) is a technique to pass the result of a function 
into a continuation. This technique is used to optimize recursive functions 
because it avoids stack allocation. Moreover, CPS is used in the Task Parallel 
Library in .NET 4.0, in async/await in C#, and in async-workflow in F#. 

¡	Recursive functions are great candidates to implement a Divide and Conquer 
technique, which leads to dynamic task parallelism. 

 



Part 2

How to approach the different 
parts of a concurrent program

This part of the book dives into functional programming concepts and 
applicability. We’ll explore various concurrent programming models, with an 
emphasis on the benefits and advantages of this paradigm. Topics will include 
the Task Parallel Library along with parallel patterns such as Fork/Join, Divide 
and Conquer, and MapReduce. We’ll also discuss declarative composition, high-
level abstraction in asynchronous operations, the agent programming model, 
and the message-passing semantic. You’ll see firsthand how functional program-
ming allows you to compose program elements without evaluating them. These 
techniques parallelize work and make programs easier to reason about and more 
efficient to run due to optimal memory consumption. 
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4The basics of 
processing big data: 

data parallelism, part 1

This chapter covers
¡	The importance of data parallelism in a world of 

big data

¡	Applying the Fork/Join pattern

¡	Writing declarative parallel programs

¡	Understanding the limitation of a parallel  
for loop

¡	Increasing performance with data parallelism

Imagine you’re cooking a spaghetti for dinner for four, and let’s say it takes 10 min-
utes to prepare and serve the pasta. You begin the preparation by filling a medi-
um-sized pot with water to boil. Then, two more friends show up at your house for 
dinner. Clearly, you need to make more pasta. You can switch to a bigger pot of 
water with more spaghetti, which will take longer to cook, or you can use a second 
pot in tandem with the first, so that both pots of pasta will finish cooking at the same 
time. Data parallelism works in much the same way. Massive amounts of data can be 
processed if “cooked” in parallel. 

In the last decade, the amount of data being generated has increased exponen-
tially. In 2017 it was estimated that every minute there were 4,750,000 “likes” on 
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Facebook, almost 400,000 tweets, more than 2.5 million posts on Instagram, and more 
than 4 million Google searches. These numbers continue to increase at the rate of 15% 
every year. This acceleration impacts businesses that now must quickly analyze multi-
tudes of big data (https://en.wikipedia.org/wiki/Big_data). How is it possible to ana-
lyze this massive amount of data while maintaining quick responses? The answer comes 
from a new breed of technologies designed with data parallelism in mind, specifically, 
with a focus on the ability to maintain performance in the event of continually increas-
ing data. 

In this chapter, you’ll learn concepts, design patterns, and techniques to rapidly pro-
cess tons of data. You’ll analyze the problems originating from parallel loop constructs 
and learn about solutions. You’ll also learn that by using functional programming in 
combination with data parallelism it’s possible to achieve impressive performance 
improvements in your algorithms with minimal code changes. 

4.1 What is data parallelism?
Data parallelism is a programming model that performs the same set of operations on a 
large quantity of data in parallel. This programming model is gaining traction because 
it quickly processes massive volumes of data in the face of a variety of big data prob-
lems. Parallelism can compute an algorithm without requiring reorganization of its 
structure, thereby progressively increasing scalability. 

The two models of data parallelism are single instruction single data and single 
instruction multiple data:

¡	Single instruction single data (SISD) is used to define a single-core architecture. A 
single-core processor system executes one task per any CPU clock cycle; there-
fore, the execution is sequential and deterministic. It receives one instruction 
(single instruction), performs the work required for a single piece of data, and 
returns the results of the computation. This processor architecture will not be 
covered in this book. 

¡	Single instruction multiple data (SIMD) is a form of parallelism achieved by distribut-
ing the data among the available multiple cores and applies the same operations 
at any given CPU clock cycle. This type of parallel, multicore CPU architecture is 
commonly used to exploit data parallelism.  

To achieve data parallelism, the data is split into chunks, and each chunk is subject to 
intensive computations and processed independently, either to produce new data to 
aggregate or to reduce to a scalar value. If you aren’t familiar with these terms, they 
should be clear by the end of the chapter.

The ability to compute chunks of data independently is the key to achieving signif-
icant performance increase, because removing dependencies between blocks of data 
eliminates the need for synchronization to access data and any concerns about race 
conditions, as shown in figure 4.1. 

 

https://en.wikipedia.org/wiki/Big_data
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Figure 4.1  Data parallelism is achieved by splitting the data set into chunks and independently 
processing each partition in parallel, assigning each chunk to a separate task. When the tasks complete, 
the data set is reassembled. In this figure, the data set on the left is processed by multiple tasks using 
a lock to synchronize their access to the data as a whole. In this case, the synchronization is a source of 
contention between threads and creates performance overhead. The data set on the right is split into six 
parts, and each task performs against one-sixth of the total size N of the data set. This design removes 
the necessity of using locks to synchronize.

Data parallelism can be achieved in a distributed system, by dividing the work among 
multiple nodes; or in a single computer; or by partitioning the work into separated 
threads. This chapter focuses on implanting and using multicore hardware to perform 
data parallelism. 

4.1.1 Data and task parallelism

The goal of data parallelism is decomposing a given data set and generating a sufficient 
number of tasks to maximize the use of CPU resources. In addition, each task should 
be scheduled to compute enough operations to guarantee a faster execution time. 
This is in contrast to context switching, which could introduce negative overhead. 

Data parallelism comes in two flavors:

¡	Task parallelism targets the execution of computer programs across multiple pro-
cessors, where each thread is responsible for performing a different operation 
at the same time. It is the simultaneous execution of many different functions 
across the same or different data sets on multiple cores. 

¡	Data parallelism targets the distribution of a given data set into smaller partitions 
across multiple tasks, where each task performs the same instruction in paral-
lel. For example, data parallelism could refer to an image-processing algorithm, 
where each image or pixel is updated in parallel by independent tasks. Con-
versely, task parallelism would compute in parallel a set of images, applying a 
different operation for each image.  See figure 4.2. 
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Figure 4.2  Data parallelism is the simultaneous execution of the same function across the elements 
of a data set. Task parallelism is the simultaneous execution of multiple different functions across the 
same or different data sets.

Is summary, task parallelism focuses on executing multiple functions (tasks), and aims 
to reduce the overall time of computation by running these tasks simultaneously. Data 
parallelism reduces the time it takes to process a data set by splitting the same algo-
rithm computation among multiple CPUs to be performed in parallel.

4.1.2 The “embarrassingly parallel” concept

In data parallelism, the algorithms applied to process the data are sometimes referred 
to as “embarrassingly parallel” and have the special property of natural scalability.1 
This property influences the amount of parallelism in the algorithm as the number of 
available hardware threads increases. The algorithm will run faster in a more powerful 
computer. In data parallelism, the algorithms should be designed to run each opera-
tion independently in a separate task associated with a hardware core. This structure 
has the advantage of automatically adapting the workload at runtime and adjusting the 
data partitioning based on the current computer. This behavior guarantees running 
the program on all available cores. 

Consider summing a large array of numbers. Any part of this array may be summed 
up independently from any other part. The partial sums can then be summed together 
themselves and achieve the same result as if the array had been summed in series. 
Whether or not the partial sums are computed on the same processor or at the same 
time doesn’t matter. Algorithms like this one with a high degree of independence are 
known as embarrassingly parallel problems: the more processors that you throw at 
them, the faster they will run. In chapter 3 you saw the Divide and Conquer pattern 
that provides natural parallelism. It distributes work to numerous tasks and then com-
bines (reduces) the results again. Other embarrassingly parallel designs don’t require 
a complex coordination mechanism to provide natural auto-scalability. Examples of 

1 For more information on embarrassingly parallel, also known as pleasing parallel, see https://en 
.wikipedia.org/wiki/Embarrassingly_parallel.
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design patterns that use this approach are Fork/Join, Parallel Aggregation (reduce), 
and MapReduce. We’ll discuss these designs later in this chapter. 

4.1.3 Data parallelism support in .NET

Identifying code in your programs that can be parallelized isn’t a trivial task, but com-
mon rules and practices can help. The first thing to do is profiling the application. 
This analysis of the program identifies where the code spends its time, which is your 
clue for where you should start deeper investigations to improve performance and 
to detect opportunities for parallelism. As a guide, an opportunity for parallelism is 
when two or more portions of source code can be executed deterministically in paral-
lel, without changing the output of the program. Alternatively, if the introduction of 
parallelism would change the output of the program, the program isn’t deterministic 
and could become unreliable; therefore, parallelism is unusable. 

To ensure deterministic results in a parallel program, the blocks of source code that 
run simultaneously should have no dependencies between them. In fact, a program 
can be parallelized easily when there are no dependencies or when existing dependen-
cies can be eliminated. For example, in the Divide and Conquer pattern, there are no 
dependencies among the recursive executions of the functions so that parallelism can 
be accomplished. 

A prime candidate for parallelism is a large data set where a CPU-intensive opera-
tion can be performed independently on each element. In general, loops in any form 
(for loop, while loop, and for-each loop) are great candidates to exploit parallel-
ism. Using Microsoft’s TPL, reshaping a sequential loop into a parallel one is an easy 
task. This library provides a layer of abstraction that simplifies the implementation over 
common parallelizable patterns that are involved in data parallelism. These patterns 
can be materialized using the parallel constructs Parallel.For and Parallel.ForEach 
offered by the TPL Parallel class. 

Here are a few patterns found in programs that provide an opportunity for 
parallelism:

¡	Sequential loops, where there are no dependencies between the iteration steps.
¡	Reduction and/or aggregation operations, where the results of the computa-

tion between steps are partially merged. This model can be expressed using a 
MapReduce pattern.

¡	Unit of computation, where explicit dependencies can be converted into a Fork/
Join pattern to run each step in parallel. 

¡	Recursive type of algorithms using a Divide and Conquer approach, where each 
iteration can be executed independently in a different thread in parallel.

In the .NET framework, data parallelism is also supported through PLINQ, which I 
recommend. The query language offers a more declarative model for data parallelism, 
compared to the Parallel class, and is used for parallel evaluation of arbitrary queries 
against a data source. Declarative implies what you want to be done with data rather 
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than how you want that to be done. Internally, the TPL uses sophisticated schedul-
ing algorithms to distribute parallelized computations efficiently between the available 
processing cores. Both C# and F# take advantage of these technologies in a similar 
way. In the next section, you’ll see these technologies in both programming languages, 
which can be mixed and complement each other nicely. 

4.2 The Fork/Join pattern: parallel Mandelbrot
The best way to understand how to convert a sequential program into a parallel one is 
with an example. In this section, we’ll transform a program using the Fork/Join pat-
tern to exploit parallel computation and to achieve faster performance.

In the Fork/Join pattern, a single thread forks and coordinates with multiple inde-
pendent parallel workers and then merges the individual results when complete. Fork/
Join parallelism manifests in two primary steps:

1 Split a given task into a set of subtasks scheduled to run independently in parallel. 

2 Wait for the forked parallel operations to complete, and then successively join 
the subtask results into the original work.

Regarding data parallelism, figure 4.3 shows a close resemblance to figure 4.1. The dif-
ference is in the last step, where the Fork/Join pattern merges the results back into one.

Aggregate
data

ForkData
set JoinParallelism

Task 1
1N 1/6

Task 2
2N 1/6

Task 3
3N 1/6

Task 4
4N 1/6

Task 5
5N 1/6

Task 6
6N 1/6

Figure 4.3  The Fork/Join pattern splits a task into subtasks that can be executed independently in 
parallel. When the operations complete, the subtasks are joined again. It isn’t a coincidence that this 
pattern is often used to achieve data parallelism. There are clearly similarities. 

As you can see, this pattern fits well in data parallelism. The Fork/Join pattern speeds 
up the execution of a program by partitioning the work into chunks (fork) and run-
ning each chunk individually in parallel. After each parallel operation completes, 
the chunks are merged back again (join). In general, Fork/Join is a great pattern 
for encoding structured parallelism because the fork and join happen at once (syn-
chronously with respect to the caller), but in parallel (from the perspective of perfor-
mance and speed). The Fork/Join abstraction can be accomplished easily using the 
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Parallel.For loop from the .NET Parallel class. This static method transparently 
deals with the partition of data and execution of tasks.

Let’s analyze the Parallel.For loop construct with an example. First, you imple-
ment a sequential for loop to draw a Mandelbrot image (see figure 4.4), and then the 
code will be refactored to run faster. We’ll evaluate the pros and cons of the approach.

Mandelbrot
A Mandelbrot set of images is made by sampling complex numbers and, for each, deter-
mining whether the result tends toward infinity when a particular mathematical operation 
is iterated on it. A complex number is a combination of a real number and an imaginary 
number, where any number you can think of is a real number, and an imaginary number 
is when a squared value gives a negative result. Treating the real and imaginary parts 
of each number as image coordinates, pixels are colored according to how rapidly the 
sequence diverges, if at all. Images of the Mandelbrot set display an elaborate boundary 
that reveals progressively ever-finer recursive detail at increasing magnifications. It’s one 
of the best-known examples of mathematical visualization.

 

For this example, the details of implementing the algorithm aren’t important. What’s 
important is that for each pixel in the picture (image), a computation runs for each 
assigned color. This computation is independent because each pixel color doesn’t 
depend on other pixel colors, and the assignment can be done in parallel. In fact, each 
pixel can have a different color assigned regardless of the color of the other pixels in 
the image. The absence of dependencies affects the execution strategy; each computa-
tion can run in parallel. 

In this context, the Mandelbrot algorithm is used to draw an image representing the 
magnitude value of the complex number. The natural representation of this program 
uses a for loop to iterate through each value of the Cartesian plane to assign the cor-
responding color for each point. The Mandelbrot algorithm decides the color. Before 

Figure 4.4  The Mandelbrot drawing resulting from 
running the code in this section
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delving into the core implementation, you need an object for the complex number. 
The following listing shows a simple implementation of a complex number used to 
make operations over other imaginary complex numbers.

Listing 4.1  Complex number object

class Complex
{
    public Complex(float real, float imaginary)
    {
        Real = real;
        Imaginary = imaginary;
    }

    public float Imaginary { get; } 
    public float Real { get; }      

    public float Magnitude
      => (float)Math.Sqrt(Real * Real + Imaginary * Imaginary);   

    public static Complex operator +(Complex c1, Complex c2)
      => new Complex(c1.Real + c2.Real, c1.Imaginary + c2.Imaginary); 
    public static Complex operator *(Complex c1, Complex c2)
      => new Complex(c1.Real * c2.Real - c1.Imaginary * c2.Imaginary,
                     c1.Real * c2.Imaginary + c1.Imaginary * c2.Real); 
}

The Complex class contains a definition for the Magnitude property. The interesting part 
of this code is the two overloaded operators for the Complex object. These operators are 
used to add and multiply a complex number, which is used in the Mandelbrot algorithm. 
The following listing shows the two core functions of the Mandelbrot algorithm. The func-
tion isMandelbrot determines if the complex number belongs to the Mandelbrot set.

Listing 4.2  Sequential Mandelbrot            

Func<Complex, int, bool> isMandelbrot = (complex, iterations) => 
{
    var z = new Complex(0.0f, 0.0f);
    int acc = 0;
    while (acc < iterations && z.Magnitude < 2.0)
    {
        z = z * z + complex;
        acc += 1;
    }
    return acc == iterations;
};

for (int col = 0; col < Cols; col++) {      
    for (int row = 0; row < Rows; row++) {  
        var x = ComputeRow(row);            
        var y = ComputeColumn(col);         
        var c = new Complex(x, y);

Uses the auto-getter property 
that enforces immutability

The Magnitude property 
determines the relative size 

of the complex number.

Operator overloading performs addition 
and multiplication on complex types.

Uses the function to determine 
if a complex number is part of 

the Mandelbrot set

Uses outer and inner 
loops over the columns 
and rows of the image

Shows the operations to convert the 
current pixel points into values to 
construct a complex number
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        var color = isMandelbrot(c, 100) ? Color.Black : Color.White; 
        var offset = (col * bitmapData.Stride) + (3 * row);
        pixels[offset + 0] = color.B; // Blue component      
        pixels[offset + 1] = color.G; // Green component     
        pixels[offset + 2] = color.R; // Red component       
    }
}

The code omits details regarding the bitmap generation, which isn’t relevant for the 
purpose of the example. You can find the full solution in the downloadable source 
code online.

In this example, there are two loops: the outer loop iterates over the columns of the 
picture box, and the inner loop iterates over its rows. Each iteration uses the functions 
ComputeColumn and ComputeRow, respectively, to convert the current pixel coordinates 
into the real and imaginary parts of a complex number. Then, the function isMandel-
brot evaluates if the complex number belongs to the Mandelbrot set. This function 
takes as arguments a complex number and a number of iterations, and it returns a Bool-
ean if—or not—the complex number is a member of the Mandelbrot set. The func-
tion body contains a loop that accumulates a value and decrements a count. The value 
returned is a Boolean that’s true if the accumulator acc equals the iterations count.

In the code implementation, the program requires 3.666 seconds to evaluate the 
function isMandelbrot 1 million times, which is the number of pixels composing the 
Mandelbrot image. A faster solution is to run the loop in the Mandelbrot algorithm in 
parallel. As mentioned earlier, the TPL provides constructs that can be used to blindly 
parallelize programs, which results in incredible performance improvements. In this 
example, the higher-order Parallel.For function is used as a drop-in replacement 
for the sequential loop. This listing shows the parallel transformation with minimal 
changes, keeping the sequential structure of the code.

Listing 4.3  Parallel Mandelbrot            

Func<Complex, int, bool> isMandelbrot = (complex, iterations) =>
{
    var z = new Complex(0.0f, 0.0f);
    int acc = 0;
    while (acc < iterations && z.Magnitude < 2.0)
    {
        z = z * z + complex;
        acc += 1;
    }
    return acc == iterations;
};

System.Threading.Tasks.Parallel.For(0, Cols - 1, col => { 
    for (int row = 0; row < Rows; row++) {
        var x = ComputeRow(row);
        var y = ComputeColumn(col);

Uses a function to determine the color of a pixel

Uses this code to 
assign color attributes 
to the image pixel

The parallel for-loop construct 
is applied only to the outer loop 

to prevent oversaturation of 
CPU resources.
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        var c = new Complex(x, y);
        var color = isMandelbrot(c, 100) ? Color.DarkBlue : Color.White;
        var offset = (col * bitmapData.Stride) + (3 * row);
        pixels[offset + 0] = color.B; // Blue component
        pixels[offset + 1] = color.G; // Green component
        pixels[offset + 2] = color.R; // Red component
    }
});

Note that only the outer loop is paralleled to prevent oversaturation of the cores with 
work items. With a simple change, the execution time decreased to 0.699 seconds in a 
quad-core machine. 

Oversaturation is a form of extra overhead, originating in parallel programming, 
when the number of threads created and managed by the scheduler to perform a com-
putation grossly exceeds the available hardware cores. In this case, parallelism could 
make the application slower than the sequential implementation. 

As a rule of thumb, I recommend that you parallelize expensive operations at the 
highest level. For example, figure 4.5 shows nested for loops; I suggest you apply paral-
lelism only to the outer loop. 

Figure 4.5  Using a Parallel.For construct, this benchmark compares the execution time of the 
sequential loop, which runs in 9.038 seconds, against the parallel, which runs in 3.443 seconds. The 
Parallel.For loop is about three times faster than the sequential code. Moreover, the last column on 
the right is the execution time of the over-saturated parallel loop, where both outer and inner loops are 
using the Parallel.For construct. The over-saturated parallel loop runs in 5.788 seconds, which is 
50% slower than the non-saturated version.

Elapsed time vs. CPU time
From the chart in figure 4.5, the CPU time is the time for which the CPU was executing a 
given task. The elapsed time is the total clock time that the operation took to complete 
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regardless of resource delays or parallel execution. In general, the elapsed time is higher 
than CPU time; but this value changes in a multicore machine. 

When a concurrent program runs in a multicore machine, you achieve true parallelism. In 
this case, CPU time becomes the sum of all the execution times for each thread running 
in a different CPU at same given time. In a quad-core computer, for example, when you 
run a single-threaded (sequential) program, the elapsed time is almost equal to CPU time 
because there’s only one core working. When running the same program in parallel using 
all four cores, the elapsed time becomes lower, because the program runs faster, but the 
CPU time increases because it’s calculated by the sum of the execution time of all four 
parallel threads. When a program uses more than one CPU to complete the task, the CPU 
time may be more than the elapsed time. 

In summary, the elapsed time refers to how much time the program takes with all the 
parallelism going on, while the CPU time measures how much time all the threads are 
taking, ignoring the fact that the threads overlap when running in parallel. 

 

In general, the optimal number of worker threads for a parallel task should be equal 
to the number of available hardware cores divided by the average fraction of core uti-
lization per task. For example, in a quad-core computer with 50% average core uti-
lization per task, the perfect number of worker threads for maximum throughput is 
eight: (4 cores × (100% max CPU utilization / 50% average core utilization per task)). 
Any number of worker threads above this value could introduce extra overhead due to 
additional context switching, which would downgrade the performance and processor 
utilization.

4.2.1 When the GC is the bottleneck: structs vs. class objects

The goal of the Mandelbrot example is to transform a sequential algorithm into a 
faster one. No doubt you’ve achieved a speed improvement; 9.038 to 3.443 seconds is 
a little more than three times faster on a quad-core machine. Is it possible to further 
optimize performance? The TPL scheduler is partitioning the image and assigning the 
work to different tasks automatically, so how can you improve the speed? In this case, 
the optimization involves reducing memory consumption, specifically by minimizing 
memory allocation to optimize garbage collection. When the GC runs, the execution 
of the program stops until the garbage collection operation completes. 

In the Mandelbrot example, a new Complex object is created in each iteration to 
decide if the pixel coordinate belongs to the Mandelbrot set. The Complex object is a 
reference type, which means that new instances of this object are allocated on the heap. 
This piling of objects onto the heap results in memory overhead, which forces the GC to 
intervene to free space.

A reference object, as compared to a value type, has extra memory overhead due to 
the pointer size required to access the memory location of the object allocated in the 
heap. Instances of a class are always allocated on the heap and accessed via a pointer 
dereference. Therefore, passing reference objects around, because they’re a copy of 
the pointer, is cheap in terms of memory allocation: around 4 or 8 bytes, according the 
hardware architecture. Additionally, it’s important to keep in mind that an object also 
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has a fixed overhead of 8 bytes for 32-bit processes and 16 bytes for 64-bit processes. 
In comparison, a value type isn’t allocated in the heap but rather in the stack, which 
removes any overhead memory allocation and garbage collection. 

Keep in mind, if a value type (struct) is declared as a local variable in a method, it’s 
allocated on the stack. Instead, if the value type is declared as part of a reference type 
(class), then the struct allocation becomes part of that object memory layout and exists 
on the heap.

The Mandelbrot algorithm creates and destroys 1 million Complex objects in the for 
loop; this high rate of allocation creates significant work for the GC. By replacing the 
Complex object from reference to value type, the speed of execution should increase 
because allocating a struct to the stack will never cause the GC to perform cleanup 
operations and won’t result in a program pause. In fact, when passing a value type to a 
method, it’s copied byte for byte, therefore allocating a struct that will never cause gar-
bage collection because it isn’t on the heap. 

NOTE  In many cases, the use of a reference type versus a value type can result 
in huge differences in performance. As an example, let’s compare an array 
of objects with an array of struct types in a 32-bit machine. Given an array of 1 
million items, with each item represented by an object that contains 24 bytes 
of data, with reference types, the total size of the array is 72 MB (8 bytes array 
overhead + (4 bytes for the pointer × 1,000,000) + ( 8 bytes object overhead + 
24 bytes data) × 1,000,000) = 72 MB). For the same array using a struct type, 
the size is different; it’s only 24 MB (8 bytes overhead for the array) + (24 bytes 
data) × 1,000,000) = 24 MB). Interestingly, in a 64-bit machine, the size of the 
array using value types doesn’t change; but for the array using reference types, 
the size increases to more than 40 MB for the extra pointer byte overhead.

The optimization of converting the Complex object from reference to value type is sim-
ple, requiring only that you change the keyword class to struct as shown next. (The 
full implementation of the Complex object is intentionally omitted.) The struct key-
word converts a reference type (class) to a value type:

class Complex  {    
public Complex(float real, 
             float imaginary)
{
        this.Real = real;
        this.Imaginary = 
        imaginary;
}

struct Complex {     
public Complex(float real, 
             float imaginary)
{
        this.Real = real;
        this.Imaginary = 
        imaginary;
}

After this simple code change, the execution time to draw the Mandelbrot algorithm 
has increased the speed approximately 20%, as shown in figure 4.6. 
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Figure 4.6  The Parallel.For construct benchmark comparison of the Mandelbrot algorithm computed 
in a quad-core machine with 8 GB of RAM. The sequential code runs in 9.009 seconds, compared to the 
parallel version, which runs in 3.131 seconds—almost three times faster. In the right column, the better 
performance is achieved by the parallel version of the code that uses the value type as a complex number 
in place of the reference type. This code runs in 2.548 seconds, 20% faster than the original parallel code, 
because there are no GC generations involved during its execution to slow the process.

The real improvement is the number of GC generations  to free memory, which is 
reduced to zero using the struct type instead of the class reference type.2 Table 4.1 
shows GC generation comparison between a Parallel.For loop using many reference 
types (class) and a Parallel.For loop using many value types (struct).

Table 4.1  GC generations comparison

Operation GC gen0 GC gen1 GC gen2

Parallel.For 1390 1 1

Parallel.For with struct value type 0 0 0

The version of the code that runs using the Complex object as a reference type makes 
many short-lived allocations to the heap: more than 4 million.3 A short-lived object is 
stored in the first GC generation, and it’s scheduled to be removed from the memory 
sooner than generations 1 and 2. This high rate of allocation forces the GC to run, 
which involves stopping all the threads that are running, except the threads needed for 
the GC. The interrupted tasks resume only after the GC operation completes. Clearly, 
the smaller the number of the GC generations, the faster the application performs.

2 “Fundamentals of Garbage Collection,” http://mng.bz/v998.
3 “Dynamic Memory Allocation,” http://mng.bz/w8kA.
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4.2.2 The downside of parallel loops

In the previous section, you ran both the sequential and parallel versions of the Man-
delbrot algorithm to compare performance. The parallel code was implemented using 
the TPL Parallel class and a Parallel.For construct, which can provide significant 
performance improvements over ordinary sequential loops. 

In general, the parallel for loop pattern is useful to perform an operation that 
can be executed independently for each element of a collection (where the ele-
ments don’t rely on each other). For example, mutable arrays fit perfectly in parallel 
loops because every element is located in a different location in memory, and the 
update can be effected in place without race conditions. The work of parallelizing 
the loop introduces complexity that can lead to problems that aren’t common or 
even encountered in sequential code. For example, in sequential code, it’s common 
to have a variable that plays the role of accumulator to read from or write to. If you 
try to parallelize a loop that uses an accumulator, you have a high probability of 
encountering a race condition problem because multiple threads are concurrently 
accessing the variables. 

In a parallel for loop, by default, the degree of parallelism depends on the number 
of available cores. The degree of parallelism refers to the number of iterations that can 
be run at the same time in a computer. In general, the higher the number of available 
cores, the faster the parallel for loop executes. This is true until the point of diminish-
ing return that Amdahl’s Law (the speed of a parallel loop depends on the kind of work 
it does) predicts is reached. 

4.3 Measuring performance speed
Achieving an increase in performance is without a doubt the main reason for writing 
parallel code. Speedup refers to the performance gained from executing a program in 
parallel on a multicore computer as compared to a single-core computer. 

A few different aspects should be considered when evaluating speedup. The com-
mon way to gain speedup is by dividing the work between the available cores. In this 
way, when running one task per processor with n cores, the expectation is to run the 
program n times faster than the original program. This result is called linear speedup, 
which in the real world is improbable to reach due to overhead introduced by thread 
creation and coordination. This overhead is amplified in the case of parallelism, which 
involves the creation and partition of multiple threads. To measure the speedup of an 
application, the single-core benchmark is considered the baseline.

The formula to calculate the linear speedup of a sequential program ported into a 
parallel version is speedup = sequential time / parallel time. For example, assuming the exe-
cution time of an application running in a single-core machine is 60 minutes, when the 
application runs on a two-core computer, the time decreases to 40 minutes. In this case, 
the speedup is 1.5 (60 / 40). 
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Why didn’t the execution time drop to 30 minutes? Because parallelizing the appli-
cation involves the introduction of some overhead, which prevents the linear speedup 
according to the number of cores. This overhead is due to the creation of new threads, 
which implicate contention, context switching, and thread scheduling. 

Measuring performance and anticipating speedup is fundamental for the bench-
marking, designing, and implementing of parallel programs. For that reason, parallel-
ism execution is an expensive luxury—it isn’t free but instead requires an investment of 
time in planning. Inherent overhead costs are related to the creation and coordination 
of threads. Sometimes, if the amount of work is too small, the overhead brought in 
parallelism can exceed the benefit and, therefore, overshadow the performance gain. 
Frequently, the scope and volume of a problem affect the code design and the time 
required to execute it. Sometimes, better performance is achievable by approaching 
the same problem with a different, more scalable solution.

Another tool to calculate whether the investment is worth the return is Amdahl’s 
Law, a popular formula for calculating the speedup of a parallel program.

4.3.1 Amdahl’s Law defines the limit of performance improvement

At this point, it’s clear that to increase the performance of your program and reduce 
the overall execution time of your code, it’s necessary to take advantage of parallel 
programming and the multicore resources available. Almost every program has a por-
tion of the code that must run sequentially to coordinate parallel execution. As in the 
Mandelbrot example, rendering the image is a sequential process. Another common 
example is the Fork/Join pattern, which starts the execution of multiple threads in 
parallel and then waits for them to complete before continuing the flow. 

In 1965, Gene Amdahl concluded that the presence of sequential code in a program 
jeopardizes overall performance improvement. This concept counters the idea of lin-
ear speedup. A linear speedup means that the time T (units of time) it takes to execute 
a problem with p processors is T/p (the time it takes to execute a problem with one 
processor). This can be explained by the fact that programs cannot run entirely in par-
allel; therefore, the increase of performance expected isn’t linear and is limited by the 
sequential (serial) code constraint. 

Amdahl’s Law says that, given a fixed data-set size, the maximum performance 
increase of a program implemented using parallelism is limited by the time needed 
for the sequential portion of the program. According to Amdahl’s Law, no matter how 
many cores are involved in the parallel computation, the maximum speedup the pro-
gram can achieve depends on the percent of time spent in sequential processing.

Amdahl’s Law determines the speedup of a parallel program by using three variables:

¡	Baseline duration of the program executed in a single-core computer
¡	The number of available cores
¡	The percentage of parallel code
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Here’s the formula to calculate the speedup according with Amdahl’s Law:
Speedup = 1 / (1 – P + (P / N))

The numerator of the equation is always 1 because it represents the base duration. In 
the denominator, the variable N is the number of available cores, and P represents the 
percentage of parallel code. 

For example, if the parallelizable code is 70% in a quad-core machine, the maximum 
expected speedup is 2.13:    

Speedup = 1 / (1 – .70 + (.70 / 4)) = 1 / (.30 + .17) = 1 / 0.47 = 2.13 times
A few conditions may discredit the result of this formula. For the one related to data 
parallelism, with the onset of big data, the portion of the code that runs in parallel for 
processing data analysis has more effect on performance as a whole. A more precise 
formula to calculate performance improvement due to parallelism is Gustafson’s Law. 

4.3.2 Gustafson’s Law: a step further to measure performance 
improvement

Gustafson’s Law is considered the evolution of Amdahl’s Law and examines the 
speedup gain by a different and more contemporary perspective—considering the 
increased number of cores available and the increasing volume of data to process. 

Gustafson’s Law considers the variables that are missing in Amdahl’s Law for the 
performance improvement calculation, making this formula more realistic for modern 
scenarios, such as the increase of parallel processing due to multicore hardware.

The amount of data to process is growing exponentially each year, thereby influenc-
ing software development toward parallelism, distributed systems, and cloud comput-
ing. Today, this is an important factor that invalidates Amdahl’s Law and legitimizes 
Gustafson’s Law. 

Here’s the formula for calculating the speedup according to Gustafson’s Law:
Speedup = S + (N × P)

S represents the sequential units of work, P defines the number of units of work that 
can be executed in parallel, and N is the number of available cores.

A final explanation: Amdahl’s Law predicts the speedup achievable by parallelizing 
sequential code, but Gustafson’s Law calculates the speedup reachable from an existing 
parallel program.

4.3.3 The limitations of parallel loops: the sum of prime numbers

This section covers some of the limitations resulting from the sequential seman-
tics of the parallel loop and techniques to overcome these disadvantages. Let’s first 
consider a simple example that parallelizes the sum of the prime numbers in a col-
lection. Listing 4.4 calculates the sum of the prime numbers of a collection with 
1 million items. This calculation is a perfect candidate for parallelism because each 
iteration performs the same operation exactly. The implementation of the code 
skips the sequential version, whose execution time to perform the calculation runs 
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in 6.551 seconds. This value will be used as a baseline to compare the speed with the 
parallel version of the code.

Listing 4.4  Parallel sum of prime numbers using a Parallel.For loop construct

int len = 10000000;
long total = 0;       

Func<int, bool> isPrime = n => {         
     if (n == 1) return false;
     if (n == 2) return true;
     var boundary = (int)Math.Floor(Math.Sqrt(n));
     for (int i = 2; i <= boundary; ++i)
              if (n % i == 0) return false;
     return true;
};

Parallel.For(0, len, i => {  
                   if (isPrime(i))   
                       total += i;    
});

The function isPrime is a simple implementation used to verify whether a given num-
ber is prime. The for loop uses the total variable as the accumulator to sum all the 
prime numbers in the collection. The execution time to run the code is 1.049 seconds 
in a quad-core computer. The speed of the parallel code is six times faster as compared 
with the sequential code. Perfect! But, not so fast. 

If you run the code again, you’ll get a different value for the total accumulator. 
The code isn’t deterministic, so every time the code runs, the output will be different, 
because the accumulator variable total is shared among different threads. 

One easy solution is to use a lock to synchronize the access of the threads to the total 
variable, but the cost of synchronization in this solution hurts performance. A better 
solution is to use a ThreadLocal<T> variable to store the thread’s local state during 
loop execution. Fortunately, Parallel.For offers an overload that provides a built-in 
construct for instantiating a thread-local object. Each thread has its own instance of 
ThreadLocal, removing any opportunity for negative sharing of state. The ThreadLo-
cal<T> type is part of the System.Threading namespace as shown in bold here. 

Listing 4.5  Using Parallel.For with ThreadLocal variables

Parallel.For(0, len,
     () => 0,    
     (int i, ParallelLoopState loopState, long tlsValue) => {   
           return isPrime(i) ? tlsValue += i : tlsValue;
     },
     value => Interlocked.Add(ref total, value));    

The total variable is used 
as the accumulator.

The function isPrime determines 
if a number is a prime.

The Parallel.For loop construct uses an 
anonymous lambda to access the current counter.

If the counter i is a prime number, 
it’s added to the accumulator total.

The total variable is used 
as an accumulator.

The function isPrime determines 
if a number is a prime.

Seed initialization functions to create a defensive copy of the tlsValue variable by 
each thread; each thread will access its own copy using a ThreadLocal variable.

 



114 chapter 4 The basics of processing big data: data parallelism, part 1

The code still uses a global mutual variable total, but in a different way. In this version 
of the code, the third parameter of the Parallel.For loop initializes a local state whose 
lifetime corresponds to the first iteration on the current thread through the last one. In 
this way, each thread uses a thread-local variable to operate against an isolated copy of 
state, which can be stored and retrieved separately in a thread-safe manner. 

When a piece of data is stored in a managed thread-local storage (TLS), as in the exam-
ple, it’s unique to a thread. In this case, the thread is called the owner of the data. The 
purpose of using thread-local data storage is to avoid the overhead due to lock synchro-
nizations accessing a shared state. In the example, a copy of the local variable tlsValue 
is assigned and used by each thread to calculate the sum of a given range of the col-
lection that has been partitioned by the parallel partitioner algorithm. The parallel 
partitioner uses a sophisticated algorithm to decide the best approach to divide and 
distribute the chunks of the collection between threads. 

After a thread completes all of the iterations, the last parameter in the Parallel 
.For loop that defines the join operation is called. Then, during the join operation, 
the results from each thread are aggregated. This step uses the Interlocked class for 
high performance and thread-safe operation of addition operations. This class was 
introduced in chapter 3 to perform CAS operations to safely mutate (actually swap) the 
value of an object in multithreaded environments. The Interlock class provides other 
useful operations, such as increment, decrement, and exchange of variables.

This section has mentioned an important term in data parallelism: aggregate. The 
aggregate concept will be covered in chapter 5.

Listing 4.5, the final version of the code, produces a deterministic result with a speed 
of execution of 1.178 seconds : almost equivalent to the previous one. You pay a little 
extra overhead in exchange for correctness. When using shared state in a parallel loop, 
scalability is often lost because of synchronization on the shared state access.

4.3.4 What can possibly go wrong with a simple loop?

Now we consider a simple code block that sums the integers from a given array. Using 
any OOP language, you could write something like this.

Listing 4.6  Common for loop 

int sum = 0;
for (int i = 0; i < data.Length; i++)
{
    sum += data[i]; 
}

You’ve written something similar in your career as a programmer; likely, a few years 
ago, when programs were executed single-threaded. Back then this code was fine, but 
these days, you’re dealing with different scenarios and with complex systems and pro-
grams that simultaneously perform multiple tasks. With these challenges, the previous 
code can have a subtle bug, in the sum line of code:

sum += data[i];

The sum variable is used as an accumulator 
whose value updates each iteration.
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What happens if the values of the array are mutated while it’s traversed? In a multi-
threaded program, this code presents the issue of mutability, and it cannot guarantee 
consistency. 

Note that not all state mutation is equally evil, if the mutation of state that’s only visi-
ble within the scope of a function is inelegant, but harmless. For example, suppose the 
previous sum in a for loop is isolated in a function as follows:

int Sum(int[] data)
{   
    int sum = 0;
    for (int i = 0; i < data.Length; i++)
    {
        sum += data[i]; 
    }
}

Despite updating the sum value, its mutation isn’t visible from outside the scope of the 
function. As a result, this implementation of sum can be considered a pure function. 

To reduce complexity and errors in your program, you must raise the level of abstrac-
tion in the code. For example, to compute a sum of numeric values, express your inten-
tion in “what you want,” without repeating “how to do.” Common functionality should 
be part of the language, so you can express your intentions as 

int sum = data.Sum();

Indeed, the Sum extension method (http://mng.bz/f3nF) is part of the System 
.Linq namespace in .NET. In this namespace, many methods, such as List and Array, 
extend the functionality for any IEnumerable object (http://mng.bz/2bBv). It’s not 
a coincidence that the ideas behind LINQ originate from functional concepts. The 
LINQ namespace promotes immutability, and it operates on the concept of transfor-
mation instead of mutation, where a LINQ query (and lambda) let you transform a set 
of structured data from its original form into another form, without worrying about 
side effects or state. 

4.3.5 The declarative parallel programming model

In the sum of prime numbers example in listing 4.5, the Parallel.For loop construc-
tor definitely fits the purpose of speedup compared to the sequential code and does 
it efficiently, although the implementation is a bit more difficult to understand and 
maintain compared to the sequential version. The final code isn’t immediately clear to 
a developer looking at it for the first time. Ultimately, the intent of the code is to sum 
the prime numbers of a collection. It would be nice to have the ability to express the 
intentions of the program, defining step by step how to implement the algorithm.

This is where PLINQ comes into play. The following listing is the equivalent of the 
parallel Sum using PLINQ (in bold) in place of the Parallel.For loop. 

Listing 4.7  Parallel sum of a collection using declarative PLINQ

  long total = 0;
  Parallel.For(0, len,    Parallel sum using the Parallel.For construct

 

http://mng.bz/f3nF
http://mng.bz/2bBv
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       () => 0,    
       (int i, ParallelLoopState loopState, long tlsValue) => {   
             return isPrime(i) ? tlsValue += i : tlsValue;
},
value => Interlocked.Add(ref total, value));

    long total = Enumerable.Range(0, len).AsParallel()  
                          .Where(isPrime).Sum(x => (long)x); 

The functional declarative approach is only one line of code. Clearly, when compared 
to the for loop implementation, it’s simple to understand, succinct, maintainable, and 
without any mutation of state. The PLINQ construct represents the code as a chain of 
functions, each one providing a small piece of functionality to accomplish the task. 
The solution adopts the higher-order-function aggregate part of the LINQ/PLINQ 
API, which in this case is the function Sum(). The aggregate applies a function to each 
successive element of a collection, providing the aggregated result of all previous ele-
ments. Other common aggregate functions are Average(), Max(), Min(), and Count(). 

Figure 4.7 shows benchmarks comparing the execution time of the parallel Sum.

Figure 4.7  Benchmarking comparison of the sum of prime numbers. The benchmark runs in an eight-
core machine with 8 GB of RAM. The sequential version runs in 8.072 seconds. This value is used as 
a base for the other versions of the code. The Parallel.For version took 1.814 seconds, which is 
approximately 4.5 times faster than the sequential code. The Parallel.For ThreadLocal version 
is a little faster than the parallel Loop. Ultimately, the PLINQ program is slowest among the parallel 
versions; it took 1.824 seconds to run.

Parallel sum using PLINQ Sum of the values, casting the results into a 
long type to avoid overflow exception 
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Aggregating values to avoid an arithmetic overflow exception 
The previous PLINQ query isn’t optimized. Shortly, you’ll learn techniques to make 
this code more performant. Moreover, the size of the sequence to sum was reduced 
to 10,000 instead of the 1 million used earlier, because the Sum() function in PLINQ 
is compiled to execute in a checked block, which throws an arithmetic overflow excep-
tion. The solution is to convert the base number from an integer-32 to integer-64 
(long), or to use the Aggregate function instead, in this form: 

Enumerable.Range(0, len).AsParallel() 
          .Aggregate((acc,i) => isPrime(i) ? acc += i : acc); 

 

The function Aggregate will be covered in detail in chapter 5. 

Summary
¡	Data parallelism aims to process massive amounts of data by partitioning and 

performing each chunk separately, then regrouping the results when completed. 
This lets you analyze the chunks in parallel, gaining speed and performance.

¡	Mental models used in this chapter, which apply to data parallelism, are Fork/
Join, Parallel Data Reduction, and Parallel Aggregation. These design patterns 
share a common approach that separates the data and runs the same task in par-
allel on each divided portion.

¡	Utilizing functional programming constructs, it’s possible to write sophisticated 
code to process and analyze data in a declarative and simple manner. This para-
digm lets you achieve parallelism with little change in your code.

¡	Profiling the program is a way to understand and ensure that the changes you 
make to adopt parallelism in your code are beneficial. To do that, measure the 
speed of the program running sequentially, then use a benchmark as a baseline 
to compare the code changes.
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5PLINQ and MapReduce: 
data parallelism, part 2 

This chapter covers
¡	Using declarative programming semantics 

¡	Isolating and controlling side effects

¡	Implementing and using a parallel Reduce 
function

¡	Maximizing hardware resource utilization

¡	Implementing a reusable parallel MapReduce 
pattern

This chapter presents MapReduce, one of the most widely used functional program-
ming patterns in software engineering. Before delving into MapReduce, we’ll ana-
lyze the declarative programming style that the functional paradigm emphasizes 
and enforces, using PLINQ and the idiomatic F#, PSeq. Both technologies analyze a 
query statement at runtime and make the best strategy decision concerning how to 
execute the query in accordance with available system resources. Consequently, the 
more CPU power added to the computer, the faster your code will run. Using these 
strategies, you can develop code ready for next-generation computers. Next, you’ll 
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5
learn how to implement a parallel Reduce function in .NET, which you can reuse in 
your daily work to increase the speed of execution of aggregates functions. 

Using FP, you can engage data parallelism in your programs without introducing 
complexity, compared to conventional programming. FP prefers declarative over pro-
cedural semantics to express the intent of a program instead of describing the steps to 
achieve the task. This declarative programming style simplifies the adoption of parallel-
ism in your code. 

5.1 A short introduction to PLINQ
Before we delve into PLINQ, we’ll define its sequential double, LINQ, an extension to 
the .NET Framework that provides a declarative programming style by raising the level 
of abstraction and simplifying the application into a rich set of operations to transform 
any object that implements the IEnumerable interface. The most common operations 
are mapping, sorting, and filtering. LINQ operators accept behavior as the parameter 
that usually can be passed in the form of lambda expressions. In this case, the lambda 
expression provided will be applied to each single item of the sequence. With the 
introduction of LINQ and lambda expressions, FP becomes a reality in .NET. 

You can make queries run in parallel using all the cores of the development system to 
convert LINQ to PLINQ by adding the extension .AsParallel() to the query. PLINQ 
can be defined as a concurrency engine for executing LINQ queries. The objective of 
parallel programming is to maximize processor utilization with increased throughput 
in a multicore architecture. For a multicore computer, your application should recog-
nize and scale performance to the number of available processor cores. 

The best way to write parallel applications isn’t to think about parallelism, and 
PLINQ fits this abstraction perfectly because it takes care of all the underlying require-
ments, such as partitioning the sequences into smaller chunks to run individually and 
applying the logic to each item of each subsequence. Does that sound familiar? That’s 
because PLINQ implements the Fork/Join model underneath, as shown in figure 5.1. 

A B 1

Task 1

2

C D 3

Task 2

4 3 5 6 1 42A C

.AsParallel()

D E FB

E F 5

Task 3

6

Figure 5.1  A PLINQ execution model. Converting a LINQ query to PLINQ is as simple as applying the 
AsParallel() extension method, which runs in parallel the execution using a Fork/Join pattern. In 
this figure, the input characters are transformed in parallel into numbers. Notice that the order of the 
input elements isn’t preserved.
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As a rule of thumb, every time there is a for or for-each loop in your code that does 
something with a collection, without performing a side effect outside the loop, con-
sider transforming the loop into a LINQ. Then benchmark the execution and evaluate 
whether the query could be a fit to run in parallel using PLINQ.

NOTE  This is a book about concurrency, so from now on it will mention only 
PLINQ, but for the majority of the cases, the same constructs, principles, and 
higher-order functions used to define a query also apply to LINQ.

The advantage of using PLINQ, compared to a parallel for loop, is its capability of 
handling automatically aggregation of temporary processing results within each run-
ning thread that executes the query.

5.1.1 How is PLINQ more functional?

PLINQ is considered an ideal functional library, but why? Why consider the PLINQ 
version of code more functional than the original Parallel.For loop? 

With Parallel.For, you’re telling the computer what to do: 

¡	Loop through the collection.
¡	Verify if the number is prime. 
¡	If the number is prime, add it to a local accumulator.
¡	When all iterations are done, add the accumulator to a shared value.

By using LINQ/PLINQ, you can tell the computer what you want in the form of a sen-
tence: “Given a range from 0 to 1,000,000, where the number is prime, sum them all.”

FP emphasizes writing declarative code over imperative code. Declarative code 
focuses on what you want to achieve rather than how to achieve it. PLINQ tends to 
emphasize the intent of the code rather than the mechanism and is, therefore, much 
more functional.

NOTE  In section 13.9, you’ll use a Parallel.ForEach loop to build a high- 
performance and reusable operator that combines the functions filter 
and map. In this case, because the implementation details of the function are 
abstracted away and hidden from the eyes of the developer, the function par-
allel FilterMap becomes a higher-order operator that satisfies the declarative 
programming concept. 

In addition, FP favors the use of functions to raise the level of abstraction, which aims 
to hide complexity. In this regard, PLINQ raises the concurrency programming model 
abstraction by handling the query expression and analyzing the structure to decide 
how to run in parallel, which maximizes performance speed.

FP also encourages combining small and simple functions to solve complex prob-
lems. The PLINQ pipeline fully satisfies this tenet with the approach of chaining pieces 
of extension methods together.

Another functional aspect of PLINQ is the absence of mutation. The PLINQ opera-
tors don’t mutate the original sequence, but instead return a new sequence as a result 
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of the transformation. Consequently, the PLINQ functional implementation gives you 
predictable results, even when the tasks are executed in parallel. 

5.1.2 PLINQ and pure functions: the parallel word counter

Now let’s consider an example where a program loads a series of text files from a given 
folder and then parses each document to provide the list of the 10 most frequently 
used words. The process flow is the following (shown in figure 5.2):

1 Collect the files from a given folder path.

2 Iterate the files.

3 For each text file, read the content. 

4 For each line, break it down into words.

5 Transform each word into uppercase, which is useful for comparison.

6 Group the collection by word. 

7 Order by higher count. 

8 Take the first 10 results.

9 Project the result into tabular format (a dictionary).

Read files Read text

Split content

Transform words

Group by word

Project result:
10 most-used words

Files

Figure 5.2  Representation of the flow process to count the times each word has been mentioned. First, 
the files are read from a given folder, then each text file is read, and the content is split in lines and single 
words to be grouped by. 

The following listing defines this functionality in the WordsCounter method, which 
takes as input the path of a folder and then calculates how many times each word has 
been used in all files. This listing shows the AsParallel command in bold.

Listing 5.1  Parallel word-counting program with side effects

public static Dictionary<string, int> WordsCounter(string source)
{
    var wordsCount =
            (from filePath in
                Directory.GetFiles(source, "*.txt") 
                            .AsParallel() 
                from line in File.ReadLines(filePath)
                from word in line.Split(' ')
                select word.ToUpper())  
        .GroupBy(w => w)

The side effect of reading 
from the filesystem

Parallelizes the 
sequence of files
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        .OrderByDescending(v => v.Count()).Take(10); 
    return wordsCount.ToDictionary(k => k.Key, v => v.Count());
}

The logic of the program follows the previously defined flow step by step. It’s declara-
tive, readable, and runs in parallel, but there’s a hidden problem. It has a side effect. 
The method reads files from the filesystem, generating an I/O side effect. As men-
tioned previously, a function or expression is said to have a side effect if it modifies a 
state outside its scope or if its output doesn’t depend solely on its input. In this case, 
passing the same input to a function with side effects doesn’t guarantee to always pro-
duce the same output. These types of functions are problematic in concurrent code 
because a side effect implies a form of mutation. Examples of impure functions are 
getting a random number, getting the current system time, reading data from a file or 
a network, printing something to a console, and so forth. To understand better why 
reading data from a file is a side effect, consider that the content of the file could 
change any time, and whenever the content of the file changes, it can return some-
thing different. Furthermore, reading a file could also yield an error if in the mean-
time it was deleted. The point is to expect that the function can return something 
different every time it’s called.

Due to the presence of side effects, there are complexities to consider:

¡	Is it really safe to run this code in parallel? 
¡	Is the result deterministic?
¡	How can you test this method? 

A function that takes a filesystem path may throw an error if the directory doesn’t 
exist or if the running program doesn’t have the required permissions to read from 
the directory. Another point to consider is that with a function run in parallel using 
PLINQ, the query execution is deferred until its materialization. Materialization is the 
term used to specify when a query is executed and produces a result. For this reason, 
successive materialization of a PLINQ query that contains side effects might generate 
different results due to the underlying data that might have changed. The result isn’t 
deterministic. This could happen if a file is deleted from the directory between differ-
ent calls, and then throws an exception. 

Moreover, functions with side effects (also called impure) are hard to test. One possi-
ble solution is to create a testing directory with a few text files that cannot change. This 
approach requires that you know how many words are in these files, and how many times 
they have been used to verify the correctness of the function. Another solution is to 
mock the directory and the data contained, which can be even more complex than the 
previous solution. A better approach exists: remove the side effects and raise the level 
of abstraction, simplifying the code while decoupling it from external dependencies. 

But what are side effects? What’s a pure function, and why should you care?

Orders the words mentioned by count and takes the first 10 values
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5.1.3 Avoiding side effects with pure functions

One principle of functional programming is purity. Pure functions are those without 
side effects, where the result is independent of state, which can change with time. That 
is, pure functions always return the same value when given the same inputs. This listing 
shows pure pure functions in C#.

Listing 5.2  Pure functions in C#

public static string AreaCircle(int radius) =>
                 Math.Pow(radius, 2) * Math.PI;      

public static int Add(int x, int y) => x + y;       

The listing is an example of side effects that are functions that mutate state, setting 
values of global variables. Because variables live in the block where they’re declared, a 
variable that’s defined globally introduces possible collision and affects the readability 
and maintainability of the program. This requires extra checking of the current value 
of the variable at any point and each time it’s called. The main problem of dealing with 
side effects is that they make your program unpredictable and problematic in concur-
rent code, because a side effect implies a form of mutation. 

Imagine passing the same argument to a function and each time obtaining a differ-
ent outcome. A function is said to have side effects if it does any of the following:

¡	Performs any I/O operation (this includes reading/writing to the filesystem, to a 
database, or to the console)

¡	Mutates global state and any state outside of the function’s scope
¡	Throws exceptions 

At first, removing side effects from a program can seem extremely limiting, but there 
are numerous benefits to writing code in this style:

¡	Easy to reason about the correctness of your program. 
¡	Easy to compose functions for creating new behavior. 
¡	Easy to isolate and, therefore, easy to test, and less bug-prone.
¡	Easy to execute in parallel. Because pure functions don’t have external depen-

dencies, their order of execution (evaluation) doesn’t matter.

As you can see, introducing pure functions as part of your toolset immediately benefits 
your code. Moreover, the result of pure functions depends precisely on their input, 
which introduces the property of referential transparency.

Referential transparency 
Referential transparency has a fundamental implication for side-effect-free functions; 
therefore, it’s a desirable property because it represents the capability to replace 
a function call for a defined set of parameters with the value it returns without chang-
ing the meaning of the program. Using referential transparency, you can exchange the 

The output never changes because 
the functions have no side effects.
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expression for its value, and nothing changes. The concept is about representing the 
result of any pure function directly with the result of the evaluation. The order of evalua-
tion isn’t important, and evaluating a function multiple times always leads to the same 
result— execution can be easily parallelized.

Mathematics is always referentially transparent. Given a function and an input value, the 
function maps always have the same output with the same input. For example, any func-
tion f(x) = y is a pure function if for the same value x you end up getting the same result y 
without any internal or external state change.

 

A program inevitably needs side effects to do something useful, of course, and func-
tional programming doesn’t prohibit side effects, but rather encourages minimizing 
and isolating them.

5.1.4 Isolate and control side effects: refactoring the parallel 
word counter

Let’s re-evaluate listing 5.1, the WordsCounter example. How can you isolate and con-
trol side effects in this code? 

static Dictionary<string, int> WordsCounter(string source) {
           var wordsCount = (from filePath in 
                  Directory.GetFiles(source, "*.txt")   
                           .AsParallel()    
           from linein File.ReadLines(filePath)
                from word in line.Split(' ')
                select word.ToUpper())
            .GroupBy(w => w)
            .OrderByDescending(v => v.Count()).Take(10); 
           
            return wordsCount.ToDictionary(k => k.Key, v => v.Count());
}

The function can be split into a pure function at the core and a pair of functions with 
side effects. The I/O side effect cannot be avoided, but it can be separated from the 
pure logic. In this listing, the logic to count each word mentioned per file is extracted, 
and the side effects are isolated. 

Listing 5.3  Decoupling and isolating side effects

static Dictionary<string, int> PureWordsPartitioner   
                          (IEnumerable<IEnumerable<string>> content) =>
    (from lines in content.AsParallel() 
        from line in lines
        from word in line.Split(' ')
        select word.ToUpper())
        .GroupBy(w => w)        

The bold code shows the 
side effect of reading 
from the filesystem.

The pure function without side effects; in this 
case, the I/O operation is removed.

The result from the side-effect-free function 
can be parallelized without issues. 

(continued)
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        .OrderByDescending(v => v.Count()).Take(10)
        .ToDictionary(k => k.Key, v => v.Count());    

static Dictionary<string, int> WordsPartitioner(string source)
{
    var contentFiles =
        (from filePath in Directory.GetFiles(source, "*.txt")
            let lines = File.ReadLines(filePath)
            select lines);

    return PureWordsPartitioner(contentFiles);  
}

The new function PureWordsPartitioner is pure, where the result depends only on the 
input argument. This function is side effect free and easy to prove correct. Conversely, 
the method WordsPartitioner is responsible for reading a text file from the filesystem, 
which is a side effect operation, and then aggregating the results from the analysis. 

As you can see from the example, separating the pure from the impure parts of 
your code not only facilitates testing and optimization of the pure parts, but will also 
make you more aware of the side effects of your program and help you avoid mak-
ing the impure parts bigger than they need to be. Designing with pure functions and 
decoupling side effects from pure logic are the two basic tenets that functional thinking 
brings to the forefront.

5.2 Aggregating and reducing data in parallel 
In FP, a fold, also known as reduce and accumulate, is a higher-order function that reduces 
a given data structure, typically a sequence of elements, into a single value. Reduction, 
for example, could return an average value for a series of numbers, calculating a sum-
mation, maximum value, or minimum value. 

The fold function takes an initial value, commonly called the accumulator, which 
is used as a container for intermediate results. As a second argument it takes a binary 
expression that acts as a reduction function to apply against each element in the 
sequence to return the new value for the accumulator. In general, in reduction you 
take a binary operator—that is, a function with two arguments—and compute it over a 
vector or set of elements of size n, usually from left to right. Sometimes, a special seed 
value is used for the first operation with the first element, because there’s no previous 
value to use. During each step of the iteration, the binary expression takes the current 
element from the sequence and the accumulator value as inputs, and returns a value 
that overwrites the accumulator. The final result is the value of the last accumulator, as 
shown in figure 5.3.

The code to merge the  results into one dictionary, avoiding duplicates

Calls the side-effect-free function 
from an impure function
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Sequence { 5, 7, 9 }

Item 5 function (*) Accumulator 1 f(accumulator 1, item 5) = 1 * 5

Item 7 function (*) Accumulator 5

Accumulator 1

f(accumulator 5, item 7) = 5 * 7

Item 9 function (*) f(accumulator 35, item 9) = 35 * 9Accumulator 35

Aggregate
result
315

Figure 5.3  The fold function reduces a sequence to a single value. The function (f), in this case, is 
multiplication and takes an initial accumulator with a value of 1. For each iteration in the sequence (5, 
7, 9), the function applies the calculation to the current item and accumulator. The result is then used to 
update the accumulator with the new value.

The fold function has two forms, right-fold and left-fold, depending on where the first 
item of the sequence to process is located. The right-fold starts from the first item in 
the list and iterates forward; the left-fold starts from the last item in the list and iter-
ates backward. This section covers the right-fold because it’s most often used. For the 
remainder of the section, the term fold will be used in place of right-fold. 

NOTE  Consider several performance implications when choosing between the 
right-fold and left-fold functions. In the case of folding over a list, the right-fold 
occurs in O(1) because it adds an item to the front of a list that is constant time. 
The left-fold requires O(n), because it has to run through the whole list to add an 
item. The left-fold cannot be used to handle or generate infinite lists, because the 
size of the list should be known to start folding backward from the last item.

The fold function is particularly useful and interesting: it’s possible to express a variety 
of operations in terms of aggregation, such as filter, map, and sum. The fold function 
is probably the most difficult to learn among the other functions in list comprehen-
sion, but one of the most powerful.

If you haven’t read it yet, I recommend “Why Functional Programming Matters,” by 
John Hughes (www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf). This paper 
goes into detail about the high applicability and importance of the fold function in FP. 
This listing uses F# and fold to demonstrate the implementation of a few useful functions.

Listing 5.4  Implementing max and map using the F# fold function

let map (projection:'a -> 'b) (sequence:seq<'a>) =   
    sequence |> Seq.fold(fun acc item -> (projection item)::acc) []

The map function using fold in F# 
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let max (sequence:seq<int>) =    
    sequence |> Seq.fold(fun acc item -> max item acc) 0

let filter (predicate:'a -> bool) (sequence:seq<'a>) =   
    sequence |> Seq.fold(fun acc item -> 
           if predicate item = true then item::acc else acc) [] 

let length (sequence:seq<'a>) =   
    sequence |> Seq.fold(fun acc item -> acc + 1) 0 

The equivalent of fold in LINQ in C# is Aggregate. This listing uses the C# Aggregate 
function to implement other useful functions.

Listing 5.5  Implementing Filter and Length using LINQ Aggregate in C#

IEnumerable<T> Map<T, R>(IEnumerable<T> sequence, Func<T, R> projection){ 
     return sequence.Aggregate(new List<R>(), (acc, item) => {  
                     acc.Add(projection(item));
                     return acc;
     });
}

int Max(IEnumerable<int> sequence) {  
    return sequence.Aggregate(0, (acc, item) => Math.Max(item, acc));
}

IEnumerable<T> Filter<T>(IEnumerable<T> sequence, Func<T, bool> predicate){ 
      return sequence.Aggregate(new List<T>(), (acc, item) => {  
             if (predicate(item))
                 acc.Add(item);
                 return acc;
      });
}

int Length<T>(IEnumerable<T> sequence) {  
       return sequence.Aggregate(0, (acc, _) => acc + 1);
}

Because of the inclusion of .NET list-comprehension support for parallelism, includ-
ing the LINQ Aggregate and Seq.fold operators, the implementation of these func-
tions in C# and F# can be easily converted to run concurrently. More details about this 
conversion are discussed in the next sections.

5.2.1 Deforesting: one of many advantages to folding

Reusability and maintainability are a few advantages that the fold function provides. 
But one special feature that this function permits is worth special mention. The fold 
function can be used to increase the performance of a list-comprehension query. List 
comprehension is a construct, similar to LINQ/PLINQ in C#, to facilitate list-based que-
ries on existing lists (https://en.wikipedia.org/wiki/List_comprehension).

The max function using fold in F#  

The filter function using 
fold in F#  

The length function to calculate the 
length of a collection using fold in F#  

The Map function using 
LINQ Aggregate in C# 

The Max function using LINQ 
Aggregate in C#  

The Filter function using LINQ 
Aggregate in C#  

The Length function using LINQ 
Aggregate in C#  

 

https://en.wikipedia.org/wiki/List_comprehension
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How can the fold function increase the performance speed of a list query regard-
less of parallelism?  To answer, let’s analyze a simple PLINQ query. You saw that the use 
of functional constructs, like LINQ/PLINQ in .NET, transforms the original sequence 
avoiding mutation, which in strict-evaluated programming languages such as F# and 
C# often leads to the generation of intermediate data structures that are unnecessary. 
This listing shows a PLINQ query that filters and then transforms a sequence of num-
bers to calculate the sum of the even values times two (doubled). The parallel execu-
tion is in bold.

Listing 5.6  PLINQ query to sum the double of even numbers in parallel 

var data = new int[100000];
for(int i = 0; i < data.Length; i++)
    data[i]=i;

long total =
    data.AsParallel()  
        .Where(n => n % 2 == 0)
        .Select(n => n + n)
        .Sum(x => (long)x);  

In these few lines of code, for each Where and Select of the PLINQ query, there’s a 
generation of intermediate sequences that unnecessarily increase memory allocation. 
In the case of large sequences to transform, the penalty paid to the GC to free mem-
ory becomes increasingly higher, with negative consequences for performance. The 
allocation of objects in memory is expensive; consequently, optimization that avoids 
extra allocation is valuable for making functional programs run faster. Fortunately, the 
creation of these unnecessary data structures can often be avoided. The elimination 
of intermediate data structures to reduce the size of temporary memory allocation 
is referred to as deforesting. This technique is easily exploitable with the higher-order 
function fold, which takes the name Aggregate in LINQ. This function is capable of 
eliminating intermediate data-structure allocations by combining multiple operations, 
such as filter and map,  in a single step, which would otherwise have an allocation for 
each operation. This code example shows a PLINQ query to sum the double of even 
numbers in parallel using the Aggregate operator:

long total = data.AsParallel().Aggregate(0L, (acc, n) => 
                               n % 2 == 0 ? acc + (n + n) : acc);

The PLINQ function Aggregate has several overloads; in this case, the first argument 
0 is the initial value of the accumulator acc, which is passed and updated each iter-
ation. The second argument is the function that performs an operation against the 
item from the sequence, and updates the value of the accumulator acc. The body of 
this function merges the behaviors of the previously defined Where, Select, and Sum 
PLINQ extensions, producing the same result. The only difference is the execution 
time. The original code ran in 13 ms; the updated version of the code, deforesting the 
function, ran in 8 ms.

Due to parallelism, the order in which the 
values are processed isn’t guaranteed; but 
the result is deterministic because the 
Sum operation is commutative.

The value is cast to long number Sum(x => 
(long)x) to avoid an overflow exception.
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Deforesting is a productive optimization tool when used with eager data structures, 
such as lists and arrays; but lazy collections behave a little differently. Instead of gener-
ating intermediate data structures, lazy sequences store the function to be mapped and 
the original data structure. But you’ll still have better performance speed improvement 
compared to a function that isn’t deforested.

5.2.2 Fold in PLINQ: Aggregate functions

The same concepts you learned about the fold function can be applied to PLINQ in 
both F# and C#. As mentioned earlier, PLINQ has the equivalent of the fold function 
called Aggregate. The PLINQ Aggregate is a right-fold. Here’s one of its overloaded 
signatures:

public static TAccumulate Aggregate<TSource, TAccumulate>( 
     this IEnumerable<TSource> source,  
     TAccumulate seed,  
     Func<TAccumulate, TSource, TAccumulate> func);

The function takes three arguments that map to the sequence source: the sequence 
source to process, the initial accumulator seed, and the function func, which updates 
the accumulator for each element.

The best way to understand how Aggregate works is with an example. In the exam-
ple in the sidebar, you’ll parallelize the k-means clustering algorithm using PLINQ and 
the Aggregate function. The example shows how remarkably simple and performant a 
program becomes by using this construct. 

k-means clustering
k-means, also called Lloyd’s algorithm, is an unsupervised machine-learning algorithm 
that categorizes a set of data points into clusters, each centered on its own centroid. A 
centroid of a cluster is the sum of points in it divided by the number of total points. It rep-
resents the center of the mass of a geometric shape having uniform density. 

The k-means clustering algorithm takes an input data and a value k that indicates the 
number of clusters to set, and then places the centroids randomly in these clusters. 
This algorithm takes as a parameter the number of clusters to find and makes an initial 
guess at the center of each cluster. The idea is to generate a number of centroids that 
produce the centers of the clusters. Each point in the data is linked with its nearest 
centroid. The distance is calculated using a simple Euclidean distance function (https://
en.wikipedia.org/wiki/Euclidean_distance). Each centroid is then moved to the average 
of the positions of the points that are associated with it. A centroid is computed by tak-
ing the sum of its points and then dividing the result by the size of the cluster. The itera-
tion involves these steps:

1 Sum, or reduction, computes the sum of the points in each cluster. 
2 Divide each cluster sum by the number of points in that cluster.
3 Reassign, or map, the points of each cluster to the closest centroid. 

 

https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Euclidean_distance
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4 Repeat the steps until the cluster locations stabilize. You cut off processing af-
ter an arbitrarily chosen number of iterations, because sometimes the algorithm 
does not converge.

The process is iterative, meaning that it repeats until the algorithm reaches a final result 
or exceeds the maximum number of steps. When the algorithm runs, it corrects continu-
ously and updates the centroids in each iteration to better cluster the input data. 

 

For the data source used as input in the k-means clustering algorithm, you’ll use the “white 
wine quality” public records (figure 5.4), available for download at http://mng.bz/9mdt. 

Figure 5.4  The result of running the k-means algorithms using C# LINQ for the serial version of code 
and C# PLINQ for the parallelized version. The centroids are the large points in both clusters. Each image 
represents one iteration of the k-means algorithm, with 11 centroids in the cluster. Each iteration of the 
algorithm computes the centroid of each cluster and then assigns each point to the cluster with the 
closest centroid.

The full implementation of the k-means program is omitted because of the length of 
the code; only the relevant excerpt of the code is shown in listings 5.7 and 5.8. But the 
full code implementation, in both F# and C#, is available and downloadable in the 
source code for this book.

Let’s review two core functions: GetNearestCentroid and UpdateCentroids. Get-
NearestCentroid is used to update the clusters, as shown in listing 5.7. For every data 
input, this function finds the closest centroid assigned to the cluster to which the input 
belongs (in bold).

(continued)

 

http://mng.bz/9mdt


 131Aggregating and reducing data in parallel 

Listing 5.7  Finding the closest centroid (updating the clusters)

double[] GetNearestCentroid(double[][] centroids, double[] center){
            return centroids.Aggregate((centroid1, centroid2) =>      
                Dist(center, centroid2) < Dist(center, centroid1)
                ? centroid2
                : centroid1);
        }

The GetNearestCentroid implementation uses the Aggregate function to compare 
the distances between the centroids to find the nearest one. During this step, if the 
inputs in any of the clusters aren’t updated because a closer centroid is not found, then 
the algorithm is complete and returns the result. 

The next step, shown in listing 5.8, after the clusters are updated, is to update the 
centroid locations. UpdateCentroids calculates the center for each cluster and shifts 
the centroids to that point. Then, with the updated centroid values, the algorithm 
repeats the previous step, running GetNearestCentroid until it finds the closest result. 
These operations continue running until a convergence condition is met, and the posi-
tions of the cluster centers become stable. The bold code highlights commands dis-
cussed in more depth following the listing.

The following implementation of the k-means clustering algorithm uses FP, 
sequence expressions with PLINQ, and several of the many built-in functions for 
manipulating data. 

Listing 5.8  Updating the location of the centroids

double[][] UpdateCentroids(double[][] centroids)
{
    var partitioner = Partitioner.Create(data, true); 
    var result = partitioner.AsParallel() 
        .WithExecutionMode(ParallelExecutionMode.ForceParallelism) 
        .GroupBy(u => GetNearestCentroid(centroids, u))
        .Select(points =>
            points
            .Aggregate(
               seed: new double[N], 
               func: (acc, item) => 
                      acc.Zip(item, (a, b) => a + b).ToArray()) 
            .Select(items => items / points.Count())
            .ToArray());
    return result.ToArray();
}

With the UpdateCentroids function, there’s a great deal of processing to compute, so 
the use of PLINQ can effectively parallelize the code, thereby increasing the speed. 

NOTE  Even if centroids don’t move on the plane, they may change their 
indexes in the resulting array due to the nature of GroupBy and AsParallel.

Uses the Aggregate LINQ function 
to find the closest centroid

Uses a tailored partitioner for 
maximizing the performance

Runs the query in parallel 
from the partitioner

Forces parallelism regardless of the shape of the query, bypassing the default PLINQ 
analysis that could decide to run part of the operation sequentially

Uses the Aggregate function to find the 
center of the centroids in the cluster; the 
seed initial value is a double array with 
size N (the dimensionality of data).

Uses the Zip function to thread 
the centroid-locations and 

accumulator sequences
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The PLINQ query in the body of UpdateCentroids performs aggregation in two steps. 
The first uses the GroupBy function, which takes as an argument a function that pro-
vides the key used for the aggregation. In this case, the key is computed by the previ-
ous function GetNearestCentroid. The second step, mapping, which runs the Select 
function, calculates the centers of new clusters for each given point. This calculation is 
performed by the Aggregate function, which takes the list of points as inputs (the loca-
tion coordinates of each centroid) and calculates their centers mapped to the same 
cluster using the local accumulator acc as shown in listing 5.8. 

The accumulator is an array of doubles with size N, which is the dimensionality (the 
number of characteristics/measurements) of the data to process. The value N is defined 
as a constant in the parent class because it never changes and can be safely shared. 
The Zip function threads together the nearest centroids (points) and the accumulator 
sequences. Then, the center of that cluster is recomputed by averaging the position of 
the points in the cluster. 

The implementation details of the algorithm aren’t crucial; the key point is that the 
description of the algorithm is translated precisely and directly into PLINQ using Aggre-
gate. If you try to re-implement the same functionality without the Aggregate function, 
the program runs in ugly and hard-to-understand loops with mutable shared variables. 

The following listing shows the equivalent of the UpdateCentroids function without the 
help of the Aggregate function. The bold code is discussed further following the listing.

Listing 5.9  UpdateCentroids function implemented without Aggregate 

double[][] UpdateCentroidsWithMutableState(double[][] centroids)
{
    var result = data.AsParallel()
        .GroupBy(u => GetNearestCentroid(centroids, u))
        .Select(points => {
            var res = new double[N];
            foreach (var x in points) 
                for (var i = 0; i < N; i++)
                    res[i] += x[i]; 
            var count = points.Count();
            for (var i = 0; i < N; i++)
                res[i] /= count; 
            return res;
        });
    return result.ToArray();
}

Figure 5.5 shows benchmark results of running the k-means clustering algorithm. The 
benchmark was executed in a quad-core machine with 8 GB of RAM. The algorithms 
tested are the sequential LINQ, the parallel PLINQ, and the parallel PLINQ using a 
custom partitioner. 

NOTE  When multiple threads are used on a multiprocessor, more than one 
CPU may be used to complete a task. In this case, the CPU time may be more 
than the elapsed time.

Uses an imperative loop to calculate the 
center of the centroids in the cluster

Uses the mutable state

 



 133Aggregating and reducing data in parallel 

Figure 5.5  Benchmark running the k-means algorithm using a quad-core machine with 8 GB of RAM. 
The algorithms tested are the sequential LINQ and the parallel PLINQ with a variant of a tailored 
partitioner. The parallel PLINQ runs in 0.481 seconds, which is three times faster than the sequential 
LINQ version, which runs in 1.316 seconds. A slight improvement is the PLINQ with tailored partitioner 
that runs in 0.436 sec, which is 11% faster than the original PLINQ version.

The benchmark results are impressive. The parallel version of the k-means algorithm 
using PLINQ runs three times faster than the sequential version in a quad-core machine. 
The PLINQ partitioner version, shown in listing 5.8, is 11% faster than the PLINQ ver-
sion. An interesting PLINQ extension is used in the function UpdateCentroids. The 
WithExecutionMode(ParallelExecution Mode.ForceParallelism) extension is used 
to notify the TPL scheduler that the query must be performed concurrently. 

The two options to configure ParallelExecutionMode are ForceParallelism and 
Default. The ForceParallelism enumeration forces parallel execution. The Default 
value defers to the PLINQ query for the appropriate decision on execution.

In general, a PLINQ query isn’t absolutely guaranteed to run in parallel. The TPL 
scheduler doesn’t automatically parallelize every query, but it can decide to run the 
entire query, or only a part, sequentially, based upon factors such as the size and com-
plexity of the operations and the current state of the available computer resources. 
The overhead involved in enabling parallelizing execution is more expensive than the 
speedup that’s obtained. But cases exist when you want to force the parallelism because 
you may know more about the query execution than PLINQ can determine from its 
analysis. You may be aware that a delegate is expensive, and consequently the query will 
absolutely benefit from parallelization, for example. 
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The other interesting extension used in the UpdateCentroids function is the cus-
tom partitioner. When parallelizing k-means, you divided the input data into chunks to 
avoid creating parallelism with excessively fine granularity:

  var partitioner = Partitioner.Create(data, true)

The Partitioner<T> class is an abstract class that allows for static and dynamic parti-
tioning. The default TPL Partitioner has built-in strategies that automatically handle 
the partitioning, offering good performance for a wide range of data sources. The 
goal of the TPL Partitioner is to find the balance between having too many parti-
tions (which introduces overhead) and having too few partitions (which underutilizes 
the available resources). But situations exist where the default partitioning may not 
be appropriate, and you can gain better performance from a PLINQ query by using a 
tailored partitioning strategy. 

In the code snippet, the custom partitioner is created using an overloaded version 
of the Partitioner.Create method, which takes as an argument the data source and a 
flag indicating which strategy to use, either dynamic or static. When the flag is true, the 
partitioner strategy is dynamic, and static otherwise. Static partitioning often provides 
speedup on a multicore computer with a small number of cores (two or four). Dynamic 
partitioning aims to load balance the work between tasks by assigning an arbitrary size 
of chunks and then incrementally expanding the length after each iteration. It’s possi-
ble to build sophisticated partitioners (http://mng.bz/48UP) with complex strategies. 

Understanding how partitioning works
In PLINQ, there are four kinds of partitioning algorithms:

¡	Range partitioning works with a data source with a defined size. Arrays are part of 
this category:
int[] data = Enumerable.Range(0, 1000).ToArray();
data.AsParallel().Select(n => Compute(n));

¡	Stripped partitioning is the opposite of Range. The data source size isn’t pre-
defined, so the PLINQ query fetches one item at a time and assigns it to a task 
until the data source becomes empty. The main benefit of this strategy is that the 
load can be balanced between tasks:
IEnumerable<int> data = Enumerable.Range(0, 1000); 
data.AsParallel().Select(n => Compute(n));

¡	Hash partitioning uses the value’s hash code to assign elements with the same 
hash code to the same task (for example, when a PLINQ query performs a 
GroupBy). 

¡	Chunk partitioning works with incremental chunk size, where each task fetches 
from the data source a chunk of items, whose length expands with the number 
of iterations. With each iteration, larger chunks keep the task busy as much as 
possible.

 

http://mng.bz/48UP
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5.2.3 Implementing a parallel Reduce function for PLINQ

Now you’ve learned about the power of aggregate operations, which are particularly 
suited to scalable parallelization on multicore hardware due to low memory con-
sumption and deforesting optimization. The low memory bandwidth occurs because 
aggregate functions produce less data than they ingest. For example, other aggregate 
functions such as Sum() and Average() reduce a collection of items to a single value. 
That’s the concept of reduction: it takes a function to reduce a sequence of elements 
to a single value. The PLINQ list extensions don’t have a specific function Reduce, as in 
F# list comprehension or other functional programming languages such as Scala and 
Elixir. But after having gained familiarity with the Aggregate function, the implemen-
tation of a reusable Reduce function is an easy job. This listing shows the implementa-
tion of a Reduce function in two variants. The bold highlights annotated code.

Listing 5.10  Parallel Reduce function implementation using Aggregate

static TSource Reduce<TSource>(this ParallelQuery<TSource> source, 
                                 Func<TSource, TSource, TSource> reduce) =>
ParallelEnumerable.Aggregate(source, 
                            (item1, item2) => reduce(item1, item2)); 

static TValue Reduce<TValue>(this IEnumerable<TValue> source, TValue seed,
    Func<TValue, TValue, TValue> reduce) =>
    source.AsParallel()
    .Aggregate(        
       seed: seed,
       updateAccumulatorFunc: (local, value) => reduce(local, value), 
       combineAccumulatorsFunc: (overall, local) => 
                                              reduce(overall, local), 
       resultSelector: overall => overall);    

int[] source = Enumerable.Range(0, 100000).ToArray();
int result = source.AsParallel()
        .Reduce((value1, value2) => value1 + value2);

The first Reduce function takes two arguments: the sequence to reduce and a delegate 
(function) to apply for the reduction. The delegate has two parameters: the partial 
result and the next element of the collection. The underlying implementation uses 
Aggregate to treat the first item from the source sequence as an accumulator. 

The second variant of the Reduce function takes an extra parameter seed, which 
is used as the initial value to start the reduction with the first value of the sequence to 
aggregate. This version of the function merges the results from multiple threads. This 
action creates a potential dependency on both the source collection and the result. 
For this reason, each thread uses thread-local storage, which is non-shared memory, to 
cache partial results. When each operation has completed, the separate partial results 
are combined into a final result.

Uses a function to determinate if a number is prime
For each iteration, the function func is applied to the current 

item, and the previous value is used as an accumulator.

Combines intermediates results 
from each thread (partition result)

Returns the final result; in this place you could 
have a transformation against the output. 

Uses the Reduce function, 
passing an anonymous lambda 
to apply as a reducing function
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updateAccumulatorFunc calculates the partial result for a thread. The combine-
AccumulatorsFunc function merges the partial results into a final result. The last param-
eter is resultSelector, which is used to perform a user-defined operation on the final 
results. In this case, it returns the original value. The remainder of the code is an exam-
ple to apply the Reduce function to calculate the sum of a given sequence in parallel. 

associativity and commutativity for deterministic aggregation

The order of computation of an aggregation that runs in parallel using PLINQ (or 
PSeq) applies the Reduce function differently than the sequential version. In listing 
5.8, the sequential result was computed in a different order than the parallel result, 
but the two outputs are guaranteed to be equal because the operator + (plus) used to 
update the centroid distances has the special properties of associativity and commuta-
tivity. This is the line of code used to find the nearest centroid: 

Dist(center, centroid2) < Dist(center, centroid1)

This is the line of code used to find updates to the centroids:

points
    .Aggregate(
           seed: new double[N],
           func: (acc, item) => acc.Zip(item, (a, b) => a + b).ToArray())
    .Select(items => items / points.Count())

In FP, the mathematical operators are functions. The + (plus) is a binary operator, so it 
performs on two values and manipulates them to return a result. 

A function is associative when the order in which it’s applied doesn’t change the 
result. This property is important for reduction operations. The + (plus) operator and the 
* (multiply) operator are associative because: 

(a + b) + c = a + (b + c)

(a * b) * c = a * (b * c)

A function is commutative when the order of the operands doesn’t change its output, 
so long as each operand is accounted for. This property is important for combiner oper-
ations. The + (plus) operator and the * (multiply) operator are commutative because: 

a + b + c = b + c + a

a * b * c = b * c * a

why does this matter? 
Using these properties, it’s possible to partition the data and have multiple threads 
operating independently on their own chunks, achieving parallelism, and still return 
the correct result at the end. The combination of these properties permits the imple-
mentation of a parallel pattern such as Divide and Conquer, Fork/Join, or MapReduce. 

For a parallel aggregation in PLINQ PSeq to work correctly, the applied operation 
must be both associative and commutative. The good news is that many of the most pop-
ular kinds of reduction functions are both.
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5.2.4 Parallel list comprehension in F#: PSeq 

At this point, you understand that declarative programming lends itself to data paral-
lelization, and PLINQ makes this particularly easy. PLINQ provides extension methods 
and higher-order functions that can be used from both C# and F#. But a wrapper mod-
ule around the functionality provided in PLINQ for F# makes the code more idiom-
atic than working with PLINQ directly. This module is called PSeq, and it provides the 
parallel equivalent of the functions part of the Seq computation expression module. 
In F#, the Seq module is a thin wrapper over the .NET IEnumerable<T> class to mimic 
similar functionality. In F#, all the built-in sequential containers, such as arrays, lists, 
and sets are subtypes of the Seq type.

In summary, if parallel LINQ is the right tool to use in your code, then the PSeq mod-
ule is the best way to use it in F#. This listing shows the implementation of the update-
Centroids function using PSeq in idiomatic F# (in bold). 

Listing 5.11  Idiomatic F# using PSeq to implement updateCentroids 

let updateCentroids centroids =
        data
        |> PSeq.groupBy (nearestCentroid centroids)
        |> PSeq.map (fun (_,points) ->
            Array.init N (fun i ->
                points |> PSeq.averageBy (fun x -> x.[i])))
        |> PSeq.sort
        |> PSeq.toArray

The code uses the F# pipe operator |> for construct pipeline semantics to compute 
a series of operations as a chain of expressions. The applied higher-order operations 
with the PSeq.groupBy and PSeq.map functions follow the same pattern as the original 
updateCentroids function. The map function is the equivalent of Select in PLINQ. 
The Aggregate function PSeq.averageBy is useful because it replaces boilerplate code 
(necessary in PLINQ) that doesn’t have such functionality built in. 

5.2.5 Parallel arrays in F# 

Although the PSeq module provides many familiar and useful functional constructs, 
such as map and reduce, these functions are inherently limited by the fact that they 
must act upon sequences and not divisible ranges. Consequently, the functions pro-
vided by the Array.Parallel module from the F# standard library typically scale much 
more efficiently when you increase the number of cores in the machine.

Listing 5.12  Parallel sum of prime numbers using F# Array.Parallel 

let len = 10000000

let isPrime n = 
    if n = 1 then false
    elif n = 2 then true
    else

Uses a function to determinate 
if a number is prime

 



138 chapter 5 PLINQ and MapReduce: data parallelism, part 2 

        let boundary = int (Math.Floor(Math.Sqrt(float(n))))
        [2..boundary - 1]
        |> Seq.forall(fun i -> n % i <> 0)

let primeSum =
    [|0.. len|]
    |> Array.Parallel.filter (fun x-> isPrime x) 
    |> Array.sum

The Array.Parallel module provides versions of many ordinary higher-order array 
functions that were parallelized using the TPL Parallel class. These functions are gen-
erally much more efficient than their PSeq equivalents because they operate on contigu-
ous ranges of arrays that are divisible in chunks rather than linear sequences. The Array 
.Parallel module provided by the F# standard library includes parallelized versions 
of several useful aggregate operators, most notably map. The function filter is developed 
using the Array.Parallel.choose function. See the the book’s source code.

different strategies in data parallelism: vector check

We’ve covered fundamental programming design patterns that originated with func-
tional programming and are used to process data in parallel quickly. As a refresher, 
these patterns are shown in table 5.1. 

Table 5.1  Parallel data patterns analyzed so far

Pattern Definition Pros and cons

Divide and 
Conquer

Recursively breaks down a problem into smaller 
problems until these become small enough 
to be solved directly. For each recursive call, 
an independent task is created to perform 
a sub-problem in parallel. The most popular 
example of the Divide and Conquer algorithm is 
Quicksort.

With many recursive calls, this 
pattern could create extra over-
head associated with parallel 
processing that saturates the 
processors.

Fork/Join This pattern aims to split, or fork, a given data 
set into chunks of work so that each individual 
chunk is executed in parallel. After each par-
allel portion of work is completed, the parallel 
chunks are then merged, or joined, together. 

The parallel section forks could be implemented 
using recursion, similar to Divide and Conquer, 
until a certain task’s granularity is reached.

This provides efficient load 
balancing.

Aggregate/Reduce This pattern aims to combine in parallel all the 
elements of a given data set into a single value, 
by evaluating tasks on independent processing 
elements.

This is the first level of optimization to consider 
when parallelizing loops with shared state.

The elements of a data set to be 
reduced in parallel should satisfy 
the associative property. Using 
an associative operator, any two 
elements of the data set can be 
combined into one.

Uses a built-in parallel array module 
in F#; the function filter is developed 

using the Array.Parallel.choose 
function. See the book’s source code.
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The parallel programming abstractions in table 5.1 can be quickly implemented using the 
multicore development features available in .NET. Other patterns will be analyzed in the 
rest of the book. In the next section, we’ll examine the parallel MapReduce pattern.

5.3 Parallel MapReduce pattern
MapReduce is a pattern introduced in 2004 in the paper “MapReduce: Simplified 
Data Processing on Large Clusters,” by Jeffrey Dean and Sanjay Ghemawat (https://
research.google.com/archive/mapreduce-osdi04.pdf).

MapReduce provides particularly interesting solutions for big data analysis and to 
crunch massive amounts of data using parallel processing. It’s extremely scalable and 
is used in some of the largest distributed applications in the world. Additionally, it’s 
designed for processing and generating large data sets to be distributed across multiple 
machines. Google’s implementation runs on a large cluster of machines and can process 
terabytes of data at a time. The design and principles are applicable for both a single 
machine (single-core) on a smaller scale, and in powerful multicore machines. 

This chapter focuses on applying data parallelism in a single multicore computer, 
but the same concepts can be applied for partitioning the work among multiple com-
puters in the network. In chapters 11 and 12, we’ll cover the agent (and actor) pro-
gramming model, which can be used to achieve such network distribution of tasks. 

The idea for the MapReduce model (as shown in figure 5.6) is derived from the func-
tional paradigm, and its name originates from concepts known as map and reduce combi-
nators. Programs written using this more functional style can be parallelized over a large 
cluster of machines without requiring knowledge of concurrent programming. The 
actual runtime can then partition the data, schedule, and handle any potential failure. 

Big data set
Aggregate

data
JoinFork

Map

Map

Map

Map

Map

Map

Map

Reduce

Reduce

Reduce

Reduce

Reduce

Reduce

Reduce

Figure 5.6  A schematic illustration of the phases of a MapReduce computation. The MapReduce 
pattern is composed primarily of two steps: map and reduce. The Map function is applied to all items and 
produces intermediate results, which are merged using the Reduce function. This pattern is similar to 
the Fork/Join pattern because after splitting the data in chunks, it applies in parallel the tasks map and 
reduce independently. In the image, a given data set is partitioned into chunks that can be performed 
independently because of the absence of dependencies. Then, each chunk is transformed into a different 
shape using the Map function. Each Map execution runs simultaneously. As each map chunk operation 
completes, the result is passed to the next step to be aggregated using the Reduce function. (The 
aggregation can be compared to the join step in the Fork/Join pattern.)

 

https://research.google.com/archive/mapreduce-osdi04.pdf
https://research.google.com/archive/mapreduce-osdi04.pdf
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The MapReduce model is useful in domains where there’s a need to execute a massive 
number of operations in parallel. Machine learning, image processing, data mining, 
and distributed sort are a few examples of domains where MapReduce is widely used.

In general, the programming model is based upon five simple concepts. The order 
isn’t a rule and can be changed based on your needs:

1 Iteration over input

2 Computation of key/value pairs from each input

3 Grouping of all intermediate values by key

4 Iteration over the resulting groups

5 Reduction of each group

The overall idea of MapReduce is to use a combination of maps and reductions to 
query a stream of data. To do so, you can map the available data to a different format, 
producing a new data item in a different format for each original datum. During a Map 
operation you can also reorder the items, either before or after you map them. Oper-
ations that preserve the number of elements are Map operations. If you have many ele-
ments you may want to reduce the number of them to answer a question. You can filter 
the input stream by throwing away elements you don’t care about. 

MapReduce pattern and GroupBy
The Reduce function reduces an input stream to a single value. Sometimes instead of 
a single value you’ll need to reduce a large number of input elements by grouping them 
according to a condition. This doesn’t actually reduce the number of elements, it only 
groups them, but you can then reduce each group by aggregating the group to a single 
value. You could, for example, calculate the sum of values in each group if the group con-
tains values that can be summed.

 

You can combine elements into a single aggregated element and return only those that 
provide the answer you seek. Mapping before reducing is one way to do it, but you can 
also Reduce before you Map or even Reduce, Map, and then Reduce even more, and so 
on. In summary, MapReduce maps (translates data from one format to the other and 
orders the data) and reduces (filters, groups, or aggregates) the data. 

5.3.1 The Map and Reduce functions

MapReduce is composed of two main phases:

¡	Map receives the input and performs a map function to produce an output of 
intermediate key/value pairs. The values with the same key are then joined and 
passed to the second phase. 

¡	Reduce aggregates the results from Map by applying a function to the values asso-
ciated with the same intermediate key to produce a possibly smaller set of values. 
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The important aspect of MapReduce is that the output of the Map phase is com-
patible with the input of the Reduce phase. This characteristic leads to functional 
compositionality. 

5.3.2 Using MapReduce with the NuGet package gallery

In this section, you’ll learn how to implement and apply the MapReduce pattern using 
a program to download and analyze NuGet packages from the online gallery. NuGet 
is a package manager for the Microsoft development platform including .NET, and 
the NuGet gallery is the central package repository used by all package developers. 
At the time of writing, there were over 800,000 NuGet packages. The purpose of the 
program is to rank and determine the five most important NuGet packages, calculat-
ing the importance of each  by adding its score rate with the score values of all its 
dependencies. 

Because of the intrinsic relation between MapReduce and FP, listing 5.13 will be 
implemented using F# and PSeq to support data parallelism. The C# version of the code 
can be found in the downloadable source code. 

It’s possible to use the same basic idea to find other information, such as the depen-
dencies for a package that you are using, what the dependencies of dependencies are, 
and so on. 

NOTE  Downloading all the information about the versions of all NuGet 
packages takes some time. In the solution, there’s a zipped file (nuget-latest- 
versions.model) in the subfolder Models in the downloadable source code. If 
you want to update the most current values, delete this file, run the application, 
and be patient. The new updated file will be zipped and saved for the next time.

Listing 5.13 defines both the Map and Reduce functions. The Map function transforms 
a NuGet package input into a key/value pair data structure, where the key is the name 
of the package and the value is the rank value (float). This data structure is defined as 
a sequence of key/value types because each package could have dependencies, which 
will be evaluated as part of the total score. The Reduce function takes as an argument 
the name of the package with the sequence of associated score/values. This input 
matches the output of the previous Map function. 

Listing 5.13  PageRank object encapsulating the Map and Reduce functions 

type PageRank (ranks:seq<string*float>) =
    let mapCache = Map.ofSeq ranks        

    let getRank (package:string) =
        match mapCache.TryFind package with    
        | Some(rank) -> rank
        | None -> 1.0

    member this.Map (package:NuGet.NuGetPackageCache) =

Uses an internal table to keep in 
memory the NuGet collection of 
name and score value pair

If the NuGet package isn’t 
found, a default score of 1.0 is 
used as the default rank.
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        let score = 
            (getRank package.PackageName)   
            /float(package.Dependencies.Length) 

        package.Dependencies           
        |> Seq.map (fun (Domain.PackageName(name,_),_,_) -> (name, score))

    member this.Reduce (name:string) (values:seq<float>) =
        (name, Seq.sum values)     

The PageRank object encapsulates the Map and Reduce functions, providing easy access 
to the same underlying data structure ranks. Next, you need to build the core of the 
program, MapReduce. Using FP style, you can model a reusable MapReduce function, 
passing the functions as input for both Map and Reduce phases. Here is the implemen-
tation of mapF.

Listing 5.14  mapF function for the first phase of the MapReduce pattern

let mapF M (map:'in_value -> seq<'out_key * 'out_value>)
           (inputs:seq<'in_value>) =
    inputs
    |> PSeq.withExecutionMode ParallelExecutionMode.ForceParallelism 

    |> PSeq.withDegreeOfParallelism M 

    |> PSeq.collect (map) 

    |> PSeq.groupBy (fst) 

    |> PSeq.toList 

The mapF function takes as its first parameter an integer value M, which determines the 
level of parallelism to apply. This argument is intentionally positioned first because it 
makes it easier to partially apply the function to reuse with the same value. Inside the body 
of mapF the degree of parallelism is set using PSeq.withDegreeOfParallelism M. This 
extension method is also used in PLINQ. The purpose of the configuration is to restrict 
the number of threads that could run in parallel, and it isn’t a coincidence that the query 
is eagerly materialized exercising the last function PSeq.toList. If you omit PSeq.with-
DegreeOfParallelism, then the degree of parallelism isn’t guaranteed to be enforced. 

In the case of a multicore single machine, it’s sometimes useful to limit the num-
ber of running threads per function. In the parallel MapReduce pattern, because Map 
and Reduce are executed simultaneously, you might find it beneficial to constrain the 
resources dedicated for each step. For example, the value maxThreads defined as

let maxThreads = max (Environment.ProcessorCount / 2, 1) 

could be used to restrict each of the two MapReduce phases to half of the system threads.

Uses a function to calculate the average 
score of the NuGet dependencies

Uses a function to reduce to a single value 
all the scores related to one package

Forces the degree of parallelism Sets the degree of parallelism to an arbitrary value M

Maps the items in the input collection

Groups the mapped items by the key 
generated by the map function

Forces the materialization of the sequence to 
ensure that the degree of parallelism is applied
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The second argument of mapF is the core map function, which operates on each input 
value and returns the output sequence key/value pairs. The type of the output sequence 
can be different from the type of the inputs. The last argument is the sequence of input 
values to operate against.

After the map function, you implement the reduce aggregation. This listing shows the 
implementation of the aggregation function reduceF to run the second and final result. 

Listing 5.15  reduceF function for the second phase of MapReduce 

let reduceF R (reduce:'key -> seq<'value> -> 'reducedValues)
              (inputs:('key * seq<'key * 'value>) seq) =
    inputs
    |> PSeq.withExecutionMode ParallelExecutionMode.ForceParallelism  

    |> PSeq.withDegreeOfParallelism R     

    |> PSeq.map (fun (key, items) ->      
        items
        |> Seq.map (snd)                  
        |> reduce key)                    
    |> PSeq.toList

The first argument R of the reduceF function has the same purpose of setting the 
degree of parallelism as the argument M in the previous mapF function. The second 
argument is the reduce function that operates on each key/values pair of the input 
parameter. In the case of the NuGet package example, the key is a string for the name 
of the package, and the sequence of values is the list of ranks associated with the pack-
age. Ultimately, the input argument is the sequence of key/value pairs, which matches 
the output of the mapF function. The reduceF function generates the final output.

After having defined the functions map and reduce, the last step is the easy one: put-
ting everything together (in bold).

Listing 5.16  mapReduce composed of the mapF and reduceF functions

let mapReduce
        (inputs:seq<'in_value>)
        (map:'in_value -> seq<'out_key * 'out_value>)
        (reduce:'out_key -> seq<'out_value> -> 'reducedValues)
        M R =

    inputs |> (mapF M map >> reduceF R reduce) 

Because the output of the map function matches the input of the reduce function, 
you can easily compose them together. The listing shows this functional approach in 
the implementation of the mapReduce function. The mapReduce function arguments 
feed the underlying mapF and reduceF functions. The same explanation applies. The 
important part of this code is the last line. Using the F# built-in pipe operator (|>) and 
forward composition operator (>>), you can put everything together. 

Forces the degree 
of parallelism 

Sets the degree of parallelism 
to an arbitrary value R

Maps the items in the input collection 
in the form of a key/value pair

Extracts the values from 
the input sequence to 
apply the reduce function

The functions map and 
reduce are composed 

using the F# forward-
composition >> 

operator.

 



144 chapter 5 PLINQ and MapReduce: data parallelism, part 2 

This code shows how you can now utilize the function mapReduce  from listing 5.16  
to calculate the NuGet package ranking:

        let executeMapReduce (ranks:(string*float)seq) =
        let M,R = 10,5        
        let data = Data.loadPackages()
        let pg = MapReduce.Task.PageRank(ranks)        
        mapReduce data (pg.Map) (pg.Reduce) M R

The class pg (PageRank) is defined in listing 5.13 to provide the implementation of 
both the map and reduce functions. The arbitrary values M and R set how many workers 
to create for each step of the MapReduce. After the implementation of the mapF and 
reduceF functions, you compose them to implement a mapReduce function that can be 
conveniently utilized as a new function.

Figure 5.7  Benchmark running the MapReduce algorithm using a quad-core machine with 8 GB of 
RAM. The algorithms tested are sequential LINQ, parallel F# PSeq, and PLINQ with a variant of tailored 
partitioner. The parallel version of MapReduce that uses PLINQ runs in 1.136 seconds, which is 38% 
faster than the sequential version using regular LINQ in C#. The F# PSeq performance is almost 
equivalent to PLINQ, as expected, because they share the same technology underneath. The parallel 
C# PLINQ with tailored partitioner is the fastest solution, running in 0.952 sec, about 18% faster than 
ordinary PLINQ, and twice as fast as the baseline (the sequential version).   

As expected, the serial implementation in figure 5.7 is the slowest one. Because the 
parallel versions F# PSeq and C# PLINQ use the same underlying library, the speed 
values are almost equivalent. The F# PSeq version is a little slower with a higher CPU 
time because of the extra overhead induced by the wrapper. The fastest MapReduce is 
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the PLINQ parallel version with tailored partitioner, which can be found in the source 
code for this book. 

This is the result of the five most important NuGet packages:

Microsoft.NETCore.Platforms :     6033.799540
Microsoft.NETCore.Targets :       5887.339802
System.Runtime :                  5661.039574
Newtonsoft.Json :                 4009.295644
NETStandard.Library :             1876.720832

In MapReduce, any form of reduction performed in parallel can offer different results 
than a serial one if the operation isn’t associative.

mapreduce and a little math 
The associative and commutative properties introduced earlier in this chapter prove 
the correctness and deterministic behavior of aggregative functions. In parallel and 
functional programming, the adoption of mathematical patterns is common to guar-
antee accuracy in the implementation of a program. But a deep knowledge of mathe-
matics isn’t necessary. 

Can you determine the values of x in the following equations?

9 + x = 12

2 < x < 4

If you answered 3 for both functions, good news, you already know all the math that it 
takes to write deterministic concurrent programs in functional style using techniques 
from linear algebra (https://en.wikipedia.org/wiki/Linear_algebra).

what math can do to simplify parallelism: monoids

The property of association leads to a common technique known as a monoid (https://
wiki.haskell.org/Monoid), which works with many different types of values in a sim-
ple way. The term monoid (not to be confused with monad: https://wiki.haskell.org/
Monad) comes from mathematics, but the concept is applicable to computer program-
ming without any math knowledge. Essentially, monoids are operations whose output 
type is the same as the input, and which must satisfy some rules: associativity, identity, 
and closure.  

You read about associativity in the previous section. The identity property says that a 
computation can be executed multiple times without affecting the result. For example, 
an aggregation that is associative and commutative can be applied to one or more reduc-
tion steps of the final result without affecting the output type. The closure rule enforces 
that the input(s) and output(s) types of a given function must be the same. For example, 
addition takes two numbers as parameters and returns a third number as a result. This 
rule can be expressed in .NET with a function signature Func<T, T, T> that ensures 
that all arguments belong to the same type, in opposition to a function signature such 
as Func<T1, T2, R>.

In the k-means example, the function UpdateCentroids satisfies these laws because 
the operations used in the algorithm are monoidal—a scary word that hides a simple 
concept. This operation is addition (for reduce).

 

https://en.wikipedia.org/wiki/Linear_algebra
https://wiki.haskell.org/Monoid
https://wiki.haskell.org/Monoid
https://wiki.haskell.org/Monad
https://wiki.haskell.org/Monad
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The addition function takes two numbers and produces output of the same type. In 
this case, the identity element is 0 (zero) because a value 0 can be added to the result 
of the operation without changing it. Multiplication is also a monoid, with the identity 
element 1. The value of a number multiplied by 1 does not change. 

Why is it important that an operation returns a result of the same type as the input(s)? 
Because it lets you chain and compose multiple objects using the monoidal operation, 
making it simple to introduce parallelism for these operations. 

The fact that an operation is associative, for example, means you can fold a data 
structure to reduce a list sequentially. But if you have a monoid, you can reduce a list 
using a fold (Aggregate), which can be more efficient for certain operations and also 
allows for parallelism. 

To calculate the factorial of the number 8, the multiplication operations running in 
parallel on a two-core CPU should look something like table 5.2.

Table 5.2  Parallel calculation of the factorial product of the number 8

Core 1 Core 2

Step 1 M1 = 1 * 2 M2 = 3 * 4  

Step 2 M3 = M2 * 5  M4 = 6 * M1

Step 3 M5 = M4 * 7 M6= 8 * M3

Step 4 idle M7= M6 * M5

Result 40320

The same result can be achieved using parallel aggregation in either F# or C# to reduce 
the list of numbers 1 to 8 into a single value:

[1..8] |> PSeq.reduce (*)
Enumerable.Range(1,8).AsParallel().Reduce((a,b)=> a * b);

Because multiplication is a monoidal operation for the type integer, you can be sure 
that the result of running the operation in parallel is deterministic.

NOTE  Many factors are involved when exploiting parallelism, so it’s important 
to continually benchmark and measure the speedup of an algorithm using the 
sequential version as baseline. In fact, in certain cases, a parallel loop might 
run slower than its sequential equivalent. If the sequence is too small to run in 
parallel, then the extra overhead introduced for the task coordination can pro-
duce negative effects. In this case, the sequential loop fits the scenario better.

Summary
¡	Parallel LINQ and F# PSeq both originate from the functional paradigm and are 

designed for data parallelism, simple code, and high performance. By default, 
these technologies take the logical processor count as the degree of parallelism. 
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These technologies handle the underlying processes regarding the partitioning 
of sequences in smaller chunks, set the degree of parallelism counting the logical 
machine cores, and run individually to process each subsequence. 

¡	PLINQ and F# PSeq are higher-level abstraction technologies that lie on top 
of multithreading components. These technologies aim to reduce the time of 
query execution, engaging the available computer resources. 

¡	The .NET Framework allows tailored techniques to maximize performance in 
data analysis. Consider value types over reference types to reduce memory prob-
lems, which otherwise could provoke a bottleneck due to the generation of too 
many GCs. 

¡	Writing pure functions, or functions without side effects, makes it easier to rea-
son about the correctness of your program. Furthermore, because pure func-
tions are deterministic, when passing the same input, the output doesn’t change. 
The order of execution doesn’t matter, so functions without side effects can eas-
ily be executed in parallel.

¡	Designing with pure functions and decoupling side effects from pure logic are 
the two basic tenets that functional thinking brings to the forefront.

¡	Deforestation is the technique to eliminate the generation of intermediate data 
structures to reduce the size of temporary memory allocation, which benefits 
the performance of the application. This technique is easily exploitable with the 
higher-order function Aggregate in LINQ. It combines multiple operations in a 
single step, such as filter and map, which would have otherwise had an alloca-
tion for each operation.

¡	Writing functions that are associative and commutative permits the implemen-
tation of a parallel pattern like Divide and Conquer, Fork/Join, or MapReduce. 

¡	The MapReduce pattern is composed primarily of two steps: map and reduce. 
The Map function is applied to all items and produces intermediate results, 
which are merged using the Reduce function. This pattern is similar to Fork/Join 
because after splitting the data into chunks, it applies in parallel the tasks Map 
and Reduce independently. 
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6Real-time event streams: 
functional reactive 

programming

This chapter covers
¡	Understanding queryable event streams

¡	Working with Reactive Extensions (Rx)

¡	Combining F# and C# to make events first-class 
values

¡	Processing high-rate data streams

¡	Implementing a Publisher-Subscriber pattern

We’re used to responding to events in our lives daily. If it starts to rain, we get an 
umbrella. If the daylight in a room begins to dim, we flip the switch to turn on the 
electric light. The same is true in our applications, where a program must react to 
(or handle) events caused by something else happening in the application or a user 
interacting with it. Almost every program must handle events, whether they’re the 
receipt of an HTTP request for a web page on a server, a notification from your favor-
ite social media platform, a change in your filesystem, or a simple click of a button. 

Today’s challenge for applications isn’t reacting to one event, but reacting to a 
constant high volume of events in (near) real time. Consider the humble smart-
phone. We depend on these devices to be constantly connected to the internet and 
continuously sending and receiving data. These multidevice interconnections can 
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6
be compared to billions of sensors that are acquiring and sharing information, with the 
need for real-time analysis. In addition, this unstoppable massive stream of notifications 
continues to flow from the internet fire hose, requiring that the system be designed 
to handle back-pressure (https://en.wikipedia.org/wiki/Back_pressure) and notifica-
tions in parallel. 

Back-pressure refers to a situation where the event-fetching producer is getting too far 
ahead of the event-processing consumer. This could generate potential spikes in memory 
consumption and possibly reserve more system resources for the consumer until the con-
sumer is caught up. More details regarding back-pressure are covered later in the chapter.

It’s predicted that by 2020 more than 50 billion devices will be connected to the 
internet. Even more stunning is that this expansion of digital information shows no 
signs of slowing any time soon! For this reason, the ability to manipulate and analyze 
high-speed data streams in real time will continue to dominate the field of data (big 
data) analysis and digital information. 

Numerous challenges exist to using a traditional programming paradigm for the 
implementation of these kinds of real-time processing systems. What kinds of technol-
ogies and tools can you use to simplify the event programming model? How can you 
concurrently handle multiple events without thinking concurrently? The answers lie 
with reactive programming. 

In computing, reactive programming is a programming paradigm that maintains a 
continuous interaction with their environment, but at a speed which is determined by the 
environment, not the program itself.

—Gèrard Berry (“Real Time Programming: Special Purpose or General Purpose 
Languages,” Inria (1989), http://mng.bz/br08)

Reactive programming is programming with everlasting asynchronous streams of events 
made simple. On top of that, it combines the benefits of functional programming for 
concurrency, which you’ve seen in earlier chapters, with the reactive programming 
toolkit to make event-driven programming highly beneficial, approachable, and safe. 
Furthermore, by applying various high-order operators on streams, you can easily 
achieve different computational goals.

By the end of this chapter, you’ll know how reactive programming avoids the prob-
lems that occur when using imperative techniques to build reactive systems. You’ll 
design and implement event-driven applications, coupled with support for asynchro-
nicity, that are responsive, scalable, and loose.

6.1 Reactive programming: big event processing
Reactive programming, not to be confused with functional reactive programming, refers 
to a programming paradigm that focuses on listening and processing events asynchro-
nously as a data stream, where the availability of new information drives the logic for-
ward rather than having the control flow driven by a thread of execution.

A common example of reactive programming is a spreadsheet, where cells contain 
literal values or formulas such as C1 = A1 + B1 or, in Excel lingo, C1 = Sum(A1:B1). In 
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this case, the value in the cell C1 is evaluated based on the values in other cells. When 
the value of one of the other cells B1 or A1 changes, the value of the formula automati-
cally recalculates to update the value of C1, as seen in figure 6.1.

Cell C1 is automatically updated
when cell A1 or B1 changes.

Figure 6.1  This Excel spreadsheet is reactive, meaning that cell C1 reacts to a change of value in either 
cell A1 or B1 through the formula Sum(A1:B1).

The same principle is applicable for processing data to notify the system when a 
change of state occurs. Analyzing data collections is a common requirement in soft-
ware development. In many circumstances, your code could benefit from using a reac-
tive event handler. The reactive event handler allows a compositional reactive semantic 
to express operations, such as Filter and Map, against events elegantly and succinctly, 
rather than a regular event handler, which is designed to handle simple scenarios with 
limited flexibility. 

The reactive programming approach to event handling is different from the tra-
ditional approach because events are treated as streams. This provides the ability to 
manipulate effortless events with different features, such as the ability to filter, map, 
and merge, in a declarative and expressive way. For example, you might design a web 
service that filters the event stream to a subset of events based on specified rules. The 
resulting solution uses reactive programming to capture the intended behaviors by 
describing the operations in a declarative manner, which is one of the tenets of FP. This 
is one reason why it’s commonly called functional reactive programming; but this term 
requires further explanation.

What is functional reactive programming (FRP)? Technically, FRP is a programming 
paradigm based on values that change over time, using a set of simple compositional Reac-
tive operators (behavior and event) that, in turn, are used to build more complex 
operators. This programming paradigm is commonly used for developing UIs, robot-
ics, and games, and for solving distributed and networked system challenges. Due to 
the powerful and simplified compositional aspect of FRP, several modern technologies 
use FRP principles to develop sophisticated systems. For example, the programming 
languages Elm (http://elm-lang.org) and Yampa (https://wiki.haskell.org/Yampa) 
are based on FRP.   

 

http://elm-lang.org
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From the industry standpoint, FRP is a set of different but related functional pro-
gramming technologies combined under the umbrella of event handling. The con-
fusion is derived from similarity and misrepresentation—using the same words in 
different combinations:

¡	Functional programming is a paradigm that treats computation as the evaluation of 
an expression and avoids changing state and mutable data.

¡	Reactive programming is a paradigm that implements any application where there’s 
a real-time component.

Reactive programming is becoming increasingly more important in the context of 
real-time stream processing for big data analytics. The benefits of reactive program-
ming are increased use of computing resources on multicore and multi-CPU hardware 
by providing a straightforward and maintainable approach for dealing with asynchro-
nous and no-blocking computation and IO. Similarly, FRP offers the right abstraction 
to make event-driven programming highly beneficial, approachable, safe, and compos-
able. These aspects let you build real-time, reactive programs with clean and readable 
code that’s easy to maintain and expand, all without sacrificing performance. 

The reactive programming concept is non-blocking asynchronous based, reverting 
control from “asking” to “waiting” for events, as shown in figure 6.2. This principle is 
called inversion of control (http://martinfowler.com/bliki/InversionOfControl.html), 
also referred to as the Hollywood Principle (don’t call me, I’ll call you). 
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Parallel processing of events
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Consumer
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Map
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Figure 6.2  Real-time reactive programming promotes non-blocking (asynchronous) operations that are 
designed to deal with high-volume, high-velocity event sequences over time by handling multiple events 
simultaneously, possibly in parallel. 

Reactive programming aims to operate on a high-rate sequence of events over time, sim-
plifying the concurrent aspect of handling multiple events simultaneously (in parallel). 

Writing applications that are capable of reacting to events at a high rate is becoming 
increasingly important. Figure 6.3 shows a system that’s processing a massive number of 
tweets per minute. These messages are sent by literally millions of devices, representing 
the event sources, into the system that analyzes, transforms, and then dispatches the 
tweets to those registered to read them. It’s common to annotate a tweet message with a 
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hashtag to create a dedicated channel and group of interests. The system uses a hashtag 
to filter and partition the notifications by topic. 

Merge Filter

Event transformer

Map

Figure 6.3  Millions of devices represent a rich source of events, capable of sending a massive number 
of tweets per minute. A real-time reactive system can handle the massive quantities of tweets as an 
event stream by applying non-blocking (asynchronous) operations (merge, filter, and map) and then 
dispatching the tweets to the listeners (consumers).

Every day, millions of devices send and receive notifications that could overflow and 
potentially crash the system if it isn’t designed to handle such a large number of sus-
tained events. How would you write such a system? 

A close relationship exists between FP and reactive programming. Reactive program-
ming uses functional constructors to achieve composable event abstraction. As previ-
ously mentioned, it’s possible to exploit higher-order operations on events such as map, 
filter, and reduce. The term FRP is commonly used to refer to reactive programming, 
but this isn’t completely correct. 

NOTE  FRP is a comprehensive topic; but only the basic principles are covered 
in this chapter. For a deeper explanation of FRP, I recommend Functional Reac-
tive Programming by Stephen Blackheath and Anthony Jones (Manning Publi-
cations, 2016, www.manning.com/books/functional-reactive-programming).

6.2 .NET tools for reactive programming
The .NET Framework supports events based on a delegate model. An event handler 
for a subscriber registers a chain of events and triggers the events when called. Using 
an imperative programming paradigm, the event handlers need a mutable state to 
keep track of the subscriptions to register a callback, which wraps the behavior inside a 
function to limit composability. 

Here’s a typical example of a button-click event registration that uses an event han-
dler and anonymous lambda:

public MainWindow()
{
     myButton.Click += new System.EventHandler(myButton_Click);

     myButton.Click += (sender, args) => MessageBox.Show(“Bye!”);
}

 

www.manning.com/books/functional-reactive-programming
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void myButton_Click(object sender, RoutedEventArgs e)
{
     MessageBox.Show(“Hello!”);
}

This pattern is the primary reason that .NET events are difficult to compose, almost 
impossible to transform, and, ultimately, the reason for accidental memory leaks. In 
general, using the imperative programming model requires a shared mutable state for 
communication between events, which could potentially hide undesirable side effects. 
When implementing complex event combinations, the imperative programming 
approach tends to be convoluted. Additionally, providing an explicit callback function 
limits your options to express code functionality in a declarative style. The result is a 
program that’s hard to understand and, over time, becomes impossible to expand and 
to debug. Furthermore, .NET events don’t provide support for concurrent programs 
to raise an event on a separate thread, making them a poor fit for today’s reactive and 
scalable applications.

NOTE  Event streams are unbounded flows of data processing, originating from 
a multitude of sources, which are analyzed and transformed asynchronously 
through a pipeline of composed operations. 

Events in .NET are the first step toward reactive programming. Events have been part 
of the .NET Framework since the beginning. In the early days of the .NET Framework, 
events were primarily used when working with graphical user interfaces (GUIs). Today, 
their potential is being explored more fully. With the .NET Framework, Microsoft 
introduced a way to reason and treat events as first-class values by using the F# Event 
(and Observable) module and .NET Reactive Extensions (Rx). Rx lets you compose 
events easily and declaratively in a powerful way. Additionally, you can handle events as 
a data stream capable of encapsulating logic and state, ensuring that your code is with-
out side effects and mutable variables. Now your code can fully embrace the functional 
paradigm, which focuses on listening and processing events asynchronously.

6.2.1 Event combinators—a better solution 

Currently, most systems get a callback and process these events when and as they hap-
pen. But if you consider events as a stream, similar to lists or other collections, then you 
can use techniques for working with collections or processing events, which eliminates 
the need for callbacks. The F# list comprehension, introduced in chapter 5, provides a 
set of higher-order functions, such as filter and map, for working with lists in a declar-
ative style: 

let squareOfDigits (chars:char list)
     |> List.filter (fun c -> Char.IsDigit c && int c % 2 = 0)
     |> List.map (fun n -> int n * int n)

In this code, the function squareOfDigits takes a list of characters and returns the 
square of the digits in the list. The first function filter returns a list with elements 
for which a given predicate is true; in this case, the characters are even digits. The sec-
ond function, map, transforms each element n passed into an integer and calculates its 
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square value n * n. The pipeline operator (|>) sequences the operations as a chain of 
evaluations. In other words, the result of the operation on the left side of the equation 
will be used as an argument for the next operation in the pipeline.

The same code can be translated into LINQ to be more C# friendly:

List<int> SquareOfDigits(List<char> chars) => 
     chars.Where(c => char.IsDigit(c) && char.GetNumericValue(c) % 2 == 0)
          .Select(c => (int)c * (int)c).ToList();

This expressive programming style is a perfect fit for working with events. Different 
than C#, F# has the advantage of treating events intrinsically (natively) as first-class 
values, which means you can pass them around like data. Additionally, you can write 
a function that takes an event as an argument to generate a new event. Consequently, 
an event can be passed into functions with the pipe operator (|>) like any other value. 
This design and method of using events in F# is based on combinators, which look like 
programming using list comprehension against sequences. The event combinators are 
exposed in the F# module Event that can be used to compose events:

textBox.KeyPress
|> Event.filter (fun c -> Char.IsDigit c.KeyChar && int c.KeyChar % 2 = 0)
|> Event.map (fun n -> int n.KeyChar * n.KeyChar)

In this code, the KeyPress keyboard event is treated as a stream, which is filtered to 
ignore events that aren’t interesting, so that the final computation occurs only when 
the keys pressed are digits. The biggest benefit of using higher-order functions is a 
cleaner separation of concerns.1 C# can reach the same level of expressiveness and com-
positionality using .NET Rx, as briefly described later in this chapter. 

6.2.2 .NET interoperability with F# combinators

Using F# event combinators, you can write code using an algebra of events that aims 
to separate complex events from simple ones. Is it possible to take advantage of the F# 
event combinators module to write more declarative C# code? Yes.

Both .NET programming languages F# and C# use the same common language run-
time (CLR), and both are compiled into an intermediate language (IL) that conforms 
to the Common Language Infrastructure (CLI) specification. This makes it possible to 
share the same code. 

In general, events are understood by all .NET languages, but F# events are used as 
first-class values and, consequently, require only a small amount of extra attention. To 
ensure that the F# events can be used by other .NET languages, the compiler must 
be notified by decorating the event with the [<CLIEvent>] attribute. It’s convenient 
and efficient to use the intrinsic compositional aspect of F# event combinators to build 
sophisticated event handlers that can be consumed in C# code. 

Let’s see an example to better understand how F# event combinators work and how 
they can easily be consumed by other .NET programming languages. Listing 6.1 shows 
how to implement a simple game to guess a secret word using F# event combinators. 

1 The design principle separates a computer program into sections so each addresses a particular con-
cern.  The value is simplifying development and maintenance of computer programs (https://
en.wikipedia.org/wiki/Separation_of_concerns).
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The code registers two events: the KeyPress event from the WinForms control passed 
into the construct of KeyPressedEventCombinators, and the Elapsed time event from 
System.Timers.Timer. The user enters text—in this case, only letters are allowed (no 
digits)—until either the secret word is guessed or the timer (the given time interval) 
has elapsed. When the user presses a key, the filter and event combinators transform the 
event source into a new event through a chain of expressions. If the time expires before the 
secret word is guessed, a notification triggers a “Game Over” message; otherwise, it trig-
gers the “You Won!” message when the secret word matches the input.

Listing 6.1  F# Event combinator to manage key-down events

type KeyPressedEventCombinators(secretWord, interval,
➥ control:#System.Windows.Forms.Control) =
    let evt =
        let timer = new System.Timers.Timer(float interval) 
        let timeElapsed = timer.Elapsed |> Event.map(fun _ -> 'X') 
        let keyPressed = control.KeyPress
                       |> Event.filter(fun kd -> Char.IsLetter kd.KeyChar)
                       |> Event.map(fun kd -> Char.ToLower kd.KeyChar) 
        timer.Start()  

        keyPressed
        |> Event.merge timeElapsed 
        |> Event.scan(fun acc c ->
            if c = 'X' then "Game Over"
            else
                let word = sprintf "%s%c" acc c
                if word = secretWord then "You Won!"
                else word
            ) String.Empty 

    [<CLIEvent>]
    member this.OnKeyDown = evt 

The type KeyPressedEventCombinators has a constrvuctor parameter control, which 
refers to any object that derives from System.Windows.Forms.Control. The # annota-
tion in F# is called a flexible type, which indicates that a parameter is compatible with a 
specified base type (http://mng.bz/FSp2).

The KeyPress event is linked to the System.Windows.Forms.Control base control 
passed into the type constructor, and its event stream flows into the F# event-combi-
nators pipeline for further manipulation. The OnKeyDown event is decorated with the 
attribute [<CLIEvent>] to be exposed (published) and visible to other .NET languages. 
In this way, the event can be subscribed to and consumed from C# code, obtaining reac-
tive programmability by referencing the F# library project. Figure 6.4 presents the F# 
event-combinators pipeline, where the KeyPress event stream runs through the series 
of functions linked as a chain. 

Creates and starts 
a System.Timers 
.Timer instance 

The map function from the Event module registers and 
transforms the timer event to notify char ‘X’ when it triggers.

Registers the 
KeyPress event 

using the F# 
Event module to 

filter and publish 
only lowercase 

letters

Merges the filters to handle as a whole. 
When either the event timer or keypress is 
triggered, the event fires a notification.

The scan function maintains an 
internal state of the keys pressed 
and pushes the result from every 
call to the accumulator function. 

Exposes the F# event to other .NET programming 
languages through the special CLIEvent attribute
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Figure 6.4  An event-combinator pipeline showing how two event flows manage their own set of events 
before being merged and passed into the accumulator. When a key is pressed on a WinForms control, the 
filter event checks whether the key pressed is a letter, and then map retrieves the lowercase version 
of that letter to scan. When the time elapses on the timer, the map operator passes an “X” as in “no 
value” to the scan function.

The event-combinator chain in figure 6.4 is complex, but it demonstrates the simplic-
ity of expressing such a convoluted code design using events as first-class values. The 
F# event combinators raise the level of abstraction to facilitate higher-order opera-
tions for events, which makes the code more readable and easier to understand when 
compared to an equivalent program written in imperative style. Implementing the 
program using the typical imperative style requires creating two different events that 
communicate the state of the timer and maintain the state of the text with a shared 
mutable state. The functional approach with event combinators removes the need for 
a shared immutable state; and, moreover, events are composable. 

To summarize, the main benefits of using F# event combinators are:

¡	Composability—You can define events that capture complex logic from simpler 
events. 

¡	Declarative—The code written using F# event combinators is based on functional 
principles; therefore, event combinators express what to accomplish, rather than 
how to accomplish a task.

¡	Interoperability—F# event combinators can be shared across .NET languages so 
the complexity can be hidden in a library. 

6.3 Reactive programming in .NET: Reactive Extensions (Rx)
The .NET Rx library facilitates the composition of asynchronous event-based programs 
using observable sequences. Rx combines the simplicity of LINQ-style semantics for 
manipulating collections and the power of asynchronous programming models to use 
the clean async/await patterns from .NET 4.5. This powerful combination enables 
a toolset that lets you treat event streams using the same simple, composable, and 
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declarative style used for data collections (List and Array, for example). Rx provides a 
domain-specific language (DSL) that provides a significantly simpler and more fluent 
API for handling complex, asynchronous event-based logic. Rx can be used to either 
develop a responsive UI or increase scalability in a server-side application. 

In the nutshell, Rx is a set of extensions built for the IObservable<T> and IOb-
server<T> interfaces that provide a generalized mechanism for push-based notifica-
tions based on the Observer pattern from the Gang of Four (GoF) book. 

The Observer design pattern is based on events, and it’s one of the most common 
patterns in OOP. This pattern publishes changes made to an object’s state (the observ-
able) to other objects (the observers) that subscribe to notifications describing any 
changes to that object (shown in figure 6.5). 

Figure 6.5  The original Observer pattern from the GoF book

Using GoF terminology, the IObservable interfaces are subjects, and the IObserver 
interfaces are observers. These interfaces, introduced in .NET 4.0 as part of the System 
namespace, are an important component in the reactive programming model. 

The Gang of Four book
This software engineering book by Martin Fowler et al. describes software design pat-
terns in OOP. The title, Design Patterns: Elements of Reusable Object-Oriented Soft-
ware, is far too long, especially in an email, so the nickname “book by the Gang of Four” 
became the common way to refer to it. The authors are often referred to as the Gang of 
Four (GoF).

 

Here’s the definition for both IObserver and IObservable interface signatures in C#:

public interface IObserver<T>
{
    void OnCompleted();
    void OnError(Exception exception);
    void OnNext(T value);
}
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public interface IObservable<T>
{
    IDisposable Subscribe(IObserver<T> observer);
}

These interfaces implement the Observer pattern, which allows Rx to create an 
observable from existing .NET CLR events. Figure 6.6 attempts to clarify the original 
Unified Modeling Language (UML) for the Observer pattern from the GoF book.

Notify
Subject:

Subscriber
of observer

Observer

Observer

Observer

When a notification is sent to
the subject, the observers that
are listening retrieve the data
that has changed.

The subject registers and unregisters
the observers, and notifies the observers
when the state changes.

 

Figure 6.6  The Observer pattern is based on an object called Subject, which maintains a list of 
dependencies (called observers) and automatically notifies the observers of any change of state to 
Subject. This pattern defines a one-to-many relationship between the observer subscribers, so that 
when an object changes state, all its dependencies are notified and updated automatically. 

The IObservable<T> functional interface (www.lambdafaq.org/what-is-a-functional- 
interface) only implements the method Subscribe. When this method is called 
by an observer, a notification is triggered to publish the new item through the IOb-
server<T>.OnNext method. The IObservable interface, as the name implies, can be 
considered a source of data that’s constantly observed, which automatically notifies 
all registered observers of any state changes. Similarly, notifications for errors and 
completion are published through the IObserver<T>.OnError and IObserver<T> 
.OnCompleted methods, respectively. The Subscribe method returns an IDisposable 
object, which acts as a handle for the subscribed observer. When the Dispose method 
is called, the corresponding observer is detached from the Observable, and it stops 
receiving notifications. In summary:

¡	IObserver<T>.OnNext supplies the observer with new data or state information.
¡	IObserver<T>.OnError indicates that the provider has experienced an error 

condition. 
¡	IObserver<T>.OnCompleted indicates that the observer finished sending notifi-

cations to observers.

 

www.lambdafaq.org/what-is-a-functional-interface
www.lambdafaq.org/what-is-a-functional-interface
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The same interfaces are used as a base definition for the F# IEvent<'a> type, which is 
the interface used to implement the F# event combinators previously discussed. As you 
can see, the same principles are applied with a slightly different approach to achieve 
the same design. The ability to code multiple asynchronous event sources is the main 
advantage of Rx.

NOTE  .NET Rx can be downloaded using the Install-Package System.Reac-
tive command and referenced in your project through the NuGet package 
manager. 

6.3.1 From LINQ/PLINQ to Rx

The .NET LINQ/PLINQ query providers, as discussed in chapter 5, operate as a mech-
anism against an in-memory sequence. Conceptually, this mechanism is based on a 
pull model, which means that the items of the collections are pulled from the query 
during its evaluation. This behavior is represented by the iterator pattern of IEnumer-
able<T> - IEnumerator<T>, which can cause a block while it’s waiting for data to iter-
ate. In opposition, Rx treats events as a data stream by defining the query to react over 
time as events arrive. This is a push model, where the events arrive and autonomously 
travel through the query. Figure 6.7 shows both models. 

Pulling
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IEnumerator<T>

MoveNext()

Consumer

Data
source

Interactive

1. The consumer asks
   for new data.

2. The IEnumerable\IEnumerator
    pattern pulls data from the source,
    which blocks the execution if no
    data is available.
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IObserver<T>
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   the consumer that
   new data is available.
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    from the source when new
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Figure 6.7  Push vs. pull model. The IEnumerable/IEnumerator pattern is based on the pull 
model, which asks for new data from the source. Alternatively, the IObservable/IObserver pattern 
is based on the push model, which receives a notification when new data is available to send to the 
consumer.

In the reactive case, the application is passive and causes no blocking in the data- 
retrieval process.
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F#: the inspiration for Rx 
During an interview on Microsoft’s Channel 9 (http://bit.ly/2v8exjV), Erik Meijer, the 
mind behind Rx, mentioned that F# was an inspiration for the creation of Reactive Exten-
sions. One of the inspiring ideas behind the Reactive framework, composable events, 
does in fact come from F#. 

 

6.3.2 IObservable: the dual IEnumerable

The Rx push-based event model is abstracted by the IObservable<T> interface, which 
is the dual  of the IEnumerable<T> interface.2 While the term duality can sound daunt-
ing, it’s a simple and powerful concept. You can compare duality to the two sides of a 
coin, where the opposite side can be inferred from the one exposed.

In the context of computer science, this concept has been exploited by De Morgan’s 
Law,3 which achieves the duality between conjunction && (AND) and disjunction || 
(OR) to prove that negation distributes over both conjunction and disjunction: 

!(a || b) == !a && !b 
!(a && b) == !a || !b 

Like the inverse of LINQ, where LINQ exposes a set of extension methods for the 
IEnumerable interface to implement a pull-based model over collections, Rx exposes 
a set of extension methods for the IObservable interface to implement a push-based 
model over events. Figure 6.8 shows the dual relationship between these interfaces. 

typeIObserver<'a> = interface
  abstractOnNext : 'a with set
  abstractOnCompleted : unit->unit
  abstractOnError : Exception ->unit
end

typeIObservable<'a> = interface
  abstractSubscribe : IObserver<'a>

typeIEnumerator<'a> = interface
   interface IDisposable
   interface IEnumerator
   abstractCurrent : 'a with get
   abstractMoveNext : unit->bool
end

typeIEnumerable<'a> = interface
   interface IEnumerable
   abstractGetEnumerator : IEnumerator<'a>
end

Figure 6.8  Dual relationship between the IObserver and IEnumerator interfaces, and the 
IObservable and IEnumerable interfaces. This dual relationship is obtained by reversing the arrow 
in the functions, which means swapping the input and output.

As figure 6.8  shows, the IObservable and IObserver interfaces are obtained by 
reversing the arrow of the corresponding IEnumerable and IEnumerator interfaces. 

2 The term comes from duality. For further explanation, see https://en.wikipedia.org/wiki/Dual_ 
(category_theory).

3 For more information, see https://en.wikipedia.org/wiki/De_Morgan%27s_laws.

 

http://bit.ly/2v8exjV
https://en.wikipedia.org/wiki/Dual_(category_theory)
https://en.wikipedia.org/wiki/Dual_(category_theory)
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Reversing the arrow means swapping the input and output of a method. For example, 
the current property of the IEnumerator interface has this signature: 

Unit (or void in C#) -> get ‘a

Reversing the arrow of this property, you can obtain its dual: Unit <- set ‘a. This sig-
nature in the reciprocal IObserver interface matches the OnNext method, which has 
the following signature: 

set ‘a -> Unit (or void in C#)

The GetEnumerator function takes no arguments and returns IEnumerator<T>, which 
returns the next item in the list through the MoveNext and Current functions. The 
reverse IEnumerable method can be used to traverse the IObservable, which pushes 
data into the subscribed IObserver by invoking its methods. 

6.3.3 Reactive Extensions in action

Combining existing events is an essential characteristic of Rx, which permits a level 
of abstraction and compositionality that’s otherwise impossible to achieve. In .NET, 
events are one form of an asynchronous data source that can be consumed by Rx. 
To convert existing events into observables, Rx takes an event and returns an Event-
Pattern object, which contains the sender and event arguments. For example, a key-
pressed event is converted into a reactive observable (in bold): 

Observable.FromEventPattern<KeyPressedEventArgs>(this.textBox, 
                                            nameof(this.textBox.KeyPress));

As you can see, Rx lets you handle events in a rich and reusable form.
Let’s put the Rx framework into action by implementing the C# equivalent of the 

secret word game previously defined using the F# event combinators KeyPressed-
EventCombinators. This listing shows the implementation using this pattern and the 
corresponding reactive framework. 

Listing 6.2  Rx KeyPressedEventCombinators in C#

var timer = new System.Timers.Timer(timerInterval);
var timerElapsed = Observable.FromEventPattern<ElapsedEventArgs>
                    (timer, "Elapsed").Select(_ => 'X'); 
var keyPressed = Observable.FromEventPattern<KeyPressEventArgs>
                    (this.textBox, nameof(this.textBox.KeyPress));
                    .Select(kd => Char.ToLower(kd.EventArgs.KeyChar))
                    .Where(c => Char.IsLetter(c));       
timer.Start();

timerElapsed
    .Merge(keyPressed)  
    .Scan(String.Empty, (acc, c) =>  
    {

The Rx method FromEventPattern 
converts a .NET event into an observable.

The LINQ-like semantic functions Select and Where register, 
compose, and transform events to notify subscribers. 

The filters are merged to be handled as a 
whole. When either event is triggered, 
this event fires a notification.

The Scan function maintains the 
internal state of the keys pressed 
and pushes the result from every call 
to the accumulator function. 
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        if (c == 'X') return "Game Over";
        else
        {
            var word = acc + c;
            if (word == secretWord) return "You Won!";
            else return word;
        }   
    }). 
    .Subscribe(value =>
        this.label.BeginInvoke(
            (Action)(() => this.label.Text = value)));

The Observable.FromEventPattern method creates a link between the .NET event 
and the Rx IObservable, which wraps both Sender and EventArgs. In the listing, 
the imperative C# events for handling the key pressed (KeyPressEventArgs) and the 
elapsed timer (ElapsedEventArgs) are transformed into observables and then merged 
to be treated as a whole stream of events. Now it’s possible to construct all of the event 
handling as a single and concise chain of expressions.

Reactive Extensions are functional 
The Rx framework provides a functional approach to handling events asynchronously 
as a stream. The functional aspect refers to a declarative programming style that uses 
fewer variables to maintain state and to avoid mutations, so you can compose events as 
a chain of expressions. 

 

6.3.4 Real-time streaming with RX

An event stream is a channel on which a sequence of ongoing events, by order of time, 
arrives as values. Streams of events come from diverse sources, such as social media, the 
stock market, smartphones, or a computer mouse. Real-time stream processing aims to 
consume a live data stream that can be shaped into other forms. Consuming this data, 
which in many cases is delivered at a high rate, can be overwhelming, like drinking 
directly from a fire hose. Take, for example, the analysis of stock prices that continually 
change and then dispatching the result to multiple consumers, as shown in figure 6.9. 

The Rx framework fits well in this scenario because it handles multiple asynchronous 
data sources while delivering high-performance operations to combine, transform, and 
filter any of those data streams. At its core, Rx uses the IObservable<T> interface to 
maintain a list of dependent IObserver<T> interfaces that are notified automatically of 
any event or data change. 
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Figure 6.9  Event streams from different sources push data to an event transformer, which applies 
higher-order operations and then notifies the subscribed observers. 

6.3.5 From events to F# observables

As you may recall, F# uses events for configurable callback constructs. In addition, it 
supports an alternative and more advanced mechanism for configurable callbacks that 
are more compositional than events. The F# language treats .NET events as values of 
type IEvent<'T>, which inherits from the interface IObservable<'T>, the same type 
used by Rx. For this reason, the main F# assembly, FSharp.Core, already provides an 
Observable module that exposes a set of useful functions over the values of the IOb-
servable interface. This is considered a subset of Rx.

For example, in the following code snippet, the F# observables (in bold) are used 
to handle keypress and timer events from the KeyPressedEventCombinators example 
(listing 6.2):

let timeElapsed = timer.Elapsed |> Observable.map(fun _ -> 'X')   
let keyPressed = control.KeyPress
                       |> Observable.filter(fun c -> Char.IsLetter c) 
                       |> Observable.map(fun kd -> Char.ToLower kd.KeyChar)  

let disposable = 
keyPressed
|> Observable.merge timeElapsed
|> Observable.scan(fun acc c ->
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         if c = 'X' then "Game Over"
         else
             let word = sprintf "%s%c" acc c
             if word = secretWord then "You Won!"
             else word
) String.Empty
|> Observable.subscribe(fun text -> printfn “%s” text)

It’s possible to choose (and use) either Observable or Event when using F# to build 
reactive systems; but to avoid memory leaks, the preferred choice is Observable. When 
using the F# Event module, composed events are attached to the original event, and 
they don’t have an unsubscribe mechanism that can lead to memory leaks. Instead, the 
Observable module provides the subscribe operator to register a callback function. 
This operator returns an IDisposable object that can be used to stop event-stream 
processing and to de-register all subscribed observable (or event) handlers in the pipe-
line with one call of the Dispose method.

6.4 Taming the event stream: Twitter emotion analysis 
using Rx programming 
In this age of digital information where billions of devices are connected to the inter-
net, programs must correlate, merge, filter, and run real-time analytics. The speed of 
processing data has moved into the realm of real-time analytics, reducing latency to vir-
tually zero when accessing information. Reactive programming is a superb approach 
for handling high-performance requirements because it’s concurrency friendly and 
scalable, and it provides a composable asynchronous data-processing semantic.

It’s estimated that in the United States there is an average of 24 million tweets per 
hour, amounting to almost 7,000 messages per second. This is a massive quantity of data 
to evaluate, and presents a serious challenge for consuming such a high-traffic stream. 
Consequently, a system should be designed to tame the occurrence of backpressure. 
This backpressure, for example, in the case of Twitter could be generated by a con-
sumer of the live stream of data that can’t cope with the rate at which the producers 
emit events. 

Backpressure 
Backpressure occurs when a computer system can’t process the incoming data fast 
enough, so it starts to buffer the arriving data until the space to buffer it is reduced to 
the point of deteriorating the responsiveness of the system or, worse, raising an “Out Of 
Memory” exception. In the case of iterating over the items in an IEnumerable, the con-
sumer of the items is “pulling”; the items are processed at a controlled pace. With IOb-
servable, the items are “pushed” to the consumer. In this case, IObservable could 
potentially produce values more rapidly than the subscribed observers can handle. This 
scenario generates excessive backpressure, causing strain on the system. To ease back-
pressure, Rx provides operators such as Throttle and Buffer.
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The F# example in figure 6.10 illustrates a real-time analysis stream for determining 
the current feeling (emotion) of tweets published in the United States.

Throttle Filter Group
by

Event transformer

Sentiment
analysis

Twitter messages

Event stream

Observer

Observer

Observer

Figure 6.10  The Twitter messages push a high-rate event stream to the consumer, so it’s important to 
have tools like Rx to tame the continuous burst of notifications. First, the stream is throttled, then the 
messages are filtered, analyzed, and grouped by emotions. The result is a data stream from the incoming 
tweets that represents the latest status of emotions, whose values constantly update a chart and notify 
the subscribed observers.

This example uses F# to demonstrate the existing built-in support for observables, 
which is missing in C#. But the same functionality can be reproduced in C#, either 
using.NET Rx or by referencing and consuming an F# library, where the code exposes 
the implemented observable.

The analysis of the stream of tweets is performed by consuming and extracting the 
information from each message. Emotional analysis is performed using the Stanford 
CoreNLP library.  The result of this analysis is sent to a live animated chart that takes 
IObservable as input and automatically updates the graph as the data changes. 

Stanford CoreNLP
The Stanford CoreNLP (http://nlp.stanford.edu) is a natural-language analysis library 
written in Java, but it can be integrated in .NET using the IKVM bridge (www.ikvm.net). 
This library has several tools, including emotion analysis tools that predict the emo-
tion of a sentence. You can install the Stanford CoreNLP library using the NuGet pack-
age Install-Package Stanford.NLP.CoreNLP (www.nuget.org/packages/Stanford.NLP.
CoreNLP), which also configures the IKVM bridge. For more details regarding how the 
CoreNLP library works, I recommend the online material.

 

 

http://nlp.stanford.edu
www.ikvm.net
www.nuget.org/packages/Stanford.NLP.CoreNLP
www.nuget.org/packages/Stanford.NLP.CoreNLP
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The following listing shows the emotion analysis function and the settings to enable 
the Stanford CoreNLP library. 

Listing 6.3  Evaluating a sentence’s emotion using the CoreNLP library

let properties = Properties()
properties.setProperty("annotators", "tokenize,ssplit,pos,parse,emotion")
➥ |> ignore

IO.Directory.SetCurrentDirectory(jarDirectory)
let stanfordNLP = StanfordCoreNLP(properties) 

type Emotion =
    | Unhappy
    | Indifferent
    | Happy 

let getEmotionMeaning value =
    match value with
    | 0 | 1 -> Unhappy
    | 2 -> Indifferent
    | 3 | 4 -> Happy 

let evaluateEmotion (text:string) =
    let annotation = Annotation(text)
    stanfordNLP.annotate(annotation)

    let emotions =
        let emotionAnnotationClassName =  
               SentimentCoreAnnotations.SentimentAnnotatedTree().getClass()
        let sentences = annotation.get(CoreAnnotations.SentencesAnnotation().

getClass()) 
➥ :?> java.util.ArrayList
        [ for s in sentences ->
            let sentence = s :?> Annotation
            let sentenceTree = sentence.get(emotionAnnotationClassName) 
➥ :?> Tree
            let emotion = NNCoreAnnotations.getPredictedClass(sentenceTree)
            getEmotionMeaning emotion]
    (emotions.[0]) 

In the code, the F# DU defines different emotion levels (case values): Unhappy, Indif-
ferent, and Happy. These case values compute the distribution percentage among the 
tweets. The function evaluateEmotion combines the text analysis from the Stanford 
library and returns the resulting case value (emotion). 

To retrieve the stream of tweets, I used the Tweetinvi library (https://github.com/
linvi/tweetinvi). It provides a well-documented API and, more importantly, it’s designed 
to run streams concurrently while managing multithreaded scenarios. You can down-
load and install this library from the NuGet package TweetinviAPI.

NOTE  Twitter provides great support to developers who build applications 
using its API. All that’s required is a Twitter account and an Application 

Sets the properties and creates an 
instance of StanfordCoreNLP

A discriminated union categorizes 
emotions for each text message.

Gives a value from 0 to 4 to 
determine the emotion

Analyzes a text message, providing 
the associated emotion

 

https://github.com/linvi/tweetinvi
https://github.com/linvi/tweetinvi
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Management (https://apps.twitter.com) account to obtain the key and secret 
access. With this information, it’s possible to send and receive tweets and inter-
act with the Twitter API.

This listing shows how to create an instance for the Tweetinvi library and how to access 
the settings to enable interaction with Twitter. 

Listing 6.4  Settings to enable the Twitterinvi library 

let consumerKey = "<your Key>"
let consumerSecretKey = "<your secret key>"
let accessToken = "<your access token>"
let accessTokenSecret = "<your secret access token>"

let cred = new TwitterCredentials(consumerKey, consumerSecretKey,
➥ accessToken, accessTokenSecret)
let stream = Stream.CreateSampleStream(cred)
stream.FilterLevel <- StreamFilterLevel.Low

This straightforward code creates an instance of the Twitter stream. The core of the 
Rx programming is in the following listing (highlighted in bold), where Rx and the F# 
Observable module are used in combination to handle and analyze the event stream.

Listing 6.5  Observable pipeline to analyze tweets 

let emotionMap =
    [(Unhappy, 0)
     (Indifferent, 0)
     (Happy, 0)] |> Map.ofSeq

let observableTweets =
    stream.TweetReceived 
    |> Observable.throttle(TimeSpan.FromMilliseconds(100.)) 
    |> Observable.filter(fun args ->
        args.Tweet.Language = Language.English) 
    |> Observable.groupBy(fun args ->
        evaluateEmotion args.Tweet.FullText) 
    |> Observable.selectMany(fun args ->
        args |> Observable.map(fun i ->
            (args.Key, (max 1 i.Tweet.FavoriteCount)))) 
    |> Observable.scan(fun sm (key,count) ->
        match sm |> Map.tryFind key with
        | Some(v) -> sm |> Map.add key (v + count)
        | None    -> sm ) emotionMap 
    |> Observable.map(fun sm ->
        let total = sm |> Seq.sumBy(fun v -> v.Value) 
        sm |> Seq.map(fun k ->
            let percentageEmotion = ((float k.Value) * 100.) 
➥ / (float total)
            let labelText = sprintf "%A - %.2f.%%" (k.Key) 
➥ percentageEmotion
            (labelText, percentageEmotion)
        ))

Generates the event stream 
from the Twitter API

Controls the rate of events to avoid 
overwhelming the consumer 

Filters the incoming messages 
to target only those in English 
Partitions the message 
by emotion analysis 

Flattens messages into one 
sequence of emotions with 
the count of favorites 

Maintains the state of the total 
partition of messages by emotion

Calculates the total percentage of emotions and 
returns an observable to live update a chart 
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The result of the observableTweets pipeline is an IDisposable, which is used to stop 
listening to the tweets and remove the subscription from the subscribed observable. 
Tweetinvi exposes the event handler TweetReceived, which notifies the subscribers 
when a new tweet has arrived. The observables are combined as a chain to form the 
observableTweets pipeline. Each step returns a new observable that listens to the 
original observable and then triggers the resulting event from the given function.

The first step in the observable channel is managing the backpressure, which is a 
result of the high rate of arriving events. When writing Rx code, be aware that it’s possi-
ble for the process to be overwhelmed when the event stream comes in too quickly. 

In figure 6.11, the system on the left has no problem processing the incoming event 
streams because the frequency of notifications over time has a sustainable throughput 
(desired flow). The system on the right struggles to keep up with a huge number of noti-
fications (backpressure) that it receives over time, which could potentially collapse the 
system. In this case, the system responds by throttling the event streams to avoid failure. 
The result is a different rate of notifications between the observable and an observer.

Filter

Map

Desired flow

Time

Filter

Map

Throttle

Backpressure

Time

Figure 6.11  Backpressure could negatively affect the responsiveness of a system, but it’s possible to 
reduce the rate of the incoming events and keep the system healthy by using the throttle function to 
manage the different rates between an observable and an observer.

To avoid the problem of backpressure, the throttle function provides a layer of pro-
tection that controls the rate of messages, preventing them from flowing too quickly:

stream.TweetReceived
    |> Observable.throttle(TimeSpan.FromMilliseconds(50.))

The throttle function reduces a rapid fire of data down to a subset, corresponding to 
a specific cadence (rhythm) as shown in figures 6.9 and 6.10. Throttle extracts the last 
value from a burst of data in an observable sequence by ignoring any value that’s fol-
lowed by another value in less than a time period specified. In listing 6.5, the frequency 
of event propagation was throttled to no more than once every 50 ms. 

 



 169Taming the event stream: Twitter emotion analysis using Rx programming 

Throttle and buffer Rx operators for taming large volumes of events
Be aware that the throttle function can have destructive effects, which means the 
signals that arrive with a higher rate than the given frequency are lost, not buffered. This 
happens because the throttle function discharges the signals from an observable 
sequence that’s followed by another signal before the given time expires. The throttle 
operator is also called debounce, which stops messages from flowing in at a higher rate 
by setting an interval between messages. 

The buffer function is useful in cases where it’s too expensive to process one signal at 
a time, and consequently it’s preferred for processing the signals in batches, at the cost 
of accepting a delay. There’s an issue to consider when using buffer with large-volume 
events. In large-volume events, the signals are stored in memory for a period of time and 
the system could run into memory overflow problems. The purpose of the buffer opera-
tor is to stash away a specified series of signals and then republish them once either the 
given time has expired or the buffer is full. 

Here, for example, the code in C# gets all the events that happened either every second 
or every 50 signals depending on which rule is satisfied first.

Observable.Buffer(TimeSpan.FromSeconds(1), 50)

In the example of the tweet emotion analysis, the Buffer extension method can be 
applied as follows:

stream.TweetReceived.Buffer(TimeSpan.FromSeconds(1), 50)

 

The next step in the pipeline is filtering events that aren’t relevant (the command is 
in bold):

|> Observable.filter(fun args -> args.Tweet.Language = Language.English)

This filter function ensures that only the tweets that originate using the English lan-
guage are processed. The Tweet object, from the tweet message, has a series of proper-
ties, including the sender of the message, the hashtag, and the coordinates (location) 
that can be accessed.

Next, the Rx groupBy operator provides the ability to partition the sequence into a 
series of observable groups related to a selector function. Each of these sub-observables 
corresponds to a unique key value, containing all the elements that share that same key 
value the way it does in LINQ and in SQL: 

    |> Observable.groupBy(fun args -> evaluateEmotion args.Tweet.FullText)
    |> Observable.selectMany(fun args -> args |> Observable.map(fun i -> 

(args.Key, i.Tweet.FavoriteCount)))

In this case, the key-value emotion partitions the event stream. The function evaluate-
Emotion, which behaves as a group selector, computes and classifies the emotion for 
each incoming message. Each nested observable can have its own unique operation; 
the selectMany operator is used to further subscribe these groups of observables by 
flattening them into one. Then, using the map function, the sequence is transformed 
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into a new sequence of pairs (tuple) consisting of the Tweet-Emotion value and the 
count of how many times the tweet has been liked (or favored).

After having been partitioned and analyzed, the data must be aggregated into a 
meaningful format. The observable scan function does this by pushing the result of 
each call to the accumulator function. The returned observable will trigger notifica-
tions for each computed state value, as shown in figure 6.12. 

Aggregate (0, (x,y) => x + y)

1 2 3 4

10

Scan(0, (x,y) => x + y)

1 2 3 4

0 1 3 6

Figure 6.12  The aggregate function returns a single value that is the accumulation of each value 
from running the given function (x,y) against the initial accumulator 0. The scan function returns a 
value for each item in the collection, which is the result of performing the given function against the 
accumulator in the current iteration.

The scan function is like fold, or the LINQ Aggregate, but instead of returning a 
single value, it returns the intermediate evaluations resulting from each iteration (as 
shown in bold in the following code snippet). Moreover, it satisfies the functional par-
adigm, maintaining state in an immutable fashion. The aggregate functions (such as 
scan and fold) are described as the generic concept of catamorphism (https://wiki.
haskell.org/Catamorphisms) in FP:

< code here that passes an Observable of tweets with emotions analysis >    
|> Observable.scan(fun sm (key,count) ->                      
            match sm |> Map.tryFind key with
            | Some(v) -> sm |> Map.add key (v + count)
            | None -> sm) emotionMap 

This function scan takes three arguments: an observable that’s passed conceptually in 
the form of stream tweets with emotion analysis, an anonymous function to apply the 
underlying values of the observable to the accumulator, and an accumulator emotion-
Map. The result of the scan function is an updated accumulator that’s injected into the 
following iteration. The initial accumulator state in the previous code is used by the 
scan function in an empty F# Map, which is equivalent to an immutable .NET generic 
Dictionary (System.Collections.Generic.Dictionary<K,V>), where the key is 
one of the emotions and the value is the count of its related tweets. The accumulator 
function scan updates the entries of the collection with the new evaluated types and 
returns the updated collection as new accumulator.

The last operation in the pipeline is to run the map function used to transform the 
observables of the source into the representation of the total percentage of tweets ana-
lyzed by emotions:

|> Observable.map(fun sm ->
    let total = sm |> Seq.sumBy(fun v -> v.Value)
    sm |> Seq.map(fun k ->

 

https://wiki.haskell.org/Catamorphisms
https://wiki.haskell.org/Catamorphisms
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        let percentageEmotion = ((float k.Value) * 100.) / (float total)
        let labelText = sprintf "%A - %.2f.%%" (k.Key) percentageEmotion
        (labelText, percentageEmotion)
    ))

The transformation function is executed once for each subscribed observer. The map 
function calculates the total number of tweets from the observable passed, which con-
tains the value of the accumulator from the previous scan function:

sm |> Seq.sumBy(fun v -> v.Value)

The result is returned in a format that represents the percentage of each emotion from 
the map table received so far. The final observable is passed into a LiveChart, which 
renders the real-time updates. Now that the code is developed, you can use the Start-
StreamAsync() function to start the process of listening and receiving the tweets and 
have the observable notify subscribers:

LiveChart.Column(observableTweets,Name= sprintf "Tweet Emotions").ShowChart()
do stream.StartStreamAsync()  

Cold and hot observables 
Observables come in two flavors: hot and cold. A hot observable represents a stream 
of data that pushes notifications regardless of whether there are any subscribers. For 
example, the stream of tweets is a hot stream of data because the data will keep flowing 
regardless of the status of subscribers. A cold observable is a stream of events that will 
always push notifications from the beginning of the stream, regardless of whether the 
subscribers start listening after the event is pushed.

 

Much like the Event module in F#, the Observable module defines a set of combina-
tors for using the IObservable<T> interface. The F# Observable module includes add, 
filter, map, partition, merge, choose, and scan. For more details, see appendix B. 

In the previous example, the observable functions groupBy and selectMany are part 
of the Rx framework. This illustrates the utility that F# provides, providing the devel-
oper options to mix and match tools to customize the best fit for the task.

6.4.1 SelectMany: the monadic bind operator

SelectMany is a powerful operator that corresponds to the bind (or flatMap) operator 
in other programming languages. This operator constructs one monadic value from 
another and has the generic monadic binding signature 

M a -> (a -> M b) -> M b  

where M represents any elevated type that behaves as a container. In the case of observ-
ables, it has this signature: 

IObservable<'T> -> ('T -> IObservable<'R>) -> IObservable<'R>
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In .NET, there are several types that match this signature, such as IObservable, IEnu-
merable, and Task. Monads (http://bit.ly/2vDusZa), despite their reputation for com-
plexity, can be thought of in simple terms: they are containers that encapsulate and 
abstract a given functionality with the objective of promoting composition between 
elevated types and avoiding side effects. Basically, when working with monads, you can 
think of working with boxes (containers) that are unpacked at the last moment—when 
they’re needed.

The main purpose of monadic computation is to make composition possible where 
it couldn’t be achieved otherwise. For example, by using monads in C#, it’s possible to 
directly sum an integer and a Task type from the System.Threading.Tasks namespace 
of integer (Task<int>) (highlighted in bold):

Task<int> result = from task in Task.Run<int>(() => 40)
                   select task + 2;

The bind, or SelectMany, operation takes an elevated type and applies a function to its 
underlying value, returning another elevated type. An elevated type is a wrapper around 
another type, like IEnumerable<int>, Nullable<bool>, or IObservable<Tweets>. 
The meaning of bind depends on the monad type. For IObservable, each event in the 
observables input is evaluated to create a new observable. The resulting observables 
are then flattened to produce the output observable, as shown in figure 6.13.

40 40

Wrapper

+ 2 = 42

40 + 2

Apply
function

Unwrap
value

Rewrap
value

Figure 6.13  An elevated type can be considered a special container where it’s possible to apply a 
function directly to the underlying type (in this case, 40). The elevated type works like a wrapper that 
contains a value, which can be extracted to apply a given function, after which the result is put back into 
the container. 

The SelectMany binder not only flattens data values but, as an operator, it also trans-
forms and then flattens the nested monadic values. The underlying theory of monads 
is used by LINQ, which is used by the .NET compiler to interpret the SelectMany pat-
tern to apply the monadic behavior. For example, by implementing the SelectMany 
extension method over the Task type (as highlighted in bold in the following code 
snippet), the compiler recognizes the pattern and interprets it as the monadic bind-
ing, allowing the special composition: 

Task<R> SelectMany<T, R>(this Task<T> source, Func<T, Task<R>> selector) => 
               source.ContinueWith(t => selector(t.Result)).Unwrap();

 

http://bit.ly/2vDusZa
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With this method in place, the previous LINQ-based code will compile and evaluate to 
a Task<int> that returns 42. Monads play an import role in functional concurrency 
and are covered more thoroughly in chapter 7.

6.5 An Rx publisher-subscriber
The Publish/Subscribe pattern allows any number of publishers to communicate with 
any number of subscribers asynchronously via an event channel. In general, to accom-
plish this communication, an intermediary hub is employed to receive the notifications, 
which are then forwarded to subscribers. Using Rx, it becomes possible to effectively 
define a Publish/Subscribe pattern by using the built-in tools and concurrency model.

The Subject type is a perfect candidate for this implementation. It implements the 
ISubject interface, which is the combination of IObservable and IObserver. This 
makes the Subject behave as both an observer and an observable, which allows it to 
operate like a broker to intercept notifications as an observer and to broadcast these 
notifications to all its observers. Think of the IObserver and the IObservable as con-
sumer and publisher interfaces, respectively, as shown in figure 6.14. 

Subscriber

Publisher

Publisher
(ButtonClicked)

Publisher
(KeyPressed)

Publisher
(MouseMoved)

Subscriber
(ButtonHandler)

Subscriber
(KeyHandler)

Subscriber
(MouseHandler)

Figure 6.14  The publisher-subscriber hub manages the communication between any number of 
subscribers (observers) with any number of publishers (observables). The hub, also known as a broker, 
receives the notifications from the publishers, which are then forwarded to the subscribers.

Using the Subject type from Rx to represent a Publish/Subscribe pattern has the 
advantage of giving you the control to inject extra logic, such as merge and filter, 
into the notification before it’s published.

6.5.1 Using the Subject type for a powerful publisher-subscriber hub

Subjects are the components of Rx, and their intention is to synchronize the values 
produced by an observable and the observers that consume them. Subjects don’t 
completely embrace the functional paradigm because they maintain or manage states 
that could potentially mutate. Despite this fact, however, they’re useful for creating an 
event-like observable as a field, which is a perfect fit for a Publish/Subscribe pattern 
implementation. 
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The Subject type implements the ISubject interface (highlighted in bold in the 
following code snippet), which resides in the System.Reactive.Subjects namespace 

interface ISubject<T, R> : IObserver<T>, IObservable<R> {  }

or ISubject<T>, if the source and result are of the same type.
Because a Subject<T> and, consequently, ISubject<T> are observers, they expose 

the OnNext, OnCompleted, and OnError methods. Therefore, when they’re called, the 
same methods are called on all the subscribed observers.

Rx out of the box has different implementations of the Subject class, each with a 
diverse behavior. In addition, if the existing Subjects don’t satisfy your needs, then 
you can implement your own. The only requirement to implementing a custom subject 
class is satisfying the ISubject interface implementation.

Here are the other Subject variants: 

¡	ReplaySubject behaves like a normal Subject, but it stores all the messages 
received, providing the ability to make the messages available for current and 
future subscribers.

¡	BehaviorSubject always saves the latest available value, which makes it available 
for future subscribers. 

¡	AsyncSubject represents an asynchronous operation that routes only the last 
notification received while waiting for the OnComplete message.

NOTE  The Subject type is hot, which makes it vulnerable to losing notifica-
tion messages pushed from the source observable when there are no listening 
observers. To offset this, carefully consider the type of Subject to use, specifi-
cally if all the messages prior to the subscription are required. An example of 
a hot observable is a mouse movement, where movements still happen and 
notifications are emitted regardless of whether there are listening observers.

6.5.2 Rx in relation to concurrency

The Rx framework is based on a push model with support for multithreading. But 
it’s important to remember that Rx is single-threaded by default, and the paral-
lel constructs that let you combine asynchronous sources must be enabled using Rx 
schedulers. 

One of the main reasons to introduce concurrency in Rx programming is to facilitate 
and manage offloading the payload for an event stream. This allows a set of concurrent 
tasks to be performed, such as maintaining a responsive UI, to free the current thread. 

NOTE  Reactive Extensions allow you to combine asynchronous sources using 
parallel computations. These asynchronous sources could be potentially gen-
erated independently from parallel computations. Rx handles the complexity 
involved in compositing these sources and lets you focus on their composition 
aspect in a declarative style.
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Moreover, Rx lets you control the flow of incoming messages as specific threads to 
achieve high-concurrency computation. Rx is a system for querying event streams asyn-
chronously, which requires a level of concurrency control.

When multithreading is enabled, Rx programming increases the use of computing 
resources on multicore hardware, which improves the performance of computations. 
In this case, it’s possible for different messages to arrive from different execution con-
texts simultaneously. In fact, several asynchronous sources could be the output from 
separate and parallel computations, merging into the same Observable pipeline. In 
other words, observables and observers deal with asynchronous operations against a 
sequence of values in a push model. Ultimately, Rx handles all the complexity involved 
in managing access to these notifications and avoiding common concurrency problems 
as if they were running in a single thread. 

Using a Subject type (or any other observables from Rx), the code isn’t converted 
automatically to run faster or concurrently. As a default, the operation to push the mes-
sages to multiple subscribers by a Subject is executed in the same thread. Moreover, 
the notification messages are sent to all subscribers sequentially following their sub-
scription order and possibly blocking the operation until it completes. 

The Rx framework solves this limitation by exposing the ObserveOn and SubscribeOn 
methods, which lets you register a Scheduler to handle concurrency. Rx schedulers 
are designed to generate and process events concurrently, increasing responsiveness 
and scalability while reducing complexity. They provide an abstraction over the con-
currency model, which lets you perform operations against a stream of data moving 
without the need to be exposed directly to the underlying concurrent implementation. 
Moreover, Rx schedulers integrate support for task cancellation, error handling, and 
passing of state. All Rx schedulers implement the IScheduler interface, which can be 
found in the System.Reactive.Concurrency namespace.    

NOTE  The recommended built-in schedulers for .NET Frameworks after .NET 
4.0 are either TaskPoolScheduler or ThreadPoolScheduler.

The SubscribeOn method determines which Scheduler to enable to queue messages 
that run on a different thread. The ObserveOn method determines which thread the 
callback function will be run in. This method targets the Scheduler that handles 
output messages and UI programming (for example, to update a WPF interface). 
ObserveOn is primarily used for UI programming and Synchronization-Context 
(http://bit.ly/2wiVBxu)interaction. 

In the case of UI programming, both the SubscribeOn and ObserveOn operators can 
be combined to better control which thread will run in each step of your observable 
pipeline.

6.5.3 Implementing a reusable Rx publisher-subscriber 

Armed with the knowledge of Rx and the Subject classes, it’s much easier to define 
a reusable generic Pub-Sub object that combines publication and subscription into 
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the same source. In this section, you’ll first build a concurrent publisher-subscriber 
hub using the Subject type in Rx. Then you’ll refactor the previous Twitter emotion 
analyzer code example to exploit the new and simpler functionality provided by the 
Rx-based publisher-subscriber hub. 

The implementation of the reactive publisher-subscriber hub uses a Subject to 
subscribe and then route values to the observers, allowing multicasting notifications 
emitted by the sources to the observers. This listing shows the implementation of the 
RxPubSub class, which uses Rx to build the generic Pub-Sub object. 

Listing 6.6  Reactive publisher-subscriber in C#

public class RxPubSub<T> : IDisposable
{
    private ISubject<T> subject; 
    private List<IObserver<T>> observers = new List<IObserver<T>>(); 
    private List<IDisposable> observables = new List<IDisposable>(); 

    public RxPubSub(ISubject<T> subject)
    {
        this.subject = subject; 
    }
    public RxPubSub() : this(new Subject<T>()) { } 

    public IDisposable Subscribe(IObserver<T> observer)
    {
        observers.Add(observer);
        subject.Subscribe(observer);
        return new Subscription<T>(observer, observers); 
    }

    public IDisposable AddPublisher(IObservable<T> observable) =>        
    observable.SubscribeOn(TaskPoolScheduler.Default).Subscribe(subject); 

    public IObservable<T> AsObservable() => subject.AsObservable(); 
    public void Dispose()
    {

        observers.ForEach(x => x.OnCompleted());
        observers.Clear(); 
    }
}

class ObserverHandler<T> : IDisposable 
{
    private IObserver<T> observer;
    private List<IObserver<T>> observers;

    public ObserverHandler(IObserver<T> observer, 
➥ List<IObserver<T>> observers)
    {

The private subject notifies all registered 
observers when a change of the 
observables’  state is published.

Shows the internal state of observers 

Shows the internal 
state of observables 

The constructor creates an 
instance of the internal subject.

The Subscribe method registers 
the observer to be notified and 

returns an IDisposable to 
remove the observer.

AddPublisher subscribes the observable using the default 
TaskPoolScheduler to handle concurrent notifications.

Exposes IObservable<T> from the internal ISubject to apply 
higher-order operations against event notifications

Removes all subscribers 
when the object is disposed

The internal class ObserverHandler 
wraps an IObserver to produce an 
IDisposable object used to stop the 
notification flow and to remove it 
from the observers collection.
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        this.observer = observer;
        this.observers = observers;
    }

    public void Dispose() 
    {
        observer.OnCompleted();
        observers.Remove(observer);
    }
}

An instance of the RxPubSub class can be defined either by a constructor that speci-
fies a Subject version or by the primary constructor that instantiated and passed the 
default Subject from the primary constructor. In addition to the private Subject field, 
there are two private collection fields: the observers collection and the subscribed 
observables. 

First, the observers collection maintains the state of the observers subscribed to 
the Subject through a new instance of the class Subscription. This class provides the 
unsubscribe method Dispose through the interface IDisposable, which then removes 
the specific observer when called. 

The second private collection is observables. Observables maintain a list of IDis-
posable interfaces, which originated from the registration of each observable by the 
AddPublisher method. Each observable can then be unregistered using the exposed 
Dispose method.

In this implementation, the Subject is subscribed to the TaskPoolScheduler 
scheduler:

observable.SubscribeOn(TaskPoolScheduler.Default)

TaskPoolScheduler schedules the units of work for each observer to run in a different 
thread using the current provided TaskFactory (http://bit.ly/2vaemTA). You can 
easily modify the code to accept any arbitrary scheduler. 

The subscribed observables from the internal Subject are exposed through the 
IObservable interface, obtained by calling the method AsObservable. This property is 
used to apply high-order operations against event notifications: 

public IObservable<T> AsObservable() => subject.AsObservable(); 

The reason to expose the IObservable interface on the Subject is to guarantee that 
no one can perform an upper cast back to an ISubject and mess things up. Subjects 
are stateful components, so it’s good practice to isolate access to them through encap-
sulation; otherwise, Subjects could be reinitialized or updated directly.

6.5.4 Analyzing tweet emotions using an Rx Pub-Sub class

In listing 6.7, you’ll use the C# Reactive Pub-Sub class (RxPubSub) to handle a stream of 
tweet emotions. The listing is another example of how simple it is to make the two pro-
gramming languages C# and F# interoperable and allow them to coexist in the same 
solution. From the F# library implemented in section 6.4, the observable that pushes 
a stream of tweet emotions is exposed so it’s easily subscribed to by external observers. 
(The observable commands are in bold.)

 

http://bit.ly/2vaemTA
http://mng.bz/br08
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Listing 6.7  Implementing observable tweet emotions 

let tweetEmotionObservable(throttle:TimeSpan) =
    
    Observable.Create(fun (observer:IObserver<_>) -> 
        let cred = new TwitterCredentials(consumerKey, consumerSecretKey,
 ➥ accessToken, accessTokenSecret)
        let stream = Stream.CreateSampleStream(cred)
        stream.FilterLevel <- StreamFilterLevel.Low
        stream.StartStreamAsync() |> ignore

        stream.TweetReceived
        |> Observable.throttle(throttle)
        |> Observable.filter(fun args ->
            args.Tweet.Language = Language.English)
        |> Observable.groupBy(fun args ->
            evaluateEmotion args.Tweet.FullText)
        |> Observable.selectMany(fun args ->
            args |> Observable.map(fun tw -> 
                               TweetEmotion.Create tw.Tweet args.Key))
        |> Observable.subscribe(observer.OnNext) 
    )

The listing shows the implementation of tweetEmotionObservable using the observ-
able Create factory operator. This operator accepts a function with an observer as its 
parameter, where the function behaves as an observable by calling its methods. 

The Observable.Create operator registers the observer passed into the function and 
starts to push notifications as they arrive. The observable is defined from the subscribe 
method, which pushes the notifications to the observer calling the method OnNext. 
The following listing shows the equivalent C# implementation of tweetEmotion-
Observable (in bold).

Listing 6.8  Implementing tweetEmotionObservable in C#

var tweetObservable = Observable.FromEventPattern<TweetEventArgs>(stream,
➥ "TweetReceived");

Observable.Create<TweetEmotion>(observer =>
{
    var cred = new TwitterCredentials(
        consumerKey, consumerSecretKey, accessToken, accessTokenSecret);
    var stream = Stream.CreateSampleStream(cred);
    stream.FilterLevel = StreamFilterLevel.Low;
    stream.StartStreamAsync();

    return Observable.FromEventPattern<TweetReceivedEventArgs>(stream, 
➥ "TweetReceived")
        .Throttle(throttle)
        .Select(args => args.EventArgs)
        .Where(args => args.Tweet.Language == Language.English)
        .GroupBy(args =>
                  evaluateEmotion(args.Tweet.FullText))

Observable.Create creates 
an observable by a given 

function that takes an 
observer as a parameter, 

which is subscribed to the 
returned observable. 

The observable subscribes to 
the OnNext method in the 

observer to push the changes.
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        .SelectMany(args =>
                  args.Select(tw => TweetEmotion.Create(tw.Tweet, args.Key)))
        .Subscribe(o=>observer.OnNext(o));
});

The FromEventPattern method converts a .NET CLR event into an observable. In this 
case, it transforms the TweetReceived events into an IObservable. 

One difference between the C# and F# implementation is that the F# code doesn’t 
require creating an Observable tweetObservable using FromEventPattern. In fact, 
the event handler TweetReceived automatically becomes an observable in F# when 
passed into the pipeline stream.TweetReceived |> Observable. TweetEmotion is a 
value type (structure) that carries the information of the tweet emotion (in bold).

Listing 6.9  TweetEmotion struct to maintain tweet details

[<Struct>]
type TweetEmotion(tweet:ITweet, emotion:Emotion) =
       member this.Tweet with get() = tweet
       member this.Emotion  with get() = emotion

       static member Create tweet emotion = 
                         TweetEmotion(tweet, emotion)

This next listing shows the implementation of RxTweetEmotion, which inherits from 
the RxPubSub class and subscribes an IObservable to manage the tweet emotion noti-
fications (in bold). 

Listing 6.10  Implementing RxPubSub TweetEmotion

class RxTweetEmotion : RxPubSub<TweetEmotion>  
{
     public RxTweetEmotion(TimeSpan throttle)  
     {
          var obs = TweetsAnalysis.tweetEmotionObservable(throttle)
                       .SubscribeOn(TaskPoolScheduler.Default);    
                        base.AddPublisher(obs); 
     }
}

The class RxTweetEmotion creates and registers the tweetEmotionObservable observ-
able to the base class using the AddPublisher method through the obs observable, 
which elevates the notification bubble from the internal TweetReceived. The next 
step, to accomplish something useful, is to register the observers.

6.5.5 Observers in action

The implementation of the RxTweetEmotion class is completed. But without subscrib-
ing any observers, there’s no way to notify or react to an event when it occurs. To create 

Inherits RxTweetEmotion from RxPubSub Passes the throttle value into the 
constructor, then into the 
tweetEmotionObservable definition

Concurrently runs the Tweet-Emotions notifications using 
TaskPoolScheduler. This is useful when handling concurrent 

messages and multiple observers. 
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an implementation of the IObserver interface, you could create a class that inherits 
and implements each of its methods. Fortunately, Rx has a set of helper functions to 
make this job easier. The method Observer.Create() can define new observers:

    IObserver<T> Create<T>(Action<T> onNext, 
                           Action<Exception> onError,
                           Action onCompleted)

This method has a series of overloads, passing an arbitrary implementation of the 
OnNext, OnError, and OnCompleted methods and returning an IObserver<T> object 
that calls the provided functions.

These Rx helper functions minimize the number of types created in a program as 
well as unnecessary proliferation of classes. Here’s an example of an IObserver that 
prints only positive tweets to the console:

var tweetPositiveObserver = Observer.Create<TweetEmotion>(tweet => {
      if (tweet.Emotion.IsHappy)
          Console.WriteLine(tweet.Tweet.Text);
});

After creating the tweetPositiveObserver observer, its instance is registered to an 
instance of the previous implemented RxTweetEmotion class, which notifies each sub-
scribed observer if a tweet with positive emotion is received:

var rxTweetEmotion = new RxTweetEmotion(TimeSpan.FromMilliseconds(150));
IDisposable posTweets = rxTweetEmotion.Subscribe(tweetPositiveObserver);

An instance of the IDisposable interface is returned for each observer subscribed. 
This interface can be used to stop the observer from receiving the notifications and to 
unregister (remove) the observer from the publisher by calling the Dispose method.

6.5.6 The convenient F# object expression

The F# object expression is a convenient way to implement on the fly any instance 
of an anonymous object that’s based on a known existing interface (or interfaces). 
Object expressions in F# work similarly to the Observer.Create() method but can be 
applied to any given interface. Additionally, the instance created by an object expres-
sion in F# can also feed other .NET programming languages due to the supported 
interoperability.

The following code shows how to use an object expression in F# to create an instance 
of IObserver<TweetEmotion> to display only unhappy emotions to the console:

let printUnhappyTweets() =
    { new IObserver<TweetEmotion> with
          member this.OnNext(tweet) =
               if tweet.Emotion = Unhappy then
                     Console.WriteLine(tweet.Tweet.text)

          member this.OnCompleted() = ()
          member this.OnError(exn) = () }

The aim of object expressions is to avoid the extra code required to define and cre-
ate new named types. The instance resulting from the previous object expression can 
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be used in the C# project by referencing the F# library and importing the correlated 
namespace. Here’s how you can use the F# object expression in the C# code:

IObserver<TweetEmotion> unhappyTweetObserver = printUnhappyTweets();

IDisposable disposable = rxTweetEmotion.Subscribe(unhappyTweetObserver);

An instance of the unhappyTweetObserver observer is defined using the F# object 
expression and is then subscribed to by rxTweetEmotion, which is now ready to receive 
notifications. 

Summary
¡	The reactive programming paradigm employs non-blocking asynchronous oper-

ations with a high rate of event sequences over time. This programming para-
digm focuses on listening and treating a series of events asynchronously as an 
event stream.

¡	Rx treats an event stream as a sequence of events. Rx lets you exercise the same 
expressive programming semantic as LINQ and apply higher-order operations 
such as filter, map, and reduce against events.

¡	Rx for .NET provides full support for multithreaded programming. In fact, Rx is 
capable of handling multiple events simultaneously, possibly in parallel. More-
over, it integrates with client programming, allowing GUI updates directly.

¡	The Rx schedulers are designed to generate and process events concurrently, 
increasing responsiveness and scalability, while also reducing complexity. The 
Rx schedulers provide an abstraction over the concurrency model, which let you 
perform operations against moving data streams without the need to be exposed 
directly to the underlying concurrent implementation.

¡	The programming language F# treats events as first-class values, which means 
you can pass them around as data. This approach is the root that influences event 
combinators that let you program against events as a regular sequence.

¡	The special event combinators in F# can be exposed and consumed by other 
.NET programming languages, using this powerful programming style to sim-
plify the traditional event-based programming model. 

¡	Reactive programming excels at taking full advantage of asynchronous execu-
tion in the creation of components and composition of workflows. Furthermore, 
the inclusion of Rx capabilities to tame backpressure is crucial to avoid overuse 
or unbounded consumption of resources.

¡	Rx tames backpressure for continuous bursts of notifications, permitting you to 
control a high-rate stream of events that could potentially overwhelm consumers. 

¡	Rx provides a set of tools for implementing useful reactive patterns, such as 
Publish/Subscribe.
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7Task-based functional 
parallelism

This chapter covers
¡	Task parallelism and declarative programming 

semantics

¡	Composing parallel operations with functional 
combinators

¡	Maximizing resource utilization with the Task 
Parallel Library

¡	Implementing a parallel functional pipeline 
pattern

The task parallelism paradigm splits program execution and runs each part in par-
allel by reducing the total runtime. This paradigm targets the distribution of tasks 
across different processors to maximize processor utilization and improve perfor-
mance. Traditionally, to run a program in parallel, code is separated into distinct 
areas of functionality and then computed by different threads. In these scenarios, 
primitive locks are used to synchronize the access to shared resources in the pres-
ence of multiple threads. The purpose of locks is to avoid race conditions and mem-
ory corruption by ensuring concurrent mutual exclusion. The main reason locks are 
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7
used is due to the design legacy of waiting for the current thread to complete before a 
resource is available to continue running the thread.

A newer and better mechanism is to pass the rest of the computation to a callback 
function (which runs after the thread completes execution) to continue the work. This 
technique in FP is called continuation-passing style (CPS). In this chapter, you’ll learn how 
to adopt this mechanism to run multiple tasks in parallel without blocking program 
execution. With this technique, you’ll also learn how to implement task-based parallel 
programs by isolating side effects and mastering function composition, which simplifies 
the achievement of task parallelism in your code. Because compositionality is one of the 
most important features in FP, it eases the adoption of a declarative programming style. 
Code that’s easy to understand is also simple to maintain. Using FP, you’ll engage task 
parallelism in your programs without introducing complexity, as compared to conven-
tional programming. 

7.1 A short introduction to task parallelism 
Task parallelism refers to the process of running a set of independent tasks in parallel 
across several processors. This paradigm partitions a computation into a set of smaller 
tasks and executes those smaller tasks on multiple threads. The execution time is 
reduced by simultaneously processing multiple functions.

In general, parallel jobs begin from the same point, with the same data, and can 
either terminate in a fire-and-forget fashion or complete altogether in a task-group con-
tinuation. Any time a computer program simultaneously evaluates different and auton-
omous expressions using the same starting data, you have task parallelism. The core of 
this concept is based on small units of computations called futures. Figure 7.1 shows the 
comparison between data parallelism and task parallelism.

Data
setParallelism

Data
set

Task 2

Task 3

Task 4

Task 5

Task 6

Data
setParallelism

Data parallelism Task parallelism

Task 1
1N 1/6

Data
set

Task 2
2N 1/6

Task 3
3N 1/6

Task 4
4N 1/6

Task 5
5N 1/6

Task 6
6N 1/6

Task 1

Figure 7.1  Data parallelism is the simultaneous execution of the same function across the elements of 
a data set. Task parallelism is the simultaneous execution of multiple and different functions across the 
same or different data sets. 
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Task parallelism isn’t data parallelism
Chapter 4 explains the differences between task parallelism and data parallelism. To 
refresh your memory, these paradigms are at two ends of the spectrum. Data parallelism 
occurs when a single operation is applied to many inputs. Task parallelism occurs when 
multiple diverse operations perform against their own input. It is used to query and call 
multiple Web APIs at one time, or to store data against different database servers. In 
short, task parallelism parallelizes functions; data parallelism parallelizes data.

 

Task parallelism achieves its best performance by adjusting the number of running 
tasks, depending on the amount of parallelism available on your system, which corre-
sponds to the number of available cores and, possibly, their current loads. 

7.1.1 Why task parallelism and functional programming?

In the previous chapters, you’ve seen code examples that deal with data parallelism 
and task composition. Those data-parallel patterns, such as Divide and Conquer, Fork/
Join, and MapReduce, aim to solve the computational problem of splitting and com-
puting in parallel smaller, independent jobs. Ultimately, when the jobs are terminated, 
their outputs are combined into the final result. 

In real-world parallel programming, however, you commonly deal with different 
and more complex structures that aren’t so easily split and reduced. For example, 
the computations of a task that processes input data could rely on the result of other 
tasks. In this case, the design and approach to coordinating the work among multiple 
tasks is different than for the data parallelism model and can sometimes be challeng-
ing. This challenge is due to task dependencies, which can reach convoluted connec-
tions where execution times can vary, making the job distribution tough to manage.

The purpose of task parallelism is to tackle these scenarios, providing you, the devel-
oper, with a toolkit of practices, patterns, and, in the case of programming, the .NET 
Framework, a rich library that simplifies task-based parallel programming. In addition, 
FP eases the compositional aspect of tasks by controlling side effects and managing 
their dependencies in a declarative programming style.

Functional paradigm tenets play an essential role in writing effective and deterministic 
task-based parallel programs. These functional concepts were discussed in the early chap-
ters of this book. To summarize, here’s a list of recommendations for writing parallel code:

¡	Tasks should evaluate side-effect-free functions, which lead to referential trans-
parency and deterministic code. Pure functions make the program more pre-
dictable because the functions always behave in the same way, regardless of the 
external state.

¡	Remember that pure functions can run in parallel because the order of execu-
tion is irrelevant.
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¡	If side effects are required, control them locally by performing the computation 
in a function with run-in isolation.

¡	Avoid sharing data between tasks by applying a defensive copy approach. 
¡	Use immutable structures when data sharing between tasks cannot be avoided.

NOTE  A defensive copy is a mechanism that reduces (or eliminates) the negative 
side effects of modifying a shared mutable object. The idea is to create a copy 
of the original object that can be safely shared; its modification won’t affect the 
original object.

7.1.2 Task parallelism support in .NET

Since its first release, the .NET Framework has supported the parallel execution of 
code through multithreading. Multithreaded programs are based on an indepen-
dent execution unit called a thread, which is a lightweight process responsible for 
multitasking within a single application. (The Thread class can be found in the Base 
Class Library (BCL) System.Threading namespace.) Threads are handled by the 
CLR. The creation of new threads is expensive in terms of overhead and memory. 
For example, the memory stack size associated with the creation of a thread is about 
1 MB in an x86 architecture-based processor because it involves the stack, thread 
local storage, and context switches. 

Fortunately, the .NET Framework provides a class ThreadPool that helps to over-
come these performance problems. In fact, it’s capable of optimizing the costs asso-
ciated with complex operations, such as creating, starting, and destroying threads. 
Furthermore, the .NET ThreadPool is designed to reuse existing threads as much as 
possible to minimize the costs associated with the instantiation of new ones.  Figure 7.2 
compares the two processes.

The ThreadPool class
The .NET Framework provides a ThreadPool static class that loads a set of threads during 
the initialization of a multithreaded application and then reuses those threads, instead of 
creating new threads, to run new tasks as required. In this way, the ThreadPool class lim-
its the number of threads that are running at any given point, avoiding the overhead of 
creating and destroying application threads. In the case of parallel computation, Thread-
Pool optimizes the performance and improves the application’s responsiveness by avoid-
ing context switches.

 

The ThreadPool class exposes the static method QueueUserWorkItem, which accepts a 
function (delegate) that represents an asynchronous operation. 
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Figure 7.2  If using conventional threads, you must create an instance of a new thread for each operation or 
task. This can create memory consumption issues. By contrast, if using a thread pool, you queue a task in a 
pool of work items, which are lightweight compared to threads. The thread pool then schedules these tasks, 
reusing the thread for the next work item and returning it back to the pool when the job is completed.

The following listing compares starting a thread in a traditional way versus starting a 
thread using the ThreadPool.QueueUserWorkItem static method.

Listing 7.1  Spawning threads and ThreadPool.QueueUserWorkItem

Action<string> downloadSite = url => { 
    var content = new WebClient().DownloadString(url);
    Console.WriteLine($"The size of the web site {url} is 
➥ {content.Length}");

};      

var threadA = new Thread(() => downloadSite("http://www.nasdaq.com"));
var threadB = new Thread(() => downloadSite("http://www.bbc.com"));

threadA.Start();
threadB.Start(); 
threadA.Join();
threadB.Join();  

ThreadPool.QueueUserWorkItem(o => downloadSite("http://www.nasdaq.com"));
ThreadPool.QueueUserWorkItem(o => downloadSite("http://www.bbc.com")); 

A thread starts explicitly, but the Thread class provides an option using the instance 
method Join to wait for the thread. Each thread then creates an additional mem-
ory load, which is harmful to the runtime environment. Initiating an asynchronous 

Uses a function to download 
a given website

Threads must start explicitly, providing 
the option to wait (join) for completion.

The ThreadPool.QueueUserWorkItem immediately 
starts an operation considered “fire and forget,” 

which means the work item needs to produce side 
effects in order for the calculation to be visible.  
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computation using ThreadPool’s QueueUserWorkItem is simple, but there are a few 
restraints when using this technique that introduce serious complications in develop-
ing a task-based parallel system: 

¡	No built-in notification mechanism when an asynchronous operation completes
¡	No easy way to get back a result from a ThreadPool worker
¡	No built-in mechanism to propagate exceptions to the original thread
¡	No easy way to coordinate dependent asynchronous operations

To overcome these limitations, Microsoft introduced the notion of tasks with the TPL, 
accessible through the System.Threading.Tasks namespace. The tasks concept is the 
recommended approach for building task-based parallel systems in .NET.

7.2 The .NET Task Parallel Library 
The .NET TPL implements a number of extra optimizations on top of ThreadPool, 
including a sophisticated TaskScheduler work-stealing algorithm (http://mng.bz/j4K1) 
to scale dynamically the degree of concurrency, as shown in figure 7.3. This algorithm 
guarantees an effective use of the available system processor resources to maximize the 
overall performance of the concurrent code. 

Worker 1
Work-stealing algorithm

Task 2

Task 3

Task 4

Task 5

Task 6

Task 1 Work item 6 Work item 1

Work item 4

1. The work item is sent
    to the main queue.

2. The work item
    is dispatched to
    a worker thread,
    which has a private,
    dedicated queue of
    work items to
    process.

3. If the main queue is
    empty, workers look
    in the private queues
    of other workers to
    “steal” work.

Work item 3

Worker 2

Work item 2

Work item 5

Figure 7.3  The TPL uses the work-stealing algorithm to optimize the scheduler. Initially, the TPL sends 
jobs to the main queue (step 1). Then it dispatches the work items to one of the worker threads, which 
has a private and dedicated queue of work items to process (step 2). If the main queue is empty, the 
workers look in the private queues of the other workers to “steal” work (step 3). 
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With the introduction of the task concept in place of the traditional and limited thread 
model, the Microsoft TPL eases the process of adding concurrency and parallelism to 
a program with a set of new types. Furthermore, the TPL provides support through the 
Task object to cancel and manage state, to handle and propagate exceptions, and to 
control the execution of working threads. The TPL abstracts away the implementation 
details from the developer, offering control over executing the code in parallel.

When using a task-based programming model, it becomes almost effortless to intro-
duce parallelism in a program and concurrently execute parts of the code by convert-
ing those parts into tasks. 

NOTE  The TPL provides the necessary infrastructure to achieve optimal utili-
zation of CPU resources, regardless of whether you’re running a parallel pro-
gram on a single or multicore computer.

You have several ways to invoke parallel tasks. This chapter reviews the relevant tech-
niques to implement task parallelism.

7.2.1 Running operations in parallel with TPL Parallel.Invoke

Using the .NET TPL, you can schedule a task in several ways, the Parallel.Invoke 
method being the simplest. This method accepts an arbitrary number of actions (del-
egates) as an argument in the form ParamArray and creates a task for each of the del-
egates passed. Unfortunately, the action-delegate signature has no input arguments, 
and it returns void, which is contrary to functional principles. In imperative program-
ming languages, functions returning void are used for side effects.

When all the tasks terminate, the Parallel.Invoke method returns control to the 
main thread to continue the execution flow. One important distinction of the Paral-
lel.Invoke method is that exception handling, synchronous invocation, and schedul-
ing are handled transparently to the developer.

Let’s imagine a scenario where you need to execute a set of independent, hetero-
geneous tasks in parallel as a whole, then continue the work after all tasks complete. 
Unfortunately, PLINQ and parallel loops (discussed in the previous chapters) cannot 
be used because they don’t support heterogeneous operations. This is the typical case 
for using the Parallel.Invoke method.

NOTE  Heterogeneous tasks are a set of operations that compute as a whole regard-
less of having different result types or diverse outcomes. 

Listing 7.2 runs functions in parallel against three given images and then saves the 
result in the filesystem. Each function creates a locally defensive copy of the original 
image to avoid unwanted mutation. The code example is in F#; the same concept 
applies to all .NET programming languages. 
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Listing 7.2  Parallel.Invoke executing multiple heterogeneous tasks

let convertImageTo3D (sourceImage:string) (destinationImage:string) = 
    let bitmap = Bitmap.FromFile(sourceImage) :?> Bitmap       
    let w,h = bitmap.Width, bitmap.Height
    for x in 20 .. (w-1) do
        for y in 0 .. (h-1) do          
            let c1 = bitmap.GetPixel(x,y)
            let c2 = bitmap.GetPixel(x - 20,y)
            let color3D = Color.FromArgb(int c1.R, int c2.G, int c2.B)
            bitmap.SetPixel(x - 20 ,y,color3D)
    bitmap.Save(destinationImage, ImageFormat.Jpeg)      

let setGrayscale (sourceImage:string) (destinationImage:string) =    
    let bitmap = Bitmap.FromFile(sourceImage) :?> Bitmap      
    let w,h = bitmap.Width, bitmap.Height
    for x = 0 to (w-1) do
        for y = 0 to  (h-1) do          
            let c = bitmap.GetPixel(x,y)
            let gray = int(0.299 * float c.R + 0.587 * float c.G + 0.114 * 
➥ float c.B)
            bitmap.SetPixel(x,y, Color.FromArgb(gray, gray, gray))
    bitmap.Save(destinationImage, ImageFormat.Jpeg)     

let setRedscale (sourceImage:string) (destinationImage:string) =   
    let bitmap = Bitmap.FromFile(sourceImage) :?> Bitmap     
    let w,h = bitmap.Width, bitmap.Height
    for x = 0 to (w-1) do
        for y = 0 to  (h-1) do         
            let c = bitmap.GetPixel(x,y)
            bitmap.SetPixel(x,y, Color.FromArgb(int c.R, 
➥ abs(int c.G – 255), abs(int c.B – 255)))
    bitmap.Save(destinationImage, ImageFormat.Jpeg)      

System.Threading.Tasks.Parallel.Invoke(
    Action(fun ()-> convertImageTo3D "MonaLisa.jpg" "MonaLisa3D.jpg"),
    Action(fun ()-> setGrayscale "LadyErmine.jpg" "LadyErmineRed.jpg"),
    Action(fun ()-> setRedscale "GinevraBenci.jpg" "GinevraBenciGray.jpg")) 

In the code, Parallel.Invoke creates and starts the three tasks independently, one for 
each function, and blocks the execution flow of the main thread until all tasks com-
plete. Due to the parallelism achieved, the total execution time coincides with the time 
to compute the slower method. 

NOTE  The source code intentionally uses the methods GetPixel and SetPixel 
to modify a Bitmap. These methods (especially GetPixel) are notoriously slow; 
but for the sake of the example we want to test the parallelism creating little 

Creates an image with a 3D effect from a given image

Creates a copy of 
an image from a 

given file path 
A nested for loop accesses  
the pixels of the image.

Saves the newly created 
image in the filesystemCreates an image, transforming the colors to shades of gray

A nested for loop accesses  
the pixels of the image.

Creates an image by applying the Red color filter

A nested for loop 
accesses the pixels  
of the image.

Saves the newly created image in the filesystem
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extra overhead to induce extra CPU stress. In production code, if you need 
to iterate throughout an entire image, you’re better off marshaling the entire 
image into a byte array and iterating through that.

It’s interesting to notice that the Parallel.Invoke method could be used to implement a 
Fork/Join pattern, where multiple operations run in parallel and then join when they’re 
all completed. Figure 7.4 shows the images before and after the image processing.

Ginevra de’ Benci Ginevra de’ Benci, red filter

Mona Lisa Mona Lisa, 3D

Lady with an Ermine Lady with an Ermine, shades of gray

Figure 7.4  The resulting 
images from running the code 
in listing 7.2. You can find 
the full implementation in the 
downloadable source code. 
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Despite the convenience of executing multiple tasks in parallel, Parallel.Invoke 
limits the control of the parallel operation because of the void signature type. This 
method doesn’t expose any resources to provide details regarding the status and out-
come, either succeed or fail, of each individual task. Parallel.Invoke can either 
complete successfully or throw an exception in the form of an AggregateException 
instance. In the latter case, any exception that occurs during the execution is post-
poned and rethrown when all tasks have completed. In FP, exceptions are side effects 
that should be avoided. Therefore, FP provides a better mechanism to handle errors, a 
subject which will be covered in chapter 11. 

Ultimately, there are two important limitations to consider when using the Parallel 
.Invoke method:

¡	The signature of the method returns void, which prevents compositionality.  
¡	The order of task execution isn’t guaranteed, which constrains the design of 

computations that have dependencies. 

7.3 The problem of void in C#
It’s common, in imperative programming languages such as C#, to define methods 
and delegates that don’t return values (void), such as the Parallel.Invoke method. 
This method’s signature prevents compositionality. Two functions can compose when 
the output of a function matches the input of the other function.

In function-first programming languages such as F#, every function has a return 
value, including the case of the unit type, which is comparable to a void but is treated as 
a value, conceptually not much different from a Boolean or integer. 

unit is the type of any expression that lacks any other specific value. Think of func-
tions used for printing to the screen. There’s nothing specific that needs to be returned, 
and therefore functions may return unit so that the code is still valid. This is the F# 
equivalent of C#’s void. The reason F# doesn’t use void is that every valid piece of code 
has a return type, whereas void is the absence of a return. Rather than the concept of 
void, a functional programmer thinks of unit. In F#, the unit type is written as (). This 
design enables function composition. 

In principle, it isn’t required for a programming language to support methods with 
return values. But a method without a defined output (void) suggests that the function 
performs some side effect, which makes it difficult to run tasks in parallel.  

7.3.1 The solution for void in C#: the unit type

In functional programming, a function defines a relationship between its input and out-
put values. This is similar to the way mathematical theorems are written. For example, 
in the case of a pure function, the return value is only determined by its input values. 

In mathematics, every function returns a value. In FP, a function is a mapping, and a 
mapping has to have a value to map. This concept is missing in mainstream imperative 
programming languages such as C#, C++, and Java, which treat voids as methods that 
don’t return anything, instead of as functions that can return something meaningful. 
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In C#, you can implement a Unit type as a struct with a single value that can be 
used as a return type in place of a void-returning method. Alternatively, the Rx, dis-
cussed in chapter 6, provides a unit type as part of its library. This listing shows the 
implementation of the Unit type in C#, which was borrowed from the Microsoft Rx 
(http://bit.ly/2vEzMeM).

Listing 7.3  Unit type implementation in C#

public struct Unit : IEquatable<Unit>  
{

    public static readonly Unit Default = new Unit();  
    public override int GetHashCode() => 0;        
    public override bool Equals(object obj) => obj is Unit;   
    public override string ToString() => "()";

    public bool Equals(Unit other) => true;       
    public static bool operator ==(Unit lhs, Unit rhs) => true;   
    public static bool operator !=(Unit lhs, Unit rhs) => false;  
}

The Unit struct implements the IEquatable interface in such a way that forces all val-
ues of the Unit type to be equal. But what’s the real benefit of having the Unit type as a 
value in a language type system? What is its practical use?     

Here are two main answers:

¡	The type Unit can be used to publish an acknowledgment that a function is 
completed.

¡	Having a Unit type is useful for writing generic code, including where a generic 
first-class function is required, which reduces code duplication.

Using the Unit type, for example, you could avoid repeating code to implement 
Action<T> or Func<T, R>, or functions that return a Task or a Task<T>. Let’s consider 
a function that runs a Task<TInput> and transforms the result of the computation into 
a TResult type:

TResult Compute<TInput, TResult>(Task<TInput> task, 
             Func<TInput, TResult> projection) => projection(task.Result);

Task<int> task = Task.Run<int>(() => 42);
bool isTheAnswerOfLife = Compute(task, n => n == 42);

This function has two arguments. The first is a Task<TInput> that evaluates to an 
expression. The result is passed into the second argument, a Func<TInput, TResult> 
delegate, to apply a transformation and then return the final value.

The unit struct that implements the IEquatable 
interface to force the definition of a type-
specific method for determining equality

Uses a helper static method to retrieve 
the instance of the Unit type

Overrides the base methods to 
force equality between Unit types

Equality between unit types is always true.
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NOTE  This code implementation is for demo purposes only. It isn’t recom-
mended to block the evaluation of the task to retrieve the result as the Compute 
function does in the previous code snippet. Section 7.4 covers the right approach.

How would you convert the Compute function into a function that prints the result? 
You’re forced to write a new function to replace the Func<T> delegate projection into 
an Action delegate type. The new method has this signature: 

void Compute<TInput>(Task<TInput> task, Action<TInput> action) =>
                     action(task.Result);

Task<int> task = Task.Run<int>(() => 42);
Compute(task, n => Console.WriteLine($"Is {n} the answer of life? 
➥ {n == 42}"));

It’s also important to point out that the Action delegate type is performing a side 
effect: in this case, printing the result on the console, which is a function conceptually 
similar to the previous one.

It would be ideal to reuse the same function instead of having to duplicate code for 
the function with the Action delegate type as an argument. To do so, you’ll need to pass 
a void into the Func delegate, which isn’t possible in C#. This is the case where the Unit 
type removes code repetition. By using the struct Unit type definition, you can use 
the same function that takes a Func delegate to also produce the same behavior as the 
function with the Action delegate type:

Task<int> task = Task.Run<int>(() => 42);

Unit unit = Compute(task, n => {
     Console.WriteLine($"Is {n} the answer of life? {n == 42}");
     return Unit.Default;});

In that way, introducing the Unit type in the C# language, you can write one Compute 
function to handle both cases of returning a value or computing a side effect. Ulti-
mately, a function returning a Unit type indicates the presence of side effects, which 
is meaningful information for writing concurrent code. Moreover, there are FP lan-
guages, such as Haskell, where the Unit type notifies the compiler, which then distin-
guishes between pure and impure functions to apply more granular optimization.

7.4 Continuation-passing style: a functional control flow
Task continuation is based on the functional idea of the CPS paradigm, discussed in 
chapter 3. This approach gives you execution control, in the form of continuation, by 
passing the result of the current function to the next one. Essentially, function contin-
uation is a delegate that represents “what happens next.” CPS is an alternative for the 
conventional control flow in imperative programming style, where each command is 
executed one after another. Instead, using CPS, a function is passed as an argument 
into a method, explicitly defining the next operation to execute after its own computa-
tion is completed. This lets you design your own flow-of-control commands. 
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7.4.1 Why exploit CPS?

The main benefit of applying CPS in a concurrent environment is avoiding inconve-
nient thread blocking that negatively impacts the performance of the program. For 
example, it’s inefficient for a method to wait for one or more tasks to complete, block-
ing the main execution thread until its child tasks complete. Often the parent task, 
which in this case is the main thread, can continue, but cannot proceed immediately 
because its thread is still executing one of the other tasks. The solution: CPS, which 
allows the thread to return to the caller immediately, without waiting on its children. 
This ensures that the continuation will be invoked when it completes.

One downside of using explicit CPS is that code complexity can escalate quickly 
because CPS makes programs longer and less readable. You’ll see later in this chapter 
how to combat this issue by combining TPL and functional paradigms to abstract the 
complexity behind the code, making it flexible and simple to use. CPS enables several 
helpful task advantages:

¡	Function continuations can be composed as a chain of operations. 
¡	A continuation can specify the conditions under which the function is called.
¡	A continuation function can invoke a set of other continuations.
¡	A continuation function can be canceled easily at any time during computation 

or even before it starts.

In the .NET Framework, a task is an abstraction of the classic (traditional) .NET thread 
(http://mng.bz/DK6K), representing an independent asynchronous unit of work. The 
Task object is part of the System.Threading.Tasks namespace. The higher level of 
abstraction provided by the Task type aims to simplify the implementation of concur-
rent code and facilitate the control of the life cycle for each task operation. It’s possible, 
for example, to verify the status of the computation and confirm whether the operation 
is terminated, failed, or canceled. Moreover, tasks are composable in a chain of opera-
tions by using continuations, which permit a declarative and fluent programming style. 

The following listing shows how to create and run operations using the Task type. 
The code uses the functions from listing 7.2. 

Listing 7.4  Creating and starting tasks

Task monaLisaTask = Task.Factory.StartNew(() => 
    convertImageTo3D("MonaLisa.jpg", "MonaLisa3D.jpg"));       

Task ladyErmineTask = new Task(() => 
    setGrayscale("LadyErmine.jpg", "LadyErmine3D.jpg"));
ladyErmineTask.Start();         

Task ginevraBenciTask = Task.Run(() => 
    setRedscale("GinevraBenci.jpg", "GinevraBenci3D.jpg"));     

Runs the method 
convertImageTo3D 
using the StartNew Task 
static helper method

Runs the method setGrayscale by 
creating a new Task instance, and then 
calls the Start() Task instance method 

Runs the method setRedscale using the 
simplified static method Run(), which runs 
a task with the default common properties 
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The code shows three different ways to create and execute a task:

¡	The first technique creates and immediately starts a new task using the built-in 
Task.Factory.StartNew method constructor.

¡	The second technique creates a new instance of a task, which needs a function as 
a constructor parameter to serve as the body of the task. Then, calling the Start 
instance method, the Task begins the computation. This technique provides the 
flexibility to delay task execution until the Start function is called; in this way, 
the Task object can be passed into another method that decides when to sched-
ule the task for execution. 

¡	The third approach creates the Task object and then immediately calls the Run 
method to schedule the task. This is a convenient way to create and work with 
tasks using the default constructor that applies the standard option values. 

The first two options are a better choice if you need a particular option to instantiate 
a task, such as setting the LongRunning option. In general, tasks promote a natural way 
to isolate data that depends on functions to communicate with their related input and 
output values, as shown in the conceptual example in figure 7.5.

Result is
coffee

Task: grind coffee beans
beans       powderInput is

coffee beans

Output is
coffee powder

Input is
coffee powder

Task: brew coffee
powder       coffee

Figure 7.5  When two tasks are composed together, the output of the first task becomes the input for 
the second. This is the same as function composition. 

NOTE  The Task object can be instantiated with different options to control 
and customize its behavior. The TaskCreationOptions.LongRunning option 
notifies the underlying scheduler that the task will be a long-running one, for 
example. In this case, the task scheduler might be bypassed to create an addi-
tional and dedicated thread whose work won’t be impacted by thread-pool 
scheduling. For more information regarding TaskCreationOptions, see the 
Microsoft MSDN documentation online (http://bit.ly/2uxg1R6).

7.4.2 Waiting for a task to complete: the continuation model

You’ve seen how to use tasks to parallelize independent units of work. But in common 
cases the structure of the code is more complex than launching operations in a fire-
and-forget manner. The majority of task-based parallel computations require a more 
sophisticated level of coordination between concurrent operations, where order of 
execution can be influenced by the underlying algorithms and control flow of the pro-
gram. Fortunately, the .NET TPL library provides mechanisms for coordinating tasks.

Let’s start with an example of multiple operations running sequentially, and incre-
mentally redesign and refactor the program to improve the code compositionality and 
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performance. You’ll start with the sequential implementation, and then you’ll apply dif-
ferent techniques incrementally to improve and maximize the overall computational 
performance.

Listing 7.5 implements a face-detection program that can detect specific faces in a 
given image. For this example, you’ll use the images of the presidents of the United 
States on $20, $50, and $100 bills, using the side on which the president’s image is 
printed. The program will detect the face of the president in each image and return a 
new image with a square box surrounding the detected face. In this example, focus on 
the important code without being distracted by the details of the UI implementation. 
The full source code is downloadable from the book’s website. 

Listing 7.5  Face-detection function in C#

Bitmap DetectFaces(string fileName) {
    var imageFrame = new Image<Bgr, byte>(fileName);  
    var cascadeClassifier = new CascadeClassifier();  
    var grayframe = imageFrame.Convert<Gray, byte>(); 
    var faces = cascadeClassifier.DetectMultiScale(
        grayframe, 1.1, 3, System.Drawing.Size.Empty); 
    foreach (var face in faces)
        imageFrame.Draw(face, 
                  new Bgr(System.Drawing.Color.BurlyWood), 3); 
    return imageFrame.ToBitmap();
}

void StartFaceDetection(string imagesFolder) {
    var filePaths = Directory.GetFiles(imagesFolder);
        foreach (string filePath in filePaths) {
            var bitmap = DetectFaces(filePath);
            var bitmapImage = bitmap.ToBitmapImage();
            Images.Add(bitmapImage);   
       }
}

The function DetectFaces loads an image from the filesystem using the given filename 
path and then detects the presence of any faces. The library Emgu.CV is responsible 
for performing the face detection. The Emgu.CV library is a .NET wrapper that per-
mits interoperability with programming languages such as C# and F#, both of which 
can interact and call the functions of the underlying Intel OpenCV image-processing 
library.1 The function StartFaceDetection initiates the execution, getting the filesys-
tem path of the images to evaluate, and then sequentially processes the face detection 
in a for-each loop by calling the function DetectFaces. The result is a new BitmapIm-
age type, which is added to the observable collection Images to update the UI. Fig-
ure 7.6 shows the expected result—the detected faces are highlighted in a box.

Instance of an Emgu.CV 
image to interop with the 
OpenCV library

Uses a 
classifier to 
detect face 
features in 

an image
Face-detection 
process

The detected face(s) is 
highlighted here, using a box 

that’s drawn around it.

The processed image 
is added to the Images 
observable collection 
to update the UI.

1 OpenCV (Open Source Computer Vision Library) is a high-performance image processing library by 
Intel (https://opencv.org). 
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The first step in improving the performance of the program is to run the face- detection 
function in parallel, creating a new task for each image to evaluate.

Listing 7.6  Parallel-task implementation of the face-detection program

void StartFaceDetection(string imagesFolder) 
{
    var filePaths = Directory.GetFiles(imagesFolder);

    var bitmaps = from filePath in filePaths
                select Task.Run<Bitmap>(() => DetectFaces(filePath)); 

    foreach (var bitmap in bitmaps) {
         var bitmapImage = bitmap.Result;
             Images.Add(bitmapImage.ToBitmapImage());
    }
}

In this code, a LINQ expression creates an IEnumerable of Task<Bitmap>, which is 
constructed with the convenient Task.Run method. With a collection of tasks in place, 
the code starts an independent computation in the for-each loop; but the perfor-
mance of the program isn’t improved. The problem is that the tasks still run sequen-
tially, one by one. The loop processes one task at a time, awaiting its completion before 
continuing to the next task. The code isn’t running in parallel. 

You could argue that choosing a different approach, such as using Parallel.ForEach 
or Parallel.Invoke to compute the DetectFaces function, could avoid the problem 
and guarantee parallelism. But you’ll see why this isn’t a good idea.

Let’s adjust the design to fix the problem by analyzing what the foundational issue 
is. The IEnumerable of Task<Bitmap> generated by the LINQ expression is material-
ized during the execution of the for-each loop. During each iteration, a Task<Bitmap> 
is retrieved, but at this point, the task isn’t competed; in fact, it’s not even started. The 
reason lies in the fact that the IEnumerable collection is lazily evaluated, so the under-
lying task starts the computation at the last possible moment during its materialization. 
Consequently, when the result of the task bitmap inside the loop is accessed through the 
Task<Bitmap>.Result property, the task will block the joining thread until the task is 

Figure 7.6  Result of the face-
detection process. The right 
side has the images with the 
detected face surrounded by a 
box frame.

Starts a task sequentially 
from the TPL for each 

image to process
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done. The execution will resume after the task terminates the computation and returns 
the result.

To write scalable software, you can’t have any blocked threads. In the previous code, 
when the task’s Result property is accessed because the task hasn’t yet finished running, 
the thread pool will most likely create a new thread. This increases resource consumption 
and hurts performance. 

After this analysis, it appears that there are two issues to be corrected to ensure 
parallelism (figure 7.7):

¡	Ensure that the tasks run in parallel.
¡	Avoid blocking the main working thread and waiting for each task to complete.

Worker 1

Image 2

Image 1

Image 3

Work item 2 Work item 3

Work item 4

1. Images are sent to the task
   scheduler and become work
   items to be processed.

2. Work items 1 and 3 are stolen
    by workers 2 and 1, respectively.

3. Worker 1 completes the
    work and notifies the scheduler,
    which schedules the continuation
    of work item 3 in the form of
    work item 4.

4. When work item 4 is processed,
    the result updates the UI.

Worker 2

Work item 1

 

Figure 7.7  The images are sent to the task scheduler, becoming work items to be processed (step 1). 
Work item 3 and work item 1 are then “stolen” by worker 1 and worker 2, respectively (step 2). Worker 1 
completes the work and notifies the task scheduler, which schedules the rest of the work for continuation 
in the form of the new work item 4, which is the continuation of work item 3 (step 3). When work item 4 is 
processed, the result updates the UI (step 4).

Here is how to fix issues to ensure the code runs in parallel and reduces memory 
consumption.

Listing 7.7  Correct parallel-task implementation of the DetectFaces function

ThreadLocal<CascadeClassifier> CascadeClassifierThreadLocal =
   new ThreadLocal<CascadeClassifier>(() => new CascadeClassifier()); 

Bitmap DetectFaces(string fileName) { Uses a ThreadLocal instance to ensure 
a defensive copy of CascadeClassifier 

for each working task
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     var imageFrame = new Image<Bgr, byte>(fileName);
     var cascadeClassifier = CascadeClassifierThreadLocal.Value;
     var grayframe = imageFrame.Convert<Gray, byte>();
     var faces = cascadeClassifier.DetectMultiScale(grayframe, 1.1, 3, 
➥ System.Drawing.Size.Empty); 

     foreach (var face in faces)
        imageFrame.Draw(face, new Bgr(System.Drawing.Color.BurlyWood), 3);     
     return imageFrame.ToBitmap();
}

void StartFaceDetection(string imagesFolder) {
     var filePaths = Directory.GetFiles(imagesFolder);
     var bitmapTasks = 
      (from filePath in filePaths
      select Task.Run<Bitmap>(() => DetectFaces(filePath))).ToList(); 

     foreach (var bitmapTask in bitmapTasks)
            bitmapTask.ContinueWith(bitmap => {     
                  var bitmapImage = bitmap.Result;
                  Images.Add(bitmapImage.ToBitmapImage());
            }, TaskScheduler.FromCurrentSynchronizationContext()); 
}

In the example, to keep the code structure simple, there’s the assumption that each 
computation completes successfully. A few code changes exist, but the good news is that 
true parallel computation is achieved without blocking any threads (by continuing the 
task operation when it completes). The main function StartFaceDetection guarantees 
executing the tasks in parallel by materializing the LINQ expression immediately with a 
call to ToList() on the IEnumerable of Task<Bitmap>. 

NOTE  When you write a computation that creates a load of tasks, fire a LINQ 
query and make sure to materialize the query first. Otherwise, there’s no benefit, 
because parallelism will be lost and the task will be computed sequentially in the 
for-each loop. 

Next, a ThreadLocal object is used to create a defensive copy of CascadeClassifier 
for each thread accessing the function DetectFaces. CascadeClassifier loads into 
memory a local resource, which isn’t thread safe. To solve this problem of thread 
unsafety, a local variable CascadeClassifier is instantiated for each thread that runs 
the function. This is the purpose of the ThreadLocal object (discussed in detail in 
chapter 4).

Then, in the function StartFaceDetection, the for-each loop iterates through the 
list of Task<Bitmap>, creating a continuation for each task instead of blocking the exe-
cution if the task is not completed. Because bitmapTask is an asynchronous operation, 
there’s no guarantee that the task has completed executing before the Result property 
is accessed. It’s good practice to use task continuation with the function ContinueWith 
to access the result as part of a continuation. Defining a task continuation is similar to 

Uses a LINQ expression on 
the file paths that starts 

image processing in parallel 

Task continuation ensures no blocking; 
the operation passes the continuation 

of the work when it completes.

TaskScheduler FromCurrentSynchronizationContext 
chooses the appropriate context to schedule work on 
the relevant UI.
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creating a regular task, but the function passed with the ContinueWith method takes as 
an argument a type of Task<Bitmap>. This argument represents the antecedent task, 
which can be used to inspect the status of the computation and branch accordingly.

When the antecedent task completes, the function ContinueWith starts execution 
as a new task. Task continuation runs in the captured current synchronization context, 
TaskScheduler.FromCurrentSynchronizationContext, which automatically chooses 
the appropriate context to schedule work on the relevant UI thread. 

NOTE  When the ContinueWith function is called, it’s possible to initiate starting 
the new task only if the first task terminates with certain conditions, such as if the 
task is canceled, by specifying the TaskContinuationOptions.OnlyOn Canceled 
flag, or if an exception is thrown, by using the TaskContinuationOptions 
.OnlyOnFaulted flag.

As previously mentioned, you could have used Parallel.ForEach, but the problem is 
that this approach waits until all the operations have finished before continuing, block-
ing the main thread. Moreover, it makes it more complex to update the UI directly 
because the operations run in different threads.

7.5 Strategies for composing task operations 
Continuations are the real power of the TPL. It’s possible, for example, to execute 
multiple continuations for a single task and to create a chain of task continuations 
that maintains dependencies with each other. Moreover, using task continuation, the 
underlying scheduler can take full advantage of the work-stealing mechanism and opti-
mize the scheduling mechanisms based on the available resources at runtime.

Let’s use task continuation in the face-detection example. The final code runs in paral-
lel, providing a boost in performance. But the program can be further optimized in terms 
of scalability. The function DetectFaces sequentially performs the series of operations 
as a chain of computations. To improve resource use and overall performance, a better 
design is to split the tasks and subsequent task continuations for each DetectFaces oper-
ation run in a different thread. 

Using task continuation, this change is simple. The following listing shows a new 
DetectFaces function, with each step of the face-detection algorithm running in a 
dedicated and independent task. 

Listing 7.8  DetectFaces function using task continuation

Task<Bitmap> DetectFaces(string fileName)
{
    var imageTask = Task.Run<Image<Bgr, byte>>(
        () => new Image<Bgr, byte>(fileName)
   );
    var imageFrameTask = imageTask.ContinueWith(
        image => image.Result.Convert<Gray, byte>()
   );    

Uses task continuation to pass the result of the 
work into the attached function without blocking 
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    var grayframeTask = imageFrameTask.ContinueWith(
        imageFrame => imageFrame.Result.Convert<Gray, byte>()
   );   

   var facesTask = grayframeTask.ContinueWith(grayFrame =>
      {
         var cascadeClassifier = CascadeClassifierThreadLocal.Value;
         return cascadeClassifier.DetectMultiScale(
            grayFrame.Result, 1.1, 3, System.Drawing.Size.Empty); 
      }
   );         

   var bitmapTask = facesTask.ContinueWith(faces =>
       {
          foreach (var face in faces.Result)
               imageTask.Result.Draw(
               face, new Bgr(System.Drawing.Color.BurlyWood), 3);
            return imageTask.Result.ToBitmap();
         }
      );        
   return bitmapTask;
}

The code works as expected; the execution time isn’t enhanced, although the program 
can potentially handle a larger number of images to process while still maintaining 
lower resource consumption. This is due to the smart TaskScheduler optimization. 
Because of this, the code has become cumbersome and hard to change. For example, 
if you add error handling or cancellation support, the code becomes a pile of spaghetti 
code—hard to understand and to maintain. It can be better. Composition is the key to 
controlling complexity in software.

The objective is to be able to apply a LINQ-style semantic to compose the functions 
that run the face-detection program, as shown here (the command and module names 
to note are in bold):

from image in Task.Run<Emgu.CV.Image<Bgr, byte>()
from imageFrame in Task.Run<Emgu.CV.Image<Gray, byte>>()
from faces in Task.Run<System.Drawing.Rectangle[]>()
select faces;

This is an example of how mathematical patterns can help to exploit declarative 
compositional semantics. 

7.5.1 Using mathematical patterns for better composition

Task continuation provides support to enable task composition. How do you combine 
tasks? In general, function composition takes two functions and injects the result from 
the first function into the input of the second function, thereby forming one function. 
In chapter 2, you implemented this Compose function in C# (in bold): 

 Func<A, C> Compose<A, B, C>(this Func<A, B> f, Func<B, C> g) => 
                                                 (n) => g(f(n)); 

Uses task continuation to pass the result of the 
work into the attached function without blocking 
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Can you use this function to combine two tasks? Not directly, no. First, the return type 
of the compositional function should be exposing the task’s elevated type as follows 
(noted in bold):

Func<A, Task<C>> Compose<A, B, C>(this Func<A, Task<B>> f, 
                                       Func<B, Task<C>> g) => (n) => g(f(n));

But there’s a problem: the code doesn’t compile. The return type from the function f 
doesn’t match the input of the function g: the function f(n) returns a type Task<B>, 
which isn’t compatible with the type B in function g. 

The solution is to implement a function that accesses the underlying value of the 
elevated type (in this case, the task) and then passes the value into the next function. 
This is a common pattern, called Monad, in FP; the Monad pattern is another design 
pattern, like the Decorator and Adapter patterns. This concept was introduced in sec-
tion 6.4.1, but let’s analyze this idea further so you can apply the concept to improve the 
face-detection code.

Monads are mathematical patterns that control the execution of side effects by 
encapsulating program logic, maintaining functional purity, and providing a powerful 
compositional tool to combine computations that work with elevated types. According 
to the monad definition, to define a monadic constructor, there are two functions, Bind 
and Return, to implement.

the monadic operators, bind and return

Bind takes an instance of an elevated type, unwraps the underlying value, and then 
invokes the function over the extracted value, returning a new elevated type. This func-
tion is performed in the future when it’s needed. Here the Bind signature uses the 
Task object as an elevated type: 

Task<R> Bind<T, R>(this Task<T> m, Func<T, Task<R>> k)

The Return value is an operator that wraps any type T into an instance of the elevated 
type. Following the example of the Task type, here’s the signature: 

Task<T> Return(T value)

NOTE  The same applies to other elevated types: for example, replacing the 
Task type with another elevated type such as the Lazy and Observable types.

the monad laws

Ultimately, to define a correct monad, the Bind and Return operations need to satisfy 
the monad laws:

1 Left identity—Applying the Bind operation to a value wrapped by the Return oper-
ation and then passed into a function is the same as passing the value straight 
into the function: 

Bind(Return value, function) = function(value)

 



 203Strategies for composing task operations 

2 Right identity—Returning a bind-wrapped value is equal to the wrapped value 
directly:   

Bind(elevated-value, Return) = elevated-value

3 Associative—Passing a value into a function f whose result is passed into a second 
function g is the same as composing the two functions f and g and then passing 
the initial value:

Bind(elevated-value, f(Bind(g(elevated-value)) = 
            Bind(elevated-value, Bind(f.Compose(g), elevated-value))

Now, using these monadic operations, you can fix the error in the previous Compose 
function to combine the Task elevated types as shown here:

Func<A, Task<C>> Compose<A, B, C>(this Func<A, Task<B>> f, 
                              Func<B, Task<C>> g) => (n) => Bind(f(n), g);

Monads are powerful because they can represent any arbitrary operations against ele-
vated types. In the case of the Task elevated type, monads let you implement function 
combinators to compose asynchronous operations in many ways, as shown in figure 7.8. 

41 + 1

Apply
function

Unwrap
value

Rewrap
value

Monadic
bind

Task<int>(41) int       Task<int>

M a (a -> M b) M b

x     Task<int>(x => x + 1) x     Task<int>(x => x + 1)Bind(Task<int>(41),

Task<int>(42)

Figure 7.8  The monadic Bind operator takes the elevated value Task that acts as a container 
(wrapper) for the value 42, and then it applies the function x ➔ Task<int>(x => x + 1), where x is 
the number 41 unwrapped. Basically, the Bind operator unwraps an elevated value (Task<int>(41)) 
and then applies a function (x + 1) to return a new elevated value (Task<int>(42).

Surprisingly, these monadic operators are already built into the .NET Framework in 
the form of LINQ operators. The LINQ SelectMany definition corresponds directly 
to the monadic Bind function. Listing 7.9 shows both the Bind and Return opera-
tors applied to the Task type. The functions are then used to implement a LINQ-style 
semantic to compose asynchronous operations in a monadic fashion. The code is in 
F# and then consumed in C# to keep proving the easy interoperability between these 
programming languages (the code to note is in bold).

Listing 7.9  Task extension in F# to enable LINQ-style operators for tasks

[<Sealed; Extension; CompiledName("Task")>]
type TaskExtensions =
  // 'T -> M<'T>
  static member Return value : Task<'T> = Task.FromResult<'T> (value) 

The Return monadic operator takes 
any type T and returns a Task<T>.
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  // M<'T> * ('T -> M<'U>) -> M<'U>

  static member Bind (input : Task<'T>, binder : 'T -> Task<'U>) = 
        let tcs = new TaskCompletionSource<'U>()    
        input.ContinueWith(fun (task:Task<'T>) ->
           if (task.IsFaulted) then 
                tcs.SetException(task.Exception.InnerExceptions)
           elif (task.IsCanceled) then 
                tcs.SetCanceled()
           else
                try

                   (binder(task.Result)).ContinueWith(fun 
➥ (nextTask:Task<'U>) -> tcs.SetResult(nextTask.Result)) |> ignore 
                with
                | ex -> tcs.SetException(ex)) |> ignore
        tcs.Task

  static member Select (task : Task<'T>, selector : 'T -> 'U) : Task<'U> =
        task.ContinueWith(fun (t:Task<'T>) -> selector(t.Result))

  static member SelectMany(input:Task<'T>, binder:'T -> Task<'I>, 
projection:'T -> 'I -> 'R): Task<'R> =

        TaskExtensions.Bind(input,
            fun outer -> TaskExtensions.Bind(binder(outer), fun inner ->
                TaskExtensions.Return(projection outer inner))) 

  static member SelectMany(input:Task<'T>, binder:'T -> Task<'R>) : Task<'R> 
=

        TaskExtensions.Bind(input,
            fun outer -> TaskExtensions.Bind(binder(outer), fun inner ->
                TaskExtensions.Return(inner))) 

The implementation of the Return operation is straightforward, but the Bind opera-
tion is a little more complex. The Bind definition can be reused to create other LINQ-
style combinators for tasks, such as the Select and two variants of the SelectMany 
operators. In the body of the function Bind, the function ContinueWith, from the 
underlying task instance, is used to extract the result from the computation of the 
input task. Then to continue the work, it applies the binder function to the result of 
the input task. Ultimately, the output of the nextTask continuation is set as the result 
of the tcs TaskCompletionSource. The returning task is an instance of the underly-
ing TaskCompletionSource, which is introduced to initialize a task from any opera-
tion that starts and finishes in the future. The idea of the TaskCompletionSource is to 
create a task that can be governed and updated manually to indicate when and how 
a given operation completes. The power of the TaskCompletionSource type is in the 
capability of creating tasks that don’t tie up threads. 

The Bind operator takes a Task object as an 
elevated type, applies a function to the underlying 

type, and returns a new elevated type Task<U>

TaskCompletionSource initializes a behavior in the form 
of Task, so it can be treated like one.

The Bind operator unwraps the result from 
the Task elevated type and passes the result 

into the continuation that executes the 
monadic function binder.

The LINQ SelectMany operator acts as 
the Bind monadic operator.
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TaskCompletionSource
The purpose of the TaskCompletionSource<T> object is to provide control and refer to 
an arbitrary asynchronous operation as a Task<T>. When a TaskCompletionSource 
(http://bit.ly/2vDOmSN) is created, the underlying task properties are accessible 
through a set of methods to manage the lifetime and completion of the task. This includes 
SetResult, SetException, and SetCanceled. 

 

applying the monad pattern to task operations 
With the LINQ operations SelectMany on tasks in place, you can rewrite the DetectFaces 
function using an expressive and comprehension query (the code to note is in bold). 

Listing 7.10  DetectFaces using task continuation based on a LINQ expression

Task<Bitmap> DetectFaces(string fileName)  {
     Func<System.Drawing.Rectangle[],Image<Bgr, byte>, Bitmap> 
➥	drawBoundries = 
        (faces, image) => {
              faces.ForAll(face => image.Draw(face, new  
➥ Bgr(System.Drawing.Color.BurlyWood), 3));  
             return image.ToBitmap();
      };

         return from image in Task.Run(() => new Image<Bgr, byte>(fileName))
                from imageFrame in Task.Run(() => image.Convert<Gray, 

byte>())
                from bitmap in Task.Run(() =>
           CascadeClassifierThreadLocal.Value.DetectMultiScale(imageFrame,
➥ 1.1, 3, System.Drawing.Size.Empty)).Select(faces => 
                                             drawBoundries(faces, image))
                select bitmap;    
}

This code shows the power of the monadic pattern, providing composition semantics 
over elevated types such as tasks. Moreover, the code of the monadic operations is con-
centrated into the two operators Bind and Return, making the code maintainable and 
easy to debug. To add logging functionality or special error handling, for example, you 
only need to change one place in code, which is convenient. 

In listing 7.10, the Return and Bind operators were exposed in F# and consumed in 
C#, as a demonstration of the simple interoperability between the two programming 
languages. The source code for this book contains the implementation in C#. A beau-
tiful composition of elevated types requires monads; the continuation monad shows how 
monads can readily express complex computations.

using the hidden fmap functor pattern to apply transformation 
One important function in FP is Map, which transforms one input type into a different 
one. The signature of the Map function is

Map :  (T -> R) -> [T] -> [R]

The detected face(s) are highlighted 
using a box that’s drawn around them.

Task composition using the LINQ-like Task operators 
defined with the Task monadic operators

 

http://bit.ly/2vDOmSN
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An example in C# is the LINQ Select operator, which is a map function for IEnumer-
able types:

IEnumerable<R>  Select<T,R>(IEnumerable<T> en, Func<T, R> projection)

In FP, this similar concept is called a functor, and the map function is defined as fmap. 
Functors are basically types that can be mapped over. In F#, there are many:

Seq.map : ('a -> 'b) -> 'a seq -> 'b seq 
List.map : ('a -> 'b) -> 'a list -> 'b list 
Array.map : ('a -> 'b) -> 'a [] -> 'b []
Option.map : ('a -> 'b) -> 'a Option -> 'b Option 

This mapping idea seems simple, but the complexity starts when you have to map ele-
vated types. This is when the functor pattern becomes useful.

Think about a functor as a container that wraps an elevated type and offers a way to 
transform a normal function into one that operates on the contained values. In the case 
of the Task type, this is the signature:

fmap : ('T -> 'R) -> Task<'T> -> Task<'R>

This function has been previously implemented for the Task type in the form of the 
Select operator as part of the LINQ-style operators set for tasks built in F#. In the last 
LINQ expression computation of the function DetectFaces, the Select operator proj-
ects (map) the input Task<Rectangle[]> into a Task<Bitmap>:

from image in Task.Run(() => new Image<Bgr, byte>(fileName))
from imageFrame in Task.Run(() => image.Convert<Gray, byte>())
from bitmap in Task.Run(() => 
            CascadeClassifierThreadLocal.Value.DetectMultiScale
                        (imageFrame, 1.1, 3, System.Drawing.Size.Empty))
     .select(faces => drawBoundries(faces, image))
select bitmap;

The concept of functors becomes useful when working with another functional pat-
tern, applicative functors, which will be covered in chapter 10.

NOTE  The concepts of functors and monads come from the branch of math-
ematics called category theory,2 but it isn’t necessary to have any category theory 
background to follow and use these patterns.

the abilities behind monads 
Monads provide an elegant solution to composing elevated types. Monads aim to con-
trol functions with side effects, such as those that perform I/O operations, providing 
a mechanism to perform operations directly on the result of the I/O without having a 
value from impure functions floating around the rest of your pure program. For this 
reason, monads are useful in designing and implementing concurrent applications. 

2 For more information, see https://wiki.haskell.org/Category_theory. 

 

https://wiki.haskell.org/Category_theory
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7.5.2 Guidelines for using tasks 

Here are several guidelines for using tasks: 

¡	It’s good practice to use immutable types for return values. This makes it easier to 
ensure that your code is correct. 

¡	It’s good practice to avoid tasks that produce side effects; instead, tasks should 
communicate with the rest of the program only with their returned values.

¡	It’s recommended that you use the task continuation model to continue with the 
computation, which avoids unnecessary blocking.

7.6 The parallel functional Pipeline pattern 
In this section, you’re going to implement one of the most common coordination 
techniques—the Pipeline pattern. In general, a pipeline is composed of a series of 
computational steps, composed as a chain of stages, where each stage depends on the 
output of its predecessor and usually performs a transformation on the input data. 
You can think of the Pipeline pattern as an assembly line in a factory, where each item 
is constructed in stages. The evolution of an entire chain is expressed as a function, 
and it uses a message queue to execute the function each time new input is received. 
The message queue is non-blocking because it runs in a separate thread, so even if the 
stages of the pipeline take a while to execute, it won’t block the sender of the input 
from pushing more data to the chain.

This pattern is similar to the Producer/Consumer pattern, where a producer man-
ages one or more worker threads to generate data. There can be one or more consum-
ers that consume the data being created by the producer. Pipelines allow these series 
to run in parallel. The implementation of the pipeline in this section follows a slightly 
different design as compared to the traditional one seen in figure 7.9. 

The traditional Pipeline pattern with serial stages has a speedup, measured in 
throughput, which is limited to the throughput of the slowest stage. Every item pushed 
into the pipeline must pass through that stage. The traditional Pipeline pattern cannot 
scale automatically with the number of cores, but is limited to the number of stages. 
Only a linear pipeline, where the number of stages matches the number of available 
logical cores, can take full advantage of the computer power. In a computer with eight 
cores, a pipeline composed of four stages can use only half of the resources, leaving 
50% of the cores idle. 

FP promotes composition, which is the concept the Pipeline pattern is based on. In 
listing 7.11, the pipeline embraces this tenet by composing each step into a single func-
tion and then distributing the work in parallel, fully using the available resources. In an 
abstract way, each function acts as the continuation of the previous one, behaving as a 
continuation-passing style. The code listing implementing the pipeline is in F#, then 
consumed in C#. But in the downloadable source code, you can find the full imple-
mentation in both programming languages. Here  the IPipeline interface defines the 
functionality of the pipeline.
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Traditional parallel pipeline
The pipeline creates a buffer between each stage that works as a parallel Producer/Consumer pattern. There

are almost as many buffers as there are stages. Each work item is sent to stage 1; the result is passed
into the first buffer, which coordinates the work in parallel to push it into stage 2. This process

continues until the end of the pipeline, when all the stages are computed.

Stage 2 Buffer

Functional parallel pipeline
The pipeline combines all the stages into one, as if composing multiple functions.

Each work item is pushed into the combined steps to be processed
in parallel, using the TPL and the optimized scheduler.

WorkItem 1

WorkItem 2

Task 2

Task 3

Task 1

Figure 7.9  The traditional pipeline creates a buffer between each stage that works as a parallel Producer/
Consumer pattern. There are almost as many buffers as there are number of stages. With this design, 
each work item to process is sent to the initial stage, then the result is passed into the first buffer, which 
coordinates the work in parallel to push it into the second stage. This process continues until the end of 
the pipeline when all the stages are computed. By contrast, the functional parallel pipeline combines all the 
stages into one, as if composing multiple functions. Then, using a Task object, each work item is pushed 
into the combined steps to be processed in parallel and uses the TPL and the optimized scheduler.

Listing 7.11  IPipeline interface

[<Interface>]
type IPipeline<'a,'b> =    
    abstract member Then : Func<'b, 'c> -> IPipeline<'a,'c>  

    abstract member Enqueue : 'a * Func<('a * 'b), unit)> -> unit 

Interface that defines the pipeline contract

Uses a function to expose a fluent API approach Uses a function to push new input to 
process into the pipeline
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    abstract member Execute : (int * CancellationToken) -> IDisposable 
    abstract member Stop : unit -> unit     

The function Then is the core of the pipeline, where the input function is composed of 
the previous one, applying a transformation. This function returns a new instance of 
the pipeline, providing a convenient and fluent API to build the process.

The Enqueue function is responsible for pushing work items into the pipeline for 
processing. It takes a Callback as an argument, which is applied at the end of the pipe-
line to further process the final result. This design gives flexibility to apply any arbitrary 
function for each item pushed. 

The Execute function starts the computation. Its input arguments set the size of the 
internal buffer and a cancellation token to stop the pipeline on demand. This function 
returns an IDisposable type, which can be used to trigger the cancellation token to 
stop the pipeline. Here is the full implementation of the pipeline (the code to note is 
in bold).

Listing 7.12  Parallel functional pipeline pattern  

[<Struct>]
type Continuation<'a, 'b>(input:'a, callback:Func<('a * 'b), unit) =
    member this.Input with get() = input
    member this.Callback with get() = callback    

type Pipeline<'a, 'b> private (func:Func<'a, 'b>) as this =
    let continuations = Array.init 3 (fun _ -> new 
                   BlockingCollection<Continuation<'a,'b>>(100))    

    let then' (nextFunction:Func<'b,'c>) =
        Pipeline(func.Compose(nextFunction)) :> IPipeline<_,_>    

    let enqueue (input:'a) (callback:Func<('a * 'b), unit>) =
        BlockingCollection<Continuation<_,_>>.AddToAny(continuations,
➥ Continuation(input, callback))    

    let stop() = for continuation in continuations do continuation.
CompleteAdding() 

Starts the pipeline 
executionThe pipeline can be stopped at any time; this 

function triggers the underlying cancellation token. 

The Continuation struct encapsulates the 
input value for each task with the callback 
to run when the computation completes. Initializes the 

BlockingCollection 
that buffers the work

Uses function composition to combine the 
current function of the pipeline with the new 

one passed and returns a new pipeline. The 
compose function was introduced in chapter 2.

The Enqueue function pushes the 
work into the buffer. 

The BlockingCollection is notified to complete, 
which stops the pipeline.
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    let execute blockingCollectionPoolSize 
(cancellationToken:CancellationToken) =

        cancellationToken.Register(Action(stop)) |> ignore  

        for i = 0 to blockingCollectionPoolSize - 1 do
            Task.Factory.StartNew(fun ( )-> 
                while (not <| continuations.All(fun bc -> bc.IsCompleted)) 
                  && (not <| cancellationToken.IsCancellationRequested) do
                    let continuation = ref 
➥ Unchecked.defaultof<Continuation<_,_>>
                    BlockingCollection.TakeFromAny(continuations, 
➥ continuation)
                    let continuation = continuation.Value
                    continuation.Callback.Invoke(continuation.Input, 
➥ func.Invoke(continuation.Input)),
            cancellationToken, TaskCreationOptions.LongRunning,
➥ TaskScheduler.Default) |> ignore

    static member Create(func:Func<'a, 'b>) =
        Pipeline(func) :> IPipeline<_,_> 

    interface IPipeline<'a, 'b> with
       member this.Then(nextFunction) = then' nextFunction
       member this.Enqueue(input, callback) = enqueue input callback          
       member this.Stop() = stop()
       member this.Execute (blockingCollectionPoolSize,cancellationToken) = 
            execute blockingCollectionPoolSize cancellationToken
            { new IDisposable with member self.Dispose() = stop() } 

The Continuation structure is used internally to pass through the pipeline functions 
to compute the items. The implementation of the pipeline uses an internal buffer com-
posed by an array of the concurrent collection BlockingCollection<Collection>, 
which ensures thread safety during parallel computation of the items. The argument 
to this collection constructor specifies the maximum number of items to buffer at any 
given time. In this case, the value is 100 for each buffer. 

Each item pushed into the pipeline is added to the collection, which in the future 
will be processed in parallel. The Then function is composing the function argument 
nextFunction with the function func, which is passed into the pipeline constructor. 
Note that you use the Compose function defined in chapter 2 in listing 2.3 to combine 
the functions func and nextFunction:

Func<A, C> Compose<A, B, C>(this Func<A, B> f, Func<B, C> g) => 
(n) => g(f(n));

When the pipeline starts the process, it applies the final composed function to each 
input value. The parallelism in the pipeline is achieved in the Execute function, which 
spawns one task for each BlockingCollection instantiated. This guarantees a buffer 
for running the thread. The tasks are created with the LongRunning option to schedule 
a dedicated thread. The BlockingCollection concurrent collection allows thread-safe 
access to the items stored using the static methods TakeFromAny and AddToAny, which 

Registers the cancellation token to run 
the stop function when it’s triggered 

Starts the tasks to 
compute in parallel 

The static method creates a new 
instance of the pipeline.
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internally distribute the items and balance the workload among the running threads. 
This collation is used to manage the connection between the input and output of the 
pipeline, which behave as producer/consumer threads. 

NOTE  Using BlockingCollection, remember to call GetConsumingEnumer-
able because the BlockingCollection class implements IEnumerable<T>. 
Enumerating over the blocking collection instance won’t consume values. 

The pipeline constructor is set as private to avoid direct instantiation. Instead, the 
static method Create initializes a new instance of the pipeline. This facilitates a fluent 
API approach to manipulate the pipeline.

This pipeline design ultimately resembles a parallel Produce/Consumer pattern 
capable of managing the concurrent communication between many-producers to 
many-consumers.

The following listing uses the implemented pipeline to refactor the DetectFaces 
program from the previous section. In C#, a fluent API approach is a convenient way to 
express and compose the steps of the pipeline.

Listing 7.13  Refactored DetectFaces code using the parallel pipeline

var files = Directory.GetFiles(ImagesFolder);

var imagePipe = Pipeline<string, Image<Bgr, byte>>
    .Create(filePath => new Image<Bgr, byte>(filePath))
    .Then(image => Tuple.Create(image, image.Convert<Gray, byte>()))
    .Then(frames => Tuple.Create(frames.Item1,   
     CascadeClassifierThreadLocal.Value.DetectMultiScale(frames.Item2, 1.1, 
         3, System.Drawing.Size.Empty)))
     .Then(faces =>{
           foreach (var face in faces.Item2)
               faces.Item1.Draw(face, 
➥ new Bgr(System.Drawing.Color.BurlyWood), 3);
           return faces.Item1.ToBitmap();
         }); 

imagePipe.Execute(cancellationToken);  

foreach (string fileName in files)
   imagePipe.Enqueue(file, (_, bitmapImage) 
                                    => Images.Add(bitmapImage)); 

By exploiting the pipeline you developed, the code structure is changed considerably.

NOTE  The F# pipeline implementation, in the previous section, uses the Func 
delegate to be consumed effortlessly by C# code. In the source code of the 
book you can find the implementation of the same pipeline that uses F# func-
tions in place of the .NET Func delegate, which makes it a better fit for proj-
ects completely built in F#. In the case of consuming native F# functions from 
C#, the helper extension method ToFunc provides support for interoperability. 
The ToFunc extension method can be found in the source code.

Constructs the pipeline 
using fluent API. 

Starts the execution of the pipeline. 
The cancellation token stops the 
pipeline at any given time.

The iteration pushes (enqueues) the 
file paths into the pipeline queue, 
whose operation is non-blocking.
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The pipeline definition is elegant, and it can be used to construct the process to detect 
the faces in the images using a nice, fluent API. Each function is composed step by step, 
and then the Execute function is called to start the pipeline. Because the underlying 
pipeline processing is already running in parallel, the loop to push the file path of the 
images is sequential. The Enqueue function of the pipeline is non-blocking, so there are 
no performance penalties involved. Later, when an image is returned from the computa-
tion, the Callback passed into the Enqueue function will update the result to update the 
UI. Table 7.1 shows the benchmark to compare the different approaches implemented. 

Table 7.1  Benchmark processing of 100 images using four logical core computers with 16 GB RAM. The 
results, expressed in seconds, represent the average from running each design three times.

Serial loop Parallel 
Parallel 

continuation
Parallel LINQ 
combination

Parallel pipeline

68.57 22.89 19.73 20.43 17.59

The benchmark shows that, over the average of downloading 100 images for three times, 
the pipeline parallel design is the fastest. It’s also the most expressive and concise pattern.

Summary
¡	Task-based parallel programs are designed with the functional paradigm in mind 

to guarantee more reliable and less vulnerable (or corrupt) code from functional 
properties such as immutability, isolation of side effects, and defensive copy. This 
makes it easier to ensure that your code is correct. 

¡	The Microsoft TPL embraces functional paradigms in the form of using a con-
tinuation-passing style. This allows for a convenient way to chain a series of 
non-blocking operations. 

¡	A method that returns void in C# code is a string signal that can produce side 
effects. A method with void as output doesn’t permit composition in tasks using 
continuation. 

¡	FP unmasks mathematical patterns to ease parallel task composition in a declar-
ative and fluent programming style. (The monad and functor patterns are hid-
den in LINQ.) The same patterns can be used to reveal monadic operations with 
tasks, exposing a LINQ-semantic style.

¡	A functional parallel pipeline is a pattern designed to compose a series of oper-
ations into one function, which is then applied concurrently to a sequence of 
input values queued to be processed. Pipelines are often useful when the data 
elements are received from a real-time event stream.

¡	Task dependency is the Achilles heel of parallelism. Parallelism is restricted when 
two or more operations cannot run until other operations have completed. It’s 
essential to use tools and patterns to maximize parallelism as much as possible. 
A functional pipeline, CPS, and mathematical patterns like monad are the keys.
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8Task asynchronicity 
for the win

This chapter covers
¡	Understanding the Task-based Asynchronous 

Programming model (TAP) 

¡	Performing numerous asynchronous operations 
in parallel

¡	Customizing asynchronous execution flow 

Asynchronous programming has become a major topic of interest over the last sev-
eral years. In the beginning, asynchronous programming was used primarily on the 
client side to deliver a responsive GUI and to convey a high-quality user experience 
for customers. To maintain a responsive GUI, asynchronous programming must 
have consistent communication with the backend, and vice versa, or delays may be 
introduced into the response time. An example of this communication issue is when 
an application window appears to hang for a few seconds while background process-
ing catches up with your commands. 

Companies must address increasing client demands and requests while analyzing 
data quickly. Using asynchronous programming on the application’s server side is 
the solution to allowing the system to remain responsive, regardless of the number 
of requests. Moreover, from a business point of view, an Asynchronous Programming 

 



214 chapter 8 Task asynchronicity for the win

Model (APM) is beneficial. Companies have begun to realize that it’s less expensive to 
develop software designed with this model because the number of servers required to 
satisfy requests is considerably reduced by using a non-blocking (asynchronous) I/O 
system compared to a system with blocking (synchronous) I/O operations. Keep in 
mind that scalability and asynchronicity are terms unrelated to speed or velocity. Don’t 
worry if these terms are unfamiliar; they’re covered in the following sections. 

Asynchronous programming is an essential addition to your skill set as a developer 
because programming robust, responsive, and scalable programs is, and will continue 
to be, in high demand. This chapter will help you understand the performance seman-
tics related to APM and how to write scalable applications. By the end of this chapter, 
you’ll know how to use asynchronicity to process multiple I/O operations in parallel 
regardless of the hardware resources available.

8.1 The Asynchronous Programming Model (APM)
The word asynchronous derives from the combination of the Greek words asyn (meaning 
“not with”) and chronos (meaning “time”), which describe actions that aren’t occurring 
at the same time. In the context of running a program asynchronously, asynchronous 
refers to an operation that begins with a specific request, which may or may not succeed, 
and that completes at a point in the future. In general, asynchronous operations are 
executed independently from other processes without waiting for the result, whereas 
synchronous operations wait to finish before moving on to another task. 

Imagine yourself in a restaurant with only one server. The server comes to your table 
to take the order, goes to the kitchen to place the order, and then stays in the kitchen, 
waiting for the meal to be cooked and ready to serve! If the restaurant had only one 
table, this process would be fine, but what if there are numerous tables? In this case, 
the process would be slow, and you wouldn’t receive good service. A solution is to hire 
more waiters, maybe one per table, which would increase the restaurant’s overhead 
due to increased salaries and would be wildly inefficient. A more efficient and effective 
solution is to have the server deliver the order to the chef in the kitchen and then con-
tinue to serve other tables. When the chef has finished preparing the meal, the waiter 
receives a notification from the kitchen to pick up the food and deliver it to your table. 
In this way, the waiter can serve multiple tables in a timely fashion. 

In computer programming, the same concept applies. Several operations are per-
formed asynchronously, from starting execution of an operation to continuing to pro-
cess other work while waiting for that operation to complete, then resuming execution 
once the data has been received. 

NOTE  The term continuing refers to continuation-passing style (CPS), which is 
a form of programming where a function determines what to do next and can 
decide to continue the operation or to do something completely different. As 
you’ll see shortly, the APM is based on CPS (discussed in chapter 3).

Asynchronous programs don’t sit idly waiting for any one operation, such as request-
ing data from a web service or querying a database, to complete.
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8.1.1 The value of asynchronous programming

Asynchronous programming is an excellent model to exploit every time you build a 
program that involves blocking I/O operations. In synchronous programming, when 
a method is called, the caller is blocked until the method completes its current execu-
tion. With I/O operations, the time that the caller must wait before a return of control 
to continue with the rest of code varies depending on the current operation in process. 

Often applications use a large number of external services, which perform opera-
tions that take a user noticeable time to execute. For this reason, it’s vital to program in 
an asynchronous way. In general, developers feel comfortable when thinking sequen-
tially: send a request or execute a method, wait for the response, and then process it. But 
a performant and scalable application cannot afford to wait synchronously for an action 
to complete. Furthermore, if an application joins the results of multiple operations, it’s 
necessary to perform all of these operations simultaneously for good performance.

What happens if control never comes back to the caller because something went 
wrong during the I/O operation? If the caller never receives a return of control, then 
the program could hang. 

Let’s consider a server-side, multiuser application. For example, a regular e-com-
merce website application exists where, for each incoming request, the program has 
to make a database call. If the program is designed to run synchronously (figure 8.1), 
then only one dedicated thread is committed for each incoming request. In this case, 
each additional database call blocks the current thread that owns the incoming request, 
while waiting for the database to respond with the result. During this time, the thread 
pool must create a new thread to satisfy each incoming request, which will also block 
program execution while waiting for the database response. 

If the application receives a high volume of requests (hundreds or perhaps thou-
sands) simultaneously, the system will become unresponsive while trying to create the 
many threads needed to handle the requests. It will continue in this way until reaching 
the thread-pool limit, now with the risk of running out of resources. These circum-
stances can lead to large memory consumption or worse, failure of the system. 

When the thread-pool resources are exhausted, successive incoming requests are 
queued and waiting to be processed, which results in an unreactive system. More impor-
tantly, when the database responses come back, the blocked threads are freed to con-
tinue to process the requests, which can provoke a high frequency of context switches, 
negatively impacting performance. Consequently, the client requests to the website 
slow down, the UI turns unresponsive, and ultimately your company loses potential cus-
tomers and revenue.
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Synchronous I/O 

1. Each new request begins
   processing while the caller
   waits for a response.

2. A new thread is
    created to run each
    database query.

3. The process is synchronous.
    Threads must wait for a database
    response, and the system needs
    more threads to handle new
    incoming requests. 

4. When multiple threads are created,
    system performance is negatively
    affected due to increased context
    switching and a high volume of
    memory consumption.

Incoming
request

OS
scheduler

Database

OS memory

Figure 8.1  Servers that handle incoming requests synchronously aren’t scalable. 

Clearly, efficiency is a major reason to asynchronously model operations so that threads 
don’t need to wait for I/O operations to complete, allowing them to be reused by the 
scheduler to serve other incoming requests. When a thread that has been deployed for 
an asynchronous I/O operation is idle, perhaps waiting for a database response as in fig-
ure 8.1, the scheduler can send the thread back to the thread pool to engage in further 
work. When the database completes, the scheduler notifies the thread pool to wake an 
available thread and send it on to continue the operation with the database result. 

In server-side programs, asynchronous programming lets you deal effectively with 
massive concurrent I/O operations by intelligently recycling resources during their 
idle time and by avoiding the creation of new resources (figure 8.2). This optimizes 
memory consumption and enhances performance.

Users ask much from the modern applications they must interact with. Modern 
applications must communicate with external resources, such as databases and web 
services, and work with disks or REST-based APIs to meet user demands. Also, today’s 
applications must retrieve and transform massive amounts of data, cooperate in cloud 
computations, and respond to notifications from parallel processes. To accommodate 
these complex interactions, the APM provides the ability to express computations with-
out blocking executing threads, which improves availability (a reliable system) and 
throughput. The result is notably improved performance and scalability. 

This is particularly relevant on servers where there can be a large amount of concur-
rent I/O-bound activity. In this case the APM can handle many concurrent operations 
with low memory consumption due to the small number of threads involved. Even in 
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the case where there aren’t many (thousands) concurrent operations, the synchronous 
approach is advantageous because it keeps the I/O-bound operations performing out 
of the .NET thread pool. 

A

C

E

A

C

E

D

Asynchronous I/O

1. Each new request begins
   processing. The caller is free
   to perform other work without
   waiting (synchronously)
   for a response.

2. Database queries run
    asynchronously, so the
    OS scheduler can optimize
    resource utilization.

4. The OS scheduler optimizes thread
    utilization and recycling, which
    minimizes memory consumption
    and keeps the system responsive.

Incoming
request

OS
scheduler

Database

OS memory

B

D

B 3. The OS scheduler is notified when 
the asynchronous work 
completes. Then, a thread is 
scheduled to continue the 
original process. 

Figure 8.2  Asynchronous I/O operations can start several operations in parallel without constraints 
that will return to the caller when complete, which keeps the system scalable.

By enabling asynchronous programming in your application, your code derives several 
benefits:

¡	Decoupled operations do a minimum amount of work in performance-critical 
paths.

¡	Increased thread resource availability allows the system to reuse the same 
resources without the need to create new ones. 

¡	Better employment of the thread-pool scheduler enables scalability in server- 
based programs.

8.1.2 Scalability and asynchronous programming

Scalability refers to a system with the ability to respond to an increased number of 
requests through the addition of resources, which affects a commensurate boost in 
parallel speedup. A system designed with this ability aims to continue performing 
well under the circumstance of a sustained, large number of incoming requests that 
can strain the application’s resources. Incremental scalability is achieved by different 
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components—memory and CPU bandwidth, workload distribution, and quality of 
code, for example. If you design your application with the APM, it’s most likely scalable. 

Keep in mind that scalability isn’t about speed. In general, a scalable system doesn’t 
necessarily run faster than a non-scalable system. In fact, an asynchronous operation 
doesn’t perform any faster than the equivalent synchronous operation. The true ben-
efit is in minimizing performance bottlenecks in the application and optimizing the 
consumption of resources that allow other asynchronous operations to run in parallel, 
ultimately performing faster.

Scalability is vital in satisfying today’s increasing demands for instantaneous respon-
siveness. For example, in high-volume web applications, such as stock trading or social 
media, it’s essential that applications be both responsive and capable of concurrently 
managing a massive number of requests. Humans naturally think sequentially, evaluat-
ing one action at a time in consecutive order. For the sake of simplicity, programs have 
been written in this manner, one step following the other, which is clumsy and time- 
consuming. The need exists for a new model, the APM, that lets you write non-blocking 
applications that can run out of sequence, as required, with unbounded power.   

8.1.3 CPU-bound and I/O-bound operations

In CPU-bound computations, methods require CPU cycles where there’s one thread 
running on each CPU to do the work. In contrast, asynchronous I/O-bound computa-
tions are unrelated to the number of CPU cores. Figure 8.3 shows the comparison. As 
previously mentioned, when an asynchronous method is called, the execution thread 
returns immediately to the caller and continues execution of the current method, 
while the previously called function runs in the background, thereby preventing 
blocking. The terms non-blocking and asynchronous are commonly used interchangeably 
because both define similar concepts.

CPU-bound

CPU

CPU-bound computations receive input
from the keyboard to do some work, and
then print the result to the screen. In a
single-core machine, each computation
must be completed before proceeding
to the next one. 

I/O-bound computations are executed independently
from the CPU, and the operation is done elsewhere.
In this case several asynchronous database calls are
executing simultaneously. Later, a notification will
inform the caller when the operation is
complete (a callback).

I/O-bound

CPU

Database

Figure 8.3  Comparison between CPU-bound and I/O-bound operations
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CPU-bound computations are operations that spend time performing CPU- intensive 
work, using hardware resources to run all the operations. Therefore, as a ratio, it’s 
appropriate to have one thread for each CPU, where execution time is determined by 
the speed of each CPU. Conversely, with I/O-bound computations, the number of threads 
running is unrelated to the number of CPUs available, and execution time depends on 
the period spent waiting for the I/O operations to complete, bound only by the I/O 
drivers. 

8.2 Unbounded parallelism with asynchronous 
programming
Asynchronous programming provides an effortless way to execute multiple tasks inde-
pendently and, therefore, in parallel. You may be thinking about CPU-bound compu-
tations that can be parallelized using a task-based programming model (chapter 7). 
But what makes an APM special, as compared to CPU-bound computation, is its I/O-
bound computation nature, which overcomes the hardware constraint of one working 
thread for each CPU core. 

Asynchronous, non-CPU-bound computations can benefit from having a larger 
number of threads running on one CPU. It’s possible to perform hundreds or even 
thousands of I/O operations on a single-core machine because it’s the nature of asyn-
chronous programming to take advantage of parallelism to run I/O operations that 
can outnumber the available cores in a computer by an order of magnitude. You can 
do this because the asynchronous I/O operations push the work to a different location 
without impacting local CPU resources, which are kept free, providing the opportunity 
to execute additional work on local threads. To demonstrate this unbounded power, 
listing 8.1 is an example of running 20 asynchronous operations (in bold). These oper-
ations can run in parallel, regardless of the number of available cores.

Listing 8.1  Parallel asynchronous computations

let httpAsync (url : string) = async {    
    let req = WebRequest.Create(url)
    let! resp = req.AsyncGetResponse()
    use stream = resp.GetResponseStream()
    use reader = new StreamReader(stream)
    let! text = reader.ReadToEndAsync()
    return text }

let sites =        
    [ "http://www.live.com";"      "http://www.fsharp.org";
      "http://news.live.com";      "http://www.digg.com";
      "http://www.yahoo.com";      "http://www.amazon.com"
      "http://news.yahoo.com";     "http://www.microsoft.com";
      "http://www.google.com";     "http://www.netflix.com";
      "http://news.google.com";    "http://www.maps.google.com";
      "http://www.bing.com";       "http://www.microsoft.com";
      "http://www.facebook.com";   "http://www.docs.google.com";
      "http://www.youtube.com";    "http://www.gmail.com";
      "http://www.reddit.com";     "http://www.twitter.com"; ]

Reads asynchronously 
content of a given website

Lists arbitrary websites to download 
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sites
|> Seq.map httpAsync   

|> Async.Parallel      

|> Async.RunSynchronously  

In this full asynchronous implementation example, the execution time is 1.546 sec-
onds on a four-core machine. The same synchronous implementation runs in 11.230 
seconds (the synchronous code is omitted, but you can find it in the source code com-
panion of this book). Although the time varies according to network speed and band-
width, the asynchronous code is about 7× faster than the synchronous code. 

In a CPU-bound operation running on a single-core device, there’s no performance 
improvement in simultaneously running two or more threads. This can reduce or decrease 
performance due to the extra overhead. This also applies to multicore processors, where 
the number of threads running far exceeds the number of cores. Asynchronicity doesn’t 
increase CPU parallelism, but it does increment performance and reduce the number 
of threads needed. Despite many attempts to make operating system threads cheap (low 
memory consumption and overhead for their instantiation), their allocation produces a 
large memory stack, becoming an unrealistic solution for problems that require numerous 
outstanding asynchronous operations. This was discussed in section 7.1.2.

Asynchrony vs. parallelism 
Parallelism is primarily about application performance, and it also facilitates CPU- 
intensive work on multiple threads, taking advantage of modern multicore computer 
architectures. Asynchrony is a superset of concurrency, focusing on I/O-bound rather 
than CPU-bound operations. Asynchronous programming addresses the issue of latency 
(anything that takes a long time to run).

8.3 Asynchronous support in .NET
The APM has been a part of the Microsoft .NET Framework since the beginning (v1.1). 
It offloads the work from the main execution thread to other working threads with the 
purpose of delivering better responsiveness and of gaining scalability. 

The original asynchronous programming pattern consists of splitting a long-running 
function into two parts. One part is responsible for starting the asynchronous operation 
(Begin), and the other part is invoked when the operation completes (End).

This code shows a synchronous (blocking) operation that reads from a file stream 
and then processes the generated byte array (the code to note is in bold):

void ReadFileBlocking(string filePath, Action<byte[]> process) 
{
    using (var fileStream = new FileStream(filePath, FileMode.Open, 
                                          FileAccess.Read, FileShare.Read))

Creates a sequence of asynchronous 
operations to execute 

Starts the execution of multiple 
asynchronous computations in parallel 

Runs the program and waits for the result, which is okay for 
console or testing purpose. The recommended approach is 
to avoid blocking, as we’ll demonstrate shortly.  
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    {
          byte[] buffer = new byte[fileStream.Length];
          int bytesRead = fileStream.Read(buffer, 0, buffer.Length);
          process(buffer);
    }
}

Transforming this code into an equivalent asynchronous (non-blocking) operation 
requires a notification in the form of a callback to continue the original call-site (where 
the function is called) upon completion of the asynchronous I/O operation. In this 
case, the callback keeps the opportune state from the Begin function, as shown in the 
following listing (the code to note is highlighted in bold). The state is then rehydrated 
(restored to its original representation) when the callback resumes. 

Listing 8.2  Reading from the filesystem asynchronously 

IAsyncResult ReadFileNoBlocking(string filePath, Action<byte[]> process)
{
     var fileStream = new FileStream(filePath, FileMode.Open, 
                          FileAccess.Read, FileShare.Read, 0x1000,
                          FileOptions.Asynchronous) 
     byte[] buffer = new byte[fileStream.Length];
     var state = Tuple.Create(buffer, fileStream, process);  
     return fileStream.BeginRead(buffer, 0, buffer.Length, 
                                         EndReadCallback, state); 
}
void EndReadCallback(IAsyncResult ar)
{
     var state = ar.AsyncState; 
                 as (Tuple<byte[], FileStream, Action<byte[]>>)  
     using (state.Item2) state.Item2.EndRead(ar);    
     state.Item3(state.Item1);          
}

Why is the asynchronous version of the operation that’s using the Begin/End pattern 
not blocking? Because when the I/O operation starts, the thread in context is sent 
back to the thread pool to perform other useful work if needed. In .NET, the thread-
pool scheduler is responsible for scheduling work to be executed on a pool of threads, 
managed by the CLR.

TIP  The flag FileOptions.Asynchronous is passed as an argument in the con-
structor FileStream, which guarantees a true asynchronous I/O operation 
at the operating system level. It notifies the thread pool to avoid blocking. In 
the previous example, the FileStream isn’t disposed, in the BeginRead call, to 
avoid the error of accessing a disposed object later when the Async computa-
tion completes.

Creates a FileStream instance using the option Asynchronous. Note 
the stream isn’t disposed here to avoid the error of accessing a 
disposed object later when the Async computation completes.

Passes the state into the callback 
payload. The function process is 

passed as part of the tuple.

The BeginRead function starts, and 
EndReadCallback is passed as a callback 

to notify when the operations completes.

The callback rehydrates the state in the 
original form to access the underlying values.

The FileStream is disposed 
and the data is processed.
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Writing APM programs is considered more difficult than writing the sequential ver-
sion. An APM program requires more code, which is more complex and harder to read 
and write. The code can be even more convoluted if a series of asynchronous opera-
tions is chained together. In the next example, a series of asynchronous operations 
require a notification to proceed with the work assigned. The notification is achieved 
through a callback. 

Callbacks
A callback is a function used to speed up the program. Asynchronous programming, 
using a callback, creates new threads to run methods independently. While running 
asynchronously, a program notifies the calling thread of any update, which includes fail-
ure, cancellation, progress, and completion, by a reentrant function used to register the 
continuation of another function. This process takes some time to produce a result. 

 

This chain of asynchronous operations in the code produces a series of nested call-
backs, also known as “callback hell”(http://callbackhell.com). Callback-based code is 
problematic because it forces the programmer to cede control, restricting expressive-
ness and, more importantly, eliminating the compositionality semantic aspect. 

This is an example of code (conceptual) to read from a file stream, then compress 
and send the data to the network (the code to note is in bold): 

IAsyncResult ReadFileNoBlocking(string filePath)
{
    // keep context and BeginRead
}
void EndReadCallback(IAsyncResult ar)
{
    // get Read and rehydrate state, then BeginWrite (compress)
}
void EndCompressCallback(IAsyncResult ar)
{
    // get Write and rehydrate state, then BeginWrite (send to the network)
}
void EndWriteCallback(IAsyncResult ar)
{
    // get Write and rehydrate state, completed process
}

How would you introduce more functionality to this process? The code isn’t easy to 
maintain! How can you compose this series of asynchronous operations to avoid the 
callback hell? And where and how would you manage error handling and release 
resources? The solutions are complex!

In general, the asynchronous Begin/End pattern is somewhat workable for a single 
call, but it fails miserably when composing a series of asynchronous operations. Later in 
this chapter I’ll show how to conquer exceptions and cancellations such as these.  

 

http://callbackhell.com
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8.3.1 Asynchronous programming breaks the code structure 

As you can see from the previous code, an issue originating from traditional APM 
is the decoupled execution time between the start (Begin) of the operation and its 
callback notification (End). This broken-code design divides the operation in two, vio-
lating the imperative sequential structure of the program. Consequently, the opera-
tion continues and completes in a different scope and possibly in a different thread, 
making it hard to debug, difficult to handle exceptions, and impossible to manage 
transaction scopes.

In general, with the APM pattern, it’s a challenge to maintain state between each 
asynchronous call. You’re forced to pass a state into each continuation through the call-
back to continue the work. This requires a tailored state machine to handle the passing 
of state between each stage of the asynchronous pipeline. 

In the previous example, to maintain the state between the fileStream.BeginRead 
and its callback EndReadCallback, a tailored state object was created to access the 
stream, the byte array buffer, and the function process:

 var state = Tuple.Create(buffer, fileStream, process);

This state object was rehydrated when the operation completed to access the underly-
ing objects to continue further work. 

8.3.2 Event-based Asynchronous Programming

Microsoft recognized the intrinsic problems of APM and consequently introduced 
(with .NET 2.0) an alternate pattern called Event-based Asynchronous Programming 
(EAP).1 The EAP model was the first attempt to address issues with APM. The idea 
behind EAP is to set up an event handler for an event to notify the asynchronous oper-
ation when a task completes. This event replaces the callback notification semantic. 
Because the event is raised on the correct thread and provides direct support access 
to UI elements, EAP has several advantages. Additionally, it’s built with support for 
progress reporting, canceling, and error handling—all occurring transparently for the 
developer. 

EAP provides a simpler model for asynchronous programming than APM, and it’s 
based on the standard event mechanism in .NET, rather than on requiring a custom 
class and callbacks. But it’s still not ideal because it continues to separate your code into 
method calls and event handlers, increasing the complexity of your program’s logic. 

8.4 C# Task-based Asynchronous Programming 
Compared to its predecessor, .NET APM, Task-based Asynchronous Programming 
(TAP) aims to simplify the implementation of asynchronous programs and ease com-
position of concurrent operation sequences. The TAP model deprecates both APM 
and EAP, so if you’re writing asynchronous code in C#, TAP is the recommended 
model. TAP presents a clean and declarative style for writing asynchronous code that 

1 For more information, see http://mng.bz/2287. 
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looks similar to the F# asynchronous workflow by which it was inspired. The F# asyn-
chronous workflow will be covered in detail in the next chapter.

In C# (since version 5.0), the objects Task and Task<T>, with the support of the key-
words async and await, have become the main components to model asynchronous 
operations. The TAP model solves the callback problem by focusing purely on the syn-
tactic aspect, while bypassing the difficulties that arise in reasoning about the sequence 
of events expressed in the code. Asynchronous functions in C# 5.0 address the issue of 
latency, which refers to anything that takes time to run.

The idea is to compute an asynchronous method, returning a task (also called a 
future) that isolates and encapsulates a long-running operation that will complete at a 
point in the future, as shown in figure 8.4. 

Execution thread Execution thread

Task-based Asynchronous Programming model

Task
result

Task
channel

Task
channel

Figure 8.4  The task acts as a channel for the execution thread, which can continue working while 
the caller of the operation receives the handle to the task. When the operation completes, the task is 
notified and the underlying result can be accessed.

Here’s the task flow from figure 8.4:

1 The I/O operation starts asynchronously in a separate execution thread. A new 
task instance is created to handle the operation.

2 The task created is returned to the caller. The task contains a callback, which acts 
as a channel between the caller and the asynchronous operation. This channel 
communicates when the operation completes.

3 The execution thread continues the operation while the main thread from the 
operation caller is available to process other work.

4 The operation completes asynchronously.

5 The task is notified, and the result is accessible by the caller of the operation.

The Task object returned from the async/await expression provides the details of the 
encapsulated computation and a reference to its result that will become available when 
the operation itself is completed. These details include the status of the task, the result, 
if completed, and exception information, if any. 
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The .NET Task and Task<T> constructs were introduced in the previous chapter, 
specifically for CPU-bound computations. The same model in combination with the 
async/await keywords can be used for I/O-bound operations.

NOTE  The thread pool has two groups of threads: worker and I/O threads. A 
worker thread targets a job that’s CPU-bound. An I/O thread is more efficient 
for I/O-bound operations. The thread pool keeps a cache of worker threads 
because threads are expensive to create. The CLR thread pool keeps sepa-
rate pools of each to avoid a situation where high demand on worker threads 
exhausts all the threads available to dispatch native I/O callbacks, potentially 
leading to deadlock. Imagine an application using a large number of worker 
threads, where each one is waiting for an I/O to complete.

In a nutshell, TAP consists of the following:

¡	The Task and Task<T> constructs to represent asynchronous operations
¡	The await keyword to wait for the task operation to complete asynchronously, 

while the current thread isn’t blocked from performing other work 

For example, given an operation to execute in a separate thread, you must wrap it into 
a Task: 

Task<int[]> processDataTask = Task.Run(() => ProcessMyData(data));
// do other work
var result = processDataTask.Result;

The output of the computation is accessed through the Result property, which blocks 
the caller method until the task completes. For tasks that don’t return a result, you 
could call the Wait method instead. But this isn’t recommended. To avoid blocking the 
caller thread, you can use the Task async/await keywords: 

Task<int[]> processDataTask = Task.Run(async () => ProcessMyData(data));
// do other work
var result = await processDataTask;

The async keyword notifies the compiler that the method runs asynchronously with-
out blocking. By doing so, the calling thread will be released to process other work. 
Once the task completes, an available worker thread will resume processing the work.

NOTE  Methods marked as async can return either void, Task, or Task<T>, but 
it’s recommended that you limit the use of the voided signature. This should only 
be supplied at the top-level entry point of the program and in UI event handlers. 
A better approach is to use Task<Unit>, introduced in the previous chapter. 

Here’s the previous code example converted to read a file stream asynchronously using 
the TAP way (the code to note is in bold):

async void ReadFileNoBlocking(string filePath, Action<byte[]> process)
{
    using (var fileStream = new FileStream(filePath, FileMode.Open,
                                FileAccess.Read, FileShare.Read, 0x1000,
                                FileOptions.Asynchronous))
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   {
      byte[] buffer = new byte[fileStream.Length];
      int bytesRead = await fileStream.ReadAsync(buffer, 0, buffer.Length);
      await Task.Run(async () => process(buffer));
    }
}

The method ReadFileNoBlocking is marked async, the contextual keyword used to 
define an asynchronous function and to enable the use of the await keyword within a 
method. The purpose of the await construct is to inform the C# compiler to translate 
the code into a continuation of a task that won’t block the current context thread, free-
ing the thread to do other work.

NOTE  The async/await functionality in C# is based on registering a callback 
in the form of a continuation, which will be triggered when the task in con-
text completes. It’s easy to implement code in a fluent and declarative style. 
The async/await is syntactic sugar for a continuation monad, which is imple-
mented as a monadic bind operator using the function ContinuesWith. This 
approach plays well with method chaining because each method returns a task 
that exposes the ContinuesWith method. But it requires working with the tasks 
directly to get the result and hand it off to the next method. Furthermore, if you 
have a large number of tasks to chain together, you’re forced to drill through 
the results to get to the value you care about. Instead, what you need is a more 
generalized approach that can be used across methods and at an arbitrary level 
within the chain, which is what the async/await programming model offers.

Under the hood, the continuation is implemented using the ContinuesWith function 
from the Task object, which is triggered when the asynchronous operation has com-
pleted. The advantage of having the compiler build the continuation is to preserve 
the program structure and the asynchronous method calls, which then are executed 
without the need for callbacks or nested lambda expressions. 

This asynchronous code has clear semantics organized in a sequential flow. In gen-
eral, when a method marked as async is invoked, the execution flow runs synchro-
nously until it reaches an await-able task, denoted with the await keyword, that hasn’t 
yet completed. When the execution flow reaches the await keyword, it suspends the 
calling method and yields control back to its caller until the awaited task is complete; in 
this way, the execution thread isn’t blocked. When the operation completes, its result is 
unwrapped and bound into the content variable, and then the flow continues with the 
remaining work.

An interesting aspect of TAP is that the execution thread captures the synchroniza-
tion context and serves back to the thread that continues the flow, allowing direct UI 
updates without extra work. 

8.4.1 Anonymous asynchronous lambdas

You may have noticed a curious occurrence in the previous code—an anonymous func-
tion was marked async: 

await Task.Run(async () => process(buffer));
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As you can see, in addition to ordinary named methods, anonymous methods can also 
be marked async. Here’s an alternative syntax to make an asynchronous anonymous 
lambda: 

 Func<string, Task<byte[]>> downloadSiteIcone = async domain =>
{
    var response = await new 
        HttpClient().GetAsync($"http://{domain}/favicon.ico");
    return await response.Content.ReadAsByteArrayAsync();
}

This is also called an asynchronous lambda,2 which is like any other lambda expression, 
only with the async modifier at the beginning to allow the use of the await keyword 
in its body. Asynchronous lambdas are useful when you want to pass a potentially 
long-running delegate into a method. If the method accepts a Func<Task>, you can 
feed it an async lambda and get the benefits of asynchrony. Like any other lambda 
expression, it supports closure to capture variables and the asynchronous operation 
start, only when the delegate is invoked.

This feature provides an easy means for expressing asynchronous operations on the 
fly. Inside these asynchronous functions, the await expressions can wait for running 
tasks. This causes the rest of the asynchronous execution to be transparently enlisted 
as a continuation of the awaited task. In anonymous asynchronous lambdas, the same 
rules apply as in ordinary asynchronous methods. You can use them to keep code con-
cise and to capture closures.

8.4.2 Task<T> is a monadic container 

In the previous chapter, you saw that the Task<T> type can be thought of as a special 
wrapper, eventually delivering a value of type T if it succeeds. The Task<T> type is a 
monadic data structure, which means, among other things, that it can easily be com-
posed with others. It’s not a surprise that the same concept also applies to the Task<T> 
type used in TAP. 

The monadic container 
Here’s a refresh of the concept of monads introduced earlier in the book. In the context 
of Task, you can imagine a monad acting as a container. A monadic container is a pow-
erful compositional tool used in functional programming to specify a way to chain oper-
ations together and to avoid dangerous and unwanted behaviors. Monads essentially 
mean you’re working with boxed, or closed over, values, like the Task and Lazy types, 
which are unpacked only at moment they’re needed. For example, monads let you take a 
value and apply a series of transformations to it in an independent manner that encap-
sulates side effects. The type signature of a monadic function calls out potential side 
effects, providing a representation of both the result of the computation and the actual 
side effects that occurred as a result. 

 

2 Methods or lambdas with the async modifier are called asynchronous functions.
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With this in mind, you can easily define the monadic operators Bind and Return. In 
particular, the Bind operator uses the continuation-passing approach of the underlying 
asynchronous operation to generate a flowing and compositional semantic program-
ming style. Here’s their definition, including the functor map (or fmap) operator:

static Task<T> Return<T>(T task)=> Task.FromResult(task);

static async Task<R> Bind<T, R>(this Task<T> task, Func<T, Task<R>> cont)
     => await cont(await task.ConfigureAwait(false)).ConfigureAwait(false);

static async Task<R> Map<T, R>(this Task<T> task, Func<T, R> map) 
     => map(await task.ConfigureAwait(false));

The definitions of the functions Map and Bind are simple due to the use of the await 
keyword, as compared to the implementation of Task<T> for CPU-bound computa-
tions in the previous chapter. The Return function lifts a T into a Task<T> container. 
ConfigureAwait3 in a Task extension method removes the current UI context. This 
is recommended to obtain better performance in cases where the code doesn’t need 
to be updated or doesn’t need to interact with the UI. Now these operators can be 
exploited to compose a series of asynchronous computations as a chain of operations. 
The following listing downloads and writes asynchronously into the filesystem an icon 
image from a given domain. The operators Bind and Map are applied to chain the asyn-
chronous computations (in bold).

Listing 8.3  Downloading an image (icon) from the network asynchronously

async Task DownloadIconAsync(string domain, string fileDestination)
{
    using (FileStream stream = new FileStream(fileDestination, 
                        FileMode.Create, FileAccess.Write,
                        FileShare.Write, 0x1000, FileOptions.Asynchronous))
    await new HttpClient()
         .GetAsync($"http://{domain}/favicon.ico")
         .Bind(async content => await         
                     content.Content.ReadAsByteArrayAsync())
          .Map(bytes => Image.FromStream(new MemoryStream(bytes))) 
          .Tap(async image =>       
                     await SaveImageAsync(fileDestination, 
➥ ImageFormat.Jpeg, image));

In this code, the method DownloadIconAsync uses an instance of the HttpClient 
object to obtain asynchronously the HttpResponseMessage by calling the GetAsync 
method. The purpose of the response message is to read the HTTP content (in this 
case, the image) as a byte array. The data is read by the Task.Bind operator, and then 
converted into an image using the Task.Map operator. The function Task.Tap (also 

3 For more information, see http://mng.bz/T8US. 

Binds the asynchronous operation, unwrapping 
the result Task; otherwise it would be Task of Task

Maps the result of the previous 
operation asynchronouslyThe Tap function performs the side effect.

 

http://mng.bz/T8US
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known as k-combinator) is used to facilitate a pipeline construct to cause a side effect 
with a given input and return the original value. Here’s the implementation of the Task 
.Tap function:

static async Task<T> Tap<T>(this Task<T> task, Func<T, Task> action)
{
     await action(await task);
     return await task;
}

The Tap operator is extremely useful to bridge void functions (such as logging or writ-
ing a file or an HTML page) in your composition without having to create additional 
code. It does this by passing itself into a function and returning itself. Tap unwraps the 
underlying elevated type, applies an action to produce a side effect, and then wraps the 
original value up again and returns it. Here, the side effect is to persist the image into 
the filesystem. The function Tap can be used for other side effects as well. 

At this point, these monadic operators can be used to define the LINQ pattern 
implementing Select and SelectMany, similar to the Task type in the previous chapter, 
and to enable LINQ compositional semantics: 

static async Task<R> SelectMany<T, R>(this Task<T> task, 
                         Func<T, Task<R>> then) => await Bind(await task);

static async Task<R> SelectMany<T1, T2, R>(this Task<T1> task, 
                         Func<T1, Task<T2>> bind, Func<T1, T2, R> project)
       {
            T taskResult = await task;
            return project(taskResult, await bind(taskResult));
       }
static async Task<R> Select<T, R>(this Task<T> task, Func<T, R> project)
             => await Map(task, project);

static async Task<R> Return<R>(R value) => Task.FromResult(value);

The SelectMany operator is one of the many functions capable of extending the asyn-
chronous LINQ-style semantic. The job of the Return function is to lift the value R 
into a Task<R>. The async/await programming model in C# is based on tasks, and as 
mentioned in the previous chapter, it’s close in nature to the monadic concept of the 
operators Bind and Return. Consequently, it’s possible to define many of the LINQ 
query operators, which rely on the SelectMany operator. The important point is that 
using patterns such as monads provides the opportunity to create a series of reusable 
combinators and eases the application of techniques allowing for improved compos-
ability and readability of the code using LINQ-style semantic. 

NOTE   Section 7.15.3 of the C# specification has a list of operators that can be 
implemented to support all the LINQ comprehension syntax.

Here’s the previous DownloadIconAsync example refactored using the LINQ expres-
sion semantic:

async Task DownloadIconAsync(string domain, string fileDestination)
{
     using (FileStream stream = new FileStream(fileDestination, 
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                       FileMode.Create, FileAccess.Write, FileShare.Write, 
                                         0x1000, FileOptions.Asynchronous))
     await (from response in new HttpClient()
                                 .GetAsync($"http://{domain}/favicon.ico")
            from bytes in response.Content.ReadAsByteArrayAsync()
            select Bitmap.FromStream(new MemoryStream(bytes)))
            .Tap(async image => (await image).Save(fileDestination));
}

Using the LINQ comprehension version, the from clause extracts the inner value of 
the Task from the async operation and binds it to the related value. In this way, the key-
words async/await can be omitted because of the underlying implementation. 

TAP can be used to parallelize computations in C#, but as you saw, parallelization 
is only one aspect of TAP. An even more enticing proposition is writing asynchronous 
code that composes easily with the least amount of noise.

8.5 Task-based Asynchronous Programming: a case study
Programs that compute numerous I/O operations that consume a lot of time are good 
candidates for demonstrating how asynchronous programming works and the powerful 
toolset that TAP provides to a developer. As an example, in this section TAP is examined 
in action by implementing a program that downloads from an HTTP server and analyzes 
the stock market history of a few companies. The results are rendered in a chart that’s 
hosted in a Windows Presentation Foundation (WPF) UI application. Next, the symbols 
are processed in parallel and program execution is optimized, timing the improvements. 

In this scenario, it’s logical to perform the operations in parallel asynchronously. Every 
time you want to read data from the network using any client application, you should call 
non-blocking methods that have the advantage of keeping the UI responsive (figure 8.5). 

Downloading multiple stocks’
historical prices in parallel. When
all the stocks have been analyzed,
a chart is shown with the result.

OS
scheduler

Process stocks

Stock market
service

Figure 8.5  Downloading historical stock prices asynchronously in parallel. The number of requests can 
exceed the number of available cores, and yet you can maximize parallelism.
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Listing 8.4 shows the main part of the program. For the charting control, you’ll use 
the Microsoft Windows.Forms.DataVisualization control.4 Let’s examine the asyn-
chronous programming model on .NET in action. First, let’s define the data structure 
StockData to hold the daily stock history:

struct StockData
{
public StockData(DateTime date, double open, 
                 double high, double low, double close)
        {
            Date = date;
            Open = open;
            High = high;
            Low = low;
            Close = close;
        }
public DateTime Date { get; }
public Double Open   { get; }
public Double High   { get; }
public Double Low    { get; }
public Double Close  { get; }
}

Several historical data points exist for each stock, so StockData in the shape of value- 
type struct can increase performance due to memory optimization. The following list-
ing downloads and analyzes the historical stock data asynchronously (the code to note 
is in bold).

Listing 8.4  Analyzing the history of stock prices 

async Task<StockData[]> ConvertStockHistory(string stockHistory)  
{
      return await Task.Run(() => {    
             string[] stockHistoryRows = 
                   stockHistory.Split(Environment.NewLine.ToCharArray(),
                                StringSplitOptions.RemoveEmptyEntries);
             return (from row in stockHistoryRows.Skip(1)
                     let cells = row.Split(',')
                     let date = DateTime.Parse(cells[0])
                     let open = double.Parse(cells[1])
                     let high = double.Parse(cells[2])
                     let low = double.Parse(cells[3])
                     let close = double.Parse(cells[4])
                     select new StockData(date, open, high, low, close))
                                                              .ToArray(); 
     });
}    

async Task<string> DownloadStockHistory(string symbol)
{
    string url =

4 For more information, see http://mng.bz/Jvo1.

Method that parses the string of stock history data 
and returns an array of StockData

Uses an asynchronous 
parser of the CSV 
stock history 

 

http://mng.bz/Jvo1
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        $"http://www.google.com/finance/historical?q={symbol}&output=csv";
    var request = WebRequest.Create(url);      
    using (var response = await request.GetResponseAsync() 
                                .ConfigureAwait(false))   
    using (var reader = new StreamReader(response.GetResponseStream()))
        return await reader.ReadToEndAsync().ConfigureAwait(false);  
}

async Task<Tuple<string, StockData[]>> ProcessStockHistory(string symbol)
{
    string stockHistory = await DownloadStockHistoryAsync(symbol);    
    StockData[] stockData = await ConvertStockHistory(stockHistory);  
    return Tuple.Create(symbol, stockData);       
}

async Task AnalyzeStockHistory(string[] stockSymbols)
{
    var sw = Stopwatch.StartNew();

    IEnumerable<Task<Tuple<string, StockData[]>>> stockHistoryTasks =
        stockSymbols.Select(stock => ProcessStockHistory(stock));   

    var stockHistories = new List<Tuple<string, StockData[]>>();
    foreach (var stockTask in stockHistoryTasks)
         stockHistories.Add(await stockTask);       

    ShowChart(stockHistories, sw.ElapsedMilliseconds);       
}

The code starts creating a web request to obtain an HTTP response from the server so 
you can retrieve the underlying ResponseStream to download the data. The code uses 
the instance methods GetReponseAsync() and ReadToEndAsync() to perform the I/O 
operations, which can take a long time. Therefore, they’re running asynchronously 
using the TAP pattern. Next, the code instantiates a StreamReader to read the data in 
a comma-separated values (CSV) format. The CSV data is then parsed in an understand-
able structure, the object StockData, using a LINQ expression and the function Con
vertStockHistory. This function performs the data transformation using Task.Run,5 
which runs the supplied lambda on the ThreadPool. 

The function ProcessStockHistory downloads and converts the stock history 
asynchronously, then returns a Tuple object. Specifically, this return type is Task
<Tuple<string, StockData[]>>. Interestingly, in this method, when the tuple is 
instantiated at the end of the method, there’s no presence of any Task. This behavior is 

Web request for a given endpoint to retrieve the stock 
history; in this case, the financial Google API

Web request to asynchronously 
get the HTTP response

Creates a stream reader using the HTTP response to read 
the content asynchronously; all the CSV text is read in once

The method ProcessStockHistory 
asynchronously executes the 

operation to download and to 
process the stock history.

A new tuple instance carries information for 
each stock history analyzed to the chart.

A lazy collection of 
asynchronous operations 

processes the historical data.

Asynchronously processes the 
operations, one at a time

Shows the chart

5 Microsoft’s recommendation is to use a Task method that runs in a GUI with a computational time of 
more than 50 ms.
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possible because the method is marked with the async keyword, and the compiler 
wraps the result automatically into a Task type to match the signature. In TAP, by 
denoting a method as async, all wrapping and unwrapping required to turn the result 
into a task (and vice versa) are handled by the compiler. The resulting data is sent to 
the method ShowChart to display the stock history and the elapsed time. (The imple-
mentation of ShowChart is online in the source code companion to this book.)

The rest of the code is self-explanatory. The time to execute this program—download-
ing, processing, and rendering the stock historical data for seven companies—is 4.272 sec-
onds. Figure 8.6 shows the results of the stock price variations for Microsoft (MSFT), EMC, 
Yahoo (YHOO), eBay (EBAY), Intel (INTC), and Oracle (ORCL).

As you can see, TAP returns tasks, allowing a natural compositional semantic for other 
methods with the same return type of Task. Let’s review what’s happening throughout 
the process. You used the Google service in this example to download and analyze the 
stock market history (listing 8.4). This is a high-level architecture of a scalable service 
with similar behavior, as shown in figure 8.7.

Here’s the flow of how the Stock Market service processes the requests: 

1 The user sends several requests asynchronously in parallel to download stock his-
tory prices. The UI remains responsive.

2 The thread pool schedules the work. Because the operations are I/O-bound, the 
number of asynchronous requests that can run in parallel could exceed the avail-
able number of local cores. 

3 The Stock Market service receives the HTTP requests, and the work is dispatched 
to the internal program, which notifies the thread-pool scheduler to asynchro-
nously handle the incoming requests to query the database.

4 Because the code is asynchronous, the thread-pool scheduler can schedule the 
work by optimizing local hardware resources. In this way, the number of threads 
required to run the program is kept to a minimum, the system remains respon-
sive, memory consumption is low, and the server is scalable.

Figure 8.6  Chart of the stock price 
variations over time
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5 The database queries are processed asynchronously without keeping threads 
blocked.

6 When the database completes the work, the result is sent back to the caller. At 
this point, the thread-pool scheduler is notified, and a thread is assigned to con-
tinue the rest of the work.

7 The responses are sent back to the Stock Market service caller as they complete.

8 The user starts receiving the responses back from the Stock Market service.

9 The UI is notified, and a thread is assigned to continue the rest of the work with-
out blocking.

10 The data received is parsed, and the chart is rendered. 

OS
scheduler

Process stocks

Stock market
service

A

C

E

A

C

E

D

OS
scheduler

Database

OS memory

B

D

B

Figure 8.7  Asynchronous programming model for downloading data in parallel from the network

Using the asynchronous approach means all the operations run in parallel, but the 
overall response time is still correlated to the time of the slowest worker. Conversely, 
the response time for the synchronous approach increases with each added worker. 

8.5.1 Asynchronous cancellation 

When executing an asynchronous operation, it’s useful to terminate execution prema-
turely before it completes on demand. This works well for long-running, non-blocking 
operations, where making them cancellable is the appropriate practice to avoid tasks 
that could hang. You’ll want to cancel the operation of downloading the historical 
stock prices, for example, if the download exceeds a certain period of time. 

Starting with version 4.0, the .NET Framework introduced an extensive and conve-
nient approach to cooperative support for canceling operations running in a different 
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thread. This mechanism is an easy and useful tool for controlling task execution flow. 
The concept of cooperative cancellation allows the request to stop a submitted oper-
ation without enforcing the code (figure 8.8). Aborting execution requires code that 
supports cancellation. It’s recommended that you design a program that supports can-
cellation as much as possible. 

These are the .NET types for canceling a Task or async operation:

¡	CancellationTokenSource is responsible for creating a cancellation token and 
sending cancellation requests to all copies of that token.

¡	CancellationToken is a structure utilized to monitor the state of the current token.

Cancellation is tracked and triggered using the cancellation model in the .NET Frame-
work System.Threading.CancellationToken.

Send request to initiate process

Request cancellation

Cancel
operationRaise OperationCanceledException

Operation completed

NOTE  The cancellation is treated as a special exception of type Operation
CanceledException, which is convention for the calling code to be notified 
that the cancellation was observed.

CanCellation support in the tap model

TAP supports cancellation natively; in fact, every method that returns a task provides at 
least one overload with a cancellation token as a parameter. In this case, you can pass 
a cancellation token when creating the task, then the asynchronous operation checks 
the status of the token, and it cancels the computation if the request is triggered. 

To cancel the download of the historical stock prices, you should pass an instance 
of CancellationToken as an argument in the Task method and then call the Cancel 
method. The following listing shows this technique (in bold).

Listing 8.5  Canceling an asynchronous task 

CancellationTokenSource cts = new CancellationTokenSource();   

async Task<string> DownloadStockHistory(string symbol, 
                                        CancellationToken token)   

Figure 8.8  After a request to 
start a process, a cancellation 
request is submitted that stops 
the rest of the execution, which 
returns to the caller in the form of 
OperationCanceledException.

Creates a CancellationTokenSource instance
Passes the CancellationToken in 

the method to cancel
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{
    string stockUrl = 
        $"http://www.google.com/finance/historical?q={symbol}}&output=csv";
    var request = await new HttpClient().GetAsync(stockUrl, token);  
    return await request.Content.ReadAsStringAsync();
}

cts.Cancel();  

Certain programming methods don’t have intrinsic support for cancellation. In those 
cases, it’s important to apply manual checking. This listing shows how to integrate can-
cellation support to the previous stock market example where no asynchronous meth-
ods exist to terminate operations prematurely. 

Listing 8.6  Canceling manual checks in an asynchronous operation

List<Task<Tuple<string, StockData[]>>> stockHistoryTasks =
    stockSymbols.Select(async symbol => {
        var url =
         $"http://www.google.com/finance/historical?q={symbol}&output=csv";
        var request = HttpWebRequest.Create(url);
        using (var response = await request.GetResponseAsync())
        using (var reader = new StreamReader(response.GetResponseStream()))
        {
            token.ThrowIfCancellationRequested();

            var csvData = await reader.ReadToEndAsync();
            var prices = await ConvertStockHistory(csvData);

            token.ThrowIfCancellationRequested();
            return Tuple.Create(symbol, prices.ToArray());
         }
    }).ToList();

In cases like this, where the Task method doesn’t provide built-in support for cancella-
tion, the recommended pattern is to add more CancellationTokens as parameters of 
the asynchronous method and to check for cancellation regularly. The option to throw 
an error with the method ThrowIfCancellationRequested is the most convenient to 
use because the operation would terminate without returning a result.

Interestingly, the CancellationToken (in bold) in the following listing supports the 
registration of a callback, which will be executed right after cancellation is requested. 
In this listing, a Task downloads the content of the Manning website, and it’s canceled 
immediately afterward using a cancellation token. 

Listing 8.7  Cancellation token callback

CancellationTokenSource tokenSource = new CancellationTokenSource();
CancellationToken token = tokenSource.Token;

Task.Run(async () =>
{

Passes the CancellationToken in 
the method to cancel

Triggers the cancellation token
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    var webClient = new WebClient();
    token.Register(() => webClient.CancelAsync());  
    var data = await webClient
                     .DownloadDataTaskAsync(http://www.manning.com);
}, token);

tokenSource.Cancel();

In the code, a callback is registered to stop the underlying asynchronous operation in 
case the CancellationToken is triggered. 

This pattern is useful and opens the possibility of logging the cancellation and firing 
an event to notify a listener that the operation has been canceled.

Cooperative CanCellation support

Use of the CancellationTokenSource makes it simple to create a composite token that 
consists of several other tokens. This pattern is useful if there are multiple reasons to 
cancel an operation. Reasons could include a click of a button, a notification from the 
system, or a cancellation propagating from another operation. The Cancellation
Source.CreateLinkedTokenSource method generates a cancellation source that will 
be canceled when any of the specified tokens is canceled (the code to note is in bold).

Listing 8.8  Cooperative cancellation token 

CancellationTokenSource ctsOne = new CancellationTokenSource(); 
CancellationTokenSource ctsTwo = new CancellationTokenSource();
CancellationTokenSource ctsComposite = CancellationTokenSource.

CreateLinkedTokenSource(ctsOne.Token, ctsTwo.Token);      

CancellationToken ctsCompositeToken = ctsComposite.Token;

Task.Factory.StartNew(async () =>  {
    var webClient = new WebClient();
    ctsCompositeToken.Register(() => webClient.CancelAsync());

    var data = await webClient
                     .DownloadDataTaskAsync(http://www.manning.com);
}, ctsComposite.Token);        

In this listing, a linked cancellation source is created based on the two cancellation 
tokens. Then, the new composite token is employed. It will be canceled if any of the 
original CancellationTokens are canceled. A cancellation token is basically a thread-
safe flag (Boolean value) that notifies its parent that the CancellationTokenSource 
has been canceled.

Registers a callback that 
cancels the download of 
the WebClient instance.

Instances of CancellationToken to combine

Composes the Cancellation
Tokens into one composite

Passes the composite cancellation token as a regular 
one; the task is then canceled by calling the Cancel() 
method of any of the tokens in the composite one.
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8.5.2 Task-based asynchronous composition with the monadic 
Bind operator

As mentioned previously, async Task<T> is a monadic type, which means that it’s a 
container where you can apply the monadic operators Bind and Return. Let’s analyze 
how these functions are useful in the context of writing a program. Listing 8.9 takes 
advantage of the Bind operator to combine a sequence of asynchronous operations as 
a chain of computations. The Return operator lifts a value into the monad (container 
or elevated type). 

NOTE  As a reminder, the Bind operator applies to the asynchronous Task<T> 
type, which allows it to pipeline two asynchronous operations, passing the 
result of the first operation to the second operation when it becomes available. 

In general, a Task asynchronous function takes an arbitrary argument type of 'T and 
returns a computation of type Task<'R> (with signature 'T > Task<'R>), and it can 
be composed using the Bind operator. This operator says: “When the value 'R from the 
function (g:'T > Task<'R>) is evaluated, it passes the result into the function (f:'R 
> Task<'U>).” 

The function Bind is shown in figure 8.9 for demonstration purposes because it’s 
already built into the system.

True Bind
42

function (int -> bool) The
meaning

of life
true

function (bool-> string)

The Boolean output type
of function A matches the
input of function B.

Figure 8.9  The Bind operator composes two functions that have the result wrapped into a Task type, 
and where the value returned from the computation of the first Task matches the input of the second 
function.

With this Bind function (in bold in the listing), the structure of the stock analysis code 
can be simplified. The idea is to glue together a series of functions.

Listing 8.9  Bind operator in action

    async Task<Tuple<string, StockData[]>> ProcessStockHistory(string symbol)
    {
        return await DownloadStockHistory(symbol)
               .Bind(stockHistory => ConvertStockHistory(stockHistory))  
               .Bind(stockData => Task.FromResult(Tuple.Create(symbol, 
                                                      stockData)));  
    } Composes an asynchronous operation 

using continuationpassing style
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The asynchronous Task computations are composed by invoking the Bind operator 
on the first async operation and then passing the result to the second async operation, 
and so forth. The result is an asynchronous function that has as an argument the value 
returned by the first Task when it completes. It returns a second Task that uses the 
result of the first as input for its computation. 

The code is both declarative and expressive because it fully embraces the functional 
paradigm. You’ve now used a monadic operator: specifically, one based on the contin-
uation monad. 

8.5.3 Deferring asynchronous computation enables composition

In C# TAP, a function that returns a task begins execution immediately. This behavior 
of eagerly evaluating an asynchronous expression is called a hot task, which unfortu-
nately has negative impact in its compositional form. The functional way of handling 
asynchronous operations is to defer execution until it’s needed, which has the benefit 
of enabling compositionality and provides finer control over the execution aspect. 

You have three options for implementing APM:

¡	Hot tasks —The asynchronous method returns a task that represents an already 
running job that will eventually produce a value. This is the model used in C#. 

¡	Cold tasks —The asynchronous method returns a task that requires an explicit 
start from the caller. This model is often used in the traditional thread-based 
approach.

¡	Task generators —The asynchronous method returns a task that will eventually 
generate a value, and that will start when a continuation is provided. This is the 
preferred way in functional paradigms because it avoids side effects and muta-
tion. (This is the model used in F# to run asynchronous computations.)

How can you evaluate an asynchronous operation on demand using the C# TAP 
model? You could use a Lazy<T> type as the wrapper for a Task<T> computation (see 
chapter 2), but a simpler solution is to wrap the asynchronous computation into a 
Func<T> delegate, which will run the underlying operation only when executed explic-
itly. In the following code snippet this concept is applied to the stock history exam-
ple, which defines the onDemand function to lazily evaluate the DownloadStockHistory 
Task expression: 

Func<Task<string>> onDemand = async () => await DownloadStockHistory("MSFT");

string stockHistory = await onDemand();

From the point of view of the code, to consume the underlying Task of the Down
loadStockHistory asynchronous expression, you need to treat and run the onDemand 
explicitly as a regular Func with the ().

Notice, there’s a small glitch in this code. The function onDemand runs the asynchro-
nous expression, which must have a pre-fixed argument (in this case, "MSFT"). 
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How can you pass a different stock symbol to the function? The solution is currying 
and partial application, FP techniques that allow easier reuse of more abstract functions 
because you get to specialize. (They are explained in appendix A.)

Currying and partial application 
In FP languages, a function is curried when it seems to take several parameters but 
takes only one and returns a function that takes the next parameter, and so on. For 
example, a function type signature A > B > C takes one argument A and returns a 
function B > C. Translated into C# code using delegates, this function is defined as 
Func<A, Func<B, C>>.

This mechanism lets you partially apply a function by calling it with few parameters and 
creates a new function that applies only to the arguments passed. The same function 
can have different interpretations according to the number of parameters passed. 

 

Here’s the curried version of the onDemand function, which takes a string (symbol) as 
an argument that is then passed to the inner Task expression and returns a function of 
type Func<Task<string>>: 

Func<string, Func<Task<string>>> onDemandDownload = symbol => 
                 async () => await DownloadStockHistoryAsync(symbol);

Now, this curried function can be partially applied to create specialized functions over 
a given string (in this case, a stock symbol), which will be passed and consumed by the 
wrapped Task when the onDemand function is executed. Here’s the partially applied 
function to create the specialized onDemandDownloadMSFT: 

Func<Task<string>> onDemandDownloadMSFT = onDemandDownload("MSFT");

string stockHistoryMSFT = await onDemandDownloadMSFT();

The technique of differing asynchronous operations shows that you can build arbi-
trarily complex logic without executing anything until you decide to fire things off. 

8.5.4 Retry if something goes wrong 

A common concern when working with asynchronous I/O operations, and, in particu-
lar, with network requests, is the occurrence of an unexpected factor that jeopardizes 
the success of the operations. In these situations, you may want to retry an operation 
if a previous attempt fails. During the HTTP request made by the method Download
StockHistory, for example, there could be issues such as bad internet connections or 
unavailable remote servers. But these problems could be only a temporary state, and 
the same operation that fails an attempt once, might succeed if retried a few moments 
later. 

The pattern of having multiple retries is a common practice to recover from tempo-
rary problems. In the context of asynchronous operations, this model is achieved by 
creating a wrapper function, implemented with TAP and returning tasks. This changes 
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the evaluation of an asynchronous expression, as shown in the previous section. Then, 
if there are a few problems, this function applies the retry logic for a specified number 
of times with a specified delay between attempts. This listing shows the implementation 
of the asynchronous Retry function as an extension method.

Listing 8.10  Retry async operation 

async Task<T> Retry<T>(Func<Task<T>> task, int retries, TimeSpan delay, 
             CancellationToken cts = default(CancellationToken)) => 
    await task().ContinueWith(async innerTask =>     {
        cts.ThrowIfCancellationRequested();    
        if (innerTask.Status != TaskStatus.Faulted)
            return innerTask.Result;   
        if (retries == 0)
            throw innerTask.Exception ?? throw new Exception();  
        await Task.Delay(delay, cts);       
        return await Retry(task, retries  1, delay, cts);  
    }).Unwrap(); 

The first argument is the async operation that will be re-executed. This function is 
specified lazily, wrapping the execution into a Func<>, because invoking the operation 
starts the task immediately. In case of exceptions, the operation Task<T> captures error 
handling via the Status and Exception properties. It’s possible to ascertain if the async 
operation failed by inspecting these properties. If the operation fails, the Retry helper 
function waits for the specified interval, then retries the same operation, decreasing 
the number of retries until zero. With this Retry<T> helper function in place, the func-
tion DownloadStockHistory can be refactored to perform the web request operation 
with the retries logic: 

async Task<Tuple<string, StockData[]>> ProcessStockHistory(string symbol)
{
    string stockHistory = 
           await Retry(() => DownloadStockHistory(symbol), 5, 
                                                  TimeSpan.FromSeconds(2));
    StockData[] stockData = await ConvertStockHistory(stockHistory);  
    return Tuple.Create(symbol, stockData);        
}

In this case, the retry logic should run for at most five times with a delay of two seconds 
between attempts. The Retry<T> helper function should be typically attached to the 
end of a workflow.

8.5.5 Handling errors in asynchronous operations

As you recall, the majority of asynchronous operations are I/O-bound; there’s a high 
probability that something will go wrong during their execution. The previous section 
covered the solution to handle failure by applying retry logic. Another approach is 

If a token isn’t passed, then the default (CancellationToken) 
sets its value to CancellationToken.None.

Uses a CancellationToken cts to 
stop the current execution 

Returns the result if the async 
operation is successful

If the function runs over the retries limit, 
it throws an exception. 

Delays the async 
operation if a 
failure occurs 

Retries the async operation, 
decrementing the retry counter
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declaring a function combinator that links an async operation to a fallback one. If the 
first operation fails, then the fallback kicks in. It’s important to declare the fallback as 
a differed evaluated task. The following listing shows the code that defines the Other
wise combinator, which takes two tasks and falls back the execution to the second task 
if the first one completes unsuccessfully.

Listing 8.11  Fallback Task combinator 

  static Task<T> Otherwise<T>(this Task<T> task, 
                                           Func<Task<T>> otherTask) 
=> task.ContinueWith(async innerTask => {
   if (innerTask.Status == TaskStatus.Faulted) return await orTask(); 
   return innerTask.Result;
}).Unwrap();

When the task completes, the Task type has a concept of whether it finished success-
fully or failed. This is exposed by the Status property, which is equal to TaskStatus 
.Faulted when an exception is thrown during the execution of the Task. The stock 
history analysis example requires FP refactoring to apply the Otherwise combinator.

Next is the code that combines the retry behavior, the Otherwise combinator, and 
the monadic operators for composing the asynchronous operations.

Listing 8.12  Otherwise combinator applied to fallback behavior

Func<string, string> googleSourceUrl = (symbol) => 
    $"http://www.google.com/finance/historical?q={symbol}&output=csv";

Func<string, string> yahooSourceUrl = (symbol) => 
                $"http://ichart.finance.yahoo.com/table.csv?s={symbol}";

async Task<string> DownloadStockHistory(Func<string, string> sourceStock, 
                                                             string symbol)
{
    string stockUrl = sourceStock(symbol);        
    var request = WebRequest.Create(stockUrl);
    using (var respone = await request.GetResponseAsync())
    using (var reader = new StreamReader(respone.GetResponseStream()))
        return await reader.ReadToEndAsync;
}

async Task<Tuple<string, StockData[]>> ProcessStockHistory(string symbol)
{
    Func<Func<string, string>, Func<string, Task<string>>> downloadStock =
        service => stock => DownloadStockHistory(service, stock);  

otherTask is wrapped into a Func<> to 
be evaluated only on demand.

If innerTask fails, then orTask is computed.

Service function that generates endpoints to 
retrieve the stock history for the given symbol

Generates a stockUrl endpoint using 
the function sourceStock passed 

Curries the function DownloadStockHistory to partially 
apply the endpoint service function and the stock symbol
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    Func<string, Task<string>> googleService = 
                               downloadStock(googleSourceUrl);    
    Func<string, Task<string>> yahooService = 
                               downloadStock(yahooSourceUrl);     

    return await Otherwise(() => googleService(symbol)        

         .Retry(()=> yahooService(symbol)), 5, TimeSpan.FromSeconds(2))

         .Bind(data => ConvertStockHistory(data))        

         .Map(prices => Tuple.Create(symbol, prices));    
}

Note that the ConfigureAwait Task extension method has been omitted from the 
code. The application of the Otherwise combinator runs the function Download
StockHistory for both the primary and the fallback asynchronous operations. The 
fallback strategy uses the same functionality to download the stock prices, with the web 
request pointing to a different service endpoint (URL). If the first service isn’t avail-
able, then the second one is used. 

The two endpoints are provided by the functions googleSourceUrl and yahoo
SourceUrl, which build the URL for the HTTP request. This approach requires a 
modification of the DownloadStockHistory function signature, which now takes the 
higher-order function Func<string, string> sourceStock. This function is partially 
applied against both the functions googleSourceUrl and yahooSourceUrl. The result 
is two new functions, googleService and yahooService, that are passed as arguments 
to the Otherwise combinator, which ultimately is wrapped into the Retry logic. The 
Bind and Map operators are then used to compose the operations as a workflow without 
leaving the async Task elevated world. All the operations are guaranteed to be fully 
asynchronous.

8.5.6 Asynchronous parallel processing of the historical stock market

Because the function Task represents operations that take time, it’s logical that you’ll 
want to execute them in parallel when possible. One interesting aspect exists in the 
stock history code example. When the LINQ expression materializes, the asynchro-
nous method ProcessStockHistory runs inside the foreach loop by calling one task 
at a time and awaiting the result. These calls are non-blocking, but the execution flow 
is sequential; each task waits for the previous one to complete before starting. This isn’t 
efficient. 

The following snippet shows the faulty behavior of running asynchronous operations 
sequentially using a foreach loop:

async Task ProcessStockHistory(string[] stockSymbols)
{
    var sw = Stopwatch.StartNew();

Partial application of the DownloadStockHistory function. 
downloadStock generates the stock history service.

The Retry function applies 
the Otherwise combinator.

The Otherwise operator runs the 
googleService operation first; if it 

fails, then the yahooService 
operation executes.

Monadic Bind operator composes the two async Task 
operations, Retry and ConvertStockHistory 

Uses a functor Map operator 
to convert the result 
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    IEnumerable<Task<Tuple<string, StockData[]>>> stockHistoryTasks =
         stockSymbols.Select(stock => ProcessStockHistory(stock));

    var stockHistories = new List<Tuple<string, StockData[]>>();

    foreach (var stockTask in stockHistoryTasks)
        stockHistories.Add(await stockTask);

    ShowChart(stockHistories, sw.ElapsedMilliseconds);
}

Suppose this time you want to launch these computations in parallel and then render 
the chart once all is complete. This design is similar to the Fork/Join pattern. Here, 
multiple asynchronous executions will be spawned in parallel and wait for all to com-
plete. Then the results will aggregate and continue with further processing. The fol-
lowing listing processes the stocks in parallel correctly.

Listing 8.13  Running the stock history analysis in parallel

async Task ProcessStockHistory()
{
    var sw = Stopwatch.StartNew();
    string[] stocks = new[] { "MSFT", "FB", "AAPL", "YHOO", 
                              "EBAY", "INTC", "GOOG", "ORCL" };

    List<Task<Tuple<string, StockData[]>>> stockHistoryTasks =
        stocks.Select(async stock => await 
                            ProcessStockHistory(stock)).ToList(); 

    Tuple<string, StockData[]>[] stockHistories = 
                              await Task.WhenAll(stockHistoryTasks); 
    ShowChart(stockHistories, sw.ElapsedMilliseconds);
}

In the listing, stock collection is transformed into a list of tasks using an asynchronous 
lambda in the Select method of LINQ. It’s important to materialize the LINQ expres-
sion by calling ToList(), which dispatches the tasks to run in parallel only once. This 
is possible due to the hot-task property, which means that a task runs immediately after 
its definition.

TIP  By default, .NET limits open request connections to two at one time; to 
speed up the process, you must change the value of the connection limit Ser
vicePointManager.DefaultConnectionLimit = stocks.Length. 

The method Task.WhenAll (similar to Async.Parallel in F#) is part of the TPL, and 
its purpose is to combine the results of a set of tasks into a single task array, then wait 
asynchronously for all to complete:

Tuple<string, StockData[]>[] result = await Task.WhenAll(stockHistoryTasks);

In this instance, the execution time drops to 0.534 sec from the previous 4.272 sec.

The List operator guarantees the materialization 
of the LINQ query, which consequently runs the 

underlying operations in parallel.
Waits asynchronously, without blocking, 
for all tasks to complete
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8.5.7 Asynchronous stock market parallel processing as tasks complete

An alternative (and better) solution processes each stock history result as it arrives, 
instead of waiting for the download of all stocks to complete. This is a good pattern for 
performance improvement. In this case, it also reduces the payload for the UI thread 
by rendering the data in chunks. Consider the stock market analysis code, where mul-
tiple pieces of historical data are downloaded from the web and then used to process 
an image to render to a UI control. If you wait for all the data to be analyzed before 
updating the UI, the program is forced to process sequentially on the UI thread. A 
more performant solution, shown next, is to process and update the chart as concur-
rently as possible. Technically, this pattern is called interleaving. The important code to 
note is in bold.

Listing 8.14  Stock history analysis processing as each Task completes

async Task ProcessStockHistory()
{
    var sw = Stopwatch.StartNew();
    string[] stocks = new[] { "MSFT", "FB", "AAPL", "YHOO", 
                              "EBAY", "INTC", "GOOG", "ORCL" };

    List<Task<Tuple<string, StockData[]>>> stockHistoryTasks =
                stocks.Select(ProcessStockHistory).ToList();  

    while (stockHistoryTasks.Count > 0)    
    {
        Task<Tuple<string, StockData[]>> stockHistoryTask = 
                 await Task.WhenAny(stockHistoryTasks);    

        stockHistoryTasks.Remove(stockHistoryTask);  
        Tuple<string, StockData[]> stockHistory = await stockHistoryTask;

        ShowChartProgressive(stockHistory);   
    }
}

The code made two changes from the previous version:

¡	A while loop removes the tasks as they arrive, until the last one.
¡	Task.WhenAll is replaced with Task.WhenAny. This method waits asynchronously 

for the first task that reaches a terminal state and returns its instance.

This implementation doesn’t consider either exceptions or cancellations. Alterna-
tively, you could check the status of the task stockHistoryTask before further process-
ing to apply conditional logic. 

ToList() materializes the LINQ expression, 
ensuring the underlying tasks run in parallel.

Runs the evaluation in a while loop until 
there are async Tasks to process

The Task.WhenAny operator waits asynchronously 
for the first operation to complete.

Removes the completed operation from 
the list, which is used in the predicate of 

the while loop

Sends the result from the asynchronous 
operation to be rendered in the chart
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Summary
¡	You can write asynchronous programs in .NET with Task-based Asynchronous 

Programming (TAP) in C#, which is the preferred model to use.
¡	The asynchronous programming model lets you deal effectively with massive 

concurrent I/O operations by intelligently recycling resources during their idle 
time and by avoiding the creation of new resources, thereby optimizing memory 
consumption and enhancing performance.

¡	The Task<T> type is a monadic data structure, which means, among other things, 
that it can easily be composed with other tasks in a declarative and effortless way.

¡	Asynchronous tasks can be performed and composed using monadic operators, 
which leads to LINQ-style semantics. This has the advantage of providing a clear 
and fluid declarative programming style.

¡	Executing relatively long-lasting operations using asynchronous tasks can 
increase the performance and responsiveness of your application, especially if it 
relies on one or more remote services.

¡	The number of asynchronous computations that can run in parallel simultane-
ously is unrelated to the number of CPUs available, and execution time depends 
on the period spent waiting for the I/O operations to complete, bound only by 
the I/O drivers. 

¡	TAP is based on the task type, enriched with the async and await keywords. This 
asynchronous programming model embraces the functional paradigm in the 
form of using continuation-passing style (CPS).

¡	With TAP, you can easily implement efficient patterns, such as downloading par-
allel multiple resources and processes as soon as they are available, instead of 
waiting for all resources to download.
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9Asynchronous functional 
programming in F#

This chapter covers
¡	Making asynchronous computations cooperate

¡	Implementing asynchronous operations in a 
functional style

¡	Extending asynchronous workflow 
computational expressions

¡	Taming parallelism with asynchronous 
operations

¡	Coordinating cancellation of parallel 
asynchronous computations 

In chapter 8, I introduced asynchronous programming as Tasks executing inde-
pendently from the main application thread, possibly in a separated environment 
or across the network on different CPUs. This method leads to parallelism, where 
applications can perform an inordinately high number of I/O operations on a sin-
gle-core machine. This is a powerful idea in terms of program execution and data 
throughput speed, casting away the traditional step-by-step programming approach. 
Both the F# and C# programming languages provide a slightly different, yet elegant, 
abstraction for expressing asynchronous computations, making them ideal tools, 
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well suited for modeling real-world problems. In chapter 8, you saw how to use the 
asynchronous programming model in C#. In this chapter, we look at how to do the 
same in F#. This chapter helps you understand the performance semantics of the F# 
asynchronous workflow so you can write efficient and performant programs for pro-
cessing I/O-bound operations.

I’ll discuss the F# approach and analyze it for its unique traits and how they impact 
code design and explain how to easily implement and compose effective asynchronous 
operations in a functional style. I’ll also teach you how to write non-blocking I/O oper-
ations to increase the overall execution, efficiency, and throughput of your applications 
when running multiple asynchronous operations concurrently, all without worrying 
about hardware constraints. 

You’ll see firsthand how to apply functional concepts for writing asynchronous 
computations. Then you’ll evaluate how to use these concepts to handle side effects 
and interact with the real world without compromising the benefits of the composi-
tional semantics—keeping your code concise, clear, and maintainable. By the end of 
this chapter, you’ll come away with an appreciation of how modern applications must 
exploit parallelism and harness the power of multicore CPUs to run efficiently and to 
handle a large number of operations in a functional way.

9.1 Asynchronous functional aspects
An asynchronous function is a design idiom where a normal F# function or method 
returns an asynchronous computation. Modern asynchronous programming models 
such as the F# asynchronous workflow and C# async/await are functional because 
applying functional programming enables the experienced programmer to write sim-
ple and declarative procedural code that runs asynchronously and in parallel.

From the start, F# introduced support for the initiation of an asynchronous pro-
gramming semantic definition that resembled synchronous code. It’s not a coincidence 
that C#, which has introduced several functional futures in its language, has been 
inspired by the functional approach of the F# asynchronous workflow to implement the 
async/await asynchronous model, replacing the conventional imperative APM. More-
over, both the C# asynchronous task and the F# asynchronous workflow are monadic 
containers, which eases factoring out common functionality into generic, reusable 
components. 

9.2 What’s the F# asynchronous workflow? 
The FP language F# provides full support for asynchronous programming:

¡	It integrates with the asynchronous programming model provided by .NET.
¡	It offers an idiomatic functional implementation of APM. 
¡	It supports interoperability with the task-based programming model in C#.
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The asynchronous workflow in F# is designed to satisfy the functional paradigm pro-
moting compositionality, simplicity, and expressing non-blocking computations by 
keeping the sequential structure of code. By definition, the asynchronous workflow is 
built on computation expressions, a generic component of the F# core language that 
provides monadic semantics to express a sequence of operations in continuation-pass-
ing style (CPS). 

A key feature of the asynchronous workflow is combining non-blocking computa-
tions with lightweight asynchronous semantics, which resembles a linear control flow.

9.2.1 The continuation passing style in computation expressions 

Multithreaded code is notoriously resistant to the imperative style of writing. But using 
CPS, you can embrace the functional paradigm to make your code remarkably con-
cise and easy to write. Let’s imagine that you’re programming using an old version of 
.NET Framework that doesn’t have the async/await programming model available 
(see chapter 8). In this case you need to compute a series of Task operations, where 
the input of each operation depends on the output of the previous one; the code can 
become complex and convoluted. In the following code example, the code downloads 
an image from Azure Blob storage and saves the bytes into a file. 

For the sake of simplicity, the code that isn’t relevant for the example is omitted 
intentionally; the code to note is in bold. You can find the full implementation in the 
downloadable source code:

let downloadCloudMediaBad destinationPath (imageReference : string) =
    log "Creating connecton..."
    let taskContainer = Task.Run<CloudBlobContainer>(fun () -> 
➥	getCloudBlobContainer())
    log "Get blob reference...";
    let container = taskContainer.Result
    let taskBlockBlob = Task.Run<CloudBlob>(fun () -> 
➥	container.GetBlobReference(imageReference))
    log "Download data..."
    let blockBlob = taskBlockBlob.Result
    let bytes = Array.zeroCreate<byte> (int blockBlob.Properties.Length)
    let taskData = Task.Run<byte[]>(fun () -> blockBlob.

DownloadToByteArray(bytes, 0)|>ignore; bytes)
    log "Saving data..."
    let data = taskData.Result
    let taskComplete = Task.Run(fun () -> 
➥	File.WriteAllBytes(Path.Combine(destinationPath,imageReference), data))
    taskComplete.Wait()
    log "Complete"

Granted, the code is an extreme example that aims to validate the point that using 
traditional tools (with the same obsolete mindset) to write concurrent code produces 
verbose and impractical programs. The inexperienced developer can write code in 
this way more easily, because it’s easier to reason sequentially. The result, however, is 
a program that doesn’t scale, and each Task computation calls the instance method 
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Result, which is a bad practice. In this situation and with a little study, CPS can solve 
the problem of scalability. First, you define a function used to combine the operations 
in a pipeline shape: 

let bind(operation:unit -> 'a, continuation:'a -> unit) =
         Task.Run(fun () -> continuation(operation())) |> ignore

The bind function accepts the continuation ('a -> unit) function, which is called 
when the result of the operation (unit -> 'a) is ready. The main key is that you’re not 
blocking the calling thread, which may then continue executing useful code. When 
the result is ready, the continuation is called, allowing the computation to continue. 
You can now use this bind function to rewrite the previous code in a fluent manner:

let downloadCloudMediaAsync destinationPath (imageReference : string) =    
    bind( (fun () -> log "Creating connecton..."; getCloudBlobContainer()), 
        fun connection ->
            bind( (fun () -> log "Get blob reference..."; 
                connection.GetBlobReference(imageReference)), 
                fun blockBlob ->
            bind( (fun () -> log "Download data..."
                let bytes = Array.zeroCreate<byte> (int blockBlob.Properties.
➥	Length)
                blockBlob.DownloadToByteArray(bytes, 0) |> ignore
                bytes), fun bytes -> 
            bind( (fun () -> log "Saving data...";          
         File.WriteAllBytes(Path.Combine(destinationPath,imageReference), 
➥	bytes)), fun () -> log "Complete"))))

["Bugghina01.jpg"; "Bugghina02.jpg"; "Bugghina003.jpg"] |> Seq.iter 
(downloadCloudMediaAsync "Images")

Running the code, you’ll notice the bind function executes the underlying anonymous 
lambda in its own thread. Every time the bind function is called, a thread is pulled out 
from the thread pool, then, when the function completes, the thread is released back 
to the thread pool.

The F# asynchronous workflow is based on this same concept of CPS, which is useful 
for modeling calculations that are difficult to capture sequentially. 

NOTE   It’s possible for async functions to hop between any number of threads 
throughout their lifetime.

Figure 9.1 shows the comparison between incoming requests handled in a synchro-
nous and asynchronous way.
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The request is processed,
and the result is sent
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can send many concurrent
requests simultaneously.
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Figure 9.1  Comparison between synchronous (blocking) I/O and asynchronous (non-blocking) I/O 
operation systems. The synchronous version can send only one request at a time; after the request is 
processed, the result is sent back to the caller. The asynchronous version can send many concurrent 
requests simultaneously; after these requests are processed concurrently on the server side, they’re sent 
back to the caller in the order that they complete.

The F# asynchronous workflow also includes cancellation and exception continua-
tions. Before we dig into the asynchronous workflow details, let’s look at an example.

9.2.2 The asynchronous workflow in action: Azure Blob storage 
parallel operations 

Let’s imagine that your boss has decided that the company’s digital media assets should be 
stored in the cloud as well as locally. He asks you to create a simple uploader/downloader 
tool for that purpose and to synchronize and verify what’s new in the cloud. To handle 
media files as binary data for this scenario, you design a program to download a set of 
images from the network Azure Blob storage and render these images in a client-side 
application that’s based on WPF. Azure Blob storage (http://mng.bz/X1FB) is a Micro-
soft cloud service that stores unstructured data in the form of blobs (binary large objects). 
This service stores any type of data, which makes it a great fit to handle your company’s 
media files as binary data (figure 9.2). 

NOTE   The code examples in this chapter are in F#, but the same concepts are 
applicable to C#. The translated versions of these code examples can be found 
in the downloadable code for this book, available online. 

 

http://mng.bz/X1FB
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OS
scheduler

Synchronous program
Executes operations sequentially,

one at a time.

Asynchronous program
Can run multiple parallel requests, increasing overall execution

speed. Thus, the asynchronous version of the program can
download more images than the synchronous version

in the same amount of time.

Figure 9.2  The synchronous versus asynchronous programming model. The synchronous program 
executes each operation sequentially one at a time. The asynchronous version can run multiple requests 
in parallel, increasing the overall execution speed of the program. As a result, the asynchronous version 
of the program can download more images in the same period of time as compared to the synchronous 
version.

As mentioned earlier, to provide visual feedback, the program runs as a client WPF 
application. This application benefits from a FileSystemWatcher (http://mng.bz/
DcRT) that’s listening for file-created events to pick up file changes in the local folder. 
When the images are downloaded and saved in this local folder, FileSystemWatcher 
triggers an event and synchronizes the updates of a local file collection with the path 
of the image, which is successively displayed in a WPF UI controller. (The code imple-
mentation of the client WPF UI application isn’t reviewed here because it’s irrelevant 
to the main topic of this chapter.) 

Let’s compare the synchronous and asynchronous programs from figure 9.2. The 
synchronous version of the program executes each step sequentially and iterates, with a 
conventional for loop, the collection of images to download from the Azure Blob stor-
age. This design is straightforward but doesn’t scale. Alternatively, the asynchronous 
version of the program is capable of processing multiple requests in parallel, which 
increases the number of images downloaded in the same period of time.

Let’s analyze the asynchronous version of the program in more depth. In figure 9.3, 
the program starts by sending a request to the Azure Blob storage to open the cloud 
blob container connection. When the connection is opened, the handle of the blob 
media stream is retrieved to begin downloading the image. The data is read from the 
stream, and, ultimately, persisted to a local filesystem. Then it repeats this operation for 
the next image through to the last. 

 

http://mng.bz/DcRT
http://mng.bz/DcRT
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Figure 9.3  Downloading an image asynchronously from the network (Azure Blob storage)

Each download operation takes an average of 0.89 seconds over five runs, for a total 
time of 89.28 seconds to download 100 images. These values can vary according the 
network bandwidth. Obviously, the time to perform multiple synchronous I/O oper-
ations sequentially is equal to the sum of the time elapsed for each individual opera-
tion, in comparison to the asynchronous approach, which by running in parallel has 
an overall response time equal to the slowest operation.

NOTE  The Azure Blob storage has an API to download the blob directly into a 
local file, DownloadToFile; but the code intentionally creates a large number 
of I/O operations to accentuate the problem of running I/O blocking opera-
tions synchronously.

The following listing is the asynchronous workflow implementation of the program 
to download the images asynchronously from Azure Blob storage (the code to note 
is in bold).

Listing 9.1  Asynchronous workflow implementation to download images 

let getCloudBlobContainerAsync() : Async<CloudBlobContainer> = async {
    let storageAccount = CloudStorageAccount.Parse(azureConnection) 
    let blobClient = storageAccount.CreateCloudBlobClient() 
    let container = blobClient.GetContainerReference("media") 
    let! _ = container.CreateIfNotExistsAsync() 
    return container }

Parses and creates the Azure storage connection

Creates the 
blob client

Retrieves a 
reference of the 
media container

Creates the container asynchronously 
if it doesn’t already exist
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let downloadMediaAsync(blobNameSource:string) (fileNameDestination:string)=
  async {         
    let! container = getCloudBlobContainerAsync()        
    let blockBlob = container.GetBlockBlobReference(blobNameSource)
    let! (blobStream : Stream) = blockBlob.OpenReadAsync()  
   
     use fileStream = new FileStream(fileNameDestination, FileMode.Create, 
➥	FileAccess.Write, FileShare.None, 0x1000, FileOptions.Asynchronous)
    let buffer = Array.zeroCreate<byte> (int blockBlob.Properties.Length)
    let rec copyStream bytesRead = async {
        match bytesRead with
        | 0 -> fileStream.Close(); blobStream.Close()
        | n -> do! fileStream.AsyncWrite(buffer, 0, n)   
               let! bytesRead = blobStream.AsyncRead(buffer, 0, buffer.
➥	Length)
                return! copyStream bytesRead }
    let! bytesRead = blobStream.AsyncRead(buffer, 0, buffer.Length) 
    do! copyStream bytesRead  }

Note that this code looks almost exactly like sequential code. The parts in bold are the 
only changes necessary to switch the code from synchronous to asynchronous.

The intentions of this code are direct and simple to interpret because of the sequen-
tial structure of the code. This code simplification is the result of the pattern-based 
approach that the F# compiler uses to detect a computation expression, and in the case 
of an asynchronous workflow, it gives the illusion to the developer that callbacks have 
disappeared. Without callbacks, the program isn’t subject to inversion of control as in 
APM, which makes F# deliver a clean asynchronous code implementation with a focus 
on compositionality. 

Both the getCloudBlobContainerAsync and downloadMediaAsync functions are 
wrapped inside an async expression (workflow declaration), which turns the code 
into a block that can be run asynchronously. The function getCloudBlobContainer-
Async creates a reference to the container media. The return type of this asynchronous 
operation to identify the container is type Task<CloudBlobContainer>, which with 
the Async<CloudBlobContainer> is handled by the underlying asynchronous work-
flow expression (explained later in the chapter). The key feature of an asynchronous 
workflow is to combine non-blocking computations with lightweight asynchronous 
semantics, which resembles a linear control flow. It simplifies the program structure of 
traditional callback-based asynchronous programming through syntactic sugar. 

The methods that run asynchronously are bound to a different construct that uses 
the ! (pronounced bang) operator, which is the essence of an asynchronous workflow 
because it notifies the F# compiler to interpret the function in an exclusive way. The 
body of a let! binding registers the expression as a callback, in context for future eval-
uation to the rest of the asynchronous workflow, and it extracts the underlying result 
from Async<'T>.

Converts a function to async
Adds computational expression semantics with the ! 

operator to register continuation of the workflow
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In the expression 

let! bytesRead = blobStream.AsyncRead(buffer, 0, buffer.Length)

the return type of blobStream.AsyncRead is Async<int>, indicating the number of 
bytes read from the asynchronous operation, which is extracted into the value bytes-
Read. The rec copyStream function recursively and asynchronously copies the blob-
Stream into the fileStream. Note the copyStream function is defined inside another 
async workflow to capture (close over) the stream values that can be accessed to be 
copied. This code could be rewritten in an imperative style with identical behavior as 
follows:

let! bytesRead = blobStream.AsyncRead(buffer, 0, buffer.Length)
let mutable bytesRead = bytesRead
while bytesRead > 0 do
     do! fileStream.AsyncWrite(buffer, 0, bytesRead) 
     let! bytesReadTemp = blobStream.AsyncRead(buffer, 0, buffer.Length)
     bytesRead <- bytesReadTemp
fileStream.Close(); blobStream.Close()

The mutation of the variable bytesRead is encapsulated and isolated inside the main 
function downloadMediaAsync and is thread safe. 

Besides let! the other asynchronous workflow constructors are as follows:

¡	use!—Works like let! for disposable resources that are cleaned up when out 
of scope

¡	do!—Binds an asynchronous workflow when the type is Async<unit>
¡	return—Returns a result from the expression
¡	return!—Executes the bound asynchronous workflow, returning the value of 

the expression

The F# asynchronous workflow is based on the polymorphic data type Async<'a> that 
denotes an arbitrary asynchronous computation, which will materialize in the future, 
returning a value of type 'a. This concept is similar to the C# TAP model. The main dif-
ference is that the F# Async<'a> type isn’t hot, which means that it requires an explicit 
command to start the operation. 

When the asynchronous workflow reaches the start primitive, a callback is scheduled 
in the system, and the execution thread is released. Then, when the asynchronous oper-
ation completes the evaluation, the underlying mechanisms will notify the workflow, 
passing the result to the next step in the code flow. 

The real magic is that the asynchronous workflow will complete at a later time, but 
you don’t have to worry about waiting for the result because it will be passed as an argu-
ment in the continuation function when completed. The compiler takes care of all of 
this, organically converting the Bind member calls into the continuation constructs. 
This mechanism uses CPS for writing, implicitly, a structured callback-based program 
inside its body expression, which allows a linear style of coding over a sequence of 
operations. 
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The asynchronous execution model is all about continuations, where the evaluation 
of the asynchronous expression preserves the capability of having a function registered 
as a callback (figure 9.4).

bind(fun() ->log "Creating connection...";
             getCloudBlobContainer()), fun connection ->
     bind(fun() ->log "Get blob reference...";
                  connection.GetBlobReference(imageReference)), fun blockBlob ->

async {
   log "Creating connection...";
   let! connection = getCloudBlobContainerAsync()
   log "Get blob reference...";
   let blockBlob = connection.GetBlobReference(imageReference)
   ...

Figure 9.4  A comparison of the Bind function with the computation expression version.

The benefits of using an asynchronous workflow are as follows:

¡	Code that looks sequential but behaves asynchronously 
¡	Simple code that’s easy to reason about (because it looks like sequential code), 

which simplifies updates and modification 
¡	Asynchronous compositional semantics
¡	Built-in cancellation support 
¡	Simple error handling
¡	Easy to parallelize 

9.3 Asynchronous computation expressions
Computation expressions are an F# feature that define a polymorphic construct used to 
customize the specification and behavior of the code, and lead you toward a compo-
sitional programming style. The MSDN online documentation provides an excellent 
definition: 

Computation expressions in F# provide a convenient syntax for writing computations that 
can be sequenced and combined using control flow constructs and bindings. They can be 
used to provide a convenient syntax for monads, a functional programming feature that 
can be used to manage data, control, and side effects in functional programs.1

Computation expressions are a helpful mechanism for writing computations that exe-
cute a controlled series of expressions as an evaluation of feed-into steps. The first 
step serves as input to the second step, and that output serves as input for the third 
step, and so forth through the execution chain—unless an exception occurs, in which 
case the evaluation terminates prematurely, skipping the remaining steps.

1 For more information, see http://mng.bz/n1uZ.
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Think of a computation expression as an extension of the programming language 
because it lets you customize a specialized computation to reduce redundant code and 
apply heavy lifting behind the scenes to reduce complexity. You can use a computation 
expression to inject extra code during each step of the computation to perform opera-
tions such as automatic logging, validation, control of state, and so on. 

The F# asynchronous programming model, asynchronous workflow, relies on com-
putation expressions, which are also used to define other implementations, such as 
sequence and query expressions. The F# asynchronous workflow pattern is syntactic 
sugar, interpreted by the compiler in a computation expression. In an asynchronous 
workflow, the compiler must be instructed to interpret the workflow expression as an 
asynchronous computation. The notification is semantically passed by wrapping the 
expression in an asynchronous block, which is written using curly braces and the async 
identifier right at the beginning of the block, like so: async { expression } 

When the F# compiler interprets a computation as an asynchronous workflow, it 
divides the whole expression into separate parts between the asynchronous calls. This 
transformation, referred to as desugaring, is based on the constituent primitives by the 
computation builder in context (in this case, the asynchronous workflow).

F# supports computation expressions through a special type called builder, associ-
ated with the conventional monadic syntax. As you remember, the two primary monadic 
operators to define a computation builder are Bind and Return. 

In the case of an asynchronous workflow, the generic monadic type is replaced and 
defined with the specialized type Async:

async.Bind: Async<'T> → ('T → Async<'R>) → Async<'R>    

async.Return: 'T → Async<'T>        

The asynchronous workflow hides nonstandard operations in the form of computa-
tion builder primitives and reconstructs the rest of the computation in continuation. 
Nonstandard operations are bound in the body expression of the builder constructs 
with the ! operator. It’s not a coincidence that the computation expression definition, 
through the Bind and Return operators, is identical to the monadic definition, which 
shares the same monadic operators. You can think of a computation expression as a 
continuation monad pattern.

9.3.1 Difference between computation expressions and monads 

You can also think of a computation expression as a general monadic syntax for 
F#, which is closely related to monads. The main difference between computation 
expressions and monads is found in their origin. Monads strictly represent mathe-
matical abstractions, whereas the F# computation expression is a language feature 
that provides a toolset to a program with computation that can—or not—have a 
monadic structure.

The asynchronous operation 
Async<'T> is passed as the first 

argument, and a continuation ('T ➔ 
Async<'R>) is passed as the second.

Wraps a generic type 'T into 
an elevated type Async<'T>
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F# doesn’t support type classes, so it isn’t possible to write a computation expres-
sion that’s polymorphic over the type of computation. In F# you can select a com-
putation expression with the most specialized behavior and convenient syntax (an 
example is coming).

Type classes 
A type class is a construct that provides specific polymorphism, which is achieved by 
applying constraint definitions to type variables. Type classes are akin to interfaces that 
define a behavior, but they’re more powerful. The compiler provides specialized behavior 
and syntax over the type inferred through these constraints. In .NET, you can think of a 
type class as an interface that defines a behavior, which the compiler can detect, and 
then provides an ad hoc implementation based on its type definition. Ultimately, a type 
can be made an instance of a typeclass if it supports that behavior.

 

The code written using the computation expression pattern is ultimately translated 
into an expression that uses the underlying primitives implemented by the computa-
tion builder in context. This concept will be clearer with an example. 

Listing 9.2 shows the desugared version of the function downloadMediaAsync, where 
the compiler translates the computation expression into a chain of method calls. This 
unwrapped code shows how the behavior of each single asynchronous part is encapsu-
lated in the related primitive member of the computation builder. The keyword async 
tells the F# compiler to instantiate the AsyncBuilder, which implements the essential 
asynchronous workflow members Bind, Return, Using, Combine, and so on. The listing 
shows how the compiler translates the computation expression into a chain of method 
calls of the code from listing 9.1. (The code to note is in bold.)

Listing 9.2  Desugared DownloadMediaAsync computation expression 

let downloadMediaAsync(blobName:string) (fileNameDestination:string) = 
 async.Delay(fun() ->        
   async.Bind(getCloudBlobContainerAsync(), fun container ->     
     let blockBlob = container.GetBlockBlobReference(blobName)  
     async.Using(blockBlob.OpenReadAsync(), fun (blobStream:Stream) -> 

           let sizeBlob = int blockBlob.Properties.Length
           async.Bind(blobStream.AsyncRead(sizeBlob), fun bytes ->
                use fileStream = new FileStream(fileNameDestination, 
➥ FileMode.Create, FileAccess.Write, FileShare.None, bufferSize, 
➥ FileOptions.Asynchronous)
       async.Bind(fileStream.AsyncWrite(bytes, 0, bytes.Length), fun () ->
                            fileStream.Close()
                            blobStream.Close() 
                            async.Return())))))     

Delays execution of the function until an explicit request

The Bind 
operator is the 
desugared 
version of the 
let! operator.

The Using operator translates 
to the use! operator.

Returns the operator that completes 
the computation expression
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In the code, the compiler transforms the let! binding construct into a call to the Bind 
operation, which unwraps the value from the computation type and executes the rest 
of the computation converted to a continuation. The Using operation handles com-
putation where the resulting value type represents a resource that can be disposed. 
The first member in the chain, Delay, wraps the expression as a whole to manage the 
execution, which can run later on demand.

Each step of the computation follows the same pattern: the computation builder 
member, like Bind or Using, starts the operation and provides the continuation that 
runs when the operation completes, so you don’t wait for the result.

9.3.2 AsyncRetry: building your own computation expression 

As mentioned, a computation expression is a pattern-based interpretation (like LINQ/
PLINQ), which means that the compiler can infer from the implementation of the mem-
bers Bind and Return that the type construct is a monadic expression. By following a few 
simple specifications, you can build your own computation expression, or even extend an 
existing one, to deliver to an expression the special connotation and behavior you want.

Computation expressions can contain numerous standard language constructs, as 
listed in table 9.1; but the majority of these member definitions are optional and can be 
used according to your implementation needs. The mandatory and basic members to 
represent a valid computation expression for the compiler are Bind and Return.

Table 9.1.  Computation expression operators

Member Description

Bind : M<'a> * ('a ➔ M<'b>) ➔ M<'b> Transformed let! and do! within computation 
expressions.

Return : 'a ➔ M<'a> Transformed return within computation expressions.

Delay : (unit ➔ M<'a>) ➔ M<'a> Used to ensure side effects within a computation 
expression are performed when expected.

Yield : 'a ➔ M<'a> Transformed yield within computation expressions.

For : seq<'a> * ('a ➔ M<'b>) ➔ M<'b> Transformed for ... do ... within computation 
expressions. M<'b> can optionally be M<unit>.

While : (unit ➔ bool) * M<'a> ➔ M<'a> Transformed while-do block within computation 
expressions. M<'b> can optionally be M<unit>.

Using : 'a * ('a ➔ M<'b>) ➔ M<'b> 
when 'a :> IDisposable

Transformed use bindings within computation 
expressions.

Combine : M<'a> ➔ M<'a> ➔ M<'a> Transformed sequencing within computation expres-
sions. The first M<'a> can optionally be M<unit>.

Zero : unit ➔ M<'a> Transformed empty else branches of if/then 
within computation expressions.

TryWith : M<'a> ➔ M<'a> ➔ M<'a> Transformed empty try/with bindings within  
computation expressions.

TryFinally : M<'a> ➔ M<'a> ➔ M<'a> Transformed try/finally bindings within  
computation expressions.
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Let’s build a computation expression that can be used with the example in listing 9.2. 
The first step of the function, downloadMediaCompAsync, connects asynchronously to 
the Azure Blob service, but what happens if the connection drops? An error is thrown 
and the computation stops. You could check whether the client is online before trying 
to connect; but it’s a general rule of thumb when working with network operations that 
you retry the connection a few times before aborting. 

In the following listing, you’re building a computation expression that runs an asyn-
chronous operation successfully a few times, with a delay in milliseconds between each 
retry before the operation stops (the code to note is in bold). 

Listing 9.3  AsyncRetryBuilder computation expression 

type AsyncRetryBuilder(max, sleepMilliseconds : int) =
    let rec retry n (task:Async<'a>) (continuation:'a -> Async<'b>) = 
      async { 
        try 
            let! result = task 
            let! conResult = continuation result   
            return conResult
        with error ->
                if n = 0 then return raise error  
                else
                do! Async.Sleep sleepMilliseconds    
                return! retry (n - 1) task continuation }

    member x.ReturnFrom(f) = f   

    member x.Return(v) = async { return v } 

    member x.Delay(f) = async { return! f() } 
    member x.Bind(task:Async<'a>, continuation:'a -> Async<'b>) = 

                                  retry max task continuation    
   member x.Bind(t : Task, f : unit -> Async<'R>) : Async<'R> =    

                                  async.Bind(Async.AwaitTask t, f) 

The AsyncRetryBuilder is a computation builder used to identify the value to con-
struct the computation. The following code shows how to use the computation builder 
(the code to note is highlighted in bold).

Listing 9.4 Using AsyncRetryBuilder to identify construct value

let retry = AsyncRetryBuilder(3, 250) 

Runs the task 
workflow in a 

try-catch block

The operation succeeds and runs the 
continuation for the rest of the work.

The operation reached the limit of 
allowed reruns, and an error is 
thrown, stopping this computation.

Computation can rerun 
but with a delay. 

Returns the 
computation itself

Lifts the 
value inside 

an async

Wraps the function inside async, 
so you can nest the computation 
in an asynchronous workflow

Binds the async function and its continuation, 
starting the retry function. If the function succeeds, 
then the result will feed the continuation function. Shows compatibility provided for Task-based operations

Defines the value to identify the computation 
expression, which in case of an exception, 
reattempts to run the code three ties with a 
delay of 250 ms between retries
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let downloadMediaCompAsync(blobNameSource:string)
                          (fileNameDestination:string) = 
async {
        let! container = retry {    
             return! getCloudBlobContainerAsync() }

      ... Rest of the code as before 

The AsyncRetryBuilder instance retry re-attempts to run the code in case of an 
exception three times, with a delay of 250 ms between retries. Now, the AsyncRetry-
Builder computation expression can be used in combination with the asynchronous 
workflow, to run and retry asynchronously (in case of failure), the downloadMedia-
CompAsync operation. It’s common to create a global value identifier for a computa-
tion expression that can be reused in different parts of your program. For example, 
the asynchronous workflow and sequence expression can be accessed anywhere in the 
code without creating a new value.

9.3.3 Extending the asynchronous workflow 

Besides creating custom computation expressions, the F# compiler lets you extend 
existing ones. The asynchronous workflow is a perfect example of a computation 
expression that can be enhanced. In listing 9.4, the connection to the Azure Blob con-
tainer is established through the asynchronous operation getCloudBlobContainer-
Async, the implementation of which is shown here:

let getCloudBlobContainerAsync() : Async<CloudBlobContainer> = async {
    let storageAccount = CloudStorageAccount.Parse(azureConnection) 
    let blobClient = storageAccount.CreateCloudBlobClient() 
    let container = blobClient.GetContainerReference("media")
    let! _ = container.CreateIfNotExistsAsync() 
    return container }

Inside the body of the getCloudBlobContainerAsync function, the CreateIfNotEx-
istsAsync operation returns a Task type, which isn’t friendly to use in the context 
of asynchronous workflow. Fortunately, the F# async provides the Async.AwaitTask2 
operator, which allows a Task operation to be awaited and treated as an F# async com-
putation. A vast number of asynchronous operations in .NET have return types of Task 
or the generic version Task<'T>. These operations, designed to work primarily with C#, 
aren’t compatible with the F# out-of-the-box asynchronous computation expressions.

What’s the solution? Extend the computation expression. Listing 9.5 generalizes the 
F# asynchronous workflow model so that it can be used not only in async operations, 
but also with the Task and Observable types. The async computation expression needs 
type-constructs that can create observables and tasks, as opposed to only asynchronous 
workflows. It’s possible to await all kinds of events produced by Event or IObservable 
streams and tasks from Task operations. These extensions for the computation expres-
sion, as you can see, abstract the use of the Async.AwaitTask operator (the related 
commands are in bold). 

The retry computation expression can 
be nested inside an async workflow.

2 The Async.AwaitTask creates computations that wait on the provided task and returns its result.
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Listing 9.5  Extending the asynchronous workflow to support Task<'a>

type Microsoft.FSharp.Control.AsyncBuilder with
    member x.Bind(t:Task<'T>, f:'T -> Async<'R>) : Async<'R> = 
➥	async.Bind(Async.AwaitTask t, f)           

    member x.Bind(t:Task, f:unit -> Async<'R>) : Async<'R> = 
➥	async.Bind(Async.AwaitTask t, f)             

    member x.Bind (m:'a IObservable, f:'a -> 'b Async) = 
➥	async.Bind(Async.AwaitObservable m, f)            

    member x.ReturnFrom(computation:Task<'T>) = 
➥	x.ReturnFrom(Async.AwaitTask computation)

The AsyncBuilder lets you inject functions to extend the manipulation on other wrap-
per types, such as Task and Observable, whereas the Bind function in the extension 
lets you fetch the inner value contained in the Observable (or IEvent) using the let! 
and do! operators. This technique removes the need for adjunctive functions like 
Async.AwaitEvent and Async.AwaitTask. 

In the first line of code, the compiler is notified to target the AsyncBuilder, which 
manages the asynchronous computation expression transformation. The compiler, 
after this extension, can determine which Bind operation to use, according to the 
expression signature registered through the let! binding. Now you can use the asyn-
chronous operation of type Task and Observable in an asynchronous workflow.

9.3.4 Mapping asynchronous operation: the Async.map functor

Let’s continue extending the capabilities of the F# asynchronous workflow. The F# asyn-
chronous workflow provides a rich set of operators; but currently, there’s no built-in 
support for an Async.map function(also known as a functor) having type signature

('a ➔ 'b) ➔ Async<'a> ➔ Async<'b>

A functor is a pattern of mapping over structure, which is achieved by providing imple-
mentation support for a two-parameter function called map (better known as fmap). 
For example, the Select operator in LINQ/PLINQ is a functor for the IEnumerable 
elevated type. Mainly, functors are used in C# to implement LINQ-style fluent APIs that 
are used also for types (or contexts) other than collections.

We discussed the functor type in chapter 7, where you learned how to implement a 
functor (in bold) for the Task elevated type:

Task<T> fmap<T, R>(this Task<T> input, Func<T, R> map) => 
                                input.ContinueWith(t => f(t.Result));

This function has a signature ('T ➔ 'R) ➔ Task<T> ➔ Task<R>, so it takes a map func-
tion 'T ➔ 'R as a first input (which means it goes from a value type T to a value type 
R, in C# code Func<T, R>), and then upgrades type Task<'T> as a second input and 

Extends the Async 
Bind operator to 
perform against 
other elevated types
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returns a Task<'R>. Applying this pattern to the F# asynchronous workflow, the signa-
ture of the Async.map function is 

('a -> 'b) -> Async<'a> -> Async<'b>

The first argument is a function 'a -> 'b, the second is an Async<'a>, and the output 
is an Async<'b>. Here’s the implementation of Async.map:

module Async =
    let inline map (func:'a -> 'b) (operation:Async<'a>) = async {
        let! result = operation
        return func result }

let! result = operation runs the asynchronous operation and unwraps the Asyn-
c<'a> type, returning the 'a type. Then, we can pass the value 'a to the function 
func:'a -> 'b that converts 'a to 'b. Ultimately, once the value 'b is computed, the 
return operator wraps the result 'b into the Async<> type.

The inline keyword 
The inline keyword in F# is used to define a function that’s integrated into the calling code 
by amending the function body directly to the caller code. The most valuable application of 
the inline keyword is inlining higher-order functions to the call site where their function 
arguments are also inlined to produce a single fully optimized piece of code. F# can also 
inline between compiled assemblies because inline is conveyed via .NET metadata.

 

The map function applies an operation to the objects inside the Async container,3 
returning a container of the same shape. The Async.map function is interpreted as a 
two-argument function where a value is wrapped in the F# Async context, and a func-
tion is applied to it. The F# Async type is added to both its input and output.

The main purpose of the Async.map function is to operate (project) the result of an 
Async computation without leaving the context. Back to the Azure Blob storage example, 
you can use the Async.map function to download and transform an image as follows (the 
code to note is in bold):

let downloadBitmapAsync(blobNameSource:string) = async {    
    let! token = Async.CancellationToken
    let! container = getCloudBlobContainerAsync()    
    let blockBlob = container.GetBlockBlobReference(blobNameSource)
    use! (blobStream : Stream) = blockBlob.OpenReadAsync()      
    return Bitmap.FromStream(blobStream) }

let transformImage (blobNameSource:string) = 
    downloadBitmapAsync(blobNameSource)
    |> Async.map ImageHelpers.setGrayscale
    |> Async.map ImageHelpers.createThumbnail

The Async.map function composes the async operations of downloading the image 
blobNameSource from the Azure Table storage with the transformation functions 
setGrayscale and createThumbnail.

3 Polymorphic types can be thought of as containers for values of another type.
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NOTE  I defined these ImageHelpers functions in chapter 7, so they’re omit-
ted here intentionally. Please refer to the online source code for the full 
implementation.

In the snippet, the advantages of using the Async.map function are composability and 
continued encapsulation.

9.3.5 Parallelize asynchronous workflows: Async.Parallel

Let’s return to the example of downloading 100 images from Azure Blob storage 
using the F# asynchronous workflow. In section 9.2  you built the function download-
MediaAsync that downloads one cloud blob image using the asynchronous workflow. 
It’s time to connect the dots and run the code. But instead of iterating through the list 
of images one operation at a time, the F# asynchronous workflow provides an elegant 
alternative: Async.Parallel. 

The idea is to compose all the asynchronous computations and execute them all at 
once. Parallel composition of asynchronous computations is efficient because of the 
scalability properties of the .NET thread pool and the controlled, overlapped execu-
tion of operations such as web requests by modern operating systems. 

Using the F# Async.Parallel function, it’s possible to download hundreds of images 
in parallel (the code to note is in bold).

Listing 9.10  Async.Parallel downloading all images in parallel

let retry = RetryAsyncBuilder(3, 250) 

let downloadMediaCompAsync (container:CloudBlobContainer) 
    (blobMedia:IListBlobItem) = retry { 

    let blobName = blobMedia.Uri.Segments.[blobMedia.Uri.Segments.Length-1]
    let blockBlob = container.GetBlockBlobReference(blobName)
    let! (blobStream : Stream) = blockBlob.OpenReadAsync()
    return Bitmap.FromStream(blobStream)    
}
let transformAndSaveImage (container:CloudBlobContainer) 
                         (blobMedia:IListBlobItem) = 
     downloadMediaCompAsync container blobMedia    
     |> Async.map ImageHelpers.setGrayscale    
     |> Async.map ImageHelpers.createThumbnail    
     |> Async.tap (fun image ->             
            let mediaName = 

                blobMedia.Uri.Segments.[blobMedia.Uri.Segments.Length - 1]
            image.Save(mediaName))

let downloadMediaCompAsyncParallel() = retry {           

     let! container = getCloudBlobContainerAsync()  
     let computations = 
         container.ListBlobs() 

Defines a Retry computation expression

Runs the asynchronous 
operations using a run 
and retry approach 

Returns an 
image from 
the operation

The map functions are 
extracted in an independent 
function and applied in the 
Async.Parallel pipeline.

The tap function applies side effects 
to its inputs and the result is ignored.

Runs the asynchronous operations 
using a run and retry approach 

Shares CloudBlobContainer 
argument among parallel 
non-blocking computations 
without contention 
because it’s read-only Gets the list of images to download
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         |> Seq.map(transformAndSaveImage container) 

     return! Async.Parallel computations } 

let cancelOperation() =
     downloadMediaCompAsyncParallel() 
     |> Async.StartCancelable 

The Async.Parallel function takes an arbitrary collection of asynchronous opera-
tions and returns a single asynchronous workflow that will run all the computations 
in parallel, waiting for all of them to complete. The Async.Parallel function coor-
dinates the work with the thread pool scheduler to maximize resource employment 
using a Fork/Join pattern, resulting in a performance boost.

The library function Async.Parallel takes a list of asynchronous computations and 
creates a single asynchronous computation that starts the individual computations in 
parallel and waits for their completion to be processed as a whole. When all operations 
complete, the function returns the results aggregated in a single array. Now you can 
iterate over the array to retrieve the results for further processing.

Notice the minimal code change and syntax required to convert a computation that 
executes one operation at a time into one that runs in parallel. Additionally, this con-
version is achieved without the need to coordinate synchronization and memory locks. 

The Async.tap operator applies a function asynchronously to a value passed as 
input, ignores the result and then returns the original value. The Tap operator is intro-
duced in listing 8.3  Here is its implementation using the F# Async workflow (in bold):

let inline tap (fn:'a -> 'b) (x:Async<'a>) = 
       (Async.map fn x) |> Async.Ignore |> Async.Start; x

You can find this and other useful Async functions in the source code of the book in 
the FunctionalConcurrencyLib library.

The execution time to download the images in parallel using F# asynchronous work-
flow in combination with Async.Parallel is 10.958 seconds. The result is ~5 seconds 
faster than APM, which makes it ~8× faster than the original synchronous implemen-
tation. The major gains here include code structure, readability, maintainability, and 
compositionality.

Using an asynchronous workflow, you gained a simple asynchronous semantic to 
run a non-blocking computation, which provides clear code to understand, maintain, 
and update. Moreover, thanks to the Async.Parallel function, multiple asynchronous 
computations can easily be spawned in parallel with minimum code changes to dramat-
ically improve performance.

Creates a sequence of non-blocking 
download computations, which 
aren’t running because they 
require explicit requests

Aggregates the sequence of 
asynchronous computations into a 
single asynchronous workflow that 
runs all operations in parallelThe StartCancelable  function executes the 

asynchronous computation with explicit requests 
without blocking the current thread and providing 
a token that can be used to stop the computation.

 



266 chapter 9 Asynchronous functional programming in F#

The Async type is not hot
The distinct functional aspect of the asynchronous workflow is its execution time. In F#, 
when an asynchronous function is called, the Async<'a> return type represents a com-
putation that will materialize only with an explicit request. This feature lets you model 
and compose multiple asynchronous functions that can be executed conditionally on 
demand. This is the opposite behavior of the C# TAP asynchronous operations (async/ 
await), which start the execution immediately. 

 

Ultimately, the implementation of the Async.StartCancelable type extension starts an 
asynchronous workflow, without blocking the thread caller, using a new Cancellation-
Token, and returns IDisposable that cancels the workflow when disposed. You haven’t 
used Async.Start because it doesn’t provide a continuation-passing semantic, which 
is useful in many cases to apply the operation to the result of the computation. In the 
example, you print a message when the computation completes; but the result type is 
accessible for further processing.

Here’s the implementation of the more sophisticated Async.StartCancelable 
operator compared to Async.Start (in bold):

type Microsoft.FSharp.Control.Async with
   static member StartCancelable(op:Async<'a>) (tap:'a -> unit)(?onCancel)=
        let ct = new System.Threading.CancellationTokenSource()
        let onCancel = defaultArg onCancel ignore
        Async.StartWithContinuations(op, tap, ignore, onCancel, ct.Token)
        { new IDisposable with 
            member x.Dispose() = ct.Cancel() }

The underlying implementation of the Async.StartCancelable function uses the 
Async.StartWithContinuations operator, which provides built-in support for can-
cellation behavior. When the asynchronous operation op:Async<'a> is passed (as the 
first argument completes), the result is passed as a continuation into the second argu-
ment function tap:'a -> unit. The optional parameter onCancel represents the 
function that’s triggered; in this case, the main operation op:Async<'a> is canceled. 
The result of Async.StartCancelable is an anonymous object created dynamically 
based on the IDisposable interface, which will cancel the operation if the Dispose 
method is called.

F# Async API
To create or use the async workflows to program, there’s a list of functions that the Async 
module in F# exposes. These are used to trigger other functions providing a variety of 
ways to create the async workflow. This can be either a background thread or a .NET 
Framework Task object, or running the computation in the current thread itself.

 

The previously utilized F# Async operators Async.StartWithContinuations, Async 
.Ignore, and Async.Start may require a bit more explanation.  
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async.startwithcontinuations 
Async.StartWithContinuations executes an asynchronous workflow starting immedi-
ately on the current OS thread, and after its completion passes respectively the result, 
exception, and cancel (OperationCancelledException) to one of specified functions. 
If the thread that initiates the execution has its own SynchronizationContext associ-
ated with it, then final continuations will use this SynchronizationContext for posting 
results. This function is a good candidate for updating GUIs. It accepts as arguments 
three functions to invoke when the asynchronous computation completes successfully, 
or raises an exception, or is canceled. 

Its signature is Async<'T> ->('T -> unit)*(exn -> unit)*(OperationCanceled-
Exception -> unit) -> unit. Async.StartWithContinuations doesn’t support a 
return value because the result of the computation is handled internally by the function 
targeting the successful output. 

Listing 9.7  Async.StartWithContinuations 

let computation() = async {   
    use client = new  WebClient()
    let! manningSite =     
         client.AsyncDownloadString(Uri("http://www.manning.com")) 
    return manningSite    
}

Async.StartWithContinuations(computation(),              

    (fun site-> printfn "Size %d" site.Length),          

    (fun exn->printfn"exception-%s"<|exn.ToString()),    

    (fun exn->printfn"cancell-%s"<|exn.ToString()))      

async.ignore 
The Async.Ignore operator takes a computation and returns a workflow that executes 
source computation, ignores its result, and returns unit. Its signature is Async.Ignore: 
Async<'T> -> Async<unit>.

These are two possible approaches that use Async.Ignore: 

Async.Start(Async.Ignore computationWithResult())

let asyncIgnore = Async.Ignore >> Async.Start

The second option creates a function asyncIgnore, using function composition to 
combine the Async.Ignore and Async.Start operators. The next listing shows the 
complete example, where the result of the asynchronous operation is ignored using 
the asyncIgnore function (in bold).

The asynchronous computation 
returns a long string.

Starts the asynchronous computation 
immediately using the current OS thread

The computation completes 
successfully and the continuation 
is invoked, printing the size  
of the downloaded website.

The operation throws an exception; the exception 
continuation will execute, printing the exception details. 

The operation is canceled, and the cancellation 
continuation is invoked, printing information 

regarding the cancellation. 
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Listing 9.8  Async.Ignore

let computation() = async {   
    use client = new  WebClient()
    let! manningSite =     
         client.AsyncDownloadString(Uri("http://www.manning.com"))
    printfn "Size %d" manningSite.Length     
    return manningSite    
}
Async.Ignore (computation())  

If you need to evaluate the result of an asynchronous operations without blocking, 
in a pure CPS style, the operator Async.StartWithContinuations offers a better 
approach.

async.start

The Async.Start function in listing 9.9 doesn’t support a return value; in fact, its 
asynchronous computation is type Async<unit>. The operator Async.Start executes 
computations asynchronously so the computation process should itself define ways for 
communication and returning the final result. This function queues an asynchronous 
workflow for execution in the thread pool and returns control immediately to the 
caller without waiting to complete. Because of this, the operation can be completed on 
another thread.

Its signature is Async.Start: Async<unit> -> unit. As optional arguments, this 
function takes a cancellationToken.

Listing 9.9  Async.Start 

let computationUnit() = async { 
    do! Async.Sleep 1000
    use client = new WebClient()
    let! manningSite =     
         client.AsyncDownloadString(Uri("http://www.manning.com"))
    printfn "Size %d" manningSite.Length    
    } 
Async.Start(computationUnit())  

Because Async.Start doesn’t support a return value, the size of the website is printed 
inside the expression, where the value is accessible. What if the computation does 
return a value, and you cannot modify the asynchronous workflow? It’s possible to dis-
charge the result from an asynchronous computation using the Async.Ignore func-
tion before starting the operation.

9.3.6 Asynchronous workflow cancellation support 

When executing an asynchronous operation, it’s useful to terminate execution prema-
turely, before it completes, on demand. This works well for long-running, non-blocking 

This asynchronous computation 
returns a long string.

The computation runs asynchronously 
and the result is discharged (ignored). 

Creates an asynchronous computation to download a 
website, with a one-second delay to simulate heavy 
computation

Prints the website’s size from 
inside the body of the expression

Runs the computation without 
blocking the caller thread
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operations, where making them cancelable is the appropriate practice to avoid tasks 
that can hang. For example, you may want to cancel the operation of downloading 100 
images from Azure Blob storage if the download exceeds a certain period of time. The 
F# asynchronous workflow supports cancellation natively as an automatic mechanism, 
and when a workflow is canceled, it also cancels all the child computations.

Most of the time you’ll want to coordinate cancellation tokens and maintain control 
over them. In these cases, you can supply your own tokens, but in many other cases, you 
can achieve similar results with less code by using the built-in F# asynchronous module 
default token. When the asynchronous operation begins, this underlying system passes 
a provided CancellationToken, or assigns an arbitrary one if not provided, to the work-
flow, and it keeps track of whether a cancellation request is received. The computation 
builder, AsyncBuilder, checks the status of the cancellation token during each binding 
construct (let!, do!, return!, use!). If the token is marked “canceled” the workflow 
terminates. 

This is a sophisticated mechanism that eases your work when you don’t need to do 
anything complex to support cancellation. Moreover, the F# asynchronous workflow 
supports an implicit generation and propagation of cancellation tokens through its 
execution, and any nested asynchronous operations are included automatically in the 
cancellation hierarchy during asynchronous computations. 

F# supports cancellation in different forms. The first is through the function Async 
.StartWithContinuations, which observes the default token and cancels the workflow 
when the token is set as canceled. When the cancellation token triggers, the function to 
handle the cancellation token is called in place of the success one. The other options 
include passing a cancellation token manually or relying on the default Async.Default-
CancellationToken to trigger Async.CancellationToken (in bold in listing 9.10). 

Listing 9.10 shows how to introduce support for cancellation in the previous Async 
.Parallel image download (listing 9.6). In this example, the cancellation token is 
passed manually, because in the automatic version using the Async.DefaultCancella-
tionToken, there’s no code change, only the function to cancel the last asynchronous 
operation.

Listing 9.10  Canceling an asynchronous computation 

let tokenSource = new CancellationTokenSource()    

let container = getCloudBlobContainer()
let parallelComp() = 
     container.ListBlobs()
     |> Seq.map(fun blob -> downloadMediaCompAsync container blob)
     |> Async.Parallel 

Async.Start(parallelComp() |> Async.Ignore, tokenSource.Token)    

tokenSource.Cancel()           

Instance of 
CancellationTokenSource used to 

generate a CancellationToken 

A cancellation token is generated and 
passed into the asynchronous computation 
to stop the execution on demand. 

 



270 chapter 9 Asynchronous functional programming in F#

You created an instance of a CancellationTokenSource that passes a cancellation 
token to the asynchronous computation, starting the operation with the Async.Start 
function and passing CancellationToken as the second argument. Then you cancel 
the operation, which terminates all nested operations.

In listing 9.11, Async.TryCancelled appends a function to an asynchronous work-
flow. It’s this function that will be invoked when the cancellation token is marked. This is 
an alternative way to inject extra code to run in case of cancellation. The following listing 
shows how to use the Async.TryCancelled function, which also has the advantage of 
returning a value, providing compositionality. (The code to note is in bold.)

Listing 9.11  Canceling an asynchronous computation with notification

let onCancelled = fun (cnl:OperationCanceledException) -> 
             printfn "Operation cancelled!"

let tokenSource = new CancellationTokenSource()

let tryCancel = Async.TryCancelled(parallelComp(), onCancelled)  
Async.Start(tryCancel, tokenSource.Token)

TryCancelled is an asynchronous workflow that can be combined with other computa-
tions. Its execution begins on demand with an explicit request, using a starting function 
such as Async.Start or Async.RunSynchronously.

async.runsynchronously 
The Async.RunSynchronously function blocks the current thread during the work-
flow execution and continues with the current thread when the workflow completes. 
This approach is ideal to use in an F# interactive session for testing and in console 
applications, because it waits for the asynchronous computation to complete. It’s not 
the recommended way to run an asynchronous computation in a GUI program, how-
ever, because it will block the UI.

Its signature is Async<'T> -> 'T. As optional arguments, this function takes a timeout 
value and a cancellationToken. The following listing shows the simplest way to exe-
cute an asynchronous workflow (in bold).

Listing 9.12  Async.RunSynchronously 

let computation() = async {  
    do! Async.Sleep 1000   
    use client = new  WebClient()
    return! client.AsyncDownloadString(Uri("www.manning.com")) 
       }
let manningSite = Async.RunSynchronously(computation())  
printfn "Size %d" manningSite.Length 

Function that’s triggered to handle the 
OperationCanceledException exception 

in case an operation is canceled

The parallelComp function is wrapped 
into the Async.TryCancelled operator to 
handle the custom behaviors triggered 

if the operation is canceled.

Creates an asynchronous computation 
to download a website

Adds a one-second delay to 
simulate heavy computation

Downloads a website 
asynchronously 

Runs the computation 
Prints the size of the downloaded website 
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9.3.7 Taming parallel asynchronous operations

The Async.Parallel programing model is a great feature for enabling I/O parallel-
ism based on the Fork/Join pattern. Fork/Join allows you to execute a series of compu-
tation, such that execution branches off in parallel at designated points in the code, to 
merge at a subsequent point resuming the execution.

But because Async.Parallel relies on the thread pool, the maximum degree of par-
allelism is guaranteed, and, consequently, performance increases. Also, cases exist where 
starting a large number of asynchronous workflows can negatively impact performance. 
Specifically, an asynchronous workflow is executed in a semi-preemptive manner, where 
after many operations (more than 10,000 in a 4 GB RAM computer) begin execution, 
asynchronous workflows are enqueued, and even if they aren’t blocking or waiting for a 
long-running operation, another workflow is dequeued for execution. This is an edge case 
that can damage the parallel performance, because the memory consumption of the pro-
gram is proportional to the number of ready-to-run workflows, which can be much larger 
than the number of CPU cores. 

Another case to pay attention to is when asynchronous operations that can run in 
parallel are constraints by external factors. For example, running a console application 
that performs web requests, the default maximum number of concurrent HTTP con-
nections allowed by a ServicePoint4 object is two. In the particular example of Azure 
Blob storage, you link the Async.Parallel to execute multiple long-running opera-
tions in parallel, but ultimately, without changing the base configuration, there will be 
only a limited two parallel web requests. For maximizing the performance of your code, 
it’s recommended you tame the parallelism of the program by throttling the number of 
concurrent computations.

The following code listing shows the implementation of two functions Parallel-
WithThrottle and ParallelWithCatchThrottle, which can be used to refine the num-
ber of running concurrent asynchronous operations.

Listing 9.13  ParallelWithThrottle and ParallelWithCatchThrottle 

type Result<'a> = Result<'a, exn>      

module Result =
    let ofChoice value =           
        match value with
        | Choice1Of2 value -> Ok value
        | Choice2Of2 e -> Error e

module Async =
  let parallelWithCatchThrottle (selector:Result<'a> -> 'b)   

                    (throttle:int)           

                    (computations:seq<Async<'a>>) = async {   

4 Used to get or set the maximum number of concurrent connections allowed. 

Defines the Result<'a> alias

Helper function to map between 
the Choice and Result DU types

The selector function applies a projection 
to the result of the async computation.

The max number of 
concurrent async operations

Lists async computations to execute in parallel
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     use semaphore = new SemaphoreSlim(throttle)          

     let throttleAsync (operation:Async<'a>) = async {    
            try
                    do! semaphore.WaitAsync() 
                    let! result = Async.Catch operation             

                    return selector (result |> Result.ofChoice)  
            finally
                    semaphore.Release() |> ignore }    
            return! computations
                    |> Seq.map throttleAsync
                    |> Async.Parallel  }

  let parallelWithThrottle throttle computations =
      parallelWithCatchThrottle id throttle computations   

The function parallelWithCatchThrottle creates an asynchronous computation that 
executes all the given asynchronous operations, initially queuing each as work items 
and using a Fork/Join pattern. The parallelism is throttled, so that the most throttle 
computations run at one time. 

In listing 9.13, the function Async.Catch is exploited to protect a parallel asynchro-
nous computation from failure. The function parallelWithCatchThrottle doesn’t 
throw exceptions, but instead returns an array of F# Result types.

The second function, parallelWithThrottle, is a variant of the former function 
that uses id in place of the selector argument. The id function in F# is called an iden-
tity function, which is a shortcut for an operation that returns itself: (fun x -> x). In 
the example, id  is used to bypass the selector and return the result of the operation 
without applying any transformation.

The release of F# 4.1 introduced the Result<'TSuccess, 'TError> type, a conve-
nient DU that supports consuming code that could generate an error without having 
to implement exception handling. The Result DU is typically used to represent and 
preserve an error that can occur during execution. 

The first line of code in the previous listing defined a Result<'a> type alias over the 
Result<'a, exn>, which assumes that the second case is always an exception (exn). 
This Result<'a> type alias aims to simplify the pattern matching over the result:

let! result = Async.Catch operation

You can handle exceptions in F# asynchronous operations in different ways. The most 
idiomatic is to use Async.Catch as a wrapper that safeguards a computation by inter-
cepting all the exceptions within the source computation. Async.Catch takes a more 
functional approach because, instead of having a function as an argument to handle 
an error, it returns a discriminated union of Choice<'a, exn>, where 'a is the result 
type of the asynchronous workflow, and exn is the exception thrown. The underlying 
values of the result Choice<'a, exn> can be extracted with pattern matching. I cover 
error handling in functional programming in chapter 10.

The lock primitive used to 
throttle async computations

The function used to run 
each computation and 
limit parallelism by the 
lock primitive access

Runs the computation, guarding 
the result in case of exception

Maps the result with 
the Result DU type 

and then passes it to 
the selector function

Completes the 
computation and 
releases the lock 

 



 273Asynchronous computation expressions

NOTE  The nondeterministic behavior of asynchronous parallel computations 
means you don’t know which asynchronous computation will fail first. But the 
asynchronous combinator Async.Parallel reports the first failure between all 
the computations, and it cancels the other jobs by invoking the cancellation 
token for the group of tasks.

Choice<'T, exn> is a DU5 with two union cases: 

¡	Choice1Of2 of 'T contains the result for successful workflow completion.
¡	Choice2Of2 of exn represents the workflow failure and contains the thrown 

exception.

Handling exceptions with this functional design lets you construct the asynchronous 
code in a compositional and natural pipeline structure.

NOTE  The Async.Catch function preserves information about the error, mak-
ing it easier to diagnose the problem. Using Choice<_,_> lets you use the type 
system to enforce the processing paths for both results and errors.

Choice<'T, 'U> is a DU built into the F# core, which is helpful; but in this case, you can 
create a better representation of the asynchronous computation result by replacing the 
DU Choice with the meaningful DU Result<'a>.6 (The code to note is in bold.)

Listing 9.14  ParallelWithThrottle with Azure Table Storage downloads 

let maxConcurrentOperations = 100                

ServicePointManager.DefaultConnectionLimit <- maxConcurrentOperations 

let downloadMediaCompAsyncParallelThrottle() = async {
    let! container = getCloudBlobContainerAsync()  
    let computations = 
      container.ListBlobs() 
      |> Seq.map(fun blobMedia -> transformAndSaveImage container blobMedia)

    return! Async.parallelWithThrottle        
            maxConcurrentOperations computations }

The code sets the limit of the concurrent request maxConcurrentOperations to 100 
using ServicePointManager.DefaultConnectionLimit. The same value is passed 
as an argument to parallelWithThrottle to throttle the concurrent requests. max-
ConcurrentOperations is an arbitrary number that can be large, but I recommend 
that you test and measure the execution time and memory consumption of your pro-
gram to detect which value has the best performance impact. 

5 For more information, see http://mng.bz/03fl.
6 Introduced in chapter 4.

Sets the limit of max concurrent operations

Sets the DefaultConnectionLimit, 
which is two by default 

Creates a list of 
async operations

Executes the async operations, 
taming the parallelism

 

http://mng.bz/03fl
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Summary

¡	With asynchronous programming, you can download multiple images in parallel, 
removing hardware dependencies and releasing unbounded computational power.

¡	The FP language F# provides full support for asynchronous programming inte-
grating within the asynchronous programming model provided by .NET. It also 
offers an idiomatic functional implementation of the APM called asynchronous 
workflow, which can interop the task-based programming model in C#.

¡	The F# asynchronous workflow is based on the Async<'a> type, which defines 
a computation that will complete sometime in the future. This provides great 
compositionality properties because it doesn’t start immediately. Asynchronous 
computation requires an explicit request to start. 

¡	The time to perform multiple synchronous I/O operations sequentially is equal 
to the sum of the time elapsed for each individual operation, in comparison to 
the asynchronous approach, which runs in parallel, so the overall response time 
is equal to the slowest operation.

¡	Using a continuation passing style, which embraces the functional paradigm, 
your code becomes remarkably concise and easy to write as multithreaded code.

¡	The F# computation expression, specifically in the form of an asynchronous 
workflow, performs and chains a series of computations asynchronously without 
blocking the execution of other work.

¡	Computation expressions can be extended to operate with different elevated 
types without the need to leave the current context, or you can create your own 
to extend the compiler’s capabilities.

¡	It’s possible to build tailored asynchronous combinators to handle special cases.
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10Functional combinators 
for fluent concurrent 

programming

This chapter covers
¡	Handling exceptions in a functional style

¡	Using built-in Task combinators

¡	Implementing custom asynchronous 
combinators and conditional operators

¡	Running parallel asynchronous heterogeneous 
computations

In the previous two chapters, you learned how to apply asynchronous programming 
to develop scalable and performant systems. You applied functional techniques to 
compose, control, and optimize the execution of multiple tasks in parallel. This 
chapter further raises the level of abstraction for expressing asynchronous computa-
tions in a functional style. 

We’ll start by looking at how to manage exceptions in a functional style, with a 
focus on asynchronous operations. Next, we’ll explore functional combinators, a useful 
programming tool for building a set of utility functions that allow you to create com-
plex functions by composing smaller and more concise operators. These combina-
tors and techniques make your code more maintainable and performant, improving 
your ability to write concurrent computations and handle side effects. Toward the 
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end of this chapter, we’ll go through how to interop between C# and F# by calling and 
passing asynchronous functions from one to the other. 

Of all the chapters in this book, this one is the most complex, because it covers FP 
theory where the lexicon might appear as jargon initially. With great effort, comes great 
reward . . . .

The concepts explained in this chapter will provide exceptional tools for building 
sophisticated concurrent programs simply and easily. It’s not necessary for the average 
programmer to know exactly how the .NET garbage collector (GC) works, because it 
operates in the background. But the developer who understands the operational details 
of the GC can maximize a program’s memory use and performance.

Throughout this chapter, we revisit the examples from chapter 9, with slightly more 
complex variations. The code examples are in C# or F#, using the programming lan-
guage that best resonates with the idea in context. But all the concepts apply to both 
programming languages, and in most cases you’ll find the alternate code example in 
the source code.

This chapter can help you to understand the compositional semantics of functional 
error handling and functional combinators so you can write efficient programs for pro-
cessing concurrent (and parallel) asynchronous operations safely, with minimum effort 
and high-yield performance. 

By the end of this chapter, you’ll see how to use built-in asynchronous combinators 
and how to design and implement efficient custom combinators that perfectly meet 
your applications’ requirements. You can raise the level of abstraction in complex and 
slow-running parts of the code to effortlessly simplify the design, control flow, and 
reduce the execution time.

10.1 The execution flow isn’t always on the happy path: 
error handling 
Many unexpected issues can arise in software development. Enterprise applications, in 
general, are distributed and depend on a number of external systems, which can lead 
to a multitude of problems. Examples of these problems are:

¡	Losing network connectivity during a web request
¡	Applications that fail to communicate with the server
¡	Data that becomes inadvertently null while processing
¡	Thrown exceptions

As developers, our goal is to write robust code that accounts for these issues. But address-
ing potential issues can itself create complexity. In real-world applications, the execution 
flow isn’t always on the “happy path” where the default behavior is error-free (figure 
10.1). To prevent exceptions and to ease the debugging process, you must deal with val-
idation logic, value checking, logging, and convoluted code. In general, computer pro-
grammers tend to overuse and even abuse exceptions. For example, in code it’s common 
for an exception to be thrown; and, absent the handler in that context, the caller of this 
piece of code is forced to handle that exception several levels up the call stack. 
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Validate input

Record not found,
database error

Input value is null,
empty, or not valid

Authorization error,
timeout error.

Update existing record input

Send notification

Return result

Receive input

User sends an
update request

In asynchronous programming, error handling is important to guarantee the safe exe-
cution of your application. It’s assumed that an asynchronous operation will complete, 
but what if something goes wrong and the operation never terminates? Functional and 
imperative paradigms approach error handling with different styles:

¡	The imperative programming approach to handling errors is based on side 
effects. Imperative languages use the introduction of try-catch blocks and 
throw statements to generate side effects. These side effects disrupt the normal 
program flow, which can be hard to reason about. When using the traditional 
imperative programming style, the most common approach to handling an 
error is to guard the method from raising an error and return a null value if the 
payload is empty. This concept of error processing is widely used, but handling 
errors this way within the imperative languages isn’t a good fit because it intro-
duces more opportunities for bugs. 

¡	The FP approach focuses on minimizing and controlling side effects, so error 
handling is generally done while avoiding mutation of state and without throw-
ing exceptions. If an operation fails, for example, it should return a structural 
representation of the output that includes the notification of success or failure.

10.1.1 The problem of error handling in imperative programming 

In the .NET Framework, it’s easy to capture and react to errors in an asynchronous 
operation. One way is to wrap all the code that belongs to the same asynchronous com-
putation into a try-catch block. 

To illustrate the error-handling problem and how it can be addressed in a functional 
style, let’s revisit the example of downloading images from Azure Blob storage (covered 
in chapter 9). Listing 10.1 shows how it makes the method DownloadImageAsync safe 
from exceptions that could be raised during its execution (in bold).

Figure 10.1  The user sends an update 
request, which can easily stray from the 
happy path. In general, you write code 
thinking that nothing can go wrong. But 
producing quality code must account for 
exceptions or possible issues such as 
validation, failure, or errors that prevent the 
code from running correctly. 
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Listing 10.1  DownloadImageAsync with traditional imperative error handling

static async Task<Image> DownloadImageAsync(string blobReference)
{
    try
    {
       var container = await Helpers.GetCloudBlobContainerAsync().  
➥	ConfigureAwait(false); 
       CloudBlockBlob blockBlob = container. 
➥	GetBlockBlobReference(blobReference);   
       using (var memStream = new MemoryStream())
       {
          await blockBlob.DownloadToStreamAsync(memStream).

ConfigureAwait(false);  
          return Bitmap.FromStream(memStream);
       }
     }
     catch (StorageException ex)
     {
        Log.Error("Azure Storage error", ex);  
        throw;
     }
     catch (Exception ex)
     {
        Log.Error("Some general error", ex);  
        throw;
     }
}

async RunDownloadImageAsync()    
{
    try
     {
        var image = await DownloadImageAsync("Bugghina0001.jpg");
        ProcessImage(image);
     }
     catch (Exception ex)
     {
            HanldlingError(ex);  
            throw;
     }
}

It seems easy and straightforward: first DownloadImageAsync is called by the caller 
RunDownloadImageAsync, and the image returned is processed. This code example 
already assumes that something could go wrong and wraps the core execution into a 
try-catch block. Banking on the happy path—that’s the path in which everything goes 
right—is a luxury that a programmer cannot afford for building robust applications.

As you can see, when you start accounting for potential failures, input errors, and log-
ging routine, the method starts turning into lengthy boilerplate code. If you remove the 
error-handling lines of code, there are only 9 lines of meaningful core functionality, com-
pared with 21 of boilerplate orchestration dedicated to error and log handling alone.

A nonlinear program flow like this can quickly become messy because it’s hard to 
trace all existing connections between throw and catch statements. Furthermore, with 

Observes operations that 
could raise an exception

Somewhere in the upper 
the call stack

Handles and re-throws the 
error to bubble up the 
exception to the call stack
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exceptions it’s unclear exactly where the errors are being caught. It’s possible to wrap 
up the validation routine with a try-catch statement right when it’s called, or the try-
catch block can be inserted a couple levels higher. It becomes difficult to know if the 
error is thrown intentionally.

In listing 10.1, the body of the method DownloadImageAsync is wrapped inside a 
try-catch block to safeguard the program in case an exception occurs. But in this case, 
there’s no error handling applied; the exception is rethrown and a log with the error 
details is applied. The purpose of the try-catch block is to prevent an exception by 
surrounding a piece of code that could be unsafe; but if an exception is thrown, the 
runtime creates a stack trace of all function calls leading up to the instruction that gen-
erated the error.

DownloadImageAsync is executed, but what kind of precaution should be used to 
ensure that potential errors are handled? Should the caller be wrapped up into a try-
catch block, too, as a precaution?

Image image = await DownloadImageAsync("Bugghina001.jpg");

In general, the function caller is responsible for protecting the code by checking state 
of the objects for validity before use. What would happen if the check of state is miss-
ing? Easy answer: more problems and bugs appear. 

In addition, the complexity of the program increases when the same Download-
ImageAsync appears in multiple places throughout the code, because each caller could 
require different error handling, leading to leaks and domain models with unnecessary 
complexity. 

10.2 Error combinators: Retry, Otherwise, and Task.Catch in C#
In chapter 8, we defined two extension methods for the Task type, Retry and Other-
wise (fallback), for asynchronous Task operations that apply logic in case of an excep-
tion. Fortunately, because asynchronous operations have external factors that make 
them vulnerable to exceptions, the .NET Task type has built-in error handling via the 
Status and Exception properties, as shown here (Retry and Otherwise are in bold 
for reference). 

Listing 10.2  Refreshing the Otherwise and Retry functions

static async Task<T> Otherwise<T>(this Task<T> task, 
➥ Func<Task<T>> orTask) =>    
     task.ContinueWith(async innerTask => {
          if (innerTask.Status == TaskStatus.Faulted) 
➥ return await orTask(); 
          return await Task.FromResult<T>(innerTask.Result);
    }).Unwrap();

static async Task<T> Retry<T>(Func<Task<T>> task, int retries, TimeSpan 
➥ delay, CancellationToken cts = default(CancellationToken))  
    => await task().ContinueWith(async innerTask =>
    {
        cts.ThrowIfCancellationRequested();

Provides a fallback function 
if something goes wrong

Retries the given function a certain 
number of times, with a given delay 

between attempts
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        if (innerTask.Status != TaskStatus.Faulted)
            return innerTask.Result;
        if (retries == 0)
            throw innerTask.Exception ?? throw new Exception();
        await Task.Delay(delay, cts);
        return await Retry(task, retries - 1, delay, cts);
    }).Unwrap(); 

It’s good practice to use the functions Retry and Otherwise to manage errors in your 
code. For example, you can rewrite the call of the method DownloadImageAsync using 
the helper functions:

Image image = await AsyncEx.Retry(async () =>
    await DownloadImageAsync("Bugghina001.jpg")
      .Otherwise(async () =>
    await DownloadImageAsync("Bugghina002.jpg")),
                        5, TimeSpan.FromSeconds(2));

By applying the functions Retry and Otherwise in the previous code, the function 
DownloadImageAsync changes behavior and becomes safer to run. If something goes 
wrong when DownloadImageAsync is retrieving the image Bugghina001, its operation 
fallback is to download an alternative image. The Retry logic, which includes the Oth-
erwise (fallback) behavior, is repeated up to five times with a delay of two seconds 
between each operation, until it’s successful (figure 10.2). 

Client Server

Time T0

Time T0 + 2

X

Failing
DownloadImageAsync("Bugghina001.jpg")

X

FailingOtherwise
DownloadImageAsync("Bugghina002.jpg")

X

FailingRetry
DownloadImageAsync("Bugghina001.jpg")

X

FailingOtherwise
DownloadImageAsync("Bugghina002.jpg")

Image image = Async.Retry( async () =>
 await DownloadImageAsync("Bugghina001.jpg")
   .Otherwise( async () =>
 await DownloadImageAsync("Bugghina002.jpg"),
                   5, TimeSpan.FromSeconds(2))

Figure 10.2  The client sends two requests to the server to apply the strategies of Otherwise 
(fallback) and Retry in case of failure. These requests (DownloadImageAsync) are safe to run 
because they both apply the Retry and Otherwise strategies to handle problems that may occur.
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Additionally, you can define a further extension method such as the Task.Catch 
function, tailored specifically to handle exceptions generated during asynchronous 
operations.

Listing 10.3  Task.Catch function

static Task<T> Catch<T, TError>(this Task<T> task, 
➥ Func<TError, T> onError) where TError : Exception
{
    var tcs = new TaskCompletionSource<T>();    
    task.ContinueWith(innerTask =>
    {
        if (innerTask.IsFaulted && innerTask?.Exception?.InnerException 
➥ is TError)
            tcs.SetResult(onError((TError)innerTask.Exception.
➥	InnerException)); 
        else if (innerTask.IsCanceled)
            tcs.SetCanceled();      
        else if (innerTask.IsFaulted)
            tcs.SetException(innerTask?.Exception?.InnerException ?? 
➥ throw new InvalidOperationException()); 
        else
            tcs.SetResult(innerTask.Result);  
    });
    return tcs.Task;
} 

The function Task.Catch has the advantage of expressing specific exception cases 
as type constructors. The following snippet shows an example of handling Storage-
Exception in the Azure Blob storage context (in bold):

static Task<Image> CatchStorageException(this Task<Image> task) => 
     task.Catch<Image, StorageException>(ex => Log($"Azure Blob 
➥ Storage Error {ex.Message}"));

The CatchStorageException extension method can be applied as shown in this code 
snippet:

Image image = await DownloadImageAsync("Bugghina001.jpg") 
.CatchStorageException();

Yes, this design could violate the principle of nonlocality, because the code used to 
recover from the exception is different from the originating function call. In addition, 
there’s no support from the compiler to notify the developer that the caller of the 
DownloadImageAsync method is enforcing error handling, because its return type is a 
regular Task primitive type, which doesn’t require and convey validation. In this last 
case, when the error handling is omitted or forgotten, an exception could potentially 
arise, causing unanticipated side effects that might impact the entire system (beyond 
the function call), leading to disastrous consequences, such as crashing the applica-
tion. As you can see, exceptions ruin the ability to reason about the code. Further-
more, the structured mechanism of throwing and catching exceptions in imperative 
programming has drawbacks that are against functional design principles. As one 

An instance of TaskCompletionSource 
returns a Task type to keep 
consistency in the async model.

Sets the Result or Exception of 
the TaskCompletionSource 

based on the output of the Task 
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example, functions that throw exceptions can’t be composed or chained the way other 
functional artifacts can. 

Generally, code is read more often than written, so it makes sense that best practices 
are aimed at simplifying understanding and reasoning about the code. The simpler the 
code, the fewer bugs it contains, and the easier it is to maintain the software overall. The 
use of exceptions for program flow control hides the programmer’s intention, which 
is why it’s considered a bad practice. Thankfully, you can avoid complex and cluttered 
code relatively easily.

The solution is to explicitly return values indicating success or failure of an opera-
tion instead of throwing exceptions. This brings clarity to potentially error-prone code 
parts. In the following sections, I show two possible approaches that embrace the func-
tional paradigm to ease the error-handling semantic structure.

10.2.1 Error handling in FP: exceptions for flow control 

Let’s revisit the DownloadImageAsync method, but this time handling the error in a 
functional style. First, look at the code example, followed by the details in the following 
listing. The new method DownloadOptionImage catches the exception in a try-catch 
block as in the previous version of the code, but here the result is the Option type (in 
bold).

Listing 10.4  Option type for error handling in a functional style 

async Task<Option<Image>> DownloadOptionImage(string blobReference)  
{
    try
    {
        var container = await Helpers.GetCloudBlobContainerAsync().
➥ConfigureAwait(false);
        CloudBlockBlob blockBlob = container.
➥GetBlockBlobReference(blobReference);
        using (var memStream = new MemoryStream())
        {
           await 
➥	blockBlob.DownloadToStreamAsync(memStream).ConfigureAwait(false);
           return Option.Some(Bitmap.FromStream(memStream));    
        }
    }
    catch (Exception)
    {
        return Option.None;        
    }
}

The Option type notifies the function caller that the operation DownloadOptionIm-
age has a particular output, which must be specifically managed. In fact, the Option 
type can have as a result either Some or None. Consequently, the caller of the func-
tion Download OptionImage is forced to check the result for a value. If it contains the 
value, then this is a success, but if it doesn’t, then it’s a failure. This validation requires 

The output of the function is a composite 
Task wrapping an Option type.

The result Option type is either a Some 
value for a successful operation or None 

(nothing) in case of error. 
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the programmer to write code to handle both possible outcomes. Use of this design 
makes the code predictable, avoids side effects, and permits DownloadOptionImage to 
be composable. 

controlling side effects with the option type

In FP, the notion of null values doesn’t exist. Functional languages such as Haskell, 
Scala, and F# resolve this problem by wrapping the nullable values in an Option type. 
In F#, the Option type is the solution to the null-pointer exception; it’s a two-state dis-
criminated union (DU), which is used to wrap a value (Some), or no value (None). Con-
sider it a box that might contain something or could be empty. Conceptually, you can 
think the Option type as something that’s either present or absent. The symbolic defi-
nition for Option type is

type Option<'T> =
| Some of value:T
| None

The Some case means that data is stored in the associated inner value T. The None case 
means there’s no data. Option<Image>, for example, may or may not contain an image. 
Figure 10.3 shows the comparison between a nullable primitive type and the equiva-
lent Option type.

Object with a value

Regular
primitive

Empty object

string x = "value" string x = null

Option
type

Optional<string> x =
            Some("value")

Optional<string> x = None

Figure 10.3  This illustrates the comparison between regular nullable primitives (first row) and 
Option types (second row). The main difference is that the regular primitive type can be either a valid 
or invalid (null) value without informing the caller, whereas the Option type wraps a primitive type 
suggesting to the caller to check if the underlying value is valid.

An instance of the Option type is created by calling either Some(value), which rep-
resents a positive response, or None, which is the equivalent of returning an empty 
value. With F#, you don’t need to define the Option type yourself. It’s part of the stan-
dard F# library, and there is a rich set of helper functions that go with it. 

C# has the Nullable<T> type, which is limited to value types. The initial solution is to 
create a generic struct that wraps a value. Using a value type (struct) is important for 
reducing the memory allocation and is ideal for avoiding null reference exceptions by 
assigning a null value to an Option type itself.

To make the Option type reusable, we use a generic C# struct Option<T>, which 
wraps any arbitrary type that may or may not contain a value. The basic structure of 
Option<T> has a property value of type T and a flag HasValue that indicates whether 
the value is set.
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The implementation of the Option type in C# is straightforward, and isn’t illustrated 
here. You can check the source code of this book if you’re interested in understanding 
the C# Option type implementation. The higher level of abstraction achieved using the 
Option<T> type allows the implementation of higher-order functions (HOFs), such as 
Match and Map, which simplifies the compositional structure of the code, and in this 
case, with the function Match, allows pattern matching and a deconstructive semantic: 

R Match<R>(Func<R> none, Func<T, R> some) => hasValue ? some(value) : none();

The Match function belongs to the Option type instance, which offers a convenient 
construct by eliminating unnecessary casts and improving code readability.

10.2.2 Handling errors with Task<Option<T>> in C#

In listing 10.4, I illustrated how the Option type protects the code from bugs, mak-
ing the program safer from null-pointer exceptions, and suggested that the compiler 
helps to avoid accidental mistakes. Unlike null values, an Option type forces the devel-
oper to write logic to check if a value is present, thereby mitigating many of the prob-
lems of null and error values. 

Back to the Azure Blob storage example, with the Option type and the Match HOF 
in place, you can execute the DownloadOptionImage function, whose return type is a 
Task<Option<Image>> : 

Option<Image> imageOpt = await DownloadOptionImage ("Bugghina001.jpg");

By using the compositional nature of the Task and Option types and their extended 
HOFs, the FP style (in bold) looks like this code snippet:

DownloadOptionImage ("Bugghina001.jpg")
     .Map(opt => opt.Match(
                     some: image => image.Save("ImageFolder\Bugghina.jpg"),
                     none: () => Log("There was a problem downloading 
➥ the image")));

This final code is fluent and expressive, and, more importantly, it reduces bugs because 
the compiler forces the caller to cover both possible outcomes: success and failure.

10.2.3 The F# AsyncOption type: combining Async and Option 

The same approach of handling exceptions using the Task<Option<T>> type is applica-
ble to F#. The same technique can be exploited in the F# asynchronous workflow for a 
more idiomatic approach.

The improvement that F# achieves, as compared to C#, is support for type aliases, also 
called type abbreviations. A type alias is used to avoid writing a signature repeatedly, sim-
plifying the code experience. Here’s the type alias for Async<Option<’T>>:

type AsyncOption<'T> = Async<Option<'T>>

You can use this AsyncOption<'T> definition directly in the code in place of Async-
<Option<'T>> for the same behavior. Another purpose of the type alias is to provide 
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a degree of decoupling between the use of a type and the implementation of a type. 
This listing shows the equivalent F# implementation of the DownloadOptionImage pre-
viously implemented in C#.

Listing 10.5  F# implementation of the AsyncOption type alias in action

let downloadOptionImage(blobReference:string) : AsyncOption<Image> = 
  async {  
    try           
        let! container = Helpers.getCloudBlobContainerAsync()
        let blockBlob = container.GetBlockBlobReference(blobReference)
        use memStream = new MemoryStream()
        do! blockBlob.DownloadToStreamAsync(memStream)
        return Some(Bitmap.FromStream(memStream))        
    with              
    | _ -> return None             
}

downloadOptionImage "Bugghina001.jpg"
|> Async.map(fun imageOpt ->         

    match imageOpt with              
    | Some(image) -> do! image.SaveAsync("ImageFolder\Bugghina.jpg") 
    | None -> log "There was a problem downloading the image")

The function downloadOptionImage asynchronously downloads an image from Azure 
Blob storage. The Async.map function, with signature ('a -> 'b) -> Async<'a> -> 
Async<'b>, wraps the output of the function and allows access to the underlying value. 
In this case, the generic type 'a is an Option<Image>. 

NOTE  One important point shown in listing 10.5 is that the linear implemen-
tation of asynchronous code allows exception handling in the same way as 
synchronous code. This mechanism, which is based on the try-with block, 
ensures that the occurring exceptions bubble up through the non-blocking 
calls and are ultimately handled by the exception handler code. This mecha-
nism is guaranteed to run correctly despite the presence of multiple threads 
that run in parallel during its execution.

Conveniently, the functions that belong to the F# Async module can be applied to 
the alias AsyncOption, because it’s an Async type that wraps an Option. The function 
inside the Async.map operator extracts the Option value, which is pattern matched to 
select the behavior to run according to whether it has the value Some or None.

The return type is explicitly set to 
AsyncOption<Image>; this can be omitted. 

The try-with block safely 
manages potential errors.

Constructs the Option type 
with a Some value (Image)

Applies the HOF Async.map that accesses and 
projects against underlying Option value

Pattern matches the Option type to deconstruct 
and access the wrapped Image value

The image SaveAsync extension method implementation 
can be found in the downloadable source code.
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10.2.4 Idiomatic F# functional asynchronous error handling 

At this point, the F# downloadOptionImage function is safely downloading an image, 
ensuring that it will catch the exception if a problem occurs without jeopardizing the 
application’s stability. But the presence of the try-with block, equivalent to try-catch 
in C#, should be avoided when possible, because it encourages an impure (with side 
effects) programming style. In the context of asynchronous computation, the F# Async 
module provides an idiomatic and functional approach by using the Async.Catch 
function as a wrapper that protects a computation. 

NOTE  I introduced Async.Catch in chapter 9. It takes a more functional 
approach because, instead of having a function as an argument to handle an 
error, it returns a discriminated union of Choice<'a, exn>, where 'a is the 
result type of the asynchronous workflow, and exn is the exception thrown. 

You can use Async.Catch to safely run and map asynchronous operations into a 
Choice<'a, exn> type. To reduce the amount of boilerplate required, and generally 
simplify your code, you can create a helper function that wraps an Async<'T> and 
returns an AsyncOption<'T> by using the Async.Catch operator. The following code 
snippet shows the implementation. The helper function ofChoice is supplementary to 
the F# Option module, whose purpose it is to map and convert a Choice type into an 
Option type:

module Option =
    let ofChoice choice =
        match choice with
        | Choice1Of2 value -> Some value
        | Choice2Of2 _ -> None

module AsyncOption =
        let handler (operation:Async<'a>) : AsyncOption<'a> = async {
            let! result = Async.Catch operation
            return (Option.ofChoice result)
        }

Async.Catch is used for exception handling to convert Async<'T> to Async<Choice 
<'T, exn>>. This Choice is then converted to an Option<'T> using a simple conver-
sion ofChoice function. The AsyncOption handler function can safely run and map 
asynchronous Async<'T> operations into an AsyncOption type. 

Listing 10.6 shows the downloadOptionImage implementation without the need to 
protect the code with the try-with block. The function AsyncOption.handler is man-
aging the output, regardless of whether it succeeds or fails. In this case, if an error arises, 
Async.Catch will capture and transform it into an Option type through the Option.
ofChoice function (in bold).

Listing 10.6  AsyncOption type alias in action

let downloadAsyncImage(blobReference:string) : Async<Image> = async {
        let! container = Helpers.getCloudBlobContainerAsync()
        let blockBlob = container.GetBlockBlobReference(blobReference)
        use memStream = new MemoryStream()
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        do! blockBlob.DownloadToStreamAsync(memStream)
        return Bitmap.FromStream(memStream)
    } 

downloadAsyncImage "Bugghina001.jpg" 
|> AsyncOption.handler             

|> Async.map(fun imageOpt ->       

    match imageOpt with            
    | Some(image) -> image.Save("ImageFolder\Bugghina.jpg")
    | None -> log "There was a problem downloading the image")
|> Async.Start

The function AsyncOption.handler is a reusable and composable operator that can 
be applied to any asynchronous operation.

10.2.5 Preserving the exception semantic with the Result type

In section 10.2.2, you saw how the functional paradigm uses the Option type to han-
dle errors and control side effects. In the context of error handling, Option acts as a 
container, a box where side effects fade and dissolve without creating unwanted behav-
iors in your program. In FP, the notion of boxing dangerous code, which could throw 
errors, isn’t limited to the Option type. 

In this section, you’ll preserve the error semantic to use the Result type, which 
allows different behaviors to dispatch and branch in your program based upon the type 
of error. Let’s say that as part of the implementation of an application, you want to ease 
the debugging experience or to communicate to the caller of a function the exception 
details if something goes wrong. In this case, the Option type approach doesn’t fit the 
goal, because it delivers None (nothing) as far as information about what went wrong. 
While it’s unambiguous what a Some result means, None doesn’t convey any information 
other than the obvious. By discarding the exception, it’s impossible to diagnose what 
could have gone wrong.

Going back to our example of downloading an image from Azure Blob storage, if 
something goes wrong during the retrieval of the data, there are diverse errors gener-
ated from different cases, such as the loss of network connectivity and file/image not 
found. In any event, you need to know the error details to correctly apply a strategy to 
recover from an exception.

In this listing, the DownloadOptionImage method from the previous example 
retrieves an image from the Azure Blob storage. The Option type (in bold) is exploited 
to handle the output in a safer manner, managing the event of errors.

Listing 10.7  Option type, which doesn’t preserve error details 

async Task<Option<Image>> DownloadOptionImage(string blobReference)
        {
            try
            {
                CloudStorageAccount storageAccount = 
➥ CloudStorageAccount.Parse("<Azure Connection>");

Executes an asynchronous operation, 
capturing the exception automatically 

Maps the result of the computation to 
access the underlying imageOpt value

Deconstructs the Option type with pattern 
matching to handle the different cases 
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                CloudBlobClient blobClient = 
➥ storageAccount.CreateCloudBlobClient();
                CloudBlobContainer container = 
➥ blobClient.GetContainerReference("Media");
                await container.CreateIfNotExistsAsync();

                CloudBlockBlob blockBlob = container.
➥	GetBlockBlobReference(blobReference);
                using (var memStream = new MemoryStream())
                {
                    await blockBlob.DownloadToStreamAsync(memStream).
➥	ConfigureAwait(false);
                    return Some(Bitmap.FromStream(memStream));
                }
            }
            catch (StorageException)
            {
                return None; 
            }
            catch (Exception)
            {
                return None;  
            }
        }

Regardless of the exception type raised, either a StorageException or a generic 
Exception, the limitation with the code implementation is that the caller of the 
method DownloadOptionImage doesn’t have any information regarding the exception, 
so a tailored recover strategy cannot be chosen.

Is there a better way? How can the method provide details of a potential error and 
avoid side effects? The solution is to use the polymorphic Result<'TSuccess, 'TError> 
type in place of the Option<'T> type. 

Result<'TSuccess, 'TError> can be used to handle errors in a functional style plus 
carry the cause of the potential failure. Figure 10.4 compares a nullable primitive, the 
equivalent Option type, and the Result type.

 

Object with a value

Regular
primitive

Empty object

string x = "value" string x = null

Option
type

Optional<string> x =
            Some("value")

Optional<string> x = None

Result
type

Result<string> x =
             Success("value")

Result<string> x = Failure(error)

The failure represents an error
in case something goes wrong.

Figure 10.4  Comparing a regular nullable primitive (top row), the Option type (second row), and 
the Result type (bottom row). The Result Failure is generally used to wrap an error if something 
goes wrong.

Regardless of the exception type raised, the 
Option type returns None in both cases.
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In certain programming languages, such as Haskell, the Result structure is called 
Either, which represents a logical separation between two values that would never 
occur at the same time. For example, Result<int, string> models two cases and can 
have either value int or string. 

The Result<'TSuccess, 'TError> structure can also be used to guard your code 
against unpredictable errors, which makes the code more type safe and side effect free 
by eliminating the exception early on instead of propagating it. 

The F# Result type
The Result type, introduced in chapter 9, is an F# convenient DU that supports consum-
ing code that could generate an error without having to implement exception handling. 

Starting with F# 4.1, the Result type is defined as part of the standard F# library. If 
you’re using earlier versions of F#, you can easily define it and its helper functions in a 
few lines:

Type Result<'TSuccess,'TFailure> =
    | Success of 'TSuccess
    | Failure of 'TFailure

It’s possible, with minimum effort, to interop between the F# core library and C# to share 
the same F# Result type structure to avoid code repetition. You can find the F# extension 
methods that facilitate the interoperability of the Result type in C# in the source code.

 

In listing 10.8, the C# example of the Result type implementation is tailored to be 
polymorphic in only one type constructor, while forcing the Exception type as an alter-
native value to handle errors. Consequently, the type system is forced to acknowledge 
error cases and makes the error-handling logic more explicit and predictable. Certain 
implementation details are omitted in this listing for brevity but provided in full as part 
of the downloadable source code.

Listing 10.8  Generic Result<T> type in C#

struct Result<T>
{
    public T Ok { get; }              
    public Exception Error { get; }  
    public bool IsFailed { get => Error != null; }
    public bool IsOk => !IsFailed;

    public Result(T ok)           
    {         
        Ok = ok;
        Error = default(Exception);
    }
    public Result(Exception error)  
    { 
        Error = error;
        Ok = default(T);
    }

Properties to expose the 
values for either the 
successful or failure 
operations

Constructors pass the value of the successful 
operation or an exception, in case of failure. 
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   public R Match<R>(Func<T, R> okMap, Func<Exception, R> failureMap)
         => IsOk ? okMap(Ok) : failureMap(Error);              

   public void Match(Action<T> okAction, Action<Exception> errorAction)
         { if (IsOk) okAction(Ok); else errorAction(Error);}          

   public static implicit operator Result<T>(T ok) =>   
➥	new Result<T>(ok);  
   public static implicit operator Result<T>(Exception error) =>   
➥	new Result<T>(error); 

   public static implicit operator Result<T>(Result.Ok<T> ok) =>   
➥ new Result<T>(ok.Value); 
   public static implicit operator Result<T>(Result.Failure error) => 
➥ new Result<T>(error.Error);            
}

The interesting part of this code is in the final lines where the implicit operators sim-
plify the conversion to Result during the assignment of primitives. This auto-construct 
to Result type should be used by any function that potentially returns an error.

Here, for example, is a simple synchronous function that loads the bytes of a given 
file. If the file doesn’t exist, then a FileNotFoundException exception is returned:

static Result<byte[]> ReadFile(string path)
{
    if (File.Exists(path))
        return File.ReadAllBytes(path);
    else
        return new FileNotFoundException(path);
}

As you can see, the output of the function ReadFile is a Result<byte[]>, which wraps 
either the successful outcome of the function that returns a byte array, or the failure 
case that returns a FileNotFoundException exception. Both return types, Ok and 
Failure, are implicitly converted without a type definition. 

NOTE  The purpose of the Result class is similar to the Option type discussed 
earlier. The Result type allows you to reason about the code without looking 
into the implementation details. This is achieved by providing a choice type 
with two cases, an Ok case to return the value when the function succeeds, and a 
Failure Error case to return the value when the function failed.

10.3 Taming exceptions in asynchronous operations 
The polymorphic Result class in C# is a reusable component that’s recommended for 
taming side effects in the case of functions that could generate exceptions. To indicate 
that a function can fail, the output is wrapped with a Result type. The following listing 

This convenient Match function 
deconstructs the Result type and applies 

dispatching behavioral logic.
Implicit operators automatically convert 
any primitive type into a Result. 
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shows the previous DownloadOptionImage function refactored to follow the Result 
type model (in bold). The new function is named DownloadResultImage.

Listing 10.9  DownloadResultImage: handling errors and preserving semantics

async Task<Result<Image>> DownloadResultImage(string blobReference)
{
    try
    {
        CloudStorageAccount storageAccount = 
➥	CloudStorageAccount.Parse("<Azure Connection>");
        CloudBlobClient blobClient = 
➥	storageAccount.CreateCloudBlobClient();
        CloudBlobContainer container = 
➥	blobClient.GetContainerReference("Media");
        await container.CreateIfNotExistsAsync();

        CloudBlockBlob blockBlob = container.
➥GetBlockBlobReference(blobReference);
        using (var memStream = new MemoryStream())
        {
            await blockBlob.DownloadToStreamAsync(memStream).
➥ConfigureAwait(false);
            return Image.FromStream(memStream);  
        }
   }
   catch (StorageException exn)
   {
        return exn;   
   }
   catch (Exception exn)
   {
       return exn;  
   }
   }

It’s important that the Result type provides the caller of the DownloadResultImage 
function the information necessary to handle each possible outcome in a tailored man-
ner, including different error cases. In this example, because DownloadResultImage is 
calling a remote service, it also has the Task effect (for asynchronous operations) as 
well as the Result effect. In the Azure storage example (from listing 10.9), when the 
current state of an image is retrieved, that operation will hit the online media stor-
age. It’s recommended to make it asynchronous, as I’ve mentioned, so the Result type 
should be wrapped in a Task. The Task and Result effects are generally combined in 
FP to implement asynchronous operations with error handling.

Before diving into how to use the Result and Task types in combination, let’s define 
a few helper functions to simplify the code. The static class ResultExtensions defines 
a series of useful HOFs for the Result type, such as bind and map, which are applicable 
for a convenient fluent semantic to encode common error-handling flows. For brevity 
purpose, in the following listing only the helper functions that treat the Task and Result 

The Result type implicit operators 
allow automatic wrapping of the 
primitive types into a Result, which 
is also wrapped into a Task.
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types are shown (in bold). The other overloads are omitted, with the full implementa-
tion available in the code samples.

Listing 10.10  Task<Result<T>> helper functions for compositional semantics

static class ResultExtensions
{
     public static async Task<Result<T>> TryCatch<T>(Func<Task<T>> func)
     {
         try
         {
             return await func();
         }
         catch (Exception ex)
         {
              return ex;
         }
     }

static async Task<Result<R>> SelectMany<T, R>(this Task<Result<T>> 
➥ resultTask, Func<T, Task<Result<R>>> func)
{
     Result<T> result = await resultTask.ConfigureAwait(false);
     if (result.IsFailed)
         return result.Error;
       return await func(result.Ok);
}

static async Task<Result<R>> Select<T, R>(this Task<Result<T>> resultTask,
➥ Func<T, Task<R>> func)
{
     Result<T> result = await resultTask.ConfigureAwait(false);
     if (result.IsFailed)
        return result.Error;
     return await func(result.Ok).ConfigureAwait(false);
}
static async Task<Result<R>> Match<T, R>(this Task<Result<T>> resultTask,
➥ Func<T, Task<R>> actionOk, Func<Exception, Task<R>> actionError)
{
     Result<T> result = await resultTask.ConfigureAwait(false);
     if (result.IsFailed)
         return await actionError(result.Error);
     return await actionOk(result.Ok);
}
}

The TryCatch function wraps a given operation into a try-catch block to safeguard 
the code from any exceptions if a problem arises. This function is useful for lifting 
and combining any Task computation into a Result type. In the following code snip-
pet, the function ToByteArrayAsync asynchronously converts a given image into a byte 
array: 

Task<Result<byte[]>> ToByteArrayAsync(Image image)
{
     return TryCatch(async () =>
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     {
        using (var memStream = new MemoryStream())
        {
            await image.SaveImageAsync(memStream, image.RawFormat);
            return memStream.ToArray();
        }
      });
}

The underlying TryCatch function ensures that regardless of the behavior in the oper-
ation, a Result type is returned which wraps either a successful (Ok byte array) or a 
failure (Error exception).

The extension methods Select and SelectMany, part of the ResultExtensions 
class, are generally known in functional programming as, respectively, Bind (or flat-
Map) and Map. But in the context of .NET and specifically in C#, the names Select and 
SelectMany are the recommended terms because they follow the LINQ convention, 
which notifies the compiler that treats these functions as LINQ expressions to ease 
their composition semantic structure. Now, with the higher-order operators from the 
ResultExtensions class, it’s easy to fluently chain a series of actions that operate on the 
underlying Result value without leaving the context.

The following listing shows how the caller of DownloadResultImage can handle the 
execution flow in the case of success or failure as well as chaining the sequence of oper-
ations (the code to note is in bold). 

Listing 10.11  Composing Task<Result<T>> operations in functional style 

async Task<Result<byte[]>> ProcessImage(string nameImage, string 
destinationImage){

    return await DownloadResultImages(nameImage)
                .Map(async image => await ToThumbnail(image))     
                .Bind(async image => await ToByteArrayAsync(image))  
                .Tap(async bytes =>      
                           await File.WriteAllBytesAsync(destinationImage, 
➥	bytes));    

As you can see from the ProcessImage function signature, providing documentation 
that a function might have error effects is one of the advantages of using the Result 
type. ProcessImage first downloads a given image from the Azure Blob storage, then 
converts it into a thumbnail format using the Bind operator, which checks the previous 
Result instance, and if it’s successful, executes the delegate passed in. Otherwise, the 
Bind operator returns the previous result. The Map operator also verifies the previous 
Result value and acts accordingly by extracting the byte array from the image. 

The chain continues until one of the operations fails. If failure occurs, then the other 
operations are skipped.

Uses HOFs to effortlessly combine the functions, 
returning the composite type Task<Result<T>>

The WriteAllBytesAsync extension method implementation can 
be found in the downloadable source code.
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NOTE  The Bind function operates over lifted values, in this case a Task <Result 
<Image>>. In contrast, the Map function performs against an unwrapped type.

Ultimately, the result byte array is saved in the destination path (destinationImage) 
specified, or a log is executed if an error occurred. Rather than handling failure indi-
vidually on each call, you should add the failure handling at the end of the computa-
tion chain. This way, the failure-handling logic is at a predictable place in the code, 
making it easier to read and maintain. 

You should understand that if any of these operations fails, the rest of the tasks are 
bypassed and none executed until the first function that handles the error (figure 10.5). 
In this example, the error is handled by the function Match (with the lambda action-
Error). It’s important to perform compensation logic in case the call to a function isn’t 
successful. 

 

Validate inputInput Success:
output

Failure:
error

Validate input Validate input

After validation, the input value
is wrapped into a result type that
represents either success or failure.

If the result type is failure, the rest of the
validation follows the failure path, aggregating
the remainder of the invalid information.

Figure 10.5  The Result type handles the operations in a way that, if during each step there is a failure, 
the rest of the tasks are bypassed and not executed until the first function that handles the error. In this 
figure, if any of the validations throws an error, the rest of computation is skipped until the Failure 
handler (the Error circle). 

Because it’s both hard and inconvenient to extract the inner value of a Result type, 
use the composition mechanisms of functional error handling. These mechanisms 
force the caller to always handle both the success and the failure cases. Using this 
design of the Result type, the program flow is declarative and easy to follow. Exposing 
your intent is crucial if you want to increase readability of your code. Introducing the 
Result class (and the composite type Task<Result<T>>) helps to show, without side 
effects, if the method can fail or isn’t signaling something is wrong with your system. 
Furthermore, the type system becomes a helpful assistant for building software by spec-
ifying how you should handle both successful and failure outcomes.

The Result type provides a conditional flow in a high-level functional style, where 
you pick a strategy for dealing with the error and register that strategy as a handler. 
When the lower-level code hits the error, it can then pick a handler without unwinding 
the call stack. This gives you more options. You can choose to cope with the problem 
and continue.
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10.3.1 Modeling error handling in F# with Async and Result 

The previous section discussed the concept of Task and Result types combined for 
providing safe and declarative error handling in a functional style. In addition to the 
TPL, the asynchronous workflow computation expression in F# offers a more idiom-
atic functional approach. This section covers the recipe for taming exceptions by show-
ing how to combine the F# Async type with the Result structure.

Before looking in depth at the F# error-handling model for asynchronous opera-
tions, we should define the type structure necessary. First, to fit into the context of error 
handling (specifically), as explained in chapter 9, you should define a Result<'a> type 
alias over Result<'a, exn>, which assumes that the second case is always an exception 
(exn). This alias Result<'a> simplifies pattern matching and deconstruction over the 
Result<'a, exn> type:

Result<'TSuccess> = Result<'TSuccess, exn>

Second, the type construct Async has to wrap this Result<'a> structure to define a new 
type that’s used in concurrent operations to signal when an operation is completed. 
You need to treat Async<'a> and Result<'a> as a single type, which can be done eas-
ily using an alias types that acts as a combinatorial structure:

type AsyncResult<'a> = Async<Result<'a>>

The AsyncResult<'a> type carries the value of an asynchronous computation, with 
either a success or failure outcome. In the case of an exception, the error information 
is preserved. Conceptually, AsyncResult is a separate type.

Now, taking inspiration from the AsyncOption type in section 10.2.2, define a 
helper function AsyncResult.handler to run a computation lifting the output into 
a Result type. For this purpose, the F# Async.Catch function denotes a perfect fit. 
The following listing shows a custom alternative representation of Async.Catch, called 
AsyncResult.handler. 

Listing 10.12  AsyncResult handler to catch and wrap asynchronous computations

module Result =
        let ofChoice value =             
            match value with
            | Choice1Of2 value -> Ok value
            | Choice2Of2 e -> Error e

module AsyncResult = 
      let handler (operation:Async<'a>) : AsyncResult<'a> = async {
            let! result = Async.Catch operation     

            return (Result.ofChoice result) }       

The F# AsyncResult.handler is a powerful operator that dispatches the execution 
flow in case of error. In a nutshell, the AsyncResult.handler runs the Async.Catch 
function in the background for error handling and uses the ofChoice function to map 

Maps the function from the Choice DU, which 
is the returned type of the Async.Catch 
operator, to the Result type DU cases. This 
map function was defined in chapter 9.

Runs the asynchronous operation 
using the Async.Catch operator to 

safeguard against possible errorThe output of the function is 
mapped in favor of the Result type.
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the product of the computation (Choice<Choice1Of2, Choice2Of2> Discriminated 
Union) to the Result<'a> DU cases, which then branch the result of the computation 
respectively to the OK or Error union. (ofChoice was introduced in chapter 9.)

10.3.2 Extending the F# AsyncResult type with monadic bind operators 

Before we go further, let’s define the monadic helper functions to deal with the Async-
Result type.

Listing 10.13  HOF extending the AsyncResult type 

module AsyncResult =
    let retn (value:'a) : AsyncResult<'a> =  
➥ value |> Ok |> async.Return   

    let map (selector : 'a -> Async<'b>) (asyncResult : AsyncResult<'a>) 
➥ : AsyncResult<'b> = 
      async {
        let! result = asyncResult
        match result with        
        | Ok x -> return! selector x |> handler  
        | Error err -> return (Error err)   }   

    let bind (selector : 'a -> AsyncResult<'b>) (asyncResult   
➥ : AsyncResult<'a>) = async {      
        let! result = asyncResult
        match result with         
        | Ok x -> return! selector x  
        | Error err -> return Error err    }

    let bimap success failure operation = async {     
        let! result = operation
        match result with
        | Ok v -> return! success v |> handler   
        | Error x -> return! failure x |> handler }        

The map and bind higher-order operators are the general functions used for composition. 
These implementations are straightforward:

¡	The retn function lifts an arbitrary value 'a into an AsyncResult<'a> elevated 
type.

¡	The let! syntax in the map operator extracts the content from the Async (runs it 
and awaits the result), which is the Result<'a> type. Then, the selector function 
is applied on a Result value contained in the Ok case using the AsyncResult.
handler function, because the outcome of the computation can be success or 
failure. Ultimately, the result is returned wrapped in the AsyncResult type.  

¡	The function bind uses continuation passing style (CPS) to pass a function that 
will run a successful computation to further process the result. The continuation 
function selector crosses the two types Async and Result and has the signature 
'a -> AsyncResult<'b>.

Lifts an arbitrary given value 
into the AsyncResult type

Uses the AsyncResult.handler function to handle 
either the success or failure of the async operation

Maps an AsyncResult type running the underlying 
asynchronous operation asyncResult and applies 

the given selector function to the result

Binds a monadic operator that 
performs a given function over the 
AsyncResult elevated type

Executes either the success or 
failure function against the 
AsyncResult type operation 
by branching the result of the 
computation respectively to 
the OK or Error union

 



 297Taming exceptions in asynchronous operations 

¡	If the inner Result is successful, then the continuation function selector is 
evaluated with the result. The return! syntax means that the return value is 
already lifted.

¡	If the inner Result is a failure, then the failure of the async operation is lifted.
¡	The return syntax in map, retn, and bind lifts the Result value to an Async type.
¡	The return! syntax in bind means that the value is already lifted and not to call 

return on it.
¡	The bimap function aims to execute the asynchronous operation AsyncResult 

and then branches the execution flow to one of the continuation functions, 
either success or failure, according to the result.

Alternatively, to make the code more succinct, you can use the built-in function 
Result.map to turn a value into a function that works on a Result type. Then, if you 
pass the output to Async.map, the resulting function works on an asynchronous value. 
Using this compositional programming style, for example, the AsyncResult map func-
tion can be rewritten as follows:

module AsyncResult =
    let map (selector : 'a -> 'b) (asyncResult : AsyncResult<'a>) = 
        asyncResult |> Async.map (Result.map selector)

This programming style is a personal choice, so you should consider the tradeoff 
between succinct code and its readability. 

the f# asyncresult higher-order functions in action

Let’s see how to perform the AsyncResult type and its HOFs bind, map, and return. Let’s 
convert the C# code in listing 10.7 that downloads an image from Azure Blob storage into 
an idiomatic F# way to handle errors in an asynchronous operation context. 

We stay with the Azure Blob storage example to simplify the understanding of the 
two approaches with a direct comparison by converting a function that you’re already 
familiar with (figure 10.6).

 

Bind Bind BimapBind

Validate inputInput Success:
output

Failure:
error

Validate input Validate input

The bind operator lets
you chain the result type.

The bimap function pattern-
matches the Result type to
dispatch the continuation logic
to the success or failure branch.

Figure 10.6  The validation logic can be composed fluently with minimum effort, by applying the higher-
order operators bind and bimap. Furthermore, at the end of the pipeline, the bimap function pattern-
matches the Result type to dispatch the continuation logic to either the success or failure branch 
in a convenient and declarative style.
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This listing shows the processImage function implemented using the F# AsyncResult 
type with its higher-order compositional operators (in bold).

Listing 10.14  Using AsyncResult HOFs for fluent composition 

let processImage(blobReference:string) (destinationImage:string) 
➥ : AsyncResult<unit> = 
        async {
            let storageAccount = CloudStorageAccount.Parse("< Azure 

Connection >") 
            let blobClient = storageAccount.CreateCloudBlobClient()  
            let container = blobClient.GetContainerReference("Media")
            let! _ = container.CreateIfNotExistsAsync() 
            let blockBlob = container.GetBlockBlobReference(blobReference)
            use memStream = new MemoryStream()
            do! blockBlob.DownloadToStreamAsync(memStream)
            return Bitmap.FromStream(memStream) } 
            |> AsyncResult.handler            
            |> AsyncResult.bind(fun image -> toThumbnail(image))   
            |> AsyncResult.map(fun image -> toByteArrayAsync(image))  
            |> AsyncResult.bimap                      
                     (fun bytes -> FileEx.

WriteAllBytesAsync(destinationImage, bytes)) 
                     (fun ex -> logger.Error(ex) |> AsyncResult.retn) 

The behavior of processImage is similar to the related C# method processImage from 
listing 10.7; the only difference is the result definition AsyncResult type. Semantically, 
due to the intrinsic F# (|>) pipe operator, the AsyncResult functions handler, bind, 
map, and bimap are chained in a fluent style, which is the nearest equivalent to the con-
cept of fluent interfaces (or method chaining) used in the C# version of the code.

raising the abstraction of the f# asyncresult with computation expression

Imagine that you want to further abstract the syntax from code listing 10.12 so you 
can write AsyncResult computations in a way that can be sequenced and combined 
using control flow constructs. In chapter 9, you built custom F# computational expres-
sions (CEs) to retry asynchronous operations in case of errors. CEs in F# are a safe way 
of managing the complexity and mutation of state. They provide a convenient syntax 
to manage data, control, and side effects in functional programs.

In the context of asynchronous operations wrapped into an AsyncResult type, you 
can use CEs to handle errors elegantly to focus on the happy path. With the Async-
Result monadic operators bind and return in place, implementing the related 
computation expression requires minimal effort to achieve a convenient and fluid pro-
gramming semantic.

Here, the code listing defines the monadic operators (in bold) for the computation 
builder that combines the Result and Async types: 

Type AsyncResultBuilder () =
    Member x.Return m = AsyncResult.retn m

The AsyncResult higher-order operator 
can be composed in a fluent style.

AsyncResult.retn lifts the logger function into the 
AsyncResult elevated type to match the output signature.
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    member x.Bind (m, f:'a -> AsyncResult<'b>) = AsyncResult.bind f m
    member x.Bind (m:Task<'a>, f:'a -> AsyncResult<'b>) = 
           AsyncResult.bind f (m |> Async.AwaitTask |> AsyncResult.handler)
    Ember x.ReturnFrom m = m

Let asyncResult = AsyncResultBuilder() 

You can add more members to the AsyncResultBuilder CE if you need support for 
more advanced syntax; this is the minimal implementation required for the example. The 
only line of code that requires a clarification is the Bind with Task<'a> type: 

member x.Bind (m:Task<'a>, f) = 
              AsyncResult.bind f (m |> Async.AwaitTask 
➥ |> AsyncResult.handler)

In this case, as explained in section 9.3.3, the F# CE lets you inject functions to extend 
the manipulation to other wrapper types, in this case Task, whereas the Bind function 
in the extension lets you fetch the inner value contained in the elevated type using 
the let! and do! operators. This technique removes the need for adjunctive func-
tions such as Async.AwaitTask. The downloadable source code of this book contains 
a more complete implementation of the AsyncResultBuilder CE, but the extra CE 
implementation details aren’t relevant or part of this book’s scope. 

A simple CE deals with asynchronous calls that return a Result type and can be use-
ful for performing computations that may fail and then chain the results together. Let’s 
transform, once again, the processImage function, but this time the computation is 
running inside the AsyncResultBuilder CEs, as shown in bold in this listing.

Listing 10.15  Using AsyncResultBuilder 

let processImage (blobReference:string) (destinationImage:string) 
➥ : AsyncResult<unit> =
    asyncResult  {   
       let storageAccount = CloudStorageAccount.Parse("<Azure Connection>")
       let blobClient = storageAccount.CreateCloudBlobClient()
       let container = blobClient.GetContainerReference("Media")
       let! _ = container.CreateIfNotExistsAsync()
       let blockBlob = container.GetBlockBlobReference(blobReference)
       use memStream = new MemoryStream()
       do! blockBlob.DownloadToStreamAsync(memStream)
       let image = Bitmap.FromStream(memStream)
       let! thumbnail = toThumbnail(image)
       return! toByteArrayAsyncResult thumbnail 
     } 
     |> AsyncResult.bimap (fun bytes -> 
➥ FileEx.WriteAllBytesAsync(destinationImage, bytes)) 
                          (fun ex -> logger.Error(ex) |> async.Return.retn)    

Now, all you need do is wrap the operations inside an asyncResult CE block. The com-
piler can recognize the monadic (CE) pattern and treats the computations in a special 
way. When the let! bind operator is detected, the compiler automatically translates 
the AsyncResult.Return and AsyncResult.Bind operations of a CE in context.

Wraps the code block into an 
asyncResult to make the bind 
operator run in the context of 

the AsyncResultBuilder CEs
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10.4 Abstracting operations with functional combinators
Let’s say you need to download and analyze the history of a stock ticker symbol, or 
you decide you need to analyze the history of more than one stock to compare and 
contrast the best ones to buy. It’s a given that downloading data from the internet is an 
I/O-bound operation that should be executed asynchronously. But suppose you want 
to build a more sophisticated program, where downloading the stock data depends on 
other asynchronous operations (figure 10.7). Here are several examples:

¡	If either the NASDAQ or the NYSE index is positive
¡	If the last six months of the stock has a positive trend
¡	If the volume of the stock compiles any number of positive criteria to buy

Look for
a positive

index.

Is the
trend over the
last six months

positive?

No

No

Yes

NASDAQ positive

Buy

NYSE positive

Are
there any

positive factors
to buy?

Yes

What about running the flow in figure 10.7 for each stock symbol that you’re interested 
in? How would you combine the conditional logic of these operations while keeping the 
asynchronous semantic to parallelize the execution? How would you design the program? 

The solution is functional asynchronous combinators. The following sections cover the 
characteristics of functional combinators, with the focus on asynchronous combina-
tors. We’ll  cover how to use the built-in support in the .NET Framework and how to 
build and tailor your own asynchronous combinators to maximize the performance of 
your program using a fluid and declarative functional programming style. 

Figure 10.7  This diagram 
represents a sequential decision 
tree for buying stock. Each step 
likely involves an I/O operation 
to asynchronously interrogate 
an external service. You must be 
thoughtful in your approach to 
maintain this sequential flow, while 
performing the whole decision tree 
asynchronously. 
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10.5 Functional combinators in a nutshell 
The imperative paradigm uses procedural control mechanisms such as if-else state-
ments and for/while loops to drive a program’s flow. This is contrary to the FP style. 
As you leave the imperative world behind, you’ll learn to find alternatives to fill in that 
gap. A good solution is to use function combinators that orchestrate the flow of the 
program. FP mechanisms make it easy to combine two or more solutions from smaller 
problems into a single abstraction that solves a larger problem.

Abstraction is a pillar of FP, which allows you to develop an application without wor-
rying about the implementation details, allowing you to focus on the more important 
high-level semantics of the program. Essentially, abstraction captures the core of what a 
function or a whole program does, making it easier to get things done.

In FP, a combinator refers to either a function with no free variables (https://wiki 
.haskell.org/Pointfree) or a pattern for composing and combining any types. This sec-
ond definition is the central topic of this section. 

From a practical viewpoint, functional combinators are programming constructs that 
allow you to merge and link primitive artifacts, such as other functions (or other com-
binators), and behave as pieces of control logic together, working to generate more- 
advanced behaviors. In addition, functional combinators encourage modularity, which 
supports the objective to abstract functions into components that can be understood 
and reused independently, with codified meaning derived from rules governing their 
composition. You were introduced to this concept previously with the definition of 
asynchronous functions (combinators) such as Otherwise and Retry for the C# Task-
based Asynchronous Programming (TAP) model and the F# AsyncResult.handler.

In the context of concurrent programming, the main reason to use combinators is to 
implement a program that can handle side effects without compromising a declarative 
and compositional semantic. This is possible because combinators abstract away from 
the developer implementation details that might handle side effects underneath, with 
the purpose of offering functions that compose effortlessly. Specifically, this section 
covers combinators that compose asynchronous operations. 

If the side effects are limited to the scope of a single function, then the behavior call-
ing that function is idempotent. Idempotent means the operation can be applied multi-
ple times without changing the result beyond the initial application—the effect doesn’t 
change. It’s possible to chain these idempotent functions to produce complex behav-
iors where the side effects are isolated and controlled. 

10.5.1 The TPL built-in asynchronous combinators

The F# asynchronous workflow and the .NET TPL provide a set of built-in combinators, 
such as Task.Run, Async.StartWithContinuation, Task.WhenAll, and Task.WhenAny. 
These can be easily extended for implementing useful combinators to compose and 
build more sophisticated task-based patterns. For example, both the Task.WhenAll 
and the F# Async.Parallel operators are used to asynchronously wait on multiple 
asynchronous operations; the underlying results of those operations are grouped to 
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continue. This continuation is the key that provides opportunities for composing the 
flow of a program in more complex structures, such as implementing the Fork/Join 
and Divide and Conquer patterns. 

Let’s start with a simple case in C# to understand the benefits of combinators. Imag-
ine you must run three asynchronous operations and calculate the sum of their output, 
awaiting each in turn. Note that each operation takes one second to compute:

async Task<int> A() { await Task.Delay(1000); return 1; }
async Task<int> B() { await Task.Delay(1000); return 3; }
async Task<int> C() { await Task.Delay(1000); return 5; }

int a = await A();
int b = await B();
int c = await C();
 
int result = a + b + c;

The result (9) is computed in three seconds, one second for each operation. But what 
if you want to run those three methods in parallel? To run more than one background 
task, there are methods available to help you coordinate them. The simplest solution 
to run multiple tasks concurrently is to start them consecutively and collect references 
to them. The TPL Task.WhenAll operator accepts a params array of tasks, and returns 
a task that is signaled when all the others are complete. You can eliminate the interme-
diate variables from that last example to make the code less verbose:

var results = (await Task.WhenAll(A(), B(), C())).Sum();

The results come back in an array, and then the Sum() LINQ operator is applied. With 
this change, the result is computed in only one second. Now the task can completely 
represent an asynchronous operation and provide synchronous and asynchronous 
capabilities for joining with the operation, retrieving its results, and so on. This lets you 
build useful libraries of combinators that compose tasks to build larger patterns.

10.5.2 Exploiting the Task.WhenAny combinator for redundancy 
and interleaving

A benefit of using tasks is that they enable powerful composition. Once you have a sin-
gle type capable of representing any arbitrary asynchronous operation, you can write 
combinators over the type that allow you to combine/compose asynchronous opera-
tions in myriad ways. 

For example, the TPL Task.WhenAny operator allows you to develop parallel pro-
grams where one task of multiple asynchronous operations must be completed before 
the main thread can continue processing. This behavior of asynchronously waiting for 
the first operation to complete over a given set of tasks, before notifying the main thread 
for further processing, facilitates the design of sophisticated combinators. Redundancy, 
interleaving, and throttling are examples of properties that are derived from these 
combinators.
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REDUNDANCY  Executes an asynchronous operation multiple times and selects 
the one that completes first. 

INTERLEAVING  Launches multiple operations but processes them in the order 
they complete. This was discussed in section 8.5.7.

Consider the case where you want to buy an airplane ticket as soon as possible. You 
have a few airline web services to contact, but depending on web traffic, each service 
can have a different response time. In this case, you can use the Task.WhenAny opera-
tor to contact multiple web services to produce a single result, selected from the one 
that completes the fastest.

Listing 10.16  Redundancy with Task.WhenAny

var cts = new CancellationTokenSource(); 

Func<string, string, string, CancellationToken, Task<string>> 
➥ GetBestFlightAsync = async (from, to, carrier, token) => {
        string url = $"flight provider{carrier}";
        using(var client = new HttpClient()) {
        HttpResponseMessage response = await client.GetAsync(url, token);
        return await response.Content.ReadAsStringAsync();
    }};           

var recommendationFlights = new List<Task<string>>()
{
    GetBestFlightAsync("WAS", "SF", "United", cts.Token),
    GetBestFlightAsync("WAS", "SF", "Delta", cts.Token),
    GetBestFlightAsync("WAS", "SF", "AirFrance", cts.Token),

};     

Task<string> recommendationFlight = await Task.
WhenAny(recommendationFlights);  

while (recommendationFlights.Count > 0)
{   
    try
    {
        var recommendedFlight = await recommendationFlight;       
        cts.Cancel();          
        BuyFlightTicket("WAS", "SF", recommendedFlight);
        break;
    }
    catch (WebException)        
    {
        recommendationFlights.Remove(recommendationFlight);        
    }
}

Uses CancellationToken to cancel the operations 
still running after the first one completes The conceptual asynchronous 

function that fetches the price 
of a flight from a given carrier

Lists asynchronous operations 
to execute in parallel

Waits for the first operation to complete 
with the Task.WhenAny operator

Retrieves the result in a try-catch block 
to accommodate potential exceptions. 

Even if a first task completes 
successfully, subsequent tasks may fail.

If the operation is successful, the other 
computations still running are canceled.
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In the code, Task.WhenAny returns the task that completed first. It’s important to 
know if the operation completes successfully, because if there’s an error you want to 
discharge the result and wait for the next computation to complete. The code must 
handle exceptions using a try-catch, where the computation that failed is removed 
from the list of asynchronous recommended operations. When a first task completes 
successfully, you want to be sure to cancel the others still running. 

10.5.3 Exploiting the Task.WhenAll combinator  
for asynchronous for-each

The Task.WhenAll operator waits asynchronously on multiple asynchronous compu-
tations that are represented as tasks. Consider that you want to send an email message 
to all your contacts. To speed up the process, you want to send the email to all recipi-
ents in parallel without waiting for each separate message to complete before sending 
the next. In such a scenario, it would be convenient to process the list of emails in a 
for-each loop. How would you maintain the asynchronous semantic of the operation, 
while sending the emails in parallel? The solution is to implement a ForEachAsync 
operator based on the Task.WhenAll method. 

Listing 10.17  Asynchronous for-each loop with Task.WhenAll 

static Task ForEachAsync<T>(this IEnumerable<T> source, 
➥ int maxDegreeOfParallelism, Func<T, Task> body)
{
    return Task.WhenAll(
        from partition in Partitioner.Create(source).

GetPartitions(maxDegreeOfParallelism)
        select Task.Run(async () =>
              {
                     using (partition)
                     while (partition.MoveNext())
                     await body(partition.Current);
        }));
}

For each partition of the enumerable, the operator ForEachAsync runs a function that 
returns a Task to represent the completion of processing that group of elements. Once 
the work starts asynchronously, you can achieve concurrency and parallelism, invoking 
the body for each element and waiting on them all at the end, rather than waiting for 
each in turn. 

The Partitioner created limits the number of operations that can run in parallel 
to avoid making more tasks than necessary. This maximum degree of parallelism value 
is managed by partitioning the input data set into maxDegreeOfParallelism number 
of chunks and scheduling a separate task to begin execution for each partition. The 
ForEachAsync batches work to create fewer tasks than total work items. This can pro-
vide significantly better overall performance, especially if the loop body has a small 
amount of work per item.
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NOTE  This last example is similar in nature to Parallel.ForEach, the primary 
difference being that Parallel.ForEach is a synchronous method and uses 
synchronous delegates.

Now you can use the ForEachAsync operator to send multiple emails asynchronously. 

Listing 10.18  Using the asynchronous for-each loop 

async Task SendEmailsAsync(List<string> emails)
{
    SmtpClient client = new SmtpClient();
    Func<string, Task> sendEmailAsync = async emailTo =>
    {
        MailMessage message = new MailMessage("me@me.com", emailTo);
        await client.SendMailAsync(message);
    };

    await emails.ForEachAsync(Environment.ProcessorCount, sendEmailAsync);
}

These are a few simple examples that show how to use the built-in TPL combinators 
Task.WhenAll and Task.WhenAny. In section 10.6, you’ll focus on constructing custom 
combinators and composing existing ones in which both F# and C# principles apply. 
You’ll see that there’s an infinite number of combinators. We’ll look at several of the 
most common ones that are used to implement an asynchronous logical flow in a pro-
gram: ifAsync, AND (async), and OR (async).

Before jumping into building asynchronous combinators, let’s review the functional 
patterns that have been discussed so far. This refresher will lead to a new functional pat-
tern, which is used to compose heterogeneous concurrent functions. Don’t worry if you 
aren’t familiar with this term; you will be shortly.

10.5.4 Mathematical pattern review: what you’ve seen so far

In the previous chapters, I introduced the concepts of monoids, monads, and func-
tors, which come from a branch of mathematics called category theory. Additionally, 
I discussed their important relationship to functional programming and functional 
concurrency. 

Category theory lexicon
Category theory is a branch of mathematics that defines any collection of objects that 
can relate to each other via morphisms in sensible ways, such as composition and asso-
ciativity. Morphisms is a buzzword that defines something that can mutate; think of 
applying a map (or select) function from one mathematical structure to another. Essen-
tially, category theory consists of objects and arrows that are connected to each other, 
providing the basis of the composition. Category theory is a powerful idea generated 
from a need to organize mathematical concepts based on shared structure. Many useful 
concepts fall under the category theory umbrella, but you don’t need to have a mathe-
matical background to understand them and use their powerful properties, which for the 
majority are all about creating opportunities for composition.
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In programming, these mathematical patterns are adopted to control the execution of 
side effects and to maintain functional purity. These patterns are interesting because 
of their properties of abstraction and compositionality. Abstraction favors composabil-
ity, and together they’re the pillars of functional and concurrent programming. The 
following sections rehash the definition of these mathematical concepts.

monoids for data parallelism 
A monoid, as explained earlier, is a binary associative operation with an identity; it pro-
vides a way to mash values of the same type together. The associative property allows 
you to run a computation in parallel effortlessly by providing the ability to divide a 
problem into chunks so it can be computed independently. Then, when each block 
of computation completes, the result is recomposed. A variety of interesting parallel 
operations turn out to be both associative and commutative, expressed using monoids: 
Map-Reduce and Aggregation in various forms such as sum, variance, average,  
concatenation, and more. The .NET PLINQ, for example, uses monoidal operations 
that are both associative and commutative to parallelize work correctly.

The following code example, based on content from chapter 4, shows how to use 
PLINQ for parallelizing the sum of the power of an array segment. The data set is par-
titioned in subarrays that are accumulated separately on their own threads using the 
accumulator initialized to the seed. Ultimately, all accumulators will be combined using 
the final reduce function (the AsParallel function is in bold): 

var random = new Random();
var size = 1024 * Environment.ProcessorCount;
int[] array = Enumerable.Range(0, size).Select(_ => 
➥ random.Next(0, size)).ToArray();

long parallelSumOfSquares = array.AsParallel()
     .Aggregate(
     seed: 0,  
     updateAccumulatorFunc: (partition, value) => 
➥ partition + (int)Math.Pow(value, 2),
     combineAccumulatorsFunc: (partitions, partition) => 
➥ partitions + partition,
     resultSelector: result => result);

Despite the unpredictable order of the computation compared to the sequential ver-
sion of the code, the result is deterministic because of the associativity and commuta-
tivity properties of the + operator.

functors to map elevated types 
The functor is a pattern of mapping over elevated structures, which is archived and 
provides support for a two-parameter function called Map (also known as fmap). The 
type signature of the Map function takes as a first argument the function (T -> R), 
which in C# is translated into Func<T, R>. When given an input type T, it applies a 
transformation and returns a type R. A functor elevates functions with only one input.

The LINQ/PLINQ Select operator can be considered a functor for the IEnumerable 
elevated type. Mainly, functors are used in C# to implement LINQ-style fluent APIs that 

Seed for each partition
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are used for types other than collections. In chapter 7, you implemented a functor for 
the Task elevated type (the Map function is in bold): 

static Task<R> Map<T, R>(this Task<T> input, Func<T, R> map) => 
                                   input.ContinueWith(t => map(t.Result));

The function Map takes a function map (T -> R) and a functor (wrapped context) 
Task<T> and returns a new functor Task<R> containing the result of applying the func-
tion to the value and closing it once more. 

The following code, from chapter 8, downloads an icon image from a given website 
and converts it into a bitmap. The operator Map is applied to chain the asynchronous 
computations (the code to note is in bold).

Bitmap icon = await new HttpClient()
                       .GetAsync($"http://{domain}/favicon.ico")
                       .Bind(async content => await
                             content.Content.ReadAsByteArrayAsync())
                       .Map(bytes => 
                              Bitmap.FromStream(new MemoryStream(bytes)));

This function has a signature (T -> R) -> Task<T> -> Task<R>, which means that it 
takes a map function T -> R as the first input that goes from a value type T to a value 
type R, and then upgrades the type Task<T> as a second input and returns the Task<R>.

A functor is nothing more than a data structure that you can use to map functions 
with the purpose of lifting values into a wrapper (elevated type), modifying them, and 
then putting them back into a wrapper. The reason for having fmap return the same 
elevated type is to continue chaining operations. Essentially, functors create a context 
or an abstraction that allows you to securely manipulate and apply operations to values 
without changing any original values.

monads to compose without side effects 
Monads are a powerful compositional tool used in functional programming to avoid 
dangerous and unwanted behaviors (side effects). They allow you to take a value and 
apply a series of transformations in an independent manner encapsulating side effects. 
The type signature of monadic function calls out potential side effects, providing a repre-
sentation of both the result of the computation and the actual side effects that occurred 
as a result. A monadic computation is represented by generic type M<'a> where the type 
parameter specifies the type of value (or values) produced as the result of monadic com-
putation (internally, the type may be a Task or List, for example). When writing code 
using monadic computations, you don’t use the underlying type directly. Instead you use 
two operations that every monadic computation must provide: Bind and Return. 

These operations define the behavior of the monad and have the following type sig-
natures (for certain monads of type M<'a> that could be replaced with Task<'a>): 

Bind: ('a -> M<'b>) -> M<'a> -> M<'b>
Return: 'a -> M<'a>

The Bind operator takes an instance of an elevated type, extracts the underlying value 
from it, and runs the function over that value, returning a new elevated value: 

Task<R> Bind<R, T>(this Task<T> task, Func<T, Task<R>> continuation)
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You can see in this implementation that the SelectMany operator is built into the 
LINQ/PLINQ library.

Return is an operator that lifts (wraps) any type into a different elevated context 
(monad type, like Task), usually converting a non-monadic value into a monadic value. 
For example, Task.FromResult produces a Task<T> from any given type T (in bold):

Task<T> Return<T>(T value) => Task.FromResult(value);

These monadic operators are essential to LINQ/PLINQ and generate the opportu-
nity for many other operators. For example, the previous code that downloads and 
converts an icon from a given website into a bitmap format can be rewritten using the 
monadic operators (in bold) in the following manner:

Bitmap icon = await (from content in new HttpClient().GetAsync($"http://
{domain}/favicon.ico")

                     from bytes in content.Content.ReadAsByteArrayAsync())
                     select Bitmap.FromStream(new MemoryStream(bytes));

The monad pattern is an amazingly versatile pattern for doing function composition 
with amplifying types while maintaining the ability to apply functions to instances of 
the underlying types. Monads also provide techniques for removing repetitive and awk-
ward code and can allow you to significantly simplify many programming problems.

What is the importance of laws? 
As you’ve seen, each of the mathematical patterns mentioned must satisfy specific laws 
to expose their property, but why? The reason is, laws help you to reason about your pro-
gram, providing information for the expected behavior of the type in context. Specifically, 
a concurrent program must be deterministic; therefore, a deterministic and predictable 
way to reason about the code helps to prove its correctness. If an operation is applied to 
combine two monoids, then you can assume, due to the monoid laws, that the compu-
tation is associative, and the result type is also a monoid. To write concurrent combina-
tors, it’s important to trust the laws that are derived from the abstract interface, such as 
monads and functors.

10.6 The ultimate parallel composition applicative functor
At this point, I’ve discussed how a functor (fmap) can be used to upgrade functions 
with one argument to work with elevated types. You’ve also learned how the monadic 
Bind and Return operators are used to compose elevated types in a controlled and 
fluent manner. But there’s more! Let’s assume that you have a function from the nor-
mal world: for example, a method that processes an image to create a Thumbnail over a 
given Bitmap object. How would you apply such functionality to values from the elevated 
world Task<Bitmap>? 

NOTE  Normal world, in this case, refers to a function that performs over a nor-
mal primitive, such as a bitmap. In contrast, a function from the elevated world 
would operate against an elevated type: for example, a bitmap elevated to 
Task<Bitmap>. 
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Here’s the function ToThumbnail to process a given image (the code to note is in bold):

Image ToThumbnail (Image bitmap, int maxPixels)
{
    var scaling = (bitmap.Width > bitmap.Height) 
                  ? maxPixels / Convert.ToDouble(bitmap.Width) 
                  : maxPixels / Convert.ToDouble(bitmap.Height);
    var width = Convert.ToInt32(Convert.ToDouble(bitmap.Width) * scaling);
    var heiht = Convert.ToInt32(Convert.ToDouble(bitmap.Height) * scaling);
    return new Bitmap(bitmap.GetThumbnailImage(width, height, null, 
➥ IntPtr.Zero));
}

Although you can obtain a substantial number of different compositional shapes using 
core functions such as map and bind, there’s the limitation that these functions take 
only a single argument as an input. How can you integrate multiple-argument func-
tions in your workflows, given that map and bind both take as input a unary function? 
The solution is applicative functors.

Let’s start with a problem to understand the reasons why you should apply the Appli-
cative Functor pattern (technique). The functor has the map operator to upgrade func-
tions with one and only one argument.

It’s common that functions that map to elevated types usually take more than one 
argument, such as the previous ToThumbnail method that takes an image as the first 
argument and the maximum size in pixels for the image transformation as the second 
argument. The problem with such functions is that they aren’t easy to elevate in other 
contexts. If you load an image, for simplicity using the Azure Blob storage function 
DownloadImageAsync as earlier, and later you want to apply the ToThumbnail func-
tion transformation, then the functor map cannot be used because the type signature 
doesn’t match. ToThumbnail (in bold in the following listing) takes two arguments, 
while the map function takes a single argument function as input.

Listing 10.19  Compositional limitation of the Task functor map 

Task<R> map<T, R>(this Task<T> task, Func<T, R> map) => 
                                    task.ContinueWith(t => map(t.Result));

static async Task<Image> DownloadImageAsync(string blobReference)
{
     var container = await Helpers.GetCloudBlobContainerAsync().

ConfigureAwait(false);
     CloudBlockBlob blockBlob = container.

GetBlockBlobReference(blobReference);
     using (var memStream = new MemoryStream())
     {
          await blockBlob.DownloadToStreamAsync(memStream).

ConfigureAwait(false);
          return Bitmap.FromStream(memStream);
     }
 }
 static async Bitmap CreateThumbnail(string blobReference, int maxPixels)
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 {
     Image thumbnail =
           await DownloadImageAsync("Bugghina001.jpg")
                 .map(ToThumbnail);  
     return thumbnail;
 }

The problem with this code is that it doesn’t compile when you’re trying to apply 
ToThumbnail to the Task map extension method map(ToThumbnail). The compiler 
throws an exception due to the signature mismatch.

How can you apply a function to several contexts at once? How can a function that takes 
more than one argument be upgraded? This is where applicative functors come into play 
to apply a multi-parameter function over an elevated type. The following listing exploits 
applicative functors to compose the ToThumbnail and DownloadImageAsync functions, 
matching the type signature and maintaining the asynchronous semantic (in bold).

Listing 10.20  Better composition of the asynchronous operation

Static Func<T1, Func<T2, TR>> Curry<T1, T2, TR>(this Func<T1, T2, TR> func) => 
➥ p1 => p2 => func(p1, p2);

static async Task<Image> CreateThumbnail(string blobReference, int maxPixels)
{
   Func<Image, Func<int, Image>> ToThumbnailCurried = 
➥ Curry<Image, int, Image>(ToThumbnail); 

   Image thumbnail = await TaskEx.Pure(ToThumbnailCurried)      
                          .Apply(DownloadImageAsync(blobReference))    
                          .Apply(TaskEx.Pure(maxPixels));          

   return thumbnail;
}

Let’s explore this listing for clarity. The Curry function is part of a helper static class, 
which is used to facilitate FP in C#. In this case, the curried version of the method 
ToThumbnail is a function that takes an image as input, and returns a function that 
takes an integer (int) as input for the maximum size in pixels allowed, and as output 
an Image type: Func<Image, Func<int, Image>> ToThumbnailCurried. Then, this 
unary function is wrapped in the container Task type, and overloads so greater arities 
can be defined by currying that function. 

In practice, the function that takes more than one argument, in this case ToThumb-
nail, is curried and lifted into the Task type using the Task Pure extension method. 
Then, the resulting Task<Func<Image, Func<int, Image>>> is passed over the appli-
cative functor Apply, which injects its output, Task<Image>, into the next function 
applied over DownloadImageAsync. 

Compilation error

Curries the function

Lifts the function ToThumbnailCurried 
to the Task elevated type

Uses an applicative function to chain the 
computations without exiting the Task context
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Ultimately, the last applicative functor operator Apply handles the transient param-
eter maxPixels elevated using the Pure extension method. From the perspective of 
the functor map operator, the curried function ToThumbnailCurried is partially applied 
and is exercised against an image argument and then wrapped into the task. Therefore, 
conceptually, the signature is

Task<ToThumbnailCurried(Image)>  

The function ToThumbnailCurried takes an image as input and then returns the par-
tially applied function in the form of a Func<int, Image> delegate, whose signature 
definition correctly matches the input of the applicative functor: Task<Func<int, 
Image>>.

The Apply function can be viewed as a partial application for elevated functions, 
whose next value is provided for every call in the form of an elevated (boxed) value. In 
this way, you can turn every argument of a function into a boxed value.

Currying and partial application
Currying is the technique of transforming a function with multiple arguments into a series 
of functions with only one argument, which always returns a value. The F# programming 
language performs currying automatically. In C# you need to enable it manually or rather 
by using a defined helper function, as in the example. This is the reason why function sig-
natures in FP are represented with multiple -> symbols, which is basically the symbol for 
a function. Look at a signature such as: string -> int -> Image.

The function has two arguments, string and int, and it returns Image. But the correct 
way to read the function signature is a function that has only one argument: string. It 
will return a new function with signature int -> Image.

In C#, the lack of support for the currying technique and partial application may make 
the applicative functor seem inconvenient. But after practice you’ll break through the 
initial barrier and see the real power and flexibility of the applicative functor technique.

Partial application refers to a function of many arguments that doesn’t have to be 
applied to all its inputs at once. You can imagine that applying it to the first argument 
doesn’t yield a value but rather a function on n – 1 arguments. In this spirit, you could 
bind a multi-parameter function to a single Task and get an asynchronous operation of 
n – 1 arguments. Then you are left with the problem of applying a task of a function to a 
task of an argument, and that’s exactly what the applicative pattern solves. 

More details about currying can be found in appendix A.

 

The Applicative Functor pattern aims to lift and apply a function over an elevated 
context, and then apply a computation (transformation) to a specific elevated type. 
Because both the value and the function are applied in the same elevated context, they 
can be smashed together. 
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Let’s analyze the functions Pure and Apply. An applicative functor is a pattern 
implemented by two operations, defined here, where AF represents any elevated type 
(in bold):

Pure : T -> AF<R> 
Apply : AF<T -> R> -> AF<T> -> F<R>

Intuitively, the Pure operator lifts a value into an elevated domain, and it’s equivalent 
to the Return monadic operator. The name Pure is a convention for an applicative 
functor definition. But in the case of applicative functions, this operator elevates a 
function. The Apply operator is a two-parameter function, both part of the same ele-
vated domain. 

From the code example in the section “Functors to map elevated types,” you can see 
that an applicative functor is any container (elevated type) that offers a way to trans-
form a normal function into one that operates on contained values. 

NOTE  An applicative functor is a construct to provide the midpoint between 
functor’s map and monad’s bind. Applicative functors can work with elevated 
functions, because the values are wrapped in a context, the same as functors, 
but in this case the wrapped value is a function. This is useful if you want to 
apply a function that’s inside a functor to a value inside a functor. 

Applicative functors are useful when sequencing a set of actions in parallel without the 
need for any intermediate results. In fact, if the tasks are independent, then their exe-
cution can be composed and parallelized using an applicative. An example is running 
a set of concurrent actions that read and transform parts of a data structure in order, 
then combine their results, shown in figure 10.8. 

( + 40)

2

2+ 40

Unwrap both types and apply
the function to the value.Apply

2

Rewrap
the value.

Value in
a context

Function wrapped
in an elevated type

Figure 10.8  The Apply operator implements the function wrapped inside an elevated type to a value 
in the context. The process triggers the unwrapping of both values; then, because the first value is a 
function, it’s applied automatically to the second value. Finally, the output is wrapped back inside the 
context of the elevated type.

In the context of the Task elevated type, it takes a value Task<T> and a wrapped 
function Task<(T -> R)> (translated in C# as Task<Func<T, R>>) and then returns 
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a new value Task<R> generated by applying the underlying function to the value of 
Task<T>:

static Task<R> Apply<T, R>(this Task<Func<T, R>> liftedFn, Task<T> task) {
     var tcs = new TaskCompletionSource<R>();
     liftedFn.ContinueWith(innerLiftTask =>
                task.ContinueWith(innerTask =>
                    tcs.SetResult(innerLiftTask.Result(innerTask.Result))
            ));
            return tcs.Task;
}

Here’s a variant of the Apply operator defined for async Task in the  TAP world, which 
can be implemented rather than in terms of async/await:

static async Task<R> Apply<T, R> (this Task<Func<T, R>> f, Task<T> arg)
                        => (await f. ConfigureAwait(false))
                           (await arg.ConfigureAwait(false));

Both Apply functions have the same behavior despite their different implementations. 
The first input value of Apply is a function wrapped into a Task: Task<Func<T, R>>. 
This signature could look strange initially, but remember that in FP, functions are 
treated as values and can be passed around in the same way as strings or integers.

Now, extending the Apply operator to a signature that accepts more inputs becomes 
effortless. This function is an example: 

static Task<Func<b, c>> Apply<a, b, c>(this Task<Func<a, b, c>> liftedFn, 
➥ Task<a> input) =>  
                                                         
Apply(liftedFn.map(Curry), input);

Notice that this implementation is clever, because it applies the Curry function to 
Task<Func<a, b, c>> liftedFn using the functor map, and then applies it over the 
elevated input value using the Apply operator with smaller arity as previously defined. 
With this technique, you continue to expand the Apply operator to take as an input a 
function lifted with any number of parameters. 

NOTE  The Apply operator has the argument order inverted compared to the 
standard signature because it’s implemented as a static method to ease its use. 

It turns out that functor and applicative functor work well together to facilitate compo-
sition, including the composition of expressions running in parallel. When passing a 
function with more than one argument to the functor map, the result type matches the 
input of the Apply function. 

You can use an alternative way to implement an applicative functor in terms of using 
the monadic operators bind and return. But this approach prevents the code from 
running in parallel, because the execution of an operation would depend on the out-
come of the previous one.
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With the applicative functor in place, it’s effortless to compose a series of computa-
tions with no limit on the number of arguments each expression takes. Let’s imagine 
that you need to blend two images to create a third new image, which is the overlap of 
the given images into a frame having a specific size. This listing shows you how (the 
Apply function is in bold).

Listing 10.21  Parallelizing the chain of computation with applicative functors

static Image BlendImages(Image imageOne, Image imageTwo, Size size)
{
     var bitmap = new Bitmap(size.Width, size.Height);
     using (var graphic = Graphics.FromImage(bitmap)) {
        graphic.InterpolationMode = InterpolationMode.HighQualityBicubic;
        graphic.DrawImage(imageOne,
              new Rectangle(0, 0, size.Width, size.Height),
              new Rectangle(0, 0, imageOne.Width, imageTwo.Height),
              GraphicsUnit.Pixel);
        graphic.DrawImage(imageTwo,
              new Rectangle(0, 0, size.Width, size.Height),
              new Rectangle(0, 0, imageTwo.Width, imageTwo.Height),
              GraphicsUnit.Pixel);
        graphic.Save();
      }
      return bitmap;
}
async Task<Image> BlendImagesFromBlobStorageAsync(string blobReferenceOne, 
➥ string blobReferenceTwo, Size size)
{
       Func<Image, Func<Image, Func<Size, Image>>> BlendImagesCurried = 
                               Curry<Image, Image, Size, Image>(BlendImages);
        Task<Image> imageBlended =
              TaskEx.Pure(BlendImagesCurried)
                    .Apply(DownloadImageAsync(blobReferenceOne))
                    .Apply(DownloadImageAsync(blobReferenceTwo))
                    .Apply(TaskEx.Pure(size));
            return await imageBlended;
}

When you call Apply the first time, with the DownloadImageAsync(blobReferenceOne) 
task, it immediately returns a new Task without waiting for the DownloadImageAsync 
task to complete; consequently, the program immediately goes on to create the second 
DownloadImageAsync(blobReferenceTwo). As a result, both tasks run in parallel.

The code assumes that all the functions have the same input and output; but this is 
not a constraint. As long as the output type of an expression matches the input of the 
next expression, then the computation is still enforced and valid. Notice that in listing 
10.21, each call starts independently, so they run in parallel and the total execution 
time for BlendImagesFromBlobStorageAsync to complete is determined by the longest 
time required of the Apply calls to complete. 
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Apply vs. bind
The differential behavior between the bind and Apply operators is denoted by their 
function signature. In the context of an async workflow, for example, the first Async type 
in the bind operator is executed and awaiting completion to start the second async 
operation. The bind operator should be used when the execution of an async operation 
depends on the returned value of another async operation. 

The Apply operator has provided both async operations as an argument in the signa-
ture. It should be used when the async operations can be started independently. 

These concepts are valid for other elevated types such as the Task type.

 

This example enforces the compositional aspect of concurrent functions. Alternatively, 
you could implement custom methods that blend the images directly, but in the larger 
scheme this approach enables the flexibility to combine more sophisticated behaviors.

10.6.1 Extending the F# async workflow with 
applicative functor operators

Continuing your introduction to applicative functors, in this section you’ll practice the 
same task concepts to extend the F# asynchronous workflow. Note that F# supports the 
TPL because it is part of the .NET ecosystem, and the applicative functors are based on 
the Task type applied.

The following listing implements the two applicative functor operators pure and 
apply, which are purposely defined inside the Async module to extend this type. Note 
that because pure is a future reserved keyword in F#, the compiler will give a warning.

Listing 10.22  F# async applicative functor

module Async = 
     let pure value = async.Return value              

     let apply funAsync opAsync = async {
        let! funAsyncChild = Async.StartChild funAsync    
        let! opAsyncChild = Async.StartChild opAsync

        let! funAsyncRes = funAsyncChild
        let! opAsyncRes = opAsyncChild     
        return funAsyncRes opAsyncRes
      }

The apply function executes the two parameters, funAsync and opAsync, in parallel 
using the Fork/Join pattern, and then it returns the result of applying the output of 
the first function against the other.

Notice that the implementation of the apply operator runs in parallel because each 
asynchronous function starts the evaluation using the Async.StartChild operator. 

Lifts value to an Async

Starts the two 
asyncs in parallel

Waits for the results
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The Async.StartChild operator
The Async.StartChild operator takes a computation that starts within an asynchro-
nous workflow, and returns a token (of type Async<'T>) that can be used to wait until the 
operation completes. Its signature is as follows:

Async.StartChild : Async<'T> * ?int -> Async<Async<'T>>

This mechanism allows multiple asynchronous computations to be executed simultane-
ously. If a parent computation requests the result and the child computation isn’t fin-
ished, then the parent computation is suspended until the child completes.

 

Let’s see the capabilities that these functions provide in place. The same applicative 
functor concepts introduced in C# apply here; but the compositional semantic style 
provided in F# is nicer. Using the F# pipe (|>) operator to pass the intermediate result 
of a function on to the next one produces a more readable code.

The following listing implements the same chain of functions using the applicative 
functor in F# for blending asynchronously two images, as shown in C# in listing 10.21. 
In this case, the function blendImagesFromBlobStorage in F# returns an Async type 
rather than a Task (in bold).

Listing 10.23  Parallel chain of operations with an F# async applicative functor 

    let blendImages (imageOne:Image) (imageTwo:Image) (size:Size) : Image = 
        let bitmap = new Bitmap(size.Width, size.Height)
        use graphic = Graphics.FromImage(bitmap)
        graphic.InterpolationMode <- InterpolationMode.HighQualityBicubic
        graphic.DrawImage(imageOne,
                            new Rectangle(0, 0, size.Width, size.Height),
                            new Rectangle(0, 0, imageOne.Width, imageTwo.

Height),
                            GraphicsUnit.Pixel)
        graphic.DrawImage(imageTwo,
                        new Rectangle(0, 0, size.Width, size.Height),
                            new Rectangle(0, 0, imageTwo.Width, imageTwo.

Height),
                            GraphicsUnit.Pixel)
        graphic.Save() |> ignore
        bitmap :> Image

    let blendImagesFromBlobStorage (blobReferenceOne:string) 
    ➥ (blobReferenceTwo:string) (size:Size) =        
        Async.apply(
            Async.apply(
                Async.apply( 
                    Async.``pure`` blendImages) 
                    (downloadOptionImage(blobReferenceOne))) 
                    (downloadOptionImage(blobReferenceTwo))) 
                    (Async.``pure`` size)
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The function blendImages is lifted to the Task world (elevated type) using the Async 
.pure function. The resulting function, which has the signature Async<Image -> 
Image -> Size -> Image>, is applied over the output of the functions download-
OptionImage(blobReferenceOne) and downloadOptionImage(blobReferenceTwo). 
The lifted value size runs in parallel.

As mentioned earlier, functions in F# are curried by default; the extra boilerplate 
required in C# isn’t necessary. Even if F# doesn’t support applicative functors as a 
built-in feature, it’s easy to implement the apply operator and exercise its composi-
tional benefits. But this code isn’t particularly elegant, because the apply function oper-
ators are nested rather than chained. A better way is to create a custom infix operator.

10.6.2 Applicative functor semantics in F# with infix operators 

A more declarative and convenient approach in F# to write functional composition is 
to use custom infix operators. Unfortunately, this feature isn’t supported in C#. The 
support for custom infix operators means that you can define operators to achieve 
the desired level of precedence when operating over the arguments passed. An infix 
operator in F# is an operator that’s expressed using a mathematical notation called 
infix notation. For example, the multiply operator takes two numbers that are then mul-
tiplied by each other. In this case, using infix notation, the multiplication operator is 
written between the two numbers it operates on. Operators are basically two-argument 
functions, but in this case, instead of writing a function multiply x y, an infix operator 
is positioned between the two arguments: x Multiply y. 

You’re already familiar with a few infix operators in F#: the |> pipe operator and >> 
composition operators. But according to section 3.7 of the F# language specification, 
you can define your own operators. Here, an infix operator (in bold) is defined for 
both asynchronous functions apply and map: 

let (<*>) = Async.apply
let (<!>) = Async.map

NOTE   The <!> operator is the infix version of Async.map, while the <*> opera-
tor is the infix version of Async.apply. These infix operators are generally used 
in other programming languages such as Haskell, so they’ve become the stan-
dard. The <!> operator is defined as <$> in other programming languages; but 
in F# the <$> operator is reserved for future use, so <!> is used.

Using these operators, you can rewrite the previous code in a more concise manner:

let blendImagesFromBlobStorage (blobReferenceOne:string) 
➥ (blobReferenceTwo:string) (size:Size) =        
     blendImages
     <!> downloadOptionImage(blobReferenceOne)
     <*> downloadOptionImage(blobReferenceOne)
     <*> Async.``pure`` size

In general, I recommend that you not overuse or abuse the utilization of infix opera-
tors, but instead find the right balance. You can see how, in the case of functors and 
applicative functors, the infix operator is a welcome feature.  
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10.6.3 Exploiting heterogeneous parallel computation 
with applicative functors

Applicative functors lead to a powerful technique that allows you to write heteroge-
neous parallel computations. Heterogeneous means an object is composed of a series of 
parts of different kinds (versus homogenous, of a similar kind). In the context of parallel 
programming, it means executing multiple operations together, even if the result type 
between each operation is different. 

For example, with the current implementation, both the F# Async.Parallel and 
the TPL Task.WhenAll take as an argument a sequence of asynchronous computations 
having the same result type. This technique is based on the combination of applicative 
functors and the concept of lifting, which aims to elevate any type into a different con-
text. This idea is applicable to values and functions; in this specific case, the target is 
functions with an arbitrary cardinality of different argument types. To enable this feature 
to run heterogeneous parallel computation, the applicative functor apply operator is 
combined with the technique of lifting a function. This combination is then used to con-
struct a series of helpful functions generally called Lift2, Lift3, and so forth. The Lift 
and Lift1 operators aren’t defined because they’re functor map functions.

The following listing shows the implementation of the Lift2 and Lift3 functions 
in C#, which represents a transparent solution to performing parallel Async returning 
heterogeneous types. Those functions will be used next.

Listing 10.24  C# asynchronous lift functions

static Task<R> Lift2<T1, T2, R>(Func<T1, T2, R > selector, Task<T1> item1, 
➥ Task<T2> item2) 
{                                     
        Func<T1, Func<T2, R>> curry = x => y => selector(x, y);    
        var lifted1 = Pure(curry);     
        var lifted2 = Apply(lifted1, item1);    
        return Apply(lifted2, item2);        
}

static Task<R> Lift3<T1, T2, T3, R>(Func<T1, T2, T3, R> selector, 
➥ Task<T1> item1, Task<T2> item2, Task<T3> item3)  
{    
        Func<T1, Func<T2, Func<T3, R>>> curry = x => y => z => 
                                                     selector(x, y, z); 
        var lifted1 = Pure(curry);    
        var lifted2 = Apply(lifted1, item1);    
        var lifted3 = Apply(lifted2, item2);    
        return Apply(lifted3, item3);        
}

The lift functions apply a given function 
to the outputs of a set of Tasks. 

Curries the function to partially apply 

Elevates the partially 
applied function 

The Apply operator exercises the lifting. 

The lift functions apply a 
given function to the 

outputs of a set of Tasks. 

Elevates the partially 
applied function 
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The implementation of the Lift2 and Lift3 functions is based on applicative functors 
that curry and elevate the function selector, enabling its applicability to the elevated 
argument types.

The same concepts to implement the Lift2 and Lift3 functions affect the F# design. 
But due to the intrinsic functional feature of the programming language, and the con-
ciseness provided by infix operators, the implementation of the lift functions (in bold) 
in F# is concise:

let lift2 (func:'a -> 'b -> 'c) (asyncA:Async<'a>) (asyncB:Async<'b>) = 
    func <!> asyncA <*> asyncB

let lift3 (func:'a -> 'b -> 'c -> 'd) (asyncA:Async<'a>) 
➥ (asyncB:Async<'b>) (asyncC:Async<'c>) = 
    func <!> asyncA <*> asyncB <*> asyncC

Due to the F# type inference system, the input values are wrapped into an Async type, 
and the compiler can interpret that the infix operators <*> and <!> are the functor 
and applicative functor in the context of the Async elevated type. Also, note that it’s 
convention in F# to start the module-level functions with a lowercase initial letter.

10.6.4 Composing and executing heterogeneous parallel computations

What can you do with these functions in place? Let’s analyze an example that exploits 
these operators.

Imagine you’re tasked to write a simple program to validate the decision to buy stock 
options based on a condition set by analyzing market trends and the history of the 
stocks. The program should be divided into three operations: 

1 Check the total amount available for purchase based on the bank account avail-
able balance and the current price of the stock:

a Fetch the bank account balance.

b Fetch the stock price from the stock market.

2 Validate if a given stock symbol is recommended to buy: 

a Analyze the market indexes. 

b Analyze the historical trend of the given stock. 

3 Given a stock ticker symbol, decide to buy or not buy a certain number of stock 
options based upon the money available calculated in step 1.

The next listing shows the asynchronous functions to implement the program, which 
ideally should be combined (in bold). Certain code implementation details are omit-
ted because they’re irrelevant for this example.

Listing 10.25  Asynchronous operations to compose and run in parallel

let calcTransactionAmount amount (price:float) =
    let readyToInvest = amount * 0.75
    let cnt = Math.Floor(readyToInvest / price)
    if (cnt < 1e-5) && (price < amount)
    then 1 else int(cnt)               

let rnd = Random()

Calculates the transaction  
amount including arbitrary fees
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let mutable bankAccount = 500.0 + float(rnd.Next(1000))
let getAmountOfMoney() = async {
    return bankAccount
}    

let getCurrentPrice symbol = async {
        let! (_,data) = processStockHistory symbol 
        return data.[0].open'  
}  

let getStockIndex index =  async {
        let url = sprintf "http://download.finance.yahoo.com/d/quotes.
➥	csv?s=%s&f=snl1" index
        let req = WebRequest.Create(url)
        let! resp = req.AsyncGetResponse()
        use reader = new StreamReader(resp.GetResponseStream())
        return! reader.ReadToEndAsync()
    }   
    |> Async.map (fun (row:string) ->
        let items = row.Split(',')
        Double.Parse(items.[items.Length-1]))
    |> AsyncResult.handler   

let analyzeHistoricalTrend symbol = asyncResult {
        let! data = getStockHistory symbol (365/2)
        let trend = data.[data.Length-1] - data.[0]
        return trend
    }   

let withdraw amount = async {
    return
        if amount > bankAccount
        then Error(InvalidOperationException("Not enough money"))
        else
            bankAccount <- bankAccount - amount
            Ok(true)
    }     

Each operation runs asynchronously to evaluate the result of a different type. Respec-
tively, the function calcTransactionAmount returns a hypothetical cost for the 
trade(buy) transaction, the function analyzeHistoricalTrend returns the value of 
the stock historical analysis that’s used to evaluate if the stock option is a recommended 
buy, the function getStockIndex returns the current value of the stock price, and the 
function getCurrentPrice returns the last stock price.

How would you compose and run these computations in parallel using a Fork/Join 
pattern, for example, when the result type isn’t the same? A simple solution should be 
spawning an independent task for each function, then waiting for all tasks to complete 
to pass the results into a final function that aggregates the results and continues the 
work. It would be much nicer to glue all these functions together using a more generic 

Simulates an asynchronous web service request to 
the bank account that returns a random value

Retrieves the 
last price of the 
stock

processStockHistory (see chapter 8) downloads and parses 
the historical trend of a given stock ticker symbol.

Downloads and retrieves asynchronously the price of a 
given stock ticker symbol from the stock market

Maps the data of the stock ticker 
by retrieving the closing price. 
The output is an AsyncResult 
type because the operation could 
throw an exception.

Analyzes the historical trend of a 
given stock ticker symbol. The 
operation runs asynchronously in an 
asyncResult computation expression 
to handle potential errors.

Retrieves the current withdraw available asynchronously. 
Otherwise, an Error is returned if the bank account does not 
contain sufficient funds to proceed with the trade operation. 
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combinator, which promotes reusability and, of course, better compositionality with a 
set of polymorphic tools.

The following listing applies the technique to run heterogeneous computations in 
parallel using the lift2 function in F# to evaluate how many stock options are recom-
mended to buy after running a few simple diagnostics asynchronously (in bold).

Listing 10.26  Running heterogeneous asynchronous operations

let howMuchToBuy stockId : AsyncResult<int> =
    Async.lift2 (calcTransactionAmount)   
          (getAmountOfMoney())
          (getCurrentPrice stockId)
    |> AsyncResult.handler         

let analyze stockId =      
    howMuchToBuy stockId
    |> Async.StartCancelable(function    
        | Ok (total) -> printfn "I recommend to buy %d unit" total
        | Error (e) -> printfn "I do not recommend to buy now")

howMuchToBuy is a two-parameter function with an AsyncResult<float> type as 
output. The result type definition is from the output of the underlying function 
calcTransactionAmount, in which the AsyncResult<float> indicates either the suc-
cess of the operation with the amount of stock to buy, or not to buy. The first argu-
ment of stockId is an arbitrary stock ticker symbol to analyze. The howMuchToBuy 
function uses the lift2 operator and waits without blocking the two underlying async 
expressions (getAmount OfMoney and getCurrentPrice) to complete each compu-
tation. The analyze function executes howMuchToBuy to collect and output the rec-
ommended result. In this case, the execution is performed asynchronously using the 
Async.StartCancelable function defined in section 9.3.5.

One of the many benefits of using applicative, functor, monads, and combinator is 
their reproducibility and common patterns (regardless of the technology used). This 
makes it easy to understand and create a vocabulary that can be used to communicate 
to the developers and express the intention of the code. 

10.6.5 Controlling flow with conditional asynchronous combinators 

In general, it’s common to implement combinators by gluing other combinators 
together. Once you have a set of operators that can represent any arbitrary asynchronous 
operation, you can easily design new combinators over the type that allow you to com-
bine and compose asynchronous operations in myriad different and sophisticated ways. 

There are limitless possibilities and opportunities to customize asynchronous combi-
nators to respond to your needs. You could implement an asynchronous combinator that 
emulates an if-else statement equivalent to the imperative conditional logic, but how?

Lifts the heterogeneous function to apply the 
calcTransactionAmount operation against the 

output of the getAmountOfMoney and 
getCurrentPrice functions 

The output is run through the 
AsyncResult.handler validator.

Runs the analysis of a given stock ticker 
symbol, returning the recommendation 
to proceed with the buy 

Starts the computation using the Async.StartCancelable operator. The 
continuation function pattern matches the input Result to dispatch the rest of the 
computation according to whether it’s successful (Ok) or a failure (Error). 
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The solution is found in the functional patterns: 

¡	Monoids can be used to create the Or combinator. 
¡	Applicative functors can be used to create the And combinator.
¡	Monads chain asynchronous operations and glue combinatory. 

In this section, you’re going to define a few conditional asynchronous combinators 
and consume them to understand what capabilities are offered and the limited effort 
required. In fact, by using the combinators introduced so far, it’s a matter of compos-
ing them to achieve different behaviors. Furthermore, in the case of F# infix operators, 
it’s easy to use the feature to elevate and operate functions inline, avoiding the need 
for intermediate functions. For example, you’ve defined functions such as lift2 and 
lift3 by which it’s possible to apply heterogeneous parallel computation. 

You can abstract away the combination notion into conditional operators such as IF, 
AND, and OR. The following listing shows a few combinators that apply to the F# asyn-
chronous workflow. Semantically, they’re concise and easy to compose due to the func-
tional property of this programming language. But the same concepts can be ported 
into C# effortlessly, or perhaps by using the interoperability option (the code to note is 
in bold).

Listing 10.27  Async-workflow conditional combinators

module AsyncCombinators =
   let inline ifAsync (predicate:Async<bool>) (funcA:Async<'a>) 
➥ (funcB:Async<’a>) = 
           async.Bind(predicate, fun p -> if p then funcA else funcB)

   let inline iffAsync (predicate:Async<'a -> bool>) (context:Async<'a>) = 
       async {
           let! p = predicate <*> context
           return if p then Some context else None }

    let inline notAsync (predicate:Async<bool>) = 
                                async.Bind(predicate, not >> async.Return)
 
    let inline AND (funcA:Async<bool>) (funcB:Async<bool>) = 
        ifAsync funcA funcB (async.Return false)

    let inline OR (funcA:Async<bool>) (funcB:Async<bool>) = 
       ifAsync funcA (async.Return true) funcB

    let (<&&>)(funcA:Async<bool>) (funcB:Async<bool>) = AND funcA funcB
    let (<||>)(funcA:Async<bool>) (funcB:Async<bool>) = OR funcA funcB

The ifAsync combinator will take an asynchronous predicate and two arbitrary asyn-
chronous operations as arguments, where only one of those computations will run 
according to the outcome of the predicate. This is a useful pattern to branch the logic 
of your asynchronous program without leaving the asynchronous context. 

The iffAsync combinator takes a HOF condition that verifies the given context. 
If the condition holds true, then it asynchronously returns the context; otherwise it 
returns None asynchronously. The combinators from the previous code may be applied 
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in any combination before execution starts, and they act as syntactic sugar, by which the 
code looks the same as in the sequential case.

Inline functions
The inline keyword inlines the body of a function at its call sites. In this way, functions 
marked inline will be inserted verbatim whenever the function is called at compile 
time, improving the performance of the code execution. Note that inlining is a compiler 
process that trades code size for speed, whereby method calls to small or simple meth-
ods are replaced by the method’s body.

 

Let’s analyze in more detail these logical asynchronous combinators for a better 
understanding of how they work. This knowledge is key to building your own custom 
combinators.

the and logical asynchronous combinator

The asynchronous AND combinator returns the result after both functions funcA and 
funcB complete. This behavior is similar to Task.WhenAll, but it runs the first expres-
sion and waits for the result, then calls the second one and combines the results. If the 
evaluation is canceled, or fails, or returns the wrong result, then the other function will 
not run, applying a short-circuit logic.

Conceptually, the Task.WhenAll operator previously described is a good fit to per-
form logical AND over multiple asynchronous operations. This operator takes a pair of 
iterators to a container of tasks or a variable number of tasks, and returns a single Task 
that fires when all the arguments are ready.

The AND operator can be combined into chains as long as they all return the same 
type. Of course, it can be generalized and extended using applicative functors. Unless 
the functions have side effects, the result is deterministic and independent of order, so 
they can run parallel. 

the or logical asynchronous combinator

The asynchronous OR combinator works like the addition operator with monoid struc-
ture, which means that the operations must be associative. The OR combinator starts 
two asynchronous operations in parallel, waiting for the first one to complete. The 
same properties of the AND combinators apply here. The OR combinator can be com-
bined into chains; but the result cannot be deterministic unless both function evalua-
tions return the same type, and both are canceled.

The combinator that acts like a logical OR of two asynchronous operations can be 
implemented using the Task.WhenAny operator, which starts the computations in paral-
lel and picks the one that finishes first. This is also the basis of speculative computation, 
where you pitch several algorithms against each other.

The same approach for building Async combinators can be applied to the Async-
Result type, which provides a more powerful way to define generic operations where 
the output depends on the success of the underlying operations. In other words, 
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Async Result acts as two state flags, which can represent either a failure or a successful 
operation, where the latter provides the final value. Here are a few examples of Async-
Result combinators (in bold).

Listing 10.28  AsyncResult conditional combinators

module AsyncResultCombinators =
    let inline AND (funcA:AsyncResult<'a>) (funcB:AsyncResult<'a>) 
➥ : AsyncResult<_> =
        asyncResult {
                let! a = funcA
                let! b = funcB
                return (a, b)
        }

    let inline OR (funcA:AsyncResult<'a>) (funcB:AsyncResult<'a>) 
➥ : AsyncResult<'a> =
        asyncResult {
            return! funcA
            return! funcB
        }

    let (<&&>) (funcA:AsyncResult<'a>) (funcB:AsyncResult<'a>) = 
        AND funcA funcB
    let (<||>) (funcA:AsyncResult<'a>) (funcB:AsyncResult<'a>) = 
        OR funcA funcB

    let (<|||>) (funcA:AsyncResult<bool>) (funcB:AsyncResult<bool>) = 
        asyncResult {
            let! rA = funcA
            match rA with
            | true -> return! funcB 
            | false -> return false
        }

    let (<&&&>) (funcA:AsyncResult<bool>) (funcB:AsyncResult<bool>) = 
        asyncResult {
            let! (rA, rB) = funcA <&&> funcB
            return rA && rB
        }

The AsyncResult combinators, compared to the Async combinators, expose the logi-
cal asynchronous operators AND and OR that perform conditional dispatch over generic 
types instead of bool types. Here’s the comparison between the AND operators imple-
mented for Async and AsyncResult:

    let inline AND (funcA:Async<bool>) (funcB:Async<bool>) = 
        ifAsync funcA funcB (async.Return false)

    let inline AND (funcA:AsyncResult<'a>) (funcB:AsyncResult<'a>) 
➥ : AsyncResult<_> =
        asyncResult {
                let! a = funcA
                let! b = funcB
                return (a, b)
        }
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The AsyncResult AND uses the Result discriminated union to treat the Success case as 
the true value, which is carried over to the output of the underlying function. 

Tips to implement custom asynchronous combinators
Use this general strategy to create custom combinators:

1 Describe the problem purely in terms of concurrency.
2 Simplify the description until it’s reduced to a name.
3 Consider alternative paths for simplification.
4 Write and test (or import) the concurrency construct.

 

10.6.6 Asynchronous combinators in action

In listing 10.26, the stock ticker symbol was analyzed and a recommendation decided 
asynchronously to buy a given stock. Now you need to add the conditional check 
if-else, which behaves asynchronously using the ifAsync combinator: if the stock 
option is recommended to buy, then proceed with the transaction; otherwise it returns 
an error message. The code to note is in bold.

Listing 10.29  AsyncResult conditional combinators

let gt (value:'a) (ar:AsyncResult<'a>) = asyncResult {
        let! result = ar
        return result > value
    }    

let doInvest stockId =
    let shouldIBuy =   
        ((getStockIndex "^IXIC" |> gt 6200.0)
            <|||>           
            (getStockIndex "^NYA" |> gt 11700.0 ))
        <&&&>  ((analyzeHistoricalTrend stockId) |> gt 10.0)  
        |> AsyncResult.defaultValue false  

    let buy amount = async {  
        let! price = getCurrentPrice stockId
        let! result = withdraw (price*float(amount))
        return result |> Result.bimap (fun x -> if x then amount else 0) 
                                      (fun _ -> 0) 
        }

Checks if a given value is greater than the result of an 
asynchronous operation returning an AsyncResult 

type. The generic type 'a must be comparable. 

Applies the logical async OR operator to evaluate the given functions. This function represents 
a predicate that says whether or not you should buy based on the current market. 

Exploits the async infix OR operator Applies the logical 
async infix AND 

operator to evaluate 
the given functions

Helper function that returns the default value of 
a given type, lifting the output into the 
AsyncResult type. This function is used in case of 
error during the calculation process.

Checks the current bank balance 
returning the amount of stocks that 
can be purchased 

Verifies if the transaction is successful and then either returns 
Async<int>, wrapping the amount value if the transaction is 

successful, or returns Async<int> zero
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    AsyncComb.ifAsync shouldIBuy   

        (buy <!> (howMuchToBuy stockId))   

        (Async.retn <| Error(Exception("Do not do it now")))  

    |> AsyncResult.handler         

In this code example, the doInvest function analyzes a given stock symbol, its histor-
ical trend, and the current stock market to recommend a trading transaction. This 
function doInvest combines asynchronous functions that operate as a whole to deter-
mine the recommendation. The function shouldIBuy applies the asynchronous OR 
logical operator to check if either the ^IXIC or ^NYA index is greater than a given 
threshold. The result is used as base value to evaluate if the current stock market is 
good for buying operations. 

If the result of the shouldIBuy function is successful (true), the asynchronous AND 
logical operator proceeds, executing the analyzeHistoricalTrend function, which 
returns the historical trend analysis of the given stock. Next, the buy function verifies 
that the bank account balance is sufficient to buy the desired stock options; otherwise it 
returns an alternative value or zero if the balance is too low.

Ultimately, these functions are combined. The ifAsync combinator runs should-
IBuy asynchronously. According to its output, the code branches to either proceed with 
a buy transaction or return an error message. The purpose of the map infix operator 
(<!>) is to lift the function buy into the AsyncResult elevated type, which is then exe-
cuted against the number of stocks recommended to purchase calculated by the func-
tion howMuchToBuy. 

NOTE  The functions in listing 10.29 run as a unit of work, but each step is exe-
cuted asynchronously, on demand.

Summary

¡	Exposing your intent is crucial if you want to increase the readability of your 
code. Introducing the Result class helps to show if the method is a failure or suc-
cess, removes unnecessary boilerplate code, and results in a clean design.

¡	The Result type gives you an explicit, functional way to handle errors without 
introducing side effects (unlike throwing/catching exceptions), which leads to 
expressive and readable code implementations.

¡	When you consider the execution semantics of your code, Result and Option 
fill a similar goal, accounting for anything other than the happy path when code 
executes. Result is the best type to use when you want to represent and preserve 

Runs a conditional If statement to decide 
to buy or not buy the given stock 

If the shouldIBuy operation is positive, the buy 
function is lifted (AsyncResult) and executed 
against the amount of the number of stocks 

recommended to buy. This amount is the output 
of the function howMuchToBuy. 

If the shouldIBuy operation is negative, 
an error message is displayed. 

Wraps the overall function combinators 
in an async error catch 
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an error that can occur during execution. Option is better for when you wish to 
represent the existence or absence of a value, or when you want consumers to 
account for an error, but you don’t care about preserving that error.

¡	FP unmasks patterns to ease composition of asynchronous operations through 
the support of mathematical patterns. For example, applicative functors, which 
are amplified functors, can combine functions with multiple arguments directly 
over elevated types.

¡	Asynchronous combinators can be used to control the asynchronous execution 
flow of a program. This control of execution includes conditional logic. It’s 
effortless to compose a few asynchronous combinators to construct more sophis-
ticated ones, such as the asynchronous versions of the AND and OR operators.

¡	F# has support for infix operators, which can be customized to produce a conve-
nient set of operators. These operators simplify the programming style to easily 
construct a very sophisticated chain of operations in a non-standard manner. 

¡	Applicatives and functors can be combined to lift conventional functions, whose 
execution against elevated types can be performed without leaving the context. 
This technique allows you to run in parallel a set of heterogeneous functions, 
whose outputs can be evaluated as a whole. 

¡	Using core functional functions, such as Bind, Return, Map, and Apply, makes it 
straightforward to define rich code behavior that composes, run in parallel, and 
performs applications in an elevated world that mimics conditional logic, such as 
if-else.
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11Applying reactive programming 
everywhere with agents

This chapter covers
¡	Using the message-passing concurrent model

¡	Handling millions of messages per second

¡	Using the agent programming model 

¡	Parallelizing a workflow and coordinating agents

Web applications play an important role in our lives, from large social networks and 
media streaming to online banking systems and collaborative online gaming. Cer-
tain websites now handle as much traffic as the entire internet did less than a decade 
ago. Facebook and Twitter, two of the most popular websites, have billions of users 
each. To ensure that these applications thrive, concurrent connections, scalability, 
and distributed systems are essential. Traditional architectures from years past can-
not operate under this high volume of requests.

High-performance computing is becoming a necessity. The message-passing 
concurrent programming model is the answer to this demand, as evidenced by the 
increasing support for the message-passing model in mainstream languages such as 
Java, C#, and C++.
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11
The number of concurrent online connections will certainly continue to grow. The 

trend is shifting to physical devices that are interconnected, generating sophisticated 
and massive networks constantly operating and exchanging messages. It’s predicted 
that the Internet of Things (IoT) will expand to an installed base of 75 billion units by 
2025 (http://mng.bz/wiwP).

What is the Internet of Things?
The Internet of Things (IoT), as its name implies, is a giant network of things (refrigera-
tors, washing machines, and more) connected to the internet. Basically, anything with an 
on/off switch that can be connected to the internet can be part of the IoT. One analyst 
firm estimates that by 2020 there will be 26 billion connected devices (www.forbes.com/
companies/gartner/). Other estimates put this number at more than 100 billion. That’s 
a lot of data transfer. One challenge of the IoT is to convey the data in real time, with no 
slowing or bottlenecks, and to continually improve response time. Another challenge is 
security: all those things connected to the internet are open to hacking. 

 

The continual evolution of devices connected online is inspiring a revolution in how 
developers design the next generation of applications. The new applications will have 
to be non-blocking, fast, and capable of reacting to high volumes of system notifica-
tions. Events will control the execution of reactive applications. You’ll need a highly 
available and resource-efficient application able to adapt to this rapid evolution and 
respond to an infinitely increasing volume of internet requests. The event-driven and 
asynchronous paradigms are the primary architectural requirements for developing 
such applications. In this context, you’ll need asynchronous programming processed 
in parallel. 

This chapter is about developing responsive and reactive systems, starting with the 
exceptional message-passing programming model, a general-purpose concurrent one 
with particularly wide applicability. The message-passing programming model has sev-
eral commonalities with the microservices architecture (http://microservices.io/).

You’ll use the agent-based concurrent programming style, which relies on mes-
sage passing as a vehicle to communicate between small units of computations called 
agents. Each agent may own an internal state, with single-threaded access to guarantee 
thread safety without the need of any lock (or other any other synchronization prim-
itive). Because agents are easy to understand, programming with them is an effective 
tool for building scalable and responsive applications that ease the implementation of 
advanced asynchronous logic.

By the end of this chapter, you’ll know how to use asynchronous message-passing 
semantics in your applications to simplify and improve responsiveness and performance 
in your application. (If you are shaky on asynchronicity, review chapters 8 and 9.)

Before we plunge into the technical aspects of the message-passing architecture and 
the agent model, let’s look at the reactive system, with an emphasis on the properties 
that make an application valuable in the reactive paradigm.

 

http://mng.bz/wiwP
www.forbes.com/companies/gartner/
www.forbes.com/companies/gartner/
http://microservices.io/
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11.1 What’s reactive programming, and how is it useful?
Reactive programming is a set of design principles used in asynchronous programming 
to create cohesive systems that respond to commands and requests in a timely manner. 
It is a way of thinking about systems’ architecture and design in a distributed environ-
ment where implementation techniques, tooling, and design patterns are components 
of a larger whole—a system. Here, an application is divided into multiple distinct steps, 
each of which can be executed in an asynchronous and non-blocking fashion. Execu-
tion threads that compete for shared resources are free to perform other useful work 
while the resource is occupied, instead of idling and wasting computational power.

In 2013, reactive programming became an established paradigm with a formalized 
set of rules under the umbrella of the Reactive Manifesto (www.reactivemanifesto.org/), 
which describes the number of constituent parts that determine a reactive system. The 
Reactive Manifesto outlines patterns for implementing robust, resilient, and responsive 
systems. The reason behind the Reactive Manifesto is the recent changes to application 
requirements (table 11.1). 

Table 11.1  Comparison between the requirements for past and present applications

Past requirements for applications Present requirements for applications

Single processors Multicore processors

Expensive RAM Cheap RAM

Expensive disk memory Cheap disk memory

Slow networks Fast networks

Low volume of concurrent requests High volume of concurrent requests

Small data Big data

Latency measured in seconds Latency measured in milliseconds 

In the past, you might have had only a few services running on your applications, with 
ample response time, and time available for systems to be offline for maintenance. 
Today, applications are deployed over thousands of services, and each can run on mul-
tiple cores. Additionally, users expect response times in milliseconds, as opposed to 
seconds, and anything less than 100% uptime is unacceptable. The Reactive Manifesto 
seeks to solve these problems by asking developers to create systems that have four 
properties. They must be responsive (react to users), resilient (react to failure), mes-
sage-driven (react to events), and scalable (react to load). Figure 11.1 illustrates these 
properties and how they relate to each other.

 

www.reactivemanifesto.org/
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Responsive

Message driven

Elastic Resilient

• Consistent response times
• Responds in a timely fashion

• Varying workloads
• Reacts to workload changes
• Scalable

• Controlled failures
• Isolated components
• Able to recover

• Asynchronous message passing
• Loose coupling
• Location transparency

Figure 11.1  According to the Reactive Manifesto, for a system to be called reactive, it must have four 
properties: it must be responsive (must react to users), resilient (react to failure), message-driven (react 
to events), and scalable (react to load).

A system built using the manifesto’s requirements will:

¡	Have a consistent response time regardless of the workload undertaken.
¡	Respond in a timely fashion, regardless of the volume of requests coming in. This 

ensures that the user isn’t spending significant amounts of time idly waiting for 
operations to complete, thereby providing a positive user experience.

This responsiveness is possible because reactive programming optimizes the use of the 
computing resources on multicore hardware, leading to better performance. Asyn-
chronicity is one of the key elements of reactive programming. Chapters 8 and 9 cover 
the APM and how it plays an important role in building scalable systems. In chapter 14, 
you’ll build a complete server-side application that fully embraces this paradigm.

A message-driven architecture is the foundation of reactive applications. Message- 
driven means that reactive systems are built on the premise of asynchronous message 
passing; furthermore, with a message-driven architecture, components can be loosely 
coupled. The primary benefit of reactive programming is that it removes the need for 
explicit coordination between active components in a system, simplifying the approach 
to asynchronous computation.

11.2 The asynchronous message-passing 
programming model
In a typical synchronous application, you sequentially perform an operation with a 
request/response model of communication, using a procedure call to retrieve data or 
modify a state. This pattern is limited due to a blocking programming style and design 
that cannot be scaled or performed out of sequence. 
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A message-passing-based architecture is a form of asynchronous communication where 
data is queued, to be processed at a later stage, if necessary. In the context of reactive 
programming, the message-passing architecture uses an asynchronous semantic to com-
municate between the individual parts of the system. As a result, it can handle millions of 
messages per second, producing an incredible boost to performance (figure 11.2).

 

Task 1
Task 2

{ ... }

Task 3

Task 4

Task 5

Thread
usage

{ ... }
Thread
usage

Synchronous (blocking)
Resource inefficient and easily bottlenecked

Asynchronous messaging-passing (reactive)
Reduces risk, conserves valuable resources,

and requires less hardware/infrastructure

Task 1

X

X

X

X

Resource lifetime

Figure 11.2  The synchronous (blocking) communication is resource inefficient and easily bottlenecked. 
The asynchronous message-passing (reactive) approach reduces blocking risks, conserves valuable 
resources, and requires less hardware/infrastructure. 

NOTE  The message-passing model has become increasingly popular and has 
been implemented into many new programming languages, often as a first-
class language concept. In many other programming languages, it’s available 
using third-party libraries that build on top of conventional multithreading.

The idea of message-passing concurrency is based on lightweight units of compu-
tation (or processes) that have exclusive ownership of state. The state, by design, is 
protected and unshared, which means it can be either mutable or immutable with-
out running into any pitfalls due to a multithreaded environment (see chapter 1). In 
a message-passing architecture, two entities run in separate threads: the sender of a 
message and a receiver of the message. The benefit of this programming model is that 
all issues of memory sharing and concurrent access are hidden inside the commu-
nication channel. Neither entity involved in the communication needs to apply any 
low-level synchronization strategies, such as locking. The message-passing architecture 
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(message-passing concurrent model) doesn’t communicate by sharing memory, but 
instead communicates by sending messages. 

Asynchronous message passing decouples communication between entities and 
allows senders to send messages without waiting for their receivers. No synchronization 
is necessary between senders and receivers for message exchange, and both entities 
can run independently. Keep in mind that the sender cannot know when a message is 
received and handled by the recipient.

The message-passing concurrent model can at first appear more complicated than 
sequential or even parallel systems, as you’ll see in the comparison in figure 11.3 (the 
squares represent objects, and arrows represent a method call or a message). 

Sequential programming

Input

Output

Task-based programming

Input

Output

Message-passing programming

Input

Output

Figure 11.3  Comparison between task-based, sequential, and agent-based programming. Each block 
represents a unit of computation.

In figure 11.3, each block represents a unit of work:

¡	Sequential programming is the simplest with a single input and produces a single 
output using a single control flow, where the blocks are connected directly in a 
linear fashion, each task dependent on the completion of the previous task. 

¡	Task-based programming is similar to the sequential programming model, but it 
may MapReduce or Fork/Join the control flow.

¡	Message-passing programming may control the execution flow because the 
blocks are interconnected with other blocks in a continuous and direct manner. 
Ultimately, each block sends messages directly to other blocks, non-linearly. This 
design can seem complex and difficult to understand at first. But because blocks 
are encapsulated into active objects, each message is passed independent of other 
messages, with no blocking or lag time. With the message-passing concurrent 
model, you can have multiple building blocks, each with an independent input 
and output, which can be connected. Each block runs in isolation, and once isola-
tion is achieved, it’s possible to deploy the computation into different tasks. 

We’ll spend the rest of chapter on agents as the main tool for building message-passing 
concurrent models. 
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11.2.1 Relation with message passing and immutability

By this point, it should be clear that immutability ensures increased degrees of concur-
rency. (Remember, an immutable object is an object whose state cannot be modified 
after it’s created.) Immutability is a foundational tool for building concurrent, reliable, 
and predictable programs. But it isn’t the only tool that matters. Natural isolation is 
also critically important, perhaps more so, because it’s easier to achieve in program-
ming languages that don’t support immutability intrinsically. It turns out that agents 
enforce coarse-grained isolation through message passing. 

11.2.2 Natural isolation

Natural isolation is a critically important concept for writing lockless concurrent code. 
In a multithreaded program, isolation solves the problem of shared state by giving each 
thread a copied portion of data to perform local computation. With isolation, there’s 
no race condition, because each task processes an independent copy of its own data. 

Isolation for building resilient systems 
Isolation is an aspect of building resilient systems. For example, in the event that a single 
component fails, the rest of the system is seemingly immune to this failure. Message 
passing is a tremendous help in simplifying the building process for correct concurrent 
systems enabled due to the isolation approach, also called the share-nothing approach.

 

The natural isolation or share-nothing approach is less complex to achieve than immu-
tability, but both options represent orthogonal approaches and should be used in con-
junction for reducing runtime overheads and avoiding race condition and deadlocks.

11.3 What is an agent?
An agent is a single-thread unit of computation used to design concurrent applications 
based on message passing in isolation (share-nothing approach). These agents are 
lightweight constructs that contain a queue and can receive and process messages. In 
this case, lightweight means that agents have a small memory footprint as compared to 
spawning new threads, so you can easily spin up 100,000 agents in a computer without 
a hitch. 

Think of an agent as a process that has exclusive ownership of some mutable state, 
which can never be accessed from outside of the agent. Although agents run concur-
rently with each other, within a single agent everything is sequential. The isolation of 
the agent’s internal state is a key concept of this model, because it is completely inacces-
sible from the outside world, making it thread safe. Indeed, if state is isolated, mutation 
can happen freely. 

An agent’s basic functionality is to do the following:

¡	Maintain a private state that can be accessed safely in a multithreaded environment 
¡	React to messages differently in different states
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¡	Notify other agents
¡	Expose events to subscribers 
¡	Send a reply to the sender of a message

One of the most important features of agent programming is that messages are sent 
asynchronously, and the sender doesn’t initiate a block. When a message is sent to an 
agent, it is placed in a mailbox.  The agent processes one message at a time sequentially 
in the order in which it was added to the mailbox, moving on to the next message 
only when it has finished processing the current message. While an agent processes a 
message, the other incoming messages aren’t lost, but are buffered into the internal 
isolated mailbox. Consequently, multiple agents can run in parallel effortlessly, which 
means that the performance of a well-written agent-based application scales with the 
number of cores or processors. 

An agent isn’t an actor
On the surface, there are similarities between agents and actors, which sometimes 
cause people to use these terms interchangeably. But the main difference is that agents 
are in a process, while actors may be running on another process. In fact, the reference 
to an agent is a pointer to a specific instance, whereas an actor reference is determined 
through location transparency. Location transparency is the use of names to identify net-
work resources, rather than their actual location, which means that the actor may be 
running in the same process, or on another process, or possibly on a remote machine. 

Agent-based concurrency is inspired by the actor model, but its construction is much 
simpler. Actor systems have built-in sophisticated tools for distribution support, which 
include supervision to manage exceptions and potentially self-heal the system, routing to 
customize the work distribution, and more. 

Several libraries and tool kits, such as Akka.net (http://getakka.net/), Proto.Actor (http://
proto.actor/), and Microsoft Orleans (https://dotnet.github.io/orleans/), implement the 
actor model for the .NET ecosystem . It’s no surprise that Microsoft Azure Service-Fabric 
(https://azure.microsoft.com/en-us/services/service-fabric), used to build distributed, 
scalable, and fault-tolerant microservices in the cloud, is based on the actor model. For 
more information about the actor model in .NET, I recommend Anthony Brown’s Reactive 
Applications with Akka.Net (Manning, 2017).

The tools and features provided by the actor libraries can be implemented and replicated 
easily for agents. You can find several libraries that overcome missing functionalities 
such as supervision and routing (http://mbrace.io/ and http://akka.net).

 

11.3.1 The components of an agent

Figure 11.4 shows the fundamental component parts of an agent:

¡	Mailbox—An internal queue to buffer incoming messages implemented as asyn-
chronous, race-free, and non-blocking. 

 

http://getakka.net/
http://proto.actor/
http://proto.actor/
https://dotnet.github.io/orleans/
https://azure.microsoft.com/en-us/services/service-fabric
http://mbrace.io/
http://akka.net
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¡	Behavior—The internal function applied sequentially to each incoming message. 
The behavior is single-threaded.

¡	State—Agents can have an internal state that’s isolated and never shared, so they 
never need to compete for locks to be accessed.

¡	Message—Agents can communicate only through messages, which are sent asyn-
chronously and are buffered in a mailbox.

Behavior
(message processor)

A message is sent to the
mailbox to communicate
with the agent.

Messages are dequeued
and processed sequentially.

Single-threaded,
encapsulated state

Immutable state

Mailbox
queue

Incoming message Output message

State

Agent

Figure 11.4  An agent consists of a mailbox that queues the income messages, a state, and a behavior 
that runs in a loop, which processes one message at a time. The behavior is the functionality applied to 
the messages. 

11.3.2 What an agent can do

The agent programming model provides great support for concurrency and has an 
extensive range of applicability. Agents are used in data collection and mining, reduc-
ing application bottlenecks by buffering requests, real-time analysis with bounded and 
unbounded reactive streaming, general-purpose number crunching, machine learn-
ing, simulation, Master/Worker pattern, Compute Grid, MapReduce, gaming, and 
audio and video processing, to mention a few.

11.3.3 The share-nothing approach for lock-free 
concurrent programming

The share-nothing architecture refers to message-passing programming, where each 
agent is independent and there’s no single point of contention across the system. This 
architecture model is great for building concurrent and safe systems. If you don’t 
share anything, then there’s no opportunity for race conditions. Isolated message- 
passing blocks (agents) are a powerful and efficient technique to implement scalable 
programming algorithms, including scalable request servers and scalable distribut-
ed-programming algorithms. The simplicity and intuitive behavior of the agent as a 
building block allows for designing and implementing elegant, highly efficient asyn-
chronous and parallel applications that don’t share state. In general, agents perform 
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calculations in reaction to the messages they receive, and they can send messages 
to other agents in a fire-and-forget manner or collect the responses, called replies 
(figure 11.5). 

Behavior
(message processor)

Mailbox
queue

State

Messages

Agent

Behavior
(message processor)

Mailbox
queue

State

Agent

Behavior
(message processor)

Mailbox
queue

State

Agent

Behavior
(message processor)

Mailbox
queue

State

Messages

Agent

Messages

Messages

Main thread

Figure 11.5  Agents communicate with each other through a message-passing semantic, creating an 
interconnected system of units of computation that run concurrently. Each agent has an isolated state 
and independent behavior.

11.3.4 How is agent-based programming functional?

Certain aspects of agent-based programming aren’t functional. Although agents (and 
actors) were developed in the context of functional languages, their purpose is to gener-
ate side effects, which is against the tenets of FP. An agent often performs a side effect, or 
sends a message to another agent, which will, in turn, perform a new side effect. 

Less important, but worth mentioning, is that FP in general separates logic from data. 
But agents contain data and the logic for the processing function. Additionally, sending 
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a message to an agent doesn’t force any constraint on the return type. An agent behav-
ior, which is the operation applied to each message, can either return a result or not 
return any result. In the latter scenario, the design of a message sent in a fire-and-forget 
fashion encourages program agents in a unidirectional flow pattern, which means that 
the messages flow forward from one agent to the next. This unidirectional message flow 
between agents can preserve their compositional semantic aspect, achieved by linking a 
given set of agents. The result is a pipeline of agents that represents the steps of opera-
tions to process the messages, each executed independently and potentially in parallel. 

The primary reason that the agent model is functional is that agents can send behavior 
to the state instead of sending state to the behavior. In the agent model, the sender, besides 
sending messages, can provide the function which implements an action to process the 
incoming messages. Agents are an in-memory slot where you can put in data structure, 
such as a bucket (container). In addition to providing data storage, agents allow you to 
send messages in the shape of a function, which is then applied atomically to the inter-
nal bucket. 

NOTE  Atomically refers to a set of operations (atomic operations) that, when 
they start,  must complete before any interrupt in a single step, such that other 
parallel threads can only ever see either the old or new state. 

The function can be composed from other functions and then sent to the agent as a 
message. The advantage is the ability to update and change behavior at runtime using 
functions and function-composition fitting with the functional paradigm.

11.3.5 Agent is object-oriented 

It’s interesting to note that Alan Kay’s (https://en.wikipedia.org/wiki/Alan_Kay) orig-
inal vision for objects in Smalltalk is much closer to the agent model than it is to the 
objects found in most programming languages (the basic concept of “messaging,” for 
example). Kay believed that state changes should be encapsulated and not done in an 
unconstrained way. His idea of passing messages between objects is intuitive and helps 
to clarify the boundaries between objects.

Clearly, message passing resembles OOP, and you can lean on the OOP-style message 
passing, which is only calling a method. Here, an agent is like an object in an object- 
oriented program, because it encapsulates state and communicates with other agents 
by exchanging messages.

11.4 The F# agent: MailboxProcessor
The support for the APM in F# doesn’t stop with asynchronous workflows (introduced 
in chapter 9). Additional support is provided inherently by the F# programming lan-
guage, including MailboxProcessor, a primitive type that behaves as a lightweight 
in-memory message-passing agent (see figure 11.6).

MailboxProcessor works completely asynchronously, and provides a simple con-
current programming model that can deliver fast and reliable concurrent programs. 

 

https://en.wikipedia.org/wiki/Alan_Kay
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I could write an entire book about MailboxProcessor, its multipurpose uses, and the 
flexibility that it provides for building a wide range of diverse applications. The benefits 
of using it include having a dedicated and isolated message queue combined with an 
asynchronous handler, which is used to throttle the message processing to automati-
cally and transparently optimize the usage of the computer’s resources.

 

MailboxProcessor
(agent)

Behavior

Mailbox
receives URL Messages

Website

Behavior:
use client = new WebClient()
let uri = Uri message
let! site = client.AsyncDownloadString(uri)

While loop waiting for
incoming messages

Mailbox receives messages:
let! message = inbox.Receive()

Figure 11.6  MailboxProcessor (agent) waits asynchronously for incoming messages in the while 
loop. The messages are strings representing the URL, which are applied to the internal behavior to 
download the related website.

The following listing shows a simple code example using a MailboxProcessor, which 
receives an arbitrary URL to print the length of the website. 

Listing 11.1  Simple MailboxProcessor with a while loop 

type Agent<'T> = MailboxProcessor<'T>

let webClientAgent =
  Agent<string>.Start(fun inbox -> async {    
    while true do
      let! message = inbox.Receive()  
      use client = new WebClient()
      let uri = Uri message
      let! site = client.AsyncDownloadString(uri)  
      printfn "Size of %s is %d" uri.Host site.Length
    })

agent.Post "http://www.google.com"   
agent.Post "http://www.microsoft.com”    

The method MailboxProcessor.Start 
returns a running agent.

Waits asynchronously 
to receive a message

Uses the asynchronous 
workflow to download the data

Sends a message to the 
MailboxProcessor in a 
fire-and-forget fashion
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Let’s look at how to construct an agent in F#. First, there must be a name of the 
instance. In this case webClientAgent is the address of the mailbox processor. This 
is how you’ll post a message to be processed. The MailboxProcessor is generally ini-
tialized with the MailboxProcessor.Start shortcut method, though you can create 
an instance by invoking the constructor directly, and then run the agent using the 
instance method Start. To simplify the name and use of the MailboxProcessor, you 
establish it as the alias agent and then start the agent with Agent.Start.

Next, there’s a lambda function with an inbox containing an asynchronous work-
flow. Each message sent to the mailbox processor is sent asynchronously. The body 
of the agent functions as a message handler that accepts a mailbox (inbox:Mailbox-
Processor) as an argument. This mailbox has a running logical thread that controls a 
dedicated and encapsulated message queue, which is thread safe, to use and coordinate 
the communication with other threads, or agents. The mailbox runs asynchronously, 
using the F# asynchronous workflow. It can contain long-running operations that don’t 
block a thread.

In general, messages need to be processed in order, so there must be a loop. This 
example uses a non-functional while-true style loop. It’s perfectly fine to use this or to 
use a functional, recursive loop. The agent in listing 11.1 starts getting and processing 
messages by calling the asynchronous function agent.Receive() using the let! con-
struct inside an imperative while loop. 

Inside the loop is the heart of the mailbox processor. The call of the mailbox 
Receive function waits for the incoming message without blocking the actual thread, 
and resumes once a message is received. The use of the let! operator ensures that the 
computation is started immediately. 

Then the first message available is removed from the mailbox queue and is bound to 
the message identifier. At this point, the agent reacts by processing the message, which 
in this example downloads and prints the size of a given website address. If the mailbox 
queue is empty and there are no messages to process, then the agent frees the thread 
back to the thread pool scheduler. That means no threads are idle while Receive waits 
for incoming messages, which are sent to the MailboxProcessor in a fire-and-forget 
fashion using the agent.Post method.

11.4.1 The mailbox asynchronous recursive loop

In the previous example, the agent mailbox waits for messages asynchronously using 
an imperative while loop. Let’s modify the imperative loop so it uses a functional 
recursion to avoid mutation and possibly so it holds local state. 

The following listing is the same version of the agent that counts its messages (shown in 
listing 11.1), but this time it uses a recursive asynchronous function that maintains a state.

Listing 11.2  Simple MailboxProcessor with a recursive function

  let agent = Agent<string>.Start(fun inbox -> 
      let rec loop count = async {    
          let! message = inbox.Receive()

Uses an asynchronous recursive 
function that maintains a state in 
an immutable manner
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          use client = new WebClient()
          let uri = Uri message
          let! site = client.AsyncDownloadString(uri)
          printfn "Size of %s is %d - total messages %d" uri.Host
➥ site.Length (count + 1)
          return! loop (count + 1) }    
          loop 0)    
    agent.Post "http://www.google.com"
    agent.Post "http://www.microsoft.com"

This functional approach is a little more advanced, but it greatly reduces the amount of 
explicit mutation in your code and is often more general. In fact, as you’ll see shortly, 
you can use the same strategy to maintain and safely reuse the state for caching. 

Pay close attention to the line of code for the return! loop (n + 1), where the func-
tion uses asynchronous workflows recursively to execute the loop, passing the increased 
value of the count. The call using return! is tail-recursive, which means that the com-
piler translates the recursion more efficiently to avoid stack overflow exceptions. See 
chapter 3 for more details about recursive function support (also in C#).

A MailboxProcessor’s most important functions
A MailboxProcessor’s most important functions are as follows:

¡	Start—This function defines the async callback that forms the message looping.
¡	Receive—This is the async function to receive messages from the internal queue.
¡	Post—This function sends a message to the MailboxProcessor in a fire-and-

forget manner.

 

11.5 Avoiding database bottlenecks with F# 
MailboxProcessor
The core feature of most applications is database access, which is frequently the real 
source of bottlenecks in code. A simple database performance tuning can speed up 
applications significantly and keep the server responsive. 

How do you guarantee consistently high-throughput database access? To better facil-
itate database access, the operation should be asynchronous, because of the I/O nature 
of database access. Asynchronicity ensures that the server can handle multiple requests 
in parallel. You may wonder about the number of parallel requests that a database 
server can handle before performance degrades (figure 11.7 shows performance deg-
radation at a high level). No exact answer exists. It depends on many different factors: 
for example, the size of the database connection pool.

A critical element of the bottleneck problem is controlling and throttling the incom-
ing requests to maximize the application’s performance. MailboxProcessor provides a 
solution by buffering the incoming messages and taming possible overflow of requests 
(see figure 11.8). Using MailboxProcessor as a mechanism to throttle the database 
operations provides a granular control for optimizing the database connection-pool 
use. For example, the program could add or remove agents to execute the database 
operations in a precise grade of parallelism.

The recursive function is a tail call, 
asynchronously passing an updated state.  
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receives multiple
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Figure 11.7  A large number of concurrent requests to access the database are reduced due to the 
limited size of the connection pool. 
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Figure 11.8  The agent (MailboxProcessor) controls the incoming requests to optimize the 
database connection-pool use.

Listing 11.3 shows a fully asynchronous function in F#. This function queries a given 
database and encapsulates the query in a MailboxProcessor body. Encapsulating 
an operation as behavior of an agent assures only one database request at a time is 
processed.

TIP  One obvious solution to handling a higher number of requests is to set the 
database’s connection pool size to the maximum, but this isn’t a good practice. 
Often, your application isn’t the only client connected to the database, and if 
your application takes up all the connections, then the database server can’t 
perform as expected.
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To access the database, use the traditional .NET Access-Data-Object (ADO). Alterna-
tively, you could use Microsoft Entity Framework or any other data access you choose. 
I don’t cover how to access the Entity Framework data access component in this book. 
For more detail, refer to the MSDN online documentation at http://mng.bz/4sdU.

Listing 11.3  Using MailboxProcessor to manage database calls

type Person  =
     { id:int; firstName:string; lastName:string; age:int } 

type SqlMessage =
     | Command of id:int * AsyncReplyChannel<Person option>   

let agentSql connectionString =
    fun (inbox: MailboxProcessor<SqlMessage>) ->
        let rec loop() = async {                
            let! Command(id, reply) = inbox.Receive() 
                use conn = new SqlConnection(connectionString)
                use cmd = new SqlCommand("Select FirstName, LastName, Age 
➥	from db.People where id = @id")
                cmd.Connection <- conn
                cmd.CommandType <- CommandType.Text
                cmd.Parameters.Add("@id", SqlDbType.Int).Value <- id    
                if conn.State <> ConnectionState.Open then 
                    do! conn.OpenAsync()    
                use! reader = cmd.ExecuteReaderAsync(  
CommandBehavior.SingleResult ||| CommandBehavior.CloseConnection) 
                let! canRead = (reader:SqlDataReader).ReadAsync()  
                if canRead then
                    let person = 
                        {   id = reader.GetInt32(0) 
                            firstName = reader.GetString(1)
                            lastName = reader.GetString(2)
                            age = reader.GetInt32(3)  }
                    reply.Reply(Some person)    
                else reply.Reply(None)    
                return! loop() }    
        loop()        
        
    type AgentSql(connectionString:string) =
        let agentSql = new MailboxProcessor<SqlMessage>
                                              (agentSql connectionString)

        member this.ExecuteAsync (id:int) = 
            agentSql.PostAndAsyncReply(fun ch -> Command(id, ch)) 

        member this.ExecuteTask (id:int) = 
            agentSql.PostAndAsyncReply(fun ch -> Command(id, ch)) 
            |> Async.StartAsTask             

Uses a Person record type Uses a single-case DU for defining the 
MailboxProcessor message

Deconstructs pattern-matching 
against the message received to 

access the underlying values

Opens the SQL connection 
asynchronously using the 

do! asynchronous 
workflow operator

Asynchronously creates an 
SQL reader instance

If the SQL command can run, it 
replies to the caller with the 

Some result of the operation. 

If the SQL command can’t run, it replies 
to the caller with a None result.

Exposes an API to interact with 
encapsulated MailboxProcessor

 

http://mng.bz/4sdU
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Initially, the Person data structure is defined as a record type, which can be con-
sumed easily as an immutable class by any .NET programming language. The function 
agentSql defines the body of a MailboxProcessor, whose behavior receives messages 
and performs database queries asynchronously. You make your application more 
robust by using an Option type for the Person value, which would otherwise be null. 
Doing so helps prevent null reference exceptions. 

The type AgentSql encapsulates the MailboxProcessor, which originated from run-
ning the function agentSql. The access of the underlying agent is exposed through the 
methods ExecuteAsync and ExecuteTask. 

The purpose of the ExecuteTask method is to encourage interoperability with C#. 
You can compile the AgentSql type into an F# library and distribute it as a reusable 
component. If you want to use the component from C#, then you should also provide 
methods that return a type Task or Task<T> for the F# functions that run an asynchro-
nous workflow object (Async<'T>). How to interop between F# Async and .NET Task 
types is covered in appendix C.

11.5.1 The MailboxProcessor message type: discriminated unions

The type SqlMessage Command is a single-case DU used to send a message to the Mailbox-
Processor with a well-defined type, which can be pattern-matched:

    type SqlMessage =
        | Command of id:int * AsyncReplyChannel<Person option>

A common F# practice is to use a DU to define the different types of messages that 
a MailboxProcessor can receive and pattern match them to deconstruct and obtain 
the underlying data structure (for more on F#, see appendix B). Pattern matching 
over DUs gives a succinct way to process messages. A common pattern is to call inbox 
.Receive() or inbox.TryReceive() and follow that call with a match on the message 
contents.

Performance tip for an F# single-case DU
Using single-case DU types (as in listing 11.3) to wrap primitive values is an effective 
design. But because union cases are compiled into classes, expect a performance drop. 
This performance drop is the trade-off for allocating, and later for collecting, the class by 
the GC. A better solution (available since F# 4.1) is to decorate the DUs with the Struct 
attribute, allowing the compiler to treat these types as values, avoiding the extra heap 
allocation and GC pressure.

 

Using strongly typed messages makes it possible for the MailboxProcessor behavior to 
distinguish between different types of messages and to supply different handling codes 
associated with each type of message. 
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11.5.2 MailboxProcessor two-way communication

In listing 11.3, the underlying MailboxProcessor returns (replies) to the caller the 
result of the database query in the shape of a Person option type. This communication 
uses the AsyncReplyChannel<'T> type, which defines the mechanism used to reply to 
the channel parameter established during message initialization (figure 11.9). 

Behavior
(message processor)

Mailbox
queue

State

Agent

Messages
PostAndAsyncReply

AsyncReplyChannel

Main thread

Figure 11.9  The agent two-way communication generates an AsyncReplyChannel, which is used 
by the agent as a callback to notify the caller when the computation is completed, generally supplying a 
result.

The code that can wait asynchronously for a response uses the AsyncReplyChannel. 
Once the computation is complete, use the Reply function to return the results from 
the mailbox:

    type SqlMessage =
        | Command of id:int * AsyncReplyChannel<Person option>

        member this.ExecuteAsync (id:int) = 
            agentSql.PostAndAsyncReply(fun ch -> Command(id, ch)) 

The PostAndAsyncReply method initializes the channel for the Reply logic, which 
hands off the reply channel to the agent as part of the message using an anonymous 
lambda (function). At this point, the workflow is suspended (without blocking) until 
the operation completes and a Reply, carrying the result, is sent back to the caller by 
the agent through the channel:

reply.Reply(Some person)

As good practice, you should embed the AsyncReplyChannel handler inside the 
message itself, as shown in the DU SqlMessage.Command of id:int * AsyncReply-
Channel<Person option>, because the reply of the sent message can be easily enforced 
by the compiler.
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You might be thinking: Why would you use a MailboxProcessor to handle multiple 
requests if only one message at a time can be processed? Are the incoming messages lost 
if the MailboxProcessor is busy?

Sending messages to a MailboxProcessor is always non-blocking; but from the 
agent’s perspective, receiving them is a blocking operation. Even if you’re posting mul-
tiple messages to the agent, none of the messages will get lost, because they’re buffered 
and inserted into the mailbox queue. 

It’s also possible to implement selective receive semantics to target and scan (http://
mng.bz/1lJr) for exact message types, and, depending on the agent behavior, the han-
dler can wait for a specific message in the mailbox and temporarily defer others. This is a 
technique used to implement a finite-state machine with pause-and-resume capabilities.

11.5.3 Consuming the AgentSQL from C#

At this point, you want to employ the AgentSql so it can be consumed by other lan-
guages. The exposed APIs are both C# Task and F# asynchronous workflow friendly.

Using C#, it’s simple to employ AgentSql. After referencing the F# library contain-
ing the AgentSql, you can create an instance of the object and then call the Execute-
Task method: 

AgentSql agentSql = new AgentSql("<< ConnectionString Here >>");
Person person = await agentSql.ExecuteTask(42);
Console.WriteLine($"Fullname {person.FirstName} {person.LastName}");

ExecuteTask reruns a Task<Person>, so you can use the C# async/await model to 
extract the underlying value when the operation completes as a continuation.

You can use a similar approach in F#, an approach that supports the task-based pro-
gramming model, although due to the intrinsic and superior support for the async 
workflow, I recommend that you use the ExecuteAsync method. In this case, you can 
either call the method inside an async computation expression, or call it by using the 
Async.StartWithContinuations function. With this function, a continuation handler 
can continue the work when the AgentSql replies with the result (see chapter 9). The 
following listing is an example using both F# approaches (the code to note is in bold).

Listing 11.4  Interacting asynchronously with AgentSql

let token = CancellationToken()    

let agentSql = AgentSql("< Connection String Here >")
let printPersonName id = async {
     let! (Some person) = agentSql.ExecuteAsync id    
          printfn "Fullname %s %s" person.firstName person.lastName
}

Async.Start(printPersonName 42, token)    

Stops the MailboxProcessor 
with a cancellation token

Sends the message and waits 
asynchronously for the response 

from the MailboxProcessor
Starts the computation asynchronously

 

http://mng.bz/1lJr
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Async.StartWithContinuations(agentSql.ExecuteAsync 42,     
  (fun (Some person) -> 
       printfn "Fullname %s %s" person.firstName person.lastName),    
  (fun exn -> printfn "Error: %s" exn.Message),    
  (fun cnl -> printfn "Operation cancelled"), token)    

The Async.StartWithContinuations function specifies the code to run when the job 
completes as a continuation. Async.StartWithContinuations accepts three different 
continuation functions that are triggered with the output of the operation: 

¡	The code to run when the operation completes successfully, and a result is 
available.

¡	The code to run when an exception occurs.
¡	The code to run when an operation is canceled. The cancellation token is passed 

as an optional argument when you start the job. 

See chapter 9 or the MSDN documentation online for more information (http://mng 
.bz/teA8). Async.StartWithContinuations isn’t complicated, and it provides a conve-
nient control over dispatching behaviors in the case of success, error, or cancellation. 
These functions passed are referred to as continuation functions. Continuation func-
tions can be specified as a lambda expression in the arguments to Async.StartWith-
Continuations. Specifying code to run as a simple lambda expression is extremely 
powerful.

11.5.4 Parallelizing the workflow with group coordination of agents

The main reason to have an agent process the messages to access a database is to con-
trol the throughput and to properly optimize the use of the connection pool. How 
can you achieve this fine control of parallelism? How can a system perform multi-
ple requests in parallel without encountering a decrease in performance? Mailbox-
Processor is a primitive type that’s flexible for building reusable components by 
encapsulating behavior and then exposing general or tailored interfaces that fit your 
program needs.

Listing 11.5 shows a reusable component, parallelWorker (in bold), that spawns 
a set of agents from a given count (workers). Here, each agent implements the same 
behavior and processes the incoming requests in a round-robin fashion. Round-robin is 
an algorithm that, in this case, is employed by the agent mailbox queue to process the 
incoming messages as first-come first-served, in circular order, handling all processes 
without particular priority.

Listing 11.5  Parallel MailboxProcessor workers

type MailboxProcessor<'a> with
      static member public parallelWorker (workers:int)    
             (behavior:MailboxProcessor<'a> -> Async<unit>)    

Starts the computation, asynchronously 
managing how the operation completes

Functions are triggered respectively if the operation completes 
successfully, completes with an error, or is canceled 

The workers value defines the 
agents that run in parallel.

Behavior to construct the underlying 
agent children
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             (?errorHandler:exn -> unit) (?cts:CancellationToken) = 
        let cts = defaultArg cts (CancellationToken())            
        let errorHandler = defaultArg errorHandler ignore      
        let agent = new MailboxProcessor<'a>((fun inbox ->
            let agents = Array.init workers (fun _ ->    
                    let child = MailboxProcessor.Start(behavior, cts)
                    child.Error.Subscribe(errorHandler)    
                    child)
            cts.Register(fun () -> agents |> Array.iter(    
                            fun a -> (a :> IDisposable).Dispose())) 
            let rec loop i = async {
                let! msg = inbox.Receive()
                agents.[i].Post(msg)    
                return! loop((i+1) % workers)
            }
            loop 0), cts)
        agent.Start()

The main agent (agentCoordinator) initializes a collection of sub-agents to coordinate 
the work and to provide access to the agent’s children through itself. When the parent 
agent receives a message sent to the parallelWorker MailboxProcessor, the parent 
agent dispatches the message to the next available agent child (figure 11.10). 

 

Agent

Behavior

Agent worker

Agent worker

Agent worker

Agent worker

Agent worker

Agent worker

State

Mailbox Messages

Push messages to
the agent workers in
a round-robin fashion.

Figure 11.10  The parallel worker agent receives the messages that are sent to the children’s agents in 
a round-robin fashion to compute the work in parallel.

The parallelWorker function uses a feature called type extensions (http://mng.bz/Z5q9) 
to attach a behavior to the MailboxProcessor type. The type extension is similar to an 
extension method. With this type extension, you can call the parallelWorker function 
using dot notation; as a result, the parallelWorker function can be used and called by 
any other .NET programming language, keeping its implementation hidden.

If the cancellation token or error handler 
isn’t passed, a default is created.

Initializes the 
agent children 

The error handler is 
subscribed for each agent.

Registers the cancellation token function, 
which stops and disposes of all the agents

Sends the message to the 
agents in a round-robin 
fashion using a loop 
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The arguments of this function are as follows:

¡	workers—The number of parallel agents to initialize.
¡	behavior—The function to identically implement the underlying agents.
¡	errorHandler—The function that each child agent subscribes to, to handle 

eventual errors. This is an optional argument and can be omitted. In this case, an 
ignore function is passed.

¡	cts—A cancellation token used to stop and dispose of all the children’s agents. 
If a cancellation token isn’t passed as an argument, a default is initialized and 
passed into the agent constructor.

11.5.5 How to handle errors with F# MailboxProcessor

Internally, the parallelWorker function creates an instance of the Mailbox Processor 
agent, which is the parent coordinator of the agent’s array (children), equaling in 
number the value of the workers argument:

let agents = Array.init workers (fun _ -> 
                 let child = MailboxProcessor.Start(behavior, cts)
                 child.Error.Subscribe(errorHandler)
                     child)

During the initialization phase, each agent child subscribes to its error event using 
the function errorHandler. In the case of an exception thrown from the body of a 
Mailbox Processor, the error event triggers and applies the function subscribed. 

Detecting and notifying the system in case of errors is essential in agent-based pro-
gramming because it applies logic to react accordingly. The MailboxProcessor has 
built-in functionality for detecting and forwarding errors. 

When an uncaught error occurs in a MailboxProcessor agent, the  agent raises the 
error event: 

let child = MailboxProcessor.Start(behavior, cts)
child.Error.Subscribe(errorHandler)

To manage the error, you can register a callback function to the event handler. It’s 
common practice to forward the errors to a supervising agent. For example, here a 
simple supervisor agent displays the error received:

let supervisor = Agent<System.Exception>.Start(fun inbox ->
    async { while true do
                let! err = inbox.Receive()
                printfn "an error occurred in an agent: %A" err })

You can define the error handler function that’s passed as an argument to initialize all 
the agent children:

let handler = fun error -> supervisor.Post error

let agents = Array.init workers (fun _ -> 
                   let child = MailboxProcessor.Start(behavior, cts)
                   child.Error.Subscribe(errorHandler)
                   child)
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In critical application components, such as server-side requests represented as agents, 
you should plan to use the MailboxProcessor to handle errors gracefully and restart 
the application appropriately. 

To facilitate error handling by notifying a supervisor agent, it’s convenient to define 
a helper function:

module Agent =
    let withSupervisor (supervisor: Agent<exn>) (agent: Agent<_>) =
       agent.Error.Subscribe(fun error -> supervisor.Post error); agent

withSupervisor abstracts the registration for error handling in a reusable component. 
Using this helper function, you can rewrite the previous portion of code that registers 
error handling for the parallelWorker, as shown here: 

let supervisor = Agent<System.Exception>.Start(fun inbox -> async { 
                       while true do 
                           let! error = inbox.Receive()
                           errorHandler error })
let agent = new MailboxProcessor<'a>((fun inbox ->
let agents = Array.init workers (fun _ -> 
                        MailboxProcessor.Start(behavior)
                       |> withSupervisor supervisor)

The parallelWorker encapsulates the agent supervisor, which uses the errorHandler 
function as constructor behavior to handle the error messages from the children’s 
agent.

11.5.6 Stopping MailboxProcessor agents—CancellationToken

To instantiate the children’s agent, use the MailboxProcessor constructor that takes 
a function parameter as a behavior of the agent, and takes as a second argument a 
CancellationToken object. CancellationToken registers a function to dispose and 
stop all the agents running. This function is executed when CancellationToken is 
canceled: 

cts.Register(fun () -> 
       agents |> Array.iter(fun a -> (a :> IDisposable).Dispose()))

Each child in the MailboxProcessor part of the parallelWorker agent, when running, 
is represented by an asynchronous operation associated with a given Cancellation-
Token. Cancellation tokens are convenient when there are multiple agents that depend 
on each other, and you want to cancel all of them at once, similar to our example. 

A further implementation is to encapsulate the MailboxProcessor agent into a 
disposable: 

type AgentDisposable<'T>(f:MailboxProcessor<'T> -> Async<unit>, 
                         ?cancelToken:CancellationTokenSource) =
   let cancelToken = defaultArg cancelToken (new CancellationTokenSource())        
   let agent = MailboxProcessor.Start(f, cancelToken.Token)
   
   member x.Agent = agent
   interface IDisposable with
       member x.Dispose() = (agent :> IDisposable).Dispose()
                            cancelToken.Cancel())
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In this way, the AgentDisposable facilitates the cancellation and the memory deallo-
cation (Dispose) of the underlying MailboxProcessor by calling the Dispose method 
from the IDisposable interface.

Using the AgentDisposable, you can rewrite the previous portion of code that regis-
ters the cancellation of the children’s agent for parallelWorker:

let agents = Array.init workers (fun _ -> 
                 new AgentDisposable<'a>(behavior, cancelToken)
                |> withSupervisor supervisor)

thisletCancelToken.Register(fun () -> 
           agents |> Array.iter(fun agent -> agent.Dispose())

When the cancellation token thisletCancelToken is triggered, the Dispose method 
of all the children’s agents is called, causing them to stop. You can find the full imple-
mentation of the refactored parallelWorker in this book’s source code.

11.5.7 Distributing the work with MailboxProcessor

The rest of the code is self-explanatory. When a message is posted to the parallel-
Worker, the parent agent picks it up and forwards it to the first agent in line. The par-
ent agent uses a recursive loop to maintain the state of the last agent served by index. 
During each iteration, the index is increased to deliver the following available message 
to the next agent:

 let rec loop i = async {
        let! msg = inbox.Receive()
        agents.[i].Post(msg)
        return! loop((i+1) % workers) }

You can use the parallelWorker component in a wide range of cases. For the previous 
AgentSql code example, you applied the parallelWorker extension to reach the orig-
inal goal of having control (management) over the number of parallel requests that 
can access the database server to optimize connection-pool consumption.

Listing 11.6  Using parallelWorker to parallelize database reads 

let connectionString =    
   ConfigurationManager.ConnectionStrings.["DbConnection"].ConnectionString

let maxOpenConnection = 10    

let agentParallelRequests = 
     MailboxProcessor<SqlMessage>.parallelWorker(maxOpenConnection, 
                                                 agentSql connectionString)

let fetchPeopleAsync (ids:int list) = 
    let asyncOperation =    

Retrieves the connection 
string from the configuration

Sets an arbitrary value for the maximum 
database connections opened concurrently 

Creates an instance of parallelWorker with 
an agent for connection 

Uses a bulk operation to retrieve 
a range of IDs from the database
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            ids
            |> Seq.map (fun id -> agentParallelRequests.PostAndAsyncReply(
                                                fun ch -> Command(id, ch)))
            |> Async.Parallel
        Async.StartWithContinuations(asyncOperation,
              (fun people -> people |> Array.choose id 
                             |> Array.iter(fun person -> 
              printfn "Fullname %s %s" person.firstName person.lastName)),
               (fun exn -> printfn "Error: %s" exn.Message),
               (fun cnl -> printfn "Operation cancelled"))

In this example the maximum number of open connections is arbitrary, but in a real 
case, this value varies. In this code, you first create the MailboxProcessor agent-
ParallelRequests, which runs in parallel with the maxOpenConnection number of 
agents. The function fetchPeopleAsync is the final piece to glue together all the parts. 
The argument passed into this function is a list of people IDs to fetch from the data-
base. Internally, the function applies the agentParallelRequests agent for each of 
the IDs to generate a collection of asynchronous operations that will run in parallel 
using the Async.Parallel function. 

NOTE  To access a database in an asynchronous and parallel fashion, it’s best to 
control and prioritize the read/write operation. Databases work best with a sin-
gle writer at a time. In the previous example, all the operations are read, so the 
problem doesn’t exist. In chapter 13, as part of the real-world recipes, there’s 
a version of MailboxProcessor parallelWorker that prioritizes one write and 
multiple reads in parallel.

In the example, the people IDs are retrieved in parallel; a more efficient way is to cre-
ate an SqlCommand that fetches the data in one database round trip. But the purpose of 
the example still stands. The level of parallelism is controlled by the number of agents. 
This is an effective technique. In this book’s source code, you can find a complete and 
enhanced production-ready parallelWorker component that you can reuse in your 
daily work.

11.5.8 Caching operations with an agent

In the previous section, you used the F# MailboxProcessor to implement a perfor-
mant and asynchronous database access agent, which could control the throughput of 
parallel operations. To take this a step further to improve the response time (speed) 
for the incoming requests, you can reduce the actual number of database queries. This 
is possible with the introduction of a database cache in your program. There’s no rea-
son why a single query should be executed more than once per request if the result 
won’t change. By applying smart caching strategies in database access, you can unlock 
a significant increase in performance. Let’s implement an agent-based reusable cache 
component, which then can be linked to the agentParallelRequests agent. 
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The cache agent’s objective is to isolate and store the state of the application while 
handling the messages to read or update this state. This listing shows the implementa-
tion of the MailboxProcessor CacheAgent.

Listing 11.7  Cache agent using the MailboxProcessor

type CacheMessage<'Key> =
    | GetOrSet of 'Key * AsyncReplyChannel<obj>
    | UpdateFactory of Func<'Key,obj>
    | Clear    

type Cache<'Key when 'Key : comparison> 
    (factory : Func<'Key, obj>,  ?timeToLive : int) =    
    let timeToLive = defaultArg timeToLive 1000
    let expiry = TimeSpan.FromMilliseconds (float timeToLive)    

    let cacheAgent = Agent.Start(fun inbox ->
        let cache = Dictionary<'Key, (obj * DateTime)>( 
➥ HashIdentity.Structural)    
            let rec loop (factory:Func<'Key, obj>) = async {
                let! msg = inbox.TryReceive timeToLive    
                match msg with
                | Some (GetOrSet (key, channel)) ->
                    match cache.TryGetValue(key) with    
                    | true, (v,dt) when DateTime.Now - dt < expiry -> 
                        channel.Reply v
                        return! loop factory
                    | _ ->
                        let value = factory.Invoke(key)    
                        channel.Reply value
                        cache.Add(key, (value, DateTime.Now))
                        return! loop factory
                | Some(UpdateFactory newFactory) ->    
                    return! loop (newFactory)
                | Some(Clear) ->
                    cache.Clear()
                    return! loop factory
                | None ->
                    cache 
                    |> Seq.filter(function KeyValue(k,(_, dt)) -> 
                                                DateTime.Now - dt > expiry)
                    |> Seq.iter(function KeyValue(k, _) -> 
                                                cache.Remove(k)|> ignore)
                    return! loop factory }
            loop factory )
    member this.TryGet<'a>(key : 'Key) = async {
        let! item = cacheAgent.PostAndAsyncReply(    
                               fun channel -> GetOrSet(key, channel))

Uses a DU to define the message type 
that the MailboxProcessor handles

The constructor takes a factory 
function for changing the 
agent’s behavior at runtime. 

Sets the time-to-live 
timeout for the 

cache invalidation

Uses an internal lookup 
state for caching

Waits asynchronously for a message 
until the timeout expires. If the timeout 

expired, the cache runs a cleanup.

Tries to get a value from the 
cache; if it can’t get the value, 
it creates a new one using the 

factory function. Then it sends 
the value to the caller.

Updates the 
factory function 

When the value is retrieved from the cache agent, it validates the 
types and returns Some if successful; otherwise it returns None. 
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        match item with
        | :? 'a as v -> return Some v
        | _ -> return None  }

   member this.GetOrSetTask (key : 'Key) =
        cacheAgent.PostAndAsyncReply(fun channel -> GetOrSet(key, channel))
        |> Async.StartAsTask  

    member this.UpdateFactory(factory:Func<'Key, obj>) =
        cacheAgent.Post(UpdateFactory(factory))    

In this example, the first type, CacheMessage, is the definition of the message that is 
sent to the MailboxProcessor in the form DUs. This DU determines the valid mes-
sages to send to the cache agent. 

NOTE  At this point in the book, DUs are not a new topic, but it’s worth mentioning 
that they are a mighty tool in combination with the MailboxProcessor, because 
they allow each defined type to contain a different signature. Consequently, they 
provide the ability to specify related groups of types and message contracts that 
are used to select and to branch into different reactions of the agent. 

The core of the CacheAgent implementation is to initialize and immediately start a 
MailboxProcessor that constantly watches for incoming messages.

The constructs of F# make it easy to use lexical scoping to achieve isolation within 
asynchronous agents. This agent code uses the standard and mutable .NET dictionary 
collection to maintain the state originated from the different messages sent to an agent: 

let cache = Dictionary<'Key, (obj * DateTime)>()

The internal dictionary is lexically private to the asynchronous agent, and no ability 
to read/write to the dictionary is made available other than to the agent. The mutable 
state in the dictionary is isolated. The agent function is defined as a recursive function 
loop that takes a single parameter factory, as shown here:

Agent.Start(fun inbox ->
        let rec loop (factory:Func<'Key, obj>) = async { ... }

The factory function represents the initialization policy to create and add an item 
when it isn’t found by the cacheAgent in the local state cache. This factory function 
is continuously passed into the recursive function loop for state management, which 
allows you to swap the initialization procedure at runtime. In the case of caching the 
AgentSql requests, if the database or the system goes offline, then the response strat-
egy can change. This is easily achieved by sending a message to the agent.

The agent receives the message semantic of the MailboxProcessor, which has a time-
out to specify the expiration time. This is particularly useful for caching components to 
provoke a data invalidation, and then a data refresh:

let! msg = inbox.TryReceive timeToLive

Exposes member for friendly 
compatibility with C#

Updates the 
factory function 
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The TryReceive of the inbox function returns a message option type, which can be 
either Some, when a message is received before the time timeToLive elapses, or None 
when no message is received during the timeToLive time: 

| None -> 
  cache 
  |> Seq.filter(function KeyValue(k,(_, dt)) -> DateTime.Now - dt > expiry)
  |> Seq.iter(function KeyValue(k, _) -> cache.Remove(k) |> ignore)

In this case, when the timeout expires, the agent auto-refreshes the cached data by 
automatically invalidating (removing) all the cache items that expired. But if a mes-
sage is received, the agent uses pattern matching to determine the message type so that 
the appropriate processing can be done. Here’s the range of capabilities for incoming 
messages:

¡	GetOrSet—In this case, the agent searches the cache dictionary for an entry that 
contains the specified key. If the agent finds the key and the invalidation time isn’t 
expired, then it returns the associated value. Otherwise, if the agent doesn’t find 
the key or the invalidation time is expired, then it applies the factory function to 
generate a new value, which is stored into the local cache in combination with the 
timestamp of its creation. The timestamp is used by the agent to verify the expira-
tion time. Finally, the agent returns the result to the sender of the message:

| Some (GetOrSet (key, channel)) ->
                match cache.TryGetValue(key) with
                | true, (v,dt) when DateTime.Now - dt < expiry ->
                    channel.Reply v
                    return! loop factory
                | _ ->
                    let value = factory.Invoke(key)
                    channel.Reply value
                    cache.Add(key, (value, DateTime.Now))
                    return! loop factory

¡	UpdateFactory—This message type, as already explained, allows the handler to 
swap the runtime initialization policy for the cache item: 

| Some(UpdateFactory newFactory) -> 
                return! loop (newFactory)

¡	Clear—This message type clears the cache to reload all items.

Ultimately, here’s the code that links the previous parallel AgentSql agentParallel-
Requests to the CacheAgent:

let connectionString = 
     ConfigurationManager.ConnectionStrings.["DbConnection"].ConnectionString

let agentParallelRequests = 
     MailboxProcessor<SqlMessage>.parallelWorker(8, agentSql connectionString)

let cacheAgentSql =
    let ttl = 60000  
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    CacheAgent<int>(fun id -> 
      agentParallelRequests.PostAndAsyncReply(fun ch -> Command(id, ch)), ttl)

let person = cacheAgentSql.TryGet<Person> 42

When the cacheAgentSql agent receives the request, it checks whether the value 42 
exists in the cache and if it’s expired. Otherwise, it interrogates the underlying parallel-
Worker to return the expected item and save it into the cache to speed up future requests 
(see figure 11.11).

 

Agent

parallelWorker

Behavior

Agent worker

Agent worker

Agent worker

Agent worker

Agent worker

Agent worker

Requests

State

Mailbox

The underlying agent workers
are of type agentSql, which is
used to access the database.

Behavior
(message processor)

Mailbox
queue

Database

State

CacheAgent

Messages

Each incoming request is processed asynchronously
in the CacheAgent loop. If a value associated with the 
request (key) exists in the internal cache, it’s sent back to 
the caller. This ensures that the operation to compute the 
value isn’t repeated. If the value isn’t in the cache, the 
operation computes the value, adds it to the cache, and 
then sends the value back to the caller.

Figure 11.11  The CacheAgent maintains a local cache composed of key/value pairs, which associate 
an input (from a request) to a value. When a request arrives, the CacheAgent verifies the existence 
of the input/key and then either returns the value (if the input/key already exists in the local cache) 
without running any computation, or it calculates the value to send to the caller. In the latter case, the 
value is also persisted in the local cache to avoid repeated computation for the same inputs.
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11.5.9 Reporting results from a MailboxProcessor

Sometimes, the MailboxProcessor needs to report a state change to the system, where 
a subscribed component is to handle the state change. For example, for the Cache-
Agent example to be more complete, you could extend it to include such features as 
notification when data changes or when there’s a cache removal. 

But how does a MailboxProcessor report notifications to the outside system? This 
is accomplished by using events (listing 11.8). You’ve already seen how the Mailbox-
Processor reports when an internal error occurs by triggering a notification to all of its 
subscribers. You can apply the same design to report any other arbitrary events from the 
agent. Using the previous CacheAgent, let’s implement an event reporting that can be 
used to notify when data invalidation occurs. For the example, you’ll modify the agent 
for an auto-refresh that can be used to notify when data has changed (the code to note 
is in bold). 

NOTE  This notification pattern isn’t recommended in situations where the 
CacheAgent handles many items, because, depending on the factory func-
tion and the data to reload, the auto-refresh process could take more time to 
complete. 

Listing 11.8  Cache with event notification for refreshed items

type Cache<'Key when 'Key : comparison>
       (factory : Func<'Key, obj>,  ?timeToLive : int,  
        ?synchContext:SynchronizationContext) =
    let timeToLive = defaultArg timeToLive 1000
    let expiry = TimeSpan.FromMilliseconds (float timeToLive)

    let cacheItemRefreshed = Event<('Key * 'obj)[]>()  

    let reportBatch items =    
        match synchContext with 
        | None -> cacheItemRefreshed.Trigger(items)  
        | Some ctx -> 
          ctx.Post((fun _ -> cacheItemRefreshed.Trigger(items)),null) 

    let cacheAgent = Agent.Start(fun inbox ->
        let cache = Dictionary<'Key, (obj * 
➥ DateTime)>(HashIdentity.Structural)
        let rec loop (factory:Func<'Key, obj>) = async {
            let! msg = inbox.TryReceive timeToLive
            match msg with
            | Some (GetOrSet (key, channel)) ->
                match cache.TryGetValue(key) with
                | true, (v,dt) when DateTime.Now - dt < expiry ->
                    channel.Reply v
                    return! loop factory
                | _ ->

Uses an event to report a cache item 
refreshed, which indicates a change of state

Triggers the event using the specified synchronization 
context, or directly if no synchronization context is specified

No synchronization context exists 
so it triggers as in the first case.

Uses the Post method of the 
context to trigger the event
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                    let value = factory.Invoke(key)
                    channel.Reply value
                    reportBatch ([| (key, value) |])    
                    cache.Add(key, (value, DateTime.Now))
                    return! loop factory
            | Some(UpdateFactory newFactory) ->
                return! loop (newFactory)
            | Some(Clear) ->
                cache.Clear()
                return! loop factory
            | None ->
                cache 
                |> Seq.choose(function KeyValue(k,(_, dt)) -> 
                        if DateTime.Now - dt > expiry then 
                            let value, dt = factory.Invoke(k), DateTime.Now
                            cache.[k] <- (value,dt)
                            Some (k, value)
                        else None)
                |> Seq.toArray
                |> reportBatch    
            }
        loop factory )
    member this.TryGet<'a>(key : 'Key) = async {
        let! item = cacheAgent.PostAndAsyncReply(
                    fun channel -> GetOrSet(key, channel))
        match item with
        | :? 'a as v -> return Some v
        | _ -> return None  }
    member this.DataRefreshed = cacheItemRefreshed.Publish  
    member this.Clear() = cacheAgent.Post(Clear)

In this code, the event cacheItemRefreshed channel dispatches the changes of state. 
By default, F# events execute the handlers on the same thread on which they’re trig-
gered. In this case, it uses the agent’s current thread. But depending on which thread 
originated the MailboxProcessor, the current thread can be either from the thread-
Pool or coming from the UI thread, specifically from SynchronizationContext, a 
class from System.Threading that captures the current synchronization context. The 
latter might be useful when the notification is triggered in response to an event that 
targets to update the UI. This is the reason the agent constructor, in the example, has 
the new parameter synchContext, which is an option type that provides a convenient 
mechanism to control where the event is triggered.

NOTE  The optional parameters in F# are written using the question mark (?) 
prefix syntax, ?synchContext, which passes the types as option values. 

The Some ctx command means that the SynchronizationContext isn’t null, and ctx 
is an arbitrary name given to access its value. When the synchronization context is Some 
ctx, the reporting mechanism uses the Post method to notify the state changes on the 
thread selected by the synchronization context. The method signature of the synchro-
nization context ctx.Post takes a delegate and an argument used by the delegate. 

Triggers the event for 
the refreshed items

Uses an event to report a cache item 
refreshed, which indicates a change of state
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Although the second argument isn’t required, null is used as replacement. The func-
tion reportBatch triggers the event cacheItemRefreshed: 

this.DataRefreshed.Add(printAgent.Post)

In the example, the change-of-state notification handler posts a message to a Mailbox-
Processor to print a report in a thread-safe manner. But you could use the same idea 
in more complex scenarios, such as for updating a web page automatically with the 
most recent data using SignalR.

11.5.10 Using the thread pool to report events from MailboxProcessor

In most cases, to avoid unnecessary overhead, it is preferable to trigger an event 
using the current thread. Still, there may be circumstances where a different thread-
ing model could be better: for example, if triggering an event could block for a time 
or throw an exception that could kill the current process. A valid option is to trigger 
the event operating the thread pool to run the notification in a separate thread. The 
reportBatch function can be refactored using the F# asynchronous workflow and the 
Async.Start operator:

let reportBatch batch =
  async { batchEvent.Trigger(batch) } |> Async.Start

Be aware with this implementation, the code running on a thread pool cannot access 
UI elements.

11.6 F# MailboxProcessor: 10,000 agents for a game of life
MailboxProcessor, combined with asynchronous workflows, is a lightweight unit of 
computation (primitives), compared to threads. Agents can be spawned and destroyed 
with minimal overhead. You can distribute the work to various MailboxProcessors, 
similar to how you might use threads, without having to incur the overhead associated 
with spinning up a new thread. For this reason, it’s completely feasible to create appli-
cations that consist of hundreds of thousands of agents running in parallel with mini-
mum impact to the computer resources.

NOTE  In a 32-bit OS machine, you can create a little more than 1,300 threads 
before an out-of-memory exception is thrown. This limitation doesn’t apply to 
MailboxProcessor, which is backed up by the thread pool and isn’t directly 
mapped to a thread.

In this section, we use MailboxProcessor from multiple instances by implementing 
the Game of Life (https://en.wikipedia.org/wiki/Game_of_Life). As described on 
Wikipedia, Life, as it is simply known, is a cellular automaton. It is a zero-player game, 
which means that once the game starts with a random initial configuration, it runs 
without any other input. This game consists of a collection of cells that run on a grid, 
each cell following a few mathematical rules. Cells can live, die, or multiply. Every cell 
interacts with its eight neighbors (the adjacent cells). A new state of the grid needs to 
be continually calculated to move the cells around to respect these rules.

 

https://en.wikipedia.org/wiki/Game_of_Life
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These are the Game of Life rules:

¡	Each cell with one or no neighbors dies, as if by solitude.
¡	Each cell with four or more neighbors dies, as if by overpopulation.
¡	Each cell with two or three neighbors survives.
¡	Each cell with three neighbors becomes populated.

Depending on the initial conditions, the cells form patterns throughout the course of 
the game. The rules are applied repeatedly to create further generations until the cells 
reach a stable state (figure 11.12).
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AgentCell connects and communicates with the
surrounding neighbor cells to verify their state
as dead or alive. The survival of the AgentCell
is affected by these surrounding cells.

Figure 11.12  When the Game of Life is set up, each cell (in the code example there are 100,000 cells) 
is constructed using an AgentCell MailboxProcessor. Each agent can be dead, a black circle, or 
alive depending the state of its neighbors.

Listing 11.9 is the implementation of the Game of Life cell, AgentCell, which is based 
on the F# MailboxProcessor. Each agent cell communicates with the adjacent cells 
through asynchronous message passing, producing a fully parallelized Game of Life. For 
conciseness, and because they’re irrelevant for the main point of the example, I omitted 
a few parts of the code. You can find the full implementation in this book’s source code.

Listing 11.9  Game of Life with MailboxProcessor as cells 

type CellMessage =
    | NeighborState of cell:AgentCell * isalive:bool
    | State of cellstate:AgentCell
    | Neighbors of cells:AgentCell list
    | ResetCell    
and State =
    {   neighbors:AgentCell list
        wasAlive:bool

Uses a DU that defines the 
message for the agent cell
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        isAlive:bool }    
    static member createDefault isAlive =
        { neighbors=[]; isAlive=isAlive; wasAlive=false; }

and AgentCell(location, alive, updateAgent:Agent<_>) as this =
    let neighborStates = Dictionary<AgentCell, bool>()    
    let AgentCell =
        Agent<CellMessage>.Start(fun inbox ->
            let rec loop state = async {
                let! msg = inbox.Receive()
                match msg with
                | ResetCell ->
                   state.neighbors 
                   |> Seq.iter(fun cell -> cell.Send(State(this)))  
                   neighborStates.Clear()
                   return! loop { state with wasAlive=state.isAlive } 
                | Neighbors(neighbors) ->
                   return! loop { state with neighbors=neighbors } 
                | State(c) ->
                    c.Send(NeighborState(this, state.wasAlive))
                    return! loop state
                | NeighborState(cell, alive) ->
                    neighborStates.[cell] <- alive
                    if neighborStates.Count = 8 then    
                       let aliveState =
                           let numberOfneighborAlive = 
                              neighborStates 
                              |> Seq.filter(fun (KeyValue(_,v)) -> v) 
                              |> Seq.length 
                            match numberOfneighborAlive with    
                            | a when a > 3  || a < 2 -> false
                            | 3 -> true
                            | _ -> state.isAlive
                       updateAgent.Post(Update(aliveState, location)) 
                       return! loop { state with isAlive = aliveState }
                    else return! loop state }
            loop (State.createDefault alive ))

    member this.Send(msg) = AgentCell.Post msg

AgentCell represents a cell in the grid of the Game of Life. The main concept is that 
each agent communicates with the neighbor cells about its (the agent’s) current state 
using asynchronous message passing. This pattern creates a chain of interconnected 
parallel communications that involves all the cells, which send their updated state 
to the updateAgent MailboxProcessor. At this point, the updateAgent refreshes the 
graphic in the UI. 

Listing 11.10  updateAgent that refreshes the WPF UI in real time 

let updateAgent grid (ctx: SynchronizationContext) = 
  let gridProduct = grid.Width * grid.Height
  let pixels = Array.zeroCreate<byte> (gridProduct)  

Record type used to keep track of the 
state for each cell agent

Internal state of each agent, to 
keep track of the state of each 

cell agent’s neighbors

Notifies all the cell’s 
neighbors of its current state

Recursively maintains 
a local state

Uses an algorithm that updates 
the current cell state according 

to the state of the neighbors

Runs the rules of the 
Game of Life

Updates the agent that 
refreshes the UI

The updateAgent constructor takes the captures that the SynchronizationContext 
used to update the WPF controller using the correct thread.

Array of pixels used to render the state of the Game 
of Life. Each pixel represents a cell state. 
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  Agent<UpdateView>.Start(fun inbox ->
    let gridState = Dictionary<Location, bool>(HashIdentity.Structural)
    let rec loop () = async {
         let! msg = inbox.Receive()
         match msg with
         | Update(alive, location, agent) ->   
                agentStates.[location] <- alive    
            agent.Send(ResetCell)              
            if agentStates.Count = gridProduct then    
                 agentStates.AsParallel().ForAll(fun s ->
                     pixels.[s.Key.x+s.Key.y*grid.Width]
                             <- if s.Value then 128uy else 0uy 
                 )
                do! Async.SwitchToContext ctx         
                image.Source <- createImage pixels    
                do! Async.SwitchToThreadPool()        
                agentStates.Clear()
            return! loop()
     }
     loop())

updateAgent, as its name suggests, updates the state of each pixel with the correlated 
cell value received in the Update message. The agent maintains the status of the pixels 
and uses that status to create a new image when all the cells have sent their new state. 
Next, updateAgent refreshes the graphical WPF UI with this new image, which rep-
resents the current grid of the Game of Life:

do! Async.SwitchToContext ctx  
image.Source <- createImage pixels    
do! Async.SwitchToThreadPool()    

It’s important to note that updateAgent agent uses the current synchronization con-
text to update the WPF controller correctly. The current thread is switched to the UI 
thread using the Async.SwitchToContext function (discussed in chapter 9).

The final piece of code to run the Game of Life generates a grid that acts as the play-
ground for the cells, and then a timer notifies the cells to update themselves (listing 
11.11). In this example, the grid is a square of 100 cells per side, for a total of 10,000 
cells (MailboxProcessors) that run in parallel with a refresh timer of 50 ms, as shown 
in figure 11.13. There are 10,000 MailboxProcessors communicating with each other 
and updating the UI 20 times every second (the code to note is in bold).

Listing 11.11  Creating the Game of Life grid and starting the timer to refresh 

let run(ctx:SynchronizationContext) =
     let size = 100    
     let grid = { Width= size; Height=size}    
     let updateAgent = updateAgent grid ctx

Shared grid state that represents the state 
of current generation of cells

Lists the Update message that updates the 
state of the given cell and resets cell state

When all cells notify that they’re updated, a 
new image representing the updated grid is 
generated to refresh the WPF UI application.

The pixel of a related 
cell is updated with 

the state alive (color) 
or dead (white).

Updates the UI using the correct 
thread passed from the constructor 

Indicates the size of each side of the grid Defines the grid using a record 
type with the accessible 
properties Width and Height
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     let cells = seq { for x = 0 to grid.Width - 1 do
                           for y = 0 to grid.Height - 1 do    
                               let agent = AgentCell({x=x;y=y},
                                   alive=getRandomBool(), 
                                   updateAgent=updateAgent)
                    yield (x,y), agent  } |> dict
     let neighbours (x', y') =
        seq {
          for x = x' - 1 to x' + 1 do
            for y = y' - 1 to y' + 1 do
              if x <> x' || y <> y' then
                 yield cells.[(x + grid.Width) % grid.Width,
                              (y + grid.Height) % grid.Height]
        } |> Seq.toList

     cells.AsParallel().ForAll(fun pair -> 
        let cell = pair.Value
        let neighbours = neighbours pair.Key
        cell.Send(Neighbors(neighbours)) 
        cell.Send(ResetCell)             
     )

The notifications to all the cells (agents) are sent in parallel using PLINQ. The cells 
are an F# sequence that’s treated as a .NET IEnumerable, which allows an effortless 
integration of LINQ/PLINQ.

When the code runs, the program generates 10,000 F# MailboxProcessors in less than 
1 ms with a memory consumption, specific for the agents, of less than 25 MB. Impressive!

Generates a 100 x 100 grid, 
creating one MailboaxProcessor 

per cell (for a total of 10,000 
agents)

Notifies all the cells in parallel about 
their neighbors and resets their state

Figure 11.13  Game of 
Life. The GUI is a WPF 
application. 
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Summary

¡	The agent programming model intrinsically promotes immutability and isola-
tion for writing concurrent systems, so even complex systems are easier to reason 
about because the agents are encapsulated into active objects.

¡	The Reactive Manifesto defines the properties to implement a reactive system, 
which is flexible, loosely coupled, and scalable.

¡	Natural isolation is important for writing lockless concurrent code. In a multi-
threaded program, isolation solves the problem of shared state by giving each 
thread a copied portion of data to perform local computation. When using isola-
tion, there’s no race condition.

¡	By being asynchronous, agents are lightweight, because they don’t block threads 
while waiting for a message. As a result, you can use hundreds of thousands of 
agents in a single application without any impact on the memory footprint.

¡	The F# MailboxProcessor allows two-way communication: the agent can use an 
asynchronous channel to return (reply) to the caller the result of a computation.

¡	The agent programming model F# MailboxProcessor is a great tool for solving 
application bottleneck issues, such as multiple concurrent database accesses. In 
fact, you can use agents to speed up applications significantly and keep the server 
responsive.

¡	Other .NET programming languages can consume the F# MailboxProcessor by 
exposing the methods using the friendly TPL task-based programming model.
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12Parallel workflow and 
agent programming 
with TPL Dataflow

This chapter covers
¡	Using TPL Dataflow blocks 

¡	Constructing a highly concurrent workflow 

¡	Implementing a sophisticated Producer/
Consumer pattern 

¡	Integrating Reactive Extensions with TPL 
Dataflow

Today’s global market requires that businesses and industries be agile enough to 
respond to a constant flow of changing data. These workflows are frequently large, 
and sometimes infinite or unknown in size. Often, the data requires complex pro-
cessing, leading to high throughput demands and potentially immense computa-
tional loads. To cope with these requirements, the key is to use parallelism to exploit 
system resources and multiple cores. 

But today’s .NET Framework’s concurrent programming models weren’t designed 
with dataflow in mind. When designing a reactive application, it’s fundamental to 
build and treat the system components as units of work. These units react to mes-
sages, which are propagated by other components in the chain of processing. These 
reactive models emphasize a push-based model for applications to work, rather than 
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a pull-based model (see chapter 6). This push-based strategy ensures that the individual 
components are easy to test and link, and, most importantly, easy to understand. 

This new focus on push-based constructions is changing how programmers design 
applications. A single task can quickly grow complex, and even simple-looking require-
ments can lead to complicated code. 

In this chapter, you’ll learn how the .NET Task Parallel Library Dataflow (TPL Data-
flow, or TDF) helps you to tackle the complexity of developing modern systems with 
an API that builds on TAP. TDF fully supports asynchronous processing, in combina-
tion with a powerful compositionality semantic and a better configuration mechanism 
than the TPL. TDF eases concurrent processing and implements tailored asynchronous 
parallel workflow and batch queuing. Furthermore, it facilitates the implementation 
of sophisticated patterns based on combining multiple components that talk to each 
other by passing messages.

12.1 The power of TPL Dataflow
Let’s say you’re building a sophisticated Producer/Consumer pattern that must sup-
port multiple producers and/or multiple consumers in parallel, or perhaps it has to 
support workflows that can scale the different steps of the process independently. One 
solution is to exploit Microsoft TPL Dataflow. With the release of .NET 4.5, Microsoft 
introduced TPL Dataflow as part of the tool set for writing concurrent applications. 
TDF is designed with the higher-level constructs necessary to tackle easy parallel prob-
lems while providing a simple-to-use, powerful framework for building asynchronous 
data-processing pipelines. TDF isn’t distributed as part of the .NET 4.5 Framework, so 
to access its API and classes, you need to import the official Microsoft NuGet Package 
(install-Package Microsoft.Tpl.DataFlow).

TDF offers a rich array of components (also called blocks) for composing dataflow 
and pipeline infrastructures based on the in-process message-passing semantic (see 
figure 12.1). This dataflow model promotes actor-based programming by providing 
in-process message passing for coarse-grained dataflow and pipelining tasks. 

TDF uses the task scheduler (TaskScheduler, http://mng.bz/4N8F) of the TPL to 
efficiently manage the underlying threads and to support the TAP model (async/await) 
for optimized resource utilization. TDF increases the robustness of highly concurrent 
applications and obtains better performance for parallelizing CPU and I/O intensive 
operations, which have high throughput and low latency.

NOTE  TPL Dataflow enables effective techniques for running embarrassingly 
parallel problems, explained in chapter 3, meaning there are many independent 
computations that can be executed in parallel in an evident way.

 

http://mng.bz/4N8F


 367Designed to compose: TPL Dataflow blocks 

Step 1 Step 4

Componentized workflow
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Step 2
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Notify
complete

Figure 12.1  Workflow composed by multiple steps. Each operation can be treated as an independent 
computation.

The concept behind the TPL Dataflow library is to ease the creation of multiple 
patterns, such as with batch-processing pipelines, parallel stream processing, data 
buffering, or joining and processing batch data from one or more sources. Each of 
these patterns can be used as a standalone, or may be composed with other patterns, 
enabling developers to easily express complex dataflow.  

12.2 Designed to compose: TPL Dataflow blocks 
Imagine you’re implementing a complex workflow process composed of many differ-
ent steps, such as a stock analysis pipeline. It’s ideal to split the computation in blocks, 
developing each block independently and then gluing them together. Making these 
blocks reusable and interchangeable enhances their convenience. This composable 
design would simplify the application of complex and convoluted systems. 

Compositionality is the main strength of TPL Dataflow, because its set of indepen-
dent containers, known as blocks, is designed to be combined. These blocks can be 
a chain of different tasks to construct a parallel workflow, and are easily swapped, 
reordered, reused, or even removed. TDF emphasizes a component’s architectural 
approach to ease the restructure of the design. These dataflow components are useful 
when you have multiple operations that must communicate with one another asynchro-
nously or when you want to process data as it becomes available, as shown in figure 12.2.

TPL Dataflow workflow

Transform AggregateProcess
task

Process
task

Process
task

Buffer
input data Transform Output

data

Figure 12.2  TDF embraces the concepts of reusable components. In this figure, each step of the 
workflow acts as reusable components. TDF brings a few core primitives that allow you to express 
computations based on Dataflow graphs.
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Here’s a high-level view of how TDF blocks operate: 

1 Each block receives and buffers data from one or more sources, including other 
blocks, in the form of messages. When a message is received, the block reacts by 
applying its behavior to the input, which then can be transformed and/or used 
to perform side effects. 

2 The output from the component (block) is then passed to the next linked block, 
and to the next one, if any, and so on, creating a pipeline structure.

NOTE  The term reactive programming has been used for a long time to describe 
dataflow because the reaction is generated from receiving a piece of data.

TDF excels at providing a set of configurable properties by which it’s possible, with 
small changes, to control the level of parallelism, manage the buffer size of the mail-
box, and process data and dispatch the outputs.

There are three main types of dataflow blocks:

¡	Source —Operates as producer of data.  It can also be read from. 
¡	Target —Acts as a consumer, which receives the data and can be written to. 
¡	Propagator —Acts as both a Source and a Target block.

For each of these dataflow blocks, TDF provides a set of subblocks, each with a differ-
ent purpose. It’s impossible to cover all the blocks in one chapter.  In the following 
sections we focus on the most common and versatile ones to adopt in general pipeline 
composition applications. 

TIP  TPL Dataflow’s most commonly used blocks are the standard Buffer-
Block, ActionBlock, and TransformBlock. Each is based on a delegate, which 
can be in the form of anonymous function that defines the work to compute.  
I recommend that you keep these anonymous methods short, simple to follow, 
and easier to maintain.

For more information about the Dataflow library, see the online MSDN documenta-
tion (http://mng.bz/GDbF).

12.2.1 Using BufferBlock<TInput> as a FIFO buffer

TDF BufferBlock<T> acts as an unbounded buffer for data that’s stored in a first in, 
first out (FIFO) order (figure 12.3). In general, BufferBlock is a great tool for enabling 
and implementing asynchronous Producer/Consumer patterns, where the internal 
message queue can be written to by multiple sources, or read from multiple targets. 

 

http://mng.bz/GDbF
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Input Output

Internal buffer Task

BufferBlock<T>

Figure 12.3  The TDF BufferBlock has an internal buffer where messages are queued, waiting to 
be processed by the task. The input and output are the same types, and this block doesn’t apply any 
transformation on the data.

Here is a simple Producer/Consumer using the TDF BufferBlock.

Listing 12.1  Producer/Consumer based on the TDF BufferBlock

BufferBlock<int> buffer = new BufferBlock<int>(); 

async Task Producer(IEnumerable<int> values) 
{
       foreach (var value in values)
           buffer.Post(value);    
       buffer.Complete();         
}
async Task Consumer(Action<int> process)
{
       while (await buffer.OutputAvailableAsync())     
           process(await buffer.ReceiveAsync());       
}

async Task Run()
{
        IEnumerable<int> range = Enumerable.Range(0,100);
        await Task.WhenAll(Producer(range), Consumer(n =>     
             Console.WriteLine($"value {n}")));
}

The items of the IEnumerable values are sent through the buffer.Post method 
to the BufferBlock buffer, which retrieves them asynchronously using the buffer 
.ReceiveAsync method. The OutputAvailableAsync method knows when the next item 
is ready to be retrieved and makes the notification. This is important to protect the code 
from an exception; if the buffer tries to call the Receive method after the block com-
pletes processing, an error is thrown. This BufferBlock block essentially receives and 
stores data so that it can be dispatched to one or more other target blocks for processing. 

12.2.2 Transforming data with TransformBlock<TInput, TOutput>

The TDF TransformBlock<TInput,TOutput> acts like a mapping function, which applies 
a projection function to an input value and provides a correlated output (figure 12.4). 
The transformation function is passed as an argument in the form of a delegate Func 
<TInput,TOutput>, which is generally expressed as a lambda expression. This block’s 
default behavior is to process one message at a time, maintaining strict FIFO ordering. 

Hands off through a bounded 
BufferBlock<T>

Sends a message to the BufferBlock

Notifies the BufferBlock that there are no 
more items to process, and completes

Signals when a new item is 
available to be retrieved Receives a message 

asynchronously
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Input

Input buffer Output bufferTask

TransformBlock<TInput, TOutput>

Output

Figure 12.4  The TDF TransformBlock has an internal buffer for both the input and output values; this 
type of block has the same buffer capabilities as BufferBlock. The purpose of this block is to apply a 
transformation function on the data; the Input and Output are likely different types.

Note that TransformBlock<TInput,TOutput> performs as the BufferBlock <TOutput>, 
which buffers both the input and output values. The underlying delegate can run 
synchronously or asynchronously. The asynchronous version has a type signature 
Func <TInput,Task<TOutput>> whose purpose it is to run the underlying function 
asynchronously. The block treats the process of that element as completed when the 
returned Task appears terminated. This listing shows how to use the TransformBlock 
type (the code to note is in bold).

Listing 12.2  Downloading images using the TDF TransformBlock

var fetchImageFlag = new TransformBlock<string, (string, byte[])>(
   async urlImage => {    
     using (var webClient = new WebClient()) {
       byte[] data = await webClient.DownloadDataTaskAsync(urlImage); 
       return (urlImage, data);  
     }
});

List<string> urlFlags = new List<string>{
     "Italy#/media/File:Flag_of_Italy.svg",
     "Spain#/media/File:Flag_of_Spain.svg",
     "United_States#/media/File:Flag_of_the_United_States.svg"
     };

foreach (var urlFlag in urlFlags)
    fetchImageFlag.Post($"https://en.wikipedia.org/wiki/{urlFlag}");

In this example, the TransformBlock<string,(string, byte[])> fetchImageFlag 
block fetches the flag image in a tuple string and byte array format. In this case, the 
output isn’t consumed anywhere, so the code isn’t too useful. You need another block 
to process the outcome in a meaningful way.

12.2.3 Completing the work with ActionBlock<TInput >

The TDF ActionBlock executes a given callback for any item sent to it. You can think 
of this  block logically as a buffer for data combined with a task for processing that data. 

Uses a lambda expression to process 
the urlImage asynchronously

Downloads the flag image and 
returns the relative byte arrayOutput consists of a tuple with the 

image URL and the related byte array.
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ActionBlock<TInput> is a target block that calls a delegate when it receives data, simi-
lar to a for-each loop (figure 12.5).

Input

Internal buffer Task

ActionBlock<TInput>

Figure 12.5  The TDF ActionBlock has an internal buffer for input messages that are queued if 
the task is busy processing another message. This type of block has the same buffer capabilities as 
BufferBlock. The purpose of this block is to apply an action that completes the workflow without 
output that likely produces side effects. In general, because ActionBlock doesn’t have an output, it 
cannot compose to a following block, so it’s used to terminate the workflow.

ActionBlock<TInput> is usually the last step in a TDF pipeline; in fact, it doesn’t pro-
duce any output. This design prevents ActionBlock from being combined with further 
blocks, unless it posts or sends the data to another block, making it the perfect candi-
date to terminate the workflow process. For this reason, ActionBlock is likely to pro-
duce side effects as a final step to complete the pipeline processing.

The following code shows the TransformBlock from the previous listing pushing its 
outputs to the ActionBlock to persist the flag images in the local filesystem (in bold).

Listing 12.3  Persisting data using the TDF ActionBlock

var saveData = new ActionBlock<(string, byte[])>(async data => {  
    (string urlImage, byte[] image) = data;        
    string filePath = urlImage.Substring(urlImage.IndexOf("File:") + 5);
    await File.WriteAllBytesAsync(filePath, image);     
  });

fetchImageFlag.LinkTo(saveData);       

The argument passed into the constructor during the instantiation of the Action-
Block block can be either a delegate Action<TInput> or Func<TInput,Task>. The 
latter performs the internal action (behavior) asynchronously for each message input 
(received). Note that the ActionBlock has an internal buffer for the incoming data to 
be processed, which works exactly like the BufferBlock. 

It’s important to remember that the ActionBlock saveData is linked to the previous 
TransformBlock fetchImageFlag using the LinkTo extension method. In this way, the 
output produced by the TransformBlock is pushed to the ActionBlock as soon as available.

Uses a lambda expression to 
process data asynchronously

Deconstructs the tuple to 
access underlying items

Writes the data to the local 
filesystem asynchronously

Links the output from the TransformBlock 
fetchImageFlag to the saveData ActionBlock
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12.2.4 Linking dataflow blocks

TDF blocks can be linked with the help of the LinkTo extension method. Linking data-
flow blocks is a powerful technique for automatically transmitting the result of each 
computation between the connected blocks in a message-passing manner. The key 
component for building sophisticated pipelines in a declarative manner is to use con-
necting blocks. If we look at the signature of the LinkTo extension method from the 
conceptual point of view, it looks like a function composition:

LinkTo: (a -> b) -> (b -> c) 

12.3 Implementing a sophisticated Producer/Consumer 
with TDF 
The TDF programming model can be seen as a sophisticated Producer/Consumer 
pattern, because the blocks encourage a pipeline model of programming, with pro-
ducers sending messages to decoupled consumers. These messages are passed asyn-
chronously, maximizing throughput. This design provides the benefits of not blocking 
the producers, because the TDF blocks (queue) act as a buffer, eliminating waiting 
time. The synchronization access between producer and consumers may sound like an 
abstract problem, but it’s a common task in concurrent programming. You can view it 
as a design pattern for synchronizing two components.

12.3.1 A multiple Producer/single Consumer pattern: TPL Dataflow

The Producer/Consumer pattern is one of the most widely used patterns in parallel pro-
gramming. Developers use it to isolate work to be executed from the processing of that 
work. In a typical Producer/Consumer pattern, at least two separated threads run concur-
rently: one produces and pushes the data to process into a queue, and the other verifies 
the presence of the new incoming piece of data and processes it. The queue that holds 
the tasks is shared among these threads, which requires care for accessing tasks safely. 
TDF is a great tool for implementing this pattern, because it has intrinsic support for 
multiple readers and multiple writers concurrently, and it encourages a pipeline pattern 
of programming with producers sending messages to decoupled consumers (figure 12.6).

Input Output

Internal buffer Task

BufferBlock<T>

Producer B Consumer

Producer A

Producer C

Data

Data

Data

Data

Figure 12.6  Multiple-producers/one-consumer pattern using the TDF BufferBlock, which can 
manage and throttle the pressure of multiple producers
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In the case of a multiple-Producer/single-Consumer pattern, it’s important to enforce 
a restriction between the number of items generated and the number of items con-
sumed. This constraint aims to balance the work between the producers when the con-
sumer cannot handle the load. This technique is called throttling. Throttling protects 
the program from running out of memory if the producers are faster than the con-
sumer. Fortunately, TDF has built-in support for throttling, which is achieved by setting 
the maximum size of the buffer through the property BoundedCapacity, part of the 
DataFlowBlockOptions. In listing 12.4, this property ensures that there will never be 
more than 10 items in the BufferBlock queue. Also, in combination with enforcing 
the limit of the buffer size, it’s important to use the function SendAsync, which waits 
without blocking for the buffer to have available space to place a new item.

Listing 12.4  Asynchronous Producer/Consumer using TDF

BufferBlock<int> buffer = new BufferBlock<int>( 
      new DataFlowBlockOptions { BoundedCapacity = 10 }); 

async Task Produce(IEnumerable<int> values)
{
      foreach (var value in values)
          await buffer.SendAsync(value);;    
}

async Task MultipleProducers(params IEnumerable<int>[] producers)
{
    await Task.WhenAll(
          from values in producers select Produce(values).ToArray())  
              .ContinueWith(_ => buffer.Complete());  
}

async Task Consumer(Action<int> process)
{
     while (await buffer.OutputAvailableAsync()) 
          process(await buffer.ReceiveAsync());        
}

async Task Run() {
       IEnumerable<int> range = Enumerable.Range(0, 100);

       await Task.WhenAll(MultipleProducers(range, range, range), 
           Consumer(n => Console.WriteLine($"value {n} - ThreadId 
           {Thread.CurrentThread.ManagedThreadId}")));
}

By default, TDF blocks have the value DataFlowBlockOptions.Unbounded set to -1, 
which means that the queue is unbounded (unlimited) to the number of messages. 
But you can reset this value to a specific capacity that limits the number of messages 
the block may be queuing. When the queue reaches maximum capacity, any additional 
incoming messages will be postponed for later processing, making the producer wait 

Sets the BoundedCapacity to manage and 
throttle the pressure from multiple producers

Sends the message to the buffer block asynchronously. The 
SendAsync method helps throttle the messages sent. 

Runs multiple producers in parallel, 
waiting for all to terminate before 

notifying the buffer block to complete

When all producers 
terminate, the buffer block 
is notified as complete.

Safeguards the buffer block from 
receiving a message only if there are 
any items available in the queue
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before further work. Likely, making the producer slow down (or wait) isn’t a problem 
because the messages are sent asynchronously.

12.3.2 A single Producer/multiple Consumer pattern

The TDF BufferBlock intrinsically supports a single Producer/multiple Consumer 
pattern. This is handy if the producer performs faster than the multiple consumers, 
such as when they’re running intensive operations. 

Fortunately, this pattern is running on a multicore machine, so it can use multiple 
cores to spin up multiple processing blocks (consumers), each of which can handle the 
producers concurrently. 

Achieving the multiple-consumer behavior is a matter of configuration. To do so, set 
the MaxDegreeOfParallelism property to the number of parallel consumers to run. 
Here’s listing 12.4 modified to apply a max-degree-of-parallelism set to the number of 
available logical processors:

BufferBlock<int> buffer = new BufferBlock<int>(new DataFlowBlockOptions {
               BoundedCapacity = 10,
               MaxDegreeOfParallelism = Environment.ProcessorCount });

NOTE  Logical cores are the number of physical cores times the number of 
threads that can run on each core. An 8-core processor that runs two threads 
per core has 16 logical processors.

By default, the TDF block setting processes only one message at a time, while buffering 
the other incoming messages until the previous one completes. Each block is inde-
pendent of others, so one block can process one item while another block processes a 
different item. But when constructing the block, you can change this behavior by set-
ting the MaxDegreeOfParallelism property in the DataFlowBlockOptions to a value 
greater than 1. You can use TDF to speed up the computations by specifying the num-
ber of messages that can be processed in parallel. The internals of the class handle the 
rest, including the ordering of the data sequence.

12.4 Enabling an agent model in C# using TPL Dataflow 
TDF blocks are designed to be stateless by default, which is perfectly fine for most 
scenarios. But there are situations in an application when it’s important to maintain a 
state: for example, a global counter, a centralized in-memory cache, or a shared data-
base context for transactional operations.

In such situations, there’s a high probability that the shared state is also the subject of 
mutation, because of continually tracking certain values. The problem has always been the 
difficulty of handling asynchronous computations combined with mutable state. As pre-
viously mentioned, the mutation of shared state becomes dangerous in a multithreaded 
environment by leading you into a tar pit of concurrent issues (http://curtclifton 
.net/papers/MoseleyMarks06a.pdf). Luckily, TDF encapsulates the state inside the 
blocks, while the channels between blocks are the only dependencies. By design, this 
permits isolated mutation in a safe manner.

 

http://curtclifton.net/papers/MoseleyMarks06a.pdf
http://curtclifton.net/papers/MoseleyMarks06a.pdf
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As demonstrated in chapter 11, the F# MailboxProcessor can solve these problems 
because it embraces the agent model philosophy, which can maintain an internal state 
by safeguarding its access to be concurrent safe (only one thread at a time can access 
the agent). Ultimately, the F# MailboxProcessor can expose a set of APIs to the C# 
code that can consume it effortlessly. Alternatively, you can reach the same perfor-
mance using TDF to implement an agent object in C#, and then that agent object can 
act as the F# MailboxProcessor. 

Stateful vs. stateless 
Stateful means that the program keeps track of the state of interaction. This is usually 
accomplished by setting values in a storage field designated for that purpose. 

Stateless means there’s no record of previous interactions, and each interaction request 
must be handled based entirely on the new information that comes with it.

 

The implementation of StatefulDataFlowAgent relies on the instance of actionBlock 
to receive, buffer, and process incoming messages with an unbounded limit (figure 12.7). 
Note that the max degree of parallelism is set to the default value 1 as designed, embrac-
ing the single-threaded nature of the agent model. The state of the agent is initialized 
in the constructor and is maintained through a polymorphic and mutable value TState, 
which is reassigned as each message is processed. (Remember that the agent model only 
allows access by one thread at a time, ensuring that the messages are processed sequen-
tially to eliminate any concurrent problems.) It’s good practice to use an immutable state, 
regardless of the safety provided by the agent implementation. 

Buffer Task

ActionBlock<T>

Stateless agent

Messages

Buffer Task

ActionBlock<T>

Stateful agent

Messages

State

Figure 12.7  The stateful and stateless agents implemented using the TDF ActionBlock. The stateful 
agent has an internal isolated arbitrary value to maintain in memory a state that can change.
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The next listing shows the implementation of the StatefulDataFlowAgent class, which 
defines a stateful and generic agent that encapsulates the TDF AgentBlock to process 
and store type values (in bold). 

Listing 12.5  Stateful agent in C# using TDF

class StatefulDataFlowAgent<TState, TMessage> : IAgent<TMessage>
{
     private TState state;
     private readonly ActionBlock<TMessage> actionBlock;

     public StatefulDataFlowAgent(
            TState initialState, 
            Func<TState, TMessage, Task<TState>> action, 
            CancellationTokenSource cts = null)
         {
            state = initialState;
            var options = new ExecutionDataFlowBlockOptions {
                CancellationToken = cts != null ? 
                cts.Token : CancellationToken.None     
          };
            actionBlock = new ActionBlock<TMessage>(       
                   async msg => state = await action(state, msg), options);
        }
     public Task Send(TMessage message) => actionBlock.SendAsync(message);
     public void Post(TMessage message) => actionBlock.Post(message);
}

The CancellationToken can stop the agent at any time, and it’s the only optional 
parameter passed into the constructor. The function Func<TState,TMessage, Task-
<TState>> is applied to each message, in combination with the current state. When 
the operation completes, the current state is updated, and the agent moves to pro-
cess the next available message. This function is expecting an asynchronous operation, 
which is recognizable from the return type of Task<TState>. 

NOTE   In the source code for this book, you can find several useful helper func-
tions and implementation of agents using TDF with constructors that support 
either asynchronous or synchronous operations, which are omitted in listing 
12.5 for brevity.

The agent implements the inheritances from the interface IAgent<TMessage>, which 
defines the two members Post and Send, used to pass messages to the agent synchro-
nously or asynchronously, respectively: 

    public interface IAgent<TMessage>
    {
        Task Send(TMessage message);
        void Post(TMessage message);
    }

Uses an asynchronous function to 
define the behavior of the agent

If a cancellation token isn’t provided in the 
constructor, a new token is provided.

Constructs the internal ActionBlock 
that acts as an encapsulated agent

 



 377Enabling an agent model in C# using TPL Dataflow 

Use the helper factory function Start, as in the F# MailboxProcessor, to initialize a 
new agent, represented by the implemented interface IAgent<TMessage> :

IAgent<TMessage> Start<TState, TMessage>(TState initialState, 
➥ Func<TState, TMessage, Task<TState>> action, 
➥ CancellationTokenSource cts = null) => 
    new StatefulDataFlowAgent<TState, TMessage>(initialState, action, cts);

Because the interaction with the agent is only through sending (Post or Send) a mes-
sage, the primary purpose of the IAgent<TMessage> interface is to avoid exposing the 
type parameter for the state, which is an implementation detail of the agent. 

In listing 12.6, agentStateful is an instance of the StatefulDataFlowAgent agent, 
which receives a message containing the web address where it should download its content 
asynchronously. Then, the result of the operation is cached into the local state, Immutable-
Dictionary<string,string>, to avoid repeating identical operations. For example, the 
Google website is mentioned twice in the urls collections, but it’s downloaded only once. 
Ultimately, the content of each website is persisted in the local file system for the sake of the 
example. Notice that, apart from any side effects that occur when downloading and persist-
ing the data, the implementation is side effect free. The changes in state are captured by 
always passing the state as an argument to the action function (or Loop function).

Listing 12.6  Agent based on TDF in action

List<string> urls = new List<string> {  
                @"http://www.google.com",
                @"http://www.microsoft.com",
                @"http://www.bing.com",
                @"http://www.google.com"
            };
var agentStateful = Agent.Start(ImmutableDictionary<string,string>.Empty, 
   async (ImmutableDictionary<string,string> state, string url) => { 
       if (!state.TryGetValue(url, out string content))
       using (var webClient = new WebClient()){
         content = await webClient.DownloadStringTaskAsync(url);  
         await File.WriteAllTextAsync(createFileNameFromUrl(url), content);
         return state.Add(url, content);   
      }
   return state;             
   });
urls.ForEach(url => agentStateful.Post(url));

12.4.1 Agent fold-over state and messages: Aggregate

The current state of an agent is the result of reducing all the messages it has received so 
far using the initial state as an accumulator value, and then processing the function as 
a reducer. You can imagine this agent as a fold (aggregator) in time over the stream of 
messages received. Interestingly, the StatefulDataFlowAgent constructor shares a signa-
ture and behavior similar to the LINQ extension method Enumerable.Aggregate. For 
demonstration purposes, the following code swaps the agent construct from the previous 
implementation with its counterpart, the LINQ Aggregate operator:

urls.Aggregate(ImmutableDictionary<string,string>.Empty, 
               async (state, url) => {

Uses an asynchronous anonymous 
function to construct the agent. This 
function performs the current state 

and input message received.

The function, which acts as the behavior 
of the agent, returns the updated state 
to keep track of any changes available to 
the next message processing. 
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     if (!state.TryGetValue(url, out string content))
         using (var webClient = new WebClient())
         {
             content = await webClient.DownloadStringTaskAsync(url);  
             await File.WriteAllTextAsync(createFileNamFromUrl(url), 

content);
             return state.Add(url, content); 
         }
     return state;
});

As you can see, the core logic hasn’t changed. Using the StatefulDataFlowAgent con-
structor, which operates over message passing instead of in a collection, you imple-
mented an asynchronous reducer similar to the LINQ Aggregate operator. 

12.4.2 Agent interaction: a parallel word counter 

According to the actor definition from Carl Hewitt,1 one of the minds behind the actor 
model: “One actor is no actor. They come in systems.” This means that actors come in 
systems and communicate with each other. The same rule applies to agents. Let’s look 
at an example of using agents that interact with each other to group-count the number 
of times a word is present in a set of text files (figure 12.8).

Let’s start with a simple stateless agent that takes a string message and prints it. You can 
use this agent to log the state of an application that maintains the order of the messages:

IAgent<string> printer = Agent.Start((string msg) => 
        WriteLine($"{msg} on thread {Thread.CurrentThread.

ManagedThreadId}")); 

The output also includes the current thread ID to verify the multiple threads used. This 
listing shows the implementation of the agent system for the group-count of words.

Listing 12.7  Word counter pipeline using agents 

IAgent<string> reader = Agent.Start(async (string filePath) =>  {
    await printer.Send("reader received message");          

    var lines = await File.ReadAllLinesAsync(filePath);     

    lines.ForEach(async line => await parser.Send(line));   
});

char[] punctuation = Enumerable.Range(0, 256).Select(c => (char)c)
       .Where(c => Char.IsWhiteSpace(c) || Char.IsPunctuation(c)).ToArray();

IAgent<string> parser = Agent.Start(async (string line) => {
    await printer.Send("parser received message");          
    foreach (var word in line.Split(punctuation))           
       await counter.Send(word.ToUpper());
});

1  For more information on Carl Eddie Hewett, see https://en.wikipedia.org/wiki/Carl_Hewitt.

The agent posts a log to 
the printer agent. The reader agent asynchronously reads 

all the text lines from a given file.

Sends all the lines of a given text file to the parser agent. 
ForEach is an extension method in the source code.

The parser agent splits the text 
into single words and sends 
them to the counter agent.

 

https://en.wikipedia.org/wiki/Carl_Hewitt
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IReplyAgent<string, (string, int)> counter = 
    Agent.Start(ImmutableDictionary<string, int>.Empty, 
          (state, word) => {
               printer.Post("counter received message");      
               int count;      
               if (state.TryGetValue(word, out count))
                   return state.Add(word, count++);     
               else return state.Add(word, 1);
        }, (state, word) => (state, (word, state[word])));  

foreach (var filePath in Directory.EnumerateFiles(@"myFolder", "*.txt"))
     reader.Post(filePath);

var wordCount_This = await counter.Ask("this");       
var wordCount_Wind = await counter.Ask("wind");       

Producer
Collects files from the directory
and sends them to the agent

Buffer

Ask
Post and wait for

reply; asynchronous

Response
Asynchronous reply channel

Task

ActionBlock<T>

Stateful agent

Counter agent
Two-way communication

Reader agent Parser agent

State

Filesystem

Buffer Task

ActionBlock<T>

Stateless agent

Messages

Messages

Buffer Task

ActionBlock<T>

Stateless agentMessages

Figure 12.8. Simple interaction between agents by exchanging messages. The agent programming 
model promotes the single responsibility principle to write code. Note the counter agent provides a two-
way communication, so the user can ask (interrogate) the agent, sending a message at any given time 
and receiving a reply in the form of a channel, which acts as asynchronous callback. When the operation 
completes, the callback provides the result.

The agent posts a log 
to the printer agent.

The counter agent checks if the word exists 
in the local state, and increments a counter 

or creates a new entry accordingly. 
The counter agent allows two-way communication, so you can send 
an ask message to receive a result back (reply) asynchronously
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The system is composed of three agents that communicate with each other to form a 
chain of operations:

¡	The reader agent
¡	The parser agent
¡	The counter agent

The word-counting process starts with a for-each loop to send the file paths of a given 
folder to the first reader agent. This agent reads the text from a file, and then sends 
each line of the text to the parser agent:

var lines = await File.ReadAllLinesAsync(filePath); 
lines.ForEach(async line => await parser.Send(line));

The parser agent splits the text message into single words, and then passes each of 
those words to the last counter agent:

lines.Split(punctuation).ForEach(async word => 
                      await counter.Send(word.ToUpper()));

The counter agent is a stateful agent that does the work of maintaining the count of 
the words as they’re updated.

An ImmutableDictionary collection defines the state of the counter agent that stores 
the words along with the count for the number of times each word has been found. For 
each message received, the counter agent checks whether the word exists in an internal 
state ImmutableDictionary<string, int> to either increment the existing counter or 
start a new one. 

NOTE  The advantage of using the agent programming model to implement 
word counting is that the agent is thread safe, and it can be shared between 
threads working on related texts freely. Moreover, the use of an immutable 
ImmutableDictionary to store the state can be passed outside the agent and 
carry on processing without having to worry about the internal state becoming 
inconsistent and corrupted.

The interesting factor of the counter agent is the ability to respond to the caller asyn-
chronously using the Ask method. You can interrogate the agent for the count of a 
particular word at any time. 

The interface IReplyAgent is the result of expanding the functionality of the previ-
ous interface IAgent with the Ask method:

interface IReplyAgent<TMessage, TReply> : IAgent<TMessage>
{
        Task<TReply> Ask(TMessage message);
}

Listing  12.8 shows the implementation of the two-way communication Stateful-
ReplyDataFlowAgent agent, in which the internal state is represented by a single poly-
morphic mutable variable.
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This agent has two different behaviors:

¡	One to handle the Send a message method.
¡	One to handle the Ask method. The Ask method sends a message and then waits 

asynchronously for a response.

These behaviors are passed in the form of generic Func delegates into the agent’s con-
structor. The first function (Func<TState, TMessage, Task<TState>>) processes 
each message in combination with the current state and updates it accordingly. This 
logic is identical to the agent StatefulDataFlowAgent. 

Conversely, the second function (Func<TState, TMessage, Task<(TState, TReply)>>) 
handles the incoming messages, computes the agent’s new state, and ultimately replies 
to the sender. The output type of this function is a tuple, which contains the state of the 
agent, including a handle (callback) that acts as response (reply). The tuple is wrapped 
into a Task type to be awaited without blocking, as with any asynchronous function. 

When creating the message Ask to interrogate the agent, the sender passes an 
instance of TaskCompletionSource<TReply> into the payload of the message, and a 
reference is returned by the Ask function to the caller. This object, TaskCompletion-
Source, is fundamental for providing a channel to communicate asynchronously 
back to the sender through a callback, and the callback is notified from the agent 
when the result of the computation is ready. This model effectively generates two-way 
communication. 

Listing 12.8  Stateless agent in C# using TDF

class StatefulReplyDataFlowAgent<TState, TMessage, TReply> : 
                                         IReplyAgent<TMessage, TReply>
{
     private TState state;
     private readonly ActionBlock<(TMessage,          
                Option<TaskCompletionSource<TReply>>)> actionBlock;

     public StatefulReplyDataFlowAgent(TState initialState,
            Func<TState, TMessage, Task<TState>> projection,
            Func<TState, TMessage, Task<(TState, TReply)>> ask,
            CancellationTokenSource cts = null)    
    {
         state = initialState;
         var options = new ExecutionDataFlowBlockOptions { 
         CancellationToken = cts?.Token ?? CancellationToken.None };

            actionBlock = new ActionBlock<(TMessage, 
                          Option<TaskCompletionSource<TReply>>)>(  
              async message => {

The IReplyAgent interface defines the Ask method to 
ensure that the agent enables two-way communication.

The ActionBlock message type is a tuple, where a 
TaskCompletionSource option is passed into the 
payload to supply a channel for communicating 
back to the caller asynchronously. 

The agent construct takes two functions 
to respectively define the fire-and-forget 
and two-way communications.
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   (TMessage msg, Option<TaskCompletionSource<TReply>> replyOpt) = message;
    await replyOpt.Match(       
           None: async () => state = await projection(state, msg), 
           Some: async reply => {           
             (TState newState, TReply replyresult) = await ask(state, msg);
                 state = newState;
             reply.SetResult(replyresult);
             });
          }, options);
        }

        public Task<TReply> Ask(TMessage message)
        {
            var tcs = new TaskCompletionSource<TReply>();  
            actionBlock.Post((message, Option.Some(tcs)));
            return tcs.Task;           
        }

        public Task Send(TMessage message) =>    
            actionBlock.SendAsync((message, Option.None));
}

NOTE  TDF makes no guarantee of built-in isolation, and consequently, an 
immutable state could be shared across the process function and be mutated 
outside the scope of the agent, resulting in unwanted behavior. Diligence 
in restricting and controlling access to the shared mutable state is highly 
recommended.

To enable StatefulReplyDataFlowAgent to handle both types of communications, one-
way Send and two-way Ask, the message is constructed by including a Task Completion-
Source option type. In this way, the agent infers if a message is either from the Post 
method, with None TaskCompletionSource, or from the Ask method, with Some Task-
CompletionSource. The Match extension method of the Option type, Match<T, R>(None 
: Action<T>, Some(item) : Func<T,R>(item)), is used to branch out to the corre-
sponding behavior of the agent.

12.5 A parallel workflow to compress and 
encrypt a large stream
In this section, you’ll build a complete asynchronous and parallelized workflow com-
bined with the agent programming model to demonstrate the power of the TDF library.
This example uses a combination of TDF blocks and the StatefulDataFlowAgent 
agent linked to work as a parallel pipeline. The purpose of this example is to ana-
lyze and architect a real case application. It then evaluates the challenges encountered 

The Match extension method of the Option type is used to 
branch behavior over the TaskCompletionSource option.

If the TaskCompletionSource is None, 
then the projection function is applied. 

If the TaskCompletionSource is 
Some, then the Ask function is 

applied to reply to the caller. 

The Ask member creates a TaskCompletionSource 
used as channel to communicate back to the caller 
when the operation run by the agent is completed.
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during the development of the program, and examines how TDF can be introduced in 
the design to solve these challenges. 

TDF processes the blocks that compose a workflow at different rates and in parallel. 
More importantly, it efficiently spreads the work out across multiple CPU cores to max-
imize the speed of computation and overall scalability. This is particularly useful when 
you need to process a large stream of bytes that could generate hundreds, or even thou-
sands, of chunks of data.

12.5.1 Context: the problem of processing a large stream of data

Let’s say that you need to compress a large file to make it easier to persist or transmit 
over the network, or that a file’s content must be encrypted to protect that informa-
tion. Often, both compression and encryption must be applied. These operations can 
take a long time to complete if the full file is processed all at once. Furthermore, it’s 
challenging to move a file, or stream data, across the network, and the complexity 
increases with the size of the file, due to external factors, such as latency and unpredict-
able bandwidth. In addition, if the file is transferred in one transaction, and something 
goes wrong, then the operation tries to resend the entire file, which can be time- and 
resource-consuming. In the following sections, you’ll tackle this problem step by step.

In .NET, it isn’t easy to compress a file larger than 4 GB, due to the framework limita-
tion on the size of data to compress. Due to the maximum addressable size for a 32-bit 
pointer, if you create an array over 4 GB, an OutOfMemoryArray exception is thrown. 
Starting with .NET 4.5 and for 64-bit platforms, the option gcAllowVeryLargeObjects 
(http://mng.bz/x0c4) is available to enable arrays greater than 4 GB. This option 
allows 64-bit applications to have a multidimensional array with size UInt32.MaxValue 
(4,294,967,295) elements. Technically, you can apply the standard GZip compression 
that’s used to compress streams of bytes to data larger than 4 GB; but the GZip distribu-
tion doesn’t support this by default. The related .NET GZipStream class inheritably has 
a 4 GB limitation. 

How can you compress and encrypt a large file without being constrained by the 4 GB 
limit imposed by the framework classes? A practical solution involves using a chunking 
routine to chop the stream of data. Chopping the stream of data makes it easier to com-
press and/or encrypt each block individually and ultimately write the block content to 
an output stream. The chunking technique splits the data, generally into chunks of the 
same size,  applies the appropriate transformation to each chunk (compression before 
encryption), glues the chunks together in the correct order, and compresses the data. 
It’s vital to guarantee the correct order of the chunks upon reassembly at the end of the 
workflow. Due to the intensive I/O asynchronous operations, the packages might not 
arrive in the correct sequence, especially if the data is transferred across the network. 
You must verify the order during reassembly (figure 12.9). 

 

mng.bz/x0c4
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and decompress the data, as well as use asynchronous helper functions for compress-
ing and encrypting bytes array.

The function CompressAndEncrypt takes as an argument the source and destination 
streams to process, the chunkSize argument defines the size in which the data is split 
(the default is 1 MB if no value is provided), and CancellationTokenSource stops the 
dataflow execution at any point. If no CancellationTokenSource is provided, a new 
token is defined and propagated through the dataflow operations. 

The core of the function consists of three TDF building blocks, in combination with 
a stateful agent that completes the workflow. The inputBuffer is a BufferBlock type 
that, as the name implies, buffers the incoming chunks of bytes read from the source 
stream, and holds these items to pass them to the next blocks in the flow, which is the 
linked TransformBlock compressor (the code to note is in bold).

Listing 12.9  Parallel stream compression and encryption using TDF

async Task CompressAndEncrypt(
    Stream streamSource, Stream streamDestination, 
    long chunkSize = 1048576, CancellationTokenSource cts = null)
{
    cts = cts ?? new CancellationTokenSource();  

    var compressorOptions = new ExecutionDataflowBlockOptions {
    MaxDegreeOfParallelism = Environment.ProcessorCount,
    BoundedCapacity = 20,
    CancellationToken = cts.Token
    };          

var inputBuffer = new BufferBlock<CompressingDetails>(
        new DataflowBlockOptions { 
               CancellationToken = cts.Token, BoundedCapacity = 20 }); 

var compressor = new TransformBlock<CompressingDetails, 
     CompressedDetails>(async details => {
        var compressedData = await IOUtils.Compress(details.Bytes); 
        return details.ToCompressedDetails(compressedData);     
    }, compressorOptions);

var encryptor = new TransformBlock<CompressedDetails, EncryptDetails>(
     async details => {
        byte[] data = IOUtils.CombineByteArrays(details.CompressedDataSize, 
➥ details.ChunkSize, details.Bytes);         
        var encryptedData = await IOUtils.Encrypt(data);    
        return details.ToEncryptDetails(encryptedData);     

A new cancellation token is provided if 
none is supplied in the constructor.

Sets the BoundedCapacity value to throttle the messages 
and reduce memory consumption by limiting the 

number of MemoryStreams created at the same time

Asynchronously compresses the data (the method 
is provided in the source code of the book)

 Converts the current data structure into the 
message shape to send to the next block

Combines the data and metadata into a byte array 
pattern that will be deconstructed and parsed 
during the revert operation decrypt–decompress 

Asynchronously encrypts the data (the method 
is provided in the source code of the book)

#D Converts the current data structure 
into the message shape to send to the 
next block

Transform
(compress) AggregateBuffer

input data

The transform block
runs multiple subtasks
in parallel. The aggregate agent

maintains the integrity
of the message order.

Process
task

Transform
(encrypt)

Process
task

Buffer Task

ActionBlock<T>

Stateful agent

Messages

State

Figure 12.9  The transform blocks process the messages in parallel. The result is sent to the next block 
when the operation completes. The aggregate agent’s purpose is to maintain the integrity of the order of 
the messages, similar to the AsOrdered PLINQ extension method.

The opportunity for parallelism fits naturally in this design, because the chunks of the 
data can be processed independently. 

Encryption and compression: order matters
It might seem that because the compression and encryption operations are independent 
of one another, it makes no difference in which order they’re applied to a file. This isn’t 
true. The order in which the operations of compression and encryption are applied is vital. 

Encryption has the effect of turning input data into high-entropy data,2 which is a mea-
sure of the unpredictability of information content. Therefore, the encrypted data 
appears like a random array of bytes, which makes finding common patterns less prob-
able. Conversely, compression algorithms work best when there are several similar pat-
terns in the data, which can be expressed with fewer bytes. 

When data must be both compressed and encrypted, you achieve the best results by 
first compressing and then encrypting the data. In this way, the compression algorithm 
can find similar patterns to shrink, and consequently the encryption algorithm produces 
the chunks of data having almost the same size. Furthermore, if the order of the opera-
tions is compression then encryption, not only should the output be a smaller file, but the 
encryption will most likely take less time because it’ll operate on less data.

 

Listing  12.9 shows the full implementation of the parallel compression–encryption 
workflow. Note that in the source code, you can find the reverse workflow to decrypt 

2  Information entropy is defined as the average amount of information produced by a stochastic source of 
data. See https://en.wikipedia.org/wiki/Entropy_(information_theory).
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and decompress the data, as well as use asynchronous helper functions for compress-
ing and encrypting bytes array.

The function CompressAndEncrypt takes as an argument the source and destination 
streams to process, the chunkSize argument defines the size in which the data is split 
(the default is 1 MB if no value is provided), and CancellationTokenSource stops the 
dataflow execution at any point. If no CancellationTokenSource is provided, a new 
token is defined and propagated through the dataflow operations. 

The core of the function consists of three TDF building blocks, in combination with 
a stateful agent that completes the workflow. The inputBuffer is a BufferBlock type 
that, as the name implies, buffers the incoming chunks of bytes read from the source 
stream, and holds these items to pass them to the next blocks in the flow, which is the 
linked TransformBlock compressor (the code to note is in bold).

Listing 12.9  Parallel stream compression and encryption using TDF

async Task CompressAndEncrypt(
    Stream streamSource, Stream streamDestination, 
    long chunkSize = 1048576, CancellationTokenSource cts = null)
{
    cts = cts ?? new CancellationTokenSource();  

    var compressorOptions = new ExecutionDataflowBlockOptions {
    MaxDegreeOfParallelism = Environment.ProcessorCount,
    BoundedCapacity = 20,
    CancellationToken = cts.Token
    };          

var inputBuffer = new BufferBlock<CompressingDetails>(
        new DataflowBlockOptions { 
               CancellationToken = cts.Token, BoundedCapacity = 20 }); 

var compressor = new TransformBlock<CompressingDetails, 
     CompressedDetails>(async details => {
        var compressedData = await IOUtils.Compress(details.Bytes); 
        return details.ToCompressedDetails(compressedData);     
    }, compressorOptions);

var encryptor = new TransformBlock<CompressedDetails, EncryptDetails>(
     async details => {
        byte[] data = IOUtils.CombineByteArrays(details.CompressedDataSize, 
➥ details.ChunkSize, details.Bytes);         
        var encryptedData = await IOUtils.Encrypt(data);    
        return details.ToEncryptDetails(encryptedData);     

A new cancellation token is provided if 
none is supplied in the constructor.

Sets the BoundedCapacity value to throttle the messages 
and reduce memory consumption by limiting the 

number of MemoryStreams created at the same time

Asynchronously compresses the data (the method 
is provided in the source code of the book)

 Converts the current data structure into the 
message shape to send to the next block

Combines the data and metadata into a byte array 
pattern that will be deconstructed and parsed 
during the revert operation decrypt–decompress 

Asynchronously encrypts the data (the method 
is provided in the source code of the book)

#D Converts the current data structure 
into the message shape to send to the 
next block
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    }, compressorOptions);

var asOrderedAgent = Agent.Start((new Dictionary<int, EncryptDetails>(),0),
 async((Dictionary<int,EncryptDetails>,int)state,EncryptDetails msg)=>{  
      Dictionary<int, EncryptDetails> details, int lastIndexProc) = state;
      details.Add(msg.Sequence, msg);
      while (details.ContainsKey(lastIndexProc+1)) {
          msg = details[lastIndexProc + 1];
          await streamDestination.WriteAsync(msg.EncryptedDataSize, 0,  
                                        msg.EncryptedDataSize.Length);
          await streamDestination.WriteAsync(msg.Bytes, 0, 
                                        msg.Bytes.Length); 
          lastIndexProc = msg.Sequence;
          details.Remove(lastIndexProc);    
      }
      return (details, lastIndexProc);
 }, cts);

var writer = new ActionBlock<EncryptDetails>(async details => await 
                    asOrderedAgent.Send(details), compressorOptions); 

var linkOptions = new DataflowLinkOptions { PropagateCompletion = true };
inputBuffer.LinkTo(compressor, linkOptions);      
compressor.LinkTo(encryptor, linkOptions);            
encryptor.LinkTo(writer, linkOptions);            

long sourceLength = streamSource.Length;
byte[] size = BitConverter.GetBytes(sourceLength);
await streamDestination.WriteAsync(size, 0, size.Length);            

chunkSize = Math.Min(chunkSize, sourceLength);       
int indexSequence = 0; 
while (sourceLength > 0) {
   byte[] data = new byte[chunkSize];
   int readCount = await streamSource.ReadAsync(data, 0, data.Length); 
   byte[] bytes = new byte[readCount];
   Buffer.BlockCopy(data, 0, bytes, 0, readCount);
   var compressingDetails = new CompressingDetails {
            Bytes = bytes,
            ChunkSize = BitConverter.GetBytes(readCount),
            Sequence = ++indexSequence
        };
await inputBuffer.SendAsync(compressingDetails); 
sourceLength -= readCount;                
if (sourceLength < chunkSize)
    chunkSize = sourceLength;            
if (sourceLength == 0)
    inputBuffer.Complete();              
}

The behavior of the asOrderedAgent Agent keeps track of the order 
of the messages received to maintain the order (persist the data).

Persists the data asynchronously; the file 
stream could be replaced with a network 
stream to send the data across the wire.

The chunk of data that is processed is removed from the 
local state, keeping track of the items to perform.

The ActionBlock reader sends the chunk 
of data wrapped into a details data 
structure to the asOrdered agent. 

Links the dataflow blocks 
to compose the workflow

The total size of the file stream is persisted as the first chunk of data; in this way, the 
decompression algorithm knows how to retrieve the information and how long to run. Determines the chunk 

size to partition data

Reads the source stream into chunks 
until the end of the stream

Sends the chunk of data 
read from the source 
stream to the inputBuffer

Checks the current source stream 
position after each read operation to 
decide when to complete the operation 

Notifies the input buffer when the 
source stream reaches the end
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await inputBuffer.Completion.ContinueWith(task => compressor.Complete());
await compressor.Completion.ContinueWith(task => encryptor.Complete());
await encryptor.Completion.ContinueWith(task => writer.Complete());
await writer.Completion;
await streamDestination.FlushAsync();
   }

The bytes read from the stream are sent to the buffer block by using the SendAsync 
method:

var compressingDetails = new CompressingDetails {
       Bytes = bytes,
       ChunkSize = BitConverter.GetBytes(chunkSize),
       Sequence = ++indexSequence
    };
await buffer.SendAsync(compressingDetails);

Each chunk of bytes read from the stream source is wrapped into the data structure’s 
CompressingDetails, which contains the additional information of byte-array size. 
The monotonic value is later used in the sequence of chunks generated to preserve the 
order. A monotonic value is a function between ordered sets that preserves or reverses 
the given value, and the value always either decreases or increases. The order of the 
block is important both for a correct compression–encryption operation and for cor-
rect decryption and decompression into the original shape. 

In general, if the purpose of the block is purely to forward item operations from one 
block to several others, then you don’t need the BufferBlock. But in the case of read-
ing a large or continuous stream of data, this block is useful for taming the backpres-
sure generated from the massive amount of data partitioned to the process by setting 
an appropriate BoundedCapacity. In this example, the BoundedCapacity is restricted 
to a capacity of 20 items. When there are 20 items in this block, it will stop accepting 
new items until one of the existing items passes to the next block. Because the dataflow 
source of data originated from asynchronous I/O operations, there’s a risk of poten-
tially large amounts of data to process. It’s recommended that you limit internal buffer-
ing to throttle the data by setting the BoundedCapacity property in the options defined 
when constructing the BufferBlock.

The next two block types are compression transformation and encryption trans-
formation. During the first phase (compression), the TransformBlock applies the 
compression to the chunk of bytes and enriches the message received Compressing-
Details with the relative data information, which includes the compressed byte array 
and its size. This information persists as part of the output stream accessible during the 
decompression.

The second phase (encryption) enciphers the chunk of compressed byte array and 
creates a sequence of bytes resulting from the composition of three arrays: Compressed-
DataSize, ChunkSize, and data array. This structure instructs the decompression and 
decryption algorithms to target the right portion of bytes to revert from the stream.
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NOTE  Keep in mind that when there are multiple TDF blocks, certain TDF 
tasks may be idle while the others are executing, so you have to tune the block’s 
execution option to avoid potential starvation. Details regarding this optimiza-
tion are explained in the coming section.

12.5.2 Ensuring the order integrity of a stream of messages

The TDF documentation guarantees that TransformBlock will propagate the messages 
in the same order in which they arrived. Internally, TransformBlock uses a reordering 
buffer to fix any out-of-order issues that might arise from processing multiple messages 
concurrently. Unfortunately, due to the high number of asynchronous and intensive 
I/O operations running in parallel, keeping the integrity of the message order doesn’t 
apply to this case. This is why you implemented the additional sequential ordering 
preservation using monotonically values.

If you decide to send or stream the data over the network, then the guarantee of 
delivering the packages in the correct sequence is lost, due to variables such as the 
unpredictable bandwidth and unreliable network connection. To safeguard the order 
integrity when processing chunks of data, your final step in the workflow is the stateful 
asOrderedAgent agent. This agent behaves as a multiplexer by reassembling the items 
and persists them in the local filesystem, maintaining the correct sequence. The order 
value of the sequence is kept in a property of the EncryptDetails data structure, which 
is received by the agent as a message. 

The multiplexer pattern
The multiplexer is a pattern generally used in combination with a Producer/Consumer 
design. It allows its consumer, which in the previous example is the last stage of the 
pipeline, to receive the chunks of data in the correct sequential order. The chunks of data 
don’t need to be sorted or reordered. Instead, the fact that each producer (TDF block) 
queue is locally ordered allows the multiplexer to look for the next value (message) in the 
sequence. The multiplexer waits for a message from a producer dataflow block. When 
a chunk of data arrives, the multiplexer looks to see if the chunk’s sequence number is 
the next in the expected sequence. If it is, the multiplexer persists the data to the local 
filesystem. If the chunk of data isn’t the one expected next in the sequence, the multi-
plexer holds the value in an internal buffer and repeats the analysis operation for the 
next message received. This algorithm allows the multiplexer to put together the inputs 
from the incoming producer message in a way that ensures sequential order without 
sorting the values.

 

The accuracy for the whole computation requires preservation of the order of the 
source sequence and the partitions to ensure that the order is consistent at merge time.

NOTE  In the case of sending the chunks of data over the network, the same 
strategy of persisting the data in the local filesystem is applicable by having the 
agent working as a receiver on the other side of the wire.
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The state of this agent is preserved using a tuple. The first item of the tuple is a col-
lection Dictionary<int, EncryptDetails>, where the key represents the sequence 
value of the original order by which the data was sent. The second item, lastIndex-
Proc, is the index of the last item processed, which prevents reprocessing the same 
chunks of data more than once. The body of asOrderedAgent runs the while loop 
that uses this value lastIndexProc and makes sure that the processing of the chunks 
of data starts from the last item unprocessed. The loop continues to iterate until the 
order of the items is continued; otherwise it breaks out from the loop and waits for the 
next message, which might complete the missing gap in the sequence.

The asOrderedAgent agent is plugged into the workflow through the TDF Action-
Block writer, which sends it to the EncryptDetails data structure for the final work. 

GZipStream vs. DeflateStream: how to choose
The .NET Framework provides a few option classes for compressing a stream of bytes. 
Listing 12.9 used System.IO.Compression.GZipStream for the compression mod-
ule; but the alternative System.IO.Compression.DeflateStream presents a valid 
option. Starting with .NET Framework 4.5, the DeflateStream compression stream 
uses the zlib library, which results in a better compression algorithm and, in most cases, 
smaller compressed data as compared to earlier versions. The DeflateStream com-
pression algorithm optimization maintains back-compatibility with data compressed with 
the earlier version. One reason to choose the GZipStream class is that it adds a cyclic 
redundancy check (CRC) to the compressed data to determine if it has been corrupted. 
Please refer to the MSDN online documentation (http://mng.bz/h082) for further details 
about these streams.

 

12.5.3 Linking, propagating, and completing 

The TDF blocks in the compress-encrypt workflow are linked using the LinkTo exten-
sion method, which by default propagates only data (messages). But if the workflow 
is linear, as in this example, it’s good practice to share information among the blocks 
through an automatic notification, such as when the work is terminated or eventual 
errors accrue. This behavior is achieved by constructing the LinkTo method with the 
DataFlowLinkOptions optional argument and the PropagateCompletion property set 
to true. Here’s the code from the previous example with this option built in: 

var linkOptions = new DataFlowLinkOptions { PropagateCompletion = true };

inputBuffer.LinkTo(compressor, linkOptions);
compressor.LinkTo(encryptor, linkOptions);
encryptor.LinkTo(writer, linkOptions);

The PropagateCompletion optional property informs the dataflow block to automat-
ically propagate its results and exceptions to the next stage when it completes. This is 
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accomplished by calling the Complete method when the buffer block triggers the com-
plete notification upon reaching the end of the stream: 

       if (sourceLength < chunkSize)
           chunkSize = sourceLength;
       if (sourceLength == 0)
           buffer.Complete();

Then all the dataflow blocks are announced in a cascade as a chain that the process has 
completed:

await inputBuffer.Completion.ContinueWith(task => compressor.Complete());
await compressor.Completion.ContinueWith(task => encryptor.Complete());
await encryptor.Completion.ContinueWith(task => writer.Complete());
await writer.Completion;

Ultimately, you can run the code as follows:

using (var streamSource = new FileStream(sourceFile, FileMode.OpenOrCreate, 
                          FileAccess.Read, FileShare.None, useAsync: true))
using (var streamDestination = new FileStream(destinationFile, 
        FileMode.Create, FileAccess.Write, FileShare.None, useAsync: true))
       await CompressAndEncrypt(streamSource, streamDestination)

Table 12.1 shows the benchmarks for compressing and encrypting different file sizes, 
including the inverted operation of decrypting and decompressing. The benchmark 
result is the average of each operation run three times.

Table 12.1  Benchmarks for compressing and encrypting different file sizes

File size in GB Degree of parallelism
Compress-encrypt time 

in seconds
Decrypt-decompress time 

in seconds

3 1 524.56 398.52

3 4 123.64 88.25

3 8 69.20 45.93

12 1 2249.12 1417.07

12 4 524.60 341.94

12 8 287.81 163.72

12.5.4 Rules for building a TDF workflow

Here are few good rules and practices for successfully implementing TDF in your 
workflow:

¡	Do one thing, and do it well. This is a principal of modern OOP, the single responsi-
bility principle (https://en.wikipedia.org/wiki/Single_responsibility_principle). 
The idea is that your block should perform only one action and should have only 
one reason to change.

 

https://en.wikipedia.org/wiki/Single_responsibility_principle
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¡	Design for composition. In the OOP world, this is known as the open closed principle 
(https://en.wikipedia.org/wiki/Open/closed_principle), where the dataflow 
building blocks are designed to be open for extension but closed to modification.

¡	DRY. This principle (don’t repeat yourself) encourages you to write reusable 
code and reusable dataflow building block components.

Performance tip: recycling MemoryStreams
The .NET programming languages rely on a mark-and-sweep GC that can negatively 
impact the performance of a program that generates a large number of memory allo-
cations due to GC pressure. This is a performance penalty that the code (such as in list-
ing 12.9) pays when creating a System.IO.MemoryStream instance for each compress 
and encrypt operation, including its underlying byte array. 

The quantity of MemoryStream instances increases with the number of chunks of data to 
process, which can be hundreds in a large stream/file. As that byte array grows, the Mem-
oryStream resizes it by allocating a new and larger array, and then copying the original 
bytes into it. This is inefficient, not only because it creates new objects and throws the old 
ones away, but also because it has to do the legwork of copying the content each time it 
resizes. 

One way to alleviate the memory pressure that can be caused by the frequent creation 
and destruction of large objects is to tell the .NET GC to compact the large object heap 
(LOH) using this setting:

GCSettings.LargeObjectHeapCompactionMode = 
GCLargeObjectHeapCompactionMode.CompactOnce

This solution, while it may reduce the memory footprint of your application, does nothing 
to solve the initial problem of allocating all that memory in the first place. A better solu-
tion is to create an object pool, also known as pooled buffers, to pre-allocate an arbitrary 
number of MemoryStreams that can be reused (a generic and reusable object pool is 
available in chapter 13). 

Microsoft has released a new object, called RecyclableMemoryStream, which 
abstracts away the implementation of an object pool optimized for MemoryStream, and 
minimizes the number of large object heap allocations and memory fragmentation. The 
discussion of RecycableMemoryStream is out of the scope of this book. For more infor-
mation, refer to the MSDN online documentation.

 

12.5.5 Meshing Reactive Extensions (Rx) and TDF

TDF and Rx (discussed in chapter 6) have important similarities, despite having inde-
pendent characteristics and strengths, and these libraries complement each other, 
making them easy to integrate. TDF is closer to an agent-based programming model, 
focused on providing building blocks for message passing, which simplifies the imple-
mentation of parallel CPU- and I/O-intensive applications with high throughput and 
low latency, while also providing developers explicit control over how data is buffered. 
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Rx is keener to the functional paradigm, providing a vast set of operators that predom-
inantly focused on coordination and composition of event streams with a LINQ-based 
API.

TDF has built-in support for integrating with Rx, which allows it to expose the source 
dataflow blocks as both observables and observers. The AsObservable extension 
method transforms TDF blocks into an observable sequence, which allows the output 
of the dataflow chain to flow efficiently into an arbitrary set of Reactive fluent extension 
methods for further processing. Specifically, the AsObservable extension method con-
structs an IObservable<T> for an ISourceBlock<T>. 

NOTE  TDF can also act as an observer. The AsObserver extension method cre-
ates an IObserver<T> for an ITargetBlock<T>, where the OnNext calls for the 
observer result in the data being sent to the target. The OnError calls result in 
the exception faulting the target, and the OnCompleted calls will result in Com-
plete being called on the target. 

Let’s see the integration of Rx and TDF in action. In listing 12.9, the last block of the 
parallel compress-encrypt stream dataflow is the stateful asOrderedAgent. The partic-
ularity of this component is the presence of an internal state that keeps track of the 
messages received and their order. As mentioned, the construct signature of a stateful 
agent is similar to the LINQ Aggregate operator, which in terms of Rx can be replaced 
with the RX Observable.Scan operator. This operator is covered in chapter 6.

The following listing shows the integration between Rx and TDF by replacing the 
asOrderedAgent agent from the last block of the parallel compress-encrypt stream 
workflow.

Listing 12.10  Integrating Reactive Extensions with TDF

inputBuffer.LinkTo(compressor, linkOptions);
compressor.LinkTo(encryptor, linkOptions);

encryptor.AsObservable()         
         .Scan((new Dictionary<int, EncryptDetails>(), 0), 
 (state, msg) => Observable.FromAsync(async() => {         
 (Dictionary<int,EncryptDetails> details, int lastIndexProc) = state;
 details.Add(msg.Sequence, msg);
 while (details.ContainsKey(lastIndexProc + 1)) {
    msg = details[lastIndexProc + 1];
    await streamDestination.WriteAsync(msg.EncryptedDataSize, 0, 
                                       msg.EncryptedDataSize.Length);
    await streamDestination.WriteAsync(msg.Bytes, 0, msg.Bytes.Length);
    lastIndexProc = msg.Sequence;
    details.Remove(lastIndexProc);
    } 
 return (details, lastIndexProc);
}) .SingleAsync().Wait())
.SubscribeOn(TaskPoolScheduler.Default).Subscribe();      

Enables Rx integration with TDF

Runs the Rx Scan 
operation asynchronously 

Rx subscribes to TaskPoolScheduler
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As you can see, you swapped the asOrderedAgent with the Rx Observable.Scan opera-
tor without changing the internal functionality. TDF blocks and Rx observable streams 
can be completed successfully or with errors, and the AsObservable method will trans-
late the block completion (or fault) into the completion of the observable stream. But 
if the block faults with an exception, that exception will be wrapped in an Aggregate-
Exception when it is passed to the observable stream. This is similar to how linked 
blocks propagate their faults.

Summary
¡	A system written using TPL Dataflow benefits from a multicore system because all 

the blocks that compose a workflow can run in parallel.
¡	TDF enables effective techniques for running embarrassingly parallel problems, 

where many independent computations can be executed in parallel in an evi-
dent way.

¡	TDF has built-in support for throttling and asynchrony, improving both I/O-
bound and CPU-bound operations. In particular, it provides the ability to build 
responsive client applications while still getting the benefits of massively parallel 
processing.

¡	TDF can be used to parallelize the workflow to compress and encrypt a large 
stream of data by processing blocks at different rates. 

¡	The combination and integration of Rx and TDF simplifies the implementation 
of parallel CPU- and I/O-intensive applications, while also providing developers 
explicit control over how data is buffered.

 



 



Part 3

Modern patterns of concurrent 
programming applied

This third and final part of the book allows you to put into practice all the 
functional concurrent programming techniques you’ve learned thus far. These 
chapters will become your go-to reference for questions and answers about 
concurrency. 

Chapter 13 covers recipes to solve both common and complex problems you 
may encounter in concurrent applications using the functional paradigm. Chap-
ter 14 walks you through the full implementation of a scalable and highly perfor-
mant stock market server application, which includes iOS and WPF versions for 
the client side. 

Functional paradigm principles learned in the book will be applied in the 
design and architecture decisions, as well as to code development, to achieve a 
highly performant and scalable solution. You’ll see in this section the positive side 
effects that come from applying functional principles to reduce bugs and increase 
maintainability.  
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13Recipes and design 
patterns for successful 

concurrent programming

This chapter covers
¡	Twelve code recipes that answer common 

problems in parallel programming

The 12 recipes presented in this chapter have broad applications. You can use the 
core ideas as a reference when you’re facing a similar problem and require a quick 
answer. The material demonstrates how the functional concurrent abstractions cov-
ered throughout this book make it possible to solve complex problems by develop-
ing sophisticated and rich functions with relatively few lines of code. I’ve kept the 
implementations of the recipes as simple as possible, so you’ll need to deal from 
time to time with cancellations and exception handling. 

This chapter shows you how to put together everything you’ve learned so far to 
combine concurrent programming models using the functional programming 
abstraction as a glue to write efficient and performant programs. By the end of this 
chapter, you’ll have at your disposal a set of useful and reusable tools for solving com-
mon concurrent coding problems. 

Each recipe is built in either C# or F#; for the majority of the code implementa-
tion, you can find both versions in the downloadable code online. Also, keep in mind 
that F# and C# are .NET programming languages with interoperability support to 
interact with each other. You can easily use a C# program in F# and vice versa.
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13.1 Recycling objects to reduce memory consumption 
In this section you’ll implement a reusable asynchronous object pool. This should be 
used in cases where the recycling of objects benefits the reduction of memory con-
sumption. Minimizing the number of GC generations allows your program to enjoy 
better performance speed. Figure 13.1, repeated from chapter 12, shows how to apply 
concurrent Producer/Consumer patterns, from listing 12.9, to compress and encrypt 
a large file in parallel. 

 

Transform
(compress) AggregateBuffer

input data

The transform block
runs multiple subtasks
in parallel. The aggregate agent

maintains the integrity
of the message order.

Process
task

Transform
(encrypt)

Process
task

Buffer Task

ActionBlock<T>

Stateful agent

Messages

State

Figure 13.1. The Transform blocks process the messages in parallel. The result is sent to the next 
block when the operation completes. The Aggregate agent’s purpose is to maintain the integrity of order 
of the messages, similar to the AsOrdered PLINQ extension method.

The function CompressAndEncrypt, from listing 12.9, partitions a large file in a set of 
byte-array chunks, which has the negative effect of producing a large volume of GC 
generations due to high memory consumption. Each memory chunk is created, pro-
cessed, and collected by the GC when the memory pressure reaches the trigger point 
for demanding for more resources. 

This high volume operation of creating and destroying byte array causes many GC 
generations, which negatively impact the overall performance of the application. In 
fact, the program allocates a considerable number of memory buffers (byte arrays) for 
its full execution in a multithreaded fashion, meaning that multiple threads can simul-
taneously allocate the same amount of memory. Consider that each buffer is 4,096 bytes 
of memory, and 25 threads are running simultaneously; in this case, about 102,400 
bytes are being simultaneously allocated in the heap. Additionally, when each thread 
completes its execution, many buffers are out of scope, pressuring the GC to start a gen-
eration. This is bad for performance, because the application is under heavy memory 
management.
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13.1.1 Solution: asynchronously recycling a pool of objects 

To optimize the performance of a concurrent application with intense memory con-
sumption, recycle the objects that otherwise are subject to be garbage collected by the 
system. In the parallel compress and encrypt stream example, you want to reuse the 
same byte buffers (byte arrays) generated instead of creating new ones. This is possible 
using ObjectPool, a class designed to provide a cached pool of objects that recycles 
the items that aren’t being used. This reuse of objects avoids expensive acquisition 
and release of resources, minimizing the potential memory allocation. Specifically, in 
the highly concurrent example, you need a thread-safe and non-blocking (task-based) 
concurrent object pool (figure 13.2).

Consumer B
using object T

Consumer A
using object T

Request object
from the pool.

Send object back when
utilization is complete.

Send object back when
utilization is complete.

GetAsync

PutAsync

Object T

Object T

Object T

Object T

Object T

Figure 13.2  An object pool can asynchronously handle multiple concurrent requests for reusable 
objects from multiple consumers. The consumer then sends the object back to the object pool when it’s 
done with the work. Internally, object pool generates a queue of objects using a given factory delegate. 
These objects are then recycled to reduce memory consumption and the cost of new instantiation.

In listing 13.1 the implementation of ObjectPoolAsync is based on a TDF that uses the 
BufferBlock as a building block. The ObjectPoolAsync pre-initializes a set of objects 
for an application to use and reuse when needed. Furthermore, TDF is intrinsically 
thread safe while providing an asynchronous, non-blocking semantic.

Listing 13.1  Asynchronous object pool implementation using TDF

public class ObjectPoolAsync<T> :IDisposable
{
    private readonly BufferBlock<T> buffer;  
    private readonly Func<T> factory;  
    private readonly int msecTimeout;
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    public ObjectPoolAsync(int initialCount, Func<T> factory, 
➥ CancellationToken cts, int msecTimeout = 0)
    {
        this.msecTimeout = msecTimeout;
        buffer = new BufferBlock<T>(  
            new DataflowBlockOptions { CancellationToken = cts });
        this.factory = () => factory(); 

        for (int i = 0; i < initialCount; i++)
            buffer.Post(this.factory());  
    }

    public Task<bool> PutAsync(T item) => buffer.SendAsync(item); 
    
    public Task<T> GetAsync(int timeout = 0)  
    {
        var tcs = new TaskCompletionSource<T>();
        buffer.ReceiveAsync(TimeSpan.FromMilliseconds(msecTimeout))
            .ContinueWith(task =>
            {
                if (task.IsFaulted)
                    if (task.Exception.InnerException is TimeoutException)
                        tcs.SetResult(factory());
                    else
                        tcs.SetException(task.Exception);
                else if (task.IsCanceled)
                    tcs.SetCanceled();
                else
                    tcs.SetResult(task.Result);                
            });
        return tcs.Task;
    }
    public void Dispose() => buffer.Complete();

}

ObjectPoolAsync accepts as arguments an initial number of objects to create and a 
factory delegate constructor. ObjectPoolAsync exposes two functions to orchestrate 
the object’s recycle: 

¡	PutAsync—An item can be Put into the pool asynchronously.
¡	GetAsync—An item can be taken from the pool asynchronously.

In the downloadable source code, you can find the full solution of the CompressAnd-
Encrypt program updated to use ObjectPoolAsync. Figure 13.3 is a graphical compar-
ison of the GC generations for different file sizes between the original version of the 
program and the new one that exploits ObjectPoolAsync.

Uses BufferBlock to asynchronously 
coordinate the underlying set of types T

Uses a factory delegate to 
generate a new instance of type T

During the initialization of the object pool, the buffer is filled with 
instances of type T to have objects available from the start. 

When the consumer is done, the object type T 
is sent back to the object pool to be recycled. 

The object pool sends an object type T 
when a consumer makes the request. 
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Figure 13.3  Comparison of chapter 12’s CompressAndEncrypt program, which processes 
different large files (1 GB, 2 GB, and 3 GB), implemented with and without AsyncObjectPool. The 
implementation using the object pool has a low number of GC generations compared to the original one. 
Minimizing GC generation results in better performance.

The results displayed in the chart demonstrate how the CompressAndEncrypt program 
implemented using ObjectPoolAsync dramatically reduces the GC generations, speed-
ing up overall application performance. In an eight-core machine, the new version of 
CompressAndEncrypt is about 8% faster.

13.2 Custom parallel Fork/Join operator 
In this section you implement a reusable extension method to parallelize Fork/Join 
operations. Let’s say you detected a piece of code in your program that would benefit 
from being executed in parallel using a Divide and Conquer pattern to speed up perfor-
mance. You decide to refactor the code to use a concurrent Fork/Join pattern (figure 
13.4). And the more you check the program, the more similar patterns arise. 

NOTE  As you may recall from section 4.2, Fork/Join, like Divide and Conquer, 
breaks the work into small tasks until each small task is simple enough that it can 
be solved without further breakups, and then it coordinates the parallel workers.
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Figure 13.4  The Fork/Join pattern splits a task into subtasks that can be executed independently in 
parallel. When the operations complete, the subtasks are joined again. It isn’t a coincidence that this 
pattern is often used to achieve data parallelism. In fact, there are clearly similarities. 

Unfortunately, in .NET, there’s no built-in support for parallel Fork/Join extension 
methods to be reused on demand. But you can create this and more to have a reusable 
and flexible operator that does the following:

¡	Splits the data 
¡	Applies the Fork/Join pattern in parallel
¡	Optionally allows you to configure the degree of parallelism
¡	Merges the results using a reducer function

The .NET operator Task.WhenAll and the F# Async.Parallel can compose a set of 
given tasks in parallel; but these operators don’t provide an aggregate (or reduce) 
functionality to join the results. Moreover, they lack configurability when you want to 
control the degree of parallelism. To get your desired operator, you need a tailored 
solution.

13.2.1 Solution: composing a pipeline of steps  
forming the Fork/Join pattern

With TDF, you can compose different building blocks together as a pipeline. You 
can use the pipeline to define the steps of a Fork/Join pattern (figure 13.5), where 
the Fork step runs a set of tasks in parallel, then the following step joins the results, 
and the final step applies a reducer block for the ultimate output. For the later step 
of the workflow that aggregates the results, you need an object that maintains the 
state of the previous steps. In this case, you use the agent-based block built in chap-
ter 12 using TDF.

The Fork/Join pattern is implemented as an extension method over a generic IEnu-
merable to be accessed conveniently in a fluent style from the code, as shown in listing 
13.2 (the code to note is in bold).
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Figure 13.5  Fork/Join pattern implemented using TDF, where each step of the computation is defined 
using a different dataflow block

Listing 13.2  Parallel ForkJoin using TDF

    public static async Task<R> ForkJoin<T1, T2, R>(
        this IEnumerable<T1> source, 
             Func<T1, Task<IEnumerable<T2>>> map,  
        Func<R, T2, Task<R>> aggregate,    
        R initialState, CancellationTokenSource cts = null,
        int partitionLevel = 8, int boundCapacity = 20)   
    {
       cts = cts ?? new CancellationTokenSource();
       var blockOptions = new ExecutionDataflowBlockOptions {
            MaxDegreeOfParallelism = partitionLevel,
            BoundedCapacity = boundCapacity,
            CancellationToken = cts.Token
        };            

       var inputBuffer = new BufferBlock<T1>(
               new DataflowBlockOptions {
                   CancellationToken = cts.Token,
                   BoundedCapacity = boundCapacity 
               });       

       var mapperBlock = new TransformManyBlock<T1, T2>
➥ (map, blockOptions); 
       var reducerAgent = Agent.Start(initialState, aggregate, cts);  
       var linkOptions = new DataflowLinkOptions{PropagateCompletion=true};
       inputBuffer.LinkTo(mapperBlock, linkOptions);   

        IDisposable disposable = mapperBlock.AsObservable()
            .Subscribe(async item => await reducerAgent.Send(item));  

        foreach (var item in source)
            await inputBuffer.SendAsync(item);   
        inputBuffer.Complete();

The functions map and aggregate return a 
Task type to ensure concurrent behavior.

The partitionLevel is set to a default value of 8 and the 
boundCapacity to 20; these are arbitrary values that 

can, and should, be updated according to your needs.

Instances of the building blocks that are 
shaping the Fork/Join pipeline 

Packages up the properties of 
the execution details to configure 

the inputBuffer BufferBlock

Connects the building blocks to form and link 
the steps to run the Fork/Join pattern

The TransformManyBlock is 
transformed into an Observable, 

which is used to push the outputs as a 
message to the reducerAgent. Starts the Fork/Join process by pushing 

the items of the input collection into the 
first step of the pipeline 
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        var tcs = new TaskCompletionSource<R>();

        await inputBuffer.Completion.ContinueWith(task => 
                                         mapperBlock.Complete());
        await mapperBlock.Completion.ContinueWith(task => { 
            var agent = reducerAgent as StatefulDataflowAgent<R, T2>;
            disposable.Dispose();
            tcs.SetResult(agent.State);
        });        
        return await tcs.Task;
    }

The ForkJoin extension method accepts as an argument the IEnumerable source to 
process a mapping function, to transform its items, as well as an aggregate (reducer) 
function to merge all the results coming from the mapping computation. The argu-
ment initialState is the seed required by the aggregate function for the initial state 
value. But if the result type T2 can be combined (because the monoidal laws are satis-
fied), you could modify the method to use a reducer function with zero initial state, as 
explained in listing 5.10. 

The underlying dataflow blocks are linked to form a pipeline. Interestingly, map-
perBlock is converted into an Observable using the AsObservable extension method, 
which is then subscribed to send messages to the reducerAgent when an output is mate-
rialized. The values partitionLevel and boundCapacity are used respectively to set 
the degree of parallelism and the bound capacity.

Here is a simple example of how to exploit the ForkJoin operator: 

Task<long> sum = Enumerable.Range(1, 100000)
          .ForkJoin<int, long, long>(
                        async x => new[] { (long)x * x },
                        async (state, x) => state + x, 0L);

The previous code sums the squares of all number from 1 to 100,000 using the Fork/
Join pattern.

13.3 Parallelizing tasks with dependencies: designing code 
to optimize performance
Let’s imagine you need to write a tool that can execute a series of asynchronous tasks—
each with a different set of dependencies that influence the order of the operations. 
You can address this with sequential and imperative execution; but if you want to max-
imize performance, sequential operations won’t do. Instead, you must build the tasks 
to run in parallel. Many concurrent problems can be considered a static collection of 
atomic operations with dependencies between their inputs and outputs. On comple-
tion of the operation, the output is used as input to other dependent operations. To 
optimize performance, these tasks need to be scheduled based on the dependency, 
and the algorithm must be optimized to run the dependent tasks in serial as necessary 
and in parallel as much as possible.

You want a reusable component that runs a series of tasks in parallel, ensuring that 
all the dependencies that could influence the order of the operations are respected. 
How do you create a programming model that exposes the underlying parallelism of 

When the mapperBlock is completed, 
the continuation Task sets the 

reducerAgent as a result for the tcs 
Task passed to the caller as output. 
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a collection of operations that are executed efficiently, either in parallel or serially 
depending on the dependencies with other operations?

13.3.1 Solution: implementing a dependencies graph of tasks

The solution is called a directed acyclic graph (DAG), which aims to form a graph 
by breaking down operations into a series of atomic tasks with defined dependencies. 
The acyclic nature of the graph is important because it removes the possibility of dead-
locks between tasks, provided the tasks are truly atomic. When specifying the graph, it’s 
important to understand all dependencies between tasks, especially hidden dependen-
cies that may result in deadlocks or race conditions. Figure 13.6 is a typical example 
of a data structure in the shape of a graph, which can be used to represent scheduling 
constraints between the operations of the graph. A graph is an extremely powerful 
data structure in computer science that gives rise to strong algorithms.

1

2

3

4

6

5

7

8

You can apply the DAG structure as a strategy to run tasks in parallel while respecting 
the order of the dependencies for increasing performance. You can define this graph 
structure using the F# MailboxProcessor, which keeps an internal state for the tasks 
registered to be performed in the shape of edge dependencies.

Validating a directed acyclic graph
When working with any graph data structure, like a DAG, you need to deal with the prob-
lem of registering the edges correctly. In figure 13.6, what if node 2 with dependen-
cies to nodes 7 and 8 is registered, but node 8 doesn’t exist? It could also happen that 
some edges depend on each other, which would lead to a directed cycle. In the case of a 
directed cycle, it’s critical to run tasks in parallel; otherwise certain tasks could wait for-
ever on another to complete, in a deadlock.

The solution is called topological sort, which means that you can order all the vertices of 
the graph in such a way that all its directed edges target from a vertex earlier in the order 
to a vertex later in that order. For example, if task A must complete before task B, and 
task B must complete before task C which must complete before task A, then there’s a 
cycle reference, and the system will notify you of the mistake by throwing an exception. If 
a precedence constraint has a direct cycle, then there’s no solution. This kind of checking 
is called directed cycle detection. If a directed graph has satisfied these rules, it’s consid-
ered a DAG, which is primed to run several tasks that have dependencies in parallel.

You can find the complete version of listing 13.4, which includes the DAG validation, in 
the source code online. 

 

Figure 13.6  A graph is a collection 
of vertices connected by edges. In 
this representation of a DAG, node 1 
has dependencies on nodes 4 and 5, 
node 2 depends on node 5, node 3 has 
dependencies on nodes 5 and 6, and so on.
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The following example uses the F# MailboxProcessor as a perfect candidate to imple-
ment a DAG to run in parallel operations with dependencies. First, let’s define the 
discriminated union used to manage the tasks and run their dependencies.

Listing 13.3  Message type and data structure to coordinate task execution

type TaskMessage =         
    | AddTask of int * TaskInfo
    | QueueTask of TaskInfo
    | ExecuteTasks     
and TaskInfo =     
    { Context : System.Threading.ExecutionContext  
      Edges : int array; Id : int; Task : Func<Task>
      EdgesLeft : int option; Start : DateTimeOffset option
      End : DateTimeOffset option }

The TaskMessage type represents the message cases sent to the underlying agent 
of the ParallelTasksDAG, implemented in listing 13.4. These messages are used for 
task coordination and dependency synchronization. The TaskInfo type contains and 
tracks the details of the registered tasks during the execution of the DAG, including 
the dependency edges. The execution context (http://mng.bz/2F9o) is captured to 
access information during the delayed execution, such as the current user, any state 
associated with the logical thread of execution, code-access security information, and 
so forth. The start and end for the execution time are published when the event fires.

Listing 13.4  DAG F# agent to parallelize the execution of operations

type ParallelTasksDAG() =
    let onTaskCompleted = new Event<TaskInfo>()  

  let dagAgent = new MailboxProcessor<TaskMessage>(fun inbox ->
    let rec loop (tasks : Dictionary<int, TaskInfo>)   
                 (edges : Dictionary<int, int list>) = async {  
    let! msg = inbox.Receive()  
    match msg with
    | ExecuteTasks ->       
        let fromTo = new Dictionary<int, int list>()
        let ops = new Dictionary<int, TaskInfo>()   
        for KeyValue(key, value) in tasks do  
            let operation =
                { value with EdgesLeft = Some(value.Edges.Length) }
            for from in operation.Edges do
              let exists, lstDependencies = fromTo.TryGetValue(from)
              if not <| exists then 
                fromTo.Add(from, [ operation.Id ])
              else fromTo.[from] <- (operation.Id :: lstDependencies)
              ops.Add(key, operation)
        ops |> Seq.iter (fun kv ->       

Commands are sent to the ParallelTasksDAG 
underlying dagAgent agent, which is responsible for 
the task’s execution coordination.

Wraps the details of 
each task to run

Event that shows an instance of onTaskCompletedEvent, 
utilized to notify when a task completes

Agent internal state to track the tasks and their 
dependencies. The collections are mutable because the 

state changes during the execution of the 
ParallelTasksDAG, and because they inherited thread 

safety from being inside an agent.

Waits 
asynchronously 

for a message
Message case that starts 
execution of ParallelTasksDAG

Collection that maps a monotonically 
increased index with a task to run The process iterates through the task list, analyzing the 

dependencies among the other tasks to create a topological 
structure representing the order of the task execution. 

 

http://mng.bz/2F9o
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            match kv.Value.EdgesLeft with      
            | Some(n) when n = 0 -> inbox.Post(QueueTask(kv.Value))
            | _ -> ())
        return! loop ops fromTo
    | QueueTask(op) ->   
        Async.Start <| async { 
            let start = DateTimeOffset.Now
            match op.Context with 
            | null -> op.Task.Invoke() |> Async.AwaitATsk
            | ctx -> ExecutionContext.Run(ctx.CreateCopy(),  
                     (fun op -> let opCtx = (op :?> TaskInfo)
                                opCtx.Task.Invoke().ConfigureAwait(false)), 
➥ taskInfo)
            let end' = DateTimeOffset.Now
            onTaskCompleted.Trigger  { op with Start = Some(start)
                                               End = Some(end') } 
            let exists, deps = edges.TryGetValue(op.Id)
            if exists && deps.Length > 0 then
               let depOps = getDependentOperation deps tasks []
               edges.Remove(op.Id) |> ignore
               depOps |> Seq.iter (fun nestedOp -> 
                              inbox.Post(QueueTask(nestedOp))) }
        return! loop tasks edges 
    | AddTask(id, op) -> tasks.Add(id, op)   
                         return! loop tasks edges }
    loop (new Dictionary<int, TaskInfo>(HashIdentity.Structural)) 
         (new Dictionary<int, int list>(HashIdentity.Structural)))
   
  [<CLIEventAttribute>]
  member this.OnTaskCompleted = onTaskCompleted.Publish    
  member this.ExecuteTasks() = dagAgent.Post ExecuteTasks  
  member this.AddTask(id, task, [<ParamArray>] edges : int array) =
    let data = { Context = ExecutionContext.Capture()
                 Edges = edges; Id = id; Task = task
                 NumRemainingEdges = None; Start = None; End = None }
    dagAgent.Post(AddTask(id, data))   

The purpose of the function AddTask is to register a task including arbitrary depen-
dency edges. This function accepts a unique ID, a function task that must be executed, 
and a set of edges that represent the IDs of other registered tasks, all of which must be 
completed before the current task can be executed. If the array is empty, it means there 
are no dependencies. The MailboxProcessor named dagAgent keeps the registered 
tasks in a current state tasks, which is a map (tasks : Dictionary<int, TaskInfo>) 
between the ID of each task and its details. The agent also keeps the state of the edge 
dependencies for each task ID (edges : Dictionary<int, int list>). The Dic-
tionary collections are mutable because the state changes during the execution of 
the ParallelTasksDAG, and because they inherited thread safety from being inside an 
agent. When the agent receives the notification to start the execution, part of the pro-
cess involves verifying that all the edge dependencies are registered and that there are 

Message case to queue up a task, run it, and 
ultimately, remove it from the agent state as 
an active dependency when it completes 

If the ExecutionContext captured is null, then 
runs the task function in the current context.

Runs the task using the 
ExecutionContext captured

Triggers and publishes 
the onTaskCompleted 
event to notify that a 
task is completed. The 
event contains the task 
information.

Message case that 
adds a task to be 
executed according 
to its dependencies, 
if any

Starts the execution of 
the tasks registeredAdds a task, its dependencies, and the current 

ExecutionContext for the DAG execution. 
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no cycles within the graph. This verification step is available in the full implementation 
of the ParallelTasksDAG in the downloadable source code. The following code is an 
example in C# that references and consumes the F# library to run the ParallelTasks-
DAG. The tasks registered mirror the dependencies from figure 13.6: 

Func<int, int, Func<Task>> action = (id, delay) => async () => {
    Console.WriteLine($"Starting operation{id} in Thread Id 
{Thread.CurrentThread.ManagedThreadId} . . . ");
    await Task.Delay(delay);
};

var dagAsync = new DAG.ParallelTasksDAG();
dagAsync.OnTaskCompleted.Subscribe(op => 
    Console.WriteLine($"Operation {op.Id} completed in Thread Id      { 

Thread.CurrentThread.ManagedThreadId}"));

dagAsync.AddTask(1, action(1, 600), 4, 5);
dagAsync.AddTask(2, action(2, 200), 5);
dagAsync.AddTask(3, action(3, 800), 6, 5);
dagAsync.AddTask(4, action(4, 500), 6);
dagAsync.AddTask(5, action(5, 450), 7, 8);
dagAsync.AddTask(6, action(6, 100), 7);
dagAsync.AddTask(7, action(7, 900));
dagAsync.AddTask(8, action(8, 700));
dagAsync.ExecuteTasks();

The helper function’s action purpose is to print when a task starts, indicating the 
current thread Id as a reference to prove the multithreaded functionality. The event 
OnTaskCompleted is registered to notify when each task completes printing in the 
console the task ID and the current thread Id. Here’s the output when the method 
Execute Tasks is called:

Starting operation 8 in Thread Id 23...
Starting operation 7 in Thread Id 24...
Operation 8 Completed in Thread Id 23
Operation 7 Completed in Thread Id 24
Starting operation 5 in Thread Id 23...
Starting operation 6 in Thread Id 25...
Operation 6 Completed in Thread Id 25
Starting operation 4 in Thread Id 24...
Operation 5 Completed in Thread Id 23
Starting operation 2 in Thread Id 27...
Starting operation 3 in Thread Id 30...
Operation 4 Completed in Thread Id 24
Starting operation 1 in Thread Id 28...
Operation 2 Completed in Thread Id 27
Operation 1 Completed in Thread Id 28
Operation 3 Completed in Thread Id 30

As you can see, the tasks run in parallel with a different thread of execution (different 
thread ID), and the dependency order is preserved.
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13.4 Gate for coordinating concurrent I/O operations 
sharing resources: one write, multiple reads 
Imagine you’re implementing a server application where there are many concurrent 
client requests coming in. These concurrent requests came into the server application 
because of the need to access shared data. Occasionally, a request that needs to modify 
the shared data would come in, requiring the data to be synchronized.  

When a new client request arrives, the thread pool dispatches a thread to handle the 
request and to start the processing. Imagine if at this point the request wants to update 
data in the server in a thread-safe manner. You must face the problem of how to coordi-
nate the read and write operations so that they access the resources concurrently with-
out blocking. In this case, blocking means to coordinate the access of a shared resource. 
In doing so, the write operation locks the other operations to take ownership of the 
resource until its operation is complete.

A possible solution is to use primitive lock, such as ReaderWriterLockSlim (http://
mng.bz/FY0J), which also manages access to a resource, allowing multiple threads. 

But in this book you learned that you should avoid using primitive locks when possi-
ble. Locks prevent the code from running in parallel, and in many cases, overwhelm the 
thread pool by forcing it to create a new thread for each request. The other threads are 
blocked from acquiring access to the same resources. Another downside is that locks 
could be held for an extremely long time, causing the threads that have been awakened 
from the thread pool to process the read requests, to be immediately put to sleep wait-
ing for the writer thread to complete its task. Additionally, this design doesn’t scale.

Finally, the read and write operations should be handled differently to allow multi-
ple reads to happen simultaneously, because these operations don’t change the data. 
This should be balanced by ensuring write operations are only processed one at a time, 
while blocking the reads from retrieving stale data.

You need a custom coordinator that can synchronize the read and write operations 
asynchronously without blocking. This coordinator should execute the writes one at 
a time in sequential order without blocking any threads and leave the reads to run in 
parallel.

13.4.1 Solution: applying multiple read/write operations to shared 
thread-safe resources

ReaderWriterAgent offers reader-writer asynchronous semantics without blocking 
any threads and maintains a FIFO order of operations. It reduces resource consump-
tion and improves the performance of the application. In fact, ReaderWriterAgent 
can perform an extraordinary amount of work using only a few threads. Regardless 
of the number of operations being made against the ReaderWriterAgent, only a few 
resources are required.

In the examples that follow, you want to send multiple read and write operations 
to a shared database. These operations are processed giving higher priority to reader 

 

http://mng.bz/FY0J
http://mng.bz/FY0J
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threads than writers, as shown in figure 13.7. The same concepts can be applied to any 
other resources, such as a filesystem.

NOTE  In general, ReaderWriterAgent is a better fit for programs that concur-
rently access resources asynchronously using I/O operations. 

 

Gate agent,
synchronizing
one write and
multiple reads

Only one write operation is executed at a time.
When multiple operations arrive to access the
database, the read operations are queued to
wait asynchronously for the write operation
to complete before proceeding.

Gate

Behavior

State

Read

Write

Read Write

Read

Read

Behavior

State

Database

When multiple read operations arrive,
they access the database and are processed
asynchronously in parallel according to the
degree of parallelism configured.

Gate

Read

Read

Read

Read

Read

Read
Read
Read

Read
Read

Database

Figure 13.7  ReaderWriterAgent acts as a gate agent to asynchronously synchronize the access 
to share resources. In the top image, only one write operation at a time is executed, while the read 
operations are queued up to wait asynchronously for the write operation to complete before proceeding. 
In the bottom image, multiple read operations are processed asynchronously in parallel according to the 
degree of parallelism configured.
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Listing 13.5 is the implementation of ReaderWriterAgent using the F# MailboxPro-
cessor. The reason for choosing the F# MailboxProcessor is for simplicity in defin-
ing state machines, which are convenient to implement a reader-writer asynchronous 
coordinator. First, you need to define the message types to represent the operations 
by which the ReaderWriterAgent coordinates and synchronizes the read and write 
operations.

Listing 13.5  Message types used by the ReaderWriterAgent coordinator  

type ReaderWriterMsg <'r,'w> =         
    | Command of ReadWriteMessages<'r,'w>
    | CommandCompleted            
and ReaderWriterGateState =           
    | SendWrite
    | SendRead of count:int
    | Idle
and ReadWriteMessages<'r,'w> =   
    | Read of r:'r
    | Write of w:'w

The ReaderWriterMsg message type denotes the command to either read or write to 
the database or to notify that the operation is completed. ReaderWriterGateState is 
a DU used to queue up the read/write operations to the ReaderWriterAgent. Ulti-
mately, the ReadWriteMessages DU identifies the cases for the read/write operations 
queued in the internal ReaderWriterAgent.

This listing shows the implementation of the ReaderWriterAgent type.

Listing 13.6  ReaderWriterAgent coordinates asynchronous operations 

type ReaderWriterAgent<'r,'w>(workers:int, 
behavior: MailboxProcessor<ReadWriteMessages<'r,'w>> -> 
➥ Async<unit>,?errorHandler, ?cts:CancellationTokenSource) =  

    let cts = defaultArg cts (new CancellationTokenSource())  
    let errorHandler = defaultArg errorHandler ignore         
    let supervisor = MailboxProcessor<Exception>.Start(fun inbox -> async {
            while true do       
                let! error = inbox.Receive(); errorHandler error })

    let agent = MailboxProcessor<ReaderWriterMsg<'r,'w>>.Start(fun inbox ->
        let agents = Array.init workers (fun _ ->          
            (new AgentDisposable<ReadWriteMsg<'r,'w>>(behavior, cts))
                .withSupervisor supervisor)      

Uses a DU about the command cases to 
send to queue up the read/write operations

Uses message types to change the state 
and coordinate the operations in the 
internal queue of the ReaderWriterAgent

The constructor takes the number of workers to configure the degree of 
parallelism, the behavior of the agent that accesses the database for the 
read/write operations, and the optional arguments to handle errors and 
to cancel the underlying agent to stop the still-active operations. 

If the optional arguments aren’t passed into the 
constructor, they’re initialized with the default value.

The supervisor agent handles exceptions. A while-true loop 
is used to wait asynchronously for incoming messages.

Creates a collection of agents with given behavior 
passed to parallelize the read/write operations to 

the database. Access is synchronized.

Each newly created agent registers the error 
handler to notify the supervisor agent.
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        cts.Token.Register(fun () ->  
         agents |> Array.iter(fun agent -> (agent:>IDisposable).Dispose()))

        let writeQueue = Queue<_>()          
        let readQueue = Queue<_>()           
        let rec loop i state = async {
            let! msg = inbox.Receive()
            let next = (i+1) % workers  
            match msg with
            | Command(Read(req)) ->
                match state with       
                | Idle -> agents.[i].Agent.Post(Read(req))
                          return! loop next (SendRead 1)
                | SendRead(n) when writeQueue.Count = 0 ->
                    agents.[i].Agent.Post(Read(req))
                    return! loop next (SendRead(n+1))
                | _ -> readQueue.Enqueue(req)
                       return! loop i state
            | Command(Write(req)) ->         
                match state with
                | Idle -> agents.[i].Agent.Post(Write(req))
                          return! loop next SendWrite
                | SendRead(_) | SendWrite -> writeQueue.Enqueue(req)
                                             return! loop i state
            | CommandCompleted ->       
                match state with
                | Idle -> failwith "Operation no possible"
                | SendRead(n) when n > 1 -> return! loop i (SendRead(n-1))
                | SendWrite | SendRead(_) ->
                    if writeQueue.Count > 0 then
                        let req = writeQueue.Dequeue()
                        agents.[i].Agent.Post(Write(req))
                        return! loop next SendWrite
                    elif readQueue.Count > 0 then
                        readQueue |> Seq.iteri (fun j req ->
                            agents.[(i+j)%workers].Agent.Post(Read(req)))
                        let count = readQueue.Count
                        readQueue.Clear()
                        return! loop ((i+ count)%workers) (SendRead count)
                    else return! loop i Idle }
        loop 0 Idle), cts.Token)

    let postAndAsyncReply cmd createRequest =
        agent.PostAndAsyncReply(fun ch ->     
                     createRequest(AsyncReplyChannelWithAck(ch, fun () -> 
➥ agent.Post(CommandCompleted))) |> cmd |> ReaderWriterMsg.Command 

    member this.Read(readRequest) = postAndAsyncReply Read  readRequest
    member thisWrite(writeRequest) = postAndAsyncReply Write writeRequest

The implementation of the underlying F# MailboxProcessor, in the ReaderWriter-
Agent type, is a multi-state machine that coordinates exclusive writes and reads access 
to shared resources. The ReaderWriterAgent creates sub-agents that access the 

Registers the cancellation strategy to 
stop the underlying agent workers 

Uses internal queues to manage the access 
and execution of the read/write operations 

The Command Read case, 
based on the current agent 

state, can queue up a new read 
operation, start an  Read 

operation when the writeQueue 
is empty, or stay idle. 

The Command Write 
case, based on the 
current agent state, can 
either stay idle or queue 
up a Write operation.  

CommandCompleted notifies 
when an operation completes to 
update the current state of the 
read/write queues. 

This function establishes asynchronous bidirectional 
communication between the agent and the caller to send 
the command and wait, without blocking, for the response.  
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resources based on the ReadWriteMsg message type received. When the agent coordi-
nator receives a Read command, its current state is checked using pattern matching to 
apply exclusive access logic:

¡	If the state is Idle, the Read command is sent to the agent children to be processed. 
If there are no active writes, then the state of the main agent is changed to SendRead.

¡	If the state is SendRead, the Read operation is sent to the agent’s children to be 
performed only if there are no active writes.

¡	In all other cases, the Read operation is placed in the local Read queue for later 
processing.

In the case of a Write command sent to the agent coordinator, the message is pattern 
matched and processed according to its current state:

¡	If the state is Idle, the Write command is sent to the sub-agent inboxes to be pro-
cessed. The state of the main agent is then changed to SendWrite.

¡	In all other cases, the Write operation is placed in the local Write queue for later 
processing.

Figure 13.8 shows the ReaderWriterAgent multi-state machine.

 

If the state is Idle, the read
command is sent to the agent’s
children to be processed. If
there are no active writes,
the state of the main agent
is changed to SendRead.

If the state is Idle, the write command
is sent to the subagents’ inboxes to be
processed. The state of the main agent
is changed to SendWrite.

If the state is SendWrite,
the write operation is
queued in the local write
queue for later processing.

If the state is SendRead,
a read operation is queued
in the local read queue for
later processing.

If the state is SendRead,
the read operation is sent
to the agent’s children, to
be performed only if there
are no active writes.

Send read

Send write

Write message

IdleBehavior

State

Read
Read

ReadDatabase

Write

Write message

Read message

Read message

Figure 13.8  The ReaderWriterAgent works as a state machine, where each state aims to 
asynchronously synchronize the access to share resources (in this case, a database).

 



414 chapter 13 Recipes and design patterns for successful concurrent programming

The following code snippet is a simple example that uses ReaderWriterAgent. For sim-
plicity, instead of concurrently accessing a database, you’re accessing a local mutable 
dictionary in a thread-safe and non-blocking manner:

type Person  = { id:int; firstName:string; lastName:string; age:int }

let myDB = Dictionary<int, Person>()

let agentSql connectionString =
    fun (inbox: MailboxProcessor<_>) ->
        let rec loop() = async {
            let! msg = inbox.Receive()
            match msg with
            | Read(Get(id, reply)) ->
                match myDB.TryGetValue(id) with
                | true, res -> reply.Reply(Some res)
                | _ -> reply.Reply(None)
            | Write(Add(person, reply)) ->
                let id = myDB.Count
                myDB.Add(id, {person with id = id})
                reply.Reply(Some id)
            return! loop() }
        loop()

let agent = ReaderWriterAgent(maxOpenConnection, agentSql connectionString)

let write person = async {
    let! id = agent.Write(fun ch -> Add(person, ch))
    do! Async.Sleep(100)
}

let read personId = async {
    let! resp = agent.Read(fun ch -> Get(personId, ch))
    do! Async.Sleep(100)
}

[ for person in people do 
    yield write  person
    yield read person.Id
    yield write  person
    yield read person.Id
    yield read person.Id ]
    |> Async.Parallel

The code example creates the agentSql object, whose purpose it is to emulate a data-
base accessing the local resource myDB. The instance agent of the ReaderWriterAgent 
type coordinates the parallel operations reads and writes, which accesses concurrently 
and in a thread-safe manner the myDB dictionary without blocking. In a real-world sce-
nario, the mutable collection myDB represents a database, a file, or any sort of shared 
resource.

13.5 Thread-safe random number generator
Often, when dealing with multithreaded code, you need to generate random num-
bers for an operation in the program. For example, suppose you’re writing a web 
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server application that needs to randomly send back an audio clip when a user sends a 
request. For performance reasons, the set of audio clips is loaded in the memory of the 
server, which is concurrently receiving a large number of requests. For each request, 
an audio clip must be randomly selected and sent back to the user to be played. 

In most cases, the System.Random class is a fast-enough solution for producing ran-
dom number values. But an effective application of a Random instance that is accessed in 
parallel becomes a challenging problem to solve in a high-performance style. When an 
instance of the Random class is used by multiple threads, its internal state can be compro-
mised, and it will potentially always return zero. 

NOTE  The System.Random class may not be random in the crypto-graphical 
sense. If you care about the quality of the random numbers, you should be 
using RNGCryptoServiceProvider, which generates cryptographically strong 
random numbers.

13.5.1 Solution: using the ThreadLocal object

ThreadLocal<T> ensures that each thread receives its own instance of a Random class, 
guaranteeing completely thread-safe access even in a multithreaded program. The fol-
lowing listing shows the implementation of the thread-safe random number generator 
using the ThreadLocal<T> class, which provides a strongly typed and locally scoped 
type to create object instances that are kept separate for each thread.

Listing 13.7  Thread-safe random number generator 

public class ThreadSafeRandom : Random
{
    private ThreadLocal<Random> random =
        new ThreadLocal<Random>(() => new Random(MakeRandomSeed()));  

    public override int Next() => random.Value.Next();        

    public override int Next(int maxValue) => 
                                  random.Value.Next(maxValue); 

    public override int Next(int minValue, int maxValue) =>   
                                    random.Value.Next(minValue, maxValue);

    public override double NextDouble() => random.Value.NextDouble(); 

    public override void NextBytes(byte[] buffer) =>         
                                          random.Value.NextBytes(buffer);

    static int MakeRandomSeed() => 
                     Guid.NewGuid().ToString().GetHashCode(); 
} 

ThreadSafeRandom represents a thread-safe pseudo random number generator. 
This class is a subclass of Random and overrides the methods Next, NextDouble, and 

Creates a thread-safe random number 
generator using the ThreadLocal<T> class

Exposes the Random class methods
Creates a seed that doesn’t depend on the system clock. 

A unique value is created with each invocation.
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NextBytes. The MakeRandomSeed method provides a unique value for each instance of 
the underlying Random class, which does not depend on the system clock.

The constructor for ThreadLocal<T> accepts a Func<T> delegate to create a 
thread-local instance of the Random class. The ThreadLocal<T>.Value is used to access 
the underlying value. Here you access the ThreadSafeRandom instance from a parallel 
loop to simulate a concurrent environment. 

In this example, the parallel loop calls ThreadSafeRandom concurrently to obtain a 
random number for accessing the clips array: 

var safeRandom = new ThreadSafeRandom();

string[] clips = new string[] { "1.mp3", "2.mp3", "3.mp3", "4.mp3"};

Parallel.For(0, 1000, (i) =>
{
     var clipIndex = safeRandom.Next(4);
     var clip = clips[clipIndex];

     Console.WriteLine($"clip to play {clip} - Thread Id 
                          {Thread.CurrentThread.ManagedThreadId}");
});

Here's the result, in print or on the console: 

clip to play 2.mp3 - Thread Id 11
clip to play 2.mp3 - Thread Id 8
clip to play 1.mp3 - Thread Id 20
clip to play 2.mp3 - Thread Id 20
clip to play 4.mp3 - Thread Id 13
clip to play 1.mp3 - Thread Id 8
clip to play 4.mp3 - Thread Id 11
clip to play 3.mp3 - Thread Id 11
clip to play 2.mp3 - Thread Id 20
clip to play 3.mp3 - Thread Id 13

NOTE  A single instance of ThreadLocal<T> allocates a few hundred bytes, so it’s 
important to consider how many of these active instances are necessary at any 
time. If the program requires many parallel operations, it’s recommended to 
work on a local copy to avoid accessing thread-local storage as much as possible.

13.6 Polymorphic event aggregator
In this section, assume that you need a tool to work in a program that requires raising 
several events of different types in the system, and then has a publish and subscribe system 
that can access these events.

13.6.1 Solution: implementing a polymorphic  
publisher-subscriber pattern

Figure 13.9 illustrates how to manage events of different types. Listing 13.8 shows the 
EventAggregator implementation using Rx (in bold).
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IEventAggregator
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Figure 13.9  The EventAggregator manages events of different types. When the events are 
published, the EventAggregator matches and notifies the subscriber and events of the same type.

Listing 13.8  EventAggregator using Rx

type IEventAggregator =         
    inherit IDisposable         
    abstract GetEvent<'Event> : unit -> IObservable<'Event>
    abstract Publish<'Event> : eventToPublish:'Event -> unit

type internal EventAggregator() =
    let disposedErrorMessage = "The EventAggregator is already disposed."

    let subject = new Subject<obj>()   
    
    interface IEventAggregator with  
        member this.GetEvent<'Event>(): IObservable<'Event> =  
            if (subject.IsDisposed) then failwith disposedErrorMessage

            subject.OfType<'Event>().AsObservable<'Event>()  
                   .SubscribeOn(TaskPoolScheduler.Default)   
    

        member this.Publish(eventToPublish: 'Event): unit =   
            if (subject.IsDisposed) then failwith disposedErrorMessage

            subject.OnNext(eventToPublish)        

        member this.Dispose(): unit = subject.Dispose()  
     
    static member Create() = new EventAggregator():>IEventAggregator 

Interfaces to define the contract for the EventAggregator, 
which also implements the IDisposable interface to ensure 
the cleanup of the resource subject Instance of the Subject type (Rx) that 

coordinates event registration and 
notification

Retrieves the event as IObservable based on the type 

Subscribes Observable in the TaskPool scheduler to enforce concurrent behavior

Publishes event notifications to 
all subscribers of the event type 
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The interface IEventAggregator helps to loosely couple the EventAggregator imple-
mentation. This means that the consuming code won’t need to change (as long as the 
interface doesn’t change), even if the inner workings of the class change. Notice that 
IEventAggregator inherits from IDisposable to clean up any resources that were allo-
cated when an instance of EventAggregator was created.

The methods GetEvent and Publish encapsulate an instance of the Rx Subject type, 
which behaves as a hub for events. GetEvent exposes IObservable from the subject 
instance to allow a simple way to handle event subscriptions. By default, the Rx Subject 
type is single threaded, so you use the SubscribeOn extension method to ensure that 
EventAggregator runs concurrently and exploits TaskPoolScheduler. The method 
Publish notifies all the subscribers to the EventAggregator concurrently.

The static member Create generates an instance of EventAggregator and exposes 
only the single interface IEventAggregator. The following code example shows how to 
subscribe to and publish events using the EventAggregator, and the output of running 
the program:

let evtAggregator = EventAggregator.Create()

type IncrementEvent = { Value: int }
type ResetEvent = { ResetTime: DateTime }

evtAggregator
    .GetEvent<ResetEvent>()
    .ObserveOn(Scheduler.CurrentThread)
    .Subscribe(fun evt -> printfn "Counter Reset at: %A - Thread Id %d" 
➥ evt.ResetTime Thread.CurrentThread.ManagedThreadId)

evtAggregator
    .GetEvent<IncrementEvent>()
    .ObserveOn(Scheduler.CurrentThread)
    .Subscribe(fun evt ->  printfn "Counter Incremented. Value: %d - Thread 
➥ Id %d" evt.Value Thread.CurrentThread.ManagedThreadId)

for i in [0..10] do 
    evtAggregator.Publish({ Value = i })
evtAggregator.Publish({ ResetTime = DateTime(2015, 10, 21) })

Here’s the output:

Counter Incremented. Value: 0 - Thread Id 1
Counter Incremented. Value: 1 - Thread Id 1
Counter Incremented. Value: 2 - Thread Id 1
Counter Incremented. Value: 3 - Thread Id 1
Counter Incremented. Value: 4 - Thread Id 1
Counter Incremented. Value: 5 - Thread Id 1
Counter Incremented. Value: 6 - Thread Id 1
Counter Incremented. Value: 7 - Thread Id 1
Counter Incremented. Value: 8 - Thread Id 1
Counter Incremented. Value: 9 - Thread Id 1
Counter Incremented. Value: 10 - Thread Id 1
Counter Reset at: 10/21/2015 00:00:00 AM - Thread Id 1

 



 419Custom Rx scheduler to control the degree of parallelism 

The interesting idea of the EventAggregator is how it handles events of different 
types. In the example, the EventAggregator instance registers two different event 
types (IncrementEvent and ResetEvent), and the Subscribe function sends the noti-
fication by targeting only the subscribers for a specific event type.

13.7 Custom Rx scheduler to control 
the degree of parallelism 
Let’s imagine you need to implement a system for querying large volumes of event 
streams asynchronously, and it requires a level of concurrency control. A valid solution 
for composing asynchronous and event-based programs is Rx, which is based on observ-
ables to generate sequence data concurrently. But as discussed in chapter 6, Rx isn’t mul-
tithreaded by default. To enable a concurrency model, it’s necessary to configure Rx to 
use a scheduler that supports multithreading by invoking the SubscribeOn extension. For 
example, Rx provides a few scheduler options including the TaskPool and ThreadPool 
types, which schedule all the actions to take place potentially using a different thread. 

 But there’s a problem, because both schedulers start with one thread by default and 
then have a time delay of about 500 ms before they’ll increase the number of threads 
required on demand. This behavior can have performance-critical consequences. 

For example, consider a computer with four cores where there are eight actions 
scheduled. The Rx thread pool, by default, starts with one thread. If each action takes 
2.000 ms, then three actions are queued up waiting for 500 ms before the Rx scheduler 
thread pool’s size is increased. Consequently, instead of executing four actions in par-
allel right away, which would take 4 seconds in total for all eight actions, the work isn’t 
completed for 5.5 sec, because three of the tasks are idle in the queue for 500 ms. Fortu-
nately, the cost of expanding the thread pool is only a one-time penalty. In this case, you 
need a custom Rx scheduler that supports concurrency with fine control over the level 
of parallelism. It should initialize the internal thread pool at startup time rather than 
when needed to avoid the cost during critical time computation.

If you enable concurrency in Rx using one of the available schedulers, there’s no 
option to configure the max degree of parallelism. This is a limitation, because in certain 
circumstances you only want few threads to be concurrently processing the event stream.

13.7.1 Solution: implementing a scheduler 
with multiple concurrent agents 

The Rx SubscribeOn extension method requires passing as an argument an object that 
implements the IScheduler interface. The interface defines the methods responsible 
for scheduling the action to be performed, either as soon as possible or at a point in 
the future. You can build a custom scheduler for Rx that supports the concurrency 
model with the option of configuring a degree of parallelism, shown in figure 13.10.
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Figure 13.10  ParallelAgentScheduler is a custom scheduler that aims to tailor the concurrent 
behavior of the Rx. The Rx scheduler uses an agent to coordinate and manage the parallelism. This is 
achieved by a pool of agent workers that push notifications to subscribers.

The following listing shows the implementation of the ParallelAgentScheduler 
scheduler for Rx, which uses the agent parallelWorker (shown in listing 11.5) to man-
age the degree of parallelism (the code to note is in bold).

Listing 13.9  Rx custom scheduler for managing the degree of parallelism

type ScheduleMsg = ScheduleRequest * AsyncReplyChannel<IDisposable> 

let schedulerAgent (inbox:MailboxProcessor<ScheduleMsg>) =  
    let rec execute (queue:IPriorityQueue<ScheduleRequest>) =  async {
        match queue |> PriorityQueue.tryPop with    
        | None -> return! idle queue -1
        | Some(req, tail) ->
            let timeout = 
                 int <| (req.Due - DateTimeOffset.Now).TotalMilliseconds
            if timeout > 0 && (not req.IsCanceled)
            then return! idle queue timeout
            else
                if not req.IsCanceled then req.Action.Invoke()

Uses a message type to schedule a job. The message response 
is an IDisposable wrapped in a reply channel. The IDisposable 
object is used to cancel/unsubscribe the notification. 

The schedulerAgent function creates an instance of a 
MailboxProcessor that prioritizes and coordinates the 

request of jobs to run.

When the agent is in execution and it receives a job request, the agent 
tries to pop a job to run from the internal priority-queue. If there are 
no jobs to execute, the agent switches to an idle state.
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                return! execute tail  }
    and idle (queue:IPriorityQueue<_>) timeout = async {   
        let! msg = inbox.TryReceive(timeout)
        let queue =
            match msg with
            | None -> queue
            | Some(request, replyChannel)->
                   replyChannel.Reply(Disposable.Create(fun () ->  
                                           request.IsCanceled <- true))
                   queue |> PriorityQueue.insert request
        return! execute queue }
    idle (PriorityQueue.empty(false)) -1

type ParallelAgentScheduler(workers:int) =
    let agent = MailboxProcessor<ScheduleMsg>        
                    .parallelWorker(workers, schedulerAgent)

    interface IScheduler with          
        member this.Schedule(state:'a, due:DateTimeOffset, 
➥	action:ScheduledAction<'a>) =
            agent.PostAndReply(fun repl ->         
                let action () = action.Invoke(this :> IScheduler, state)
                let req = ScheduleRequest(due, Func<_>(action))
                req, repl)

        member this.Now = DateTimeOffset.Now    
        member this.Schedule(state:'a, action) =        
            let scheduler = this :> IScheduler
            let due = scheduler.Now
            scheduler.Schedule(state, due, action)
        member this.Schedule(state:'a, due:TimeSpan,
                                       action:ScheduledAction<'a>) =
            let scheduler = this :> IScheduler
            let due = scheduler.Now.Add(due)
            scheduler.Schedule(state, due, action)

ParallelAgentScheduler introduces a level of concurrency to schedule and perform 
the tasks pushed in a distributed pool of running agents (F# MailboxProcessor). Note 
that all actions sent to ParallelAgentScheduler can potentially run out of order. 
Parallel AgentScheduler can be used as an Rx scheduler by injecting a new instance 
into the SubscribeOn extension method. The following code snippet is a simple exam-
ple to use this custom scheduler:

    let scheduler = ParallelAgentScheduler(4)

    Observable.Interval(TimeSpan.FromSeconds(0.4))
        .SubscribeOn(scheduler)
        .Subscribe(fun _ ->
           printfn "ThreadId: %A " Thread.CurrentThread.ManagedThreadId) 

The instance scheduler of the ParallelAgentScheduler object is set to have four con-
current agents running and ready to react when a new notification is pushed. In the 
example, the observable operator Interval sends a notification every 0.4 seconds, which 
is handled concurrently by the underlying agents of the parallelWorker. The benefits 

When the agent is in an idle state, and a job 
request arrives, the job is pushed to the local 

queue  and scheduled for execution. 
Returns a disposable 
object used to cancel 
the scheduled action

Creates an instance of the agent parallelWorker 
(from chapter 11), creating a collection of 

sub-agent workers passing the schedulerAgent 
behavior 

Implements the IScheduler 
that defines a Reactive 
Extensions scheduler 

Posts and schedules a job request to the 
instance of the parallelWorker, which 
dispatches the jobs to run in parallel 

through its internal agent workers 
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of using this custom ParallelAgentScheduler scheduler is that there’s no downtime 
and delay in creating new threads, and it provides fine control over the degree of paral-
lelism. There are times, for example, when you’ll want to limit the level of parallelism for 
analyzing an event stream, such as when events waiting to be processed are buffered in 
the internal queue of the underlying agents and consequently not lost.

13.8 Concurrent reactive scalable client/server 
The challenge: You need to create a server that listens asynchronously on a given port 
for incoming requests from multiple TCP clients. Additionally, you want the server to be

¡	Reactive
¡	Able to manage a large number of concurrent connections
¡	Scalable
¡	Responsive
¡	Event driven

These requirements ensure that you can use functional high-order operations to com-
pose the event stream operations over the TCP socket connections in a declarative and 
non-blocking way.

Next, the client requests need to be processed concurrently by the server, with result-
ing responses sent back to the client. The Transmission Control Protocol (TCP) server 
connection can be either secured or unsecured. TCP is the most-used protocol on the 
internet today, used to provide accurate delivery that preserves the order of data pack-
ets from one endpoint to another. TCP can detect when packets are wrong or missing, 
and it manages the action necessary for resending them. Connectivity is ultra-import-
ant in applications, and the .NET Framework provides a variety of different ways to help 
you support that need. 

You also need a long-running client program that uses TCP sockets to connect to 
the server. After the connection is established, both the client and server endpoints can 
send and receive bytes asynchronously and sometimes close the connection properly 
and reopen it at a later time.

The client program that attempts to connect to the TCP server is asynchronous, 
non-blocking, and capable of maintaining the application’s responsiveness, even under 
pressure (from sustaining a large number of data transfers). For this example, the cli-
ent/server socket-based application continually transfers volumes of packets at a high 
rate of speed as soon as the connection is established. The data is transmitted from the 
server to the client streaming in chunks, where each chunk represents the historical 
stocks prices on a particular date. This stream of data is generated by reading and pars-
ing the comma-separated values (CSV) files in the solution. When the client receives 
the data, it begins to update a chart in real time.

This scenario is applicable to any operations that use reactive programming based 
on streams. Examples you may encounter are remote binary listeners, socket program-
ming, and any other unpredictable event-oriented application, such as when a video 
needs to be streamed across the network.
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13.8.1 Solution: combining Rx and asynchronous programming 

To build the client/server program shown in listing 13.10, the CLR TcpListener and 
TcpClient classes provide a convenient model for creating a socket server with a few 
code lines. Used in combination with TAP and Rx, they increase the level of scalabil-
ity and reliability of the program. But to work in the reactive style, the traditional 
application design must change. 

Specifically, to achieve the requirements of a high-performing TCP client/server 
program, you need to implement the TCP sockets in an asynchronous style. For this 
reason, consider using a combination of Rx and TAP. Reactive programming, in 
particular, fits this scenario because it can deal with source events from any stream 
regardless of its type (network, file, memory, and so on). Here’s the Rx definition 
from Microsoft:

The Reactive Extensions (Rx) is a library for composing asynchronous and event-based 
programs using observable sequences and LINQ-style query operators, and parameterize 
the concurrency in the asynchronous data streams using Schedulers.

To implement the server in a scalable way, the instance of the TcpListener class listens 
for incoming connections. When a connection is established, it’s routed, as a TcpCli-
ent, from the listener handler to manage the NetworkStream. This stream is then used 
for reading and writing bytes for data-sharing between client and server. Figure 13.11 
shows the connection logic of the server program.

• Read StockData
• Serialize
• Write to client
   stream

Event connection

Subscribe

NetworkStream

Multiple
connection
requests

The Subscribe operator creates
a NetworkStream from the client
connection. The stream is used to
initiate communication between the
client and server in a different thread.

The task scheduler spawns
a task for each connection
established.

The TcpListener server accepts client
connections asynchronously in a loop using
the ToAcceptTcpClientObservable operator.

The connection with the client is
established. The event that carries
the client stream is pushed through
the observable pipeline. The communication

handler serializes and
sends StockData to the
client.

Figure 13.11  The TcpListener server accepts client connections asynchronously in a loop. When a 
connection is established, the event that carries the client stream is pushed through the Observable 
pipeline to be processed. Next, the connection handlers start reading the stock ticker symbol histories, 
serialize, and write the data to the client NetworkStream. 
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Listing 13.10  Reactive TcpListener server program 

static void ConnectServer(int port, string sslName = null)
{
    var cts = new CancellationTokenSource();
    string[] stockFiles = new string[] { "aapl.csv", "amzn.csv", "fb.csv", 
➥ "goog.csv", "msft.csv" };  

    var formatter = new BinaryFormatter();  
 
    TcpListener.Create(port)  
        .ToAcceptTcpClientObservable()
        .ObserveOn(TaskPoolScheduler.Default)  
        .Subscribe(client =>  {
     using (var stream = GetServerStream(client, sslName)) 
     {

          stockFiles
         .ObservableStreams(StockData.Parse)   
         .Subscribe(async stock => {
           var data = Serialize(formatter, stock); 
           await stream.WriteAsync(data, 0, data.Length, cts.Token);  
         });
     }
    },

    error => Console.WriteLine("Error: " + error.Message),  
    () => Console.WriteLine("OnCompleted"),       
    cts.Token);
}

In the example, the server shows the implementation of a reactive TCP listener that 
acts as an observable of the stock ticker. The natural approach for a listener is to sub-
scribe to an endpoint and receive clients as they connect. This is achieved by the exten-
sion method ToAcceptTcpClientObservable, which produces an observable of the 
IObservable<TcpClient>. The ConnectServer method uses the TcpListener.Create 
construct to generate a TcpListener using a given port number on which the server is 
listening asynchronously, and an optional name of the Secure Sockets Layer (SSL) to 
establish a secure or regular connection. 

The custom observable extension method ToAcceptTcpClientObservable uses the 
given TcpListener instance to provide mid-level network services across an underlying 
socket object. When a remote client becomes available and a connection is established, 
a TcpClient object is created to handle the new communication, which is then sent 
into a different long-running thread with the use of a Task object. 

Next, to guarantee the concurrent behavior of the socket handler, the scheduler is 
configured using the ObserveOn operator to subscribe and move the work to another 
scheduler, TaskPoolScheduler. In this way, the ToAcceptTcpClientObservable opera-
tor can orchestrate a large number of TcpClients concurrently as a sequence. 

Collects 
stock ticker 

files (csv)
.NET Binary Formatter used for 
convenience. The formatter type can be 
replaced with any other serializer. 

Converts a TcpListener into an 
observable sequence on a given port

Subscribes the event flow from the 
ToAcceptTcpClientObservable to run on 
the current TaskPoll scheduler to ensure 
concurrent behavior

Creates the Network stream to start the communication and 
data transfer. If the sslName value is provided, the Network 

stream returned uses a secure SSL base socket

Returns an observable that pushes and parses the stock 
histories from each file into a collection of StockData type 

Subscribes the event notification from ObservableStreams 
to serialize the  StockData received into a byte array and 

then to write the data  into the Network stream

Implements the Observer methods 
OnError and OnCompleted
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Then, the internals of the observable ToAcceptTcpClientObservable fetch the Tcp-
Client reference from the task, and create the network stream used as a channel to 
send the packets of data generated by the ObservableStreams custom observable oper-
ator. The GetServerStream method retrieves either a secure or regular stream accord-
ing to the value that nameSsl passed. This method determines whether the nameSsl 
value for an SSL connection has been set and, if so, creates an SslStream using TcpCli-
ent.GetStream and the configured server name to get the server certificate. 

Alternatively, if SSL isn’t used, GetServerStream gets the NetworkStream from the 
client using the TcpClient.GetStream method. You can find the GetServerStream 
method in the source code. When the ObservableStreams materialize, the event 
stream that’s generated flows into the Subscribe operator. The operator then asyn-
chronously serializes the incoming data into chunks of byte arrays that are sent across 
the network through the client stream. For simplicity, the serializer is the .NET binary 
formatter, but you can replace it with one that better fits your needs.

The data is sent across the network in the form of byte arrays, because it’s the only 
reusable data message type that can contain any shape of object. This listing shows an 
implementation of the core observable operator ToAcceptTcpClientObservable used 
by the underlying TcpListener to listen for remote connections and react accordingly.

Listing 13.11  Asynchronous and reactive ToAcceptTcpClientObservable 

static IObservable<TcpClient> ToAcceptTcpClientObservable(this TcpListener 
➥ listener, int backlog = 5)
{    
    listener.Start(backlog);  

    return Observable.Create<TcpClient>(async (observer, token) => 
    {
        try
        {
            while (!token.IsCancellationRequested) 
            { 
                var client = await listener.AcceptTcpClientAsync();  
                Task.Factory.StartNew(_ => observer.OnNext(client), token,  
                          TaskCreationOptions.LongRunning); 
            }
            observer.OnCompleted();
        }
        catch (OperationCanceledException)
        {
            observer.OnCompleted();  
        }
        catch (Exception error)
        {
            observer.OnError(error);  
        }
        finally
        {

Starts listening with a given client’s 
buffer backlog

Creates the Observable operator that captures 
a cancellation token from the context 

The while loop continues to iterate until the 
cancellation token requests a cancellation. Accepts new clients from the 

listener, asynchronously 

Routes the client connections to the 
observer into an asynchronous task to 

let multiple clients connect together

Implements the Observer methods 
OnCompleted and OnError to 
respectively handle the cases of 
cancellation and exception
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            listener.Stop();
        }
        return Disposable.Create(() => 
        {
            listener.Stop();
            listener.Server.Dispose();
        });
    });
}

ToAcceptTcpClientObservable takes an instance of TcpListener, which starts listen-
ing asynchronously for new incoming connection requests in a while loop, until the 
operation is canceled using a cancellation token. When a client successfully connects, a 
TcpClient reference flows out as a message within a sequence. This message executes 
into an asynchronous Task to service the client/server interaction, letting multiple cli-
ents connect concurrently to the same listener. Once a connection is accepted, another 
Task starts repeating the procedure of listening for new connection request.

Ultimately, when the observable is disposed, or the cancellation token requests a 
cancellation, the function passed into the Disposable.Create operator is triggered to 
stop and close the underlying server listener.

NOTE  In general, use the Disposable.Create method to write an action to 
clean up resources and to stop useless messages flowing to an observer that has 
been disposed.

The data transferred is generated through the ObservableStreams extension method, 
which reads and parses a set of CSV files to extract the historical stocks prices. This data 
is then pushed to the clients, connected through the NetworkStream.

This shows the implementation of ObservableStreams.

Listing 13.12  Custom Observable stream reader and parser 

static IObservable<StockData> ObservableStreams
    (this IEnumerable<string> filePaths,    
➥ Func<string, string, StockData> map, int delay = 50) 
{
    return filePaths     
      .Select(key =>      
           new FileLinesStream<StockData>(key, row => map(key, row))) 
      .Select(fsStock =>  {
         var startData = new DateTime(2001, 1, 1);
         return Observable.Interval(TimeSpan.FromMilliseconds(delay)) 
                 .Zip(fsStock.ObserveLines(), (tick, stock) => {   
                       stock.Date = startData + TimeSpan.FromDays(tick);
                       return stock;
                 });
            }

Creates a cleanup function that runs 
when the observable is disposed

The ObservableStreams custom observable extension 
method takes as an argument a list of file paths to process, 
and a lambda function for the file content transformation.

An instance of FileLinesStream is created for each file and used 
to generate an observable. This observable reads each line of 
the file and applies the map function for the transformation. 

The Interval operator is used to apply a 
delay between notifications. The value 
can be zero to disable the delays.

The Zip operator combines an element from each sequence in turn. 
In this case, one sequence is generated from the Interval operator, 

which ensures that a delay is applied for each notification.
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        )
        .Aggregate((o1, o2) => o1.Merge(o2));    
}

ObservableStreams generates a series of observables of StockData type, one for each 
of the filePaths passed. The class FileLinesStream, whose implementation is omitted 
for simplicity, opens the FileStream of a given file path. It then reads the content text 
from the stream as an observable and applies a projection to transform each line of text 
read into a StockData type. Ultimately it pushes the results out as an observable. 

The most interesting part of the code is the application of the two Observable oper-
ators Interval and Zip, which are used together to apply an arbitrary delay, if speci-
fied, between messages. The Zip operator combines an element from each sequence 
in turn, which means that each StockData entry is paired with an element, produced 
every interval time. In this case, the combination of a StockData with the interval time 
ensures a delay for each notification. 

Ultimately, the combination of the Aggregate and Merge operators is used to merge 
the observables generated from each file:

.Aggregate((o1, o2) => o1.Merge(o2));

Next, to complete the client/server program, you implement the reactive client class, 
shown in figure 13.12. Listing 13.13 shows the implementation of the client side.

Event connection Subscribe

Client

NetworkStream

Deserialize

Subscribe

GroupBy symbol

SelectMany

Throttle

The connection with the server
is established, and an event is
triggered. The event is pushed
through the observable pipeline
to start reading data from
the network stream.

Subscribe sends
notifications
to update the
live chart.

TcpClient requests
a connection to
TcpListener.

The network stream
asynchronously reads
the incoming data in
a loop.

The data that’s read
is deserialized and
pushed through the
observable pipeline.

Server

Figure 13.12  TcpClient requests a connection to the TcpListener server. When the connection 
is established, it triggers an event that carries the client stream, which is pushed through the observable 
pipeline. Next, a NetworkStream is created to start reading the data asynchronously in a loop from 
the server. The data read is next deserialized and analyzed through the observable pipeline to ultimately 
update the live chart.

The Aggregate operator merges 
(reduces) all the observables into one.
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Listing 13.13  Reactive TcpClient program 

var endpoint = new IPEndPoint(IPAddress.Parse("127.0.0.1"), 8080);
var cts = new CancellationTokenSource();
var formatter = new BinaryFormatter();

endpoint.ToConnectClientObservable()  
    .Subscribe(client => {
        GetClientStream(client, sslName)   

        .ReadObservable(0x1000, cts.Token)   
        .Select(rawData => Deserialize<StockData>(formatter, rawData))
        .GroupBy(item => item.Symbol)   

        .SelectMany(group =>
                     group.Throttle(TimeSpan.FromMilliseconds(20))  
                    .ObserveOn(TaskPoolScheduler.Default))  

        .ObserveOn(ctx)
        .Subscribe(stock =>   
             UpdateChart(chart, stock, sw.ElapsedMilliseconds) );
        },
        error => Console.WriteLine("Error: " + error.Message),
        () => Console.WriteLine("OnCompleted"),
        cts.Token);

The code starts with an IPEndPoint instance, which targets the remote server endpoint 
to connect. The observable operator ToConnectClientObservable creates an instance 
of a TcpClient object to initiate the connection. Now, you can use the Observable 
operators to subscribe to the remote client connection. When the connection with the 
server is established, the TcpClient instance is passed as an observable to begin receiv-
ing the stream of data to process. In this implementation, the remote NetworkStream 
is accessed calling the GetClientStream method. The stream of data flows into the 
observable pipeline though the ReadObservable operator, which routes the incoming 
messages from the underlying TcpClient sequence into another observable sequence 
of type ArraySegment bytes.

As part of the stream-processing code, after the chunks of rawData received from the 
server are converted into StockData, the GroupBy operator filters the stock tickers by 
symbol into multiple observables. At this point, each observable can have its own unique 
operations. Grouping allows throttling to act independently on each stock symbol, and 
only stocks with identical symbols will be filtered within the given throttle time span. 

A common problem with writing reactive code is when the events come in too 
quickly. A fast-moving stream of events can overwhelm your program’s processing. In 

Creates an observable over an instance of the TcpClient 
object to initiate and notify when the connection to the 
server is established

Creates a stream from the network 
streams used for the communication 
between the server and client

Delivers continuous chunks of bytes from the underlying stream 
until it can be read or a cancellation is requested. The byte array 

flows through the observable pipeline in an asynchronous way.

Groups the incoming data by the stock symbol, creating 
an observable for each stock ticker symbol

Throttles the incoming notification to avoid overwhelming the 
consumer. Throttling can be done based on the data stream 
itself (rather than just a timespan). 

This partition of the stream by the stock symbol 
starts a new thread for each partition.

The last step of the observable pipeline subscribes 
the notification to update a live chart.
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listing 13.13, because you have a bunch of UI updates, using the throttling operator can 
help deal with a massive flood of stream data without overwhelming the live updates. 
The operator after the throttling, ObserveOn(TaskPoolScheduler.Default), starts a 
new thread for each partition originated by the GroupBy. The Subscribe method ulti-
mately updates the live chart with the stock values. Here’s the implementation of the 
ToConnectClientObservable operator.

Listing 13.14  Custom Observable ToConnectClientObservable operator

static IObservable<TcpClient> ToConnectClientObservable(this IPEndPoint 
➥ endpoint)
{
    return Observable.Create<TcpClient>(async (observer, token) =>  { 
      var client = new TcpClient();   
      try
      {
          await client.ConnectAsync(endpoint.Address, endpoint.Port); 

          token.ThrowIfCancellationRequested();  

          observer.OnNext(client);   
      }
      catch (Exception error)
      {
          observer.OnError(error);
      }  
      return Disposable.Create(() => client.Dispose());  
    });
}

ToConnectClientObservable creates an instance of TcpClient from the given IPEnd-
Point endpoint, and then it tries to connect asynchronously to the remote server. 
When the connection is established successfully, the TcpClient client reference is 
pushed out through the observer. 

The last phase of the code to program is the ReadObservable observable operator, 
which is built to asynchronously and continuously read chunks of data from a stream. 
In this program, the stream is the NetworkStream produced as result of the connection 
between the server and client. 

Listing 13.15  Observable stream reader

public static IObservable<ArraySegment<byte>> ReadObservable(this Stream 
➥ stream, int bufferSize, CancellationToken token = 
➥ default(CancellationToken))
{
      var buffer = new byte[bufferSize];
      var asyncRead = Observable.FromAsync<int>(async ct => { 
          await stream.ReadAsync(buffer, 0, sizeof(int), ct); 

Creates an observable, passing the 
cancellation token from the current context

Starts waiting asynchronously for a 
connection to the server to be established 

Checks if a cancellation has 
been sent to stop observing 
the connection 

The connection is established, and the 
notification is pushed to the observers.

When the observable is disposed, 
TcpClient and its connection are closed.

Converts an asynchronous 
operation to an observable

Reads the size of the chunk of data (buffer) from the stream to 
configure the read length, and reads the buffer with the given size 
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          var size = BitConverter.ToInt32(buffer, 0);  
          await stream.ReadAsync(buffer, 0, size, ct);   
          return size});
      return Observable.While( 
            () => !token.IsCancellationRequested && stream.CanRead,
            Observable.Defer(() =>  
                    !token.IsCancellationRequested && stream.CanRead
                        ? asyncRead
                        : Observable.Empty<int>())
                .Catch((Func<Exception, IObservable<int>>)(ex => 
➥ Observable.Empty<int>())) 
                .TakeWhile(returnBuffer => returnBuffer > 0)
                .Select(readBytes => 
➥ new ArraySegment<byte>(buffer, 0, readBytes)))  
        .Finally(stream.Dispose);
}

One important note to consider when implementing this ReadObservable is that the 
stream must be read in chunks to be reactive. That’s why the ReadObservable operator 
takes a buffer size as an argument to define the size of the chunks.

The purpose of the ReadObservable operator is to read a stream in chunks to facilitate 
working with data that’s larger than the memory available, or that could be infinite with 
an unknown size, like streaming from the network. In addition, it promotes the compo-
sitional nature of Rx for applying multiple transformations to the stream itself, because 
reading chunks at a time allows data transformations while the stream is still in motion. At 
this point, you have an extension method that iterates on the bytes from a stream. 

In the code, the FromAsync extension method allows you to convert a Task<T>, in 
this case stream.ReadAsync, into an IObservable<T> to treat the data as a flow of events 
and to enable programming with Rx. Underneath, Observable.FromAsync creates an 
observable that only starts the operation independently every time it’s subscribed to.

Then, the underlying stream is read as an Observable while loop until data is 
available or the operation is canceled. The Observable Defer operator waits until an 
observer subscribes to it, and then starts pushing the data as a stream. Next, during 
each iteration, a chunk of data is read from the stream. This data is then pushed into a 
buffer that takes the form of an ArraySegment<byte>, which slices the payload in the 
right length. ReadObservable returns an IObservable of ArraySegment<byte>, which 
is an efficient way to manage the byte arrays in a pool. The buffer size may be larger than 
the payload of bytes received, for example, so the use of ArraySegment<byte> holds the 
byte array and payload length. 

In conclusion, when receiving and processing data, the .NET Rx allows shorter and 
cleaner code than traditional solutions. Furthermore, the complexity of building a 

Reads the size of the chunk of data (buffer) from the stream to 
configure the read length, and reads the buffer with the given size 

Continues reading in a while loop 
until there is data to be read

Iteratively invokes the observable factory, which starts 
from the current stream position. The Defer observable 
operator starts the process only when a subscriber exists.

Handles the 
case of an error 
silently, passing 
an empty result

When a chunk of data is read, an instance of 
ArraySegment is created to wrap the buffer, 

which is then pushed to the observers.
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TCP-based reactive client/server program is heavily reduced in comparison to a tradi-
tional model. In fact, you don’t have to deal with low-level TcpClient and TcpListener 
objects, and the flow of bytes is handled through a high-level abstraction offered by 
observable operators. 

13.9 Reusable custom high-performing 
parallel filter-map operator 
You have a collection of data, and you need to perform the same operation on each 
element of the data to satisfy a given condition. This operation is CPU-bound and may 
take time. You decide to create a custom and reusable high-performant operator to 
filter and map the elements of a given collection. The combination of filtering and 
transforming the elements of a collection is a common operation for analyzing data 
structures. It’s possible to achieve a solution using LINQ or PLINQ in parallel with the 
Where and Select operators; but a more optimal performance solution is available. As 
you saw in section 5.2.1, for each call and repeated use of high-order operators such 
as map (Select), filter (Where), and other similar functions of the PLINQ query (and 
LINQ), as shown in figure 13.13, intermediate sequences are generated that unnec-
essarily increase memory allocation. This is due to the intrinsic functional nature of 
LINQ and PLINQ, where collections are transformed instead of mutated. In the case of 
transforming large sequences, the penalty paid to the GC to free up memory becomes 
increasingly higher, with negative consequences to the performance of the program. 

number 1

[numbers].Where(IsPrime).Select(ToPow)

IsPrime 1 -

number 2 IsPrime 2 ToPow 2

number 3 IsPrime 3 ToPow 3

number n IsPrime n ToPow n

In this example, you want to derive the sum of all the prime numbers in 100 million digits.

13.9.1 Solution: combining filter and map parallel operations

The implementation of a custom and parallel filter and map operator with top perfor-
mance requires attention to minimize (or eliminate) unnecessary temporary data allo-
cation, as shown in figure 13.14. This technique of reducing data allocation during data 
manipulation to increase the performance of the program is known as deforestation. 

Figure 13.13  In this diagram, each number 
(first column) is first filtered by IsPrime 
(second column) to verify if it’s a prime number. 
Then, the prime numbers are passed into the 
ToPow function (third column). For example, 
the first value, number 1, is not a prime number, 
so the ToPow function isn’t running. 
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A1

[source].Where(filter).Select(map)

filter A1 map(filter A1)

A2 filter A2 map(filter A2)

A3 filter A3 map(filter A3)

An filter An map(filter An)

A1

[source].FilterMap(filter, map)

map(filter A1)

A2 map(filter A2)

A3 map(filter A3)

An map(filter An)

Figure 13.14  The left graph shows the operations Where and Select over a given source, done in 
separate steps, which introduces extra memory allocation and consequentially more GC generations. 
The right graph shows that applying the Where and Select (filter and map) operations together in a 
single step avoids extra allocation and reduces GC generations, increasing the speed of the program. 

The next listing shows the code of the ParallelFilterMap function, which uses the 
Parallel.ForEach loop to eliminate intermediate data allocations by processing only 
one array, instead of creating one temporary collection for each operator.

Listing 13.16  ParallelFilterMap operator 

static TOutput[] ParallelFilterMap<TInput, TOutput>(this IList<TInput> 
➥ input, Func<TInput, Boolean> predicate,   
                     Func<TInput, TOutput> transform, 
                     ParallelOptions parallelOptions = null)
{
    parallelOptions = parallelOptions ?? new ParallelOptions();

    var atomResult = new Atom<ImmutableList<List<TOutput>>>   
                               (ImmutableList<List<TOutput>>.Empty);

    Parallel.ForEach(Partitioner.Create(0, input.Count),
        parallelOptions,
        () => new List<TOutput>(),       
      delegate (Tuple<int, int> range, ParallelLoopState state, 
                List<TOutput> localList)
        {
            for (int j = range.Item1; j < range.Item2; j++)  
            {
                var item = input[j];
                if (predicate(item))          
                     localList.Add(transform(item));  
            }
            return localList;

The extension method takes the lambda 
functions to filter (predicate) and map 
(transform) the input values from the source.

Creates an instance of the Atom object (defined in chapter 3) 
to apply compare-and-swap update operations over the 

underlying ImmutableList in a thread-safe manner

Each thread uses a Local-Thread 
instance of List<TOutput> for isolated 
and thread-safe operations.

Each iteration runs an independent thread (task) from 
the thread pool that performs the filter and map 

operations over a partitioned set from the input source.

Applies the filter and map 
functions for each item of the 
current portioned set of data
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        }, localList => atomResult.Swap(r => r.Add(localList)));  
    return atomResult.Value.SelectMany(id => id).ToArray();     
}

The parallel ForEach loop applies the predicate and map functions for each element 
of the input collection. In general, if the body of the parallel loop performs only a 
small amount of work, better performance results come from partitioning the itera-
tions into larger units of work. The reason for this is the overhead when processing a 
loop, which involves the cost of managing worker threads and the cost of invoking a 
delegate method. Consequently, it’s good practice to partition the parallel iteration 
space by a certain constant using the Partitioner.Create constructor. Then each 
body invokes the filter and map functions for a certain range of elements, amortizing 
invocations of the loop body delegate.

NOTE  Due to parallelism, the order in which the values will be processed 
doesn’t guarantee the result will be in the same order.

For each iteration of the ForEach loop, there’s an anonymous delegate invocation that 
causes a penalty in terms of memory allocation and, consequently, performance. One 
invocation occurs for the filter function, a second invocation occurs for the map func-
tion, and ultimately an invocation happens for the delegate passed into the parallel 
loop. The solution is to tailor the parallel loop specific to the filter and map operations 
to avoid extra invocations of the body delegate. 

The parallel ForEach operator forks off a set of threads, each of which calculates an 
intermediate result by performing the filter and map functions over its own partition of 
data and placing the value into its dedicated slot in the intermediate array.

Each thread (task) governed by the parallel loop captures an isolated instance of a 
local List<TOutput> through the concept of local values. Local values are variables that 
exist locally within a parallel loop. The body of the loop can access the value directly, 
without having to worry about synchronization. 

NOTE  The reason to use local and isolated instance of List<TOutput> is to 
avoid excessive contention, which happens when too many threads try to access a 
single shared resource simultaneously, leading to bad performance.

Each partition will compute its own intermediate value that will then combine into a 
single final value. 

When the loop completes, and it’s ready to aggregate each of its local results, it does 
so with the localFinally delegate. But the delegate requires synchronization access to 
the variable that holds the final result. An instance of the ImmutableList collection is 
used to overcome this limitation to merge the final results in a thread-safe manner. 

When each iteration completes, the shared atomResult 
Atom object updates the underlying ImmutableList. 

Ultimately, the result is 
flattened into an array. 
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NOTE  Write operations (such as adding an item) in immutable collections 
return a new immutable instance instead of changing the existing instance. 
This isn’t as wasteful as it first sounds because immutable collections share 
their memory. 

Note the ImmutableList is encapsulated in an Atom object, from chapter 3. The Atom 
object uses a compare-and-swap (CAS) strategy to apply thread-safe writes and updates 
of objects without the need of locks and other forms of primitive synchronization. In 
this example, the Atom class holds a reference to the immutable list and updates it 
automatically.

The following code snippet tests the parallel sum of only the prime numbers from 
100 million digits:

bool IsPrime(int n)
{
    if (n == 1) return false;
    if (n == 2) return true;
    var boundary = (int) Math.Floor(Math.Sqrt(n));
    for (int i = 2; i <= boundary; ++i)
        if (n % i == 0) return false;
    return true;
}

BigInteger ToPow(int n) => (BigInteger) Math.BigMul(n, n);
var nums = Enumerable.Range(0, 100000000).ToList();

BigInteger SeqOperation() => 
               nums.Where(IsPrime).Select(ToPow).Aggregate(BigInteger.Add);

BigInteger ParallelLinqOperation() => 
  nums.AsParallel().Where(IsPrime).Select(ToPow).Aggregate(BigInteger.Add);

BigInteger ParallelFilterMapInline() => 
          nums.ParallelFilterMap(IsPrime, ToPow).Aggregate(BigInteger.Add);

Figure 13.15 compares the sequential code (as baseline), the PLINQ version, and the 
custom ParallelFilterMap operator. The figure shows the result of the benchmark 
code running the sum of the prime numbers for the 100 million digits. The bench-
mark was performed in a quad-core machine with 6 GB of RAM. The sequential code 
takes an average of 196.482 seconds to run and is used as baseline. The PLINQ version 
of the code is faster and runs in 74.926 seconds, almost three times faster, which is 
expected in a quad-core computer. The custom ParallelFilterMap operator is the 
fastest, at approximately 52.566 seconds.
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Figure 13.15  Benchmark chart comparing the Sequential and Parallel LINQ versions of the 
code with the custom ParallelFilterMap operator. In a quad-core machine, the custom 
ParallelFilterMap operator is approximately 80% faster than the sequential version of the code, 
and 30% faster than the PLINQ version.

13.10 Non-blocking synchronous message-passing model 
Let’s imagine you need to build a scalable program capable of handling a large num-
ber of operations without blocking any threads. You need a program that loads, pro-
cesses, and saves a large number of images, for example. These operations are handled 
with few threads in a collaborative way, which optimizes the resources without blocking 
any threads and without jeopardizing the performance of the program. 

Similar to the Producer/Consumer pattern, there are two flows of data. One flow is the 
input, where the processing starts, followed by intermediate steps to transform the data, 
followed by the output with the final result of the operations. These processes, the pro-
ducer and the consumer, share a common fixed-size buffer used as a queue. The queue 
is buffered to increase the overall speed and increase throughput to allow for multiple 
consumers and producers. In fact, when the queue is safe to use by multiple consumers 
and producers, then it’s easy to change the level of concurrency for different parts of the 
pipeline at runtime. The producer, however, could write into the queue when it isn’t full, 
or conversely, it can block when the queue is full. On the other side, the consumer could 
read from the queue when it is not empty, but it will block in other cases when the queue is 
empty. You want to implement a producer and consumer pattern based on message pass-
ing to avoid thread blocking and maximize the application’s scalability.
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13.10.1 Solution: coordinating the payload between operations using the 
agent programming model

There are two flavors of message passing models for concurrent systems: synchronous 
and asynchronous. You’re already familiar with asynchronous models such as the agent 
(and actor) model, explained in chapters 11 and 12, and based on asynchronous mes-
sage passing. In this recipe, you’ll use the synchronous version of message passing, 
which is also known as communicating sequential processes (CSP).

CSP has much in common with the actor model, both being based on message pass-
ing. But CSP emphasizes the channels used for communication, rather than the entities 
between which communication takes place.

This CSP synchronous message passing for concurrent programming models is used 
for data exchange between channels, which can be scheduled to multiple threads and 
might run in parallel. Channels are similar to thread workers that communicate directly 
with each other by publishing messages, and where other channels can then listen for 
these messages without the sender knowing who’s listening. 

You can imagine the channel as a thread-safe queue, where any task with a refer-
ence to a channel can add messages to one end, and any task with a reference to it can 
remove messages from the other end. Figure 13.16 illustrates the channel model.
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Figure 13.16  The channel receives (Recv) a message, and applies the subscribed behavior. The 
channels communicate by sending (Send) messages, often creating an interconnected system that’s 
similar to the actor model. Each channel contains a local queue of messages used to synchronize the 
communication with other channels without blocking.
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A channel doesn’t need to know about what channel will process the message later in 
the pipeline. It only has to know what channel to forward the messages to. On the other 
side, listeners on channels can subscribe and unsubscribe without affecting any chan-
nels sending the messages. This design promotes loose coupling between channels.

The primary strength of CSP is its flexibility, where channels are first-class and can 
be independently created, written to, read from, and passed between tasks. The fol-
lowing listing shows the implementation of the channel in F#, which uses Mailbox-
Processor for the underlying message synchronization due to the close similarity with 
the agent-programming model. The same concepts apply to C#. You can find the full 
implementation in C# using TDF in the downloadable source code.

Listing 13.17  ChannelAgent for CSP implementation using MailboxProcessor 

type internal ChannelMsg<'a> =   
    | Recv of ('a -> unit) * AsyncReplyChannel<unit>
    | Send of 'a * (unit -> unit) * AsyncReplyChannel<unit>

type [<Sealed>] ChannelAgent<'a>() =
    let agent = MailboxProcessor<ChannelMsg<'a>>.Start(fun inbox ->
        let readers = Queue<'a -> unit>()   
        let writers = Queue<'a * (unit -> unit)>()   

        let rec loop() = async {
            let! msg = inbox.Receive()
            match msg with
            | Recv(ok , reply) ->  
                if writers.Count = 0 then
                    readers.Enqueue ok
                    reply.Reply( () )
                else
                    let (value, cont) = writers.Dequeue()
                    TaskPool.Spawn cont   
                    reply.Reply( (ok value) )
                return! loop()
            | Send(x, ok, reply) ->    
                if readers.Count = 0 then
                    writers.Enqueue(x, ok)
                    reply.Reply( () )
                else
                    let cont = readers.Dequeue()
                    TaskPool.Spawn ok  
                    reply.Reply( (cont x) )
                return! loop() }
        loop())

    member this.Recv(ok: 'a -> unit)  =  
        agent.PostAndAsyncReply(fun ch -> Recv(ok, ch)) |> Async.Ignore

    member this.Send(value: 'a, ok:unit -> unit)  =  
        agent.PostAndAsyncReply(fun ch -> Send(value, ok, ch)) |> Async.

Ignore

Uses a DU to define the message type to send to the 
ChannelAgent in order to coordinate the channel operations

Uses internal queues to keep track of the 
read and write operations of the channel

When a Recv message is received, if the 
current writer queue is empty, then the 
read function is queued up, waiting for a 
writer function to balance the work. 

When a Recv message is received and 
there is at least one writer function 

available in the queue, a task is spawned 
to run the read function.

When a Send message is received, if the 
current reader queue is empty, then the 
write function is queued up, waiting for a 
reader function to balance the work. 

When a Send message is received, if the 
current reader queue is empty, then the 

write function is queued up, waiting for a 
reader function to balance the work. 
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    member this.Recv() =     
        Async.FromContinuations(fun (ok, _,_) ->
            agent.PostAndAsyncReply(fun ch -> Recv(ok, ch)) 
            |> Async.RunSynchronously)

    member this.Send (value:'a) =       
        Async.FromContinuations(fun (ok, _,_) ->
            agent.PostAndAsyncReply(fun ch -> Send(value, ok, ch)) 
            |> Async.RunSynchronously )

let run (action:Async<_>) = action |> Async.Ignore |> Async.Start  

let rec subscribe (chan:ChannelAgent<_>) (handler:'a -> unit) =   
    chan.Recv(fun value -> handler value
                           subscribe chan handler) |> run

The ChannelMsg DU represents the message type that ChannelAgent handles. When 
a message arrives, the Recv case is used to execute a behavior applied to the payload 
passed. The Send case is used to communicate a message to the channel.

The underlying MailboxProcessor contains two generic queues, one for each opera-
tion, Recv or Send. As you can see, when a message is either received or sent, the behavior 
of the agent, in the function loop(), checks the count of available messages to load bal-
ance and synchronize the communication without blocking any threads. ChannelAgent 
accepts continuation functions with its Recv and Send operations. If a match is available, 
the continuation is invoked immediately; otherwise, it’s queued for later. Keep in mind 
that a synchronous channel eventually gives a result, so the call is logically blocking. But 
when using F# async workflows, no actual threads are blocked while waiting.

The last two functions in the code help run a channel operation (usually Send), while 
the subscribe function is used to register and apply a handler to the messages received. 
This function runs recursively and asynchronously waiting for messages from the channel. 

The TaskPool.Spawn function assumes a function with signature (unit -> unit) -> 
unit that forks the computation on a current thread scheduler. This listing shows the 
implementation of TaskPool, which uses the concepts covered in chapter 7.

Listing 13.18  Dedicated TaskPool agent (MailboxProcessor)

type private Context = {cont:unit -> unit; context:ExecutionContext} 

type TaskPool private (numWorkers) =    

When a Send message is received and there’s at 
least one reader function available in the queue, 
a task is spawned to run the write function.

Runs an asynchronous operation in a 
separate thread, discharging the result

This helper function registers a handler applied to the 
next available message in the channel. The function 
recursively and asynchronously (without blocking) waits 
for messages from the channel (without blocking).

Uses a record type to wrap the current 
ExecutionContext captured when the 

operation cont is added to the TaskPool

The constructor of TaskPool takes the number of 
workers to set the degree of parallelism. 
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    let worker (inbox: MailboxProcessor<Context>) =   
        let rec loop() = async {
            let! ctx = inbox.Receive()
            let ec = ctx.context.CreateCopy()       
            ExecutionContext.Run(ec, (fun _ -> ctx.cont()), null)
            return! loop() }
        loop()
    let agent = MailboxProcessor<Context>.parallelWorker(numWorkers, 
    ➥ worker)  

    static let self = TaskPool(2)  

    member private this.Add (continutaion:unit -> unit) =  
        let ctx = { cont = continutaion; 
                    context = ExecutionContext.Capture() } 
        agent.Post(ctx)        
    static member Spawn (continuation:unit -> unit) = 
        self.Add continuation 

The Context record type is used to capture the ExecutionContext at the moment 
when the continuation function cont was passed to the pool. TaskPool initializes the 
MailboxProcessor parallelWorker type to handle multiple concurrent consumers 
and producers (refer to chapter 11 for the implementation and details of the paral-
lelWorker agent).

The purpose of TaskPool is to control how many tasks to schedule and to dedicate to 
run the continuation function in a tight loop. In this example, it runs only one task, but 
you can have any number.

Add enqueues the given continuation function, which will be executed when a 
thread on a channel offers communication and another thread offers matching com-
munication. Until such compensation between channels is achieved, the thread will 
wait asynchronously.

In this code snippet, the ChannelAgent implements a CSP pipeline, which loads an 
image, transforms it, and then saves the newly created image into the local MyPicture 
folder:

let rec subscribe (chan:ChannelAgent<_>) (handler:'a -> unit) =
    chan.Recv(fun value -> handler value
                           subscribe chan handler) |> run

let chanLoadImage = ChannelAgent<string>()
let chanApply3DEffect = ChannelAgent<ImageInfo>()
let chanSaveImage = ChannelAgent<ImageInfo>()

subscribe chanLoadImage (fun image ->
    let bitmap = new Bitmap(image)

Sets the behavior of 
each worker agent

A Context type is processed using the 
captured ExecutionContext when 
received by one of the worker agents.

Creates an instance of the F# MailboxProcessor 
parallelWorker to concurrently run multiple 
operations limited by the degree of parallelism 

Adds a continuation action to the TaskPool. The current 
ExecutionContext is captured and sent to the 
parallelWorker agent in the form of a Context record type.

When a continuation task is sent to the underlying 
agent, the current Execution context is captured and 

passed as part of the message payload. 
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    let imageInfo = { Path = Environment.GetFolderPath(Environment.
SpecialFolder.MyPictures)

                      Name = Path.GetFileName(image)
                      Image = bitmap }
    chanApply3DEffect.Send imageInfo |> run)

subscribe chanApply3DEffect (fun imageInfo ->
    let bitmap = convertImageTo3D imageInfo.Image
    let imageInfo = { imageInfo with Image = bitmap }
    chanSaveImage.Send imageInfo |> run)

subscribe chanSaveImage (fun imageInfo ->
    printfn "Saving image %s" imageInfo.Name
    let destination = Path.Combine(imageInfo.Path, imageInfo.Name)
    imageInfo.Image.Save(destination))

let loadImages() =
    let images = Directory.GetFiles(@".\Images")
    for image in images do
        chanLoadImage.Send image |> run

loadImages()

As you can see, implementing a CSP-based pipeline is simple. After you define the 
channels chanLoadImage, chanApply3DEffect, and chanSaveImage, you have to reg-
ister the behaviors using the subscribe function. When a message is available to be 
processed, the behavior is applied.

13.11 Coordinating concurrent jobs using the agent 
programming model 
The concepts of parallelism and asynchronicity were covered extensively earlier in this 
book. Chapter 9 shows how powerful and convenient the Async.Parallel operator is 
for running a large number of asynchronous operations in parallel. Often, however, 
you may need to map across a sequence of asynchronous operations and run functions 
on the elements in parallel. In this case, a feasible solution can be implemented:

    let inline asyncFor(operations: #seq<'a> Async, map:'a -> 'b) =
        Async.map (Seq.map map) operations

Now, how would you limit and tame the degree of parallelism to process the elements 
to balance resource consumption? This issue comes up surprisingly often when a 
program is doing CPU-heavy operations, and there’s no reason to run more threads 
than the number of processors on the machine. When there are too many concurrent 
threads running, contention and context-switching make the program enormously 
inefficient, even for a few hundred tasks. This is a problem of throttling. How can you 
throttle asynchronous and CPU-bound computations awaiting results without block-
ing? The challenge becomes even more difficult because these asynchronous opera-
tions are spawned at runtime, which makes the total number of asynchronous jobs to 
run unknown. 
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13.11.1 Solution: implementing an agent that runs jobs with a configured 
degree of parallelism 

The solution is using an agent model to implement a job coordinator that lets you 
throttle the degree of parallelism by limiting the number of tasks that are processed 
in parallel, as shown in figure 13.17. In this case, the agent’s only mission is to gate the 
number of concurrent tasks and send back the result of each operation without block-
ing. In addition, the agent should conveniently expose an observable channel where 
you can register to receive notifications when a new result is computed.

Multiple jobs are sent
to the taming agent
to be executed.

The Subscribe handler
is notified when each
job completes.

The agent runs the jobs in
parallel, limited by the degree
of parallelism configured.
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Figure 13.17  The TamingAgent runs the jobs in parallel, limited by the degree of parallelism 
configured. When an operation completes, the Subscribe operator notifies the registered handlers 
with the output of the job.  

Let’s define the agent that can tame the concurrent operations. The agent must receive 
a message, but must also send back to the caller, or subscriber, a response for the result 
computed.

In the following listing, the implementation of the TamingAgent runs asynchronous 
operations, efficiently throttling the degree of parallelism. When the number of con-
current operations exceeds this degree, they’re queued and processed later.

Listing 13.19  TamingAgent 

type JobRequest<'T, 'R> =   
    | Ask of 'T * AsyncReplyChannel<'R>
    | Completed
    | Quit

type TamingAgent<'T, 'R>(limit, operation:'T -> Async<'R>) =

Uses a DU representing the message to 
send to the TamingAgent to start a new 
job and notify when it completes
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    let jobCompleted = new Event<'R>()    

    let tamingAgent = Agent<JobRequest<'T, 'R>>.Start(fun agent ->
        let dispose() = (agent :> IDisposable).Dispose()   
        let rec running jobCount = async {   
          let! msg = agent.Receive()
          match msg with
          | Quit -> dispose()
          | Completed -> return! running (jobCount - 1) 
          | Ask(job, reply) -> 
               do!
                 async { try
                             let! result = operation job  

                             jobCompleted.Trigger result  

                             reply.Reply(result)  

                         finally agent.Post(Completed) }  

               |> Async.StartChild |> Async.Ignore    
               if jobCount <= limit - 1 then return! running (jobCount + 1)
               else return! idle () }    
        and idle () =   
              agent.Scan(function   
              | Completed -> Some(running (limit - 1))
              | _ -> None)
        running 0)  

    member this.Ask(value) = tamingAgent        
                             .PostAndAsyncReply(fun ch -> Ask(value, ch)) 
    member this.Stop() = tamingAgent.Post(Quit)
    member x.Subscribe(action) = jobCompleted.Publish |> 
    ➥Observable.subscribe(action) 

The JobRequest DU represents the message type for the agent tamingAgent. This mes-
sage has a Job case, which handles the value to send to compute and a reply channel 
with the result. The Completed case is used by an agent to notify when a computation 
is terminated and the next job available can be processed. Ultimately, the Quit case 
(message) is sent to stop the agent when needed.

The TamingAgent constructor takes two arguments: the concurrent execution limit 
and the asynchronous operation for each job. The body of the TamingAgent type relies 
on two mutually recursive functions to track the number of concurrently running 
operations. When the agent starts with zero operations, or the number of running jobs 
doesn’t pass the limit of the degree of parallelism imposed, the function running will 

An event object is used to notify the 
subscriber when a job completes.

Helper functions dispose of 
and stop the TamingAgent.

Represents a state when 
the agent is working

Decrements the count of work 
items when a job completes

Starts the job item and 
continues in a running stateRuns the job asynchronously 

to obtain the result 

When the job completes, the 
event jobCompleted is triggered 

to notify the subscribers. 

Sends the result of the job 
completed back to the caller 

When the job completes, the 
inbox sends itself a notification 

to decrease the job count 

Queues the specified asynchronous workflow for processing 
in a separate thread to guarantee concurrent behavior

Represents the idle state when the agent is blocked 
because the limit of concurrent jobs is reached

Uses the Scan function to wait for completion 
of work and change the agent state

Starts in a running state 
with zero job items Queues an operation and waits 

asynchronously for a response 

Provides support to subscribe the 
jobCompleted event as Observable 
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wait for a new incoming message to process. Conversely, when the jobs running reach 
the enforced limit, the execution flow of the agent switches the function to idle. It uses 
the Scan operator to wait for a type of message to discharge the others. 

The Scan operator is used in the F# MailboxProcessor (agent) to process only 
a subset and targeted type of messages. The Scan operator takes a lambda function 
that returns an Option type. The messages you want to be found during the scanning 
process should return Some, and the messages you want to ignore for now should 
return None. 

The operation signature passed into the constructor is 'T -> Async<'R>, which 
resembles the Async.map function. This function is applied to each job that’s sent to 
the agent through the method member Ask, which takes a value type that is passed to 
the agent to initiate, or queue, a new job. When the computation completes, the sub-
scribers of the underlying event jobCompleted are notified with the new result, which is 
also replied back asynchronously to the caller that sent the message across the channel 
AsyncReplyChannel. 

As mentioned, the purpose of the event jobCompleted is to notify the subscribers 
that have registered a callback function through the method member Subscribe, 
which uses the Observable module for convenience and flexibility.

Here’s how the TamingAgent is used to transform a set of images. This example 
is similar to the CPS Channel one, allowing you to compare code between different 
approaches.

Listing 13.20  TamingAgent in action for image transformation

let loadImage = (fun (imagePath:string) -> async {
    let bitmap = new Bitmap(imagePath)
    return { Path = Environment.GetFolderPath(Environment.SpecialFolder.

MyPictures)
                Name = Path.GetFileName(imagePath)
                Image = bitmap } })  

let apply3D = (fun (imageInfo:ImageInfo) -> async {
    let bitmap = convertImageTo3D imageInfo.Image
    return { imageInfo with Image = bitmap } })   

let saveImage = (fun (imageInfo:ImageInfo) -> async {
    printfn "Saving image %s" imageInfo.Name
    let destination = Path.Combine(imageInfo.Path, imageInfo.Name)
    imageInfo.Image.Save(destination)
    return imageInfo.Name})   

let loadandApply3dImage (imagePath:string) = 
        Async.retn imagePath >>= loadImage >>= apply3D >>= saveImage 

let loadandApply3dImageAgent = TamingAgent<string, string>(2, 
loadandApply3dImage)     

Loads an image from the given file 
path, returning a record type with 
the image and its information loaded 

Functions to apply a 3D 
effect to the image

Saves the image to the 
local MyPicture folder

Composes the previously defined asynchronous functions 
using the monadic return and bind async operators 

Creates an instance of the TamingAgent capable of 
running two jobs concurrently, applying the composed 
function loadandApply3dImage for each job  
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loadandApply3dImageAgent.Subscribe(fun imageName -> printfn "Saved image %s  
➥ from subscriber" imageName)  

let transformImages() =  
    let images = Directory.GetFiles(@".\Images")
    for image in images do
        loadandApply3dImageAgent.Ask(image) 
        |> run (fun imageName -> 
                    printfn "Saved image %s - from reply back" imageName) 

The three asynchronous functions, loadImage, apply3D, and saveImage, are com-
posed together, forming the function loadandApply3dImage using the F# async bind 
infix operator >>= defined in chapter 9. As a refresher, here’s the implementation: 

let bind (operation:'a -> Async<'b>) (xAsync:Async<'a>) = async {
    let! x = xAsync
    return! operation x }

let (>>=) (item:Async<'a>) (operation:'a -> Async<'b>) = 
                                               bind operation item

Then, the loadandApply3dImageAgent instance of the TamingAgent is defined by pass-
ing the argument limit into the constructor. This sets the degree of parallelism of the 
agent and the argument function loadandApply3dImage, which represents the behav-
ior for the job computations. The Subscribe function registers a callback that runs 
when each job completes. In this example, it displays the name of the image of the 
completed job. 

NOTE  The image paths are sent sequentially. The TamingAgent is thread safe, 
so multiple threads can send messages simultaneously without any problem.

The loadImages() function reads the image paths from the directory Images, and in a 
for-each loop sends the values to the loadandApply3dImageAgent TamingAgent. The 
run function uses CPS to execute a callback when the result is computed and replied 
back.

13.12 Composing monadic functions 
You have functions that take a simple type and return an elevated type like Task or 
Async, and you need to compose those functions. You might think you need to get 
the first result and next apply it to the second function, and then repeat for all the 
functions. This process can be rather cumbersome. This is a case for employing the 
concept of function composition. As a reminder, you can create a new function from 
two smaller ones. It usually works, as long as the functions have matching output and 
input types. 

This rule doesn’t apply for monadic functions, because they don’t have matching 
input/output types. For example, monadic Async and Task functions cannot be com-
posed because Task<T> isn’t the same as T. 

Subscribes a handler to run when a 
job-completed notification arrives

Starts the process by reading the 
image files and pushing a new job 
to the loadandApply3dImageAgent 
TamingAgent instance
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Here’s the signature for the monadic Bind operator:

Bind : (T -> Async<R>) -> Async<T> -> Async<R>
Bind : (T -> Task<R>) -> Task <T> -> Task <R>

The Bind operator can pass elevated values into functions that handle the wrapped 
underlying value. How can you compose monadic functions effortlessly?

13.12.1 Solution: combining asynchronous operations 
using the Kleisli composition operator

The composition between monadic functions is named Kleisli composition, and in FP 
it’s usually represented with the infix operator >=> that can be constructed using the 
monadic Bind operator. The Kleisli operator essentially provides a composition con-
struct over monadic functions, which instead of composing regular functions like a -> 
b and b -> c, is used to compose over a -> M b and b -> M c, where M is an elevated 
type.

The signature of the Kleisli composition operator for elevated types, such as the 
Async and Task types, is

Kleisli (>=>) : ('T -> Async<TR>) -> (TR -> Async<R>) -> T -> Async<R>
Kleisli (>=>) : ('T -> Task<TR>) -> (TR -> Task <R>) -> T -> Task <R>

With this operator, two monadic functions can compose directly as follows:

(T -> Task<TR>) >=> (TR -> Task<R>)
(T -> Async<TR>) >=> (TR -> Async<R>)

The result is a new monadic function:

T -> Task<R>
T -> Async<R>

The next code snippet shows the implementation of the Kleisli operator in C#, which 
uses the monadic Bind operator underneath. The operator Bind (or SelectMany) for 
the Task type was introduced in chapter 7:

 static Func<T, Task<U>> Kleisli<T, R, U>(Func<T, Task<R>> task1, 
  Func<R, Task<U>> task2) => async value => await task1(value).Bind(task2);

The equivalent function in F# can also be defined using the conventional kleisli 
infix operator >=>, in this case applied to the Async type:

let kleisli (f:'a -> Async<'b>) (g:'b -> Async<'c>) (x:'a) = (f x) >>= g
let (>=>) (f:'a -> Async<'b>) (g:'b -> Async<'c>) (x:'a) = (f x) >>= g

The Async bind and infix operator >>= was introduced in chapter 9. Here’s the imple-
mentation as a reminder:

let bind (operation:'a -> Async<'b>) (xAsync:Async<'a>) = async {
        let! x = xAsync
        return! operation x }

let (>>=)(item:Async<'a>) (operation:'a -> Async<'b>) = bind operation item
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Let’s see where and how the Kleisli operator can help. Consider the case of multiple 
asynchronous operations that you want to compose effortlessly. These functions have 
the following signature:

operationOne   : ('a -> Async<'b>) 
operationTwo   : ('b -> Async<'c>) 
operationThree : ('c -> Async<'d>) 

Conceptually, the composed function would look like:

(‘a -> Async<’b>) -> (‘b -> Async<’c>) -> (‘c -> Async<’d>)

At a high level, you can think of this composition over monadic functions as a pipeline, 
where the result of the first function is piped into the next one and so on until the last 
step. In general, when you think of piping, you can think of two approaches: applica-
tive (<*>) and monadic (>>=). Because you need the result of the previous call in your 
next call, the monadic style (>>=) is the better choice. 

For this example, you use the TamingAgent from the previous recipe. The Taming-
Agent has the method member Ask, whose signature matches the scenario, where it 
takes a generic argument 'T and returns an Async<'R> type. At this point, you use the 
Kleisli operator to compose a set of TamingAgent types to form a pipeline of agents, as 
shown in figure 13.18. The result of each agent is computed independently and passed 
as input, in the form of a message, to the next agent until the last node of the chain per-
forms the final side effect. The technique of linking and composing agents can lead to 
robust designs and concurrent systems. When an agent returns (replies back) a result to 
the caller, it can be composed into a pipeline of agents.

Taming
agent

Taming
agent >=>Taming

agent >=>Taming
agent >=>

Figure 13.18  The pipeline processing pattern is useful when you want to process data in multiple steps. 
The idea behind the pattern is that inputs are sent to the first agent in the pipeline. The main benefit of 
the pipeline processing pattern is that it provides a simple way to balance the tradeoff between overly 
sequential processing (which may reduce performance) and overly parallel processing (which may have a 
large overhead).

This listing shows the TamingAgent composition in action. The example is a rework of 
listing 13.20, which reuses the same function for loading, transforming, and saving an 
image.

Listing 13.21  TamingAgent with the Kleisli operator

let pipe limit operation job : Async<_> =   
    let agent = TamingAgent(limit, operation)
    agent.Ask(job)

let loadImageAgent = pipe 2 loadImage    
let apply3DEffectAgent = pipe 2 apply3D  
let saveImageAgent = pipe 2 saveImage    

Creates an instance of the TamingAgent 
type and exposes its asynchronous Ask 
method, which ensures a reply back to 
the caller through the AsyncReplyChannel 
when the job completes 

Creates an instance of the TamingAgent agent 
pipe for each function about image processing
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let pipeline = 
          loadImageAgent >=> apply3DEffectAgent >=> saveImageAgent 

let transformImages() =   
    let images = Directory.GetFiles(@".\Images")
    for image in images do
        pipeline image 
        |> run (fun imageName -> printfn "Saved image %s" imageName)

In this example, the program uses the TamingAgent to transform an image, different 
than listing 13.20. In earlier recipes, the three functions that load, transform, and save, 
in that order, an image to the local filesystem are composed together to form a new 
function. This function is handled and applied to all the incoming messages by a sin-
gle instance of TamingAgent type. In this application (listing 13.21), an instance of 
TamingAgent is created for each function to run, and then the agents are composed 
through the underlying method Ask to form a pipeline. The Ask asynchronous func-
tion ensures a reply to the caller through the AsyncReplyChannel when the job com-
pletes. The composition of the agents is eased by the Kleisli operator.

The purpose of the pipe function is to help create an instance of the TamingAgent 
and expose the function Ask, whose signature 'a -> Async<'b> resembles the monadic 
Bind operator used for the composition with other agents.

After the definition of the three agents, loadImageAgent, apply3DEffectAgent, and 
saveImageAgent, using the pipe helper function, it becomes simple to create a pipeline 
by composing these agents using the Kleisli operator. 

Summary

¡	You should use a concurrent object pool to recycle instances of the same objects 
without blocking to optimize the performance of a program. The number of 
GC generations can be dramatically reduced by using a pool of objects, which 
improves the speed of a program’s execution.

¡	You can parallelize a set of dependent tasks with a constrained order of execu-
tion. This process is useful because it maximizes parallelism as much as possible 
among the execution of multiple tasks, regardless of dependency. 

¡	Multiple threads can coordinate the access of shared resources for reader-writer 
types of operations without blocking, maintaining a FIFO ordering. This coordi-
nation allows the read operations to run simultaneously, while asynchronously 
(non-blocking) waiting for eventual write operations. This pattern increases 
the performance of an application due to introduction of parallelism and the 
reduced consumption of resources.

¡	An event aggregator acts similar to the mediator design pattern, where all events 
go through a central aggregator and can be consumed from anywhere in the 
application. Rx allows you to implement an event aggregator that supports multi-
threading to handle multiple events concurrently.

Combines the asynchronous operations generated 
from the pipe function using the Kleisli operator

Starts the process by reading 
the image files and pushing a 
new job to the pipeline 
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¡	You can implement a custom Rx scheduler using the IScheduler interface, to 
allow the taming of incoming events with a fine control over the degree of par-
allelism. Furthermore, by explicitly setting the level of parallelism, the Rx sched-
uler internal thread pool isn’t penalized with downtime for expanding the size of 
threads when required.

¡	Even without built-in support for the CSP programming model in .NET, you can 
use either the F# MailboxProcessor or TDF to coordinate and balance the pay-
load between asynchronous operations in a non-blocking synchronous message- 
passing style.
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14Building a scalable mobile 
app with concurrent 

functional programming

This chapter covers
¡	Designing scalable, performant applications

¡	Using the CQRS pattern with WebSocket 
notifications

¡	Decoupling an ASP.NET Web API controller 
using Rx

¡	Implementing a message bus

Leading up to this chapter, you learned about and mastered concurrent functional 
techniques and patterns for building highly performant and scalable applications. 
This chapter is the culmination and practical application of those techniques, where 
you use your knowledge of TPL tasks, asynchronous workflow, message-passing pro-
gramming, and reactive programming with reactive extensions to develop a fully 
concurrent application. 

The application you’re building in this chapter is based on a mobile interface that 
communicates with a Web API endpoint for real-time monitoring of the stock market. 
It includes the ability to send commands to buy and sell stocks and to maintain those 
orders using a long-running asynchronous operation on the server side. This opera-
tion reactively applies the trade actions when the stocks reach the desired price point. 
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Discussion points include architecture choice and explanation of how the functional 
paradigm fits well in both the server and client sides of a system when designing a scal-
able and responsive application. By the end of this chapter, you’ll know how to design 
optimal concurrent functional patterns and how to choose the most effective concur-
rent programming model. 

14.1 Functional programming on the server in the real world 
A server-side application must be designed to handle multiple requests concurrently. 
In general, conventional web applications can be thought of as embarrassingly parallel, 
because requests are entirely isolated and easy to execute independently. The more pow-
erful the server running the application, the higher the number of requests it can handle. 

The program logic of modern, large-scale web applications is inherently concur-
rent. Additionally, highly interactive modern web and real-time applications, such as 
multiplayer browser games, collaborative platforms, and mobile services are a huge 
challenge in terms of concurrency programming. These applications use instant noti-
fications and asynchronous messaging as building blocks to coordinate the different 
operations and communicate between different concurrent requests that likely run in 
parallel. In these cases, it’s no longer possible to write a simple application with a single 
sequential control flow; instead, you must plan for the synchronization of independent 
components in a holistic manner. You might ask, why should you use FP when building 
a server-side application?

In September 2013, Twitter published the paper “Your Server as a Function” (Marius 
Eriksen, https://monkey.org/~marius/funsrv.pdf). Its purpose was to validate the archi-
tecture and programming model that Twitter adopted for building server-side software 
on a large scale, where systems exhibit a high degree of concurrency and environmental 
variability. The following is a quote from the paper: 

We present three abstractions around which we structure our server software at Twitter. 
They adhere to the style of functional programming—emphasizing immutability, the 
composition of first-class functions, and the isolation of side effects—and combine to 
present a large gain in flexibility, simplicity, ease of reasoning, and robustness.

The support provided for concurrent FP in .NET is key to making it a great tool for 
server-side programming. Support exists for running operations asynchronously in 
a declarative and compositional semantic style; additionally, you can use agents to 
develop thread-safe components. You can combine these core technologies for declar-
ative processing of events and for efficient parallelism with the TPL.

Functional programming facilitates the implementation of a stateless server (fig-
ure 14.1), which is an important asset for building scalability when architecting large 
web applications required to handle a huge number of request concurrently, such as 
social networks or e-commerce sites. A program is stateless when the operations (such 
as functions, methods, and procedures) aren’t sensitive to the state of the computation. 
Consequently, all the data used in an operation is passed as inputs to the operation, 
and all the data used by the operations invoked is passed back as outputs. A stateless 
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design never stores application or user data for later computational needs. The stateless 
design eases concurrency, because it’s easy for each stage of the application to run on a 
different thread. The stateless design is the key that makes the design able to scale out 
perfectly according to Amdahl’s Law.

In practice, a stateless program can be effortlessly parallelized and distributed 
among computers and processes to scale out performance. You don’t need to know 
where the computation runs, because no part of the program will modify any data struc-
tures, which avoids data races. Also, the computation can run in different processes or 
different computers without being constrained to perform in a specific environment.

Client 1

Load
balancer

Data 1

Stateful server

Client 2 Data 2

Client 3 Data 3

Client 1

Data

Data

Data

Data

Data

Data

Stateless server

Client 2

Client 3

Figure 14.1  Server with state (stateful) compared to a server without state (stateless). The stateful 
server must keep the state between requests, which limits the scalability of the system, requiring 
more resources to run. The stateless server can auto-scale because there’s no sharing of state. Before 
stateless servers, there can be a load balancer that distributes the incoming requests, which can be 
routed to any machine without worrying about hitting a particular server.

Using FP techniques, you can build sophisticated, fully asynchronous and adaptive 
systems that auto-scale using the same level of abstractions, with the same semantics, 
across all dimensions of scale, from CPU cores to data centers.

14.2 How to design a successful performant application 
When processing hundreds of thousands of requests simultaneously per second in a 
large-scale setting, you need a high degree of concurrency and efficiency in handling 
I/O and synchronization to ensure maximum throughput and CPU use in server soft-
ware. Efficiency, safety, and robustness are paramount goals that have traditionally 
conflicted with code modularity, reusability, and flexibility. The functional paradigm 
emphasizes a declarative programming style, which forces asynchronous programs to 
be structured as a set of components whose data dependencies are witnessed by the 
various asynchronous combinators. 
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NOTE  As discussed in chapter 8, asynchronous I/O operations should run in 
parallel, because their scalability can outnumber the processors available by 
an order of magnitude. Furthermore, to correctly achieve such unbounded 
resource capability, the asynchronous operations have to be written in a 
functional style, to not manipulate state in memory, and instead deal with 
immutable values.

When implementing a program, you should bake performance goals into the design 
up front. Performance is an aspect of software design that cannot be an afterthought; 
it must be included as an explicit goal from the start. It’s not impossible to redesign an 
existing application from the ground up, but it’s far more expensive than designing it 
correctly in the first place. 

14.2.1 The secret sauce: ACD

You want a system capable of flexing to an increase (or decrease) of requests with a 
commensurate boost in parallel speedup with the addition of resources. The secret 
ingredients for designing and implementing such a system are asynchronicity, caching, 
and distribution (ACD): 

¡	Asynchronicity refers to an operation that completes in the future rather than in 
real time. You can interpret asynchronicity as an architectural design—queuing 
work that can be completed later to smooth out the processing load, for example. 
It’s important to decouple operations so you do the minimal amount of work in 
performance-critical paths. Similarly, you can use asynchronous programming to 
schedule requests for nightly processes.

¡	Caching aims to avoid repeating work. For example, caching saves the results of 
earlier work that can be used again later, without repeating the work performed 
to get those results. Usually, caching is applied in front of time-consuming opera-
tions that are frequently repeated and whose output doesn’t change often.

¡	Distribution aims to partition requests across multiple systems to scale out process-
ing. It’s easier to implement distribution in a stateless system: the less state the 
server holds, the easier it is to distribute work. 

NOTE  When designing a performant, scalable, and resilient web application, 
it’s important to consider the points made in “Fallacies of Distributed Com-
puting” (www.rgoarchitects.com/Files/fallacies.pdf). Arnon Rotem-Gal-Oz, 
the author, refers to the assumption that distributed systems work in a secure, 
reliable, homogeneous network that has zero latency, infinite bandwidth, and 
zero transport cost, and in which the topology doesn’t change.

ACD is a main ingredient for writing scalable and responsive applications that can 
maintain high throughput under a heavy workload. That’s a task that’s becoming 
increasingly vital. 
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14.2.2 A different asynchronous pattern: queuing work for later execution

At this point, you should have a clear idea of what asynchronous programming means. 
Asynchronicity, as you recall, means you dispatch a job that will complete in the future. 
This can be achieved using two patterns. The first is based on continuation passing style 
(CPS), or callbacks, discussed in chapters 8 and 9. The second is based on asynchro-
nous message passing, covered in chapters 11 and 12. As mentioned in the previous 
section, asynchronicity can also be the result (behavior) of a design in an application. 

The pattern in figure 14.2 implements asynchronous systems at a design level, aim-
ing to smooth the workload of the program by sending the operations, or requests to do 
work, to a service that queues tasks to be completed in the future. The service can be in 
a remote hardware device, a remote server in a cloud service, or a different process in 
a local machine. In the latter case, the execution thread sends the request in a fire-and-
forget fashion, which releases it for further work at a later time. An example of a task 
that uses this design is scheduling a message to be sent to a mailing list. 

Queue

Sends work
request to
queue. Thread 1

Server
process

Execution
thread A

Processing server

Execution
thread AExecution thread A

Thread 2

Thread 3

Figure 14.2  The work is passed to a queue, and the remote worker picks up the message and performs 
the requested action later in the future.

When the operation completes, it can send a notification to the origin (sender) of the 
request with details of the outcome. Figure 14.2 shows six steps:

1 The execution thread sends the job or request to the service, which queues it. 
The task is picked up and stored to be performed in the future.

2 At some point, the service grabs the task from the queue and dispatches the work 
to be processed. The processing server is responsible for scheduling a thread to 
run the operation.

3 The scheduled thread runs the operation, likely using a different thread per task.

4 Optimally, when the work is completed, the service notifies the origin (sender) 
that the work is completed. 
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5 While the request is processed in the background, the execution thread is free to 
perform other work.

6 If something goes wrong, the task is rescheduled (re-queued) for later execution.

Initially, online companies invested in more powerful hardware to accommodate the 
increased volume of requests. This approach proved to be a pricey option, considering 
the associated costs. In recent years, Twitter, Facebook, StackOverflow.com, and other 
companies have proven that it’s possible to have a quick, responsive system with fewer 
machines through the use of good software design and patterns such as ACD. 

14.3 Choosing the right concurrent programming model
Increasing the performance of a program using concurrency and parallelism has been 
at the center of discussion and research for many years. The result of this research has 
been the emergence of several concurrency programming models, each with its own 
strengths and weaknesses. The common theme is a shared ambition to perform and 
offer characteristics to enable faster code. In addition to these concurrency program-
ming models, companies have developed tools to assist such programming: Microsoft 
created the TPL and Intel incorporated Threading Building Blocks (TBB) to produce 
high-quality and efficient libraries to help professional developers build parallel pro-
grams. There are many concurrency programming models that vary in their task inter-
action mechanisms, task granularities, flexibility, scalability, and modularity. 

After years of experience in building high-scalable systems, I’m convinced that the 
right programing model is a combination of programming models tailored to each part 
of your system. You might consider using the actor model for message-passing systems, 
and PLINQ for data parallelism computation in each of your nodes, while downloading 
data for pre-computation analysis by using non-blocking I/O asynchronous processing. 
The key is finding the right tool or combination of tools for the job. 

The following list represents my choice for concurrent technology based on  
common cases: 

¡	In the presence of pure functions and operations with well-defined control 
dependencies, where the data can be partitioned or operate in a recursive style, 
consider using TPL to establish a dynamic task parallel computation in the form 
of either the Fork/Join or Divide and Conquer pattern. 

¡	If a parallel computation requires preserving the order of the operations, or the 
algorithm depends on logical flow, then consider using a DAG with either the 
TPL task primitive or the agent model (see chapter 13).

¡	In the case of a sequential loop, where each iteration is independent and there are 
no dependencies among the steps, the TPL Parallel Loop can speed up perfor-
mance by computing the data in simultaneous operations running in separate tasks.

¡	In the case of processing data in the form of a combination operator, for exam-
ple by filtering and aggregating the input elements, Parallel LINQ (PLINQ) is 
likely a good solution to speed up computation. Consider a parallel reducer (also 
called a fold or aggregate), such as the parallel Aggregator function, for merg-
ing the results and using the Map-Reduce pattern.
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¡	If the application is designed to perform a sequence of operations as a workflow, 
and if the order of execution for a set of tasks is relevant and must be respected, 
then use either the Pipeline or Producer/Consumer pattern; these are great 
solutions for parallelizing the operations effortlessly. You can easily implement 
these patterns using either the TPL Dataflow or F# MailboxProcessor.

Keep in mind when building deterministic parallel programs that you can build them 
from the bottom up by composing deterministic parallel patterns of computation and 
data access. It’s recommended that parallel patterns should provide control over the 
granularity of their execution, expanding and contracting the parallelism based on the 
resources available. 

In this section, you’ll build an application that simulates an online stock market ser-
vice (figure 14.3). This service periodically updates stock prices and pushes the updates 
to all connected clients in real time. This high-performance application can handle 
huge numbers of simultaneous connections inside a web server.

Figure 14.3  UI of the mobile (Apple iPad) stock market example. The panel on the left side provides 
stock price updates in real time. The panel on the right is used to manage the portfolio and set trade 
orders for buying and selling stocks.

The client is a mobile application, an iOS app for iPhone built using Xamarin and 
Xamarin.Forms. In the mobile client, the values change in real time in response to 
notifications from the server. Users of the application can manage their own portfolio 
by setting orders to buy and/or sell a specific stock when it reaches a predetermined 
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price. In addition to the mobile application, a WPF version of the client program is 
provided in the downloadable source code. 

NOTE  To run the mobile project, install Xamarin (www.xamarin.com). Refer-
ence the online documentation for further instructions.

Xamarin and Xamarin.Forms
Xamarin is a framework that developers can use to rapidly create cross-platform user 
interfaces. It provides an abstraction for the user interface that will be rendered using 
native controls on iOS, Android, Windows, or Windows Phone. This means that applica-
tions can share a large portion of their user interface code and still retain the native look 
and feel of the target platform. 

Xamarin.Forms is a cross-platform, natively backed UI toolkit abstraction that developers 
can use to easily create user interfaces that can be shared across Android, iOS, Win-
dows, and Windows Phone. The user interfaces are rendered using the native controls 
of the target platform, making it possible for Xamarin.Forms applications to retain the 
appropriate look and feel for each platform. 

Both Xamarin and Xamarin.Forms are huge topics that aren’t relevant in the context of 
this book. For more information, see www.xamarin.com/forms.

 

As you build your application, you’ll take a closer look at how to apply functional 
concurrency to such an application. You'll combine this knowledge with concurrent 
functional techniques and patterns presented in previous chapters. You’ll use the 
Command and Query Responsibility Segregation (CQRS) pattern, Rx, and asyn-
chronous programming to handle parallel requests. You’ll include event sourcing 
based on functional persistence (that is, an event store using the agent-program-
ming model), and more. I explain these patterns later with the pertinent part of the 
application. 

The web server application is an ASP.NET Web API that uses Rx to push the messages 
originated by the incoming requests from the controller to other components of the 
application. These components are implemented using agents (F# MailboxProcessor) 
that spawn a new agent for each established and active user connection. In this way, the 
application can be maintained in an isolated state per user, and provide an easy oppor-
tunity for scalability. 

The mobile application is built in C#, which is, in general, a good choice for cli-
ent-side development in combination with the TAP model and Rx. Instead of C#, for 
the web-server code you’ll use F#; but you can find the C# version of the program in the 
source code of this book. The primary reason for choosing F# for the server-side code is 
immutability as a default construct, which fits perfectly in the stateless architecture used 
in the stock market example. Also, the built-in support for the agent programming 
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model with the F# MailboxProcessor can encapsulate and maintain state effortlessly 
in a thread-safe manner. Furthermore, as you’ll see shortly, F# represents a less-verbose 
solution compared to C# for implementing the CQRS pattern, making the code explicit 
and capturing what happens in a function without hidden side effects.

The application uses ASP.NET SignalR to provide server broadcast functionality for 
real-time updates. Server broadcast refers to a communication initiated by the server and 
then sent to clients. 

14.3.1 Real-time communication with SignalR

Microsoft’s SignalR library provides an abstraction over some of the transports that 
are required to push server-side content to the connected clients as it happens in real 
time. This means that servers and their clients can push data back and forth in real 
time, establishing a bidirectional communication channel. SignalR takes advantage of 
several transports, automatically selecting the best available transport given the client 
and server.

The connection starts as HTTP and is then promoted to a WebSocket connection if 
available. WebSocket is the ideal transport for SignalR since it makes the most efficient 
use of server memory, has the lowest latency, and has the greatest number of underlying 
features. If these requirements aren’t met, SignalR falls back, attempting to use other 
transports to make its connections, such as Ajax long polling. SignalR will always try to 
use the most efficient transport and will keep falling back until it selects the best one 
that’s compatible with the context. This decision is made automatically during an initial 
stage in the communication between the client and the server, known as negotiation. 

14.4 Real-time trading: stock market high-level architecture 
Before diving into the code implementation of the stock market application, let’s 
review the high-level architecture of the application so you have a good handle on what 
you’re developing. The architecture is based on the CQRS pattern, which enforces the 
separation between domain layers and the use of models for reading and writing. 

NOTE  The code used to implement the server side of the application in this 
chapter is in F#, but you can find the full C# version in the online download-
able source code. The same principles explained in the following sections 
apply to both C# and F#.

The key tenet of CQRS is to separate commands, which are operations that cause state 
change (side effects in the system), from query requests that provide data for read-only 
activities without changing the state of any object, as shown in figure 14.4. The CQRS 
patterns are also based on the separation of concerns, which is important in all aspects of 
software development and for solutions built on message-based architectures.
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Query model

Query service

Client

Read
storage

Write
storageCommand model

Command service

Figure 14.4  The CQRS pattern enforces the separation between domain layers and the use of models 
for reading and writing. To maximize the performance of the read operations, the application can benefit 
from a separate data storage optimized specifically for queries. Often, such storage might be a NoSQL 
database. The synchronization between the read/write storage instances is performed asynchronously 
in the background mode, and can take some time. Such data storages are considered to be eventually 
consistent.

The benefits of using the CQRS pattern include adding the ability to manage more 
business complexity while making your system easier to scale down, the ability to write 
optimized queries, and simplifying the introduction of the caching mechanism by 
wrapping the read portion of the API. Employing CQRS in the case of systems with 
a massive disparity between the workload of writes and reads allows you to drastically 
scale the read portion. Figure 14.5 shows the diagram of the stock market web-server 
application based on the CQRS pattern.

You can think about this functional architecture as a dataflow architecture. Inside 
the application, data flows through various stages. In each step, the data is filtered, 
enriched, transformed, buffered, broadcast, persisted, or processed any number of 
ways. The steps of the flow shown in figure 14.5 are as follows:

1 The user sends a request to the server. The request is shaped as a command to 
set a trading order to buy or sell a given stock. The ASP.NET Web API controller 
implements the IObservable interface to expose the Subscribe method, which 
registers observers that listen to the incoming request. This design transforms 
the controller in a message publisher, which sends the command to the subscrib-
ers. In this example, there’s only one subscriber, an agent (MailboxProcessor) 
that acts as a message bus. But there could be any number of subscribers, for 
example for logging and performance metrics.

2 The incoming requests into the Web API actions are validated and transformed 
into a system command, which is wrapped into an envelope that enriches it with 
metadata such as a timestamp and a unique ID. This unique ID, which usually is 
represented by the SignalR connection ID, is used later to store the events aggre-
gated by a unique identifier that’s user-specific, which simplifies the targeting 
and execution of potential queries and replaying event histories. 
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Figure 14.5  A representative model of the stock market web-server application, which is based on 
the CQRS pattern. The commands (Writes) are pushed across the application pipeline to perform the 
trading operations in a different channel than the queries (Reads). In this design, the queries (Reads) 
are performed automatically by the system in the form of server notifications, which are broadcast to the 
clients through SignalR connections. Imagine SignalR as the channel that allows the client to receive 
the notifications generated from the server. In the callouts it’s specified as the technologies used to 
implement the specified component.

3 The command is passed into a command handler, which pushes the message to 
subscribers through a message bus. The subscriber of the command handler is 
the StockTicker, an object implemented using an agent to maintain the state, as 
the name implies, of the stock market tickers.

4 The StockTicker and StockMarket types have established a bidirectional com-
munication, which is used to notify about stock price updates. In this case, Rx 
is used to randomly and constantly update the stock prices that are sent to the 
StockMarket and then flow to the StockTicker. The SignalR hub then broad-
casts the updates to all the active client connections. 

5 The StockTicker sends the notification to the TradingCoordinator object, 
which is an agent that maintains a list of active users. When a user registers with 
the application, the TradingCoordinator receives a notification and spawns a 
new agent if the user is new. The application server creates a new agent instance 
for each incoming request that represents a new client connection. The Trad-
ingCoordinator object implements the IObservable interface, which is used to 
establish a reactive publisher-subscriber with Rx to send the messages to the regis-
tered observers, the TradingAgents. 
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6 The TradingCoordinator receives the commands for trading operations, and dis-
patches them to the associated agent (user), verifying the unique client connec-
tion identifier. The TradingAgent type is an agent that implements the IObserver 
interface, which is registered to receive the notification from the IObservable 
TradingCoordinator. There’s a TradingAgent for each user, and the main pur-
pose is to maintain the state of a portfolio and the trading orders to buy and sell the 
stocks. This object is continuously receiving stock market updates to verify whether 
any of the orders in its state satisfy the criteria to trigger the trading operation. 

7 The application implements event sourcing to store the trading events. The 
events are per group—by user and ordered by timestamp. Potentially, the history 
of each user can be replayed. 

8 When a trade is triggered, the TradingAgent notifies the client’s mobile appli-
cation through SignalR. The application’s objective is to have the client sending 
the trade orders and waiting asynchronously for a notification when each opera-
tion is completed.

The application diagram in figure 14.5 is based on the CQRS pattern, with a clear sep-
aration between the reads and the writes. It’s interesting to note that real-time notifica-
tions are enabled for the query side (reads), so the user doesn’t need to send a request 
to retrieve updates.

The envelope 
In general, it’s good practice to wrap messages in envelopes, because they can carry extra 
information about the message, which is convenient for implementing a message-passing 
system. Usually, the most important pieces of extra information are a unique ID and a 
timestamp when the message was created. The message IDs are important because they 
enable detection of replays and can make your system idempotent. 

 

Going back to the CQRS pattern diagram from figure 14.4, which is repeated in fig-
ure 4.6, you can see that there are two separate storages: one for the read and one for 
the write. Designing storage separation in this way, using the CQRS pattern, is recom-
mended to maximize performance of the read operations. In the case of two detached 
storages, the write side must update the read side. This synchronization is performed 
asynchronously in the background mode and can take time, so the read data storage is 
considered to be eventually consistent. 

Query model

Query service

Client

Read
storage

Write
storageCommand model

Command service

Figure 14.6  The CQRS pattern
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Eventual consistency and the consistency, availability,  
and partition (CAP) theorem
The CAP theorem argues that persisting state in distributed systems is difficult to imple-
ment correctly. This theorem says that there are three distinct and desirable properties 
for distributed systems with an inherent correlation, but any real system can have at 
most two of these properties for any shared data:

¡	Consistency is a property that describes a consistent view of data on all nodes 
of the distributed system, where the system assures that write operations have 
an atomic characteristic and the updates are disseminated simultaneously to all 
nodes, yielding the same results.

¡	Availability is the demand property, where the system will eventually answer every 
request in reasonable time, even in the case of failures.

¡	Partition tolerance describes the fact that the system is resilient to message loss-
es between nodes. A partition is an arbitrary split between nodes of a system, 
resulting in complete message loss between nodes. 

 

Eventual consistency is a consistency model used in distributed computing to achieve 
high availability, guaranteeing that eventually all accesses to that item will return the 
last updated value. In the stock market application, however, the eventual consistency 
is automatically handled by the system. The users will receive the updates and latest 
values through real-time notifications when the data changes. This is possible due to 
the SignalR bidirectional communication between the server and the clients, which is a 
convenient mechanism because users don’t have to ask for updates, the server will pro-
vide updates automatically.

14.5 Essential elements for the stock market application
You haven’t yet learned several essential elements for the stock market application 
because it’s assumed you’ve already encountered the topics. I’ll briefly review these 
items and include where you can continue your study as needed.

The first essential element is F#. If you have a shallow background in F#, see appen-
dix B for information and summaries that you might find useful.

The server-side application is based on the ASP.NET Web API, which requires knowl-
edge of that technology. For the client side, the mobile application uses Xamarin and 
Xamarin.Forms with the Model-View-ViewModel (MVVM) pattern for data binding; but 
you don’t need to have any particular knowledge of these frameworks.
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The MVVM pattern
The MVVM pattern can be used on all XAML platforms. Its intent is to provide a clean sep-
aration of concerns between the UI controls and their logic. There are three core compo-
nents in the MVVM pattern: the Model (business rule, data access, model classes), the 
View (UI Extensible Application Markup Language, or XAML), and the ViewModel (agent 
or middle man between View and Model). Each serves a distinct and separate role. 
The ViewModel acts as an interface between Model and View. It provides data binding 
between View and Model data as well as handling all UI actions by using commands. The 
View binds its control value to properties on a ViewModel, which, in turn, exposes data 
contained in Model objects.

 

Throughout the rest of this chapter, you’re going to use the following:

¡	Reactive Extensions for .NET
¡	Task Parallel Library
¡	F# MailboxProcessor
¡	Asynchronous workflows

The same concepts applied in the following code examples are relevant for all the 
.NET programming languages. 

14.6 Let’s code the stock market trading application
This section covers the code examples to implement the real-time mobile stock market 
application with trading capabilities, as shown in figure 14.7. The parts of the program 
that aren’t relevant or strictly important with the objective of the chapter are intention-
ally omitted. But you can find the full functional implementation in the downloadable 
source code.

Query model

Query service

Client

Read
storage

Write
storageCommand model

Command service

Figure 14.7  The architecture diagram of the stock market web-server application. This is a high-level 
diagram compared to figure 14.5, which aims to clarify the components of the application. Note that 
each component, other than Validation and Command, is implemented using a combination of Rx, the 
IObservable and IObserver interfaces, and the agent-programming model.
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Let’s start with the server Web API controller, where the client mobile application 
sends the requests to perform the trading operations. 

NOTE  The source code companion for the book has also a WPF implementa-
tion of the client-side application.

Note that the controller represents the write domain of the CQRS pattern; in fact, the 
actions are HTTP POST only, as shown here (the code to note is in bold).

Listing 14.1  Web API trading controller 

[<RoutePrefix("api/trading")>]
type TradingController() =
    inherit ApiController()

    let subject = new Subject<CommandWrapper>()  

    let publish connectionId cmd =  
        match cmd with
        | Result.Ok(cmd) ->          

           CommandWrapper.Create connectionId cmd   
           subject.OnNext           
        | Result.Error(e) -> subject.OnError(exn (e))  
        cmd

    let toResponse (request : HttpRequestMessage) result =
            match result with
            | Ok(_) -> request.CreateResponse(HttpStatusCode.OK)
            | _ -> request.CreateResponse(HttpStatusCode.BadRequest)  

    [<Route("sell"); HttpPost>]
    member this.PostSell([<FromBody>] tr : TradingRequest) = async {     
            let connectionId = tr.ConnectionID   

            return 
                {   Symbol = tr.Symbol.ToUpper()
                    Quantity = tr.Quantity
                    Price = tr.Price
                    Trading = TradingType.Sell }    
                |> tradingdValidation           

                |> publish connectionId         

                |> toResponse this.Request      

        } |> Async.StartAsTask                  
    
    interface IObservable<CommandWrapper> with
        member this.Subscribe observer = subject.Subscribe observer  

    override this.Dispose disposing =
        if disposing then subject.Dispose()
        base.Dispose disposing    

The controller uses a Subject instance 
to behave as an observable to publish 
commands to the observer registered.

Publishes the 
command 
using Rx

Validates the 
command 
using the 
Result type 

Creates a wrapper around 
a given command to enrich 
the type with metadata 

Uses a helper 
function for the 

controller actions 
to deliver an  

HTTP response 

Shows the current connection 
ID from SignalR context

Validates using a 
function composition

Publishes the 
command using Rx

Starts the actions as a Task to make 
the action run asynchronously

The controller uses a Subject instance 
to behave as an observable to publish 
commands to the registered observer.

Disposes the Subject; important  
to free up the resources 
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The Web API controller TradingController exposes the sell (PostSell) and the buy 
(PostBuy) actions. Both these actions have an identical code implementation with dif-
ferent purposes. Only one is presented in the listing, to avoid repetition. 

Each action control is built around two core functions, validate and publish. 
tradingdValidation is responsible for validating messages per-connection because 
they’re received from the client. publish is responsible for publishing the messages to 
the control subscribers for core processing. 

The PostSell action validates the incoming request through the tradingVal-
idation function, which returns either Result.Ok or Result.Error according to the 
validity of its input. Then, the output from the validation function is wrapped into a 
command object using the CommandWrapper.Create function and published to the sub-
scribed observers subject.OnNext.

The TradingController uses an instance of the Subject type, from the Rx library, to 
act as an observable by implementing the IObservable interface. In this way, this con-
troller is loosely coupled and behaves as a Publisher/Subscriber pattern, sending the 
commands to the observers that are registered. The registration of this controller as an 
Observable is plugged into the Web API framework using a class that implements the 
IHttpControllerActivator, as shown here (the code to note is in bold).

Listing 14.2  Registering a Web API controller as Observable 

type ControlActivatorPublisher(requestObserver:IObserver<CommandWrapper>) =
   interface IHttpControllerActivator with   
      member this.Create(request, controllerDescriptor, controllerType) =
        if controllerType = typeof<TradingController> then 
             let obsController = 
               let tradingCtrl = new TradingController()
               tradingCtrl
               |> Observable.subscribeObserver requestObserver 
               |> request.RegisterForDispose                    
               tradingCtrl            
             obsController :> IHttpController      
        else raise (ArgumentException("Unknown controller type requested"))

The ControlActivatorPublisher type implements the interface IHttpController-
Activator, which injects a custom controller activator into the Web API framework. 
In this case, when a request matches the type of the TradingController, the Control-
ActivatorPublisher transforms the controller in an Observable publisher, and then 
it registers the controller to the command dispatcher. The tradingRequestObserver 
observer, passed into the CompositionRoot constructor, is used as subscription for the 
TradingController controller, which can now dispatch messages from the actions to 
the subscribers in a reactive and decoupled manner.

Interfaces to plug a new controller constructor 
or activator into the Web API framework 

If the controller type  requested matches 
the TradingController, then a new instance 
is created and registered as an Observable.
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Ultimately, the sub-value of the subscribed observer requestObserver represents the 
subscription and must be registered for disposal together with the TradingController 
instance tradingCtrl, using the request.RegisterForDispose method.

This listing shows the next step, the subscriber of the TradingController observable 
controller.

Listing 14.3  Configuring the SignalR hub and agent message bus 

type Startup() =
    let agent = new Agent<CommandWrapper>(fun inbox ->   
        let rec loop () = async {
            let! (cmd:CommandWrapper) = inbox.Receive() 
            do! cmd |> AsyncHandle   
            return! loop() }
        loop())
    do agent.Start()         

    member this.Configuration(builder : IAppBuilder) =
       let config =
          let config = new HttpConfiguration()
          config.MapHttpAttributeRoutes()

          config.Services.Replace(typeof<IHttpControllerActivator>,  
             ControlActivatorPublisher(Observer.Create(fun x -> 
                                                     agent.Post(x)))) 

           let configSignalR = 
                  new HubConfiguration(EnableDetailedErrors = true)   

  Owin.CorsExtensions.UseCors(builder, Cors.CorsOptions.AllowAll)
  builder.MapSignalR(configSignalR) |> ignore
  builder.UseWebApi(config) |> ignore

The Startup function is executed when the web application begins to apply the con-
figuration settings. This is where the CompositionRoot class (defined in listing 14.2) 
belongs, to replace the default IHttpControllerActivator with its new instance. 
The subscriber type passed into the ControlActivatorPublisher constructor is an 
observer, which posts the messages that arrive from the TradingController actions to 
the MailboxProcessor agent instance. The TradingController publisher sends the 
messages through the OnNext method of the observer interface to all the subscribers, 
in this case the agent, which only depends on the IObserver implementation, and 
therefore reduces the dependencies.

The MailboxProcessor Post method, agent.Post, publishes the wrapped message 
into a Command type using Rx. Note that the controller itself implements the IObservable 
interface, so it can be imagined as a message endpoint, command wrapper, and publisher.

Instance of an 
agent that acts as 
message bus to 
send commands

The agent asynchronously handles the 
commands received, publishing them through 
the AsyncHandle command handler.

Replaces the default 
IHttpControllerActivator 

built in the Web API 
framework with the custom 

ControlActivatorPublisher

The root subscriber passed into the 
ControlActivatorPublisher constructor 
is an observer that sends messages 
asynchronously to the agent instance. Enables the SignalR 

hubs in the application
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The subscriber MailboxProcessor agent asynchronously handles the incoming 
messages like a message bus, but at a smaller and more focused level (figure 14.8). A 
message bus provides a number of advantages, ranging from scalability to a naturally 
decoupled system to multiplatform interoperability. Message-based architectures that 
use a message bus focus on common message contracts and message passing. The rest 
of the configuration method enables the SignalR hubs in the application throughout 
the IAppBuilder provided.

Validation

StockMarket

Trading agent Trading agentTrading agent

Command

Web API
IObservable Command

handler
StockTicker
SignalR hub

Trading
coordinator

Event
storage

Figure 14.8  The command and command-handler are implemented in listing 14.4.

This listing shows the implementation of the AsyncHandle function, which handles the 
agent messages in the form of CQRS commands.

Listing 14.4  Command handler with async retry logic 

module CommandHandler =
    let retryPublish = RetryAsyncBuilder(10, 250) 

    let tradingCoordinator = TradingCoordinator.Instance()   
    let Storage = new EventStorage()     

    let AsyncHandle (commandWrapper:CommandWrapper) =   
       let connectionId = commandWrapper.ConnectionId

       retryPublish {         
            tradingCoordinator.PublishCommand(

Instance of the custom RetryAsyncBuilder 
computation expression defined in listing 9.4 

A single instance of 
TradingCoordinator to publish 
messages to the TradingAgent 
representing the active clients

Instance of the 
EventStorage for saving 
events to implement 
EventSourcing 

Command handler that 
executes the domain 
behavior. In this case it 
asynchronously publishes  
a command with a retry 
semantic.
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                      PublishCommand(connectionId, commandWrapper))   

            let event =
                let cmd = commandWrapper.Command
                match cmd with     
                | BuyStockCommand(connId,trading) -> 
                       StocksBuyedEvent(commandWrapper.Id, trading)
                | SellStockCommand(connId, trading) -> 
                       StocksSoldEvent(commandWrapper.Id, trading)   

            let eventDescriptor = Event.Create (commandWrapper.Id, event)
            Storage.SaveEvent (Guid(connectionId)) eventDescriptor    
      }

The retryPublish is an instance of the custom RetryAsyncBuilder computation 
expression defined in listing 9.4. This computation expression aims to run operations 
asynchronously, and it retries the computation, with an applied delay, in case some-
thing goes wrong. AsyncHandle is a command handler responsible for executing the 
Command behaviors on the domain. The commands are represented as trading oper-
ations to either buy or sell stocks. In general, commands are directives to perform an 
action to the domain (behaviors).

The purpose of AsyncHandle is to publish the commands received from the Trad-
ingCoordinator instance, the next step of the application pipeline, in a message-pass-
ing style. The command is the message received by the MailboxProcessor agent, 
defined during the application Startup (listing 14.3). 

This message-driven programming model leads to an event-driven type of architec-
ture, where the message-driven system recipients await the arrival of messages and react 
to them, otherwise lying dormant. In an event-driven system notification, the listeners 
are attached to the sources of events and are invoked when the event is emitted. 

Event-driven architecture
Event-driven architecture (EDA) is an application design style that builds on the funda-
mental aspects of event notifications to facilitate immediate information dissemination 
and reactive business process execution. In an application based on EDA, information 
is propagated in real time throughout a highly distributed environment, enabling the dif-
ferent components of the application that receive a notification to proactively respond 
to business activities. EDA promotes low latency and a highly reactive system. The dif-
ference between event-driven and message-driven systems is that event-driven systems 
focus on addressable event sources, whereas a message-driven system concentrates on 
addressable recipients.

 

The AsyncHandle handler is also responsible for transforming each command received 
into an Event type, which is then persisted in the event storage (figure 14.9). The event 

Publishes the command and the user-specified 
ID to the stock market. The ID is defined by 
the SignalR connection unique identifier.

Uses a pattern match to transform 
the command into an event type

Persists the event into the event storage 
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storage is part of the event sourcing strategy implementation to store the current state 
of the application in listing 14.5. 
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SignalR hub

Trading
coordinator

Event
storage

Figure 14.9  The event storage is implemented in listing 14.5. 

Listing 14.5  EventBus implementation using an agent 

module EventBus =
    let public EventPublisher = new Event<Event>()   

    let public Subscribe (eventHandle: Events.Event -> unit) =
        EventPublisher.Publish |> Observable.subscribe(eventHandle) 

    let public Notify (event:Event) = EventPublisher.Trigger event  

module EventStorage =
    type EventStorageMessage =     
    | SaveEvent of id:Guid * event:EventDescriptor
    | GetEventsHistory of Guid * AsyncReplyChannel<Event list option>

    type EventStorage() =      

        let eventstorage = MailboxProcessor.Start(fun inbox ->
           let rec loop (history:Dictionary<Guid, EventDescription list>) = 
             async { 

                let! msg = inbox.Receive()
                match msg with
                | SaveEvent(id, event) ->    

Event broker for event-
based communication 
based on the Publisher/
Subscriber pattern

Uses event storage message types 
to save events or get the history

In-memory implementation of the event storage 
using a MailboxProcessor for thread safety 

State of the MailboxProcessor 
to implement an in-memory 
event storage 

Saves the event using 
the user connection 

SignalR unique ID as a 
key. if an entry with the 

same key already exists, 
the event is appended. 
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                    EventBus.Notify event.EventData 
                    match history.TryGetValue(id) with

                    | true, events -> history.[id] <- (event :: events)
                    | false, _ -> history.Add(id, [event])
                | GetEventsHistory(id, reply) ->     
                    match history.TryGetValue(id) with
                    | true, events ->
                        events |> List.map (fun i -> i.EventData) |> Some
                        |> reply.Reply
                    | false, _ -> reply.Reply(None)
                return! loop history   }

          loop (Dictionary<Guid, EventDescriptor list>())) 

        member this.SaveEvent(id:Guid) (event:EventDescriptor) =    
               eventstorage.Post(SaveEvent(id, event))

        member this.GetEventsHistory(id:Guid) =     
            eventstorage.PostAndReply(fun rep -> GetEventsHistory(id,rep))
            |> Option.map(List.iter) 

The EventBus type is a simple implementation of a Publisher/Subscriber pattern over 
events. Internally, the Subscribe function uses Rx to register any given event, which 
is notified when the EventPublisher is triggered through the Notify function. The 
EventBus type is a convenient way to signal different parts of the application when a 
notification is emitted by a component upon reaching a given state. 

Events are the result of an action that has already happened, which is likely the 
output of executing a command. The EventStorage type is an in-memory storage for 
supporting the concept of event sourcing, which is basically the idea of persisting a 
sequence of state-changing events of the application, rather than storing the current 
state of an entity. In this way, the application is capable of reconstructing, at any given 
time, an entity’s current state by replaying the events. Because saving an event is a single 
operation, it’s inherently atomic.

The EventStorage implementation is based on the F# agent MailboxProcessor, 
which guarantees thread safety for accessing the underlying event data-structure history 
Dictionary<Guid, EventDescriptor list>. The EventStorageMessage DU defines 
two operations to run against the event storage:

¡	SaveEvent adds an EventDescriptor to the internal state of the event storage 
agent by the given unique ID. If the ID exists, then the event is appended. 

¡	GetEventsHistory retrieves the event history in ordered sequence by time 
within the given unique ID. In general, the event history is replayed using a given 
function action, as in listing 14.5.

Event broker for event-
based communication 
based on Publisher/
Subscriber pattern

Retrieves the event history 

State of the MailboxProcessor 
to implement an in-memory 
event storage 

Saves the event using the user connection 
SignalR unique ID as key; if an entry with the 
same key already exists, the event is appended 

Retrieves the event history 

Reorders the event history 
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The implementation uses an agent because it’s a convenient way to abstract away the 
basics of an event store. With that in place, you can easily create different types of event 
stores by changing only the two SaveEvent and GetEventsHistory functions.

Let’s look at the StockMarket object shown in figure 14.10. Listing 14.6 shows the 
core implementation of the application, the StockMarket object.
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Figure 14.10  The StockMarket object is implemented in listing 14.6. 

Listing 14.6  StockMarket type to coordinate the user connections

type StockMarket (initStocks : Stock array) =   
    let subject = new Subject<Trading>()   

    static let instanceStockMarket =
            Lazy.Create(fun () -> StockMarket(Stock.InitialStocks()))

    let stockMarketAgent =

        Agent<StockTickerMessage>.Start(fun inbox ->
            let rec marketIsOpen (stocks : Stock array)   
                   (stockTicker : IDisposable) = async {  

                let! msg = inbox.Receive()
                match msg with  
                | GetMarketState(c, reply) -> 
                    reply.Reply(MarketState.Open)
                    return! marketIsOpen stocks stockTicker   
                | GetAllStocks(c, reply) -> 
                    reply.Reply(stocks |> Seq.toList)

This instance simulates the stock 
market, updating the stocks.

Instance of the Rx Subject that implements a 
Publisher/Subscriber pattern

Uses two states of the agent to change the 
Market between the Open or Close state 

State of the 
MailboxProcessor to keep 
the updated stock values

Uses pattern matching to dispatch 
the messages to the relative behavior
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                    return! marketIsOpen stocks stockTicker   
                | UpdateStockPrices -> 
                    stocks 
                    |> PSeq.iter(fun stock ->        
                        let isStockChanged = updateStocks stock stocks
                        isStockChanged
                        |> Option.iter(fun _ -> 
                           subject.OnNext(Trading.UpdateStock(stock))))
                    return! marketIsOpen stocks stockTicker   
                | CloseMarket(c) ->
                    stockTicker.Dispose()
                    return! marketIsClosed stocks        
                | _ -> return! marketIsOpen stocks stockTicker }
            and marketIsClosed (stocks : Stock array) = async {    
                let! msg = inbox.Receive()
                match msg with  
                | GetMarketState(c, reply) ->  
                    reply.Reply(MarketState.Closed)  
                    return! marketIsClosed stocks
                | GetAllStocks(c,reply) -> 
                    reply.Reply((stocks |> Seq.toList)) 
                    return! marketIsClosed stocks
                | OpenMarket(c) -> 
                    return! marketIsOpen stocks (startStockTicker inbox)
                | _ -> return! marketIsClosed stocks }
            marketIsClosed (initStocks))
            
    member this.GetAllStocks(connId) =
        stockMarketAgent.PostAndReply(fun ch -> GetAllStocks(connId, ch))

    member this.GetMarketState(connId) =
        stockMarketAgent.PostAndReply(fun ch -> GetMarketState(connId, ch))

    member this.OpenMarket(connId) =
        stockMarketAgent.Post(OpenMarket(connId))

    member this.CloseMarket(connId) =
        stockMarketAgent.Post(CloseMarket(connId))

    member this.AsObservable() = subject.AsObservable().
SubscribeOn(TaskPoolScheduler.Default)  

    
    static member Instance() = instanceStockMarket.Value 

The StockMarket type is responsible for simulating the stock market in the applica-
tion. It uses operations such as OpenMarket and CloseMarket to either start or stop 
broadcasting notifications of stock updates, and GetAllStocks retrieves stock tickers 
to monitor and manage for users. The StockMarket type implementation is based on 
the agent model using the MailboxProcessor to take advantage of the intrinsic thread 
safety and convenient concurrent asynchronous message-passing semantic that’s at the 
core of building highly performant and reactive (event-driven) systems.

Updates the stock 
values, sending 
notifications to 
the subscribers 

Uses parallel 
iteration using 
PSeq to dispatch 
stock updates as 
fast as possible

Uses two states of the 
agent to change the 
market between the 
open and closed states 

Uses pattern matching to dispatch 
the messages to the relative behavior

Exposes the StockMarket 
type as an observable to 
subscribe the underlying 
changes
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The StockTicker price updates are simulated by sending high-rate random requests 
to the stockMarketAgent MailboxProcessor using UpdateStockPrices, which then 
notifies all active client subscribers. 

The AsObservable member exposes the StockMarket type as a stream of events 
throughout the IObservable interface. In this way, the type StockMarket can notify 
the IObserver subscribed to the IObservable interface of the stock updates, which are 
generated when the message UpdateStock is received.

The function that updates the stock uses a Rx timer to push random values for each 
of the stock tickers registered, increasing or decreasing the prices with a small percent-
age, as shown here. 

Listing 14.7  Function to update the stock ticker prices every given interval

let startStockTicker (stockAgent : Agent<StockTickerMessage>) =
     Observable.Interval(TimeSpan.FromMilliseconds 50.0)
     |> Observable.subscribe(fun _ -> stockAgent.Post UpdateStockPrices)

startStockTicker is a fake service provider that tells StockTicker every 50 ms that it’s 
time to update the prices. 

NOTE  Sending messages to an F# MailboxProcessor agent (or TPL Data-
flow block) is unlikely to be a bottleneck in your system, because the Mail-
boxProcessor can handle 30 million messages per second on a machine 
with a 3.3 GHz core.

The TradingCoordinator (figure 14.11) type’s purpose is to manage the underly-
ing SignalR active connections and TradingAgent subscribers, which act as observ-
ers, through the MailboxProcessor coordinatorAgent. Listing  14.8 shows the 
implementation.
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Figure 14.11  The trading coordinator is implemented in listing 14.8. 
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Listing 14.8  TradingCoordinator agent to handle active trading children agent

type CoordinatorMessage =  
    | Subscribe of  id : string * initialAmount : float *  
➥     caller:IHubCallerConnectionContext<IStockTickerHubClient>
    | Unsubscribe of   id : string
    | PublishCommand of connId : string * CommandWrapper

type TradingCoordinator() =   

    //Listing 6.6 Reactive Publisher Subscriber in C#
    let subject = new RxPubSub<Trading>()    
    static let tradingCoordinator = 
               Lazy.Create(fun () -> new TradingCoordinator())  

    let coordinatorAgent =
        Agent<CoordinatorMessage>.Start(fun inbox ->
            let rec loop (agents : Map<string, 
➥ (IObserver<Trading> * IDisposable)>) = async {
                let! msg = inbox.Receive()
                match msg with   
                | Subscribe(id, amount, caller) ->    
                    let observer = TradingAgent(id, amount, caller)  
                    let dispObsrever = subject.Subscribe(observer)
                    observer.Agent 
                    |> reportErrorsTo id supervisor |> startAgent   
                    caller.Client(id).SetInitialAsset(amount)   
                    return! loop (Map.add id (observer :> 
➥ IObserver<Trading>, dispObsrever) agents) 
                | Unsubscribe(id) ->   
                    match Map.tryFind id agents with  
                   | Some(_, disposable) ->  
                        disposable.Dispose()
                        return! loop (Map.remove id agents)
                   | None -> return! loop agents
                | PublishCommand(id, command) ->   
                   match command.Command with
                   | TradingCommand.BuyStockCommand(id, trading) ->
                       match Map.tryFind id agents with
                      | Some(a, _) ->
                        let tradingInfo = { Quantity=trading.Quantity; 
                                            Price=trading.Price; 
                                            TradingType = TradingType.Buy}
                         a.OnNext(Trading.Buy(trading.Symbol, tradingInfo))
                         return! loop agents
                     | None -> return! loop agents
                   | TradingCommand.SellStockCommand(id, trading) ->
                      match Map.tryFind id agents with
                     | Some(a, _) ->

Uses a discriminated union to define the 
message type for the TradingCoordinator

Uses an agent-based type, which is the core for the 
subscription of the sub-registered observer agents 
and for the coordination of their execution operation Reactive Publisher/Subscriber 

defined in listing 6.6

Uses a singleton instance of 
the type TradingCoordinator

Subscribes a new 
TradingAgent that 
will be notified 
when a stock price 
is updatedUses an instance of 

the TradingAgent that 
acts as an observer to 
receive notifications 
in a reactive style

Applies supervision logic to the 
newly created TradingAgents 
defined in chapter 11

Notifies the 
client of its 
successful 
registration 
using SignalR

Unsubscribes an existing 
TradingAgent from a 
given unique ID and 
closes the channel to 
receive notifications. 
The unsubscription is 
performed by disposing 
the observer.

Publishes the 
commands using 
reactive Publisher/
Subscriber to set 
the orders to Buy 
or Sell a stock
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                        let tradingInfo = { Quantity=trading.Quantity; 
                                            Price=trading.Price; 
                                            TradingType = TradingType.Sell}
                        a.OnNext(Trading.Sell(trading.Symbol, tradingInfo))
                       return! loop agents
                    | None -> return! loop agents }
            loop (Map.empty))

    member this.Subscribe(id : string, initialAmount : float, 
    ➥ caller:IHubCallerConnectionContext<IStockTickerHubClient>) = 
        coordinatorAgent.Post(Subscribe(id, initialAmount, caller)) 

    member this.Unsubscribe(id : string) = 
                     coordinatorAgent.Post(Unsubscribe(id))

    member this.PublishCommand(command) = 
                     coordinatorAgent.Post(command)  

    member this.AddPublisher(observable : IObservable<Trading>) =
                    subject.AddPublisher(observable)  

    static member Instance() = tradingCoordinator.Value  

    interface IDisposable with   
        member x.Dispose() =  subject.Dispose()

The CoordinatorMessage discriminated union defines the messages for the coor-
dinatorAgent. These message types are used for coordinating the operations for the 
underlying TradingAgents subscribed for update notifications. 

You can think of the coordinatorAgent as an agent that’s responsible for maintain-
ing the active clients. It either subscribes or unsubscribes them according to whether 
they’re connecting to the application or disconnecting from it, and then it dispatches 
operational commands to the active ones. In this case, the SignalR hub notifies the 
TradingCoordinator when a new connection is established or an existing one is 
dropped so it can register or unregister the client accordingly. 

The application uses the agent model to generate a new agent for each incoming 
request. For parallelizing request operations, the TradingCoordinator agent spawns 
new agents and assigns work via messages. This enables parallel I/O-bound operations 
as well as parallel computations. The TradingCoordinator exposes the IObservable 
interface through an instance of the RxPubSub type, which is defined in listing 6.6.  
RxPubSub is used here to implement a high-performant reactive Publisher/Subscriber, 
where the TradingAgent observers can register to receive potential notifications when a 
stock ticker price is updated. In other words, the TradingCoordinator is an Observable 
that the TradingAgent observer can subscribe to, implementing a reactive Publisher/
Subscriber pattern to receive notifications. 

Subscribes a new 
TradingAgent that will 

be notified when a stock 
price is updated

The TradingCoordinator 
is exposed as an 
observable through an 
instance of the Reactive 
Publisher/Subscriber 
RxPubSub type.

Uses a member that is allowed to add publishers to 
trigger the notification for the RxPubSub

Uses a singleton instance of 
the type TradingCoordinator

Disposes the underlying 
RxPubSub subject type 
(important)
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The method member AddPublisher registers any type that implements the  
IObservable interface, which is responsible for updating all the TradingAgents sub-
scribed. In this implementation, the IObservable type registered as Publisher in the 
TradingCoordinator is the StockMarket type.

The StockMarket member methods Subscribe and Unsubscribe are used to regis-
ter or unregister client connections received from the StockTicker SignalR hub. The 
requests to subscribe or unsubscribe are passed directly to the underlying coordina-
torAgent observable type. 

The subscription operation triggered by the Subscribe message checks if a  
TradingAgent (figure 14.12) type exists in the local observer state, verifying the con-
nection unique ID. If the TradingAgent doesn’t exist, then a new instance is created, 
and it’s subscribed to the subject instance by implementing the IObserver inter-
face. Then, the supervision strategy reportErrorsTo (to report and handle errors) 
is applied to the newly created TradingAgent observer. This supervision strategy was 
discussed in section 11.5.5. 
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Figure 14.12  The TradingAgent represents an agent-based portfolio for each user connected to 
the system. This agent keeps the user portfolio up to date and coordinates the operations of buying and 
selling a stock. The TradingAgent is implemented in listing 14.9.

Note that the TradingAgent construct takes a reference to the underlying SignalR 
channel, which is used to enable direct communication to the client, in this case a 
mobile device for real-time notifications. The trading operations Buy and Sell are dis-
patched to the related TradingAgent, which is identified using the unique ID from the 
local observer’s state. The dispatch operation is performed using the OnNext seman-
tic of the Observer type. As mentioned, the TradingCoordinator's responsibility is to 
coordinate the operations of the TradingAgent, whose implementation is shown in 
listing 14.9.
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Listing 14.9  TradingAgent that represents an active user 

   type TradingAgent(connId : string, initialAmount : float, caller : 
➥ IHubCallerConnectionContext<IStockTickerHubClient>) = 
     let agent = new Agent<Trading>(fun inbox ->      
        let rec loop cash (portfolio : Portfolio) 
           (buyOrders : Treads) (sellOrders : Treads) = async { 
          let! msg = inbox.Receive()
          match msg with

          | Kill(reply) -> reply.Reply()    
          | Error(exn) -> raise exn   
          | Trading.Buy(symbol, trading) ->   
              let items = setOrder buyOrders symbol trading 
              let buyOrders = 
                  createOrder symbol trading TradingType.Buy
              caller.Client(connId).UpdateOrderBuy(buyOrders)
              return! loop cash portfolio items sellOrders
          | Trading.Sell(symbol, trading) ->     
              let items = setOrder sellOrders symbol trading
              let sellOrder = 
                  createOrder symbol trading TradingType.Sell
              caller.Client(connId).UpdateOrderSell(sellOrder)
              return! loop cash portfolio buyOrders items
          | Trading.UpdateStock(stock) ->    
              caller.Client(connId).UpdateStockPrice stock
              let cash, portfolio, sellOrders = updatePortfolio cash 
➥ stock portfolio sellOrders TradingType.Sell
              let cash, portfolio, buyOrders = updatePortfolio cash 
➥ stock portfolio buyOrders TradingType.Buy

              let asset = getUpdatedAsset portfolio sellOrders 
➥ buyOrders cash   
              caller.Client(connId).UpdateAsset(asset)    
              return! loop cash portfolio buyOrders sellOrders  }
     loop initialAmount (Portfolio(HashIdentity.Structural)) 

(Treads(HashIdentity.Structural)) (Treads(HashIdentity.Structural)))

  member this.Agent = agent

  interface IObserver<Trading> with    
     member this.OnNext(msg) = agent.Post(msg:Trading)  
     member this.OnError(exn) = agent.Post(Error exn)    
     member this.OnCompleted() = agent.PostAndReply(Kill)   

The constructor accepts a reference of the SignalR 
connection to enable real-time notifications.

The TradingAgent maintains local 
in-memory state of the client portfolio 

and the trading orders in process.Uses a special message to implement the 
observer method to complete (terminate) 
the notifications and handle errors

Shows the trade order messages

Updates the value 
of the stock, which 
notifies the client 
and updates the 
portfolio if the 
new value satisfies 
any of the trading 
orders in progress

Checks the current portfolio for potential 
updates according to the new stock value

The client receives notifications through 
the underlying SignalR channel. 

The TradingAgent implements 
the IObserver interface  
to act as subscribers for  
the observable 
TradingCoordinator type 

Uses a special message to implement the 
observer method to complete (terminate) 
the notifications and handle errors
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The TradingAgent type is an agent-based object that implements the IObserver inter-
face to allow sending messages to the underlying agent using a reactive semantic. Fur-
thermore, because the TradingAgent type is an Observer, it can be subscribed to the 
TradingCoordinator, and consequently receives notifications automatically in the 
form of message passing. This is a convenient design to decouple parts of the applica-
tion that can communicate by flowing messages in a reactive and independent man-
ner. The TradingAgent represents a single active client, which means that there’s an 
instance of this agent for each user connected. As mentioned in chapter 11, having 
thousands of running agents (MailboxProcessors) doesn’t penalize the system. 

The local state of the TradingAgent maintains and manages the current client 
portfolio, including the trading orders for buying and selling stocks. When either a 
TradingMessage.Buy or TradingMessage.Sell message is received, the TradingAgent 
validates the trade request, adds the operation to the local state, and then sends a notifi-
cation to the client, which updates the local state of the transaction and the related UI.

The TradingMessage.UpdateStock message is the most critical. The TradingAgent 
could potentially receive a high volume of messages, whose purpose it is to update the 
Portfolios with a new stock price. More importantly, because the price of a stock could be 
changed in the update, the functionality triggered with the UpdateStock message checks 
if any of the existing (in-progress) trading operations, buyOrders and sellOrders, are 
satisfied with the new value. If any of the trades in progress are performed, the portfolio is 
updated accordingly, and the client receives a notification for each update.

As mentioned, the TradingAgent entity keeps the channel reference of the connec-
tion to the client for communicating eventual updates, which is established during the 
OnConnected event in the SignalR hub (figure 14.13 and listing 14.10).
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Figure 14.13  The StockTicker SignalR hub is implemented in listing 14.10.
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Listing 14.10  StockTicker SignalR hub 

[<HubName("stockTicker")>]   
type StockTickerHub() as this =
    inherit Hub<IStockTickerHubClient>()  

    let stockMarket : StockMarket = StockMarket.Instance()
    let tradingCoordinator : TradingCoordinator = TradingCoordinator.

Instance()   
    
    override x.OnConnected() =   
        let connId = x.Context.ConnectionId
        stockMarket.Subscribe(connId, 1000., this.Clients) 
        base.OnConnected()

    override x.OnDisconnected(stopCalled) =   
        let connId = x.Context.ConnectionId
        stockMarket.Unsubscribe(connId)   
        base.OnDisconnected(stopCalled)

    member x.GetAllStocks() =    
        let connId = x.Context.ConnectionId
        let stocks = stockMarket.GetAllStocks(connId)
        for stock in stocks do
            this.Clients.Caller.SetStock stock

    member x.OpenMarket() =  
        let connId = x.Context.ConnectionId
        stockMarket.OpenMarket(connId)
        this.Clients.All.SetMarketState(MarketState.Open.ToString())

    member x.CloseMarket() =  
        let connId = x.Context.ConnectionId
        stockMarket.CloseMarket(connId)
        this.Clients.All.SetMarketState(MarketState.Closed.ToString())

    member x.GetMarketState() =  
        let connId = x.Context.ConnectionId
        stockMarket.GetMarketState(connId).ToString()

The StockTickerHub class derives from the SignalR Hub class, which is designed to 
handle the connections, bidirectional interaction, and calls from clients. A SignalR 
Hub class instance is created for each operation on the hub, such as connections and 
calls from the client to the server. If you instead put state in the SignalR Hub class, then 
you’d lose it because the hub instances are transient. This is the reason you’re using 
the TradingAgents to manage the mechanism that keeps stock data, updates prices, 
and broadcasts price updates. 

Uses the SignalR attribute to define the hub name 
that is referenced from the client to be accessed The StockTickerHub implements the strongly 

typed Hub< IStockTickerHubClient> class to 
enable SignalR communications.

Uses a single instance of the StockMarket and 
TradingCoordinator types, which is agent-based and can 
be used as a singleton instance in a thread-safe manner

Uses SignalR base events to manage 
new and dropped connections 

For each 
connection 
event raised, an 
agent is either 
subscribed or 
unsubscribed 
accordingly. 

Methods that manage  
the stock market events 
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The Singleton pattern is a common option to keep alive an instance object inside a 
SignalR hub. In this case, you’re creating a singleton instance of the StockMarket type; 
and because its implementation is agent-based, there are no thread-race issues and per-
formance penalties, as explained in section 3.1. 

The SignalR base methods OnConnected and OnDisconnected are raised each time 
a new connection is established or dropped, and a TradingAgent instance is either cre-
ated and registered or unregistered and destroyed accordingly.

The other methods handle the stock market operations, such as opening and closing 
the market. For each of those operations, the underlying SignalR channel notifies the 
active clients immediately, as shown in the following listing.

Listing 14.11  Client StockTicker interface to receive notifications using SignalR

    interface IStockTickerHub
    {
        Task Init(string serverUrl, IStockTickerHubClient client);
        string ConnectionId { get; }
        Task GetAllStocks();
        Task<string> GetMarketState();
        Task OpenMarket();
        Task CloseMarket();
    }

The IStockTickerHub interface is used in the client side to define the methods in the 
SignalR Hub class that clients can call. To expose a method on the hub that you want to 
be callable from the client, declare a public method. Note that the methods defined in 
the interface can be long running, so they return a Task (or Task<T>) type designed to 
run asynchronously to avoid blocking the connection when the WebSocket transport is 
used. When a method returns a Task object, SignalR waits for the task to complete, and 
then it sends the unwrapped result back to the client.

You’re using a Portable Class Library (PCL) to share the same functionality among 
different platforms. The purpose of the IStockTickerHub interface is to establish an 
ad hoc platform-specific contract for the SignalR hub implementation. In this way, each 
platform has to satisfy a precise definition of this interface, injected at runtime using the 
DependencyService class provider (http://mng.bz/vFc3):

IStockTickerHub stockTickerHub = DependencyService.Get<IStockTickerHub>();

After having defined the IStockTickerHub contract to establish the way that the client 
and server communicate, listing 14.12 shows the implementation of the mobile appli-
cation, in particular of the ViewModel class, which represents the core functionality. 
Several of the properties have been removed from the original source code, because 
repetitive logic could distract from the main objective of the example. 

 

http://mng.bz/vFc3
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Listing 14.12  Client-side mobile application using Xamarine.Forms

public class MainPageViewModel : ModelObject, IStockTickerHubClient
{
    public MainPageViewModel(Page page)
    {

        Stocks = new ObservableCollection<StockModelObject>();
        Portfolio = new ObservableCollection<Models.OrderRecord>();
        BuyOrders = new ObservableCollection<Models.OrderRecord>();          
        SellOrders = new ObservableCollection<Models.OrderRecord>(); 

        SendBuyRequestCommand = 
                 new Command(async () => await SendBuyRequest());
        SendSellRequestCommand = 
                 new Command(async () => await SendSellRequest());   

        stockTickerHub = DependencyService.Get<IStockTickerHub>(); 
        hostPage = page;

        var hostBase = "http://localhost:8735/";
        stockTickerHub             
            .Init(hostBase, this)
            .ContinueWith(async x =>
            {
                var state = await stockTickerHub.GetMarketState();
                isMarketOpen = state == "Open";
                OnPropertyChanged(nameof(IsMarketOpen));
                OnPropertyChanged(nameof(MarketStatusMessage));

                await stockTickerHub.GetAllStocks();
            }, TaskScheduler.FromCurrentSynchronizationContext());  

        client = new HttpClient();
        client.BaseAddress = new Uri(hostBase);
        client.DefaultRequestHeaders.Accept.Clear();
        client.DefaultRequestHeaders.Accept.Add(
            new MediaTypeWithQualityHeaderValue("application/json")); 
    }
    private IStockTickerHub stockTickerHub;  
    private HttpClient client;
    private Page hostPage;

    public Command SendBuyRequestCommand { get; }
    public Command SendSellRequestCommand { get; } 

    private double price;
    public double Price  
    {
        get => price; set
        {
            if (price == value)

Uses observable collections to notify the 
auto-updates for the ViewModel properties

Uses asynchronous commands to send 
the trading orders to buy or sell

Initializes the stockTickerHub to establish a connection 
to the server. During the initialization and client-server 

connection, the UI is updated accordingly.

The stockTickerHub 
initialization is 
performed in the 
UI synchronization 
context to freely 
update the UI 
controls. 

Initializes the HttpClient 
used to send requests 
to the Web Server API

Property in the ViewModel used for data 
binding with the UI. Only one property  
is shown for demonstration purposes; other 
properties follow the same structure. 
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                return;
            price = value;
            OnPropertyChanged();
        }
    }
    private async Task SendTradingRequest(string url)  
    {
        if (await Validate()) {
        var request = new 
➥ TradingRequest(stockTickerHub.ConnectionId, Symbol, Price, Amount);
        var response = await client.PostAsJsonAsync(url, request);
        response.EnsureSuccessStatusCode();        
        }
    }
    private async Task SendBuyRequest() =>  
           await SendTradingRequest("/api/trading/buy");   
    private async Task SendSellRequest() =>
           await SendTradingRequest("/api/trading/sell");  

    public ObservableCollection<Models.OrderRecord> Portfolio { get; }
    public ObservableCollection<Models.OrderRecord> BuyOrders { get; }
    public ObservableCollection<Models.OrderRecord> SellOrders { get; }
    public ObservableCollection<StockModelObject> Stocks { get; } 

    public void UpdateOrderBuy(Models.OrderRecord value) => 
                                              BuyOrders.Add(value);  
    public void UpdateOrderSell(Models.OrderRecord value) => 
                                              SellOrders.Add(value);  
}

The class MainPageViewModel is the ViewModel component of the mobile client appli-
cation, which is based on the MVVM pattern (http://mng.bz/qfbR) to enable commu-
nication and data binding between the UI (View) and the ViewModel. In this way, the 
UI and the presentation logic have separate responsibilities, providing a clear separa-
tion of concerns in the application.

Note that the class MainPageViewModel implements the interface IStockTickerHub-
Client, which permits the notifications from the SignalR channel after the connection 
is established. The interface IStockTickerHubClient is defined in the StockTicker.
Core project, and it represents the contract for the client that the server relies on. This 
code snippet shows the implementation of this interface:

type IStockTickerHubClient =
    abstract SetMarketState : string -> unit
    abstract UpdateStockPrice : Stock -> unit
    abstract SetStock : Stock -> unit
    abstract UpdateOrderBuy : OrderRecord -> unit
    abstract UpdateOrderSell : OrderRecord -> unit
    abstract UpdateAsset : Asset -> unit
    abstract SetInitialAsset : float -> unit

Uses a function to send 
requests to the Web Server API

Uses observable collections to notify the 
auto-updates for the ViewModel properties

Uses functions triggered by the SignalR channel when 
sending notifications from the web server application 

to the client. These functions update the UI. 
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These notifications will flow in the application automatically from the server side 
into the mobile application, updating the UI control in real time. In listing 14.12, the 
observable collections defined at the top of the class are used to communicate in a bidi-
rectional manner with the UI. When one of these collections is updated, the changes 
are propagated to the bind UI controllers to reflect the state (http://mng.bz/nvma).

The Command of the ViewModel is used to define a user operation, which is data 
bound to a button, to send the request asynchronously to the web server to per-
form a trade for the stock defined in the UI.1 The request is executed, launching the 
SendTradingRequest method that’s used to buy or sell a stock according to the API 
endpoint targeted.

The SignalR connection is established through the initialization of the stock-
TickerHub interface, and an instance is created by calling the DependencyService.
Get<IStockTickerHub> method. After the creation of the stockTickerHub instance, 
the application initialization is performed by calling the Init method, which calls 
the remote server for locally loading the stocks with the method stockTickerHub.
GetAllStocks and the current state of the market with the method stockTickerHub.
GetMarketState to update the UI. 

The application initialization is performed asynchronously using the FromCurrent-
SynchronizationContext TaskScheduler, which provides functionality for propagat-
ing updates to the UI controllers from the main UI thread without the need to apply 
any thread-marshal operation.

Ultimately, the application receives the notifications from the SignalR channel, 
which is connected to the stock market server, through the invocation of the methods 
defined in the IStockTickerHubClient interface. These methods are UpdateOrder-
Buy, UpdatePortofolio, and UpdateOrderSell, which are responsible updating the UI 
controllers by changing the relative observable collections.

14.6.1 Benchmark to measure the scalability of the  
stock ticker application

The stock ticker application was deployed on Microsoft Azure Cloud with a medium 
configuration (two cores and 3.5 GB of RAM), and stress-tested using an online tool to 
simulate 5,000 concurrent connections, each generating hundreds of HTTP requests. 
This test aimed to verify the web server performance under excessive loads to ensure 
that critical information and services are available at speeds that end users expect. The 
result was green, validating that web server application can sustain many concurrent 
active users and cope with excessive loads of HTTP requests.

1 “Stephen Cleary, Async Programming: Patterns for Asynchronous MVVM Applications: Data Bind-
ing,” https://msdn.microsoft.com/magazine/dn605875. 
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Summary
¡	Conventional web applications can be thought of as embarrassingly parallel 

because requests are entirely isolated and easy to execute independently. The more 
powerful the server running the application, the more requests it can handle. 

¡	You can effortlessly parallelize and distribute a stateless program among com-
puters and processes to scale out performance. There’s no need to maintain any 
state where the computation runs, because no part of the program will modify 
any data structures, avoiding data races.

¡	Asynchronicity, caching, and distribution (ACD) are the secret ingredients 
when designing and implementing a system capable of flexing to an increase (or 
decrease) of requests with a commensurate parallel speedup with the addition of 
resources.

¡	You can use Rx to decouple an ASP.NET Web API and push the messages orig-
inated by the incoming requests from the controller to other components of 
the subscriber application. These components could be implemented using the 
agent programming model, which spawns a new agent for each established and 
active user connection. In this way, the application can be maintained in an iso-
lated state per user, and provide an easy opportunity for scalability. 

¡	The support provided for concurrent FP in .NET is key to making it a great tool 
for server-side programming. Support exists for running operations asynchro-
nously in a declarative and compositional semantic style; additionally, agents can 
be used to develop thread-safe components. These core technologies can be com-
bined for declarative processing of events and for efficient parallelism with TPL.

¡	Event-driven architecture (EDA) is an application design style that builds on the 
fundamental aspects of event notifications to facilitate immediate information 
dissemination and reactive business process execution. In an EDA, information is 
propagated in real time throughout a highly distributed environment, enabling 
the different components of the application that receive a notification to proac-
tively respond to business activities. EDA promotes low latency and a highly reac-
tive system. The difference between event-driven and message-driven systems is 
that event-driven systems focus on addressable event sources; message-driven sys-
tems concentrate on addressable recipients.
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appendix A
Functional programming

It’s anecdotal to say that learning FP makes you a better programmer. It’s true that 
FP provides an alternative, often simpler, way of thinking about problems. Moreover, 
many techniques from FP can be successfully applied to other languages. No matter 
what language you work in, programming in a functional style provides benefits. 

FP is more a mindset than a particular set of tools or languages. Getting famil-
iar with different programming paradigms is what makes you a better programmer, 
and a multiparadigm programmer is more powerful than a polyglot programmer.  
Therefore . . . 

With the technical background having been sorted out in the chapters of this 
book, this appendix doesn’t cover the aspects of FP applied to concurrency, such 
as immutability, referential transparency, side-effect-free functions, and lazy evalu-
ations. Rather, it covers general information about what FP means and the reasons 
why you should care about it. 

What is functional programming? 
FP means different things to different people. It’s a program paradigm that treats a 
computation as an evaluation of an expression. A paradigm in science describes dis-
tinct concepts or thought patterns. 

FP involves using state and mutable data to solve domain problems, and it’s based 
on lambda calculus. Consequently, functions are first-class values. 
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First-class values
A first-class value in a programming language is an entity that supports all the operations 
available to other entities. These operations typically include being passed as a parame-
ter, returned from a function, or assigned to a variable.

 

FP is a programming style that reasons in terms of evaluation of expressions versus the 
execution of a statement. The term expression comes from mathematics; an expression 
is always returning a result (value) without mutating the program state. A statement 
doesn’t return anything and can change the program state: 

¡	Execution of statements refers to a program expressed as a sequence of commands 
or statements. Commands specify how to achieve an end result by creating objects 
and manipulating them.

¡	Evaluation of expressions refers to how a program specifies object properties that 
you want to get as result. You don’t specify the steps necessary to construct the 
object, and you can’t accidentally use the object before it’s created.

The benefits of functional programming 

Here’s a list of the benefits of FP:

¡	Composability and modularity—With the introduction of pure functions, you can 
compose functions and create higher-level abstractions from simple functions. 
Using modules, the program can be organized in a better way. Composability is 
the most powerful tool to defeat complexity; it lets you define and build solutions 
for complex problems.

¡	Expressiveness—You can express complex ideas in a succinct and declarative for-
mat, improving the clarity of the intention and ability to reason about your pro-
gram and reducing code complexity.

¡	Reliability and testing—Functions exist without side effects; a function only evalu-
ates and returns a value that depends on its arguments. Therefore, you can exam-
ine a function by focusing solely on its arguments, which allows for better testing 
to easily validate the correctness of your code.

¡	Easier concurrency—Concurrency encourages referential transparency and immu-
tability, which are the primary keys for writing correct, lock-free concurrent 
applications to run effectively on multiple cores. 

¡	Lazy evaluation—You can retrieve the result of the function on demand. Suppose 
you have a big data stream to analyze. Thanks to LINQ, you can use deferred exe-
cution and lazy evaluation to process your data analysis on demand (only when 
needed). 

¡	Productivity—This is an enormous benefit: you can write fewer lines of code while 
achieving the same implementation as other paradigms. Productivity reduces the 
time it takes to develop programs, which can translate to a larger profit margin. 
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¡	Correctness—You can write less code, naturally reducing the possible number of 
bugs. 

¡	Maintainability—This benefit results from the other benefits, such as the code 
being composable, modular, expressive, and correct.

Learning to program functionally leads to more modular, expression-oriented, con-
ceptually simple code. The combinations of these FP assets let you understand what 
your code is doing, regardless of how many threads it’s executing.

The tenets of functional programming

There are four main tenets to FP that lead to a composable and declarative program-
ming style:

¡	Higher-order functions (HOFs) as first-class values
¡	Immutability
¡	Pure functions, also known as side-effect-free functions 
¡	Declarative programming style

The clash of program paradigms: from imperative to 
object-oriented to functional programming

Object-oriented programming makes code understandable by encapsulating moving parts. 
Functional programming makes code understandable by minimizing moving parts.

—Michael Feathers, author of Working with Legacy Code, via Twitter

This section describes three programming paradigms: 

¡	Imperative programming describes computations in terms of statements that 
change the program’s state and define the sequence of commands to perform. 
Therefore, an imperative paradigm is a style that computes a series of statements 
to mutate a state. 

¡	Functional programming builds the structures and elements of a program by 
treating computations as the evaluation of expressions; therefore, FP promotes 
immutability and avoids state. 

¡	Object-oriented programming (OOP) organizes objects rather than actions, and its 
data structures contain data rather than logic. The main programming paradigms 
can be distinguished between imperative and functional. OOP is orthogonal to 
imperative and functional programming, in the sense that it can be combined 
with both. You don’t have to prefer one paradigm over another, but you can write 
software with an OOP style using functional or imperative concepts.

OOP has been around for almost two decades, and its design principles were used 
by languages such as Java, C#, and VB.Net. OOP has had great success because of its 
ability to represent and model the user domain, raising the level of abstraction. The 
primary idea behind the introduction of OOP languages was code reusability, but this 
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idea is often corrupted by modifications and customizations required for specific sce-
narios and ad hoc objects. OOP programs developed with low coupling and good code 
reusability felt like a complex maze, with many secret and convoluted passages reduc-
ing code readability.

To mitigate this hard-to-achieve code reusability, developers started to create design 
patterns to address OOP’s cumbersome nature. Design patterns encouraged develop-
ers to tailor software around the patterns, making the code base more complex, diffi-
cult to understand, and, in certain cases, maintainable but still far from reusable. In 
OOP, design patterns are useful when defining solutions to recurring design problems, 
but they can be considered a defect of abstraction in the language itself. 

In FP, design patterns have a different meaning; in fact, most of the OOP-specific 
design patterns are unnecessary in functional languages because of the higher level 
of abstraction and HOFs used as building blocks. The higher level of abstraction and 
reduced workload around the low-level details in FP style has the advantage of produc-
ing shorter programs. When the program is small, it’s easier to understand, improve, 
and verify. FP has fantastic support for code reuse and for reducing repetitive code, 
which is the most effective way to write code that’s less prone to error.

Higher-order functions for increasing abstraction

The principle of an HOF means that functions can be passed as arguments to other 
functions, and functions can return different functions within their return values. 
.NET has the concept of generic delegates, such as Action<T> and Func<T, TResult>, 
which can be used as HOFs to pass functions as parameters with lambda support. 
Here’s an example of using the generic delegate Func<T,R> in C#:

Func<int, double> fCos = n => Math.Cos( (double)n );
double x = fCos(5); 
IEnumerable<double> values = Enumerable.Range(1, 10).Select(fCos);

The equivalent code can be represented in F# with function semantics, without the 
need to use the Func<T, TResult> delegate explicitly: 

let fCos = fun n -> Math.Cos( double n )
let x = fCos 5
let values = [1..10] |> List.map fCos

HOFs are at the core of harnessing the power of FP. HOFs have the following benefits: 

¡	Composition and modularity
¡	Code reusability
¡	Ability to create highly dynamic and adaptable systems

Functions in FP are considered first-class values, meaning that functions can be named 
by variables, can be assigned to variables, and can appear anywhere that any other 
language constructs can appear. If you’re coming from a straight OOP experience, 
this concept allows you to use functions in a non-canonical way, such as applying rela-
tively generic operations to standard data structures. HOFs let you focus on results, not 
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steps. This is a fundamental and powerful shift in approaching functional languages. 
Different functional techniques allow you to achieve functional composition: 

¡	Composition
¡	Currying 
¡	Partially applied functions or partial applications

The power of using delegates leads to express functionality that targets not only meth-
ods that do one thing, but also behavioral engines that you can enhance, reuse, and 
extend. This kind of programming style, which is at the root of the functional par-
adigm, has the benefit of reducing the amount of code refactoring: instead of hav-
ing several specialized and rigid methods, the program can be expressed by fewer but 
much more general and reusable methods that can be amplified to handle multiple 
and different scenarios. 

HOFs and lambda expressions for code reusability

One of the many useful reasons for using lambda expressions is to refactor the code, 
reducing redundancy. It’s good practice in memory-managed languages such as C# to 
dispose of resources deterministically when possible. Consider the following example:

string text;
using (var stream = new StreamReader(path)) 
{
    text = stream.ReadToEnd();
}

In this code, the StreamReader resource is disposed with the using keyword. This is a 
well-known pattern, but limitations do exist. The pattern isn’t reusable because the dis-
posable variable is declared inside the using scope, making it impossible to reuse after 
it’s disposed, and it generates exceptions if it calls the disposed objects. Refactoring 
the code in a classic OOP style is no trivial task. It’s possible to use a template method 
pattern, but this solution also introduces more complexity with the need for a new base 
class and implementation for each derived class. A better and more elegant solution is 
to use a lambda expression (anonymous delegate). Here’s the code to implement the 
static helper method and its use:

R Using<T,R>(this T item, Func<T, R> func) where T : IDisposable {
    using (item)
           return func(item);
}

string text = new StreamReader(path).Using(stream => stream.ReadToEnd());

This code implements a flexible and reusable pattern for cleaning up disposable 
resources. Here the only constraint is that the generic type T must be a type that imple-
ments IDisposable. 
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Lambda expressions and anonymous functions 

The term lambda or lambda expression most often refers to anonymous functions. The 
intention behind a lambda expression is to express computations based on a function, 
using variable binding and substitution. In simpler terms, a lambda expression is an 
unnamed method written in place of a delegate instance that introduces the notion of 
anonymous functions. 

Lambda expressions raise the level of abstraction to simplify the programming expe-
rience. Functional languages such as F# are based on lambda calculus, which is used 
to express computations on function abstractions; therefore, a lambda expression is 
part of the FP language. In C#, however, the main motivation for introducing lambdas 
is to facilitate streaming abstractions that enable stream-based declarative APIs. Such 
abstraction presents an accessible and natural path to multicore parallelism, making 
lambda expressions a valuable tool in the domain of current computing.

Lambda calculus vs. lambda expressions
Lambda calculus (also known as λ-calculus) is a formal system in mathematical logic and 
computer science for expressing computations using variable binding and substitution 
using functions as its only data structure. Lambda calculus behaves as a small program-
ming language that expresses and evaluates any computable function. For example, 
.NET LINQ is based on lambda calculus.

A lambda expression defines a special anonymous method. Anonymous methods are 
delegate instances with no actual method declaration name. The terms lambda and 
lambda expression most often refer to anonymous functions. 

A lambda method is syntactic sugar and a more compact syntax for embedding an anon-
ymous method in code:

Func<int, int> f1 = delegate(int i) { return i + 1; }; 
Func<int, int> f2 = i => i+1;     

 

To create a lambda expression, you specify input parameters (if any) on the left side of 
the lambda operator => (pronounced “goes to”), and you put the expression or state-
ment block on the right side. For example, the lambda expression (x, y) => x + y 
specifies two parameters x and y and returns the sum of these values. 

Each lambda expression has three parts:

¡	(x, y) —A set of parameters.
¡	=> —The goes to operator (=>) that separates an argument list from the result 

expression.
¡	x + y —A set of statements that perform an action or return a value. In this exam-

ple, the lambda expression returns the sum of x and y.

Here’s how you implement three lambda expressions with the same behavior:

Func<int, int, int> add = delegate(int x, int x){ return x + y; };
Func<int, int, int> add = (int x, int y) => { return x + y; };
Func<int, int, int> add = (x, y) => x + y

Anonymous method
Lambda expression
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The part Func<int, int, int> defines a function that takes two integers and returns 
a new integer. 

In F#, the strong type system can bind a name or label to a function without an 
explicit declaration. F# functions are primitive values, similar to integers and strings. 
It’s possible to translate the previous function into the equivalent F# syntax as follows:

let add = (fun x y -> x + y)
let add = (+) 

In F#, the plus (+) operator is a function that has the same signature as add, which takes 
two numbers and returns the sum as a result. 

Lambda expressions are a simple and effective solution to assign and execute a block 
of inline code, especially in an instance when the block of code serves one specific pur-
pose and you don’t need to define it as a method. There are numerous advantages for 
introducing lambda expressions into your code. Here is a short list:

¡	You don’t need explicit parameterization of types; the compiler can figure out 
the parameter types. 

¡	Succinct inline coding (the functions exist within the line) avoids disruptions 
caused when developers must look elsewhere in the code to find functionality. 

¡	Captured variables limit the exposure of class-level variables.
¡	Lambda expressions make the code flow readable and understandable. 

Currying

The term currying originates from Haskell Curry, a mathematician who was an import-
ant influence on the development of FP. Currying is a technique that lets you mod-
ularize functions and reuse code. The basic idea is to transform the evaluation of a 
function that takes multiple parameters into the evaluation of a sequence of functions, 
each with a single parameter. Functional languages are closely related to mathemat-
ical concepts, where functions can have only one parameter. F# follows this concept 
because functions with multiple parameters are declared as a series of new functions, 
each with only one parameter. 

In practice, the other .NET languages have functions with more than one argu-
ment; and from the OOP perspective, if you don’t pass into a function all the argu-
ments expected, the compiler throws an exception. Conversely, in FP it’s extremely 
easy to write a curried function that returns any function you give it. But as previously 
mentioned, lambda expressions provide a great syntax for creating anonymous dele-
gates, thereby making it easy to implement a curried function. Moreover, it’s possible 
to implement currying in any programming language that supports closure—an inter-
esting concept because this technique simplifies lambda expressions, including only 
single-parameter functions. 

The currying technique makes it possible to treat all functions with one or any num-
ber of arguments as if they take only one argument, independent of the number of 
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arguments needed to execute. This creates a chain of functions where each consumes 
a single parameter. 

At the end of this chain of functions, all parameters are available at once, which 
allows the original function to execute. Moreover, currying allows you to create special-
ized groups of functions generated from fixing the arguments of a base function. For 
instance, when you curry a function of two arguments and apply it to the first argument, 
then the functionality is limited by one dimension. This isn’t a limitation but a powerful 
technique, because then you can apply the new function to the second argument to 
compute a particular value.

In mathematic notation, an important difference exists between these two functions:

Add(x, y, z)
Add x y z

The difference is that the first function takes a single argument of type tuple (com-
posed by the three items x, y, and z), and the second function takes the input item 
x and returns a function that takes the input item y, which returns a function that 
takes item z and then returns the result of the final computation. In simpler words, the 
equivalent function can be rewritten as 

(((Add x) y) z)

It’s important to mention that function applications are left associative, taking one 
argument at a time. The previous function Add is an application against x, and the 
result is then applied to y. The result of this application ((Add x) y) is then applied 
to z. Because each of these transitional steps yields a function, it’s perfectly acceptable 
to define a function as

Plus2 = Add 2

This function is equivalent to Add x. In this case, you can expect the function Plus2 
to take two input arguments, and it always passes 2 as a fixed parameter. For clarity, it’s 
possible to rewrite the previous function as follows:

Plus2 x = Add 2 x

The process of yielding intermediate functions (each taking one input argument) is 
called currying. Let’s see currying in action. Consider the following simple C# function 
that uses a lambda expression:

Func<int,int,int> add = (x,y) => x + y;         
Func<int,Func<int,int>> curriedAdd = x => y => x + y;     

This code defines the function Func<int, int, int> add, which takes two integers as 
arguments and returns an integer as a result. When this function is called, the compiler 
requires both arguments x and y. But the curried version of the function add, curried
Add, results in a delegate with the special signature Func<int,Fun< int, int>>. 

In general, any delegate of type Func<A,B,R> can be transformed into a delegate of 
type Func<A, Func<B,R>>. This curried function takes only one argument and returns 
a function that takes the original function as an argument and then returns a value of 
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type A. The curried function curriedAdd can be used to create powerful specialized 
functions. For example, you can define an increment function by adding the value 1:

Func<int,int> increment = curriedAdd(1)

Now, you can use this function to define other functions that perform several forms of 
addition:

int a = curriedAdd(30)
int b = increment(41)

Func<int, int> add30 = curriedAdd(30)
int c = add30(12)

One benefit of currying a function is that the creation of specialized functions is easier 
to reuse; but the real power is that curried functions introduce a useful concept called 
partially applied functions, which is covered in the next section. Additional benefits of 
the currying technique are function parameter reduction and easy-to-reuse abstract 
functions. 

automatic currying in c#
It’s possible to automate and raise the level of abstraction of the currying technique 
in C# with the help of extension methods. In this example, the purpose of the curry 
extension method is to introduce syntactic sugar to hide the currying implementation:

static Func<A, Func<B, R>> Curry<A, B, R>(this Func<A, B, R> function)
{
    return a => b => function(a, b);
}

This is the previous code refactored using the helper extension method:

Func<int,int,int> add = (x,y) => x + y;
Func<int,Func<int,int>> curriedAdd = add.Curry();

This syntax looks more succinct. It’s important to notice that the compiler can infer 
the types used in all the functions and, for this, it’s most helpful. In fact, even though 
Curry is a generic function, it’s not required to pass generic parameters explicitly. 
Using this currying technique lets you use a different syntax that’s more conducive to 
building a library of complex composite functions from simple functions. The source 
code, which you can download as part of the resources for this book, has a library that 
contains a full implementation of helper methods, including an extension method for 
automatic currying.

un-currying

As easily as applying the curry technique to a function, you can un-curry a function by 
using higher-order functions to revert the curried function. Un-currying is, obviously, 
the opposite transformation to currying. Think of un-currying as a technique to undo 
currying by applying a generic un-curry function.
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In the following example, the curried function with signature Func<A, Func<B, R>> 
will be converted back to a multi-argument function: 

public static Func<A, B, R> Uncurry<A, B, R>(Func<A, Func<B, R>> function) 
                                      => (x, y) => function(x)(y); 

The primary purpose of un-currying a function is to bring the signature of a curried 
function back into a more OOP style. 

currying in f#
In F#, function declarations are curried by default. But even though this is done auto-
matically by the compiler for you, it’s helpful to understand how F# handles curried 
functions. 

The following example shows two F# functions that multiply two values. If you’re not 
familiar with F#, these functions may seem equivalent or at least similar, but they aren’t:

let multiplyOne (x,y) = x * y
let multiplyTwo x y = x * y

let resultOne = multiplyOne(7, 8)
let resultTwo = multiplyTwo 7 8
let values = (7,8)
let resultThree = multiplyOne values

Besides the syntax, no apparent difference exists between these functions, but they 
behave differently. The first function has only one parameter, which is a tuple with the 
required values, but the second function has two distinct parameters x and y.

The difference becomes clear when you look into the signatures of these functions’ 
declarations:

val multiplyOne : (int * int) -> int
val multiplyTwo : int -> int -> int

Now it’s obvious that these functions are different. The first function takes a tuple as an 
input argument and returns an integer. The second function takes an integer as its first 
input and returns a function that takes an integer as input and then returns an integer. 
This second function, which takes two arguments, is transformed automatically by the 
compiler into a chain of functions, each with one input argument.

This example shows the equivalent curried functions, which is how the compiler 
interprets it for you: 

let multiplyOne x y = x * y
let multiplyTwo = fn x -> fun y -> x * y

let resultOne = multiplyOne 7 8
let resultTwo = multiplyTwo 7 8
let resultThree = 
    let tempMultiplyBy7 = multiplyOne 7
    tempMultiplyBy7 8
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In F#, the implementation of these functions is equivalent because, as previously men-
tioned, they’re curried by default. The main purpose of currying is to optimize a func-
tion for easily applying partial application. 

Partially applied functions

The partially applied function (or partial function application) is a technique of fixing 
multiple arguments to a function and producing another function of smaller arity (the 
arity of a function is the number of its arguments). In this way, a partial function pro-
vides a function with fewer arguments than expected, which produces a specialized 
function for the given values. Partially applied functions, in addition to function com-
position, make functional modularization possible.

More simply, a partial function application is a process of binding values to parame-
ters, which means that partially applied functions are functions that reduce the number 
of function arguments by using fixed (default) values. If you have a function with N 
arguments, it’s possible to create a function with N-1 arguments that calls the original 
function with a fixed argument. Because partial application depends on currying, the 
two techniques occur together. The difference between partial application and curry-
ing is that partial application binds more than one parameter to a value, so to evaluate 
the rest of the function you need to apply the remaining arguments.

In general, partial application transforms a generic function into a new and special-
ized function. Let’s take the C# curried function: 

Func<int,int,int> add = (x,y) => x + y;

How can you create a new function with a single argument? 
This is the case where partial function application becomes useful, because you can 

partially apply a function against an HOF with a default value for the first argument to 
the original function. Here’s the extension method that can be used to partially apply 
a function:

static Func<B, R> Partial<A, B, R>(this Func<A, B, R> function, A argument) 
                             => argument2 => function(argument, argument2);

And here’s an example to exercise this technique: 

Func<int, int, int> max = Math.Max;
Func<int, int> max5 = max.Partial(5);

int a = max5(8);
int b = max5(2);
int c = max5(12);

Math.Max(int,int)is an example of a function that can be extended with partially 
applied functions. Introducing a partially applied function in this case, the default 
argument 5 is fixed, and it creates a new specialized function max5 that evaluates the 
maximum value between two numbers with a default of 5. Thanks to partial applica-
tion, you created a new and more specific function out of an existing one. 

From an OOP perspective, think of partial function applications as a way to override 
functions. It’s also possible to use this technique to extend on-the-fly functionality of a 
third-party library that isn’t extensible.  
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As mentioned, in F# functions are curried by default, which leads to an easier way to 
create partial functions than in C#. Partial function applications have many benefits, 
including the following: 

¡	They allow functions to be composed without hesitation.
¡	They alleviate the need to pass a separate set of parameters, by avoiding building 

unnecessary classes that contain override versions of same method with a differ-
ent number of inputs. 

¡	They enable the developer to write highly general functions by parameterizing 
their behavior.

The practical benefit of using partial function applications is that functions constructed 
by supplying only a portion of the argument are good for code reusability, functional 
extensibility, and composition. Moreover, partially applied functions simplify the use 
of HOFs in your programming style. Partial function application can also be deferred 
for performance improvement, which was introduced in section 2.6.

Power of partial function application and currying in C#

Let’s consider a more complete example of partial function application and currying 
that can cover a real-use scenario. Retry in listing A.1 is an extension method for a del-
egate Func<T> for any function that takes no parameters and returns a value of type T. 
The purpose of this method is to execute the incoming function in a try-catch block, 
and if an exception is thrown while executing, the function will retry the operation up 
to a maximum of three times. 

Listing A.1  Retry extension method in C# 

public static T Retry<T>(this Func<T> function)    
{
    int retry = 0;        
        T result = default(T);    
        bool success = false;
     do{
            try {
                    result = function();    
                    success = true;    
            }
            catch {
                    retry++;        
            }
    } while (!success && retry < 3);    
     return result;
}

Let’s say that this method tries to read text from a file. In the following code, the 
method ReadText accepts a file path as input and returns the text from a file. To exe-
cute the functionality with the attached Retry behavior to fall back on and recover in 
case of issues, you can use a closure, as shown here:

Applies a static method to a 
general Func<T> delegateSets the counter 

Sets the result to a default value of T

Executes the function. If successful, then 
the while loop stops and the result returns; 
otherwise, a new iteration computes.

Increases count if an error occurs

Iterates three times or until success
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static string ReadText(string filePath) => File.ReadAllText(filePath);

string filePath = "TextFile.txt";
Func<string> readText = () => ReadText(filePath);

string text = readText.Retry();

You can use a lambda expression to capture the local variable filePath and pass it into 
the method ReadText. This process lets you create a Func<string> that matches the 
signature of the Retry extension method, which can be attached. If the file is blocked 
or owned by another process, an error is thrown, and the Retry functionality kicks in 
as expected. If the first call fails, the method will retry a second time and a third time. 
Finally, it returns the default value of T.

This works, but you might wonder what happens if you want to retry a function that 
needs a string parameter. The solution is to partially apply the function. The following 
code implements a function that takes a string as a parameter, which is the file path 
to read the text from, and then it passes that parameter to the ReadText method. The 
Retry behavior only works with functions that take no parameters, so the code doesn’t 
compile:

Func<string, string> readText = (path) => ReadText(path);

string text = readText.Retry();          
string text = readText(filePath).Retry();     

The behavior of Retry doesn’t work with this version of readText. One possible solu-
tion is to write another version of the Retry method that takes an additional generic- 
type parameter that specifies the type of the parameter you need to pass once invoked. 
This isn’t ideal, because you have to figure out how to share this new Retry logic across 
all the methods using it, each with different arguments or implementations. 

A better option is to use and combine currying and partial function application. In 
the following listing, the helper methods Curry and Partial are defined as extension 
methods.

Listing A.2   Retry helper extensions in C#

static class RetryExtensions
{
    public static Func<R> Partial<T, R>(this Func<T, R> function, T arg){
            return () => function(arg); 
    }    

    public static Func<T, Func<R>> Curry<T, R>(this Func<T, R> function){
        return arg => () => function(arg);
    }
}

Func<string, string> readText = (path) => ReadText(path);

string text = readText.Partial("TextFile.txt").Retry();
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Func<string, Func<string>> curriedReadText = readText.Curry();
string text = curriedReadText("TextFile.txt").Retry();

This approach lets you inject the file path and use the Retry function smoothly. This is 
possible because both helper functions, Partial and Curry, adapt the function read-
Text into a function that doesn’t need a parameter, ultimately matching the signature 
of Retry. 
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appendix B
F# overview

This appendix explores the basic syntax of F#, which is an established general- 
purpose functional first language with object-oriented programming (OOP) sup-
port. In fact, F# embraces the .NET common language infrastructure (CLI) object 
model, which allows the declaration of interfaces, classes, and abstract classes. Fur-
thermore, F# is a statically and strongly typed language, which means that the com-
piler can detect the data type of variables and functions at compile time. F#’s syntax 
is different from C-style languages, such as C#, because curly braces aren’t used to 
delimit blocks of code. Moreover, whitespace rather than commas and indentation 
is important to separate arguments and delimit the scope of a function body. In 
addition, F# is a cross-platform programming language that can run inside and out-
side the .NET ecosystem. 

The let binding 
In F#, let is one of the most important keywords that binds an identifier to a value, 
which means giving a name to value (or, bind a value to a name). It’s defined as let 
<identifier> = <value>. 

The let bindings are immutable by default. Here are a few code examples:

let myInt = 42
let myFloat = 3.14
let myString = "hello functional programming" 
let myFunction = fun number -> number * number

As you can see from the last line, you can name a function by binding the identifier 
myFunction to the lambda expression fun number -> number * number. 
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The fun keyword is used to define a lambda expression (anonymous function) in 
the syntax as fun args -> body. Interestingly, you don’t need to define types in code 
because, due to its strong built-in type-inference system, the F# compiler can understand 
them natively. For example, in the previous code, the compiler inferred that the argu-
ment of the myFunction function is a number due to the multiplication (*) operator.

Understanding function signatures in F#
In F#, as in most of the functional languages, function signatures are defined with 
an arrow notation that reads from left to right. Functions are expressions that always 
have an output, so the last right arrow will always point to the return type. For exam-
ple, when you see typeA -> typeB, you can interpret it as a function that takes an 
input value of typeA and produces a value of typeB. The same principle is applicable 
to functions that take more than two arguments. When the signature of a function is 
typeA -> typeB -> typeC, you read the arrows from left to right, which creates two 
functions. The first function is typeA -> (typeB -> typeC), which takes an input of 
typeA and produces the function typeB -> typeC. 

Here’s the signature for the add function: 

val add : x:int -> y:int -> int     

This takes one argument x:int and returns as a result a function that takes y:int as 
input and returns an int as a result. The arrow notation is intrinsically connected to 
currying and anonymous functions.

Creating mutable types: mutable and ref
One of the main concepts in FP is immutability. F# is a functional-first programming 
language; but explicitly using the immutable keywords lets you create mutable types 
that behave like variables, as in this example: 

let mutable myNumber = 42 

Now it’s possible to change the value of myNumber with the goes-to (<-) operator:

myNumber  <-  51

Another option when defining a mutable type is to use a reference cell that defines a 
storage location that lets you create mutable values with reference semantics. The ref 
operator declares a new reference cell that encapsulates a value, which can then be 
changed using the := operator and accessed using the ! (bang) operator:

let myRefVar = ref 42
myRefVar := 53
printfn "%d" !myRefVar

The first line declares the reference cell myRefVar with the value 42, and the second 
line changes its value to 53. In the last line of code, the underlying value is accessed 
and printed. 

Mutable variables and reference cells can be used in almost the same situations; but 
the mutable types are preferred, unless the compiler doesn’t allow it and a reference 
cell can be used instead. In expressions that generate a closure where a mutable state is 
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required, for example, the compiler will report that a mutable variable cannot be used. 
In this case, a reference cell overcomes the problem.

Functions as first-class types
In F#, functions are first-order data types; they can be declared using the let keyword 
and used in exactly the same way as any other variable:

let square x = x * x 
let plusOne x = x + 1
let isEven x = x % 2 = 0

Functions always return a value, despite not having an explicit return keyword. The 
value of the last statement executed in the function is the return value.

Composition: pipe and composition operators
The pipe (|>) and the composition (>>) operators are used to chain functions and 
arguments to improve code readability. These operators let you establish pipelines of 
functions in a flexible manner. The definition of these operators is simple:

let inline (|>) x f = f x
let inline (>>) f g x = g(f x)

The following example shows how to take advantage of these operators to build a func-
tional pipeline:

let squarePlusOne x =  x |> square |> plusOne
let plusOneIsEven = plusOne >> isEven

In the last line of code, the composition (>>) operator lets you eliminate the explicit 
need for an input parameter definition. The F# compiler understands that the func-
tion plusOneIsEven is expecting an integer as input. The kind of function that doesn’t 
need parameter definitions is called a point-free function.

The main differences between the pipe (|>) and composition (>>) operators are 
their signature and use. The pipeline operator takes functions and arguments, while 
composition combines functions.

Delegates
In .NET, a delegate is a pointer to a function; it’s a variable that holds the reference to 
a method that shares the same common signature. In F#, function values are used in 
place of delegates; but F# provides support for delegates to interop with the .NET APIs. 
This is the syntax in F# to define a delegate: 

type delegate-typename = delegate of typeA -> typeB

The following code shows the syntax for creating a delegate with a signature that rep-
resents an addition operation: 

type MyDelegate = delegate of (int * int) -> int
let add (a, b) = a + b
let addDelegate = MyDelegate(add)
let result = addDelegate.Invoke(33, 9)
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In the example, the F# function add is passed directly as arguments to the delegate 
constructor MyDelegate. Delegates can be attached to F# function values and to static 
or instance methods. The Invoke method on the delegate type addDelegate calls the 
underlying function add. 

Comments 
Three kinds of comments are used in F#: block comments are placed between the symbols 
(* and *), line comments start with the symbols // and continue until the end of the line, 
and XML doc comments come after the symbols /// that let you use XML tags to generate 
code documentation based on the compiler-generated file. Here’s how these look:

(* This is block comment *)
// Single line comments use a double forward slash
/// This comment can be used to generate documentation.

Open statements 
You use the open keyword to open a namespace or module, similar to statements in C#. 
This code opens the System namespace: open System. 

Basic data types 
Table B.1 shows the list of F# primitive types.

Table B.1 Basic data types

F# type .NET type Size in bytes Range Example 

sbyte System.SByte 1 -128 to 127 42y

byte System.Byte 1 0 to 255 42uy

int16 System.Int16 2 -32,768 to 32,767 42s

uint16 System.UInt16 2 0 to 65,535 42us

int / int32 System.Int32 4 -2,147,483,648 to 
2,147,483,647

42

uint32 System.UInt32 4 0 to 4,294,967,295 42u

int64 System.Int64 8 -9,223,372,036,854,775,808 to 
9,223,372,036,854,775,807

42L

uint64 System.UInt64 8 0 to 
18,446,744,073,709,551,615

42UL

float32 System.Single 4 ±1.5e-45 to ±3.4e38 42.0F

float System.Double 8 ±5.0e-324 to ±1.7e308 42.0

decimal System.
Decimal

16 ±1.0e-28 to ±7.9e28 42.0M

char System.Char 2 U+0000 to U+ffff 'x' 

string System.String 20 + (2 * size 
of string)

0 to about 2 billion characters "Hello 
World"

bool System.
Boolean

1 Only two possible values:  
true or false

true
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Special string definition
In F#, the string type is an alias for the System.String type; but in addition to the con-
ventional .NET semantic, you have a special triple-quoted way to declare strings. This 
special string definition lets you declare a string without the need of escaping special 
characters as in the verbatim case. The following example defines the same string the 
standard way and the F# triple-quoted way to escape special characters:

let verbatimHtml = @"<input type="submit" value="Submit">"
let tripleHTML = """<input type="submit" value="Submit">"""

Tuple
A tuple is a group of unnamed and ordered values, which can be of different types. 
Tuples are useful for creating ad hoc data structures and are a convenient way for a 
function to return multiple values. A tuple is defined as a comma-separated collection 
of values. Here’s how to construct tuples:

let tuple = (1, "Hello")
let tripleTuple = ("one", "two", "three") 

A tuple can also be deconstructed. Here the tuple values 1 and "Hello" are bound, 
respectively, to the identifiers a and b, and the function swap switches the order of two 
values in a given tuple (a, b):

let (a, b) = tuple
let swap (a, b) = (b, a)

Tuples are normally objects, but they can also be defined as value type structs, as shown 
here:

let tupleStruct = struct (1, "Hello")

Note that the F# type inference can automatically generalize the function to have a 
generic type, which means that tuples work with any type. It’s possible to access and 
obtain the first and second elements of the tuple using the fst and snd functions: 

let one = fst tuple
let hello = snd tuple    

Record types
A record type is similar to a tuple, except the fields are named and defined as a semi-
colon-separated list. While tuples provide one method of storing potentially hetero-
geneous data in a single container, it can become difficult to interpret the purpose of 
the elements when more than a few exist. In this case, a record type helps to interpret 
the purpose of data by labeling their definition with a name. A record type is explicitly 
defined using the type keyword, and it’s compiled down to an immutable, public, and 
sealed .NET class. Furthermore, the compiler automatically generates the structural 
equality and comparison functionality, as well as providing a default constructor that 
populates all the fields contained in the record.

NOTE  If the record is marked with the CLIMutable attribute, it will include a 
default, no-argument constructor for use in other .NET languages. 
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This example shows how to define and instantiate a new record type:

type Person = { FirstName : string; LastName : string; Age : int }
let fred = { FirstName = "Fred"; LastName = "Flintstone"; Age = 42 }

Records can be extended with properties and methods:

type Person with
    member this.FullName = sprintf "%s %s" this.FirstName this.LastName

Records are immutable types, which means that instances of records cannot be modi-
fied. But you can conveniently clone records by using the with clone semantic:

let olderFred = { fred with Age = fred.Age + 1 }

A record type can also be represented as a structure using the [<Struct>] attribute. 
This is helpful in situations where performance is critical and overrides the flexibility 
of reference types:

[<Struct>]
type Person = { FirstName : string; LastName : string; Age : int }

Discriminated unions 
Discriminated unions (DUs) are a type that represents a set of values that can be one of 
several well-defined cases, each possibly with different values and types. DUs can be 
thought of in the object-oriented paradigm as a set of classes that are inherited from 
the same base class. In general, DUs are the tool used for building complicated data 
structures, to model domains, and to represent recursive structures like a Tree data 
type. 

The following code shows the suit and the rank of a playing card:

type Suit = Hearts | Clubs | Diamonds | Spades

type Rank = 
        | Value of int
        | Ace
        | King
        | Queen
        | Jack
       static member GetAllRanks() = 
            [ yield Ace
              for i in 2 .. 10 do yield Value i
              yield Jack
              yield Queen
              yield King ]

As you can see, DUs can be extended with properties and methods. The list represent-
ing all the cards in the deck can be computed as follows:

     let fullDeck = 
        [ for suit in [ Hearts; Diamonds; Clubs; Spades] do
              for rank in Rank.GetAllRanks() do 
                  yield { Suit=suit; Rank=rank } ]

Additionally, DUs can also be represented as structures with the [<Struct>] attribute.
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Pattern matching
Pattern matching is a language construct that empowers the compiler to interpret the 
definition of a data type and apply a series of conditions against it. In this way, the com-
piler forces you to write pattern-matching constructs by covering all possible cases to 
match the given value. This is known as exhaustive pattern matching. Pattern-matching 
constructs are used for control flow. They’re conceptually similar to a series of if/then 
or case/switch statements but are much more powerful. They let you decompose data 
structures into their underlying components during each match and then perform 
certain computations on these values. In all programming languages, control flow refers 
to the decisions made in code that affect the order in which statements are executed in 
an application. 

In general, most common patterns involve algebraic data types, such as discrimi-
nated unions, record types, and collections. The following code example has two imple-
mentations of the Fizz-Buzz (https://en.wikipedia.org/wiki/Fizz_buzz) game. The first 
pattern-matching construct has a set of conditions to test the evaluation of the function 
divisibleBy. If either condition is true or false, the second implementation uses the 
when clause, called guard, to specify and integrate additional tests that must succeed to 
match the pattern: 

let fizzBuzz n = 
    let divisibleBy m = n % m = 0
    match divisibleBy 3,divisibleBy 5 with
    | true, false -> "Fizz"
    | false, true -> "Buzz"
    | true, true -> "FizzBuzz"
    | false, false -> sprintf "%d" n

let fizzBuzz n =
    match n with
    | _ when (n % 15) = 0 -> "FizzBuzz"
    | _ when (n % 3) = 0 -> "Fizz"
    | _ when (n % 5) = 0 -> "Buzz"
    | _ -> sprintf "%d" n

 [1..20] |> List.iter fizzBuzz

When a pattern-matching construct is evaluated, the expression is passed into the 
match <expression>, which is tested against each pattern until the first positive match. 
Then the corresponding body is evaluated. The _ (underscore) character is known as a 
wildcard, which is one way to always have a positive match. Often, this pattern is used as 
final clause for a general catch to apply to a common behavior.

Active patterns 
Active patterns are constructs that extend the capabilities of pattern matching, allowing 
for partition and deconstruction of a given data structure, thus guaranteeing the flex-
ibility to transform and extract underlying values by making the code more readable 
and making the results of the decomposition available for further pattern matching. 

 

https://en.wikipedia.org/wiki/Fizz_buzz
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Additionally, active patterns let you wrap arbitrary values in a DU data structure for 
easy pattern matching. It’s possible to wrap objects with an active pattern, so that you 
can use those objects in pattern matching as easily as any other union type. 

Sometimes active patterns do not generate a value; in this case, they’re called partial 
active patterns and result in a type that is an option type. To define a partial active pat-
tern, you use the underscore wildcard character (_) at the end of the list of patterns 
inside the banana clips (| |) created with the combination of parentheses and pipe 
characters. Here’s how a typical partial active pattern looks:

let (|DivisibleBy|_|) divideBy n = 
    if n % divideBy = 0 then Some DivisibleBy else None

In this partial active pattern, if the value n is divisible by the value divideBy, then the 
return type is Some(), which indicates that the active pattern succeeds. Otherwise, the 
None return type indicates that the pattern failed and moved to the next match expres-
sion. Partial active patterns are used to partition and match only part of the input space. 
The following code illustrates how to pattern match against a partial active pattern:

let fizzBuzz n = 
    match n with 
    | DivisibleBy 3 & DivisibleBy 5 -> "FizzBuzz" 
    | DivisibleBy 3 -> "Fizz" 
    | DivisibleBy 5 -> "Buzz" 
    | _ -> sprintf "%d" n

[1..20] |> List.iter fizzBuzz

This function uses the partial active pattern (|DivisibleBy|_|) to test the input value 
n. If it’s divisible by a value 3 and 5, the first case succeeds. If it’s divisible by only 3, then 
the second cause succeeds, and so forth. Note that the & operator lets you run more 
than one pattern on the same argument.

Another type of active pattern is the parameterized active pattern, which is similar to the 
partial active pattern, but takes one or more additional arguments as input.

More interesting is the multicase active pattern, which partitions the entire input space 
into different data structures in the shape of a DU. Here’s the FizzBuzz example, imple-
mented using multicase active patterns:

let (|Fizz|Buzz|FizzBuzz|Val|) n = 
    match n % 3, n % 5 with
    | 0, 0 -> FizzBuzz
    | 0, _ -> Fizz
    | _, 0 -> Buzz
    | _ -> Val n

Because active patterns convert data from one type to another, they’re great for data 
transformation and validation. Active patterns come in four related varieties: single 
case, partial case, multicase, and partial parameterized. For more details about active 
patterns, see the MSDN documentation (http://mng.bz/Itmw) and Isaac Abraham’s 
Get Programming with F# (Manning,  2018).
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Collections 
F# supports the standard .NET collections like arrays and sequences (IEnumerable). 
In addition, it offers a set of immutable functional collections: lists, sets, and maps. 

Arrays 
Arrays are zero-based, mutable collections with a fixed-size number of elements of the 
same type. They support fast, random access of elements because they are compiled as 
a contiguous block of memory. Here are the different ways to create, filter, and project 
an array:

let emptyArray= Array.empty
let emptyArray = [| |]  
let arrayOfFiveElements = [| 1; 2; 3; 4; 5 |]
let arrayFromTwoToTen= [| 2..10 |]
let appendTwoArrays = emptyArray |> Array.append arrayFromTwoToTen
let evenNumbers = arrayFromTwoToTen |> Array.filter(fun n -> n % 2 = 0)
let squareNumbers = evenNumbers |> Array.map(fun n -> n * n)

The elements of an array can be accessed and updated by using the dot operator (.) 
and brackets [ ]:

let arr = Array.init 10 (fun i -> i * i)
arr.[1] <- 42
arr.[7] <- 91

Arrays can also be created in various other syntaxes, using the functions from the Array 
module: 

let arrOfBytes = Array.create 42 0uy
let arrOfSquare = Array.init 42 (fun i -> i * i)
let arrOfIntegers = Array.zeroCreate<int> 42

Sequences (seq) 
Sequences are a series of elements of the same type. Different from the List type, 
sequences are lazily evaluated, which means that elements can be computed on 
demand (only when they are needed). This provides better performance than a list in 
cases where not all the elements are needed. Here’s a different way to create, filter, and 
project a sequence:

let emptySeq = Seq.empty
let seqFromTwoToFive = seq { yield 2; yield 3; yield 4; yield 5 }
let seqOfFiveElements = seq { 1 .. 5 }
let concatenateTwoSeqs = emptySeq |> Seq.append seqOfFiveElements
let oddNumbers = seqFromTwoToFive |> Seq.filter(fun n -> n % 2 <> 0)
let doubleNumbers = oddNumbers |> Seq.map(fun n -> n + n)

Sequences can use the yield keyword to lazily return a value that becomes part of 
the sequence.
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Lists 
In F#, the List collection is an immutable, singly linked list of elements of the same 
type. In general, lists are a good choice for enumeration, but aren’t recommended for 
random access and concatenation when performance is critical. Lists are defined using 
the [ ... ] syntax. Here are a few examples to create, filter, and map a list:

let emptyList = List.empty
let emptyList = [ ]  
let listOfFiveElements = [ 1; 2; 3; 4; 5 ]
let listFromTwoToTen = [ 2..10 ]
let appendOneToEmptyList = 1::emptyList
let concatenateTwoLists = listOfFiveElements @ listFromTwoToTen
let evenNumbers = listOfFiveElements |> List.filter(fun n -> n % 2 = 0)
let squareNumbers = evenNumbers |> List.map(fun n -> n * n)

Lists use brackets ([ ]) and the semicolon (;) delimiters to append multiple items to 
the list, the symbol :: to append one item, and the at-sign operator (@) to concatenate 
two given lists.

Sets
A set is a collection based on binary trees, where the elements are of the same type. 
With sets, the order of insertion is not preserved, and duplicates aren’t allowed. A set 
is immutable, and every operation to update its elements creates a new set. Here are a 
few different ways to create a set:

let emptySet = Set.empty<int>
let setWithOneItem = emptySet.Add 8
let setFromList = [ 1..10 ] |> Set.ofList

Maps
A map is an immutable, key-value pair of a collection of elements with the same type. 
This collection associates values with a key, and it behaves like the Set type, which 
doesn’t allow duplicates or respect the order of insertion. The following example 
shows how to instantiate a map in different ways:

let emptyMap = Map.empty<int, string>
let mapWithOneItem = emptyMap.Add(42, "the answer to the meaning of life")
let mapFromList = [ (1, "Hello"), (2, "World") ] |> Map.ofSeq

Loops
F# supports loop constructs to iterate over enumerable collections like lists, arrays, 
sequences, maps, and so forth. The while...do expression performs iterative execu-
tion while a specified condition is true:

let mutable a = 10
while (a < 20) do
   printfn "value of a: %d" a
   a <- a + 1
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The for...to expression iterates in a loop over a set of values of a loop variable:

  for i = 1 to 10 do
    printf "%d " i

The for...in expression iterates in a loop over each element in a collection of values:

for i in [1..10] do
   printfn "%d" i

Classes and inheritance
As previously mentioned, F# supports OOP constructs like other .NET programming 
languages. In fact, it’s possible to define class objects to model real-world domains. The 
type keyword used in F# to declare a class can expose properties, methods, and fields. 
The following code shows the definition of the subclass Student that’s inherited from 
the class Person:

type Person(firstName, lastName, age) =
    member this.FirstName = firstName
    member this.LastName = lastName
    member this.Age = age
 
    member this.UpdateAge(n:int) =
        Person(firstName, lastName, age + n)  

    override this.ToString() = 
        sprintf "%s %s" firstName lastName

type Student(firstName, lastName, age, grade) =
    inherit Person(firstName, lastName, age)

    member this.Grade = grade

The properties FirstName, LastName, and Age are exposed as fields; the method 
UpdateAge returns a new Person object with the modified Age. It’s possible to change 
the default behavior of methods inherited from the base class using the override key-
word. In the example, the ToString base method is overridden to return the full name. 

The object Student is a subclass defined using the inherit keyword, and inherits its 
members from the base class Person, in addition to adding its own member Grade. 

Abstract classes and inheritance
An abstract class is an object that provides a template to define classes. Usually it exposes 
one or more incomplete implementations of methods or properties and requires you 
to create subclasses to fill in these implementations. But it’s possible to define a default 
behavior, which can be overridden. In the following example, the abstract class Shape 
defines the Rectangle and Circle classes: 

[<AbstractClass>]
type Shape(weight :float, height :float) =
    member this.Weight = weight
    member this.Height = height
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    abstract member Area : unit -> float
    default this.Area() = weight * height

type Rectangle(weight :float, height :float) =
    inherit Shape(weight, height)

type Circle(radius :float) =
    inherit Shape(radius, radius)
    override this.Area() = radius * radius * Math.PI

The AbstractClass attribute notifies the compiler that the class has abstract mem-
bers. The Rectangle class uses the default implementation of the method Area, and 
the Circle class overrides it with a custom behavior.

Interfaces
An interface represents a contract for defining the implementation details of a class. But 
in an interface declaration, the members aren’t implemented. An interface provides 
an abstract way to refer to the public members and functions that it exposes. In F#, to 
define an interface, the members are declared using the abstract keyword, followed 
by their type signature:

type IPerson =
   abstract FirstName : string
   abstract LastName : string
   abstract FullName : unit -> string

The interface methods implemented by a class are accessed through the interface defi-
nition, rather than through the instance of the class. Thus, to call an interface method, 
a cast operation is applied against the class using the :> (upcast) operator:

type Person(firstName : string, lastName : string) =
    interface IPerson with
        member this.FirstName = firstName
        member this.LastName = lastName
        member this.FullName() = sprintf "%s %s" firstName lastName

let fred = Person("Fred", "Flintstone")

(fred :> IPerson).FullName()

Object expressions
Interfaces represent a useful implementation of code that can be shared between 
other parts of a program. But it might require cumbersome work to define an ad hoc 
interface implemented through the creation of new classes. A solution is to use an 
object expression, which lets you implement interfaces on the fly by using anonymous 
classes. Here’s an example to create a new object that implements the IDisposable 
interface to apply a color to the console and then revert to the original:

let print color =
    let current = Console.ForegroundColor
    Console.ForegroundColor <- color
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    {   new IDisposable with
            member x.Dispose() =                
                Console.ForegroundColor <- current
    }
    
using(print ConsoleColor.Red) (fun _ -> printf "Hello in red!!")
using(print ConsoleColor.Blue) (fun _ -> printf "Hello in blue!!")

Casting
The conversion of a primitive value into an object type is called boxing, which is applied 
using the function box. This function upcasts any type to the .NET System.Object 
type, which in F# is abbreviated by the name obj. 

The upcast function applies an “up” conversion for classes and interface hierarchies, 
which goes from a class up to the inherited one. The syntax is expr :> type. The suc-
cess of the conversion is checked at compile time. 

The downcast function is used to apply a conversion that goes “down” a class or inter-
face hierarchy: for example, from an interface to an implemented class. The syntax is 
expr :?> type, where the question mark inside the operator suggests that the oper-
ation may fail with an InvalidCastException. It’s safe to compare and test the type 
before applying the downcast. This is possible using the type test operator :?, which 
is equivalent to the is operator in C#. The match expression returns true if the value 
matches a given type; otherwise, it returns false: 

let testPersonType (o:obj) =
    match o with
    | o :? IPerson -> printfn "this object is an IPerson"
    | _ -> printfn "this is not an IPerson"

Units of measure
Units of measure (UoM) are a unique feature of F#’s type system and provide the ability 
to define a context and to annotate statically typed unit metadata to numeric literals. 
This is a convenient way to manipulate numbers that represent a specific unit of mea-
sure, such as meters, seconds, pounds, and so forth. The F# type system checks that a 
UoM is used correctly in the first place, eliminating runtime errors. For example, the F# 
compiler will throw an error if a float<m/sec> is used where it expects a float<mil>. 
Furthermore, it’s possible to associate specific functions to a defined UoM that performs 
work on units rather than on numeric literals. Here, the code shows how to define the 
meter (m) and second (sec) UoM and then executes an operation to calculate speed: 

[<Measure>]
type m 

[<Measure>]
type sec 

let distance = 25.0<m>
let time = 10.0<sec>
let speed = distance / time
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Event module API reference
The event module provides functions for managing event streams. Table B.1 lists the API 
references from the online MSDN documentation (http://mng.bz/a0hG).

Table B.2 API references

Function Description 

add :

('T -> unit) -> 
Event<'Del,'T> -> 
unit 

Runs the function each time the event is triggered. 

choose :

('T -> 'U option) -> 
IEvent<'Del,'T> -> 
IEvent<'U> 

Returns a new event that fires on a selection of messages 
from the original event. The selection function takes an 
original message to an optional new message. 

filter :

('T -> bool) -> 
IEvent<'Del,'T> -> 
IEvent<'T> 

Returns a new event that listens to the original event and 
triggers the resulting event only when the argument to the 
event passes the given function. 

map :

('T -> 'U) -> 
IEvent<'Del, 'T> -> 
IEvent<'U> 

Returns a new event that passes values transformed by the 
given function. 

merge :

IEvent<'Del1,'T> -> 
IEvent<'Del2,'T> -> 
IEvent<'T> 

Fires the output event when either of the input events fire. 

pairwise :

IEvent<'Del,'T> -> 
IEvent<'T * 'T> 

Returns a new event that triggers on the second and sub-
sequent triggerings of the input event. The Nth triggering 
of the input event passes the arguments from the N − 1th 
and Nth triggerings as a pair. The argument passed to the 
N − 1th triggering is held in hidden internal state until the 
Nth triggering occurs. 

partition :

('T -> bool) -> 
IEvent<'Del,'T> 
-> IEvent<'T> * 
IEvent<'T> 

Returns a pair of events that listen to the original event. 
When the original event triggers, either the first or second 
event of the pair is triggered accordingly with the result of 
the predicate. 

 

http://mng.bz/a0hG
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Function Description 

scan :

('U -> 'T -> 'U) -> 'U -> 
IEvent<'Del,'T> -> 
IEvent<'U> 

Returns a new event consisting of the results of applying 
the given accumulating function to successive values trig-
gered on the input event. An item of internal state records 
the current value of the state parameter. The internal state 
is not locked during the execution of the accumulation func-
tion, so care should be taken that the input IEvent isn’t 
triggered by multiple threads simultaneously. 

split :

('T -> Choice<'U1,'U2>) 
-> IEvent<'Del,'T> 
-> IEvent<'U1> * 
IEvent<'U2> 

Returns a new event that listens to the original event and 
triggers the first resulting event if the application of the 
function to the event arguments returned a Choice1Of2, 
and the second event if it returns a Choice2Of2. 

Learn more
For more information about learning F#, I recommend Isaac Abraham’s Get Program-
ming with F#: A Guide for .NET Developers (Manning, 2018, www.manning.com/books/
get-programming-with-f-sharp). 

Table B.2 API references (continued)

 

http://www.manning.com/books/get-programming-with-f-sharp
http://www.manning.com/books/get-programming-with-f-sharp
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appendix C
 Interoperability between 

an F# asynchronous 
workflow and .NET Task

Despite the similarities between the asynchronous programming models exposed 
by C# and F# programming languages, their interoperability isn’t a trivial accom-
plishment. F# programs tend to use more asynchronous computation expressions 
than .NET Task. Both types are similar, but they do have semantic differences, as 
shown in chapters 7 and 8. For example, tasks start immediately after their creation, 
while F# Async must be explicitly started. 

How can you interop between F# asynchronous computation expressions and 
.NET Task? It’s possible to use F# functions such as Async.StartAsTask<T> and 
Async.AwaitTask<T> to interop with a C# library that returns or awaits a Task type.

Conversely, there are no equivalent methods for converting an F# Async to a Task 
type. It would be helpful to use the built-in F# Async.Parallel computation in C#. 
In this listing, repeated from chapter 9, the F# downloadMediaAsyncParallel func-
tion downloads asynchronously in parallel images from Azure Blob storage. 

Listing C.1   Async parallel function to download images from Azure Blob storage 

let downloadMediaAsyncParallel containerName = async {
    let storageAccount = CloudStorageAccount.Parse(azureConnection)
    let blobClient = storageAccount.CreateCloudBlobClient()
    let container = blobClient.GetContainerReference(containerName)
    let computations =
        container.ListBlobs()
        |> Seq.map(fun blobMedia -> async {
    let blobName = blobMedia.Uri.Segments.
                         [blobMedia.Uri.Segments.Length - 1]
    let blockBlob = container.GetBlockBlobReference(blobName)
    use stream = new MemoryStream()
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    do! blockBlob.DownloadToStreamAsync(stream)
    let image = System.Drawing.Bitmap.FromStream(stream)
    return image })
    return! Async.Parallel computations } 

The return type from downloadMediaAsyncParallel is an Async<Image[]>. As men-
tioned, an F# Async type is in general difficult to interop with and acts as a task (async/
await) from the C# code. In the following code snippet, the C# code runs the F# 
download MediaAsyncParallel function as a Task using the Async.Parallel operator:

var cts = new CancellationToken();
var images = await downloadMediaAsyncParallel("MyMedia").AsTask(cts);

The code interoperability becomes effortless with the help of the AsTask extensions 
method. The interoperability solution is to implement a utilities F# module that 
exposes a set of extension methods that can be consumed by other .NET languages. 

Listing C.2 Helper extension methods to interop Task and an async workflow 

module private AsyncInterop =
    let asTask(async: Async<'T>, token: CancellationToken option) =
        let tcs = TaskCompletionSource<'T>()    
        let token = defaultArg token Async.CancellationToken    
        Async.StartWithContinuations(async,            
           tcs.SetResult, tcs.SetException,
           tcs.SetException, token)
           tcs.Task            

 
    let asAsync(task: Task, token: CancellationToken option) =
        Async.FromContinuations(    
            fun (completed, caught, canceled) ->
                let token = defaultArg token Async.CancellationToken 
                task.ContinueWith(new Action<Task>(fun _ ->    
                  if task.IsFaulted then caught(task.Exception)
                  else if task.IsCanceled then 
                     canceled(new OperationCanceledException(token)|>raise)
                  else completed()), token)     
                |> ignore)

    let asAsyncT(task: Task<'T>, token: CancellationToken option) =
        Async.FromContinuations(    
            fun (completed, caught, canceled) ->
                let token = defaultArg token Async.CancellationToken  
                task.ContinueWith(new Action<Task<'T>>(fun _ ->    
                   if task.IsFaulted then caught(task.Exception)
                   else if task.IsCanceled then  
                       canceled(OperationCanceledException(token) |> raise)
                   else completed(task.Result)), token)          
            |> ignore)

Runs the sequence of F# async 
computations in parallel

Instance that allows control of the 
execution in the form of a Task

If a cancellation token isn’t passed as an argument, a 
default is assigned using the contextual one, which is 

automatically propagated through the async workflow. 

Starts the execution with continuations to 
pass the termination context into the specific 

continuation function based on whether the 
evaluation is successful, faulted, or canceled

Returns the 
TaskCompletionSource 

to expose task-based 
behavior

Starts the execution from continuations to capture the current 
evaluation result (success, exception, and cancellation) to 
continue with one of the given continuation functions

Continues the 
evaluation using 
Task contention 

passing style Notifies of successful 
computation completion

Continues the 
evaluation using 
Task contention 

passing style Notifies of successful 
computation completion
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[<Extension>]  
type AsyncInteropExtensions =
  [<Extension>]
  static member AsAsync (task: Task<'T>) = AsyncInterop.asAsyncT 
➥ (task, None)   

  [<Extension>]
  static member AsAsync (task: Task<'T>, token: CancellationToken) =
      AsyncInterop.asAsyncT (task, Some token)    

  [<Extension>]
  static member AsTask (async: Async<'T>) = AsyncInterop.asTask 
➥ (async, None)    

  [<Extension>]
  static member AsTask (async: Async<'T>, token: CancellationToken) =
      AsyncInterop.asTask (async, Some token)    

The AsyncInterop module is private, but the core functions that allow interoperability 
between the F# Async and the C# Task are exposed through the AsyncInteropExten-
sions type. The attribute Extension upgrades the methods as an extension, making it 
accessible by other .NET programming languages. 

The asTask method converts an F# Async type to a Task, starting the asynchronous 
operation with the Async.StartWithContinuations function. Internally, this function 
uses the TaskCompletionSource to return an instance of a Task, which maintains the 
state of the operation. When the operation completes, the returned state can be a can-
cellation, an exception, or the actual result if successful. 

NOTE  These extension methods are built into F# to allow access to the async 
workflow, but the module is compiled into a library that can be referenced and 
consumed in C#. Even if this code is in F#, it targets the C# language. 

The function asAsync aims to convert a Task into an F# Async type. This function uses 
Async.FromContinuations to create an asynchronous computation, which provides 
the callback that will execute one of the given continuations for success, exception, or 
cancellation. 

All these functions take as a second argument an optional CancellationToken, 
which can be used to stop the current operation. If no token is provided, then the 
DefaultCancellationToken in the context will be assigned by default. 

These functions provide interoperability between the Task-based Asynchronous Pat-
tern (TAP) of .NET TPL and the F# asynchronous programming model.

Exposes the helper functions through the 
extension method to be consumed by 

other .NET programming languages
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Glossary
Asynchronicity —When a program performs requests that don’t complete immediately 
but that are fulfilled later, and where the program issuing the request must do meaning-
ful work in the meantime.

Concurrency —The notion of multiple things happening at the same time. Usually, con-
current programs have multiple threads of execution, each typically executing differ-
ent code.

Parallelism —The state of a program when more than one thread runs simultaneously to 
speed up the program’s execution.

Process —A standard operating system process. Each instance of the .NET CLR runs in 
its own process. Processes are typically independent.

Thread —The smallest sequence of programmed instructions that the OS can manage 
independently. Each .NET process has many threads running within the one process 
and sharing the same heap.

Selecting the right concurrent pattern

Application characteristic Concurrent pattern

You have a sequential loop where each iteration 
runs an independent operation.

Use the Parallel Loop pattern to run autonomous opera-
tions simultaneously (chapter 3).

You write an algorithm that divides the problem 
domain dynamically at runtime.

Use dynamic task parallelism, which uses a Divide and 
Conquer technique to spawn new tasks on demand 
(chapter 4).

You have to parallelize the execution of a distinct 
set of operations without dependencies and 
aggregate the result.

Use the Fork/Join pattern to run in parallel a set of 
tasks that permit you to reduce the results of all the 
operations when completed (chapter 4).

You need to parallelize the execution of a dis-
tinct set of operations where order of execution 
depends on dataflow constraints.

Use the Task Graph pattern to make the dataflow 
dependencies between tasks clear (chapter 13).

You have to analyze and accumulate a result for 
a large data set by performing operations such 
as filtering, grouping, and aggregating.

Use the MapReduce pattern to parallelize the process-
ing in a different and independent step of a massive 
volume of data in a timely manner (chapter 5).

You need to aggregate a large data set by apply-
ing a common operation.

Use the Parallel Aggregation, or Reducer, pattern to 
merge partial results (chapter 5).

You implement a program that repetitively per-
forms a series of independent operations con-
nected as a chain.

Use the Pipeline pattern to run in parallel a set of oper-
ations that are connected by queues, preserving the 
order of inputs (chapters 7 and 12).

You have multiple processes running inde-
pendently for which work must be synchronized.

Use the Producer/Consumer pattern to safely share 
a common buffer. This buffer is used by the producer 
to queue the generated data in a thread-safe manner; 
the data is then picked up by the consumer to perform 
some operation (chapters 8 and 13).
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