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Introduction

This book attempts to simplify and present the concepts of deep learning 

in a very comprehensive manner, with suitable, full-fledged examples of 

neural network architectures, such as Recurrent Neural Networks (RNNs) 

and Sequence to Sequence (seq2seq), for Natural Language Processing 

(NLP) tasks. The book tries to bridge the gap between the theoretical and 

the applicable.

It proceeds from the theoretical to the practical in a progressive 

manner, first by presenting the fundamentals, followed by the underlying 

mathematics, and, finally, the implementation of relevant examples.

The first three chapters cover the basics of NLP, starting with the most 

frequently used Python libraries, word vector representation, and then 

advanced algorithms like neural networks for textual data.

The last two chapters focus entirely on implementation, dealing with 

sophisticated architectures like RNN, Long Short-Term Memory (LSTM) 

Networks, Seq2seq, etc., using the widely used Python tools TensorFlow 

and Keras. We have tried our best to follow a progressive approach, 

combining all the knowledge gathered to move on to building a question-

and-answer system.

The book offers a good starting point for people who want to get 

started in deep learning, with a focus on NLP.

All the code presented in the book is available on GitHub, in the form 

of IPython notebooks and scripts, which allows readers to try out these 

examples and extend them in interesting, personal ways.



1© Palash Goyal, Sumit Pandey, Karan Jain 2018 
P. Goyal, et al., Deep Learning for Natural Language Processing,  
https://doi.org/10.1007/978-1-4842-3685-7_1

CHAPTER 1

Introduction 
to Natural Language 
Processing and Deep 
Learning
Natural language processing (NPL) is an extremely difficult task in 

computer science. Languages present a wide variety of problems that 

vary from language to language. Structuring or extracting meaningful 

information from free text represents a great solution, if done in the 

right manner. Previously, computer scientists broke a language into its 

grammatical forms, such as parts of speech, phrases, etc., using complex 

algorithms. Today, deep learning is a key to performing the same exercises.

This first chapter of Deep Learning for Natural Language Processing 

offers readers the basics of the Python language, NLP, and Deep Learning. 

First, we cover the beginner-level codes in the Pandas, NumPy, and SciPy 

libraries. We assume that the user has the initial Python environment  

(2.x or 3.x) already set up, with these libraries installed. We will also briefly 

discuss commonly used libraries in NLP, with some basic examples. 
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Finally, we will discuss the concepts behind deep learning and some 

common frameworks, such as TensorFlow and Keras. Then, in later 

chapters, we will move on to providing a higher level overview of NLP.

Depending on the machine and version preferences, one can install 

Python by using the following references:

•	 www.python.org/downloads/

•	 www.continuum.io/downloads

The preceding links and the basic packages installations will provide 

the user with the environment required for deep learning.

We will be using the following packages to begin. Please refer to the 

following links, in addition to the package name for your reference:

Python Machine Learning

Pandas (http://pandas.pydata.org/pandas-docs/stable)

NumPy (www.numpy.org)

SciPy (www.scipy.org)

Python Deep Learning

TensorFlow (http://tensorflow.org/)

Keras (https://keras.io/)

Python Natural Language Processing

Spacy (https://spacy.io/)

NLTK (www.nltk.org/)

TextBlob (http://textblob.readthedocs.io/en/dev/)
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We might install other related packages, if required, as we proceed. 

If you are encountering problems at any stage of the installation, please 

refer to the following link: https://packaging.python.org/tutorials/

installing-packages/.

Note R efer to the Python package index, PyPI (https://pypi.
python.org/pypi), to search for the latest packages available.

Follow the steps to install pip via https://pip.pypa.io/en/
stable/installing/.

�Python Packages
We will be covering the references to the installation steps and the initial-

level coding for the Pandas, NumPy, and SciPy packages. Currently, 

Python offers versions 2.x and 3.x, with compatible functions for machine 

learning. We will be making use of Python2.7 and Python3.5, where 

required. Version 3.5 has been used extensively throughout the chapters of 

this book.

�NumPy
NumPy is used particularly for scientific computing in Python. It is designed 

to efficiently manipulate large multidimensional arrays of arbitrary records, 

without sacrificing too much speed for small multidimensional arrays. It 

could also be used as a multidimensional container for generic data. The 

ability of NumPy to create arrays of arbitrary type, which also makes NumPy 

suitable for interfacing with general-purpose data-base applications, makes 

it one of the most useful libraries you are going to use throughout this book, 

or thereafter for that matter.
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Following are the codes using the NumPy package. Most of the lines 

of code have been appended with a comment, to make them easier to 

understand by the user.

## Numpy

import numpy as np                # Importing the Numpy package

a= np.array([1,4,5,8], float)     # �Creating Numpy array with 

Float variables

print(type(a))                #Type of variable

> <class 'numpy.ndarray'>

# Operations on the array

a[0] = 5                #Replacing the first element of the array

print(a)

> [ 5. 4. 5. 8.]

b = np.array([[1,2,3],[4,5,6]], float)   �# �Creating a 2-D numpy 

array

b[0,1]                # Fetching second element of 1st array

> 2.0

print(b.shape)        #Returns tuple with the shape of array

> (2, 3)

b.dtype               #Returns the type of the value stored

> dtype('float64')

print(len(b))         #Returns length of the first axis

> 2

2 in b                �#'in' searches for the element in the array

> True

0 in b

> False
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# Use of 'reshape' : transforms elements from 1-D to 2-D here

c = np.array(range(12), float)

print(c)

print(c.shape)

print('---')

c = c.reshape((2,6))    # reshape the array in the new form

print(c)

print(c.shape)

> [ 0. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.]

(12,)

---

[[ 0. 1. 2. 3. 4. 5.] [ 6. 7. 8. 9. 10. 11.]]

(2, 6)

c.fill(0)                #�Fills whole array with single value, 

done inplace

print(c)

> [[ 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0.]]

c.transpose()            #�creates transpose of the array, not 

done inplace

> array([[ 0., 0.], [ 0., 0.], [ 0., 0.], [ 0., 0.], [ 0., 0.], 

[ 0., 0.]])

c.flatten()              #�flattens the whole array, not done 

inplace

> array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
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# Concatenation of 2 or more arrays

m = np.array([1,2], float)

n = np.array([3,4,5,6], float)

p = np.concatenate((m,n))

print(p)

> [ 1. 2. 3. 4. 5. 6.]

(6,)

print(p.shape)

# 'newaxis' : to increase the dimensonality of the array

q = np.array([1,2,3], float)

q[:, np.newaxis].shape

> (3, 1)

NumPy has other functions, such as zeros, ones, zeros_like, ones_

like, identity, eye, which are used to create arrays filled with 0s, 1s, or 0s 

and 1s for given dimensions.

Addition, subtraction, and multiplication occur on same-size arrays. 

Multiplication in NumPy is offered as element-wise and not as matrix 

multiplication. If the arrays do not match in size, the smaller one is 

repeated to perform the desired operation. Following is an example for this:

a1 = np.array([[1,2],[3,4],[5,6]], float)

a2 = np.array([-1,3], float)

print(a1+a2)

> [[ 0. 5.] [ 2. 7.] [ 4. 9.]]
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Note  pi and e are included as constants in the NumPy package.

One can refer to the following sources for detailed tutorials on NumPy: 

www.numpy.org/ and https://docs.scipy.org/doc/numpy-dev/user/

quickstart.html.

NumPy offers few of the functions that are directly applicable on the 

arrays: sum (summation of elements), prod (product of the elements), mean 

(mean of the elements), var (variance of the elements), std (standard 

deviation of the elements), argmin (index of the smallest element in array), 

argmax (index of the largest element in array), sort (sort the elements), 

unique (unique elements of the array).

a3 = np.array([[0,2],[3,-1],[3,5]], float)

print(a3.mean(axis=0))           # Mean of elements column-wise

> [ 2. 2.]

print(a3.mean(axis=1))           # Mean of elements row-wise

> [ 1. 1. 4.]

Note T o perform the preceding operations on a multidimensional 
array, include the optional argument axis in the command.

NumPy offers functions for testing the values present in the array, 

such as nonzero (checks for nonzero elements), isnan (checks for “not 

a number” elements), and isfinite (checks for finite elements). The 

where function returns an array with the elements satisfying the following 

conditions:

a4 = np.array([1,3,0], float)

np.where(a!=0, 1/a ,a)

> array([ 0.2 , 0.25 , 0.2 , 0.125])
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To generate random numbers of varied length, use the random 

function from NumPy.

np.random.rand(2,3)

> array([[ 0.41453991, 0.46230172, 0.78318915],  

[0.54716578, 0.84263735, 0.60796399]])

Note T he random number seed can be set via numpy.random.
seed (1234). NumPy uses the Mersenne Twister algorithm to 
generate pseudorandom numbers.

�Pandas
Pandas is an open sourced software library. DataFrames and Series are two 

of its major data structures that are widely used for data analysis purposes. 

Series is a one-dimensional indexed array, and DataFrame is tabular data 

structure with column- and row-level indexes. Pandas is a great tool for 

preprocessing datasets and offers highly optimized performance.

import pandas as pd

series_1 = pd.Series([2,9,0,1])      # Creating a series object

print(series_1.values)               # �Print values of the 

series object

> [2 9 0 1]

series_1.index             # Default index of the series object

> RangeIndex(start=0, stop=4, step=1)

series_1.index = ['a','b','c','d']   #�Settnig index of the 

series object

series_1['d']                # Fetching element using new index

> 1
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# Creating dataframe using pandas

class_data = {'Names':['John','Ryan','Emily'],

             'Standard': [7,5,8],

             �'Subject': ['English','Mathematics','Science']}

class_df = pd.DataFrame(class_data, index = ['Student1', 

'Student2','Student3'],

                       columns = ['Names','Standard','Subject'])

print(class_df)

>            Names     Standard     Subject 

Student1     John      7            English

Student2     Ryan      5            Mathematics 

Student3     Emily     8            Science

class_df.Names

>Student1    John 

Student2     Ryan

Student3     Emily 

Name: Names, dtype: object

# Add new entry to the dataframe

import numpy as np

class_df.ix['Student4'] = ['Robin', np.nan, 'History']

class_df.T                # Take transpose of the dataframe

>           Student1    Student2       Student3    Student4

Names       John        Ryan           Emily       Robin

Standard    7           5              8           NaN

Subject     English     Mathematics    Science     History
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class_df.sort_values(by='Standard')   # �Sorting of rows by one 

column

>            Names     Standard     Subject 

Student1     John      7.0          English 

Student2     Ryan      5.0          Mathematics 

Student3     Emily     8.0          Science 

Student4     Robin     NaN          History

# Adding one more column to the dataframe as Series object

col_entry = pd.Series(['A','B','A+','C'],

                      �index=['Student1','Student2','Student3', 

'Student4'])

class_df['Grade'] = col_entry

print(class_df)

>            Names     Standard     Subject         Grade

Student1     John      7.0          English         A

Student2     Ryan      5.0          Mathematics     B

Student3     Emily     8.0          Science         A+

Student4     Robin     NaN          History         C

# Filling the missing entries in the dataframe, inplace

class_df.fillna(10, inplace=True)

print(class_df)

>            Names     Standard     Subject         Grade

Student1     John      7.0          English         A

Student2     Ryan      5.0          Mathematics     B

Student3     Emily     8.0          Science         A+

Student4     Robin     10.0         History         C
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# Concatenation of 2 dataframes

student_age = pd.DataFrame(data = {'Age': [13,10,15,18]} ,

                           �index=['Student1','Student2', 

'Student3','Student4'])

print(student_age)

>            Age

Student1     13

Student2     10

Student3     15

Student4     18

class_data = pd.concat([class_df, student_age], axis = 1)

print(class_data)

>            Names     Standard    Subject        Grade     Age

Student1     John      7.0         English        A         13

Student2     Ryan      5.0         Mathematics    B         10

Student3     Emily     8.0         Science        A+        15

Student4     Robin     10.0        History        C         18

Note U se the map function to implement any function on each of 
the elements in a column/row individually and the apply function 
to perform any function on all the elements of a column/row 
simultaneously.

# MAP Function

class_data['Subject'] = class_data['Subject'].map(lambda x :  

x + 'Sub')

class_data['Subject']
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> Student1 		  EnglishSub 

Student2 		  MathematicsSub 

Student3 		  ScienceSub 

Student4 		  HistorySub 

Name: Subject, dtype: object

# APPLY Function

def age_add(x):                 # �Defining a new function which 

will increment the age by 1

    return(x+1)

print('-----Old values-----')

print(class_data['Age'])

print('-----New values-----')

print(class_data['Age'].apply(age_add))    # �Applying the age 

function on top of 

the age column

> -----Old values----- 

Student1 13 

Student2 10 

Student3 15 

Student4 18 

Name: Age, dtype: int64 

-----New values----- 

Student1 14 

Student2 11 

Student3 16 

Student4 19 

Name: Age, dtype: int64
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The following code is used to change the Datatype of the column to a 

“category” type:

# Changing datatype of the column

class_data['Grade'] = class_data['Grade'].astype('category')

class_data.Grade.dtypes

> category

The following stores the results to a .csv file:

# Storing the results

class_data.to_csv('class_dataset.csv', index=False)

Among the pool of functions offered by the Pandas library, merge 

functions (concat, merge, append), groupby, and pivot_table functions 

have an intensive application in data processing tasks. Refer to the following 

source for detailed Pandas tutorials: http://pandas.pydata.org/.

�SciPy
SciPy offers complex algorithms and their use as functions in NumPy. This 

allocates high-level commands and a variety of classes to manipulate and 

visualize data. SciPy is curated in the form of multiple small packages, 

with each package targeting individual scientific computing domains. A 

few of the subpackages are linalg (linear algebra), constants (physical 

and mathematical constants), and sparse (sparse matrices and associated 

routines).

Most of the NumPy package functions applicable on arrays are also 

included in the SciPy package. SciPy offers pre-tested routines, thereby 

saving a lot of processing time in the scientific computing applications.

import scipy

import numpy as np
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Note S ciPy offers in-built constructors for objects representing 
random variables.

Following are a few examples from Linalg and Stats out of multiple 

subpackages offered by SciPy. As the subpackages are domain-specific, it 

makes SciPy the perfect choice for data science.

SciPy subpackages, here for linear algebra (scipy.linalg), are 

supposed to be imported explicitly in the following manner:

from scipy import linalg

mat_ = np.array([[2,3,1], [4,9,10], [10,5,6]]) # Matrix Creation 

print(mat_)

> [[ 2 3 1] [ 4 9 10] [10 5 6]]

linalg.det(mat_)                 # Determinant of the matrix

inv_mat = linalg.inv(mat_)       # Inverse of the matrix

print(inv_mat)

> [[ 0.02409639 -0.07831325 0.12650602] [ 0.45783133 0.01204819 

-0.09638554] [-0.42168675 0.12048193 0.03614458]]

The code for performing singular value decomposition and storing the 

individual components follows:

# Singular Value Decomposition

comp_1, comp_2, comp_3 = linalg.svd(mat_)

print(comp_1)

print(comp_2)

print(comp_3)
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> [[-0.1854159 0.0294175 -0.98221971] 

[-0.73602677 -0.66641413 0.11898237] 

[-0.65106493 0.74500122 0.14521585]] 

[ 18.34661713 5.73710697 1.57709968] 

[[-0.53555313 -0.56881403 -0.62420625]

[ 0.84418693 -0.38076134 -0.37731848] 

[-0.02304957 -0.72902085 0.6841033 ]]

Scipy.stats is a huge subpackage, with various statistical distributions 

and functions for operations on different kinds of datasets.

# Scipy Stats module

from scipy import stats

# Generating a random sample of size 20 from normal 

distribution with mean 3 and standard deviation 5

rvs_20 = stats.norm.rvs(3,5 , size = 20)

print(rvs_20, '\n --- ')

# Computing the CDF of Beta distribution with a=100 and b=130 

as shape parameters at random variable 0.41

cdf_ = scipy.stats.beta.cdf(0.41, a=100, b=130)

print(cdf_)

> [ -0.21654555 7.99621694 -0.89264767 10.89089263 2.63297827 

    -1.43167281 5.09490009 -2.0530585 -5.0128728 -0.54128795 

     2.76283347 8.30919378 4.67849196 -0.74481568 8.28278981 

    -3.57801485 -3.24949898 4.73948566 2.71580005 6.50054556] 

--- 

0.225009574362
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For in-depth examples using SciPy subpackages, refer to http://docs.

scipy.org/doc/.

�Introduction to Natural Language 
Processing
We already have seen the three most useful and frequently used libraries in 

Python. The examples and references provided should suffice to start with. 

Now, we are shifting our area of focus to natural language processing.

�What Is Natural Language Processing?
Natural language processing, in its simplest form, is the ability for a 

computer/system to truly understand human language and process it in 

the same way that a human does.

�Good Enough, But What Is the Big Deal?
It is very easy for humans to understand the language said/expressed by 

other humans. For example, if I say “America follows a capitalist form of 

economy, which works well for it, it is easy to infer that the which used in 

this sentence is associated with “capitalist form of economy,” but how a 

computer/system will understand this is the question.

�What Makes Natural Language Processing 
Difficult?
In a normal conversation between humans, things are often unsaid, 

whether in the form of some signal, expression, or just silence. 

Nevertheless, we, as humans, have the capacity to understand the 

underlying intent of the conversation, which a computer lacks.
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A second difficulty is owing to ambiguity in sentences. This may be at 

the word level, at the sentence level, or at the meaning level.

�Ambiguity at Word Level

Consider the word won’t. There is always an ambiguity associated with the 

word. Will the system treat the contraction as one word or two words, and 

in what sense (what will its meaning be?).

�Ambiguity at Sentence Level

Consider the following sentences:

Most of the time travelers worry about their luggage.
Without punctuation, it is hard to infer from the given sentence 

whether “time travelers” worry about their luggage or merely “travelers.”

Time flies like an arrow.
The rate at which time is spent is compared to the speed of an arrow, 

which is quite difficult to map, given only this sentence and without 

enough information concerning the general nature of the two entities 

mentioned.

�Ambiguity at Meaning Level

Consider the word tie. There are three ways in which you can process 

(interpret) this word: as an equal score between contestants, as a garment, 

and as a verb.

Figure 1-1 illustrates a simple Google Translate failure. It assumes fan 

to mean an admirer and not an object.
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These are just few of the endless challenges you will encounter while 

working in NLP. As we proceed further, we will explore how to deal with 

them.

�What Do We Want to Achieve Through Natural 
Language Processing?
There is no limit to what can be achieved through NLP. There are, however, 

some common applications of NLP, principally the following:

•	 Text Summarization

Remember your school days, when the teacher used to ask the class 

to summarize a block of text? This task could well have been achieved 

using NLP.

•	 Text Tagging

NLP can be used effectively to find the context of a whole bunch of text 

(topic tagging).

•	 Named Entity Recognition

This can determine whether a word or word-group represents a place, 

organization, or anything else.

•	 Chatbot

Figure 1-1.  Example of Google Translate from English to Hindi
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The most talked-about application of NLP is Chatbot. It can find the 

intent of the question asked by a user and send an appropriate reply, 

achieved through the training process.

•	 Speech Recognition

This application recognizes a spoken language and transforms it into 

text.

As discussed, there are numerous applications for NLP. The idea is 

not to get intimidated by them but to learn and develop one or more such 

applications by yourself.

�Common Terms Associated with Language 
Processing
As we move further and further along, there are a few terms that you will 

encounter frequently. Therefore, it is a good idea to become acquainted 

with them as soon as possible.

•	 Phonetics/phonology

The study of linguistic sounds and their relations to written words

•	 Morphology

The study of internal structures of words/composition of words

•	 Syntax

The study of the structural relationships among words in a sentence

•	 Semantics

The study of the meaning of words and how these combine to form the 

meaning of sentences

•	 Pragmatics
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Situational use of language sentences

•	 Discourse

A linguistic unit that is larger than a single sentence (context)

�Natural Language Processing Libraries
Following are basic examples from some of the most frequently used NLP 

libraries in Python.

�NLTK
NLTK (www.nltk.org/) is the most common package you will encounter 

working with corpora, categorizing text, analyzing linguistic structure, and 

more.

Note  Following is the recommended way of installing the NLTK 
package: pip install nltk.

You can tokenize a given sentence into individual words, as follows:

import nltk

# Tokenization

sent_ = "I am almost dead this time"

tokens_ = nltk.word_tokenize(sent_)

tokens_

>> ['I', 'am', 'almost', 'dead', 'this', 'time']
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Getting a synonym of a word. One can get lists of 

synonyms for a word using NLTK.

# Make sure to install wordnet, if not done already so

# import nltk

# nltk.download('wordnet')

# Synonyms

from nltk.corpus import wordnet

word_ = wordnet.synsets("spectacular")

print(word_)

>> [Synset('spectacular.n.01'), Synset('dramatic.s.02'), 

Synset('spectacular.s.02'), Synset('outstanding.s.02')]

print(word_[0].definition())      # �Printing the meaning along 

of each of the synonyms

print(word_[1].definition())

print(word_[2].definition())

print(word_[3].definition())

>> a lavishly produced performance

>> sensational in appearance or thrilling in effect

>> characteristic of spectacles or drama

>> having a quality that thrusts itself into attention

Stemming and lemmatizing words. Word 

Stemming means removing affixes from words and 

returning the root word (which may not be a real 

word). Lemmatizing is similar to stemming, but the 

difference is that the result of lemmatizing is a real 

word.

# Stemming

from nltk.stem import PorterStemmer

stemmer = PorterStemmer()          # Create the stemmer object
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print(stemmer.stem("decreases"))

>> decreas

#Lemmatization

from nltk.stem import WordNetLemmatizer

lemmatizer = WordNetLemmatizer()    # �Create the Lemmatizer 

object

print(lemmatizer.lemmatize("decreases"))

>> decrease

�TextBlob
TextBlob (http://textblob.readthedocs.io/en/dev/index.html) is 

a Python library for processing textual data. It provides a simple API for 

diving deep into common NLP tasks, such as part-of-speech tagging, noun 

phrase extraction, sentiment analysis, classification, and much more. You 

can use it for sentiment analysis. Sentiment refers to a feeling hidden in the 

sentence. Polarity defines negativity or positivity in the sentence, whereas 

subjectivity implies whether the sentence discusses something vaguely or 

with complete surety.

from textblob import TextBlob

# Taking a statement as input

statement = TextBlob("My home is far away from my school.")

# Calculating the sentiment attached with the statement

statement.sentiment

Sentiment(polarity=0.1, subjectivity=1.0)

You can also use TextBlob for tagging purposes. Tagging is the process 

of denoting a word in a text (corpus) as corresponding to a particular part 

of speech.
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# Defining a sample text

text = '''How about you and I go together on a walk far away 

from this place, discussing the things we have never discussed 

on Deep Learning and Natural Language Processing.'''

blob_ = TextBlob(text)           # Making it as Textblob object

blob_

>> TextBlob("How about you and I go together on a walk far away 

from this place, discussing the things we have never discussed 

on Deep Learning and Natural Language Processing.")

# �This part internally makes use of the 'punkt' resource from 

the NLTK package, make sure to download it before running this

# import nltk

# nltk.download('punkt')

# nltk.download('averaged_perceptron_tagger')

# �Running this separately : python3.6 -m textblob.download_

corpora

blob_.tags

>>

[('How', 'WRB'),

 ('about', 'IN'),

 ('you', 'PRP'),

 ('and', 'CC'),

 ('I', 'PRP'),

 ('go', 'VBP'),

 ('together', 'RB'),

 ('on', 'IN'),

 ('a', 'DT'),

 ('walk', 'NN'),

 ('far', 'RB'),

 ('away', 'RB'),
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 ('from', 'IN'),

 ('this', 'DT'),

 ('place', 'NN'),

 ('discussing', 'VBG'),

 ('the', 'DT'),

 ('things', 'NNS'),

 ('we', 'PRP'),

 ('have', 'VBP'),

 ('never', 'RB'),

 ('discussed', 'VBN'),

 ('on', 'IN'),

 ('Deep', 'NNP'),

 ('Learning', 'NNP'),

 ('and', 'CC'),

 ('Natural', 'NNP'),

 ('Language', 'NNP'),

 ('Processing', 'NNP')]

You can use TextBlob to deal with spelling errors.

sample_ = TextBlob("I thinkk the model needs to be trained more!")

print(sample_.correct())

>> I think the model needs to be trained more!

Furthermore, the package offers language a translation module.

# Language Translation

lang_ = TextBlob(u"Voulez-vous apprendre le français?")

lang_.translate(from_lang='fr', to='en')

>> TextBlob("Do you want to learn French?")
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�SpaCy
SpaCy (https://spacy.io/) provides very fast and accurate syntactic 

analysis (the fastest of any library released) and also offers named entity 

recognition and ready access to word vectors. It is written in Cython 

language and contains a wide variety of trained models on language 

vocabularies, syntaxes, word-to-vector transformations, and entities 

recognition.

Note  Entity recognition is the process used to classify multiple 
entities found in a text in predefined categories, such as a person, 
objects, location, organizations, dates, events, etc. Word vector refers 
to the mapping of the words or phrases from vocabulary to a vector 
of real numbers.

import spacy

# Run below command, if you are getting error

# python -m spacy download en

nlp = spacy.load("en")

william_wikidef = """William was the son of King William 

II and Anna Pavlovna of Russia. On the abdication of his 

grandfather  William I in 1840, he became the Prince of Orange. 

On the death of his father in 1849, he succeeded as king of the 

Netherlands. William married his cousin Sophie of Württemberg 

in 1839 and they had three sons, William, Maurice, and 

Alexander, all of whom predeceased him. """

nlp_william = nlp(william_wikidef)

print([ (i, i.label_, i.label) for i in nlp_william.ents])
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>> [(William, 'PERSON', 378), (William II, 'PERSON', 378), 

(Anna Pavlovna, 'PERSON', 378), (Russia, 'GPE', 382), (

, 'GPE', 382), (William, 'PERSON', 378), (1840, 'DATE', 388), 

(the Prince of Orange, 'LOC', 383), (1849, 'DATE', 388), 

(Netherlands, 'GPE', 382), (

, 'GPE', 382), (William, 'PERSON', 378), (Sophie, 'GPE', 382), 

(Württemberg, 'PERSON', 378), (1839, 'DATE', 388), (three, 

'CARDINAL', 394), (William, 'PERSON', 378), (Maurice, 'PERSON', 

378), (Alexander, 'GPE', 382), (

, 'GPE', 382)]

SpaCy also offers dependency parsing, which could be further utilized 

to extract noun phrases from the text, as follows:

# Noun Phrase extraction

senten_ = nlp('The book deals with NLP')

for noun_ in senten_.noun_chunks:

    print(noun_)

    print(noun_.text)

    print('---')

    print(noun_.root.dep_)

    print('---')

    print(noun_.root.head.text)

>> The book

The book

---

nsubj

---

deals

NLP

NLP

---
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pobj

---

with

�Gensim
Gensim (https://pypi.python.org/pypi/gensim) is another important 

library. It is used primarily for topic modeling and document similarity. 

Gensim is most useful for tasks such as getting a word vector of a word.

from gensim.models import Word2Vec

min_count = 0

size = 50

window = 2

sentences= "bitcoin is an innovative payment network and a new 

kind of money."

sentences=sentences.split()

print(sentences)

>> ['bitcoin', 'is', 'an', 'innovative', 'payment', 'network', 

'and', 'a', 'new', 'kind', 'of', 'money.']

model = Word2Vec(sentences, min_count=min_count, size=size, 

window=window)

model

>> <gensim.models.word2vec.Word2Vec at 0x7fd1d889e710>

model['a']            # Vector for the character 'a'

>> array([  9.70041566e-03,  -4.16209083e-03,   8.05089157e-03,

         4.81479801e-03,   1.93488982e-03,  -4.19071550e-03,

         1.41675305e-03,  -6.54719025e-03,   3.92444432e-03,

        -7.05081783e-03,   7.69438222e-03,   3.89579940e-03,

        -9.02676862e-03,  -8.58401007e-04,  -3.24096601e-03,

         9.24982232e-05,   7.13059027e-03,   8.80233292e-03,

        -2.46750680e-03,  -5.17094415e-03,   2.74592242e-03,
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         4.08304436e-03,  -7.59716751e-03,   8.94313212e-03,

        -8.39354657e-03,   5.89343486e-03,   3.76902265e-03,

         8.84669367e-04,   1.63217512e-04,   8.95449053e-03,

        -3.24510527e-03,   3.52341868e-03,   6.98625855e-03,

        -5.50296041e-04,  -5.10712992e-03,  -8.52414686e-03,

        -3.00202984e-03,  -5.32727176e-03,  -8.02035537e-03,

        -9.11156740e-03,  -7.68519414e-04,  -8.95629171e-03,

        -1.65163784e-03,   9.59598401e-04,   9.03090648e-03,

         5.31166652e-03,   5.59739536e-03,  -4.49402537e-03,

        -6.75261812e-03,  -5.75679634e-03], dtype=float32)

One can download the trained set of vectors from Google and figure 

out the representation for desired text, as follows:

model = gensim.models.KeyedVectors.load_word2vec_

format('GoogleNews-vectors-negative300.bin', binary=True)  

sentence = ["I", "hope", "it", "is", "going", "good", "for", "you"]

vectors = [model[w] for w in sentence]

(You can use the following link to download the sample model: 

https://github.com/mmihaltz/word2vec-GoogleNews-vectors, or 

undertake a conventional search with the given name of the .bin file and 

paste it in your working directory.)

Gensim offers LDA (latent dirichlet allocation—a generative statistical 

model that allows sets of observations to be explained by unobserved 

groups that explain why some parts of the data are similar) modules 

too. This allows both LDA model estimation from a training corpus and 

inference of topic distribution on new, unseen documents. The model can 

also be updated with new documents for online training.
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�Pattern
Pattern (https://pypi.python.org/pypi/Pattern) is useful for a variety 

of NLP tasks, such as part-of-speech taggers, n-gram searches, sentiment 

analysis, and WordNet and machine learning, such as vector space 

modeling, k-means clustering, Naive Bayes, K-NN, and SVM classifiers.

import pattern

from pattern.en import tag

tweet_ = "I hope it is going good for you!"

tweet_l = tweet_.lower()

tweet_tags = tag(tweet_l)

print(tweet_tags)

>> [('i', 'JJ'), ('hope', 'NN'), ('it', 'PRP'), ('is', 'VBZ'), 

('going', 'VBG'), ('good', 'JJ'), ('for', 'IN'), ('you', 

'PRP'), ('!', '.')]

�Stanford CoreNLP
Stanford CoreNLP (https://stanfordnlp.github.io/CoreNLP/) provides 

the base forms of words; their parts of speech; whether they are names of 

companies, people, etc.; normalizes dates, times, and numeric quantities; 

marks up the structure of sentences in terms of phrases and syntactic 

dependencies; indicates which noun phrases refer to the same entities; 

indicates sentiment; extracts particular or open-class relations between 

entity mentions; gets the quotes people said; etc.

�Getting Started with NLP
In this part of the chapter, we are going to take a simple text data (such as a 

sentence) and perform some basic operations to get acquainted with how 

NLP works. This part will provide a foundation for what you are going to 

learn in the rest of the book.
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�Text Search Using Regular Expressions
Regular expressions are a very useful means of searching for a particular 

type of design or wordset from a given text. A regular expression (RE) 

specifies a set of strings that match it. The functions in this module allow 

you to check if a given string matches a particular RE (or if a given RE 

matches a particular string, which comes down to the same thing).

# Text search across the sentence using Regular expression

import re

words = ['very','nice','lecture','day','moon']

expression = '|'.join(words)

re.findall(expression, 'i attended a very nice lecture last 

year', re.M)

>> ['very', 'nice', 'lecture']

�Text to List
You can read a text file and convert it into a list of words or list of sentences, 

according to your needs.

text_file = 'data.txt'

# Method-1 : Individual words as separate elements of the list

with open(text_file) as f:

    words = f.read().split()

print(words)

>> ['Are', 'you', 'sure', 'moving', 'ahead', 'on', 'this', 

'route', 'is', 'the', 'right', 'thing?']

# Method-2 : Whole text as single element of the list

f = open(text_file , 'r')

words_ = f.readlines()
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print(words_)

>> ['Are you sure moving ahead on this route is the right 

thing?\n']

�Preprocessing the Text
There is a large number of things you could do to preprocess the text. For 

example, replacing one word with another, removing or adding some 

specific type of words, etc.

sentence = 'John has been selected for the trial phase this 

time. Congrats!!'

sentence=sentence.lower()

# defining the positive and negative words explicitly

positive_words=['awesome','good', 'nice', 'super', 'fun', 

'delightful','congrats']

negative_words=['awful','lame','horrible','bad']

sentence=sentence.replace('!','')

sentence

>> 'john has been selected for the trial phase this time. 

congrats'

words= sentence.split(' ')

print(words)

>> ['john', 'has', 'been', 'selected', 'for', 'the', 'trial', 

'phase', 'this', 'time.', 'congrats']

result= set(words)-set(positive_words)

print(result)

>> {'has', 'phase', 'for', 'time.', 'trial', 'been', 'john', 

'the', 'this', 'selected'}

Chapter 1  Introduction to Natural Language Processing and Deep Learning



32

�Accessing Text from the Web
A text file from a URL can be accessed using urllib.

# Make sure both the packages are installed

import urllib3

from bs4 import BeautifulSoup

pool_object = urllib3.PoolManager()

target_url = 'http://www.gutenberg.org/files/2554/2554-

h/2554-h.htm#link2HCH0008'

response_ = pool_object.request('GET', target_url)

final_html_txt = BeautifulSoup(response_.data)

print(final_html_txt)

�Removal of Stopwords
A stopword is a commonly used word (such as the) that a search engine 

has been programmed to ignore.

import nltk

from nltk import word_tokenize

sentence= "This book is about Deep Learning and Natural 

Language Processing!"

tokens = word_tokenize(sentence)

print(tokens)

>> ['This', 'book', 'is', 'about', 'Deep', 'Learning', 'and', 

'Natural', 'Language', 'Processing', '!']

# nltk.download('stopwords')

from nltk.corpus import stopwords

stop_words = set(stopwords.words('english'))

new_tokens = [w for w in tokens if not w in stop_words]

new_tokens

>> ['This', 'book', 'Deep', 'Learning', 'Natural', 'Language', 

'Processing', '!']
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�Counter Vectorization
Counter vectorization is a SciKit-Learn library tool that takes any mass of 

text and returns each unique word as a feature, with a count of the number 

of times a particular word occurs in the text.

from sklearn.feature_extraction.text import CountVectorizer

texts=["Ramiess sings classic songs","he listens to old pop ", 

"and rock music", ' and also listens to classical songs']

cv = CountVectorizer()

cv_fit=cv.fit_transform(texts)

print(cv.get_feature_names())

print(cv_fit.toarray())

>> ['also', 'and', 'classic', 'classical', 'he', 'listens', 

'listens', 'music', 'old', 'pop', 'ramiess', 'rock', 'sings', 

'songs', 'to']

>> [[0 0 1 0 0 0 0 0 0 0 1 0 1 1 0]

    [0 0 0 0 1 1 0 0 1 1 0 0 0 0 1]

    [0 1 0 0 0 0 0 1 0 0 0 1 0 0 0]

    [1 1 0 1 0 0 1 0 0 0 0 0 0 1 0]]

�TF-IDF Score
TF-IDF is an acronym of two terms: term frequency and inverse document 

frequency. TF is the ratio representing the count of specific words to the 

total number of words in a document. Suppose that a document contains 

100 words, wherein the word happy appears five times. The term frequency 

(i.e., tf ) for happy is then (5/100) = 0.05. IDF, on the other hand, is a 

log ratio of the total number of documents to a document containing a 

particular word. Suppose we have 10 million documents, and the word 

happy appears in 1,000 of them. The inverse document frequency (i.e., idf), 

then, would be calculated as log (10,000,000/1,000) = 4. Thus, the TF-IDF 

weight is the product of these quantities: 0.05 × 4 = 0.20.
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Note A long similar lines as TF-IDF is BM25, which is used to score 
a document on the basis of its relation to a query. BM25 ranks a 
set of documents using the query terms of each of the documents, 
irrespective of the relationship between the keywords of the query 
within a document.

from sklearn.feature_extraction.text import TfidfVectorizer

texts=["Ramiess sings classic songs","he listens to old pop", 

"and rock music", ' and also listens to classical songs']

vect = TfidfVectorizer()

X = vect.fit_transform(texts)

print(X.todense())

>> [[ 0.          0.          0.52547275  0.          0. 

          0.          0.

   0.             0.          0.          0.52547275  0. 

          0.52547275

   0.41428875     0.        ]

 [ 0.             0.          0.          0.          0.4472136 

          0.4472136

   0.             0.          0.4472136   0.4472136   0. 

          0.          0.

   0.             0.4472136 ]

 [ 0.             0.48693426  0.          0.          0. 

          0.          0.

   0.61761437     0.          0.          0.       0.61761437 

          0.          0.

   0.        ]

 [ 0.48546061     0.38274272  0.          0.48546061  0. 

          0.
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   0.48546061     0.          0.          0.          0. 

          0.          0.

   0.38274272     0.        ]]

�Text Classifier
Text can be classified into various classes, such as positive and negative. 

TextBlob offers many such architectures.

from textblob import TextBlob

from textblob.classifiers import NaiveBayesClassifier

data = [

 ('I love my country.', 'pos'),

 ('This is an amazing place!', 'pos'),

 ('I do not like the smell of this place.', 'neg'),

 ('I do not like this restaurant', 'neg'),

 ('I am tired of hearing your nonsense.', 'neg'),

 ("I always aspire to be like him", 'pos'),

 ("It's a horrible performance.", "neg")

 ]

model = NaiveBayesClassifier(data)

model.classify("It's an awesome place!")

>> 'pos'

�Introduction to Deep Learning
Deep learning is an extended field of machine learning that has proven 

to be highly useful in the domains of text, image, and speech, primarily. 

The collection of algorithms implemented under deep learning have 

similarities with the relationship between stimuli and neurons in the 

human brain. Deep learning has extensive applications in computer 

vision, language translation, speech recognition, image generation, and 
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so forth. These sets of algorithms are simple enough to learn in both a 

supervised and unsupervised fashion.

A majority of deep learning algorithms are based on the concept of 

artificial neural networks, and the training of such algorithms in today’s 

world has been made easier with the availability of abundant data and 

sufficient computation resources. With additional data, the performance 

of deep learning models just keep on improving. A better representation of 

this can be seen in Figure 1-2.

Why deep learning?

Amount of data

Pe
rf

or
m

an
ce

Figure 1-2.  Scaling data science techniques to amount of data

The term deep in deep learning refers to the depth of the artificial 

neural network architecture, and learning stands for learning through the 

artificial neural network itself. Figure 1-3 is an accurate representation of 

the difference between a deep and a shallow network and why the term 

deep learning gained currency.
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Deep neural networks are capable of discovering latent structures (or 

feature learning) from unlabeled and unstructured data, such as images 

(pixel data), documents (text data), or files (audio, video data).

Although an artificial neural network and models in deep learning 

fundamentally hold similar structures, this does not translate to mean that 

a combination of two artificial neural networks will perform similarly to a 

deep neural network when trained to use the data.

What differentiates any deep neural network from an ordinary 

artificial neural network is the way we use backpropagation. In an ordinary 

artificial neural network, backpropagation trains later (or end) layers more 

efficiently than it trains initial (or former) layers. Thus, as we travel back 

into the network, errors become smaller and more diffused.

�How Deep Is “Deep”?
We hear the term deep and instantly become intimated by it, but there is 

not much difference between a shallow and deep neural network. A deep 

neural network is simply a feed forward neural network with multiple 

hidden layers. Yes, it’s that simple!

Shallow NetworkDeep Network

Figure 1-3.  Representation of deep and shallow networks
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If there are many layers in the network, then we say that the network is 

deep. The question that should be flashing through your mind right now is 

how many layers must a network have to qualify as deep?

Before we start our actual journey on deep learning in the NLP space, it 

would be useful to review the basics of neural networks and their different 

types.

We will introduce the basic structure of a basic neural network and 

a few of the different types of the neural networks used across industry-

wide applications. To provide a concise yet practical understanding of this 

technique, this part of the chapter is subdivided into six headings:

•	 What Are Neural Networks?

•	 Basic Structure of Neural Networks

•	 Types of Neural Networks

•	 Multilayer Perceptrons

•	 Stochastic Gradient Descent

•	 Backpropagation

Note  For a detailed academic understanding, you can 
refer to treatises and articles published by Geoffrey Hinton 
(www.cs.toronto.edu/~hinton/) and others (http://
deeplearning.net/).

�What Are Neural Networks?
Neural networks have a long history that can be traced back to the seminal 

works of Marvin Minsky on artificial intelligence (AI) and his (in)famous 

reference to the challenge of solving an exclusive OR (XOR) function. 

Neural networks have become increasingly prevalent, as major advances 
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have been made, with access to larger and larger datasets and the advent 

of cloud computing and GPUs that provide immense computing power. 

This ready access to data and computing has produced better accuracy in 

modeling and analytics.

Neural networks are a biologically inspired paradigm (imitating the 

functioning of the mammalian brain) that enables a computer to learn 

human faculties from observational data. They currently provide solutions 

to many problems: image recognition, handwriting recognition, speech 

recognition, speech analysis, and NLP.

To help us develop an intuitive sense, the different tasks we perform 

during a day can be categorized as follows:

algebraic or linear inference (e.g., A × B = C, or a 

series of tasks, such as a recipe for a cake)

recognition perception or nonlinear inference 

(e.g., associating names with photos of animals or 

reducing stress or validating a statement based on 

voice analysis)

learning a task through observation (e.g., navigation 

in the Google car)

The first task can be addressed algorithmically, i.e., described 

programmatically to produce a result from numbers or ingredients, 

whereas it’s difficult, if not impossible, to define an algorithmic approach 

for the latter tasks. The latter tasks require a flexible model that can 

autonomously adapt its behavior, based on tagged examples.

Now, statistical or optimization algorithms also strive to provide 

correct output[s] in relation to possible input[s], though they require the 

specification of a function to model the data for which they produce the 

optimal set of coefficients. In contrast to optimization techniques, a neural 

network is a flexible function that autonomously adapts its behavior to 

satisfy as much as possible the relation between the input[s] and the 

expected result[s] and has been termed as a universal approximator.
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Given the pervasive use of algorithms, there are libraries (Figure 1-4) 

available on all popular platforms, such as R (knn, nnet packages), Scala 

(machine learning ML extensions), and Python (TensorFlow, MXNet, 

Keras).

Figure 1-4.  Multiple open source platforms and libraries for deep 
learning

�Basic Structure of Neural Networks
The basic principle behind a neural network is a collection of basic 

elements, artificial neuron or perceptron, that were first developed in the 

1950s by Frank Rosenblatt. They take several binary inputs, x1, x2, ..., xN 

and produce a single binary output if the sum is greater than the activation 

potential. The neuron is said to “fire” whenever activation potential is 

exceeded and behaves as a step function. The neurons that fire pass along 

the signal to other neurons connected to their dendrites, which, in turn, 

will fire, if the activation potential is exceeded, thus producing a cascading 

effect (Figure 1-5).
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As not all inputs have the same emphasis, weights are attached to each 

of the inputs, xi to allow the model to assign more importance to some 

inputs. Thus, output is 1, if the weighted sum is greater than activation 

potential or bias, i.e.,

Output =  j j jw x Bias

In practice, this simple form is difficult, owing to the abrupt nature of 

the step function (Figure 1-6). So, a modified form was created to behave 

more predictably, i.e., small changes in weights and bias cause only a small 

change in output. There are two main modifications.

x1

x2

x3

output

Figure 1-5.  Sample neuron

Figure 1-6.  Step function
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	 1.	 The inputs can take on any value between 0 and 1, 

instead of being binary.

	 2.	 To make the output behave more smoothly for given 

inputs, x1, x2, …, xN, and weights. w1, w2, …, wN, and bias, 

b, use the following sigmoid function (Figure 1-7):

 1 1/ exp     j j jw x b

The smoothness of the exponential function, or σ, means that small 

changes in weights and bias will produce a small change in the output 

from the neuron (the change could be a linear function of changes in 

weights and bias).

Figure 1-7.  Neural network activation function: sigmoid

In addition to the usual sigmoid function, other nonlinearities that are 

more frequently used include the following, and each of these could have 

similar or different output ranges and can be used accordingly.
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•	 ReLU: Rectified linear unit. This keeps the activation 

guarded at zero. It is computed using the following 

function:

Z f x xj j j j     max ,0

where, xj, the j-th input value, and zj is its 

corresponding output value after the ReLU function 

f. Following is the graph (Figure 1-8) of the ReLU 

function, with ‘0’ value for all x <= 0, and with a 

linear slope of 1 for all x > 0:

Figure 1-8.  ReLU function graph

ReLUs quite often face the issue of dying, especially when the learning 

rate is set to a higher value, as this triggers weight updating that doesn’t 

allow the activation of the specific neurons, thereby making the gradient 

of that neuron forever zero. Another risk offered by ReLU is the explosion 

of the activation function, as the input value, xj, is itself the output here. 

Although ReLU offers other benefits as well, such as the introduction of 

sparsity in cases where xj is below 0, leading to sparse representations, 

and as the gradient returned in cases where ReLU is constant, it results 

in faster learning, accompanied by the reduced likelihood of the gradient 

vanishing.
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•	 LReLUs (Leaky ReLUs): These mitigate the issue of 

dying ReLUs by introducing a marginally reduced 

slope (~0.01) for values of x less than 0. LReLUs do offer 

successful scenarios, although not always.

•	 ELU (Exponential Linear Unit): These offer negative 

values that push the mean unit activations closer to 

zero, thereby speeding the learning process, by moving 

the nearby gradient to the unit natural gradient. For a 

better explanation of ELUs, refer to the original paper 

by Djork-Arné Clevert, available at https://arxiv.

org/abs/1511.07289.

•	 Softmax: Also referred to as a normalized exponential 

function, this transforms a set of given real values in 

the range of (0,1), such that the combined sum is 1.  

A softmax function is denoted as follows:

 z e e
j

z

k

k
zk k  


/

1

              for j = 1, …, K

All the preceding functions are easily differentiable, allowing the 

network to be trained easily with gradient descent (covered in the next 

section, “Types of Neural Networks”).

As in the mammalian brain, individual neurons are organized in layers, 

with connections within a layer and to the next layer, creating an ANN, 

or artificial neural network or multilayer perceptron (MLP). As you may 

have guessed, the complexity is based on the number of elements and the 

number of neighbors connected.

The layers between input and output are referred to as hidden 

layers, and the density and type of connections between layers is the 

configuration. For example, a fully connected configuration has all the 

neurons of layer L connected to those of L + 1. For a more pronounced 
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localization, we can connect only a local neighborhood, say nine neurons, 

to the next layer. Figure 1-9 illustrates two hidden layers with dense 

connections.

Figure 1-9.  Neural network architecture

�Types of Neural Networks
Up until now, we’ve been discussing artificial neural networks in 

general; however, there are different types of neural networks, based on 

architecture and usage. For neural networks to learn in a faster and more 

efficient way, various neurons are placed in the network in such a way as to 

maximize the learning of the network for the given problem. This placing 

of neurons follows a sensible approach and results in an architectural 

network design with different neurons consuming the output of other 

neurons, or different functions taking output from other functions in their 

inputs. If the neurons are placed with connections among them taking 

the form of cycles, then they form networks such as feedback, recursive, 

or recurrent neural networks. If, however, the connections between the 

neurons are acyclic, they form networks such as feedforward neural 

networks. Following are detailed explanations of the networks cited.
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�Feedforward Neural Networks
Feedforward neural networks constitute the basic units of the neural 

network family. Data movement in any feedforward neural network is 

from the input layer to output layer, via present hidden layers, restricting 

any kind of loops (Figure 1-10). Output from one layer serves as input 

to the next layer, with restrictions on any kind of loops in the network 

architecture.

Figure 1-10.  A multilayer feedforward neural network

�Convolutional Neural Networks
Convolutional neural networks are well adapted for image recognition and 

handwriting recognition. Their structure is based on sampling a window 

or portion of an image, detecting its features, and then using the features 

to build a representation. As is evident by this description, this leads to 

the use of several layers, thus these models were the first deep learning 

models.
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�Recurrent Neural Networks
Recurrent neural networks (RNNs; Figure 1-11) are used when a data 

pattern changes over time. RNNs can be assumed as unrolled over time. 

An RNN applies the same layer to the input at each time step, using the 

output (i.e., the state of previous time steps as inputs).

Figure 1-11.  Recurrent neural network

RNNs have feedback loops in which the output from the previous firing 

or time index T is fed as one of the inputs at time index T + 1. There might 

be cases in which the output of the neuron is fed to itself as input. As these 

are well-suited for applications involving sequences, they are widely used 

in problems related to videos, which are a time sequence of images, and 

for translation purposes, wherein understanding the next word is based on 

the context of the previous text. Following are various types of RNNs:

Encoding recurrent neural networks: This set of 

RNNs enables the network to take an input of the 

sequence form (Figure 1-12).
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Generating recurrent neural networks: Such 

networks basically output a sequence of numbers or 

values, like words in a sentence (Figure 1-13).

...

A A A A Sl

X0 X1 X2 Xl

Figure 1-12.  Encoding RNNs

...

A A A As0

y0 y1 y2 yl

Figure 1-13.  Generating RNNs

General recurrent neural networks: These 

networks are a combination of the preceding two 

types of RNNs. General RNNs (Figure 1-14) are used 

to generate sequences and, thus, are widely used in 

NLG (natural language generation) tasks.

A A A As0 sl

y0 y1 y2 yl

...X0 X1 X2 Xl

Figure 1-14.  General RNNs
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�Encoder-Decoder Networks
Encoder-decoder networks use one network to create an internal 

representation of the input, or to “encode” it, and that representation is 

used as an input for another network to produce the output. This is useful 

to go beyond a classification of the input. The final output can be in the 

same modality, i.e., language translation, or a different modality, e.g., text 

tagging of an image, based on concepts. For reference, one can refer to the 

paper “Sequence to Sequence Learning with Neural Networks,” published 

by the team at Google: (https://papers.nips.cc/paper/5346-sequence-

to-sequence-learning-with-neural-networks.pdf).

�Recursive Neural Networks
In a recursive neural network (Figure 1-15), a fixed set of weights is 

recursively applied onto the network structure and is primarily used 

to discover the hierarchy or structure of the data. Whereas an RNN is a 

chain, a recursive neural network takes the form of a treelike structure. 

Such networks have great use in the field of NLP, such as to decipher 

the sentiment of a sentence. The overall sentiment is not dependent on 

the individual works only, but also on the order in which the words are 

syntactically grouped in the sentence.
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As one can see, there are different types of networks, and while some 

can be applied in many different contexts, specific ones are better suited to 

certain applications, in terms of speed and quality.

�Multilayer Perceptrons
Multilayer perceptrons (MLPs) belong to the category of feedforward 

neural networks and are made up of three types of layers: an input layer, 

one or more hidden layers, and a final output layer. A normal MLP has the 

following properties:

•	 Hidden layers with any number of neurons

•	 An input layer using linear functions

•	 Hidden layer(s) using an activation function, such as 

sigmoid

The red bird sang The red bird sang

Catamorphism = TreeNet

ABranch

ABranch

ABranch

ALeaf ALeaf ALeaf ALeaf

Figure 1-15.  Recursive neural network
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•	 An activation function giving any number of outputs

•	 Proper established connections between the input 

layer, hidden layer(s), and output layer

MLPs are also known as universal approximators, as they can find 

the relationship between the input values and the targets, by using a 

sufficient number of neurons in the hidden layer, altering weights, or by 

using additional training data to approximate the given function up to 

any level of accuracy. This doesn’t even require a significant amount of 

prior information about mapping between input and output values. Often, 

with the given degree of freedom to an MLP, it can outperform the basic 

MLP network, by introducing more hidden layers, with fewer neurons in 

each of the hidden layers and optimum weights. This helps in the overall 

generalization process of the model.

Following are a few of the features of network architecture that have a 

direct impact on its performance

•	 Hidden layers: These contribute to the generalization 

factor of the network. In most cases, a single layer is 

sufficient to encompass the approximation of any desired 

function, supported with a sufficient number of neurons.

•	 Hidden neurons: The number of neurons present 

across the hidden layer(s) that can be selected by using 

any kind of formulation. A basic rule of thumb is to 

select count between one and a few input units. Another 

means is to use cross-validation and then check the 

plot between the number of neurons in the hidden 

layer(s) and the average mean squared error (MSE) with 

respect to each of the combinations, finally selecting the 

combination with the least MSE value. It also depends 

on the degree of nonlinearity or the initial problem 

dimensionality. It is, thus, more of an adaptive process 

to add/delete the neurons.
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•	 Output nodes: The count of output nodes is usually 

equal to the number of classes we want to classify the 

target value.

•	 Activation functions: These are applied on the inputs 

of individual nodes. A set of nonlinear functions, 

described in detail in the Basic Structure of Neural 

Networks section of this chapter, are used to make the 

output fall within a desired range, thereby preventing 

the paralysis of the network. In addition to the 

nonlinearity, the continuous differentiability of these 

functions helps in preventing the inhibition of the 

training of neural networks.

As the output given by an MLP depends only on the current input 

and not on past or future inputs, so MLPs are considered apt for resolving 

classification problems.

Figure 1-16 shows that there are a total of (L + 2) layers in the MLP, with 

the input layer at the first position, followed by L hidden layers and, finally, 

the output layer at the (L + 2)-th position. The following equations define 

the different units of the MLP, with activation functions applied at different 

stages of the network.

W(k) denotes the weight connection between the k-th hidden layer 

and the layer before it, the input layer, or another hidden layer. Each 

W(k) is made up of weights, Wij
(k), between the units i and j of the two 

connecting layers. b(k) is the bias for the k-th layer.

The following equation represents the hidden layer preactivation 

for k > 0:

a x b W h xk k k k            1
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For any i-th neuron present in the k-th hidden layer, the following 

equation holds true:

h x g a xk

i

k

i
        

The activation function for the output layer (k = L + 1) follows:

h x o a x f xL L           1 1

x1 xj xd

W(3) b(3)

b(2)

b(1)

h(2) (x)

h(1) (x)

W(2) 

W(1) 

1

1

1... ...

... ...

... ...

...

Figure 1-16.  Multilayer neural network
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�Stochastic Gradient Descent
The workhorse of almost all solutions to optimization problems is the 

gradient descent algorithm. It is an iterative algorithm that minimizes a 

loss function by subsequently updating the parameters of the function.

As we can see from Figure 1-17, we start by thinking of our function as 

a kind of a valley. We imagine a ball rolling down the slope of a valley. Our 

everyday experience tells us that the ball will eventually roll to the bottom 

of the valley. Perhaps we can use this idea to find a minimum for the cost 

function.

Figure 1-17.  Ball rolling down the slope

Here the function we are using is dependent on two variables: v1 and v2. 

This may be obvious, given the fact that our loss function looks like the one 

preceding. To achieve such a smooth loss function, we take the quadratic 

loss, as follows:

y y predicted 2
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Again, readers should note that the quadratic cost function is only 

one method, and there are many other ways to define loss. Eventually, the 

purpose of choosing different loss functions is to get

	 1.	 A smoothed partial derivative with respect to weight

	 2.	 A good convex curve, to achieve global minimum. 

However, a lot of other factors come into play while 

finding a global minimum (learning rate, shape of 

function, etc.).

We’d randomly choose a starting point for an (imaginary) ball and then 

simulate the motion of the ball as it rolls down to the bottom of the valley. 

In a similar analogy, imagine that we initialize the weights of the network 

or, in general, the parameters of a function, at some arbitrary point on a 

curve (just like dropping a ball on any point of the slope), and then we 

check the slope (derivative) nearby.

We know that the ball will go down in the direction of maximum 

slope, owing to gravity. Similarly, we move the weights in the direction of 

derivative at that point and update the weights according to following rule:

Let J(w) = Cost as a function of weights

w = Parameters of the network (v1 and v2)

wi= Initial set of weights (random initialization)

w w d w dwupdated i    J /

Here, dJ(w)/dw = partial derivative of weight, w, with respect to J(w)

η           = learning rate.

The learning rate is more of a hyper parameter, and there is no fixed 

way to find the most appropriate learning rate. However, one can always 

look into the batch-loss to find it.

One way is to see the loss and analyze the pattern of loss. In general, a 

bad learning rate leads to erratic loss on mini-batches. It (loss) can go up 

and down recursively, without stabilizing.
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Figure 1-18 illustrates a better intuitive explanation, supported by a 

graph.

Figure 1-18.  Impact of small and large learning rates

In the preceding diagram, there are two cases present:

	 1.	 Small learning rate

	 2.	 Large learning rate

The purpose is to reach the minimum of the preceding graph, and 

we must reach the bottom of the valley (as in the ball analogy). Now the 

learning rate is related to the jump the ball makes while rolling down the 

hill.

Considering case 1 first (the left part of the diagram), in which we 

make small jumps, gradually keep rolling down, slowly, and eventually 

reaching the minimum, there is a chance that the ball may get stuck in 

some small crevice along the way and isn’t able to get escape it, because of 

its inability to make large jumps.

In case 2 (the right part of the diagram), there is a larger learning rate, 

as compared to the slope of the curvature. This is a suboptimal strategy 

that might actually eject us from the valley, in some cases, which could 
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be a good start to coming out of the reach of local minima but not at all 

satisfactory in the event that we skip the global minima.

In the diagram, we are achieving a local minima, but this is just one 

case. What this means is that the weights get stuck at local minima, and 

we miss out on global minima. Gradient descent, or stochastic gradient 

descent, doesn’t guarantee convergence to the global minima for neural 

networks (assuming hidden units are not linear), because the cost 

functions are non-convex.

An ideal situation is one in which step size keeps on changing and is 

more adaptive in nature, with a little higher at the start, then gradually 

decreasing over a period of time, until convergence.

�Backpropagation
Understanding the backpropagation algorithm can take some time, and 

if you are looking for a fast implementation of a neural network, then 

you can skip this section, as modern libraries have the capability to 

auto-differentiate and perform the entire training procedure. However, 

understanding this algorithm would definitely give you insights into 

problems related to deep learning (learning problems, slow learning, 

exploding gradients, diminishing gradients).

Gradient descent is a powerful algorithm, yet it is a slow method when 

the number of weights increases. In the case of neural networks having 

parameters in the range of thousands, training each weight with respect 

to the loss function or, rather, formulating the loss as a function of all the 

weights becomes painstakingly slow and extremely complex to use for 

practical purposes.

Thanks to the path-breaking paper by Geoffrey Hinton and his 

colleagues in 1986, we have an extremely fast and beautiful algorithm 

that helps us to find the partial derivative of the loss with respect to each 

weight. This algorithm is the workhorse of the training procedure for every 
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deep learning algorithm. More detailed information can be found here: 

www.cs.toronto.edu/~hinton/backprop.html.

It is the most efficient possible procedure to compute the exact 

gradient, and its computational cost is always of the same O( ) complexity 

as computing the loss itself. The proof of backpropagation is beyond the 

scope of this book; however, the intuitive explanation of the algorithm can 

give you an excellent insight into its complex working.

For backpropagation to work, two basic assumptions are taken 

regarding the Error function.

	 1.	 Total error can be written as a summation of 

individual error of training samples/minibatch, 

E Ex 

	 2.	 Error can be written as a function of outputs of the 

network

Backpropagation consists of two parts:

	 1.	 Forward pass, wherein we initialize the weights and 

make a feedforward network to store all the values

	 2.	 Backward pass, which is performed to have the 

stored values update the weights

Partial derivatives, chain rules, and linear algebra are the main tools 

required to deal with backpropagation (Figure 1-19).
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Initially, all the edge weights are randomly assigned. For every input in 

the training dataset, the ANN is activated, and its output is observed. This 

output is compared with the desired output that we already know, and the 

error is “propagated” back to the previous layer. This error is noted, and 

the weights are “adjusted” accordingly. This process is repeated until the 

output error is below a predetermined threshold.

Once the preceding algorithm terminates, we have a “learned” ANN, 

which we consider to be ready to work with “new” inputs. This ANN is said 

to have learned from several examples (labeled data) and from its mistakes 

(error propagation).

Curious readers should investigate the original paper on 

backpropagation. We have provided a list of resources and blogs to 

understand the algorithm in greater depth. However, when it comes to 

implementation, you will hardly write your own code on backpropagation, 

as most of the libraries support automatic differentiation, and you won’t 

really want to tweak the backpropagation algorithm.

Signal Propagation Direction

INPUT OUTPUT

Input Layer Output
Layer

Input unit Hidden units

Error Back Propagation

Error

Output unit

Target

yN

y1
x1

xN-1

xN

x2

Figure 1-19.  Backpropagation mechanism in an ANN
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In layman’s language, in backpropagation, we try to sequentially 

update the weights, first by making a forward pass on the network, after 

which we first update the weights of the last layer, using the label and last 

layer outputs, then subsequently use this information recursively on the 

layer just before and proceed.

�Deep Learning Libraries
This section involves an introduction to the some of the widely used 

deep learning libraries, including Theano, TensorFlow, and Keras, also in 

addition to a basic tutorial on each one of these.

�Theano
Theano was an open source project primarily developed at the Université 

de Montréal under the supervision of Yoshua Bengio. It is a numerical 

computation library for Python with syntaxes similar to NumPy. It 

is efficient at performing complex mathematical expressions with 

multidimensional arrays. This makes it is a perfect choice for neural 

networks.

The link http://deeplearning.net/software/theano will give the 

user a better idea of the various operations involved. We will be illustrating 

the installation steps for Theano on different platforms, followed by the 

basic tutorials involved.

Theano is a mathematical library that provides ways to create the 

machine learning models that could be used later for multiple datasets. 

Many tools have been implemented on top of Theano. Principally, it 

includes

•	 Blocks http://blocks.readthedocs.org/en/latest/

•	 Keras http://keras.io/
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•	 Lasagne http://lasagne.readthedocs.org/en/

latest/

•	 PyLearn2 http://deeplearning.net/software/

pylearn2/

Note  It should be noted that at the time of writing this book, 
contributions to the Theano package have been stopped by the 
community members, owing to a substantial increase in the usage of 
other deep learning packages.

�Theano Installation
The following command will work like a charm for Theano installation on 

Ubuntu:

> sudo apt-get install python-numpy python-scipy python-dev 

python-pip python-nose g++ libopenblas-dev git

> sudo pip install Theano

For detailed instructions on installing Theano on different platforms, 

please refer to the following link: http://deeplearning.net/software/

theano/install.html. Even docker images with CPU and GPU 

compatibility are available.

Note  It is always advisable to proceed with installation in a 
separate virtual environment.
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The latest version of Theano can be installed from the development 

version available at

> git clone git://github.com/Theano/Theano.git

> cd Theano

> python setup.py install

For the installation on Windows, take the following steps  

(sourced from an answer on Stack Overflow):

	 1.	 Install TDM GCC x64 (http://tdm-gcc.tdragon.net/).

	 2.	 Install Anaconda x64 (www.continuum.io/

downloads, say in C:/Anaconda).

	 3.	 After Anaconda installation, run the following 

commands:

a.	 conda update conda

b.	 conda update -all

c.	 conda install mingw libpython

	 4.	 Include the destination 'C:\Anaconda\Scripts' in 

the environment variable PATH.

	 5.	 Install Theano, either the older version or the latest 

version available.

a.	 Older version:

> pip install Theano

b.	 Latest version:

   �>  pip install --upgrade --no-deps  git+git://

github.com/Theano/Theano.git
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�Theano Examples
The following section introduces the basic codes in the Theano library. 

The Tensor subpackage of the Theano library contains most of the 

required symbols.

The following example makes use of the Tensor subpackage and 

performs operations on the two numbers (outputs have been included for 

reference):

> import theano

> import theano.tensor as T

> import numpy

> from theano import function

# Variables 'x' and 'y' are defined

> x = T.dscalar('x')               # dscalar : Theano datatype

> y = T.dscalar('y')

# 'x' and 'y' are instances of TensorVariable, and are of 

dscalar theano type

> type(x)

<class 'theano.tensor.var.TensorVariable'>

> x.type

TensorType(float64, scalar)

> T.dscalar

TensorType(float64, scalar)

# 'z' represents the sum of 'x' and 'y' variables. Theano's pp 

function, pretty-print out, is used to display the computation 

of the variable 'z'

> z = x + y

> from theano import pp

> print(pp(z))

(x+y)
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# 'f' is a numpy.ndarray of zero dimensions, which takes input 

as the first argument, and output as the second argument

# 'f' is being compiled in C code

> f = function([x, y], z)        

The preceding function could be used in the following manner to 

perform the addition operation:

> f(6, 10)

array(16.0)

> numpy.allclose(f(10.3, 5.4), 15.7)

True

�TensorFlow
TensorFlow is an open sourced library by Google for large-scale machine 

learning implementations. TensorFlow, in a true sense, is the successor of 

DistBelief, which was an earlier software framework released by Google 

capable of utilizing computing clusters with thousands of machines to 

train large models.

TensorFlow is the brainchild of the software engineers and researchers 

from the Google Brain Team, which is part of the Google group (now 

Alphabet) and is primarily focused on deep learning and its applications. 

It makes use of the data flow graphs for the numerical computation, 

mentioned in detail following. It has been designed in such a way that 

computations on CPUs or GPU systems across a single desktop or servers 

or mobile devices are catered to by a single API.

TensorFlow offers the movement of highly intensive computational 

tasks from CPUs to heterogeneous GPU-oriented platforms, with very 

minute changes in the codes. Also, a model trained on one machine could 

be used on another light device, such as an Android-enabled mobile 

device, for final implementation purposes.
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TensorFlow is the foundation for the implementation of such 

applications as DeepDream, which is an automated image-captioning 

software, and RankBrain, which helps Google to process search results and 

provide more relevant search results to users.

To get a better sense of the working and implementation of 

TensorFlow, one can read the relevant white paper at http://download.

tensorflow.org/paper/whitepaper2015.pdf.

�Data Flow Graphs
Data flow graphs are used by TensorFlow to represent the mathematical 

computations performed in the form of graphs. It makes use of the 

directed graphs, with nodes and edges. The nodes represent mathematical 

operations and act as a terminal for data input, output of results, or read/

write of persistent variables. The edges handle the input and output 

relationships between nodes. The data edges carry tensors, or dynamically 

sized multidimensional data arrays, between the nodes. The movement 

of these tensor units through the whole graph has itself lead to the name 

TensorFlow. The nodes in a graph, upon receiving all their respective 

tensors from the incoming edges, execute asynchronously and in parallel.

The overall design and flow of computations covered within a data flow 

graph occur in a session and are then executed on the desired machines. 

TensorFlow, with the Python, C, and C+ APIs offered, relies on C++ for 

optimized computations.

With the following features of TensorFlow, it is the best choice for the 

massive parallelism and high scalability required in the field of machine 

learning

•	 Deep flexibility: Users get the full privilege to write their 

own libraries on top of the TensorFlow. One need only 

create the whole computation in the form of a graph, 

and the rest is taken care of by TensorFlow.
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•	 True portability: Extensibility offered by TensorFlow 

enables a machine learning code written on a laptop 

to be trained on GPUs for faster model training, with 

no code changes, and to be deployed on mobile, in the 

final product, or on docker, as a cloud service.

•	 Automatic differentiation: TensorFlow handles the 

derivatives computation for the gradient-based 

machine learning algorithms by the automatic 

differentiation functionality of it. The computation 

of derivatives of values helps in understanding the 

extended graph of values with respect to each other.

•	 Language options: TensorFlow offers Python and C++ 

interfaces to build and execute the computational 

graphs.

•	 Performance maximization: The compute elements 

from the TensorFlow graph can be assigned to multiple 

devices, and TensorFlow takes care of the maximum 

performance by its wide support of threads, queues, 

and asynchronous computation.

�TensorFlow Installation
TensorFlow installation is very easy, like any other Python package, and 

can be achieved by using a single pip install command. Also, if required, 

users can follow the detailed explanation for the installation on the main 

site of TensorFlow (www.tensorflow.org/versions/r0.10/get_started/

os_setup.html, for the r0.10 version).

Installation via pip must be preceded by the binary package 

installation relevant to the platform. Please refer to the following link for 

more details on the TensorFlow package and its repository  

https://github.com/tensorflow/tensorflow.
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To check the installation of TensorFlow on Windows, 

check out the following blog link: www.hanselman.com/blog/

PlayingWithTensorFlowOnWindows.aspx.

�TensorFlow Examples
Running and experimenting with TensorFlow is as easy as the installation. 

The tutorial on the official web site, www.tensorflow.org/, is pretty clear 

and covers basic to expert-level examples.

Following is one such example, with the basics of TensorFlow (outputs 

have been included for reference):

> import tensorflow as tf

> hello = tf.constant('Hello, Tensors!')

> sess = tf.Session()

> sess.run(hello)

Hello, Tensors!

# Mathematical computation

> a = tf.constant(10)

> b = tf.constant(32)

> sess.run(a+b)

42

The run() method takes the resulting variables for computations as 

arguments, and a backward chain of required calls are made for this.

TensorFlow graphs get formed from nodes not requiring any kind of 

input, i.e., the source. These nodes then pass their output to further nodes, 

which perform computations on the resulting tensors, and the whole 

process moves in this pattern.

The following examples show the creation of two matrices using 

Numpy, then using TensorFlow to assign these matrices as objects in 

TensorFlow, and then multiplying both the matrices. The second example 
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includes the addition and subtraction of two constants. A TensorFlow 

session has also been activated to perform the operation and deactivated 

once the operation is complete.

> import tensorflow as tf

> import numpy as np

> mat_1 = 10*np.random.random_sample((3, 4))   �# Creating NumPy 

arrays

> mat_2 = 10*np.random.random_sample((4, 6))

# Creating a pair of constant ops, and including the above made 

matrices

> tf_mat_1 = tf.constant(mat_1)

> tf_mat_2 = tf.constant(mat_2)

# Multiplying TensorFlow matrices with matrix multiplication 

operation

> tf_mat_prod = tf.matmul(tf_mat_1 , tf_mat_2)

> sess = tf.Session()            # Launching a session

# run() executes required ops and performs the request to store 

output in 'mult_matrix' variable

> mult_matrix = sess.run(tf_mat_prod)

> print(mult_matrix)

# Performing constant operations with the addition and 

subtraction of two constants

> a = tf.constant(10)

> a = tf.constant(20)

> print("Addition of constants 10 and 20 is %i " % sess.

run(a+b))
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Addition of constants 10 and 20 is 30

> print("Subtraction of constants 10 and 20 is %i " % sess.

run(a-b))

Subtraction of constants 10 and 20 is -10

> sess.close()                          # Closing the session

Note A s no graph was specified in the preceding example with the 
TensorFlow, the session makes use of the default instance only.

�Keras
Keras is a highly modular neural networks library, which runs on top of 

Theano or TensorFlow. Keras is one of the libraries which supports both 

CNNs and RNNs (we will be discussing these two neural networks in detail 

in later chapters), and runs effortlessly on GPU and CPU.

A model is understood as a sequence or a graph of standalone, 

fully configurable modules that can be plugged together with as little 

restrictions as possible. In particular, neural layers, cost functions, 

optimizers, initialization schemes, activation functions, regularization 

schemes are all standalone modules that could be combined to create new 

models.

�Keras Installation

In addition to the Theano or TensorFlow as back end, Keras makes use 

of the few libraries as dependencies. Installing these before Theano or 

TensorFlow installation eases the process.
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> pip install numpy scipy

> pip install scikit-learn

> pip install pillow

> pip install h5py

Note  Keras always require the latest version of Theano to be 
installed (as mentioned in the previous section). We have made use of 
TensorFlow as back end for Keras throughout the book.

> pip install keras

�Keras Principles

Keras offers a model as one of its main data structures. Each model is a 

customizable entity that can be made up of different layers, cost functions, 

activation functions, and regularization schemes. Keras offers a wide range 

of pre-built layers to plug in a neural network, a few of which include 

convolutional, dropout, pooling, locally connected, recurrent, noise, and 

normalization layers. An individual layer of the network is considered to be 

an input object for the next layer.

Built primarily for the implementation of neural networks and deep 

learning, code snippets in Keras will be included in later chapters as well, 

in addition to their relevant neural networks.

�Keras Examples

The base data structure of Keras is a model type, made up of the different 

layers of the network. The sequential model is the major type of model in 

Keras, in which layers are added one by one until the final output layer.

The following example of Keras uses the blood transfusion dataset 

from the UCI ML Repository. One can find the details regarding the data 
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here: https://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+ 

Service+Center). The data is taken from a blood transfusion service 

center located in Taiwan and has four attributes, in addition to the target 

variable. The problem is one of binary classification, with '1' standing for 

the person who has donated the blood and '0' for the person who refused 

a blood donation. More details regarding the attributes can be gleaned 

from the link mentioned.

Save the dataset shared at the web site in the current working directory 

(if possible, with the headers removed). We start by loading the dataset, 

building a basic MLP model in Keras, followed by fitting the model on the 

dataset.

The basic type of model in Keras is sequential, which offers layer-

by-layer addition of complexity to the model. The multiple layers can be 

fabricated with their respective configurations and stacked onto the initial 

base model.

# Importing the required libraries and layers and model from 

Keras

> import keras

> from keras.layers import Dense

> from keras.models import Sequential

> import numpy as np

# Dataset Link : # https://archive.ics.uci.edu/ml/datasets/Blood 

+Transfusion+Service+Center

# Save the dataset as a .csv file :

tran_ = np.genfromtxt('transfusion.csv', delimiter=',')

X=tran_[:,0:4]           # The dataset offers 4 input variables

Y=tran_[:,4]             # Target variable with '1' and '0'

print(x)
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As the input data has four corresponding variables, the input_dim, 

which refers to the number of different input variables, has been set to 

four. We have made use of the fully connected layers defined by dense 

layers in Keras to build the additional layers. The selection of the network 

structure is done on the basis of the complexity of the problem. Here, the 

first hidden layer is made up of eight neurons, which are responsible for 

further capturing the nonlinearity. The layer has been initialized with the 

uniformly distributed random numbers and with the activation function 

as ReLU, as described previously in this chapter. The second layer has six 

neurons and configurations similar to its previous layer.

# Creating our first MLP model with Keras

> mlp_keras = Sequential()

> mlp_keras.add(Dense(8, input_dim=4, init='uniform', 

activation='relu'))

> mlp_keras.add(Dense(6, init='uniform', activation='relu'))

In the last layer of output, we have set the activation as sigmoid, 

mentioned previously, which is responsible for generating a value between 

0 and 1 and helps in the binary classification.

> mlp_keras.add(Dense(1, init='uniform', activation='sigmoid'))

To compile the network, we have made use of the binary classification 

with logarithmic loss and selected Adam as the default choice of optimizer, 

and accuracy as the desired metric to be tracked. The network is trained 

using the backpropagation algorithm, along with the given optimization 

algorithm and loss function.

> mlp_keras.compile(loss = 'binary_crossentropy',  

optimizer='adam',metrics=['accuracy'])
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The model has been trained on the given dataset with a small number 

of iterations (nb_epoch) and started with a feasible batch size of instances 

(batch_size). The parameters could be chosen either on the basis of prior 

experience of working with such kinds of datasets, or one can even make 

use of Grid Search to optimize the choice of such parameters. We will be 

covering the same concept in later chapters, where necessary.

> mlp_keras.fit(X,Y, nb_epoch=200, batch_size=8, verbose=0)

The next step is to finally evaluate the model that has been built and 

to check out the performance metrics, loss, and accuracy on the initial 

training dataset. The same operation could be performed on a new test 

dataset with which the model is not acquainted and could be a better 

measure of the model performance.

> accuracy = mlp_keras.evaluate(X,Y)

> print("Accuracy : %.2f%% " %  (accuracy[1]*100 ))

If one wants to further optimize the model by using different 

combinations of parameters and other tweaks, it could be done by using 

different parameters and steps while undertaking model creation and 

validation, though it need not result in better performance in all cases.

# Using a different set of optimizer

> from keras.optimizers import SGD

> opt = SGD(lr=0.01)

The following creates a model with configurations similar to those in 

the earlier model but with a different optimizer and including a validation 

dataset from the initial training data:

> mlp_optim = Sequential()

> mlp_optim.add(Dense(8, input_dim=4, init='uniform', 

activation='relu'))

> mlp_optim.add(Dense(6, init='uniform', activation='relu'))
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> mlp_optim.add(Dense(1, init='uniform', activation='sigmoid'))

# Compiling the model with SGD

> mlp_optim.compile(loss = 'binary_crossentropy', 

optimizer=opt, metrics=['accuracy'])

# Fitting the model and checking accuracy

> mlp_optim.fit(X,Y, validation_split=0.3, nb_epoch=150,  

batch_size=10, verbose=0)

> results_optim = mlp_optim.evaluate(X,Y)

> print("Accuracy : %.2f%%" % (results_optim[1]*100 ) )

Make sure that all the packages mentioned for natural language 

processing and deep learning in the preceding sections are installed before 

moving forward. Once you have set up the system, you will be good to go 

with the examples offered throughout this book.

�Next Steps
This first chapter presented an introduction to the fields of natural 

language processing and deep learning and related introductory examples 

from the publicly available Python libraries. We will be delving deeper into 

this in the next chapters, introducing current industry-wide problems in 

natural language processing and how the presence of deep learning has 

impacted the paradigm of solving these in an efficient manner.
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CHAPTER 2

Word Vector 
Representations
When dealing with languages and words, we might end up classifying 

texts across thousands of classes, for use in multiple natural language 

processing (NLP) tasks. Much research has been undertaken in this field 

in recent years, and this has resulted in the transformation of words in 

languages to the format of vectors that can be used in multiple sets of 

algorithms and processes. This chapter offers an in-depth explanation of 

word embeddings and their effectiveness. We introduce their origin and 

compare the different models used to accomplish various NLP tasks.

�Introduction to Word Embedding
The categorization and quantifying of semantic similarities among 

linguistic items comes under the rubric of distributional semantics and 

is based on their distribution in the usage of a language. Vector space 

models, signifying text documents and queries in the form of vectors, have 

long been used for distributional semantics purposes. The representation 

of words in an N-dimensional vector space by vector space models is 

useful for different NLP algorithms to achieve better results, as it leads to 

groupings of similar text in the new vector space.
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The term word embedding was coined by Yoshua Bengio in his 

paper “A Neural Probabilistic Language Model” (www.jmlr.org/papers/

volume3/bengio03a/bengio03a.pdf). This was followed by Ronan 

Collobert and Jason Weston in their paper “A Unified Architecture for 

Natural Language Processing” (https://ronan.collobert.com/pub/

matos/2008_nlp_icml.pdf), in which the authors demonstrated how 

the use of multitask learning and semi-supervised learning improve 

the generalization of shared tasks. Finally, Tomas Mikolov et al., who 

created word2vec and put word embeddings under the lens, elucidated 

the training for word embeddings and also the use of pretrained word 

embeddings. Later, Jeffrey Pennington introduced GloVe, another set of 

pretrained word embeddings.

Word embeddings models have proven to be more efficient than the 

bag-of-word models or one-hot-encoding schemes, made up of sparse 

vectors with a size equivalent to that of the vocabulary, used initially. The 

sparsity present in vectoral representation was an outcome of the vastness 

of the vocabulary and labeling of the word or document in it at the index 

position. Word embedding has replaced this concept by making use of 

the surrounding words of all the individual words, using the information 

present from the given text and passing it to the model. This has allowed 

embedding to take the form of a dense vector, which, in a continuous 

vector space, represents the projection of the individual words. Embedding 

thus refers to the coordinates of the word in the newly learned vector space.

The following example presents the creation of a word vector, using 

the one-hot encoding for the words present in the sample vocabulary, 

followed by the reformation of the word vectors. It uses a distributed 

representation approach and shows how the final vector composition can 

be used to infer the relation between the words.

Let’s assume that our vocabulary contains the words, Rome, Italy, 

Paris, France, and country. We can make use of each of these words to 

create a representation, using a one-hot scheme for all the words, as 

shown for Rome in Figure 2-1.
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Using the preceding approach of presenting the words in vector form, 

we can more or less make use only of testing the equality between the 

words, by comparing their vectors. This approach will not serve other, 

higher purposes. In a better form of representation, we can create multiple 

hierarchies or segments, in which the information shown by each of the 

words can be assigned various weightages. The selection of these segments 

or dimensions could be of our choice, and each of the words will be 

represented by a distribution of weights across these segments. So, now we 

have a new format of word representation, using different scales for each of 

the words (Figure 2-2).

Figure 2-1.  A representation of Rome

Figure 2-2.  Our representation

The preceding vectors used for each word does signify the actual 

meaning of the word and provides a better scale with which to make a 

comparison across the words. The newly formed vectors are sufficiently 

capable of answering the kind of relationships being held among words. 

Figure 2-3 represents the vectors being formed using this new approach.
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The output vectors for different words does retain the linguistic 

regularities and patterns, and this is proven by the linear translations 

of these patterns. For example, the result of the difference between 

the vectors and the words following, vector(France) - vector(Paris) + 

vector(Italy), will be close to vector(Rome), as shown in Figure 2-4.

Figure 2-3.  Our vectors

Figure 2-4.  Comparing vectors
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Over time, word embeddings have emerged to become one of the 

most important applications of the unsupervised learning domain. The 

semantic relationships offered by word vectors have helped in the NLP 

approaches of neural machine translation, information retrieval, and 

question-and-answer applications.

�Neural Language Model
The feedforward neural net language model (FNNLM) proposed by Bengio 

introduces a feedforward neural network consisting of a single hidden 

layer that predicts the future words, in our example, only a single word, of 

the sequence.

The neural net language model is trained to find θ, which maximizes 

the training corpus penalized log-likelihood:

L
T

f w w w R
t

t t t n       

1
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Here, f is the composite function made up of the parameters related to 

distributed feature vectors of each of the words present in the vocabulary 

and parameters of the feedforward or recurrent neural network. R(θ) refers 

to the regularization term, which applies a weight decay penalty to the 

weights of the neural network and the feature vectors matrix. The function 

f returns the probability score computed by the softmax function for the 

word at the t-th position, using the previous n words.

The models introduced by Bengio were among the first of their 

kind and laid the foundation of future word embedding models. The 

components of these original models are still used across current word 

embedding models. Some of these components include the following:

	 1.	 Embedding layer: This keeps a record of the 

representation of all the words in the training 

dataset. It is initialized with a set of random weights. 

The embedding layer is made up of three parts, 
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which include the size of the vocabulary, the output 

size of the vector in which all the words will be 

embedded, and the length of the input sequences 

to the model. The resulting output of an embedding 

layer is a two-dimensional vector, which has the 

final embedding for all the words present in the 

given sequence of words.

	 2.	 Intermediate layer(s): The hidden layers, ranging 

from initial to final layers and with a count of one or 

more, that produce the representation of the input 

text data by applying the nonlinear functions in 

the neural network on the word embeddings of the 

previous n-words.

	 3.	 Softmax layer: This is the final layer of the neural 

network architecture and returns a probability 

distribution over all the words present in the input 

vocabulary.

Bengio’s paper mentions the computation cost involved in the softmax 

normalization and that it is proportional to the vocabulary size. This has 

created challenges in trials of new algorithms for neural language models 

and word embedding models on the full vocabulary size.

The neural net language models have helped to attain generalization 

for words that are not present in the current vocabulary, as a sequence 

of words that has never been seen before is given higher probability if 

the combination of words is similar to the words that have already been 

included in a sentence.
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�Word2vec
Word2vec, or word-to-vector, models were introduced by Tomas Mikolov 

et al. (https://arxiv.org/pdf/1301.3781.pdf) and are one of the 

most adopted models. It is used to learn the word embeddings, or vector 

representation of words. The paper compares the performance of the 

proposed models with previous models, by checking the similarity 

between groups of words. The techniques proposed in the paper resulted 

in the vector representation of words with similarity across multiple 

degrees for similar words. The similarity of the word representation goes 

beyond the simple syntactic regularities, with simple algebraic operations 

also being performed on the word vectors.

Word2vec models make use internally of a simple neural network 

of a single layer and capture the weights of the hidden layer. The aim 

of training the model is to learn the weights of the hidden layer, which 

represents the “word embeddings.” Although word2vec uses neural 

network architecture, the architecture itself is not complex enough and 

doesn’t make use of any kind of nonlinearities. It can be discharged of the 

label of deep learning for now.

Word2vec offers a range of models that are used to represent words 

in an n-dimensional space in such a way that similar words and words 

representing closer meanings are placed close to one another. This justifies 

the whole exercise of placing words in a new vector space. We will go 

through the two most frequently used models, skip-gram and continuous 

bag-of-words (CBOW), followed by their implementation in TensorFlow. 

Both models are similar algorithmically, with the difference being only in 

the way they perform the prediction. The CBOW model predicts the center 

words by making use of the context or surrounding words, and the skip-

gram model predicts the context words using the center words.

In comparison with the one-hot encoding, word2vec helps in reducing 

the size of the encoding space and compresses the representation of words 

to the desired length for the vector (Figure 2-5). Word2vec approaches 
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word representation on the basis of the context in which words are 

presented. For example, synonyms, opposites, semantically similar 

concepts, and similar words are present in similar contexts across a text 

and, thus, are embedded in similar fashion, and their final embeddings lie 

closer to one another.

Figure 2-5.  Using the window size of 2 to pick the words from the 
sentence “Machines can now recognize objects and translate speech in 
real time” and training the model

�Skip-Gram Model
A skip-gram model predicts the surrounding words by using the current 

word in the sequence. The classification score of the surrounding words is 

based on the syntactic relation and occurrences with the center word. Any 

word present in the sequence is taken as input to the log-linear classifier, 

which in turn makes a prediction of the words falling under a certain 

pre-specified range of words occurring before and after the center word. 

There is a trade-off between the selection of the range of words and the 

computation complexity and quality of the resulting word vectors. As the 

distance to the concerned word increases, the distant words are related on 
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lower level with the current word, as compared to the closer words. This 

is tackled by assigning the weights as a function of the distance from the 

center words and giving lesser weights, or sampling fewer words, from the 

words at higher ranges (see Figure 2-6).

Figure 2-6.  Skip-gram model architecture

The training of the skip-gram model doesn’t involve dense matrix 

multiplications. Coupled with a bit of optimization, it could result in a 

highly efficient training process for the model.

�Model Components: Architecture
In this example, the network is used to train the model, with the input 

word fed as a one-hot-encoded vector and the output as a one-hot-

encoded vector representing the output word (Figure 2-7).
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�Model Components: Hidden Layer
The training of the neural network is done using a hidden layer, with the 

count of neurons equal to the number of features or dimensions by which 

we want to represent the word embedding. In the following graph, we have 

represented the hidden layer with a weight matrix having columns of 300, 

equal to the number of neurons—which will be the count of the features in 

the final output vector of word embedding—and rows as 100,000, which is 

equal to the size of the vocabulary used to train the model.

The number of neurons is considered as a hyper-parameter of the 

model and could be changed as required. The model trained by Google 

makes use of 300 dimensional feature vectors, and it has been made 

public. It could be a good start for those who don’t want to train their set of 

models for word embeddings. You may use the following link to download 

the trained set of vectors: https://code.google.com/archive/p/

word2vec/.
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Figure 2-7.  The model
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As the input vectors given as input for each of the words in the 

vocabulary are one-hot encoded, the computations happening in the 

hidden layer stage will make sure that only the vector corresponding to the 

respective words is selected from the weight matrix and passed on to the 

output layer. As shown in Figure 2-8, in the case of vocabulary of size v, for 

any word, there will be “1” present at the desired index in the input vector, 

and after multiplying it with the weight matrix, for each of the words, we 

will get the corresponding row of the word as the output vector. Thus, what 

really matters is not the output but the weight matrix. Figure 2-8 represents 

clearly how the weight matrix of the hidden layer is used to calculate the 

word vector lookup table.
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Figure 2-8.  Weight matrix of the hidden layer and vector lookup 
table
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Even though the one-hot-encoded vector is made up entirely of zeros, 

multiplying a 1 × 100,000 dimension vector with a 100,000 × 300 weight 

matrix will still result in the selection of the corresponding row where “1” 

is present. Figure 2-9 gives the pictorial representation of this calculation, 

and the output of the hidden layer is the vector representation of the 

concerned word.

Figure 2-9.  The calculation

�Model Components: Output Layer
Our main intention behind calculating the word embedding for words is 

to make sure that words with similar meanings lie closer in our defined 

vector space. This issue is automatically handled by the model, because 

words with similar meanings, in most cases, are surrounded by similar 

contexts (i.e., words surrounding the input word), which inherently 

makes the weight adjustment in a similar manner during the training 

process (Figure 2-10). In addition to the synonyms and words with similar 

meanings, the model also handles the cases of stemming, as the plural or 

singular words (say, car and cars) will have similar contexts.

Figure 2-10.  The training process
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�CBOW Model
The continuous bag-of-words model shares an architectural similarity to 

the FNNLM, as shown in Figure 2-11. The order of words doesn’t impact 

the projection layer, and what’s important is which words are currently 

falling in the bag to make the output word prediction.

Figure 2-11.  Continuous bag-of-words model architecture

The input and the projection layers share the weight matrix for all word 

positions in a way similar to that shared in the FNNLM. The CBOW model 

makes use of the continuous distribution representation of the context, 

thus a continuous bag of words.
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Note  Using CBOW over smaller datasets results in smoothening of 
the distributional information, as the model treats the entire context 
as a single observation.

�Subsampling Frequent Words
In most cases dealing with textual data, the size of the vocabulary can 

increase to a significant number of unique words and could be composed 

of different sizes of frequency for all the words. To select the words to be 

kept for modeling purposes, the frequency of the words occurring in the 

corpus is used to decide the removal of words, by checking the count 

of overall words as well. The subsampling approach was introduced by 

Mikolov et al. in their paper “Distributed Representations of Words and 

Phrases and their Compositionality.” By including subsampling, significant 

speed is gained in the training process, and word representations are 

learned in a more regular manner.

A survival function is used to compute a probability score at the word 

level, which can be used later to make the decision to keep or remove the 

word from the vocabulary. The function takes into account the frequency 

of the relevant word and the subsampling rate, which can be tweaked:
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where, wi is the work concerned, z(wi) is the frequency of the word in the 

training dataset or corpus, and s is the subsampling rate.
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Note T he original function mentioned by Mikolov et al. in their 
paper is different from the one used in the actual implementation 
of the word2vec code and has been mentioned in the preceding 
text. The formula chosen in the paper for subsampling was chosen 
heuristically, and it includes a threshold, t, which is rendered typically 
as 10-5, as the minimum frequency of the words in the corpus. The 
formula mentioned in the paper for subsampling is 
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where, wi is the word concerned, f(wi) is the frequency of the word in 
the training dataset or corpus, and s is the threshold used.

The subsampling rate makes the key decision on whether to keep the 

frequent words. A smaller value means the words are less likely to be kept 

in the corpus for model training. In most cases, a preferred threshold is 

put over the output of the survival function to remove the words occurring 

less frequently. The preferred value is 0.001 for the parameter s. The 

subsampling approach mentioned helps in countering the imbalance 

between the rare and frequent words across the corpus.
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The figure displays the graph between the frequency of the word 

with the final probability score generated by the sub-sampling approach. 

As none of the word present in corpus can occupy a higher percentage, 

so we will consider the part of the graph with the lower ranges of the 

percentage of word, i.e., along x-axis. There are few observations which 

we can derive from the above chart regarding the percentage of the words 

and their relation with the scores being generated, thereby the impact of 

subsampling on words:

•	 P(wi) =1 occurs for the cases when z(wi) < = 0.0026. It 

means that the words with their frequency percentage 

lesser than 0.26% will not be considered for the 

subsampling.

•	 P(wi) = 0.5 occurs for the cases when z(wi) = 0.00746. 

Thus the percentage required for a word to have 50% 

chance of being kept or removed is when it has 0.746% 

frequency.

Figure 2-12.  Distribution of the Survival function,  
P(x) = {(sqrt(x/0.001) + 1) * (0.001/x)} for a constant value of 0.001 
for sampling rate (Credits : http://www.mccormickml.com)
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•	 P(wi) = 0.033 occurs for the cases when z(wi) =1, i.e., 

even when the whole corpus is comprised of  a single 

word only, there is 96.7% probability of it getting 

removed from the corpus, which doesn’t make any 

sense practically.

�Negative Sampling
Negative sampling is a simplified form of the noise contrastive estimation 

(NCE) approach, as it makes certain assumptions while selecting the 

count of the noise, or negative, samples, and their distribution. It is 

used as an alternative to the hierarchical softmax function. Although 

negative sampling is used at the time of training the model, at the time of 

inference, the full softmax value is to be calculated, to obtain a normalized 

probability score.

The size of the weight matrix in the hidden layer of the neural network 

model is dependent on the overall size of the vocabulary, which is of 

higher orders. This results in a huge number of weight parameters. All 

the weight parameters are updated in multiple iterations of millions and 

billions of training samples. Negative sampling causes the model to update 

weights by only a small percentage, for each of the training samples.

The input representation of words given to model is by a one-hot-

encoded vector. Negative sampling randomly selects a given number of 

“negative” words (say, 10) for which the weights are updated with the 

weights of the “positive” word (or center word). In total, for 11 words 

(10 + 1), the weights will be updated. With reference to the figure given 

previously, any iteration will result in updating 11 × 300 = 3,300 values 

in the weight matrix. However, irrespective of the usage of the negative 

sampling, weights of only “positive” words are updated in the hidden layer.

The probability for the selection of the “negative” samples depends 

on the frequency of the word in the corpus. The higher the frequency, 

the higher will be the probability of the “negative” word being selected. 
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As mentioned in the paper “Distributed Representations of Words and 

Phrases and their Compositionality,” for small training datasets, the count 

of negative samples is taken between 5 and 20, and for large training 

datasets, it is recommended between 2 and 5.

Practically, negative samples are the inputs for which there should be 

no output determination, and just a vector with all 0s should be produced.

Note A  combination of subsampling and negative sampling reduces 
the training process load up to great extent.

The word2vec models have helped in achieving better quality of vector 

representations of words by making use of the combination of models on 

a collection of syntactic and semantic language tasks. With the advances 

in the computation resources, faster algorithms, and availability of textual 

data, it is possible to train high quality word vectors as compared to the 

earlier proposed neural network models.

In the next section we will be looking at the implementation of 

the skip-gram and CBOW models using TensorFlow. The credit to the 

structure of these goes to a combination of online courses and material 

available during the time of writing.

�Word2vec Code
The TensorFlow library has made our lives easier by introducing multiple 

predefined functions to be used in the implementation of word2vec 

algorithms. This section includes the implementation for both the 

word2vec algos, skip-gram, and CBOW models.

The first part of the code at the start of this section is common for both 

the skip-gram and CBOW models, and it is later followed by the respective 

implementations in the skip-gram and CBOW code subsections.
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Note T he data used for our exercise is a compressed format of the 
English Wikipedia dump made on March 3, 2006. It is available from the 
following link: http://mattmahoney.net/dc/textdata.html.

Import the required packages for the word2vec implementation as 

follows:

"""Importing the required packages"""

import random

import collections

import math

import os

import zipfile

import time

import re

import numpy as np

import tensorflow as tf

from matplotlib import pylab

%matplotlib inline

from six.moves import range

from six.moves.urllib.request import urlretrieve

"""Make sure the dataset link is copied correctly"""

dataset_link = 'http://mattmahoney.net/dc/'

zip_file = 'text8.zip'

The function data_download() downloads the cleaned up dataset of 

Wikipedia articles collected by Matt Mahoney and stores it as a separate 

file under the current working directory.
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def data_download(zip_file):

    """Downloading the required file"""

    if not os.path.exists(zip_file):

        �zip_file, _ = urlretrieve(dataset_link + zip_file, zip_

file)

        print('File downloaded successfully!')

    return None

data_download(zip_file)

> File downloaded successfully!

The zipped text dataset is extracted within an internal folder dataset 

and is used later to train the model.

"""Extracting the dataset in separate folder"""

extracted_folder = 'dataset'

if not os.path.isdir(extracted_folder):

    with zipfile.ZipFile(zip_file) as zf:

        zf.extractall(extracted_folder)

with open('dataset/text8') as ft_ :

    full_text = ft_.read()

As the input data has multiple punctuation and other symbols 

across the text, the same are replaced with their respective tokens, with 

the type of punctuation and symbol name in the token. This helps the 

model to identify each of the punctuation and other symbols individually 

and produce a vector. The function text_processing() performs this 

operation. It takes the Wikipedia text data as input.

def text_processing(ft8_text):

    """Replacing punctuation marks with tokens"""

    ft8_text = ft8_text.lower()

    ft8_text = ft8_text.replace('.', ' <period> ')
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    ft8_text = ft8_text.replace(',', ' <comma> ')

    ft8_text = ft8_text.replace('"', ' <quotation> ')

    ft8_text = ft8_text.replace(';', ' <semicolon> ')

    ft8_text = ft8_text.replace('!', ' <exclamation> ')

    ft8_text = ft8_text.replace('?', ' <question> ')

    ft8_text = ft8_text.replace('(', ' <paren_l> ')

    ft8_text = ft8_text.replace(')', ' <paren_r> ')

    ft8_text = ft8_text.replace('--', ' <hyphen> ')

    ft8_text = ft8_text.replace(':', ' <colon> ')

    ft8_text_tokens = ft8_text.split()

    return ft8_text_tokens

ft_tokens = text_processing(full_text)

To improve the quality of the vector representations produced, it is 

recommended to remove the noise related to the words, i.e., words with a 

frequency of less than 7 in the input dataset, as these words will not have 

enough information to provide the context they are present in.

One can change this threshold by checking the distribution of the word 

count and in the dataset. For convenience, we have taken it as 7 here.

"""Shortlisting words with frequency more than 7"""

word_cnt = collections.Counter(ft_tokens)

shortlisted_words = [w for w in ft_tokens if word_cnt[w] > 7 ]

List the top words present in the dataset on the basis of their 

frequency, as follows:

print(shortlisted_words[:15])

> ['anarchism', 'originated', 'as', 'a', 'term', 'of', 'abuse', 

'first', 'used', 'against', 'early', 'working', 'class', 

'radicals', 'including']
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Check the stats of the total words present in the dataset.

print("Total number of shortlisted words : ",len(shortlisted_

words))

print("Unique number of shortlisted words : ",len(set(shortlisted_

words)))

> Total number of shortlisted words :  16616688

> Unique number of shortlisted words :  53721

To process the unique words present in the corpus, we have made a 

set of the words, followed by their frequency in the training dataset. The 

following function creates a dictionary and converts words to integers 

and, conversely, integers to words. The most frequent word is assigned the 

least value, 0, and in similar fashion, numbers are assigned to other words. 

Conversion of words to integers has been stored in a separate list.

def dict_creation(shortlisted_words):

    �"""The function creates a dictionary of the words present 

in dataset along with their frequency order"""

    counts = collections.Counter(shortlisted_words)

    vocabulary = sorted(counts, key=counts.get, reverse=True)

    �rev_dictionary_ = {ii: word for ii, word in 

enumerate(vocabulary)}

    �dictionary_ = {word: ii for ii, word in rev_dictionary_.

items()}

    return dictionary_, rev_dictionary_

dictionary_, rev_dictionary_ = dict_creation(shortlisted_words)

words_cnt = [dictionary_[word] for word in shortlisted_words]

The variables created up to this point are common and could be used 

in the implementation of the either of the word2vec models. The next 

subsections include the implementation of both architectures.
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�Skip-Gram Code
A subsampling approach has been coupled in the skip-gram model to deal 

with the stopwords in the text. All the words with higher frequency and 

without any significant context around the center words are removed by 

putting a threshold on their frequency. This results in faster training and 

better word vector representations.

Note  We have made use of the probability score function given in 
the paper on skip-gram for the implementation here. For each word, 
wi, in the training set, we’ll discard it with the probability given by 

P w
t

f wi
i

   
 













1

where t is a threshold parameter and f(wi) is the frequency of word 
wi in the total dataset.

"""Creating the threshold and performing the subsampling"""

thresh = 0.00005

word_counts = collections.Counter(words_cnt)

total_count = len(words_cnt)

freqs = {word: count / total_count for word, count in word_

counts.items()}

p_drop = {word: 1 - np.sqrt(thresh/freqs[word]) for word in 

word_counts}

train_words = [word for word in words_cnt if p_drop[word] < 

random.random()]
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As the skip-gram model takes the center word and predicts words 

surrounding it, the skipG_target_set_generation() function creates the 

input for the skip-gram model in the desired format:

def skipG_target_set_generation(batch_, batch_index, word_

window):

    �"""The function combines the words of given word_window 

size next to the index, for the SkipGram model"""

    random_num = np.random.randint(1, word_window+1)

    �words_start = batch_index - random_num if (batch_index - 

random_num) > 0 else 0

    words_stop = batch_index + random_num

    �window_target = set(batch_[words_start:batch_index] + 

batch_[batch_index+1:words_stop+1])

    return list(window_target)

The skipG_batch_creation() function makes use of the skipG_

target_set_generation() function and creates a combined format of the 

center word and the words surrounding it on either side as target text and 

returns the batch output, as follows:

def skipG_batch_creation(short_words, batch_length, word_

window):

    �"""The function internally makes use of the skipG_target_

set_generation() function and combines each of the label

    �words in the shortlisted_words with the words of word_

window size around"""

    batch_cnt = len(short_words)//batch_length

    short_words = short_words[:batch_cnt*batch_length]  

    for word_index in range(0, len(short_words), batch_length):

        input_words, label_words = [], []

        �word_batch = short_words[word_index:word_index+batch_

length]
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        for index_ in range(len(word_batch)):

            batch_input = word_batch[index_]

            �batch_label = skipG_target_set_generation(word_

batch, index_, word_window)

            �# Appending the label and inputs to the initial 

list. Replicating input to the size of labels in 

the window

            label_words.extend(batch_label)

            input_words.extend([batch_input]*len(batch_label))

            yield input_words, label_words

The following code registers a TensorFlow graph for use of the 

skip-gram implementation, declaring the variable’s inputs and labels 

placeholders, which will be used to assign one-hot-encoded vectors for 

input words and batches of varying size, as per the combination of the 

center and surrounding words:

tf_graph = tf.Graph()

with tf_graph.as_default():

    input_ = tf.placeholder(tf.int32, [None], name='input_')

    �label_ = tf.placeholder(tf.int32, [None, None], 

name='label_')

The code following declares variables for the embedding matrix, which 

has a dimension equal to the size of the vocabulary and the dimension of 

the word embedding vector:

with tf_graph.as_default():

    �word_embed = tf.Variable(tf.random_uniform((len(rev_

dictionary_), 300), -1, 1))

    embedding = tf.nn.embedding_lookup(word_embed, input_)
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The tf.train.AdamOptimizer uses Diederik P. Kingma and Jimmy 

Ba’s Adam algorithm (http://arxiv.org/pdf/1412.6980v8.pdf) to 

control the learning rate. For further information, refer additionally to the 

following paper by Bengio: http://arxiv.org/pdf/1206.5533.pdf.

"""The code includes the following :

 �# Initializing weights and bias to be used in the softmax layer

 # Loss function calculation using the Negative Sampling

 # Usage of Adam Optimizer

 # �Negative sampling on 100 words, to be included in the loss 

function

 # 300 is the word embedding vector size

"""

vocabulary_size = len(rev_dictionary_)

with tf_graph.as_default():

    �sf_weights = tf.Variable(tf.truncated_normal((vocabulary_

size, 300), stddev=0.1) )

    sf_bias = tf.Variable(tf.zeros(vocabulary_size) )

    �loss_fn = tf.nn.sampled_softmax_loss(�weights=sf_weights, 

biases=sf_bias,

                                         �labels=label_, 

inputs=embedding,

                                         �num_sampled=100, num_

classes=vocabulary_

size)

    cost_fn = tf.reduce_mean(loss_fn)

    optim = tf.train.AdamOptimizer().minimize(cost_fn)
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To ensure that the word vector representation is holding the semantic 

similarity among words, a validation set is generated in the following 

section of code. This will select a combination of common and uncommon 

words across the corpus and return the words closest to them on the basis 

of the cosine similarity between the word vectors.

"""The below code performs the following operations :

 # �Performing validation here by making use of a random 

selection of 16 words from the dictionary of desired size

 # Selecting 8 words randomly from range of 1000    

 �# Using the cosine distance to calculate the similarity 

between the words

"""

with tf_graph.as_default():

    validation_cnt = 16

    validation_dict = 100

    �validation_words = np.array(random.sample(range(validation_

dict), validation_cnt//2))

    �validation_words = np.append(validation_words, random.sample 

(range(1000,1000+validation_dict), validation_cnt//2))

    �validation_data = tf.constant(validation_words, dtype=tf.

int32)

    �normalization_embed = word_embed / (tf.sqrt(tf.reduce_

sum(tf.square(word_embed), 1, keep_dims=True)))

    �validation_embed = tf.nn.embedding_lookup(normalization_

embed, validation_data)

    �word_similarity = tf.matmul(validation_embed, 

tf.transpose(normalization_embed))
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Create a folder model_checkpoint in the current working directory to 

store the model checkpoints.

"""Creating the model checkpoint directory"""

!mkdir model_checkpoint

epochs = 2            # �Increase it as per computation 

resources. It has been kept low here 

for users to replicate the process, 

increase to 100 or more

batch_length = 1000

word_window = 10

with tf_graph.as_default():

    saver = tf.train.Saver()

with tf.Session(graph=tf_graph) as sess:

    iteration = 1

    loss = 0

    sess.run(tf.global_variables_initializer())

    for e in range(1, epochs+1):

        �batches = skipG_batch_creation(train_words, batch_

length, word_window)

        start = time.time()

        for x, y in batches:

            �train_loss, _ = sess.run([cost_fn, optim],

                                     �feed_dict={input_: x, 

label_: np.array(y)[:, 

None]})

            loss += train_loss

            if iteration % 100 == 0:

                end = time.time()
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                �print("Epoch {}/{}".format(e, epochs), ", 

Iteration: {}".format(iteration),

                      �", Avg. Training loss: {:.4f}".

format(loss/100),", Processing : {:.4f} 

sec/batch".format((end-start)/100))

                loss = 0

                start = time.time()

            if iteration % 2000 == 0:

                similarity_ = word_similarity.eval()

                for i in range(validation_cnt):

                    �validated_words = rev_dictionary_

[validation_words[i]]

                    top_k = 8 # number of nearest neighbors

                    �nearest = (-similarity_[i, :]).argsort()

[1:top_k+1]

                    log = 'Nearest to %s:' % validated_words

                    for k in range(top_k):

                        �close_word = rev_dictionary_

[nearest[k]]

                        log = '%s %s,' % (log, close_word)

                    print(log)

            iteration += 1

    �save_path = saver.save(sess, "model_checkpoint/skipGram_

text8.ckpt")

    embed_mat = sess.run(normalization_embed)

> Epoch 1/2 , Iteration: 100 , Avg. Training loss: 6.1494 , 

Processing : 0.3485 sec/batch

> Epoch 1/2 , Iteration: 200 , Avg. Training loss: 6.1851 , 

Processing : 0.3507 sec/batch

> Epoch 1/2 , Iteration: 300 , Avg. Training loss: 6.0753 , 

Processing : 0.3502 sec/batch
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> Epoch 1/2 , Iteration: 400 , Avg. Training loss: 6.0025 , 

Processing : 0.3535 sec/batch

> Epoch 1/2 , Iteration: 500 , Avg. Training loss: 5.9307 , 

Processing : 0.3547 sec/batch

> Epoch 1/2 , Iteration: 600 , Avg. Training loss: 5.9997 , 

Processing : 0.3509 sec/batch

> Epoch 1/2 , Iteration: 700 , Avg. Training loss: 5.8420 , 

Processing : 0.3537 sec/batch

> Epoch 1/2 , Iteration: 800 , Avg. Training loss: 5.7162 , 

Processing : 0.3542 sec/batch

> Epoch 1/2 , Iteration: 900 , Avg. Training loss: 5.6495 , 

Processing : 0.3511 sec/batch

> Epoch 1/2 , Iteration: 1000 , Avg. Training loss: 5.5558 , 

Processing : 0.3560 sec/batch

> ..................

> Nearest to during: stress, shipping, bishoprics, accept, 

produce, color, buckley, victor,

> Nearest to six: article, incorporated, raced, interval, 

layouts, confused, spitz, masculinity,

> Nearest to all: cm, unprotected, fit, tom, opold, render, 

perth, temptation,

> Nearest to th: ponder, orchids, shor, polluted, firefighting, 

hammering, bonn, suited,

> Nearest to many: trenches, parentheses, essential, error, 

chalmers, philo, win, mba,

> ..................
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A similar output will be printed for all other iterations, and the trained 

network will have been restored for further use.

"""The Saver class adds ops to save and restore variables to 

and from checkpoints."""

with tf_graph.as_default():

    saver = tf.train.Saver()

with tf.Session(graph=tf_graph) as sess:

    """Restoring the trained network"""

    �saver.restore(sess, tf.train.latest_checkpoint('model_

checkpoint'))

    embed_mat = sess.run(word_embed)

> INFO:tensorflow:Restoring parameters from model_checkpoint/

skipGram_text8.ckpt

We have used the t-distributed stochastic neighbor embedding (t-SNE) 

for the purpose of visualization (https://lvdmaaten.github.io/tsne/). 

The high-dimensional, 300 vector representation of 250 random words has 

been used across a two-dimensional vector space. t-SNE ensures that the 

initial structure of the vector is reserved in the new dimension, even after 

conversion.

word_graph = 250

tsne = TSNE()

word_embedding_tsne = tsne.fit_transform(embed_mat[:word_graph, :])

As we can observe in Figure 2-13, words with semantic similarity 

have been placed closer to one another in their representation in the 

two-dimensional space, thereby retaining their similarity even after the 

dimensions have been further reduced. For example, words such as year, 

years, and age have been placed near one another and far from words 
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Figure 2-13.  Two-dimensional representation of the word vectors 
obtained after training the Wikipedia corpus using a skip-gram model

such as international and religious. The model can be trained for a higher 

number of iterations, to achieve a better representation of the word 

embeddings, and further changes can be made in the threshold values, to 

fine-tune the results.
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�CBOW Code
The CBOW model considers the surrounding words and predicts the 

center word. Therefore, the batch and label generation have been achieved 

using the cbow_batch_creation() function, which assigns the target 

word in the label_ variable and the surrounding words in the context in 

the batch variable, when the desired word_window size is passed to the 

function.

data_index = 0

def cbow_batch_creation(batch_length, word_window):

    �"""The function creates a batch with the list of the label 

words and list of their corresponding words in the context of

    the label word."""

    global data_index

    �"""Pulling out the centered label word, and its next word_

window count of surrounding words

    �word_window : window of words on either side of the center 

word

    �relevant_words : length of the total words to be picked in 

a single batch, including the center word and the word_

window words on both sides

    Format :  [ word_window ... target ... word_window ] """

    relevant_words = 2 * word_window + 1

    �batch = np.ndarray(shape=(batch_length,relevant_words-1), 

dtype=np.int32)

    �label_ = np.ndarray(shape=(batch_length, 1), dtype=np.

int32)

    �buffer = collections.deque(maxlen=relevant_words)    

# Queue to add/pop
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    �#Selecting the words of length 'relevant_words' from the 

starting index

    for _ in range(relevant_words):

        buffer.append(words_cnt[data_index])

        data_index = (data_index + 1) % len(words_cnt)

    for i in range(batch_length):

        target = word_window  # Center word as the label

        �target_to_avoid = [ word_window ] # Excluding the 

label, and selecting only the surrounding words

        # add selected target to avoid_list for next time

        col_idx = 0

        for j in range(relevant_words):

            if j==relevant_words//2:

                continue

            �batch[i,col_idx] = buffer[j] # Iterating till the 

middle element for window_size length

            col_idx += 1

        label_[i, 0] = buffer[target]

        buffer.append(words_cnt[data_index])

        data_index = (data_index + 1) % len(words_cnt)

    �assert batch.shape[0]==batch_length and batch.shape[1]== 

relevant_words-1

    return batch, label_

Ensuring the cbow_batch_creation() function is working in 

accordance with the CBOW model input, a test sample of the first batch of 

label and words of window length 1 and 2 around it has been taken and the 

results are printed.
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for num_skips, word_window in [(2, 1), (4, 2)]:

    data_index = 0

    �batch, label_ = cbow_batch_creation(batch_length=8, word_

window=word_window)

    �print('\nwith num_skips = %d and word_window = %d:' % (num_

skips, word_window))

    �print('batch:', [[rev_dictionary_[bii] for bii in bi] for 

bi in batch])

    �print('label_:', [rev_dictionary_[li] for li in label_.

reshape(8)])

>>

> with num_skips = 2 and word_window = 1:

    �batch: [['anarchism', 'as'], ['originated', 'a'], ['as', 

'term'], ['a', 'of'], ['term', 'abuse'], ['of', 'first'], 

['abuse', 'used'], ['first', 'against']]

    �label_: ['originated', 'as', 'a', 'term', 'of', 'abuse', 

'first', 'used']

> with num_skips = 4 and word_window = 2:

    �batch: [['anarchism', 'originated', 'a', 'term'], 

['originated', 'as', 'term', 'of'], ['as', 'a', 'of', 'abuse'], 

['a', 'term', 'abuse', 'first'], ['term', 'of', 'first', 

'used'], ['of', 'abuse', 'used', 'against'], ['abuse', 'first', 

'against', 'early'], ['first', 'used', 'early', 'working']]

    �label_: ['as', 'a', 'term', 'of', 'abuse', 'first', 'used', 

'against']

The following code declares the variables being used in the CBOW 

model configuration. The word-embedding vector has been assigned a 

size of 128, and on either side of the target word, 1 word has been taken 

into account for the prediction, as follows:
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num_steps = 100001

"""Initializing :

   # 128 is the length of the batch considered for CBOW

   # 128 is the word embedding vector size

   # Considering 1 word on both sides of the center label words

   �# �Consider the center label word 2 times to create the 

batches

"""

batch_length = 128

embedding_size = 128

skip_window = 1

num_skips = 2

To register a TensorFlow graph for use of the CBOW implementation 

and to calculate the cosine similarity between the vectors produced, use 

the following code:

Note T his is a separate graph from the one used in the skip-gram 
code, so both the codes could be used in a single script.

"""The below code performs the following operations :

 # �Performing validation here by making use of a random 

selection of 16 words from the dictionary of desired size

 # Selecting 8 words randomly from range of 1000    

 # �Using the cosine distance to calculate the similarity 

between the words

"""

tf_cbow_graph = tf.Graph()

with tf_cbow_graph.as_default():

    validation_cnt = 16
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    validation_dict = 100

    �validation_words = np.array(random.sample(range(validation_

dict), validation_cnt//2))

    �validation_words = np.append(validation_words,random.sample

(range(1000,1000+validation_dict), validation_cnt//2))

    �train_dataset = tf.placeholder(tf.int32, shape=[batch_

length,2*skip_window])

    �train_labels = tf.placeholder(tf.int32, shape=[batch_

length, 1])

    �validation_data = tf.constant(validation_words, dtype=tf.

int32)

"""

Embeddings for all the words present in the vocabulary

"""

with tf_cbow_graph.as_default() :

    vocabulary_size = len(rev_dictionary_)

    �word_embed = tf.Variable(tf.random_uniform([vocabulary_

size, embedding_size], -1.0, 1.0))

    �# Averaging embeddings accross the full context into a 

single embedding layer

    context_embeddings = []

    for i in range(2*skip_window):

        �context_embeddings.append(tf.nn.embedding_lookup(word_

embed, train_dataset[:,i]))

    �embedding =  tf.reduce_mean(tf.stack(axis=0,values=context_

embeddings),0,keep_dims=False)
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The following section of code computes the softmax loss using the 

negative sampling of 64 words and further optimizes the weights, biases, 

and word embeddings produced across the model training. The AdaGrad 

optimizer(www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf) has 

been used for this purpose.

"""The code includes the following :

 # �Initializing weights and bias to be used in the softmax 

layer

 # Loss function calculation using the Negative Sampling

 # Usage of AdaGrad Optimizer

 # �Negative sampling on 64 words, to be included in the loss 

function

"""

with tf_cbow_graph.as_default() :

    �sf_weights = tf.Variable(tf.truncated_normal([vocabulary_

size, embedding_size],

                     �stddev=1.0 / math.sqrt(embedding_size)))

    sf_bias = tf.Variable(tf.zeros([vocabulary_size]))

    �loss_fn = tf.nn.sampled_softmax_loss(weights=sf_weights, 

biases=sf_bias, inputs=embedding,

                           �labels=train_labels, num_sampled=64, 

num_classes=vocabulary_size)

    cost_fn = tf.reduce_mean(loss_fn)

    """Using AdaGrad as optimizer"""

    optim = tf.train.AdagradOptimizer(1.0).minimize(cost_fn)
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Further, a cosine similarity is computed to ensure the closeness of the 

semantically similar words.

"""

Using the cosine distance to calculate the similarity between 

the batches and embeddings of other words

"""

with tf_cbow_graph.as_default() :

    �normalization_embed = word_embed / tf.sqrt(tf.reduce_

sum(tf.square(word_embed), 1, keep_dims=True))

    �validation_embed = tf.nn.embedding_lookup(normalization_

embed, validation_data)

    �word_similarity = tf.matmul(validation_embed, 

tf.transpose(normalization_embed))

with tf.Session(graph=tf_cbow_graph) as sess:

    �sess.run(tf.global_variables_initializer())

    avg_loss = 0

    for step in range(num_steps):

        �batch_words, batch_label_ = cbow_batch_creation(batch_

length, skip_window)

        �_, l = sess.run([optim, loss_fn], feed_dict={train_

dataset : batch_words, train_labels : batch_label_ })

        avg_loss += l

        if step % 2000 == 0 :

            if step > 0 :

                avg_loss = avg_loss / 2000

            �print('Average loss at step %d: %f' % (step, 

np.mean(avg_loss) ))

            avg_loss = 0

        if step % 10000 == 0:

            sim = word_similarity.eval()
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            for i in range(validation_cnt):

                �valid_word = rev_dictionary_[validation_

words[i]]

                top_k = 8 # number of nearest neighbors

                nearest = (-sim[i, :]).argsort()[1:top_k+1]

                log = 'Nearest to %s:' % valid_word

                for k in range(top_k):

                    �close_word = rev_dictionary_[nearest[k]]

                    log = '%s %s,' % (log, close_word)

                print(log)

    final_embeddings = normalization_embed.eval()

> Average loss at step 0: 7.807584

> Nearest to can: ambients, darpa, herculaneum, chocolate, 

alloted, bards, coyote, analogy,

> Nearest to or: state, stopping, falls, markus, bellarmine, 

bitrates, snub, headless,

> Nearest to will: cosmologies, valdemar, feeding, synergies, 

fence, helps, zadok, neoplatonist,

> Nearest to known: rationale, fibres, nino, logging, 

motherboards, richelieu, invaded, fulfill,

> Nearest to no: rook, logitech, landscaping, melee, eisenman, 

ecuadorian, warrior, napoli,

> Nearest to these: swinging, zwicker, crusader, acuff, ivb, 

karakoram, mtu, egg,

> Nearest to not: battled, grieg, denominators, kyi, 

paragliding, loxodonta, ceases, expose,

> Nearest to one: inconsistencies, dada, ih, gallup, ayya, 

float, subsumed, aires,

> Nearest to woman: philibert, lug, breakthroughs, ric, raman, 

uzziah, cops, chalk,
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> Nearest to alternative: kendo, tux, girls, filmmakers, 

cortes, akio, length, grayson,

> Nearest to versions: helvetii, moody, denning, latvijas, 

subscripts, unamended, anodes, unaccustomed,

> Nearest to road: bataan, widget, commune, culpa, pear, 

petrov, accrued, kennel,

> Nearest to behind: coahuila, writeup, exarchate, trinidad, 

temptation, fatimid, jurisdictional, dismissed,

> Nearest to universe: geocentric, achieving, amhr, hierarchy, 

beings, diabetics, providers, persistent,

> Nearest to institute: cafe, explainable, approached, 

punishable, optimisation, audacity, equinoxes, excelling,

> Nearest to san: viscount, neum, sociobiology, axes, 

barrington, tartarus, contraband, breslau,

> Average loss at step 2000: 3.899086

> Average loss at step 4000: 3.560563

> Average loss at step 6000: 3.362137

> Average loss at step 8000: 3.333601

> .. .. .. ..

Using t-SNE for visualization purposes, the high-dimensional, 128, 

vector representation of 250 random words has been used to show the 

result across a two-dimensional space.

num_points = 250

tsne = TSNE(perplexity=30, n_components=2, init='pca',  

n_iter=5000)

embeddings_2d = tsne.fit_transform(final_embeddings[1:num_

points+1, :])
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The cbow_plot() function plots the dimensionally reduced vectors.

def cbow_plot(embeddings, labels):

    �assert embeddings.shape[0] >= len(labels), 'More labels 

than embeddings'

    pylab.figure(figsize=(12,12))

    for i, label in enumerate(labels):

        x, y = embeddings[i,:]

        pylab.scatter(x, y)

        �pylab.annotate(label, xy=(x, y), xytext=(5, 2), 

textcoords='offset points', ha='right', va='bottom')

    pylab.show()

words = [rev_dictionary_[i] for i in range(1, num_points+1)]

cbow_plot(embeddings_2d, words)

Figure 2-14 also illustrates that the words with semantic similarity 

are placed closer to one another in their two-dimensional space 

representation. For example, words like right, left, and end have been 

placed next to one another and far from such words as one, two, three, etc.

Among all the words presented here, we can observe, at the bottom 

left of the graph, that those related to a single alphabet are placed closer 

to one another. This helps us to understand how the model works and 

allocates the single characters with no significant meaning with similar 

word embeddings. The absence of such words as a and i in this cluster 

indicates that the word embeddings for the two alphabets related to these 

two words are not similar to other individual alphabets, as these hold 

actual meaning in the English language and are used more often than 

other alphabets, in which they are merely signs of a typo in the training 

dataset. A further training of the model with higher iterations can attempt 

to bring the vectors of these alphabets closer or further from the actual 

meaningful words of the language.
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Note  Both CBOW and skip-gram methods use the local statistics to 
learn the word vector embeddings. Sometimes, better representations 
can be learned by exploring the global statistics of word pairs, and GloVe 
and FastText methodologies exploit this. One can refer to the following 
papers, respectively, for GloVe (https://nlp.stanford.edu/pubs/
glove.pdf) and FastText (https://arxiv.org/pdf/1607.04606.
pdf) for further details on the algorithms concerned.

Figure 2-14.  Two-dimensional representation of the word vectors 
obtained after training the Wikipedia corpus using the CBOW model
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�Next Steps
This chapter introduced the word representation models used across 

research and industry domains. In addition to word2vec, one can also 

explore GloVe and FastText as other options for word embedding. We have 

tried to give a sample of one of the available approaches for word embed-

dings, using CBOW and skip-gram. In the next chapter, we will emphasize 

the different types of neural networks available, such as RNNs, LSTMs, 

Seq2Seq, along with their use cases for textual data. The knowledge com-

bined from all the chapters will assist the reader in executing the entire 

pipeline of any project combining deep learning and natural language 

processing.
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CHAPTER 3

Unfolding Recurrent 
Neural Networks
This chapter covers the use of contextual information across text. With 

textual work in any form, i.e., speech, text, and print, and in any language, 

to understand the information provided in it, we try to capture and relate 

the present and past contexts and aim to gain something meaningful from 

them. This is because the structure of text creates a link within a sentence 

and across sentences, just like thoughts, which are persistent throughout.

Traditional neural networks lack the ability to capture knowledge from 

previous events and pass it on to future events and related predictions. In 

this chapter, we will introduce a family of neural networks that can help us 

in persisting information over an extensive period.

In deep learning, all problems are generally classified into two types:

•	 Fixed topological structure: For images having static 

data, with use cases such as image classification

•	 Sequential data: For text/audio with dynamic data, in 

tasks related to text generation and voice recognition

Most problems with static data are solved using convolution neural 

networks (CNNs), and most problems related to sequential data are 

handled via recurrent neural networks (RNNs), particularly by long short-

term memory (LSTM) methods. We will be going through both types of 

networks in detail throughout this chapter and cover use cases of the RNNs.
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In a normal feedforward network, the output to be classified at time 

t will not necessarily have any relation to the previous outputs that have 

been classified. In other words, the previously classified outputs don’t play 

any role in the following classification problem.

But this is not practical, as there are few scenarios in which we must 

have the previous outputs to predict the new outputs. For example, while 

reading a book, we must know and remember the context mentioned in 

the chapters and what is being discussed throughout the book. Another 

major use case is sentiments analysis of a large portion of text. For all such 

problems RNNs have proven to be a very useful resource.

RNNs and LSTM networks have applications in diverse fields, 

including

•	 Chatbots

•	 Sequential pattern identification

•	 Image/handwriting detection

•	 Video and audio classification

•	 Sentiment analysis

•	 Time series modeling in finance

�Recurrent Neural Networks
Recurrent neural networks are very effective and are able to perform 

computations of almost any type. RNNs have varied sets of use cases and 

can implement a set of multiple smaller programs, with each painting a 

separate picture on its own and all learning in parallel, to finally reveal the 

intricate effect of the collaboration of all such small programs.
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RNNs are capable of performing such operations for two principal 

reasons:

•	 Hidden states being distributive by nature, store a lot of 

past information and pass it on efficiently.

•	 Hidden states are updated by nonlinear methods.

�What Is Recurrence?
Recurrence is a recursive process in which a recurring function is called at 

each step to model the sets of temporal data.

What is a temporal data? Any unit of data that is dependent on the 

previous units of the data, particularly sequential data. For example, 

a company’s share price is dependent on the prices of the share on 

previous days/weeks/months/years, hence, dependence on previous 

times or previous steps is important, thereby making such types of models 

extremely useful.

So, the next time you see any type of data having a temporal pattern, 

try using the types of models being discussed in the subsequent sections of 

this chapter, but be forewarned: have tons of data!

�Differences Between Feedforward and Recurrent 
Neural Networks
In a normal feedforward network, data is fed to it discretely, without 

taking account of temporal relations. Such types of networks are useful for 

discrete prediction tasks, as the features aren’t dependent on each other 

temporally. This represents the simplest form of neural network, with 

signals flowing in one direction, i.e., from input to output.
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For example, if we took three months’ stock price data and tried to 

predict the next month’s price based on it, a feedforward network would 

take the data from the previous three months at once, as if there were no 

interdependence of data, which could turn out not to be the case.

However, a recurrent neural network would take the data for each 

month at a time, just like a time series model.

x t x t constant   1

A similar functionality of this concept drives RNNs to first perform 

some computation on the information of the past interval, say t − 1, and 

use it with the computation done on the present interval data, say t, and 

combine both to generate results for the next intervals.

A quick look at the differences between feedforward neural networks 

and RNNs reveals that the feedforward neural network takes decisions 

based only on the current input, and an RNN takes decisions based on the 

current and previous inputs and makes sure that the connections are built 

across the hidden layers as well.

Following are the main limitations of feedforward neural networks:

•	 Unsuitable for sequences, time series data, video 

streaming, stock data, etc.

•	 Do not bring memory factor in modeling

Figure 3-1 illustrates the differences between one type of RNN and a 

feedforward neural network.
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�Recurrent Neural Network Basics
We will quickly cover a thorough use case of RNNs before covering its 

basics and getting into its applications for NLP. Let’s consider an example 

in which the RNN learns how a sum operator works and try to replicate it.

RNNs belong to family of algorithms with very powerful sequence 

modeling, and here we are going to see how, if given a sequence of binary 

inputs, the model is capable of adding the digits and providing us the 

summation as an output with almost perfect accuracy.

Given a binary string (a string with just 0s and 1s) of length 20, 

we must determine the count of 1s in a binary string. For example, 

“01010010011011100110” has 11 1s. So, the input for our program will be a 

string of length 20 that contains 0s and 1s, and the output must be a single 

number between 0 and 20 that represents the number of 1s in the string.

This task seems easy from a normal programming perspective, and 

the reader might think it similar to any typical “Hello World” problem. 

However, if we think of it from a machine’s point of view, it is a model that 

can add numbers, a model that takes sequential binary inputs to give a 

summation. Well that’s what we are dealing with!

(a) Recurrent neural network (b) Forward neural network

hidden

hidden

hidden

hidden

hidden

hidden

Figure 3-1.  Structural differentiation between a sample RNN and 
feedforward neural network

Chapter 3  Unfolding Recurrent Neural Networks



124

Let’s get our hands dirty and define certain key terms for RNNs. Before 

that, one thing to keep in mind while performing any deep learning model 

is the shape of a tensor being fed to the model as input. A tensor can be 

of any dimension, 3-D/4-D, when fed as input to the model. We can think 

of it as a list of lists of lists. This is a bit complex to understand at first, but 

we will see how to break this concept into further smaller and meaningful 

representations.

Note  [ [ [ ] ] ] is a 3-D tensor with three lists placed in 
hierarchically.

RNN requires a 3-D tensor as input, and it can be broken perfectly into 

the components shown in Figure 3-2.

Figure 3-2.  Component-wise detail of a 3-D tensor used as input for 
RNN

Note T here is no need to remember any of these, and as we go 
on looking at the structure of RNNs, you will understand the reasons 
behind considering the components in such a manner.
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In the current problem, we are taking 20 time steps, or a sequence 

input of length 20, and each time step is being represented in 1-D, i.e., with 

a value of 0 or 1. The input time step can be in a different dimension, as per 

the problem at hand. Figure 3-3 shows the architecture of the model we 

will be using.

Figure 3-3.  RNN model architecture to compute the number of 1s in 
a 20 length sequence of binary digits

In the model diagram, we can see that we have taken each of the 

binary units as an input at each of the time steps, i.e., 20 time steps, and 

passed them through a hidden layer, which is a recurrent layer in this case, 

and taken the output of the final layer to a normal classification multilayer 

perceptron.
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Thus, the input to the TensorFlow’s RNN is of the form

List =   �[ [ [0] [1] [1] [1] [0] [0] [1] [1] [0] [1] [1] [1] 

[0] [0] [1] [1] [0] [1] [1] [1] ],

         �[ [0] [1] [1] [1] [0] [0] [1] [1] [0] [1] [1] [1] [0] 

[0] [1] [1] [0] [1] [1] [1] ] ,    

         �...., [ [0] [1] [1] [1] [0] [0] [1] [1] [0] [1] [1] 

[1] [0] [0] [1] [1] [0] [1] [1] [1] ]   ]

We recommend not focusing on the actual training part, because once 

you understand the data flow process, the training part becomes easier to 

understand, and you can train multiple related models. For once, don’t 

shift your attention from the hidden RNN layers shown in the figure, and 

try to get the gist of the input being given to the model.

We will consider a slightly more complex example and try to use 

recurrent neural nets for sentiment classification (one of the most basic 

tasks in the field of NLP), as we go further.

�Natural Language Processing and Recurrent 
Neural Networks
From the previous theories and explanations, one can easily guess that 

RNNs are tailor-made for sequential tasks, and what suits this problem 

statement more is language. From childhood, we humans have our brain 

specifically trained for proper structuring of any language. Let’s assume 

English as being the most common language spoken across a major 

population. We know the prevalent structure of the language while we are 

talking and writing, because we have been taught it since childhood, and 

we are able to decipher it without any great effort.

We are supposed to make use of the proper language by using its 

grammar, which makes up the base rules of the language. Traditionally, 

NLP tasks are extremely difficult, because of the vastness of the grammar 

of different languages.

Chapter 3  Unfolding Recurrent Neural Networks



127

Hard-coding of the constraints with respect to each of the languages 

has its own drawbacks. No one wants to get in the weeds of hundreds and 

thousands of grammar rules present across diverse languages of world, 

and no one wants to learn or code it further, as per custom business 

requirements.

What saves us from all such hassles is deep learning, which targets the 

learning of the complex local structural formulation of all the languages 

and uses this learning to crack the complexities present in the problem set.

So, finally, we let our baby deep learning model, belonging to RNN 

category, learn on its own. We feed it the sequences of English sentences 

word-by-word and let it train on some supervised label, say, positive or 

negative for sentiment classification, or 1,2,3,4,5 for Star rating of text, for 

the time being.

Let’s try to understand this by considering an example of the n-gram 

language model. Here, if we have four preceding words, 4-gram, our model 

has the capability to predict the most probable fifth word, by using the past 

information from the occurrences of such types of combinations of four 

words. Such types of models have direct use cases in problems such as 

Google Search for autocomplete suggestions.

Note T he actual models used for Google Search are not just direct 
implementations of any n-gram but a combination of much more 
complex models.

Let’s try to understand this concept by considering a basic example. 

Suppose we have a normal sentence in English: “Sachin is a great 

cricketer.” We can then represent this sentence in accordance with the 

input being taken by our deep learning model in the manner shown in 

Figure 3-4.
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Here, the last word, cricketer, can be judged from the sequence of 

previous four words Sachin is a great. We can judge that “Sachin is a 

great”—what? One answer could be “cricketer,” as our thinking with 

respect to such a question and context has been modeled that way. 

Similarly, in some cases, we want the model to consider past historical 

events and make a prediction regarding future events. The events could be 

related to the information we are able to extract from the text as well.

A feedforward network takes the entire sentence as input at one go, 

whereas an RNN takes each of the words one by one and then aims to 

classify the given text. The preceding diagram would make it clearer.

The RNN takes the input in the form of the word embedding, which 

has been covered in Chapter 2, with two different types of models, CBOW 

and Skip-gram.

The word2vec models aim to initialize random vectors for each word, 

which are further learned to have meaningful vectors, to perform specific 

tasks. The word vectors can be formed of any given dimension and are able 

to encapsulate the information accordingly.

Figure 3-4.  Inputting the “Sachin is a great” sentence into the 
model
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�RNNs Mechanism
RNNs have creative applications in diverse fields, ranging from audio and 

text to images, including music generation, character generation, machine 

translation, etc. Let’s try to understand the functional process of RNNs 

in a more beginner-friendly way and such that anyone with a non–deep 

learning background can understand it as well (Figure 3-5).

We are going to use the NumPy library for vector multiplications and 

depict the internal mathematics. This step function is recalled at each time 

step, i.e., recursion.

V V V V
W

W

W W W

U U U U

s

x

o
ot -1 ot+1

st -1 st+1

xt -1 xt

st

xt+1

ot

Unfold

Figure 3-5.  Unrolled recurrent neural network

First, defining the RNN class:

class RNN:

  # ...

  def step(self, x):

    # Update the Hidden state

    �self.h = np.tanh(np.dot(self.W_hh, self.h) + np.dot 

(self.U_xh, x))

    # Compute the Output vector

    o = np.dot(self.V_hy, self.h)

    return o
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The preceding pseudo code specifies the forward pass of a basic 

RNN. The function step is called at each time step of the RNN class. The 

parameters of this RNN are the three matrices ( W_hh, U_xh, V_hy ).

Following are the dimensions of each of the weight matrices from the 

preceding pseudo code and its equivalent entity from Figure 3-5:

•	 Xt is input at time step t.

•	 St is the hidden state at time step t. It’s the “memory” 

of the network and is calculated based on the previous 

hidden state and the input at the current step.

•	 Uxh is mapping from input (x) to hidden layer (h), 

hence, h × dimension (x), where the dimension of x is 

the dimension of each time step input (1, in the case 

of a binary summation). Refer to the U matrix in the 

preceding figure.

•	 Whh is mapping across hidden states, hence, h × h. Refer 

to the W matrix in the preceding figure.

•	 Vhy is mapping from the final hidden layer to output 

y. Hence, h x dimension (y), where the dimension of 

y is the dimension of the output (20, in the case of the 

binary summation case considered previously). Refer 

to the V matrix in the preceding figure.

•	 ot is the output at step t. For example, if we wanted to 

predict the next word in a sentence, it would be a vector 

of probabilities across our vocabulary.

The hidden state self.h is initialized with the zero vector. The np.tanh 

function implements a nonlinearity that squashes the activations to the 

range (-1, 1).
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Notice briefly how this works. There are two terms inside of the tanh 

function: the first is based on the previous hidden state, and the second 

is based on the current input. In NumPy, np.dot performs the matrix 

multiplication.

The two intermediates interact with the addition and then get 

squashed into the new state vector by the tanh function. To infer the 

hidden state update in terms of mathematical notation, we can rewrite it as 

follows:

h f W h U xt hh t xh t  1 1* *

where f1 is generally taken as tanh or sigmoid and is applied element-wise.

We initialize the matrices of the RNN with random numbers, and 

the bulk of work performed during the training stage goes into the 

computation of the ideal matrices that give rise to the desirable behavior. 

This is measured with some loss function that expresses our preference 

for what kinds of outputs, o, we would like to see in response to our input 

sequences, x.

We can train an RNN model in multiple ways. However, agnostic to any 

specific way, RNNs have a very peculiar problem, and it is faced because, 

as the weights are propagated through time, they are multiplied recursively 

in the preceding functions, thereby giving rise to the following two types of 

scenarios:

•	 Vanishing gradient: If the weights are small, the 

subsequent values will keep on getting smaller and 

tend to ~0.

•	 Exploding gradient: If the weights are big, the final 

value will approach infinity.
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Both of these problems make RNNs very sensitive to the number of 

time step or sequence limits. We can understand this in a detailed way 

by considering the output of the RNN. The output of an RNN network is 

represented as follows:

h f Ux Vht t t  2 1

where U and V are the weight matrices connecting the inputs and the 

recurrent outputs, respectively, and f2 is softmax for classification tasks, 

and L2 norm (squared error) is for regression tasks. Softmax here is on the 

ht outputs.

Note, however, that if we refer to, say, three time steps in our recurrent 

neural network (explained in the previous section), we have the following:

h Ux V Ux V Uxt t t t     ( ( ( ( ( )))))1 2

From the preceding equation, we can infer, as the network grows 

deeper by the addition of more complex layers, and with propagation over 

time, that it will lead to gradient vanishing or exploding problems.

The gradient problem with the sigmoid function occurs when the 

input values are such that the output is close to either 0 or 1. At this point, 

the gradient is very small and tends to vanish, as shown in Figure 3-6.
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Figure 3-7 illustrates the vanishing gradient problem in a RNN.

Figure 3-6.  Logistic curve, at top, along with its first degree 
differentiation, below

Figure 3-7.  Example of vanishing gradient

As shown in the preceding figure (h0, h1, h2, and h3, are hidden 

states), at each time step, when we run the backpropagation algorithm, 

the gradient gets smaller and smaller, and by the time we get back to the 

beginning of the sentence, we have a gradient so small that it effectively 

has no capability to have a significant effect on the parameters that must 

be updated. The reason why this effect occurs is because unless d ht − 1/d ht  

is exactly 1, or d ht − 1/d ht = 1, it will tend to either diminish or amplify the 
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gradient d l/d ht, and when this diminishes or its amplification is done 

repeatedly, it will have an exponential effect on the gradient of the loss.

To solve this problem, a specific type of hidden layer, called a long 

short-term memory (LSTM) network, and gated rectified units (GRUs) 

are used. The latter are special gated cells designed to intrinsically handle 

such scenarios. We will go through these briefly in later sections of this 

chapter.

�Training RNNs
One of the most remarkable things about RNNs is their ability to be so 

flexible with respect to training that they can perform excellently on a wide 

range of problems, in both supervised and unsupervised domains. Before 

proceeding to the main topic, let’s learn the deep secret about the hidden 

states (LSTM/GRU/sigmoidal neurons).

A curious mind might wonder exactly what a hidden state is. Is it like a 

normal feedforward network? Or is it even more complex in nature?

The answer to the preceding questions is that the mathematical 

representation of any hidden state is the same as that of any normal 

feedforward network, and it does represent the hidden features of the 

input, for any static/stateless dimension.

However, as we have seen with the special recurrence property of 

RNNs, in the hidden states of RNNs for any time interval step, it represents 

a contextual representation of all the previous time steps in a compressed 

dense manner. It holds, too, the semantic sequential information in the 

dense vector.

For example, the hidden state at time t, H(t), contains some noisy and 

some true information of the time intervals X(t-1), X(t-2), . . . , X(0).

Considering the RNN training, for any problem with supervised 

learning, we must find a Loss function that helps in the update of weights 

that were initialized randomly, either through backpropagation or gradient 

descent.
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Note R eaders unfamiliar with backpropagation implementation 
shouldn’t be too worried, as modern libraries like TensorFlow 
and PyTorch have super-fast auto-differentiation processes that 
make such tasks much easier. One need only define the network 
architecture and targets. However, readers are advised to go through 
the backpropagation technique thoroughly, to experiment more 
with neural networks, as this serves as the backbone of any neural 
network training.

Now, let’s create our initial example of binary sequence summation. 

Following is an explanation, in a step-by-step manner, of how the network 

functions and trains:

	 1.	 Initialize the hidden states to a random number 

vector (size of the hidden layer is the free parameter 

that we set).

	 2.	 Feed the binary number, 0 or 1, at each sequence 

step. Hence, calculating and updating the hidden 

vector at each step according to the following 

equation:

H t U X t V H t        tanh 1

where, ‘.’ represents the dot product between the two 

matrices, and H, X, U, V have the same references as 

before.

	 3.	 The last hidden layer (specifically in this case) is 

taken as output and fed into another multilayer 

perceptron (feedforward network).
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So, basically, the last layer is a representation of the entire sequence, 

and this last layer (hidden representation at time t) is the most important 

layer. However, other hidden states at earlier time intervals {t-1, t-2,…, 0} 

can also be utilized for other purposes.

Note  Unlike with traditional backpropagation, RNNs have a specific 
algorithm called backpropagation through time (BPTT). In BPTT, the 
gradient update for a layer at time t, is dependent on time t-1, t-2,…, 0.  
So, in all its forms, backpropagation is done through sequential time 
steps. However, if one understands BPTT, it becomes apparent that it 
is just a special case of normal backpropagation.

Apart from training by taking the output from the last hidden layer, 

if one has a curious/intuitive mind, he/she may have wondered why we 

have not taken all the hidden states and averaged them out. Indeed, that’s 

another means. If the reader has already concluded that, then it’s good to 

know he/she is getting a good grasp on RNNs! Figure 3-8 displays multiple 

ways of utilizing the model output(s).
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�Meta Meaning of Hidden State of RNN
The hidden states in an RNN have immense importance. Apart from being 

the mathematical output of matrix multiplications, RNN hidden states 

hold some critical information about the data, i.e., particularly sequential 

information. The last hidden states of an RNN are capable of a wide variety 

of highly creative tasks. For example, there is a remarkably intuitive model 

called sequence-to-sequence (seq-to-seq or seq2seq) models. These 

models are used for machine translation, image captioning, etc. We will 

give a brief overview of how it works in the next sections, but coding and 

other details related to it is beyond the scope of this book.

Let’s say we have a sentence in English, and we want to automatically 

convert/translate it into French using a seq2seq model. Intuitively, we 

feed the RNN model with a sequence of words, an English sentence, and 

consider only the last hidden output. This hidden output seems to store 

the most relevant information of the sentence. Next, we use this hidden 

state to initialize another RNN that will do the conversion. So simple, right?

Figure 3-8.  An RNN can be trained in multiple ways, as required. 
One can take output of just the last time step, or all the time steps, or 
take the average of all the time steps.
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�Tuning RNNs
RNNs are highly critical to input variables and are very receptive in nature. 

A few of the important parameters in RNNs that play a major role in the 

training process include the following:

•	 Number of hidden layers

•	 Number of hidden units per layer (usually chosen as 

same number in each layer)

•	 Learning rate of the optimizer

•	 Dropout rate (initially successful dropout in RNNs 

is applied to feedforward connections only, not to 

recurrent ones)

•	 Number of iterations

Generally, we can plot the output with validation curves and learning 

curves and check for overfitting and underfitting. Training and testing 

the error at each split should be plotted, and according to the problem 

we check, if it is an overfit, then we can decrease the number of hidden 

layers, or hidden neurons, or add dropout, or increase the dropout rate, 

and vice versa.

However, apart from these considerations, the other major problem 

is with weights, for which we have weight/gradient clipping and multiple 

initialization functions in the TensorFlow library.

�Long Short-Term Memory Networks
LSTM networks were first introduced by Sepp Hochreiter and Jürgen 

Schmidhuber in 1997 and solved the problem of retaining information 

for RNNs over longer time periods (www.bioinf.jku.at/publications/

older/2604.pdf).
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RNNs have proven to be the only choice for dealing with problems 

related to sequence classification, and they have proven to be appropriate 

to retain the information from the previous input data and to use that 

information to modify the output at any time step. However, if the length 

of the sequence is long enough, then the gradients computed during the 

training process of the RNN model, specifically backpropagation, either 

vanishes, owing to the cumulative multiplication effect of values between 

0 and 1, or explodes, again owing to the cumulative multiplication of large 

values, thereby causing the model to train in a relatively slow manner.

A LSTM network is the savior here. It is the type of RNN architecture 

that helps in training the model over lengthy sequences and in the 

retention of the memory from previous time steps of input fed to the 

model. Ideally, it solves the gradient vanishing or gradient explosion 

problem, by introducing additional gates, input and forget gates, which 

allow for a better control over the gradient, by enabling what information 

to preserve and what to forget, thus controlling the access of the 

information to the present cell’s state, which enables better preservation of 

“long-range dependencies.”

Even though we could try other activation functions, such as ReLU, to 

reduce the problem, they would not solve the problem completely. This 

drawback of RNN led to the rise in the use of LSTM networks to effectively 

resolve the issue.

�Components of LSTM

LSTM networks also have a chainlike structure, but the repeating module 

has a different structure. Instead of having a single neural network layer, 

there are four, interacting in a very special way. The structure of an LSTM 

cell is shown in Figure 3-9.
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LSTM is formed using multiple gates, which serve as a good option for 

regulating the information passing through. They have a sigmoid neural 

net layer, with output in [0,1] to weigh the passing limit of the component, 

and a point-wise multiplication operation.

In the preceding figure, Ci is the cell state, which is present across all 

the time steps and is changed by the interactions at each of the time steps. 

To retain the information flowing across an LSTM via the cell state, it has 

three types of gates:

•	 Input gate: To control the contribution from a new 

input to the memory

i W h x bt i t t i    1 ,

tan Ct t t cW h x b= ⋅[ ]+( )−h 1 ,

Here xt denotes the input at time step t, ht - 1 denotes the hidden state 

at time step t-1, it denotes the input gate layer output at time step t, Ćt 

refers to candidate values to be added to input gate output at time step t, 

bi and bc denote the bias for the input gate layer and the candidate value 

computation, Wi and Wc denote the weights for the input gate layer and the 

candidate value computation.
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Figure 3-9.  LSTM module with four interacting layers
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•	 Forget gate: To control the limit up to which a value is 

pertained in the memory

f W h x bt f t t f    1,

Here, ft denotes the forget state at time step t and, Wf and bf denote the 

weights and bias for the forget state at time step t.

 

•	 Output gate: To control up to what limit memory 

contributes in the activation block of output

o W h x bt o t t o    . ,1

h o Ct t t  *tanh

Here, ot denotes the output gate output at time step t, and Wo and bo 

denote the weights and bias for the output gate at time step t.
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Today, LSTM networks have become a more popular choice than 

basic RNNs, as they have proven to work tremendously on diverse sets of 

problems. Most remarkable results are achieved with LSTM networks than 

RNNs, and now the phenomenon has extended such that wherever an 

RNN is quoted, it usually refers to LSTM network only.

�How LSTM Helps to Reduce the Vanishing Gradient 
Problem

As we have mentioned previously, in a basic RNN, a vanishing gradient 

occurs during backpropagation, i.e., while calculating the gradient to update 

the weights, because it involves cascading of partial derivatives, and each 

of the partial derivatives involves a σ term, i.e., a sigmoid neural net layer. 

As the value of each of the sigmoid derivatives might become less than 1, 

thereby making the overall gradient values small enough that they won’t be 

able to further update the weights, that means the model will stop learning!
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Now, in an LSTM network, the output of the forget gate is

C Ct t t t tf i= +−* *1

So, the partial derivative of C with respect to its time lagged value Ct -1 will 

get the value ft°, times the number of times of the partial derivatives. Now, 

if we set the output of f = 1, there will be no decay of gradient, which means 

that all the past input will be remembered in the cell. During the training 

process, the forget gate will decide which information is important to keep 

and which to delete.

Understanding GRUs

There is a large number of variations of LSTM being used today. One 

such reasonable variation of LSTM is the gated recurrent unit, or GRU 

(Figure 3-10). It forms an update gate, by combining the forget and input 

gates, and also merges the cell state and the hidden state and makes 

changes in the way the output is generated. The resulting models usually 

have lesser complexity, compared to the standard LSTM models.

A GRU controls the flow of information like an LSTM unit but without 

having to use a memory unit. It just exposes the full hidden content 

without any control.

It has been observed that LSTM works better for bigger datasets, 

while GRU works better for smaller datasets. As such, there is no hard and 

fast rule, as, to some extent, efficiency depends on the data and model 

complexity as well.

Ć
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Limitations of LSTMs

Apart from the complexity of LSTM networks, they are usually slower 

than other typical models. With careful initialization and training, even 

an RNN can deliver results similar to those of LSTM, and, too, with less 

computational complexity. Also, when recent information holds more 

importance than older information, there is no doubt that the LSTM 

model is always a better choice, but there are problems that we want to go 

further into the past to resolve. In such cases, a new mechanism, called the 

attention mechanism—which is a slightly modified version—is growing in 

popularity. We will cover it in a later subsection, “Attention Scoring.”

�Sequence-to-Sequence Models
Sequence-to-sequence (seq2seq) models are used for everything from 

chatbots to speech-to-text to dialog systems to QnA to image captioning. 

The key thing with seq2seq models is that the sequences preserve the 

order of the inputs, which is not the case with basic neural nets. There’s 

certainly no good way to represent the concept of time and of things 

changing over time, so the seq2seq models allow us to process information 

that has a time, or an order of time, element attached to it. They allow us to 

preserve information that couldn’t be by a normal neural network.

Figure 3-10.  LSTM and GRU
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�What Is It?

In simple terms, a seq2seq model consists of two separate RNNs, the 

encoder and decoder. An encoder takes the information as input in 

multiple time steps and encodes the input sequence into a context vector. 

The decoder takes that hidden state and decodes it into the desired output 

sequence. With such kinds of models, one requires a lot of data, like an 

unbelievable amount of data.

The key task behind a seq2seq model is to convert a sequence into a 

fixed size feature vector that encodes only the important information in the 

sequence, while losing the unnecessary information.

Let’s consider the example of a basic question-and-answer system, 

in which the question is “How are you?” In this case, the model takes the 

sequence of words as input, so we are going to try to get each word in the 

sequence into a fixed-size feature vector that can then be used to predict 

the output, by model, for a structure answer. The model must remember 

the important things in the first sequence and also lose any unnecessary 

information in that sequence, to produce the relevant answers.

Figure 3-11 shows the unrolled version of encoder and decoder, for a 

better understanding of the whole process.
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In the encoder stage, we are feeding the network with the embedded 

word vector present in the question “How are you?”, along with a set of 

weights to the series of LSTMs. On the decoder end, at top, we have a time-

distributed dense network (explained in the code section), which is used to 

predict words across the current text’s vocabulary for answers.

The same model could be used for chatbots, language translation, and 

other related purposes.

Bidirectional Encoder

In bidirectional encoders, we have one series of LSTMs that covers the 

text in the forward direction and another series of LSTMs, right above the 

previous series, that covers the text coming in the backward direction. 

So, the weights in this case, i.e., A in the preceding figure, is basically 

the hidden state, and we end up having two hidden states: one from the 

forward direction and one from the backward direction. This allows the 

network to learn from text and get full information on the context.

Bidirectional LSTMs generally work better than anything else for 

almost each of the NLP tasks (Figure 3-12). The more we add bidirectional 

LSTMs layers, the better the result.
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Stacked Bidirectional Encoder

For stacked bidirectional encoders, such as in the following figure, we have 

two bidirectional LSTMs or four layers. (One can go up to six bidirectional 

LSTMs, for more complex structures and to achieve better results.)

Each of these LSTM layers has weights inside, which are learning on 

their own and simultaneously influencing the weights in the preceding 

layers as well.

As the network moves forward in time, with respect to given input, and 

encounters new information from incoming text, it produces a hidden state 

representing everything useful present in the overall text (Figure 3-13).

Figure 3-12.  Bidirectional encoder
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Decoder

The encoder outputs the context vector, which offers a snapshot of the 

entire sequence occurring before. The context vector is used to predict the 

output, by passing it to the decoder.

Figure 3-13.  Stacked bidirectional encoder
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In the decoder, we have a dense layer with softmax, just as in a normal 

neural network, and it is time-distributed, which means that we have one 

of these for each time step.

In Figure 3-14, the circles at the top represent the entire vocabulary, 

and the one with highest score corresponds to the output of that time 

step. This is valid, if we are working with text and are trying to get back 

the results in words only, and the top layer will have one neuron for every 

single word in the vocabulary. The top layer could often get super big with 

the increase in size of the vocabulary.

The important thing is that to start the prediction, we pass in a <GO> 

token to initiate the prediction process. What follows next is that we feed 

the <GO> token itself as the input on the first cell, and it now makes the 

prediction for the first word of our answer, along with the information from 

the context vector, following which we take the predicted first word from 

the model and feed that into the next time step as input, to get the second 

word prediction, and so on. This will lead to the creation of the whole 

text for our answer. Theoretically, in an ideal scenario, when predictions 

are right, the model should predict whatever we are trying to answer or 

translate.
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�Advanced Sequence-to-Sequence Models
Basic seq2seq models work well for normal tasks on short sentences, 

but they start to break on long sentences. Moreover, normal LSTMs can 

remember about 30 time steps and start to drop off very quickly after 30 

time steps. If they’re not trained enough, they drop off even sooner.

As compared to the basic seq2seq models, attention mechanisms 

perform better on the short-term length sequences. Moreover, using 

attention mechanisms, we can reach a maximum length of about 50 time 

steps. It is one of the major limitations in NLP currently that we don’t 

have anything that can really go back in time and remember even a few 

paragraphs, let alone a whole book.

Figure 3-14.  Decoder
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There are a few tricks to get around this. For example, we can flip the 

input and train the model backward, i.e., backward going in and forward 

coming out. This will often put the end words closer together and help in 

relating the predicting words better.

Sequence-to-sequences can be RNNs, LSTMs (preferred), or GRUs, 

and for lower-level tasks, bidirectional LSTMs are preferred. We will look at 

a few of the advanced models that are used to handle such issues.

�Attention Scoring

Attention models look at the whole content shown and work out ways to 

figure out which word is most important for each of the words in the text. 

So, it sort of gives a score to every word in your sentence, and with that, it 

is able to get a sense that there are certain words that rely on some words a 

lot more than other ones.

The previous ways of text generation involved generating sentences 

very good at grammar, but that either got the names wrong or repeated 

some characters, such as a question mark. The best way to understand 

attention models is to think of them as kind of a little memory module 

that basically sits above the network and then looks at the words and picks 

the ones that are most important. For example, in the following sentence, 

clearly not all words are of equal importance:

Last month everyone went to the club, but I stayed at home.

Last month everyone went to the club, but I stayed at home.

The italic words in the second sentence are the ones that are noted 

and scored higher, compared to other words in the sentence. This helps in 

translation to different languages and for retaining context information as 

well, such as the event happened “last month,” as this time information is 

required while doing the NLP tasks.

Adding attention helps in getting a fixed length vector, with a score 

attributed to each of the words telling us how important each of the words 

and the time steps are in the given sequence. This becomes important 

while doing translation. As when manual translation is done for a long 
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sentence, we focus more on the particular words or phrases, irrespective 

of their position in the sentence. Attention helps in re-creating the same 

mechanism for neural networks.

As mentioned earlier, normal models fail to capture the crux of the full 

sentence, using a single hidden state only, which gets worse as the length 

increases. An attention vector (shown in Figure 3-15) helps in increasing 

the model’s performance, by capturing the information from the overall 

input sentence at each of the steps of the decoder. This step makes sure 

that the decoder is not dependent only on the last decoder state but also 

on the combined weights of all the input states.

The best technique is to use bidirectional LSTMs, along with attention 

on top of it, in the encoder.

Figure 3-15.  Attention scoring network

Figure 3-16 illustrates one such use case of an attention scoring 

network for language translation. The encoder takes the input tokens until 

it gets a special end token, say <DONE>, and then the decoder takes over and 

starts generating tokens, also finishing with its own end token of <DONE>.
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The encoder changes its internal state as the English sentence tokens 

come in, and then, once the last token arrives, a final encoder state is taken 

and passed into the decoder, unchanged and repeatedly. In the decoder, 

every single German token is generated. The decoder also has its own 

dynamic internal state.

Figure 3-16.  Language translation using an attention scoring 
network

Teacher Forcing

Teacher forcing uses the ground truth as input for each of the consecutive 

time steps, in lieu of the output of the network.

One can refer to the abstract of the original paper on teacher forcing, 

“Professor Forcing: A New Algorithm for Training Recurrent Networks,” 

for a cogent explanation of the technique (https://papers.nips.cc/

paper/6099-professor-forcing-a-new-algorithm-for-training-

recurrent-networks.pdf).

The Teacher Forcing algorithm trains recurrent networks by 
supplying observed sequence values as inputs during training 
and using the network’s own one-step-ahead predictions to do 
multi-step sampling. We introduce the Professor Forcing algo-
rithm, which uses adversarial domain adaptation to encour-

Chapter 3  Unfolding Recurrent Neural Networks

https://papers.nips.cc/paper/6099-professor-forcing-a-new-algorithm-for-training-recurrent-networks.pdf
https://papers.nips.cc/paper/6099-professor-forcing-a-new-algorithm-for-training-recurrent-networks.pdf
https://papers.nips.cc/paper/6099-professor-forcing-a-new-algorithm-for-training-recurrent-networks.pdf


156

age the dynamics of the recurrent network to be the same when 
training the network and when sampling from the network 
over multiple time steps.

To understand this better, as we train the teacher forcing model, while 

doing the prediction part, we check whether every word predicted is right 

and use this information while backpropagating the network. However, we 

don’t feed the predicted word to the next time steps. Instead, while making 

every next word prediction, we use the correct word answer of last time 

step for next time step prediction. That’s why the process is called “teacher 

forcing.” We are basically forcing the decoder part to not only use the 

output of the last hidden state but to actually use the correct answers. This 

improves the training process for text generation significantly. This process 

is not to be followed while doing the actual scoring on the test dataset. 

Make use of the learned weights for scoring step.

The teacher forcing technique was developed as an alternative to 

backpropagation-through-time for training an RNN. Figure 3-17 shows one 

such example of training an RNN using the teacher forcing mechanism.

Figure 3-17.  Teacher forcing approach
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Peeking

Peeking involves feeding of the hidden state of the context vector straight 

through every step of the RNN or LSTM. The hidden state changes every 

time it goes through weights, and we make use of this updated hidden 

state and also keep the original context vector from the encoder, so that 

it checks the regular updates occurring, to figure out the way to better 

accuracy.

Peeking was proposed by Yoshua Bengio and others in the research 

paper “Learning Phrase Representations using RNN Encoder–Decoder for 

Statistical Machine Translation” (https://arxiv.org/abs/1406.1078).

We propose a novel neural network model called RNN Encoder–
Decoder that consists of two RNNs. One RNN encodes a 
sequence of symbols into a fixed-length vector representation, 
and the other decodes the representation into another sequence 
of symbols. The encoder and decoder of the proposed model are 
jointly trained to maximize the conditional probability of a 
target sequence given a source sequence. The proposed model 
learns a semantically and syntactically meaningful represen-
tation of linguistic phrases.

�Sequence-to-Sequence Use Case
For the use case of seq2seq models, we have taken textual content 

of annotated corpus used in the research paper “Development of a 

benchmark corpus to support the automatic extraction of drug-related 

adverse effects from medical case reports” (www.sciencedirect.com/

science/article/pii/S1532046412000615), by H. Gurulingappa.

The work presented here aims at generating a systematically 
annotated corpus that can support the development and vali-
dation of methods for the automatic extraction of drug-related 
adverse effects from medical case reports. The documents are 
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systematically double annotated in various rounds to ensure 
consistent annotations. The annotated documents are finally 
harmonized to generate representative consensus annotations.

We have used an open source skip-gram model provided  
by NLPLab (http://evexdb.org/pmresources/vec-space-
models/wikipedia-pubmed-and-PMC-w2v.bin), which was 
trained on all the PubMed abstracts and PMC full texts (4.08 
million distinct words). The output of skip-gram model is a set 
of word vectors of 200 dimensions.

As usual import all the necessary modules first:

# Importing the required packages

import os

import re

import csv

import codecs

import numpy as np

import pandas as pd

import nltk

from nltk.corpus import stopwords

from nltk.stem import SnowballStemmer

from string import punctuation

from gensim.models import KeyedVectors

Check the Keras and TensorFlow version used for this exercise:

import keras

print(keras.__version__)

> 2.1.2

import tensorflow

print(tensorflow.__version__)

> 1.3.0
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Make sure you have downloaded and saved the word embedding file 

from the previously mentioned link in your current working directory.

EMBEDDING_FILE = 'wikipedia-pubmed-and-PMC-w2v.bin'

print('Indexing word vectors')

> Indexing word vectors

word2vec = KeyedVectors.load_word2vec_format(EMBEDDING_FILE, 

binary=True)

print('Found %s word vectors of word2vec' % len(word2vec.

vocab))

> Found 5443656 word vectors of word2vec

import copy

from keras.preprocessing.sequence import pad_sequences

> Using TensorFlow backend.

The ADE corpus used from the paper by Gurulingappa is distributed 

with three files: DRUG-AE.rel, DRUG-DOSE.rel, and ADE-NEG.txt. We are 

making use of the DRUG-AE.rel file, which provides relationships between 

drugs and adverse effects.

Following is a sample of the text from the file:

10030778 | Intravenous azithromycin-induced ototoxicity.  

| ototoxicity | 43 | 54 | azithromycin | 22 | 34

10048291 | Immobilization, while Paget’s bone disease was 

present, and perhaps enhanced activation of dihydrotachysterol 

by rifampicin, could have led to increased calcium-release into 

the circulation. | increased calcium-release | 960 | 985 | 

dihydrotachysterol | 908 | 926

10048291 | Unaccountable severe hypercalcemia in a patient 

treated for hypoparathyroidism with dihydrotachysterol. | 

hypercalcemia | 31 | 44 | dihydrotachysterol | 94 | 112
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10082597 | METHODS: We report two cases of pseudoporphyria 

caused by naproxen and oxaprozin. | pseudoporphyria | 620 | 635 

| naproxen | 646 | 654

10082597 | METHODS: We report two cases of pseudoporphyria 

caused by naproxen and oxaprozin. | pseudoporphyria | 620 | 635 

| oxaprozin | 659 | 668

The format of the DRUG-AE.rel file is as follows, fields are separated by 

pipe delimiters:

Column-1: PubMed-ID

Column-2: Sentence

Column-3: Adverse-Effect

Column-4: Begin offset of Adverse-Effect at ‘document level’

Column-5: End offset of Adverse-Effect at ‘document level’

Column-6: Drug

Column-7: Begin offset of Drug at ‘document level’

Column-8: End offset of Drug at ‘document level’

Note D uring annotation, documents were used in the following 
format: PubMed-ID \n \n Title \n \n Abstract.

# Reading the text file 'DRUG-AE.rel' which provides relations 

between drugs and adverse effects.

TEXT_FILE = 'DRUG-AE.rel'

Next, we want to create input for our model. The input for our model is 

a sequence of characters. For the time being, we are ascribing a sequence 

length of 200, i.e., we will have a dataset of size = “number of original 

characters-sequence length.”

For each input data, i.e., 200-character sequence, next, one character 

will be our output in one-hot encoded format. We will append the input 

data fields, along with their corresponding labels, in the input_data_ae 

and op_labels_ae tensors, as follows:
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f = open(TEXT_FILE, 'r')

for each_line in f.readlines():

    sent_list = np.zeros([0,200])

    labels = np.zeros([0,3])

    tokens = each_line.split("|")

    sent = tokens[1]

    if sent in sentences:

        continue

    sentences.append(sent)

    begin_offset = int(tokens[3])

    end_offset = int(tokens[4])

    mid_offset = range(begin_offset+1, end_offset)

    word_tokens = nltk.word_tokenize(sent)

    offset = 0

    for each_token in word_tokens:

        offset = sent.find(each_token, offset)

        offset1 = copy.deepcopy(offset)

        offset += len(each_token)

        �if each_token in punctuation or re.search(r'\d', each_

token):

            continue

        each_token = each_token.lower()

        each_token = re.sub("[^A-Za-z\-]+","", each_token)

        if each_token in word2vec.vocab:

            new_word = word2vec.word_vec(each_token)

        if offset1 == begin_offset:

            �sent_list = np.append(sent_list, np.array([new_

word]), axis=0)

            �labels = np.append(labels, np.array([[0,0,1]]), 

axis=0)
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        elif offset == end_offset or offset in mid_offset:

            �sent_list = np.append(sent_list, np.array([new_

word]), axis=0)

            �labels = np.append(labels, np.array([[0,1,0]]), 

axis=0)

        else:

            �sent_list = np.append(sent_list, np.array([new_

word]), axis=0)

            �labels = np.append(labels, np.array([[1,0,0]]), 

axis=0)

    input_data_ae.append(sent_list)

    op_labels_ae.append(labels)

input_data_ae = np.array(input_data_ae)

op_labels_ae  = np.array(op_labels_ae)

Add padding to the input text, with the maximum length of the input at 

any time step being 30 (a safe bet!).

input_data_ae = pad_sequences(input_data_ae, maxlen=30, 

dtype='float64', padding='post')

op_labels_ae = pad_sequences(op_labels_ae, maxlen=30, 

dtype='float64', padding='post')

Check the length of the total number of entries in the input data and 

their corresponding labels.

print(len(input_data_ae))

> 4271

print(len(op_labels_ae))

> 4271
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Import required modules from Keras.

from keras.preprocessing.text import Tokenizer

from keras.layers import Dense, Input, LSTM, Embedding, 

Dropout, Activation,Bidirectional, TimeDistributed

from keras.layers.merge import concatenate

from keras.models import Model, Sequential

from keras.layers.normalization import BatchNormalization

from keras.callbacks import EarlyStopping, ModelCheckpoint

Create train and validation datasets, with 4,000 entries in train, and 

rest 271 in the validation dataset.

# Creating Train and Validation datasets, for 4271 entries, 

4000 in train dataset, and 271 in validation dataset

x_train= input_data_ae[:4000]

x_test = input_data_ae[4000:]

y_train = op_labels_ae[:4000]

y_test =op_labels_ae[4000:]

As we have the dataset in a standard format now, here comes the most 

important part of the process: defining the model architecture. We are going 

to use one hidden layer of a bidirectional LSTM network, with 300 hidden 

units and a dropout probability of 0.2. In addition to this, we are making use 

of a TimeDistributedDense layer, with a dropout probability of 0.2.

Dropout is a regularization technique by which, while you’re updating 

layers of your neural net, you randomly don’t update, or dropout, some 

of the layer. That is, while updating your neural net layer, you update 

each node with a probability of 1-dropout, and leave it unchanged with a 

probability dropout.

Time distributed layers are used for RNN (and LSTMs) to maintain a 

one-to-one mapping between input and output. Assume we have 30 time 

steps with 200 samples of data, i.e., 30 × 200, and we want to use an RNN 

with an output of 3. If we don’t use a TimeDistributedDense layer, we will 
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get a 200 × 30 × 3 tensor. So, we have the output flattened with each time 

step mixed. If we apply the TimeDistributedDense layer, we are going to 

apply a fully connected dense layer on each of the time steps and get the 

output separately by time step.

We are also using categorical_crossentropy as a loss function, adam 

as the optimizer, and softmax as the activation function.

You can play around with all these things to have a better idea of how 

an LSTM network works.

batch = 1      # �Making the batch size as 1, as showing model 

each of the instances one-by-one

# �Adding Bidirectional LSTM with Dropout, and Time Distributed 

layer with Dropout

# Finally using Adam optimizer for training purpose

xin = Input(batch_shape=(batch,30,200), dtype='float')

seq = Bidirectional(LSTM(300, return_sequences=True),merge_

mode='concat')(xin)

mlp1 = Dropout(0.2)(seq)

mlp2 = TimeDistributed(Dense(60, activation='softmax'))(mlp1)

mlp3 = Dropout(0.2)(mlp2)

mlp4 = TimeDistributed(Dense(3, activation='softmax'))(mlp3)

model = Model(inputs=xin, outputs=mlp4)

model.compile(optimizer='Adam', loss='categorical_

crossentropy')

We are going to train our model with 50 epochs and a batch size of 1. 

You can always increase the number of epochs, as long as the model keeps 

on improving. One can also create checkpoints, so that later, the model 

can be retrieved and used. The idea behind creating the checkpoint is to 

save the model weights while training, so that later, you do not have to go 

through the same process again. This has been left as an exercise for the 

reader.
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model.fit(x_train, y_train,

          batch_size=batch,

          epochs=50,

          validation_data=(x_test, y_test))

> Train on 4000 samples, validate on 271 samples

> Epoch 1/50

4000/4000 [==============================] - 363s 91ms/step - 

loss: 0.1661 - val_loss: 0.1060

> Epoch 2/50

4000/4000 [==============================] - 363s 91ms/step - 

loss: 0.1066 - val_loss: 0.0894

> Epoch 3/50

4000/4000 [==============================] - 361s 90ms/step - 

loss: 0.0903 - val_loss: 0.0720

> Epoch 4/50

4000/4000 [==============================] - 364s 91ms/step - 

loss: 0.0787 - val_loss: 0.0692

> Epoch 5/50

4000/4000 [==============================] - 362s 91ms/step - 

loss: 0.0698 - val_loss: 0.0636

...

...

...

> Epoch 46/50

4000/4000 [==============================] - 344s 86ms/step - 

loss: 0.0033 - val_loss: 0.1596

> Epoch 47/50

4000/4000 [==============================] - 321s 80ms/step - 

loss: 0.0033 - val_loss: 0.1650

> Epoch 48/50
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4000/4000 [==============================] - 322s 80ms/step - 

loss: 0.0036 - val_loss: 0.1684

> Epoch 49/50

4000/4000 [==============================] - 319s 80ms/step - 

loss: 0.0027 - val_loss: 0.1751

> Epoch 50/50

4000/4000 [==============================] - 319s 80ms/step - 

loss: 0.0035 - val_loss: 0.1666

<keras.callbacks.History at 0x7f48213a3b38>

Validating the model results on the validation dataset with 271 entries.

val_pred = model.predict(x_test,batch_size=batch)

labels = []

for i in range(len(val_pred)):

    b = np.zeros_like(val_pred[i])

    b[np.arange(len(val_pred[i])), val_pred[i].argmax(1)] = 1

    labels.append(b)

print(val_pred.shape)

> (271, 30, 3)

Note T he val_pred tensor is of size (271 × 30 × 3).

Check the model performance using F1-score, along with precision 

and recall. Import the required modules from the scikit-learn library.

from sklearn.metrics import f1_score

from sklearn.metrics import precision_score

from sklearn.metrics import recall_score  
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Define the variables to keep a record of the model performance.

score =[]

f1 = []

precision =[]

recall =[]

point = []

We can shortlist all the instances in the validation dataset that have an 

F1-score of more than 0.6. This will give us a fair idea of the performance, 

with our set benchmark, across the validation data.

for i in range(len(y_test)):

    if(f1_score(labels[i],y_test[i],average='weighted')>.6):

        point.append(i)

    �score.append(f1_score(labels[i], 

y_test[i],average='weighted'))

    �precision.append(precision_score(labels[i], 

y_test[i],average='weighted'))

    �recall.append(recall_score(labels[i], 

y_test[i],average='weighted'))

print(len(point)/len(labels)*100)

> 69.37

print(np.mean(score))

> 0.686

print(np.mean(precision))

> 0.975

print(np.mean(recall))

> 0.576

Although the result produced is not quite satisfying, it does achieve 

near state-of-the-art results. These limitations could be overcome by 

building a denser network, increasing the number of epochs and the 

length of the dataset.
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Training large datasets using CPU takes too much time. That’s why 

using GPU has been almost inevitable and very important for quickly 

training deep learning models.

Training an RNN is a fun exercise. The same algorithm can be 

extended for many other exercises, such as music generation, speech 

generation, etc. It can also be efficiently extended to real-life applications, 

such as video captioning and language translation.

We encourage the reader to create their own models for diverse 

applications at this level. We will be covering a lot more of such examples 

in the next chapters.

�Next Steps
The structures presented in this chapter are its most important part 

and the core of any RNN type, be it Siamese networks, seq2seq models, 

attention mechanisms, or transfer learning. (Readers are advised to take a 

further look into these concepts, for a better understanding of the widely 

available networks, the variations in their structures, and their respective 

use cases.)

Further, if you can intuit how the dimension and multiplication of 

3-D vectors work in TensorFlow and NumPy, you are very capable of 

implementing the most complex models. So, the focus should be on 

grasping the basics as much as you can. Models aiming to increase the 

complexity with attention/weights are just a few more iterations/thinking 

to improve the model accuracy. These further improvements are more like 

hacks, however successful, but still require a structured thought process. 

The best recourse, again, is to keep on trying different types of models and 

their wide applications, to gain a good hold on the concepts.
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CHAPTER 4

Developing a Chatbot
In this chapter, we will create a chatbot. We will do so in a progressive 

manner and will make the chatbot in two layers. The first section of 

the chapter introduces the chatbot concept, followed by a section on 

implementing a basic rule-based chatbot system. The last section 

discusses the training of a sequence-to-sequence (seq2seq) recurrent 

neural network (RNN) model on a publicly available dataset. The final 

chatbot will be able to answer specific questions asked of the dataset 

domain on which the model has been trained. We hope that you have 

enjoyed the previous chapters, and this chapter, as well, will keep you 

involved in the implementation of deep learning and natural language 

processing (NLP).

�Introduction to Chatbot
The fact that we all are using a chatbot, even without knowing exactly how 

to define it, makes the idea of a chatbot’s definition irrelevant.

We all are using a variety of apps in our day-to-day life, and it would 

be astonishing if someone reading this chapter had not heard about 

“chatbots.” Chatbots are just like any other app. The only thing that 

separates chatbots from regular apps is their user interface. Chatbots have 
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a chat interface, whereby the user literally chats, rather, messages, with 

the app and operates it in a conversational manner, instead of a visual 

interface, composed of buttons and icons. We hope the definition is clear 

for now and that you can deep-dive into the wonderful world of chatbots.

�Origin of Chatbots
Just like the fact that we hate the idea of origin, we love the idea of origin. 

Don’t become a mere recorder of facts, but try to penetrate the 
mystery of their origin.

—Ivan Pavlov

It would not be useful to cover chatbots without exploring their 

origin. You may be amused by the fact that in 1950, when the world 

was recovering from the shock of World War II, Alan Turing, an English 

polymath, had the foresight to develop a test to see if a person could 

distinguish a human from a machine. This is know as the Turing test 

(https://en.wikipedia.org/wiki/Turing_test).

Sixteen years later, in 1966, a computer program called ELIZA 

was invented by Joseph Weizenbaum. It imitated the language of a 

psychotherapist from only 200 lines of code. You can still talk with it here: 

http://psych.fullerton.edu/mbirnbaum/psych101/Eliza.htm.
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Recent developments in machine learning have powered chatbots as 

never before, interpreting natural language to both understand and learn 

better over time. Major corporations, such as Facebook, Apple, Google 

(Alphabet), and Microsoft, are devoting significant resources to research 

related to imitating real-life conversations between consumers and 

machines, with commercially viable business models.

�But How Does a Chatbot Work, Anyway?
OK, enough introduction. Let’s get to the point.

“Hey, what’s up?”

“How’re you doing?”

“Hello!”
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These sentences seem familiar. Don’t they? They are all messages, 

of one kind or another, to greet someone. How do we respond to these 

greetings? Typically, we respond with “I am good. How about you?”

This is exactly how chatbots work. A typical chatbot finds the so-

called context of the question asked, which, in this case, is the “greeting.” 

The bot then picks up the appropriate response and sends it back to the 

user. How does it find the appropriate response, and can it deal with such 

attachments as image, audio, and video? We will deal with that in the 

following sections.

�Why Are Chatbots Such a Big Opportunity?
Research conducted by Forrester (https://go.forrester.com/data/

consumer-technographics/) points out that about ~85 percent of our time 

on mobile devices is spent on the major applications, such as e-mail and 

messaging platforms. With the great benefits offered by deep learning and 

NLP, almost every firm is trying to build applications to keep their potential 

consumers engaged with their products and services, and chatbots 

uniquely serve that purpose. Multiple human errors and customer requests 

handled by a conventional customer care service could be easily avoided by 

putting chatbots in place. Moreover, chatbots could allow a customer and a 

concerned company to have access to all the previous chat/issue records.

Although a chatbot could be considered an application that conducts 

a conversation with an end customer, the tasks and few concerned 

applications performed by a chatbot could be classified at a higher level, 

under the following categories:

•	 Question answering: One turn per user; useful when a 

labeled answer is present

a)	 Product querying use cases

b)	 Extracting user information
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•	 Sentence completion: Filling in of the missing word in 

the next utterance in a dialog

a)	 Mapping of right product to the customer

•	 Goal-oriented dialog: Conversation with the task of 

achieving a goal

a)	 Recommendation to the customer

b)	 Negotiating a price with the customer

•	 Chit-chat dialog: Conversations having no explicit 

goals, more of a discussion

No such use case to focus now

•	 Visual dialog: Tasks with texts, images, and audio

a)	 Exchanging images with customers and building 

inferences on those

OK, you may now be thinking, “I am excited. How can I build one?”

�Building a Chatbot Can Sound Intimidating. Is It 
Actually?

The difficulty in building a Chatbot is less a technical one and 
more of user experience. One of the most prevalent successful 
bots in market are the ones that users want to come back to 
regularly and that provide consistent value to their daily tasks 
and requirements.

—Matt Hartman, Director of Seed Investments at Betaworks
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Prior to building a chatbot, it makes more sense if we resolve the 

following four questions in advance and then decide how we want to take 

the project forward:

•	 What problem are we going to solve with the bot?

•	 Which platform will our bot will live on (Facebook, 

Slack, etc.)?

•	 What server we will be using to host the bot? Heroku 

(www.heroku.com) or our own?

•	 Do we want to start from scratch or use the available 

chatbot platform tools (following)?

•	 Botsify (https://botsify.com/)

•	 Pandorabots (https://playground.pandorabots.

com/en/)

•	 Chattypeople (www.chattypeople.com/)

•	 Wit.ai (https://wit.ai/)

•	 Api.ai (https://api.ai/)

To gain a deeper understanding of the working methodology of the 

different platforms and the best fit as per the use case of the business, one 

can refer to the following documentations from the following links to some 

popular chatbot platforms:

•	 Facebook Messenger (https://developers.facebook.

com/products/messenger/)

•	 Slack (https://api.slack.com/bot-users)

•	 Discord (https://blog.discordapp.com/the-robot-

revolution-has-unofficially-begun/)

•	 Telegram (https://core.telegram.org/bots/api)

•	 Kik (https://dev.kik.com/#/home)
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�Conversational Bot
For the first version of our conversational chatbot, we will be making 

a rule-based bot that will help the developer to define his/her desired 

answers to a specific category of questions asked by the end user. Creating 

such a bot will help us to have a basic understanding of working with bots, 

before we proceed to the next level, with text-generating bots.

We will be using Facebook Messenger as our desired platform and 

Heroku as our desired server, to launch the basic version of chatbot. First 

things first. You must have a Facebook page. If you don’t have one, please 

create one. To communicate with a bot, one must access this page and 

select the messaging option, to initiate the conversation.

Follow the steps in Figure 4-1 to create the page on Facebook:

	 1.	 Select the Create a Page option.

	 2.	 Select the desired category of the organization and 

choose a name to create the page. We have selected 

Insurance as the field of the organization, as later 

on, we will build test cases around it and use an 

Insurance-related conversation dataset to train our 

model.
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	 3.	 Add a profile and cover photo, as desired, for the 

page.

After performing the preceding steps, the final page, Dl4nlp_cb,  

www.facebook.com/dlnlpcb/, will look like Figure 4-2.

Figure 4-1.  Creating a Facebook page

Figure 4-2.  Dl4nlp_cb Facebook page

Chapter 4  Developing a Chatbot

http://www.facebook.com/dlnlpcb/


177

The next step is to create a Facebook app. Visit the following URL 

to create one, with your official Facebook account logged in: https://

developers.facebook.com/apps/. This app will subscribe to the created 

page and will handle all the responses on behalf of that page (Figure 4-3).

Figure 4-3.  Creating a Facebook app

We have assigned the same display name to the app as to the 

previously created Facebook page and have registered it with the desired 

e-mail ID. Post the app creation. The App Dashboard will look like that in 

Figure 4-4.
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Facebook offers a range of products that can be added to the newly 

created app. For the purpose of the chatbot, we are required to select 

Messenger as the option (second row, middle option in the preceding 

image). Click the Set Up button. This will redirect the user to the Settings 

page (Figure 4-5), from which, in addition to selecting tutorials, we can 

create the token and set up webhooks (covered following).

Figure 4-4.  Facebook App Dashboard

Figure 4-5.  Facebook app Settings page
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From the Settings page, go to the Token Generation section and select 

the page created in the first step. An alert box will pop up and ask to grant 

permissions. Click Continue and proceed (Figure 4-6).

Figure 4-6.  Facebook Token Generation

Note O ne can check the information being accessed by Facebook 
regarding this application. Click the Review the info that you provide 
link to check it.

After selecting the Continue option, you will get another window that 

displays the permissions being granted to the page. Users can select the 

privileges to be granted. For the current purpose, it is recommended not 

to change any of the previously selected options in the privilege section 

(Figure 4-7).
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Clicking Choose what you allow will show the permissions granted to the 

page. After checking it, click OK and move to additional steps (Figure 4-8).

Figure 4-7.  Privilege grant section

Figure 4-8.  Permissions granted

This will initiate the generation of the token on the app Settings page 

(it might take a few seconds to generate the token). See Figure 4-9.
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The page access token is a long string, combination of numbers, and 

alphabets that we will use later to create the application with Heroku. It 

will be set as a configuration parameter in the Heroku application.

The token is unique to every time it is generated and will be separate 

for each application, page, and user combination. After generation, it will 

look like the one in Figure 4-10.

Figure 4-9.  Final page access token generation

Figure 4-10.  Page access token

After creating the Facebook page and app, register and open an 

account on Heroku (www.heroku.com) and create an app here as well, with 

Python as the chosen language.

Creating an app on Heroku will provide us a webhook, to which the 

Facebook app will send the request, in case an event is triggered, i.e., for 

chatbot, whenever some message is received or sent.
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Note  Make sure the password being used for Heroku is a combination 
of letters, numbers, and symbols—all three, not merely two.

After account creation, the Heroku dashboard will look like that shown 

in Figure 4-11.

Figure 4-11.  Heroku dashboard

Click Create New App to make the application on Heroku. For tutorials 

related to the Python language, one can visit the shared tutorial by clicking 

the Python button: https://devcenter.heroku.com/articles/getting-

started-with-python#introduction. For now, keep the default selection 

of “United States,” as it is, and for pipeline, don’t make any selection while 

creating the app (Figure 4-12).

Note T he name of the app cannot contain numbers, underscores, or 
symbols. Only lowercase letters are allowed in the app name.
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The Heroku application dashboard will look like that in Figure 4-13, 

and by default, the Deploy tab is selected after app creation.

Figure 4-12.  Heroku app creation

Figure 4-13.  Heroku app dashboard
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Now we are all set to go with a Facebook app and page and Heroku 

app. The next step is to create code and import it in the Heroku 

application.

From the following URL, visit the GitHub repository and clone it to 

your personal GitHub account to access the sample code provided for 

the test cases on the first version of our chatbot: https://github.com/

palashgoyal1/DL4NLP. The repository contains four important files that 

you need to start with.

The .gitignore file tells Git which files (or patterns) it should ignore. It 

has the following content:

> *.pyc

> .*

Procfile is used to declare various process types, in our case, a web 

app.

> web: gunicorn app:app --log-file=-

The Requirements.txt installs Python dependencies.

> Flask==0.11.1

> Jinja2==2.8

> MarkupSafe==0.23

> Werkzeug==0.11.10

> click==6.6

> gunicorn==19.6.0

> itsdangerous==0.24

> requests==2.10.0

> wsgiref==0.1.2

> chatterbot>=0.4.6

> urllib

> clarifai==2.0.30

> enum34
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App.py is the Python file containing the main code for the chatbot 

application. As the file is big, we have put it on the GitHub repository 

previously mentioned. Readers are requested to visit it for reference. That 

way, it will be easier to clone the repository as well.

Let’s set the webhook. (A webhook is an HTTP callback—an HTTP 

POST that occurs when something happens, such as a simple event-

notification via HTTP POST.) We have used Heroku because it provides a 

webhook that Facebook uses to send a request and retrieve the appropriate 

result, in case of any event.

Visit the app you created in Heroku and then go to the Deploy tab. 

There are four methods via which you can deploy your app via Heroku Git, 

via GitHub, via Dropbox, and via Container Registry (Figure 4-14). To keep 

things simple, we will deploy our code using GitHub.

Figure 4-14.  Heroku deploy app section

Once we select Connect to GitHub, it will ask for the GitHub repository 

where the code has been placed. Make sure the name mentioned here 

is correct and the home directory as the repository. Click the Connect 

button, after selecting the correct repository (Figure 4-15).
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The code will be deployed using the link of your personal GitHub 

repository for this particular app, where the code has been placed. From 

the Settings tab in Heroku, you can find the domain name of the app, 

under the Domains and Certificates subsection, which looks similar in 

format to https://*******.herokuapp.com/. For the test application 

created previously, it is https://dlnlpcbapp.herokuapp.com/. Note it 

down separately, as we will need it later.

Now is the time to integrate the Facebook page Dl4nlp_cb and the 

Heroku app dlnlpcbapp. Visit the Facebook App Dashboard and, under 

the Messenger Settings tab where the page access token is displayed, go to 

webhooks to set up the webhook (Figure 4-16).

Figure 4-15.  Heroku deploy app via GitHub

Figure 4-16.  Setting the webhook
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The pop-up will ask for the following three fields:

•	 Callback URL: The Heroku URL that we set up earlier 

(the setup URL that we generated in step 1)

•	 Verification Token: A secret value that will be sent to 

your bot, in order to verify that the request is coming 

from Facebook. Whatever value you set here, make sure 

you add it to your Heroku environment.

•	 Subscription Fields: This tells Facebook what 

messaging events you care about and want it to notify 

your webhook about. If you’re not sure, check all the 

boxes (Figure 4-17).

Figure 4-17.  Setting the webhook—adding relevant information

Note  “Callback verification failed” is one of the most common 
errors reported, and it is encountered when Facebook returns an 
error message (Figure 4-18) when trying to add the Heroku endpoint 
to the Facebook chat application.
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Flask application intentionally returns a 403 Forbidden error if the 

token that Facebook sends doesn’t match the token set using the Heroku 

configuration variables.

If the error shown in Figure 4-18 is encountered, it means that the 

Heroku config values were not set properly. Running heroku config from 

the command line within the application and verifying that the key called 

VERIFY_TOKEN is set equal to the value typed in the Facebook window will 

rectify the error.

The URL shown in the Callback URL box, will be the Heroku 

application URL.

Figure 4-18.  Error: “Callback verification failed”

A successful configuration of the webhook will take you to another 

screen showing the completion message (Figure 4-19).
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After you’ve configured your webhook, select the desired Facebook 

page and click Subscribe (Figure 4-20).

Figure 4-19.  Successful webhook configuration

Figure 4-20.  Subscribe webhook to desired Facebook page Dl4nlp_cb

Now go back again to the Heroku app. Under the Settings tab, you 

will find “config variable option.” You will have to set two variables: PAGE_

ACCESS_TOKEN (pick it from earlier steps) and VERIFY_TOKEN (pick it from 

the one used while setting up the webhook in App Dashboard). In addition 

to the preceding two parameters, fetch as well the App ID and Api Secret 

token from the Basic Settings of the App page (Figure 4-21). These two 

must also be set in the Heroku configuration parameters (click the Show 

button to get the Api Secret token).

Chapter 4  Developing a Chatbot



190

Now open the Settings tab in the Heroku application and set the App 

ID as api_key, APP Secret as api_secret, along with PAGE_ACCESS_TOKEN 

and VERIFY_TOKEN (Figure 4-22).

Figure 4-21.  Configuring Heroku settings

Figure 4-22.  Adding configuration variables in Heroku settings
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After saving the configuration parameters, go to the Deploy tab on 

Heroku, scroll down to the Manual Deploy section, and click the Deploy 

Branch button. This will deploy the current branch being selected from the 

repository and do the necessary compilations. Make sure that there are no 

errors, by checking the Logs section.

Now go to the created Facebook page and click the Message button, 

next to the Like button, near the top of the page. This should open a 

message pane with the message box of your page. Start chatting with your 

custom-made chatbot (Figure 4-23)!

Figure 4-23.  Enjoy your conversations with the chatbot!

�Chatbot: Automatic Text Generation
In the previous section, we built a simple conversational chatbot using 

different platforms and libraries. The problem with it is that it can handle 

only a fixed set of questions. What if we can build a bot that learns from 

existing conversations, between humans. This is where natural language 

generation comes in handy. We will make a seq2seq model that can handle 
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any type of questions, i.e., even if the question is composed of some 

random set of words. Whether that answer will be grammatically and 

contextually correct is a whole different issue and will depend on various 

factors, such as the size and quality of the dataset.

In this section, we will attempt to build a model that takes a set of 

questions and answers as input and predicts the answer when asked a 

question related to the input data. The question will be answered in the 

best possible manner if it matches the set of questions being used to train 

the model.

We will work on the described problem using the sequence-to-

sequence models. The dataset we are using is composed of questions-and-

answers recorded from an insurance domain’s customer service station. 

The dataset has been collected from the web site www.insurancelibrary.

com/ and is the first released question-and-answer corpus of its type in 

the insurance industry. The questions belong to a set of queries asked by 

customers with respect to the multiple services and products offered by 

an insurance firm, and the answers have been given by professionals with 

deep knowledge of the insurance industry.

The dataset used for training has been taken from the URL https://

github.com/shuzi/insuranceQA, presently hosted at https://github.

com/palashgoyal1/InsuranceQnA, in addition to the desired files for 

questions, answers, and vocabulary. The dataset was used in the paper 

“Applying Deep Learning to Answer Selection: A Study and an Open Task” 

(https://arxiv.org/pdf/1508.01585v2.pdf), by several staff at IBM, 

and they have used the CNN framework with multiple variations. In all the 

variations, they have made the model learn the word embedding of a given 

question and its corresponding answer, and then used cosine distance as a 

similarity metric to measure the matching degree.

Figure 4-24 is a snapshot of the multiple architectures being 

demonstrated in the paper. For Architectures II, III, and IV, the questions-

and-answers sides share the same weights for the hidden and CNN layers. 
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The CNNQ and CNNA layers are used to extract the questions-and-answers 

sides’ features, respectively.

Figure 4-24.  Architectures used in the research paper

The original dataset present in the GitHub repository has a combination 

of the train, validation, and test partitions of the questions. We have 

combined the given questions and answers and have performed a few 

processing steps before making the final selection of the QnAs to be selected 

for the modeling purpose. Also, a set of sequence-to-sequence models has 

been used to generate the answers to the questions being asked by the user. 

If trained using the appropriate model, and with enough iterations, the 

model will be able to answer previously unseen questions as well.

To prepare the data to be used by the model, we have made a few 

changes and completed the selection on the initial given dataset. Later, we 

made use of the overall dataset vocabulary, and the word tokens used in 
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questions and answers, to create the perfect combination of questions and 

their corresponding answers in an understandable format in the English 

language.

Note B efore starting the code execution, make sure that you have 
TensorFlow version 1.0.0 installed and no other version, as there 
have been changes in the later updated versions of TensorFlow.

Import the required packages and dataset in the encoded formats.

import pandas as pd

import numpy as np

import tensorflow as tf

import re

import time

tf.__version__

> '1.0.0'

# Make sure the vocabulary.txt file and the encoded datasets 

for Question and Answer are present in the same folder

# reading vocabulary

lines = open('vocabulary.txt', encoding='utf-8', 

errors='ignore').read().split('\n')

# reading questions

conv_lines = open('InsuranceQAquestionanslabelraw.encoded', 

encoding='utf-8', errors='ignore').read().split('\n')

# reading answers

conv_lines1 = open('InsuranceQAlabel2answerraw.encoded', 

encoding='utf-8', errors='ignore').read().split('\n')

# The print command shows the token value associated with each 

of the words in the 3 datasets
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print(" -- Vocabulary -- ")

print(lines[:2])

> -- Vocabulary –

> ['idx_17904\trating/result', 'idx_14300\tconsidered,']

print(" -- Questions -- ")

print(conv_lines[:2])

> -- Questions –

> ['medicare-insurance\tidx_1285 idx_1010 idx_467 idx_47610 

idx_18488 idx_65760\t16696', 'long-term-care-insurance\

tidx_3815 idx_604 idx_605 idx_891 idx_136 idx_5293 idx_65761\

t10277']

print(" -- Answers -- ")

print(conv_lines1[:2])

> -- Answers –

> ['1\tidx_1 idx_2 idx_3 idx_4 idx_5 idx_6 idx_7 idx_8 idx_9 

idx_10 idx_11 idx_12 idx_13 idx_14 idx_3 idx_12 idx_15 idx_16 

idx_17 idx_8 idx_18 idx_19 idx_20 idx_21 idx_3 idx_12 idx_14 

idx_22 idx_20 idx_23 idx_24 idx_25 idx_26 idx_27 idx_28 idx_29 

idx_8 idx_30 idx_19 idx_11 idx_4 idx_31 idx_32 idx_22 idx_33 

idx_34 idx_35 idx_36 idx_37 idx_30 idx_38 idx_39 idx_11 idx_40 

idx_41 idx_42 idx_43 idx_44 idx_22 idx_45 idx_46 ...

In the next few lines, we have combined the questions with their 

corresponding answers on the basis of the ID being allocated to both 

questions and answers.

id2line = {}

for line in vocab_lines:

    _line = line.split('\t')

    if len(_line) == 2:

        id2line[_line[0]] = _line[1]

Chapter 4  Developing a Chatbot



196

# Creating the word tokens for both questions and answers, 

along with the mapping of the answers enlisted for questions

convs, ansid = [], []

for line in question_lines[:-1]:

    _line = line.split('\t')

    ansid.append(_line[2].split(' '))

    convs.append(_line[1])

convs1 = [ ]

for line in answer_lines[:-1]:

    _line = line.split('\t')

    convs1.append(_line[1])

print(convs[:2])  # word tokens present in the question

> ['idx_1285 idx_1010 idx_467 idx_47610 idx_18488 idx_65760', 

'idx_3815 idx_604 idx_605 idx_891 idx_136 idx_5293 idx_65761']

print(ansid[:2])  # answers IDs mapped to the questions

> [['16696'], ['10277']]

print(convs1[:2])  # word tokens present in the answer

> ['idx_1 idx_2 idx_3 idx_4 idx_5 idx_6 idx_7 idx_8 idx_9 

idx_10 idx_11 idx_12 idx_13 idx_14 idx_3 idx_12 idx_15 idx_16 

idx_17 idx_8 idx_18 idx_19 idx_20 idx_21 ...

# Creating matching pair between questions and answers on the 

basis of the ID allocated to each.

questions, answers = [], []

for a in range(len(ansid)):

      for b in range(len(ansid[a])):

            questions.append(convs[a])

for a in range(len(ansid)):

      for b in range(len(ansid[a])):

            answers.append(convs1[int(ansid[a][b])-1])
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ques, ans  =[], []

m=0

while m<len(questions):

       i=0

       a=[]

       while i < (len(questions[m].split(' '))):

            a.append(id2line[questions[m].split(' ')[i]])

            i=i+1

       ques.append(' '.join(a))

       m=m+1

n=0

while n<len(answers):  

        j=0

        b=[]

        while j < (len(answers[n].split(' '))):

            b.append(id2line[answers[n].split(' ')[j]])

            j=j+1

        ans.append(' '.join(b))

        n=n+1     

The following output of the top-five questions in the Insurance QnA 

dataset will give an idea of the kind of questions being asked by the 

customers and the respective answers given by the professionals. At the 

end of this exercise, our model will try to provide answers in a similar 

manner as the questions asked.

# Printing top 5 questions along with their answers

limit = 0

for i in range(limit, limit+5):

    print(ques[i])

    print(ans[i])

    print("---")
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> What Does Medicare IME Stand For?

According to the Centers for Medicare and Medicaid Services 

website, cms.gov, IME stands for Indirect Medical Education and 

is in regards to payment calculation adjustments for a Medicare 

discharge of higher cost patients receiving care from teaching 

hospitals relative to non-teaching hospitals. I would recommend 

contacting CMS to get more information about IME

---

> Is Long Term Care Insurance Tax Free?

As a rule, if you buy a tax qualified long term care insurance 

policy (as nearly all are, these days), and if you are paying 

the premium yourself, there are tax advantages you will 

receive. If you are self employed, the entire premium is tax 

deductible. If working somewhere but paying your own premium 

for an individual or group policy, you can deduct the premium 

as a medical expense under the same IRS rules as apply to all 

medical expenses. In both situations, you also receive the 

benefits from the policy tax free, if they are ever needed.

---

> Can Husband Drop Wife From Health Insurance?

Can a spouse drop another spouse from health insurance? Usually 

not without the spouse's who is being dropped consent in 

writting. Most employers who have a quality HR department will 

require a paper trial for any changes in an employee's benefit 

plan. When changes are attempted that could come back to haunt 

the employer, steps are usually taken to comfirm something like 

this.

---

> Is Medicare Run By The Government?

Medicare Part A and Part B is provided by the Federal 

government for Americans who are 65 and older who have worked 

and paid Social Security taxes into the system. Medicare is 
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also available to people under the age of 65 that have certain 

disabilities and people with End-Stage Renal Disease (ESRD).

---

> Is Medicare Run By The Government?

Definitely. It is ran by the Center for Medicare and Medicaid 

Services, a Government Agency given the responsibility of 

overseeing and administering Medicare and Medicaid. Even Medicare 

Advantage Plans, which are administered by private insurance 

companies are strongly regulated by CMMS. They work along with 

Social Security and Jobs and Family Services to insure that your 

benefits are available and properly administered.

---

Although the fourth and fifth questions in the preceding sample are the 

same, they have different answers, depending on how many professionals 

have answered the question.

# Checking the count of the total number of questions and 

answers

print(len(questions))

>  27987

print(len(answers))

> 27987

Create a text cleaning function by replacing the short forms of the 

words with the actual extended words, so that the words can be replaced 

later by their actual tokens.

def clean_text(text):

        """Cleaning the text by replacing the abbreviated words 

with their proper full replacement, and converting all the 

characters to lower case"""

        text = text.lower()
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        text = re.sub(r"i'm", "i am", text)

        text = re.sub(r"he's", "he is", text)

        text = re.sub(r"she's", "she is", text)

        text = re.sub(r"it's", "it is", text)

        text = re.sub(r"that's", "that is", text)

        text = re.sub(r"what's", "that is", text)

        text = re.sub(r"where's", "where is", text)

        text = re.sub(r"how's", "how is", text)

        text = re.sub(r"\'ll", " will", text)

        text = re.sub(r"\'ve", " have", text)

        text = re.sub(r"\'re", " are", text)

        text = re.sub(r"\'d", " would", text)

        text = re.sub(r"\'re", " are", text)

        text = re.sub(r"won't", "will not", text)

        text = re.sub(r"can't", "cannot", text)

        text = re.sub(r"n't", " not", text)

        text = re.sub(r"n'", "ng", text)

        text = re.sub(r"'bout", "about", text)

        text = re.sub(r"'til", "until", text)

        text = re.sub(r"[-()\"#/@;:<>{}`+=~|.!?,']", "", text)

        return text

# Applying the 'clean_text()' function on the set of Questions 

and Answers

clean_questions = []

for question in ques:

    clean_questions.append(clean_text(question))

clean_answers = []    

for answer in ans:

    clean_answers.append(clean_text(answer))
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Take a look at how the dataset appears after performing the cleaning 

operation on both questions and answers. This cleaned dataset will be 

fed as input to our model, to ensure that the inputs given to the model are 

synchronous with each other in their structure and format:

limit = 0

for i in range(limit, limit+5):

    print(clean_questions[i])

    print(clean_answers[i])

    print()

> what does medicare ime stand for

according to the centers for medicare and medicaid services 

website cmsgov ime stands for indirect medical education and is 

in regards to payment calculation adjustments for a medicare 

discharge of higher cost patients receiving care from teaching 

hospitals relative to nonteaching hospitals i would recommend 

contacting cms to get more information about ime

----

> is long term care insurance tax free

as a rule if you buy a tax qualified long term care insurance 

policy as nearly all are these days and if you are paying the 

premium yourself there are tax advantages you will receive if 

you are self employed the entire premium is tax deductible if 

working somewhere but paying your own premium for an individual 

or group policy you can deduct the premium as a medical expense 

under the same irs rules as apply to all medical expenses in 

both situations you also receive the benefits from the policy 

tax free if they are ever needed

----

> can husband drop wife from health insurance

can a spouse drop another spouse from health insurance usually 

not without the spouses who is being dropped consent in 
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writting most employers who have a quality hr department will 

require a paper trial for any changes in an employees benefit 

plan when changes are attempted that could come back to haunt 

the employer steps are usually taken to comfirm something like 

this

----

> is medicare run by the government

medicare part a and part b is provided by the federal 

government for americans who are 65 and older who have worked 

and paid social security taxes into the system medicare is 

also available to people under the age of 65 that have certain 

disabilities and people with endstage renal disease esrd

----

> is medicare run by the government

definitely it is ran by the center for medicare and medicaid 

services a government agency given the responsibility of 

overseeing and administering medicare and medicaid even medicare 

advantage plans which are administered by private insurance 

companies are strongly regulated by cmms they work along with 

social security and jobs and family services to insure that 

your benefits are available and properly administered

----

Analyze the questions and answers on the basis of the number of 

words coming in for both and checking the percentiles for different 

intervals.

lengths.describe(percentiles=[0,0.25,0.5,0.75,0.85,0.9,0.95,0.99])

>              counts

        count  55974.000000

        mean   54.176725
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        std    67.638972

        min    2.000000

        0%     2.000000

        25%    7.000000

        50%    30.000000

        75%    78.000000

        85%    103.000000

        90%    126.000000

        95%    173.000000

        99%    314.000000

        max    1176.000000

As the data being fed to the model requires the full answer to the asked 

question, and not a half-baked one, we must make sure that the questions-

and-answers combination we are selecting for the model training have a 

sufficient number of words presented across both questions and answers, 

thereby putting a minimum cap on the word count. At the same time, 

we want the model to produce concise and to-the-point answers to the 

questions, so we are putting the maximum cap on the count of words in 

questions and answers as well.

Here, we are shortlisting only the text with a minimum of two words 

and a maximum of 100 words.

# Remove questions and answers that are shorter than 1 words 

and longer than 100 words.

min_line_length, max_line_length = 2, 100

# Filter out the questions that are too short/long

short_questions_temp, short_answers_temp = [], []
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i = 0

for question in clean_questions:

    �if len(question.split()) >= min_line_length and 

len(question.split()) <= max_line_length:

        short_questions_temp.append(question)

        short_answers_temp.append(clean_answers[i])

    i += 1

# Filter out the answers that are too short/long

short_questions, short_answers = [], []

i = 0

for answer in short_answers_temp:

    �if len(answer.split()) >= min_line_length and len(answer.

split()) <= max_line_length:

        short_answers.append(answer)

        short_questions.append(short_questions_temp[i])

    i += 1

Dataset stats after performing the preceding selection follow:

print("# of questions:", len(short_questions))

> # of questions: 19108

print("# of answers:", len(short_answers))

> # of answers: 19108

print("% of data used: {}%".format(round(len(short_questions)/

len(questions),4)*100))

> % of data used: 68.27%

The problem with directly feeding the text input is that the model 

cannot handle variable length sequences, and the next big problem is the 

vocabulary size. The decoder has to run softmax over a large vocabulary, 

say, 20,000 words, for each word in the output. This will slow down the 

training process. So, how do we deal with this problem? Padding.
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Padding is a way to convert a variable length sequence into a fixed 

length sequence. Assuming we want the sentence “How are you?” to be of 

a fixed length of, say, 10, after applying padding, this pair is converted to 

[PAD, PAD, PAD, PAD, PAD, PAD, “?”, “you”, “are”, “How”].

def pad_sentence_batch(sentence_batch, vocab_to_int):

"""Including <PAD> token in sentence to make all batches of 

same length"""

    �max_sentence = max([len(sentence) for sentence in sentence_

batch])

    �return [sentence + [vocab_to_int['<PAD>']] * (max_

sentence - len(sentence)) for sentence in sentence_batch]

The following code maps the words in the vocabulary of the newly 

formed training dataset and assigns a frequency token to each of the 

words.

# Create a dictionary for the frequency of the vocabulary

vocab = {}

for question in short_questions:

    for word in question.split():

        if word not in vocab:

            vocab[word] = 1

        else:

            vocab[word] += 1

for answer in short_answers:

    for word in answer.split():

        if word not in vocab:

            vocab[word] = 1

        else:

            vocab[word] += 1
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As with the operations performed in Chapter 2, we will remove the 

words that have low frequency in the training dataset, as such words that 

won’t introduce any significant information to model.

# Remove rare words from the vocabulary.

threshold = 1

count = 0

for k,v in vocab.items():

    if v >= threshold:

        count += 1

print("Size of total vocab:", len(vocab))

> Size of total vocab: 18983

print("Size of vocab we will use:", count)

> Size of vocab we will use: 18983

# Create dictionaries to provide a unique integer for each 

word.

questions_vocab_to_int = {}

word_num = 0

for word, count in vocab.items():

    if count >= threshold:

        questions_vocab_to_int[word] = word_num

        word_num += 1

answers_vocab_to_int = {}

word_num = 0

for word, count in vocab.items():

    if count >= threshold:

        answers_vocab_to_int[word] = word_num

        word_num += 1
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As there are multiple words or customized symbols being generated 

by the decoder, we must add new tokens to the present vocabulary of the 

training dataset and include these in the current dictionary as well. Basic 

information regarding the four tokens included follows:

•	 GO: This is the same as the <start> token. It is the very 

first token fed to the decoder, along with the thought 

vector, to start token generation for the answer.

•	 EOS: “End of sentence,” the same as the <end> token 

that signifies the end of the sentence or completion of 

an answer. We can’t make use of punctuation marks 

in place of this, as they have totally different meanings 

with respect to the surrounding context. The EOS token 

indicates the completion of an answer, as soon as it is 

generated by the decoder.

•	 UNK: “Unknown” token. This is used to replace 

words with much less frequency in the vocabulary, 

if no additional check/shortlist has been made on 

the minimum count of occurrence of words. For 

example, the input sentence Insurance is highly 

criticalll1090 will be converted to Insurance is 

highly <UNK>.

•	 PAD: As the training data is processed in batches of 

equal length, with all sequences in a batch also being 

of the same length, the input sentences will be padded 

with the PAD token on either of the required sides of the 

sentence. For example, the input sentence Insurance 

is highly criticalll1090 will be converted to 

Insurance is highly criticalll1090 <PAD> <PAD> 

<PAD> <PAD>, for a case in which a maximum length is 

allowed.
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Figure 4-25 displays the usage of the user-defined tokens in the model 

response (source: http://colah.github.io/). The code to add these 

tokens follows.

Figure 4-25.  Sample encoder-decoder with usage of tokens

# Adding unique tokens to the present vocabulary

codes = ['<PAD>','<EOS>','<UNK>','<GO>']

for code in codes:

    �questions_vocab_to_int[code] = len(questions_vocab_to_

int)+1

for code in codes:

    answers_vocab_to_int[code] = len(answers_vocab_to_int)+1

# Creating dictionary so as to map the integers to their 

respective words, inverse of vocab_to_int

questions_int_to_vocab = {v_i: v for v, v_i in  

questions_vocab_to_int.items()}

answers_int_to_vocab = {v_i: v for v, v_i in  

answers_vocab_to_int.items()}

print(len(questions_vocab_to_int))

> 18987

print(len(questions_int_to_vocab))

> 18987
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print(len(answers_vocab_to_int))

> 18987

print(len(answers_int_to_vocab))

> 18987

We try to reduce the effective vocabulary size, which will speed up 

both training and test steps, by simply limiting it to a small number and 

replacing words outside the vocabulary with a UNK tag. Now, both training 

and test time can be significantly reduced, but this is obviously not ideal, 

because we may generate outputs with lots of UNK, but for now, we ensured 

that the percentage of these tokens is low enough that we won’t face any 

serious issue.

Also, before we feed our data into the model, we must convert every 

word in the sentence to a unique integer. This can be done by making a 

vocabulary consisting of all the words and assigning unique numbers to 

them (one-hot encoded vector).

# Convert the text to integers, and replacing any of the words 

not present in the respective vocabulary with <UNK> token

questions_int = []

for question in short_questions:

    ints = []

    for word in question.split():

        if word not in questions_vocab_to_int:

            ints.append(questions_vocab_to_int['<UNK>'])

        else:

            ints.append(questions_vocab_to_int[word])

    questions_int.append(ints)

answers_int = []

for answer in short_answers:

    ints = []
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    for word in answer.split():

        if word not in answers_vocab_to_int:

            ints.append(answers_vocab_to_int['<UNK>'])

        else:

            ints.append(answers_vocab_to_int[word])

    answers_int.append(ints)

Further check on the count of words being replaced with the <UNK> 

token. As we have already done the preprocessing step with the removal of 

the words with low frequency in the vocabulary, none of the words will be 

replaced by the <UNK> token. It is recommended, however, to include them 

in a general script.

# Calculate what percentage of all words have been replaced 

with <UNK>

word_count = 0

unk_count = 0

for question in questions_int:

    for word in question:

        if word == questions_vocab_to_int["<UNK>"]:

            unk_count += 1

        word_count += 1

for answer in answers_int:

    for word in answer:

        if word == answers_vocab_to_int["<UNK>"]:

            unk_count += 1

        word_count += 1

unk_ratio = round(unk_count/word_count,4)*100

print("Total number of words:", word_count)

> Total number of words: 1450824
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print("Number of times <UNK> is used:", unk_count)

> Number of times <UNK> is used: 0

print("Percent of words that are <UNK>: {}%".format(round(unk_

ratio,3)))

> Percent of words that are <UNK>: 0.0%

Create ordered sets of the questions and answers on the basis of the 

number of words in the questions. Sorting the text this way will help in the 

padding approach we will be using later.

# �Next, sorting the questions and answers on basis of the 

length of the questions.

# �This exercise will reduce the amount of padding being done 

during the training process.

# �This will speed up the training process and reduce the 

training loss.

sorted_questions = []

short_questions1 = []

sorted_answers = []

short_answers1= []

for length in range(1, max_line_length+1):

    for i in enumerate(questions_int):

        if len(i[1]) == length:

            sorted_questions.append(questions_int[i[0]])

            short_questions1.append(short_questions[i[0]])

            sorted_answers.append(answers_int[i[0]])

            short_answers1.append(short_answers[i[0]])

print(len(sorted_questions))

> 19108

print(len(sorted_answers))
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> 19108

print(len(short_questions1))

> 19108

print(len(short_answers1))

> 19108

print()

for i in range(3):

    print(sorted_questions[i])

    print(sorted_answers[i])

    print(short_questions1[i])

    print(short_answers1[i])

    print()

> [219, 13]

[219, 13, 58, 2310, 3636, 1384, 3365... ]

why can

why can a simple question but yet so complex why can someone 

do this or why can someone do that i have often pondered for 

hours to come up with the answer and i believe after years of 

thoughtprovoking consultation with friends and relativesi have 

the answer to the question why can the answer why not

[133, 479, 56]

[242, 4123, 3646, 282, 306, 56, ... ]

who governs annuities

if youre asking about all annuities then here are two governing 

bodies for variable annuities finra and the department of 

insurance variable products like variable annuities are registered 

products and come under the oversight of finras jurisdiction but 

because it is an annuity insurance product as well it falls under 

the department of insurance non finra annuities are governed by 

the department of insurance in each state
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[0, 201, 56]

[29, 202, 6, 29, 10, 3602, 58, 36, ... ]

what are annuities

an annuity is an insurance product a life insurance policy 

protects you from dying too soon an annuity protects you from 

living too long annuities are complex basically in exchange for 

a sum of money either immediate or in installments the company 

will pay the annuitant a specific amount normally monthly for 

the life of the annuitant there are many modifications of this 

basic form annuities are taxed differently from other programs

Check a random question answer from the sorted pairs.

print(sorted_questions[1547])

> [37, 6, 36, 10, 466]

print(short_questions1[1547])

> how is life insurance used

print(sorted_answers[1547])

> [8, 36, 10, 6, 466, 26, 626, 58, 199, 200, 1130, 58, 3512, 

31, 105, 208, 601, 10, 6, 466, 26, 626, ...

print(short_answers1[1547])

> term life insurance is used to provide a death benefit 

during a specified period of time permanent insurance is used 

to provide a death benefit at any time the policy is in force 

in order to accomplish this and have level premiums policies 

accumulate extra funds these funds are designed to allow the 

policy to meet its lifelong obligations however these funds 

accumulate tax free and give the policy the potential of 

solving many problems from funding education to providing long 

term care
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Now is the time to define the helper functions that will be used by the 

seq2seq model. A few of these functions have been drawn from the GitHub 

code repository (https://github.com/Currie32/Chatbot-from-Movie-

Dialogue), which has a similar application.

Define the function to create placeholders for our model’s inputs.

def model_inputs():

    �input_data = tf.placeholder(tf.int32, [None, None], 

name='input')

    �targets = tf.placeholder(tf.int32, [None, None], 

name='targets')

    lr = tf.placeholder(tf.float32, name='learning_rate')

    keep_prob = tf.placeholder(tf.float32, name='keep_prob')

    return input_data, targets, lr, keep_prob

Delete the last word ID in each of the batches and append the <GO> 

token at the start of each of the batches.

def process_encoding_input(target_data, vocab_to_int, batch_

size):

    �ending = tf.strided_slice(target_data, [0, 0],  

[batch_size, -1], [1, 1])

    �dec_input = tf.concat([tf.fill([batch_size, 1], vocab_to_

int['<GO>']), ending], 1)

    return dec_input

The normal RNN takes care of past states (preserves them into a 

memory), but what if you want to somehow include future also into the 

context. By using bidirectional RNNs, we can connect two hidden layers of 

opposite directions to the same output. By this structure, the output layer 

can get information from past and future states.
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Thus, we define the encoding layer of the seq2seq model with LSTM 

cells and a bidirectional encoder. The encoder layer’s state, i.e., weights, is 

taken as an input to the decoding layer.

def encoding_layer(rnn_inputs, rnn_size, num_layers, keep_prob, 

sequence_length):

    lstm = tf.contrib.rnn.BasicLSTMCell(rnn_size)

    �drop = tf.contrib.rnn.DropoutWrapper(lstm, input_keep_prob 

= keep_prob)

    �enc_cell = tf.contrib.rnn.MultiRNNCell([drop] * num_layers)

    �_, enc_state = tf.nn.bidirectional_dynamic_rnn(cell_fw = 

enc_cell, cell_bw = enc_cell, sequence_length = sequence_

length, inputs = rnn_inputs, dtype=tf.float32)

    return enc_state

The attention mechanism, explained in Chapter 3, has been used. This 

will reduce the generated loss significantly. The attention states are set to 

0, to maximize the model performance, and for the attention mechanism, 

a lesser expensive Bahdanau attention is used. Refer to the paper “Effective 

Approaches to Attention-based Neural Machine Translation” (https://

arxiv.org/pdf/1508.04025.pdf) for a comparison of the Luong and 

Bahdanau attention techniques.

def decoding_layer_train(encoder_state, dec_cell, dec_embed_

input, sequence_length, decoding_scope, output_fn, keep_prob, 

batch_size):

    �attention_states = tf.zeros([batch_size, 1, dec_cell.

output_size])

    �att_keys, att_vals, att_score_fn, att_construct_fn = 

tf.contrib.seq2seq.prepare_attention(attention_states, 

attention_option="bahdanau", num_units=dec_cell.output_size)
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    �train_decoder_fn = tf.contrib.seq2seq.attention_decoder_fn_

train(encoder_state[0], att_keys, att_vals,  att_score_fn, 

att_construct_fn,  name = "attn_dec_train")

    �train_pred, _, _ = tf.contrib.seq2seq.dynamic_rnn_

decoder(dec_cell, train_decoder_fn,  dec_embed_input, 

sequence_length, scope=decoding_scope)

    train_pred_drop = tf.nn.dropout(train_pred, keep_prob)

    return output_fn(train_pred_drop)

The decoding_layer_infer() function creates the proper responses to 

the queried questions. The function makes use of the additional attention 

parameters, to predict the words in the answers, and it is not coupled with 

any dropout, as during the final scoring phase. Here, while generating 

answers, dropout is not taken into consideration, so as to make use of all 

the neurons present across the network.

def decoding_layer_infer(encoder_state, dec_cell, dec_

embeddings, start_of_sequence_id, end_of_sequence_id,

                         �maximum_length, vocab_size, decoding_

scope, output_fn, keep_prob, batch_

size):

    �attention_states = tf.zeros([batch_size, 1, dec_cell.

output_size])

    �att_keys, att_vals, att_score_fn, att_construct_fn = 

tf.contrib.seq2seq.prepare_attention(attention_states, 

attention_option="bahdanau", num_units=dec_cell.output_

size)
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    �infer_decoder_fn = tf.contrib.seq2seq.attention_decoder_

fn_inference(output_fn, encoder_state[0],  att_keys, att_

vals,  att_score_fn, att_construct_fn,

                        �dec_embeddings, start_of_sequence_id, 

end_of_sequence_id, maximum_length, 

vocab_size, name = "attn_dec_inf")

    �infer_logits, _, _ = tf.contrib.seq2seq.dynamic_rnn_

decoder(dec_cell, infer_decoder_fn, scope=decoding_scope)

    return infer_logits

The decoding_layer() function creates the inference and training 

logits and initializes the weights and biases with the given standard 

deviation, using the truncated normal distribution.

def decoding_layer(dec_embed_input, dec_embeddings, encoder_

state, vocab_size, sequence_length, rnn_size,

                   �num_layers, vocab_to_int, keep_prob, batch_

size):

    with tf.variable_scope("decoding") as decoding_scope:

        lstm = tf.contrib.rnn.BasicLSTMCell(rnn_size)

        �drop = tf.contrib.rnn.DropoutWrapper(lstm, input_keep_

prob = keep_prob)

        �dec_cell = tf.contrib.rnn.MultiRNNCell([drop] * num_

layers)

        weights = tf.truncated_normal_initializer(stddev=0.1)

        biases = tf.zeros_initializer()

        �output_fn = lambda x: tf.contrib.layers.fully_

connected(x, vocab_size, None,  scope=decoding_scope, 

weights_initializer = weights, biases_initializer = 

biases)
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        �train_logits = decoding_layer_train(encoder_state, 

dec_cell,  dec_embed_input, sequence_length,  decoding_

scope, output_fn, keep_prob, batch_size)

        decoding_scope.reuse_variables()

        �infer_logits = decoding_layer_infer(encoder_state, 

dec_cell, dec_embeddings, vocab_to_int['<GO>'], vocab_

to_int['<EOS>'],

                    �sequence_length - 1, vocab_size,  decoding_

scope, output_fn, keep_prob, batch_size)

    return train_logits, infer_logits

The seq2seq_model() function has been used to put all the previously 

defined functions together and also to initialize the embeddings using 

random uniform distribution. The function will be used in the final graph 

to compute the training and inference logits.

def seq2seq_model(input_data, target_data, keep_prob, batch_

size, sequence_length, answers_vocab_size,

                  �questions_vocab_size, enc_embedding_size, 

dec_embedding_size, rnn_size, num_layers,

                  questions_vocab_to_int):

    �enc_embed_input = tf.contrib.layers.embed_sequence(input_

data, answers_vocab_size+1,  enc_embedding_size, 

initializer = tf.random_uniform_initializer(0,1))

    �enc_state = encoding_layer(enc_embed_input, rnn_size,  

num_layers, keep_prob, sequence_length)

    �dec_input = process_encoding_input(target_data,  

questions_vocab_to_int, batch_size)
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    �dec_embeddings = tf.Variable(tf.random_uniform([questions_

vocab_size+1, dec_embedding_size], 0, 1))

    �dec_embed_input = tf.nn.embedding_lookup(dec_embeddings, 

dec_input)

    �train_logits, infer_logits = decoding_layer(dec_embed_

input, dec_embeddings, enc_state, questions_vocab_size,

                            �sequence_length, rnn_size, 

num_layers, questions_vocab_to_

int,  keep_prob, batch_size)

    return train_logits, infer_logits

When the total number of training instances (N) is large, a small 

number of training instances (B<<N), which constitute a batch, can be 

used in one iteration, to estimate the gradient of the loss function and 

update the parameters of the network.

Note I t takes n (=N/B) iterations to use the entire training data 
once. This constitutes an epoch. So, the total number of times the 
parameters get updated is (N/B)*E, where E is the number of epochs.

Finally, we have defined our seq2seq model that will take the encoding 

and decoding part and train them simultaneously. Now, set the following 

model parameters and start the session for optimization.

•	 Epoch: A single pass through the entire training set

•	 Batch size: Simultaneous number of sentences in input

•	 Rnn_size: Number of nodes in hidden layer

•	 Num_layers: Number of hidden layers

•	 Embedding size: Embedding dimension
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•	 Learning rate: How quickly a network abandons old 

beliefs for new ones

•	 Keep probability: Used to control the dropout. 

Dropout is a simple technique to prevent over-fitting. It 

essentially drops some of the unit activations in a layer, 

by making them zero.

# Setting the model parameters

epochs = 50

batch_size = 64

rnn_size = 512

num_layers = 2

encoding_embedding_size = 512

decoding_embedding_size = 512

learning_rate = 0.005

learning_rate_decay = 0.9

min_learning_rate = 0.0001

keep_probability = 0.75

tf.reset_default_graph()

# Starting the session

sess = tf.InteractiveSession()

# Loading the model inputs    

input_data, targets, lr, keep_prob = model_inputs()

# Sequence length is max_line_length for each batch

sequence_length = tf.placeholder_with_default(max_line_length, 

None, name='sequence_length')

# Finding shape of the input data for sequence_loss

input_shape = tf.shape(input_data)

# Create the training and inference logits
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train_logits, inference_logits = seq2seq_model( 

tf.reverse(input_data, [-1]), targets, keep_prob, batch_size, 

sequence_length, len(answers_vocab_to_int),

    len(questions_vocab_to_int), encoding_embedding_size, 

decoding_embedding_size, rnn_size, num_layers,  questions_

vocab_to_int)

# Create inference logits tensor

tf.identity(inference_logits, 'logits')

with tf.name_scope("optimization"):

    # Calculating Loss function

    �cost = tf.contrib.seq2seq.sequence_loss( train_logits, 

targets, tf.ones([input_shape[0], sequence_length]))

    # Using Adam Optimizer

    optimizer = tf.train.AdamOptimizer(learning_rate)

    �# Performing Gradient Clipping to handle the vanishing 

gradient problem

    gradients = optimizer.compute_gradients(cost)

    �capped_gradients = [(tf.clip_by_value(grad, -5., 5.), var) 

for grad, var in gradients if grad is not None]

    train_op = optimizer.apply_gradients(capped_gradients)

The batch_data() function helps to create batches for both questions 

and answers.

def batch_data(questions, answers, batch_size):

    for batch_i in range(0, len(questions)//batch_size):

        start_i = batch_i * batch_size

        �questions_batch = questions[start_i:start_i + batch_

size]
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        answers_batch = answers[start_i:start_i + batch_size]

        �pad_questions_batch = np.array(pad_sentence_

batch(questions_batch, questions_vocab_to_int))

        �pad_answers_batch = np.array(pad_sentence_

batch(answers_batch, answers_vocab_to_int))

        yield pad_questions_batch, pad_answers_batch

Hold 15 percent of the total dataset for validation, and rest 85 percent 

to train the model.

# Creating train and validation datasets for both questions and 

answers, with 15% to validation

train_valid_split = int(len(sorted_questions)*0.15)

train_questions = sorted_questions[train_valid_split:]

train_answers = sorted_answers[train_valid_split:]

valid_questions = sorted_questions[:train_valid_split]

valid_answers = sorted_answers[:train_valid_split]

print(len(train_questions))

print(len(valid_questions))

Set the training parameters and initializing the declared variables.

display_step = 20        # �Check training loss after every 20 

batches

stop_early = 0

stop = 5                 # �If the validation loss decreases after 

5 consecutive checks, stop training

validation_check = ((len(train_questions))//batch_size//2)-

1        # Counter for checking validation loss

total_train_loss = 0     # �Record the training loss for each 

display step
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summary_valid_loss = []     # �Record the validation loss for 

saving improvements in the model

checkpoint= "./best_model.ckpt"   # �creating the checkpoint 

file in the current 

directory

sess.run(tf.global_variables_initializer())

Train the model.

for epoch_i in range(1, epochs+1):

    for batch_i, (questions_batch, answers_batch) in enumerate(

            �batch_data(train_questions, train_answers, batch_

size)):

        start_time = time.time()

        _, loss = sess.run(

            [train_op, cost],

            �{input_data: questions_batch, targets: answers_

batch,  lr: learning_rate,

             �sequence_length: answers_batch.shape[1], keep_

prob: keep_probability})

        total_train_loss += loss

        end_time = time.time()

        batch_time = end_time - start_time

        if batch_i % display_step == 0:

            �print('Epoch {:>3}/{} Batch {:>4}/{} - Loss: 

{:>6.3f}, Seconds: {:>4.2f}'

                  .format(epoch_i, epochs, batch_i,

                          �len(train_questions) // batch_size, 

total_train_loss / display_step,

                          batch_time*display_step))

            total_train_loss = 0
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        if batch_i % validation_check == 0 and batch_i > 0:

            total_valid_loss = 0

            start_time = time.time()

            �for batch_ii, (questions_batch, answers_batch) 

in enumerate(batch_data(valid_questions, valid_

answers, batch_size)):

                valid_loss = sess.run(

                �cost, {input_data: questions_batch, targets: 

answers_batch, lr: learning_rate,

                       �sequence_length: answers_batch.shape[1], 

keep_prob: 1})

                total_valid_loss += valid_loss

            end_time = time.time()

            batch_time = end_time - start_time

            �avg_valid_loss = total_valid_loss / (len(valid_

questions) / batch_size)

            �print('Valid Loss: {:>6.3f}, Seconds: {:>5.2f}'.

format(avg_valid_loss, batch_time))

            �# Reduce learning rate, but not below its minimum 

value

            learning_rate *= learning_rate_decay

            if learning_rate < min_learning_rate:

                learning_rate = min_learning_rate

            summary_valid_loss.append(avg_valid_loss)

            if avg_valid_loss <= min(summary_valid_loss):

                print('New Record!')

                stop_early = 0

                saver = tf.train.Saver()

                saver.save(sess, checkpoint)
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            else:

                print("No Improvement.")

                stop_early += 1

                if stop_early == stop:

                    break

    if stop_early == stop:

        print("Stopping Training.")

        break

> Epoch   1/50 Batch    0/253 - Loss:  0.494, Seconds: 1060.06

> Epoch   1/50 Batch   20/253 - Loss:  8.450, Seconds: 905.71

> Epoch   1/50 Batch   40/253 - Loss:  4.540, Seconds: 933.88

> Epoch   1/50 Batch   60/253 - Loss:  4.401, Seconds: 740.15

> Epoch   1/50 Batch   80/253 - Loss:  4.453, Seconds: 831.04

> Epoch   1/50 Batch  100/253 - Loss:  4.338, Seconds: 774.67

> Epoch   1/50 Batch  120/253 - Loss:  4.295, Seconds: 832.49

Valid Loss:  4.091, Seconds: 675.05

New Record!

> Epoch   1/50 Batch  140/253 - Loss:  4.255, Seconds: 822.40

> Epoch   1/50 Batch  160/253 - Loss:  4.232, Seconds: 888.85

> Epoch   1/50 Batch  180/253 - Loss:  4.168, Seconds: 858.95

> Epoch   1/50 Batch  200/253 - Loss:  4.093, Seconds: 849.23

> Epoch   1/50 Batch  220/253 - Loss:  4.034, Seconds: 846.77

> Epoch   1/50 Batch  240/253 - Loss:  4.005, Seconds: 809.77

Valid Loss:  3.903, Seconds: 509.83

New Record!

...

...

...

...

...
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Define the question_to_seq() function to take the input question 

either from the user, or pick a random question from the dataset and 

convert it to the integer format to be used by the model.

def question_to_seq(question, vocab_to_int):

    """Creating the question to be taken as input by the model"""

    question = clean_text(question)

    �return [vocab_to_int.get(word, vocab_to_int['<UNK>']) for 

word in question.split()]

Now is the time to get fruits from the tree planted at the start of this 

section. So, here we will check the output of our seq2seq model by giving 

a random question as input. The answer will be generated by the trained 

model.

# Selecting a random question from the full lot

random = np.random.choice(len(short_questions))

input_question = short_questions[random]

print(input_question)

> what exactly does adjustable life insurance mean

# Transforming the selected question in the desired format of 

IDs and Words

input_question = question_to_seq(input_question, questions_

vocab_to_int)

# Applying Padding to the question to reach the max_line_length

input_question = input_question + [questions_vocab_to_

int["<PAD>"]] * (max_line_length - len(input_question))

# Correcting the shape of input_data, by adding the empty questions

batch_shell = np.zeros((batch_size, max_line_length))
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# Setting the input question as the first question

batch_shell[0] = input_question    

# Passing  input question to the model

answer_logits = sess.run(inference_logits, {input_data: batch_

shell, keep_prob: 1.0})[0]

# Removing padding from Question and Answer both

pad_q = questions_vocab_to_int["<PAD>"]

pad_a = answers_vocab_to_int["<PAD>"]

# Printing the final Answer output by the model

print('Question')

print('Word Ids: {}'.format([i for i in input_question if i != 

pad_q]))

print('Input Words: {}'.format([questions_int_to_vocab[i] for i 

in input_question if i != pad_q]))

print('\n')

> Question

> Word Ids: [17288, 16123, 9831, 13347, 1694, 11205, 7655]

> Input Words: ['what', 'exactly', 'does', 'adjustable', 

'life', 'insurance', 'mean']

print('\nAnswer')

print('Word Ids: {}'.format([i for i in np.argmax(answer_

logits, 1) if i != pad_a]))

print('Response Words: {}'.format([answers_int_to_vocab[i] for 

i in np.argmax(answer_logits, 1) if i != pad_a]))

print('\n')
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print(' '.join(([questions_int_to_vocab[i] for i in input_

question if i != pad_q])))

print(' '.join(([answers_int_to_vocab[i] for i in 

np.argmax(answer_logits, 1) if i != pad_a])))

> Answer

>   Word Ids:      [10130, 10344, 13123, 2313, 1133, 1694, 

11205, 6968, 966, 10130, 3030, 2313, 5964, 10561, 10130, 9158, 

17702, 13344, 13278, 10130, 7457, 14167, 17931, 14479, 10130, 

6968, 9158, 8521, 10130, 9158, 17702, 12230, 10130, 6968, 8679, 

1688, 10130, 7457, 14167, 17931, 9472, 10130, 9158, 12230, 

10130, 6968, 8679, 1688, 10130, 7457, 14167, 17931, 18293, 

10130, 16405, 16640, 6396, 3613, 2313, 10130, 6968, 10130, 

6968, 8679, 1688, 10130, 7457, 14167, 17931, 18293, 10130, 

16405, 16640, 6396, 3613, 10628, 13040, 10130, 6968]

>   Response Words: ['the', 'face', 'value', 'of', 'a', 'life', 

'insurance', 'policy', 'is', 'the', 'amount', 'of', 'time', 

'that', 'the', 'insured', 'person', 'passes', 'with', 'the', 

'death', 'benefit', 'proceeds', 'from', 'the', 'policy', 

'insured', 'if', 'the', 'insured', 'person', 'dies', 'the', 

'policy', 'will', 'pay', 'the', 'death', 'benefit', 'proceeds', 

'whenever', 'the', 'insured', 'dies', 'the', 'policy', 'will', 

'pay', 'the', 'death', 'benefit', 'proceeds', 'within', 'the', 

'two', 'year', 'contestability', 'period', 'of', 'the', 

'policy', 'the', 'policy', 'will', 'pay', 'the', 'death', 

'benefit', 'proceeds', 'within', 'the', 'two', 'year', 

'contestability', 'period', 'specified', 'in', 'the', 'policy']

> what exactly does adjustable life insurance mean

> the face value of a life insurance policy is the amount of 

time that the insured person passes with the death benefit 
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proceeds from the policy insured if the insured person dies 

the policy will pay the death benefit proceeds whenever the 

insured dies the policy will pay the death benefit proceeds 

within the two year contestability period of the policy the 

policy will pay the death benefit proceeds within the two year 

contestability period specified in the policy

The last paragraph is the output of the question “What exactly does 

adjustable life insurance mean?” that we have put into the model. Well, 

it does not sound grammatically correct, but that is a whole different 

issue that could be dealt in a better way by training the model with more 

datasets and refined embeddings.

Assuming there is no major update happening in the conversation 

text over time, one can make use of the trained model object and imbibe 

it in the chatbot application, to produce beautiful replies to the questions 

posed by the end user of the chatbot. This has been left as an exercise for 

the reader. Enjoy conversing with your own chatbot! For additional fun, 

you can try training the model on personal chats with your friends, to see 

whether your chatbot is able to resemble of your loved ones successfully 

or not. Now you know that all that is needed is the conversation text file of 

two persons to create a fully functional chatbot.

�Next Steps
This chapter made use of the concepts explained in Chapter 3 and helped 

in making a chatbot and training a text-generating model that can be 

further embedded to the Facebook Messenger chatbot. In Chapter 5, 

we will present an implementation of the sentiment classification taken 

from a paper released at the 5th International Conference on Learning 

Representations (ICLR 2017). We recommend that our readers replicate 

the examples in the chapter and explore different use cases of text 

generation techniques on the diverse set of available public datasets.

Chapter 4  Developing a Chatbot



231© Palash Goyal, Sumit Pandey, Karan Jain 2018 
P. Goyal, et al., Deep Learning for Natural Language Processing,  
https://doi.org/10.1007/978-1-4842-3685-7_5

CHAPTER 5

Research Paper 
Implementation: 
Sentiment 
Classification
Chapter 5 concludes this book with the implementation of sentiment 

analysis from a research paper. The first section of this chapter details 

the approach mentioned, followed by a second section devoted to its 

implementation, using TensorFlow. To ensure there is a difference 

between the actual paper we used and our results, we have selected a 

different dataset for test purposes, so the accuracy of our results may vary 

from those presented in the actual research paper.

The dataset being used is available for public use and is included as 

a sample dataset in the Keras library. This chapter links the theories and 

practical examples shared in Chapters 2 and 3 and creates an additional 

layer, by using the modeling approaches followed in the research paper.

Our implementation exercise owes its success to the paper  

“A Structured Self-attentive Sentence Embedding” (https://arxiv.

org/pdf/1703.03130.pdf), presented at ICLR 2017 (5th International 

Conference on Learning Representations) by a team of research scientists 

https://arxiv.org/pdf/1703.03130.pdf
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from IBM Watson and the Montreal Institute for Learning Algorithms 

(MILA) of the University of Montreal (Université de Montréal) and 

subsequently published.

The paper suggests a new modeling technique to extract an 

interpretable sentence embedding, by introducing a self-attention 

mechanism. The model uses a two-dimensional matrix to represent the 

sentence embedding, in place of a vector, in which each of the matrices 

represents a different segment of the sentence. In addition, a self-

attention mechanism and a unique regularization term are proposed. 

The embedding method proposed can be visualized easily, to figure out 

what specific parts of the sentence ultimately are being encoded into the 

sentence embedding. The research conducted shares the performance 

evaluation of the proposed model on three different types of tasks.

•	 Author profiling

•	 Sentiment classification

•	 Textual entailment

The model has turned out to be quite promising, compared to other 

current sentence-embedding techniques, for all three of the preceding 

types of tasks.

�Self-Attentive Sentence Embedding
Various supervised and unsupervised sentence-embedding models 

have been proposed previously, such as skip-thought vectors, paragraph 

vectors, recursive autoencoders, sequential denoising autoencoders, 

FastSent, etc., but the proposed method in the paper concerned uses a new 

self-attention mechanism that allows it to extract different aspects of the 

sentence into multiple vector representations. The matrix structure, with 

the penalization term, gives the model a greater capacity to disentangle the 

latent information from the input sentence.
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Moreover, the linguistic structures are not used to guide the sentence 

representation model. Additionally, using this method, one can easily 

create visualizations that help in the interpretation of the learned 

representations.

The skip-thought vector is an unsupervised learning of a generic 

distributed sentence encoder. Using the continuity of text from books, 

an encoder-decoder model is trained to attempt to reconstruct the 

surrounding sentences of an encoded passage. Sentences that share 

semantic and syntactic properties are thus mapped to similar vector 

representations. For further information related to this, refer to the original 

paper, available at https://arxiv.org/abs/1506.06726.

A paragraph vector is an unsupervised algorithm that learns fixed-

length feature representations from variable-length pieces of texts, such 

as sentences, paragraphs, and documents. The algorithm represents 

each document by a dense vector that is trained to predict words in the 

document. Empirical results presented in the paper show that paragraph 

vectors outperform bag-of-words models, as well as other techniques for 

text representations. A more detailed explanation on this is included in the 

original research paper, available at https://arxiv.org/abs/1405.4053.

Figure 5-1 shows a sample model structure used to showcase the 

sentence-embedding model when combined with a fully connected and 

softmax layer for sentiment analysis.

Note  Blue shapes stand for hidden representations, and red shapes 
stand for weights, annotations, or input/output.
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�Proposed Approach
This section covers the proposed self-attentive sentence-embedding 

model and the regularization term proposed for it. Both concepts are 

explained in separate subsections and are like those mentioned in the 

Figure 5-1.  The sentence-embedding model is computed as multiple 
weighted sums of hidden states from a bidirectional long short-term 
memory (LSTM) (h1, …, hn)
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actual paper. The reader has the option of referring to the original paper 

for additional information, although the content presented in this section 

is sufficient for a general understanding of the proposed approaches.

The proposed attention mechanism is only performed once, and 

it focuses directly on the semantics that make sense for discriminating 

the targets. It is less focused on relations between words, but more so 

on the semantics of the whole sentence that each word contributes to. 

Computation-wise, the method scales up well with the sentence length, 

as it doesn’t require the LSTM to compute an annotation vector over all its 

previous words.

�Model

The proposed sentence-embedding model in “A Structured Self-attentive 

Sentence Embedding” consists of two parts:

•	 Bidirectional LSTM

•	 Self-attention mechanism

The self-attention mechanism provides a set of summation weight 

vectors for the LSTM hidden states (Figure 5-2).
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The set of summation weight vectors is dotted with the LSTM hidden 

states, and the resulting weighted LSTM hidden states are considered as 

an embedding for the sentence. It can be combined with, for example, a 

multilayer perceptron (MLP), to be applied on a downstream application. 

The figures shown belong to an example in which the proposed sentence-

embedding model is applied to sentiment analysis, combined with a fully 

connected layer and a softmax layer.

Figure 5-2.  The summation weights (Ai1, …, Ain) are computed as 
illustrated
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Note F or the sentiment analysis exercise, the figures used in the 
preceding illustration will be sufficient to describe the desired model.

(Optional)  In addition to using a fully connected layer, an approach 
that prunes weight connections by utilizing the two-dimensional 
structure of matrix sentence embedding has also been proposed in 
the paper and has been detailed in its Appendix A.

Suppose we have a sentence that has n tokens, represented in a 

sequence of word embeddings.

S   w w wn1 2, , ,

Here, wi is a vector standing for a d dimensional word embedding for 

the i-th word in the sentence. S is thus a sequence represented as a 

two-dimensional matrix, which concatenates all the word embeddings 

together. S should have the shape n-by-d.

Now, each entry in the sequence S is independent of the other. To gain 

some dependency between adjacent words within a single sentence, we 

use a bidirectional LSTM to process the sentence

h LSTM w ht t t

�� � ������� � ����
   , 1

h LSTM w ht t t

�� � ������� � ����
   , 1

We then concatenate each ht
��

 with ht
��

, to obtain a hidden state ht. Let the 

hidden unit number for each unidirectional LSTM be u. For simplicity, we 

note all the n ht s as H, which have the size n-by-2u.

H = (h1, h2, …, hn)
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Our aim is to encode a variable-length sentence into a fixed-size 

embedding. We achieve that by choosing a linear combination of the n 

LSTM hidden vectors in H. Computing the linear combination requires the 

self-attention mechanism. The attention mechanism takes all of the LSTM 

hidden states H as input and outputs a vector of weights a, as follows:

a softmax w HT   Ws2 tanh s1

Here, Ws1 is a weight matrix with a shape of da-by-2u, and Ws2 is a 

vector of parameters with size da, where da is a hyperparameter we can set 

arbitrarily. Because H is sized n-by-2u, the annotation vector a will have 

a size n. The softmax() ensures all the computed weights add up to 1. We 

then add up the LSTM hidden states H according to the weights provided 

by a, to get a vector representation m of the input sentence.

This vector representation usually focuses on a specific component 

of the sentence, such as a special set of related words or phrases. So, 

it is expected to reflect an aspect, or component, of the semantics in a 

sentence. However, there can be multiple components in a sentence that 

together form the overall semantics of it, especially for long sentences. 

(For example, two clauses linked together by an “and”) Thus, to represent 

the overall semantics of the sentence, we need multiple m’s that focus on 

different parts of the sentence. Thus, we must perform multiple hops of 

attention. Say we want r different parts to be extracted from the sentence. 

For this, we extend the Ws2 into an r-by-da matrix, note it as Ws2, and the 

resulting annotation vector a becomes annotation matrix A.

Formally,

A softmax W W Hs s
T   2 tanh 1
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Here, the softmax() is performed along the second dimension of its 

input. We can deem the preceding equation as a two-layer MLP without 

bias, whose hidden unit numbers is da, and whose parameters are {Ws2, Ws1}.

The embedding vector m then becomes an r-by-2u embedding 

matrix M. We compute the r weighted sums by multiplying the annotation 

matrix A and LSTM hidden states H. The resulting matrix is the sentence 

embedding:

M = A H

�Penalization Term

The embedding matrix M can suffer from redundancy problems, if the 

attention mechanism always provides similar summation weights for all 

the r hops. Thus, we need a penalization term, to encourage the diversity 

of summation weight vectors across different hops of attention.

The best way to evaluate the diversity is definitely the Kullback Leibler 

divergence (KL) between any two of the summation weight vectors.

KL divergence is used to measure the difference between two probability 

distributions over the same variable x. It is related to cross entropy and 

information divergence. For the given two probability distributions, p(x) and 

q(x), KL divergence serves as a nonsymmetric measure of the divergence 

of q(x) from p(x), is denoted as DKL(p(x), q(x)), and is a measure of the 

information lost when q(x) is used to approximate p(x).

For a discrete random variable x, if p(x) and q(x) are its two probability 

distributions, then both p(x) and q(x) add up to 1, and p(x) > 0 and q(x) > 0 

for any x in X.

D p x q x p x
p x

q xKL
x X

         
 

, ln
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where,

D p x q xKL     , 0,

D P QKL ||   0, if and only if, P = Q

The KL divergence measures the expected number of extra bits 

required to code samples from p(x) when using a code based on q(x), 

rather than using a code based on p(x). Usually, p(x) represents the 

“actual” data distribution of observations, or a precisely calculated 

theoretical distribution, and q(x) represents a theory, or model, or 

approximation of p(x). Similar to the discrete version, KL divergence holds 

continuous version as well.

KL divergence is not a distance measure, even though it measures 

the “distance” between two distributions, as it is not a metric measure. 

Moreover, it is not symmetric in nature, i.e., the KL divergence value from 

p(x) to q(x) is not the same as the KL divergence value from q(x) to p(x), in 

most of cases. Also, it might not satisfy the triangular inequality.

However, that is not very stable in this case, as, here, maximization 

of a set of KL divergence is being tried (instead of minimizing only one, 

which is the usual case), and as optimization of the annotation matrix 

A is performed, to have a lot of sufficiently small or even zero values at 

different softmax output units, the vast amount of zeros makes the training 

unstable. There is another feature that KL divergence doesn’t provide and 

is the need of the hour, which is each individual row to focus on a single 

aspect of semantics. This requires the probability mass in the annotation 

softmax output to be more focused, but with a KL divergence penalty, it 

won’t serve the purpose.

Thus, a new penalization term is introduced that overcomes the 

previously mentioned shortcomings. Compared to the KL divergence 

penalization, this term consumes only one-third of the computation. The 
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dot product of A and its transpose are used, subtracted from an identity 

matrix, as a measure of redundancy.

P AA IT  || || F
2

In the preceding equation, || ||� F
2

 stands for the Frobenius norm of a 

matrix. Like adding an L2 regularization term, this penalization term, P, 

will be multiplied by a coefficient, and we minimize it, together with the 

original loss, which is dependent on the downstream application.

Let’s consider two different summation vectors, ai and aj, in A. Because 

of softmax, all entries within any summation vector in A should add up to 1. 

Thus, they can be deemed as probability masses in a discrete probability 

distribution. For any non-diagonal elements aij (i ≠ j) in the A.AT matrix, 

it corresponds to a summation over the element-wise product of two 

distributions:

0 1
1

  

a a aij
k

n

k
i

k
j

Where ak
i and ak

j are the k-th element in the ai and aj vectors, respectively. 

In the most extreme case, where there is no overlap between the 

two probability distributions ai and aj, the corresponding aij will be 0 

otherwise it will have a positive value. On the other extreme end, if the 

two distributions are identical, and all concentrate on one single word, 

it will have a maximum value of 1. We subtract an identity matrix from 

A.AT, which forces the elements on the diagonal of A.AT to approximate 1, 

which encourages each summation vector ai to focus on as few numbers 

of words as possible, forcing each vector to be focused on a single aspect, 

and all other elements to 0, which punishes redundancy between different 

summation vectors.
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�Visualization
The General case visualization presents the results of the Author Profiling 

task and shows the two types of visualization being used. The second case, 

on sentiment analysis, makes use of the second means of visualization, for 

a heatmap of reviews on Yelp.

�General Case

The interpretation of the sentence embedding is quite straightforward, 

because of the existence of annotation matrix A. For each row in the 

sentence embedding matrix M, its corresponding annotation vector ai is 

present. Each element in this vector corresponds to how much contribution 

the LSTM hidden state of a token on that position contributes to. Thus, a 

heatmap could be drawn for each row of the embedding matrix M.

This method of visualization hints at what is encoded in each part of 

the embedding, adding an extra layer of interpretation. Figure 5-3 shows 

heat maps for two models trained on the Twitter Age dataset (http://pan.

webis.de/clef16/pan16-web/author-profiling.html).
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The second means of visualization can be achieved by adding up the 

overall annotation vectors and then normalizing the resulting weight 

vector to add up to 1. Because it adds up all aspects of semantics of a 

sentence, it yields a general view of what the embedding mostly focuses 

on. One can figure out which words the embedding takes into account 

the most and which are skipped by the embedding. Figure 5-4 represents 

Figure 5-3.  Heatmaps of six random detailed attentions from 30 
rows of matrix embedding, and for two models without and with 1.0 
penalization
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this concept of the overall attention by adding up all 30 attention weight 

vectors, with and without penalization.

Figure 5-4.  Overall attention without penalization and with 1.0 
penalization

�Sentiment Analysis Case

For the research paper, a Yelp dataset (www.yelp.com/dataset_challenge) 

has been selected for the sentiment analysis task. It consists of 2.7M Yelp 

reviews, from which 500K review-star pairs have been randomly selected 

as the training set, 2,000 for the development set, and 2,000 for the test 

set. The review is taken as input, and the number of stars is predicted in 

accordance with what the user has actually written for each of the reviews 

corresponding to the business store.

A 100-dimensional word2vec is used to initialize word embeddings, 

and the embeddings are further tuned during training. The target number 

of stars is an integer number in the range of [1,2,3,4,5], inclusive, and, 

thus, the task is treated as a classification task, i.e., classifying a review 

text into one of the five classes, and the classification accuracy is used for 

measurement. For the two baseline models, a batch size of 32 is used, and 

the hidden unit numbers in the output MLP is chosen as 3,000.

As an interpretation of the learned sentence embedding, the second 

way of visualization is used below, to plot the heat maps for some of the 

reviews in the dataset. Three reviews are selected randomly. As inferred 

from Figure 5-5, the model majorly learns to capture some key factors in 

the review that indicate strongly the sentiment behind the sentence. For 
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most of the short reviews, the model manages to capture all the key factors 

that contribute to an extreme score, but for longer reviews, the model is 

still not able to capture all related factors. As reflected in the first review, a 

lot of focus is placed on one single factor, “be nothing extraordinary,” and 

little attention is on other key points, such as “annoying thing,” “so hard/

cold,” etc.

Figure 5-5.  Attention of sentence embedding on three different Yelp 
reviews, trained without and with 1.0 penalization
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�Research Findings
The paper introduces a fixed size, matrix sentence embedding with a self-

attention mechanism, which helps in interpreting the sentence embedding 

in depth in the model. Introducing the attention mechanism allows the 

final sentence embedding to directly access previous LSTM hidden states, 

via the attention summation. Thus, the LSTM doesn’t have to carry every 

piece of information toward its last hidden state. Instead, each LSTM 

hidden state is only expected to provide shorter-term context information 

about each word, while the higher-level semantics, which requires 

longer term dependency, can be picked up directly by the attention 

mechanism. This setting relieves the burden of LSTM to carry on long-

term dependencies. The notion of adding up elements in the attention 

mechanism is very primitive. It can be something more complex than that, 

which will allow more operations on the hidden states of LSTM.

The model can encode any sequence of variable length into a fixed-

size representation, without suffering from long-term dependency 

problems. This brings a lot of scalability to the model, and without any 

significant modification, it can be applied directly to longer contents, such 

as paragraphs, articles, etc.

�Implementing Sentiment Classification
We have made use of the Internet Movie Database, popularly known as 

IMDb (www.imdb.com), to select the dataset for the sentiment classification 

problem. It offers a great number of datasets, both image and text, which 

are useful for multiple research activities in deep learning and data 

analysis.

For sentiment classification, we have made use of a set of 25,000 

movie reviews, which have their positive and negative label attached. 

The publicly available reviews have been already preprocessed and are 

encoded as a sequence of word indexes, i.e., integers. The words are 
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ordered on the basis of their overall frequency in the dataset, i.e., the token 

or word with the second-highest frequency has been indexed as 2, and so 

on. Attaching such an index to the words will help in shortlisting the words 

on the basis of their frequency, such as to pick the top 2,000 most common 

words or remove the top-10 most common words. Following is code to 

view a sample of the training dataset.

from keras.datasets import imdb

(X_train,y_train), (X_test,y_test) = imdb.load_data(num_

words=1000, index_from=3)

# Getting the word index used for encoding the sequences

vocab_to_int = imdb.get_word_index()

vocab_to_int = {k:(v+3) for k,v in vocab_to_int.items()}   

# Starting from word index offset onward

# Creating indexes for the special characters : Padding, Start 

Token, Unknown words

vocab_to_int["<PAD>"] = 0

vocab_to_int["<GO>"] = 1

vocab_to_int["<UNK>"] = 2

int_to_vocab = {value:key for key,value in vocab_to_int.

items()}

print(' '.join(int_to_vocab[id] for id in X_train[0] ))

>

<GO> this film was just brilliant casting <UNK> <UNK> story 

direction <UNK> really <UNK> the part they played and you could 

just imagine being there robert <UNK> is an amazing actor and 

now the same being director <UNK> father came from the same 

<UNK> <UNK> as myself so i loved the fact there was a real <UNK> 

with this film the <UNK> <UNK> throughout the film were great 

it was just brilliant so much that i <UNK> the film as soon as 
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it was released for <UNK> and would recommend it to everyone 

to watch and the <UNK> <UNK> was amazing really <UNK> at the 

end it was so sad and you know what they say if you <UNK> at a 

film it must have been good and this definitely was also <UNK> 

to the two little <UNK> that played the <UNK> of <UNK> and paul 

they were just brilliant children are often left out of the 

<UNK> <UNK> i think because the stars that play them all <UNK> 

up are such a big <UNK> for the whole film but these children 

are amazing and should be <UNK> for what they have done don't 

you think the whole story was so <UNK> because it was true and 

was <UNK> life after all that was <UNK> with us all

�Sentiment Classification Code
The last section of this book covers the implementation of the concept 

described in the previously mentioned paper and its use for sentiment 

classification of the selected IMDb datasets. The required IMDb datasets 

can be downloaded automatically from the following code. If required, 

one can also download the dataset from the following URL and look at 

the set of reviews available: https://s3.amazonaws.com/text-datasets/

imdb_full.pkl.

Note M ake sure you have an open Internet connection on the 
machine before running the code, to enable the dataset download, 
and TensorFlow version 1.3.0.

“0” has not been used to encode any word, as it is used to encode 
the unknown word in the vocabulary.
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Import the required packages and checking packages version, where 

required.

# Importing TensorFlow and IMDb dataset from keras library

from keras.datasets import imdb

import tensorflow as tf

> Using TensorFlow backend.

# Checking TensorFlow version

print(tf.__version__)

> 1.3.0

from __future__ import print_function

from tensorflow.python.ops import rnn, rnn_cell

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

The next step is to create the train/test datasets from the reviews 

dataset of IMDb. Keras datasets offers a built-in function for it, which 

returns the following couple of tuples with the sequence and labels list:

•	 X_train, X_test: These are lists of sequences that 

have the lists of indexes, i.e., normal integers assigned 

to each of the words. If, while importing the dataset, 

the num_words argument is specified, the maximum 

possible index value selected is num_words-1, and if the 

maxlen argument is specified, then it is used to pick the 

largest possible sequence length.

•	 y_train, y_test: These are the lists of integer labels, 

assigned 1 or 0, for positive and negative reviews, 

respectively.
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The imdb.load_data() function takes eight arguments to customize 

the review dataset selection. Following is a detailed explanation of these 

arguments:

•	 path: If the data is not present locally in the Keras 

datasets folder, it will be downloaded to the specified 

location.

•	 num_words: (Type: integer or None) Selects the top 

most frequent words to be considered for the modeling 

purpose. Words out of this range and with a frequency 

less than these will be replaced with the oov_char value 

in the sequence data.

•	 skip_top: (Type: integer) This skips the top most-

frequent words from the selection. Such bypassed 

words are replaced with the oov_char value in the 

sequence data.

•	 maxlen: (Type: int) Used to specify the maximum 

length of the sequence. Sequences longer then the 

specified length will be truncated.

•	 seed: (Type: int) Sets the seed to reproduce the data 

shuffling

•	 start_char: (Type: int) This character marks the start 

of a sequence. It is set to 1, because 0 is usually used to 

pad characters.
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•	 oov_char: (Type: int) Words cut out by the num_words 

or skip_top arguments will be replaced by this 

character.

•	 index_from: (Type: int) Indexes actual words and 

more. It is a Word indexing offset.

# Creating Train and Test datasets from labeled movie reviews

(X_train, y_train), (X_test, y_test) = imdb.load_

data(path="imdb_full.pkl",num_words=None, skip_top=0, 

maxlen=None, seed=113, tart_char=1, oov_char=2, index_from=3)

> Downloading data from https://s3.amazonaws.com/text-datasets/ 

imdb.npz

Each of the sequences in the review set is of a length of 200, and further 

vocabulary has been created from the training dataset. Figure 5-6 shows 

the distribution of the word count in reviews.

X_train[:2]

> array([ list([1, 14, 22, 16, 43, 530, 973, 1622, 1385, 65, 

458, 4468, 66, 3941, 4, 173, 36, 256, 5, 25, 100, 43, 838, 112, 

50, 670, 22665, ....

t = [item for sublist in X_train for item in sublist]

vocabulary = len(set(t))+1  

a = [len(x) for x in X_train]

plt.plot(a)
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Specify a maximum length for the selection of a sequence from the 

sentence, and if the review length is lower than it, append the newly 

created sequence with padding, up to the maximum length.

max_length = 200 # specifying the max length of the sequence in 

the sentence

x_filter = []

y_filter = []

# If the selected length is lesser than the specified max_

length, 200, then appending padding (0), else only selecting 

desired length only from sentence

for i in range(len(X_train)):

    if len(X_train[i])<max_length:

        a = len(X_train[i])

        X_train[i] = X_train[i] + [0] * (max_length - a)

Figure 5-6.  Distribution of word counts in each of the reviews
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        x_filter.append(X_train[i])

        y_filter.append(y_train[i])

    elif len(X_train[i])>max_length:

        X_train[i] = X_train[i][0:max_length]

Declare the model hyperparameters with word embedding size, 

number of hidden units, learning rate, batch size, and total number of 

training iterations.

#declaring the hyper params

embedding_size = 100   # �word vector size for initializing the 

word embeddings

n_hidden = 200

learning_rate = 0.06

training_iters = 100000

batch_size = 32

beta =0.0001

Declare additional parameters related to the current model 

architecture and dataset, max_length, number of classes to classify in, 

number of units in hidden layer of self-attention MLP, and number of rows 

in matrix embedding.

n_steps = max_length         # timestepswords

n_classes = 2                # �0/1 : binary classification for 

negative and positive reviews

da = 350                     # �hyper-parameter : Self-attention 

MLP has hidden layer with da 

units

r = 30                       #� count of different parts to be 

extracted from sentence (= number 

of rows in matrix embedding)

display_step =10

hidden_units = 3000
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Transform the training dataset values and labels in the desired format 

of array post transformation and encoding, respectively.

y_train = np.asarray(pd.get_dummies(y_filter))

X_train = np.asarray([np.asarray(g) for g in x_filter])

Create an internal folder to record logs.

logs_path = './recent_logs/'

Create a DataIterator class, to yield random data in batches of given 

batch size.

class DataIterator:

    """ Collects data and yields bunch of batches of data

    Takes data sources and batch_size as arguments """

    def __init__(self, data1,data2, batch_size):

        self.data1 = data1

        self.data2 = data2

        self.batch_size = batch_size

        self.iter = self.make_random_iter()

    def next_batch(self):

        try:

            idxs = next(self.iter)

        except StopIteration:

            self.iter = self.make_random_iter()

            idxs = next(self.iter)

        X =[self.data1[i] for i in idxs]

        Y =[self.data2[i] for i in idxs]

        X = np.array(X)

        Y = np.array(Y)

        return X, Y
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    def make_random_iter(self):

        �splits = np.arange(self.batch_size, len(self.data1), 

self.batch_size)

        �it = np.split(np.random.permutation(range(len(self.

data1))), splits)[:-1]

        return iter(it)

Initialize weights and biases and input placeholders in the next step. 

The general rule for setting the weights in a neural network is to be close 

to zero, without being too small. A good practice is to start your weights in 

the range of [−y, y], where y = 1/ n  (n is the number of inputs to a given 

neuron).

############ Graph Creation ################      

# TF Graph Input

with tf.name_scope("weights"):

     �Win  = tf.Variable(tf.random_uniform([n_hidden*r, hidden_

units],-1/np.sqrt(n_hidden),1/np.sqrt(n_hidden)), name= 

'W-input')

     �Wout = tf.Variable(tf.random_uniform([hidden_units, 

n_classes],-1/np.sqrt(hidden_units),1/np.sqrt(hidden_

units)), name='W-out')

     �Ws1  = tf.Variable(tf.random_uniform([da,n_hidden],-1/

np.sqrt(da),1/np.sqrt(da)), name='Ws1')

     �Ws2  = tf.Variable(tf.random_uniform([r,da],-1/

np.sqrt(r),1/np.sqrt(r)), name='Ws2')

with tf.name_scope("biases"):            

    �biasesout = tf.Variable(tf.random_normal([n_classes]), 

name='biases-out')

    �biasesin  = tf.Variable(tf.random_normal([hidden_units]), 

name='biases-in')
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with tf.name_scope('input'):

    �x = tf.placeholder("int32", [32,max_length], name= 

'x-input')

    y = tf.placeholder("int32", [32, 2], name='y-input')

Create tensors in the same default graph context with the embedded 

vectors. This takes the embedding matrix and an input tensor, such as the 

review vectors.

with tf.name_scope('embedding'):

    �embeddings = tf.Variable(tf.random_uniform([vocabulary, 

embedding_size],-1, 1), name='embeddings')

    embed = tf.nn.embedding_lookup(embeddings,x)

def length(sequence):

    �# Computing maximum of elements across dimensions of a 

tensor

    �used = tf.sign(tf.reduce_max(tf.abs(sequence), reduction_

indices=2))   

    length = tf.reduce_sum(used, reduction_indices=1)

    length = tf.cast(length, tf.int32)

    return length

Reuse the weights and biases using the following:

with tf.variable_scope('forward',reuse=True):

        lstm_fw_cell = rnn_cell.BasicLSTMCell(n_hidden)

with tf.name_scope('model'):  

    �outputs, states = rnn.dynamic_rnn(lstm_fw_

cell,embed,sequence_length=length(embed),dtype=tf.

float32,time_major=False)    

    �# in the next step we multiply the hidden-vec matrix with 

the Ws1 by reshaping
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    �h = tf.nn.tanh(tf.transpose(tf.reshape(tf.

matmul(Ws1,tf.reshape(outputs,[n_hidden,batch_size*n_

steps])),  [da,batch_size,n_steps]),[1,0,2]))

    # in this step we multiply the generated matrix with Ws2

    �a = tf.reshape(tf.matmul(Ws2,tf.reshape(h,[da,batch_size*n_

steps])),[batch_size,r,n_steps])

    def fn3(a,x):

            return tf.nn.softmax(x)

    h3 = tf.scan(fn3,a)

with tf.name_scope('flattening'):

    �# here we again multiply(batch) of the generated batch with 

the same hidden matrix

    h4 = tf.matmul(h3,outputs)

    # flattening the output embedded matrix

    last = tf.reshape(h4,[-1,r*n_hidden])

with tf.name_scope('MLP'):

    �tf.nn.dropout(last,.5, noise_shape=None, seed=None, 

name=None)

    pred1 = tf.nn.sigmoid(tf.matmul(last,Win)+biasesin)

    pred  = tf.matmul(pred1, Wout) + biasesout

# Define loss and optimizer

with tf.name_scope('cross'):

    �cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_

logits(logits =pred, labels = y) + beta*tf.nn.l2_loss(Ws2) )

with tf.name_scope('train'):

    �optimizer = tf.train.AdamOptimizer(learning_rate=learning_

rate)

    gvs = optimizer.compute_gradients(cost)

    �capped_gvs = [(tf.clip_by_norm(grad,0.5), var) for grad, 

var in gvs]
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    optimizer.apply_gradients(capped_gvs)

    optimized = optimizer.minimize(cost)

# Evaluate model

with tf.name_scope('Accuracy'):

    correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))

    �accuracy     = tf.reduce_mean(tf.cast(correct_pred, 

tf.float32))

tf.summary.scalar("cost", cost)

tf.summary.scalar("accuracy", accuracy)

> <tf.Tensor 'accuracy:0' shape=() dtype=string>

# merge all summaries into a single "summary operation" which 

we can execute in a session

summary_op =tf.summary.merge_all()

# Initializing the variables

train_iter = DataIterator(X_train,y_train, batch_size)    

init = tf.global_variables_initializer()

# This could give warning if in case the required port is being 

used already

# Running the command again or releasing the port before the 

subsequent run should solve the purpose

Start to train the model. Make sure the batch_size is sufficient enough 

to fit system requirements.

with tf.Session() as sess:

    sess.run(init)

    # Creating log file writer object

    �writer = tf.summary.FileWriter(logs_path, graph=tf.get_

default_graph())

    step = 1
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    # Keep training until reach max iterations

    while step * batch_size < training_iters:

        batch_x, batch_y = train_iter.next_batch()

        sess.run(optimized, feed_dict={x: batch_x, y: batch_y})

        # Executing the summary operation in the session

        �summary = sess.run(summary_op, feed_dict={x: batch_x, 

y: batch_y})

        �# Writing the values in log file using the FileWriter 

object created above

        writer.add_summary(summary,  step*batch_size)

        if step % display_step == 2:

            # Calculate batch accuracy

            �acc = sess.run(accuracy, feed_dict={x: batch_x, y: 

batch_y})

            # Calculate batch loss

            �loss = sess.run(cost, feed_dict={x: batch_x, y: 

batch_y})

            print ("Iter " + str(step*batch_size) + ",

                   �Minibatch Loss= " + "{:.6f}".format(loss) 

+ ", Training Accuracy= " + "{:.2f}".

format(acc*100) + "%")

        step += 1

    print ("Optimization Finished!")

> Iter 64, Minibatch Loss= 68.048653, Training Accuracy= 50.00%

> Iter 384, Minibatch Loss= 69.634018, Training Accuracy= 53.12%

> Iter 704, Minibatch Loss= 50.814949, Training Accuracy= 46.88%

> Iter 1024, Minibatch Loss= 39.475891, Training Accuracy= 56.25%

> Iter 1344, Minibatch Loss= 11.115482, Training Accuracy= 40.62%

> Iter 1664, Minibatch Loss= 7.060193, Training Accuracy= 59.38%
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> Iter 1984, Minibatch Loss= 2.565218, Training Accuracy= 43.75%

> Iter 2304, Minibatch Loss= 18.036911, Training Accuracy= 46.88%

> Iter 2624, Minibatch Loss= 18.796995, Training Accuracy= 43.75%

> Iter 2944, Minibatch Loss= 56.627518, Training Accuracy= 43.75%

> Iter 3264, Minibatch Loss= 29.162407, Training Accuracy= 43.75%

> Iter 3584, Minibatch Loss= 14.335728, Training Accuracy= 40.62%

> Iter 3904, Minibatch Loss= 1.863467, Training Accuracy= 53.12%

> Iter 4224, Minibatch Loss= 7.892468, Training Accuracy= 50.00%

> Iter 4544, Minibatch Loss= 4.554517, Training Accuracy= 53.12%

> Iter 95744, Minibatch Loss= 28.283163, Training Accuracy= 59.38%

> Iter 96064, Minibatch Loss= 1.305542, Training Accuracy= 50.00%

> Iter 96384, Minibatch Loss= 1.801988, Training Accuracy= 50.00%

> Iter 96704, Minibatch Loss= 1.896597, Training Accuracy= 53.12%

> Iter 97024, Minibatch Loss= 2.941552, Training Accuracy= 46.88%

> Iter 97344, Minibatch Loss= 0.693964, Training Accuracy= 56.25%

> Iter 97664, Minibatch Loss= 8.340314, Training Accuracy= 40.62%

> Iter 97984, Minibatch Loss= 2.635653, Training Accuracy= 56.25%

> Iter 98304, Minibatch Loss= 1.541869, Training Accuracy= 68.75%

> Iter 98624, Minibatch Loss= 1.544908, Training Accuracy= 62.50%

> Iter 98944, Minibatch Loss= 26.138868, Training Accuracy= 56.25%

> Iter 99264, Minibatch Loss= 17.603979, Training Accuracy= 56.25%

> Iter 99584, Minibatch Loss= 21.715031, Training Accuracy= 40.62%

> Iter 99904, Minibatch Loss= 17.485657, Training Accuracy= 53.12%

> Optimization Finished!
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�Model Results
The modeling results have been recorded using the TensorFlow 

summaries, or logs, and saved while running the model script. To write 

the logs, log writer FileWriter() has been used, which internally creates 

the log folder and saves the graph structure. The recorded summary 

operations are later used by TensorBoard for visualization purposes. We 

have saved the logs at the following internal folder location of the current 

working directory: logs_path = './recent_logs/'.

To start the TensorBoard, specify the port, per your choice: 

tensorboard --logdir=./ --port=6006.

�TensorBoard
To make the TensorBoard visualization more readable, we have added the 

name for placeholders and variables, wherever required. TensorBoard 

helps in debugging and optimization of the code.

We have added the graph of the overall model and a few of its 

segments, to help in relating the code with the TensorFlow graph visual. All 

the segments are relatable with their corresponding code segments in the 

previous subsection.

Figure 5-7 shows the full network architecture for the sentiment 

classification. The graph shows the variables that have been scoped 

throughout the code, which helps in understanding the flow of the data 

and connections across the model.
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Figure 5-8 shows the MLP component of the graph, which is used to 

add the addition of dropout to the last layer, and the sigmoid function to 

predict the final sentiment classification results. The final predictions are 

further used to gather the model’s accuracy and cost.

Figure 5-7.  TensorFlow graph of the overall model
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Figure 5-8.  TensorBoard graph for the MLP segment
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Figure 5-9 shows the embedding component of the network. It is 

used to initialize the embeddings variable, composed of random values 

of uniform distribution in the range of [-1,1). The embedding_lookup() 

technique is used to perform parallel lookups on the embeddings tensor, 

which are further used as input to the LSTM layer.

Figure 5-9.  TensorBoard graph for the embedding segment
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�Model Accuracy and Cost

Following are the model accuracy and cost graphs for the four simulations 

performed on the IMDb dataset and for two cases with different smoothing 

filter parameter values.

Note A  smoothing filter is used in TensorBoard as a weighing 
parameter that controls the window size. A weight of 1.0 means 
using 50 percent of the entire dataset as the window, while a weight 
of 0.0 means using a window of 0 (and, thus, replacing each point 
with itself). The filter acts as an additional parameter to interpret 
graphs thoroughly.

Case 1

For the first case, the smoothing filter value has been set as 0.191, and 

we have compared the model accuracy and cost over four different 

simulations (Figures 5-10 and 5-11).

Figure 5-10.  TensorBoard graph for the accuracy parameter
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Case 2

For the second case, the smoothing value has been set as 0.645, and 

we have compared the model accuracy and cost over four different 

simulations (Figures 5-12 and 5-13).

Figure 5-11.  TensorBoard graph for the cost parameter

Figure 5-12.  TensorBoard graph for accuracy parameter
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Figure 5-13.  TensorBoard graph for cost parameter

�Scope for Improvement
As inferred from the preceding graphs, the model accuracy is not 

significantly great and reaches close to 70 percent in some cases. There 

are a few ways by which the results achieved from the preceding exercise 

could be further improved, by making variations in the training data 

fed to the model and by refining the hyperparameters of the model. The 

training dataset used for sentiment analysis in the paper comprises 500K 

of Yelp reviews and rest for development and test purposes. In the exercise 

performed, we have taken 25K reviews. To further improve the model’s 

performance, readers are invited to make changes in the code and compare 

the results of multiple iterations. The changes made to improve the results 

should be in accordance with the values mentioned in the paper, thereby 

helping in the comparison of results across multiple datasets.

�Next Steps
This last chapter of the book presented the implementation of a chosen 

research paper’s sentiment analysis. We would like readers of all 

backgrounds to carry out such activities and attempt to replicate, on 

their chosen datasets in their preferred languages, the algorithms and 
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approaches presented across different papers and conferences. We believe 

such exercises heighten the understanding of the research papers and 

widen understanding of the different types of algorithms that can be 

applied to the relevant datasets for solving specific problems.

We hope readers have enjoyed the journey through all the use cases 

featured in this book. We would be very grateful to them for suggestions to 

improve the quality of the code and theory presented herein, and we will 

ensure that any relevant changes are made in our code repository.
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