
M A N N I N G

Paul B. Jensen
FOREWORD BY Cheng Zhao

Using Electron and NW.js

www.allitebooks.com

http://www.allitebooks.org

Cross-Platform Desktop Applications
Using Electron and NW.js
 www.allitebooks.com

http://www.allitebooks.org

 www.allitebooks.com

http://www.allitebooks.org

Cross-Platform
Desktop Applications

USING ELECTRON AND NW.JS

PAUL JENSEN

M A N N I N G
SHELTER ISLAND
 www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2017 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Cynthia Kane
20 Baldwin Road Technical development editor: Kathleen Estrada
PO Box 761 Project editor: Karen Gulliver
Shelter Island, NY 11964 Copyeditor: Corbin Collins

Proofreader: Katie Tennant
Technical proofreader: Clive Harber

Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

ISBN: 9781617292842
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 22 21 20 19 18 17
 www.allitebooks.com

www.manning.com
http://www.allitebooks.org

 To Fiona

brief contents
PART 1 WELCOME TO NODE.JS DESKTOP APPLICATION

DEVELOPMENT ..1

1 ■ Introducing Electron and NW.js 3

2 ■ Laying the foundation for your first desktop application 31

3 ■ Building your first desktop application 54

4 ■ Shipping your first desktop application 75

PART 2 DIVING DEEPER ...89

5 ■ Using Node.js within NW.js and Electron 91

6 ■ Exploring NW.js and Electron’s internals 108

PART 3 MASTERING NODE.JS DESKTOP APPLICATION
DEVELOPMENT ..119

7 ■ Controlling how your desktop app is displayed 121

8 ■ Creating tray applications 143

9 ■ Creating application and context menus 153

10 ■ Dragging and dropping files and crafting the UI 176
vii

BRIEF CONTENTSviii
11 ■ Using a webcam in your application 187

12 ■ Storing app data 199

13 ■ Copying and pasting contents from the clipboard 210

14 ■ Binding on keyboard shortcuts 219

15 ■ Making desktop notifications 234

PART 4 GETTING READY TO RELEASE......................................243

16 ■ Testing desktop apps 245

17 ■ Improving app performance with debugging 264

18 ■ Packaging the application for the wider world 291

contents
foreword xvii
preface xix
acknowledgments xxi
about this book xxiii
about the author xxvii
about the cover xxviii

PART 1 WELCOME TO NODE.JS DESKTOP APPLICATION
DEVELOPMENT ..1

1 Introducing Electron and NW.js 3
1.1 Why build Node.js desktop applications? 4

Desktop to web and back 4 ■ What Node.js desktop apps offer
over web apps 6

1.2 The origins of NW.js and Electron 7
1.3 Introducing NW.js 9

A Hello World app in NW.js 9 ■ What features does
NW.js have? 14

1.4 Introducing Electron 17
How does Electron work and differ from NW.js? 17
A Hello World app in Electron 18 ■ What features does
Electron have? 23
ix

CONTENTSx
1.5 What apps can you make with NW.js and Election? 24
Slack 24 ■ Light Table 25 ■ Game Dev Tycoon 26
Gitter 27 ■ Macaw 28 ■ Hyper 29

1.6 Summary 30

2 Laying the foundation for your first desktop application 31
2.1 What we’re going to build 31

Introducing Lorikeet, the file explorer 32

2.2 Creating the app 33
Installing NW.js and Electron 33 ■ Creating the files and folders
for the NW.js-powered app 33 ■ Creating the files and folders for
the Electron-powered app 35

2.3 Implementing the start screen 38
Displaying the user’s personal folder in the toolbar 38
Showing the user’s files and folders in the UI 42

2.4 Summary 52

3 Building your first desktop application 54
3.1 Exploring the folders 55

Refactoring the code 55 ■ Handling double-clicks on folders 58

3.2 Implementing quick search 62
Adding the search field in the toolbar 62 ■ Adding an in-memory
search library 63 ■ Hooking up the search functionality with
the UI 64

3.3 Enhancing navigation in the app 68
Making the current folder path clickable 68 ■ Getting the
app to load at the folder path 71 ■ Opening files with their
default application 71

3.4 Summary 74

4 Shipping your first desktop application 75
4.1 Setting up the app for distribution 76

Creating the app icon 76

4.2 Packaging the app for distribution 79
Using a build tool for NW.js 79 ■ Using a build tool for
Electron 80 ■ Setting the app icon on the apps 81

CONTENTS xi
4.3 Testing your app on multiple OSs 86
Targeting Windows OSs 86 ■ Targeting Linux OSs 87
Targeting Mac OS 87

4.4 Summary 87

PART 2 DIVING DEEPER ...89

5 Using Node.js within NW.js and Electron 91
5.1 What is Node.js? 92

Synchronous versus asynchronous 92 ■ Streams as first-class
citizens 95 ■ Events 99 ■ Modules 100

5.2 Node Package Manager (npm) 102
Finding packages for your app 103 ■ Tracking installed
modules with package.json 103 ■ Packaging your modules
and apps with npm 105

5.3 Summary 107

6 Exploring NW.js and Electron’s internals 108
6.1 How does NW.js work under the hood? 109

Using the same instance of V8 110 ■ Integrating the main
event loop 111 ■ Bridging the JavaScript context between
Node and Chromium 112

6.2 How does Electron work under the hood? 112
Introducing libchromiumcontent 113 ■ Electron’s
components 113 ■ How Electron handles running the app 114

6.3 How does Node.js work with NW.js and Electron? 115
Where Node.js fits into NW.js 115 ■ Drawbacks of using Node.js
in NW.js 115 ■ How Node.js is used within Electron 116

6.4 Summary 117

PART 3 MASTERING NODE.JS DESKTOP APPLICATION
DEVELOPMENT ..119

7 Controlling how your desktop app is displayed 121
7.1 Window sizes and modes 121

Configuring window dimensions for an NW.js app 122
Configuring window dimensions for an Electron app 123

CONTENTSxii
Constraining dimensions of window width and height in
NW.js 124 ■ Constraining dimensions of window width and
height in Electron 126

7.2 Frameless windows and full-screen apps 128
Full-screen applications in NW.js 128 ■ Full-screen
applications in Electron 131 ■ Frameless apps 133
Kiosk mode applications 138

7.3 Summary 141

8 Creating tray applications 143
8.1 Creating a simple tray app with NW.js 144

Adding menus to your tray icon 145

8.2 Creating a tray app with Electron 149
Building the initial app skeleton 149

8.3 Summary 152

9 Creating application and context menus 153
9.1 Adding menus to your app 154

App window menus 154 ■ Creating menus for Mac OS apps
with NW.js 154 ■ Creating menus for Mac OS apps with
Electron 155 ■ Creating menus for Windows and Linux
apps 158 ■ Choosing which menu to render based on the OS 164

9.2 Context menus 165
Creating the context menu app with NW.js 165 ■ How do context
menus work with NW.js? 169 ■ Giving menu items icons 170
Creating a context menu with Electron 171 ■ Adding the context
menu with Electron 174

9.3 Summary 175

10 Dragging and dropping files and crafting the UI 176
10.1 Dragging and dropping files onto the app 176

Dragging and dropping files to an app with NW.js 177
Implementing drag-and-drop with Electron 180

10.2 Mimicking the native look of the OS 180
Detecting the user’s OS 181 ■ Using OS detection in NW.js 181
Using OS detection in Electron 182 ■ Using CSS to match a user’s
OS style 183

10.3 Summary 186

CONTENTS xiii
11 Using a webcam in your application 187
11.1 Photo snapping with the HTML5 Media Capture API 187

Inspecting the NW.js version of the app 188 ■ Creating Facebomb
with Electron 194

11.2 Summary 198

12 Storing app data 199
12.1 What data storage option should I use? 199
12.2 Storing a sticky note with the localStorage API 200

Creating the Let Me Remember app with Electron 201
Implementing the Let Me Remember app with NW.js 204

12.3 Porting a to-do list web app 206
Porting a TodoMVC web app with NW.js 207
Porting a TodoMVC app with Electron 208

12.4 Summary 209

13 Copying and pasting contents from the clipboard 210
13.1 Accessing the clipboard 211

Creating the Pearls app with NW.js 211 ■ Creating the Pearls app
with Electron 215 ■ Setting other types of content to the clipboard
with Electron 218

13.2 Summary 218

14 Binding on keyboard shortcuts 219
14.1 Creating the Snake game with NW.js 220

Implementing window focus keyboard shortcuts with NW.js 227
Creating global keyboard shortcuts with NW.js 229

14.2 Creating global shortcuts for the Snake game
with Electron 231

14.3 Summary 233

15 Making desktop notifications 234
15.1 About the app you'll make 235
15.2 Creating the Watchy app in Electron 235
15.3 Creating the Watchy app in NW.js 239
15.4 Summary 242

CONTENTSxiv
PART 4 GETTING READY TO RELEASE243

16 Testing desktop apps 245
16.1 Different approaches to testing apps 246

Test-driven-development (TDD) 246 ■ Behavior-driven
development (BDD) 247 ■ Different levels of testing 248

16.2 Unit testing 249
Writing tests with Mocha 249 ■ From pending test to
passing test 251

16.3 Functional testing 255
Functional testing in practice 255 ■ Testing with ChromeDriver
and NW.js 256

16.4 Testing Electron apps with Spectron 256
16.5 Integration testing 258

Introducing Cucumber 258 ■ Automatically testing your Electron
app with Cucumber and Spectron 260

16.6 Summary 263

17 Improving app performance with debugging 264
17.1 Knowing what you’re debugging 265

Identifying the location of the root cause 266 ■ Debugging with the
browser developer tools 267

17.2 Fixing bugs 270
Using Node.js’s debugger to debug your app 271 ■ Using NW.js’s
developer tools to debug your app 275

17.3 Resolving performance issues 279
Network tab 279 ■ Timeline tab 280 ■ Profiles tab 282

17.4 Debugging Electron apps 284
Introducing Devtron for debugging Electron apps 285

17.5 Summary 290

18 Packaging the application for the wider world 291
18.1 Creating executables for your app 292

Creating an NW.js app executable for Windows 292
Installing a virtual machine 292 ■ Building a .exe of an
NW.js app for Windows 293 ■ Creating an Electron app
executable for Windows 294

CONTENTS xv
18.2 Creating a setup installer for your Windows app 296
Creating a Windows setup installer with NW.js 296
Creating a Windows setup installer with Electron 304

18.3 Creating an NW.js app executable for Mac OS 306
Creating the Mac executable app 306 ■ Creating an Electron app
executable for Mac OS 309

18.4 Creating executable apps for Linux 311
Creating NW.js standalone apps for Linux 312 ■ Creating
Electron standalone apps for Linux 313

18.5 Summary 315

appendix A Installing Node.js 316

index 317

foreword
The Electron framework was born in 2013, when Node.js was just becoming popular.
The community was excited about JavaScript running on both the client and server
sides, and there were various attempts to write desktop apps using JavaScript.

 I was excited about JavaScript, too, and GUI programming was my favorite area. I
wrote a few modules for Node.js to provide bindings for popular GUI toolkits with
JavaScript, but they were no better than existing tools and didn’t attract much attention.

 Then I found an interesting Node.js module called node-webkit: a simple module
that could insert Node.js into WebKit browsers. I had the idea of using it to develop a
full-featured desktop framework: I could use Chromium to display web pages as win-
dows, and then use Node.js to control everything!

 Development for node-webkit was inactive at that time, so I took over and rewrote
the module to make it a complete framework for desktop apps. When I had finished
my initial development, it worked incredibly well for small, cross-platform apps.

 In the meantime, GitHub was secretly developing the web technology–based Atom
editor and was eager to replace Atom’s subpar web runtime with a better tool. GitHub
tried to migrate Atom to node-webkit but encountered many problems; I met with the
developers, and we agreed that I would write a new framework for writing desktop
apps with browser techniques and Node.js, and help them migrate Atom to it.

 The new framework was initially called atom-shell; it was renamed Electron a year
later when it became open source. Electron was written from scratch with a com-
pletely different foundation than node-webkit, to allow developers to create large,
xvii

FOREWORDxviii
complex apps. (Today, node-webkit is being actively developed and maintained by
others. The module is now known as NW.js, and it’s used widely.)

 Because Electron made it easy to quickly write sophisticated cross-platform desktop
apps, it attracted attention from many developers and underwent rapid improve-
ments. Now big brands are releasing products based on Electron, in addition to small
startups building their business around the platform.

 Writing desktop apps with Electron and NW.js requires developers to understand a
number of new concepts. Desktop development is different from front-end program-
ming in ways that can make it difficult for beginners. That’s where this book can help.

 Cross-Platform Desktop Applications will walk you through the rich APIs of Electron
and NW.js and help you get started developing desktop apps. You’ll learn the details
of desktop development with JavaScript, from building and shipping apps to in-depth
tricks for integrating apps with the desktop. The book also covers advanced topics like
debugging, profiling, and publishing apps on various platforms—even experienced
developers can learn a lot from these pages.

 I recommend this book to anyone who wants to work in desktop development.
You’ll be surprised how easy it is to write a cross-platform desktop app using JavaScript
and the web techniques outlined here.

CHENG ZHAO

CREATOR OF THE ELECTRON FRAMEWORK

preface
A few years ago, I was at a company called Axisto Media, and for a health conference
we needed to produce a desktop app that contained videos, session information, and
posters from the conference. We developed the app with Adobe AIR. But building the
app wasn’t simple, and customers had to go through a few steps to get the app run-
ning on their computer. There had to be a better way—and, thankfully, there was.

 I came to learn about NW.js (back then known as Node WebKit) around the end of
2013. I realized that NW.js could make it easier for customers to use the desktop app
because they wouldn’t have to install Adobe Flash Player or fiddle with locating files
on the USB to load the app. They could simply double-click the app. Not only that, we
could also offer support for Linux, and harmonize our tech stack within the business,
as we were using Node.js in quite a few places.

 I took the opportunity to re-create the desktop app with NW.js, and never looked
back. It made things so much simpler, and with the ability to reuse HTML, CSS, and JS
from the web app for the conference website, we could make the look and feel of the
app more consistent. It was a massive win.

 I was so pleased with the framework that I decided to give a presentation about it at
the London Node.js User Group meetup in June 2014. I then put the slides online. A
couple of months later, I noticed that the slides on SlideShare had quickly accumu-
lated some 20,000 views. It was nice, and I thought that would be that.

 But it wasn’t.
xix

PREFACExx
 In December of 2014 I received an email from Erin Twohey at Manning Publica-
tions asking me if I’d be interested in writing a book about Node WebKit. It felt too
good to pass up. I jumped at the chance and embarked on writing this book.

 Lots of things happened during that time. The Node.js community created a fork
of the project called IO.js to get features into the platform more quickly, and subse-
quently merged the fork back into Node.js. The Node WebKit framework switched to
using IO.js, and as it was using Blink rather than WebKit, was renamed to NW.js. A
year passed, and the book was nearing completion, when we noticed that there was
another Node.js desktop app framework in the space called Electron. Taking a closer
look, we realized that it was quite similar to NW.js, and it turned out that the author of
Electron had previously worked on NW.js. We therefore decided to include the frame-
work in the book.

 Writing a book covering two Node.js desktop app frameworks was a challenge, but
here it is. The book covers the fundamentals of building desktop apps across both
NW.js and Electron. It doesn’t cover everything there is to know about the frame-
works, but enough to acquaint you with a wide range of features and uses, so that you
can pick a framework that suits your needs and build desktop apps with it.

 This is a great time to be a developer, and with tools like NW.js and Electron, it’s
never been easier to make a desktop app. I hope you enjoy this book, and if you find you
want to ask me about the frameworks, you can contact me at paulbjensen@gmail.com.
You can also find me at @paulbjensen on Twitter.

 PAUL JENSEN

mailto:paulbjensen@gmail.com

acknowledgments
Writing a book is one of the hardest projects you can take on. It requires an incredible
amount of time, energy, and dedication. It also requires the support of a sizeable
group of people. I have a lot of people to thank for helping me, and for good reason.

 I’d like to start by thanking the team at Manning publications: Erin Twohey, Ana
Romac, Candace Gillhoolley, Rebecca Rinehart, Aleksandar Dragosavljević , Toni
Bowers, Mehmed Pasic, Karen Gulliver, Katie Tennant, Janet Vail, and Lynn Beighley.
You can’t imagine how much work goes into making a book, and they have been great
at helping me through the process of creating and promoting it. I would also like to
thank technical proofreader Clive Harber and the following reviewers: Angelo Costa,
Daniel Baktiar, Darko Bozhinovski, Deepak Karanth, Fernando Monteiro Kobayashi,
Jeff Smith, Matt Borack, Nicolas Boulet-Lavoie, Olivier Ducatteeuw, Patrick Regan,
Patrick Rein, Robert Walsh, Rocio Chongtay, Stephen Byrne, Toni Lähdekorpi, William
Wheeler, Yogesh Poojari, and Marcelo Pires; and Natko Stipaničev, for his diagram help.

 I thank Marjan Bace for giving me the chance to write this book. It’s a privilege to
have written for Manning; there were already a number of their books in my collec-
tion, so it’s been fantastic to add to their collection. I also thank Michael Stephens for
his work at the beginning of this process to help me form the outline of this book, to
cope with my delays in getting material across, and for being understanding when I
navigated some personal difficulties.

 I thank my development editor, Cynthia Kane. She accomplished the difficult job
of prompting chapters out of me, and as this is my first book, you can imagine how
painful that process has been. I have an archive of some 150+ email threads that she
xxi

ACKNOWLEDGMENTSxxii
sent to me during the writing phase, times when I was writing in London, Amsterdam,
Iceland, Italy, New York, then Amsterdam again, and finally, back in London. During a
very difficult 2016, Cynthia kept gently prodding me along to get this book done, and
knew when to offer support when times got tough. I am eternally grateful; so, Cynthia,
I thank you.

 I thank Roger Wang and Cheng Zhao for having built NW.js and Electron—with-
out their efforts this book would not have existed in the first place.

 I thank Edwina Dunn and Clive Humby at Starcount in London. It has been a priv-
ilege working for them, and I am grateful for the support that they have given me.

 I thank Stuart Nicolle at Purple Seven. Stuart took me on board and showed me
the possibilities of what could be gleaned from the world of arts and theatre analytics.

 I thank my family: my mum Jette, my sister Maria, her partner Mark, my late Gran
Lis, and Brenda and Jim. They have helped me to become the person I am and sup-
ported me in discovering the path I am on.

 I want to especially thank Fiona. She has had to endure all that has come with writ-
ing this book, and much more. The successful completion of this book is a testament
to her support and love.

 Finally, I want to mention my father, Willy, who was a hardware and software engi-
neer—a smart man, a difficult man. Though we don’t see eye to eye, I thank him for
playing his part.

about this book
NW.js and Electron are desktop application frameworks powered by Node.js. They
allow developers to create cross-platform desktop apps using HTML, CSS, and Java-
Script. They offer web designers and developers a way to take their existing skills for
crafting web apps and interfaces, and apply that to building desktop apps. The frame-
works also support shipping apps for Mac OS, Windows, and Linux from the same
codebase, meaning that developers can save time and energy when creating desktop
apps that all OSs can use.

 NW.js and Electron come from a shared history, and have some similar approaches
to app features. This book covers both frameworks topic by topic, helping you to see
what they have in common, and where they differ in their approaches. This will help
you to decide which framework is best for your needs. We’ll cover a broad range of
apps and features together, to spark your passion and interest, as well as provide ideas
for things you might want to build but don’t know how.

 I hope you enjoy the book, and that you get to make something great with it.

Who should read this book
Anyone who has experience with HTML, CSS, and JavaScript can pick up this book
and get to grips with it right away. Experience with Node.js is not a requirement, but
experience will come in handy. If you’re completely new to HTML, CSS, and
JavaScript, then it would be best to get acquainted with those technologies before you
begin to read this book.
xxiii

ABOUT THIS BOOKxxiv
How this book is organized
This book has 18 chapters, organized into 4 parts.

 Part 1 is an introduction to the frameworks:

■ Chapter 1 introduces NW.js and Electron, describing what they are, how they
came about, what a Hello World app looks like in both frameworks, and some
of the real-world apps that have been produced with them.

■ Chapter 2 then explores a direct comparison of the frameworks by building a
file explorer application in each one.

■ Chapter 3 continues to flesh out some features of the file explorer application.
■ Chapter 4 rounds off part 1 by building executable versions of the app for dif-

ferent OSs.

By the end of the first part, you’ll have seen how to build a full-feature app with both
frameworks.

 Part 2 (chapters 5-6) looks at understanding the internals of NW.js and Electron
from a technical perspective:

■ Chapter 5 looks at Node.js, the programming framework behind both NW.js
and Electron. It covers how Node.js works, how asynchronous programming is
different from synchronous programming, and the use of callbacks, streams,
events, and modules.

■ Chapter 6 looks at how NW.js and Electron operate under the hood in terms of
how they combine Chromium with NW.js, and how they handle state between
the back end and front end.

This will help demystify the magic that NW.js and Electron perform to make their frame-
works operate, and provide a useful guide to Node.js for those new to the framework.

 In part 3 of the book, we’ll look at how to start fleshing out specific features of
desktop apps with NW.js and Electron:

■ Chapter 7 looks at controlling how the app can be displayed, in terms of the win-
dow dimensions and different screen modes, and how to toggle between them.

■ Chapter 8 explores how to create tray applications that sit in the tray area of
desktops.

■ Chapter 9 shows how to build app and context menus for integrating into your
apps.

■ Chapter 10 introduces dragging and dropping files into your app, and being
able to craft the UI to have the same look and feel as other OSs.

■ Chapter 11 uses your computer’s webcam to build a selfie app and to save the
photos to your computer.

■ Chapter 12 looks at ways in which you can store app data for your apps, as well
as how to retrieve it.

■ Chapter 13 shows how to use the clipboard APIs of both NW.js and Electron to
copy and paste contents to and from the OS’s clipboard.

ABOUT THIS BOOK xxv
■ Chapter 14 uses a 2D game to demonstrate how to add keyboard shortcuts to
your apps, as well as how to program global shortcuts that are accessible across
the entire OS.

■ Chapter 15 rounds off the part by exploring how to implement desktop notifi-
cations for a Twitter streaming client.

This part demonstrates a broad range of features that both NW.js and Electron sup-
port, helping you to see how the frameworks go about providing those features, and
giving you a chance to evaluate which framework suits your needs best.

 In the final part of the book, we’ll look at things you can do to prepare your app
for production: writing tests, debugging code, and finally, producing executable bina-
ries for shipping to your customers:

■ Chapter 16 looks at ways you can approach testing your desktop apps, and at
different levels. It introduces the concepts of unit, functional, and integration
testing, using Cucumber to document how your app features work, and using
Spectron to automate testing your Electron apps at an integration level.

■ Chapter 17 explores ways you can debug your code to help spot performance
bottlenecks and bugs, and covers tools like Devtron to help inspect your app in
greater detail.

■ Chapter 18 finishes off the part by looking at various options for building exe-
cutable binaries of your app, as well as creating setup installers for the differ-
ent OSs.

By the end of this part, you should be in a position to test your apps, debug any issues
that may occur with them, and finally get them built and shipped to your customers.

About the code
This book contains many examples of source code, both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. In many cases, the original source code
has been reformatted; line breaks have been added and indentation reworked as nec-
essary to accommodate the available page space in the book. Additionally, com-
ments in the source code have often been removed from the listings when the code is
described in the text. Code annotations accompany many of the listings, highlighting
important concepts.

 Source code for the book’s examples is available for download from the pub-
lisher’s website at www.manning.com/books/cross-platform-desktop-applications and
at http://github.com/paulbjensen/cross-platform-desktop-applications.

Author Online
Purchase of Cross-Platform Desktop Applications includes free access to a private web
forum run by Manning Publications where you can make comments about the book,
ask technical questions, and receive help from the author and from other users. To

http://github.com/paulbjensen/cross-platform-desktop-applications
http://www.manning.com/books/cross-platform-desktop-applications

ABOUT THIS BOOKxxvi
access the forum and subscribe to it, point your web browser to www.manning.com/
books/cross-platform-desktop-applications. This page provides information on how to
get on the forum once you are registered, what kind of help is available, and the rules
of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and authors can take place. It
is not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking him some challenging questions lest his interest stray! The Author
Online forum and the archives of previous discussions will be accessible from the pub-
lisher’s website as long as the book is in print.

http://www.manning.com/books/cross-platform-desktop-applications
http://www.manning.com/books/cross-platform-desktop-applications

about the author
Paul Jensen is a Senior Pre-Sales Consultant at Starcount in Lon-
don, UK. He has a history of working in startups, the web agency
New Bamboo (now part of Thoughtbot), AOL, and his own con-
sultancy, Anephenix Ltd. He has spoken at a number of events
(London Ruby User Group, Cukeup 2013, London Node User
Group), created his own real-time dashboard (Dashku), and was
the project lead for the Socketstream web framework. He enjoys
ale and cycling, and can be found on Twitter as @paulbjensen.
xxvii

about the cover
The figure on the cover of Cross-Platform Desktop Applications is captioned “Man
from Murcia.” The illustration is taken from a collection of dress costumes from vari-
ous countries by Jacques Grasset de Saint-Sauveur (1757–1810), titled Costumes de Dif-
férents Pays, published in France in 1797. Each illustration is finely drawn and colored
by hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of
how culturally apart the world’s towns and regions were just 200 years ago. Isolated
from each other, people spoke different dialects and languages. In the streets or in
the countryside, it was easy to identify where they lived and what their trade or station
in life was just by their dress.

 The way we dress has changed since then, and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

 At a time when it is hard to tell one computer book from another, Manning cel-
ebrates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Saint-Sauveur’s pictures.
xxviii

Part 1

Welcome to Node.js
desktop application

development

Two frameworks prevail when it comes to building desktop applications with
Node.js: NW.js and Electron. In the first part of the book, you’ll be introduced to
those frameworks and what advantages they have compared to other app frame-
works, build a quick Hello World application with both NW.js and Electron, and
then see what kinds of applications have been built.

 In chapter 2, we’ll begin to put those frameworks to use by building a file
explorer app. We’ll flesh out the skeleton of the app and add features to it, and
explore the different approaches that NW.js and Electron take.

 In chapter 3, we’ll continue to iterate on the file explorer app by adding
more features such as search and opening files. We’ll then round up the app in
chapter 4 by building executable versions for Mac OS, Windows, and Linux. By
the end of part 1, you’ll have gotten to know both NW.js and Electron, and put
your knowledge to practical use in a real-world application.

Introducing Electron
and NW.js
Node.js is known as a programming framework that lets developers build server-
side applications in JavaScript. Since its creation in 2009, it has spawned a variety of
popular web frameworks like Express and Hapi, as well as real-time web frameworks
like Meteor and Sails. It has also allowed developers to create isomorphic web apps
using tools like Facebook’s React, a UI library that has had a huge impact on web
development in recent years. It’s fair to have the impression that Node.js is purely
about web apps, but the truth is that Node.js is far more than that.

This chapter covers
 Understanding why Node.js desktop apps are the

rage these days

 Previewing Node.js desktop application
frameworks Electron and NW.js

 Using these frameworks to build cross-platform
desktop apps with Node.js

 Comparing the frameworks

 Identifying real-world applications built with
Electron and NW.js
3

4 CHAPTER 1 Introducing Electron and NW.js
 Node.js can be used to build cross-platform desktop apps, and chances are you’re
using one of them today. If you’ve ever used Slack at work, edited code using Atom
from GitHub, or watched a movie using Popcorn Time, then you’ve used a Node.js
desktop app. It’s becoming a popular choice for developers, in particular web devel-
opers with little experience in desktop application development—even Microsoft has
built and shipped an IDE (Visual Studio Code) using Node.js.

 In the Node.js ecosystem, there are two major frameworks for creating desktop
apps: NW.js and Electron. Both are supported by major businesses (NW.js by Intel
and Gnor Tech, and Electron by GitHub), both have large communities around
them, and both share similar approaches to building desktop apps. This book shows
how to build cross-platform desktop apps with both Electron and NW.js. You may be
pleasantly surprised by how much they have in common—in fact, they have some-
thing of a shared history, but we’ll get to that later. For now, we’ll explore some of the
reasons why Node.js desktop apps have taken off and where they might be useful for
you and your work.

1.1 Why build Node.js desktop applications?
To answer this question, you have to see how software has changed over the past gen-
eration and visualize where it is going.

1.1.1 Desktop to web and back

At the beginning of 2000, most software was available as desktop apps in shrink-
wrapped boxes that you could buy from stores like Best Buy. You’d need to check the
system requirements and make sure that it would work on the operating system (OS)
you were running (which was Windows, for the majority of people). You’d then grab a
CD-ROM out of the box, and install the software on your computer that way.

 Over time, that began to change: improvements in web browsers, greater internet
speeds and access, and the movement toward open source software resulted in a
major shift in how software was created and distributed. The advent of AJAX spawned
a new era of delivering software as web apps. These apps didn’t require downloading
anything onto the computer, and they could run across multiple OSs. Companies like
Google and Facebook signaled the rise of the web as a powerful platform in the indus-
try, and as people became accustomed to using apps online for a monthly fee, tradi-
tional software houses adapted and began to offer their software online.

 It seemed like the web had won, but then mobile computing came along, leading
to the rise of native apps for Apple iPhone and Android mobile devices. The industry
changed again, and developers found themselves needing to adapt their business to
support those devices too.

 If reflecting on 16 years of software development shows anything, it’s that there’s a
lot of change in the industry, and that we as developers will probably find ourselves
supporting multiple computing platforms for years to come: desktop, web, mobile,
and more. We’re in the age of multiplatform computing.

5Why build Node.js desktop applications?
 Where does that leave desktop apps? Desktop apps have become one of a number
of computing platforms that we use in our day-to-day activities. But what has changed
since the 2000s is that where Microsoft Windows was the dominant OS for desktop
computers back then, Apple has pared back that dominance with the popularity of its
computers among creatives and professionals. Not only that, but Google’s Chrome-
books were the best-selling laptops in the U.S. in the first quarter of 2016. The year of
the Linux desktop may have finally arrived. The point is this: you can’t afford to
develop desktop apps that work on only Windows these days—there’s a need for devel-
oping apps that work across Mac OS and Linux as well.

 Cross-platform desktop apps aren’t a new concept; frameworks like Mono and Qt
have provided a way to develop desktop apps that run across all three of the major
OSs. Usually, developers with a background in programming languages like C, C++,
and C# could come to grips with these frameworks and develop software for them.
Other developers, like web developers, would need to learn a new language alongside
a framework, and this would be a barrier to them developing desktop apps.

 When NW.js and Electron came about, they offered an opportunity to build desk-
top apps with the same code used to create web apps—and not only that, these desktop
apps could operate across Windows, Mac OS, and Linux. It was a massive win for both
code and skills reusability and unleashed a wave of new apps.

 In addition, the popularity of Node.js has meant that developers have been able to
leverage a huge ecosystem of open source libraries to build their apps with. Node.js
developers and web developers alike could suddenly make desktop apps, and some of
the apps out there are truly fantastic. One that comes to mind is WebTorrent by Feross
Aboukhadijeh, shown in figure 1.1.

Figure 1.1 WebTorrent by Feross Aboukhadijeh

6 CHAPTER 1 Introducing Electron and NW.js
WebTorrent is a desktop app that allows you to upload files for other users to down-
load, much in the same fashion as BitTorrent. It uses WebRTC to enable peer-to-peer
connections, and to show you how portable the code is, the library used in the desk-
top app is the same as the one you can use in a web browser. It’s a truly fantastic piece
of work.

 The ability to support multiple OSs but write the software in a common and popu-
lar language has lots of pros because, as mentioned, desktop computing is still a major
part of how people use computers today, even as new mobile computing platforms
emerge. That’s why Node.js desktop apps have become an interesting way to deliver
software. The next section elaborates on some of the reasons why you may consider
building Node.js desktop apps over web apps.

1.1.2 What Node.js desktop apps offer over web apps

Web apps have thrived for a number of reasons:

 Internet speeds improved and access increased, and, importantly, the cost of
internet access went down, making the user base grow massively, unlike most
other communication channels.

 Web browsers have benefitted from increased competition. As appealing alter-
natives to Internet Explorer emerged, new features were added to those brows-
ers, which in turn enabled web apps to do new things.

 The relative ease of learning HTML, CSS, and JavaScript lowered the barrier of
entry for developers to make web apps, as opposed to learning lower-level lan-
guages like C and C++.

 The rise of open source software meant that the cost of distributing and obtain-
ing software declined significantly, meaning that developers with a bit of cash,
time, and the right level of skill could build their own web apps.

When you look at all this, you can see why the web is such an important platform for
developers to make software for. That said, there are still things that challenge and
limit the ability of web apps today:

 Internet access is not always available. If you’re on a train and you go under a
tunnel, chances are you’ll lose internet access. If your web app depends on sav-
ing data, hopefully it will be able to store a local copy of the changes and allow
for them to be synchronized via the internet when access resumes.

 If your app has a lot of features, the amount of data it will need to transfer over
the internet to run the app could be large and may slow down the loading of
the app. If it takes too long, people load something else—something proven by
research into the impact that slow web page loading times have on e-commerce
transactions.

 If you’re working with large files (such as high-resolution images and videos)
that are sitting on your desktop computer, then it might not make sense for
them to be uploaded to the internet in order for a web app to edit them.

7The origins of NW.js and Electron
 Because of the security policy of the web browser, there are limits to what hard-
ware/software features of the computer the web app can access.

 You have no control over what web browsers a user may use to visit your web app.
You have to use feature detection to cater to different web browsers, which restricts
what features your app can use. The user experience (UX) can vary wildly.

Web apps are essentially restricted by the limits of internet access and browser fea-
tures. It is in these circumstances that a desktop app may be preferable to a web app.
Some of the benefits include the following:

 You don’t require internet access to start and run the app.
 Desktop apps start instantly, without having to wait for resources to download

from the internet.
 Desktop apps have access to the computer’s OS and hardware resources, includ-

ing access to the files and folder on the user’s computer.
 You have greater control over the UX with the software. You don’t have to worry

about how different browsers handle CSS rules and what JavaScript features
they support.

 Once a desktop app is installed on a user’s computer, it’s there. It doesn’t
depend on you running web servers to support the app, where you need to
offer 24/7 support in case your web app goes down, or worse, your web-hosting
provider encounters technical difficulties.

Usually, desktop apps have required developers to be proficient in languages like C++,
Objective-C, or C#, and knowing frameworks like .NET, Qt, Cocoa, or GTK. For some
developers, that can be a barrier to entry and may discourage them from considering
the possibility of building a desktop app.

 The great thing about Node.js desktop application frameworks like Electron
and NW.js is that they have significantly lowered that barrier of entry for develop-
ers. By allowing developers to create apps using HTML, CSS, and JavaScript, they’ve
opened the door for web developers to also be desktop app developers, with the
added benefit of being able to use the same code across both the web app and desk-
top app platforms.

 Now it’s time to introduce the frameworks. As mentioned earlier in the chapter,
Electron and NW.js have something of a shared history, so I’ll touch on the origins of
both frameworks and then cover each in some detail.

1.2 The origins of NW.js and Electron
Back in 2011, Roger Wang managed to find a way to combine WebKit (the browser
engine behind Safari, Konqueror, and Google Chrome at the time) with Node.js, so
that you could access Node.js modules from the JavaScript code running inside a web
page. This Node.js module was given the name node-webkit. He continued to work on
the project at Intel’s Open Source Technology Center in China, which gave its support

8 CHAPTER 1 Introducing Electron and NW.js
to the project by letting Roger work on it full time. Not only that, he was allowed to
hire others to work on it too.

 In the summer of 2012, a senior college student named Cheng Zhao joined Intel
as an intern to work on node-webkit. He worked with Roger to help improve its inter-
nal architecture, which involved changing how Node.js and WebKit were combined.
As the code evolved, node-webkit moved from being a mere Node.js module to becom-
ing a framework for desktop apps. Node-webkit was given interesting uses within third-
party apps. The Light Table editor was the first to make use of node-webkit to deliver
its functionality and helped to promote the framework to other developers.

 In December of the same year, Cheng left Intel to work at GitHub as a contractor.
He was tasked with helping to port GitHub’s Atom editor from using Chromium
Embedded Framework and native JavaScript bindings to using node-webkit.

 The efforts to port Atom to node-webkit encountered difficulties (see https://
github.com/atom/atom/pull/100), so they abandoned that approach. Instead, they
decided to create a new native shell for Atom, which they called Atom Shell. This
approach to combining WebKit with Node.js differed from the approach taken by
node-webkit. Cheng Zhao focused all of his efforts into working on Atom Shell, which
GitHub later open sourced shortly after open sourcing its text editor, Atom.

 During this time, Node.js was going through a period of splintering—members of
the Node.js community created a fork of Node.js called IO.js in order to get updates
into the project faster, and in the WebKit community, Google announced that it was
going to fork the WebKit project for Google Chrome into a variant called Blink. The
combination of these changes led to renaming node-webkit as NW.js, and GitHub
renamed the Atom Shell framework as Electron. Over time, Electron quickly acquired
a number of admirers and was being used in high-profile apps like Slack and Visual
Studio Code. It eventually became a juggernaut of its own creation, distinct from its
original purpose as a tool for delivering Atom.

 Although NW.js was the first Node.js desktop application framework, Electron has
quickly emerged as a popular framework that has overshadowed NW.js, although both
have been heavily worked on by the same developer at different points in time and
share a lot of common code in terms of how users use their APIs for creating app fea-
tures. Each has evolved a different approach to its internal architecture and has
spawned separate communities that actively promote their respective projects.

 In this respect, this book essentially covers two frameworks that do the same thing
in slightly different ways. It’s a fairly unique situation in that the frameworks share so
much history and are similar enough to merit being evaluated together. There’s a nat-
ural inclination to pick whichever is the bigger of the two and go with that, and the
answer to that would be Electron (if you go by popularity and momentum), but some
prefer NW.js to Electron for its relative simplicity in how you execute code and load
the app, as well as for supporting computing platforms like Google Chromebooks,
and because of other matters of programming opinion. I prefer to provide the infor-
mation and let you decide what you want to use. It’s more ground to cover, but you’ll
be better informed.

https://github.com/atom/atom/pull/100
https://github.com/atom/atom/pull/100

9Introducing NW.js
 If you’re interested in digging into the history of both projects a bit more, the fol-
lowing links provide helpful pointers:

 http://cheng.guru/blog/2016/05/13/from-node-webkit-to-electron-1-0.html
 https://github.com/electron/electron/issues/5172#issuecomment-210697670

If you’re looking for posts that compare and contrast the frameworks, here are some
good links to look at as well:

 http://electron.atom.io/docs/development/atom-shell-vs-node-webkit/
 http://tangiblejs.com/posts/nw-js-and-electron-compared-2016-edition

That’s a brief history of the two projects and how their paths have formed over time.
We’ll now dive into each framework, starting with the first framework to emerge on
the scene: NW.js.

1.3 Introducing NW.js
To recap, NW.js is a framework for building desktop apps with HTML, CSS, and
JavaScript. It was created back in November 2011 by Roger Wang at Intel’s Open
Source Technology Center in China. The idea was that by combining Node.js with
WebKit (the web browser engine behind Chromium, an open source version of
Google Chrome), you could create desktop apps using web technologies. This was the
basis for the framework’s original name, node-webkit.

 By combining Node.js with Chromium, Roger found a way to create apps that
could not only load an HTML file with CSS and JavaScript inside an app window, but
also could interact with the OS via a JavaScript API. This JavaScript API could then
control visual aspects like window dimensions, toolbar, and menu items as well as pro-
vide access to local files on the desktop—things web apps couldn’t do.

 To give you an idea of what this looks like, let’s walk through an example Hello
World app for NW.js.

1.3.1 A Hello World app in NW.js

This example application will give you a better understanding of what Node.js desktop
apps are like with NW.js. Figure 1.2 show a design of the app we’ll build.

Figure 1.2 Design for the Hello
World app we’ll build

http://cheng.guru/blog/2016/05/13/from-node-webkit-to-electron-1-0.html
https://github.com/electron/electron/issues/5172#issuecomment-210697670
http://electron.atom.io/docs/development/atom-shell-vs-node-webkit/
http://tangiblejs.com/posts/nw-js-and-electron-compared-2016-edition

10 CHAPTER 1 Introducing Electron and NW.js
The code for this app is available in the GitHub repository for this book at http://
mng.bz/4W7Y.

 If you want to get the code to run the app and see it in action, follow the instruc-
tions in the README.md file there. It’s ready-made to go. But if you want to see how
the sausage is made, then read on and we’ll build the app from scratch.

 The first step is to check whether you have Node.js installed. If you already do,
great—move on to the next section, “Installing NW.js,” but if not, you’ll find instruc-
tions for installing Node.js in the appendix.

INSTALLING NW.JS
Node.js comes with a package management tool called npm that handles installing
libraries for Node.js, and NW.js can be installed using it. On your computer, open the
command-line program for your OS (Command Prompt or PowerShell on Windows,
and Terminal on both Mac OS and Linux).

 After you’ve opened your command-line program, run the following command:

npm install –g nw

This will install NW.js on your computer as a Node.js module available to all of your
Node.js desktop apps.

CREATING THE HELLO WORLD APP

The app is so small that you can create the files by hand. At the bare minimum, you
only need two files:

 A file named package.json—This contains configuration information about the
app, and is required by NW.js.

 An HTML file—This file will be loaded by the package.json file and displayed in
the app window. In this case, it’s a file called index.html (but it can be named
something else, such as app.html or main.html).

Start by creating a folder for the app’s file. On your computer, go where you like to
store your project source code and create a folder named hello-world-nwjs. Then you
can create the package.json file that will be stored inside the hello-world-nwjs folder.

 In your text editor/IDE, create a file named package.json inside the hello-world-
nwjs folder and insert the following code into it:

{
 "name" : "hello-world-nwjs",
 "main" : "index.html",
 "version" : "1.0.0"
}

The package.json file consists of some configuration information about the app: its
name, the main file to load when the app starts, and its version number. These fields
are required by NW.js (though the version field is required by npm). The name field
must contain lowercase alphanumeric characters only—there can be no space charac-
ters in the name.

http://mng.bz/4W7Y
http://mng.bz/4W7Y

11Introducing NW.js
 The main field contains the file path for the entry point of your app. In the case of
NW.js, you have the option of loading either a JavaScript file or an HTML file, but
HTML files tend to be the common choice for NW.js apps. The HTML file is loaded
into the app window, and to demonstrate this, you’ll create an HTML file called
index.html that will be loaded.

 Inside the hello-world-nwjs folder, create a file named index.html and insert the
code in the following listing.

<html>
 <head>
 <title>Hello World</title>
 <style>
 body {
 background-image: linear-gradient(45deg, #EAD790 0%, #EF8C53 100%);
 text-align: center;
 }

 button {
 background: rgba(0,0,0,0.40);
 box-shadow: 0px 0px 4px 0px rgba(0,0,0,0.50);
 border-radius: 8px;
 color: white;
 padding: 1em 2em;
 border: none;
 font-family: 'Roboto', sans-serif;
 font-weight: 100;
 font-size: 14pt;
 position: relative;
 top: 40%;
 cursor: pointer;
 outline: none;
 }

 button:hover {
 background: rgba(0,0,0,0.30);
 }
 </style>
 <link href='https://fonts.googleapis.com/css?family=Roboto:300'

rel='stylesheet' type='text/css'>
 <script>
 function sayHello () {
 alert('Hello World');
 }
 </script>
 </head>
 <body>
 <button onclick="sayHello()">Say Hello</button>
 </body>
</html>

Listing 1.1 Code for the Hello World app’s index.html file

Sets title of app
window with title
element

Inline stylesheet included to
give background and button
element a nice look

Links to font provided by
Google fonts for the button

JavaScript function embedded
that prints “Hello World” in
alert dialog

Body element contains
button element that
calls JS function sayHello
when clicked

12 CHAPTER 1 Introducing Electron and NW.js
Once you’ve saved the index.html file on your computer, you can run the app on
your computer. Inside the hello-world-nwjs folder, run the following command
on your terminal:

nw

If you’re running on Mac OS, figure 1.3 shows what you should see.

If you’re running Linux, figure 1.4 shows the same app running on openSUSE 13.2
(Linux has many distributions, and openSUSE is one of the well-known distributions).

Figure 1.3 The Hello World
app running on Mac OS. This
screenshot of the app is almost
identical to the design, the
only difference being size
dimensions.

Figure 1.4 The Hello World app
running on openSUSE 13.2. It
looks fairly identical to the Mac
OS variant of the app, although
the window title bar looks
different, the color profiling is
slightly different, and the font
rendering is noticeably different.

13Introducing NW.js
The Windows 10, Mac OS, and Linux versions of NW.js all share the same way to get
the app started, which is handy. Type the same command in your Command Prompt,
and you should see something like figure 1.5 on a Windows 10 computer.

If you click the Say Hello button in the middle of the app screen, you’ll see an alert
dialog that says “Hello World.” If you were to take the index.html file and load it in a
web browser such as Google Chrome, Microsoft Edge, or Mozilla Firefox, you would
see the same screen and get the same result. That’s the point—you can take an HTML
page for a website and turn it into a desktop app with NW.js without having to change
the code.

 At this point you might say, “Well, if that’s the case, why don’t I use a desktop app
template that renders an HTML page inside a window and make do with that?” That’s
not a bad question, and some apps have taken this approach.

 The reasons against such an approach could boil down to ease of development.
You might not know C++, or if you do, you may not want to be compelled to compile
code every time you make a feature change. Also, you might want to use features that
are only available natively to the desktop framework and are beyond what an HTML
file embedded inside of an app window shell would be able to access. The other major
reason is that as desktop app frameworks, both Electron and NW.js provide a rich fea-
ture set to support you in developing desktop apps, covered in the next section.

Figure 1.5 The Hello World app running on Windows 10. The app looks almost
identical to the app running on openSUSE Linux (minus the app window and a
slight difference in font rendering).

14 CHAPTER 1 Introducing Electron and NW.js
1.3.2 What features does NW.js have?

NW.js has a set of features that makes it appealing for developers to use when building
desktop apps. In a generic overview, they are as follows:

 A JavaScript API for creating and accessing native UIs and APIs to the OS: con-
trol windows, add menu items, tray menus, read/write files, access the clip-
board, and more

 The ability to use Node.js inside your app as well as install and use a huge
library of Node.js modules via npm

 Being able to build executables of the app for each OS from a single codebase

I’ll explain each bullet point in more detail in the next sections.

ACCESSING OS NATIVE UI AND API VIA JAVASCRIPT

A good desktop app integrates well into the user’s OS: a music app will work with the
media keyboard shortcuts on a user’s keyboard, a chat app may have a menu icon in
the tray area of the OS, and a productivity app may provide notifications when actions
have completed.

 NW.js provides a large API for getting access to OS features, which do the following:

 Control the size and behavior of the app’s window
 Display a native toolbar on the app window with menu items
 Add context menus in the app window area on right-click
 Add a tray app item in the OS’s tray menu
 Access the OS clipboard, read the contents, and even set the contents
 Open files, folders, and URLs on the computer using their default apps
 Insert notifications via the OS’s notification system

As you can see from the preceding list, there are a lot of things you can do within
NW.js that web browsers cannot do. For example, web browsers don’t have direct
access to files on the desktop or the contents of the clipboard due to security restric-
tions that web browsers implement to protect users from sites with malicious intent. In
the case of NW.js, because the app runs on the user’s computer, it’s granted a level of
access where the user trusts the app. This means that you can do things like access the
files that are on the user’s computer, create new files and folders, and more. These
features allow the developer to create desktop apps that fit well with the user’s OS and
do things that web apps can’t do (or at least not as easily)—and the user trusts the app
to be responsible and not do anything malicious.

USING NODE.JS AND NPM MODULES INSIDE YOUR APP

NW.js provides access to the Node.js API in the app, as well as uses modules that are
installed with npm. This means that you can install npm modules for use with your
desktop apps, and you can even access them and Node.js core modules from the same
code that’s interacting with the front end of the desktop app.

15Introducing NW.js
 For example, you could write a bit of embedded JavaScript in the index.html file
that uses the Node.js filesystem module to get a list of files and folders in a given direc-
tory, and then list those files as list items in the HTML. This shared JavaScript context
between the front-end and back-end parts of the desktop app is an intriguing aspect of
the way NW.js combines Node.js with Chromium. It’s something to keep in mind
when you’re working with NW.js applications (as opposed to Electron applications).
It’s quite different from how web apps work, as figure 1.6 demonstrates.

To explore this a bit further, consider how traditional web apps work. Web apps
tend to have a client/server model where the client requests a web page or makes an
API request, and the server executes some code to then serve that data back to the
client. The client in this case is a computer running a web browser. The web browser
then loads the data, where, if it’s HTML, the rendering engine turns it into a web
page; or, if it’s data like XML or JSON, the rendering engine displays it in raw form.
The server does its job of executing back-end code to serve HTML pages or API
requests, and the computer client running the web browser does its job of making
HTML/API requests and rendering the response in the web browser. The web
browser applies a strict security model to ensure that the front-end code executes

Traditional web app

Computer

Browser

Page

Front-end code

Server

Back-end code

NW.js desktop app

Computer

Browser engine

Page

Front-end and

back-end code

Figure 1.6 The difference between a web app and an NW.js desktop app. The separation
between front-end and back-end code in an NW.js desktop is blurred, as the JavaScript context
is shared between both parts of the code.

16 CHAPTER 1 Introducing Electron and NW.js
within the context of the web page and nothing else. There's a clear separation of
application state and responsibility.

 In an NW.js app, the app window is essentially like an embedded web browser,
but with the distinct difference that the code inside the web page has access to the
computer’s resources and can execute server-side code. There's no separation of
app state and responsibility. This means you can write code that's calling out to
DOM elements in the web page and executing server-side code accessing the com-
puter’s filesystem in the same place. Not only that, you’ll be able to use npm mod-
ules in your code as well.

 Being able to install npm modules and require them in your desktop app means
you have access to over 400,000 libraries (as of January 2017) for use in your code.
You’ll have plenty of options when it comes to using third-party libraries in your app.
In fact, both NW.js and Electron have spawned a number of dedicated libraries for use
with desktop apps, all of which you’ll be able to find at http://npmjs.com, and at
https://github.com/nw-cn/awesome-nwjs and https://github.com/sindresorhus/awe-
some-electron.

BUILDING YOUR APP FOR MULTIPLE OSS FROM A SINGLE CODEBASE

One of the most useful features of NW.js is that from a single codebase for your
desktop app, you can build native executable apps for Windows, Mac OS, and
Linux. This is a time saver when you’re developing an app that has to work across
multiple platforms. It also means you can have greater control over how the app
looks and feels, more so than you can when trying to support a website for multiple
web browsers.

 The native executable is able to run on its own and doesn’t require the user to
have any other software installed on their computer. This makes it easy to distribute
the app to users, including on stores like Apple’s App store and the Steam store,
where some NW.js apps and games are sold.

 The process of building an app for a specific OS involves a few command-line argu-
ments, but there are some tools that simplify the process for you, such as the nw-builder
tool, illustrated in figure 1.7.

 Taking an example desktop app, I’m able to use nw-builder’s nwbuild command in
step 1 to automate the steps of turning our desktop app’s code into executable bina-
ries for both Mac OS and Windows, as shown in step 3. This can save a lot of time (if
you have to make both 32-bit and 64-bit builds of the app) and prevent mistakes when
building the app.

 In the next section, we’ll turn our attention to Electron: how an example app
works and looks with it, and what features it has.

http://npmjs.com
https://github.com/nw-cn/awesome-nwjs
https://github.com/sindresorhus/awesome-electron
https://github.com/sindresorhus/awesome-electron

17Introducing Electron
1.4 Introducing Electron
Electron is a desktop app framework from GitHub. It was built for GitHub’s text edi-
tor Atom and was originally known as Atom Shell. It allows you to build cross-platform
desktop apps using HTML, CSS, and JavaScript. Since its release back in November
2013, it has become popular and is used by a number of startups and large businesses
for their apps. Electron is used not only in Atom but also in the desktop clients of a
chat app called Slack (www.slack.com), a startup that was valued at $3.8 billion as of
April 2016.

1.4.1 How does Electron work and differ from NW.js?

One of the things that Electron did differently from NW.js was the way it got Chro-
mium and Node.js to work together. In NW.js, Chromium is patched so that Node.js
and Chromium are sharing the same JavaScript context (or state, as you may call it in
programming). In Electron, there’s no patching of Chromium involved; instead, it’s
combined with Node.js through Chromium’s content API and the use of Node.js’s
node_bindings.

app
Terminal

$> npm install -g nw-
builder

$> nwbuild app/app.css

Take the existing app as you have it.

app.js

index.html

package.json

build

my-nwjs-app

osx32

Install nw-builder, and run the nwbuild command

on your app’s folder to build the app for multiple

operating systems and bit modes.

A build folder is created with the app built for

Mac OS X and Windows. You can also build

for Linux with some extra arguments to the

nwbuild command

my-nwjs-app

osx64

my-nwjs-app

win32

my-nwjs-app.exe

win64

my-nwjs-app.exe

Figure 1.7 The nw-builder tool can build native executables of an NW.js app for both 32-bit and
64-bit versions of Mac OS and Windows.

http://www.slack.com

18 CHAPTER 1 Introducing Electron and NW.js
 The implication of this approach is that Electron works differently from NW.js in
terms of how it handles JavaScript contexts. Where NW.js maintains a single shared
JavaScript context, Electron has separate JavaScript contexts—one for the back-end
process that kicks off running the app window (referred to as the main process), and
one for each app window (referred to as the renderer process). This is an important dif-
ference between the frameworks, and one that will be elaborated on further in the
book through various examples.

 Another important difference between NW.js and Electron is that where NW.js
usually uses an HTML file as the entry point for loading a desktop app, Electron uses
a JavaScript file instead. Electron delegates the responsibility of loading an app win-
dow to code that’s executed inside the JavaScript file. You’ll see this in greater detail as
we explore the Hello World app in Electron in the next section.

1.4.2 A Hello World app in Electron

Like the Hello World app in NW.js, I’ve also created the app that we’ll run through
now. If you want to boot that up and play with it, you can grab a copy of the source at
http://mng.bz/u4C0.

 Follow the instructions in the README.md file to get the app up and running.
Alternatively, if you want to bake the cake rather than merely eat it at the end, we’ll
walk through that now.

 Assuming that you’ve already installed Node.js on your computer (if not, see
“Installing Node.js” in the appendix of this book), let’s start by downloading a copy of
Electron via npm. In your terminal or at the Command Prompt, run the following
command:

npm install –g electron

This will install Electron as a global npm module, meaning that it will be available to
other Node.js applications where you want to use it. Once you have installed the Elec-
tron module, we can take a look at what an example Hello World app’s files consist of.
Here’s the bare minimum number of files required to run an Electron app:

 index.html
 main.js
 package.json

You can create a folder named hello-world-electron to store the app’s files. Create a
folder with the suggested name, and then you’ll add the required files inside it.

 We’ll start with the package.json. Here’s what an example package.json looks like:

{
 "name" : "hello-world",
 "version" : "1.0.0",
 "main" : "main.js"
}

http://mng.bz/u4C0

19Introducing Electron

Cr
refere

Elec
Bro
W

Add
lis

that
th

wh
win

are c
(exce

Ma

 to
g
You might notice that package.json looks almost identical to the package.json file used
to load the Hello World app in NW.js. The only difference is that where an NW.js app’s
package.json field expects the main property to specify an HTML file as the app’s
entry point, Electron expects the main property to specify a JavaScript file.

 In Electron, the JavaScript file is responsible for loading an app’s windows, tray
menus, and other items, as well as handling any system-level events that occur in the
OS. For the Hello World example, it looks like the following.

'use strict';

const electron = require('electron');
const app = electron.app;
const BrowserWindow = electron.BrowserWindow;

let mainWindow = null;

app.on('window-all-closed', () => {
 if (process.platform !== 'darwin') app.quit();
});

app.on('ready', () => {
 mainWindow = new BrowserWindow();
 mainWindow.loadURL(`file://${__dirname}/index.html`);
 mainWindow.on('closed', () => { mainWindow = null; });
});

What you can see in listing 1.2 is that where NW.js points to an HTML file in the pack-
age.json file, Electron requires a bit of code configuration to achieve the same result.

Listing 1.2 main.js file for the Hello World Electron app

Loads Electron
module from
npm

Creates reference to
Electron’s application
object

eates
nce to
tron’s
wser-
indow
class

mainWindow variable stores
reference to app’s windowevent

tener
 quits
e app
en all
dows
losed
pt in
c OS)

Creates new app window and assigns it
main window variable to prevent it bein
closed by Node.js garbage collection

Loads index.html
file in app window

When app window is closed, unassigns app
window from main window variable

The JavaScript code looks a bit funny
If you’re fairly new to Node.js and haven’t touched JavaScript in a while, you may
notice some new language features like the use of const and let for variable decla-
ration, as well as => as a function shorthand. This is the next version of JavaScript,
also known as ES6. It’s a fairly new version of JavaScript that's now integrated into
Node.js and is actively used in Electron. To learn more about ES6, you can visit
https://babeljs.io/learn-es2015/, http://es6-features.org, and https://es6.io/.

If you prefer the traditional style of writing JavaScript, you can continue to use it for
your Electron applications. The internet is full of opinions, but that doesn’t mean
that you have to adopt them. My suggestion is to find what works for you and go
from there.

https://babeljs.io/learn-es2015/
http://es6-features.org
https://es6.io/

20 CHAPTER 1 Introducing Electron and NW.js
Having created the main.js file that’s the entry point to your app, you’ll now create the
index.html file that the main.js file loads in an app window. Create a file named
index.html, and insert the code shown next.

<html>
 <head>
 <title>Hello World</title>
 <style>
 body {
 background-image: linear-gradient(45deg, #EAD790 0%, #EF8C53 100%);
 text-align: center;
 }

 button {
 background: rgba(0,0,0,0.40);
 box-shadow: 0px 0px 4px 0px rgba(0,0,0,0.50);
 border-radius: 8px;
 color: white;
 padding: 1em 2em;
 border: none;
 font-family: 'Roboto', sans-serif;
 font-weight: 300;
 font-size: 14pt;
 position: relative;
 top: 40%;
 cursor: pointer;
 outline: none;
 }

 button:hover {
 background: rgba(0,0,0,0.30);
 }
 </style>
 <link href='https://fonts.googleapis.com/css?family=Roboto:300'

rel='stylesheet' type='text/css' />
 <script>
 function sayHello () {
 alert('Hello World');
 }
 </script>
 </head>
 <body>
 <button onclick="sayHello()">Say Hello</button>
 </body>
</html>

This is the HTML file that will be loaded into the browser window by the main.js file.
It’s the same code that’s used in the NW.js example app’s index.html file (so we can
compare the examples across both frameworks). With the files saved in the applica-
tion folder, you can now run the app from the command line.

Listing 1.3 index.html for the Hello World Electron app

21Introducing Electron
 To execute the app from the command line, cd into the hello-world-electron direc-
tory, and run the following command:

electron .

Once you’ve run the command, click the Hello World button, and you can expect to
see something like figure 1.8.

The app for the most part looks identical to the one running on NW.js, with a few
slight differences. In figure 1.9, you can see how it looks running on OpenSUSE
Linux 13.2.

 The Hello World Electron example app looks a bit different from the version that
runs on a Mac. This is because Mac OS handles displaying menus differently than
Windows and Linux apps do. Where menus are attached to app windows on both
Microsoft Windows and Linux apps, Mac OS displays a single menu in the OS’s tool-
bar that applies to all app windows, as shown for the Hello World Electron app’s Mac
OS example in figure 1.10.

Figure 1.8 The Hello World example app running with Electron on Mac OS. It looks almost
identical to the NW.js equivalent, except the window dimensions are different.

22 CHAPTER 1 Introducing Electron and NW.js
If you open the app in Windows 10, you can expect to see a result similar to the one
displayed for the Linux app example, as shown in figure 1.11.

 The Hello World app with Electron and Windows 10 again looks quite similar to
the app equivalents on Linux and Mac OS, minus where the application menu is dis-
played. The ability to write an app and have it work across three different OSs is a nice
feature to have, though, and it’s one of the reasons why developers have been flocking
to Electron for their desktop apps.

 Besides what’s been shown so far, Electron has some other features to offer that
make it a compelling choice, described in the next section.

Figure 1.9 The Hello World example app running with Electron on OpenSUSE Linux. Notice
how the app displays a menu bar with some menu items by default.

Figure 1.10 Application menu on Mac OS. The
application menu for the Hello World example
app uses the same default menu items.

23Introducing Electron
1.4.3 What features does Electron have?

Although Electron is relatively young, it has managed to accumulate a number of use-
ful APIs and features for building desktop apps:

 Creating multiple application windows with ease, each with its own JavaScript
context

 Integrating with desktop OS features through the shell and screen APIs
 Tracking the power status of the computer
 Blocking the OS from going into power-saving mode (useful for presentation

apps)
 Creating tray apps
 Creating menus and menu items
 Adding global keyboard shortcuts to the app
 Updating the app’s code automatically through app updates
 Reporting crashes

Figure 1.11 The Hello World app running on Electron and Windows 10. Like the Linux app example,
the Windows example displays a menu in the app window.

24 CHAPTER 1 Introducing Electron and NW.js
 Customizing Dock menu items
 Operating system notifications
 Creating setup installers for your app

As you can see, a lot of features are on offer, and that isn’t an exhaustive list of all of
the framework’s features. In particular, the crash-reporting feature is unique to Elec-
tron—there’s currently no equivalent to it in NW.js. Electron has also recently come
up with dedicated tools for app testing and debugging, called Spectron and Devtron,
covered in later chapters.

A COOL WAY TO EXPLORE ELECTRON’S FEATURE SET Demonstrating what Elec-
tron does and how it does it, the team behind Electron created a desktop app
for demoing Electron’s APIs. It’s a neat way to browse through Electron’s
APIs in a practical fashion, and can be downloaded from http://electron
.atom.io/#get-started.

The next section looks at what apps can be made with NW.js and Electron.

1.5 What apps can you make with NW.js and Election?
Although Electron and NW.js are relatively young in terms of software, their use in
professional cases is rich and varied. On the NW.js GitHub repository, there’s a long
list of example apps that have been built with NW.js, and for Electron there’s the Awe-
some Electron GitHub repository providing a long list of apps and resources at
https://github.com/sindresorhus/awesome-electron. In this section, I discuss a cou-
ple of well-known examples that have been commercially successful, as well as ones
that demonstrate the potential for what Electron and NW.js can do. We’ll start with
one of the biggest success cases for Electron: Slack.

1.5.1 Slack

Slack (slack.com) is a workplace communication and collaboration tool for busi-
nesses. Slack uses Electron to provide the desktop app and is advertising jobs for desk-
top app engineers who have experience with using Electron. The desktop user
interface (UI) is practically identical to the web app interface—a shining example of
what Electron can achieve. The app has expanded its feature set to allow for audio
and video calls. Figure 1.12 shows Slack in use (note, I blanked out some of the mes-
sage content and channels for privacy reasons).

 Slack recently expanded its offering with support for an app directory for Slack,
allowing users to install third-party apps that run inside Slack. The company seems to
have a good future ahead.

http://slack.com
http://electron.atom.io/#get-started
http://electron.atom.io/#get-started
https://github.com/sindresorhus/awesome-electron

25What apps can you make with NW.js and Election?
1.5.2 Light Table

Light Table (lighttable.com) is a code editor that takes a different approach to the
IDE. It was developed by Chris Granger and raised over $300,000 through a campaign
on Kickstarter. It was also the first third-party usage of NW.js and was credited with
helping promote the framework in the early days of the project.

 The code editor initially supported Clojure but went on to support JavaScript and
Python. The philosophy behind Light Table was to rethink how to approach the task
of editing code. Rather than having to think of code as lines within files, the focus
should be on providing a kind of workspace in which the code is executed live, and
documentation is displayed in place rather than searched for in another window, as
shown in figure 1.13. It was meant to be a kind of workspace for the developer to be
able to write code and see the results immediately, rather than in isolation. Originally
made with NW.js, it was recently ported to Electron.

Figure 1.12 Slack running on Mac OS

http://lighttable.com

26 CHAPTER 1 Introducing Electron and NW.js
1.5.3 Game Dev Tycoon

Game Dev Tycoon is a simulation game in the spirit of old simulations like Transport
Tycoon and SimCity, but in this case themed around running a game development
studio (an irony, given that it was created by a game development company). Behind
it is a small company called Greenheart Games, founded in July 2012 by Patrick and
Daniel Klug.

 The game was unique (and even more ironic) in its attempts to fight off piracy.
Patrick anticipated that the game would eventually be pirated and countered this by
releasing a cracked copy of the game onto Torrent sites, but with an interesting twist:
people playing the game would find themselves losing in the game. As they played the
game, they would find that suddenly their games would stop making money, because
they were being pirated. Eventually they would go bankrupt as a result and lose. This
antipiracy tactic attracted a lot of amusement and attention.

Figure 1.13 Light Table, a live interactive code editor. A 3D visualization written in JavaScript is being edited in
the left-hand panel, and the results are being rendered live in the right-hand panel.

27What apps can you make with NW.js and Election?
 Since its founding, the company has grown to five employees, and the game is
being sold on the Steam game store. Shown in figure 1.14, it’s one of the best show-
cases for using NW.js to build a successful commercial project.

1.5.4 Gitter

Gitter is a service that provides chat rooms for open source projects on GitHub,
including the official chat room for NW.js. It allows users to sign in with a GitHub
account and to then access chat rooms based on projects and organizations. It’s seen
as a popular alternative to Slack.

 As a chat service, Gitter is available both via its website (gitter.im), as well as via
desktop apps for Windows and Mac OS, which are built using NW.js. The app’s look
and feel is an exact replica of what you see in the web app and well demonstrates the
principle of code reuse. During the beta period, Gitter attracted almost 25,000 devel-
opers to the service, delivering over 1.8 million messages, and is currently hosting over
7,000 chat rooms. It now offers paid plans for chat rooms, and the company is working
on getting a version of the app to run on Linux as well.

 The main chat room for NW.js can be found on Gitter, a nice example of a product
being used to support itself (figure 1.15).

Figure 1.14 Game Dev Tycoon, a game studio simulator

http://gitter.im

28 CHAPTER 1 Introducing Electron and NW.js
1.5.5 Macaw

Macaw (macaw.co) is an innovative WYSIWYG web design tool. It allows web designers
to create a visual design for their websites, as they would normally do in an image edi-
tor, and generates the underlying HTML and CSS for that design. It helps eliminate
the step of converting a visual design into a real website by automatically creating the
website code. As a WYSIWYG web design tool, Macaw differs from predecessors like
Microsoft FrontPage and Adobe Dreamweaver by outputting semantic HTML and
CSS from the visual design.

 Founded by Tom Giannattasio and Adam Christ, the product (figure 1.16) was
funded through a Kickstarter campaign that raised over $275,000 from more than
2,700 backers. Since March 2014, Macaw has gone on to become a product sold directly
through Macaw’s website.

 Since I began writing the book, I’m pleased to say that Macaw was acquired by
another web design application company called InVision—yet another example of a
real-world desktop app becoming a success story.

Figure 1.15 Gitter, a chat room client that's integrated into GitHub

http://macaw.co

29What apps can you make with NW.js and Election?
1.5.6 Hyper

Hyper (hyper.is) is a minimal-looking terminal app authored by Guillermo Rauch, a
well-known figure in the Node.js community for his work on the Node.js websocket
library, Socket.io, and for the real-time hosting service Now. As a terminal app written
in HTML, CSS, and JavaScript, Hyper is an extensible app that can be configured to
look and behave in lots of different ways. Developers have created plugins (such as
hyperpower) that animate the text as it’s typed into the app and enable users to open
URLs from within the terminal window. Figure 1.17 shows Hyper in use.

 It’s one of the more unique types of desktop apps reimagined with Electron and
shows Electron’s minimal style title bar in use.

Figure 1.16 Macaw, a WYSIWYG web design tool that lets designers create websites using visual design
features

http://hyper.is

30 CHAPTER 1 Introducing Electron and NW.js
1.6 Summary
This chapter introduced you to NW.js and Electron and explained how they help web
developers build desktop apps. We explored reasons why you might want to prefer
Node.js desktop apps over building a web app, and how those frameworks help web
developers by letting them use the same tools and technologies they’re already famil-
iar with.

 We then looked at the way that a simple Hello World app works and looks with dif-
ferent frameworks, across different OSs. This gave you a chance to understand how
easy it is to take a web page and turn it into a desktop app.

 We examined the features that make NW.js and Electron great frameworks for
desktop app development, such as their use of the popular Node.js framework and
the npm ecosystem, and the way they provide native executables for the different OSs
from a single codebase. Finally, we explored a couple of real-life examples of NW.js
and Electron in the wild and saw how apps have been successful in their own domains.
This shows you what’s possible with Node.js desktop apps, and hopefully provides
inspiration for any app ideas that you have.

 In the next chapter, we’ll get our hands dirty and start building a file explorer
desktop app with both NW.js and Electron. This will help you understand how you go
about building desktop apps with those frameworks as well as how they compare in
their approaches to desktop app development.

Figure 1.17 Hyper
running on Mac OS

Laying the foundation
for your first desktop

application
As developers, we often forget how lucky we are to work in an industry where the
tools are readily available and free or relatively inexpensive to get ahold of. In this
chapter, we’ll get to grips with building desktop applications through creating a file
explorer application. We’ll look at how the app is built with both NW.js and Elec-
tron so that we can compare and contrast the ways in which they approach desktop
applications.

 Grab a cup of tea or coffee, a pen and paper, and settle in for some programming.

2.1 What we’re going to build
Whether you use a Windows PC, a Mac, or Linux, there are a few things common to
all of them—they store files organized in folders, and they all have their own take
on how to organize files in folders, as well as how you find and display those files to

This chapter covers
 Building a file explorer in both NW.js and Electron

 Setting up your application

 Structuring your application’s files

 Understanding how the user interface of the
application works

 Accessing the filesystem in Node.js
31

32 CHAPTER 2 Laying the foundation for your first desktop application
the user. This isn’t a problem for people who use only one OS, but those who have to
learn to use a new OS (such as when going to work at a new organization) can struggle
to get their head around how to do simple tasks like rename a folder, or find out
where the file that they saved to their computer is located.

 It feels fitting to approach the idea of making a file explorer that works the same
across all OSs, so that’s what we’ll build: a file explorer.

2.1.1 Introducing Lorikeet, the file explorer

There’s a common joke in developer circles that says naming things is the second
hard problem in computer science (caching being the first hard problem). Some-
times it’s nice to take inspiration from nature, so we’ll name the file explorer Lori-
keet, after the colorful native Australian bird.

 Lorikeet is a file explorer with the following goals:

 Allow users to browse folders and find files
 Allow users to open the file(s) with their default app

These are relatively simple goals, but implementing features to support them will pro-
vide enough scope to help you become familiar with building a desktop application.
Building Lorikeet will also help demonstrate the different approaches that NW.js and
Electron offer for developing desktop applications.

 Building a desktop application is a lengthy process consisting of many steps: con-
structing user journeys, creating wireframes, writing tests, fleshing out the wireframes,
writing code, and making sure that the app works as intended. For the sake of learning
about NW.js and Electron, we’ll work off of the basis that we have some user journeys
and wireframes for the file explorer and focus on building a functional version of it.

 You’ll flesh out the features in the wireframes one by one, which helps to provide a
natural flow to building the app, and gives you a chance to see where the code lives
and what it does. Figure 2.1 shows a wireframe.

Lorikeet

Search/Users/paulbjensen

Desktop Documents Downloads Movies Music Pictures

Public Work Diary.doc elephants.jpg

Figure 2.1
Wireframe of the
file explorer app
you'll build

33Creating the app
With this wireframe, you take the app and break it down into separate features, help-
ing you to implement the app one feature at a time. The first feature to work on is
where the user begins to use the app—in this case, the start screen. But before you can
do that, you need to create an app to store the code in.

2.2 Creating the app
As you saw in chapter 1, it’s relatively easy to get started with creating desktop applica-
tions with either NW.js or Electron. Regardless of which framework you begin to build
the app with, you’ll need to have Node.js installed (a quick and simple process you
can do in a minute). To see how to install Node.js on your computer, see “Installing
Node.js” in the appendix.

 Once you have Node.js installed on your computer, the next step is to install both
of the desktop application frameworks on your computer (if you haven’t already).

2.2.1 Installing NW.js and Electron

If you’ve already installed NW.js and Electron as explained in chapter 1, please skip to
section 2.2.2. If not, you can run the following commands in the Terminal. For NW.js,
run the following command to install NW.js as a global module:

npm install -g nw

For Electron, run the following command to install Electron as a global module:

npm install -g electron

Once they’re installed, you can proceed to build the NW.js version of the Lorikeet
application.

2.2.2 Creating the files and folders for the NW.js-powered app

The next step is to create a folder that will store the code for your app. Choose a loca-
tion on your computer where you like to store your code work, and run the following
command to create a folder named lorikeet-nwjs:

mkdir lorikeet-nwjs

Once the folder (or directory, as some developers call it) is created, the next step is to
create a package.json file for the app. This is Node.js’s equivalent of a manifest file,
where you store configuration information for the app. First, create the file inside the
application folder:

cd lorikeet-nwjs
touch package.json

34 CHAPTER 2 Laying the foundation for your first desktop application
Now that you have a package.json file that you can edit, you can use whatever text edi-
tor you like to open the package.json file and insert the following code into it:

{
 "name": "lorikeet",
 "version": "1.0.0",
 "main": "index.html"
}

The package.json file follows the same conventions used for creating modules that are
then used in Node.js applications via npm. The name field has the name of the applica-
tion, and must not contain spaces. The version field contains the version of the soft-
ware, which we call 1.0.0 in accordance with a versioning format known as semantic
versioning (also known as SemVer). The main field is used to tell NW.js what file to load
when it’s booted—in this case, the index.html file. These are the minimum require-
ments that NW.js has for the package.json file before it can load an application. You
haven’t yet created the web page that’s loaded by NW.js, so you should probably create
that next.

 The index.html file is a pretty standard example for the moment. To create it,
run the following command in your command-line tool (or create the file with
Notepad++/Atom in Windows):

touch index.html

Once that’s done, using your favorite text editor, insert the code in the following list-
ing into the index.html file.

<html>
 <head>
 <title>Lorikeet</title>
 </head>
 <body>
 <h1>Welcome to Lorikeet</h1>
 </body>
</html>

Now that the index.html file is created, you’re in a position to make NW.js run the
app. To do that, simply run the following command in the Terminal, or your Com-
mand Prompt/PowerShell in Windows:

nw

Listing 2.1 Adding the index.html file’s contents for the NW.js app

Running on Windows?
If so, there isn’t a touch command. What you can do instead is simply create the file
using a code editor such as Notepad++ or even GitHub’s Atom.

35Creating the app
This will load the NW.js app. Because no further arguments were passed to the com-
mand, NW.js will inspect the files located in the current working directory where the
command was run (in this case, the lorikeet-nwjs folder) and search for a package.json
file. When it finds the package.json file, it will then load that file. The package.json
file’s main field will indicate to NW.js to load the index.html file in the app, which it
then does, and you should see the screen shown in figure 2.2.

The title of the app window is loaded from the value inside the <title> element in
the index.html file. You can edit the value of that field, save the change to the file, and
run the application again from the command line to see the changes.

With one folder and two files in that folder, you have the main skeleton code that will
get a bare-bones version of the application up and running. At this point, you can adjust
the contents of the index.html file to change the UI that’s displayed by the application,
but before you do any more on the NW.js version of the application, let’s take a look at
how you can achieve the same bare-bones application version with Electron.

2.2.3 Creating the files and folders for the Electron-powered app

The Electron version of the application starts off very much in the same fashion.
You’ll begin by creating a folder named lorikeet-electron. You can do this by running
this command in the Terminal/Command Prompt:

mkdir lorikeet-electron

This will create a folder named lorikeet-electron. This is the main application folder
for the application, and inside it will be the application’s files. Now you’ll create the

Figure 2.2 NW.js running a bare-minimum app. The app displays the
contents of the index.html file, which means it's working as expected so
far. Later in the chapter, you'll replace this simple HTML with the UI that
makes up the app.

Can I load the index.html file in a web browser?
You can try, but any code that’s calling out to NW.js’s APIs or to Node.js code will
result in a JavaScript error, so it’s best not to. Even though NW.js apps appear to be
running inside an embedded web browser, the app is more sophisticated because it
has access to both Node.js/NW.js APIs and the DOM in the same JavaScript context.

36 CHAPTER 2 Laying the foundation for your first desktop application

next file needed by the application, the package.json file. In your terminal or via your
text editor, create a file named package.json inside the lorikeet-electron folder:

cd lorikeet-electron
touch package.json

Once you have an empty package.json file, you’ll move on to populating the file with
the configuration needed by Electron. Inside the package.json file, add the following
JSON configuration:

{
 "name": "lorikeet",
 "version": "1.0.0",
 "main": "main.js"
}

The package.json file looks almost identical to the package.json file used by the NW.js
version of the application, with one exception: the main property is different. In
NW.js, the file that’s loaded is an HTML file. In Electron, the file that’s loaded is a
JavaScript file. The file you load in the case of the Electron version of the application
is called main.js.

 The main.js file is responsible for loading the Electron application and any
browser windows that it will display as part of that application. In your terminal or
your text editor, create the file main.js and insert the following content.

'use strict';

const electron = require('electron');
const app = electron.app;
const BrowserWindow = electron.BrowserWindow;

let mainWindow = null;

app.on('window-all-closed',() => {
 if (process.platform !== 'darwin') app.quit();
});

app.on('ready', () => {
 mainWindow = new BrowserWindow();
 mainWindow.loadURL(`file://${app.getAppPath()}/index.html`);
 mainWindow.on('closed', () => { mainWindow = null; });
});

Listing 2.2 The main.js file for the Electron app

Electron is
loaded via npm

mainWindow variable keeps
application’s main window in
JavaScript context, so
garbage collection, which
would close application
window, doesn’t remove it

Mimics UX of
Windows and Linux
applications —
closing only
application window
for app quits app;
on Mac OS, closing
application window
doesn’t close app

When app is ready to run, tells main window to load
index.html, and when that window is closed, sets
mainWindow variable to null

37Creating the app
The main.js file will result in loading the index.html file. Here, you create the index.html
file and put the following contents into it:

<html>
 <head>
 <title>Lorikeet</title>
 </head>
 <body>
 <h1>Welcome to Lorikeet</h1>
 </body>
</html>

Once you’ve saved the index.html file, you’re in a position to run the Electron appli-
cation from the command line. Go to the Terminal or Command Prompt and type the
following command inside the lorikeet-electron folder to run the application:

cd lorikeet-electron
electron .

If you run the application now, you should see something like figure 2.3.

The Electron app looks almost identical to the NW.js app. The index.html file is
exactly the same as the one used for the NW.js variant of the Lorikeet app, and to load
the application from the command line is practically the same.

 Having built the Lorikeet app’s bare-bones application structure in both NW.js and
Electron, you can see that they share some similar coding conventions—after all, as
mentioned, Cheng Zhao worked on both NW.js and Electron. But they differ in terms
of how they go about loading the app.

 So far, I’ve shown you how to build and set up the Lorikeet app’s skeleton of files
and folders with both frameworks. The next stage is to start working on the first fea-
ture of the application that the user sees, as shown back in figure 2.1.

 We’ll continue to compare and contrast the approaches taken with both frame-
works but share code where it’s possible.

Figure 2.3 The Lorikeet app running on Electron. This is what Electron apps look like by default—pretty
much like the NW.js variant.

38 CHAPTER 2 Laying the foundation for your first desktop application
2.3 Implementing the start screen
The start screen has a number of components to it. We’ll start with the display of the
personal folder, as shown in figure 2.4.

This is the first feature you’ll flesh out in the UI and then implement in both versions
of the Lorikeet app.

2.3.1 Displaying the user’s personal folder in the toolbar

Three parts comprise this feature:

 The HTML that makes up the toolbar and the personal folder
 The CSS that applies the layout and styling of the toolbar and the personal folder
 The JavaScript that will discover what the user’s personal folder is and display it

in the UI

The good news is that the HTML, CSS, and even the JavaScript needed for this feature
are exactly the same in both the NW.js and Electron versions of the Lorikeet app. In
this case, you’ll be able to show it once but use the same code in both applications.
Let’s start with the HTML.

ADDING THE HTML FOR THE TOOLBAR AND PERSONAL FOLDER

The index.html file is the main screen for both the NW.js and Electron versions of our
applications. For both versions of the application, open the index.html file in a text
editor and change it to what you see in the next listing.

<html>
 <head>
 <title>Lorikeet</title>
 </head>

Listing 2.3 Adding the toolbar and personal folder HTML to the index.html file

LorLorikeikeetet

SeaSearchrch/Us/Usersers/pa/paulbulbjenjensensen

DesDesktoktopp DocDocumeumentsnts DowDownlonloadsads MovMoviesies MusMusicic PicPicturtureses

Public Work Diary.doc elephants.jpg

Figure 2.4 The Lorikeet wireframe. Notice the circled item in the wireframe.
This is the item you want to build first.

39Implementing the start screen
 <body>
 <div id="toolbar">
 <div id="current-folder"></div>
 </div>
 </body>
</html>

Once you’ve done this for both applications, we can move on to creating the CSS
stylesheets that will manage the layout and styling of the toolbar and personal folder.

ADDING THE CSS FOR THE TOOLBAR AND PERSONAL FOLDER

Styling desktop applications is no different than styling web pages. CSS can be embed-
ded inside the HTML for a page, but it’s better to put it into a separate file so that you
can see all the CSS styling in one place, as well as keep the index.html file readable.

 Start by creating a file in the application called app.css at the same folder level as
the index.html file. Next, add the CSS in the following listing to the app.css file.

body {
 padding: 0;
 margin: 0;
 font-family: 'Helvetica','Arial','sans';
}

#toolbar {
 position: absolute;
 background: red;
 width: 100%;
 padding: 1em;
}

#current-folder {
 float: left;
 color: white;
 background: rgba(0,0,0,0.2);
 padding: 0.5em 1em;
 min-width: 10em;
 border-radius: 0.2em;
}

Now, you need to make sure that the app.css file will be loaded by the index.html file.
In the index.html file, add a line to the index.html file so that it reads like the follow-
ing listing.

<html>
 <head>
 <title>Lorikeet</title>
 <link rel="stylesheet" href="app.css" />
 </head>

Listing 2.4 Adding the toolbar and personal folder CSS to the app.css file

Listing 2.5 Adding the app.css link tag to the index.html file

Replaces welcome message
with HTML for toolbar and
personal folder

Links tag that
loads app.css file in
index.html file

40 CHAPTER 2 Laying the foundation for your first desktop application
 <body>
 <div id="toolbar">
 <div id="current-folder"></div>
 </div>
 </body>
</html>

After you’ve saved the index.html file with this change, you can either reload the
NW.js and Electron applications (if you have them open and running) or load them
again from the Terminal/Command Prompt with this:

cd lorikeet-electron && electron .
cd lorikeet-nwjs && nw

Once you have reloaded the applications with the new code, you’ll see that the UI is
starting to take shape, as shown in figures 2.5 and 2.6.

The toolbar and the personal folder are visible and styled, but what remains is to be
able to discover what the path for the user’s personal folder is and display that in the
UI. This is the next step we’ll take.

DISCOVERING THE USER’S PERSONAL FOLDER WITH NODE.JS
To display the path of the user’s personal folder, you need a way to discover it, one
that works across all OSs. On Mac OS, the user’s personal folder tends to be located in
the /Users/<username> folder with their username (mine is /Users/pauljensen). On
Linux, the user’s personal folder tends to be in the /home/<username> folder, and
on Windows 10 the it’s located in the C: drive under the Users/<username> folder. If
only OSs operated in a common, standard fashion!

 Thankfully, this is accommodated in Node.js’s ecosystem on npm packages. An
npm module called osenv by Isaac Schlueter (former Node.js lead maintainer and the
founder of npm) has a function that discovers and returns the user’s personal folder

Figure 2.5 The Lorikeet NW.js app with the toolbar and personal folder.
The personal folder listing is blank, but we’ll get around to making it
appear soon.

Figure 2.6 The Lorikeet Electron app with the toolbar and personal folder

41Implementing the start screen
(or home folder, as it’s also known). To use this, you need to install the npm module
in the application. Run the following command in the Terminal or Command Prompt
to install the library (make sure to do this for both versions of the Lorikeet app):

npm install osenv --save

The –-save flag at the end of the command tells the npm command to add the module
as a dependency in the package.json manifest file. If you open the package.json mani-
fest file (say, in this case, for the NW.js variant of the application), you’ll see the
change, as shown next.

{
 "name": "lorikeet",
 "version": "1.0.0",
 "main": "index.html",
 "dependencies": {
 "osenv": "^0.1.3"
 }
}

You’ll also notice that there’s a new folder that appears in the application folders for
both applications, a folder called node_modules. This folder contains any locally
installed npm modules that are installed for the application. If you browse the
node_modules folder, you’ll see a folder named osenv. This is where the osenv mod-
ule’s code has been installed.

 With the osenv module installed, you now want to load the user’s personal folder
and display it in the personal folder UI element in the index.html file. This demon-
strates one of the unique aspects of NW.js and Electron as Node.js desktop application
frameworks: you can execute Node.js code directly in the index.html file. Don’t believe
me? Try this. Modify the index.html file so that the code looks like the next listing.

<html>
 <head>
 <title>Lorikeet</title>
 <link rel="stylesheet" href="app.css" />
 </head>
 <body>
 <div id="toolbar">
 <div id="current-folder">
 <script>
 document.write(require('osenv').home());
 </script>
 </div>
 </div>
 </body>
</html>

Listing 2.6 The modified package.json file

Listing 2.7 Displaying the user’s personal folder to the index.html file

The new dependencies property,
with osenv listed as module
dependency for app

Loads osenv module via
Node.js’s require function,
then calls the home function
on the library, and the
resulting value is written
into the DOM by
document.write

42 CHAPTER 2 Laying the foundation for your first desktop application
Make sure the index.html file is changed to this in both the NW.js and Electron ver-
sions of the Lorikeet app.

 After you save the files, reload the applications using the technique shown earlier:

cd lorikeet-electron && electron .
cd lorikeet-nwjs && nw

You can expect to see your personal folder listed in the personal folder UI element of
the app, as shown in figures 2.7 and 2.8.

Figure 2.7 is impressive. You can call Node.js directly in a script tag in the index.html
file. How about Electron? Does it do the same? Check out figure 2.8.

It does. Not only have you been able to call Node.js code inside a script tag in the
index.html file, but you’ve been able to use a Node.js module from npm in the front-
end part of your code. Plus, you’ve been able to use identical code across both NW.js
and Electron so far, which goes to show how compatible they are, as well as why some
projects have been so successful in being ported from NW.js to Electron (such as Light
Table, for example).

 Now that you’ve implemented the display of the user’s personal folder in the tool-
bar, we should move on to implementing the next feature in the UI: the display of the
user’s files and folders in their personal folder.

2.3.2 Showing the user’s files and folders in the UI

In the preceding section, we started off by creating the UI elements first and then
populated the user’s personal folder path in the UI element. For this feature, we’ll
work on getting ahold of a list of the user’s files and folders first and then figure out
from there how we display them in the UI of the application. For a quick reminder,
figure 2.9 shows the UI element we’re looking to implement.

Figure 2.7 The user’s personal folder displayed in the Lorikeet
NW.js app

Figure 2.8 The user’s personal folder displayed in the Lorikeet Electron app

43Implementing the start screen
To implement this UI feature, you need to do the following:

1 Get the list of files and folders at the user’s personal folder path
2 For each file/folder listing, find out if it’s a file or a folder
3 Pass that list of files/folders to the UI to be rendered as files with icons

You already have a way to get at the user’s personal folder path. Now what you need is
a way to get ahold of the list of files and folders at that path. Luckily for you, Node.js
implements a standard library for querying the computer’s filesystem, called fs. One
of the functions available to get a list of files and folders is the readdir function, as
documented at http://mng.bz/YR5B.

 For both the NW.js and Electron versions of the Lorikeet app, you’ll create an
app.js file. This file will contain JavaScript code that can call Node.js as well as interact
with the DOM. You’ll use this file to help store the code that will display the list of files
for you.

 First, create an app.js file at the same folder level as the index.html and app.css
files. Next, you’ll move the code that loads the user’s personal folder path into it. Add
the following code to the app.js file:

'use strict';

const osenv = require('osenv');

function getUsersHomeFolder() {
 return osenv.home();
}

After adding the code to the app.js file, the next step is to include the app.js file as a
script tag in the index.html and call the getUsersHomeFolder method in the DOM in

Lorikeet

Search/Users/paulbjensen

Desktop Documents Downloads Movies Music Pictures

Public Work Diary.doc elephants.jpg

Figure 2.9 The UI element we’re looking to implement next in the app

http://mng.bz/YR5B

44 CHAPTER 2 Laying the foundation for your first desktop application

t

place of the current call to the osenv module’s home function. Change the index.html
file so that it looks like the next listing.

<html>
 <head>
 <title>Lorikeet</title>
 <link rel="stylesheet" href="app.css" />
 <script src="app.js"></script>
 </head>
 <body>
 <div id="toolbar">
 <div id="current-folder">
 <script>
 document.write(getUsersHomeFolder());
 </script>
 </div>
 </div>
 </body>
</html>

If you reload the applications, you’ll see that they behave the same, which is exactly
what you want. You can now start to add code to the app.js file for getting the list of
the files. You’ll start by requiring Node.js’s filesystem module, which comes as part
of Node.js’s standard library, and then adding a new function called getFilesIn-
Folder that will retrieve the files in the folder passed to it. After that, you’ll create a
function called main that will pass the user’s personal folder into that function, and
from the resulting list of files log the absolute paths for them out in the console.

 Change the code in the app.js file so that it looks like the following.

 'use strict';

 const fs = require('fs');
 const osenv = require('osenv');

 function getUsersHomeFolder() {
 return osenv.home();
 }

 function getFilesInFolder(folderPath, cb) {
 fs.readdir(folderPath, cb);
 }

 function main() {
 const folderPath = getUsersHomeFolder();
 getFilesInFolder(folderPath, (err, files) => {
 if (err) {
 return alert('Sorry, we could not load your home folder');
 }

Listing 2.8 Adding the app.js file to the index.html file

Listing 2.9 Logging the list of files and folders in the user’s personal folder

Includes app.js as
script tag in index.html

Calls app.js’s getUsersHomeFolder
function in place of direct call to
Osenv module’s home function

Node.js’s fs module
loads in the app

Simple wrapper around
the fs.readdir function
for getting list of files

Function that combines user’s
personal folder path with
getting its list of files

Simple
message
o display

in case
of error
loading
folder’s

files

45Implementing the start screen
 files.forEach((file) => {
 console.log(`${folderPath}/${file}`);
 });
 });
 }

 main();

After saving the app.js file, the next step is to see what happens when you run the
code. Reload the application. In the case of Electron, if you toggle showing the devel-
oper tools for the application, you can expect to see the list of files in the Console tab,
as shown in figure 2.10.

You now know that you can get at the list of files in the user’s personal folder. The next
challenge is to figure out what the name and file/folder type is for each file in the list
and to then display these items in the UI as a list of files and folders with icons.

 Your goal is to be able to take a list of files and pass them through another function
in Node.js’s file system API. This will identify whether they’re files or directories, as
well as what their names and full file paths are. Do the following:

1 Use the fs.stat function method, as documented at http://mng.bz/46U5.
2 Use the async module to handle calling a series of asynchronous functions and

collecting their results.
3 Pass the list of results to another function that will handle their display.

For each file in list, logs full
path for file to console

Figure 2.10 The Lorikeet Electron app showing the list of files being logged to the Console tab. To see the list
of files on your computer, click View > Toggle Developer Tools.

http://mng.bz/46U5

46 CHAPTER 2 Laying the foundation for your first desktop application
In the app.js file for both variants of the Lorikeet app, install the async module via the
Terminal or Command Prompt:

npm install async --save

After installing the async module to both applications, the next step is to change the
app.js code so that it will detect what the files in the user’s personal folder are. Change
the code to that shown next.

 'use strict';

 const async = require('async');
 const fs = require('fs');
 const osenv = require('osenv');
 const path = require('path');

 function getUsersHomeFolder() {
 return osenv.home();
 }

 function getFilesInFolder(folderPath, cb) {
 fs.readdir(folderPath, cb);
 }

 function inspectAndDescribeFile(filePath, cb) {
 let result = {
 file: path.basename(filePath),
 path: filePath, type: ''
 };
 fs.stat(filePath, (err, stat) => {
 if (err) {
 cb(err);
 } else {
 if (stat.isFile()) {
 result.type = 'file';
 }
 if (stat.isDirectory()) {
 result.type = 'directory';
 }
 cb(err, result);
 }
 });
 }

 function inspectAndDescribeFiles(folderPath, files, cb) {
 async.map(files, (file, asyncCb) => {
 let resolvedFilePath = path.resolve(folderPath, file);
 inspectAndDescribeFile(resolvedFilePath, asyncCb);
 }, cb);
 }

 function displayFiles(err, files) {
 if (err) {
 return alert('Sorry, we could not display your files');
 }

Listing 2.10 Changing the app.js code to detect file types

Includes async and
path Node.js
modules into app

Uses path module
to get name for file

fs.stat call supplies an
object you can query
to find out file’s type

Uses async
module to call
asynchronous
function and
collects results
together

Creates displayFiles
function to be end
point where files
will end up being
displayed

47Implementing the start screen
 files.forEach((file) => { console.log(file); });
 }

 function main() {
 let folderPath = getUsersHomeFolder();
 getFilesInFolder(folderPath, (err, files) => {
 if (err) {
 return alert('Sorry, we could not load your home folder');
 }
 inspectAndDescribeFiles(folderPath, files, displayFiles);
 });
 }

 main();

With the app.js file saved to the computer and the applications reloaded, you’ll see
something like figure 2.11 in the developer tools.

 Not only do you now have the application returning the list of files in the user’s
personal folder, but you have it in a data structure that has the filename and file type
included as well. This sets you up perfectly for the next step in implementing the UI
feature: displaying filenames and icons in the application’s UI.

Figure 2.11 The files list in the Console tab of the Developer Tools. Notice how the first expanded object has
the type file, and the second expanded object has the type directory.

48 CHAPTER 2 Laying the foundation for your first desktop application
VISUALLY DISPLAYING THE FILES AND FOLDERS

In the previous code for the app.js file, you created a function called displayFiles.
You want to use this function to handle displaying the files as names and icons in the
UI. Because there are many files to be rendered in the UI, you’ll use an HTML tem-
plate for each file and then render an instance of that template to the UI.

 You’ll start by adding the HTML template to the index.html file, as well as a div
element to contain the files that are being displayed. Change the index.html file so
that it looks like the following listing.

<html>
 <head>
 <title>Lorikeet</title>
 <link rel="stylesheet" href="app.css" />
 <script src="app.js"></script>
 </head>
 <body>
 <template id="item-template">
 <div class="item">

 <div class="filename"></div>
 </div>
 </template>
 <div id="toolbar">
 <div id="current-folder">
 <script>
 document.write(getUsersHomeFolder());
 </script>
 </div>
 </div>
 <div id="main-area"></div>
 </body>
</html>

The purpose of the template element is to hold a copy of the HTML that you’d like
to render for each file, and the div element is where the template instances will be
rendered and stored for each file that you find in the user’s personal folder. You’ll
then add some JavaScript to the app.js file that will handle creating an instance of
the template and adding it to the UI. Adjust the app.js file so that the code reads
like the next listing.

'use strict';

const async = require('async');
const fs = require('fs');
const osenv = require('osenv');
const path = require('path');

Listing 2.11 Adding the file template and main area to the index.html file

Listing 2.12 Rendering the template instances in the UI via the app.js file

Adds template HTML
element to index.html

Adds a div element with
ID "main-area" to be
holder for the files

49Implementing the start screen
function getUsersHomeFolder() {
 return osenv.home();
}

function getFilesInFolder(folderPath, cb) {
 fs.readdir(folderPath, cb);
}

function inspectAndDescribeFile(filePath, cb) {
 let result = {
file: path.basename(filePath),
path: filePath, type: ''
 };
 fs.stat(filePath, (err, stat) => {
 if (err) {
 cb(err);
 } else {
 if (stat.isFile()) {
 result.type = 'file';
 }
 if (stat.isDirectory()) {
 result.type = 'directory';
 }
 cb(err, result);
 }
 });
}

function inspectAndDescribeFiles(folderPath, files, cb) {
 async.map(files, (file, asyncCb) => {
 let resolvedFilePath = path.resolve(folderPath, file);
 inspectAndDescribeFile(resolvedFilePath, asyncCb);
 }, cb);
}

function displayFile(file) {
 const mainArea = document.getElementById('main-area');
 const template = document.querySelector('#item-template');
 let clone = document.importNode(template.content, true);
 clone.querySelector('img').src = `images/${file.type}.svg`;
 clone.querySelector('.filename').innerText = file.file;
 mainArea.appendChild(clone);
}

function displayFiles(err, files) {
 if (err) {
 return alert('Sorry, we could not display your files');
 }
 files.forEach(displayFile);
}

function main() {
 let folderPath = getUsersHomeFolder();
 getFilesInFolder(folderPath, (err, files) => {
 if (err) {
 return alert('Sorry, we could not load your home folder');
 }

Adds new function
called displayFile that
handles rendering
template instance

Creates copy of
template instance

Alters instance
to include file’s
name and icon

Appends template
instance to "main-
area" div element

Passes files to the
displayFile function in
the displayFiles function

50 CHAPTER 2 Laying the foundation for your first desktop application
 inspectAndDescribeFiles(folderPath, files, displayFiles);
 });
}

main();

Now that HTML is being added to the app to handle the display of the files and the
folders in the application, you want to make sure that the list of files and folders look
styled and are displayed in a grid fashion. In the app.css file, change the CSS to match
the following code.

body {
 padding: 0;
 margin: 0;
 font-family: 'Helvetica','Arial','sans';
}

#toolbar {
 top: 0px;
 position: fixed;
 background: red;
 width: 100%;
 z-index: 2;
}

#current-folder {
 float: left;
 color: white;
 background: rgba(0,0,0,0.2);
 padding: 0.5em 1em;
 min-width: 10em;
 border-radius: 0.2em;
 margin: 1em;
}

#main-area {
 clear: both;
 margin: 2em;
 margin-top: 3em;
 z-index: 1;
}

.item {
 position: relative;
 float: left;
 padding: 1em;
 margin: 1em;
 width: 6em;
 height: 6em;
 text-align: center;
}

.item .filename {
 padding-top: 1em;
 font-size: 10pt;
}

Listing 2.13 Adding styling to the app.css file for displaying the files

51Implementing the start screen
This CSS will ensure that the items are displayed in a clear and grid-like fashion and
that the toolbar will remain in a fixed position, visible above the files in the app as the
main area div element is scrolled by the user.

 You’re almost there. All that’s left to do is add the icons for the different file types
to the application folder. Create a folder called images in the application folders with
these commands in either the Terminal or the Command Prompt:

cd lorikeet-electron
mkdir images
cd ../lorikeet-nwjs
mkdir images

Now, you can add some images for the file and directory icons. Inside the images
folder, you’ll insert two images named file.svg and directory.svg. The files are sourced
from the OpenClipArt.org site from these URLs:

 https://openclipart.org/detail/137155/folder-icon
 https://openclipart.org/detail/83893/file-icon

Save the files in the images folder (under the names file.svg for the file icon and direc-
tory.svg for the folder icon) and reload the application, and you should see something
like figures 2.12 and 2.13.

Figure 2.12 The Lorikeet NW.js app showing the files and folders. Here, you see the
beginnings of what looks like a file explorer application.

https://openclipart.org/detail/137155/folder-icon
https://openclipart.org/detail/83893/file-icon
http://OpenClipArt.org

52 CHAPTER 2 Laying the foundation for your first desktop application
The file type property of the files is used to determine whether the icon is for a file or
for a directory. This helps you easily distinguish files from folders. You’ll also see that
the file/folder names are displayed in alphanumerical order. In figure 2.12, dotfiles
and hidden folders can be seen that would otherwise be hidden by other file explorer
applications. Figure 2.13 shows the Electron Lorikeet app.

The Electron variant of the Lorikeet app looks almost identical to the NW.js version.
All in all, the results look good, and that’s the end of the exercise for this chapter.

2.4 Summary
In this chapter, you began using NW.js and Electron for building the type of application
that many people use with their computers on a daily basis. You’ve walked through
the process of creating the applications from scratch and understand how you can
approach the task of building an application feature-by-feature. Here are some of the
things the chapter covered:

 The best way to approach a wireframe is to tackle it one feature at a time.
 Good semantics is encouraged as a way to relate features to the underlying code

that supports it.

Figure 2.13 The Lorikeet Electron app showing files and folders

53Summary
 CSS is the prime way to style UI elements in NW.js and Electron desktop apps.
 You can use Node.js and other third-party libraries with ease in your desktop

application.
 The approaches of NW.js and Electron allow for them to use almost the same

code, but Electron requires a bit more code and a slightly different configura-
tion in the package.json file.

What’s been great is that in using the same code across both NW.js and Electron vari-
ants of the Lorikeet app, you’ve been able to see how similar the desktop application
frameworks are, as well as notice the areas where they’re different. This should give
you the confidence that should you choose one framework for your application and
find that it’s not the right one for you, then it won’t be too difficult to switch to using
the other framework.

 Another takeaway here is that you’re able to use the same skills for building web-
sites as for creating the UI for a desktop application, and that means getting up to
speed quickly when building a desktop application.

 In the next chapter, we’ll expand on the work done here by adding the meaty parts
of the application. We’ll begin to explore the APIs of NW.js and Electron to add fea-
tures such as browsing through folders, searching the files and folders by name, and
opening files.

Building your first
desktop application
Building an app is a journey of creating an initial skeleton of the app and progres-
sively adding to the skeleton until it begins to resemble a complete product. The
moment when the product comes alive with features is often, for me, the moment I
get excited, and in this chapter those moments shall arrive.

 In chapter 2, you began a journey of building a file explorer called Lorikeet and
got to a stage where you had the UI for a working desktop application. In this chap-
ter, you’ll continue that journey and add features that will result in a file explorer
app you can call a minimally viable product.

 The goal is that not only will you have made the app’s features by the end of the
chapter, but you’ll understand exactly how Electron and NW.js let you do that. The
process will give you enough experience to start using those desktop app frame-
works in other places as well. Chances are, your mind will open up with lots of ideas

This chapter covers
 Opening files from the file explorer

 Accessing the filesystem

 Refactoring code using Node.js’s module
functionality

 Implementing search features in the desktop app
54

55Exploring the folders
for things you can do that you didn’t know how to do before. Excited? Good! Get com-
fortable and settle in for round two.

3.1 Exploring the folders
The main ingredients for making this happen are now in place: the files and folders
for a given path can now be displayed visually in the window. Next you need to build
the functionality so that when the user double-clicks a folder in the main area, the app
navigates to that folder and displays its contents in the main area.

3.1.1 Refactoring the code

If you look at the app.js file now, you’ll notice that it’s beginning to look a bit mud-
dled, and at this point it’s worth refactoring the code so that it doesn’t become over-
whelming and difficult to manage. Refactoring the file requires organizing the code
into logical groups, as shown in figure 3.1.

In figure 3.1, the app.js file will be turned into three files. There will still be an app.js
file as the main entry point for the front-end code, but there will also be two other
files. The fileSystem.js file will contain code that handles interacting with the files and
folders on the user’s computer, and the userInterface.js file will hold functions that
handle UI interactions. These are two distinct logical groups, and they will allow you
to keep the code orderly.

 Create two files in the Lorikeet folder at the same level as the app.js file: fileSys-
tem.js and userInterface.js. In the fileSystem.js file, insert the code shown here.

'use strict';

const async = require('async');
const fs = require('fs');
const osenv = require('osenv');
const path = require('path');

Listing 3.1 The code for the fileSystem.js file

Before

app.js

After

app.js

fileSystem.js

userInterface.js

Figure 3.1 You'll start breaking
out the code into logical groups
of functionality so that the code
is more readable and easier to
work with.

56 CHAPTER 3 Building your first desktop application
function getUsersHomeFolder() {
 return osenv.home();
}

function getFilesInFolder(folderPath, cb) {
 fs.readdir(folderPath, cb);
}

function inspectAndDescribeFile(filePath, cb) {
 let result = { file: path.basename(filePath), path: filePath, type: '' };
 fs.stat(filePath, (err, stat) => {
 if (err) {
 cb(err);
 } else {
 if (stat.isFile()) {
 result.type = 'file';
 }
 if (stat.isDirectory()) {
 result.type = 'directory';
 }
 cb(err, result);
 }
 });
}

function inspectAndDescribeFiles(folderPath, files, cb) {
 async.map(files, (file, asyncCb) => {
 let resolvedFilePath = path.resolve(folderPath, file);
 inspectAndDescribeFile(resolvedFilePath, asyncCb);
 }, cb);
}

module.exports = {
 getUsersHomeFolder,
 getFilesInFolder,
 inspectAndDescribeFiles
};

The fileSystem.js file contains the getUsersHomeFolder, getFilesInFolder, inspect-
AndDescribeFile, and inspectAndDescribeFiles functions from the app.js file. The
extra bit of code at the bottom exposes some of the functions that need to be accessed
by other files through the use of the module.exports function call, a CommonJS
JavaScript convention for exposing public code items in libraries. This is an important
factor in the way you organize and make your code usable across multiple projects.

 In the userInterface.js file, insert the code shown in the following listing.

'use strict';

let document;

function displayFile(file) {
 const mainArea = document.getElementById('main-area');
 const template = document.querySelector('#item-template');

Listing 3.2 The code for the userInterface.js file

57Exploring the folders
 let clone = document.importNode(template.content, true);
 clone.querySelector('img').src = `images/${file.type}.svg`;
 clone.querySelector('.filename').innerText = file.file;
 mainArea.appendChild(clone);
}

function displayFiles(err, files) {
 if (err) {
 return alert('Sorry, you could not display your files');
 }
 files.forEach(displayFile);
}

function bindDocument (window) {
 if (!document) {
 document = window.document;
 }
}

module.exports = { bindDocument, displayFiles };

Here, you expose the bindDocument and displayFiles functions in the code. The
bindDocument function is used to pass the window.document context to the user-
Interface.js file—otherwise, the file will not be able to access the DOM in the NW.js
variant of the app (Electron is unaffected). The displayFiles function is used to
display all the files, and because there’s no need to call the displayFile function
separate from the displayFiles function, you don’t expose the displayFile func-
tion as a public API.

 Now that the code that was in the app.js file has been moved into the fileSystem.js
and userInterface.js files, you can replace the app.js file with the code shown here.

'use strict';

const fileSystem = require('./fileSystem');
const userInterface = require('./userInterface');

function main() {
 userInterface.bindDocument(window);
 let folderPath = fileSystem.getUsersHomeFolder();
 fileSystem.getFilesInFolder(folderPath, (err, files) => {
 if (err) {
 return alert('Sorry, you could not load your home folder');
 }
 fileSystem.inspectAndDescribeFiles(folderPath, files,

userInterface.displayFiles);
 });
}

main();

Listing 3.3 The code for the app.js file

displayFiles function is
public function exposed
by userInterface.js
module

58 CHAPTER 3 Building your first desktop application
The app.js file is now 17 lines of code and is much more readable. Here, you can see
that there are two Node.js modules included in the code (fileSystem and userInterface),
and that the main function is identical to how it was in the app.js file, with the excep-
tion of calling functions from the Node.js modules instead.

 The last change left is to alter the index.html file so that the function that calls the
user’s personal folder is calling the fileSystem file module. Change the index.html file
so that it looks like the following code.

<html>
 <head>
 <title>Lorikeet</title>
 <link rel="stylesheet" href="app.css" />
 <script src="app.js"></script>
 </head>
 <body>
 <template id="item-template">
 <div class="item">

 <div class="filename"></div>
 </div>
 </template>
 <div id="toolbar">
 <div id="current-folder">
 <script>
 document.write(fileSystem.getUsersHomeFolder());
 </script>
 </div>
 </div>
 <div id="main-area"></div>
 </body>
</html>

Save the changes to the files. The refactoring is almost complete. The next feature
you want to add is the ability to navigate folders by double-clicking them in the file
explorer.

3.1.2 Handling double-clicks on folders

One of the common features of using a file explorer is navigating folders by double-
clicking the folder icon. You’ll add this functionality to the Lorikeet app.

 When you double-click a folder, the UI of the app updates so that the following
things happen:

 The current folder changes to that of the folder that’s clicked.
 The files that were displayed in the file explorer are updated to show the files

for the folder path that was clicked.
 When you click another folder, the same behavior occurs again.

Listing 3.4 Changes for the index.html file

59Exploring the folders
You also want to make sure that double-clicking a folder behaves as you expect, and
that double-clicking a file opens that file in its default application. To achieve that,
you’ll do the following:

 Create a function in the userInterface.js file called displayFolderPath, which
will update the current folder path displayed in the UI.

 Add another function in the userInterface.js file called clearView, which will
remove the files and folders that are currently displayed in the main area.

 Create a function called loadDirectory, which will handle querying the com-
puter for the files and folders at a given folder path and then display the files and
folders in the main area. This code is effectively moved out of the app.js file.

 Alter the displayFile function so that it attaches an event listener to a folder
icon to trigger loading that folder.

 Change the app.js file so that it calls the loadDirectory function of the user-
Interface.js file.

 Remove the script tag inside the current-folder element in the index.html
file, because it’s no longer needed.

In the userInterface.js file, change the code to look like the next listing.

'use strict';

let document;
const fileSystem = require('./fileSystem');

function displayFolderPath(folderPath) {
 document.getElementById('current-folder').innerText = folderPath;
}

function clearView() {
 const mainArea = document.getElementById('main-area');
 let firstChild = mainArea.firstChild;
 while (firstChild) {
 mainArea.removeChild(firstChild);
 firstChild = mainArea.firstChild;
 }
}

function loadDirectory(folderPath) {
 return function (window) {
 if (!document) document = window.document;
 displayFolderPath(folderPath);
 fileSystem.getFilesInFolder(folderPath, (err, files) => {
 clearView();
 if (err) {
 return alert('Sorry, you could not load your folder');
 }
 fileSystem.inspectAndDescribeFiles(folderPath, files, displayFiles);
 });
 };
}

Listing 3.5 Changing the userInterface.js file

Adds fileSystem
module to use
its APIs Adds function

to display
current folder

Clears items out
of main-area div
element

loadDirectory changes
current folder path and
updates main area

60 CHAPTER 3 Building your first desktop application
function displayFile(file) {
 const mainArea = document.getElementById('main-area');
 const template = document.querySelector('#item-template');
 let clone = document.importNode(template.content, true);
 clone.querySelector('img').src = `images/${file.type}.svg`;

 if (file.type === 'directory') {
 clone.querySelector('img')
 .addEventListener('dblclick', () => {
 loadDirectory(file.path)();
 }, false);
 }

 clone.querySelector('.filename').innerText = file.file;
 mainArea.appendChild(clone);
}

function displayFiles(err, files) {
 if (err) {
 return alert('Sorry, you could not display your files');
 }
 files.forEach(displayFile);
}

function bindDocument (window) {
 if (!document) {
 document = window.document;
 }
}

module.exports = { bindDocument, displayFiles, loadDirectory };

Next, amend the app.js file so that it calls the loadDirectory function from the user-
Interface.js file. Change the app.js file to look like the following code.

'use strict';

const fileSystem = require('./fileSystem');
const userInterface = require('./userInterface');

function main() {
 userInterface.bindDocument(window);
 let folderPath = fileSystem.getUsersHomeFolder();
 userInterface.loadDirectory(folderPath)(window);
}

window.onload = main;

One more change left to do. You can now remove the script tag from inside the current-
folder div element. Change the current-folder div element in the index.html file
so that it looks like this:

<div id="current-folder"></div>

Listing 3.6 Changing the app.js file for folder clicks

Adds double-click
event listener to icon
if it’s for a directory

Makes sure
loadDirectory function

is exposed as public API

Calls userInterface.js
file’s loadDirectory
function

Calls main function after HTML
for app has loaded in window

61Exploring the folders
With those files changed, reload the app. Now, when you double-click an app folder,
you’ll see that the folder path changes in the toolbar, and the files and folders on dis-
play in the main area change as well. An example of this is shown in Electron in fig-
ure 3.2.

And figure 3.3 shows the same result in NW.js with the same file changes.

You can see here that you’ve been able to use plain vanilla JavaScript, HTML, and
CSS to implement what is beginning to feel like a real desktop app. So far so good—
but it’s not mission complete yet. You’re going to add quick search functionality to
the app.

Figure 3.2 The Lorikeet app in Electron after navigating to a list of files inside of a folder,
three levels away from the starting folder path

Figure 3.3 The Lorikeet app in NW.js, navigating to a hidden folder inside
of my home folder

62 CHAPTER 3 Building your first desktop application
3.2 Implementing quick search
Figure 3.4 shows a preview of what you’ll add next: quick search functionality.

If you have a folder containing lots of files, searching through the entire list of them
can be tedious. In the wireframe, the toolbar features a search field in the top right,
and to implement an in-directory search feature is relatively easy. You’ll need to do
the following:

1 Add a search field to the top right of the toolbar.
2 Add an in-memory search library.
3 Add the list of files and folders in the current folder to the search index.
4 When the user begins searching, filter the files displayed in the main area.

3.2.1 Adding the search field in the toolbar

The first thing you need to do is add some HTML for the search field in the top tool-
bar. Insert the following HTML snippet into the index.html file, after the current-
folder div element:

<input type="search" id="search" results="5" placeholder="Search" />

This adds an input tag with the type search and some extra attributes that give it the
visual style of a search field. The next step is to add the following CSS to the app.css
stylesheet:

#search {
 float: right;
 padding: 0.5em;
 min-width: 10em;
 border-radius: 3em;
 margin: 2em 1em;
 border: none;
 outline: none;
}

LorLorikeikeetet

SeaSearchrch/Us/Usersers/pa/paulbulbjenjensensen

DesDesktoktopp DocDocumeumentsnts DowDownlonloadsads MovMoviesies MusMusicic PicPicturtureses

Public Work Diary.doc elephants.jpg

Figure 3.4 The quick search feature that you want to implement in the app

63Implementing quick search
Once this is done, the search field appears as shown in figure 3.5.

3.2.2 Adding an in-memory search library

Now that the search field exists, you need a way to perform searching on the list of
files and folders with a searching library. Thankfully, you don’t need to write one, as
this is a common need that has already been satisfied.

 lunr.js is a client-side search library, written by Oliver Nightingale (a colleague
of mine when we both worked at New Bamboo, now part of Thoughtbot). It allows
you to create an index for the list of the files and folders and perform searches with
that index.

 You can install lunr.js with npm from the command line:

npm install lunr --save

This will install lunr.js inside the node_modules folder and save it as a dependency to
the package.json file. Now, you need to create a new file at the same level as the app.js
file, called search.js. You can create it either on the command line with the command
touch search.js or via your text editor. Once it exists, add the code shown in the
next listing to the search.js file.

'use strict';

const lunr = require('lunr');
let index;

function resetIndex() {
 index = lunr(function () {
 this.field('file');
 this.field('type');
 this.ref('path');
 });
}

function addToIndex(file) {
 index.add(file);
}

function find(query, cb) {
 if (!index) {
 resetIndex();
 }

Listing 3.7 Inserting code into the search.js file

Figure 3.5 The search field in the top toolbar, like the wireframe
in figure 3.4. Interestingly, the results attribute on an input
element with the type search inserts a magnifying glass inside
the text field.

Requires lunr.js as
dependency via npm

resetIndex function
resets search index

Adds file to index for
searching against

Queries index for a
given file here

64 CHAPTER 3 Building your first desktop application
 const results = index.search(query);
 cb(results);
}

module.exports = { addToIndex, find, resetIndex };

The code implements three functions: addToIndex allows you to add files to the index,
find allows you to query the index, and resetIndex resets the index when you need to
view a new folder and clear the existing index. You expose these functions through
module.exports so that you can load the file in app.js and access those functions.

 Once you’ve created and saved the search.js file, you need to attach it to the search
field in the UI, as well as get it to change what files are displayed in the main area.

3.2.3 Hooking up the search functionality with the UI

To have the search field trigger searching the file names, you need to be able to inter-
cept the event of typing the query in the field. You can do this by adding a function to
the userInterface.js file called bindSearchField, which will attach an event listener
to the search field. In the userInterface.js file, add the following function to the file:

function bindSearchField(cb) {
 document.getElementById('search').addEventListener('keyup', cb, false);
}

This code will intercept any events where the user has typed in the search field, and
the key on the keyboard is back up (hence, the event name keyup). You also add this
function to the module.exports object at the bottom of the userInterface.js file so
that you can expose it to the app.js file, as shown here:

module.exports = { bindDocument, displayFiles, loadDirectory, bindSearchField };

This function will be used to attach a function to the search field in the UI that triggers
each time the user presses a key on the keyboard while typing into the search field.

 Here, you’ll inspect the value that exists inside the search field. If it’s blank, then
you don’t want to filter any files. But if it has another value, then you want to filter the
files that are displayed in the main area. To achieve that, you need to do the following:

 Before you load a folder path in the main area, you reset the search index.
 When a file is added to the main area, you add it to the search index.
 When the search field is empty, you make sure that all files are on show.
 When the search field has a term, you filter the display of the files based on

that term.

But first, you should include the search module at the top of the dependencies list of the
userInterface.js file. Change the top of the userInterface.js file so that it looks like this:

'use strict';
let document;
const fileSystem = require('./fileSystem');
const search = require('./search');

Exposes some
functions for
public API

65Implementing quick search
This provides you with access to the search module. Following the inclusion of the
search module, the first change you want to make is to the loadDirectory function.
You want it to reset the search index every time it’s called so it only searches for files
that are in the current folder path. Change the loadDirectory function’s code to
match the next listing.

function loadDirectory(folderPath) {
 return function (window) {
 if (!document) document = window.document;
 search.resetIndex();
 displayFolderPath(folderPath);
 fileSystem.getFilesInFolder(folderPath, (err, files) => {
 clearView();
 if (err) {
 return alert('Sorry, you could not load your folder');
 }
 fileSystem.inspectAndDescribeFiles(folderPath, files, displayFiles);
 });
 };
}

Once that’s done, the next thing you want to adjust is the displayFile function below
the loadDirectory function. The function will handle adding the file to the search
index as well as making sure that the img element contains a reference to the file’s
path so that the file can be filtered visually without needing to add/remove elements
from the DOM. Change the displayFile function’s code to look like the following.

 function displayFile(file) {
 const mainArea = document.getElementById('main-area');
 const template = document.querySelector('#item-template');
 let clone = document.importNode(template.content, true);
 search.addToIndex(file);
 clone.querySelector('img').src = `images/${file.type}.svg`;
 clone.querySelector('img').setAttribute('data-filePath', file.path);
 if (file.type === 'directory') {
 clone.querySelector('img')
 .addEventListener('dblclick', () => {
 loadDirectory(file.path)
 }, false);
 }
 clone.querySelector('.filename').innerText = file.file;
 mainArea.appendChild(clone);
 }

Next, add a function for filtering the results visually. This function uses a function to
look at the file paths for the files and folders on display in the main area and check
whether any of them matches with the search results for the term typed into the

Listing 3.8 Resetting the search index when calling loadDirectory

Listing 3.9 Adding files to the search index in the displayFile function

Adds the call to reset
the search index

Adds file
to search
index here

Attaches file’s path as data
attribute to image element

66 CHAPTER 3 Building your first desktop application
search field. After the bindSearchField function, add the function shown in the next
listing to the userInterface.js file.

function filterResults(results) {
 const validFilePaths = results.map((result) => { return result.ref; });
 const items = document.getElementsByClassName('item');
 for (var i = 0; i < items.length; i++) {
 let item = items[i];
 let filePath = item.getElementsByTagName('img')[0]
 .getAttribute('data-filepath');
 if (validFilePaths.indexOf(filePath) !== -1) {
 item.style = null;
 } else {
 item.style = 'display:none;';
 }
 }
}

You can add a small utility function to handle the case of resetting the filter. This
occurs when the search field is blank. Add the following function after the filter-
Results function that was added to the userInterface.js file:

function resetFilter() {
 const items = document.getElementsByClassName('item');
 for (var i = 0; i < items.length; i++) {
 items[i].style = null;
 }
}

Here, you use a selector to select all div elements that have a CSS class of item, and
make sure they’re visible by removing any custom style attributes that would have
marked them as hidden. Also, you want to make sure that the filterResults and
resetFilter functions are publically available via the module API. Change the module
.exports object at the bottom of the userInterface.js file so that it looks like this:

module.exports = {
 bindDocument, displayFiles, loadDirectory,
 bindSearchField, filterResults, resetFilter
};

That’s all the changes to make to the userInterface.js file for now. Next, turn your
attention to the app.js file and change it so that

 It binds on the search field in the user interface.
 It passes the search field’s term to the search tool lunr.
 It then passes the results from the search tool back to the UI for rendering.

Change the code in the app.js file so that it looks like the code shown next.

Listing 3.10 Adding the filterResults function to the userInterface.js file

Collects file paths for
search results so you

can compare them

Does file’s path
match with one of
the search results?

If so, make sure
file is visible

If not,
hide file

67Implementing quick search
 'use strict';

 const fileSystem = require('./fileSystem');
 const userInterface = require('./userInterface');
 const search = require('./search');

 function main() {
 userInterface.bindDocument(window);
 let folderPath = fileSystem.getUsersHomeFolder();
 userInterface.loadDirectory(folderPath)(window);
 userInterface.bindSearchField((event) => {
 const query = event.target.value;
 if (query === '') {
 userInterface.resetFilter();
 } else {
 search.find(query, userInterface.filterResults);
 }
 });
 }

 window.onload = main;

After saving this file along with the previous files, reload the app. The app loads like
before, but this time you’ll find that when you type a term into the search field, the
files and folders in the main area of the app are filtered to show only those that match
the search term. If you then type a blank value into the search field, all the files and
folders inside the current folder path are shown. Even as you double-click a folder and
navigate into it to see its files and folders, the search field will work on that current
folder and filter its contents, as shown in figure 3.6.

Listing 3.11 Integrating the search feature into the app.js file

Loads search
module into app.js

Listens for changes to
search field’s value

If search field is blank,
resets filter in UI

If search field has a
value, passes it to
search module’s find
function and filters
results in UI

Figure 3.6 The search field filtering files based on their name inside Atom’s hidden folder

68 CHAPTER 3 Building your first desktop application
With about six handcrafted files totaling no more than 281 lines of code and some
npm modules, you’ve managed to build a file explorer. The file explorer can show
the files in a folder, traverse the folders, and filter the files based on the name of the
file as indicated in the original wireframe. Not bad, given the relatively small size of
the code.

 Next, you want to improve navigating through the app as well as getting files to
open with their default application.

3.3 Enhancing navigation in the app
You’ve gotten to a stage where you can display the contents of the user’s personal
folder and allow them to traverse through those folders to see what other files and
folders exist on their computer, as well as filter the files and folders by a search query.
Now you’ll help the user navigate backward as well, as there isn’t currently a way to do
that in the app.

 To do this, you’ll give the user the ability to navigate the folders via the current
folder path—you’ll make it a clickable path, with each folder in the path going to that
folder’s location on the computer.

3.3.1 Making the current folder path clickable

Figure 3.7 shows what you want to do.

The current folder is currently a line of text that’s displayed in the UI in the toolbar,
but it can be used to do so much more. In this case, you’re looking to change it so that
it looks the same as it looks now but allows the user to load a different folder path by
clicking a folder name in the path, like clicking a link in a web page, as shown in fig-
ure 3.8.

 Let’s begin by looking at the code that handles the display of the current folder in
the toolbar, the displayFolderPath function in the userInterface.js file. You’ll need
to modify this function so that instead of returning the current folder path, it passes
the folder path to another function, which will convert that folder path into a set of

Clicking on the folder
item here, changes what
is rendered there

Figure 3.7 When clicking any path in the current folder path in the top toolbar, you want
to display the contents of the folder in the main area.

69Enhancing navigation in the app
span HTML elements. The span tags will contain not only the name of the folder, but
also a data attribute referring to the path of that folder. This is so that when the folder
is selected, you can pass that folder to the loadFolder function and load the folder in
the app.

 Let’s begin by creating a function that will receive a folder name and return the
folder as a list of HTML span tags, with the path for that folder added as an attribute
on the span tag. Call this function convertFolderPathIntoLinks and place it in the
userInterface.js file. First, you need to add a module dependency at the top of the file
(after the search module require) to load Node.js’s path module:

const path = require('path');

The path module is used to return the path separator used by the operating system. In
Mac OS and Linux, the path separator is a forward slash (/), but on Windows it’s a
backward slash (\). This will be used by the function to create the folder path for each
folder as well as to display the full path for the current folder. In the convertFolder-
PathIntoLinks function, the following code is used:

function convertFolderPathIntoLinks (folderPath) {
 const folders = folderPath.split(path.sep);
 const contents = [];
 let pathAtFolder = '';
 folders.forEach((folder) => {
 pathAtFolder += folder + path.sep;

Each path contains a snippet of

HTML that contains its folder path.

When a user clicks on a path item in the

current folder path, you fetch its folder path.

You pass this path to

the loadFolder() function,

so that it loads in

the application.

b

c

d

Figure 3.8 How clicking a path item in the current folder path will end up loading
that path in the app

70 CHAPTER 3 Building your first desktop application
 contents.push(`<span class="path" data-path="${pathAtFolder.slice(0,
-1)}">${folder}`);

 });
 return contents.join(path.sep).toString();
}

The function takes the path for the folder and turns it into a list of folders by splitting
it on the folder path separator. With this list of folders in the current folder path, you
can begin to create the span tags for each one. Each span tag will have a class attri-
bute with a value of path, a data-path attribute that contains the path for that folder,
and, finally, the name of the folder as the text inside the span tag.

 Once the span tags are created, the HTML is joined together and returned as a
string. This HTML is then used by the displayFolderPath function. It receives the
current folder path and returns the HTML to be inserted into the toolbar. As a result,
you’ll need to update the function to insert HTML instead of text. Adjust the display-
FolderPath function to this code:

function displayFolderPath(folderPath) {
 document.getElementById('current-folder')
 .innerHTML = convertFolderPathIntoLinks(folderPath);
}

The function now uses innerHTML to insert the HTML into the current-folder ele-
ment in the screen, and the convertFolderPathIntoLinks function receives the
folder path passed to the displayFolderPath function and returns HTML in its place.
The nice thing about this change is how you only had to change a small part of the
displayFolderPath function, rather than lots of changes in multiple places. This is a
desirable goal with coding: construct it so that it can be altered with ease. With this
change accomplished, you now need to handle clicking a folder name in the toolbar
and having the screen navigate to that folder.

 In the userInterface.js file, you’ll add another function that will bind on a user
clicking a folder name (in this case, any span element with a class of path) and return
the folder path to a callback function. The callback function can then use the folder
path to pass that to the code that handles loading a folder. Add the following code to
the userInterface.js file, roughly toward the bottom of the file, but before the module
.exports object:

function bindCurrentFolderPath() {
 const load = (event) => {
 const folderPath = event.target.getAttribute('data-path');
 loadDirectory(folderPath)();
 };

 const paths = document.getElementsByClassName('path');
 for (var i = 0; i < paths.length; i++) {
 paths[i].addEventListener('click', load, false);
 }
}

71Enhancing navigation in the app
You then want to call this function as part of the displayFolderPath function. Change
the displayFolderPath function to this:

function displayFolderPath(folderPath) {
 document.getElementById('current-folder')
 .innerHTML = convertFolderPathIntoLinks(folderPath);
 bindCurrentFolderPath();
}

The userInterface.js file is easily extended to include extra functionality for handling
clicks on path items in the current folder path—which is nice, because it allows you to
easily alter your code without having to rewire whole swathes of the codebase.

3.3.2 Getting the app to load at the folder path

This simple one-line change enables the functionality to work, and the last code
change you want to do before you put it into action is to make the span elements show
a pointer when the cursor passes over them. Add the following code to the app.css file:

span.path:hover {
 opacity: 0.7;
 cursor: pointer;
}

With these changes saved, you can now reload the app, click through folders as nor-
mal, and then go back by clicking a folder in the current folder path. This ensures
that users can navigate back to other folders, because otherwise they would be stuck.
What you’ve done so far is replicate a feature that’s common to all native file explorers
across the operating systems (navigating folders via paths), but you added a twist to it
so that the paths are clickable—not all file explorers do this. This shows how with
Electron or NW.js you have the power to not only re-create desktop experiences using
web technologies, but also combine them in ways to do new things that haven’t been
done in desktop apps before.

 Now that you’ve added that feature, the next step is to handle opening files with
their default application.

3.3.3 Opening files with their default application

So far in the app, you’ve focused a lot on interacting with folders, but now you need to
look at how you can make the file explorer open files like images, videos, documents,
and other items.

 In order to implement this feature, you’ll need to do the following:

 Handle clicking on a file as opposed to a folder.
 Pass the file path for that file to NW.js/Electron’s way of opening external files.

We’ll look at handling clicking a file first.

72 CHAPTER 3 Building your first desktop application
CLICKING A FILE

You’ll probably remember from earlier on in the chapter that you detected whether
the file you were rendering to the main area was a folder, and attached an event to it
when it was double-clicked. You’ll use the same pattern again to handle double-
clicking files.

 In the userInterface.js file is the displayFile function that handles displaying the
individual files and folders in the main area, as well as attaching events to them.
Change the function so that it looks like the following listing.

 function displayFile(file) {
 const mainArea = document.getElementById('main-area');
 const template = document.querySelector('#item-template');
 let clone = document.importNode(template.content, true);
 search.addToIndex(file);
 clone.querySelector('img').src = `images/${file.type}.svg`;
 clone.querySelector('img').setAttribute('data-filePath', file.path);
 if (file.type === 'directory') {
 clone.querySelector('img')
 .addEventListener('dblclick', () => {
 loadDirectory(file.path)();
 }, false);
 } else {
 clone.querySelector('img')
 .addEventListener('dblclick', () => {
 fileSystem.openFile(file.path);
 }, false);
 }
 clone.querySelector('.filename').innerText = file.file;
 mainArea.appendChild(clone);
}

The couple of extra lines of code allow you to listen to the file being double-clicked
and attach it to a new function called openFile in the fileSystem.js module, which
you’ll now create.

 The openFile function in the fileSystem.js module is going to call out to either
Electron or NW.js’s shell API. The shell API is able to open URLs, files, and folders in
their default applications. To show you how compatible Electron and NW.js are as
desktop app frameworks, you’ll write one item of code that can be used across both
frameworks without any need for modification.

 In the fileSystem.js file, add the following snippet of code toward the top of the
file, below the dependency declarations:

let shell;

if (process.versions.electron) {
 shell = require('electron').shell;
} else {
 shell = window.require('nw.gui').Shell;
}

Listing 3.12 Adding file double-clicking to the displayFile function

Not a directory, therefore
a file, so you can attach
an event to it

Calls out to new function in the
fileSystem module called openFile,
which is passed the path to the file

73Enhancing navigation in the app
This snippet of code can run on either an Electron app or an NW.js app, which means
less code for you to have to write/adjust. Notice how Electron and NW.js call out to a
shell object (though NW.js calls it via the GUI API, and with a title-cased name). If
the app is running as an Electron application, it will load Electron’s shell API, and if
running NW.js, it will load NW.js’ shell API.

 With the shell API loaded for the given Node.js desktop app framework, you now
call out to the shell API’s method for opening files. Add the function shown in the fol-
lowing listing to the fileSystem.js file, right before the module.exports object.

function openFile(filePath) {
 shell.openItem(filePath);
}

Notice anything funny? The shell API’s function name for opening files is the same
across both Electron and NW.js. It’s a pleasant surprise that may seem unexpected
unless you know a bit about NW.js and Electron’s shared history.

 With this new function, all you need to do now is make sure it’s available as a pub-
lic API function in the fileSystem.js file. Amend the module.exports object so that it
includes the function, as shown in the following code:

module.exports = {
 getUsersHomeFolder,
 getFilesInFolder,
 inspectAndDescribeFiles,
 openFile
};

I’d almost say you’re done, but there’s one more thing (to borrow a phrase from the
late Steve Jobs). You want to give the app a visual indicator that the files and the fold-
ers can be clicked when the cursor is hovering over them. You can extend the last CSS
rule you added earlier to the app.css file. As a reminder, it looked like this:

span.path:hover {
 opacity: 0.7;
 cursor: pointer;
}

Extend it so that it also applies to the file and folder icons in the main area:

span.path:hover, img:hover {
 opacity: 0.7;
 cursor: pointer;
}

With those changes saved, reload the app and have a go at double-clicking files in the
Lorikeet app. You’ll see that those files end up opening in their default applications.

Listing 3.13 Adding the openFile function to the fileSystem.js file

Calls the shell API’s openItem
function with the file path

74 CHAPTER 3 Building your first desktop application
Fantastic! You now have a functional file explorer that can open files, as well as explore
folders and filter the view by name.

3.4 Summary
In this chapter, you built on the beginnings of a desktop app and created some rich
features that make the app a usable, minimally viable product. You also had a chance
to explore how you can evolve a desktop app’s codebase to remain readable, and how
you can organize the code for a desktop app (because there’s no convention-over-
configuration approach to doing this currently).

 Things we’ve covered include the following:

 Refactoring the code by using Node.js’s module functionality
 Using third-party libraries to implement search features
 Applying Electron and NW.js’s shell API to handle opening files with their

default applications
 Improving app navigation to make the desktop app more usable

The main thing to take away from this chapter is that with a couple-hundred lines of
code and some external files, you can build an app that replicates what a native desk-
top app can do (and one that has relatively complex functionality). Not only that,
you’ve been able to use third-party libraries like lunr.js to help provide this functional-
ity, and structured the code in such a way that it can be used in web apps and allow for
building apps for both the web and desktop from the same source code.

 In chapter 4, you’ll prepare the app for distribution: you’ll hide the app developer
toolbar, give the app its own icon, and build it so that it can be run as a native app on
each of the operating systems.

Shipping your first
desktop application
In the world of software, it’s easy to start a new project, but persisting with it and
seeing it through to the end is not so easy. Shipping software is the big divide
between those who make software that’s used around the world and those who start
a lot of projects but don’t finish them.

 In chapter 3, you fleshed out the skeleton of your desktop app until you
reached the point where you could call it a minimally viable product. Now, the next
step for you is to prepare the app for distribution by making it an app that users can
get and run on Windows, Mac OS, and Linux.

 You’ll explore how to use build tools for NW.js and Electron to help build stand-
alone executables of the Lorikeet app.

This chapter covers
 Creating an icon for the app

 Compiling the app for different OSs

 Testing the app on different platforms
75

76 CHAPTER 4 Shipping your first desktop application
4.1 Setting up the app for distribution
Once an app is built and ready for users to get their hands on, the next step is to get
the app ready for packaging and distribution. This involves a number of things:

 Getting the app to display a custom icon in place of the default app
 Creating native binaries of the app for the different OSs
 Testing those apps out on the various platforms

You’ll start with creating the icons for the app.

4.1.1 Creating the app icon

For Lorikeet, you want to customize the look and feel of the app so that users can easily
distinguish it from the other apps they have on their computer. Changing the app icon
is a bit of a tedious process, because each OS has its own file format and approach to dis-
playing app icons, as well as the fact that changing the app icon requires a bit of manual
tinkering. You’ll start by looking at the different ways that each OS implements icons
and then looking at how you can create app icons for each OS.

 The first step is to create an app icon as a high-resolution PNG at 512 x 512 pixels.
If you feel creative and have an idea for an icon, this can be a fun exercise, but if you’d
like to skip that and use one that has already been made for the app, you can down-
load a copy of the icon I made (based on a photo of some real-life lorikeets I took in
Australia) from https://github.com/paulbjensen/lorikeet/blob/master/icon.png.

 Figure 4.1 shows what the icon looks like.

Once you have this icon, you can begin the process of creating the different versions
of the icon for each OS.

MAC OS
Mac OS uses the ICNS file format for app icons. This is a file format that contains ver-
sions of the app icon at the following resolutions:

 16 px
 32 px
 128 px
 256 px
 512 px

Figure 4.1 The icon for both versions
of the Lorikeet app

https://github.com/paulbjensen/lorikeet/blob/master/icon.png

77Setting up the app for distribution
Depending on what OS you’re running on your computer (I use Mac OS), there are a
number of approaches to creating an ICNS file. A quick search on the term ICNS gen-
erator will show some online tools as well as commercial applications that generate not
only ICNS files but also icon files for Windows, iOS, and other platforms. On the Mac
App Store there’s a product called iConvert Icons that will convert the app icon into
an ICNS file as well as a Microsoft Windows ICO file (you can also use iConvert Icons
online as a free option). Alternatively, if you have a subscription to Apple’s Developer
Program, you can download Icon Composer for free (a tool that was originally bun-
dled into Xcode). I’ll show you the steps for creating an ICNS file using IConvert
Icons (assuming you have a computer running Mac OS).

 First, search for the app in the App Store, purchase it, and then open it when it’s
finished downloading. You should see the screen shown in figure 4.2.

Drag the app icon PNG image that you have into the dotted area of the app. A folder
dialog box opens, asking for a place to save the generated files to. You want to save the
file to the images folder of your app. Choose the folder, and you’ll find that the files
have been saved to that location, as shown in figure 4.3.

 Now that you have the ICNS file for the app, you have a number of ways to make it
the icon for your app, but you’ll need to build the app before you can do that. For
now, you’ll keep the ICNS for use later.

Figure 4.2 iConvert Icons, a tool for creating both ICNS and ICO icon files
from an image. Notice that the iConvert Icons app has three checkboxes
ticked here for the versions I want to generate.

78 CHAPTER 4 Shipping your first desktop application
WINDOWS

Microsoft Windows uses the ICO file format for its icons, which is also the file format
used for website icons that are displayed in web browsers. If you’re already using iCon-
vert Icons, you can use that program for the ICO file.

 Alternatively, a quick search on Google shows a number of results, the top-ranking
being a website called icoconverter.com. If you choose to use that website, make sure
to check the checkboxes for all of the icon resolutions, because different versions of
Windows use a range of icon resolutions. Once you’ve uploaded your app icon and
saved a copy of it to your computer, it will be ready for when you build the app.

LINUX

Although there are many different distributions of Linux, the freedesktop.org organiza-
tion has created a standard for handling icons across the different graphical desktop
environments that are used on Linux (such as Gnome, KDE, and Xfce). It’s known as
the desktop entry specification, and can be found at http://standards.freedesktop.org/
desktop-entry-spec/latest.

 The .desktop file is a configuration file that contains details about what the app
name is, where it runs from, what icon it has, and some other configuration informa-
tion. Here’s an example of a .desktop file:

 [Desktop Entry]
Encoding=UTF-8
Version=1.0
Type=Lorikeet
Terminal=false
Exec=$HOME/.lorikeet/lorikeet
Name=Lorikeet
Icon=$HOME/.lorikeet/icon.png

The .desktop file is saved on the user’s computer with a filename—for example, lori-
keet.desktop. The image file format for the icon used on Linux can be a PNG file, like
the one that was originally created for the app. That said, if you want to guarantee that

Figure 4.3 The app icon files that were generated by iConvert Icons

http://freedesktop.org
http://icoconverter.com
http://standards.freedesktop.org/desktop-entry-spec/latest
http://standards.freedesktop.org/desktop-entry-spec/latest

79Packaging the app for distribution
your app icon looks good at all resolutions, it’s better to use an SVG file, which is vec-
tor-based and scales with resolution much better. Either way, you now have icon files
suitable for all three OSs.

 To set the icon on the app, you need to go through the process of building the
app, and then you can go about setting the app icon on the different builds.

4.2 Packaging the app for distribution
Now that you’ve configured the app to look the way you want, you’re in a position to
generate native executable versions of the app, one for each OS. Both NW.js and Elec-
tron have build tools that make it easy to build the app.

 You’ll start by looking at how to build standalone executables of the NW.js version
of the Lorikeet app. Then you’ll look at how to do the same thing with Electron.

4.2.1 Using a build tool for NW.js

There are quite a few build tools for NW.js, but the one that I recommend using for
this case is called nw-builder. You can install nw-builder (formerly known as node-
webkit-builder) by installing it with npm via the Terminal or Command Prompt:

npm install nw-builder -g

The preceding command installs nw-builder as a global npm module and therefore
makes the nwbuild command available to you on the command line for all your
NW.js apps.

 Not only can nw-builder create standalone executables of the app for each OS, you
can also include the app icons you created earlier. In order to do this, you need to
pass some options to the nwbuild command to tell it to use the icons. Navigate to a
folder where you would like the app files to be generated and run the following com-
mand in Terminal or Command Prompt:

nwbuild . -o ./build -p win64,osx64,linux64

This will generate a build folder in the directory where the command was run. Inside
that build folder will be another folder with the name of the app (in this case, lori-
keet-nwjs), and inside that you’ll have six folders, one for each of the OS builds you
want to create the app for (win64, osx64, linux64). These folders contain the built
app with 64-bit versions of the app on each OS. If you browse through those folders,
you’ll see .exe files for the Windows versions of the app, as well as an app file for the
Mac OS versions.

 Double-click an app to see it open on your computer, and you should see it run-
ning as a standalone app; there’s no Terminal window open where it’s being run from,
and no external software dependencies to install before running it. If you’re using
Mac OS, then it should appear in your Dock. In Windows, you should see the app
loaded in the taskbar at the bottom of the screen. If you’re running Linux (say,
Ubuntu), you should see the app open in the unity bar.

80 CHAPTER 4 Shipping your first desktop application
4.2.2 Using a build tool for Electron

A number of build tools are available for Electron, and one of them is called (you
guessed it) electron-builder. It’s a good tool to use for packaging Electron apps, so
you’ll install it in this section. In Terminal or Command Prompt, install electron-
builder via npm:

npm install electron-builder electron –-save-dev

You install electron-builder and electron as development dependencies for the app.
After installation, you’ll want to alter the package.json file so that it contains the con-
figuration information for how to build the app.

 In order to make electron-builder work, you need to check that the package.json
file has the following fields (or add them if it doesn’t):

 Name
 Description
 Version
 Author
 Build configuration
 Scripts for packing and distribution

That’s the bare minimum required for electron-builder to make a standalone exe-
cutable of the app. The following listing shows an example of how your package.json
file might look.

{
 "name": "lorikeet",
 "version": "1.0.0",
 "main": "main.js",
 "author": "Paul Jensen <paul@anephenix.com>",
 "description": "A file explorer application",
 "dependencies": {
 "async": "^2.1.4",
 "lunr": "^0.7.2",
 "osenv": "^0.1.4"
 },
 "scripts": {
 "pack": "build",
 "dist": "build"
 },
 "devDependencies": {
 "electron": "^1.4.14",
 "electron-builder": "^11.4.4"
 },
 "build": {}
}

Listing 4.1 An example of the package.json file with electron-builder config

81Packaging the app for distribution
Once you have those fields filled in on the package.json file, you can look to build the
standalone executables for the Electron version of the Lorikeet app. You can then run
the following command via npm to start creating the standalone executables:

npm run pack

This will kick off building the Lorikeet Electron app. When the app build has fin-
ished, there’ll be a new folder called dist, which will contain another folder named
mac. This contains the Lorikeet app in multiple builds—a zip file and a DMG file.

 Now that you have the app standalone, you can work on setting the app’s icon to
the one you created in the previous section.

CONFIGURING OPTIONS FOR ELECTRON-BUILDER A huge range of options for
configuring how electron-builder builds the various versions of your app is
available. For more information, see this link: https://github.com/electron-
userland/electron-builder/wiki/Options.

4.2.3 Setting the app icon on the apps

Now that you have the app and the icon files for the different OSs, you need to com-
bine them. The best way to do that is to follow the approaches described for each OS.

MAC OS
There’s a simple way to change the icon of an app in Mac OS. In the build folder con-
taining the Mac OS version of the app, right-click the app and select Get Info. You
should see a screen like figure 4.4.

Figure 4.4 The Info window on the
Lorikeet NW.js app, pre-icon change

https://github.com/electron-userland/electron-builder/wiki/Options
https://github.com/electron-userland/electron-builder/wiki/Options

82 CHAPTER 4 Shipping your first desktop application
In another Finder window, find the icon.icns file you created earlier and drag it over
the icon of the app in the top left-hand corner of the Info window. You should then
expect to see the Info window look like figure 4.5.

That’s it! Drag and drop the icon.icns file over the app’s icon in the Info window. If
you double-click the app, you should see the new app icon in the Dock, in the Finder
window when browsing to where the app is stored, and in the list of apps that opens
when you press Command-Tab. This version of the app is now ready for distribution,
and is quite the simplest and most effective way of changing the app icon for Mac ver-
sions of the app.

MICROSOFT WINDOWS

Changing the icon for Windows versions of the app is not as simple as for Mac OS,
but it’s not that difficult either. There are two ways you can approach this. One is
to change it manually with a third-party tool, and the other is to have nw-builder
do it for you. I’ll document both approaches and let you use the one that works
best for you.

 Assuming that you have a Microsoft Windows PC available (or, alternatively, run an
image of Microsoft Windows via a virtual machine), you can download a free tool
called Resource Hacker (http://angusj.com/resourcehacker). Resource Hacker is a
tool for modifying executable files and will allow you to replace the .ico file that’s used
for the app.

Figure 4.5 The Info window on the
Lorikeet NW.js app, post-icon change

http://angusj.com/resourcehacker

83Packaging the app for distribution
 Once you have the Windows build of the app copied to the Windows desktop,
open the lorikeet.exe file with Resource Hacker and click Action > Replace Icon in
the menu bar, as shown in figure 4.6.

Select the icon.ico file that was created for the Windows app and click File > Save.
Select the lorikeet.exe file to be replaced, and the Windows app should now have an
updated icon. When you double-click the app icon, you should see the app running in
Windows, with the icon displayed in the task bar. This approach works well with older
versions of Windows, but not with the latest versions of Windows.

 nw-builder can handle setting the icon for the app, but isn’t always guaranteed to
work across all platforms—this approach is guaranteed to work with the latest versions
of Windows.

 The first thing to do is to make sure that you have a copy of the app icon some-
where in the app folder (it doesn’t matter where exactly—it can be on the same folder
level as the package.json file or nested inside an assets folder). Assuming that you’ve
saved the file as icon.png in the same folder as the package.json file, modify the pack-
age.json’s window section so that it includes the following line:

"icon":"icon.png"

Figure 4.6 Replacing the Windows app executable icon with Resource Hacker

84 CHAPTER 4 Shipping your first desktop application
With this line in place, you tell NW.js to load the icon.png file as the icon for the
title bar, and nw-builder will spot this file and use it to set the app’s icon as displayed
in the file explorer, as well as when the app is displayed in the task bar. After you
make this change, rebuild the app using nw-builder’s nwbuild command (as men-
tioned in the previous section), and when the app is built, you should see that the
app icon has been set to that of the lorikeet-based icon, rather than the dark blue
hexagon icon for NW.js.

 If you now double-click on that app, you should expect to see a screen like figure 4.7.

This allows you to ensure that the app’s visual identity is complete on Windows 8.
Something to bear in mind here is that your users will likely be using different ver-
sions of Windows (there are many Windows XP users in China, for example), so
depending on what versions of Windows you want/need to support for your apps,
the best course of action is to establish what versions of Windows will be used, use
the nwbuild option first, and then for older OSs, manually adjust the icon using
Resource Hacker.

 With that done, you can finally look to set up the app icon on the third OS, Linux.

Figure 4.7 Lorikeet NW.js running on Windows 8.1. Notice that the taskbar icon and title bar icon display the
app’s lorikeet-inspired icon.

85Packaging the app for distribution
LINUX

Depending on which distribution of Linux you use (I tend to use Ubuntu), the pro-
cess of setting the icon on the app built for Linux can be even simpler than the pro-
cess for Mac OS. If you don’t have a copy of Linux running on your computer, you can
download and install VirtualBox, download Ubuntu Linux’s ISO image, and then cre-
ate a virtual machine that uses the ISO image. This way you can test whether your
desktop apps work on other OSs without needing to have multiple computers and lap-
tops with different OSs installed.

 Once you have Linux booted and running, and assuming that you’re using the
Gnome desktop environment, copy either version of the Lorikeet app built for Linux
and its files to a location on your computer, as well as the PNG image of the icon.
Click the Files icon to open Gnome’s file explorer, browse to the location of either ver-
sion of the Lorikeet app, right-click the icon, and select Properties. In the Properties
window that appears, click the icon in the top left, select the path to the PNG image
for the icon, and then confirm. This is all it takes to change the icon for the app. Now,
if you double-click the app icon, you should see the app running, and it will appear in
the unity bar as well, as shown in figure 4.8.

 That’s all it takes to set up the app for Ubuntu Linux. You can now distribute the
app as a standalone app for others to use on their computers. This means you have
completed the journey of building a desktop app and shipping it.

Getting a blank NW.js app on Windows?
This is an issue that some NW.js users have been having with getting their apps to
work on Windows (see https://github.com/nwjs/nw.js/issues/3212). It turns out
that Windows has a 256-character limit on file paths. People developing Node.js apps
on Windows have run into this issue due to the way that npm nests module depen-
dencies in folders.

npm worked on resolving this issue in version 3 of the CLI by making npm install
dependencies in a flat-folder structure, avoiding nested folders and thereby not running
into Windows’ 256-character limit.

You can install version 3 of npm by running the following command:

npm install npm

For more on this issue, and for tools to help resolve it, see the article http://engine-
room.teamwork.com/dealing-with-long-paths/.

https://github.com/nwjs/nw.js/issues/3212
http://engineroom.teamwork.com/dealing-with-long-paths/
http://engineroom.teamwork.com/dealing-with-long-paths/

86 CHAPTER 4 Shipping your first desktop application
4.3 Testing your app on multiple OSs
In order to ensure that your apps work on multiple OSs, you have to try them on each
OS, which can be tricky if you only have one development machine.

 Chances are, you might only use one OS for your development machine, and so
when you need to support multiple OSs for your apps, you may ask, “Where do I
start?”

 If you’re rich enough (or lucky enough to work somewhere with a good budget for
equipment), you can purchase extra computers with the versions of Windows, Linux,
and Mac OS that you want to support. But if that option isn’t available, there are other
options.

4.3.1 Targeting Windows OSs

In terms of market share, Windows is the biggest desktop OS, and there are multiple
variants of Windows out there: Windows XP, Vista, 7, 8, 8.1, and 10. How do you cater
to all these varieties of Windows if your development machine runs Mac OS or Linux?

 The answer involves virtual machines. VMs allow an OS to run in an isolated envi-
ronment, sharing access to hard disk, memory, and other hardware resources with the
computer’s main OS. They can be used to run apps in secure, isolated environments
(such as infrastructure-as-a-service companies like Amazon, Linode, and DigitalOcean)
as well as test apps.

Figure 4.8 The Lorikeet NW.js app running on Ubuntu Linux

87Summary
 In the case of virtualization software, a variety of both commercial and open source
offerings are available. On the Mac, commercial options include VMware Fusion and
Parallels, and for open source options, there’s VirtualBox (which also works on Linux).
There are some other open source virtualization tools (such as QEMU), but the three
listed here are well known.

 Once you’ve installed a virtualization tool, the next step is to purchase a copy of
Windows and generate a VM for it, or use an available Windows image. Microsoft pro-
vides a range of VM images for different OS platforms to assist developers with testing
websites on Internet Explorer (http://dev.modern.ie/tools/vms/mac/), and if you’re
happy with the terms for using the VMs, then you can do that pretty quickly.

4.3.2 Targeting Linux OSs

Linux is easy to test apps for—the only challenge is knowing which distributions of
Linux and which versions of them to test for. VirtualBox is a popular tool for test-
ing Linux distributions on both Mac OS and Windows PCs. Users can download ISO
images for their preferred Linux distributions and easily set up a Linux distribution to
test their app on.

4.3.3 Targeting Mac OS

Sadly, testing your apps on Mac OS is not as straightforward. Mac OS’s End User
License Agreement (EULA) prohibits the running of Mac OS on non-Apple hard-
ware. That said, an internet search will reveal that some developers have managed to
run Mac OS on non-Apple computers, but I can’t recommend that course of action. It
looks like your best (legal) bet is to purchase an Apple computer (either a MacBook
laptop or a Mac mini as a cheaper option), and use that to test your app.

4.4 Summary
In this chapter, you’ve gone through the process of taking a minimally viable product
and preparing it for distribution for multiple OSs. You’ve disabled the developer tool-
bar, generated a custom icon for the app, built both 32-bit and 64-bit binaries across
all the OSs, and discussed practical strategies for testing the app on those different
OSs. Here are some key takeaways to bear in mind:

 nw-builder and electron-builder provide the easiest ways to build your app for
multiple OSs.

 You have to check that the app icons work across multiple versions of Windows,
because they’re not always guaranteed to work.

 If you don’t have multiple computers running the different OSs that you need
to target, you can use a virtualization tool like VirtualBox.

 From a legal standpoint, you need to own a Mac computer in order to test your
app on Mac OS.

http://dev.modern.ie/tools/vms/mac/

88 CHAPTER 4 Shipping your first desktop application
Well done on getting this far and going through the process of making a desktop app
with NW.js and Electron. You know enough now to be able to do it again with a differ-
ent app. This exercise has helped set the foundations for diving deeper into both
Electron and NW.js, and lays the groundwork for better understanding the frame-
works. In chapter 5, you’ll explore the Node.js framework that underpins them both
and see how that works.

Part 2

Diving deeper

After building a file explorer app with both NW.js and Electron, we’ll take
a step back and cast our eyes on the programming framework behind them:
Node.js. You’ll learn about its origins, how it works, and how it implements asyn-
chronous programming. Then, we’ll explore some of Node.js’s key concepts such
as callbacks, streams, events, and modules.

 In chapter 6, we’ll continue on this theme by looking at how NW.js and Elec-
tron operate under the hood. You’ll see how the frameworks approach integrat-
ing Node.js with Chromium, how they handle managing state between the front-
end and back-end parts of the app, and how they’re structured.

 By the end of this part, you should be a in a good position to put Node.js to
use in your desktop app as well as other Node.js apps, and you’ll understand how
NW.js and Electron differ in their approaches to desktop app development.

Using Node.js within
NW.js and Electron
Long before NW.js and Electron, a programming framework called Node.js was
demoed by Ryan Dahl at JSConf in Berlin, showing a way to write and execute
server-side JavaScript. Since that demo back in 2009, Node.js has spawned a huge
ecosystem of libraries, applications, utilities, and frameworks (including NW.js and
Electron). As a programming framework, it offers a different approach compared
with other programming languages and their frameworks.

 For those new to the world of Node.js, this chapter offers a gentle introduction
to the programming framework and a chance to learn how to apply it not only
when developing desktop apps, but also in other projects such as web apps. For
those already familiar with Node.js, this chapter covers a lot of the ground that you

This chapter covers
 Exploring Node.js

 Understanding the asynchronous nature of
Node.js

 Managing events and streams

 Installing and using npm modules

 Packaging your apps with npm
91

92 CHAPTER 5 Using Node.js within NW.js and Electron
might already be familiar with (the event loop, callbacks, streams, and node modules),
so feel free to skip it.

 One of the underrated features of both NW.js and Electron is the massive collec-
tion of packages available through Node.js’s package management tool, npm, that can
be used for building desktop apps. This chapter will show how you can put Node.js to
use when developing your desktop apps, as well as for organizing your code.

5.1 What is Node.js?
Node.js is a programming framework created by Ryan Dahl back in 2009. It provides a
way to write server-side programs with JavaScript and uses an evented architecture to
handle the execution of that code. The programming framework combines V8 (a
JavaScript engine) with libuv, a library that provides access to the OS libraries in an
asynchronous fashion.

 Because of this, JavaScript code is executed by Node.js in such a way that code exe-
cuting on one line doesn’t block the execution of the code on the next line. This is
distinctly different from other languages where code on one line executes after the
code on the previous line has finished executing. It’s important to get familiar with
how Node.js handles executing code. You’ll tackle this in the next section.

5.1.1 Synchronous versus asynchronous

To clearly differentiate between synchronous and asynchronous programming, let’s
revisit the case of reading the contents of a folder using Node.js and compare it to
how it can be done with Ruby. Ruby is a programming language with a simple syntax
that works in a synchronous fashion, making it a good example to compare Node.js
against. Here’s an example written in Ruby:

files = Dir.entries '/Users/pauljensen'
puts files.length

This is a nice example that demonstrates the appeal of Ruby—the clean syntax. In this
case, the first line executes, and then the second line executes when the first line has fin-
ished. This is known as blocking. If I were to insert the following between lines 1 and 3,

sleep 5

that line would cause the program to block for 5 seconds before printing out the num-
ber of files in the list. Figure 5.1 illustrates how that executes in time.

 We refer to this as synchronous programming—each operation waits on the previous
operation to complete. There may be cases where you want to start doing something
else while you’re waiting for the list of files to be counted, but can’t because the previ-
ous line hasn’t finished yet.

93What is Node.js?
The following listing shows you can do the same thing as the Ruby example in a syn-
chronous fashion in Node.js.

const fs = require('fs');
const files = fs.readdirSync('/Users/pauljensen');
console.log(files.length);

Though this isn’t as elegant as the Ruby code example, it does exactly the same thing.
Notice that the call to the file system API’s readdirSync function has the word Sync
attached to the end of it. This is to make clear that the function operates in a synchro-
nous fashion. You would still have the issue of blocking code that delays the execution
of other code until it has completed its operation.

 What is needed is a way to fire off an operation, let it go off and do what it’s doing,
and then when it’s ready to return some data, send that data to another function, or a
callback, as it’s commonly referred to in Node.js. The next listing shows an example of
the same task using asynchronous Node.js.

const fs = require('fs');
fs.readdir('/Users/pauljensen', (err, files) => {
if (err) { return err; }
console.log(files.length);
});

Listing 5.1 Synchronous files count in Node.js

Listing 5.2 Asynchronous files count in Node.js

files = Dir.entries '/Users/pauljensen'

sleep 5

puts files.length

Figure 5.1 A diagram showing how Ruby’s execution of code is
synchronous

Gets the list of files
in the directory

Counts how many
files there are

Gets list of files
in directory

If there’s an error,
returns the errorCounts how many

files there are

94 CHAPTER 5 Using Node.js within NW.js and Electron
You can see that the code to log out the number of files in the folder is inside a func-
tion (the callback). This function will execute the moment the readdir function has
either returned an error (as the err object) or the list of files. Figure 5.2 shows an
alternative way to visualize it.

Any code that’s placed after the callback function on the next line will execute imme-
diately. For example, you can place a simple line to log out a message after the call-
back, such as this:

const fs = require('fs');
fs.readdir('/Users/pauljensen', (err, files) => {
if (err) { return err.message; }
 console.log(files.length);
});
console.log('hi');

When you run this with Node.js, you should see the following result in Terminal or
Command Prompt:

hi
56

You’ll notice that the console.log statement executed before the file count did, even
though it was placed after it in the code. This is one of the aspects of asynchronous
programming that newcomers to Node.js initially struggle to get their head around.
The best way to illustrate it is with a diagram like figure 5.3.

 If you’ve worked with Gantt charts in project management, figure 5.3 might be
familiar to you. Whereas synchronous execution mirrors the typical waterfall flow of
a sub-optimal project plan, asynchronous execution mirrors the flow of a project
where multiple tasks can run in parallel, and the project completes faster as a result.
It’s important to keep this in mind when working with Node.js. It’s one of the bigger
concepts to digest when you first start working with it—otherwise, the code will exe-
cute in an order different from what you expect, and that can lead to confusion and
loss of time.

Look up the directory.

Start doing other things that

aren’t waiting on the results

of the directory look-up.

Great! Pass those results to

the function that was waiting

to process them.

Get the results of the

directory look-up.
b

c

d

e

Figure 5.2 Asynchronous programming’s flow of execution

95What is Node.js?
5.1.2 Streams as first-class citizens

Another aspect of Node.js is the way that it encourages you to use streams as a method
of handling data within your apps. This has the benefit of allowing you to handle
transmitting and processing large amounts of data without requiring large amounts of
memory. Cases where you would want to do this include uploading large files to Ama-
zon S3 or reading a big JSON file containing addresses and filtering the data to return
only a subset that’s then written to a file. When developing any kind of app, it’s impor-
tant to ensure that it’s efficient in its memory usage—otherwise, it will slow down the
computer it’s running on and eventually stop working, as illustrated in figure 5.4.

 In figure 5.4, you can see how loading entire files into memory can become prob-
lematic. Now, you might say that there’s little chance you’ll be loading a file that’s big-
ger than the amount of RAM on a server, but when a server’s amount of free RAM is
used up over time, a small file bigger than the amount of free RAM can end up being
the straw that breaks the camel’s back.

Synchronous execution

Asynchronous execution

fs.readdirSync

console.log(files)

console.log('hi');

fs.readdir

console.log(files)

console.log('hi');

Figure 5.3 Comparison of the ways in which synchronous and asynchronous differ
in the time order of executing code.

96 CHAPTER 5 Using Node.js within NW.js and Electron
What can you do about this? You can use streams to load the file, a bit at a time, as you
can see by looking at the following example of using streams in Node.js.

 Let’s say you have a text document that you want to scan the contents of for a par-
ticular term, but it’s large, and loading all of it in memory isn’t ideal. What you would
like to do is load the text document in chunks and scan each chunk for the term. If
the term is found, you record that the term is in the text document—otherwise, you
conclude that you have yet to find the term in the text document. This is a live search
of a text document, where the contents of the text document are not indexed.

 Find a book you like that’s available online—I’ll pick Frank Herbert’s Dune (a great
book). Let’s take a phrase from the end of the book, in this case, history will call you
wives. You want to scan the book for this term, but you don’t want to load the whole
book’s contents into memory in order to find it. Instead, you’ll load it chunk by chunk
until you come across the term and can verify that it appears in the book. (You can get
a copy of the book from http://mng.bz/9sOS.)

 You can use Node’s file system API to help you read the contents of the file as a
stream with the following code.

'use strict';
const fs = require('fs');
const filePath = '/Users/pauljensen/Desktop/Frank-Herbert-Dune.rtfd/TXT.rtf';
const fileReader = fs.createReadStream(filePath, {encoding:'utf8'});
let termFound = false;

Listing 5.3 Streaming a book’s contents

Server with

10 TB disk

and

64 GB RAM

You have a large log file that

fits on the server’s hard disk.

The server has enough disk space

to keep the file, but not enough

RAM to load it into memory.

Someone runs a job to process

the file, which loads the file into

memory. The process fails when

the server runs out of memory.

100 GB

log file

Process log file
Error: Out of

memory

b

c

d

Figure 5.4 How loading a large file for processing creates pitfalls if the file is larger than total RAM
available or the amount of memory free in the server

Creates readable
stream of book file

http://mng.bz/9sOS

97What is Node.js?

fileReader.on('data', (data) => {
 if (data.match(/history will call you wives/) !== null) {
 termFound = true;
 }
});

fileReader.on('end', (err) => {
 if (err) { return err; }
 console.log('term found:',termFound);
});

You create a readable stream for a rich text file, and tell it to expect the contents of
the file to be encoded in UTF-8. Then, you attach a callback function to the data event
so that every time a piece of data is read from the file, you check whether the term is
contained in that piece of data. If it is, you set the termFound variable to true—other-
wise, it remains set to false.

 When the readable stream has finished reading the contents of the file, it will emit
an end event, to which you attach a callback function where you either return an error
object or log whether the term was found.

 If you run the example code along with the text of the book in your terminal, you
can expect to see the following result in your terminal:

$> node findTerm.js
=> term found: true

What you’ve achieved here is a way to read a Rich Text Format (RTF) document and
find a term within. But you could have done the same thing with less code by using the
file system API’s readFile function, with the code shown next.

'use strict';

const fs = require('fs');
const filePath = '/Users/pauljensen/Desktop/Frank-Herbert-Dune.rtfd/TXT.rtf';
let termFound = false;

fs.readFile(filePath, {encoding: 'utf8'}, (err, data) => {
 if (err) { return err; }
 if (data.match(/history will call you wives/) !== null) {
 termFound = true;
 }
 console.log('term found:',termFound);
});

This example achieves the same result but only requires one callback function rather
than two callbacks for the readable stream version. So, why would you use streams
over the simpler fs.readFile method?

Listing 5.4 Term finding with Node.js’s fs.readFile function

For each chunk
of data . . .

. . . checks if
there’s a match
for that term

After reading file,
reports errors or
whether term was
found

Loads file’s
contents in full

Checks for error
and returns if
that’s the case

Checks whether
term is found

Reports back if
term is found

98 CHAPTER 5 Using Node.js within NW.js and Electron
 The answer is speed. Streaming the contents of a file with fs.createReadStream
completes faster than attempting to read the contents of a file with fs.readFile. You
can try this out by using Node’s process.hrtime function to measure the time it takes
for the process to complete. Adjust the previous examples so they include the follow-
ing line at the top of each file:

const startTime = process.hrtime();

Then, include the following lines after the console.log statement printing whether the
term was found:

const diff = process.hrtime(startTime);
console.log('benchmark took %d nanoseconds', diff[0] * 1e9 + diff[1]);

Here, calling the process.hrtime function without any arguments records a time-
stamp, which you store as the startTime variable. After creating this variable, you
compare it to a later time, after the code has finished reading the contents of the Rich
Text Format document and printed out whether the term was found. By passing the
startTime variable into the process.hrtime function, you get back the difference
between now and that startTime as a tuple of seconds and nanoseconds. You then
print the time difference using console.log, allowing you to see how long it took to
read the contents of the document with both approaches.

 Your results may vary, but in running them on my laptop (a 13-inch mid-2014
MacBook Pro with 16 GB RAM and a 3 GHz processor), I get the results shown in
table 5.1.

You can see that in this test run, the streaming function is almost three times as fast as
the fs.fileRead function (usually, for reliable metrics you would do lots of test runs
and measure the standard deviation and variance between each function’s results, but
that’s beyond the scope of this book). This result varies only slightly between multiple
test runs.

 Structuring your code to make use of streams will allow for it to execute faster and
be more efficient with memory. You can see this for yourself by tracking the memory
usage of both approaches using Node’s process.memoryUsage function in the code
examples. In the code examples, after they have finished reading the data of the doc-
ument, insert the following line of code:

console.log(process.memoryUsage());

Table 5.1 Streaming saves time

API function Time taken

fs.readFile 62.61 milliseconds

fs.createReadStream 21.59 milliseconds

99What is Node.js?
When you add this line to both the streaming-read and full-read examples and then
run them, you should see this output for the full fs.readFile example:

{ rss: 36184064, heapTotal: 20658336, heapUsed: 16310280 }

And for the streaming file example:

{ rss: 18276352, heapTotal: 6163968, heapUsed: 2869000 }

What’s noticeable already is that the memory usage numbers are smaller in the stream-
ing file code than in the full readFile code (49% smaller RSS, 70% smaller heapTotal,
and 82% smaller heapUsed). Not only are streams faster, they’re more memory effi-
cient, too.

5.1.3 Events

Another kind of API interface that Node.js exposes to developers is the event pattern.
Those who have used jQuery or addEventListener in browser-based JavaScript will be
familiar with this pattern, and the fs.createReadStream example discussed in the last
few pages also exposes an events API interface where functions can be executed when
a chunk of data is read, when the file has finished streaming, or when an error occurs
reading the file.

 This fits with the way that Node.js’s code is executed: it makes use of the event loop.
This involves executing non-blocking code when an event is triggered, meaning that
other events can occur at the same time. In various programming languages such as
Ruby and Python, there’s a way to run code in an asynchronous fashion within an
event loop, but this requires using libraries that are structured to execute non-blocking
code, such as EventMachine for Ruby, and Twisted for Python. With Node.js, there’s
no external library to load and execute—the programming framework has a built-in
event loop that it automatically begins executing when it starts.

 Not only do various API functions in Node.js expose an events interface, but
Node.js also provides a library for creating your own event interfaces using the
EventEmitter module. Here’s an example of using the EventEmitter module to greet
someone with a message when the welcome event is emitted:

'use strict';

const greeter = new events.EventEmitter();

greeter.on('welcome', function () {
 console.log('hello');
});

greeter.emit('welcome');

An event emitter instance called greeter is created, and you create an event on it with
the name 'welcome', which when emitted will log 'hello'. You then emit the event

100 CHAPTER 5 Using Node.js within NW.js and Electron
'welcome' on the greeter object. If you run the code in your Node.js REPL, you can
see that the message “hello” is printed in the Terminal.

 As you work through NW.js’s and Electron’s APIs, you’ll see the event pattern in
use and get a chance to work with it as you go through the examples in the book.

5.1.4 Modules

Structuring code into reusable libraries is an important part of any programming lan-
guage’s ecosystem, and a good package system goes a long way toward helping devel-
opers be productive. In Node.js, groups of functions are organized into modules, and
these modules can be easily created and reused in other places.

 Node.js uses a module format called CommonJS. The CommonJS spec in brief is a
standard for creating nonbrowser JavaScript libraries that can work with each other,
but has also been applied to browser-based JavaScript libraries as well.

 Let’s work through an example of creating a module in order to get a better feel
for it.

CREATING PUBLIC API METHODS WITH MODULE.EXPORTS

To make functions, objects, and other values publicly available in a JavaScript file,
the developer has to use either one of two specific expressions: exports or module
.exports. Say you have a function for performing some business logic in your file,
and you want to be able to load the file and call the following function:

function applyDiscount (discountCode, amount) {
 let discountCodes = {
 summer20: (amt) => {
 return amt * 0.8;
 },
 bigone: (amt) => {
 if (amt > 10000) {
 return amt - 10000;
 } else {
 return amt;
 }
 }
 };

 if (discountCodes[discountCode]) {
 return discountCodes[discountCode](amount);
 } else {
 return amount;
 }
}

If you want to make this a publicly available function on the file, you can do that
like so:

exports.applyDiscount = applyDiscount;

101What is Node.js?
Or like this:

module.exports = {
 applyDiscount: applyDiscount
};

Or if the file has only one function that you want to call, you could export the func-
tion like this:

module.exports = applyDiscount;

These methods don’t have to expose only functions or objects; they can be used to
export any kind of value in JavaScript. This allows you to organize your code as you
like and make it easily reusable. The next stage is to be able to load libraries together,
via the require method.

LOADING LIBRARIES VIA REQUIRE

Once you have a file that has publicly available functions or values, you can then
include it in other files by use of the require function. For example, say you turned
the bit of business logic for applying discounts into a file called discount.js. You could
include that file in another place, say at the same location as the discount.js file in the
app’s folder, like this:

const discount = require('./discount');

You would now have the file’s exported functions or objects loaded and attached to
the discount variable in your file. You can then call the applyDiscount function in
your file like so:

discount.applyDiscount('summer20', 4999);

This allows you to structure your code into small, reusable libraries that are easy to
understand and easy to use elsewhere. This is a key philosophy of Node.js—to use and
combine lots of little modules when developing rather than create large files that are
difficult to read through and understand.

 The require function isn’t used only to load local files; it can be used to load mod-
ules, as well. The Node.js API contains a set of modules that can be loaded explicitly
by using a require function that’s passed either the name of a module or the relative
file path to the module, like this example:

const os = require('os');

That code loads Node’s OS module. Node.js provides a number of modules in its
core, and you can load them without having to install them. A few of the modules are
loaded as global objects in Node.js’s namespace, and the rest have to be loaded via the
require function. The list of modules that Node.js provides by default can be viewed
at https://nodejs.org/api.

https://nodejs.org/api

102 CHAPTER 5 Using Node.js within NW.js and Electron
 Apart from Node.js’s core modules, there’s also the ability to install and use mod-
ules via npm (which stands for Node Package Manager). npm is a free central reposi-
tory that lets you publish and download modules to use in your apps. You can search
for and find modules via https://npmjs.com and then install them (for example,
request) via this command on the Terminal:

npm install request

This will download a copy of the request module (a library used to make HTTP
requests), and place it in a folder called node_modules. Then you’ll be able to load
that module within your code as a locally installed module as you would with Node’s
main modules, like this:

const request = require('request');

This will load the request module that’s located in the node_modules folder. If you
open that folder, you’ll see the folder for the request module there. The require
function in Node.js is designed to work so that if you pass the name of a module, it will
look up the modules that are either available in Node.js’ core, or installed globally, or
installed locally in the node_modules folder.

 You can also install npm modules globally, meaning that they’re not installed in
the app’s node_modules folder but instead in a folder where they’re available to any
Node.js process that loads via require. Examples of npm modules installed globally
tend to be build tools like Grunt and Bower. To install them globally, append a –g
argument to the npm install command, like this:

npm install –g grunt-cli

The reason for installing grunt-cli globally in this case is so you only have to install it
once, not once per app you use it with. Also, npm modules can have binary com-
mands, and installing an npm module globally allows you to run that binary command
without having to install the npm package each time. The same can be said for install-
ing NW.js and Electron as global npm modules.

 This is something of a quick overview of what Node.js offers from a developer’s
perspective. Given that we’ve been discussing installing third-party modules, we’ll
look at the mechanism behind installing third-party modules—the package man-
ager known as npm.

5.2 Node Package Manager (npm)
Node Package Manager (or npm) is the tool used by Node.js developers to handle
installing libraries. It’s built into Node.js by default and has proven to be a popular
tool, maintaining a central repository of over 400,000 packages to date. It allows devel-
opers to download modules for use in their apps as well as publish modules for others
to use.

https://npmjs.com

103Node Package Manager (npm)
5.2.1 Finding packages for your app

Visit npmjs.com, and you’ll be able to find out more information about npm and what
it does, besides finding modules that may be of interest, such as webpack and Type-
Script. You can search for packages by typing in a term that matches the name,
description, or keywords used for those modules. Alternatively, you can click the most
popular packages and see whether they’re of use to you.

 Once you’ve found a package you want to use in your app (or experiment with),
you can install it via the command line like so:

npm install lodash

You’ll now have the lodash module installed inside the node_modules folder in the
current directory that your command-line terminal is in, and you’ll be able to use it in
your code like this:

const _ = require('underscore');

Now, any places in your code where require('lodash') is called will have the module
already loaded, and reuse it from require’s module cache, rather than go through
the process of loading the module from scratch.

5.2.2 Tracking installed modules with package.json

After a while, you’ll be using a bunch of modules in your app, and you’ll want to keep
a record of what they are, as well as which version of them you’re using. You’ll need a
manifest file. npm uses a manifest file called package.json as the way to describe an npm
module, as well as what module dependencies it has. In the previous example, you
installed the lodash module but did not append its information to a package.json file.

 Create a package.json file to track your dependencies. You can start that process by
running this command in your terminal:

npm init

This triggers the process of creating a package.json file by asking a bunch of questions
in the command line and populating the package.json file’s contents as a result. By
the end of the question process, you should see a package.json file that resembles this:

{
 "name": "pkgjson",
 "version": "1.0.0",
 "description": "My testbed for playing with npm",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "",
 "license": "ISC"
}

http://npmjs.com

104 CHAPTER 5 Using Node.js within NW.js and Electron
This creates a package.json file that can store configuration information for your
app and that also contains information about the module, what file it should load
when required as a dependency, any script commands it has, and what software
license it has.

 Now that you’ve got a package.json file to work with, you can track your module
dependencies. Run the following command in your terminal:

npm install lodash --save

Not only will it install the lodash module, it will also add the following configuration
information to the package.json file:

"dependencies": {
 "lodash": "^4.15.0"
}

The name and version of the module are now stored in the package.json file, meaning
that you can track your app’s modules and versions.

 Now, if you use version control for your app (like Git) and want to allow other
developers to set up the app quickly on their computer, they’ll be able to install all of
the app’s module dependencies by running the following command at the same work-
ing directory as the package.json file:

npm install

When passed no arguments, npm install will look for the package.json file and install
all the module dependencies that are listed in the file.

INSTALLING DEVELOPMENT-ONLY DEPENDENCIES

There are some module dependencies that you want to use only for development pur-
poses and not as part of the app, such as testing libraries like Mocha and Karma. You
can install these modules as development dependencies using the following com-
mand from your terminal:

npm install mocha –-save-dev

This will install the Mocha module into the node_modules folder and will add the fol-
lowing JSON to the package.json file:

"devDependencies": {
 "mocha": "^3.0.2"
}

Being able to separate dependencies required for the app to run from dependencies
used to test and build the app helps developers ship smaller binaries of the app.

105Node Package Manager (npm)
5.2.3 Packaging your modules and apps with npm

One of the major factors in collaborating successfully on an npm module is how easy
it is for other developers to install and get running on their local development
machine. Packaging your modules and apps so that they install and run seamlessly
from one machine to another is key to this.

CONTROLLING DEPENDENCY VERSIONS IN PACKAGE.JSON

When it comes to installing an app that has Node.js modules, there’s first a question of
what to track in version control. There are two things that can be done: either the devel-
oper has the Node.js modules and all their files checked into version control, or they
check the package.json file into version control (which will track what dependencies the
app has) and exclude the node_modules folder from being tracked by version control.

 Developers tend to go for the latter approach for two reasons. The first is that
there are fewer files to track in version control (making it easier to use the version
control tool to look through only the app files). The second is for compatibility with
multiple OSs. There are some Node.js modules that use extensions written in C++,
and for those Node.js modules to be installed, they need to be compiled on the devel-
oper’s machine. If the Node.js module is compiled on Mac OS and then checked into
version control, and then someone else wants to use it but on a different computer
(Linux or Windows), then the Node.js module will fail to work because it has been
compiled to work against a different OS.

 My personal preference is to not only track the package.json file of your app, but
also lock down the version of the dependencies in that package.json file. To explain:
When a Node.js module is added to the package.json file via npm install, you’ll
notice that the dependency listing in the package.json will show a caret character (^)
before the version number of the module. The ^ indicates to npm that when installing
that dependency, it can install a more up-to-date version, so long as it’s compatible
with the major version specified in the package.json file. As an example, say you install
a version of CoffeeScript for use in your app:

npm install coffee-script --save

If you look at the package.json file, you’ll see something like this:

"dependencies": {
 "coffee-script":"^1.10.1"
}

Notice the ^ preceding the version 1.10.1 of CoffeeScript. You’ve installed version 1.10.1
of CoffeeScript, but let’s say a couple months later someone downloads a copy of the
app’s code from GitHub and runs npm install to download the dependencies. If
CoffeeScript 1.11.0 comes out, or even 1.10.2, those will be downloaded instead of
1.10.1. The caret character indicates that you can install a more up-to-date version
of the dependency, so long as the changes are only at patch level (the number of the
version after the second dot, indicating a bug fix or change that doesn’t affect existing

106 CHAPTER 5 Using Node.js within NW.js and Electron
functionality) or minor level (the number after the first dot in the version number,
indicating a small change to the module which shouldn’t cause breaking changes to
your app). If CoffeeScript 2.0.0 is out, it won’t install that version because that’s a
major-level change (indicating new features/changed API and therefore likely to
cause breaking changes to your app).

 The idea behind this approach is to allow developers to pull in fixes and non-
breaking updates to their dependencies without having to manually update those
numbers in the package.json file. This can work as long as the developers of Node.js
modules follow the principles of semantic versioning, as well as take care not to intro-
duce bugs during those updates. From a DevOps perspective, this can provide room
for production errors to creep in (hence, the need for a comprehensive testing strat-
egy, which I’ll cover later in the book). You want control over the version of the
dependencies.

 How do you lock down the versions of the dependencies? There are two ways you
can do this. The first is to remove any ^ or ~ characters from the front of the version
numbers of the dependencies listed in the package.json file. If you don’t want to do
that manually, the alternative approach is to use npm shrinkwrap.

 npm’s shrinkwrap command will lock down the version of dependencies that are
installed with the module. Running npm shrinkwrap in the same working directory as
the package.json file will produce a file called npm-shrinkwrap.json, a JSON file that
has configuration information to specify exactly what version of the module should be
installed, which looks like this:

{
 "name": "pkgjson",
 "version": "1.0.0",
 "dependencies": {
 "underscore": {
 "version": "1.8.3",
 "from": "underscore@",
 "resolved": "https://registry.npmjs.org/underscore/-/underscore-1.8.3.tgz"
 }
 }
}

This file helps npm know exactly what versions of the software should be installed for
the module.

 Based on my experience working with Node.js since 2010, my suggestion is to use
the approach of keeping dependencies in the package.json file up to date, keep the
node_modules folder out of version control, and, when needed, use npm shrinkwrap
to lock down the dependencies in use.

PUBLISHING APPLICATIONS AND MODULES TO NPM

Once you’ve created a module or an app and begun tracking its dependencies, you may
want to make it available for others to download and use. You can do that through npm.
You’ll need to create a free account with npm (unless you have one already) by going to

107Summary
npmjs.com and clicking the signup link. Fill in your details, and once you’ve set up your
account, in your command-line terminal, run the following command:

npm login

Once you’ve logged in, you’ll be able to publish modules from the command line up to
npm. Say you’ve created a module that you want to be able to install via npm. In the same
working directory as the package.json for the module, run the following command:

npm publish

That will push a copy of the module up to npm, and you’ll then be able to install it via
npm install. You’ll also be able to publish updates to your package using this com-
mand, and incrementing the version number of the module in the package.json file.

5.3 Summary
This chapter presented a broad introduction to Node.js. Now you have a better under-
standing of what it’s like to use as a programming framework, and you’ll be able to
start implementing it in your apps. Things that you’ll want to take away from this
chapter include the following:

 Node.js uses asynchronous programming. Make sure to structure your code to
use callbacks and streams when interacting with Node.js’ APIs and modules.

 Streams are an effective way to read/write data without using much memory.
 Some of the browsers’ APIs overlap with Node.js’s APIs. Note when you use

them because they will have subtle differences.
 Use npm modules to install libraries that will help you build app features faster.
 You can publish modules to npm to share your libraries with the community.

In chapter 6, we’ll turn our attention back to NW.js and Electron and take a look at
how they operate under the hood, so you can understand how they work differently.

http://npmjs.com

Exploring NW.js
and Electron’s internals
Although NW.js and Electron consist of the same software components, and Cheng
Zhao has influenced the development of both, the two frameworks have evolved
different approaches to how they function under the hood. Analyzing how they
operate internally will help you understand what’s going on when you’re running
an app and demystify the software.

 In this chapter, we’ll look at how NW.js and Electron function internally. We’ll
take a look at NW.js first to see how it combines Node.js with Chromium (because
that was the first Node.js desktop app framework) and then explore how Electron
took a different approach to combining those software components. Following that,
we’ll look at the frameworks’ different approaches to context and state. I’ll then

This chapter covers
 Understanding how NW.js and Electron combine

Node.js and Chromium

 Developing with Electron’s multi-process
approach

 Building with NW.js’s shared-context approach

 Sharing state by passing messages
108

109How does NW.js work under the hood?
elaborate a bit on Electron’s use of message passing to transmit data as state between
the processes in a desktop app.

 We’ll also look at some resources for further reading. The goal is that you’ll be in a
good position to understand how the two frameworks differ in their internal architec-
ture and the implications this has on building desktop apps with them.

6.1 How does NW.js work under the hood?
From a developer’s view, NW.js is a combination of a programming framework
(Node.js) with Chromium’s browser engine through their common use of V8. V8 is a
JavaScript engine created by Google for its web browser, Google Chrome. It’s written
in C++ and was designed with the goal of speeding up the execution of JavaScript in
the web browser.

 When Node.js was released in 2009, a year after Google Chrome, it combined a
multiplatform support library called libuv with the V8 engine and provided a way to
write asynchronous server-side programs in JavaScript. Because both Node.js and
Chromium use V8 to execute their JavaScript, it provided a way to combine the two
pieces of software, which Roger Wang came to understand and figure out. Figure 6.1
shows how those components are combined.

Looking at figure 6.1, you can see that Node.js is used in the back end to handle work-
ing with the OS, and that Blink (Chromium’s rendering engine) is used to handle
rendering the front-end part of the app, the bit that users see. Between them, both
Node.js and Blink use V8 as the component that handles executing JavaScript, and it’s

Node.js

npm

Operating

system

bindings

Shared

context

V8

Blink rendering engine

index.html

app.css

app.js

Figure 6.1 Overview of NW.js’s component architecture in relation to loading an app

110 CHAPTER 6 Exploring NW.js and Electron’s internals
this bit that’s crucial in getting Node.js and Chromium to work together. There are
three things necessary for Node.js and Chromium to work together:

 Make Node.js and Chromium use the same instance of V8
 Integrate the main event loop
 Bridge the JavaScript context between Node and Chromium

6.1.1 Using the same instance of V8

Both Node.js and Chromium use V8 to handle executing JavaScript. Getting them to
work together requires that a couple of things happen in order. The first thing NW.js
does is load Node.js and Chromium so that both of them have their JavaScript con-
texts loaded in the V8 engine. Node’s JavaScript context will expose global objects and
functions such as module, process, and require, to name a few. Chromium’s Java-
Script context will expose global objects and functions like window, document, and
console. This is illustrated in figure 6.2 and involves some overlap because both Node
and Chromium have a console object.

 When this is done, the JavaScript context for Node.js can be copied into the
JavaScript context for Chromium.

 Although that sounds quite easy, the reality is that there’s a bit more glue involved
for Node.js and Chromium to work together—the main event loop used by both has
to be integrated.

NW.js and its forked dependencies
NW.js, a combination of Node.js and the WebKit browser engine, used to be known
as node-webkit. Recently, both components were forked: Google created a fork of
WebKit called Blink, and in October 2014 a fork of Node.js called IO.js emerged. They
were created for different reasons, but as projects that received more regular
updates and features, NW.js opted to switch to using them.

As node-webkit no longer used Node.js and WebKit (but IO.js and Blink instead), it
was suggested that the project should be renamed; hence, the project was renamed
to NW.js.

In May 2015, the IO.js project agreed to work with the Node.js foundation to merge
IO.js back into Node.js. NW.js has switched back to using Node.js since.

111How does NW.js work under the hood?
6.1.2 Integrating the main event loop

As discussed in section 5.1.3, Node.js uses the event loop programming pattern to
handle executing code in a non-blocking, asynchronous fashion. Chromium also uses
the event loop pattern to handle the asynchronous execution of its code.

 But Node.js and Chromium use different software libraries (Node.js uses libuv, and
Chromium uses its own custom C++ libraries, known as MessageLoop and Message-
Pump). To get Node.js and Chromium to work together, their event loops have to be
integrated, as illustrated in figure 6.3.

 When the JavaScript context for Node.js is copied into Chromium’s JavaScript con-
text, Chromium’s event loop is adjusted to use a custom version of the MessagePump
class, built on top of libuv, and in this way, they’re able to work together.

Node.js’ JavaScript context

process

module

require

console

Buffer

Blink’s JavaScript context

example.js

Legend of global objects

window

module

process Buffer

document

require

console

When NW.js loads,

Node.js’ global objects

are copied from their

JavaScript context into

the context of the Blink

rendering engine, so

that they exist in one

place.

When a JavaScript file (example.js)

runs, it has access to all the objects in

Blink’s JavaScript context, including

the sever-side objects from Node.js

var fs = require('fs');

document.write('');

fs.readdir('/home', function(err, files){
files.foreach(function (file){
document.write(''+file+')

});
});

document.write('');

Native object

Shared object

Copied object

c

b

Figure 6.2 How NW.js handles copying the JavaScript context for Node.js into Chromium’s JavaScript context

112 CHAPTER 6 Exploring NW.js and Electron’s internals
6.1.3 Bridging the JavaScript context between Node and Chromium

The next step to completing the integration of Node with Chromium is to integrate
Node’s start function with Chromium’s rendering process. Node.js kicks off with a
start function that handles executing code. To get Node.js to work with Chromium,
the start function has to be split into parts so that it can execute in line with Chro-
mium’s rendering process. This is a bit of custom code within NW.js that’s used to
monkey-patch the start function in Node.

 Once this is done, Node is able to work inside of Chromium. This is how NW.js is
able to make Node.js operate in the same place as the front-end code that’s handled
by Chromium.

 That rounds up a bit about how NW.js operates under the hood. In the next sec-
tion, we’ll explore the different approach taken by Electron.

6.2 How does Electron work under the hood?
Electron’s approach shares some similarities in terms of the components used to pro-
vide the desktop framework, but differs in how it combines them. It’s best to start by
looking at the components that make up Electron. To see an up-to-date source code
directory, take a look at http://mng.bz/ZQ2J.

 Figure 6.4 shows a representation of that architecture at a less-detailed level. Elec-
tron’s architecture emphasizes a clean separation between the Chromium source code
and the app. The benefits of this are that it makes it easier to upgrade the Chromium
component, and it also means that compiling Electron from the source code becomes
that much simpler.

Node.js event loop Chromium event loop

libuv MessagePump MessageLoop

Figure 6.3 NW.js integrates the event loops of Node.js and Chromium by
making Chromium use a custom version of MessagePump, built on top of
libuv.

Electron

Atom

App Browser Renderer

Chromium source code

Common
Figure 6.4 Electron’s
source code architecture.
This diagram shows the
main blocks of components
that make up Electron.

http://mng.bz/ZQ2J

113How does Electron work under the hood?
The Atom component is the C++ source code for the shell. It has four distinct parts
(covered in section 6.2.2). Finally, there’s Chromium’s source code, which the Atom
shell uses to combine Chromium with Node.js.

 How does Electron manage to combine Chromium with Node.js if it doesn’t rely
on patching Chrome to combine the event loops for Chromium and Node.js?

6.2.1 Introducing libchromiumcontent

Electron uses a single shared library called libchromiumcontent to load Chromium’s
content module, which includes Blink and V8. Chromium’s content module is respon-
sible for rendering a page in a sandboxed browser. You can find this library on GitHub
at https://github.com/electron/libchromiumcontent.

 You use the Chromium content module to handle rendering web pages for the app
windows. This way, there’s a defined API for handling the interaction between the Chro-
mium component and the rest of Electron’s components.

6.2.2 Electron’s components

Electron’s code components are organized inside Electron’s Atom folder into these
sections:

 App
 Browser
 Renderer
 Common

We’ll look at what each of those folders contains in a bit more detail.

APP

The App folder is a collection of files written in C++11 and Objective-C++ that handles
code that needs to load at the start of Electron, such as loading Node.js, loading Chro-
mium’s content module, and accessing libuv.

BROWSER

The Browser folder contains files that handle interacting with the front-end part of
the app, such as initializing the JavaScript engine, interacting with the UI, and bind-
ing modules that are specific to each OS.

RENDERER

The Renderer folder contains files for code that runs in Electron’s renderer processes.
In Electron, each app window runs as a separate process, because Google Chrome runs
each tab as a separate process, so that if a tab loads a heavy web page and becomes
unresponsive, that tab can be isolated and closed without killing the browser and the
rest of the tabs with it.

 Later in this book, we’ll look at how Electron handles running code in a main pro-
cess, and how app windows have their own renderer processes that run separately.

https://github.com/electron/libchromiumcontent

114 CHAPTER 6 Exploring NW.js and Electron’s internals
COMMON

The Common folder contains utility code that’s used by both the main and renderer
processes for running the app. It also includes code that handles integrating the mes-
saging for Node.js’ event loop into Chromium’s event loop.

 Now you have an idea of how Electron’s architecture is organized. In the next sec-
tion, we’ll look at how Electron handles rendering app windows in a process that’s
separate from the main app process.

6.2.3 How Electron handles running the app

Electron handles running apps differently than NW.js. In NW.js, the back-end and
front-end parts of the desktop app share state by having the Node.js and Chromium
event loops integrated and by having the JavaScript context copied from Node.js into
Chromium. One of the consequences of this approach is that the app windows of an
NW.js app end up sharing the same reference to the JavaScript state.

 With Electron, any sharing of state from the back-end part of the app to the front-
end part and vice versa has to go through the ipcMain and ipcRenderer modules. This
way, the JavaScript contexts of the main process and the renderer process are kept
separate, but data can be transmitted between the processes in an explicit fashion.

 The ipcMain and ipcRenderer modules are event emitters that handle interpro-
cess communication between the back end of the app (ipcMain), and the front-end
app windows (ipcRenderer), as shown in figure 6.5.

This way, you have greater control over what state exists in each app window as well as
how the main app interacts with the app windows.

 Regardless of which desktop framework you choose to build your app with, keep
in mind how you want data to be accessed and altered within your app. Depending
on what your app does, you may find that one framework is better suited to your
needs than the other, and in cases where you’re working with those desktop app
frameworks already, you’ll want to keep in mind how NW.js and Electron handle
JavaScript contexts.

 Now let’s take a closer look at how Electron and NW.js make use of Node.js.

Application

ipcmain

Application window

ipcRenderer

Application window

ipcRenderer

Figure 6.5 How Electron passes
state via messaging to and from the
app windows. In Electron, each app
window has its own JavaScript state,
and communicating state to and from
the main app process happens via
interprocess communication.

115How does Node.js work with NW.js and Electron?
6.3 How does Node.js work with NW.js and Electron?
Node.js interacts with the hybrid desktop environments of NW.js and Electron simi-
larly to server-side apps. But to understand the few differences, we’ll look at the way
Node.js is integrated into NW.js.

6.3.1 Where Node.js fits into NW.js

NW.js’s architecture consists of a number of components, Node.js being one of them.
NW.js uses Node.js to access the computer’s file system and other resources that would
otherwise not be available due to web browser security. It also provides a way to access
a large number of libraries through npm (figure 6.6).

NW.js makes Node.js available through the context of the embedded web browser,
which means you can script JavaScript files that access both Node.js’s API and API
methods related to the browser’s JavaScript namespace—such as the WebSocket
class, for example. In earlier examples in the book, you’ve written code that has
accessed Node.js’s file system API in the same file that also accesses the DOM in the
screen.

 This is possible through the way that NW.js has merged the JavaScript namespaces
of Node.js and the Blink rendering engine, as well as merged the main event loops of
both, allowing them to operate and interact in a shared context.

6.3.2 Drawbacks of using Node.js in NW.js

Because of how NW.js merges the JavaScript contexts of the Blink rendering engine
and Node.js, you should be aware of some of the consequences that come with this
approach. I’ll describe what those things are and how you can handle them so that
they don’t trip you up.

THE NODE.JS CONTEXT IS ACCESSIBLE TO ALL WINDOWS

I’ve talked about Node.js and Blink sharing the same JavaScript context, but how does
that work in the context of an NW.js app where there are multiple windows?

 In Blink, each window has its own JavaScript context, because each window loads a
web page with its own JavaScript files and DOM. The code in one window will operate

Node.js

V8

Blink

Visual rendering

of app in Blink

browser component

Access to computer

resources in Node.js

npm

Figure 6.6 How Node.js is used within NW.js for desktop apps

116 CHAPTER 6 Exploring NW.js and Electron’s internals
in the context of that window only, and not have its context leak into another win-
dow—otherwise, this would cause issues with maintaining state in the windows as well
as security issues. You should expect the state that exists in one window to be isolated
to that window and not leak.

 That said, NW.js introduces a way to share state between windows via the way
that Node.js’s namespace is loaded into the namespace of Blink to create a shared
JavaScript context. Even though each window has its own JavaScript namespace,
they all share the same Node.js instance and its namespace. This means there’s a
way to share state between windows through code that operates on Node.js’s
namespace properties (such as the API methods), including via the require func-
tion that’s used to load libraries. Should you need to share data between windows
in your desktop app, you’ll be able to do this by attaching data to the global object
in your code.

COMMON API METHODS IN CHROMIUM AND NODE.JS
You may know that both Node.js and Blink have API methods with the same name and
that work in the same way (for example, console, setTimeout, encodeURIComponent).
How are these handled? In some cases, Blink’s implementation is used, and in other
cases, Node.js’s implementation is used. NW.js opts to use Blink’s implementation of
console, and for setTimeout, the implementation used depends on whether the file
is loaded from a Node.js module or from the desktop app. This is worth keeping in
mind when you’re using those functions, because although they’re consistent in their
implementations of inputs and outputs, there might be a slight difference in speed
of execution.

6.3.3 How Node.js is used within Electron

Electron uses Node.js along with Chromium, but rather than combining the event
loops of Node.js and Chromium together, Electron uses Node.js’s node_bindings fea-
ture. This way, the Chromium and Node.js components can be updated easily without
the need for custom modification of the source code and subsequent compiling.

 Electron handles the JavaScript contexts of Node.js and Chromium by keeping the
back-end code’s JavaScript state separate from that of the front-end app window’s
state. This isolation of the JavaScript state is one of the ways Electron is different from
NW.js. That said, Node.js modules can be referenced and used from the front-end
code as well, with the caveat that those Node.js modules are operating in a separate
process to the back end. This is why data sharing between the back end and app win-
dows is handled via inter-process communication, or message passing.

 If you’re interested in learning more about this approach, check out this site from
GitHub’s Jessica Lord: http://jlord.us/essential-electron/#stay-in-touch.

http://jlord.us/essential-electron/#stay-in-touch

117Summary
6.4 Summary
In this chapter, we’ve exposed some differences between NW.js and Electron by explor-
ing how their software components work under the hood. Some of the key takeaways
from the chapter include the following:

 In NW.js, Node.js and Blink share JavaScript contexts, which you can use for
sharing data between multiple windows.

 This sharing of JavaScript state means that multiple app windows for the same
NW.js app can share the same state.

 NW.js uses a compiled version of Chromium with custom bindings, whereas
Electron uses an API in Chromium to integrate Node.js with Chromium.

 Electron has separate JavaScript contexts between the front end and the
back end.

 When you want to share state between the front end and back end in Electron
apps, you need to use message passing via the ipcMain and ipcRenderer APIs.

In the next chapter, we’ll look at how to use the various APIs of NW.js and Electron to
build desktop apps—specifically, at the way in which you can craft an app’s look and
feel. It will be more visual, and hopefully more fun.

Part 3

Mastering Node.js
desktop application

development

Many APIs are available in desktop application frameworks to help pro-
vide features like accessing the webcam and clipboard, opening and saving files
to the hard disk, and more. This part explores the various ways in which NW.js
and Electron allow you to add a number of features to your desktop apps.

 Chapters 7, 8, and 9 look at ways to control the look and feel of your desktop
apps, from controlling the window dimensions and full-screen behavior, through
to creating menus and making tray apps.

 Chapter 10 explores how to implement drag-and-drop functionality in your
apps through HTML5 APIs, and chapter 11 shows you how to integrate webcam
functionality for taking photos from your computer’s webcam and saving them
to disk.

 Chapters 12 and 13 deal with different ways you can store and access app data
and how to access data in the OS clipboard.

 Toward the end of this part of the book, we’ll look at using keyboard short-
cuts to implement controls for a game, and how to integrate a real-time Twitter
feed into a desktop notifications app.

Controlling how your
desktop app is displayed
When you build a desktop app, one of the first considerations is how the user will
interact with it. Will it be a windowed app that can operate at the same time as
other apps, a publicly accessible terminal in a bank, or an immersive experience
that will consume all of the user’s attention, like a game?

 A desktop app can take many forms. It can operate in a window that can be max-
imized and minimized as needed, or run in full-screen mode, like a video game. In
this chapter, we’ll explore options for controlling the way the app is displayed to
the user, and I’ll show you some methods that will come in handy when you’re
building apps.

7.1 Window sizes and modes
User interfaces come in a range of different dimensions; traditional IM apps like
AIM or MSN Messenger (if you’re old enough to remember them) tended to have

This chapter covers
 Controlling the application window

 Setting the application window's dimensions

 Making applications run in full-screen mode

 Creating kiosk applications
121

122 CHAPTER 7 Controlling how your desktop app is displayed
a long portrait window listing many contacts that users would want to chat with. Over
time, apps like Slack and Gitter have approached the world of IM with a different win-
dow size, much in the style of a forum, and to accommodate longer messages and
images (there’s a tendency in Slack communities to use a lot of animated GIFs). Win-
dow sizes for apps need to provide the best possible UX, so it’s important to be able to
make them fit the dimension required for the UI. Figure 7.1 shows an example.

In NW.js and Electron, there are multiple ways to configure the window. We’ll take a
look at how you can configure an app window’s width and height in NW.js.

7.1.1 Configuring window dimensions for an NW.js app

NW.js allows you to configure the window’s width and height via the package.json file.
In the GitHub repository for this book, the chapter-07 folder holds a copy of the
example NW.js app called window-resizing-nwjs. The code for it looks like this:

<html>
 <head>
 <title>Window sizing NW.js</title>
 </head>

Figure 7.1 Skype in action. Notice the
tall style of the UI, accommodating
mainly chat messages.

123Window sizes and modes
 <body>
 <h1>Hello World</h1>
 </body>
</html>

This is a pretty basic HTML file, containing an h1 element inside the body tag with the
words Hello World, much like the Hello World examples shown earlier in this book. If
you want to add window dimensions to the app, you can adjust them to work by using
this for the package.json file:

{
 "name" : "window-sizing-nwjs",
 "version" : "1.0.0",
 "main" : "index.html",
 "window" : {
 "width" : 300,
 "height" : 200
 }
}

The window’s width and height are specified in pix-
els. This allows you to make sure that when the app
opens, its width and height are set at those dimen-
sions. This is one way you can control the window’s
width and height. Figure 7.2 shows an example of
what the changes look like.

 This demonstrates how you can control the app
window’s initial width and height in NW.js. How do
you do the same with Electron?

7.1.2 Configuring window dimensions for an Electron app

Electron’s ability to configure window dimensions is similar to that of NW.js, but the
approach is different. Where NW.js allows you to specify the configuration in the pack-
age.json manifest file, Electron requires that you configure window dimensions at the
point in which the app window is initialized.

 In the book’s GitHub repository, you’ll find an Electron app inside the chapter-07
folder called window-sizing-electron. Here’s what the code for that app looks like:

{
 "name" : "window-sizing-electron",
 "version" : "1.0.0",
 "main" : "main.js"
}

And then there’s the accompanying index.html file that you’ll display:

<html>
 <head>
 <title>Window sizing Electron</title>

Figure 7.2 An app with window
properties applied. You can see here
that the app is small.

124 CHAPTER 7 Controlling how your desktop app is displayed
 </head>
 <body>
 <h1>Hello from Electron</h1>
 </body>
</html>

Finally, the place where the magic happens: the main.js file, shown next.

'use strict';

const electron = require('electron');
const app = electron.app;
const BrowserWindow = electron.BrowserWindow;

let mainWindow = null;

app.on('window-all-closed', () => {
 if (process.platform !== 'darwin') app.quit();
});

app.on('ready', () => {
 mainWindow = new BrowserWindow({ width: 400, height: 200 });
 mainWindow.loadURL(`file://${__dirname}/index.html`);
 mainWindow.on('closed', () => { mainWindow = null; });
});

Now, you can run the app with electron . from the Terminal or Command Prompt,
and you should see the app pop up looking like figure 7.3.

Electron’s approach means you have fine-grained control over the dimensions of each
app window. For more details on all the attributes you can pass into the creation of a
BrowserWindow object instance, see http://electron.atom.io/docs/api/browser-window/.

 That covers adjusting the size of the app window at loading time. Now, we’ll look
into how to get greater control over those window dimensions for the app.

7.1.3 Constraining dimensions of window width and height in NW.js

If you want to prevent the users of your apps from changing the width and height of
your desktop app (and causing the UI to look skewed and weird), you can pass the
options listed in table 7.1.

Listing 7.1 The main.js for the Electron window sizing app

Where the
width and
height of
the window
are set

Figure 7.3 The Electron app running with a
dimension of 400-pixel width and 200-pixel
height. Notice that the app looks like it’s
running in an extreme landscape mode.

http://electron.atom.io/docs/api/browser-window/

125Window sizes and modes
Here’s how it would look in the package.json file:

"window": {
 "max_width": 1024,
 "min_width": 800,
 "max_height": 768,
 "min_height": 600
}

Figure 7.4 shows what dimensions are affected in the app window.

In the example JSON payload, you constrain the width of the window so that it can’t
be greater than 1024 pixels or less than 800 pixels. You also constrain the height of the
window to be no greater than 768 pixels and no less than 600 pixels. Being able to
constrain the window width and height (even when the user attempts to resize them)
gives you greater control over making sure the look and feel of the app fits with the
intended design.

Table 7.1 Options to restrict window resizing

Property Description

max_width Sets the maximum width of the window

max_height Sets the maximum height of the window

min_width Sets the minimum width of the window

min_height Sets the minimum height of the window

Max/min width

Max/min height

Figure 7.4 The window dimensions affected by the max/min width and
max/min height

126 CHAPTER 7 Controlling how your desktop app is displayed
 This is good when you know what window dimensions you want to constrain to
when the app loads. But what if you want the app window’s width and height to be set
to dynamic values, such as an app displaying an image (where the window’s width and
height match the dimensions of the image)?

 The good news is that there’s a way to do that with NW.js’s window API. Say you
have an image on your computer with dimensions of 900 x 550 pixels, and you want to
size the window to match. You can set the width and height of the window to 900 pix-
els wide and 550 pixels high with the code shown in the following listing.

const gui = require('nw.gui');
const win = gui.Window.get();

win.width = 1024;
win.height = 768;

Being able to resize the window programmatically lets you make the app window
match the dimensions of the content inside it and therefore give a better experience
to the user.

 You can also use the same API to control where the window is rendered on the
screen. The GUI API in NW.js allows you to position the window at a set of coordinates
relative to the screen. The next listing shows an example of doing this programmati-
cally with NW.js.

const gui = require('nw.gui');
const win = gui.Window.get();
win.x = 400;
win.y = 500;

This code affords you the ability to determine exactly where on the screen the app win-
dow will be positioned, which is good in the case of utility applications and the like.

 We’ll now take a look at how Electron handles constraining app windows.

7.1.4 Constraining dimensions of window width and height in Electron

The settings for constraining the dimensions of app windows in Electron are defined
on the BrowserWindow instance. You’ll remember from earlier in the chapter that to
create an app window, you have to initialize an instance of the BrowserWindow class in
the code.

Listing 7.2 Dynamically resizing the app window

Listing 7.3 Positioning the window relative to the screen

References GUI
API in NW.js

Uses GUI API to select
current app window

Sets width and height
of window dynamically

Sets horizontal coordinate
of app window

Sets vertical coordinate
of app window

127Window sizes and modes
'use strict';

const electron = require('electron');
const app = electron.app;
const BrowserWindow = electron.BrowserWindow;

let mainWindow = null;

app.on('window-all-closed', () => {
 if (process.platform !== 'darwin') app.quit();
});

app.on('ready', () => {
 mainWindow = new BrowserWindow({ width: 400, height: 200 });
 mainWindow.loadURL(`file://${__dirname}/index.html`);
 mainWindow.on('closed', () => { mainWindow = null; });
});

The mainWindow variable is an instance of the BrowserWindow class of Electron and is
passed an object containing the width and height for the window. Here, you can set
the maximum and minimum width and height properties for the app window. Say, for
example, you want to make sure that the app cannot be resized below 300 px wide and
150 px high, and cannot be resized beyond 600 px wide and 450 px high—you can
pass these options into the BrowserWindow instance:

mainWindow = new BrowserWindow({
 width: 400, height: 200,
 minWidth: 300, minHeight: 150,
 maxWidth: 600, maxHeight: 450
});

Table 7.2 shows the properties to change for the window width and height.

The approach taken by Electron is nice because it lets you define individual settings
for each app window that your app creates, and you can configure all of those settings
in one place in the code, rather than look for them in separate places in the code. It’s
simpler than in NW.js, and where NW.js uses snake case (as in max_width) property
names, Electron uses camel case (as in maxWidth) property names, JavaScript-style.

Listing 7.4 Initializing a BrowserWindow instance in Electron

Table 7.2 Properties for changing window width and height

Property Description

maxWidth Sets the maximum width of the window

maxHeight Sets the maximum height of the window

minWidth Sets the minimum width of the window

minHeight Sets the minimum height of the window

Passes options to
BrowserWindow

instance

128 CHAPTER 7 Controlling how your desktop app is displayed
 By default, Electron renders the app in the middle of the screen. If you want to
position the app window in a specific area of the screen, you can control this by pass-
ing x and y coordinates to the initialization of the BrowserWindow, like this:

mainWindow = new BrowserWindow({
 width: 400, height: 800,
 x: 10, y: 10
});

The position of the window is set to begin at 10 pixels from the left (x) and 10 pixels
from the top (y), and so it offers you the ability to control where you position the app
window on the screen.

 Having explored window sizing and positioning, we’ll now look at how to config-
ure the app to run as a frameless application, or even in full-screen mode.

7.2 Frameless windows and full-screen apps
When you visit a train station and look at the display of train times and announce-
ments, chances are the display is powered by a desktop app running in full-screen
mode. Touch-screen monitors such as ATM machines also run desktop apps that are
designed to prevent users from exiting the app, known as kiosk apps. Computer games
also exhibit the same behavior, so the need for building apps that hide the underlying
OS is a common one.

 Electron and NW.js allow developers to tailor their apps so that they run in full-
screen mode (for video playback and games), as well as frameless (for media players
and other utilities) and kiosk (for information kiosks and point-of-sale applications).
We’ll take a look at how NW.js enables this and then look at Electron’s approach for
comparison.

7.2.1 Full-screen applications in NW.js

Video games are a prime example of apps that run in full-screen mode when they first
boot up. Recent versions of Mac OS have enabled apps to operate easily in full-screen
mode, and NW.js takes advantage of this feature in two ways: via configuration options
in the package.json manifest file, or dynamically via the JavaScript API. The following
code is an example of enabling your desktop app to run in full-screen mode when it
launches via the package.json file:

{
 "window": {
 "fullscreen": true
 }
}

If you put the following JSON into the package.json file of an NW.js desktop app and
then run the app, you can expect to see the app go straight into full-screen mode
upon launch, where the title bar is not visible and the contents of the app take up the
entire screen.

129Frameless windows and full-screen apps
 Alternatively, if you want to prevent users from being able to make an app enter
full-screen mode, you can set the value to false.

 As mentioned earlier, it’s possible to make the app go full-screen programmatically
via NW.js’s native UI API, as follows:

const gui = require('nw.gui');
const window = gui.Window.get();
window.enterFullscreen();

Say you have a dead-simple NW.js app (such as a Hello World example), and you want
a screen click to trigger full-screen mode. The app has some simple HTML for the
home page, as shown next.

<html>
 <head>
 <title>Full-screen app programmatic NW.js</title>
 <script>
 'use strict';

 const gui = require('nw.gui');
 const win = gui.Window.get();

 function goFullScreen () {
 win.enterFullscreen();
 }
 </script>
 </head>
 <body>
 <h1>Full-screen app example</h1>
 <button onclick="goFullScreen();">Go full screen</button>
 </body>
</html>

Insert that into the main index.html file for the app and run the app from the com-
mand line with nw. You should see a screen like figure 7.5.

Click the Go Full Screen button and you should see the app go to full-screen. So how
did that happen? Going through the HTML, you can see some embedded JavaScript
that called out to NW.js’s GUI API, fetched the current window, and told it to enter

Listing 7.5 Example of programmatically triggering full-screen mode

Loads NW’s
UI library

Gets ahold of the
app window

Creates function that will
put app in full-screen mode

Clicking button calls goFullScreen function,
putting app window in full-screen mode

Figure 7.5 App with a
button that turns on full-
screen mode when clicked

130 CHAPTER 7 Controlling how your desktop app is displayed
full-screen mode. You wrapped the call to enter full-screen mode in a function called
goFullScreen, which the button element in the page triggered when clicked.

 This is all good, but what if you’re already in full-screen mode and want to leave
that mode? NW.js accommodates this as well. You can modify the existing code so that
it can call the API function leaveFullscreen, but the trick here is to track what the
current state of the window is (whether it’s already in full-screen mode). You can find
out what the mode of the app window is with an API call called isFullscreen.

 You’ll modify the previous example so that when the button is clicked and the app
window enters full-screen mode, the button will change its text to “Exit Full Screen”
and leave full-screen mode. Replace the HTML in the index.html file with this code:

<html>
 <head>
 <title>Full-screen app example</title>
 <script>
 'use strict';
 const gui = require('nw.gui');
 const win = gui.Window.get();

 function toggleFullScreen () {
 const button = document.getElementById('fullscreen');
 if (win.isFullscreen) {
 win.leaveFullscreen();
 button.innerText = 'Go full screen';
 } else {
 win.enterFullscreen();
 button.innerText = 'Exit full screen';
 }
 }

 </script>
 </head>
 <body>
 <h1>Full-screen app example</h1>
 <button id="fullscreen" onclick="toggleFullScreen();">Go full

screen</button>
 </body>
</html>

This replaces the goFullScreen function with a toggleFullScreen function that
makes an API call to determine whether the app window is in full-screen mode. The
API call returns either true (it is in full-screen mode) or false. The function is called
when the user clicks the button. When the user first clicks it, the function will enter
into full-screen mode (because the app isn’t initially in full-screen mode). It will also
change the text on the button to read “Exit Full Screen” to reflect the fact that the app
is in full-screen mode. When the user clicks the button a second time, because the
app window is in full-screen mode, you’ll leave that mode, and alter the text of the
button to read “Go Full Screen.” This behavior allows the user to toggle full-screen
mode in a simple and easy-to-understand fashion.

131Frameless windows and full-screen apps
 After you’ve changed the HTML and reloaded the app from the command line,
click the Go Full Screen button. Not only should the app window enter full-screen
mode, the button should now display “Exit Full Screen,” as shown in figure 7.6.

Being able to enter and exit full-screen mode in desktop apps can be handy, particu-
larly when it comes to video playback. In fact, due to a bug that existed with supporting
full-screen playback of videos in NW.js apps (see issue #55 on the GitHub repository),
we (at Axisto Media) managed to work around the issue for our British Medical Jour-
nal (BMJ) app by accessing the shadow DOM of the video element and toggling the
full-screen mode when the user clicked the Play/Pause button.

 Full-screen mode enables users to take full advantage of the screen when using the
app and display it in such a way as to eliminate the distractions of other windows in the
background.

 Now that you’ve seen how this is done in NW.js, we’ll take a look at how Electron
handles supporting full-screen applications.

7.2.2 Full-screen applications in Electron

Electron also offers configuration for full-screen mode. When creating a new Browser-
Window instance, you can set options to configure for full-screen mode. To make an
Electron app run in full-screen mode when it’s started, pass the following configura-
tion option when creating the BrowserWindow instance:

mainWindow = new BrowserWindow({fullscreen: true});

When the app runs, it will go straight into full-screen mode. This is a good option for
an app that plays videos or games.

 But what if you don’t want people to have this option? How do you disable it? Sim-
ple: you pass the fullscreenable property with a value of false when initializing the
BrowserWindow instance, as demonstrated in the following code:

mainWindow = new BrowserWindow({fullscreenable: false});

This configuration option means that the user will not be able to make the app enter
full-screen mode from the title bar. This can be useful in cases where you want to main-
tain the dimensions of an app’s user interface, such as with a small utility application.

Figure 7.6 Example app in full-
screen mode. Notice that the
button text has changed to allow
the user to exit full-screen mode.

132 CHAPTER 7 Controlling how your desktop app is displayed

 If you want to be able to trigger this functionality programmatically, you’ll need to
call a function on the mainWindow instance after it’s initialized. I’ll re-create the exam-
ple that I made for NW.js, using Electron instead, so you can compare the two.

'use strict';

const electron = require('electron');
const app = electron.app;
const BrowserWindow = electron.BrowserWindow;

let mainWindow = null;

app.on('window-all-closed', () => {
 if (process.platform !== 'darwin') app.quit();
});

app.on('ready', () => {
 mainWindow = new BrowserWindow();
 mainWindow.loadURL(`file://${__dirname}/index.html`);
 mainWindow.on('closed', () => { mainWindow = null; });
});

Here, you see that the app code is pretty much standard. Next, you’ll create the
index.html file that has the button for toggling between full-screen mode and win-
dow mode.

<html>
 <head>
 <title>Fullscreen app programmatic Electron</title>
 </head>
 <script src="app.js"></script>
 <body>
 <h1>Hello from Electron</h1>
 <button id="fullscreen" onclick="toggleFullScreen();">
 Go full screen
 </button>
 </body>
</html>

As in the NW.js variant of the code, the app has a button that is used to trigger tog-
gling between full-screen mode and window mode. The only difference here is that
you load a separate app.js file that has the client-side code for toggling. Finally, you
add a standard package.json file as from the previous Electron example, and then the
code for the app.js file shown next.

Listing 7.6 Code for the main.js file for the full-screen Electron example

Listing 7.7 The index.html file for the full-screen Electron example

Loads client-side
code as separate
JavaScript file

Calls function in the
app.js file called
toggleFullScreen to
do the toggling

133Frameless windows and full-screen apps

const remote = require('electron').remote;

function toggleFullScreen() {
 const button = document.getElementById('fullscreen');
 const win = remote.getCurrentWindow();
 if (win.isFullScreen()) {
 win.setFullScreen(false);
 button.innerText = 'Go full screen';
 } else {
 win.setFullScreen(true);
 button.innerText = 'Exit full screen';
 }
}

This is a good example of the difference in approaches between NW.js and Electron.
Electron handles how the front-end calls to the back-end of the app by providing an
API called remote. This allows the renderer process (front end) to send messages to
the main process (back end), so that you can do things like get ahold of the Browser-
Window instance and interact with it. You can then call various functions on the
BrowserWindow instance to inspect its current settings (such as whether it’s running in
full-screen mode) and use that to determine whether to make it render in full-screen
mode or windowed mode.

This demonstrates how to toggle between full-screen mode and window mode in Elec-
tron. Next, we’ll look at how to make more-radical changes to your app UI, in the
form of frameless apps.

7.2.3 Frameless apps

Although being able to make your apps go full-screen at the click of a button is fun,
it may not be suited for your app’s purposes. Some apps, including media players,

Listing 7.8 The app.js file for the full-screen Electron example

Uses remote API to interact
with main process from
renderer process

Uses remote API to get current
window page is being rendered in

Calls BrowserWindow
instance’s isFullScreen
function to check if window
is in full-screen mode

If so, switches to window
mode by calling the
instance’s setFullScreen
function with false

If not, switches to
full-screen mode

What other functions can I call on the BrowserWindow instance?
This book touches on some (but not all) of the functions that can be called on the
BrowserWindow instance. There's a wide range of configuration options for the
BrowserWindow class in Electron, like being able to make the title bar styling differ-
ent in Mac OS X (such as what Hyper, Kitematic, and WebTorrent use).

For more about these configuration options and functions that can be called on initial-
ized BrowserWindow instances, check out http://electron.atom.io/docs/api/browser-
window/.

http://electron.atom.io/docs/api/browser-window/
http://electron.atom.io/docs/api/browser-window/

134 CHAPTER 7 Controlling how your desktop app is displayed
onscreen widgets, and other utility apps, run without displaying any of the app win-
dow around them, and instead display a unique UI. An example of this is the music
player VOX on Mac OS X, shown in figure 7.7. Notice that the UI is custom, and there
is no Mac OS X UI visible (no title bar, no traffic-light buttons, only a simple X to close
the window).

CREATING FRAMELESS APPS IN NW.JS
These apps are known as frameless apps, and you can create them in NW.js as well. Alter
the package.json manifest file so that the window section contains a property called
frame, with the value set to false, as in this code sample:

{
"name" : "frameless-transparent-app-nwjs",
"version" : "1.0.0",
"main" : "index.html",
"window" : {
 "frame" : false
}
}

You can modify the package.json further to allow for transparency behind the app’s
screen, so that you can use rounded corners and create interesting interfaces. Chang-
ing the package.json to use this:

"window" : {
 "frame" : false,
 "transparent": true,
 "width": 300,
 "height": 150
}

You now have the basis for creating an app that’s similar in style to the interface style
presented in the VOX app if you adjust the index.html file to look like the next listing.

<html>
 <head>
 <title>Transparent NW.js app - you won't see this title</title>

Listing 7.9 Creating a frameless app with styled rounded corners

Figure 7.7 VOX music player in
Mac OS X, playing a song. Notice
the distinct lack of Mac OS X’s UI
elements and title bar.

135Frameless windows and full-screen apps
 <style rel="stylesheet">
 html {
 border-radius: 25px;
 }

 body{
 background: #333;
 color: white;
 font-family: 'Signika';
 }

 p {
 padding: 1em;
 text-align: center;
 text-shadow: 1px 1px 1px rgba(0,0,0,0.25);
 }

 </style>
 </head>
 <body>
 <p>Frameless app example</p>
 </body>
</html>

If you run the example via the command line, you’ll see the app on your desktop, as
shown in figure 7.8.

Although this offers the chance to create some snazzy custom UIs for your desktop apps,
bear in mind some caveats to using this approach. The first is that after disabling the
window frame, you need to provide buttons for closing/minimizing the app window
(alternatively, you can allow the user to close the app from the main toolbar of the OS).

 It’s important to note that frameless apps aren’t draggable by default. This is
because they have no UI element set (such as the title bar) that allows them to be
dragged. That said, there’s a way to enable them to be dragged. The key is to use a cus-
tom CSS property on the HTML for the screen, known as –webkit-app-region.

 For HTML elements that you want to make draggable (such as the body tag for
example), apply the following CSS:

-webkit-app-region: drag;

Figure 7.8 A frameless app running on the
desktop. The app style mimics an exaggerated
version of the rounded-corner UI on VOX, to
demonstrate how the app can have a
transparent background.

136 CHAPTER 7 Controlling how your desktop app is displayed
If you append this CSS property to the body tag in the embedded CSS stylesheet from
the previous example and reload the app, you’ll see that it can now be dragged
across the screen. I’d like to be able to say that’s all there is to it, but unfortunately
that’s not the case. Applying this CSS property to the body tag makes all HTML ele-
ments within the app an area that will drag the app, including the text that says “Fra-
meless app example.” Try selecting the text—you cannot. The entire contents of the
DOM under the body tag are also draggable, which might not be the behavior that
you want for that part of the app. How do you resolve this?

 The answer depends on what the nature of the HTML element needs to do. If the
HTML element in question is a clickable element, like a button or a drop-down field,
then you’ll want to give those HTML elements the -webkit-app-region property with
a value of no-drag, like this:

button, select {
 -webkit-app-region: no-drag;
}

This will enable you to be able to click buttons without the draggable behavior kicking
in. Alternatively, if the HTML elements in question are elements that you want to be
able to select snippets of for copying and pasting into other documents and apps
(such as p tags and img tags), then you can make them selectable by the -webkit-
user-select property alongside the –webkit-app-region CSS property with a value
of no-drag:

p, img {
 -webkit-user-select: all;
 -webkit-app-region: no-drag;
}

You’ll need to do this on all the HTML elements that you want to be selectable, as well
as all UI elements that need to be clickable. It can be a bit of a pig, but it ultimately
means that you can have a completely custom look to your UI and make your app
stand out from the rest.

 The final version of the index.html file should look like the following.

<html>
 <head>
 <title>Transparent NW.js app - you won't see this title</title>
 <style rel="stylesheet">
 html {
 border-radius: 25px;
 -webkit-app-region: drag;
 }

 body {
 background: #333;

Listing 7.10 The index.html file for the transparent frameless app

137Frameless windows and full-screen apps
 color: white;
 font-family: 'Signika';
 }

 p {
 padding: 1em;
 text-align: center;
 text-shadow: 1px 1px 1px rgba(0,0,0,0.25);
 }

 button, select {
 -webkit-app-region: no-drag;
 }

 p, img {
 -webkit-user-select: all;
 -webkit-app-region: no-drag;
 }

 </style>
 </head>
 <body>
 <p>Frameless app example</p>
 </body>
</html>

Now you can drag the app around the screen and see the background behind the
rounded corners. That gives you an idea of how you can approach creating transpar-
ent apps in NW.js. Now we’ll look at how the same can be done with Electron.

CREATING FRAMELESS APPS WITH ELECTRON

As demonstrated earlier in the chapter, Electron handles configuring app windows via
the initialization of the BrowserWindow instance. You can make the app frameless or
transparent by passing a property to the initialization of the BrowserWindow at runtime.
The following code is an example of how to configure a frameless app in Electron:

mainWindow = new BrowserWindow({ frame: false });

The app will now run in frameless mode, and you’ll see something like figure 7.9.

If you want to try this example for yourself, you can give it a spin in the chapter-07
folder of the GitHub repository at https://github.com/paulbjensen/cross-platform-
desktop-applications, under the app example frameless-app-electron.

Figure 7.9 An Electron app running in frameless
mode. Notice how the content of the app is
positioned so closely to the top and left of the
app? The app’s corners are rounded by default as
part of Mac OS X.

https://github.com/paulbjensen/cross-platform-desktop-applications
https://github.com/paulbjensen/cross-platform-desktop-applications

138 CHAPTER 7 Controlling how your desktop app is displayed
 Electron also allows you to make app windows transparent by passing the trans-
parent property in the following example:

mainWindow = new BrowserWindow({ transparent: true });

Figure 7.10 shows what a transparent Electron app looks like.

Transparency in Electron is a great feature as long as it doesn’t complicate the UX.
For small utility applications, this can be a useful attribute, but that depends on what
the app is doing and whom it is for.

 Some apps can run in environments where the user isn’t necessarily trusted with
complete access to the computer, such as in public terminals with touchscreen inter-
faces. In the next section, we’ll look at implementing kiosk applications.

7.2.4 Kiosk mode applications

Sometimes you get the chance to build an app that will be used by lots of people, but
with a catch—the app is public, such as the information area of a museum, or maybe a
bank, and needs to be able to run in a mode where the user can’t quit the app and
start messing around with the computer (not a prospect anyone wants to entertain).
Apps like these need to restrict access to the underlying OS, as though they’re run-
ning at kiosks (which, in some cases, they are).

 Kiosk mode in both NW.js and Electron is a locked-down mode where access to the
underlying OS is difficult—in fact, being able to quit the app has to be manually
added by the developer (otherwise, they have to physically reboot the computer to
regain access to it).

CREATING KIOSK-MODE APPS IN NW.JS
To enable your app to run in kiosk mode, you’ll need to modify your package.json
manifest file so that it has a property of kiosk with the value set to true, as in the fol-
lowing example:

{
 "window": {
 "kiosk":true
 }
}

You can go ahead and give this a try in one of the example apps, but (and it is a big but)
make sure that nothing is left unsaved before you do.

Figure 7.10 A transparent app in Electron.
Notice how the background is completely
transparent, but you can see the title bar
buttons as well as the app's text.

139Frameless windows and full-screen apps
 This is because you might have to reboot your computer in order to regain access
to it. In kiosk mode, the app automatically enters full-screen mode, but without the
title bar. The only way you can exit the app is by pressing Alt-Tab or Ctrl-Alt-Del on
the keyboard—otherwise, you’re stuck inside the app with no way out of it.

 Say you need to build a kiosk app for someone, but you also need to be able to exit
the program (in case there’s an issue with the OS). How do you do that?

 The answer is to implement some kind of keyboard shortcut or button that when
clicked or typed calls an API function on the app window called leaveKioskMode.
Like the full-screen API functions, kiosk mode has equivalent API functions for
entering/leaving kiosk mode, as well as for detecting whether the app window is in
kiosk mode.

 Imagine that you have an app that will run at a display kiosk and you want to pro-
vide a way for the IT systems administrator to get access to the computer’s OS without
having to resort to rebooting the computer (in particular, if access to the computer’s
power supply and reboot button is physically obscured). You decide to add a button
called exit to the app window to help the administrator get back to the OS.

 Make sure that the package.json file looks like this:

{
 "name" : "kiosk-mode-example-app",
 "version" : 1.0,
 "main" : "index.html",
 "window" : {
 "kiosk" : true
 }
}

And the index.html file should look like the following.

<html>
 <head>
 <title>Kiosk mode NW.js app example</title>
 <script>
 'use strict';

 const gui = require('nw.gui');
 const win = gui.Window.get();

 function exit () {
 win.leaveKioskMode();
 }

 </script>
 </head>
 <body>
 <h1>Kiosk mode app</h1>
 <button onclick="exit();">Exit</button>
 </body>
</html>

Listing 7.11 Kiosk app’s index.html file, with an essential toggle button

Creates function to tell
app window to get out
of kiosk mode

Clicking button calls
function to get out of
kiosk mode

140 CHAPTER 7 Controlling how your desktop app is displayed
You’ll notice you use the same pattern you used for the first full-screen mode app
example (click a button, exit mode). This is so you can easily demonstrate the func-
tionality of being able to leave kiosk mode from the app. If you now run the app, you
should expect to see something like figure 7.11.

Click the Exit button, and the app will leave kiosk mode and switch back to a normal
window layout.

ARE ALL KEYBOARD SHORTCUTS BLOCKED BY KIOSK MODE? No, NW.js still allows
users to quit apps using the global keyboard shortcuts (for example, Alt-F4 on
Windows). The reason it allows this is because virus detection software will
block apps that attempt to override access to these global keyboard shortcuts.

This shows how you can create kiosk apps with NW.js. For Electron, the process for
creating kiosk mode apps is dead simple.

CREATING KIOSK APPS WITH ELECTRON

Electron is able to make apps run in kiosk mode by passing one attribute to the initializa-
tion of the BrowserWindow instance called (can you guess?) kiosk. Here’s an example:

mainWindow = new BrowserWindow({ kiosk: true });

With the browser window configured this way, the app is able to run in full-screen
mode, and the only way to quite the app is via the keyboard shortcut (Command-Q on
Mac OS X, Alt-F4 on Windows/Linux).

 But if you want to provide some form of programmatic access to kiosk mode and
be able to toggle it via a button, you can do that in precisely the same fashion as you
would with toggling the full-screen app example.

 You can try the app from the source code in the kiosk-app-programmatic-electron
folder in the chapter-07 folder of the book’s GitHub repository. The app is a pretty
standard setup, but with distinct differences in the index.html and app.js files. The fol-
lowing listing shows what the index.html file looks like.

<html>
 <head>
 <title>Programmatic Kiosk app Electron</title>
 </head>

Listing 7.12 The index.html file for the programmatic kiosk mode Electron app

Figure 7.11 An app running in
kiosk mode. The app runs
across the entire screen, and
access to the OS is obscured.

141Summary
 <script src="app.js"></script>
 <body>
 <h1>Hello from Electron</h1>
 <button id="kiosk" onclick="toggleKiosk();">Enter kiosk</button>
 </body>
</html>

When the kiosk button is clicked, you expect it to call a function called toggleKiosk.
This is a function that is defined in the app.js file, shown next.

const remote = require('electron').remote;

function toggleKiosk() {
 const button = document.getElementById('kiosk');
 const win = remote.getCurrentWindow();
 if (win.isKiosk()) {
 win.setKiosk(false);
 button.innerText = 'Enter kiosk mode';
 } else {
 win.setKiosk(true);
 button.innerText = 'Exit kiosk mode';
 }
}

When running, the app is able to enter kiosk mode when the button is first clicked,
and then is able to exit it when it has been put into kiosk mode. This allows you to cre-
ate buttons for easily closing the app—say, if it’s running at a computer that doesn’t
have keyboard access.

 Kiosk mode is useful for apps that are used by members of the public, and where
access to the underlying OS needs to be obscured. That said, as mentioned earlier,
there are still ways to be able to escape from kiosk mode, so it’s not a complete guaran-
tee of protection from those who know their way around, but at least it will keep the
majority from messing around with computers in public areas.

7.3 Summary
In this chapter, we’ve looked at different ways in which you can craft your app’s dis-
play, depending on what the app needs to do for the user. Some quick takeaways:

 You can create windowed apps with specific width and height dimensions.
 You can restrict those dimensions so that the app’s display stays fixed.
 It’s easy to run your app in full-screen mode for videos and gaming.
 Alternatively, you can remove the app window and run it as a frameless app.
 Be careful with frameless apps because they come with some UI quirks you’ll

need to handle around dragging, click events, and text selection.
 Kiosk-mode apps are useful for ATMs and apps running in public areas.

Listing 7.13 The app.js file for the programmatic kiosk mode Electron app

Clicking button triggers
entering or exiting kiosk mode

Defines toggleKiosk
function that’s called
when button is clicked

Detects if app is
running in kiosk mode

If so, triggers exiting kiosk mode
and updating button text

If not, triggers entering kiosk
mode and updating button text

142 CHAPTER 7 Controlling how your desktop app is displayed
The first thing to think about with crafting your app is whether the app needs to oper-
ate within a fixed or dynamic window, or even if it needs a window at all. Then, you
can configure the window options in the package.json manifest file to make the app
window constrained to specific dimensions, or expand to take up the full screen. Also,
remember that depending on whether your app is window-based or even a kiosk-
mode app, the ability to navigate is important, so make sure you can exit a kiosk app
from somewhere within the app’s UI.

 In chapter 8, we’ll look at implementing tray applications with NW.js and Electron.

Creating tray applications
Some apps aren’t as beefy as others and focus on doing something specific and
doing it well. They also focus on being accessible to the user without having to
switch windows or switch focus from the current app that’s in front of them. As a
result, app functionality is made available from the tray bar of the OS, which is
located at the bottom of the Windows GUI, at the top of the screen on a Mac,
and—depending on what flavor of distribution and graphical desktop environment
you use—either the top or bottom on Linux (Gnome tends to be at the top, and
KDE tends to be at the bottom).

 Tray apps tend to be utility apps like timers, music controls, and instant messag-
ing. They use menus and changing icons to communicate the status of the app. In
this chapter, we’ll look at how you can use NW.js’s UI API to make tray apps by cre-
ating a small utility tray app with a dropdown menu. We’ll then replicate this exam-
ple with Electron to compare its tray app functionality.

This chapter covers
 Building tray-based applications

 Displaying application windows from the tray
menu

 Adding menu items to the tray menu
143

144 CHAPTER 8 Creating tray applications
8.1 Creating a simple tray app with NW.js
You’ll build something small and simple, as shown in figure 8.1.

Let’s say you have a simple Hello World NW.js app, and you’d like to give it a tray icon
to access it from the OS’s main bar. Figure 8.2 shows what you want to create in the
menu bar.

You can do that by changing index.html to contain the following embedded JavaScript:

<html>
 <head>
 <title>tray app example</title>
 <script>
 const gui = require('nw.gui');
 const tray = new gui.Tray({title: 'My tray app'});
 </script>
 </head>
 <body>
 <h1>Hello world</h1>
 </body>
</html>

Figure 8.1 The app you'll build: a simple tray app with lists

Figure 8.2 Your tray app displaying in
the tray area of the OS’s main bar

145Creating a simple tray app with NW.js
In this code, you extend the example Hello World app with some embedded Java-
Script, and in that script are two lines of interest: the first is the one that loads NW.js’s
UI API, and the second is the one that creates a new tray, with the title “My tray app.”
If you run this app from the command line, you should see the usual Hello World
example app, but you’ll also see this item appear in your OS’s main bar, as shown in
figure 8.2.

SHOULD YOU USE TEXT LABELS FOR TRAY APPS? If you want to support Mac OS
X only, then that’s fine, but on Windows and Linux, tray apps display icons
only. Your safest option is to go with using icons only for your tray apps.

You’ll see that the text label you gave the tray app is displayed in the tray area. You’ll
also notice some other tray apps running there (VOX and 1Password), which choose
not to display labels, only icons. If you want to display an icon as well (because it uses
less space in the tray area), you can do that too with NW.js. Assume that you have a
simple .png icon that you’d like to use (in this case, I’ve created a simple note-taking
icon with Pixelmator, at a resolution of 32 x 32 pixels). Save it in the same folder
where the index.html file is kept and alter the JavaScript line that creates the tray app
to this:

const tray = new gui.Tray({icon: 'icon@2x.png’});

After making those changes, you’ll need to rerun NW.js from the command line, and
you should see the tray app icon look like figure 8.3.

This gives you a nice icon that fits with the pattern of tray apps on Mac OS X, but
you’ll probably notice one oddity: the app icon’s colors are in grayscale. That’s some-
thing that NW.js does, but Electron renders the icon in color.

8.1.1 Adding menus to your tray icon

If you click on your tray app icon now, it doesn’t do anything. You want to use the tray
app as a way to execute other commands and interact with your app. Menus provide a
way for tray apps to display a list of contents or trigger other actions. You want a solu-
tion that shows a menu listing the notes when the icon is clicked, as in figure 8.4.

Figure 8.3 The tray app displaying a custom
icon created with Pixelmator

Figure 8.4 The notes tray app
displaying a list of notes

146 CHAPTER 8 Creating tray applications
You can extend your simple tray app by adding a menu that lists a number of pre-
defined notes. Clicking one of the notes loads the contents of that note in the app
window. Let’s start by creating some sample note content to put at the start of the
embedded JavaScript:

const notes = [
 {
 title: 'todo list',
 contents: 'grocery shopping\npick up kids\nsend birthday party invites'},
 {
 title: 'grocery list',
 contents: 'Milk\nEggs\nButter\nDouble Cream'},
 {
 title: 'birthday invites',
 contents: 'Dave\nSue\nSally\nJohn and Joanna\nChris and Georgina\nElliot'
 }
];

Now that you have content, you can add the titles of the notes to a new menu as menu
items, and attach that new menu to the tray:

const menu = new gui.Menu();
notes.forEach((note) => {
 menu.append(new gui.MenuItem({label: note.title}));
}

tray.menu = menu;

Here, you initialize a new Menu object and then loop through the list of notes, display-
ing their titles in the menu. After that, the menu is attached to the tray. Run NW.js on
the app’s code from the command line, and you should see a result like the one
shown in figure 8.4.

 So far, so good, but there’s a bit more to do. You haven’t yet got the tray menu
items to interact with the app window, and you’d like to make the tray app work in
such a way that when a note is clicked from the menu, the contents of that note are
loaded into the app window.

 To do this, you’ll need to do the following:

 Change the HTML in the screen to have placeholders for the title and contents
of a note.

 Create a function to insert the title and contents of a note into the HTML.
 Alter the menuItem objects to trigger this function when they’re clicked.

Start by modifying the body tag’s inner HTML. Change it to this:

 <body>
 <h1 id="title"></h1>
 <div id="contents"></div>
 </body>

147Creating a simple tray app with NW.js
The h1 tag will contain the title of the note (hence, the id attribute with a value of
"title"), and the div tag will contain the contents of the note (again, with the id
attribute of "contents"). Next, at the top of the embedded JavaScript, create a func-
tion that will insert the title and contents of a note into the page:

 function displayNote (note) {
 document.getElementById('title').innerText = note.title;
 document.getElementById('contents').innerText = note.contents;
 }

This function inserts the title and contents of the note object passed to it into the
HTML elements on the page. Once you have this function, you’ll modify the menu-
Item objects so they call the displayNote function with the note object when clicked.

 To do that, though, you need to move some of that code into a new function,
because you shouldn’t make functions within a loop (otherwise, you get some unex-
pected behavior with the variable that’s passed to the function). Create a new function
called appendNoteToMenu and define it after the initialization of the menu object:

function appendNoteToMenu (note) {
 const menuItem = new gui.MenuItem({
 label: note.title,
 click: () => { displayNote(note); }
 });
 menu.append(menuItem);
}

The function receives the note object and generates a MenuItem object. It sets the
label of the menu item to the note’s title and defines a function to execute when
the menu item is clicked. The function calls displayNote with the note object, so that
when the menu item is clicked, the note’s title and contents are displayed in the app
window. Finally, the menu item is added to the menu object.

 Before the menu is added to the tray, modify the bit of code that loops through the
notes to call the appendNoteToMenu function, like so:

notes.map(appendNoteToMenu);

You’re almost there. Next, make sure the app displays the first note in the list and give
it a bit of styling to make it more genuine.

 When the HTML for the app has loaded, you’ll be able to trigger displaying the
first note that’s available. Add the following JavaScript toward the end of the script tag:

document.addEventListener('DOMContentLoaded', () => {
 displayNote(notes[0]);
});

When the app loads, as shown in figure 8.5, you should see that the first note is dis-
played in the app window.

148 CHAPTER 8 Creating tray applications
Before you call this app done, add a link in the index.html file to a CSS stylesheet called
app.css so you can make the notes app look a bit more like a note, as shown next.

<html>
 <head>
 <title>tray app example</title>
 <link href="app.css" rel="stylesheet">
 <script>
 'use strict';

Next, add an app.css file with the following CSS:

body {
 background: #E2D53C;
 color: #292929;
 font-family: 'Comic Sans', 'Comic Sans MS';
 font-size: 14pt;
 font-style: italic;
}

With the styling change in place, the notes app should now look like figure 8.6.

If you run the app with NW.js from the command line, when you click a note title in the
tray app’s menu, you can expect the note’s title and contents to display in the app window.

IS THERE A COPY OF THIS APP’S FULL SOURCE CODE? Yes, you can grab the code
example tray App NW.js from this GitHub Repository: https://github.com/
paulbjensen/cross-platform-desktop-applications

Listing 8.1 Adding the CSS link to the index.html file

Figure 8.5 The notes app displaying
the first note in the list

Adds the link for
an app.css file

Figure 8.6 The notes app
with CSS styling applied

https://github.com/paulbjensen/cross-platform-desktop-applications
https://github.com/paulbjensen/cross-platform-desktop-applications

149Creating a tray app with Electron
Now that you’ve created a tray app with NW.js, let’s see how you go about replicating
the example with Electron.

8.2 Creating a tray app with Electron
Electron’s modular approach to creating apps lends itself well to creating tray apps.
The API is similar to the one provided by NW.js, and this section shows how to re-create
the tray app from the previous section, but with Electron’s API.

8.2.1 Building the initial app skeleton

The bare-minimum set of files needed for a tray app follows:

 main.js for the app’s code
 A PNG image for the app icon
 A package.json file for the app’s configuration

When creating a tray app in Electron, you don’t need an index.html file, but you want
to show the content of the notes in the list, so you’ll have a file for that, as well as an
app.js file for the app’s front-end code.

 You’ll start by writing the app’s package.json. Make a folder called tray-app-electron
and insert a file named package.json with the following code:

{
 "name" : "tray-app-electron",
 "version" : "1.0.0",
 "main" : "main.js"
}

Now, create the index.html file where the contents of the notes will be displayed. Cre-
ate an index.html file and insert the following HTML into it:

<html>
 <head>
 <title>tray app Electron</title>
 <link href="app.css" rel="stylesheet">
 <script src="app.js"></script>
 </head>
 <body>
 <h1 id="title"></h1>
 <div id="contents"></div>
 </body>
</html>

The index.html applies the same HTML structure as the NW.js example, except that
where NW.js has inline JavaScript, you move the front-end JavaScript into the app.js
file. This is because Electron keeps the front-end JavaScript separate from the back-
end JavaScript and requires using inter-process communication to transmit data from
the app’s back end to the browser window, as you’ll see later in the example.

150 CHAPTER 8 Creating tray applications

too
tr
 The app.css file is identical to the app.css file that you used in the NW.js tray app,
so I won’t repeat it here, and the same goes for the app icon. The main meat of the
app is in the main.js file (back end) and the app.js file (front end). We’ll look at the
main.js file first.

 Create a file called main.js and insert the following code.

'use strict';

const electron = require('electron');
const app = electron.app;
const Menu = electron.Menu;
const tray = electron.Tray;
const BrowserWindow = electron.BrowserWindow;

let appIcon = null;
let mainWindow = null;

const notes = [
 {
 title: 'todo list',
 contents: 'grocery shopping\npick up kids\nsend birthday party invites'
 },
 {
 title: 'grocery list',
 contents: 'Milk\nEggs\nButter\nDouble Cream'
 },
 {
 title: 'birthday invites',
 contents: 'Dave\nSue\nSally\nJohn and Joanna\nChris and Georgina\nElliot'
 }
];

function displayNote (note) {
 mainWindow.webContents.send('displayNote', note);
}

function addNoteToMenu (note) {
 return {
 label: note.title,
 type: 'normal',
 click: () => { displayNote(note); }
 };
}

app.on('ready', () => {
 appIcon = new Tray('icon@2x.png');
 let contextMenu = Menu.buildFromTemplate(notes.map(addNoteToMenu));
 appIcon.setToolTip('Notes app');
 appIcon.setContextMenu(contextMenu);

 mainWindow = new BrowserWindow({ width: 800, height: 600 });
 mainWindow.loadURL(`file://${__dirname}/index.html`);

Listing 8.2 The main.js file for the Electron tray app

Requires Electron’s
Menu API

Loads its tray API

Creates a null appIcon
variable so tray app doesn’t
get garbage collected

Uses Electron’s
WebContents API to send
data to browser window to
display note’s contents

Creates tray
app with icon

Creates context
menu for tray

app, looping
through notes to
add menu items

Sets a
ltip on
ay app

Binds context
menu to tray app

151Creating a tray app with Electron
 mainWindow.webContents.on('dom-ready', () => {
 displayNote(notes[0]);
 });
});

Now, the back-end code will create the tray app, its menu, and a BrowserWindow
instance to display a note’s contents. This will allow the app to load up with the first
note. The app.js file handles when a note is clicked in the menu. The app.js file will
use Electron’s ipcRenderer module to handle receiving the displayNote event and
the note passed from the main process to the renderer process, so you can update the
HTML inside the BrowserWindow process.

 In the app.js file, insert the code shown next.

function displayNote(event, note) {
 document.getElementById('title').innerText = note.title;
 document.getElementById('contents').innerText = note.contents;
}

const ipc = require('electron').ipcRenderer;
ipc.on('displayNote', displayNote);

Electron’s ipcRenderer module is able to send and receive data to/from Electron’s
main process. In the context of the tray app, the back-end process passes data to the
browser window via the web contents API, so the displayNote event and the note are
passed from the back end to the front end, and ipcRenderer listens on that event.
When the event is triggered, ipcRenderer will pick up the note and pass it to the func-
tion that handles inserting the note into the HTML. Figure 8.7 shows what the app
looks like.

Listing 8.3 The app.js file for the Electron tray example

When app window is
loaded, defaults to
displaying first note

displayNote
function inserts
contents of note
into HTML

Electron’s ipcRenderer
module listens for events
being triggered by back-
end process

Upon menu item click or when app loads,
ipcRenderer module intercepts event and note;

then passes them to displayNote

Figure 8.7 The Electron
notes app. Notice how
Electron renders the app
icon in color by default.

152 CHAPTER 8 Creating tray applications
In this section, you’ve been able to use your knowledge of menus to build tray apps
that users can access easily—usually utility apps like chat apps, password managers,
and to-do list apps. You’ve seen how to configure the icon for the app as well as attach
a menu to it when it’s clicked.

8.3 Summary
In this chapter, we’ve looked at different ways to create tray apps in NW.js and Elec-
tron. Tray apps are neat little utilities. When creating them, make sure to check how
they work across all OSs, because there will be variation (Mac OS X lets you use labels
with them, for example, but Windows and Linux only show icons). Also, remember
that icons need to be within a 32 x 32–pixel dimension. We also looked at how to add
menu items to tray apps.

 Some key takeaways:

 You can use text for the app’s tray menu display, but icons are preferable due to
how Windows and Linux display them.

 NW.js tray apps seem to display the tray icon in grayscale on Mac OS X, whereas
Electron tray apps display in color.

In chapter 9, we’ll look at ways to mimic the look and feel of the user’s OS.

Creating application
and context menus
Menus are important for providing users with lots of feature choices. Anyone famil-
iar with using Microsoft Office will know how much functionality is available to
users from the app menu when using Word or Excel. It’s one of the most effective
UI patterns in widespread use today.

 In this chapter, we’ll look at how to create app menus for your desktop apps.
You’ll see how they’re handled differently by Mac OS compared to Windows and
Linux. We’ll then look at context menus, which provide the user with options when
right-clicking on elements within the app, such as being able to insert an item of
content at a particular point within a document.

This chapter covers
 Creating application window menus

 Handling Mac OS’s approach to menus

 Handing Windows’s/Linux’s approach to menus

 Creating context menus for the content inside of
the application
153

154 CHAPTER 9 Creating application and context menus
9.1 Adding menus to your app
Three kinds of menus are available for your Node.js desktop apps: app window
menus, context menus, and tray menus (covered in chapter 8). App window menus
appear in the top of an app window under the title bar (or in the system menu on Mac
OS), and you see context menus when right-clicking an item in the app. We’ll take a
look at app window menus first.

9.1.1 App window menus

Creating an app menu bar is a bit tricky, and you must consider which OSs you’re
targeting.

 Surprisingly, this is something that Microsoft Windows and Linux operating sys-
tems handle exactly the same way, and Mac OS is the odd one. On Windows and
Linux, each app window has its own menu placed within it. For Mac OS, there’s only
one app menu for all the windows (displayed in the OS’s menu bar, separate from the
app window).

 NW.js accommodates this difference in approaches by offering an API method spe-
cific to Mac OS and other methods for Windows and Linux. Electron, however, does
not. It provides a single API method for creating app menus. We’ll look at these APIs
with examples in both frameworks to compare their approaches.

9.1.2 Creating menus for Mac OS apps with NW.js

A special API function is available for creating an app menu for Mac OS. To demon-
strate this, let’s take an example Hello World app and add a Mac OS app menu to it
(this code is the mac-app-menu-nwjs app in the book’s GitHub repository). You’ll add
the basic package.json file and then a standard index.html file with a link to an app.js
file that will contain the code for the app’s Mac OS menu.

'use strict';

const gui = require('nw.gui');

const mb = new gui.Menu({ type: 'menubar' });
mb.createMacBuiltin('Mac app menu example');

gui.Window.get().menu = mb;

The app.js file in listing 9.1 embeds some JavaScript that initializes a new Menu object,
creates the built-in Mac menu from it, gets the current app window, and sets its menu
to be the Mac menu you generated. The end result should look like figure 9.1.

Listing 9.1 The app.js file for the Mac app menu with NW.js

Creates Menu instance
as menu bar

Transforms menu into
a Mac OS menu and
passes app name

Attaches that menu
to app’s window

155Adding menus to your app
The built-in menu options allow the user to get up and running with a set of com-
mands nested under the Edit and Window menu items, listed in table 9.1.

These are pretty standard commands that you’ll find across apps with any kind of
comprehensive functionality.

 Let’s take a look at how Electron handles making Mac OS menus compared to
NW.js.

9.1.3 Creating menus for Mac OS apps with Electron

The logical composition of menus and menu items is the same when you’re creating
menus in Electron apps, but the API functions to create and combine them are
named differently. To illustrate this, we’ll walk through an example app with a menu
in Electron. The code for this is also in the book’s GitHub repository under the app
name mac-app-menu-electron.

 When you download the app, you’ll find a typical Electron app example, and the
part of the code we’re interested in is in the app.js file. When defining an app menu

Table 9.1 Commands for menu options

Edit menu command What it does

Undo Reverts the last action

Redo Restores the last action that was undone

Cut Copies content and removes it from its current location

Copy Copies selected content

Paste Puts copied content in a given location

Delete Removes selected content from a location

Select All Selects all content

Window menu command What it does

Minimize Shrinks the window and animates its location in the task bar

Close Window Closes the window

Bring All to Front Makes all the windows for the app appear above other windows

Figure 9.1 NW.js’s default app menu for Mac OS
apps. The menu provides some default actions such
as copying/pasting content, hiding/closing windows,
and finding out a bit about the app.

156 CHAPTER 9 Creating application and context menus

Su

a

Ab
in Electron, you need to add it to an app window, and therefore this needs to be done
in the code for the render process that handles the app window. Let’s now walk
through the code for defining an app menu in Electron.

'use strict';

const electron = require('electron');
const Menu = electron.remote.Menu;
const name = electron.remote.app.getName();

const template = [{
 label: '',
 submenu: [
 {
 label: 'About ' + name,
 role: 'about'
 },
 {
 type: 'separator'
 },
 {
 label: 'Quit',
 accelerator: 'Command+Q',
 click: electron.remote.app.quit
 }
]
}];

const menu = Menu.buildFromTemplate(template);
Menu.setAppMenu(menu);

This code will result in an app that has a simple set of actions that can be performed
as illustrated in figure 9.2.

This example is basic, and you may want to have more options available, such as Edit
and Window menus that have typical actions like resizing windows and copy-and-paste
actions. If you want full control over those actions, you can copy the example provided
by Electron at http://electron.atom.io/docs/api/menu/ into your app. Or you can
avoid copying lines of code into your app by using an npm module called electron-
default-menu, available from www.npmjs.com/package/electron-default-menu. To

Listing 9.2 Creating an app menu in Electron

LoadMenu module
via remote API

App name also
loaded via remote

Defines template
array to contain
menu itemsLeaves label blank—

app’s name overridden
on Mac OS

bmenu
items

defined
s array

Menu item
can have

types that
do default

actions
(displaying
out dialog)

Menu items can have other
types (separators between
menu items)

Passes keyboard shortcut
as string via accelerator
property

Defines custom actions when menu
item is clicked on click property

Uses buildFromTemplate
function to create app menuSets app’s menu

from template

Figure 9.2 Electron rendering the menu items for
Mac OS apps. Note the process name is displayed
as the app menu’s label name, with an About menu
item, a separator, and the Quit menu item, with the
keyboard shortcut displayed to the right.

http://electron.atom.io/docs/api/menu/
http://www.npmjs.com/package/electron-default-menu

157Adding menus to your app
show the menu library in action, you’ll alter the app’s code to use it in place of the
template variable. First, you need to install the module in the app’s code via npm:

npm install electron-default-menu --save

After installing the npm module, change the contents of the app.js file to the code
shown next.

'use strict';

const electron = require('electron');
const defaultMenu = require('electron-default-menu');
const Menu = electron.remote.Menu;

const menu = Menu.buildFromTemplate(defaultMenu());
Menu.setAppMenu(menu);

Now, reload the app, and you’ll see a full app menu, as shown in figure 9.3.

The electron-default-menu module provides the app window with more actions and
provides a base for adding other menu items. The defaultMenu() function returns an
array, so adding/removing menu items can be done via pop, push, shift, and unshift
functions on the menu variable. For a full list of functions available on the array, see
http://mng.bz/cS21.

HOW DO I CHANGE THE APP MENU'S FIRST ITEM NAME? On Mac OS, the app
menu’s first item is set to the app’s name, regardless of what value is set in the
code. This is because Mac OS gets that name from the app’s Info.plist file. If
you want to change the first menu item’s label, you’ll need to edit this file in
the built version of your app. For more information, see http://mng.bz/12r1.

Now that we’ve covered how to handle Mac menus in your desktop apps, we’ll turn
our attention to how to handle them in Windows and Linux.

Listing 9.3 Using electron-default-menu in the app.js file

Requires npm
module to use later

Calls it in place of
template code to
provide default menu

Figure 9.3 The Electron app with menu
items for Edit, View, and Window options

http://mng.bz/cS21
http://mng.bz/12r1

158 CHAPTER 9 Creating application and context menus
9.1.4 Creating menus for Windows and Linux apps

Because Windows and Linux handle menus differently than Mac OS, NW.js provides
different API methods for creating menus, so you’ll go through the same example
(Hello World) with those methods. First, you’ll create an app with NW.js.

BUILDING WINDOWS/LINUX APP MENUS WITH NW.JS
Let’s say you have an app that needs a menu bar, with one menu item (File), and for
nested menu items, you have the following commands: Say Hello and Quit the App.
Figure 9.4 shows the app you want to create.

The Say Hello menu item shows an alert dialog with the message “Hello World” inside
it, and the Quit the App menu item closes the app. First, let’s focus on creating the
menu bar and implementing the File menu item.

CREATING THE MENU BAR

Let’s say you start with the following index.html content:

<html>
 <head>
 <title>Windows/Linux menu app example for NW.js</title>
 </head>
 <body>
 <h1>Windows/Linux menu example</h1>
 </body>
</html>

Figure 9.4 The app you want to build, with the menu in the top left

159Adding menus to your app
This initial page contains no code for the menu yet, so you’ll start by adding a script
tag in the head section of the HTML (after the title tag):

<script>
 'use strict';
</script>

Next, inside the script tag you’ll load the GUI library:

<script>
 'use strict';

 const gui = require('nw.gui');
 const menuBar = new gui.Menu({type:'menubar'});
</script>

You load NW.js’s GUI library so that you can begin to create the menu. On the following
line, you create a menu bar, where menu items will be placed in the app window. You
have to do this before you can begin to create any menu items, which is what follows
next. On the following line inside the script tag, you initialize the File menu item:

<script>
 'use strict';

 const gui = require('nw.gui');
 const menuBar = new gui.Menu({type:'menubar'});
 const fileMenu = new gui.MenuItem({label: 'File'});
</script>

Now that you’ve initialized all the objects you want to render in the app window, you
need to attach the file menu to the menu bar:

<script>
 'use strict';

 const gui = require('nw.gui');
 const menuBar = new gui.Menu({type:'menubar'});
 const fileMenu = new gui.MenuItem({label: 'File'});

 menuBar.append(fileMenu);
</script>

The menu bar has an append function that allows you to add menu items to it, and
you use this to add the File menu item. Now, you can attach the menu bar to the app
window, like so:

<script>
 'use strict';

 const gui = require('nw.gui');
 const menuBar = new gui.Menu({type:'menubar'});
 const fileMenu = new gui.MenuItem({label: 'File'});

 menuBar.append(fileMenu);
 gui.Window.get().menu = menuBar;
</script>

160 CHAPTER 9 Creating application and context menus
The gui.Window.get() function call selects the current app window, and calling
.menu on it allows you to attach the menu bar to it. You can take a look at the example
(make sure that there’s an accompanying package.json manifest file to support load-
ing the example with NW.js) by running nw on the folder in the command line. You
should see something like figure 9.5.

Great! So far, you know how to create menu items in the main menu for an app win-
dow. But if you click the File menu item, nothing happens. You need to attach a menu
to the File menu item with options to say hello and to quit the app.

SUBMENUS

Continuing with the existing code that you’ve written, you’ll do the following:

 Initialize some menu items for the Say Hello and Quit the App actions.
 Create a menu to attach those menu items to.
 Attach that menu to the File menu item.

The important thing to bear in mind is that menu items always attach to menus, and a
menu can be nested under a menu item, creating a submenu. You’ll see this as you
add the two actions to the File menu item.

 Let’s start by creating the menu items. In the script tag, add two lines for the
menu items, below the initialization of the fileMenu menu.

<script>
 'use strict';
 const gui = require('nw.gui');

Listing 9.4 Creating submenu items for the File menu item

Figure 9.5 The app window shows a menu bar at the top with the File menu item.

161Adding menus to your app
 const menuBar = new gui.Menu({type:'menubar'});
const fileMenu = new gui.MenuItem({label: 'File'});

 const sayHelloMenuItem = new gui.MenuItem({label: 'Say hello'});
const quitAppMenuItem = new gui.MenuItem({label: 'Quit the app'});
 menuBar.append(fileMenu);
 gui.Window.get().menu = menuBar;
</script>

You’ve created two new menu items: sayHelloMenuItem and quitAppMenuItem. You
now need to initialize a menu to attach these menu items to. We’ll call this menu
fileMenuSubMenu (not exactly the most inventive name, but at least it’s descriptive)
and initialize it after the newly created menu items. Then, you’ll attach the menu
items to the File menu. Adjust the code to look like the following listing.

<script>
 'use strict';
 const gui = require('nw.gui');
 const menuBar = new gui.Menu({type:'menubar'});
 const fileMenu = new gui.MenuItem({label: 'File'});

 const sayHelloMenuItem = new gui.MenuItem({label: 'Say hello'});
 const quitAppMenuItem = new gui.MenuItem({label: 'Quit the app'});

 const fileMenuSubMenu = new gui.Menu();
 fileMenuSubMenu.append(sayHelloMenuItem);
 fileMenuSubMenu.append(quitAppMenuItem);

 menuBar.append(fileMenu);
 gui.Window.get().menu = menuBar;
</script>

Here, you create a new menu and attach the menu items for the actions to it. You’re
almost there. The next bit is to bind that menu onto the File menu item. In NW.js,
menu items have a submenu property, and setting this attaches a menu onto a menu
item, creating a submenu. Add another line after appending the two menu items and
before appending the fileMenu to the menuBar, as shown next.

<script>
 'use strict';

 const gui = require('nw.gui');
 const menuBar = new gui.Menu({type:'menubar'});
 const fileMenu = new gui.MenuItem({label: 'File'});

 const sayHelloMenuItem = new gui.MenuItem({label: 'Say hello'});
 const quitAppMenuItem = new gui.MenuItem({label: 'Quit the app'});

 const fileMenuSubMenu = new gui.Menu();
 fileMenuSubMenu.append(sayHelloMenuItem);
 fileMenuSubMenu.append(quitAppMenuItem);

Listing 9.5 Attaching the action menu items to the submenu

Listing 9.6 Attaching the submenu to the file menu

162 CHAPTER 9 Creating application and context menus
 fileMenu.submenu = fileMenuSubMenu;

 menuBar.append(fileMenu);
 gui.Window.get().menu = menuBar;
</script>

By setting the submenu property on the fileMenu object to the fileMenuSubMenu, you
create a submenu for the File menu item. Save the file, run nw on the app folder from
the command line, and when you click the File menu item, you should now see the
two action items appear, like in figure 9.6.

Now you’re beginning to see something like the finished product—nested menu
items that will allow you to trigger actions when you click them. The final bit that
remains is to trigger actions when you click them. This is an easy thing to do in NW.js.
When specifying the menu items and their labels, you can also provide functions to
call when the menu items are clicked. In this case, you can add two simple functions
to the sayHelloMenuItem and quitAppMenuItem objects in your code; adjust the code to
look like this:

const sayHelloMenuItem = new gui.MenuItem(
 {
 label: 'Say hello',
 click: () => { alert('Hello'); }
 }
);

const quitAppMenuItem = new gui.MenuItem(
 {
 label: 'Quit the app',
 click: () => { process.exit(0); }
 }
);

When initializing the menu item objects, you set the click attribute on them with
functions that you want to execute when they’re clicked. In this case, clicking the
Say Hello menu item will trigger an alert dialog with the word “Hello,” and clicking
the Quit the App menu item will call Node.js’s process.exit function to terminate
the app.

Figure 9.6 The File menu item now has a submenu, with the actions that you want to perform
on the app.

163Adding menus to your app
 Save the code and reload the app from the command line. When you click the File
menu and then click Say Hello, you should see the dialog box. Once you’ve dismissed
the dialog, click the Quit the App menu item, and the program will close.

 If you run the app on OpenSUSE Linux (Tumbleweed edition), you’ll see some-
thing akin to figure 9.7.

Now that you’ve created the app using NW.js, let’s take a look at what’s involved in cre-
ating the same app with Electron.

CREATING THE MENU APP WITH ELECTRON

Electron’s approach to creating app menus is simpler, in my opinion, because you can
pass an object with submenus as arrays, rather than having to call multiple API meth-
ods to append menus. You’ll replicate the app you created for the NW.js app example
using Electron’s APIs, and notice the difference in approaches.

 I’ve created an app for this called windows-linux-menu-app-electron in the book’s
GitHub repository. You can download the app from there and give it a spin. I’ll talk
you through the interesting bits of the code.

 The code for the app is similar to that for the NW.js variant, but the difference
here is that you add an app.js file to hold the browser window code for the app, where
you’ll define the custom code for the menu.

 Let’s take a look at that app.js file where all the interesting stuff happens.

'use strict';

const electron = require('electron');
const Menu = electron.remote.Menu;

const sayHello = () => { alert('Hello'); };

const quitTheApp = () => { electron.remote.app.quit(); };

const template = [
 {
 label: 'File',
 submenu: [
 {
 label: 'Say Hello',
 click: sayHello
 },

Listing 9.7 The app.js file for the Windows/Linux app menu with Electron

Figure 9.7 The Windows/Linux
menu app example for NW.js
running on OpenSUSE
Tumbleweed edition

Requires Menu API via
Electron’s remote API

Generates menu
template with submenu
items as an array

164 CHAPTER 9 Creating application and context menus
 {
 label: 'Quit the app',
 click: quitTheApp
 }
]
 }
];

const menu = Menu.buildFromTemplate(template);
Menu.setAppMenu(menu);

You can see that Electron offers a simpler API when it comes to creating menus with
submenu items. When you run the app on Windows 10, you see figure 9.8.

Now you know how to create app menus, but suppose you want your app to have dif-
ferent menus for the various OSs (so as to follow their UX conventions). How do you
cater for that?

9.1.5 Choosing which menu to render based on the OS

Now that you have different code for handling menus for both Mac and Windows/
Linux, the next step is to be able to load different versions of the menu specific to the
OS that the app is running on. For example, say you have two functions that wrap
loading the menus for the different OSs, one called loadMenuForMacOS and another
called loadMenuForWindowsAndLinux, and you need to make sure that loadMenuFor-
MacOS runs only on a Mac—otherwise, loadMenuForWindowsAndLinux executes instead.
This can be done using Node.js’s OS API, with the following code:

const os = require('os');

function loadMenuForWindowsAndLinux () {}
function loadMenuForMacOS () {}

if (os.platform() === 'darwin') {
 loadMenuForMacOS;
} else {
 loadMenuForWindowsAndLinux;
}

This checks if the OS’s platform name is 'darwin' (which is what Mac OS calls itself
technically). If it is, you load the menu for Mac OS—otherwise, you load the menu for
Windows and Linux. This is how you can ensure that the menus work for both Win-
dows/Linux and Mac OS in their respective formats. Hopefully, one day you won’t
need to do this kind of workaround, but for now this is how it’s done.

Generates menu for that
item; attaches it to app

Figure 9.8 The Electron Menu app running on
Windows 10. Note that it's almost identical to
the NW.js example, bar the app icon.

165Context menus
9.2 Context menus
Sometimes you want to be able to interact with content in
the app window and perform a number of actions relevant
to that content. For example, when you right-click a piece
of selected text in a word processor, you’ll see options to
cut/copy the content, to check the spelling of the content,
and even to search for the content on a search engine.

 Electron and NW.js’s menu APIs can be used to create
context pop-up menus that are triggered when clicking
content inside of the app window, such as in figure 9.9.

9.2.1 Creating the context menu app with NW.js

To explore how the API works across both frameworks,
I’ve built a simple WYSIWYG HTML editor named Cirrus
(see figure 9.10). The editor lets you create HTML pages
by typing text into the editor window, and it then gener-
ates HTML for you. The feature you’ll add to Cirrus is the ability to right-click a piece
of content inside the WYSIWYG editor and display a relevant context menu that will
allow commands to be performed on that content. We’ll walk through the NW.js
example first, and then the Electron example afterward for comparison.

 First, download a copy of the Cirrus NW.js app from the book’s GitHub repository.
Now, take a good look around the code in the app.js file to get familiar with it, and

Figure 9.9 A context menu
displayed in Microsoft Word
2016 for Mac

Figure 9.10 Cirrus, a simple WYSIWYG HTML editor

166 CHAPTER 9 Creating application and context menus
then look at how you can use context menus to insert multimedia content such as
images and videos. Figure 9.11 shows what you want to achieve.

From the wireframe, you need to do the following:

1 Create a menu with two items, insert an image, and insert a video.
2 Create a way to bind the menu on appearing when a right-click is made on the

content in the design view.
3 Create functions for the menu items of inserting an image and inserting a

video.
4 Create a way to insert HTML into a specific cursor position in the content in

the design view.

You’ll start by creating an empty JavaScript file called designMenu.js in the cirrus folder.
This will hold the code for the context menu shown in the wireframe in figure 9.11.
Then you’ll add a single line of HTML to the index.html file to allow you to select an
image to insert into the page, as well as load the designMenu.js file in the app.js file.

 In the designMenu.js file, add the code (bit by bit) shown here.

'use strict';

let x;
let y;
let document;

function insertContent (content) {
 const range = document.caretRangeFromPoint(x, y);
 if (range) {
 range.insertNode(content);
 }
}

This allows you to handle tracking where the context menu is clicked and then insert
some text content into that point in the page. The following listing continues the process.

Listing 9.8 Creating insert image/video context menus, part 1

Figure 9.11 A wireframe of the
context menu you want to create

Uses these variables to
store coordinates where
context menu was clicked

Adds function that
inserts text content at
the place where context
menu was raised

167Context menus

ter

ng

ifra

Yo
is

a
into
function openImageFileDialog (cb) {
 const inputField = document.querySelector('#imageFileSelector');
 inputField.addEventListener('change', () => {
 const filePath = this.value;
 cb(filePath);
 });
 inputField.click();
}

function insertImage () {
 openImageFileDialog((filePath) => {
 if (filePath !== '') {
 const newImageNode = document.createElement('img');
 newImageNode.src = filePath;
 insertContent(newImageNode);
 }
 });
}

You now have the bits for inserting an image from the context menu when the user
right-clicks in the HTML page, as shown in the next listing.

 function parseYoutubeVideo (youtubeURL) {
 if (youtubeURL.indexOf('youtube.com/watch?v=') > -1) {
 return youtubeURL.split('watch?v=')[1];
 } else if (youtubeURL.match('https://youtu.be/') !== null) {
 return youtubeURL.split('https://youtu.be/')[1];
 } else if (youtubeURL.match('<iframe') !== null) {
 return youtubeURL.split('youtube.com/embed/')[1].split('"')[0];
 } else {
 alert('Unable to find a YouTube video id in the url');
 return false;
 }
 }

 function insertVideo () {
 const youtubeURL = prompt('Please insert a YouTube url');
 if (youtubeURL) {
 const videoId = parseYoutubeVideo(youtubeURL);

 if (videoId) {
 const newIframeNode = document.createElement('iframe');
 newIframeNode.width = 854;
 newIframeNode.height = 480;
 newIframeNode.src = `https://www.youtube.com/embed/${videoId}`;
 newIframeNode.frameborder = 0;
 newIframeNode.allowfullscreen = true;
 insertContent(newIframeNode);
 }
 }
 }

Listing 9.9 Creating insert image/video context menus, part 2

Listing 9.10 Creating insert image/video context menus, part 3

Function to handle
opening file dialog menu

for selecting an image

Function to trigger
opening image file
dialog; then inserts
image into the HTML
page as image element

Function looks af
getting YouTube
video URL, handli
different YouTube
share formats

When inserting video, user sees dialog
asking for YouTube URL, which is passed into
parser to handle different share formats

me element
to load the

uTube video
constructed
nd inserted
 HTML page

168 CHAPTER 9 Creating application and context menus
You’ve added the functions for inserting a YouTube video into the HTML page. Now
all that’s left to do is hook up those functions to the context menu interface, which
you now need to construct, as in the following listing.

function initialize (window, gui) {
 if (!document) document = window.document;
 const menu = new gui.Menu();

 menu.append(
 new gui.MenuItem({
 label: 'Insert image',
 click: insertImage
 })
);
 menu.append(
 new gui.MenuItem({
 label: 'Insert video',
 click: insertVideo
 })
);

 document.querySelector('#designArea')
 .addEventListener('contextmenu', (event) => {
 event.preventDefault();
 x = event.x;
 y = event.y;
 menu.popup(event.x, event.y);
 return false;
 });
}

module.exports = initialize;

Next, in the index.html file, add the following line of code (in bold) after the opening
body tag:

</head>
 <body>
 <input type="file" accept="image/*" id="imageFileSelector" class="hidden"/>

Finally, add the following line of code for loading the designMenu.js file in the depen-
dencies section of the app.js file:

const designMenu = require('./designMenu');

At the end of the initialize function in the app.js file, add the line of code to load
the designMenu code:

designMenu(window, gui);

Listing 9.11 Creating insert image/video context menus, part 4

Creates function to
load everything;
passed NW.js’s
window and GUI
library as argumentsWith NW.js GUI,

creates menu instance
for context menu

Adds menu item for
inserting an image

Adds another menu item
for inserting a video

Attaches that menu to
app’s design area so that
right-clicking inside it loads
that context menu

Exports the
module

169Context menus
You should have the same code as is in the addContextMenu branch of the app’s code
repository on GitHub. If you give the app a spin, open an HTML file to start editing,
and right-click inside the content when on the design tab, you should see the context
menu shown in figure 9.12.

If you click Insert Image, you’ll get a File dialog for selecting an image to insert into
the page, and if you click Insert Video, you’ll see a prompt dialog asking for a You-
Tube URL for a video to embed in the page.

9.2.2 How do context menus work with NW.js?

Setting up a context menu uses a similar API to the one for setting up app window
menus, with one difference—you don’t have to pass any options when initializing the
menu instance, as shown here:

const menu = new gui.Menu();

With the menu object initialized, you can add menu items for the Insert Image and
Insert Video options to the menu object:

menu.append(
 new gui.MenuItem({
 label: 'Insert image',
 click: insertImage
 })
);
menu.append(
 new gui.MenuItem({
 label: 'Insert video',
 click: insertVideo
 })
);

At this stage, clicking either menu item will trigger commands for picking an image
file or a YouTube video to embed in the page. You can ignore the specifics of how

Figure 9.12 The context menu
on display in the Cirrus WYSIWYG
HTML editor

170 CHAPTER 9 Creating application and context menus
those work for now and focus on how the menu appears where the user right-clicks
the content inside the app.

 In NW.js’s API, the menu object instance has a pop-up function that when passed
the x and y coordinates on the app, will bring up the menu at that location on the
app, as shown in figure 9.13.

To bind this function with the location the user right-clicks in the app window, you
need a way to track the coordinates of the user’s right-click. There’s a way to do this
with browser-specific JavaScript, as illustrated in the following code:

document.querySelector('#designArea')
 .addEventListener('contextmenu', (event) => {
 event.preventDefault();
 menu.popup(event.x, event.y);
 return false;
 });

Here, you look for the div element where the WYSIWYG part of the page is displayed
that can be edited, and attach an event listener on it for whenever a user right-clicks
anywhere inside the div element (the event is named contextmenu). When this event
occurs, you prevent the default behavior from occurring and instead call the menu’s
pop-up command with the coordinates where the right-click occurred.

9.2.3 Giving menu items icons

You’ll notice from the context menu in the Cirrus app that the options aren’t easy to
distinguish between—they have similarly named labels. You can use icons to help
make them more distinct. In NW.js, you have the ability to add icons to menu items,
which is an easy way to identify them.

 The menu items created for the Insert Image and Insert Video commands can be
modified to look like this:

Figure 9.13 The menu.popup function
allows you to control the exact placement
of the context menu within the app.

171Context menus
menu.append(
 new gui.MenuItem({
 icon: 'picture.png',
 label: 'Insert image',
 click: insertImage
 })
);
menu.append(
 new gui.MenuItem({
 icon: 'youtube.png',
 label: 'Insert video',
 click: insertVideo
 })
);

You add an icon attribute to the MenuItem’s options, with images that have been gen-
erated from the Font Awesome library. You can use these icons in the app (they exist
in the icons branch on the Cirrus app’s GitHub repository), and when you load the
app and right-click a loaded page in design view, you should see something like fig-
ure 9.14.

In the last couple of pages, you’ve created a WYSIWYG app from scratch and added
features for inserting images or videos via context menu items. Now we’ll take a quick
look at how you’d do the same thing using Electron.

9.2.4 Creating a context menu with Electron

Rather than build the entire app from scratch, you can download a copy of the code
for the app Cirrus Electron from the book’s GitHub repository. We’ll walk through the
bit concerning the context menu so that you can grasp how Electron handles imple-
menting that.

 The app is built, and you want to add a context menu for displaying options to
insert an image or video. The context menu has two items: Open, for opening an
HTML file to edit, and Save, for saving the updates to that file back on the computer.
These actions involve reading data from a file on the user’s computer, as well as saving

Figure 9.14 The context menu, with icons displayed next to the menu item commands

172 CHAPTER 9 Creating application and context menus
data to those files back onto the user’s computer. The part of the app that the user
sees is the UI, which runs in the render process, and the part that reads and writes
data to the hard disk runs in the main process. You need to use Electron’s inter-process
communication APIs (ipcMain and ipcRenderer) to transmit file paths and content
from the front end (renderer) to the back end (main), as well as transmit content and
file save state changes from the back end (main) to the front end (renderer).

 If you’ve downloaded a copy of the app’s code from GitHub, take a look at the
app.js file inside the cirrus-electron folder. At the top of the app.js file, you declare
the dependencies for the app, as shown here.

const electron = require('electron');
const Menu = electron.remote.Menu;
const MenuItem = electron.remote.MenuItem;
const ipc = electron.ipcRenderer;
const dialog = electron.remote.dialog;
const designMenu = require('./designMenu');
let currentFile;
let content;
let tabWas;
let done;

Anytime you want to access an API that’s in the main process, you can do it via Elec-
tron’s remote API. In this case, you want to access the menu and dialog APIs for the
app. Because you’re going to be asking the main process to read files and save content
to files as well, you call Electron’s ipcRenderer module to allow you to pass messages
to the app’s main process.

 Figure 9.15 shows a diagram to demonstrate what you’re trying to achieve. This fig-
ure illustrates the flow of IPC events from the renderer process (where the front end
exists) to the main process (where the back end exists). This is used when you select
an index.html file from the Open File dialog and want to load the contents of that file

Listing 9.12 The app dependencies for the Cirrus-electron’s front-end code

Loads menu API from
renderer process via
remote API

Calls ipcRenderer API
so you can pass data
to main processAccesses Dialog API for

File Opening dialog,
again via remote API

Main process Renderer process

readFile

FileRead

saveFile

fileSaved

Figure 9.15 The IPC events in the app for communicating when to read a
file and when to save it

173Context menus
into the editor. It’s also used when you want to save the contents in the editor back to
the file.

 To demonstrate this in action, let’s take a look at the bit of code in the app.js file
that handles when you want to open a file, on line 26, shown next.

 function openFile (cb) {
 dialog.showOpenDialog((files) => {
 ipc.send('readFile', files);
 if (files) currentFile = files[0];
 if (cb && typeof cb === 'function') cb();
 });
 }

A list of files is passed to the main process, which is then intercepted in code that
exists in the main.js file, and is shown next.

'use strict';

const electron = require('electron');
const fs = require('fs');
const app = electron.app;
const BrowserWindow = electron.BrowserWindow;
const ipc = electron.ipcMain;
let mainWindow = null;

app.on('window-all-closed', () => {
 if (process.platform !== 'darwin') app.quit();
});

app.on('ready', () => {
 mainWindow = new BrowserWindow();
 mainWindow.loadURL(`file://${__dirname}/index.html`);
 mainWindow.on('closed', () => { mainWindow = null; });
});

function readFile (event, files) {
 if (files) {
 const filePath = files[0];
 fs.readFile(filePath, 'utf8', (err, data) => {
 event.sender.send('fileRead', err, data);
 });
 }
};

function saveFile (event, currentFile, content) {
 fs.writeFile(currentFile, content, (err) => {
 event.sender.send('fileSaved', err);
 });
}

ipc.on('readFile', readFile);
ipc.on('saveFile', saveFile);

Listing 9.13 The code for opening files from the UI on Cirrus Electron

Listing 9.14 The code for opening files from the back end on Cirrus Electron

Calls dialog API to
load dialog for
opening an HTML file

Pass list of files
to main process

Includes Electron’s
IPC API for main
process

readFile function
reads contents of a
given file

Chooses first filePath
in list of files—you
can work only with
one at a time

Once contents are read, sends
it back to renderer process

Defines saveFile function
that saves contents to a file

Sends result back to
renderer process

Listens for readFile and saveFile
events emitted via IPC

174 CHAPTER 9 Creating application and context menus
This code wraps filesystem API methods and attaches them to event listeners that are
provided by the IPC module, thus bridging the separate JavaScript contexts of the
main process (back end) and the renderer process (front end). To complete the walk-
through, we’ll look next at what happens on the front end in the app.js file when a file
is read or saved.

 In the app.js file, you use the same pattern of listening on events in the IPC mod-
ule to intercept when a file is read ('fileRead') or saved ('fileSaved'). You then
trigger actions when those events are emitted. The next listing shows the code that
handles this.

ipc.on('fileRead', (event, err, data) => {
 loadMenu(true);
 if (err) throw(err);
 if (!done) bindClickingOnTabs();
 hideSelectFileButton();
 setContent(data);
 showViewMode('design');
});

ipc.on('fileSaved', (event, err) => {
 if (err) return alert('There was an error saving the file');
 alert('File Saved');
});

This code demonstrates that you can send data from the front end to the back end
and back, as long as the front-end code is set up to listen on events that are emitted by
the back end.

 With all this in place, you’re able to display the UI for the editor with a file
loaded and allow users to insert images or videos by right-clicking the HTML file in
design mode.

9.2.5 Adding the context menu with Electron

The code for the context menu is similar to the NW.js example, but differs in a few
places. The following is a snippet of the code from the designMenu.js file:

function initialize () {
 const menu = new Menu();
 menu.append(new MenuItem({label: 'Insert image', click: insertImage }));
 menu.append(new MenuItem({label: 'Insert video', click: insertVideo }));
 document.querySelector('#designArea')
 .addEventListener('contextmenu', function (event) {
 event.preventDefault();
 x = event.x;
 y = event.y;
 menu.popup(event.x, event.y);
 return false;
 });
}

Listing 9.15 Handling fileRead and fileSave IPC events on the front end

When fileRead event is
emitted, loads UI for editor
with that file’s contents

Reports on whether
save succeeded or not

175Summary
You can see that Electron offers a similar API for appending menu items to a menu.
The process is also identical in the way that the menu is able to appear.

HOW DOES ELECTRON HANDLE CALLING PROMPT()? Electron doesn't support the
prompt() browser call, which shows a dialog with a text field. Cheng Zhao has
said that because the feature would require a lot of work to implement and
because the feature is rarely used, he won’t implement it. In order to support
using the prompt in Electron, you can use the dialog’s npm module, available
at www.npmjs.com/package/dialogs.

9.3 Summary
This chapter covered how to implement app window menus and context menus with
NW.js and Electron. Some key takeaways from the chapter include the following:

 There are different API methods for handling the different ways that Windows/
Linux and Mac handle app menus. The best strategy is to use OS detection to
support both approaches.

 To implement context menus, you’ll want to override the app’s contextmenu
DOM event.

 When you want app window menu items to manipulate contents in the browser
window, use Electron’s IPC APIs to facilitate transmitting the data.

Important aspects to consider when you’re constructing menus for your app is whether
the menu needs to be unique for each window of the app, as well as whether the app
will be used on Macs. Mac OS has a single menu that applies to all app windows, and
this needs to be taken into account.

 In chapter 10, we’ll continue on the theme of the UI by looking at implementing
drag-and-drop functionality, as well as how to make the app look like it’s native to the
user’s OS.

http://www.npmjs.com/package/dialogs

Dragging and
dropping files and

crafting the UI
The UI of an app is one of the most important things to get right, as it’s the first
thing people see when using your app. People can and will judge whether to use an
app based purely on how the UI looks. But it’s not only about the UI; you also have
to think about the user experience.

 When drag-and-drop was introduced to computer users way back in the twenti-
eth century, it helped to make computers friendlier. It’s become a key behavior that
spans across most computing devices today, including small-form devices like
phones and tablets. It’s therefore appropriate to show you how to implement drag-
and-drop functionality in your desktop apps.

 We’ll also look at how to style the UI to mimic the look and feel of the user’s OS.

10.1 Dragging and dropping files onto the app
Most users of computers are familiar with organizing their files by dragging and
dropping them between file explorer windows and the desktop. In recent years, the
introduction of the file API in web browsers has meant that this functionality has

This chapter covers
 Configuring drag-and-drop functionality

 Mimicking the native look and feel of the
user’s OS
176

177Dragging and dropping files onto the app
found its way into web apps as well, typically with forms requiring files to be uploaded
to the web app. This is useful in cases like converting a file into another format, such
as the app Gifrocket (which uses NW.js). Gifrocket generates an animated GIF from a
video, and the interface for kicking off the process is to drag-and-drop the video file
onto the screen of the app, as shown in figure 10.1.

10.1.1 Dragging and dropping files to an app with NW.js

Say you have a feature in an app that requires processing a file (or set of files), and
you’d like to make use of NW.js’s drag-and-drop file support. How do you do that?

 A good example is an icon generator. You want to take a large-scale image and con-
vert it into lots of different sizes to generate an app icon that works on Mac OS. Bril-
liant—after all, it’s a common need for building cross-platform desktop apps. You
have the app at a stage where it will take an image and display that image at various
icon sizes. Now you want to enable the UI to receive an image file via dragging the file
to the app and dropping it onto the app screen. This exercise explores how you can
add drag-and-drop functionality to an existing app.

 To save time, I’ve built a rough prototype app called Iconic, which you can get
from the book’s GitHub repository at http://mng.bz/jKmw. Grab a copy of the code,
and I’ll show you how to add the drag-and-drop functionality.

 Notice what the app looks like when it starts (see figure 10.2).

Figure 10.1 Gifrocket in action: convert a
video to an animated GIF by dragging a video
file to the app and dropping it in the middle
of the app screen.

Figure 10.2 Iconic: the initial screen
suggests dropping an image file onto
the screen area, which you will
implement support for.

http://mng.bz/jKmw

178 CHAPTER 10 Dragging and dropping files and crafting the UI
The app is code complete, so we’ll walk through the code and see the interesting bits
that relate to adding drag-and-drop support to an app.

 In the app.js file, there’s an important snippet of code you use to capture any
attempts to drag-and-drop a file onto the screen area:

function stopDefaultEvent (event) {
 event.preventDefault();
 return false;
}

window.ondragover = stopDefaultEvent;
window.ondrop = stopDefaultEvent;

The default behavior of a web browser when a file is dragged and dropped onto a
page area is to load that file in the browser. That’s not what you want to happen
here, though. Instead you want to prevent that from happening by calling the
preventDefault function on the event. You then bind this on the ondragover and
ondrop events.

 Next, you need to get the path of the file that’s dropped onto the screen area and
pass that to another function, displayImageInIconSet, which will load it into various
img elements on the page. Getting that file path involves the following:

1 Intercept the drop event on the initial app screen.
2 Hide the initial screen.
3 Show the screen that displays the icons at different sizes.

Create a function called interceptDroppedFile that has the following code:

function interceptDroppedFile () {
 const interceptArea = window.document.querySelector('#load-icon-holder');
 interceptArea.ondrop = function (event) {
 event.preventDefault();
 if (event.dataTransfer.files.length !== 1) {
 window.alert('you have dragged too many files into the app. Drag just 1

file');
 } else {
 interceptArea.style.display = 'none';
 displayIconsSet();
 const file = event.dataTransfer.files[0];
 displayImageInIconSet(file.path);
 }
 return false;
 };
}

A couple of things are happening in this function. For a start, you need to get ahold of
the div that shows the content of the initial app screen and attach a function to the
ondrop event that will execute whenever a file is dropped onto it. You do a sanity
check to make sure the user hasn’t dragged more than one file onto the area (because
a user can drag multiple files). If they haven’t, you hide the intercept area, display the

179Dragging and dropping files onto the app
screen that shows the icons, and pass the path of the dragged file to the display-
ImageInIconSet function so that it then is rendered in the screen. You also need to
add in a function for displaying that screen above the function you inserted:

function displayIconsSet () {
 const iconsArea = window.document.querySelector('#icons');
 iconsArea.style.display = 'block';
}

And you want to ensure that the initial screen stretches the entire width and height of
the app, with the following code in the app.css file:

#load-icon-holder {
 padding-top: 10px;
 text-align: center;
 top: 0px;
 left: 0px;
 bottom: 0px;
 right: 0px;
 width: 100%;
}

If all goes according to plan with all the changes saved, when you drag an image file
(such as the example.png file in the images folder) into the app’s initial screen, you
should see something like figure 10.3.

This demonstrates how easy it is to add drag-and-drop functionality into an existing
app—and what kind of potential app UIs you can build with it.

 Is Electron any different in its approach? Let’s find out.

Figure 10.3 The Iconic
app rendering an app icon at
different size dimensions

180 CHAPTER 10 Dragging and dropping files and crafting the UI
10.1.2 Implementing drag-and-drop with Electron

If you take a look at the iconic-electron app in the book’s GitHub repository, you’ll see
that the only differences in the code are in the way the app starts up. The app.js file
and index.html files are identical to the ones in the iconic-nwjs variant of the app.
This is fantastic, because both apps are using the HTML5 file API for web browsers to
provide this functionality, and it demonstrates how easy it is to reuse web APIs when
building desktop apps. Figure 10.4 shows what the app looks like running on Windows
10 with Electron.

This also highlights one of the great aspects of developing desktop apps with NW.js or
Electron: the fact that you can reuse code written for websites and apps to build desk-
top apps, saving time when you add drag-and-drop to your desktop apps.

 Now that we’ve covered how drag-and-drop functionality can be added to desktop
apps, we’ll turn our focus to how you can replicate the look and feel of the user’s OS
in your desktop apps.

10.2 Mimicking the native look of the OS
A common concern of people creating desktop apps with Electron and NW.js is how
to make their apps look exactly like a native app with the UI controls and elements
matching what the OS uses.

 This can be achieved by detecting the user’s OS and version and using CSS
stylesheets to tailor the style of your app.

Figure 10.4 The Iconic Electron app running on Windows 10: different
Node.js desktop application framework, different OS, but the same app
functionality.

181Mimicking the native look of the OS
10.2.1 Detecting the user’s OS

If you’re looking to match the UI style of an OS, you need to be able to detect which
version of which OS is running, which you can do using Node.js’s OS API. The snippet
of code in the next listing will find out what platform is being run, and print out a log
message saying what OS it detected.

'use strict';

const os = require('os');
const platform = os.platform();

switch (platform) {
 case 'darwin':
 console.log('Running Mac OS');
 break;
 case 'linux':
 console.log('Running Linux');
 break;
 case 'win32':
 console.log('Running Windows');
 break;
 default:
 console.log('Could not detect OS for platform',platform);
}

If you copy this code and paste it into a Node.js REPL, you should see a message say-
ing what OS your computer is running (in the case of my laptop, it’s Mac OS).

10.2.2 Using OS detection in NW.js

If you’re using NW.js, you can include the code in listing 10.1 in the JavaScript files
loaded by the index.html file. You can use that code to load different stylesheets tai-
lored for each OS. Say you have an app that has three different stylesheets (one for
Windows, one for Mac, and one for Linux), and you want to be able to load the
stylesheet that matches the OS of the user. You can do this with the code shown next.

'use strict';

const os = require('os');
const platform = os.platform();

function addStylesheet (stylesheet) {
 const head = document.getElementsByTagName('head')[0];
 const link = document.createElement('link');
 link.setAttribute('rel','stylesheet');
 link.setAttribute('href',stylesheet+'.css');
 head.appendChild(link);
}

Listing 10.1 JavaScript for detecting the user’s OS

Listing 10.2 Applying different styles for each OS

182 CHAPTER 10 Dragging and dropping files and crafting the UI
switch (platform) {
 case 'darwin':
 addStylesheet('mac');
 break;
 case 'linux':
 addStylesheet('linux');
 break;
 case win32:
 addStylesheet('windows');
 break;
 default:
 console.log('Could not detect OS for platform',platform);
}

That code is a slight modification of the code in listing 10.1. Here, you create a func-
tion called addStylesheet that inserts a link tag to the head element’s inner HTML,
and the link tag loads the stylesheet, given the name of the OS that’s detected.

 This example can take care of most cases, but if you need to go deeper and detect
different versions of a specific OS (such as detecting which version of Windows a user
is running), you can repeat the pattern but instead call os.release(). Note, though,
you need to make sure to check the call on each version of the OS that you’re looking
to detect, because the release number is a number for technical reference, and
doesn’t always match the number that’s printed in marketing materials (for example,
calling os.release on Mac OS Mavericks will return a value of 14.3.0, which is differ-
ent from the OS’s reported version of 10.10.3).

10.2.3 Using OS detection in Electron

Although there are separate Node.js contexts for the main process and the renderer
process, the funny thing is that you can still call out to Node.js modules in the app.js
file, so you can use the OS API to detect the user’s OS. The code for this example is in
the Detect OS Electron app in the book’s GitHub repository. The code for the app.js
file is shown next.

'use strict';

function addStylesheet (stylesheet) {
 const head = document.getElementsByTagName('head')[0];
 const link = document.createElement('link');
 link.setAttribute('rel','stylesheet');
 link.setAttribute('href',stylesheet+'.css');
 head.appendChild(link);
}

function labelOS (osName) {
 document.getElementById('os-label').innerText = osName;
}

Listing 10.3 The Detect OS Electron app's app.js file

183Mimicking the native look of the OS
function initialize () {
 const os = require('os');
 const platform = os.platform();

 switch (platform) {
 case 'darwin':
 addStylesheet('mac');
 labelOS('Mac OS');
 break;
 case 'linux':
 addStylesheet('linux');
 labelOS('Linux');
 break;
 case 'win32':
 addStylesheet('windows');
 labelOS('Microsoft Windows');
 break;
 default:
 console.log('Could not detect OS for platform',platform);
 }
}

window.onload = initialize;

The app.js file is almost identical to the one featured in the NW.js variant. You are
therefore able to detect the user’s OS from the renderer process in Electron.

 Now, let’s look at the options available for replicating the look and feel of the
user’s OS in terms of CSS libraries.

10.2.4 Using CSS to match a user’s OS style

Giving desktop apps a look and feel that matches the user’s OS means making a web
browser page look exactly like a native desktop app. The best way to pull that off is to
use CSS stylesheets to tailor the look and feel of the app to the user’s OS.

 As suggested in the previous section, there’s a way to detect the user’s OS and ver-
sion and load a stylesheet that’s OS-specific. What stylesheets and tips are available?

METRO UI
With Windows 8 and the Surface tablet, Microsoft introduced a bold change to its UI
with a new tile-based design called Metro. The change didn’t merely redesign how the
UI elements look, but also how app layouts are structured.

 Sergey Pimenov, a programmer in Kiev, Ukraine, created a CSS framework called
Metro UI CSS (https://metroui.org.ua) that allows developers to create HTML-based
apps styled according to the guidelines of Metro (figure 10.5). Since the project was
created, it has been used by JetBrains in its IDE PhpStorm.

https://metroui.org.ua

184 CHAPTER 10 Dragging and dropping files and crafting the UI
MAC OS LION CSS UI KIT

Ville V. Vanninen, a minimalist visual designer, created a UI kit called Lion CSS UI Kit
(http://sakamies.github.io/Lion-CSS-UI-Kit/) for mocking up native Mac OS apps in
the browser. The purpose of the UI kit is to create authentic-looking mockups of Mac
apps in the browser, as opposed to using a UI kit in graphics tools like Photoshop,
Illustrator, and Sketch.

 Although the UI kit passes as a Mac OS app, the entire UI is made from HTML
and CSS—perfect for using with a desktop app that uses HTML, CSS, and JavaScript.
That said, recent versions of Mac OS are altering the look and feel of the OS, so bear
this in mind if you do consider using this CSS framework (figure 10.6).

LINUX

Unfortunately, I wasn’t able to find a Linux UI CSS kit. Also, Linux has so many distri-
butions (not to mention different graphical desktop environments with their own
UIs) that to apply native UI styling with a UI kit would require a lot of effort. I recom-
mend you avoid custom-styling the UI form elements because Chromium uses GTK as
the UI toolkit, so any themes picked by the computer user will be applied to the
browser’s native UI elements as well.

 These are CSS frameworks, but if you’re looking for CSS libraries that also inte-
grate with other JavaScript libraries and frameworks, then more options appear on
the table.

Figure 10.5 Metro UI CSS, a CSS framework for building web apps using Microsoft’s Metro UI

http://sakamies.github.io/Lion-CSS-UI-Kit/

185Mimicking the native look of the OS
PHOTON

Photon (http://photonkit.com) is a UI framework for Electron that allows you to build
apps with UIs that look identical to native Mac OS apps. The UI framework provides
an extensive list of components that can be combined to create comprehensive UIs, as
shown in figure 10.7.

Figure 10.6 Example app UI generated with Lion UI CSS Kit

Figure 10.7 Photon rendering what looks like Mac OS’s Finder window

http://photonkit.com

186 CHAPTER 10 Dragging and dropping files and crafting the UI
If you’re using React for your front end and would like to use Photon with React,
there’s a useful wrapper library available at https://github.com/react-photonkit/react-
photonkit.

REACT DESKTOP

React Desktop (http://reactdesktop.js.org) is another React-based UI library that
allows you to create apps that look like either Mac OS or Windows 10, and it doesn’t
require you to create two sets of front-end code for the UI. Figure 10.8 shows an exam-
ple of React Desktop in action.

10.3 Summary
In this chapter, we’ve explored ways to use the various GUI APIs of Electron and NW.js
for handling drag-and-drop. You also learned how to make desktop apps look like they
have the exact same UI as the UI controls in the user’s OS. Some of the main take-
aways from this chapter include the following:

 Implementing drag-and-drop in Node.js desktop apps is identical to working
with the HTML5 implementation in web apps, making it easy to repurpose web-
based code that is designed for the same purpose.

 Users can drag multiple files into the app, so bear this in mind if you want your
app to handle only one file at a time.

 Apart from the app menu and tray apps, Electron and NW.js don’t provide
native UI elements; you have to use OS detection and a CSS UI kit to make an
app achieve a native look.

 When you detect a user’s OS, remember that the release number of an app
won’t always match the number given to its market name.

In chapter 11, we’ll look at how you can build apps that interact more closely with the
OS. We’ll start by looking at how to display video and images from the user’s webcam
into a desktop app for a photo booth app.

Figure 10.8 React Desktop rendering a Windows 10 demo example

https://github.com/react-photonkit/react-photonkit
https://github.com/react-photonkit/react-photonkit
http://reactdesktop.js.org

Using a webcam in
your application
Not many years ago, webcams were external devices that you bought to plug into
your computer and used to chat with friends and family. Today, almost all laptops
come with webcams and microphones built in, making it easy for people to travel
and communicate with each other, as long as they have a good internet connection.
Back then, the only way you could access a webcam feed was via a desktop app, or
by using Adobe Flash. There wasn’t an easy way to do it over a web browser.

 But that changed. With the introduction of the HTML5 Media Capture API,
webcams could be accessible to web pages (with good security procedures in
place), and it is this capability that we’ll explore in this chapter. We’ll look at ways
to access and use these APIs to build a photo booth app.

11.1 Photo snapping with the HTML5 Media Capture API
When using Electron or NW.js to build your desktop app, you get the benefit of
Google Chrome’s extensive support for HTML5 APIs, one of which is the Media

This chapter covers
 Accessing the webcam on your computer

 Creating still images from live video

 Saving the still images to your computer
187

188 CHAPTER 11 Using a webcam in your application

Capture API. The HTML5 Media Capture API allows you to access the microphone
and video camera that are embedded in your computer, and the app you’ll build will
make use of this.

 Selfies are powerful—look at Snapchat’s IPO valuation ($22 billion as of February
2017). Build an app for selfies, people take selfies, other people view selfies, selfies
spawn more selfies, network effects kick in, and suddenly you’re a multibillion-dollar
startup. Who knew that there was so much money in selfies?

 That’s why you’ll build an app for selfies called Facebomb. Facebomb boils down
to open app, take photo, save photo to your computer. Simple, usable, and straight to the
point. Life is short, so rather that make you build the app from scratch, I’ve given you
an assembled app so you can investigate the particularly interesting bits.

 There are two code repositories for the app: one that uses Electron as the desk-
top app framework, and another that uses NW.js. You’ll find them under the names
Facebomb-NW.js and Facebomb-Electron in the book’s GitHub repository at http://
mng.bz/dST8 and http://mng.bz/TX1k.

 You can download whichever version of the app you’re interested in inspecting,
and run the installation instructions for it from the README.md file. Then, you can
run the app and see it in action.

11.1.1 Inspecting the NW.js version of the app

A lot of the code is pretty standard boilerplate code for an NW.js app. We’ll narrow
focus to the index.html and app.js files, which contain code unique to the app, start-
ing with the index.html file.

<html>
 <head>
 <title>Facebomb</title>
 <link href="app.css" rel="stylesheet" />
 <link rel="stylesheet" href="css/font-awesome.min.css">
 <script src="app.js"></script>
 </head>
 <body>
 <input type="file" nwsaveas="myfacebomb.png" id="saveFile">
 <canvas width="800" height="600"></canvas>
 <video autoplay></video>
 <div id="takePhoto" onclick="takePhoto()">
 <i class="fa fa-camera" aria-hidden="true"></i>
 </div>
 </body>
</html>

The HTML file contains the following:

 An input element that’s used for the file save. Inside it is a custom NW.js attri-
bute called nwsaveas that contains the default filename to save the file as.

Listing 11.1 The index.html file for the Facebomb NW.js app

Triggers the
Save File dialog

in NW.js

Captures
an image
from the
video

Video feed is streamed
into this element

Button that’s clicked to
trigger taking a photo

http://mng.bz/dST8
http://mng.bz/dST8
http://mng.bz/TX1k

189Photo snapping with the HTML5 Media Capture API
 The canvas element is used to store the picture data of the photo snapshot you
take from the video feed.

 The video element will display the video feed from the webcam, which is the
source for the photo.

 The div element with the id takePhoto is the round button in the bottom right
of the app window that you’ll use to take the photo and save it as a file on the
computer. Inside it is a Font Awesome icon for the camera. The advantages of
using the camera icon in place of text are that icons use less screen space than
words and can be easier to visually process as a result, and if the icon is univer-
sally recognizable, you don’t need to consider implementing internationaliza-
tion. Not everyone speaks English—in fact, English is the third-most-commonly
spoken language after Mandarin Chinese and Spanish.

Most of this code is compatible with running inside a web browser. The notable ele-
ment unique to NW.js is the nwsaveas attribute (which brings up the Save As dialog
for the file) on the input element. To read more about this custom attribute, see the
docs at http://mng.bz/nU1c.

 That covers the index.html file. The app.js file is around 39 lines of code, so we’ll
look at it in chunks. We’ll start with the dependencies and the bindSavingPhoto
function.

'use strict';

const fs = require('fs');
let photoData;
let saveFile;
let video;

function bindSavingPhoto () {
 saveFile.addEventListener('change', function () {
 const filePath = this.value;
 fs.writeFile(filePath, photoData, 'base64', (err) => {
 if (err) {
 alert('There was a problem saving the photo:', err.message);
 }
 photoData = null;
 });
 });
}

Here, you require some dependencies, define a few empty variables, and then define
a function that’s used for binding on when a photo is saved. Inside that function, you
add an event listener on the input element for when its value changes. When it
changes, it’s because the Save As dialog has been triggered. When an action is taken to
save a photo under a given file name or to cancel it, you attempt to save the photo
data to the computer as a Base64-encoded image file. If the file write is successful,

Listing 11.2 The initial code in the app.js file for the Facebomb NW.js app

Function binds on
the input element
in the HTML

File path for photo
is set by value in
input element

Attempts to save
file to disk as
Base64-encoded
image

If error saving the file,
displays alert dialog
with error message

photoData variable
that held photo data
reset to null

http://mng.bz/nU1c

190 CHAPTER 11 Using a webcam in your application

n

o

I

At

s
to
el

res

able

d
nothing else happens. But if there’s an error, you report it to the user in an alert dia-
log. Finally, you reset the photoData variable that was holding the photo snapshot.

 Next, we’ll look at the initialize function in the app.js file.

function initialize () {
 saveFile = window.document.querySelector('#saveFile');
 video = window.document.querySelector('video');

 let errorCallback = (error) => {
 console.log(
 'There was an error connecting to the video stream:', error
);
 };

 window.navigator.webkitGetUserMedia(
 {video: true},
(localMediaStream) => {
 video.src = window.URL.createObjectURL(localMediaStream);
 video.onloadedmetadata = bindSavingPhoto;
 }, errorCallback);
}

This bit of code does the key actions of requesting the video stream from the user’s
media capture device (be it a webcam built into their computer or an external video
device) and inserting that video stream into the video element in the app window. It
also attaches the bindSavingPhoto element to the video’s loadedmetadata event. This
event is triggered when the video stream starts to be fed into the video element (it
usually takes a second or two before the video stream kicks in).

 Once you’ve got the initialize function defined, you define the takePhoto func-
tion that’s triggered when the takePhoto div element is clicked in the app window.
The code for this is shown in the following listing.

function takePhoto () {
 let canvas = window.document.querySelector('canvas');
 canvas.getContext('2d').drawImage(video, 0, 0, 800, 600);
 photoData = canvas.toDataURL('image/png')
 .replace(/^data:image\/(png|jpg|jpeg);base64,/, '');
 saveFile.click();
}

window.onload = initialize;

Listing 11.3 The initialize function in the app.js file for the Facebomb NW.js app

Listing 11.4 The takePhoto function in the Facebomb NW.js app's app.js file

initialize function called
when app window
finishes loading

Creates error-
Callback functio
to handle error
on creating vide
stream

Media Capture AP
request to access
video stream from
user’s computer

taches
video

tream
 video
ement Binds on

saving photoIf you can’t access
video stream, then calls
the error callback

takePhoto function defined
for div element button that’s
clicked to take photo

canvas element captu
image snapshot from
video element

photoData vari
turns canvas
element into
Base64-encode
set of data

Triggers Save As dialog
programmatically to
save photo to computer

Binds initialize function
to execute when app
window has loaded

191Photo snapping with the HTML5 Media Capture API
Here, the canvas element is used to capture an image snapshot from the video ele-
ment. You tell it to use a 2D context and to then draw an image from the video
element that begins at 0 pixels left and 0 pixels top, and then goes 800 pixels wide
and 600 pixels high. These dimensions mean that you capture the full picture of
the video.

 You then take the image that has been recorded in the canvas element and con-
vert the data format to one for a PNG image. To make the data suitable for saving as a
file to the computer, you have to remove a bit of the data that’s used to make the
image render as an inline image in a web browser. The string replace method uses a
regular expression to find that bit of data and strip it out.

 You programmatically trigger clicking the input element that displays the Save As
dialog to the user. This means that when the #takePhoto div element is clicked in the
app window, you’ll create an image snapshot from the video element at that point in
time and then trigger the Save As dialog so that the user can save the image to their
computer.

 With that function defined, the final bit of code left is to bind the initialize
function on when the app window has loaded. You do it this way because you want to
make sure the app window has finished loading the HTML—otherwise, it will attempt
to bind on DOM elements that haven’t yet been rendered in the app window, which
would cause an error.

 With all that code defined in the app.js file, there’s a bit of configuration in the
package.json file that ensures that the app window is set to 800 pixels wide and 600
pixels high and ensures that the app window cannot be resized or set into full-screen
mode. The next listing shows the code for the package.json file.

{
 "name": "facebomb",
 "version": "1.0.0",
 "main": "index.html",
 "window": {
 "toolbar": false,
 "width": 800,
 "height": 600,
 "resizable": false,
 "fullscreen": false
 },
 "dependencies": {
 "nw": "^0.15.2"
 },
 "scripts": {
 "start": "node_modules/.bin/nw ."
 }
}

Listing 11.5 The package.json file for the Facebomb NW.js app

192 CHAPTER 11 Using a webcam in your application
You also have an app.css file with some styling.

body {
 margin: 0;
 padding: 0;
 background: black;
 color: white;
 font-family: 'Helvetica', 'Arial', 'Sans';
 width: 800px;
 height: 600px;
}

#saveFile, canvas {
 display: none;
}

video {
 z-index: 1;
 position: absolute;
 width: 800px;
 height: 600px;
}

#takePhoto {
 z-index: 2;
 position: absolute;
 bottom: 5%;
 right: 5%;
 text-align: center;
 border: solid 2px white;
 box-shadow: 0px 0px 7px rgba(255,255,255,0.5);
 margin: 5px;
 border-radius: 3em;
 padding: 1em;
 background-color: rgba(0,0,0,0.2);
}

#takePhoto:hover {
 background: #FF5C5C;
 cursor: pointer;
}

Now, you can look at what the app would look like when it’s run. Figure 11.1 shows an
example of the app running on Windows 10.

Listing 11.6 The app.css file for the Facebomb NW.js app

193Photo snapping with the HTML5 Media Capture API
With the app, you can take a photo of yourself and the file is saved to the computer.
Nice and simple—but the key thing here is that it demonstrates how easy it is to build
an app that takes in the camera feed and can do all kinds of things with it.

 That shows how you can do it with NW.js, but what about Electron?

Figure 11.1 Facebomb in action (that’s me by the way—I could use a shave)

Why isn’t the app asking for permission to use the camera?
The HTML5 Media Capture API has a security policy of asking users if they want a
web page to be allowed to access their camera or microphone before the web app
can use them. This is to prevent malicious use of the camera or microphone to take
photos or record audio.

With Electron and NW.js, because the app is running on the user’s computer, the app
is trusted with access to the computer’s devices, so there’s no permission bar
appearing in the app. This means you can create apps that have direct access to the
camera and microphone, but as Peter Parker’s (Spider-Man’s) uncle said, “With great
power comes great responsibility.”

194 CHAPTER 11 Using a webcam in your application
11.1.2 Creating Facebomb with Electron

If you want to have the cake and eat it straightaway, you can grab the Facebomb-Electron
app from the book’s GitHub repository. I’ll walk you through the differences of Elec-
tron’s approach to implementing Facebomb. First, as expected, the entry point of the
app differs from NW.js—you have a main.js file that handles the responsibility of load-
ing the app window and applying constraints to it so it can’t be resized or enter full-
screen mode. Other differences with Electron are in how it implements the Save As
dialog, as well as the level of customization you can apply to the dialog.

 You’ll take a look first at the entry point of the app to see how the constraints are
applied to the app window. The following listing shows the code for the main.js file.

'use strict';

const electron = require('electron');
const app = electron.app;
const BrowserWindow = electron.BrowserWindow;

let mainWindow = null;

app.on('window-all-closed', () => {
 if (process.platform !== 'darwin') app.quit();
});

app.on('ready', () => {
 mainWindow = new BrowserWindow({
 useContentSize: true,
 width: 800,
 height: 600,
 resizable: false,
 fullscreen: false
 });
 mainWindow.loadURL(`file://${__dirname}/index.html`);
 mainWindow.on('closed', () => { mainWindow = null; });
});

This is pretty much standard boilerplate for an Electron app, but the key bit of inter-
est is the configuration object that’s passed into the initialization of the Browser-
Window instance.

 The first property passed in the configuration object is called useContentSize. It
ensures that the width and height properties of the app window are referring to the
content of the app window and not to the entire app window. If you don’t pass this
property (or explicitly set it to false), you’ll see scrollbars appear in the app window.
This is because Electron treats the width and height properties as referring to not

Listing 11.7 The main.js file for the Facebomb Electron app

Requires Electron;
loads app and browser
window dependencies

Creates empty
mainWindow variable to
hold app window reference

If all windows are closed
and you’re not running app
on Mac OS, quits app

Creates browser window with
width, height, resizable, and
full-screen properties

Gets main app window
to load index.html file
inside it

Adds event binding to reset mainWindow
variable when window is closed

195Photo snapping with the HTML5 Media Capture API
only the app window’s content size, but also the title bar at the top of the app window,
as well as any trim around the edges of the app window.

 If you didn’t pass this, you would otherwise have to tweak the width and height
properties to make sure that the app window didn’t have any scrollbars. This is the
kind of pixel pushing that you don’t want to have to deal with—plus, if your app is
running across multiple OSs, you would have to tweak these numbers for each build
you want to target. Not ideal. I recommend you always pass the useContentSize attri-
bute if you’re going to define width and height properties to your app windows. For
more on this attribute and other options that can be passed to the window configura-
tion, see http://electron.atom.io/docs/api/browser-window/.

 You also pass the options for disabling the ability to resize the window or make it
allow full-screen mode here. Whereas in NW.js these options are configured in the
package.json file, Electron passes the configuration at the point of creating the app
window. The advantage of this approach is that it’s easier to give separate app windows
different configurations rather than inherit the same configuration from the pack-
age.json file.

 Now, take a quick look at the index.html file.

<html>
 <head>
 <title>Facebomb</title>
 <link href="app.css" rel="stylesheet" />
 <link rel="stylesheet" href="css/font-awesome.min.css">
 <script src="app.js"></script>
 </head>
 <body>
 <canvas width="800" height="600"></canvas>
 <video autoplay></video>
 <div id="takePhoto" onclick="takePhoto()">
 <i class="fa fa-camera" aria-hidden="true"></i>
 </div>
 </body>
</html>

The index.html file that’s loaded for the app window is almost identical to the one
used in the NW.js variant. The only difference is that there’s no input element in the
Electron version, and that’s because it’s not needed. If you remember, the input ele-
ment was used for storing the filename for the photo, as well as containing the custom
attribute nwsaveas, which NW.js uses to bind a Save File dialog.

 Electron handles dialog windows differently than NW.js, and to see how differently,
you need to take a look at the app.js file. The app.js file is around 40 lines of code, so
we’ll scan through it bit by bit, starting with the dependencies and the alternative to
the bindSavingPhoto function.

Listing 11.8 The index.html file for the Facebomb Electron app

http://electron.atom.io/docs/api/browser-window/

196 CHAPTER 11 Using a webcam in your application
'use strict';

const electron = require('electron');
const dialog = electron.remote.dialog;
const fs = require('fs');
let photoData;
let video;

function savePhoto (filePath) {
 if (filePath) {
 fs.writeFile(filePath, photoData, 'base64', (err) => {
 if (err) {
 alert(`There was a problem saving the photo: ${err.message}`);
 }
 photoData = null;
 });
 }
}

In the dependencies at the top of the app.js file, you require Electron and then use
the remote API to load Electron’s dialog module from a renderer process (the app.js
file). You then define a function called savePhoto. The purpose of this function is to
save the photo to disk when a file path is passed to it from Electron’s Save File dialog.
If it manages to successfully save the file to disk, you’re good, but if it encounters an
error, you alert the user. You also reset the photoData variable afterward.

 Let’s look at the initialize function in the app.js file.

function initialize () {
 video = window.document.querySelector('video');
 let errorCallback = (error) => {
 console.log(`There was an error connecting to the video stream:

${error.message}`);
 };

 window.navigator.webkitGetUserMedia({video: true}, (localMediaStream) => {
 video.src = window.URL.createObjectURL(localMediaStream);
 }, errorCallback);
}

This code is almost identical to the same-named function in the NW.js variant, but
with a slight difference: you don’t need to define a saveFile variable as there is no
input element in the HTML, and you don’t need to bind on the video’s loadedmeta-
data event triggering, because you pass the data and file in another location in the
app’s code.

Listing 11.9 The dependencies in the app.js file for the Facebomb Electron app

Listing 11.10 The app.js file’s initialize function for the Facebomb Electron app

Loads Electron and
requires dialog module
through remote API

savePhoto function
receives file path from
Save File dialog

Checks for file path
in case user clicked
Cancel on Save File
dialog

197Photo snapping with the HTML5 Media Capture API
 Finally, let’s take a look at the takePhoto function and the window.onload event
binding that makes up the rest of the app.js file.

function takePhoto () {
 let canvas = window.document.querySelector('canvas');
 canvas.getContext('2d').drawImage(video, 0, 0, 800, 600);
 photoData =

canvas.toDataURL('image/png').replace(/^data:image\/(png|jpg|jpeg);base6
4,/, '');

 dialog.showSaveDialog({
 title: "Save the photo",
 defaultPath: 'myfacebomb.png',
 buttonLabel: 'Save photo'
 }, savePhoto);
}

window.onload = initialize;

In this version of the app, the takePhoto function does a bit more work. It directly
triggers the rendering of the Save File dialog window. You set the title, default file
path, and Success button’s labels, and then pass the savePhoto function as the call-
back function that the dialog window will call once the user has either clicked Save
Photo or Cancel on the dialog window. When the savePhoto function is called, it will
receive the file path with the name of the file given by the user, or it will receive a null
value if the user cancelled. Last but not least, you bind the initialize function on
triggering when the window has loaded the HTML.

 Here, you can see that to bring about a dialog window for saving a file, you call
a function in Electron’s dialog module. The showSaveDialog function is one of a
number of functions you can call from the module. If you want to trigger other
behaviors, like a dialog for opening a file or displaying a message dialog with an
icon, the API methods and their arguments are available at http://electron.atom.io/
docs/api/dialog/.

 What does the Electron version of the app look like? It’s almost identical to the
NW.js version, as figure 11.2 shows.

 The key takeaway here is that you’ve been able to build an app with embedded
video and photo-saving features. Imagine the effort involved in trying to replicate the
same app in native frameworks! It’s fair to say that HTML5 Media Capture has taken
away a lot of the pain, so the ability to build desktop apps on top of that kind of work
is a massive timesaver.

Listing 11.11 The app.js file’s takePhoto function for the Facebomb Electron app

Calls dialog module to
create Save File dialog

Sets title of Save File
dialog window

Passes default
filename for the file

Sets label of success
action button to
“Save photo”

Passes savePhoto function
as callback to dialog, which
will pass final file path

http://electron.atom.io/docs/api/dialog/
http://electron.atom.io/docs/api/dialog/

198 CHAPTER 11 Using a webcam in your application
11.2 Summary
In this chapter, you created a photo booth–like app called Facebomb and explored
different implementations of it in NW.js and Electron. This discussion has introduced
you to the idea that you can leverage the HTML5 Media Capture API to access video
and use it in creative ways. Some of the key takeaways from the chapter include these:

 You don’t need to worry about asking for permission to access the webcam or
microphone when using HTML5 Media Capture APIs, because both Electron
and NW.js apps run locally on the user’s computer and are therefore trusted.

 You can use the video element to display the video feed in your app, and the
HTML5 canvas element to record an image from it to be saved to your computer.

That was fun. In chapter 12, we’ll turn our attention to ways of storing app data.

Figure 11.2 Facebomb Electron on Windows 10. Notice how the app looks exactly the same,
except for the app icon in the app title.

Storing app data
Applications need to store data; when you’re playing a game and loading from a
saved level, or configuring settings for how you use a particular app, or even storing
structured data in a line-of-business app, data must be stored somewhere and must
be accessed by the app with ease.

 Options for how to store data in your app range from using the HTML5 local-
Storage API to using embedded databases in your desktop app. In this chapter,
we’ll explore some options and see how you can use them with your desktop apps.

12.1 What data storage option should I use?
In the old days, this was a simple question—there were fewer options. Traditionally,
web apps relied solely on storing data in databases that lived on back-end servers.
With the advent of client-side storage APIs for HTML5, the ability to store data on
the client has resulted in the emergence of new libraries for that purpose, and for
synchronizing that data with an external database.

This chapter covers
 Storing data in a variety of ways

 Using the HTML5 localStorage API

 Porting the TodoMVC project to run locally with
NW.js and Electron
199

200 CHAPTER 12 Storing app data
 Table 12.1 lists options for storing your data in web apps, and these can therefore
be used in both Electron and NW.js apps.

Lots of options are available, sure, but which one should you use? That depends on
what data you’re storing, how much of it you’re storing, and how you’ll need to query
that data.

 If you have a good idea what kind of data you’re going to be storing, and the
schema for that data is known up front and is unlikely to change while the app is in
use, relational databases are worth considering due to the benefits of their powerful
querying capabilities.

 If you need to store no more than 5 MB of data for your app (for example, user set-
tings), you can get away with using the browser-based API options, which impose limits
of 5 MB on how much data can be stored on them.

 Another thing to consider is how you’ll need to query the data. If the data is denor-
malized and stored in tables with references to data in other tables, then a document-
based approach might not be the most efficient when it comes to querying the data.
The design of the data schemas and whether the data is denormalized or not will go
some way toward helping you choose whether to opt for a SQL-based or NoSQL-based
database for data storage.

 Enough debating about which option to pick. Let’s give some of them a spin.

12.2 Storing a sticky note with the localStorage API
You’ll create a simple single sticky note app called Let Me Remember. It’s a dead-sim-
ple app that will demonstrate what localStorage is handy for (storing text-based data
in a key/value data store). There are two separate versions of the app for the different
frameworks, one for NW.js (called let-me-remember-nwjs) and one for Electron
(called let-me-remember-electron). Both apps can be found in the book’s GitHub
repository at http://mng.bz/fYrm and http://mng.bz/COlh.

Table 12.1 Options for storing data

Name Database type Type URL

IndexedDB Key/Value Browser API https://is.gd/wwDSgj

localStorage Key/Value Browser API https://is.gd/3XbaFQ

Lovefield Relational Client-side library https://github.com/google/lovefield

PouchDB Document Client-side library https://pouchdb.com/

SQLite Relational Embedded http://sqlite.com/

NeDB Document Embedded https://is.gd/f44eap

LevelDB Key/Value Embedded http://leveldb.org/

Minimongo Document Client-side library https://is.gd/yTRXhe

https://is.gd/wwDSgj
https://is.gd/3XbaFQ
https://github.com/google/lovefield
https://pouchdb.com/
http://sqlite.com/
https://is.gd/f44eap
http://leveldb.org/
https://is.gd/yTRXhe
http://mng.bz/fYrm
http://mng.bz/COlh

201Storing a sticky note with the localStorage API
 You can either take a look at one of those apps and run the code according to the
README instructions or assemble it from scratch. We’ll look at the Electron version
of the app first, for a change.

12.2.1 Creating the Let Me Remember app with Electron

The app is mostly a vanilla boilerplate, but with a few distinct touches. Let’s start with
the package.json file and work from there. First, you create a folder for the app. You
can use the following commands in a terminal:

mkdir let-me-remember
cd let-me-remember

Now, you can create a package.json file inside the folder and insert the code shown in
the next listing.

{
 "name": "let-me-remember-electron",
 "version": "1.0.0",
 "description": "A sticky note app for Electron",
 "main": "main.js",
 "scripts": {
 "start": "node_modules/.bin/electron .",
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "keywords": [
 "electron"
],
 "author": "Paul Jensen <paulbjensen@gmail.com>",
 "license": "MIT",
 "dependencies": {
 "electron ": "^1.3.7"
 }
}

The main property in the package.json file indicates that the main.js file is the app’s
point of entry. The main.js file is mostly vanilla boilerplate, but there’s a bit of code
that you need to make the app window frameless, as well as to apply width/height con-
straints. This is so the app can have the look and feel of a sticky note to the user.

 Don’t forget to run npm install after saving the package.json to install the Elec-
tron dependency.

 Let’s create the main.js file next and add the code to it shown next.

'use strict';

const electron = require('electron');
const app = electron.app;
const BrowserWindow = electron.BrowserWindow;

Listing 12.1 Making the package.json file for the Let Me Remember Electron app

Listing 12.2 Making the main.js file for the Let Me Remember Electron app

202 CHAPTER 12 Storing app data
let mainWindow = null;

app.on('window-all-closed', () => {
 if (process.platform !== 'darwin') app.quit();
});

app.on('ready', () => {
 mainWindow = new BrowserWindow({
 width: 480,
 height: 320,
 frame: false
 });
 mainWindow.loadURL(`file://${__dirname}/index.html`);
 mainWindow.on('closed', () => { mainWindow = null; });
});

The main.js file configures the app window to be of a fairly small size so that it resem-
bles the dimensions of a sticky note and has a frameless app window. Inside the app
window is the index.html file that will be the only visible element of the app. Let’s now
flesh out the index.html file with the content from the next listing.

<html>
 <head>
 <title>Let Me Remember</title>
 <link rel="stylesheet" type="text/css" href="app.css">
 <script src="app.js"></script>
 </head>
 <body>
 <div id="close" onclick="quit();">x</div>
 <textarea onKeyUp="saveNotes();"></textarea>
 </body>
</html>

The index.html file is fairly simple, because the app itself is quite simple. There’s no
app frame, so you implement a custom close button that, when clicked, will quit the
app. You then also define a textarea element, which is responsible for displaying
the text of the sticky note as well as allowing the user to edit it.

 At the top of the index.html file, you load two front-end files: an app.css stylesheet
and an app.js JavaScript file. We’ll look at the stylesheet first. In the app’s folder, cre-
ate an app.css file, and put the CSS shown next inside.

body {
 background: #ffe15f;
 color: #694921;
 padding: 1em;
}

Listing 12.3 Making the index.html file for the Let Me Remember Electron app

Listing 12.4 Creating the app.css file for the Let Me Remember Electron app

Sets frame attribute to
false to make app
window frameless

Triggers call to quit
when clicking X

textarea element saves
text on every keystroke

203Storing a sticky note with the localStorage API

 Ge
con

te
el
textarea {
 font-family: 'Hannotate SC', 'Hanzipen SC','Comic Sans', 'Comic Sans MS';
 outline: none;
 font-size: 18pt;
 border: none;
 width: 100%;
 height: 100%;
 background: none;
}

#close {
 cursor: pointer;
 position: absolute;
 top: 8px;
 right: 10px;
 text-align: center;
 font-family: 'Helvetica Neue', 'Arial';
 font-weight: 400;
}

The CSS code here uses fairly common CSS rules and could be repurposed in a web
app if you wanted. The body is styled to look like the yellow paper commonly associ-
ated with a sticky note, and the textarea is styled to look like handwriting—it even
uses Comic Sans as a last resort (the last time I saw Comic Sans in use was at AOL).
Finally, the close button is given a different styling to make the X character look like
the one used for a close button.

 With the styling applied, all that’s left to do now is create the app.js file that con-
tains the quit and saveNotes functions. In the same app folder, create the app.js file
and insert the code shown here.

'use strict';

const electron = require('electron');
const app = electron.remote.app;

function initialize () {
 let notes = window.localStorage.notes;
 if (!notes) notes = 'Let me remember...';
 window.document.querySelector('textarea').value = notes;
}

function saveNotes () {
 let notes = window.document.querySelector('textarea').value;
 window.localStorage.setItem('notes',notes);
}

function quit () { app.quit(); }

window.onload = initialize;

Listing 12.5 The app.js file for the Let Me Remember Electron app

Loads app module
via remote API to
enable quitting
app

Calls HTML5
localStorage API to
check for notes data

If none, sets it to
default value

Loads notes data
for display in
textarea element

ts text
tent in
xtarea
ement

Saves text
content to HTML5
localStorage API

quit function wraps
call to quit function
on the app module

204 CHAPTER 12 Storing app data
The app.js file helps implement the loading of data from the computer via the
HTML5 localStorage API and then allows the user to record notes on the sticky
and close the app down. When they type some notes, the notes are saved. When they
reopen the app, the notes they saved will be displayed in the sticky, as shown in fig-
ure 12.1.

With the help of the HTML5 localStorage API, you’ve been able to add data persis-
tence to your app and make it work in such a way that saving the notes happens invisi-
bly in the background. It’s the kind of user experience you want the app to provide—
seamless.

 Now, you can take a look at how the NW.js implementation differs in its approach.

12.2.2 Implementing the Let Me Remember app with NW.js

The NW.js implementation of the app varies slightly. It has the same CSS as the Elec-
tron variant of the app and almost identical versions of the app.js and index.html files.
You’ll work from the package.json and look at the files from there.

 Create a folder for the app, and then create a package.json file inside it and insert
the following code:

{
 "name" : "let-me-remember",
 "version": "1.0.0",
 "main": "index.html",
 "window": {
 "width": 480,
 "height": 320,
 "frame": false
 }
}

The package.json file is pretty much vanilla, with the exception of the window proper-
ties. You’ve set the initial width and height to a relatively small size (similar to a large
sticky note stuck on the screen) and turned off the window frame so that it will look
like a sticky note stuck on the screen.

Figure 12.1 The Let Me Remember Electron
app running on Windows 10. If you type some
notes, close the app, and reopen it, it will load
with the notes that you typed.

205Storing a sticky note with the localStorage API
 Next, you’ll add the index.html file in the folder, and put the following code in there:

<html>
 <head>
 <title>Let Me Remember?</title>
 <link rel="stylesheet" type="text/css" href="app.css">
 <script src="app.js"></script>
 </head>
 <body>
 <div id="close" onclick="process.exit(0)">x</div>
 <textarea onKeyUp="saveNotes();"></textarea>
 </body>
</html>

The HTML file is a simple file as well. You use a textarea element to capture the
notes that you want to jot down inside the sticky note. You could have used a p ele-
ment with a contenteditable attribute, but you need to be able to capture the event
when new content enters the p element, and currently there isn’t a way to do that. You
also have a div element with the ID attribute of "close", which when clicked will trig-
ger the process of exiting the app (because you’ve hidden the window frame around
the app, and therefore you wouldn’t have a way to close the app graphically, except for
navigating to the menu bar and closing the app from there). Note that this doesn’t
call a quit() function, because you can directly call Node.js’s process global variable
from the JavaScript context in the HTML.

 The app.css file is identical to the one used in the Electron app, shown in listing 12.4,
so you can avoid repeating yourself on that. As for the app.js file, the code is similar
but has a little less code, as shown next.

'use strict';

function initialize () {
 let notes = window.localStorage.notes;
 if (!notes) notes = 'Let me remember...';
 window.document.querySelector('textarea').value = notes;
}

function saveNotes () {
 let notes = window.document.querySelector('textarea').value;
 window.localStorage.setItem('notes',notes);
}

window.onload = initialize;

It’s quite a nice, compact bit of code, so let’s go through it. When the app and the
DOM have loaded, you call an initialize function to retrieve any notes that are
stored under the key name of notes. If there are no notes, then you provide some
default copy, “Let me remember. . .” and insert that into the textarea element in
the page.

Listing 12.6 The app.js file for the Let Me Remember NW.js app

206 CHAPTER 12 Storing app data
 If you take a quick glance back to the index.html file, you’ll notice that the text-
area element had an onKeyUp attribute that called a function named saveNotes. Well,
the saveNotes function does what the name suggests—it gets the text that’s currently
in the textarea element of the app and calls the localStorage API’s setItem func-
tion to set the value of notes to that text.

 If you type in some items you want to get, such as a grocery list, and then close the
app, you should find that when you reopen the app, the notes have been saved and
will be displayed as before, as in figure 12.2.

The localStorage API is ideal for storing unstructured text with a simple key/value
storage mechanism (getItem, setItem). The Let Me Remember app example you
went through is an ideal use case for it, but a lot of other apps will need to store struc-
tured data that’s not necessarily in string format—it might be an array of strings, or
integers, or other kinds of data types.

 One potential approach to storing that kind of data is serializing and deserializing
the data with JSON.stringify() and JSON.parse(). If the use case of your app is well
defined, then this approach can work. An example of this is the popular TodoMVC
project. To demonstrate this, you’ll port one of the TodoMVC app examples to
become a desktop app, with a few changes.

12.3 Porting a to-do list web app
Storing a to-do list with the localStorage API is possible—in fact, this is how the
TodoMVC project handles data persistence.

 The TodoMVC project is a collection of examples of the same to-do list app, imple-
mented using different JavaScript frameworks. Its purpose is to show developers how
each framework approaches implementing a to-do list app so that users can find the
right framework for their needs.

 There are lots of different implementations of the TodoMVC app, including Sock-
etstream (a framework for real-time web apps that I’ve been involved with in the past).

Figure 12.2 The Let Me Remember
NW.js app. I’ve added some grocery
list items for shopping later.

207Porting a to-do list web app
You’ll take a popular framework called React and use its implementation as the exam-
ple that you’ll port to a desktop app.

 Porting this app will demonstrate a major key benefit of both Electron and NW.js:
how easy it is to reuse code from a web app inside a desktop app.

12.3.1 Porting a TodoMVC web app with NW.js

First, you need to make a copy of the TodoMVC GitHub repository. Find a folder
where you want to install a local copy of the repository and clone it to there with Git
from the Terminal:

git clone git@github.com:tastejs/todomvc.git

Inside the cloned GitHub repository, you’ll find an examples folder containing all the
different implementations of the TodoMVC app. You’re interested in the folder
named react. Open the folder in your text editor/IDE of choice and add these lines to
the package.json file:

"name":"todo-mvc-app",
"version":"1.0.0",
"main":"index.html",
"window": {
 "toolbar":false
}

Save the package.json file, and run nw inside the folder in the Terminal. You should
see the app running on your desktop. Add some to-do list items to it and then close
the app and reopen it. What you’ll see is something like figure 12.3.

Figure 12.3 The TodoMVC app running as a desktop app via NW.js, with
data being stored in the app via the HTML5 localStorage API

208 CHAPTER 12 Storing app data
What’s so cool about this is that with six lines of code added to one file, you’ve turned
a web app into a desktop app. If only all apps could be ported that easily! If you’re
interested in seeing what’s going on behind the scenes, take a look at the js/utils.js
file, particularly at the store function that begins on line 28. The function is a get-
ter/setter that wraps access to the HTML5 localStorage API and makes use of the
JSON.stringify() and JSON.parse() methods to handle storing and retrieving data.

12.3.2 Porting a TodoMVC app with Electron

I’d like to say that the Electron app version is as simple, but it requires a few more
steps. First, you need to modify the package.json file for the TodoMVC React example
so that it looks like the code in the following listing.

{
 "private": true,
 "dependencies": {
 "classnames": "^2.1.5",
 "director": "^1.2.0",
 "electron-prebuilt": "^1.2.5",
 "react": "^0.13.3",
 "todomvc-app-css": "^2.0.0",
 "todomvc-common": "^1.0.1"
 },
 "main":"main.js",
}

The modifications to the package.json file are so that you can get Electron to run the
app. Next, we’ll look at implementing the main.js file that you need to make the Elec-
tron app load. Create a file called main.js, and put the following code into it:

'use strict';

const electron = require('electron');
const app = electron.app;
const BrowserWindow = electron.BrowserWindow;

let mainWindow = null;

Listing 12.7 The package.json file for the TodoMVC React Electron app

Why not store structured data using Web SQL?
It’s a good question. Naturally, SQL would make a good fit for storing structured data
such as the data inside the TodoMVC project. The reason that it isn’t used, and why
I don’t mention it in the book, is because Web SQL as a web standard is being dep-
recated and hence will enter a graveyard of web standards that have been abandoned
over time.

Adds Electron as
dependency to list of
dependencies for repo

Adds main field for app’s
entry point, pointing to
main.js file you’ll make

209Summary
app.on('window-all-closed', () => {
 if (process.platform !== 'darwin') app.quit();
});

app.on('ready', () => {
 mainWindow = new BrowserWindow();
 mainWindow.loadURL(`file://${__dirname}/index.html`);
 mainWindow.on('closed', () => { mainWindow = null; });
});

The main.js file is pretty standard and is used to load the index.html file in the React
example app. If you try to load the app, you’ll find that the example doesn’t work. Open-
ing the developer tools on the app and looking at the Console Tab reveals a JavaScript
error: 'classNames' is not defined. This error is occurring in the todoItem.jsx file
located inside the js folder of the React example folder. The classNames variable is com-
ing from a Node.js module that’s loaded in the index.html file as a script tag.

 One way to fix this error is to require the classnames module inside the todoItem.jsx
file so you can guarantee the module is loaded by the time the React code is evaluated.
In the todoItem.jsx file, add the following line of code on line 8, before the instantly
invoked function expression:

const classNames = require('classnames');

Now, you can run the app from the command line by running this in the same direc-
tory as the TodoMVC app:

electron

This will get the TodoMVC app to run. What this demonstrates is that when you port a
web app to Electron, there are a few more steps involved; but also, loading libraries in
the DOM can’t be guaranteed to happen in the order you expect, so you should be
aware of that.

12.4 Summary
In this chapter, we’ve looked at how you can go about storing data for your desktop
apps. You looked at what options exist for storing your app’s data, and explored using
the HTML5 localStorage API to implement a notes app. You then explored how ver-
satile NW.js and Electron are by using them to convert a web app into a desktop app
that persists its data locally.

 You can store simple datasets in your desktop app using HTML5’s localStorage
API and, if needed, serialize and deserialize structured data with that too; but you’re
better off using an embedded database for that kind of data.

 Now that we’ve covered ways to store and retrieve data for your apps, we can
explore another element of handling data in your apps—specifically, how you get and
set data from the OS clipboard.

Copying and
pasting contents

from the clipboard
Copying data from one source and using it in another is a function that’s pretty
standard with today’s apps. Some utility apps add value to this functionality by auto-
matically copying screenshots to the clipboard, or keeping track of multiple data
items that are copied to the clipboard.

 In this chapter, we’ll look at how NW.js and Electron enable you to use the OS’s
clipboard to copy and paste content, as well as how to clear the clipboard (a good
practice, especially when copying/pasting sensitive data).

 By the end of the chapter, you’ll have a good understanding of how to access
and alter the user’s clipboard.

This chapter covers
 Accessing the clipboard in NW.js and Electron

 Copying text content to the clipboard

 Clearing the clipboard

 Copying Electron’s other data types to the
clipboard
210

211Accessing the clipboard
13.1 Accessing the clipboard
Copying and pasting from the OS clipboard improves the UX by taking a manual step
out of the user journey. Take, for example, the password manager app 1Password by
AgileBits. When you enter your password in a website login, the app automatically
copies the password to your clipboard for pasting into the password field of the login
form the next time you log in.

 The clipboard APIs in Electron and NW.js allow you to store and retrieve text-
based data to and from the clipboard. To illustrate how this works, you’ll build a very
simple app that lists a number of common phrases, film quotes, and things you might
want to type into a chat window, and saves some nuggets that you want to keep for
later. You’ll call it Pearls.

 If you want to have a look at premade versions of these apps, the NW.js and Elec-
tron versions of the app are available in the pearls-nwjs app in the book’s GitHub
repository at http://mng.bz/4V2D. You can download the code and run it per the
instructions, or if you prefer to see how the app is made from scratch, read on.

13.1.1 Creating the Pearls app with NW.js

You’ll start by creating a folder called pearls-nwjs to store the app’s files. Then, add the
package.json file. In your text editor, create the package.json file and add the follow-
ing content to it:

{
 "name":"pearls",
 "version":"1.0.0",
 "main":"index.html",
 "window": {
 "width": 650,
 "height": 550,
 "toolbar": false
 },
 "scripts": {
 "start": "node_modules/.bin/nw ."
 },
 "dependencies": {
 "nw": "^0.15.3"
 }
}

The package.json file is much like the package.json for other NW.js apps, with the
only unique bits being the window width and height properties. Next, implement
the index.html file, and put the following code into it:

<html>
 <head>
 <title>Pearls</title>
 <link href="app.css" rel="stylesheet" />
 <script src=" app.js"></script>
 </head>

http://mng.bz/4V2D

212 CHAPTER 13 Copying and pasting contents from the clipboard
 <body>
 <template id="phrase">
 <div class="phrase"

onclick="copyPhraseToClipboard(this.innerText);"></div>
 </template>
 <div id="phrases"></div>
 </body>
</html>

The index.html file does a few things: It loads an app stylesheet as well as an app.js file
for loading the phrases and copying them into the clipboard. It then also contains a
template tag for the phrase, used for each phrase you want to display in the app win-
dow. The following listing shows the CSS for the Pearls app.

body {
 padding: 0;
 margin: 0;
 background: #001203;
}

#phrases {
 padding: 0.5em;
}

.phrase {
 float: left;
 padding: 1em;
 margin: 1em;
 border-radius: 12px;
 border: solid 1px #ccc;
 font-family: 'Helvetica Neue', 'Arial' 'Sans-Serif';
 font-style: italic;
 width: 9em;
 min-height: 7em;
 text-align: center;
 color: #fff;
}

.phrase:hover {
 cursor: pointer;
 background: #1188de;
}

The CSS for the app is designed so that the app has a dark background, and the
phrases are highlighted against that dark background with white text surrounded by a
white border. When a phrase is hovered over, the background color of that phrase
turns blue.

 Next, load the app.js file, shown here.

Listing 13.1 The app.css file for the Pearls NW.js app

213Accessing the clipboard
'use strict';

const gui = require('nw.gui');
const clipboard = gui.Clipboard.get();
const phrases = require('./phrases');
let phrasesArea;
let template;

function addPhrase (phrase) {
 template.content.querySelector('div').innerText = phrase;
 let clone = window.document.importNode(template.content, true);
 phrasesArea.appendChild(clone);
}

function loadPhrasesInto () {
 phrasesArea = window.document.getElementById('phrases');
 template = window.document.querySelector('#phrase');
 phrases.forEach(addPhrase);
}

function copyPhraseToClipboard (phrase) {
 clipboard.set(phrase, 'text');
}

window.onload = loadPhrasesInto;

The key bit of the app is the function copyPhraseToClipboard, which uses the clip-
board API to set a value to the clipboard—in this case, the phrase that was clicked.
The phrases.js file contains a list of quotes from various films like Kindergarten Cop and
others (I’ll let you figure out the rest). Here’s the list of phrases:

'use strict';

module.exports = [
 'I have to return some videotapes',
 'Do not attempt to grow a brain',
 'So tell me, do you feel lucky? Well do ya, Punk!',
 'We\'re gonna need a bigger boat',
 'We can handle a little chop',
 'Get to the choppa!',
 'Hold onto your butts',
 'Today we\'re going to play a wonderful game called "Who is your daddy, and

what does he do?"',
 'Yesterday we were an army without a country. Tomorrow we must decide...

which country we want to buy!'
];

The phrases.js file exports a list of strings that are movie quotes from various films.
That list is then loaded by the app.js file into the app window.

 Now, you can run the app with npm start, and you should see an app that looks
like figure 13.1.

Listing 13.2 The app.js file for the Pearls NW.js app

Loads NW.js’s Clipboard
API through NW.gui
module

Loads example phrases
to use in app

Adds a phrase
to app window

Function loads
phrases from
phrases.js file
into app window

When phrase is clicked,
function is triggered to copy
phrase into clipboard

When app is done loading
HTML, triggers loading phrases

214 CHAPTER 13 Copying and pasting contents from the clipboard
If you wanted to access the contents of the clipboard (say you had a quotation from a
web page that you copied to the clipboard but hadn’t pasted anywhere), you could do
that by using the following line of code in your app:

let copiedText = clipboard.get('text');

Figure 13.1 The Pearls app running with NW.js on Microsoft Windows 10

What content can I store and retrieve from the clipboard?
NW.js currently only allows text-based content to be stored and retrieved from the OS
clipboard—unfortunately, images can't be accessed or stored. It is hoped that other
content types will be able to be stored and accessed from the clipboard in the future,
but for now text will have to do.

If you want to get/set other types of content to the clipboard, you may be better off
going with Electron because that has support for other data types.

215Accessing the clipboard
This can be useful in cases where you want to automatically record copied content (such
as for a note-taking app where content is being copied out of pages and documents).
Sometimes you want the clipboard cleared (such as when it’s used to store sensitive
information). To do that, call this line on the API:

clipboard.clear();

The clipboard API offers the ability to store and retrieve text-based content from the
OS clipboard, but if you need to work with other data (such as files), then you might
still be in luck.

 What does the clipboard API in Electron look like in comparison?

13.1.2 Creating the Pearls app with Electron

The Pearls app Electron example’s source code can be found in the pearls-electron
app folder in the book’s GitHub repository.

 The app’s code is similar to that of the Pearls app NW.js example, with the excep-
tions of the package.json file, the app.js file, and the main.js file required by Electron
to load an app. The next listing shows the package.json file for this app.

{
 "name": "pearls-electron",
 "version": "1.0.0",
 "description": "A clipboard API example for Electron and the book 'Cross

Platform Desktop apps'",
 "main": "main.js",
 "scripts": {
 "start": "node_modules/.bin/electron .",
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "keywords": [
 "electron",
 "clipboard"
],
 "author": "Paul Jensen <paulbjensen@gmail.com>",
 "license": "MIT",
 "dependencies": {
 "electron ": "^1.3.7"
 }
}

The package.json file is generated by running npm init from the command line and is
modified slightly to include the Electron npm dependency, as well as the start com-
mand so that you can run npm start to make the app boot. It also loads the main.js
file as the Electron app’s first entry point. The code for the main.js file is shown next.

Listing 13.3 The package.json file for the Pearls Electron app

216 CHAPTER 13 Copying and pasting contents from the clipboard
'use strict';

const electron = require('electron');
const app = electron. app;
const BrowserWindow = electron.BrowserWindow;

let mainWindow = null;

app.on('window-all-closed', () => {
 if (process.platform !== 'darwin') app.quit();
});

app.on('ready', () => {
 mainWindow = new BrowserWindow({
 width: 670,
 height: 550,
 useContentSize: true
 });
 mainWindow.loadURL(`file://${__dirname}/index.html`);
 mainWindow.on('closed', () => { mainWindow = null; });
});

The main.js file loads a standard app window with a specific width and height so you
can display the phrases in a 3 x 3 grid initially, as well as ensure that the app window
size is based on the size of the content window.

 The index.html, app.css, and phrases.js files are identical to the NW.js equivalent
of the app, so there’s no point repeating those here. What is different, though, is how
the clipboard API methods are called in Electron, which you can see in the app.js file.

'use strict';

const electron = require('electron');
const clipboard = electron.clipboard;
const phrases = require('./phrases');
let phrasesArea;
let template;

function addPhrase (phrase) {
 template.content.querySelector('div').innerText = phrase;
 let clone = window.document.importNode(template.content, true);
 phrasesArea. app endChild(clone);
}

function loadPhrasesInto () {
 phrasesArea = window.document.getElementById('phrases');
 template = window.document.querySelector('#phrase');
 phrases.forEach(addPhrase);
}

function copyPhraseToClipboard (phrase) {
 clipboard.writeText(phrase);
}

window.onload = loadPhrasesInto;

Listing 13.4 The main.js file for the Pearls Electron app

Listing 13.5 The app.js file for the Pearls Electron app

Loads Electron’s
clipboard API

Make3 call to clipboard
API to write some text to
clipboard

217Accessing the clipboard
If you run the app via npm start, you’ll see the app looking like figure 13.2.
 The way in which you access the clipboard from Electron follows a semantic nam-

ing convention of read and write. In the app.js file for the Pearls app, the call to put
some text content in the clipboard is clipboard.writeText. To read the content in
the clipboard, you can make the following code call:

const content = clipboard.readText();

To clear the clipboard’s content, you can make an identical function call to the clip-
board API:

clipboard.clear()

The API method call is identical to the one used in NW.js—another signal of how
much the two frameworks share in common. That said, Electron has evolved more

Figure 13.2 Pearls running with Electron on Windows 10. The app looks almost identical to the one
shown in figure 13.1, with the exception of the toolbar and the app icon.

218 CHAPTER 13 Copying and pasting contents from the clipboard
API methods that allow it to do more than copy and paste text from the clipboard, as
you’ll see in the next section.

13.1.3 Setting other types of content to the clipboard with Electron

Unlike NW.js, Electron allows you to put RTF, HTML, and even images on the clip-
board. The API methods follow the same patterns as the readText and writeText
functions that the clipboard API exposes. We’ll briefly walk through some of them,
but to read more, see the API documentation at http://electron.atom.io/docs/api/
clipboard/.

 The clipboard API has methods for the following content types:

 Text
 HTML
 Images
 RTF

Calling the API methods from the clipboard API looks like this:

const electron = require('electron');
const clipboard = electron.clipboard;

let image = clipboard.readImage();
let richText = clipboard.readRTF();
let html = clipboard.readHTML();

clipboard.writeImage(image);
clipboard.writeRTF(richText);
clipboard.writeHTML(html);

Here, you can see the pattern of read/write for getting content from the clipboard as
well as setting content to it.

13.2 Summary
In this chapter, we worked through an app that copied movie quotes into the user’s
clipboard, and explored the API methods available to the developer for copying text-
based and other types of data into the clipboard.

 The key takeaway from this chapter is that you can only copy and paste text-based
content with the clipboard API in NW.js, but Electron can handle multimedia content
like images and RTF.

 In chapter 14, we’ll take a look at how the various desktop app frameworks go
about implementing keyboard shortcuts. We’ll make it fun by putting them into a
well-known 2D game called Snake.

http://electron.atom.io/docs/api/clipboard/
http://electron.atom.io/docs/api/clipboard/

Binding on
keyboard shortcuts
Power users of applications (and users of Vim) will tell you that learning keyboard
shortcuts is invaluable for using apps in a fast and productive manner. For other
apps, like arcade games, they can also be an essential interface method.

 Programmatically binding keyboard shortcuts to your desktop app in Electron
and NW.js offers your users faster ways to perform common tasks, takes some of UI
scanning out of the user experience, and makes your apps easier and more pleas-
ant to use. In this chapter, we’ll explore how to add keyboard shortcuts to a video
game known as Snake.

 Years ago, I built the Snake game as a Christmas/New Year project at a Ruby on
Rails consultancy called New Bamboo (now part of Thoughtbot) and wrote up a
tutorial about it on their site. Step forward to now, and what better example than to
re-create the same game as a desktop app.

This chapter covers
 Learning how NW.js and Electron work with

keyboard shortcuts

 Adding keyboard shortcuts to a 2D game

 Adding global hotkey shortcuts
219

220 CHAPTER 14 Binding on keyboard shortcuts
 Although you could port the original source code of the game from the repository
I created six years ago, it would be better to create it fresh, learning from how it was
developed. That way you can better understand the mechanics of the game as well as
how you can use Electron and NW.js’s keyboard shortcuts APIs to bind direction keys
to the movement of the snake. If you want to see the app in action, you can grab the
app’s source code for snake-nwjs and snake-electron from the book’s GitHub reposi-
tory at http://mng.bz/kxdd and http://mng.bz/Wis3.

14.1 Creating the Snake game with NW.js
First off, create a new folder called snake-nwjs, and generate some default boilerplate
code for it:

mkdir snake-nwjs
cd snake-nwjs
touch app.js
touch app.css
touch index.html
touch package.json

You next need to put some initial configuration into the package.json file. Add the fol-
lowing code to it:

{
 "name": "snake-nwjs",
 "version": "1.0.0",
 "description": "A Snake game in NW.js for 'Cross Platform Desktop

Applications'",
 "main": "index.html",
 "scripts": {
 "start": "node_modules/.bin/nw .",
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "keywords": [
 "snake",
 "nwjs"
],
 "author": "Paul Jensen <paulbjensen@gmail.com>",
 "license": "MIT",
 "window": {
 "width": 840,
 "height": 470,
 "toolbar": false
 },
 "dependencies": {
 "nw": "^0.15.3"
 }
}

IS THERE ANOTHER WAY TO CREATE THE PACKAGE.JSON FILE? Yes. If you get
bored with creating the package.json file from scratch, there's a convenience

http://mng.bz/kxdd
http://mng.bz/Wis3

221Creating the Snake game with NW.js
command from npm called init. It will ask you a bunch of questions from
the CLI and create the package.json file for you. To use it, open a Terminal
or Command Prompt and type npm init in the location where you would like
the package.json file to exist. To find out more about npm init, check out
https://docs.npmjs.com/cli/init.

Now, turn your attention to the index.html file and put the following code in it:

<html>
 <head>
 <title>Snake</title>
 <link href="app.css" rel="stylesheet" />
 <script src="app.js"></script>
 </head>
 <body>
 </body>
</html>

Now, you can start building the game. The first decision is what content you want to
display for the Snake game. A few items should be displayed visually:

 The score
 The game area, the snake inside it, and the item that the snake eats
 Buttons for starting, pausing, and restarting the game.

We’ll focus on the UI first and then flesh out various bits of the game. Let’s define the
main scoreboard and the game area in the UI.

 First, define the game area and the scoreboard. For the game area, you’ll use a
canvas element, a simple div element for the scoreboard, and a bar element contain-
ing the buttons to pause, resume, and restart the game. Inside the body element of the
index.html file, add the following snippet:

<div id="scoreboard">
 Score:

 <div id="bar">
 <div id="play_menu">
 <button onclick="pause();">Pause</button>
 </div>
 <div id="pause_menu">
 <button onclick="play();">Resume</button>
 <button onclick="restart();">Restart</button>
 </div>
 <div id="restart_menu">
 <button onclick="restart();">Restart</button>
 </div>
 </div>
</div>
<canvas></canvas>

https://docs.npmjs.com/cli/init

222 CHAPTER 14 Binding on keyboard shortcuts
The canvas tag will be used to render the area in which the snake will move, as well as
where the food will appear. You’ll add some styling to it to make it look presentable,
too. In the app.css file, add the following styling:

body {
 margin: 1em;
 padding: 0;
 background: #111;
 color: white;
 font-family: helvetica;
}

canvas {
 border: solid 1px red;
 width: 800px;
 height: 400px;
}

#scoreboard {
 padding-bottom: 1em
}

#label, #score, #bar {
 float: left;
 padding: 8px;
}

#pause_menu, #restart_menu {
 display: none;
}

Now you have the area for the snake to move around in, as well as the scoreboard, so
now you need a snake moving around and eating food. You’ll use the HTML5 canvas
API to handle rendering the snake. In the app.js file, add the following code:

'use strict';

let canvas, ctx, gridSize, currentPosition, snakeBody, snakeLength,
direction, score, suggestedPoint, allowPressKeys, interval, choice;

function updateScore () {
 score = (snakeLength - 3) * 10;
 document.getElementById('score').innerText = score;
}

The updateScore function is a simple UI helper function that updates the div ele-
ment, displaying the current score. Add the following code:

function hasPoint (element) {
 return (element[0] === suggestedPoint[0] && element[1] === suggestedPoint[1]);
}

The hasPoint function is a helper function to check whether a given element’s x and
y coordinates match a suggested point’s x and y coordinates, which are stored as an

223Creating the Snake game with NW.js
array. The suggested point is where to place the food item that the snake will eat. Now,
add the following:

function makeFoodItem () {
 suggestedPoint =

[Math.floor(Math.random()*(canvas.width/gridSize))*gridSize,
Math.floor(Math.random()*(canvas.height/gridSize))*gridSize];

 if (snakeBody.some(hasPoint)) {
 makeFoodItem();
 } else {
 ctx.fillStyle = 'rgb(10,100,0)';
 ctx.fillRect(suggestedPoint[0], suggestedPoint[1], gridSize, gridSize);
 }
}

makeFoodItem does what it says—makes the food items for the snake to eat. It finds a
random point on the canvas and checks if it is currently occupied by the snake. If it is,
it calls itself in order to find another spot. If not, it creates the food item at that spot.
Add the following code:

function hasEatenItself (element) {
 return (element[0] === currentPosition.x && element[1] === currentPosition.y);
}

Another semantically named function, hasEatenItself, checks whether the snake
has managed to wander into its own path. Now add this code:

function leftPosition(){
 return currentPosition.x - gridSize;
}

function rightPosition(){
 return currentPosition.x + gridSize;
}

function upPosition(){
 return currentPosition.y - gridSize;
}

function downPosition(){
 return currentPosition.y + gridSize;
}

These helper functions report back the edge of the snake’s head, depending on the
direction in which the snake is heading. It’s used to track the next coordinate that
the snake would occupy on the axis so you can check if it’s about to hit the edge
of the movement area, or eat a food item, or itself. Insert the following:

function whichWayToGo (axisType) {
 if (axisType === 'x') {
 choice = (currentPosition.x > canvas.width / 2) ? moveLeft() : moveRight();

224 CHAPTER 14 Binding on keyboard shortcuts
 } else {
 choice = (currentPosition.y > canvas.height / 2) ? moveUp() : moveDown();
 }
}

A slight variation on the original Snake game, now, when the snake hits the edge of
the movement area, it will go sideways rather than continue from the opposing end
of the movement area. The idea is that the snake will move in the general direction of
where most of the space is, so if the snake is toward the bottom limit of the movement
area and hits the right side, then the snake will move upward—that’s where the space
is. Add the following:

function moveUp(){
 if (upPosition() >= 0) {
 executeMove('up', 'y', upPosition());
 } else {
 whichWayToGo('x');
 }
}

function moveDown(){
 if (downPosition() < canvas.height) {
 executeMove('down', 'y', downPosition());
 } else {
 whichWayToGo('x');
 }
}

function moveLeft(){
 if (leftPosition() >= 0) {
 executeMove('left', 'x', leftPosition());
 } else {
 whichWayToGo('y');
 }
}

function moveRight(){
 if (rightPosition() < canvas.width) {
 executeMove('right', 'x', rightPosition());
 } else {
 whichWayToGo('y');
 }
}

These functions will execute moving in a given direction, so long as there’s space to
do so. It will then move the snake in that direction. Now, add more code:

function executeMove(dirValue, axisType, axisValue) {
 direction = dirValue;
 currentPosition[axisType] = axisValue;
 drawSnake();
}

225Creating the Snake game with NW.js
The executeMove function handles setting the direction of the snake, its current position,
and then drawing the body of the snake onto the movement area. Next, add this code:

function moveSnake(){
 switch (direction) {
 case 'up':
 moveUp();
 break;

 case 'down':
 moveDown();
 break;

 case 'left':
 moveLeft();
 break;

 case 'right':
 moveRight();
 break;
 }
}

moveSnake handles moving the snake, based on the direction given. Next, you want to
add the buttons for restarting, pausing, and resuming the game. Insert the following:

function restart () {
 document.getElementById('play_menu').style.display='block';
 document.getElementById('pause_menu').style.display='none';
 document.getElementById('restart_menu').style.display='none';
 pause();
 start();
}

function pause(){
 document.getElementById('play_menu').style.display='none';
 document.getElementById('pause_menu').style.display='block';
 clearInterval(interval);
 allowPressKeys = false;
}

function play(){
 document.getElementById('play_menu').style.display='block';
 document.getElementById('pause_menu').style.display='none';
 interval = setInterval(moveSnake,100);
 allowPressKeys = true;
}

Now, the player can restart, pause, and play the game. Now add this:

function gameOver(){
 pause();
 window.alert('Game Over. Your score was ' + score);
 ctx.clearRect(0,0, canvas.width, canvas.height);

226 CHAPTER 14 Binding on keyboard shortcuts
 document.getElementById('play_menu').style.display='none';
 document.getElementById('restart_menu').style.display='block';

}

When the game is finished, the player is shown what their score is, and the movement
area resets. Now you’ll add the animation function:

function drawSnake() {
 if (snakeBody.some(hasEatenItself)) {
 gameOver();
 return false;
 }
 snakeBody.push([currentPosition.x, currentPosition.y]);
 ctx.fillStyle = 'rgb(200,0,0)';
 ctx.fillRect(currentPosition.x, currentPosition.y, gridSize, gridSize);
 if (snakeBody.length > snakeLength) {
 let itemToRemove = snakeBody.shift();
 ctx.clearRect(itemToRemove[0], itemToRemove[1], gridSize, gridSize);
 }
 if (currentPosition.x === suggestedPoint[0] && currentPosition.y ===

suggestedPoint[1]) {
 makeFoodItem();
 snakeLength += 1;
 updateScore();
 }
}

The drawSnake function is the most complex of all of the functions in terms of the
number of things it needs to do, which include the following:

 Check whether the snake has eaten itself, and if it has, end the game
 Track where the snake is in terms of coordinates
 Draw the snake’s body on the canvas
 Clear areas where the snake was, and draw areas where the snake now is, giving

the illusion of the snake moving around in the area.
 Track whether the snake has eaten the food item, and if so, make another food

item, make the snake that much bigger, and update the score

Add this to start a new game:

function start () {
 ctx.clearRect(0,0, canvas.width, canvas.height);
 currentPosition = {'x':50, 'y':50};
 snakeBody = [];
 snakeLength = 3;
 updateScore();
 makeFoodItem();
 drawSnake();
 direction = 'right';
 play();
}

227Creating the Snake game with NW.js
The start function takes care of kicking off the game, setting up the initial state of
the game, and then calling play in order to get the game going. Add the following to
get the game to load and begin from the start:

function initialize () {
 canvas = document.querySelector('canvas');
 ctx = canvas.getContext('2d');
 gridSize = 10;
 start();
}

window.onload = initialize;

The initialize function runs when the app loads. It takes care of initializing the
HTML5 canvas object for interaction and calls the start function to begin the game.

 This is quite a sizeable amount of code, but now you have most of the game imple-
mented. If you were to open the game and run it with NW.js, you should see some-
thing like figure 14.1.

The game is functional, but you can’t control the snake yet—it’s going to go round
and round in circles. You need to implement keyboard controls.

14.1.1 Implementing window focus keyboard shortcuts with NW.js

If you need to control the app when the window is in focus, you can add keyboard
shortcuts to JavaScript in the app without using NW.js’s keyboard shortcuts API. You
can use browser-specific JavaScript to handle that.

Figure 14.1 The Snake game running, but no keyboard controls implemented yet

228 CHAPTER 14 Binding on keyboard shortcuts
 Add this code to the app.js file above the start function:

window.document.onkeydown = function(event) {
 if (!allowPressKeys){
 return null;
 }
 let keyCode;
 if(!event)
 {
 keyCode = window.event.keyCode;
 }
 else
 {
 keyCode = event.keyCode;
 }

 switch(keyCode)
 {
 case 37:
 if (direction !== 'right') {
 moveLeft();
 }
 break;

 case 38:
 if (direction !== 'down'){
 moveUp();
 }
 break;

 case 39:
 if (direction !== 'left'){
 moveRight();
 }
 break;

 case 40:
 if (direction !== 'up'){
 moveDown();
 }
 break;

 default:
 break;
 }
};

Here, you add an event listener for any keypress. You then look at which key is
pressed, and if it’s a keycode for a direction key, then you move the snake in that
direction. If you were to save this file and reload the app with nw on the Terminal, you
could play the game by using the up, down, left, and right keys.

 This is okay in the context of playing a video game, but what if you want to trigger
a command from the keyboard without the app window necessarily being in focus?

229Creating the Snake game with NW.js
 This is where NW.js’s keyboard shortcuts API comes into action. You can link
global keyboard shortcuts to the game so users can pause the game, even when the
window isn’t in focus.

14.1.2 Creating global keyboard shortcuts with NW.js

NW.js’s keyboard shortcuts API is used to create global shortcuts for apps that execute
even when the app window isn’t in focus; for example, the media keys on your desktop
music player app, which you can use to pause music even when the music player isn’t
in focus.

 Let’s say, for the sake of putting the API to use, that you want to be able to pause
the Snake game, even when the app window isn’t in focus. You propose that pressing
Ctrl-P will pause the game, or resume it if it was paused.

 You’ll start by adding a variable for tracking whether the game is currently in play,
or is paused:

let currentState;

Next, add a function to handle toggling between the play and pause states of the game
so you can press a key combination that will either pause or resume the game, depend-
ing on the current state:

function togglePauseState () {
 if (currentState) {
 if (currentState === 'play') {
 pause();
 currentState = 'pause';
 } else {
 play();
 currentState = 'play';
 }
 } else {
 pause();
 currentState = 'play';
 }
}

Upon the first attempt to run the code, the currentState variable hasn’t been set, so
you set it to play (as the game app automatically plays when it’s started) and then
pause the game. If the variable is then set to pause, you call the play command and
set the current state to that, and vice versa.

 The functionality of the togglePauseState function means you can bind the Ctrl-
P keys to this command, keeping the binding nice and simple. To attach this function
to the Ctrl-P keypresses, you insert this little bit of code:

const pauseKeyOptions = {
 key:'Ctrl+P',
 active: togglePauseState,
 failed: () => {

230 CHAPTER 14 Binding on keyboard shortcuts
 console.log('An error occurred');
 }
};

The pauseKeyOptions variable specifies the key combination, what action to run
when the key combo is triggered, and a function to execute if it fails for any reason.
You then pass this variable to a new instance of NW.js’s Shortcut class:

const pauseShortcut = new nw.Shortcut(pauseKeyOptions);

To confirm that this key combo works with the OS, add this line of code:

nw.App.registerGlobalHotKey(pauseShortcut);

This ensures that the OS will recognize the key combination and trigger the pause/
resume action on combo keypress. You could leave it there and say that’s all that
needs to be done, but one thing to bear in mind is that you need to release this
global hotkey combination when the game is closed. For this, add one final snippet
of code:

process.on('exit', () => {
 nw.App.unregisterGlobalHotKey(pauseShortcut);
});

This snippet ensures that when the app is about to be closed, the hotkey combina-
tion is released. If you now save the file and reload the app from the Terminal, you
should now find that pressing Ctrl-P pauses the game, even when the window is not
in focus.

The use case given is perhaps a bit unusual, but it demonstrates how you can use
NW.js to work with your keyboard even when an app window isn’t in focus. Apps that
would use this include music-playing apps, and even screen-recording software, which
do not depend on the mouse to click a button to start and stop recording.

 We’ll now take a look at how Electron handles implementing keyboard shortcuts.

Ctrl-P keys work as Command-P on Macs, why?
This is a bit odd, but NW.js treats the Ctrl key specified in the keyboard shortcuts API
as the Command key on Mac OS; even though you specified the Ctrl-P key combo in
the example, it triggers with Command-P on the Mac.

Macs use the Command key rather than the Control key for shortcuts (for example,
Command-C for copy on Macs is equivalent to Ctrl-C for copy on Windows).

231Creating global shortcuts for the Snake game with Electron

ut

n

Re

key
sh
14.2 Creating global shortcuts for the Snake game
with Electron
To compare how Electron implements keyboard shortcuts, you’ll re-create the game
with Electron. If you want to skip ahead to a working version of the game, you can check
out the source code on the book’s GitHub repository for the snake-electron app.

 The two versions of the app share a lot of similar code, but how they go about
implementing support for keyboard shortcuts differs quite a bit. Not only are the API
methods different, but the way in which they’re accessed also needs to be taken into
consideration.

 To illustrate this, I’ll skip showing the identical files and focus exclusively on the
parts of the app that involve implementing the global keyboard shortcuts.

 The index.html and app.css files look exactly the same. The bits that have changes
in them are the app.js and main.js files. You’ll start with the main.js file, which is
important because it’s the place from which you’ll call Electron’s globalShortcut
API. The following listing shows the main.js file.

'use strict';

const {app, globalShortcut, BrowserWindow} = require('electron');

let mainWindow = null;

app.on('window-all-closed', () => {
 if (process.platform !== 'darwin') app.quit();
});

app.on('ready', () => {
 mainWindow = new BrowserWindow({
 width: 840,
 height: 470,
 useContentSize: true
 });
 mainWindow.loadURL(`file://${__dirname}/index.html`);
 mainWindow.on('closed', () => { mainWindow = null; });
 const pauseKey = globalShortcut.register('CommandOrControl+P', () => {
 mainWindow.webContents.send('togglePauseState');
 });
 if (!pauseKey) alert('You will not be able to pause the game from the

keyboard');
});

app.on('will-quit', () => {
 globalShortcut.unregister('CommandOrControl+P');
});

The globalShortcut API is available from the main process in Electron, so you
require it from the main.js file and then use it to register a keyboard shortcut. Once

Listing 14.1 The main.js file in the Snake Electron app

Requires the
globalShortc
dependency
from Electro

gisters
the

board
ortcut

When keyboard
shortcut is triggered,

emits event to
app window

If you couldn’t register
keyboard shortcut,
alerts user

When app quits,
unregisters keyboard
shortcut from computer

232 CHAPTER 14 Binding on keyboard shortcuts
the module is required, you’re then able to add and remove keyboard shortcuts by
calling the register and unregister API methods. What’s different with Electron’s
approach to creating keyboard shortcuts is that the string passed for the keyboard
shortcut binding says "CommandOrControl" rather than "Ctrl" in NW.js. This reflects
the way in which Mac OS favors the use of Command as the main keyboard shortcut
key, and Windows and Linux favor the Ctrl key. Electron is smart enough to detect
which OS the app is running on and use the appropriate keyboard shortcut.

 Because the keyboard shortcut is registered in the main process, you need a way to
pass the message on to the renderer process where the app window is so the game can
be paused there. To do this, you need to use the webContents module to send a mes-
sage to the app window so the message can be received by the renderer process and
acted on. To demonstrate how this works, here’s the bit of code that handles this in
the app.js file.

const ipcRenderer = require('electron').ipcRenderer;

function togglePauseState () {
 if (currentState) {
 if (currentState === 'play') {
 pause();
 currentState = 'pause';
 } else {
 play();
 currentState = 'play';
 }
 } else {
 pause();
 currentState = 'play';
 }
}

ipcRenderer.on('togglePauseState', togglePauseState);

The ipcRenderer module receives events emitted via the webContents module in the
main process. When the Ctrl (or Command) and P keyboard combination is pressed,
the webContents.send call sends an event with the name togglePauseState. This
event is then received by the ipcRenderer module in the app window, which is then
able to trigger the function of the same name.

 Comparing the different approaches of NW.js and Electron in implementing this
feature in the game, you can see that Electron involves a bit more code in order to
facilitate using the globalShortcut API via IPC. This is where NW.js’s shared
JavaScript context between the back end and front end makes implementing this fea-
ture simpler.

 If you want to read more about the globalShortcut API in Electron, the docu-
mentation for it is available at http://electron.atom.io/docs/api/global-shortcut/.

Listing 14.2 The app.js file for the Snake Electron app

Loads ipcRenderer
module from Electron
via ES2015 shorthand

Function to trigger
when keyboard
shortcut is pressed

When message with
event name
“togglePauseState”
is received, triggers
that function

http://electron.atom.io/docs/api/global-shortcut/

233Summary
14.3 Summary
In this chapter, we’ve looked at how keyboard shortcuts can be added to a 2D game
with both NW.js and Electron and studied how each of them approaches implement-
ing shortcuts. We also looked at how global hotkeys can be added that can be accessed
at any time on the computer, even when the desktop app isn’t in focus. Some of the
key takeaways from the chapter include the following:

 You can use the document.onkeydown event to listen for keystrokes in an app, as
you would in a web page.

 When it comes to implementing global hotkeys in NW.js, the Ctrl key refers to
the Command key on Mac OS.

 Make sure to unregister global hot keys if you use the keyboard shortcuts API in
your app; otherwise, other apps’ keyboard shortcuts will be overridden.

In chapter 15, we’ll look at another way to interact more closely with the OS—through
emitting desktop notifications.

Making desktop
notifications
When working day-to-day with computers, users tend to have a number of apps
open and running while focusing on one app at a time. Applications such as chat
apps, file downloaders, and music players may have activity, but if the user doesn’t
have them in direct view or focus, they might miss that activity.

 One feature provided by OSs is allowing notifications to be displayed as small
dialogs that overlay all open and focused windows, usually in the top-right corner of
the desktop window, helping users stay informed of important activity. Both NW.js
and Electron provide notification APIs to ensure that your apps can communicate
events using the OS’s notifications system.

This chapter covers
 Seeing how Electron supports desktop

notifications through a third-party npm module

 Using the HTML5 notification API to make
desktop notifications in NW.js

 Working with Twitter to create a live tweet
notification app
234

235Creating the Watchy app in Electron
15.1 About the app you'll make
In the world of social media, events need to be monitored and tracked in real time. As
busy users of our computers, we can’t afford to be glued to our screens waiting for an
event to happen. Say, for example, your app monitors mentions of a topical item, and
you want your app to display the contents of any tweet that mentions that topic. You’d
like to alert the user that someone mentioned X, whether it’s a laundry detergent
brand (after seeing an amusing TV ad that made them laugh), or a tweet about a
rather slow football game, and the user wants to know when a goal is scored.

 For this use case, I’ve created an app called Watchy. You type in a term that you
want to monitor mentions of on Twitter, and the app connects to Twitter’s Streaming
API, displaying as desktop notifications any tweets mentioning the term.

 If you’d like the Electron version of the app, you can download the source code
for it from the watchy-electron app in the book’s GitHub repository at http://
mng.bz/URx8.

 We’ll first look at how you can make this app in Electron, and then look at NW.js’s
implementation.

15.2 Creating the Watchy app in Electron
Watchy is a small app that combines the use of Twitter and a third-party library for
desktop notifications. You’ll start by creating the app folder. Create a folder named
watchy-electron, and then create the package.json file shown next.

{
 "name": "watchy-electron",
 "version": "1.0.0",
 "description": "A Twitter client for monitoring topics, built with Electron

for the book 'Cross Platform Desktop Applications'",
 "main": "main.js",
 "scripts": {
 "start": "node_modules/.bin/electron .",
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "keywords": [
 "electron",
 "twitter"
],
 "author": "Paul Jensen <paulbjensen@gmail.com>",
 "license": "MIT",
 "dependencies": {
 "electron-notifications": "0.0.3",
 "electron ": "^1.3.7",
 "twitter": "^1.3.0"
 }
}

Listing 15.1 The package.json file for the Watchy Electron app

http://mng.bz/URx8
http://mng.bz/URx8

236 CHAPTER 15 Making desktop notifications

m

The package.json file has a few more app dependencies than other apps—you have a
dependency on the Twitter API client, as well as on the electron-notifications module,
documented at https://github.com/blainesch/electron-notifications.

 You also download the Electron dependency, which you use in the scripts field to
boot the app via npm start. This means you can simply start the app from the com-
mand line with a standard approach that’s also used for the NW.js apps, as well as
Node.js apps in general.

 You’ll take a look at the main.js file next, because that’s what Electron boots first in
the app. The main.js file contains the code for the configuration of the Twitter client
and the code that uses Twitter’s Streaming API to search for a query and provide tweets
mentioning that query. These tweets are then hooked up with the desktop notifications.

 Create a main.js file inside the watchy-electron folder and put the code shown in
the next listing inside it.

'use strict';

const {app, ipcMain, BrowserWindow} = require('electron');
const notifier = require('electron-notifications');
const config = require('./config');
const Twitter = require('twitter');
const client = new Twitter(config);

let mainWindow = null;

app.on('window-all-closed', () => {
 if (process.platform !== 'darwin') app.quit();
});

ipcMain.on('monitorTerm', (event, term) => {
 client.stream('statuses/filter', {track: term}, (stream) => {
 stream.on('data', (tweet) => {
 let notification = notifier.notify('New tweet', {
 icon: tweet.user.profile_image_url,
 message: tweet.text
 });
 });
 stream.on('error', (error) => {
 console.log(error.message);
 });
 });
});

app.on('ready', () => {
 mainWindow = new BrowserWindow({
 width: 370,
 height: 90,
 useContentSize: true
 });
 mainWindow.loadURL(`file://${__dirname}/index.html`);
 mainWindow.on('closed', () => { mainWindow = null; });
});

Listing 15.2 The main.js file for the Watchy Electron app

Loads electron-
notifications module
for app

Creates Twitter client
that uses your Twitter
API credentials

Listens for events to
monitor a term, such
as “breakfast”

Passes the ter
to Twitter’s
streaming API
to get tweets
mentioning
that term

When you receive
tweet with term,
creates notification
with tweet’s contents

https://github.com/blainesch/electron-notifications

237Creating the Watchy app in Electron
The main.js file is responsible for hooking up the Twitter client to the notifications
module so that you can monitor for tweets that contain a term and display them as
notifications. To do this, you need to create an instance of the Twitter client with your
API credentials, which are stored in the config.js file. The config.js file is created from
a copy of the config.example.js file, as shown in the following code:

module.exports = {
 consumer_key: null,
 consumer_secret: null,
 access_token_key: null,
 access_token_secret: null
};

The config.example.js file is an object with keys that have null values. The idea is to
make a copy of the file, save it as config.js, and then populate the API credentials for
your app from Twitter.

 To get API credentials from Twitter, you’ll need to create a Twitter app, which you
can do at https://apps.twitter.com. Then, copy the following API credentials into the
config.js file:

 Application consumer key
 Application consumer secret
 Access token key
 Access token secret

Now, you can implement the front-end part of the app. The app loads an index.html
file for the front end, and the next listing shows what the code looks like.

<html>
 <head>
 <title>Watchy</title>
 <link rel="stylesheet" href="app.css"/>
 <script src="app.js"></script>
 </head>
 <body>
 <form onsubmit="search();">
 <input type="text" placeholder="Monitor tweets about..." />
 <button type="submit">Monitor</button>
 </form>
 </body>
</html>

The index.html’s UI is a simple use of the HTML form element, an input field for
where the user will type in the term of interest, and a button element they can click
to submit the term. An app.css stylesheet is loaded to apply styling to the UI, and an
app.js file handles passing the term to the back end. Let’s take a look at the app.css
file first.

Listing 15.3 The index.html file for the Watchy Electron app

https://apps.twitter.com

238 CHAPTER 15 Making desktop notifications
body {
 margin: 0px;
 padding: 0px;
 font-family: 'Helvetica Neue', 'Arial';
 background: #55acee;
}

input, button {
 padding: 1em;
 font-size: 12pt;
 border-radius: 10px;
 border: none;
 outline: none;
}

button {
 background: linear-gradient(0deg, #bbb, #fff);
 cursor: pointer;
}

form {
 margin: 1em;
}

The styling produces a small app, as shown in figure 15.1.

With the UI styled, the main question now is how you get the term entered in the
form sent to the back end, where the Twitter client can receive it and stream related
tweets as desktop notifications.

 In the index.html file, you see that submitting the form triggers a JavaScript
function named search, which is located in the app.js file, the code for which is
shown next.

'use strict';

const {ipcRenderer} = require('electron');

function search () {
 const formInput = window.document.querySelector('form input');

Listing 15.4 The app.css file for the Watchy Electron app

Listing 15.5 The app.js file for the Watchy Electron app

Figure 15.1 Watchy running
on Electron and Windows 10

Loads Electron’s ipcRenderer
module so you can send data
to back end

239Creating the Watchy app in NW.js
 const term = formInput.value;
 ipcRenderer.send('monitorTerm', term);
 return false;
}

The search function used by the form gets ahold of the term that was typed into the
form and sends it to the back end, where the Twitter client is, via Electron’s ipcRen-
derer module.

 Now, if you try to run the app using npm start from the command line, the app
should boot up. If you then type in a term that you want to search for and press
Enter, you should see notifications appearing in the top-right corner, as shown in
figure 15.2.

What you can expect to see is a stream of tweets being displayed as notifications in the
top-right corner of the desktop, depending on what term you typed into the app (you
may find a nonstop selection of tweets appearing if your term is popular).

 This demonstrates how to build a term-monitoring tool with Twitter and desktop
notifications support with Electron. In the next section, we’ll take a look at how to
implement the same app with NW.js.

15.3 Creating the Watchy app in NW.js
NW.js’s approach to implementing desktop notifications differs from Electron’s, and
the implementation has been in flux since the upgrade from 0.12 to 0.14, as well as
from Google Chrome adding support for desktop notifications.

 Between versions 0.12 and 0.14, NW.js switched from using native notifications
to using Google Chrome’s desktop notifications API. This means you can use the

Gets ahold of term that
was typed into form

Sends that term to back
end via ipcRenderer module

Figure 15.2 Watchy displaying a tweet that mentioned “breakfast”

240 CHAPTER 15 Making desktop notifications
Notifications API as documented at https://developer.mozilla.org/en-US/docs/Web/
API/Notification. To use it in NW.js, though, there’s a tiny little difference I’ll show
you—and it’s important because quite a few people have had problems using notifica-
tions in NW.js. But first I’ll walk you through creating the app. If you want to cut to the
chase, the source code for the app can be found in the watchy-nwjs app in the book’s
GitHub repository at http://mng.bz/UD6r.

 The best place to start is with the package.json file, shown next.

{
 "name": "watchy-nwjs",
 "version": "1.0.0",
 "description": "A Twitter client for monitoring topics, built with NW.js

for the book 'Cross Platform Desktop Applications'",
 "main": "index.html",
 "scripts": {
 "start": "node_modules/.bin/nw .",
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "keywords": [
 "twitter",
 "nwjs"
],
 "window": {
 "toolbar": true,
 "width": 370,
 "height": 80
 },
 "author": "Paul Jensen <paulbjensen@gmail.com>",
 "license": "MIT",
 "dependencies": {
 "nw": "^0.15.3",
 "twitter": "^1.3.0"
 }
}

The package.json file has a couple of npm dependencies, as well as a convenience
method for booting up the app via npm start on the command line. Next, install
the dependencies via npm install, and then add the index.html file, which is iden-
tical to the file shown in listing 15.3 for the Electron version of the app. The
index.html file loads the app.css file (which, again, is the same as the code shown in
code listing 15.4 for the Electron app), and then add the app.js file, the code for
which is shown here.

Listing 15.6 The package.json file for the Watchy NW.js app

https://developer.mozilla.org/en-US/docs/Web/API/Notification
https://developer.mozilla.org/en-US/docs/Web/API/Notification
http://mng.bz/UD6r

241Creating the Watchy app in NW.js
'use strict';

const Twitter = require('twitter');
const config = require('./config');
let term;
const client = new Twitter(config);
let notify = Notification;

function notifyOfTweet (tweet) {
 new notify(`New tweet about ${term}`,
 {
 body: tweet.text,
 icon: tweet.user.profile_image_url
 }
);
}

function search () {
 const formInput = window.document.querySelector('form input');
 term = formInput.value;
 client.stream('statuses/filter', {track: term}, (stream) => {
 stream.on('data', notifyOfTweet);
 stream.on('error', (error) => {
 alert(error.message);
 });
 });
 return false;
}

You’ve almost finished writing all the code for the app. The last thing to do is create a
copy of the config.example.js file, save it with the file name config.js, and add your
Twitter API credentials to it:

module.exports = {
 consumer_key: null,
 consumer_secret: null,
 access_token_key: null,
 access_token_secret: null
};

Once you’ve copied your Twitter app’s API credentials into that file, you can run the
app with npm start. When the app starts, type in a term, and you should see notifica-
tions start to appear on the right-hand side of the screen, as in figure 15.3.

 Because NW.js has a shared context between the front-end and back-end parts of
the app, there isn’t any need to pass data via inter-process communication. The Twit-
ter client can be loaded in the same place the search function is defined, which gets
the term from the UI. In some ways, it makes the app simpler because you don’t need
to worry about passing data between separate processes, but at the same time, in large

Listing 15.7 The app.js file for the Watchy NW.js app

Loads Twitter client with
config for API credentials

Makes JS variable referring
to Notification global
variable

Refers to that variable
when creating new
notification

Passes tweet’s text and
user’s profile image as body
and icon for notification

After subscribing to
streaming API, passes
any tweets to notify
Tweet function

242 CHAPTER 15 Making desktop notifications
desktop apps, the code can become disorganized quickly if it isn’t refactored and
cleaned up over time.

15.4 Summary
In this chapter, you implemented a live tweet-monitoring app in both Electron and
NW.js. You looked at how each framework has different approaches to implementing
desktop notifications and creating them. Some of the key takeaway points from the
chapter are as follows:

 To use desktop notifications in Electron, you want to make use of the electron-
notifications module via npm.

 With NW.js 0.14, there was a switch to using Google Chrome’s notifications API.
Previous versions of NW.js had been using another implementation.

 Be careful when using desktop notifications—they’re a useful feature, but you
don’t want to spam your user’s screens with notifications (as I found out trying
to monitor tweets about NFL with the Watchy app).

In chapter 16, we’ll move away from developing apps and look at how you can test
them so you can add features and change code with confidence and build apps the
right way.

Figure 15.3 Watchy NW.js
on Windows 10. Note how the
desktop notifications are
displayed on the right-hand
side and look exactly the
same as Google Chrome’s
desktop notifications.

Part 4

Getting ready to release

Once a desktop application is feature complete, there remain the last few
steps of making sure the code is fully tested, issues are identified and fixed, and
the app is built for various operating systems. This part shows how to write tests
for your desktop apps, how to debug them and spot performance issues, and
how to generate binary executables for your applications.

 In chapter 16, we’ll look at ways you can go about testing desktop apps, using
tools like Mocha, Cucumber, and Devtron. We’ll then continue to prepare your
app for release by using debugging tools to help spot performance bottlenecks
and root them out. In the final chapter of the book, I’ll show the various ways in
which you can prepare your app for installing on Windows, Mac, and Linux.

Testing desktop apps
When I started programming back in 2006, I had no idea how to test software, or
why I should. Then, one day I was getting ready to deliver a product demo to a client,
making some code changes 20 minutes before the demo. When I demoed the app
to the client, it crashed. Perhaps if I had written some tests for the app, I would
have foreseen that the app would crash, and I wouldn’t have suffered that embar-
rassment. This is one of many reasons you don’t want to write code without tests
(or, for that matter, make last-minute changes before a product demo).

 Thankfully, my colleague Matt Ford (who runs the digital consultancy Bit Zesty)
sat down with me and introduced me to unit testing with RSpec in Ruby. From

This chapter covers
 Understanding why testing desktop apps is

essential

 Exploring different approaches to testing your app

 Writing unit tests with Mocha

 Testing Electron apps with Spectron

 Doing behavior-driven development with
Cucumber
245

246 CHAPTER 16 Testing desktop apps
there, I was able to improve the quality of my work by writing tests for my code in a
test-driven-development fashion.

 I wasn’t alone in being oblivious to the world of testing apps, and in my career I
found places where testing was either unknown or sadly disregarded by people who
“don’t have time for tests” (as one product manager once told me). I can tell you from
experience that apps written without tests don’t stand the test of time. Besides, would
you be comfortable flying on an airplane if the software powering it wasn’t tested? What
about apps that store data that’s important to you—what if they keep crashing, or worse,
lose your data? Testing is a safety net that you want when creating an app and a sane way
to help others work on the app without causing unintentional breakages.

 We’ll look at different ways in which you can approach testing desktop apps. We’ll
start with a basic task—unit testing parts of your code with Mocha, a testing tool for
Node.js. Then, we’ll work up to testing functional components and test how the app
works from a user’s perspective with Cucumber. We’ll also look at Spectron, a dedi-
cated tool for testing Electron apps. You’ll get an idea of what kind of software land-
scape to expect when you’re testing apps.

 The goal is that you gain a good understanding of how you can go about testing
desktop apps. There’s no point in building apps if they’re going to be flaky and fall
over on the user—users will give up on the app and try an alternative that works.

 Ready to dive in? Great.

16.1 Different approaches to testing apps
There are different ways to approach testing apps—for example, test-driven develop-
ment and behavior-driven development. What are they, and should you use them?
The next couple of sections will answer those questions. You’ll gain enough under-
standing of software testing to find an approach that works for you. If you already
know about these techniques, feel free to skip ahead to section 16.2.

16.1.1 Test-driven-development (TDD)

Test-driven development involves developing a feature by first writing the code to test
it. The tests will fail (because no code for the feature has been written yet). Then the
developer writes code for the feature, which causes the tests to pass. Once the tests are
passing, the developer can refine the code (if it needs improving) and then work on
implementing the next feature. This process, called red-green refactoring, is illustrated
in figure 16.1.

 The idea behind the red-green cycle is to enhance developer productivity by pro-
viding a structured approach to developing software. It requires thinking and disci-
pline to write tests before any product code is written. Once you have tests written for
the app, then you’re in a position to write the app code. Which part of the app code
you choose to write first depends on what the tests require. This helps you make deci-
sions about what to implement first, and reducing the number of decisions you have
to make helps you stay focused and productive.

247Different approaches to testing apps
As the code is written, the tests begin to pass, and as long as the tests sufficiently cover
what things need to be implemented, the developer can have the confidence to refine
their existing code and improve it via refactoring. If the tests still pass, then the solu-
tion is good—but if the tests fail, the developer can determine why they’re failing and
make the necessary adjustments. It’s a safety net to help the developer.

 TDD isn’t to everyone’s taste, admittedly. In 2014, David Heinemeier Hansson (the
creator of Ruby on Rails) wrote a blog post called “TDD is dead. Long live testing.” He
described his experiences using TDD over the years and how he’d come to the conclu-
sion that it was impacting his ability to design good software. It’s worth a read at
http://mng.bz/sXUJ. The discussions that followed online with Kent Beck and Martin
Fowler are covered at http://mng.bz/Iy3O.

 The interesting thing about the debate around TDD is that it shows that well-
respected, accomplished members of the software community can hold different
opinions about software—that there isn’t necessarily a single right answer about
these things.

 So should you use TDD for building your apps? My suggestion is to give it a try and
see if it works for you. If it doesn’t, don’t worry—there are other options, such as the
one we’ll look at next. The important thing is to find what works for you and for those
around you.

16.1.2 Behavior-driven development (BDD)

Behavior-driven development, a variation on the concept of TDD, was influenced by
the ideas behind acceptance testing (whereby you check with end users that the soft-
ware does what they expect). Whereas TDD is focused on the workflow of the devel-
oper, BDD takes an interest in not just the developer’s workflow, but also that of other
stakeholders (such as the end user). Its goal is to aid collaboration between these
stakeholders through the use of a common language to describe the requirements of

Write tests

Tests fail

Add/modify

code

Refactor

code

Tests pass

Figure 16.1 The red-green refactor cycle. First,
you write the tests; then, they fail; then, you
write/modify the app code; then, the tests pass
and the feature is implemented; and finally, you
can refactor, safe in the knowledge that the tests
will fail if you break the feature.

http://mng.bz/sXUJ
http://mng.bz/Iy3O

248 CHAPTER 16 Testing desktop apps
the software. Figure 16.2 is a process chart showing how a product’s feature require-
ments are gathered and implemented.

From figure 16.2, we’ll look at how BDD helps flesh out user stories. In a fashion simi-
lar to acceptance testing, BDD encourages the collection of user stories to help gather
requirements for the app. These user stories, written in plain English, help describe
how the feature in question should work. Take, for example, this feature:

Feature: Search
 In order to locate a file quickly
 As a user
 I want to filter files by their name

 Given I have opened the application
 And I am browsing the contents of my “documents” folder
 When I type “expenses” into the search bar
 Then I should see a file called “expenses”
 And I should not see “invoices”

This example of a user story is based on the Lorikeet app you made earlier in the
book. It describes in simple terms how the app feature works from the perspective of
the user and helps provide some acceptance criteria for the feature. With this user
story, you’re able to write code that can test the app—the documentation of how the
feature works drives how the app is tested. This confirms that the product works
according to the specification of the person who is actually going to use the product,
something that’s often known to be problematic in software development.

 BDD allows developers to approach implementing the tests for their apps in a way
that ensures that the feature does what the client expected. That said, testing an app
isn’t just a case of “write tests and make sure they pass.” There are different levels at
which software can be tested. In the next section, we’ll go into more depth about how
to approach these levels of testing.

16.1.3 Different levels of testing

For software developers writing tests for an app, there are three levels of testing that
can occur:

 Unit testing
 Functional testing
 Integration testing

User stories

workshop.

Flesh out

user story.

Write tests

for user story.

Implement tests

and features

for user story.

Figure 16.2 Process of gathering feature requirements and implementing them with BDD. Used in
conjunction with an agile process, BDD complements the process shown by helping flesh out user
stories, writing tests for them in a common language, and implementing those tests with tools like
Cucumber.

249Unit testing
Unit testing is at the level of the individual functions in the code that are public API
methods. Functional testing is at the level where the combination of those functions is
checked (mainly as components). Integration testing is at the level where the compo-
nents combine to support a user feature. Figure 16.3 shows an illustration of the dif-
ferent levels.

You can see from figure 16.3 that at the bottom of the stack is unit testing, which
checks that each function works as expected. At the next level, functional testing
checks that the functions within a component work well together. To ensure that the
components themselves work together as expected, integration testing at the level of
app features is performed.

 In the next section, we’ll explore these different levels of testing in greater detail,
starting with unit testing.

16.2 Unit testing
Unit testing is the process of testing whether individual functions work. It’s a bit like
checking that each piece that makes up a car is in good working order. When it comes
to unit-testing desktop apps— Node.js testing in general—the most widely used test
framework is Mocha. In the next section, you’ll find out what Mocha is and how you
can use it for unit-testing your apps.

16.2.1 Writing tests with Mocha

Mocha is a testing framework for Node.js. It can run on both the server and the client
(it’s ideal for testing Node.js desktop apps) and offers a lot of features.

Application feature

Component

Function

Component

Function

Functional testing

Unit testing

Integration testing

Component

Function

FunctionFunction Function

Figure 16.3 How the different levels of software testing stack up. Unit testing covers software at the
smallest element of functionality. Functional testing builds on this by testing the interaction between
those elements, at the level of components. The pattern repeats at the integration testing level, where
interaction between app components is tested.

250 CHAPTER 16 Testing desktop apps
 Say you wanted to unit test one of the functions provided in the Lorikeet file
explorer app you built earlier. In the GitHub repository for the book, there’s a copy of
both the NW.js and Electron versions of the Lorikeet file explorer app: lorikeet-test-
nwjs and lorikeet-test-electron.

 These apps have the test code already, so you can run them and see what to expect.
Follow the instructions in the README.md files to run the tests. If you want to write
the tests yourself, you can revert to a point in the source code before the tests were
added by checking out this git commit via the following command:

cd cross-platform-desktop-applications/chapter-16
git checkout -b before-tests-added

Feel free to use either app to run through the testing example with (the codebases
are practically identical), and then we’ll walk through implementing some unit tests
with Mocha.

 Navigate to the folder path of the Lorikeet app in your command-line Terminal
program and run the following command to install mocha as a development depen-
dency in the Lorikeet folder:

npm install mocha --save-dev

Now create a folder, called test, for storing your test code. There are two reasons for
calling it test: it’s pretty obvious what files are contained in that folder, and mocha looks
for tests in the test folder by default when it’s executed.

 Next, you’ll look at a particular file in the Lorikeet app and test one of its functions
to ensure that it works as expected: the search.js file that handles filtering the files.
You want to write a test that ensures that the following are true:

 A search returns results that match the term provided.
 That same search doesn’t return results that don’t match the term provided.

Create a file inside the test folder called search.test.js, and then insert the following
snippet of code.

'use strict';

const lunr = require('lunr');
const search = require('../search');

describe('search', () => {
 describe('#find', () => {
 it('should return results when a file matches a term');
 });
});

I’ll go through the DSL of Mocha now. At the top of the file, you have the usual decla-
ration of libraries to load, and then the function describe, whose job is to receive a
string with the name of the thing you’re testing, and then a function that will execute

Listing 16.1 Writing a test using Mocha’s API

describe function
comes from Mocha
and defines the
context of the test

it function comes
from Mocha as
well and defines
a test case

251Unit testing
either another nested describe or a set of tests to run using the keyword it. The it
function is responsible for executing a test and is first passed the description of what
it’s testing. Because you haven’t yet written the test implementation code, you leave it
be, as it is now—a pending test.

 If you now run the node_modules/.bin/mocha command on the Terminal, you
should see the output shown in figure 16.4.

You can see in figure 16.4 that there are no passing tests yet, and one pending test.
The next thing to do is to start implementing that pending test.

16.2.2 From pending test to passing test

To test that finding a file based on a search term works, you need to follow the steps in
figure 16.5.

The test that is

running, and the

result of running it

The command that

you run to execute

the tests

The results of

running the tests

Figure 16.4 The Mocha tests running. Notice how there is a test marked in light blue text—this
color indicates that the test is pending. (If you’re looking at the printed book in grayscale, the light
blue text says “should return results when a file matches a term” and “1 pending.”)

Add some files

to the search index.

+

Perform a search

with the find function.

Assert that you get a result

for the file that you want.

=

Assert that you don’t get results

for the files you did not want.

≠

Inspect the results

that you get back.
b c d

Figure 16.5 Process flow of the unit test. Test the search feature by getting it to index
some example files, perform a search against that, check that the search results returned
are to be expected, and ensure that you don’t get back anything you shouldn’t get back.

252 CHAPTER 16 Testing desktop apps
To implement the test code, start by requiring Node.js’s assert library for performing
assertions in the tests:

const assert = require('assert');

This library is used for doing the checks on the acceptance criteria being met for the
test. If one of the criteria items is met, the library function returns true, and if not, it
throws an error.

 Next, look at providing some global scope for Lunr.js to bind to:

global.window = {};
global.window.lunr = lunr;

Because Lunr.js is a client-side library, it needs to attach to the window object, so you
stub out (create a stand-in version of) the window object in Mocha to make sure that
the library can be accessed and inspected. After that, add a function to the pending
test to hold the test code, as shown next.

it('should return results when a file matches a term', (done) => {

});

Here, you extend the initial pending test to include a callback function named done.
The done callback function is called once all the asynchronous code inside the test has
finished. Inside the function, you add a few code comments to track the flow of the
test code, fleshed out in the following listing.

 it('should return results when a file matches a term', (done) => {

 const seedFileReferences = [
 {
 file: 'john.png',
 type: 'image/png',
 path: '/Users/pauljensen/Pictures/john.png'
 },
 {
 file: 'bob.png',
 type: 'image/png',
 path: '/Users/pauljensen/Pictures/bob.png'
 },
 {
 file: 'frank.png',
 type: 'image/png',
 path: '/Users/pauljensen/Pictures/frank.png'
 }
];

Listing 16.2 Setting up a Mocha test to be executed rather than be pending

Listing 16.3 Fleshing out the Mocha test with test code

Where you'll insert
your test code

Example data (seed file
references), for search
feature to index

253Unit testing

Pe
s

ter
an
 search.resetIndex();
 seedFileReferences.forEach(search.addToIndex);

 search.find('frank', (results) => {
 assert(results.length === 1);
 assert.equal(seedFileReferences[2].path, results[0].ref);
 done();
 });
 });

The final file for the search.test.js file should now look like the next listing.

'use strict';

const assert = require('assert');
const lunr = require('lunr');
const search = require('../search');

global.window = {};
global.window.lunr = lunr;

describe('search', () => {
 describe('#find', () => {

 it('should return results when a file matches a term', (done) => {

 const seedFileReferences = [
 {
 file: 'john.png',
 type: 'image/png',
 path: '/Users/pauljensen/Pictures/john.png'
 },
 {
 file: 'bob.png',
 type: 'image/png',
 path: '/Users/pauljensen/Pictures/bob.png'
 },
 {
 file: 'frank.png',
 type: 'image/png',
 path: '/Users/pauljensen/Pictures/frank.png'
 }
];

 search.resetIndex();
 seedFileReferences.forEach(search.addToIndex);

 search.find('frank', (results) => {
 assert(results.length === 1);
 assert.equal(seedFileReferences[2].path, results[0].ref);
 done();
 });

 });

 });
});

Listing 16.4 The search.test.js file for the Lorikeet app

Resets search index to
make sure it’s clean before
adding seed file references
to search index

rforms a
earch for
m ‘frank’
d checks

results

254 CHAPTER 16 Testing desktop apps
Here, you create some seed file references (which represent the kind of data that you
want to pass to the module). You then pass these file references into the search mod-
ule’s addToIndex function, to populate the search index with them. Next, you call the
find function (the bit that you want to test) with the term 'frank' and check that you
get back exactly one result, and that the result reference matches exactly with the file
that has the name frank.png, by comparing the file paths. If that passes, you call the
test’s done function to let it know that you’re finished.

 If you now try to run this test, you can expect to see the result shown in figure 16.6.

This is a simple example of implementing a unit test for the desktop app. What I hope
you’ve been able to take away from this practical example is how you can go about
unit testing a piece of functionality at the level of just a single JavaScript function
using Mocha, because this will help you test your code at the simplest level. When it
comes to writing tests, I suggest first making notes about what you want to test as code
comments inside the test. Then, flesh them out once you know how to go about
implementing that unit test.

The test that is

running, and the

result of running it

(now passing)

The command that

you run to execute

the tests

The result of

running the tests,

and the time it

took to run them

Figure 16.6 The unit test is now passing. The previously blue section is now green and has a tick
against it. This means it's passing, and you can move on to testing other functions or refactoring the
function to make its implementation better.

Are there alternatives to Mocha?
Mocha is one of the more common testing libraries used in Node.js, but it’s not the
only one out there. A couple of other options are worth investigating.

Jasmine, a long-standing JavaScript testing framework from Pivotal Labs that works
in JavaScript environments, has a DSL almost identical to Mocha's. You can read
more about Jasmine at https://github.com/jasmine/jasmine.

Another option is Ava from Sindre Sorhus. Ava is a test runner for Node.js that exe-
cutes tests faster by making them run in parallel as separate processes. The idea
is that the state for each test is specific to that test only—meaning the test can be
run in a separate process alongside other tests, and so the tests run faster. See
https://github.com/avajs/ava for more.

https://github.com/jasmine/jasmine
https://github.com/avajs/ava

255Functional testing
Next, we’ll go up the testing stack and look at functional testing.

16.3 Functional testing
Functional testing is similar in style to unit testing, but the key difference is that you
test how functions work together in a component. You could argue that the example
you did for unit testing is technically a functional test, because, although you tested
just one function, that function depends on a number of other functions (the reset-
Index function, the addToIndex function, and behind all that, the Lunr.js library)
working properly. That said, functional testing is about checking that a group of func-
tions work together as expected, whereas a unit test cares only about how a single
function works. Functional testing is like checking that the disc brakes on a car are
installed correctly and work when the brake pedal is applied.

 You need to track where changes to functions in one module impact functions in
other modules. To illustrate, say you have a desktop publishing tool. New features
arrive, other members of the team implement those features, and there’s a chance
that existing code needs to change to accommodate those features. For example, the
introduction of an extensions feature into the app allows third-party developers to cre-
ate extensions that put buttons in the toolbar. Then, someone else comes along and
refactors the toolbar implementation, changing the access API. This breaks the third-
party extensions because the API for adding buttons to the toolbar has changed.
These are the kinds of breaking changes that functional testing is designed to reveal.

16.3.1 Functional testing in practice

The challenge of functional testing is being able to track which components interact
with each other across modules/contexts and knowing how to go about testing them.
In the example for the unit test for the search function, you stubbed out the window
object, which would be available by default in the browser. In functional testing, you’ll
use as many the real-world components as possible. In the Lorikeet file explorer app,
most of the modules have been architected so as to be unaware of each other. The
app.js file is the point at which the interactions between modules occur, so this is the
part you’re interested in testing.

 You’ll continue on the theme of search and test that the search field in the toolbar
filters the files that are displayed in the main area. This tests the following elements of
the app:

 The userInterface.js file’s bindSearchField, resetFilter, and filterResults
functions

 The search.js file’s find function

You’ll need to test this in an environment where the app is running (rather than
attempt to stub out environment parts like the DOM). You need a way to test this in
the app and a way to automatically fill in the search field and inspect the results visible
in the main area.

256 CHAPTER 16 Testing desktop apps
16.3.2 Testing with ChromeDriver and NW.js

Testing NW.js apps via ChromeDriver is a complicated and developer-unfriendly
experience. It requires a lot of tinkering. In older versions of NW.js (0.12), there was
a functioning example of testing NW.js apps with ChromeDriver, but since then,
updates to various libraries have led to a state where existing test suites have broken,
and fixing them is prohibitively time-consuming. You don’t want to fight with sup-
porting tools and libraries when you’re trying to develop and test apps. In light of
this, I won’t talk about how to do functional testing with NW.js, and instead will opt
to solely cover Electron.

 Hopefully, in the future, testing NW.js apps will become easier.

16.4 Testing Electron apps with Spectron
Some developers find that trying to get ChromeDriver and WebDriver set up to play
ball is a painful process, especially in terms of finding documentation and a working
example. In the Electron community, dedicated tooling has evolved that combines
ChromeDriver and WebDriver in a Node.js module, providing a relatively easy way to
test desktop apps. This tool is Spectron, and its documentation can be found at
http://electron.atom.io/spectron/.

 Spectron is available as an npm module and can be installed with the following
command in the lorikeet-electron app:

npm install spectron --save-dev

Now, you can create a file for testing one of the Lorikeet app’s functions: double-
clicking folders to see their contents. You’ll put this file in the test folder and name it
folderExplorer.test.js.

 To use Spectron, you need to require it in the test code and do some setup to get
the app booting up. In the folderExplorer.test.js file, add the code shown next.

'use strict';

const Application = require('spectron').Application;
const assert = require('assert');
const osenv = require('osenv');
const path = require('path');

let app;
let electronPath = path.join(__dirname, '../node_modules/.bin/electron');
let entryPointPath = path.join(__dirname, '../main.js');
if (process.platform === 'win32') electronPath += '.cmd';

Listing 16.5 Getting the folderExplorer.test.js file started

Loads Spectron as
module dependency
in test file

Creates reference
to path where

Electron binary is

Creates reference
to entry point
(main.js) for app

If on Windows, appends
.cmd file extension for

Electron binary path

http://electron.atom.io/spectron/

257Testing Electron apps with Spectron

D
pat

f

do

star
In the preceding listing you load dependencies for the file, which includes Node.js’s
assert module as well as the path module. The Spectron library is loaded as a module,
and you use the Application module to help with booting up the app with Chrome-
Driver and WebdriverIO behind the scenes. The following listing shows the code that
handles booting up the Electron app.

describe('exploring folders', () => {

 beforeEach(() => {
 return app = new Application({
 path: electronPath,
 args: [entryPointPath]
 });
 });
});

This is essentially a wrapper around loading the app via ChromeDriver, with the Elec-
tron binary path and app entry point passed to it. This is the bare minimum required
to set up the functional test loading the app, but more options are available for config-
uring (see https://github.com/electron/spectron#application-api).

 Now, you need the app to run the code that checks if you can double-click a
folder and navigate to that folder path. The app instance returned from Spectron’s
Application class is a wrapper around WebDriver’s client API (see http://webdriver
.io/api.html for more). It’s worth a brief glance at the documentation to get a feel
for what the code in the test will do. The API methods let you carry out a number of
user actions.

 You want to boot up the app, double-click a folder named Documents, and check
that you’ve navigated to that Documents folder. If all those conditions are satisfied,
the test passes. You’ll write the test using Mocha’s syntax style and combine it with
Spectron’s approach, which involves using Promises. The next listing shows the code
for the test.

it('should allow the user to navigate folders by double-clicking on them',
function (done) {

 function finish (error) {
 app.stop();
 return done(error);
 }

 let documentsFilePath = path.join(osenv.home(),'/Documents');

 this.timeout(10000);
 app.start().then(() => {
 return app.browserWindow.isVisible();

Listing 16.6 Booting the Electron app with Spectron

Listing 16.7 Testing that folders can be navigated with a double click

Initializes instance
of Spectron’s
Application class

Path to Electron
binary is passed

Absolute file path to the
app’s entry point is passed
to Application class

Creates convenience
function to stop error and
execute Mocha’s callback

ocuments
h used to
ind image
folder to

uble-click
and verify

the test

Sets 10-second
timeout (for
slower machine
boots)

Triggers
ting app Checks that app loads app

window and you can see it

https://github.com/electron/spectron#application-api
http://webdriver.io/api.html
http://webdriver.io/api.html

258 CHAPTER 16 Testing desktop apps
 }).then((isVisible) => {
 assert.equal(isVisible, true);
 }).then(() => {
 return app.client.doubleClick(`//img[@data-

filepath="${documentsFilePath}"]`);
 }).then(() => {
 return app.client.getText('#current-folder');
 }).then((currentFolder) => {
 assert.equal(documentsFilePath, currentFolder);
 })
 .then(finish)
 .catch(finish);
 });

If you now use npm test to run the test, you’ll find that the app opens, double-clicks
on a folder, checks that the folder is being viewed in the app, and then closes down
again after the test has finished. This shows you how relatively easy it is in Electron to
implement a functional test that actually opens the app and uses it the same way a real
user would, allowing you to create tests that check real-world conditions.

 Now, let’s look at the top level—integration testing.

16.5 Integration testing
Also called end-to-end testing (E2E), integration testing is a level of testing where the
entire user journey is turned into a set of tests that examine how the entire solution
runs, with nothing stubbed and nothing isolated. Everything runs and everything is
tested. It’s the most comprehensive form of testing that can be done on an app. In
some cases, integration testing is the only form of testing done on an app (functional
and unit tests are ignored because more of the app’s code can be covered by an inte-
gration test).

 What’s an example of an integration test? Well, for example, a Lorikeet user might
want to find an image file and open it using their preferred image-editing app. They’ll
need to open the app, possibly type in the name of the image, and then double-click
it. This tests a number of features across the app and, like functional testing, needs to
run as close to the real scenario as possible.

 As mentioned and demonstrated earlier, it’s possible to use a combination of
Mocha, Selenium, and WebDriver to help automate this testing, but one problem with
this approach is that developers are the only ones who’ll understand this method. A
middle ground is needed to help product owners, users, and developers come to a
common understanding of what the app does and how it can be acceptance tested.
Enter Cucumber.

16.5.1 Introducing Cucumber

Cucumber is referred to as “the world’s most misunderstood testing tool” by its cre-
ator, Aslak Hellesøy. Cucumber is a tool for helping developers describe how a piece

Finds img element with
Documents folder path
and double-clicks it

Gets text for current
folder element in toolbar

Checks text is same
as double-clicked
folder pathIf condition

satisfied, test
passes, and finish
function called

If not, throws
error, intercepted
by finish function

259Integration testing
of software should work, using plain English. The goal is to provide a common under-
standing among developers, product owners, and users (among other stakeholders)
about how that software should function. This provides a source of software documen-
tation clearly defining customer expectations and developer specifications.

 What does Cucumber look like to a developer? Well, the starting point usually
stems from feature requirements defined by the project-management process, from
the perspective of the user/consumer. Returning to the earlier example, say you want
to test the feature of opening image files in a folder. You could capture those require-
ments in the following user story:

In order to see photos that I’m currently interested in
As a User
I want to open images from the application

This user story captures the context around the feature: who it’s for, what it’s aiming
to achieve, and finally, what feature is needed to achieve this. From that, you can cre-
ate a feature file that will describe what the feature does.

 In the folder containing the Lorikeet electron app, create a folder called features.
This folder will contain Cucumber feature files that will be used to document how the
software tests, drive automated tests, and provide a shared, common understanding of
how the app should work.

 Now, to create your first Cucumber feature file, create a file named images.feature
and insert the following text into that file:

Feature: Images
 In order to see photos that I’m currently interested in
 As a User
 I want to open images from the application

 Scenario: Open a PNG image
 Given I have the application open and running
 When I search for "Pictures"
 And I click on the "Pictures" folder
 And I double click on "Pictures/app with set icons.png"
 Then I should see the "Pictures/app with set icons.png" file
 ➥ opened in a photo app

Here, you can read the text and see what looks like plain English instructions on how
to use an app feature—hopefully, they make sense straight off the bat. The idea is that
regardless of whether you’re a developer, product owner, user, or other stakeholder in
the project, you’ll be able to read this and have the same understanding of the feature
as everyone else.

 With this feature in place, you can now look at using this plain English document
to test the app feature.

260 CHAPTER 16 Testing desktop apps
16.5.2 Automatically testing your Electron app with Cucumber
and Spectron

This section shows you how to use Cucumber.js to run integration tests for your app
via Spectron. The code for the Cucumber example is available in the GitHub reposi-
tory for the book, but I’ll also walk you through the code here to help you understand
how it works.

 First off, install cucumber.js; run the command to install the module via npm:

npm install cucumber --save-dev

Once you have Cucumber.js installed in the development dependencies for the Lori-
keet Electron app, you can set up the required files for the app. You already have the
images.feature file inside the features folder, so next you want to set up a hooks.js file
inside the features/support folder. This hooks.js file in the following listing contains
the code that’s responsible for the setup and teardown of the Spectron library boot-
ing the app.

'use strict';

const Application = require('spectron').Application;
const path = require('path');
let electronPath = path.join(__dirname, '../../node_modules/.bin/electron');
const entryPointPath = path.join(__dirname, '../../main.js');
if (process.platform === 'win32') electronPath += '.cmd';
const {defineSupportCode} = require('cucumber');

defineSupportCode(function ({Before, After}) {

 Before(function (scenario, callback) {
 this.app = new Application({
 path: electronPath,
 args: [entryPointPath]
 });
 callback();
 });

 After(function (scenario, callback) {
 this.app.stop();
 callback();
 });
});

The hooks.js file contains code that’s used to drive booting the app with Spectron, as
well as to shut the app down once it has finished running the Cucumber feature
files. Binding the Spectron app instance on the context for the Cucumber scenario
means that you can reference the app variable not only in the After hook when it
comes to shutting the app down, but also when you want to flesh out the step defini-
tions and use the app instance to do things like click UI elements in the app. This

Listing 16.8 The hooks.js file for the Lorikeet Electron app

Before hook is called
before Cucumber
feature files run and
boots app via Spectron

After hook is called when
Cucumber feature file is
finished and closes app

261Integration testing
leads to the next file that you want to add in the features/step_definitions folder: the
image_steps.js file.

 The image_steps.js file, shown in the next listing, is used to store the step defini-
tions that you want to match in the Cucumber feature file.

'use strict';

const assert = require('assert');
const fs = require('fs');
const osenv = require('osenv');
const path = require('path');
const {defineSupportCode} = require('cucumber');

defineSupportCode(
 function({Then, When, Given}) {

 Given(/^I have the app open and running$/, {timeout: 20 * 1000},
function (callback) {

 const self = this;

 self.app.start().then(() => {
 return self.app.browserWindow.isVisible();
 }).then((isVisible) => {
 assert.equal(isVisible, true);
 callback();
 })

 });

 When(/^I search for "([^"]*)"$/, function (term, callback) {
 this.app.client.setValue('#search', term)
 .then(() => { callback(); });
 });

 When(/^I double click on the "([^"]*)" folder$/, function (folderName,
callback) {

 const folderPath = path.join(osenv.home(),folderName);
 this.app.client.doubleClick(`//img[@data-filepath="${folderPath}"]`)
 .then(() => { callback(); });
 });

 When(/^I double click on "([^"]*)"$/, function (fileName, callback) {
 const filePath = path.join(osenv.home(),fileName);
 this.app.client.doubleClick(`//img[@data-filepath="${filePath}"]`)
 .then(() => { callback(); });
 });

 Then(/^I should see the "([^"]*)" file opened in a photo app$/,
function (fileName, callback) {

 const filePath = path.join(osenv.home(),fileName);
 setTimeout(function () {
 fs.stat(filePath, function (err, stat) {
 const timeDifference = Date.now() - stat.atime.getTime();
 assert.equal(null, err);
 assert(timeDifference < 3000);

Listing 16.9 The image_steps.js file for the Lorikeet Electron app

262 CHAPTER 16 Testing desktop apps
 callback(err);
 });
 }, 3000);
 });

 When(/^I wait (\d+) seconds$/, (numberOfSeconds, callback) => {
 setTimeout(callback, numberOfSeconds * 1000);
 });

 }
);

You’ll notice that the API for triggering UI interactions is simple. With this code in
place, you’re able to run the tests via running this command in the Terminal:

NODE_ENV=test node_modules/.bin/cucumber-js

If you’re using Windows to run the tests, you’ll want to run the cucumber-js.cmd com-
mand that’s present in the same .bin folder. To allow for running tests in either a
Unix/Linux or Windows environment, you can write a simple script that will handle
both. Create a file called cuke.js, and put the following code in it:

'use strict';

const exec = require('child_process').exec;
const path = require('path');

let command = 'node_modules/.bin/cucumber-js';
if (process.platform === 'win32') command += '.cmd';

exec(path.join(process.cwd(), command), (err, stdout, stderr) => {
 console.log(stdout);
 console.log(stderr);
});

That code snippet uses Node.js’s child_process module to allow you to execute a com-
mand in a separate process. The command that you want to run is called cucumber-js,
and it’s in the node_modules/.bin folder. On the line following the definition of the
command, check whether the script is running on a Windows computer. If it is, add
the .cmd to the command, which then points to running the Windows binary for
Cucumber.js. Execute this command and log its contents out to the Terminal. If you
want to run this command, you now run the following in the Terminal:

NODE_ENV=test node cuke.js

If all goes well, you should see the tests passing on your terminal, and that means
it worked.

 Given all the available tools for testing your desktop apps, it’s fair to ask, “So, what
tools should I use for my app”? This is a tricky one because there’s no single right
answer—you have to discover what works best for you and your team. My advice is try
unit testing first, because it’s the easiest form of testing to implement. Once you

263Summary
become comfortable with it, you can proceed up the levels of the testing stack, and do
functional testing to check that components work together as you expect. Eventually,
you can progress to integration testing.

 Alternatively, if your biggest concern is checking that everything works at the level
of the UX, I recommend starting with integration testing first. It will take a bit more to
get to grips with, but the end result is worth it, and usually you can then filter down
to performing unit testing only if it’s needed. Testing is about making sure software
works—never forget that.

16.6 Summary
There’s a lot in this chapter, but the key things to take away from it are as follows:

 Writing tests for your apps from the start is the best way to avoid spending your
time fixing bugs and to prevent an unfavorable UX.

 Unit testing individual functions is the quickest and easiest way to learn how
to test.

 The best way to provide the greatest level of test coverage for your app is to start
with integration testing.

 If you want to involve stakeholders in helping to document and test your app,
use tools like Cucumber.

 Mocha is a great tool for writing your unit and functional tests due to its simple
API and semantic syntax.

In chapter 17, we’ll explore ways to sort out weird issues and avoid performance prob-
lems through the power of debugging tools available toó NW.js and Electron.

Improving
app performance
with debugging
Humans write programs, and humans make mistakes, even ones that automated
testing tools won’t capture. If you’re lucky, you’ll be able to get ahold of a stack
trace that reports what error occurred and where it happened in the code.

 However, some bugs are subtler and won’t necessarily result in an error. To
find these bugs, you need to use tools that can help to diagnose what’s going on
in the code, as well as how the app is performing on the computer. Performance
is a feature.

 In this chapter, I’ll take you through how to use the available debugging tools;
I’ll show how to identify and resolve bottlenecks in your front-end code with the
developer tools available in both Electron and NW.js, as well as debugging tools for

This chapter covers
 Debugging errors on the client with Chrome

Developer Tools

 Debugging errors on the server in Node.js

 Profiling UI performance and memory usage

 Using flame graphs to spot performance
bottlenecks

 Debugging Electron apps with Devtron
264

265Knowing what you’re debugging
Node.js that can be used to debug errors and analyze performance. I’ll also show you
tools for tracking errors that are occurring in your apps as customers use them. Let’s
murder some bugs (code ones, not the ones with legs).

17.1 Knowing what you’re debugging
The first thing you must do when debugging a Node.js desktop app is identify what
the problem is before you can determine where it’s happening in your app. Various
techniques can be deployed to identify the problem, such as root cause analysis
using the five whys, or trying to read the stack trace of the bug (if you’re lucky enough
to get one).

 Debugging a Node.js desktop app is an interesting challenge because the bug/per-
formance issue could be in any of the following areas:

 Quirks with Chromium’s browser and its approach to rendering and executing
HTML, CSS, and JavaScript

 Front-end bugs and performance issues
 Node.js bugs and performance issues
 If you’re using NW.js, the way NW.js handles sharing state between the app win-

dows and the app process
 If you’re using Electron, the way Electron keeps state separate between the

app windows
 The bugs, quirks, and performance issues of each of those desktop frameworks
 The app’s source code

That’s quite a lot of ground to cover, and unless you’re a memory champion, chances
are you won’t have a complete and comprehensive knowledge of all the issues in all
those areas. In that case, your best course of action is to apply root cause analysis.

 Let’s walk through an example. Say you spot a bug in a CRM app; clicking a con-
tact’s email does not open up the computer’s email client with a new message for the
contact. In this case, you know what the expected result is, and because you know what
action would trigger it, you can begin a process of working through it, as illustrated in
figure 17.1.

 You can establish how to go about debugging the issue based on working through
a set of questions. The questions in figure 17.1 are tailored to the questions a devel-
oper would ask when debugging the issue, but a more generic approach would be to
ask “Why?” at least five times, in order to establish what’s going wrong.

266 CHAPTER 17 Improving app performance with debugging
17.1.1 Identifying the location of the root cause

Debugging a Node.js desktop app is an interesting scenario, because the Node.js con-
text is shared between the client-side and server-side parts of your app. The best way to
work in this scenario is to identify what the root cause is—and where it is—before you
open any debugging tools and start poking around. Knowing where in the code the
root cause is will help you to determine which debugging tool you should use to diag-
nose the problem.

 If the code is directly loaded by the app’s HTML in a script tag, then you’ll want to
debug the problem using the front-end developer tools (Chrome’s Developer Tools).
However, if the code is not directly loaded by the client (say, it’s a Node.js module, or
a script loaded via require), then you might want to use Node.js debugging tools to
get to the root cause.

 When you know where your root cause lies, you can begin debugging it. Let’s move
on to how to debug a client-side error with the browser developer tools.

It opens a link.

CRM app

Input

john.smith@example.com

John Smith

What does the click do? How does this happen?

Where is that code?

In the app.js file.
Is that loaded directly

in the app’s html?

A bit of code opens the mail client

with a prefilled recipient field.

Ok. Debug the issue using the

browser’s developer tools.

Yes.

Email client

Expected output

john.smith@example.comTo:

Subject:

Figure 17.1 Identifying the location of the issue's root cause so you can choose which tool to debug
it with

267Knowing what you’re debugging
17.1.2 Debugging with the browser developer tools

As you develop a desktop app using NW.js, you’ll notice there’s a pesky little toolbar
that displays above the app, much like the toolbar shown in a web browser (because
that’s effectively what the app is running in—a custom web browser). This toolbar
contains a few goodies that you’ll now appreciate. If you don’t see this toolbar, check
that the setting for the window toolbar in your app’s package.json file is set to true, as
in the following code snippet:

{
 "window": {
 "toolbar": true
 }
}

With the app window toolbar enabled, you now have access to the app window’s
debugging tools, which are identical to the developer tools available in Google
Chrome. To access them, click the cog icon to the right of the address field, as shown
in figure 17.2.

Clicking the cog icon brings up the developer tools window, which looks like figure 17.3.
 This is how debugging works in NW.js. As for Electron, there’s a different

approach. In keeping with Electron’s modular architecture, to load the Chrome
Developer Tools in an Electron app, you need to make a call on the app’s browser
window, like so:

new BrowserWindow({width: 800, height: 600})
.webContents.openDevTools();

This will show Google Chrome’s Developer Tools, similar to what you see in figure 17.3.

Developer
tools button

Figure 17.2 The toolbar in an NW.js app. Notice the cog icon to the right of the address field. When
things are slow or broken in your NW.js app, this cog is your friend.

268 CHAPTER 17 Improving app performance with debugging
The Developer Tools window provides a number of handy little tabs, as shown in fig-
ure 17.4, that enable the following:

 The Elements tab allows you to browse the HTML of the app and see what CSS
styling and JavaScript events are attached to HTML elements in the page.

Tabs for
different tools The app’s CSS

The app’s HTML

Figure 17.3 The Developer Tools window for an NW.js app. If you’ve done front-end web
development before, this window might look familiar to you. It’s identical to the developer tools
that you get in Google Chrome.

What if my app doesn’t have a window?
Luckily, there’s another way to run the debugger without needing to click the cog icon.
You can run the NW.js app with remote debugging enabled by passing the following
parameters when running your app from the command line:

--remote-debugging-port=PORT

This will enable you to open a web browser on the port you specified, and you’ll be
able to view the Developer Tools from that page.

269Knowing what you’re debugging
 The Network tab shows you the time it takes and the order in which the files are
loaded by the app.

 The Sources tab allows you to edit the source files live, so that you can debug
your app code as the app is running.

 The Timeline tab lets you see how much time is spent by the browser executing
different parts of the JavaScript, or rendering elements in the page, or the
amount of memory consumed.

 The Profiles tab profiles the CPU to see where in the code the most CPU cycles
are being spent.

 The Resources tab explores what data resources are used by the app, such as
local storage data.

 The Audits tab performs an audit of the app to find ways you can improve the
app’s performance.

 The Console tab allows you to access the current JavaScript context via a console.

Table 17.1 shows a breakdown of what each tab in figure 17.4 does and how it can be
used.

Table 17.1 What the Developer Tools tabs do

Developer Tool tab What it does

Elements Allows you to inspect and edit the DOM of the app. Useful for making visual
changes on the fly and for fixing visual bugs (usually involving CSS).

Network Shows how long the app’s files take to load, and the order that they load in.
Useful for optimizing app load times.

Sources Shows the source code of the files that are loaded by your app and allows you
to insert breakpoints and edit the source code live, rather than having to reload
the app after making the change in your text editor or IDE.

Timeline Allows you to see how much time the browser spends doing low-level tasks for
the app, from executing the JavaScript code to rendering different DOM elements
on the page. Great for deep-level analysis of your app’s performance.

Profiles Records profiling data about your app’s CPU profile or memory usage. Good for
spotting processing bottlenecks in your app’s code, or memory leaks that can
occur as well.

Resources Shows you both the contents of files loaded by the app and data that's stored
by the app, such as local storage, cookies, session information, and even Web
SQL (though that’s a deprecated standard). Good for inspecting data stored by
the app.

Figure 17.4 The tabs in the Developer Tools window

270 CHAPTER 17 Improving app performance with debugging
Table 17.1 gives you an idea of the available options in the Developer Tools window
when debugging issues in the client-side code. Later in the chapter, you’ll dive into
using these tools to help spot performance issues in your code so that you can resolve
them. For now, we’ll turn our attention to the first purpose of debugging: fixing bugs.

CAN’T I USE DEVELOPER TOOLS TO DEBUG THE WHOLE APP? Yes, but only if your
app isn't loading any other Node.js modules. If it is, then you have to use
other debugging tools to see what's going on inside them. This is because
there's a bug in the Developer Tools toolbar where the Sources tab isn't able
to show Node.js modules that have been loaded. This bug is known by the
NW.js team.

17.2 Fixing bugs
Bugs are a part of software. In an ideal world, they’d never exist because the humans
who wrote the code wouldn’t make mistakes. But we do make mistakes (ask anyone
who’s accidentally filled up their car with the wrong kind of gasoline), so we have to
spot them, and then we have to fix them.

 When it comes to building desktop apps with Electron or NW.js, if your bug raises
a JavaScript error object, then you’re in luck. You’ll be able to debug it from either the
Console tab on the app window’s Developer Tools window, or from the command-line
output that appears when running the app locally (if your app is running with NW.js).
Say you add a file called beetle.js to an app that you’re currently working on, and the
file has faulty code that reads like this:

check.line;

Then, you load the beetle.js file into the app.js file via a simple require statement:

require('./beetle');

Load the app from the command line as shown in figure 17.5 (the nw command), and
note the output from the app.

 The stack trace in the Terminal can be a bit of an eyeful to read and figure out.
Thankfully, you can also see the error in the Console tab in a more readable format, as
shown in figure 17.6.

Audits Analyzes your app to see if there are any changes you can make to improve per-
formance, and makes recommendations. A handy tool for helping you make
improvements, and it’s free.

Console Provides a console for running JavaScript code. Useful for testing some lines of
JavaScript, inspecting the DOM, and checking out the app state.

Table 17.1 What the Developer Tools tabs do (continued)

Developer Tool tab What it does

271Fixing bugs
In this simple example, the error is easy to spot because it raises a JavaScript error
object. If you’re lucky, any bugs that you encounter in your desktop apps will raise
JavaScript errors, providing you with a stack trace that you can read, and therefore
debug the error easily.

 But not all bugs will raise a JavaScript error. In those cases, you need to have a few
more tools at your disposal to determine what’s going on. The next section shows
extra tools to help you do this.

17.2.1 Using Node.js’s debugger to debug your app

In NW.js, you can implement debugging either from the command line or from the
Developer Tools, depending on whether the code you’re looking to debug is loaded
via the client or via Node.js. In Electron, you can debug the Node.js process with
either Node.js’s debugging support or by using the Node Inspector module.

The error message The command you ran

The stack trace

Figure 17.5 The error occurring in an app, and the stack trace that it produces

The error message, and
an easier-to-digest trace

Figure 17.6 The same error as displayed by the Console tab on the Developer Tools window

272 CHAPTER 17 Improving app performance with debugging
 As frameworks that run Node.js, both NW.js and Electron provide the added bene-
fit of the debugging tools available in the Node.js ecosystem. Over the years, the tool-
ing has evolved to enable developers to get a good understanding of what exactly is
going on under the hood, providing stack traces at a simple level, and going right
down to flame graphs at a more in-depth level.

 Table 17.2 shows what tools are on offer, what they work with, and what they’re
used for.

NODE DEBUG

Node.js ships with debugging tools by default. These tools let you pause the execution
of your code by adding breakpoints in the code, and you can iterate the execution of
your code step by step. This is useful when you’re investigating your code, and when
the cause of a bug isn’t clear.

 For standard vanilla Node.js apps, if you want to use the debugger, first append this
line of code in the place where you’d like the debugger to pause code execution:

debugger;

Then, when executing your Node.js app, pass the following commands to the com-
mand line:

node debug <NAME_OF_FILE>

This brings up an interactive REPL once the app has reached the debugger call. You
then have the ability to step through the code by passing the commands shown in
table 17.3 to the interactive REPL.

Table 17.2 Node.js debugging tools

Node.js debugging option Works with Used for

Node Debug NW.js, Electron Back-end code

Node Inspector NW.js, Electron Back-end code

React Inspector Electron Isomorphic React apps

Table 17.3 Commands to pass to the interactive REPL

Key Command What it does

c Continue Continues executing the code

n Next Steps to the next line of execution

s Step in Steps into the line of execution to see where it goes

o Step out Steps out of the line of execution to where it is called

pause Pause Pauses execution of the program

273Fixing bugs
You can use these commands to control the flow of execution in the app and see step
by step what the program’s doing, which is handy with a hard-to-spot bug.

 The difficulty with this approach is that there may be a point deep in your code
where you would like to pause execution, but to stop at each line of code being exe-
cuted before reaching it will take a lot of time (and a lot of key presses). Imagine a
fairly small app with 20 files, each being 100 lines of code—you probably wouldn’t
want to have to press c for continue that many times. Plus, if you try to press c for con-
tinue, then you may end up going past the line where you wanted the program to
pause. For this job, you need breakpoints.

 Breakpoints are a way of getting the code to stop at a particular point in the code-
base. Rather than step through the code line by line to debug an app at different
points of execution, you can insert breakpoints to pause execution, allowing you to
inspect the state of the code.

 When you’re debugging the app in the interactive debugger REPL, you’ll have
extra global functions available to you, listed in table 17.4.

This is a brief overview of what’s involved with using Node.js’s built-in debugging
tools. In the context of NW.js, debugging involves a bit more work. That’s because
when you execute an NW.js app, multiple Node.js processes are happening in the
background. You can connect to an existing Node.js process with the debugger, but
which process should you connect to, and how do you connect to it remotely?

DEBUGGING THE APP REMOTELY

Node.js’s debugger doesn’t necessarily have to run inside the same process as the app;
it can be attached to an external Node.js process that’s already running. You can do
this by running the following command:

node debug –p PROCESS_ID

This allows you to connect a debugger to a running Node.js app. You need to get the
process ID of the app that NW.js runs and pass it into the preceding command, in

Table 17.4 Available global functions

Function What it does

setBreakpoint() Sets the breakpoint on the current line that the app
is on

setBreakpoint(line) Sets the breakpoint on a given line number in the cur-
rent file

setBreakpoint(fn()) Sets the breakpoint on the calling of a named function

setBreakpoint(filename, line) Sets the breakpoint on a given filename and line number

clearBreakpoint(filename, line) Clears the breakpoint on the given filename and line
number

274 CHAPTER 17 Improving app performance with debugging
place of the PROCESS_ID text. There are a couple of ways to do it on Mac OS/Linux
platforms, and one on Windows:

 On Windows, use Task Manager
 On Mac OS, use Activity Monitor
 On Linux, use Task Manager (or ps from the command line)

The easiest way to get the process ID (regardless of what OS you’re on) is to open up
the tool that shows the list of running apps/processes. On Windows, this is the Task
Manager app; on Mac OS, it’s the Activity Monitor app; on the various flavors of Linux
Gnome, users know it as the System Monitor app; and for KDE users, it’s the System
Activity app.

 On Mac OS’s Activity Monitor app, type in the name node, and you’ll see a list of
processes running that match that term, as shown in figure 17.7. The process ID in
this figure shows that the NW.js app’s node process is running with a process ID of
10169. Put this process ID into the node debug command, which lets you attach the
debugger to the running NW.js app’s node process:

node debug –p 10169

Figure 17.7 Mac OS’s Activity Monitor app. The app’s process that’s running is highlighted, and you can record
the process ID in the PID column (10169 in this case).

275Fixing bugs
This means you can go debug the NW.js app’s node process remotely. In the next sec-
tion, we’ll look at ways in which you can debug errors on the client.

17.2.2 Using NW.js’s developer tools to debug your app

The Developer Tools window in NW.js is identical to Google Chrome’s Developer
Tools. Google Chrome’s Developer Tools have gone a long way toward helping devel-
opers debug their web apps, and reuse knowledge and techniques to debug their
NW.js apps.

 To use the developer tools with NW.js, install the SDK version of NW.js. You can
either visit the NW.js website and install the SDK version of NW.js from there, or install
the SDK version of NW.js via npm:

npm install nwjs --nwjs_build_type=sdk
node_modules/.bin/nw install 0.16.1-sdk
node_modules/nw/bin/nw

Originally, with versions 0.12 of NW.js and earlier, the SDK was a built-in part of NW.js,
but latter versions of NW.js separated this component out. Although this means there
are extra steps involved in developing your NW.js app, the benefit is that you can build
a smaller version of your app for the binary that doesn’t include the developer tools,
saving megabytes on the binary size.

 Once you have the SDK version of the app installed, you can run your app and
open the developer tools by either pressing F12 on your keyboard for Windows and
Linux, or by pressing the Command-Alt-I on Mac OS. You can expect to see the Devel-
oper Tools window shown in figure 17.8.

Figure 17.8 The Developer Tools window for NW.js

276 CHAPTER 17 Improving app performance with debugging
ELEMENTS TAB

When you bring up the Developer Tools window on an NW.js app, the Elements tab is
selected by default, as shown in figure 17.8. This tab lets you inspect the DOM, in case
there’s a bug in the HTML, a mistyped path for an asset, or a styling bug on the app
(see figure 17.9).

The Elements tab also allows you to inspect the CSS styles that are applied to a DOM
element and edit them inline so that you can fix visual bugs that are occurring in the
app. You can edit the DOM here as well, so you can try out changes before making
them in the app code.

 If you’re trying to debug an issue with the JavaScript code, you have two options:

 You can use the Console tab to interact with the app and inspect the JavaScript
context there.

 You can use the Sources tab to insert breakpoints and watch variables to see
what values they have at different points of the app’s execution.

Figure 17.9 The Element tab on the Developer Tools window. On the left, you see the HTML for the app, and on
the right are the CSS styles that affect the selected DOM element (in this case, the body tag).

277Fixing bugs
CONSOLE TAB

If you’ve ever done any form of front-end web development and needed to debug an
issue with the JavaScript on the front end, chances are you’ve seen the Console tab
and played with it a bit. Figure 17.10 shows what you can expect to see.

The purpose of the Console tab is to be able to interactively debug your app’s JavaScript
state without needing to resort to inserting breakpoints and pausing/resuming the
app’s execution.

 If you open up the developer tools for the Cirrus app and click the Console tab,
you can type in statements to execute and see what happens.

SOURCES TAB

The Sources tab has a lot of handy features crammed into it for debugging, as you can
see in figure 17.11.

 The key debugging tools in the Sources tab are on the right-hand panel. Here, you
can insert breakpoints to stop code execution when it reaches a particular point. The
other nice thing you can do is look out for the value of variables in the code, such as
the value of the currentFile variable in the app.js file, which is used to store the file
path for the HTML file that’s opened by the WYSIWYG editor. If you wanted to check
for the current value of that variable, you could add a watch expression to the app by
clicking the + button on the Watch Expression header and then typing currentFile
as the variable name to watch out for.

 After doing this, if you’ve used the app, you should see the value of the current-
File variable set to the file path of the file that you were editing in the WYSIWYG edi-
tor. In this case, my screen looks like figure 17.12.

Figure 17.10 The Console tab in the Developer Tools window. If you call window.onload in the
Console tab, you can see the code for that function on display. Also, any console.log statements in
the code will output their content here.

278 CHAPTER 17 Improving app performance with debugging
Your application’s
files are here.

The file source
code is displayed
and editable here.

Debugging options
are here in the right-
hand panel.

Figure 17.11 The Sources tab on the Developer Tools window

With the Watch Expressions tool, you
can look at the current value of the
currentFile variable, and see if it is
what you expect.

Figure 17.12 Observing a variable’s current value

279Resolving performance issues
As you run the app, you can click the refresh button in the Watch Expressions header
to show what the current value of a variable is at intervals.

 A nice touch to the developer tools is that in Chrome you can edit your source
code directly from the Source tab; but, unfortunately, this feature doesn’t work on
NW.js, so for the moment you’ll need to make do with editing the files in your text edi-
tor of choice.

 Being able to add breakpoints, inspect for JavaScript errors, and observe the value
of variables allows developers to spot bugs in their app and resolve them. The other
kind of issue that can occur isn’t necessarily a bug (depending on whom you ask), but
more an issue of speed: performance. The next section looks at ways you can diagnose
performance issues and how to resolve them.

17.3 Resolving performance issues
The issues that affect the performance of desktop apps are the same issues that affect
the performance of web apps:

 How quickly content assets are loaded by the browser
 How much memory and CPU are consumed by executing the JavaScript
 The frame rate at which the browser is able to render the page

Performance optimization tends to be an afterthought until the app is live and perfor-
mance issues are impacting app usability. The plus is that it’s easy to spot the error,
resolve it quickly, and deploy the changes to users quickly.

 With a desktop app, the user is stuck with that version, unless it has self-updating
functionality enabled. Either way, there’s a greater pressure to get it right the first time
(because your users might not be as patient). In this section, we’ll explore what each
of the tabs on the Developer Tools window does and what it’s useful for when you’re
trying to spot performance issues with your desktop app.

17.3.1 Network tab

With performance issues, the first place to look is how long it takes to load the HTML,
CSS, and JavaScript files that make the app. In the Developer Tools window, the Net-
work tab shows how long it takes for those assets to load, be parsed, and render in the
browser, as shown in figure 17.13.

 For web apps, the Network tab is useful because it shows you how long it takes for
the assets to load and gives you a benchmark to measure against. As you can see in fig-
ure 17.13, the app looks like it loads pretty quickly (128 ms—the blue, right-most
line), which is due in part to the fact that the assets are being loaded from the com-
puter’s hard disk, rather than from a web server on the internet. Nevertheless, the
Network tab is useful for building desktop apps:

 You can see the size of the files, whether they’re getting too big, and whether
they should be minified and gzipped to reduce their size.

 You can see how many assets are being loaded by the app and check whether
concatenating them together will improve the performance of the app.

280 CHAPTER 17 Improving app performance with debugging
This tab gives a good indication of whether your app is becoming bloated; if so, you’ll
notice the number of assets loaded by the app grows and begins to impact the loading
time. Keep an eye on the loading metric as your app grows.

 Once the app has loaded, the next step is to look at how it performs. For this, you
have some other tabs in the Developer Tools window that can help out.

17.3.2 Timeline tab

Next to the Network tab is the Timeline tab—the Swiss army knife of the Developer
Tools window because it has so many ways to display performance data. It’s a helpful
tab when it comes to optimizing the performance of your app with regard to the fol-
lowing:

 Tracking how much memory is used in the JS heap
 Seeing how long the app spends performing various browser-based tasks
 Seeing what browser-rendering events are causing jank

This tab provides lots of data-visualization features to explore, but you need to record
the performance data first. Click the Timeline tab, and then click the red record but-
ton, as shown in figure 17.14.

The order in which files are
loaded by the application.

This line indicates when
the HTML is parsed and
rendered.

This line indicates when
the files finished loading.

Figure 17.13 The Network tab panel

281Resolving performance issues
Once you’ve clicked the record button, you’re recording performance data. At this
point, you can use the app like you normally would, or if there’s a particular action
that you’ve noticed is slow or janky, perform that action in the app.

WHAT IS JANK? Jank refers to when the browser animation and rendering
drops below 60 frames per second and you begin to notice that the page ren-
dering judders and has some stutter in rendering elements on the screen.

When you’re happy that you’ve recorded the relevant performance data for what you
wanted to measure, click the record button again to stop recording the performance
data, and you should now see a screen with lots of data, like in figure 17.15.

 You’ll now have a lot of data to play with and inspect. Figure 17.15 has drilled down
on a particular point in the timeline where the JS heap jumps up rapidly, indicating
that there’s a point where something happens to cause this. If you explore the events
that occur during the use of the app, you’ll see that clicking from the design view to
the code view is responsible for triggering the spike. You now have enough informa-
tion to target where you explore the code and optimize it.

 As you check and uncheck different options in the Timeline tab, different visual-
izations of the data are displayed for you. I recommend browsing those tools to get a
feel for them, as there’s a lot to do in that tab alone. Next, we’ll check out the Pro-
files tab.

Click on this to
begin recording
performance data.

Figure 17.14 The record button on the Timeline tab

282 CHAPTER 17 Improving app performance with debugging
17.3.3 Profiles tab

The Profiles tab offers the ability to trace the following performance areas:

 Where the app is spending its time (in terms of CPU cycles) executing code
 What the memory usage is like as the app is used, and what kinds of memory

objects are being created over time
 Where potential memory leaks may be occurring in the code

When you click the Profiles tab, you’re presented with three options, shown in table 17.5.

Here you can see JavaScript
events and memory use
over time.

Here you can see memory
object counts over time,
including when they spike.

Here you can see where
time is spent in the app.
The white part of the pie
chart is idle time.

Figure 17.15 The Timeline tab displaying performance data

283Resolving performance issues
Depending on the nature of your performance problem, you’ll want to try out the dif-
ferent options and see what data you get back. To use one of the options listed on the
tab, click the Start button shown on the tab (let’s choose the CPU profile in this case)
and use the app. When you’re finished, you’ll see something like figure 17.16.

The results from doing a CPU profile analysis can also be displayed as a flame chart.
Click the toolbar drop-down to change how the results are displayed, and you should
see something like figure 17.17.

 The flame graph shows you where time is being spent by your app and helps to
spot any bottlenecks.

 Being able to analyze the performance qualities of your desktop app comes in
handy when you’re trying to make sure that your product works for your customers
before it goes out there.

 Having now covered NW.js’s developer tools, let’s look at what Electron has to offer.

Table 17.5 Profile tab options

Option What it does

Collect JavaScript CPU Profile Shows where your app is spending time executing code

Take Heap Snapshot Takes a snapshot of the current memory heap in the app

Record Heap Allocations Records memory heap over a period of time

Here you can see where the CPU
spends its time executing functions
in the application’s code

Figure 17.16 The Profiles tab with the CPU profile results

284 CHAPTER 17 Improving app performance with debugging
17.4 Debugging Electron apps
Like NW.js, Electron uses Chrome’s Developer Tools under the hood. Electron pro-
vides access to the developer tools either from the View menu in the app’s main menu
or by pressing Ctrl-Shift-I (Command-Shift-I on Mac OS).

 If you try to open the developer tools in one of your Electron apps, you’ll see a new
window pop up, looking like figure 17.18.

Figure 17.17 The CPU profile results displayed as a flame chart

Figure 17.18 Electron’s Developer Tools window. The nice thing about Chrome’s Developer Tools is that it detects
browser features used in your app and emits warnings in the console about them being deprecated in the near future.

285Debugging Electron apps
The Developer Tools window is almost the same as the one shown in NW.js, but the
order of the tabs is different, though they’re the same as the ones in NW.js. In that
respect, it’s nice because you can use the same tools to debug both NW.js and Elec-
tron apps.

 That said, Electron’s approach to rendering app windows as separate processes
rather than all in a single app process makes it a bit more involved in terms of debug-
ging what’s happening in each app window. Fear not, though—Electron has a dedi-
cated debugging tool for handling this, called Devtron.

17.4.1 Introducing Devtron for debugging Electron apps

Devtron is a debugging tool for Electron apps that allows you to inspect some of the
more intricate aspects of your Electron apps, such as the following:

 How your app loads dependencies in both the main back-end process and in
each renderer front-end process

 Inspecting data messages that are passed between the main and renderer
processes

 Linting the code to make sure you haven’t incorrectly scoped a variable or omit-
ted a break command in a case statement

 Showing what events are occurring in the Electron app so you can see whether
certain things are happening, such as when a window is closed or when an app
registers itself as being ready

Devtron is built on top of Chrome’s Developer Tools, so installing it is a two-step pro-
cess. First, install it as a development dependency for your Electron app via npm:

npm i devtron --save-dev

Next, complete the installation process by running your Electron app. Once you’ve
got your Electron app up and running, open the developer tools, either by pressing
Ctrl-Shift-I (Command-Alt-I for Mac OS) to view the tools, or by clicking the View
menu and selecting Toggle Developer Tools, as shown in figure 17.19.

Figure 17.19 Opening
the developer tools from
an Electron app’s main
toolbar

286 CHAPTER 17 Improving app performance with debugging
With the developer tools open, click the Console tab and run the following command:

require('devtron').install()

You should see a new tab appear (the Devtron tab) in the Developer Tools window, as
shown in figure 17.20.

The Devtron tab is built as an extension of the developer tools, which means you can
run it alongside the rest of the Developer Tools for the app. If you click it, you can
expect to see something like figure 17.21.

In the sidebar on the left of the Developer Tools window, you have five menu items.
You’ll go through each of them one by one, with the exception of the last menu item
(which is information and not a debugging option).

REQUIRE GRAPH

The Require Graph item is used to list how npm module dependencies are loaded
in the renderer and main processes by the app. The idea is that by looking at the
dependency graph information, you can see not only the order in which the mod-
ules are loaded by the main/renderer process, but also see how big they are (and
therefore how much they contribute to the whole size of the app). You can also

Figure 17.20 The Devtron tab at the end of the Developer Tools

Figure 17.21 The Devtron tab in the Developer Tools

287Debugging Electron apps
search through the modules by their name and filename with the search input field
at the top.

 To begin using Require Graph, you first need to check whether you want to visual-
ize the dependency graph for the main process or the renderer process, and click the
tab that represents the process you choose. Then, click Load Graph in the top right of
the window. When you do this on the renderer process for the Lorikeet app, you can
see the information presented in the dependency graph shown in figure 17.22.

The Require Graph tab shows that the index.html file loads first, followed by Electron
loading its required files, and then the rest of Lorikeet’s files are loaded. The size of
the files is also relatively small, which is nice because it shows that you can pack quite a
bit of functionality into the desktop app without making it monolithic.

EVENT LISTENERS

The Event Listeners menu item shows events emitted during the app’s lifecycle and
allows you to see what the code looks like for binding on them. The idea is that you
can see what events are occurring and where they’re triggered in terms of Elec-
tron’s APIs.

 To view them, click the Event Listeners menu item in the left sidebar and then
click the Load Listeners button in the top right of the window. The Developer tools
window should then look like figure 17.23.

 In the window, you can see the names of the events that are being emitted on each
part of Electron’s APIs, as well as events that are being emitted by Node.js. This allows you
to check that the events you expect to be happening in the app are in fact happening.

Figure 17.22 The dependency graph for the renderer process in Lorikeet Electron. Notice that the app’s total file
size is 355 KB—not bad for a simple file explorer app.

288 CHAPTER 17 Improving app performance with debugging
IPC
The IPC menu item shows what inter-process communication is occurring between
the main process and the renderer process of the Electron app. It’s useful when you
want to see what data messages are being passed between the processes.

 When you want to see what’s happening, click the IPC menu item in the left side-
bar of the Devtron tab pane and then use the buttons in the top-right pane to handle
recording IPC messages and clearing them, as shown in figure 17.24.

The Record button handles recording IPC messages occurring in the app, including
the ones used by Electron’s internal modules to transmit data between the main pro-
cess and the renderer process. To start recording these IPC messages, click the Record
button in the top right, and when you use the app, you should start to see IPC mes-
sages pouring into the window, as in figure 17.25.

Figure 17.23 The Event Listeners pane in the Devtron tab

Figure 17.24 The IPC buttons for the IPC pane in the Devtron tab. The idea is that you can record IPC messages
that occur when the app is running.

289Debugging Electron apps
The IPC messages can be used to see how Electron triggers internal features, such as
displaying a dialog on the renderer process with a message to the user when an error
occurs. To filter out Electron’s internal IPC messages, click the Ignore Internal button
to hide them; and to clear all messages, click Clear. Also, don’t forget to click Record
again to stop recording IPC messages.

LINTING

The Linting menu item is useful for doing some cleanup tasks on your Electron app.
It will do the following:

 Check what version of Electron you’re running and inform you if there’s a
more up-to-date version available to use

 Check whether you’re using an asar archive or not to load your app quicker
 Check whether you’re handling exceptions in your app or ignoring them
 Check whether your app has crash handling installed to capture when your

app crashes
 Check whether the app window has an event handler for when the app window

becomes unresponsive

Click Linting in the left sidebar, and then click the Lint App button at the top right.
The Linting pane will then flag up useful suggestions, as figure 17.26 illustrates.

 You can think of the Linting tab as a way of sweeping through issues in the app
before you start preparing it for shipping.

 We’ve covered a number of Devtron features that can be used to debug parts of
Electron, such as its use of IPC messages and the way it uses events. When it comes
to building Electron apps, Devtron is a handy tool for debugging and improving
your app. To find out more about Devtron, check out the project at http://electron
.atom.io/devtron/.

Figure 17.25 IPC messages being recorded in the Lorikeet app. In this case, some internal Electron messages
are being sent on three different channels with various data arguments.

http://electron.atom.io/devtron/
http://electron.atom.io/devtron/

290 CHAPTER 17 Improving app performance with debugging
17.5 Summary
In this chapter, we’ve looked at the tools available to use when you’re fixing bugs in
your apps, as well as tools that can help you spot performance problems and see how
to address them. Here are some of the key takeaways from the chapter:

 Root cause analysis is the first tool you should use when trying to diagnose the
cause of a problem, as you will want to save time by avoiding going down dead
ends in your analysis.

 The developer tools at your disposal are the same ones available in the Google
Chrome web browser (the Chrome Developer Tools), and will come in handy if
you work with web apps as well as desktop apps.

 You can use Node.js’s remote debugging capabilities to debug a live running
app on the fly without having to close it down and then painstakingly replicate
the conditions in which a bug has occurred.

 Try to keep the number of assets that your app must load to a minimum.
 The Sources tab in the Developer Tools window is handy for analyzing an app’s

state when you need to fix a bug.
 The Profiles tab is handy for analyzing the performance of your app.
 Devtron is a great tool for debugging your Electron apps.

In chapter 18, we’ll look at how you can package the app for shipping to the wider
world on Mac OS, Windows, and Linux.

Figure 17.26 The Linting pane in the Devtron tab. The Lorikeet app can make improvements to be that little
bit better.

Packaging the application
for the wider world
Once you’ve gotten to a stage with your app where it’s ready for people to use, the
next step is to consider how you want to package it for running on your users’ com-
puters so that users can install it. There are lots of different ways to do this, and
depending on the app you’re building and who your audience is, it’s good to know
which options exist and how you can make use of them.

 In this chapter, we’ll explore those options and show how to package your app
as executable binaries for Mac OS, Microsoft Windows, and Linux (Ubuntu), includ-
ing creating Windows installers for your Electron apps.

 First, we’ll look at some options for protecting your source code and the pros
and cons of those approaches.

This chapter covers
 Creating Mac binaries of your app

 Creating Windows .exe files of your app

 Using builders to help automate creating the app

 Creating Linux executables for your app

 Creating Mac and Windows setup installers for
your app
291

292 CHAPTER 18 Packaging the application for the wider world
18.1 Creating executables for your app
When you’re ready to ship your app to the wider world, start by making sure it’s avail-
able in a format for users to download and run on their computer. For this, you need
to create executables for each OS you want to support. The good news is that you can
do this from a single codebase, and the only negative is that there’s a bit of fiddly work
to produce executables for all the OSs. Luckily, there are some tools out there to take
care of this work, and this section shows you how to use them to create executables for
each OS.

 We’ll start by looking at creating apps for Microsoft Windows.

18.1.1 Creating an NW.js app executable for Windows

The world’s most popular OS, Microsoft Windows, has had quite a journey in the last
few years. Following the release of Windows 7, Microsoft was trying to compete with
Apple in the tablet market. It released Windows 8, a version of Windows with a touch-
friendly UI that could work on both personal computers and tablets. It was a bold
move, but unfortunately it didn’t go down well with users of Windows; the removal of
the Start button from the desktop was a major stumbling block. Windows 8.1 shortly
came out and reintroduced the much-loved Start button back to the desktop, and last
year Windows 10 was introduced as a free upgrade to existing users of Windows 7, 8,
and 8.1.

 Although Windows isn’t as dominant as it was in the 1990s and early 2000s, the OS
still has the largest market share out there, with Windows 7 being the frontrunner.
There are quite a few versions of the OS in use today (including, believe it or not,
Windows XP), but building a .exe file for Windows tends to work seamlessly across the
major versions of the OS.

 For the sake of simplicity, I’ll assume you have Windows 10 running on your com-
puter. It’s a free upgrade for users, but if you’re running Mac OS or even Linux, don’t
despair, because there are other options. You can install virtual machine software and
images that will allow you to run a copy of Windows 10 to test your app against.

18.1.2 Installing a virtual machine

Table 18.1 lists some virtual machine software and image options.

Table 18.1 Popular virtual machine software

Virtual machine Platform URL Cost

VirtualBox Windows/Mac/Linux virtualbox.org Free

VMware Fusion Mac vmware.com/products/fusion $89

Parallels Mac parallels.com $95

http://virtualbox.org
http://vmware.com/products/fusion
http://parallels.com

293Creating executables for your app
Once you have virtual machine software you’re happy with, find a virtual machine
image running the version of Windows that you want to test against. A quick search on
Google will reveal options for you.

 When you’ve got a virtual machine running Windows (or you have a computer
running Windows natively), you can proceed to build and test an executable version
of your app for that OS.

18.1.3 Building a .exe of an NW.js app for Windows

For this exercise, you’ll turn to one of the existing apps you built earlier in this book—
a file explorer app called Lorikeet—and look at how to turn that into an executable
app. In chapter 4, you covered generating a Windows version of the NW.js app using a
tool called nw-builder. You could repeat that step here, but instead I’ll show you what’s
going on when you create a binary executable of the app on Windows. That way, you can
understand how the sausage is made, rather than getting the sausage and eating it.

 Let’s grab a copy of the Lorikeet app that you built from GitHub:

git clone git://github.com:/paulbjensen/cross-platform-desktop-
applications/chapter-04/lorikeet-nwjs

Now, install the dependencies, and you’ll be ready to build a copy of the app as a Win-
dows executable:

cd lorikeet-nwjs
npm install

Start by creating a zip file of the contents of the Lorikeet folder. This can be done eas-
ily in Windows by selecting all the contents of the folder name and choosing Send to >
Compressed (zipped) folder, as shown in figure 18.1.

Next, name the zip file package.nw, rather than a name followed by .zip. You should
see a dialog asking if you want to do this, warning that the file may become unusable.
Click Yes to the dialog shown in figure 18.2.

Figure 18.1 Creating a zip file of the contents of the Lorikeet folder. Make sure you create
a zip folder of the contents of the Lorikeet folder, rather than of the Lorikeet folder itself.

294 CHAPTER 18 Packaging the application for the wider world
You now need to combine package.nw with the NW.exe file. Assuming you have a
globally installed copy of NW.js sitting on your computer (via having run npm install
-g nw), copy the package.nw file to the same location as the nw.exe file (mine is shown
here):

C:\Users\paulb_000\AppData\Roaming\npm\node_modules\nw\nwjs\nw.exe

Copy the package.nw app to the same folder as the nw.exe file, and then run the fol-
lowing command to generate the exe file:

copy /b nw.exe+package.nw lorikeet.exe

This should generate a standalone lorikeet.exe file that you could put on another
Windows machine and run right off the bat. That’s all it takes to make an NW.js app
into a Windows executable file.

 The next section looks at how to create a Windows executable for an Electron app.

18.1.4 Creating an Electron app executable for Windows

Electron follows a similar pattern for creating standalone executable versions of an
app for Windows. The first thing to do is get ahold of the source code for an Electron
app. You can take an example app from this repository on GitHub: https://github
.com/paulbjensen/cross-platform-desktop-applications.

 Grab the Hello World Electron app from chapter 1, and you’ll turn that into a stand-
alone .exe file. After you’ve grabbed the source code for the app, you’ll install a utility
library for Electron called asar. Asar is a tool for packaging your app into an asar
archive, which resolves the following issues:

 It makes sure that long file paths are shortened so you don’t run into issues with
Windows’ 256-character limit on file paths.

 It speeds up Node.js’s require function a bit.
 It doesn’t expose all your files in the app to anyone who wants to poke around

in the source code.

Figure 18.2 Renaming the zip file to package.nw so the app can be
packaged right for the Windows executable.

https://github.com/paulbjensen/cross-platform-desktop-applications
https://github.com/paulbjensen/cross-platform-desktop-applications

295Creating executables for your app
First, install asar via npm on the command line:

npm install –g asar

Now, you’ll be able to turn your app’s source code into an asar archive. As an example,
you’ll take the Hello World Electron app’s source code and turn it into an asar
archive. cd the folder containing the app’s folder, and then run the asar archive com-
mand in the Command Prompt/Terminal:

cd cross-platform-desktop-applications/chapter-01
asar pack hello-world-electron app.asar

The second command listed will generate an app.asar file that’s an asar archive con-
sisting of the contents of the hello-world-electron directory. After this, you’ll combine
the app.asar file with the Electron app.

 Grab a copy of the prebuilt binary for Electron from the GitHub repository for
Electron from https://github.com/electron/electron/releases. Download a copy that
corresponds to the OS and CPU version, which in the case of this example is v1.4.15-
win32-x64.zip, available at http://mng.bz/yH23.

 Unzip the file, and you should have a folder named electron-v1.4.15-win32-x64.
The folder will contain another folder called resources. Put the app.asar file inside the
resources folder. Then, you can change directory into the parent folder and double-click
the electron.exe file to run the app. You should then see something like figure 18.3.

Figure 18.3 The Hello World app running as a standalone executable. Note that the Windows app doesn’t have
the default menu toolbar that shows when the app is running from the Electron command line, and the Electron
icon shows in the taskbar.

https://github.com/electron/electron/releases
http://mng.bz/yH23

296 CHAPTER 18 Packaging the application for the wider world
This is good, but you’ll probably want to rename the electron.exe file to one that
matches your app name (for example, hello-world.exe) and change the app icon. To
change the app icon, you can use a tool called rcedit (a command-line resource edi-
tor). Install rcedit via the command line with npm:

npm install –g rcedit

You can now edit the icon and version numbers for the app. Provided you have an app
icon available in .ico format, you can run the following command on your command-
line prompt to change the app icon used on the electron.exe file:

rcedit electron.exe --set-icon “my-app-icon.ico”

Using rcedit, you can then give the app its own unique look and feel.

ARE THERE ANY OTHER PACKAGING TOOLS THAT CAN HELP? Yes, there’s a good
tool for Electron called electron-packager that you can install via npm. It
allows you to create builds of your Electron app for Windows, Mac OS, and
Linux. It’s similar to NW.js’s nw-builder library, and details of its full API and
capabilities can be found at www.npmjs.com/package/electron-packager.

This covers setting up a standalone executable app on Windows, but what if you want
to create a setup installer for your Windows app? Well, good news—you can. The next
section walks through how to do that.

18.2 Creating a setup installer for your Windows app
Although standalone executables for Windows run fine, most users of Windows
apps are used to installing them via setup installers. Setup installers take care of put-
ting the app and its contents in the right places on the user’s computer, as well as
making sure that Desktop and Start menu shortcuts are installed for the app. Setup
installers work by double-clicking the setup.exe file and clicking through the setup
installer to make sure the app is installed in the right place and with the right user
permissions.

 What are the options for NW.js and Electron?

18.2.1 Creating a Windows setup installer with NW.js

Creating a Windows setup installer for a standalone NW.js app is a little bit of a dance,
but the good news is that it is possible. Here are the various options that exist for cre-
ating a Windows setup installer:

 NSIS from Nullsoft
 Inno Setup
 WinRAR

http://www.npmjs.com/package/electron-packager

297Creating a setup installer for your Windows app
I’ll show you how to create a Windows installer with Inno Setup. I’ve found it to work
absolutely fine, and it’s not too difficult to use. The software tool is available at www
.jrsoftware.org/isinfo.php. Visit the website and download a copy to run on Windows.

 Once you’ve installed Inno Setup on your Windows computer, you can begin the
process of creating a Windows installer for your app. Run Inno Setup on your com-
puter. You should see a screen like figure 18.4.

In Inno Setup’s Welcome dialog box, the New File section shows two options:

 Create a new empty script file
 Create a new script file using the Script Wizard

For new users, the second option is best. Select the second option and click OK. You
should see the Inno Setup Script Wizard dialog, as shown in figure 18.5.

 Click Next to proceed to the Application Information screen. Here, you’ll provide
information about the app such as its name, version number, the app publisher’s
name, and the app’s website, as shown in figure 18.6.

Figure 18.4 Inno Setup’s initial screen

http://www.jrsoftware.org/isinfo.php
http://www.jrsoftware.org/isinfo.php

298 CHAPTER 18 Packaging the application for the wider world
Figure 18.5 The Inno Setup Script Wizard

Figure 18.6 The Application Information screen in the Script Wizard

299Creating a setup installer for your Windows app
Fill in your app’s information, and click Next to proceed with the Application Folder
screen. Here, you’ll configure what the app’s folder is named and where it will be
installed on the user’s computer by default (usually in the Program Files folder in the
C: drive). You should see a screen like figure 18.7.

I’ve decided to use the Windows version of the Lorikeet app, so I’ll name the folder
Lorikeet. You can also configure whether the app needs a folder in the Program Files
folder, as well as whether the user will be allowed to change the name of the folder
when installing the app.

 Once you’ve provided the name of the app folder you want, click Next to pro-
ceed to the next screen, which in this case is the Application Files screen shown in
figure 18.8. Here is where you provide the files that make up your built NW.js app,
so the Setup Wizard will be able to compile those into the setup.exe file created by
Inno Setup.

 The dialog in figure 18.8 shows a few options:

 The app’s main executable file
 Whether the user should be offered the chance to run the app immediately

after they have installed it
 Whether to include other files and folders to be installed in the setup installer

Figure 18.7 The Application Folder options screen in the Setup Wizard

300 CHAPTER 18 Packaging the application for the wider world
The first and third options are the most important because this is where you add the
files/folders of your NW.js’s Windows app. If you built the Windows app as a single
executable, you can select that .exe file for including in the setup installer. But if
you’ve built your Windows app with nw-builder and you find that there are multiple
files to go with the Windows app, then you can include those by adding the folder that
contains all those files.

 Once you’ve added the app’s main file (and any other additional files), click Next
to move on to the next screen in the Setup Wizard, the Application Shortcuts screen,
shown in figure 18.9.

 The Application Shortcuts screen shows configurations options for the icon short-
cuts being placed in various places on the user’s computer, such as the Start Menu, the
Desktop, and even in the Quick Launch bar on older computers.

 The default options specified here are fine (though you’re welcome to adjust them
as you like for your app). Once you’ve made your choices, click Next to move on to
the next screen. The Wizard presents the configuration options for displaying licens-
ing information to the user as they install the app. Figure 18.10 shows the options.

 You don’t necessarily have to provide anything here, but it’s recommended that
you include software licensing information in your app. Here is where you can pro-
vide licensing information for the user to agree to before they can use the software, as
well as release notes and other information to display before the software gets
installed (and after).

Figure 18.8 The Application Files screen in the Setup Wizard

301Creating a setup installer for your Windows app
Figure 18.9 The Application Shortcuts screen in the Setup Wizard

Figure 18.10 Application Documentation configurations in the Script Wizard

302 CHAPTER 18 Packaging the application for the wider world
If you’re happy to proceed, click Next to see options for the languages you want the
setup installer to support in the next screen, as shown in figure 18.11.

When you’re happy with your language options, click Next to see the Compiler Set-
tings screen, shown in figure 18.12. There you can configure the following:

 Where the setup.exe file will be output to
 What the filename of the setup installer will be
 What icon the setup installer should have (if any)
 Whether the setup installer should require the user to input a password before

the installer will install software.

When you’ve filled in this screen, click Next again and click through to the end of the
Script Wizard as shown in figure 18.13, where you can compile the script and create
the setup installer executable.

 With the setup installer created, you can distribute that file to users who want to
install your NW.js app via a Windows installer executable.

COULD I USE THE SAME TECHNIQUE FOR ELECTRON .EXE APPS? Yes. There’s no
reason you can’t use Inno Setup 5 for creating a Windows installer for an
Electron app. That said, Electron has a lot of packaging tools that enable you
to use some of Electron’s more advanced features, such as being able to auto-
matically update apps through Electron’s Squirrel framework.

Figure 18.11 The Setup Languages screen in the Script Wizard

303Creating a setup installer for your Windows app
Figure 18.12 The Compiler Settings screen in the Script Wizard

Figure 18.13 The last screen you should see when you finish with the Script
Wizard

304 CHAPTER 18 Packaging the application for the wider world
This pretty much covers how to set up a Windows setup installer for an NW.js app. For
Electron, there is a different, though simpler, process, covered in the next section.

18.2.2 Creating a Windows setup installer with Electron

Electron offers a number of ways to create a Windows setup installer for your Electron
app. A quick search on Google will return a number of approaches and libraries to
install. Here are some libraries available to help build a Windows installer:

 Grunt-Electron-Installer
 Electron-installer-squirrel-windows
 electron-packager
 electron-builder

I’ll cover using one of them, the npm module electron-builder. It not only takes care
of building your Electron app for multiple platforms, it also handles some platform-
specific issues:

 Packaging your app to support applying app updates
 Being able to sign the code as a security measure for Mac and Windows app

stores
 Managing versioned builds of the app
 Compiling native modules for each OS platform

To install electron-builder, run the following command in the Command Prompt/
Terminal:

npm install -g electron-builder

This will install electron-builder on your computer as a global npm module. Now, let’s
walk through an example of using it to help you generate a Windows installer for an
Electron app.

 First, grab a copy of the Hello World Electron app from GitHub:

git clone https://github.com/paulbjensen/book-examples.git
cd book-examples/chapter-18/hello-world-electron

The Electron app is going to be packaged with electron-builder so you can create a
version of the app that has a Windows installer.

 electron-builder relies on build configuration information being present in the
app’s package.json file, like how NW.js and Electron look for their configuration infor-
mation in that file. electron-builder requires that the following fields are present in
the package.json file:

 Name
 Description
 Version
 Author

305Creating a setup installer for your Windows app
Here’s an example of what those fields should look like:

{
 "name": "hello-world",
 "description":"A hello world Electron application",
 "version": "1.0.0",
 "author" : "Paul Jensen <paul@anephenix.com>"
}

In the Hello World Electron app’s package.json file, the description and author fields
are not present. Add those to the package.json file (and amend as you’d like). The
next step is to add some more build configuration information to the package.json
file about the Windows icon to be used.

 When specifying the Windows .ico file for the app, you need to provide a public URL
to access the file, rather than a local file. You can put the file in a number of places:

 As a file that’s served from Amazon S3
 As a file that’s served from a Dropbox folder
 As a file that exists in a public GitHub repository

Wherever you choose to host that file, make sure anyone can reach it (test in a web
browser running in private/incognito mode). Here’s a URL for a .ico file that you can use
for this walkthrough: https://github.com/paulbjensen/lorikeet/raw/master/icon.ico.

 In the package.json file for the app, insert the following code:

{
 "build": {
 "iconUrl":" https://github.com/paulbjensen/lorikeet/raw/master/icon.ico"
 }
}

Make sure that a copy of that icon file is present inside a build folder in the app. After
doing that, add these script commands to the package.json file:

"scripts": {
 "pack": "build",
 "dist": "build"
}

These script commands can be run using npm run on the command line. Finally, you
need to ensure that Electron is installed as a development dependency. You can do
that by running the following command:

npm i electron –save-dev

If you were to run npm run pack at the command-line prompt, you’d see that the app
executables are packaged in the newly created dist folder. When you browse the dist
folder, you’ll see that the Electron app has been turned into .exe files for different
processor architectures (ia32 and x86-64).

https://github.com/paulbjensen/lorikeet/raw/master/icon.ico

306 CHAPTER 18 Packaging the application for the wider world
 At this point, electron-builder then wraps another npm module that handles
building the Electron app as a Windows installer. This is a module called electron-
windows-installer, with documentation here: https://github.com/electronjs/windows-
installer#usage.

 If you rename the name field of the package.json file to hello and run npm run dist,
electron-builder creates the following Windows-based installer items for the app:

 A nupkg file for installing the app via the NuGet package manager
 A .exe file
 A Microsoft Setup Installer (.msi) file named setup.msi

With these files, you can install the app on other computers via a single file.
 That covers creating a Windows setup installer for Electron. Now, we’ll look at

options for creating both executable versions of the app for Mac OS.

18.3 Creating an NW.js app executable for Mac OS
You have a few options for how to proceed, but by far the simplest is to use nw-builder
to create the executable, and for another npm module called appdmg to wrap that
executable as a .dmg file for ease of installation on Macs.

 I’ll show you how nw-builder works first, and then how to turn the executable app
into a .dmg file with appdmg.

18.3.1 Creating the Mac executable app

nw-builder is a tool for creating different executables of your NW.js app for different
OSs. If you haven’t got it installed already, run the following command on your com-
mand line:

npm install –g nw-builder

Now, you can use nw-builder to build a Mac executable app. Find an NW.js app that
you want to build an executable copy of, and you’ll create an executable for it. I’ll
resort to building a copy of the Lorikeet app that you created earlier in the book.

 Once you’ve checked out a copy of the app, you can use nw-builder with it by pass-
ing a series of arguments to the command-line command. Let’s say you’ve checked
out a copy of the Lorikeet app’s source code on your computer. cd into the app folder,
and then run the following commands to generate the app’s Mac OS executable:

nwbuild lorikeet-nwjs –p osx64

The first command goes to the directory where Lorikeet’s source code is, and the sec-
ond handles building the app for the 64-bit version of Mac OS. When the command
has finished, you should have a new build folder. Inside the build folder is another
folder named lorikeet, and inside that folder is the 64-bit build, which contains an
executable of the app.

https://github.com/electronjs/windows-installer#usage
https://github.com/electronjs/windows-installer#usage

307Creating an NW.js app executable for Mac OS

i

in
w

 The next step is to turn these executable builds of the app into .dmg files, which
are visual installers that make installing Apple Mac software easy. This is where the
appdmg module comes in handy.

 To install appdmg, run the following command in the Terminal:

npm install –g appdmg

Running that command installs the appdmg module as a global npm module. This
means you can use it to create .dmg files for all the Mac OS builds across all of your
NW.js and Electron apps.

 To use appdmg, pass two arguments to the command line, like so:

appdmg <json-path> <dmg-path>

Here, the first argument passed to the appdmg command is a path to a JSON file con-
taining configuration information for appdmg. The second argument passed is the
path where you want the created .dmg to be placed.

 The JSON file contains configuration information for appdmg, and you can give it
any filename. I’ve given it the name app.json. An example of the app.json that you
might want to use for the Lorikeet app is shown in the following listing.

{
 "title": "Lorikeet",
 "icon": "icon.icns",
 "background": "background.png",
 "icon-size": 80,
 "contents": [
 { "x": 448, "y": 220, "type": "link", "path": "/Applications" },
 { "x": 192, "y": 220, "type": "file", "path":
"build/lorikeet/osx64/lorikeet.app" }
]

}

When you have this configuration set up in the app.json file, you can run the appdmg
command on your Mac OS computer, like so:

appdmg app.json ~/Desktop/lorikeet.dmg

When you run this command, the output .dmg file will be placed in your Desktop
folder and therefore it will be visible on your desktop screen. The Terminal output
should look something like figure 18.14.

 When the process has finished and you have a .dmg file on your desktop, double-
click to open it, and something like figure 18.15 should appear.

Listing 18.1 The app.json file for the appdmg image creator

Title to
display in
window

Relative path to icon
to display when
mounting app

Background to
display in setup
installer windowSize of

cons in
setup

staller
indows

Files to be displayed in
setup installer window

308 CHAPTER 18 Packaging the application for the wider world
In figure 18.15, you’ll see the .dmg file’s app installer window, where the user can drag
and drop the Lorikeet app into the Applications folder to install it on their computer.

 This covers how to create a standalone NW.js app for Mac OS and package it as a
.dmg for users to easily install on their computer. The next section shows how to do
the same for Electron apps.

Figure 18.14 Running appdmg on Mac OS. If all goes well, you can expect to see an itemized
breakdown of the tasks being performed to create the .dmg file, and they should all be green.

Figure 18.15 The .dmg file in action, showing the app installer

309Creating an NW.js app executable for Mac OS
18.3.2 Creating an Electron app executable for Mac OS

Electron offers a number of npm modules that can take care of creating the app
executable on Mac OS, including electron-builder, mentioned earlier. You’ll use the
electron-builder module because it provides a good UX for creating packaged app
builds of Electron apps.

 First, grab the Electron Hello World app to create a Mac .dmg for. When you have
a copy of the source code for the app checked out, cd into the directory containing
the app and run this command on the Terminal to install electron-builder as a devel-
opment dependency:

npm i electron-builder –-save-dev

Once you’ve installed electron-builder as a development dependency for the app,
take a look at the app’s package.json file and make sure it has the following required
fields:

 Name
 Version
 Author
 Description

Once you’ve got those fields populated in the package.json file, the next thing to do is
add the build configuration to the package.json file, as in the next listing.

{
 "name": "hello-world",
 "version": "0.0.1",
 "main": "main.js",
 "description":"A hello world application for Electron",
 "author": "Paul Jensen <paul@anephenix.com>",
 "scripts": {
 "pack": "node_modules/.bin/build",
 "dist": "node_modules/.bin/build"
 },
 "build": {
 "mac": {
 "title": "Hello World",
 "icon": "icon.icns",
 "background": "background.png",
 "icon-size": 80,
 "contents": [
 {
 "x": 448,
 "y": 220,
 "type": "link",
 "path": "/Applications"
 },

Listing 18.2 Adding the build configuration information to the package.json file

Adds some scripts for
handling creation of
.app and .dmg files

Include build
configuration
info here

310 CHAPTER 18 Packaging the application for the wider world
 {
 "x": 192,
 "y": 220,
 "type": "file",
 "path": "dist/hello-world-darwin-x64/hello-world.app"
 }
]
 }
 },
 "devDependencies": {
 "electron-builder": "^13.5.0",
 "electron ": "1.4.15"
 }
}

If you take a close look at the package.json file, you’ll notice that the build property
looks remarkably similar to the configuration used for creating the .dmg file for the
NW.js app with appdmg. This is because electron-builder uses appdmg under the
hood and passes the configuration to that library here, instead of through a separate
JSON file.

 Once you have the script in place, you want to make sure you have the following
image assets in place for the app:

 An icon.icns file for the app’s icon
 A background.png image to be displayed in the background of the app installer

When you have both of those items in the app’s source code, you can run the npm
commands that will generate the .app and .dmg files. In the Terminal, run the follow-
ing commands:

npm run pack && npm run dist

This code uses the Unix && operator to run two commands in sequential order. Once
the first command (npm run pack) has finished, it triggers the second command (npm
run dist). npm run pack will create the .app file that contains all the app’s source code
as a standalone executable, and npm run dist does the following:

 Creates the .dmg file for users to install the app on their computer
 Creates a mac.zip file for supporting automatic updates via Squirrel

The first file is the one you want to offer to new users to install your app. The zip file is
the one for existing users of your app and is the package that’s used to provide them
with automatic updates. When you run the .dmg file, you can expect to see a result
like the one shown in figure 18.16.

 This shows how you can create setup installers for Mac OS using a variety of tools.
The key thing to take away from this is that appdmg is a great tool for handling the
creation of .dmg files, but when it comes to creating those .dmg files for Electron

311Creating executable apps for Linux
apps, you’re better off using the electron-builder npm module, because it takes care
of a lot more things.

 The next section shows how to create standalone executables for Linux.

18.4 Creating executable apps for Linux
When it comes to creating executable apps for Linux, bear in mind that there are
multiple distributions of Linux, some of which are quite common and popular (Linux
Mint, Ubuntu, Fedora, and openSUSE come to mind), and some of which are smaller,
more niche distributions. To install software for Linux distributions, there are a num-
ber of different software package management tools:

 Yum (used by Red Hat, Fedora, CentOS)
 YaST (used by OpenSUSE)
 Synaptic (used by Ubuntu, Linux Mint)

You can always serve your software as a tarball and let Linux users run make and make
install on their computer, but not all Linux users will know how to do that, and
Linux is making inroads into all kinds of areas, including education and local govern-
ment. In order to best support your Linux users, do the following:

 Identify what Linux distributions are supported by your app framework
 Find out (if you can) what Linux OSs your customers are using
 If you can’t identify that, find out what the most popular Linux OSs are and

support those

Figure 18.16 The .dmg installer for the Hello World Electron app

312 CHAPTER 18 Packaging the application for the wider world
18.4.1 Creating NW.js standalone apps for Linux

One of the options available to you for NW.js is to use nw-builder, which has been used
earlier in the book. If you haven’t already, you can install nw-builder by running the
following command:

npm install –g nw-builder

Next, you need an app to convert into a Linux standalone executable and run nw-
builder on with configuration details specific to Linux. In the chapter so far, we’ve
used the Lorikeet app, but to add some variety, you’ll use one of the other apps that
you worked on earlier in the book, a WYSIWYG app called Cirrus.

 Grab a copy from GitHub at https://github.com/paulbjensen/cirrus/archive/master
.zip. Once you’ve downloaded the zip file and extracted the contents into a folder, cd
into the folder and run the following command to install software dependencies:

npm install

Now, you can build the Linux standalone executables with nw-builder. Run the follow-
ing command in the Terminal to build both 32-bit and 64-bit versions of app for Linux:

nwbuild cirrus –p linux32,linux64

This will create two builds of the app for Linux—one for 32-bit architecture, and
another for 64-bit architecture. When nw-builder finishes building the packages, you’ll
find a build folder. The build folder contains another folder with the name of the soft-
ware (Cirrus, in this case), and inside that are two folders: linux32 and linux64. These
are the folders for the different builds of the app that you specified earlier.

 As the app stands, you could take the files produced from the build and run them
on Linux, as shown in figure 18.17.

 The software at this point is a collection of these files:

 Cirrus (a binary executable that takes the name of the app)
 icudtl.dat (a binary data file for NW.js)
 libffmpegsumo.so (a file used by Chromium for multimedia support)
 locales folder (a folder containing files for localization info for different

countries)
 nw.pak (a file for NW.js)

When you want to bundle these files into packages for RPM, Yum, Apt, and dpkg,
you’ll want to include all of them and make the binary executable named after your
app the main executable.

 This covers what to do for an NW.js project. How about for Electron?

https://github.com/paulbjensen/cirrus/archive/master.zip
https://github.com/paulbjensen/cirrus/archive/master.zip

313Creating executable apps for Linux
18.4.2 Creating Electron standalone apps for Linux

Electron has a number of tools available for building an Electron app as a standalone
Linux executable:

 Grunt-build-atom-shell (grunt plugin: https://github.com/paulcbetts/grunt-
build-atom-shell)

 electron-packager (npm module: www.npmjs.com/package/electron-packager)
 electron-builder (npm module: https://github.com/electron-userland/electron-

builder)

You used electron-builder for the Mac OS and Windows builds earlier in the chapter,
so this time you’ll take electron-packager for a spin instead. electron-packager is in
the Electron-userland organization on GitHub, and is maintained by a number of
major contributors within Electron’s community.

 You’ll start by installing electron-packager on your computer as a global dependency:

npm install –g electron-packager

Figure 18.17 Cirrus running on Ubuntu Linux 14.04 LTS. Cirrus is running in the foreground, and in the
background are the files that make up the app. You may also notice the app icon in the bottom-left corner.

https://github.com/paulcbetts/grunt-build-atom-shell
https://github.com/paulcbetts/grunt-build-atom-shell
https://github.com/electron-userland/electron-builder
https://github.com/electron-userland/electron-builder
http://www.npmjs.com/package/electron-packager

314 CHAPTER 18 Packaging the application for the wider world
cd into the directory where the app’s source code is (in this case, you’ll use the Hello
World Electron app as an example), and then run the electron-packager command:

cd hello-world-electron
electron-packager FULL_PATH_TO/hello-world-electron --name=hello-world
--platform=linux --arch=x64 --version=1.4.15

This will take the source in the hello-world-electron directory, turn it into an Electron
app called hello-world with Electron version 1.4.15, and build that app for Linux on
the 64-bit x86 architecture.

 After running that command, you should have a new folder called hello-world-
linux-x64. Inside that folder will be the following set of files:

 content_shell.pak (a file for Electron)
 hello-world (a binary executable that takes the name of the app)
 icudtl.dat (a binary data file for Electron)
 libffmpeg.so (a file used by Chromium for multimedia support)
 libnode.so (a file for Electron)
 LICENSE (a text file containing license information for the software)
 LICENSES.chromium.html (an HTML file containing license information

about the software used in Chromium, the open source version of Chrome that
Electron uses)

 locales folder (a folder containing files for localization info for different
countries)

 natives_blob.bin (a file for Electron)
 resources folder (a folder containing the app’s source code)
 snapshot_blob.bin (a file for Electron)
 version (a text file containing the software version

When you run the app and its files on a Linux machine (say, a machine running
Ubuntu 14.04), you’ll see something like figure 18.18.

 This shows you how you can use electron-packager to package an Electron app as a
standalone Linux executable. The ability to do this for both NW.js and Electron
means you have the flexibility to choose which desktop app framework you want to
use for the app. That said, do bear in mind one major caveat when choosing Electron
with regard to Windows support: if you need to support Windows XP (which still has a
statistically significant customer base in China), then Electron isn’t supported.

315Summary
18.5 Summary
In this chapter, we’ve looked at the different ways in which you can build your NW.js
and Electron apps for the different OSs out there.

 Consider which OSs your customers are likely to use so you can spend your time
working on supporting the platforms that need to be supported. Being able to build
Windows and Mac OS executables for the app with tools like nw-builder, electron-
builder, and electron-packager ensures that you can reduce the amount of time spent
packaging the app—and spend more time creating features for your app.

 You also explored how to create setup installers for the executables of your app so
that users of your app can install them with ease. You’ll find that Inno Setup 5 is a
great tool for creating setup installers and is easy to use, so that will help you with cre-
ating setup installers for your Windows apps.

 As for Mac OS, appdmg is the tool of choice for creating .dmg files for your Mac
OS apps.

 These tools go a long way toward helping you to provide a smooth installation
experience for your users. Bear in mind that there currently aren’t any major building
tools in the NW.js and Electron space that simplify turning built Linux executables
into packages for Yum, YaST, and Apt. That’s something you’ll have to do manually.

Figure 18.18 The Hello World Electron app as a standalone app on Ubuntu

316

appendix
Installing Node.js

There are a couple of different ways to install Node.js, but the simplest way to get it
installed is by visiting https://nodejs.org and clicking the Downloads link in the top
navigation bar. You’ll see a page of download options for different operating sys-
tems. If you’re running Windows or Mac OS, you can choose to download one of
the installers available. If you’re running Linux, you can either download a tarball
of the source code and compile it or install it via a package manager. For instruc-
tions on using a Linux package manager to install Node.js, take a look at https://
nodejs.org/en/download/package-manager.

INSTALLING MULTIPLE VERSIONS OF NODE.JS WITH NVM Another option for
developers running Mac OS X or Linux is to use nvm (Node Version Man-
ager) to handle installing Node.js. nvm allows you to install multiple ver-
sions of Node.js on your computer and then switch between the different
versions. This is very useful when you want to test how your code runs
against newer versions of Node.js. It also enables you to work on multiple
Node.js applications that are running different versions of Node.js. For
more on nvm, visit https://github.com/creationix/nvm.

https://nodejs.org
https://nodejs.org/en/download/package-manager
https://nodejs.org/en/download/package-manager
https://github.com/creationix/nvm

index
Symbols

^ (caret character) 105
/ (forward slash) 69
=> function 19

A

Aboukhadijeh, Feross 5
acceptance testing 247
addContextMenu 169
addEventListener 99
addStylesheet function 182
addToIndex function 64, 254–255
After hook 260
APIs (application program interfaces)

accessing via JavaScript 14
common methods in Chromium 116
common methods in Node.js 116
public methods, creating with

module.exports 100–101
App folder, in Electron 113
app.css file 39, 148, 150
appdmg module 307
appendNoteToMenu function 147
Application class, Spectron 257
application program interfaces. See APIs
application window menus 154–164

choosing which menu to render based on
OS 164

creating 153–175
for Linux OS applications 158–164
for Mac OS applications with Electron

155–157
for Mac OS applications with NW.js

154–155

for Microsoft Windows OS applications
158–164

applications
accessing clipboard

with Electron 215–218
with NW.js 211–215

creating desktop notifications
in Electron 235–239
in NW.js 239–242

creating executables for Linux OS 311–315
with Electron 313–315
with NW.js 312

creating executables for Mac OS 306–311
with Electron 309–311
with NW.js 306–308

creating executables for Windows OS 292–296
building .exe with NW.js 293–294
installing virtual machine 292–293
with Electron 294–296
with NW.js 292

creating setup installer for Windows 296–306
with Electron 304–306
with NW.js 296–304

creating using LocalStorage API 200–206
with Electron 201–204
with NW.js 204–206

dragging and dropping files onto 176, 180–186
with Electron 180
with NW.js 177–179

finding packages for 103
frameless 128–133, 138–142

creating in NW.js 134–137
creating with Electron 137–138

full-screen 128–142
in Electron 131–133
in NW.js 128–131
317

INDEX318
applications (continued)
games

creating global keyboard shortcuts with
Electron 231–233

creating with NW.js 220–230
kiosk 138–142

creating in NW.js 138–140
creating with Electron 140–142

packaging 291–315
creating executables for Linux OS

311–315
creating executables for Mac OS 306–311
creating executables for Windows OS

292–296
creating setup installer for Windows OS

296–306
packaging with npm 105–107
publishing to npm 106–107
running in Electron 114
standalone

creating for Linux OS with Electron
313–315

creating for Linux OS with NW.js 312
storing data 199–209

choosing from available options 199–200
creating applications using LocalStorage

API 200–206
porting to-do list web applications 206–209

See also default applications; web applications;
tray applications

applyDiscount function 101
architecture, of Node.js in NW.js 115
asar tool 294
assert library 252
async module 45–46
asynchronous programming, versus synchronous

programming 92–94
Atom Shell 8
Audits tab, Developer Tools window 269
Ava 254
Axisto Media 131

B

bar element 221
BDD (behavior-driven development) 247–248
bindDocument function 57
binding, on keyboard shortcuts 219–233

creating games with NW.js 220–230
creating global keyboard shortcuts with

Electron 231–233
bindSavingPhoto function 189–190, 195
bindSearchField function 64, 66, 255
BitTorrent 6
Blink rendering engine 109

blocking 92
body element 221
body tag 123, 276
breakpoints 273
Bring All to Front command, Window menu 155
browser development tools 267–270
Browser folder, in Electron 113
BrowserWindow class 126–127, 133
bugs, identifying root cause 265–270

debugging with browser developer tools
267–270

identifying location of 266
See also debugging

build tools
using for Electron 80–81
using for NW.js 79

button element 237

C

callback 93
canvas element 189, 191, 221
caret character 105
Cascading Style Sheets. See CSS
Christ, Adam 28
ChromeDriver, functional testing with 256
Chromium 110

and Node.js, bridging JavaScript context
between 112

common API methods in 116
class attribute 70
classNames variable 209
clearBreakpoint() function 273
clearView function 59
click attribute 162
clipboards

accessing 211–218
creating applications with Electron

215–218
creating applications with NW.js 211–215

copying and pasting contents from 210–218
setting content with Electron 218

clipboard.writeText 217
Close Window command, Window menu 155
code, refactoring 55–58
codebase, building applications for multiple

OSs 16
CoffeeScript 105
cog icon 267
CommandOrControl 232
Common folder, in Electron 114
CommonJS 100
config.example.js file 237
config.js file 237
console method 116

INDEX 319
Console tab
Developer Tools window 269
in NW.js 277

console.log statements 94, 98, 277
const variable 19
contenteditable attribute 205
context menus 165–175

adding icons 170–171
creating 153–175
with Electron

adding 174–175
creating 171–174

with NW.js 169–170
contextmenu event 170
convertFolderPathIntoLinks function 69–70
Copy command, Edit menu 155
copying and pasting, contents from

clipboards 210–218
copyPhraseToClipboard function 213
CSS (cascading style sheets)

adding for personal folders 39–40
using to match user’s OS style 183–186

Linux 184
Lion CSS UI Kit 184
Metro UI 183
Photon 185–186
React Desktop 186

Cucumber
overview 258–259
testing Electron applications with 260–263

cucumber-js command 262
cuke.js file 262
currentFile variable 277
current-folder element 59–60, 70
currentState variable 229
Cut command, Edit menu 155

D

Dahl, Ryan 91
data persistence 204
data, storing 199–209

choosing from available options 199–200
creating applications using LocalStorage

API 200–206
porting to-do list web applications

206–209
debugging 264, 270–290

Electron applications 284–290
identifying root cause 265–270
resolving performance issues 279–283

Network tab 279–280
Profiles tab 282–283
Timeline tab 280–281

with browser development tools 267–270

with Node.js 271–275
Node debug 272–273
remotely 273–275

with NW.js developer tools 275–279
Console tab 277
Elements tab 276
Sources tab 277–279

default applications, opening files with 71–74
defaultMenu() function 157
Delete command, Edit menu 155
denormalized data 200
dependencies, controlling versions in

package.json 105–106
See also development dependencies

describe function 250
designing UI, mimicking native look of OS

180–186
designMenu.js file 166
desktop applications 31–74

building example application 31–33
configuring window dimensions in

using Electron 123–124
using NW.js 122–123

controlling display 121–142
frameless applications 128–133, 138–142
full-screen applications 128, 131, 133–142
kiosk applications 138–142
window sizes and modes 121–128

creating 33–37
creating files and folders for Electron-powered

applications 35–37
creating files and folders for NW.js-powered

applications 33–35
installing Electron 33
installing NW.js 33

creating icons 76–79
in Linux OS 78–79
in Mac OS 76–77
in Microsoft Windows OS 78

enhancing navigation in 68–74
loading at folder path 71
making current folder path clickable 68–71
opening files with default applications

71–74
folders 55–61

handling double-clicks on 58–61
refactoring code 55–58

implementing quick search 62–68
adding in-memory search libraries 63–64
adding search fields to toolbars 62–63
adding search functionality to UI 64–68

implementing start screen 38–53
displaying user’s personal folders in

toolbars 38–42
showing user’s files and folders in UI 42–53

INDEX320
desktop applications (continued)
Node.js 4–7
overview 4–6
packaging for distribution 79–85

setting icons on applications 81–85
using build tools for Electron 80–81
using build tools for NW.js 79

preparing for distribution 76–79
setting icons 81–85

in Linux OS 85
in Mac OS 81–82
in Microsoft Windows OS 82–84

shipping 75–88
packaging for distribution 79–85
preparing for distribution 76–79
testing on multiple OSs 86–88

testing 245–263
approaches to 246–249
functional testing 255–256
integration testing 258–263
levels of 248–249
on Linux OS 87
on Mac OS 87–88
on Microsoft Windows OS 86–87
on multiple OSs 86–88
TDD 246–247
unit testing 249–255

See also applications
desktop notifications 234–242
detecting OS

in Electron 182–183
in NW.js 181–182

developer tools, debugging in NW.js 275–279
Console tab 277
Elements tab 276
Sources tab 277–279
See also browser development tools

development dependencies, installing 104
Devtron, debugging Electron applications

with 285–290
Event Listeners 287
IPC 288–289
Linting 289–290
Require Graph 286–287

directory type 47
displayFile function 57, 59, 65, 72
displayFolderPath function 59, 68, 70–71
displayImageInIconSet function 178–179
displayNote function 147, 151
distributing

packaging desktop applications for
79–85
setting icons on applications 81–85
using build tools for Electron 80–81
using build tools for NW.js 79

preparing desktop applications for
76–79

div element 48, 51, 170, 189, 221–222
done function 252
dotfiles 52
drag-and-drop functionality, using with files 176,

180–186
with Electron 180
with NW.js 177–179

draggable apps 135
drawSnake function 226

E

E2E (end-to-end testing) 258
Electron 3–17, 24–30

application creation with
accessing clipboard 215–218
desktop notification applications

235–239
for Linux OS 313–315
for Mac OS 309–311
for Windows OS 294–296, 304–306
frameless applications 137–138
kiosk applications 140–142
tray applications 149–152
using LocalStorage API 201–204
Watchy application 235–239

application window menus
creating for Linux OS 163–164
creating for Mac OS 155–157
creating for Microsoft Windows OS

163–164
applications created with 24–30

Hyper 29–30
Light Table 25
Macaw 28
Slack 24

building Node.js desktop applications 4–7
overview of desktop applications 4–6
versus web applications 6–7

capturing photos with HTML5 Media
Capture API 194–198

components of 113–114
App folder 113
Browser folder 113
Common folder 114
Renderer folder 113

configuring window dimensions in
applications 123–124

constraining window dimensions in
126–128

context menus
adding 174–175
creating 171–174

INDEX 321
Electron (continued)
creating global keyboard shortcuts with

231–233
debugging applications 284–290
dragging and dropping files onto applications

with 180
exploring 108–117
features of 23–24
full-screen applications in 131–133
Hello World application in 18–22
history of 7–9
installing 33
interacting with Node.js 115–117
Node.js used within 116–117
overview 112–114
porting TodoMVC web app with 208–209
running applications 114
setting content to clipboard with 218
testing applications with

Cucumber 260–263
Spectron 256–258, 260–263

using build tools for 80–81
versus NW.js 17–18

electron-packager 313
Elements tab

Developer Tools window 268
in NW.js 276

encodeURIComponent method 116
err object 94
EULA (End User License Agreement) 87
event emitters 114
Event Listeners menu, in Devtron 287
event loops, integrating main 111
EventEmitter module 99
EventMachine 99
events, in Node.js 99–100
executables

creating for Linux OS 311–315
with Electron 313–315
with NW.js 312

creating for Mac OS 306–311
with Electron 309–311
with NW.js 306–308

creating for Windows OS 292–296
building .exe with NW.js 293–294
installing virtual machine 292–293
with Electron 294–296
with NW.js 292

executeMove function 225

F

Facebomb-Electron 188
Facebomb-NW.js 188
file type 47

fileMenuSubMenu 161–162
fileRead event 174
files

clicking on 72–74
creating for Electron-powered applications

35–37
creating for NW.js-powered applications 33–35
dragging and dropping onto applications 176,

180–186
with Electron 180
with NW.js 177–179

opening with default applications 71–74
user’s personal, showing in UI 42–53

fileSave event 174
fileSystem module 58
fileSystem.js file 55
filterResults function 66, 255
find function 64, 254
folderExplorer.test.js file 256
folders 55–61

creating for Electron-powered applications
35–37

creating for NW.js-powered applications 33–35
handling double-clicks on 58–61
looking at path 71
making current path clickable 68–71
refactoring code 55–58
user’s personal

adding CSS for 39–40
adding HTML for 38–39
discovering with Node.js 40–42
displaying in toolbars 38–42
showing in UI 42–53

Font Awesome library 171
forked dependencies 110
form element 237
forward slash 69
frame property 134
frameless applications 128–133, 138–142

creating in NW.js 134–137
creating with Electron 137–138

free RAM 95
front-end code 55
fs.createReadStream method 98–99
fs.fileRead function 98
fs.readFile method 97
fs.stat function 45
full-screen applications 128–142

in Electron 131–133
in NW.js 128–131

fullscreenable property 131
functional testing 249, 255–256

in practice 255
with ChromeDriver 256
with NW.js 256

INDEX322
G

Game Dev Tycoon 26–27
games

Electron, creating global keyboard shortcuts
with 231–233

NW.js
creating global keyboard shortcuts with

229–230
creating with 220–230
implementing window focus keyboard short-

cuts with 227–229
Gantt charts 94
getFilesInFolder function 44, 56
getUsersHomeFolder method 43, 56
Giannattasio, Tom 28
Gifrocket 177
GitHub 113, 123, 137
Gitter 27, 122
global object 116
globalShortcut API 231–232
goFullScreen function 130
Granger, Chris 25
Grunt-build-atom-shell 313
GUI library, NW.js 159
gui.Window.get() function 160

H

hasEatenItself function 223
hasPoint function 222
height property 194
Hello World application

creating 10–13
in Electron 18–22
in NW.js 9–13

creating Hello world application 10–13
installing NW.js 10

hello-world-nwjs folder 11–12
Herbert, Frank 96
hidden folders 52
HTML (Hypertext Markup Language) 38–39
HTML5 Media Capture API, capturing photos

with 187–198
using Electron 194–198
using NW.js 188–193

Hyper terminal app 29–30, 133
Hypertext Markup Language. See HTML

I

icon attribute 171
Iconic app 177
Iconic Electron app 180
icon.icns file 82

icons
adding to context menus 170–171
creating for desktop applications 76–79

in Linux OS 78–79
in Mac OS 76–77
in Microsoft Windows OS 78

setting on desktop applications 81–85
in Linux OS 85
in Mac OS 81–82
in Microsoft Windows OS 82–84

tray, adding menus to 145–149
iConvert Icons 77–78
icudtl.dat file 312
identifying bugs 265–270

debugging with browser developer tools
267–270

location of 266
image_steps.js file 261
img element 65
IndexedDB 200
index.html file 34
Info.plist file 157
init command 221
initialize function 168, 190–191, 196–197, 205, 227
in-memory search libraries, adding 63–64
innerHTML function 70
Inno Setup 297, 299
input element 188–189, 191, 195–196
input field 237
input tag 62
inspectAndDescribeFile function 56
install command 102
installing

development-only dependencies 104
Electron 33
Node.js 316
NW.js 10, 33
virtual machine 292–293

integration testing 249, 258–263
with Cucumber 260–263
with Spectron 260–263

interceptDroppedFile function 178
IPC (inter-process communication) 288–289
ipcMain module 114, 172
ipcRenderer module 114, 151, 172, 232
isFullscreen function 130

J

jank 281
JavaScript

accessing API via 14
accessing OS native UI via 14
bridging context between Node.js and

Chromium 112

INDEX 323
JetBrains 183
JSON.parse() function 206, 208
JSON.stringify() function 206, 208

K

keyboard shortcuts 140
binding on 219–233

creating games with NW.js 220–230
creating global keyboard shortcuts with

Electron 231–233
global

creating with Electron 231–233
creating with NW.js 229–230

window focus, implementing with NW.js
227–229

keyup event 64
kiosk mode applications 138–142

creating in NW.js 138–140
creating with Electron 140–142

Kitematic 133
Klug, Daniel 26
Klug, Patrick 26

L

leaveFullscreen function 130
leaveKioskMode function 139
Let Me Remember application

creating with Electron 201–204
creating with NW.js 204–206

let variable 19
let-me-remember-electron 200
let-me-remember-nwjs 200
LevelDB 200
libchromiumcontent 113
libffmpegsumo.so file 312
libraries

adding in-memory search 63–64
loading via require function 101–102

libuv 92, 109
Light Table 25
link tag 182
linting code 285

in Devtron 289–290
Linux OS (operating system)

creating application executables for 311–315
with Electron 313–315
with NW.js 312

creating application window menus 158–164
with Electron 163–164
with NW.js 158

creating desktop application icons for
78–79

creating menu bars 158–160

creating submenus 160–163
setting icons on applications in 85
standalone applications for

with Electron 313–315
with NW.js 312

testing desktop applications on 87
Lion CSS UI Kit 184
loadDirectory function 59–60, 65
loadedmetadata event 190, 196
loadFolder function 69
loadMenuForMac OS function 164
loadMenuForWindowsAndLinux function 164
LocalStorage API, creating application using

200–206
with Electron 201–204
with NW.js 204–206

lodash module 103–104
loops. See event loops
Lorikeet app 250
Lorikeet file explorer 32–33
Lorikeet wireframe 38
lorikeet-electron folder 35
lorikeet.exe file 83
lorikeet-test-nwjs 250
Lovefield 200
lunr.js 63

M

Mac OS (operating system)
creating application executables for 306–311

with Electron 309–311
with NW.js 306–308

creating application window menus
with Electron 155–157
with NW.js 154–155

creating desktop application icons for 76–77
setting icons on applications in 81–82
testing desktop applications on 87–88

Macaw 28
main process 18
main property 36
makeFoodItem function 223
manifest file 33
max_height property 125
max_width property 125
menu bars, creating 158–160
Menu object 146, 154
menuBar 161
menuItem objects 146–147
menu.popup function 170
menus

adding to tray icons 145–149
choosing which to render based on OS 164
See also application window menus

INDEX324
message passing 116
MessageLoop 111
MessagePump 111
Metro UI CSS 183
Microsoft Windows OS (operating system)

building .exe of NW.js applications for
293–294

creating application window menus 158–164
with Electron 163–164
with NW.js 158

creating desktop application icons for 78
creating Electron application executables

for 294–296
creating menu bars 158–160
creating NW.js application executable for 292
creating setup installer for applications

296–306
with Electron 304–306
with NW.js 296–304

creating submenus 160–163
setting icons on applications in 82–84
testing desktop applications on 86–87

min_height property 125
Minimize command, Window menu 155
Minimongo 200
min_width property 125
Mocha, writing tests with 249–251
module 151
module.exports, creating public API methods

with 100–101
modules

in Node.js 100–102
creating public API methods with

module.exports 100–101
loading libraries via require function

101–102
packaging with npm 105–107
publishing to npm 106–107
tracking installed with package.json 103–104

moveSnake function 225

N

navigation, in desktop applications 68–74
loading at folder path 71
making current folder path clickable 68–71
opening files with default applications

71–74
NeDB 200
Network tab, Developer Tools window 269
New Bamboo 63, 219
Nightingale, Oliver 63
node debug command 274
Node debug, in Node.js 272–273
node package manager. See npm

node_bindings feature 116
Node.js

and Chromium, bridging JavaScript context
between 112

common API methods in 116
context accessible to all windows 115–116
desktop applications 4–7

overview 4–6
versus web applications 6–7

discovering personal folders with 40–42
drawbacks of using in NW.js 115–116

common API methods in Chromium 116
common API methods in Node.js 116
Node.js context accessible to all

windows 115–116
events 99–100
in NW.js architecture 115
installing 316
interacting with Electron 115–117
interacting with NW.js 115–117
modules 100–102

creating public API methods with
module.exports 100–101

loading libraries via require function
101–102

npm 102–107
finding packages for applications 103
packaging applications with 105–107
packaging modules with 105–107
tracking installed modules with

package.json 103–104
overview 92–102
synchronous programming versus asynchro-

nous programming 92–94
used within Electron 116–117
using debugger 271–275

Node debug 272–273
remotely 273–275

using in Electron 91–107
using in NW.js 91–107
using modules inside applications 14–16
using streams to handle data 95–99

node_modules folder 41, 63, 102–106
node-webkit 7–9, 110
note object 147
notifications, desktop 234–242

creating applications in Electron 235–239
creating applications in NW.js 239–242

npm (node package manager) 102–107
finding packages for applications 103
packaging applications with 105–107

controlling dependency versions in
package.json 105–106

publishing applications to npm 106–107
publishing modules to npm 106–107

INDEX 325
npm (node package manager) (continued)
packaging modules with 105–107

controlling dependency versions in
package.json 105–106

publishing applications to npm 106–107
publishing modules to npm 106–107

publishing applications to 106–107
publishing modules to 106–107
tracking installed modules with

package.json 103–104
installing development-only

dependencies 104
using modules inside applications 14–16

npm command 41
npm init command 215
npm install command 201, 240
npm module 157
npm run command 305
npm run dist command 310
npm shrinkwrap command 106
npm start command 213, 215, 236
nw command 160, 162, 207, 270
nwbuild command 16, 79, 84
nw-builder tool 16, 79
NW.js 3–9, 16–30

application creation with
accessing clipboard 211–215
desktop notification applications 239–242
for Linux OS 312
for Mac OS 306–308
for Windows OS 292
frameless applications 134–137
kiosk applications 138–142
tray applications 144–149
using LocalStorage API 204–206
Watchy application 239–242

application window menus
creating for Linux OS 158
creating for Mac OS 154–155
creating for Microsoft Windows OS 158

applications created with 24–30
Game Dev Tycoon 26–27
Gitter 27
Light Table 25
Macaw 28

applications, creating files and folders for
33–35

architecture of, Node.js in 115
bridging JavaScript context between Node.js

and Chromium 112
building .exe of applications for Windows

OS 293–294
building Node.js desktop applications 4–7

overview of desktop applications 4–6
versus web applications 6–7

capturing photos with HTML5 Media Capture
API 188–193

configuring window dimensions in
applications 122–123

constraining window dimensions in 124–126
context menus 169–170
creating games with 220–230

creating global keyboard shortcuts 229–230
implementing window focus keyboard

shortcuts 227–229
creating setup installer for Windows

applications 296–304
dragging and dropping files onto applications

with 177–179
drawbacks of using Node.js in 115–116

common API methods in Chromium 116
common API methods in Node.js 116
context accessible to all windows 115–116

exploring 108–117
features of 14–16

accessing API via JavaScript 14
accessing OS native UI via JavaScript 14
building applications for multiple OSs from

single codebase 16
using Node.js modules inside

applications 14–16
using npm modules inside applications

14–16
full-screen applications in 128–131
functional testing with 256
Hello World application in 9–13

creating Hello world application 10–13
installing NW.js 10

history of 7–9
installing 10, 33
integrating main event loop 111
interacting with Node.js 115–117
overview 109–112
porting TodoMVC web app with 207–208
using build tools for 79
using developer tools to debug

applications 275–279
Console tab 277
Elements tab 276
Sources tab 277–279

using V8 110
versus Electron 17–18

nw.pak file 312
nwsaveas attribute 188–189, 195

O

ondragover event 178
ondrop event 178
onKeyUp attribute 206

INDEX326
openFile function 72–73
openSUSE 12
OS (operating system)

accessing native UI via JavaScript 14
building applications for multiple from single

codebase 16
choosing which menu to render based on 164
detecting 181

in Electron 182–183
in NW.js 181–182

mimicking native look of
detecting user’s OS 181
using CSS 183–186
using OS detection in Electron 182–183
using OS detection in NW.js 181–182

multiple, testing desktop applications on
86–88

See also specific operating systems
osenv module 40–41
os.release() function 182

P

package.json
controlling dependency versions in 105–106
tracking installed modules with 103–104

package.nw file 294
packages, finding for applications 103
packaging

applications 291–315
for Linux OS 311–315
for Mac OS 306–311
for Windows OS 292–306

applications with npm 105–107
controlling dependency versions in

package.json 105–106
publishing applications to npm 106–107
publishing modules to npm 106–107

desktop applications for distribution 79–85
setting icons on applications 81–85
using build tools for Electron 80–81
using build tools for NW.js 79

modules with npm 105–107
controlling dependency versions in

package.json 105–106
publishing applications to npm 106–107
publishing modules to npm 106–107

Paste command, Edit menu 155
pasting. See copying and pasting
path class 70
path separator 69
pauseKeyOptions variable 230
Pearls application, creating

with Electron 215–218
with NW.js 211–215

performance, resolving issues with 279–283
Network tab 279–280
Profiles tab 282–283
Timeline tab 280–281

photoData variable 189–190, 196
Photon 185–186
photos, capturing with HTML5 Media Capture

API 187–198
using Electron 194–198
using NW.js 188–193

Pimenov, Sergey 183
Pixelmator 145
plugins 29
.png icon 145
porting

to-do list web applications 206–209
TodoMVC web application

with Electron 208–209
with NW.js 207–208

PouchDB 200
preventDefault function 178
process.exit function 162
process.hrtime function 98
process.memoryUsage function 98
Profiles tab, Developer Tools window 269
prompt() function 175

Q

quick search, implementing 62–68
adding in-memory search libraries 63–64
adding search fields to toolbars 62–63
adding search functionality to UI 64–68

quit() function 203, 205
quitAppMenuItem 161–162

R

rcedit 296
React Desktop 186
React framework 207
readdir function 43, 94
readdirSync function 93
readFile function 97, 99
README.md file 10, 18
readText function 218
red-green refactoring 246
Redo command, Edit menu 155
refactoring code 55–58
Renderer folder, in Electron 113
renderer process 18
rendering menus, choosing based on

OS 164
require function 101–102, 116
Require Graph, in Devtron 286–287

INDEX 327
require method 101, 270
resetFilter function 66, 255
resetIndex function 64, 255
Resource Hacker 82–84
Resources tab, Developer Tools window 269
root cause analysis 265
RTF (Rich Text Format) 97

S

saveFile variable 196
saveNotes function 203, 206
savePhoto function 196–197
sayHelloMenuItem 161–162
Schlueter, Isaac 40
screens. See start screens
script tag 159
Script Wizard 297–298, 301–303
scripts field 236
search

adding in-memory library 63–64
adding to UI 64–68
fields, adding to toolbars 62–63
See also quick search

search function 238–239
search.test.js file 253
Select All command, Edit menu 155
SemVer (semantic versioning) 34
setBreakpoint() function 273
setItem function 206
setTimeout method 116
setup installer, creating for Windows OS

applications 296–306
with Electron 304–306
with NW.js 296–304

shipping desktop applications 75–88
packaging for distribution 79–85
preparing for distribution 76–79
testing on multiple OSs 86–88

Shortcut class 230
shortcuts. See keyboard shortcuts
showSaveDialog function 197
Slack 24, 122
Snake game

Electron, creating global keyboard shortcuts
with 231–233

NW.js
creating global keyboard shortcuts with

229–230
creating with 220–230
implementing window focus keyboard short-

cuts with 227–229
snake-electron 220
snake-nwjs 220
Socketstream 206

Sources tab
Developer Tools window 269
in NW.js 277–279

span tag 69–70
Spectron

automatically testing 260–263
overview 24
testing Electron applications with 256–258

SQLite 200
standalone applications, creating for Linux OS

with Electron 313–315
with NW.js 312

start function 112, 215, 227–228
start screens, implementing 38–53

displaying user’s personal folders in
toolbars 38–42

showing user’s files and folders in UI
42–53

startTime variable 98
storing data 199–209

choosing from available options 199–200
creating applications using LocalStorage

API 200–206
with Electron 201–204
with NW.js 204–206

porting to-do list web applications 206–209
porting TodoMVC with Electron

208–209
porting TodoMVC with NW.js 207–208

streams, with Node.js to handle data 95–99
structured data, storing 208
stub out 252
stylesheets, CSS 180
styling 50
submenus, creating 160–163
Synaptic 311
synchronous programming, versus asynchronous

programming 92–94

T

takePhoto function 190, 197
TDD (test-driven-development) 246–247
template tag 212
termFound variable 97
testing

approaches to
BDD 247–248
Electron applications with Spectron

256–258
desktop applications 245–263

on Linux OS 87
on Mac OS 87–88
on multiple OSs 86–88
on Windows Microsoft OS 86–87

INDEX328
testing (continued)
Electron applications with Spectron

256–258
functional testing 255–256

in practice 255
with ChromeDriver 256
with NW.js 256

integration testing 258–263
automatically testing Electron applications

with Cucumber 260–263
automatically testing Electron applications

with Spectron 260–263
introducing Cucumber 258–259

levels of 248–249
unit testing 249–255

implementing 251–255
writing with Mocha 249–251

textarea element 202–203, 205–206
Thoughtbot 63, 219
Timeline tab, Developer Tools window 269
<title> element 35
to-do list web applications, porting 206–209

porting TodoMVC with Electron 208–209
porting TodoMVC with NW.js 207–208

TodoMVC web application
porting with Electron 208–209
porting with NW.js 207–208

toggleFullScreen function 130
toggleKiosk function 141
togglePauseState function 229, 232
toolbars

adding CSS for 39–40
adding HTML for 38–39
adding search fields to 62–63
displaying user’s personal folders

in 38–42
adding CSS for personal folders 39–40
adding CSS for toolbars 39–40
adding HTML for personal folders

38–39
adding HTML for toolbars 38–39
discovering personal folders with

Node.js 40–42
touch command 34
touch search.js command 63
tracking, installed modules with

package.json 103–104
tray applications

building initial skeleton 149–152
creating 143–152

with Electron 149–152
with NW.js 144–149

tray icons, adding menus to 145–149
Tumbleweed edition, OpenSUSE 163
TypeScript 103

U

UI (user interface)
adding search functionality to 64–68
designing 176–186
showing files and folders in 42–53

Undo command, Edit menu 155
unit testing 249–255

implementing 251–255
writing with Mocha 249–251

updateScore function 222
useContentSize attribute 194–195
userInterface.js file 55–57, 59–60, 64, 66,

68–72
users

displaying personal folders in toolbars
38–42
adding CSS 39–40
adding HTML 38–39
discovering personal folders with

Node.js 40–42
showing files and folders in UI 42–53

UX (user experience) 7

V

V8, using with NW.js 110
variable declaration 19
video element 189
virtualization tools 87
VMs (virtual machines)

installing 292–293
overview 86

W

Watchy application
creating in Electron 235–239
creating in NW.js 239–242

web applications
porting to-do lists 206–209
TodoMVC

porting with Electron 208–209
porting with NW.js 207–208

versus Node.js desktop applications
6–7

webcams, capturing photos with 187–198
using Electron 194–198
using NW.js 188–193

webContents module 232
webkit-app-region property 136
webpack 103
WebSocket class 115
WebTorrent 5–6, 133
width property 194

INDEX 329
window object 252
window.document 57
window.onload function 197, 277
window-resizing-nwjs 122
windows

configuring dimensions for Electron
applications 123–124

configuring dimensions for NW.js
applications 122–123

constraining dimensions in Electron 126–128
constraining dimensions in NW.js 124–126

Windows OS. See Microsoft Windows OS

wireframes 32
writeText function 218
WYSIWYG editor 28, 165, 277

Y

YaST tool 311
Yum tool 311

Z

Zhao, Cheng 8, 175

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Secrets of the JavaScript Ninja,
Second Edition
by John Resig, Bear Bibeault, and Josip Maras

ISBN: 9781617292859
464 pages
$44.99
August 2016

Get Programming with JavaScript
by John R. Larsen

ISBN: 9781617293108
432 pages
$39.99
August 2016

Sails.js in Action
by Mike McNeil and Irl Nathan

ISBN: 9781617292613
488 pages
$49.99
January 2017

https://www.manning.com/books/secrets-of-the-javascript-ninja-second-edition
https://www.manning.com/books/get-programming-with-javascript
https://www.manning.com/books/sails-js-in-action
www.manning.com
https://www.manning.com/books/secrets-of-the-javascript-ninja-second-edition
https://www.manning.com/books/get-programming-with-javascript
https://www.manning.com/books/sails-js-in-action

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Node.js in Action
by Mike Cantelon, Marc Harter,

T.J. Holowaychuk, and Nathan Rajlich

ISBN: 9781617290572
416 pages
$44.99
October 2013

Node.js in Practice
by Alex Young and Marc Harter

ISBN: 9781617290930
424 pages
$49.99
December 2014

Getting MEAN with Mongo, Express,
Angular, and Node, Second Edition
by Simon D. Holmes

ISBN: 9781617294754
450 pages
$44.99
March 2018

https://www.manning.com/books/node-js-in-action
https://www.manning.com/books/node-js-in-practice
https://www.manning.com/books/getting-mean-with-mongo-express-angular-and-node-second-edition
www.manning.com
https://www.manning.com/books/sails-js-in-action
https://www.manning.com/books/node-js-in-practice
https://www.manning.com/books/getting-mean-with-mongo-express-angular-and-node-second-edition

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Express in Action
Writing, building, and testing Node.js applications
by Evan M. Hahn

ISBN: 9781617292422
256 pages
$39.99
April 2016

Angular 2 Development with TypeScript
by Yakov Fain and Anton Moiseev

ISBN: 9781617293122
456 pages
$44.99
December 2016

Grokking Algorithms
An illustrated guide for programmers
and other curious people
by Aditya Y. Bhargava

ISBN: 9781617292231
256 pages
$44.99
May 2016

https://www.manning.com/books/express-in-action
https://www.manning.com/books/angular-2-development-with-typescript
https://www.manning.com/books/grokking-algorithms
https://www.manning.com/books/express-in-action
https://www.manning.com/books/angular-2-development-with-typescript
https://www.manning.com/books/grokking-algorithms
www.manning.com

Paul B. Jensen

D
esktop application development has traditionally
required high-level programming languages and special-
ized frameworks. With Electron and NW.js, you can

apply your existing web dev skills to create desktop applica-
tions using only HTML, CSS, and JavaScript. And those
applications will work across Windows, Mac, and Linux,
radically reducing development and training time.

Cross-Platform Desktop Applications guides you step by step
through the development of desktop applications using
Electron and NW.js. This example-fi lled guide shows you how
to create your own fi le explorer, and then steps through some
of the APIs provided by the frameworks to work with the
camera, access the clipboard, make a game with keyboard
controls, and build a Twitter desktop notifi cation tool. You’ll
then learn how to test your applications, and debug and
package them as binaries for various OSs.

What’s Inside
● Create a selfi e app with the desktop camera
● Learn how to test Electron apps with Devtron
● Learn how to use Node.js with your application

Written for developers familiar with HTML, CSS, and
JavaScript.

Paul Jensen works at Starcount and lives in London, UK.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/cross-platform-desktop-applications

$49.99 / Can $65.99 [INCLUDING eBOOK]

Cross-Platform Desktop Applications

JAVASCRIPT/WEB DEVELOPMENT

M A N N I N G

“You will be shocked by
how easy it is to write

 a desktop app!”
—From the Foreword by Cheng

Zhao, Creator of Electron

“Write-once/run-anywhere
just became a real thing.”—Stephen Byrne, Dell

“The defi nitive guide
to two paradigm-shifting
JavaScript frameworks.

 Indispensable.”—Clive Harber, Distorted Thinking

“Packed full of examples
that will help you write

cross-platform desktop apps
 using JavaScript.”
—Jeff Smith, Ascension

SEE INSERT

	Front cover
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized
	About the code
	Author Online

	about the author
	about the cover
	Part 1—Welcome to Node.js desktop application development
	1 Introducing Electron and NW.js
	1.1 Why build Node.js desktop applications?
	1.1.1 Desktop to web and back
	1.1.2 What Node.js desktop apps offer over web apps

	1.2 The origins of NW.js and Electron
	1.3 Introducing NW.js
	1.3.1 A Hello World app in NW.js
	1.3.2 What features does NW.js have?

	1.4 Introducing Electron
	1.4.1 How does Electron work and differ from NW.js?
	1.4.2 A Hello World app in Electron
	1.4.3 What features does Electron have?

	1.5 What apps can you make with NW.js and Election?
	1.5.1 Slack
	1.5.2 Light Table
	1.5.3 Game Dev Tycoon
	1.5.4 Gitter
	1.5.5 Macaw
	1.5.6 Hyper

	1.6 Summary

	2 Laying the foundation for your first desktop application
	2.1 What we’re going to build
	2.1.1 Introducing Lorikeet, the file explorer

	2.2 Creating the app
	2.2.1 Installing NW.js and Electron
	2.2.2 Creating the files and folders for the NW.js-powered app
	2.2.3 Creating the files and folders for the Electron-powered app

	2.3 Implementing the start screen
	2.3.1 Displaying the user’s personal folder in the toolbar
	2.3.2 Showing the user’s files and folders in the UI

	2.4 Summary

	3 Building your first desktop application
	3.1 Exploring the folders
	3.1.1 Refactoring the code
	3.1.2 Handling double-clicks on folders

	3.2 Implementing quick search
	3.2.1 Adding the search field in the toolbar
	3.2.2 Adding an in-memory search library
	3.2.3 Hooking up the search functionality with the UI

	3.3 Enhancing navigation in the app
	3.3.1 Making the current folder path clickable
	3.3.2 Getting the app to load at the folder path
	3.3.3 Opening files with their default application

	3.4 Summary

	4 Shipping your first desktop application
	4.1 Setting up the app for distribution
	4.1.1 Creating the app icon

	4.2 Packaging the app for distribution
	4.2.1 Using a build tool for NW.js
	4.2.2 Using a build tool for Electron
	4.2.3 Setting the app icon on the apps

	4.3 Testing your app on multiple OSs
	4.3.1 Targeting Windows OSs
	4.3.2 Targeting Linux OSs
	4.3.3 Targeting Mac OS

	4.4 Summary

	Part 2—Diving deeper
	5 Using Node.js within NW.js and Electron
	5.1 What is Node.js?
	5.1.1 Synchronous versus asynchronous
	5.1.2 Streams as first-class citizens
	5.1.3 Events
	5.1.4 Modules

	5.2 Node Package Manager (npm)
	5.2.1 Finding packages for your app
	5.2.2 Tracking installed modules with package.json
	5.2.3 Packaging your modules and apps with npm

	5.3 Summary

	6 Exploring NW.js and Electron’s internals
	6.1 How does NW.js work under the hood?
	6.1.1 Using the same instance of V8
	6.1.2 Integrating the main event loop
	6.1.3 Bridging the JavaScript context between Node and Chromium

	6.2 How does Electron work under the hood?
	6.2.1 Introducing libchromiumcontent
	6.2.2 Electron’s components
	6.2.3 How Electron handles running the app

	6.3 How does Node.js work with NW.js and Electron?
	6.3.1 Where Node.js fits into NW.js
	6.3.2 Drawbacks of using Node.js in NW.js
	6.3.3 How Node.js is used within Electron

	6.4 Summary

	Part 3—Mastering Node.js desktop application development
	7 Controlling how your desktop app is displayed
	7.1 Window sizes and modes
	7.1.1 Configuring window dimensions for an NW.js app
	7.1.2 Configuring window dimensions for an Electron app
	7.1.3 Constraining dimensions of window width and height in NW.js
	7.1.4 Constraining dimensions of window width and height in Electron

	7.2 Frameless windows and full-screen apps
	7.2.1 Full-screen applications in NW.js
	7.2.2 Full-screen applications in Electron
	7.2.3 Frameless apps
	7.2.4 Kiosk mode applications

	7.3 Summary

	8 Creating tray applications
	8.1 Creating a simple tray app with NW.js
	8.1.1 Adding menus to your tray icon

	8.2 Creating a tray app with Electron
	8.2.1 Building the initial app skeleton

	8.3 Summary

	9 Creating application and context menus
	9.1 Adding menus to your app
	9.1.1 App window menus
	9.1.2 Creating menus for Mac OS apps with NW.js
	9.1.3 Creating menus for Mac OS apps with Electron
	9.1.4 Creating menus for Windows and Linux apps
	9.1.5 Choosing which menu to render based on the OS

	9.2 Context menus
	9.2.1 Creating the context menu app with NW.js
	9.2.2 How do context menus work with NW.js?
	9.2.3 Giving menu items icons
	9.2.4 Creating a context menu with Electron
	9.2.5 Adding the context menu with Electron

	9.3 Summary

	10 Dragging and dropping files and crafting the UI
	10.1 Dragging and dropping files onto the app
	10.1.1 Dragging and dropping files to an app with NW.js
	10.1.2 Implementing drag-and-drop with Electron

	10.2 Mimicking the native look of the OS
	10.2.1 Detecting the user’s OS
	10.2.2 Using OS detection in NW.js
	10.2.3 Using OS detection in Electron
	10.2.4 Using CSS to match a user’s OS style

	10.3 Summary

	11 Using a webcam in your application
	11.1 Photo snapping with the HTML5 Media Capture API
	11.1.1 Inspecting the NW.js version of the app
	11.1.2 Creating Facebomb with Electron

	11.2 Summary

	12 Storing app data
	12.1 What data storage option should I use?
	12.2 Storing a sticky note with the localStorage API
	12.2.1 Creating the Let Me Remember app with Electron
	12.2.2 Implementing the Let Me Remember app with NW.js

	12.3 Porting a to-do list web app
	12.3.1 Porting a TodoMVC web app with NW.js
	12.3.2 Porting a TodoMVC app with Electron

	12.4 Summary

	13 Copying and pasting contents from the clipboard
	13.1 Accessing the clipboard
	13.1.1 Creating the Pearls app with NW.js
	13.1.2 Creating the Pearls app with Electron
	13.1.3 Setting other types of content to the clipboard with Electron

	13.2 Summary

	14 Binding on keyboard shortcuts
	14.1 Creating the Snake game with NW.js
	14.1.1 Implementing window focus keyboard shortcuts with NW.js
	14.1.2 Creating global keyboard shortcuts with NW.js

	14.2 Creating global shortcuts for the Snake game with Electron
	14.3 Summary

	15 Making desktop notifications
	15.1 About the app you'll make
	15.2 Creating the Watchy app in Electron
	15.3 Creating the Watchy app in NW.js
	15.4 Summary

	Part 4—Getting ready to release
	16 Testing desktop apps
	16.1 Different approaches to testing apps
	16.1.1 Test-driven-development (TDD)
	16.1.2 Behavior-driven development (BDD)
	16.1.3 Different levels of testing

	16.2 Unit testing
	16.2.1 Writing tests with Mocha
	16.2.2 From pending test to passing test

	16.3 Functional testing
	16.3.1 Functional testing in practice
	16.3.2 Testing with ChromeDriver and NW.js

	16.4 Testing Electron apps with Spectron
	16.5 Integration testing
	16.5.1 Introducing Cucumber
	16.5.2 Automatically testing your Electron app with Cucumber and Spectron

	16.6 Summary

	17 Improving app performance with debugging
	17.1 Knowing what you’re debugging
	17.1.1 Identifying the location of the root cause
	17.1.2 Debugging with the browser developer tools

	17.2 Fixing bugs
	17.2.1 Using Node.js’s debugger to debug your app
	17.2.2 Using NW.js’s developer tools to debug your app

	17.3 Resolving performance issues
	17.3.1 Network tab
	17.3.2 Timeline tab
	17.3.3 Profiles tab

	17.4 Debugging Electron apps
	17.4.1 Introducing Devtron for debugging Electron apps

	17.5 Summary

	18 Packaging the application for the wider world
	18.1 Creating executables for your app
	18.1.1 Creating an NW.js app executable for Windows
	18.1.2 Installing a virtual machine
	18.1.3 Building a .exe of an NW.js app for Windows
	18.1.4 Creating an Electron app executable for Windows

	18.2 Creating a setup installer for your Windows app
	18.2.1 Creating a Windows setup installer with NW.js
	18.2.2 Creating a Windows setup installer with Electron

	18.3 Creating an NW.js app executable for Mac OS
	18.3.1 Creating the Mac executable app
	18.3.2 Creating an Electron app executable for Mac OS

	18.4 Creating executable apps for Linux
	18.4.1 Creating NW.js standalone apps for Linux
	18.4.2 Creating Electron standalone apps for Linux

	18.5 Summary

	Appendix—Installing Node.js
	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

	Back cover

