
Deep Learning for
Natural Language
Processing

Creating Neural Networks with Python
—
Palash Goyal
Sumit Pandey
Karan Jain

www.allitebooks.com

http://www.allitebooks.org

Deep Learning for
Natural Language

Processing
Creating Neural Networks

with Python

Palash Goyal
Sumit Pandey
Karan Jain

www.allitebooks.com

http://www.allitebooks.org

Deep Learning for Natural Language Processing: Creating Neural Networks
with Python

ISBN-13 (pbk): 978-1-4842-3684-0		 ISBN-13 (electronic): 978-1-4842-3685-7
https://doi.org/10.1007/978-1-4842-3685-7

Library of Congress Control Number: 2018947502

Copyright © 2018 by Palash Goyal, Sumit Pandey, Karan Jain

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image, we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Matthew Moodie
Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science+Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-3684-0.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Palash Goyal
Bangalore, Karnataka, India

Karan Jain
Bangalore, Karnataka, India

Sumit Pandey
Bangalore, Karnataka, India

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3685-7
http://www.allitebooks.org

To our parents, sisters, brothers, and friends
without whom this book would have been

completed one year earlier :)

www.allitebooks.com

http://www.allitebooks.org

v

About the Authors���xi

About the Technical Reviewer��xiii

Acknowledgments���xv

Introduction���xvii

Table of Contents

Chapter 1: �Introduction to Natural Language Processing and
Deep Learning��1

Python Packages��3

NumPy��3

Pandas��8

SciPy���13

Introduction to Natural Language Processing��16

What Is Natural Language Processing?��16

Good Enough, But What Is the Big Deal?��16

What Makes Natural Language Processing Difficult?������������������������������������16

What Do We Want to Achieve Through Natural Language Processing?����������18

Common Terms Associated with Language Processing���������������������������������19

Natural Language Processing Libraries���20

NLTK���20

TextBlob��22

SpaCy���25

Gensim���27

www.allitebooks.com

http://www.allitebooks.org

vi

Pattern��29

Stanford CoreNLP���29

Getting Started with NLP��29

Text Search Using Regular Expressions���30

Text to List��30

Preprocessing the Text���31

Accessing Text from the Web���32

Removal of Stopwords��32

Counter Vectorization���33

TF-IDF Score���33

Text Classifier���35

Introduction to Deep Learning���35

How Deep Is “Deep”?���37

What Are Neural Networks?���38

Basic Structure of Neural Networks���40

Types of Neural Networks��45

Feedforward Neural Networks���46

Convolutional Neural Networks��46

Recurrent Neural Networks��47

Encoder-Decoder Networks��49

Recursive Neural Networks��49

Multilayer Perceptrons���50

Stochastic Gradient Descent��54

Backpropagation��57

Deep Learning Libraries���60

Theano��60

Theano Installation���61

Table of ContentsTable of Contents

vii

Theano Examples���63

TensorFlow���64

Data Flow Graphs���65

TensorFlow Installation���66

TensorFlow Examples���67

Keras��69

Next Steps��74

Chapter 2: �Word Vector Representations���75

Introduction to Word Embedding��75

Neural Language Model���79

Word2vec���81

Skip-Gram Model��82

Model Components: Architecture���83

Model Components: Hidden Layer��84

Model Components: Output Layer��86

CBOW Model���87

Subsampling Frequent Words��88

Negative Sampling���91

Word2vec Code��92

Skip-Gram Code���97

CBOW Code��107

Next Steps��118

Chapter 3: �Unfolding Recurrent Neural Networks�����������������������������119

Recurrent Neural Networks���120

What Is Recurrence?��121

Differences Between Feedforward and Recurrent Neural Networks������������121

Table of ContentsTable of Contents

viii

Recurrent Neural Network Basics��123

Natural Language Processing and Recurrent Neural Networks�������������������126

RNNs Mechanism���129

Training RNNs���134

Meta Meaning of Hidden State of RNN���137

Tuning RNNs���138

Long Short-Term Memory Networks��138

Sequence-to-Sequence Models���145

Advanced Sequence-to-Sequence Models���152

Sequence-to-Sequence Use Case��157

Next Steps��168

Chapter 4: �Developing a Chatbot���169

Introduction to Chatbot��169

Origin of Chatbots���170

But How Does a Chatbot Work, Anyway?��171

Why Are Chatbots Such a Big Opportunity?��172

Building a Chatbot Can Sound Intimidating. Is It Actually?���������������������������173

Conversational Bot���175

Chatbot: Automatic Text Generation���191

Next Steps��229

Chapter 5: �Research Paper Implementation: Sentiment
Classification���231

Self-Attentive Sentence Embedding��232

Proposed Approach��234

Visualization���242

Research Findings��246

Table of ContentsTable of Contents

ix

Implementing Sentiment Classification���246

Sentiment Classification Code���248

Model Results��261

TensorBoard���261

Scope for Improvement��267

Next Steps��267

�Index��269

Table of ContentsTable of Contents

xi

About the Authors

Palash Goyal is a senior data scientist and

currently works with the applications of

data science and deep learning in the online

marketing domain. He studied Mathematics

and Computing at the Indian Institute of

Technology (IIT) Guwahati and proceeded to

work in a fast-paced upscale environment. 

He has wide experience in E-commerce

and travel, insurance, and banking industries.

Passionate about mathematics and finance,

Palash manages his portfolio of multiple

cryptocurrencies and the latest Initial Coin

Offerings (ICOs) in his spare time, using deep learning and reinforcement

learning techniques for price prediction and portfolio management. He

keeps in touch with the latest trends in the data science field and shares

these on his personal blog, http://madoverdata.com, and mines articles

related to smart farming in free time.

http://madoverdata.com/

xii

Sumit Pandey is a graduate of IIT Kharagpur.

He worked for about a year at AXA Business

Services, as a data science consultant. He

is currently engaged in launching his own

venture. 

Karan Jain is a product analyst at Sigtuple,

where he works on cutting-edge AI-driven

diagnostic products. Previously, he worked

as a data scientist at Vitrana Inc., a health

care solutions company. He enjoys working

in fast-paced environments and at data-first

start-ups. In his leisure time, Karan deep-dives

into genomics sciences, BCI interfaces, and

optogenetics. He recently developed interest in

POC devices and nanotechnology for further portable diagnosis. He has a

healthy network of 3000+ followers on LinkedIn.  

About the AuthorsAbout the Authors

xiii

About the Technical Reviewer

Santanu Pattanayak currently works at GE

Digital as a staff data scientist and is the author

of the deep learning–related book Pro Deep

Learning with TensorFlow—A Mathematical

Approach to Advanced Artificial Intelligence

in Python. He has about 12 years of overall

work experience, 8 in the data analytics/

data science field, and has a background in

development and database technologies.

Prior to joining GE, Santanu worked in

such companies as RBS, Capgemini, and IBM. He graduated with a degree

in electrical engineering from Jadavpur University, Kolkata, and is an avid

math enthusiast. Santanu is currently pursuing a master’s degree in data

science from IIT Hyderabad. He also devotes his time to data science

hackathons and Kaggle competitions, in which he ranks within the top 500

across the globe. Santanu was born and brought up in West Bengal, India,

and currently resides in Bangalore, India, with his wife.

xv

Acknowledgments

This work would not have been possible without those who saw us through

this book, to all those who believed in us, talked things over, read, wrote,

and offered their valuable time throughout the process, and allowed us to

use the knowledge that we gained together, be it for proofreading or overall

design.

We are especially indebted to Aditee Mirashi, coordinating editor,

Apress, Springer Science+Business, who has been a constant support and

motivator to complete the task and who worked actively to provide us with

valuable suggestions to pursue our goals on time.

We are grateful to Santanu Pattanayak, who went through all the

chapters and provided valuable input, giving final shape to the book.

Nobody has been more important to us in the pursuit of this project

than our family members. We would like to thank our parents, whose love

and guidance are with us in whatever we pursue. Their being our ultimate

role models has provided us unending inspiration to start and finish the

difficult task of writing and giving shape to our knowledge.

xvii

Introduction

This book attempts to simplify and present the concepts of deep learning

in a very comprehensive manner, with suitable, full-fledged examples of

neural network architectures, such as Recurrent Neural Networks (RNNs)

and Sequence to Sequence (seq2seq), for Natural Language Processing

(NLP) tasks. The book tries to bridge the gap between the theoretical and

the applicable.

It proceeds from the theoretical to the practical in a progressive

manner, first by presenting the fundamentals, followed by the underlying

mathematics, and, finally, the implementation of relevant examples.

The first three chapters cover the basics of NLP, starting with the most

frequently used Python libraries, word vector representation, and then

advanced algorithms like neural networks for textual data.

The last two chapters focus entirely on implementation, dealing with

sophisticated architectures like RNN, Long Short-Term Memory (LSTM)

Networks, Seq2seq, etc., using the widely used Python tools TensorFlow

and Keras. We have tried our best to follow a progressive approach,

combining all the knowledge gathered to move on to building a question-

and-answer system.

The book offers a good starting point for people who want to get

started in deep learning, with a focus on NLP.

All the code presented in the book is available on GitHub, in the form

of IPython notebooks and scripts, which allows readers to try out these

examples and extend them in interesting, personal ways.

1© Palash Goyal, Sumit Pandey, Karan Jain 2018
P. Goyal, et al., Deep Learning for Natural Language Processing,
https://doi.org/10.1007/978-1-4842-3685-7_1

CHAPTER 1

Introduction
to Natural Language
Processing and Deep
Learning
Natural language processing (NPL) is an extremely difficult task in

computer science. Languages present a wide variety of problems that

vary from language to language. Structuring or extracting meaningful

information from free text represents a great solution, if done in the

right manner. Previously, computer scientists broke a language into its

grammatical forms, such as parts of speech, phrases, etc., using complex

algorithms. Today, deep learning is a key to performing the same exercises.

This first chapter of Deep Learning for Natural Language Processing

offers readers the basics of the Python language, NLP, and Deep Learning.

First, we cover the beginner-level codes in the Pandas, NumPy, and SciPy

libraries. We assume that the user has the initial Python environment

(2.x or 3.x) already set up, with these libraries installed. We will also briefly

discuss commonly used libraries in NLP, with some basic examples.

2

Finally, we will discuss the concepts behind deep learning and some

common frameworks, such as TensorFlow and Keras. Then, in later

chapters, we will move on to providing a higher level overview of NLP.

Depending on the machine and version preferences, one can install

Python by using the following references:

•	 www.python.org/downloads/

•	 www.continuum.io/downloads

The preceding links and the basic packages installations will provide

the user with the environment required for deep learning.

We will be using the following packages to begin. Please refer to the

following links, in addition to the package name for your reference:

Python Machine Learning

Pandas (http://pandas.pydata.org/pandas-docs/stable)

NumPy (www.numpy.org)

SciPy (www.scipy.org)

Python Deep Learning

TensorFlow (http://tensorflow.org/)

Keras (https://keras.io/)

Python Natural Language Processing

Spacy (https://spacy.io/)

NLTK (www.nltk.org/)

TextBlob (http://textblob.readthedocs.io/en/dev/)

Chapter 1 Introduction to Natural Language Processing and Deep Learning

http://www.python.org/downloads/
http://www.continuum.io/downloads
http://pandas.pydata.org/pandas-docs/stable
http://www.numpy.org/
http://www.scipy.org/
http://tensorflow.org/
https://keras.io/
https://spacy.io/
http://www.nltk.org/
http://textblob.readthedocs.io/en/dev/

3

We might install other related packages, if required, as we proceed.

If you are encountering problems at any stage of the installation, please

refer to the following link: https://packaging.python.org/tutorials/

installing-packages/.

Note R efer to the Python package index, PyPI (https://pypi.
python.org/pypi), to search for the latest packages available.

Follow the steps to install pip via https://pip.pypa.io/en/
stable/installing/.

�Python Packages
We will be covering the references to the installation steps and the initial-

level coding for the Pandas, NumPy, and SciPy packages. Currently,

Python offers versions 2.x and 3.x, with compatible functions for machine

learning. We will be making use of Python2.7 and Python3.5, where

required. Version 3.5 has been used extensively throughout the chapters of

this book.

�NumPy
NumPy is used particularly for scientific computing in Python. It is designed

to efficiently manipulate large multidimensional arrays of arbitrary records,

without sacrificing too much speed for small multidimensional arrays. It

could also be used as a multidimensional container for generic data. The

ability of NumPy to create arrays of arbitrary type, which also makes NumPy

suitable for interfacing with general-purpose data-base applications, makes

it one of the most useful libraries you are going to use throughout this book,

or thereafter for that matter.

Chapter 1 Introduction to Natural Language Processing and Deep Learning

https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pip.pypa.io/en/stable/installing/
https://pip.pypa.io/en/stable/installing/

4

Following are the codes using the NumPy package. Most of the lines

of code have been appended with a comment, to make them easier to

understand by the user.

Numpy

import numpy as np # Importing the Numpy package

a= np.array([1,4,5,8], float) # �Creating Numpy array with

Float variables

print(type(a)) #Type of variable

> <class 'numpy.ndarray'>

Operations on the array

a[0] = 5 #Replacing the first element of the array

print(a)

> [5. 4. 5. 8.]

b = np.array([[1,2,3],[4,5,6]], float) �# �Creating a 2-D numpy

array

b[0,1] # Fetching second element of 1st array

> 2.0

print(b.shape) #Returns tuple with the shape of array

> (2, 3)

b.dtype #Returns the type of the value stored

> dtype('float64')

print(len(b)) #Returns length of the first axis

> 2

2 in b �#'in' searches for the element in the array

> True

0 in b

> False

Chapter 1 Introduction to Natural Language Processing and Deep Learning

5

Use of 'reshape' : transforms elements from 1-D to 2-D here

c = np.array(range(12), float)

print(c)

print(c.shape)

print('---')

c = c.reshape((2,6)) # reshape the array in the new form

print(c)

print(c.shape)

> [0. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.]

(12,)

[[0. 1. 2. 3. 4. 5.] [6. 7. 8. 9. 10. 11.]]

(2, 6)

c.fill(0) #�Fills whole array with single value,

done inplace

print(c)

> [[0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.]]

c.transpose() #�creates transpose of the array, not

done inplace

> array([[0., 0.], [0., 0.], [0., 0.], [0., 0.], [0., 0.],

[0., 0.]])

c.flatten() #�flattens the whole array, not done

inplace

> array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])

Chapter 1 Introduction to Natural Language Processing and Deep Learning

6

Concatenation of 2 or more arrays

m = np.array([1,2], float)

n = np.array([3,4,5,6], float)

p = np.concatenate((m,n))

print(p)

> [1. 2. 3. 4. 5. 6.]

(6,)

print(p.shape)

'newaxis' : to increase the dimensonality of the array

q = np.array([1,2,3], float)

q[:, np.newaxis].shape

> (3, 1)

NumPy has other functions, such as zeros, ones, zeros_like, ones_

like, identity, eye, which are used to create arrays filled with 0s, 1s, or 0s

and 1s for given dimensions.

Addition, subtraction, and multiplication occur on same-size arrays.

Multiplication in NumPy is offered as element-wise and not as matrix

multiplication. If the arrays do not match in size, the smaller one is

repeated to perform the desired operation. Following is an example for this:

a1 = np.array([[1,2],[3,4],[5,6]], float)

a2 = np.array([-1,3], float)

print(a1+a2)

> [[0. 5.] [2. 7.] [4. 9.]]

Chapter 1 Introduction to Natural Language Processing and Deep Learning

7

Note  pi and e are included as constants in the NumPy package.

One can refer to the following sources for detailed tutorials on NumPy:

www.numpy.org/ and https://docs.scipy.org/doc/numpy-dev/user/

quickstart.html.

NumPy offers few of the functions that are directly applicable on the

arrays: sum (summation of elements), prod (product of the elements), mean

(mean of the elements), var (variance of the elements), std (standard

deviation of the elements), argmin (index of the smallest element in array),

argmax (index of the largest element in array), sort (sort the elements),

unique (unique elements of the array).

a3 = np.array([[0,2],[3,-1],[3,5]], float)

print(a3.mean(axis=0)) # Mean of elements column-wise

> [2. 2.]

print(a3.mean(axis=1)) # Mean of elements row-wise

> [1. 1. 4.]

Note T o perform the preceding operations on a multidimensional
array, include the optional argument axis in the command.

NumPy offers functions for testing the values present in the array,

such as nonzero (checks for nonzero elements), isnan (checks for “not

a number” elements), and isfinite (checks for finite elements). The

where function returns an array with the elements satisfying the following

conditions:

a4 = np.array([1,3,0], float)

np.where(a!=0, 1/a ,a)

> array([0.2 , 0.25 , 0.2 , 0.125])

Chapter 1 Introduction to Natural Language Processing and Deep Learning

http://www.numpy.org/
https://docs.scipy.org/doc/numpy-dev/user/quickstart.html
https://docs.scipy.org/doc/numpy-dev/user/quickstart.html

8

To generate random numbers of varied length, use the random

function from NumPy.

np.random.rand(2,3)

> array([[0.41453991, 0.46230172, 0.78318915],

[0.54716578, 0.84263735, 0.60796399]])

Note T he random number seed can be set via numpy.random.
seed (1234). NumPy uses the Mersenne Twister algorithm to
generate pseudorandom numbers.

�Pandas
Pandas is an open sourced software library. DataFrames and Series are two

of its major data structures that are widely used for data analysis purposes.

Series is a one-dimensional indexed array, and DataFrame is tabular data

structure with column- and row-level indexes. Pandas is a great tool for

preprocessing datasets and offers highly optimized performance.

import pandas as pd

series_1 = pd.Series([2,9,0,1]) # Creating a series object

print(series_1.values) # �Print values of the

series object

> [2 9 0 1]

series_1.index # Default index of the series object

> RangeIndex(start=0, stop=4, step=1)

series_1.index = ['a','b','c','d'] #�Settnig index of the

series object

series_1['d'] # Fetching element using new index

> 1

Chapter 1 Introduction to Natural Language Processing and Deep Learning

9

Creating dataframe using pandas

class_data = {'Names':['John','Ryan','Emily'],

 'Standard': [7,5,8],

 �'Subject': ['English','Mathematics','Science']}

class_df = pd.DataFrame(class_data, index = ['Student1',

'Student2','Student3'],

 columns = ['Names','Standard','Subject'])

print(class_df)

> Names Standard Subject

Student1 John 7 English

Student2 Ryan 5 Mathematics

Student3 Emily 8 Science

class_df.Names

>Student1 John

Student2 Ryan

Student3 Emily

Name: Names, dtype: object

Add new entry to the dataframe

import numpy as np

class_df.ix['Student4'] = ['Robin', np.nan, 'History']

class_df.T # Take transpose of the dataframe

> Student1 Student2 Student3 Student4

Names John Ryan Emily Robin

Standard 7 5 8 NaN

Subject English Mathematics Science History

Chapter 1 Introduction to Natural Language Processing and Deep Learning

10

class_df.sort_values(by='Standard') # �Sorting of rows by one

column

> Names Standard Subject

Student1 John 7.0 English

Student2 Ryan 5.0 Mathematics

Student3 Emily 8.0 Science

Student4 Robin NaN History

Adding one more column to the dataframe as Series object

col_entry = pd.Series(['A','B','A+','C'],

 �index=['Student1','Student2','Student3',

'Student4'])

class_df['Grade'] = col_entry

print(class_df)

> Names Standard Subject Grade

Student1 John 7.0 English A

Student2 Ryan 5.0 Mathematics B

Student3 Emily 8.0 Science A+

Student4 Robin NaN History C

Filling the missing entries in the dataframe, inplace

class_df.fillna(10, inplace=True)

print(class_df)

> Names Standard Subject Grade

Student1 John 7.0 English A

Student2 Ryan 5.0 Mathematics B

Student3 Emily 8.0 Science A+

Student4 Robin 10.0 History C

Chapter 1 Introduction to Natural Language Processing and Deep Learning

11

Concatenation of 2 dataframes

student_age = pd.DataFrame(data = {'Age': [13,10,15,18]} ,

 �index=['Student1','Student2',

'Student3','Student4'])

print(student_age)

> Age

Student1 13

Student2 10

Student3 15

Student4 18

class_data = pd.concat([class_df, student_age], axis = 1)

print(class_data)

> Names Standard Subject Grade Age

Student1 John 7.0 English A 13

Student2 Ryan 5.0 Mathematics B 10

Student3 Emily 8.0 Science A+ 15

Student4 Robin 10.0 History C 18

Note U se the map function to implement any function on each of
the elements in a column/row individually and the apply function
to perform any function on all the elements of a column/row
simultaneously.

MAP Function

class_data['Subject'] = class_data['Subject'].map(lambda x :

x + 'Sub')

class_data['Subject']

Chapter 1 Introduction to Natural Language Processing and Deep Learning

12

> Student1 		 EnglishSub

Student2 		 MathematicsSub

Student3 		 ScienceSub

Student4 		 HistorySub

Name: Subject, dtype: object

APPLY Function

def age_add(x): # �Defining a new function which

will increment the age by 1

 return(x+1)

print('-----Old values-----')

print(class_data['Age'])

print('-----New values-----')

print(class_data['Age'].apply(age_add)) # �Applying the age

function on top of

the age column

> -----Old values-----

Student1 13

Student2 10

Student3 15

Student4 18

Name: Age, dtype: int64

-----New values-----

Student1 14

Student2 11

Student3 16

Student4 19

Name: Age, dtype: int64

Chapter 1 Introduction to Natural Language Processing and Deep Learning

13

The following code is used to change the Datatype of the column to a

“category” type:

Changing datatype of the column

class_data['Grade'] = class_data['Grade'].astype('category')

class_data.Grade.dtypes

> category

The following stores the results to a .csv file:

Storing the results

class_data.to_csv('class_dataset.csv', index=False)

Among the pool of functions offered by the Pandas library, merge

functions (concat, merge, append), groupby, and pivot_table functions

have an intensive application in data processing tasks. Refer to the following

source for detailed Pandas tutorials: http://pandas.pydata.org/.

�SciPy
SciPy offers complex algorithms and their use as functions in NumPy. This

allocates high-level commands and a variety of classes to manipulate and

visualize data. SciPy is curated in the form of multiple small packages,

with each package targeting individual scientific computing domains. A

few of the subpackages are linalg (linear algebra), constants (physical

and mathematical constants), and sparse (sparse matrices and associated

routines).

Most of the NumPy package functions applicable on arrays are also

included in the SciPy package. SciPy offers pre-tested routines, thereby

saving a lot of processing time in the scientific computing applications.

import scipy

import numpy as np

Chapter 1 Introduction to Natural Language Processing and Deep Learning

http://pandas.pydata.org/

14

Note S ciPy offers in-built constructors for objects representing
random variables.

Following are a few examples from Linalg and Stats out of multiple

subpackages offered by SciPy. As the subpackages are domain-specific, it

makes SciPy the perfect choice for data science.

SciPy subpackages, here for linear algebra (scipy.linalg), are

supposed to be imported explicitly in the following manner:

from scipy import linalg

mat_ = np.array([[2,3,1], [4,9,10], [10,5,6]]) # Matrix Creation

print(mat_)

> [[2 3 1] [4 9 10] [10 5 6]]

linalg.det(mat_) # Determinant of the matrix

inv_mat = linalg.inv(mat_) # Inverse of the matrix

print(inv_mat)

> [[0.02409639 -0.07831325 0.12650602] [0.45783133 0.01204819

-0.09638554] [-0.42168675 0.12048193 0.03614458]]

The code for performing singular value decomposition and storing the

individual components follows:

Singular Value Decomposition

comp_1, comp_2, comp_3 = linalg.svd(mat_)

print(comp_1)

print(comp_2)

print(comp_3)

Chapter 1 Introduction to Natural Language Processing and Deep Learning

15

> [[-0.1854159 0.0294175 -0.98221971]

[-0.73602677 -0.66641413 0.11898237]

[-0.65106493 0.74500122 0.14521585]]

[18.34661713 5.73710697 1.57709968]

[[-0.53555313 -0.56881403 -0.62420625]

[0.84418693 -0.38076134 -0.37731848]

[-0.02304957 -0.72902085 0.6841033]]

Scipy.stats is a huge subpackage, with various statistical distributions

and functions for operations on different kinds of datasets.

Scipy Stats module

from scipy import stats

Generating a random sample of size 20 from normal

distribution with mean 3 and standard deviation 5

rvs_20 = stats.norm.rvs(3,5 , size = 20)

print(rvs_20, '\n --- ')

Computing the CDF of Beta distribution with a=100 and b=130

as shape parameters at random variable 0.41

cdf_ = scipy.stats.beta.cdf(0.41, a=100, b=130)

print(cdf_)

> [-0.21654555 7.99621694 -0.89264767 10.89089263 2.63297827

 -1.43167281 5.09490009 -2.0530585 -5.0128728 -0.54128795

 2.76283347 8.30919378 4.67849196 -0.74481568 8.28278981

 -3.57801485 -3.24949898 4.73948566 2.71580005 6.50054556]

0.225009574362

Chapter 1 Introduction to Natural Language Processing and Deep Learning

16

For in-depth examples using SciPy subpackages, refer to http://docs.

scipy.org/doc/.

�Introduction to Natural Language
Processing
We already have seen the three most useful and frequently used libraries in

Python. The examples and references provided should suffice to start with.

Now, we are shifting our area of focus to natural language processing.

�What Is Natural Language Processing?
Natural language processing, in its simplest form, is the ability for a

computer/system to truly understand human language and process it in

the same way that a human does.

�Good Enough, But What Is the Big Deal?
It is very easy for humans to understand the language said/expressed by

other humans. For example, if I say “America follows a capitalist form of

economy, which works well for it, it is easy to infer that the which used in

this sentence is associated with “capitalist form of economy,” but how a

computer/system will understand this is the question.

�What Makes Natural Language Processing
Difficult?
In a normal conversation between humans, things are often unsaid,

whether in the form of some signal, expression, or just silence.

Nevertheless, we, as humans, have the capacity to understand the

underlying intent of the conversation, which a computer lacks.

Chapter 1 Introduction to Natural Language Processing and Deep Learning

http://docs.scipy.org/doc/
http://docs.scipy.org/doc/

17

A second difficulty is owing to ambiguity in sentences. This may be at

the word level, at the sentence level, or at the meaning level.

�Ambiguity at Word Level

Consider the word won’t. There is always an ambiguity associated with the

word. Will the system treat the contraction as one word or two words, and

in what sense (what will its meaning be?).

�Ambiguity at Sentence Level

Consider the following sentences:

Most of the time travelers worry about their luggage.
Without punctuation, it is hard to infer from the given sentence

whether “time travelers” worry about their luggage or merely “travelers.”

Time flies like an arrow.
The rate at which time is spent is compared to the speed of an arrow,

which is quite difficult to map, given only this sentence and without

enough information concerning the general nature of the two entities

mentioned.

�Ambiguity at Meaning Level

Consider the word tie. There are three ways in which you can process

(interpret) this word: as an equal score between contestants, as a garment,

and as a verb.

Figure 1-1 illustrates a simple Google Translate failure. It assumes fan

to mean an admirer and not an object.

Chapter 1 Introduction to Natural Language Processing and Deep Learning

18

These are just few of the endless challenges you will encounter while

working in NLP. As we proceed further, we will explore how to deal with

them.

�What Do We Want to Achieve Through Natural
Language Processing?
There is no limit to what can be achieved through NLP. There are, however,

some common applications of NLP, principally the following:

•	 Text Summarization

Remember your school days, when the teacher used to ask the class

to summarize a block of text? This task could well have been achieved

using NLP.

•	 Text Tagging

NLP can be used effectively to find the context of a whole bunch of text

(topic tagging).

•	 Named Entity Recognition

This can determine whether a word or word-group represents a place,

organization, or anything else.

•	 Chatbot

Figure 1-1.  Example of Google Translate from English to Hindi

Chapter 1 Introduction to Natural Language Processing and Deep Learning

19

The most talked-about application of NLP is Chatbot. It can find the

intent of the question asked by a user and send an appropriate reply,

achieved through the training process.

•	 Speech Recognition

This application recognizes a spoken language and transforms it into

text.

As discussed, there are numerous applications for NLP. The idea is

not to get intimidated by them but to learn and develop one or more such

applications by yourself.

�Common Terms Associated with Language
Processing
As we move further and further along, there are a few terms that you will

encounter frequently. Therefore, it is a good idea to become acquainted

with them as soon as possible.

•	 Phonetics/phonology

The study of linguistic sounds and their relations to written words

•	 Morphology

The study of internal structures of words/composition of words

•	 Syntax

The study of the structural relationships among words in a sentence

•	 Semantics

The study of the meaning of words and how these combine to form the

meaning of sentences

•	 Pragmatics

Chapter 1 Introduction to Natural Language Processing and Deep Learning

20

Situational use of language sentences

•	 Discourse

A linguistic unit that is larger than a single sentence (context)

�Natural Language Processing Libraries
Following are basic examples from some of the most frequently used NLP

libraries in Python.

�NLTK
NLTK (www.nltk.org/) is the most common package you will encounter

working with corpora, categorizing text, analyzing linguistic structure, and

more.

Note  Following is the recommended way of installing the NLTK
package: pip install nltk.

You can tokenize a given sentence into individual words, as follows:

import nltk

Tokenization

sent_ = "I am almost dead this time"

tokens_ = nltk.word_tokenize(sent_)

tokens_

>> ['I', 'am', 'almost', 'dead', 'this', 'time']

Chapter 1 Introduction to Natural Language Processing and Deep Learning

http://www.nltk.org/

21

Getting a synonym of a word. One can get lists of

synonyms for a word using NLTK.

Make sure to install wordnet, if not done already so

import nltk

nltk.download('wordnet')

Synonyms

from nltk.corpus import wordnet

word_ = wordnet.synsets("spectacular")

print(word_)

>> [Synset('spectacular.n.01'), Synset('dramatic.s.02'),

Synset('spectacular.s.02'), Synset('outstanding.s.02')]

print(word_[0].definition()) # �Printing the meaning along

of each of the synonyms

print(word_[1].definition())

print(word_[2].definition())

print(word_[3].definition())

>> a lavishly produced performance

>> sensational in appearance or thrilling in effect

>> characteristic of spectacles or drama

>> having a quality that thrusts itself into attention

Stemming and lemmatizing words. Word

Stemming means removing affixes from words and

returning the root word (which may not be a real

word). Lemmatizing is similar to stemming, but the

difference is that the result of lemmatizing is a real

word.

Stemming

from nltk.stem import PorterStemmer

stemmer = PorterStemmer() # Create the stemmer object

Chapter 1 Introduction to Natural Language Processing and Deep Learning

22

print(stemmer.stem("decreases"))

>> decreas

#Lemmatization

from nltk.stem import WordNetLemmatizer

lemmatizer = WordNetLemmatizer() # �Create the Lemmatizer

object

print(lemmatizer.lemmatize("decreases"))

>> decrease

�TextBlob
TextBlob (http://textblob.readthedocs.io/en/dev/index.html) is

a Python library for processing textual data. It provides a simple API for

diving deep into common NLP tasks, such as part-of-speech tagging, noun

phrase extraction, sentiment analysis, classification, and much more. You

can use it for sentiment analysis. Sentiment refers to a feeling hidden in the

sentence. Polarity defines negativity or positivity in the sentence, whereas

subjectivity implies whether the sentence discusses something vaguely or

with complete surety.

from textblob import TextBlob

Taking a statement as input

statement = TextBlob("My home is far away from my school.")

Calculating the sentiment attached with the statement

statement.sentiment

Sentiment(polarity=0.1, subjectivity=1.0)

You can also use TextBlob for tagging purposes. Tagging is the process

of denoting a word in a text (corpus) as corresponding to a particular part

of speech.

Chapter 1 Introduction to Natural Language Processing and Deep Learning

http://textblob.readthedocs.io/en/dev/index.html

23

Defining a sample text

text = '''How about you and I go together on a walk far away

from this place, discussing the things we have never discussed

on Deep Learning and Natural Language Processing.'''

blob_ = TextBlob(text) # Making it as Textblob object

blob_

>> TextBlob("How about you and I go together on a walk far away

from this place, discussing the things we have never discussed

on Deep Learning and Natural Language Processing.")

�This part internally makes use of the 'punkt' resource from

the NLTK package, make sure to download it before running this

import nltk

nltk.download('punkt')

nltk.download('averaged_perceptron_tagger')

�Running this separately : python3.6 -m textblob.download_

corpora

blob_.tags

>>

[('How', 'WRB'),

 ('about', 'IN'),

 ('you', 'PRP'),

 ('and', 'CC'),

 ('I', 'PRP'),

 ('go', 'VBP'),

 ('together', 'RB'),

 ('on', 'IN'),

 ('a', 'DT'),

 ('walk', 'NN'),

 ('far', 'RB'),

 ('away', 'RB'),

Chapter 1 Introduction to Natural Language Processing and Deep Learning

24

 ('from', 'IN'),

 ('this', 'DT'),

 ('place', 'NN'),

 ('discussing', 'VBG'),

 ('the', 'DT'),

 ('things', 'NNS'),

 ('we', 'PRP'),

 ('have', 'VBP'),

 ('never', 'RB'),

 ('discussed', 'VBN'),

 ('on', 'IN'),

 ('Deep', 'NNP'),

 ('Learning', 'NNP'),

 ('and', 'CC'),

 ('Natural', 'NNP'),

 ('Language', 'NNP'),

 ('Processing', 'NNP')]

You can use TextBlob to deal with spelling errors.

sample_ = TextBlob("I thinkk the model needs to be trained more!")

print(sample_.correct())

>> I think the model needs to be trained more!

Furthermore, the package offers language a translation module.

Language Translation

lang_ = TextBlob(u"Voulez-vous apprendre le français?")

lang_.translate(from_lang='fr', to='en')

>> TextBlob("Do you want to learn French?")

Chapter 1 Introduction to Natural Language Processing and Deep Learning

25

�SpaCy
SpaCy (https://spacy.io/) provides very fast and accurate syntactic

analysis (the fastest of any library released) and also offers named entity

recognition and ready access to word vectors. It is written in Cython

language and contains a wide variety of trained models on language

vocabularies, syntaxes, word-to-vector transformations, and entities

recognition.

Note  Entity recognition is the process used to classify multiple
entities found in a text in predefined categories, such as a person,
objects, location, organizations, dates, events, etc. Word vector refers
to the mapping of the words or phrases from vocabulary to a vector
of real numbers.

import spacy

Run below command, if you are getting error

python -m spacy download en

nlp = spacy.load("en")

william_wikidef = """William was the son of King William

II and Anna Pavlovna of Russia. On the abdication of his

grandfather William I in 1840, he became the Prince of Orange.

On the death of his father in 1849, he succeeded as king of the

Netherlands. William married his cousin Sophie of Württemberg

in 1839 and they had three sons, William, Maurice, and

Alexander, all of whom predeceased him. """

nlp_william = nlp(william_wikidef)

print([(i, i.label_, i.label) for i in nlp_william.ents])

Chapter 1 Introduction to Natural Language Processing and Deep Learning

https://spacy.io/

26

>> [(William, 'PERSON', 378), (William II, 'PERSON', 378),

(Anna Pavlovna, 'PERSON', 378), (Russia, 'GPE', 382), (

, 'GPE', 382), (William, 'PERSON', 378), (1840, 'DATE', 388),

(the Prince of Orange, 'LOC', 383), (1849, 'DATE', 388),

(Netherlands, 'GPE', 382), (

, 'GPE', 382), (William, 'PERSON', 378), (Sophie, 'GPE', 382),

(Württemberg, 'PERSON', 378), (1839, 'DATE', 388), (three,

'CARDINAL', 394), (William, 'PERSON', 378), (Maurice, 'PERSON',

378), (Alexander, 'GPE', 382), (

, 'GPE', 382)]

SpaCy also offers dependency parsing, which could be further utilized

to extract noun phrases from the text, as follows:

Noun Phrase extraction

senten_ = nlp('The book deals with NLP')

for noun_ in senten_.noun_chunks:

 print(noun_)

 print(noun_.text)

 print('---')

 print(noun_.root.dep_)

 print('---')

 print(noun_.root.head.text)

>> The book

The book

nsubj

deals

NLP

NLP

Chapter 1 Introduction to Natural Language Processing and Deep Learning

27

pobj

with

�Gensim
Gensim (https://pypi.python.org/pypi/gensim) is another important

library. It is used primarily for topic modeling and document similarity.

Gensim is most useful for tasks such as getting a word vector of a word.

from gensim.models import Word2Vec

min_count = 0

size = 50

window = 2

sentences= "bitcoin is an innovative payment network and a new

kind of money."

sentences=sentences.split()

print(sentences)

>> ['bitcoin', 'is', 'an', 'innovative', 'payment', 'network',

'and', 'a', 'new', 'kind', 'of', 'money.']

model = Word2Vec(sentences, min_count=min_count, size=size,

window=window)

model

>> <gensim.models.word2vec.Word2Vec at 0x7fd1d889e710>

model['a'] # Vector for the character 'a'

>> array([9.70041566e-03, -4.16209083e-03, 8.05089157e-03,

 4.81479801e-03, 1.93488982e-03, -4.19071550e-03,

 1.41675305e-03, -6.54719025e-03, 3.92444432e-03,

 -7.05081783e-03, 7.69438222e-03, 3.89579940e-03,

 -9.02676862e-03, -8.58401007e-04, -3.24096601e-03,

 9.24982232e-05, 7.13059027e-03, 8.80233292e-03,

 -2.46750680e-03, -5.17094415e-03, 2.74592242e-03,

Chapter 1 Introduction to Natural Language Processing and Deep Learning

https://pypi.python.org/pypi/gensim

28

 4.08304436e-03, -7.59716751e-03, 8.94313212e-03,

 -8.39354657e-03, 5.89343486e-03, 3.76902265e-03,

 8.84669367e-04, 1.63217512e-04, 8.95449053e-03,

 -3.24510527e-03, 3.52341868e-03, 6.98625855e-03,

 -5.50296041e-04, -5.10712992e-03, -8.52414686e-03,

 -3.00202984e-03, -5.32727176e-03, -8.02035537e-03,

 -9.11156740e-03, -7.68519414e-04, -8.95629171e-03,

 -1.65163784e-03, 9.59598401e-04, 9.03090648e-03,

 5.31166652e-03, 5.59739536e-03, -4.49402537e-03,

 -6.75261812e-03, -5.75679634e-03], dtype=float32)

One can download the trained set of vectors from Google and figure

out the representation for desired text, as follows:

model = gensim.models.KeyedVectors.load_word2vec_

format('GoogleNews-vectors-negative300.bin', binary=True)

sentence = ["I", "hope", "it", "is", "going", "good", "for", "you"]

vectors = [model[w] for w in sentence]

(You can use the following link to download the sample model:

https://github.com/mmihaltz/word2vec-GoogleNews-vectors, or

undertake a conventional search with the given name of the .bin file and

paste it in your working directory.)

Gensim offers LDA (latent dirichlet allocation—a generative statistical

model that allows sets of observations to be explained by unobserved

groups that explain why some parts of the data are similar) modules

too. This allows both LDA model estimation from a training corpus and

inference of topic distribution on new, unseen documents. The model can

also be updated with new documents for online training.

Chapter 1 Introduction to Natural Language Processing and Deep Learning

https://github.com/mmihaltz/word2vec-GoogleNews-vectors

29

�Pattern
Pattern (https://pypi.python.org/pypi/Pattern) is useful for a variety

of NLP tasks, such as part-of-speech taggers, n-gram searches, sentiment

analysis, and WordNet and machine learning, such as vector space

modeling, k-means clustering, Naive Bayes, K-NN, and SVM classifiers.

import pattern

from pattern.en import tag

tweet_ = "I hope it is going good for you!"

tweet_l = tweet_.lower()

tweet_tags = tag(tweet_l)

print(tweet_tags)

>> [('i', 'JJ'), ('hope', 'NN'), ('it', 'PRP'), ('is', 'VBZ'),

('going', 'VBG'), ('good', 'JJ'), ('for', 'IN'), ('you',

'PRP'), ('!', '.')]

�Stanford CoreNLP
Stanford CoreNLP (https://stanfordnlp.github.io/CoreNLP/) provides

the base forms of words; their parts of speech; whether they are names of

companies, people, etc.; normalizes dates, times, and numeric quantities;

marks up the structure of sentences in terms of phrases and syntactic

dependencies; indicates which noun phrases refer to the same entities;

indicates sentiment; extracts particular or open-class relations between

entity mentions; gets the quotes people said; etc.

�Getting Started with NLP
In this part of the chapter, we are going to take a simple text data (such as a

sentence) and perform some basic operations to get acquainted with how

NLP works. This part will provide a foundation for what you are going to

learn in the rest of the book.

Chapter 1 Introduction to Natural Language Processing and Deep Learning

https://pypi.python.org/pypi/Pattern
https://stanfordnlp.github.io/CoreNLP/

30

�Text Search Using Regular Expressions
Regular expressions are a very useful means of searching for a particular

type of design or wordset from a given text. A regular expression (RE)

specifies a set of strings that match it. The functions in this module allow

you to check if a given string matches a particular RE (or if a given RE

matches a particular string, which comes down to the same thing).

Text search across the sentence using Regular expression

import re

words = ['very','nice','lecture','day','moon']

expression = '|'.join(words)

re.findall(expression, 'i attended a very nice lecture last

year', re.M)

>> ['very', 'nice', 'lecture']

�Text to List
You can read a text file and convert it into a list of words or list of sentences,

according to your needs.

text_file = 'data.txt'

Method-1 : Individual words as separate elements of the list

with open(text_file) as f:

 words = f.read().split()

print(words)

>> ['Are', 'you', 'sure', 'moving', 'ahead', 'on', 'this',

'route', 'is', 'the', 'right', 'thing?']

Method-2 : Whole text as single element of the list

f = open(text_file , 'r')

words_ = f.readlines()

Chapter 1 Introduction to Natural Language Processing and Deep Learning

31

print(words_)

>> ['Are you sure moving ahead on this route is the right

thing?\n']

�Preprocessing the Text
There is a large number of things you could do to preprocess the text. For

example, replacing one word with another, removing or adding some

specific type of words, etc.

sentence = 'John has been selected for the trial phase this

time. Congrats!!'

sentence=sentence.lower()

defining the positive and negative words explicitly

positive_words=['awesome','good', 'nice', 'super', 'fun',

'delightful','congrats']

negative_words=['awful','lame','horrible','bad']

sentence=sentence.replace('!','')

sentence

>> 'john has been selected for the trial phase this time.

congrats'

words= sentence.split(' ')

print(words)

>> ['john', 'has', 'been', 'selected', 'for', 'the', 'trial',

'phase', 'this', 'time.', 'congrats']

result= set(words)-set(positive_words)

print(result)

>> {'has', 'phase', 'for', 'time.', 'trial', 'been', 'john',

'the', 'this', 'selected'}

Chapter 1 Introduction to Natural Language Processing and Deep Learning

32

�Accessing Text from the Web
A text file from a URL can be accessed using urllib.

Make sure both the packages are installed

import urllib3

from bs4 import BeautifulSoup

pool_object = urllib3.PoolManager()

target_url = 'http://www.gutenberg.org/files/2554/2554-

h/2554-h.htm#link2HCH0008'

response_ = pool_object.request('GET', target_url)

final_html_txt = BeautifulSoup(response_.data)

print(final_html_txt)

�Removal of Stopwords
A stopword is a commonly used word (such as the) that a search engine

has been programmed to ignore.

import nltk

from nltk import word_tokenize

sentence= "This book is about Deep Learning and Natural

Language Processing!"

tokens = word_tokenize(sentence)

print(tokens)

>> ['This', 'book', 'is', 'about', 'Deep', 'Learning', 'and',

'Natural', 'Language', 'Processing', '!']

nltk.download('stopwords')

from nltk.corpus import stopwords

stop_words = set(stopwords.words('english'))

new_tokens = [w for w in tokens if not w in stop_words]

new_tokens

>> ['This', 'book', 'Deep', 'Learning', 'Natural', 'Language',

'Processing', '!']

Chapter 1 Introduction to Natural Language Processing and Deep Learning

33

�Counter Vectorization
Counter vectorization is a SciKit-Learn library tool that takes any mass of

text and returns each unique word as a feature, with a count of the number

of times a particular word occurs in the text.

from sklearn.feature_extraction.text import CountVectorizer

texts=["Ramiess sings classic songs","he listens to old pop ",

"and rock music", ' and also listens to classical songs']

cv = CountVectorizer()

cv_fit=cv.fit_transform(texts)

print(cv.get_feature_names())

print(cv_fit.toarray())

>> ['also', 'and', 'classic', 'classical', 'he', 'listens',

'listens', 'music', 'old', 'pop', 'ramiess', 'rock', 'sings',

'songs', 'to']

>> [[0 0 1 0 0 0 0 0 0 0 1 0 1 1 0]

 [0 0 0 0 1 1 0 0 1 1 0 0 0 0 1]

 [0 1 0 0 0 0 0 1 0 0 0 1 0 0 0]

 [1 1 0 1 0 0 1 0 0 0 0 0 0 1 0]]

�TF-IDF Score
TF-IDF is an acronym of two terms: term frequency and inverse document

frequency. TF is the ratio representing the count of specific words to the

total number of words in a document. Suppose that a document contains

100 words, wherein the word happy appears five times. The term frequency

(i.e., tf) for happy is then (5/100) = 0.05. IDF, on the other hand, is a

log ratio of the total number of documents to a document containing a

particular word. Suppose we have 10 million documents, and the word

happy appears in 1,000 of them. The inverse document frequency (i.e., idf),

then, would be calculated as log (10,000,000/1,000) = 4. Thus, the TF-IDF

weight is the product of these quantities: 0.05 × 4 = 0.20.

Chapter 1 Introduction to Natural Language Processing and Deep Learning

34

Note A long similar lines as TF-IDF is BM25, which is used to score
a document on the basis of its relation to a query. BM25 ranks a
set of documents using the query terms of each of the documents,
irrespective of the relationship between the keywords of the query
within a document.

from sklearn.feature_extraction.text import TfidfVectorizer

texts=["Ramiess sings classic songs","he listens to old pop",

"and rock music", ' and also listens to classical songs']

vect = TfidfVectorizer()

X = vect.fit_transform(texts)

print(X.todense())

>> [[0. 0. 0.52547275 0. 0.

 0. 0.

 0. 0. 0. 0.52547275 0.

 0.52547275

 0.41428875 0.]

 [0. 0. 0. 0. 0.4472136

 0.4472136

 0. 0. 0.4472136 0.4472136 0.

 0. 0.

 0. 0.4472136]

 [0. 0.48693426 0. 0. 0.

 0. 0.

 0.61761437 0. 0. 0. 0.61761437

 0. 0.

 0.]

 [0.48546061 0.38274272 0. 0.48546061 0.

 0.

Chapter 1 Introduction to Natural Language Processing and Deep Learning

35

 0.48546061 0. 0. 0. 0.

 0. 0.

 0.38274272 0.]]

�Text Classifier
Text can be classified into various classes, such as positive and negative.

TextBlob offers many such architectures.

from textblob import TextBlob

from textblob.classifiers import NaiveBayesClassifier

data = [

 ('I love my country.', 'pos'),

 ('This is an amazing place!', 'pos'),

 ('I do not like the smell of this place.', 'neg'),

 ('I do not like this restaurant', 'neg'),

 ('I am tired of hearing your nonsense.', 'neg'),

 ("I always aspire to be like him", 'pos'),

 ("It's a horrible performance.", "neg")

]

model = NaiveBayesClassifier(data)

model.classify("It's an awesome place!")

>> 'pos'

�Introduction to Deep Learning
Deep learning is an extended field of machine learning that has proven

to be highly useful in the domains of text, image, and speech, primarily.

The collection of algorithms implemented under deep learning have

similarities with the relationship between stimuli and neurons in the

human brain. Deep learning has extensive applications in computer

vision, language translation, speech recognition, image generation, and

Chapter 1 Introduction to Natural Language Processing and Deep Learning

36

so forth. These sets of algorithms are simple enough to learn in both a

supervised and unsupervised fashion.

A majority of deep learning algorithms are based on the concept of

artificial neural networks, and the training of such algorithms in today’s

world has been made easier with the availability of abundant data and

sufficient computation resources. With additional data, the performance

of deep learning models just keep on improving. A better representation of

this can be seen in Figure 1-2.

Why deep learning?

Amount of data

Pe
rf

or
m

an
ce

Figure 1-2.  Scaling data science techniques to amount of data

The term deep in deep learning refers to the depth of the artificial

neural network architecture, and learning stands for learning through the

artificial neural network itself. Figure 1-3 is an accurate representation of

the difference between a deep and a shallow network and why the term

deep learning gained currency.

Chapter 1 Introduction to Natural Language Processing and Deep Learning

37

Deep neural networks are capable of discovering latent structures (or

feature learning) from unlabeled and unstructured data, such as images

(pixel data), documents (text data), or files (audio, video data).

Although an artificial neural network and models in deep learning

fundamentally hold similar structures, this does not translate to mean that

a combination of two artificial neural networks will perform similarly to a

deep neural network when trained to use the data.

What differentiates any deep neural network from an ordinary

artificial neural network is the way we use backpropagation. In an ordinary

artificial neural network, backpropagation trains later (or end) layers more

efficiently than it trains initial (or former) layers. Thus, as we travel back

into the network, errors become smaller and more diffused.

�How Deep Is “Deep”?
We hear the term deep and instantly become intimated by it, but there is

not much difference between a shallow and deep neural network. A deep

neural network is simply a feed forward neural network with multiple

hidden layers. Yes, it’s that simple!

Shallow NetworkDeep Network

Figure 1-3.  Representation of deep and shallow networks

Chapter 1 Introduction to Natural Language Processing and Deep Learning

38

If there are many layers in the network, then we say that the network is

deep. The question that should be flashing through your mind right now is

how many layers must a network have to qualify as deep?

Before we start our actual journey on deep learning in the NLP space, it

would be useful to review the basics of neural networks and their different

types.

We will introduce the basic structure of a basic neural network and

a few of the different types of the neural networks used across industry-

wide applications. To provide a concise yet practical understanding of this

technique, this part of the chapter is subdivided into six headings:

•	 What Are Neural Networks?

•	 Basic Structure of Neural Networks

•	 Types of Neural Networks

•	 Multilayer Perceptrons

•	 Stochastic Gradient Descent

•	 Backpropagation

Note  For a detailed academic understanding, you can
refer to treatises and articles published by Geoffrey Hinton
(www.cs.toronto.edu/~hinton/) and others (http://
deeplearning.net/).

�What Are Neural Networks?
Neural networks have a long history that can be traced back to the seminal

works of Marvin Minsky on artificial intelligence (AI) and his (in)famous

reference to the challenge of solving an exclusive OR (XOR) function.

Neural networks have become increasingly prevalent, as major advances

Chapter 1 Introduction to Natural Language Processing and Deep Learning

http://www.cs.toronto.edu/~hinton/
http://www.cs.toronto.edu/~hinton/
http://deeplearning.net/
http://deeplearning.net/

39

have been made, with access to larger and larger datasets and the advent

of cloud computing and GPUs that provide immense computing power.

This ready access to data and computing has produced better accuracy in

modeling and analytics.

Neural networks are a biologically inspired paradigm (imitating the

functioning of the mammalian brain) that enables a computer to learn

human faculties from observational data. They currently provide solutions

to many problems: image recognition, handwriting recognition, speech

recognition, speech analysis, and NLP.

To help us develop an intuitive sense, the different tasks we perform

during a day can be categorized as follows:

algebraic or linear inference (e.g., A × B = C, or a

series of tasks, such as a recipe for a cake)

recognition perception or nonlinear inference

(e.g., associating names with photos of animals or

reducing stress or validating a statement based on

voice analysis)

learning a task through observation (e.g., navigation

in the Google car)

The first task can be addressed algorithmically, i.e., described

programmatically to produce a result from numbers or ingredients,

whereas it’s difficult, if not impossible, to define an algorithmic approach

for the latter tasks. The latter tasks require a flexible model that can

autonomously adapt its behavior, based on tagged examples.

Now, statistical or optimization algorithms also strive to provide

correct output[s] in relation to possible input[s], though they require the

specification of a function to model the data for which they produce the

optimal set of coefficients. In contrast to optimization techniques, a neural

network is a flexible function that autonomously adapts its behavior to

satisfy as much as possible the relation between the input[s] and the

expected result[s] and has been termed as a universal approximator.

Chapter 1 Introduction to Natural Language Processing and Deep Learning

40

Given the pervasive use of algorithms, there are libraries (Figure 1-4)

available on all popular platforms, such as R (knn, nnet packages), Scala

(machine learning ML extensions), and Python (TensorFlow, MXNet,

Keras).

Figure 1-4.  Multiple open source platforms and libraries for deep
learning

�Basic Structure of Neural Networks
The basic principle behind a neural network is a collection of basic

elements, artificial neuron or perceptron, that were first developed in the

1950s by Frank Rosenblatt. They take several binary inputs, x1, x2, ..., xN

and produce a single binary output if the sum is greater than the activation

potential. The neuron is said to “fire” whenever activation potential is

exceeded and behaves as a step function. The neurons that fire pass along

the signal to other neurons connected to their dendrites, which, in turn,

will fire, if the activation potential is exceeded, thus producing a cascading

effect (Figure 1-5).

Chapter 1 Introduction to Natural Language Processing and Deep Learning

41

As not all inputs have the same emphasis, weights are attached to each

of the inputs, xi to allow the model to assign more importance to some

inputs. Thus, output is 1, if the weighted sum is greater than activation

potential or bias, i.e.,

Output =  j j jw x Bias

In practice, this simple form is difficult, owing to the abrupt nature of

the step function (Figure 1-6). So, a modified form was created to behave

more predictably, i.e., small changes in weights and bias cause only a small

change in output. There are two main modifications.

x1

x2

x3

output

Figure 1-5.  Sample neuron

Figure 1-6.  Step function

Chapter 1 Introduction to Natural Language Processing and Deep Learning

42

	 1.	 The inputs can take on any value between 0 and 1,

instead of being binary.

	 2.	 To make the output behave more smoothly for given

inputs, x1, x2, …, xN, and weights. w1, w2, …, wN, and bias,

b, use the following sigmoid function (Figure 1-7):

 1 1/ exp     j j jw x b

The smoothness of the exponential function, or σ, means that small

changes in weights and bias will produce a small change in the output

from the neuron (the change could be a linear function of changes in

weights and bias).

Figure 1-7.  Neural network activation function: sigmoid

In addition to the usual sigmoid function, other nonlinearities that are

more frequently used include the following, and each of these could have

similar or different output ranges and can be used accordingly.

Chapter 1 Introduction to Natural Language Processing and Deep Learning

43

•	 ReLU: Rectified linear unit. This keeps the activation

guarded at zero. It is computed using the following

function:

Z f x xj j j j     max ,0

where, xj, the j-th input value, and zj is its

corresponding output value after the ReLU function

f. Following is the graph (Figure 1-8) of the ReLU

function, with ‘0’ value for all x <= 0, and with a

linear slope of 1 for all x > 0:

Figure 1-8.  ReLU function graph

ReLUs quite often face the issue of dying, especially when the learning

rate is set to a higher value, as this triggers weight updating that doesn’t

allow the activation of the specific neurons, thereby making the gradient

of that neuron forever zero. Another risk offered by ReLU is the explosion

of the activation function, as the input value, xj, is itself the output here.

Although ReLU offers other benefits as well, such as the introduction of

sparsity in cases where xj is below 0, leading to sparse representations,

and as the gradient returned in cases where ReLU is constant, it results

in faster learning, accompanied by the reduced likelihood of the gradient

vanishing.

Chapter 1 Introduction to Natural Language Processing and Deep Learning

44

•	 LReLUs (Leaky ReLUs): These mitigate the issue of

dying ReLUs by introducing a marginally reduced

slope (~0.01) for values of x less than 0. LReLUs do offer

successful scenarios, although not always.

•	 ELU (Exponential Linear Unit): These offer negative

values that push the mean unit activations closer to

zero, thereby speeding the learning process, by moving

the nearby gradient to the unit natural gradient. For a

better explanation of ELUs, refer to the original paper

by Djork-Arné Clevert, available at https://arxiv.

org/abs/1511.07289.

•	 Softmax: Also referred to as a normalized exponential

function, this transforms a set of given real values in

the range of (0,1), such that the combined sum is 1.

A softmax function is denoted as follows:

 z e e
j

z

k

k
zk k  


/

1

 for j = 1, …, K

All the preceding functions are easily differentiable, allowing the

network to be trained easily with gradient descent (covered in the next

section, “Types of Neural Networks”).

As in the mammalian brain, individual neurons are organized in layers,

with connections within a layer and to the next layer, creating an ANN,

or artificial neural network or multilayer perceptron (MLP). As you may

have guessed, the complexity is based on the number of elements and the

number of neighbors connected.

The layers between input and output are referred to as hidden

layers, and the density and type of connections between layers is the

configuration. For example, a fully connected configuration has all the

neurons of layer L connected to those of L + 1. For a more pronounced

Chapter 1 Introduction to Natural Language Processing and Deep Learning

https://arxiv.org/abs/1511.07289
https://arxiv.org/abs/1511.07289

45

localization, we can connect only a local neighborhood, say nine neurons,

to the next layer. Figure 1-9 illustrates two hidden layers with dense

connections.

Figure 1-9.  Neural network architecture

�Types of Neural Networks
Up until now, we’ve been discussing artificial neural networks in

general; however, there are different types of neural networks, based on

architecture and usage. For neural networks to learn in a faster and more

efficient way, various neurons are placed in the network in such a way as to

maximize the learning of the network for the given problem. This placing

of neurons follows a sensible approach and results in an architectural

network design with different neurons consuming the output of other

neurons, or different functions taking output from other functions in their

inputs. If the neurons are placed with connections among them taking

the form of cycles, then they form networks such as feedback, recursive,

or recurrent neural networks. If, however, the connections between the

neurons are acyclic, they form networks such as feedforward neural

networks. Following are detailed explanations of the networks cited.

Chapter 1 Introduction to Natural Language Processing and Deep Learning

46

�Feedforward Neural Networks
Feedforward neural networks constitute the basic units of the neural

network family. Data movement in any feedforward neural network is

from the input layer to output layer, via present hidden layers, restricting

any kind of loops (Figure 1-10). Output from one layer serves as input

to the next layer, with restrictions on any kind of loops in the network

architecture.

Figure 1-10.  A multilayer feedforward neural network

�Convolutional Neural Networks
Convolutional neural networks are well adapted for image recognition and

handwriting recognition. Their structure is based on sampling a window

or portion of an image, detecting its features, and then using the features

to build a representation. As is evident by this description, this leads to

the use of several layers, thus these models were the first deep learning

models.

Chapter 1 Introduction to Natural Language Processing and Deep Learning

47

�Recurrent Neural Networks
Recurrent neural networks (RNNs; Figure 1-11) are used when a data

pattern changes over time. RNNs can be assumed as unrolled over time.

An RNN applies the same layer to the input at each time step, using the

output (i.e., the state of previous time steps as inputs).

Figure 1-11.  Recurrent neural network

RNNs have feedback loops in which the output from the previous firing

or time index T is fed as one of the inputs at time index T + 1. There might

be cases in which the output of the neuron is fed to itself as input. As these

are well-suited for applications involving sequences, they are widely used

in problems related to videos, which are a time sequence of images, and

for translation purposes, wherein understanding the next word is based on

the context of the previous text. Following are various types of RNNs:

Encoding recurrent neural networks: This set of

RNNs enables the network to take an input of the

sequence form (Figure 1-12).

Chapter 1 Introduction to Natural Language Processing and Deep Learning

48

Generating recurrent neural networks: Such

networks basically output a sequence of numbers or

values, like words in a sentence (Figure 1-13).

...

A A A A Sl

X0 X1 X2 Xl

Figure 1-12.  Encoding RNNs

...

A A A As0

y0 y1 y2 yl

Figure 1-13.  Generating RNNs

General recurrent neural networks: These

networks are a combination of the preceding two

types of RNNs. General RNNs (Figure 1-14) are used

to generate sequences and, thus, are widely used in

NLG (natural language generation) tasks.

A A A As0 sl

y0 y1 y2 yl

...X0 X1 X2 Xl

Figure 1-14.  General RNNs

Chapter 1 Introduction to Natural Language Processing and Deep Learning

49

�Encoder-Decoder Networks
Encoder-decoder networks use one network to create an internal

representation of the input, or to “encode” it, and that representation is

used as an input for another network to produce the output. This is useful

to go beyond a classification of the input. The final output can be in the

same modality, i.e., language translation, or a different modality, e.g., text

tagging of an image, based on concepts. For reference, one can refer to the

paper “Sequence to Sequence Learning with Neural Networks,” published

by the team at Google: (https://papers.nips.cc/paper/5346-sequence-

to-sequence-learning-with-neural-networks.pdf).

�Recursive Neural Networks
In a recursive neural network (Figure 1-15), a fixed set of weights is

recursively applied onto the network structure and is primarily used

to discover the hierarchy or structure of the data. Whereas an RNN is a

chain, a recursive neural network takes the form of a treelike structure.

Such networks have great use in the field of NLP, such as to decipher

the sentiment of a sentence. The overall sentiment is not dependent on

the individual works only, but also on the order in which the words are

syntactically grouped in the sentence.

Chapter 1 Introduction to Natural Language Processing and Deep Learning

https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf

50

As one can see, there are different types of networks, and while some

can be applied in many different contexts, specific ones are better suited to

certain applications, in terms of speed and quality.

�Multilayer Perceptrons
Multilayer perceptrons (MLPs) belong to the category of feedforward

neural networks and are made up of three types of layers: an input layer,

one or more hidden layers, and a final output layer. A normal MLP has the

following properties:

•	 Hidden layers with any number of neurons

•	 An input layer using linear functions

•	 Hidden layer(s) using an activation function, such as

sigmoid

The red bird sang The red bird sang

Catamorphism = TreeNet

ABranch

ABranch

ABranch

ALeaf ALeaf ALeaf ALeaf

Figure 1-15.  Recursive neural network

Chapter 1 Introduction to Natural Language Processing and Deep Learning

51

•	 An activation function giving any number of outputs

•	 Proper established connections between the input

layer, hidden layer(s), and output layer

MLPs are also known as universal approximators, as they can find

the relationship between the input values and the targets, by using a

sufficient number of neurons in the hidden layer, altering weights, or by

using additional training data to approximate the given function up to

any level of accuracy. This doesn’t even require a significant amount of

prior information about mapping between input and output values. Often,

with the given degree of freedom to an MLP, it can outperform the basic

MLP network, by introducing more hidden layers, with fewer neurons in

each of the hidden layers and optimum weights. This helps in the overall

generalization process of the model.

Following are a few of the features of network architecture that have a

direct impact on its performance

•	 Hidden layers: These contribute to the generalization

factor of the network. In most cases, a single layer is

sufficient to encompass the approximation of any desired

function, supported with a sufficient number of neurons.

•	 Hidden neurons: The number of neurons present

across the hidden layer(s) that can be selected by using

any kind of formulation. A basic rule of thumb is to

select count between one and a few input units. Another

means is to use cross-validation and then check the

plot between the number of neurons in the hidden

layer(s) and the average mean squared error (MSE) with

respect to each of the combinations, finally selecting the

combination with the least MSE value. It also depends

on the degree of nonlinearity or the initial problem

dimensionality. It is, thus, more of an adaptive process

to add/delete the neurons.

Chapter 1 Introduction to Natural Language Processing and Deep Learning

52

•	 Output nodes: The count of output nodes is usually

equal to the number of classes we want to classify the

target value.

•	 Activation functions: These are applied on the inputs

of individual nodes. A set of nonlinear functions,

described in detail in the Basic Structure of Neural

Networks section of this chapter, are used to make the

output fall within a desired range, thereby preventing

the paralysis of the network. In addition to the

nonlinearity, the continuous differentiability of these

functions helps in preventing the inhibition of the

training of neural networks.

As the output given by an MLP depends only on the current input

and not on past or future inputs, so MLPs are considered apt for resolving

classification problems.

Figure 1-16 shows that there are a total of (L + 2) layers in the MLP, with

the input layer at the first position, followed by L hidden layers and, finally,

the output layer at the (L + 2)-th position. The following equations define

the different units of the MLP, with activation functions applied at different

stages of the network.

W(k) denotes the weight connection between the k-th hidden layer

and the layer before it, the input layer, or another hidden layer. Each

W(k) is made up of weights, Wij
(k), between the units i and j of the two

connecting layers. b(k) is the bias for the k-th layer.

The following equation represents the hidden layer preactivation

for k > 0:

a x b W h xk k k k            1

Chapter 1 Introduction to Natural Language Processing and Deep Learning

53

For any i-th neuron present in the k-th hidden layer, the following

equation holds true:

h x g a xk

i

k

i
        

The activation function for the output layer (k = L + 1) follows:

h x o a x f xL L           1 1

x1 xj xd

W(3) b(3)

b(2)

b(1)

h(2) (x)

h(1) (x)

W(2)

W(1)

1

1

1... ...

... ...

... ...

...

Figure 1-16.  Multilayer neural network

Chapter 1 Introduction to Natural Language Processing and Deep Learning

54

�Stochastic Gradient Descent
The workhorse of almost all solutions to optimization problems is the

gradient descent algorithm. It is an iterative algorithm that minimizes a

loss function by subsequently updating the parameters of the function.

As we can see from Figure 1-17, we start by thinking of our function as

a kind of a valley. We imagine a ball rolling down the slope of a valley. Our

everyday experience tells us that the ball will eventually roll to the bottom

of the valley. Perhaps we can use this idea to find a minimum for the cost

function.

Figure 1-17.  Ball rolling down the slope

Here the function we are using is dependent on two variables: v1 and v2.

This may be obvious, given the fact that our loss function looks like the one

preceding. To achieve such a smooth loss function, we take the quadratic

loss, as follows:

y y predicted 2

Chapter 1 Introduction to Natural Language Processing and Deep Learning

55

Again, readers should note that the quadratic cost function is only

one method, and there are many other ways to define loss. Eventually, the

purpose of choosing different loss functions is to get

	 1.	 A smoothed partial derivative with respect to weight

	 2.	 A good convex curve, to achieve global minimum.

However, a lot of other factors come into play while

finding a global minimum (learning rate, shape of

function, etc.).

We’d randomly choose a starting point for an (imaginary) ball and then

simulate the motion of the ball as it rolls down to the bottom of the valley.

In a similar analogy, imagine that we initialize the weights of the network

or, in general, the parameters of a function, at some arbitrary point on a

curve (just like dropping a ball on any point of the slope), and then we

check the slope (derivative) nearby.

We know that the ball will go down in the direction of maximum

slope, owing to gravity. Similarly, we move the weights in the direction of

derivative at that point and update the weights according to following rule:

Let J(w) = Cost as a function of weights

w = Parameters of the network (v1 and v2)

wi= Initial set of weights (random initialization)

w w d w dwupdated i    J /

Here, dJ(w)/dw = partial derivative of weight, w, with respect to J(w)

η = learning rate.

The learning rate is more of a hyper parameter, and there is no fixed

way to find the most appropriate learning rate. However, one can always

look into the batch-loss to find it.

One way is to see the loss and analyze the pattern of loss. In general, a

bad learning rate leads to erratic loss on mini-batches. It (loss) can go up

and down recursively, without stabilizing.

Chapter 1 Introduction to Natural Language Processing and Deep Learning

56

Figure 1-18 illustrates a better intuitive explanation, supported by a

graph.

Figure 1-18.  Impact of small and large learning rates

In the preceding diagram, there are two cases present:

	 1.	 Small learning rate

	 2.	 Large learning rate

The purpose is to reach the minimum of the preceding graph, and

we must reach the bottom of the valley (as in the ball analogy). Now the

learning rate is related to the jump the ball makes while rolling down the

hill.

Considering case 1 first (the left part of the diagram), in which we

make small jumps, gradually keep rolling down, slowly, and eventually

reaching the minimum, there is a chance that the ball may get stuck in

some small crevice along the way and isn’t able to get escape it, because of

its inability to make large jumps.

In case 2 (the right part of the diagram), there is a larger learning rate,

as compared to the slope of the curvature. This is a suboptimal strategy

that might actually eject us from the valley, in some cases, which could

Chapter 1 Introduction to Natural Language Processing and Deep Learning

57

be a good start to coming out of the reach of local minima but not at all

satisfactory in the event that we skip the global minima.

In the diagram, we are achieving a local minima, but this is just one

case. What this means is that the weights get stuck at local minima, and

we miss out on global minima. Gradient descent, or stochastic gradient

descent, doesn’t guarantee convergence to the global minima for neural

networks (assuming hidden units are not linear), because the cost

functions are non-convex.

An ideal situation is one in which step size keeps on changing and is

more adaptive in nature, with a little higher at the start, then gradually

decreasing over a period of time, until convergence.

�Backpropagation
Understanding the backpropagation algorithm can take some time, and

if you are looking for a fast implementation of a neural network, then

you can skip this section, as modern libraries have the capability to

auto-differentiate and perform the entire training procedure. However,

understanding this algorithm would definitely give you insights into

problems related to deep learning (learning problems, slow learning,

exploding gradients, diminishing gradients).

Gradient descent is a powerful algorithm, yet it is a slow method when

the number of weights increases. In the case of neural networks having

parameters in the range of thousands, training each weight with respect

to the loss function or, rather, formulating the loss as a function of all the

weights becomes painstakingly slow and extremely complex to use for

practical purposes.

Thanks to the path-breaking paper by Geoffrey Hinton and his

colleagues in 1986, we have an extremely fast and beautiful algorithm

that helps us to find the partial derivative of the loss with respect to each

weight. This algorithm is the workhorse of the training procedure for every

Chapter 1 Introduction to Natural Language Processing and Deep Learning

58

deep learning algorithm. More detailed information can be found here:

www.cs.toronto.edu/~hinton/backprop.html.

It is the most efficient possible procedure to compute the exact

gradient, and its computational cost is always of the same O() complexity

as computing the loss itself. The proof of backpropagation is beyond the

scope of this book; however, the intuitive explanation of the algorithm can

give you an excellent insight into its complex working.

For backpropagation to work, two basic assumptions are taken

regarding the Error function.

	 1.	 Total error can be written as a summation of

individual error of training samples/minibatch,

E Ex 

	 2.	 Error can be written as a function of outputs of the

network

Backpropagation consists of two parts:

	 1.	 Forward pass, wherein we initialize the weights and

make a feedforward network to store all the values

	 2.	 Backward pass, which is performed to have the

stored values update the weights

Partial derivatives, chain rules, and linear algebra are the main tools

required to deal with backpropagation (Figure 1-19).

Chapter 1 Introduction to Natural Language Processing and Deep Learning

http://www.cs.toronto.edu/~hinton/backprop.html

59

Initially, all the edge weights are randomly assigned. For every input in

the training dataset, the ANN is activated, and its output is observed. This

output is compared with the desired output that we already know, and the

error is “propagated” back to the previous layer. This error is noted, and

the weights are “adjusted” accordingly. This process is repeated until the

output error is below a predetermined threshold.

Once the preceding algorithm terminates, we have a “learned” ANN,

which we consider to be ready to work with “new” inputs. This ANN is said

to have learned from several examples (labeled data) and from its mistakes

(error propagation).

Curious readers should investigate the original paper on

backpropagation. We have provided a list of resources and blogs to

understand the algorithm in greater depth. However, when it comes to

implementation, you will hardly write your own code on backpropagation,

as most of the libraries support automatic differentiation, and you won’t

really want to tweak the backpropagation algorithm.

Signal Propagation Direction

INPUT OUTPUT

Input Layer Output
Layer

Input unit Hidden units

Error Back Propagation

Error

Output unit

Target

yN

y1
x1

xN-1

xN

x2

Figure 1-19.  Backpropagation mechanism in an ANN

Chapter 1 Introduction to Natural Language Processing and Deep Learning

60

In layman’s language, in backpropagation, we try to sequentially

update the weights, first by making a forward pass on the network, after

which we first update the weights of the last layer, using the label and last

layer outputs, then subsequently use this information recursively on the

layer just before and proceed.

�Deep Learning Libraries
This section involves an introduction to the some of the widely used

deep learning libraries, including Theano, TensorFlow, and Keras, also in

addition to a basic tutorial on each one of these.

�Theano
Theano was an open source project primarily developed at the Université

de Montréal under the supervision of Yoshua Bengio. It is a numerical

computation library for Python with syntaxes similar to NumPy. It

is efficient at performing complex mathematical expressions with

multidimensional arrays. This makes it is a perfect choice for neural

networks.

The link http://deeplearning.net/software/theano will give the

user a better idea of the various operations involved. We will be illustrating

the installation steps for Theano on different platforms, followed by the

basic tutorials involved.

Theano is a mathematical library that provides ways to create the

machine learning models that could be used later for multiple datasets.

Many tools have been implemented on top of Theano. Principally, it

includes

•	 Blocks http://blocks.readthedocs.org/en/latest/

•	 Keras http://keras.io/

Chapter 1 Introduction to Natural Language Processing and Deep Learning

http://deeplearning.net/software/theano
http://blocks.readthedocs.org/en/latest/
http://keras.io/

61

•	 Lasagne http://lasagne.readthedocs.org/en/

latest/

•	 PyLearn2 http://deeplearning.net/software/

pylearn2/

Note  It should be noted that at the time of writing this book,
contributions to the Theano package have been stopped by the
community members, owing to a substantial increase in the usage of
other deep learning packages.

�Theano Installation
The following command will work like a charm for Theano installation on

Ubuntu:

> sudo apt-get install python-numpy python-scipy python-dev

python-pip python-nose g++ libopenblas-dev git

> sudo pip install Theano

For detailed instructions on installing Theano on different platforms,

please refer to the following link: http://deeplearning.net/software/

theano/install.html. Even docker images with CPU and GPU

compatibility are available.

Note  It is always advisable to proceed with installation in a
separate virtual environment.

Chapter 1 Introduction to Natural Language Processing and Deep Learning

http://lasagne.readthedocs.org/en/latest/
http://lasagne.readthedocs.org/en/latest/
http://deeplearning.net/software/pylearn2/
http://deeplearning.net/software/pylearn2/
http://deeplearning.net/software/theano/install.html
http://deeplearning.net/software/theano/install.html

62

The latest version of Theano can be installed from the development

version available at

> git clone git://github.com/Theano/Theano.git

> cd Theano

> python setup.py install

For the installation on Windows, take the following steps

(sourced from an answer on Stack Overflow):

	 1.	 Install TDM GCC x64 (http://tdm-gcc.tdragon.net/).

	 2.	 Install Anaconda x64 (www.continuum.io/

downloads, say in C:/Anaconda).

	 3.	 After Anaconda installation, run the following

commands:

a.	 conda update conda

b.	 conda update -all

c.	 conda install mingw libpython

	 4.	 Include the destination 'C:\Anaconda\Scripts' in

the environment variable PATH.

	 5.	 Install Theano, either the older version or the latest

version available.

a.	 Older version:

> pip install Theano

b.	 Latest version:

 �> pip install --upgrade --no-deps git+git://

github.com/Theano/Theano.git

Chapter 1 Introduction to Natural Language Processing and Deep Learning

http://tdm-gcc.tdragon.net/
http://www.continuum.io/downloads
http://www.continuum.io/downloads

63

�Theano Examples
The following section introduces the basic codes in the Theano library.

The Tensor subpackage of the Theano library contains most of the

required symbols.

The following example makes use of the Tensor subpackage and

performs operations on the two numbers (outputs have been included for

reference):

> import theano

> import theano.tensor as T

> import numpy

> from theano import function

Variables 'x' and 'y' are defined

> x = T.dscalar('x') # dscalar : Theano datatype

> y = T.dscalar('y')

'x' and 'y' are instances of TensorVariable, and are of

dscalar theano type

> type(x)

<class 'theano.tensor.var.TensorVariable'>

> x.type

TensorType(float64, scalar)

> T.dscalar

TensorType(float64, scalar)

'z' represents the sum of 'x' and 'y' variables. Theano's pp

function, pretty-print out, is used to display the computation

of the variable 'z'

> z = x + y

> from theano import pp

> print(pp(z))

(x+y)

Chapter 1 Introduction to Natural Language Processing and Deep Learning

64

'f' is a numpy.ndarray of zero dimensions, which takes input

as the first argument, and output as the second argument

'f' is being compiled in C code

> f = function([x, y], z)

The preceding function could be used in the following manner to

perform the addition operation:

> f(6, 10)

array(16.0)

> numpy.allclose(f(10.3, 5.4), 15.7)

True

�TensorFlow
TensorFlow is an open sourced library by Google for large-scale machine

learning implementations. TensorFlow, in a true sense, is the successor of

DistBelief, which was an earlier software framework released by Google

capable of utilizing computing clusters with thousands of machines to

train large models.

TensorFlow is the brainchild of the software engineers and researchers

from the Google Brain Team, which is part of the Google group (now

Alphabet) and is primarily focused on deep learning and its applications.

It makes use of the data flow graphs for the numerical computation,

mentioned in detail following. It has been designed in such a way that

computations on CPUs or GPU systems across a single desktop or servers

or mobile devices are catered to by a single API.

TensorFlow offers the movement of highly intensive computational

tasks from CPUs to heterogeneous GPU-oriented platforms, with very

minute changes in the codes. Also, a model trained on one machine could

be used on another light device, such as an Android-enabled mobile

device, for final implementation purposes.

Chapter 1 Introduction to Natural Language Processing and Deep Learning

65

TensorFlow is the foundation for the implementation of such

applications as DeepDream, which is an automated image-captioning

software, and RankBrain, which helps Google to process search results and

provide more relevant search results to users.

To get a better sense of the working and implementation of

TensorFlow, one can read the relevant white paper at http://download.

tensorflow.org/paper/whitepaper2015.pdf.

�Data Flow Graphs
Data flow graphs are used by TensorFlow to represent the mathematical

computations performed in the form of graphs. It makes use of the

directed graphs, with nodes and edges. The nodes represent mathematical

operations and act as a terminal for data input, output of results, or read/

write of persistent variables. The edges handle the input and output

relationships between nodes. The data edges carry tensors, or dynamically

sized multidimensional data arrays, between the nodes. The movement

of these tensor units through the whole graph has itself lead to the name

TensorFlow. The nodes in a graph, upon receiving all their respective

tensors from the incoming edges, execute asynchronously and in parallel.

The overall design and flow of computations covered within a data flow

graph occur in a session and are then executed on the desired machines.

TensorFlow, with the Python, C, and C+ APIs offered, relies on C++ for

optimized computations.

With the following features of TensorFlow, it is the best choice for the

massive parallelism and high scalability required in the field of machine

learning

•	 Deep flexibility: Users get the full privilege to write their

own libraries on top of the TensorFlow. One need only

create the whole computation in the form of a graph,

and the rest is taken care of by TensorFlow.

Chapter 1 Introduction to Natural Language Processing and Deep Learning

http://download.tensorflow.org/paper/whitepaper2015.pdf
http://download.tensorflow.org/paper/whitepaper2015.pdf

66

•	 True portability: Extensibility offered by TensorFlow

enables a machine learning code written on a laptop

to be trained on GPUs for faster model training, with

no code changes, and to be deployed on mobile, in the

final product, or on docker, as a cloud service.

•	 Automatic differentiation: TensorFlow handles the

derivatives computation for the gradient-based

machine learning algorithms by the automatic

differentiation functionality of it. The computation

of derivatives of values helps in understanding the

extended graph of values with respect to each other.

•	 Language options: TensorFlow offers Python and C++

interfaces to build and execute the computational

graphs.

•	 Performance maximization: The compute elements

from the TensorFlow graph can be assigned to multiple

devices, and TensorFlow takes care of the maximum

performance by its wide support of threads, queues,

and asynchronous computation.

�TensorFlow Installation
TensorFlow installation is very easy, like any other Python package, and

can be achieved by using a single pip install command. Also, if required,

users can follow the detailed explanation for the installation on the main

site of TensorFlow (www.tensorflow.org/versions/r0.10/get_started/

os_setup.html, for the r0.10 version).

Installation via pip must be preceded by the binary package

installation relevant to the platform. Please refer to the following link for

more details on the TensorFlow package and its repository

https://github.com/tensorflow/tensorflow.

Chapter 1 Introduction to Natural Language Processing and Deep Learning

http://www.tensorflow.org/versions/r0.10/get_started/os_setup.html
http://www.tensorflow.org/versions/r0.10/get_started/os_setup.html
https://github.com/tensorflow/tensorflow

67

To check the installation of TensorFlow on Windows,

check out the following blog link: www.hanselman.com/blog/

PlayingWithTensorFlowOnWindows.aspx.

�TensorFlow Examples
Running and experimenting with TensorFlow is as easy as the installation.

The tutorial on the official web site, www.tensorflow.org/, is pretty clear

and covers basic to expert-level examples.

Following is one such example, with the basics of TensorFlow (outputs

have been included for reference):

> import tensorflow as tf

> hello = tf.constant('Hello, Tensors!')

> sess = tf.Session()

> sess.run(hello)

Hello, Tensors!

Mathematical computation

> a = tf.constant(10)

> b = tf.constant(32)

> sess.run(a+b)

42

The run() method takes the resulting variables for computations as

arguments, and a backward chain of required calls are made for this.

TensorFlow graphs get formed from nodes not requiring any kind of

input, i.e., the source. These nodes then pass their output to further nodes,

which perform computations on the resulting tensors, and the whole

process moves in this pattern.

The following examples show the creation of two matrices using

Numpy, then using TensorFlow to assign these matrices as objects in

TensorFlow, and then multiplying both the matrices. The second example

Chapter 1 Introduction to Natural Language Processing and Deep Learning

http://www.hanselman.com/blog/PlayingWithTensorFlowOnWindows.aspx
http://www.hanselman.com/blog/PlayingWithTensorFlowOnWindows.aspx
http://www.tensorflow.org/

68

includes the addition and subtraction of two constants. A TensorFlow

session has also been activated to perform the operation and deactivated

once the operation is complete.

> import tensorflow as tf

> import numpy as np

> mat_1 = 10*np.random.random_sample((3, 4)) �# Creating NumPy

arrays

> mat_2 = 10*np.random.random_sample((4, 6))

Creating a pair of constant ops, and including the above made

matrices

> tf_mat_1 = tf.constant(mat_1)

> tf_mat_2 = tf.constant(mat_2)

Multiplying TensorFlow matrices with matrix multiplication

operation

> tf_mat_prod = tf.matmul(tf_mat_1 , tf_mat_2)

> sess = tf.Session() # Launching a session

run() executes required ops and performs the request to store

output in 'mult_matrix' variable

> mult_matrix = sess.run(tf_mat_prod)

> print(mult_matrix)

Performing constant operations with the addition and

subtraction of two constants

> a = tf.constant(10)

> a = tf.constant(20)

> print("Addition of constants 10 and 20 is %i " % sess.

run(a+b))

Chapter 1 Introduction to Natural Language Processing and Deep Learning

69

Addition of constants 10 and 20 is 30

> print("Subtraction of constants 10 and 20 is %i " % sess.

run(a-b))

Subtraction of constants 10 and 20 is -10

> sess.close() # Closing the session

Note A s no graph was specified in the preceding example with the
TensorFlow, the session makes use of the default instance only.

�Keras
Keras is a highly modular neural networks library, which runs on top of

Theano or TensorFlow. Keras is one of the libraries which supports both

CNNs and RNNs (we will be discussing these two neural networks in detail

in later chapters), and runs effortlessly on GPU and CPU.

A model is understood as a sequence or a graph of standalone,

fully configurable modules that can be plugged together with as little

restrictions as possible. In particular, neural layers, cost functions,

optimizers, initialization schemes, activation functions, regularization

schemes are all standalone modules that could be combined to create new

models.

�Keras Installation

In addition to the Theano or TensorFlow as back end, Keras makes use

of the few libraries as dependencies. Installing these before Theano or

TensorFlow installation eases the process.

Chapter 1 Introduction to Natural Language Processing and Deep Learning

70

> pip install numpy scipy

> pip install scikit-learn

> pip install pillow

> pip install h5py

Note  Keras always require the latest version of Theano to be
installed (as mentioned in the previous section). We have made use of
TensorFlow as back end for Keras throughout the book.

> pip install keras

�Keras Principles

Keras offers a model as one of its main data structures. Each model is a

customizable entity that can be made up of different layers, cost functions,

activation functions, and regularization schemes. Keras offers a wide range

of pre-built layers to plug in a neural network, a few of which include

convolutional, dropout, pooling, locally connected, recurrent, noise, and

normalization layers. An individual layer of the network is considered to be

an input object for the next layer.

Built primarily for the implementation of neural networks and deep

learning, code snippets in Keras will be included in later chapters as well,

in addition to their relevant neural networks.

�Keras Examples

The base data structure of Keras is a model type, made up of the different

layers of the network. The sequential model is the major type of model in

Keras, in which layers are added one by one until the final output layer.

The following example of Keras uses the blood transfusion dataset

from the UCI ML Repository. One can find the details regarding the data

Chapter 1 Introduction to Natural Language Processing and Deep Learning

71

here: https://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+

Service+Center). The data is taken from a blood transfusion service

center located in Taiwan and has four attributes, in addition to the target

variable. The problem is one of binary classification, with '1' standing for

the person who has donated the blood and '0' for the person who refused

a blood donation. More details regarding the attributes can be gleaned

from the link mentioned.

Save the dataset shared at the web site in the current working directory

(if possible, with the headers removed). We start by loading the dataset,

building a basic MLP model in Keras, followed by fitting the model on the

dataset.

The basic type of model in Keras is sequential, which offers layer-

by-layer addition of complexity to the model. The multiple layers can be

fabricated with their respective configurations and stacked onto the initial

base model.

Importing the required libraries and layers and model from

Keras

> import keras

> from keras.layers import Dense

> from keras.models import Sequential

> import numpy as np

Dataset Link : # https://archive.ics.uci.edu/ml/datasets/Blood

+Transfusion+Service+Center

Save the dataset as a .csv file :

tran_ = np.genfromtxt('transfusion.csv', delimiter=',')

X=tran_[:,0:4] # The dataset offers 4 input variables

Y=tran_[:,4] # Target variable with '1' and '0'

print(x)

Chapter 1 Introduction to Natural Language Processing and Deep Learning

https://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center
https://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center

72

As the input data has four corresponding variables, the input_dim,

which refers to the number of different input variables, has been set to

four. We have made use of the fully connected layers defined by dense

layers in Keras to build the additional layers. The selection of the network

structure is done on the basis of the complexity of the problem. Here, the

first hidden layer is made up of eight neurons, which are responsible for

further capturing the nonlinearity. The layer has been initialized with the

uniformly distributed random numbers and with the activation function

as ReLU, as described previously in this chapter. The second layer has six

neurons and configurations similar to its previous layer.

Creating our first MLP model with Keras

> mlp_keras = Sequential()

> mlp_keras.add(Dense(8, input_dim=4, init='uniform',

activation='relu'))

> mlp_keras.add(Dense(6, init='uniform', activation='relu'))

In the last layer of output, we have set the activation as sigmoid,

mentioned previously, which is responsible for generating a value between

0 and 1 and helps in the binary classification.

> mlp_keras.add(Dense(1, init='uniform', activation='sigmoid'))

To compile the network, we have made use of the binary classification

with logarithmic loss and selected Adam as the default choice of optimizer,

and accuracy as the desired metric to be tracked. The network is trained

using the backpropagation algorithm, along with the given optimization

algorithm and loss function.

> mlp_keras.compile(loss = 'binary_crossentropy',

optimizer='adam',metrics=['accuracy'])

Chapter 1 Introduction to Natural Language Processing and Deep Learning

73

The model has been trained on the given dataset with a small number

of iterations (nb_epoch) and started with a feasible batch size of instances

(batch_size). The parameters could be chosen either on the basis of prior

experience of working with such kinds of datasets, or one can even make

use of Grid Search to optimize the choice of such parameters. We will be

covering the same concept in later chapters, where necessary.

> mlp_keras.fit(X,Y, nb_epoch=200, batch_size=8, verbose=0)

The next step is to finally evaluate the model that has been built and

to check out the performance metrics, loss, and accuracy on the initial

training dataset. The same operation could be performed on a new test

dataset with which the model is not acquainted and could be a better

measure of the model performance.

> accuracy = mlp_keras.evaluate(X,Y)

> print("Accuracy : %.2f%% " % (accuracy[1]*100))

If one wants to further optimize the model by using different

combinations of parameters and other tweaks, it could be done by using

different parameters and steps while undertaking model creation and

validation, though it need not result in better performance in all cases.

Using a different set of optimizer

> from keras.optimizers import SGD

> opt = SGD(lr=0.01)

The following creates a model with configurations similar to those in

the earlier model but with a different optimizer and including a validation

dataset from the initial training data:

> mlp_optim = Sequential()

> mlp_optim.add(Dense(8, input_dim=4, init='uniform',

activation='relu'))

> mlp_optim.add(Dense(6, init='uniform', activation='relu'))

Chapter 1 Introduction to Natural Language Processing and Deep Learning

74

> mlp_optim.add(Dense(1, init='uniform', activation='sigmoid'))

Compiling the model with SGD

> mlp_optim.compile(loss = 'binary_crossentropy',

optimizer=opt, metrics=['accuracy'])

Fitting the model and checking accuracy

> mlp_optim.fit(X,Y, validation_split=0.3, nb_epoch=150,

batch_size=10, verbose=0)

> results_optim = mlp_optim.evaluate(X,Y)

> print("Accuracy : %.2f%%" % (results_optim[1]*100))

Make sure that all the packages mentioned for natural language

processing and deep learning in the preceding sections are installed before

moving forward. Once you have set up the system, you will be good to go

with the examples offered throughout this book.

�Next Steps
This first chapter presented an introduction to the fields of natural

language processing and deep learning and related introductory examples

from the publicly available Python libraries. We will be delving deeper into

this in the next chapters, introducing current industry-wide problems in

natural language processing and how the presence of deep learning has

impacted the paradigm of solving these in an efficient manner.

Chapter 1 Introduction to Natural Language Processing and Deep Learning

75© Palash Goyal, Sumit Pandey, Karan Jain 2018
P. Goyal, et al., Deep Learning for Natural Language Processing,
https://doi.org/10.1007/978-1-4842-3685-7_2

CHAPTER 2

Word Vector
Representations
When dealing with languages and words, we might end up classifying

texts across thousands of classes, for use in multiple natural language

processing (NLP) tasks. Much research has been undertaken in this field

in recent years, and this has resulted in the transformation of words in

languages to the format of vectors that can be used in multiple sets of

algorithms and processes. This chapter offers an in-depth explanation of

word embeddings and their effectiveness. We introduce their origin and

compare the different models used to accomplish various NLP tasks.

�Introduction to Word Embedding
The categorization and quantifying of semantic similarities among

linguistic items comes under the rubric of distributional semantics and

is based on their distribution in the usage of a language. Vector space

models, signifying text documents and queries in the form of vectors, have

long been used for distributional semantics purposes. The representation

of words in an N-dimensional vector space by vector space models is

useful for different NLP algorithms to achieve better results, as it leads to

groupings of similar text in the new vector space.

76

The term word embedding was coined by Yoshua Bengio in his

paper “A Neural Probabilistic Language Model” (www.jmlr.org/papers/

volume3/bengio03a/bengio03a.pdf). This was followed by Ronan

Collobert and Jason Weston in their paper “A Unified Architecture for

Natural Language Processing” (https://ronan.collobert.com/pub/

matos/2008_nlp_icml.pdf), in which the authors demonstrated how

the use of multitask learning and semi-supervised learning improve

the generalization of shared tasks. Finally, Tomas Mikolov et al., who

created word2vec and put word embeddings under the lens, elucidated

the training for word embeddings and also the use of pretrained word

embeddings. Later, Jeffrey Pennington introduced GloVe, another set of

pretrained word embeddings.

Word embeddings models have proven to be more efficient than the

bag-of-word models or one-hot-encoding schemes, made up of sparse

vectors with a size equivalent to that of the vocabulary, used initially. The

sparsity present in vectoral representation was an outcome of the vastness

of the vocabulary and labeling of the word or document in it at the index

position. Word embedding has replaced this concept by making use of

the surrounding words of all the individual words, using the information

present from the given text and passing it to the model. This has allowed

embedding to take the form of a dense vector, which, in a continuous

vector space, represents the projection of the individual words. Embedding

thus refers to the coordinates of the word in the newly learned vector space.

The following example presents the creation of a word vector, using

the one-hot encoding for the words present in the sample vocabulary,

followed by the reformation of the word vectors. It uses a distributed

representation approach and shows how the final vector composition can

be used to infer the relation between the words.

Let’s assume that our vocabulary contains the words, Rome, Italy,

Paris, France, and country. We can make use of each of these words to

create a representation, using a one-hot scheme for all the words, as

shown for Rome in Figure 2-1.

Chapter 2 Word Vector Representations

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://ronan.collobert.com/pub/matos/2008_nlp_icml.pdf
https://ronan.collobert.com/pub/matos/2008_nlp_icml.pdf

77

Using the preceding approach of presenting the words in vector form,

we can more or less make use only of testing the equality between the

words, by comparing their vectors. This approach will not serve other,

higher purposes. In a better form of representation, we can create multiple

hierarchies or segments, in which the information shown by each of the

words can be assigned various weightages. The selection of these segments

or dimensions could be of our choice, and each of the words will be

represented by a distribution of weights across these segments. So, now we

have a new format of word representation, using different scales for each of

the words (Figure 2-2).

Figure 2-1.  A representation of Rome

Figure 2-2.  Our representation

The preceding vectors used for each word does signify the actual

meaning of the word and provides a better scale with which to make a

comparison across the words. The newly formed vectors are sufficiently

capable of answering the kind of relationships being held among words.

Figure 2-3 represents the vectors being formed using this new approach.

Chapter 2 Word Vector Representations

78

The output vectors for different words does retain the linguistic

regularities and patterns, and this is proven by the linear translations

of these patterns. For example, the result of the difference between

the vectors and the words following, vector(France) - vector(Paris) +

vector(Italy), will be close to vector(Rome), as shown in Figure 2-4.

Figure 2-3.  Our vectors

Figure 2-4.  Comparing vectors

Chapter 2 Word Vector Representations

79

Over time, word embeddings have emerged to become one of the

most important applications of the unsupervised learning domain. The

semantic relationships offered by word vectors have helped in the NLP

approaches of neural machine translation, information retrieval, and

question-and-answer applications.

�Neural Language Model
The feedforward neural net language model (FNNLM) proposed by Bengio

introduces a feedforward neural network consisting of a single hidden

layer that predicts the future words, in our example, only a single word, of

the sequence.

The neural net language model is trained to find θ, which maximizes

the training corpus penalized log-likelihood:

L
T

f w w w R
t

t t t n       

1
1 1log , , , ;  

Here, f is the composite function made up of the parameters related to

distributed feature vectors of each of the words present in the vocabulary

and parameters of the feedforward or recurrent neural network. R(θ) refers

to the regularization term, which applies a weight decay penalty to the

weights of the neural network and the feature vectors matrix. The function

f returns the probability score computed by the softmax function for the

word at the t-th position, using the previous n words.

The models introduced by Bengio were among the first of their

kind and laid the foundation of future word embedding models. The

components of these original models are still used across current word

embedding models. Some of these components include the following:

	 1.	 Embedding layer: This keeps a record of the

representation of all the words in the training

dataset. It is initialized with a set of random weights.

The embedding layer is made up of three parts,

Chapter 2 Word Vector Representations

80

which include the size of the vocabulary, the output

size of the vector in which all the words will be

embedded, and the length of the input sequences

to the model. The resulting output of an embedding

layer is a two-dimensional vector, which has the

final embedding for all the words present in the

given sequence of words.

	 2.	 Intermediate layer(s): The hidden layers, ranging

from initial to final layers and with a count of one or

more, that produce the representation of the input

text data by applying the nonlinear functions in

the neural network on the word embeddings of the

previous n-words.

	 3.	 Softmax layer: This is the final layer of the neural

network architecture and returns a probability

distribution over all the words present in the input

vocabulary.

Bengio’s paper mentions the computation cost involved in the softmax

normalization and that it is proportional to the vocabulary size. This has

created challenges in trials of new algorithms for neural language models

and word embedding models on the full vocabulary size.

The neural net language models have helped to attain generalization

for words that are not present in the current vocabulary, as a sequence

of words that has never been seen before is given higher probability if

the combination of words is similar to the words that have already been

included in a sentence.

Chapter 2 Word Vector Representations

81

�Word2vec
Word2vec, or word-to-vector, models were introduced by Tomas Mikolov

et al. (https://arxiv.org/pdf/1301.3781.pdf) and are one of the

most adopted models. It is used to learn the word embeddings, or vector

representation of words. The paper compares the performance of the

proposed models with previous models, by checking the similarity

between groups of words. The techniques proposed in the paper resulted

in the vector representation of words with similarity across multiple

degrees for similar words. The similarity of the word representation goes

beyond the simple syntactic regularities, with simple algebraic operations

also being performed on the word vectors.

Word2vec models make use internally of a simple neural network

of a single layer and capture the weights of the hidden layer. The aim

of training the model is to learn the weights of the hidden layer, which

represents the “word embeddings.” Although word2vec uses neural

network architecture, the architecture itself is not complex enough and

doesn’t make use of any kind of nonlinearities. It can be discharged of the

label of deep learning for now.

Word2vec offers a range of models that are used to represent words

in an n-dimensional space in such a way that similar words and words

representing closer meanings are placed close to one another. This justifies

the whole exercise of placing words in a new vector space. We will go

through the two most frequently used models, skip-gram and continuous

bag-of-words (CBOW), followed by their implementation in TensorFlow.

Both models are similar algorithmically, with the difference being only in

the way they perform the prediction. The CBOW model predicts the center

words by making use of the context or surrounding words, and the skip-

gram model predicts the context words using the center words.

In comparison with the one-hot encoding, word2vec helps in reducing

the size of the encoding space and compresses the representation of words

to the desired length for the vector (Figure 2-5). Word2vec approaches

Chapter 2 Word Vector Representations

https://arxiv.org/pdf/1301.3781.pdf

82

word representation on the basis of the context in which words are

presented. For example, synonyms, opposites, semantically similar

concepts, and similar words are present in similar contexts across a text

and, thus, are embedded in similar fashion, and their final embeddings lie

closer to one another.

Figure 2-5.  Using the window size of 2 to pick the words from the
sentence “Machines can now recognize objects and translate speech in
real time” and training the model

�Skip-Gram Model
A skip-gram model predicts the surrounding words by using the current

word in the sequence. The classification score of the surrounding words is

based on the syntactic relation and occurrences with the center word. Any

word present in the sequence is taken as input to the log-linear classifier,

which in turn makes a prediction of the words falling under a certain

pre-specified range of words occurring before and after the center word.

There is a trade-off between the selection of the range of words and the

computation complexity and quality of the resulting word vectors. As the

distance to the concerned word increases, the distant words are related on

Chapter 2 Word Vector Representations

83

lower level with the current word, as compared to the closer words. This

is tackled by assigning the weights as a function of the distance from the

center words and giving lesser weights, or sampling fewer words, from the

words at higher ranges (see Figure 2-6).

Figure 2-6.  Skip-gram model architecture

The training of the skip-gram model doesn’t involve dense matrix

multiplications. Coupled with a bit of optimization, it could result in a

highly efficient training process for the model.

�Model Components: Architecture
In this example, the network is used to train the model, with the input

word fed as a one-hot-encoded vector and the output as a one-hot-

encoded vector representing the output word (Figure 2-7).

Chapter 2 Word Vector Representations

84

�Model Components: Hidden Layer
The training of the neural network is done using a hidden layer, with the

count of neurons equal to the number of features or dimensions by which

we want to represent the word embedding. In the following graph, we have

represented the hidden layer with a weight matrix having columns of 300,

equal to the number of neurons—which will be the count of the features in

the final output vector of word embedding—and rows as 100,000, which is

equal to the size of the vocabulary used to train the model.

The number of neurons is considered as a hyper-parameter of the

model and could be changed as required. The model trained by Google

makes use of 300 dimensional feature vectors, and it has been made

public. It could be a good start for those who don’t want to train their set of

models for word embeddings. You may use the following link to download

the trained set of vectors: https://code.google.com/archive/p/

word2vec/.

Input Vector

A ‘1’ in the position
corresponding to the
word “abate”

0
0
0
0
0
0
0

0

0

0

1

Output Layer
Softmax Classifier

Hidden Layer
Linear Neurons

100,000
positions

300 neurons

100,000
 neurons

... “zest”

... “aggrandize”

... “abysmal”

Probability that the word at a
randomly chosen, nearby
position is “abate”

Figure 2-7.  The model

Chapter 2 Word Vector Representations

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/

85

As the input vectors given as input for each of the words in the

vocabulary are one-hot encoded, the computations happening in the

hidden layer stage will make sure that only the vector corresponding to the

respective words is selected from the weight matrix and passed on to the

output layer. As shown in Figure 2-8, in the case of vocabulary of size v, for

any word, there will be “1” present at the desired index in the input vector,

and after multiplying it with the weight matrix, for each of the words, we

will get the corresponding row of the word as the output vector. Thus, what

really matters is not the output but the weight matrix. Figure 2-8 represents

clearly how the weight matrix of the hidden layer is used to calculate the

word vector lookup table.

Hidden Layer
Weight Matrix

300 neurons 300 features

Word Vector
Lookup Table!

v
w

or
ds

 (s
ay

, 1
00

,0
00

)

v
w

or
ds

 (s
ay

, 1
00

,0
00

)

Figure 2-8.  Weight matrix of the hidden layer and vector lookup
table

Chapter 2 Word Vector Representations

86

Even though the one-hot-encoded vector is made up entirely of zeros,

multiplying a 1 × 100,000 dimension vector with a 100,000 × 300 weight

matrix will still result in the selection of the corresponding row where “1”

is present. Figure 2-9 gives the pictorial representation of this calculation,

and the output of the hidden layer is the vector representation of the

concerned word.

Figure 2-9.  The calculation

�Model Components: Output Layer
Our main intention behind calculating the word embedding for words is

to make sure that words with similar meanings lie closer in our defined

vector space. This issue is automatically handled by the model, because

words with similar meanings, in most cases, are surrounded by similar

contexts (i.e., words surrounding the input word), which inherently

makes the weight adjustment in a similar manner during the training

process (Figure 2-10). In addition to the synonyms and words with similar

meanings, the model also handles the cases of stemming, as the plural or

singular words (say, car and cars) will have similar contexts.

Figure 2-10.  The training process

Chapter 2 Word Vector Representations

87

�CBOW Model
The continuous bag-of-words model shares an architectural similarity to

the FNNLM, as shown in Figure 2-11. The order of words doesn’t impact

the projection layer, and what’s important is which words are currently

falling in the bag to make the output word prediction.

Figure 2-11.  Continuous bag-of-words model architecture

The input and the projection layers share the weight matrix for all word

positions in a way similar to that shared in the FNNLM. The CBOW model

makes use of the continuous distribution representation of the context,

thus a continuous bag of words.

Chapter 2 Word Vector Representations

88

Note  Using CBOW over smaller datasets results in smoothening of
the distributional information, as the model treats the entire context
as a single observation.

�Subsampling Frequent Words
In most cases dealing with textual data, the size of the vocabulary can

increase to a significant number of unique words and could be composed

of different sizes of frequency for all the words. To select the words to be

kept for modeling purposes, the frequency of the words occurring in the

corpus is used to decide the removal of words, by checking the count

of overall words as well. The subsampling approach was introduced by

Mikolov et al. in their paper “Distributed Representations of Words and

Phrases and their Compositionality.” By including subsampling, significant

speed is gained in the training process, and word representations are

learned in a more regular manner.

A survival function is used to compute a probability score at the word

level, which can be used later to make the decision to keep or remove the

word from the vocabulary. The function takes into account the frequency

of the relevant word and the subsampling rate, which can be tweaked:

P w
z w

s

s

z wi
i

i
     













  
1

where, wi is the work concerned, z(wi) is the frequency of the word in the

training dataset or corpus, and s is the subsampling rate.

Chapter 2 Word Vector Representations

89

Note T he original function mentioned by Mikolov et al. in their
paper is different from the one used in the actual implementation
of the word2vec code and has been mentioned in the preceding
text. The formula chosen in the paper for subsampling was chosen
heuristically, and it includes a threshold, t, which is rendered typically
as 10-5, as the minimum frequency of the words in the corpus. The
formula mentioned in the paper for subsampling is 

P w
t

f wi
i

   
 













1

where, wi is the word concerned, f(wi) is the frequency of the word in
the training dataset or corpus, and s is the threshold used.

The subsampling rate makes the key decision on whether to keep the

frequent words. A smaller value means the words are less likely to be kept

in the corpus for model training. In most cases, a preferred threshold is

put over the output of the survival function to remove the words occurring

less frequently. The preferred value is 0.001 for the parameter s. The

subsampling approach mentioned helps in countering the imbalance

between the rare and frequent words across the corpus.

Chapter 2 Word Vector Representations

90

The figure displays the graph between the frequency of the word

with the final probability score generated by the sub-sampling approach.

As none of the word present in corpus can occupy a higher percentage,

so we will consider the part of the graph with the lower ranges of the

percentage of word, i.e., along x-axis. There are few observations which

we can derive from the above chart regarding the percentage of the words

and their relation with the scores being generated, thereby the impact of

subsampling on words:

•	 P(wi) =1 occurs for the cases when z(wi) < = 0.0026. It

means that the words with their frequency percentage

lesser than 0.26% will not be considered for the

subsampling.

•	 P(wi) = 0.5 occurs for the cases when z(wi) = 0.00746.

Thus the percentage required for a word to have 50%

chance of being kept or removed is when it has 0.746%

frequency.

Figure 2-12.  Distribution of the Survival function,
P(x) = {(sqrt(x/0.001) + 1) * (0.001/x)} for a constant value of 0.001
for sampling rate (Credits : http://www.mccormickml.com)

Chapter 2 Word Vector Representations

http://www.mccormickml.com

91

•	 P(wi) = 0.033 occurs for the cases when z(wi) =1, i.e.,

even when the whole corpus is comprised of a single

word only, there is 96.7% probability of it getting

removed from the corpus, which doesn’t make any

sense practically.

�Negative Sampling
Negative sampling is a simplified form of the noise contrastive estimation

(NCE) approach, as it makes certain assumptions while selecting the

count of the noise, or negative, samples, and their distribution. It is

used as an alternative to the hierarchical softmax function. Although

negative sampling is used at the time of training the model, at the time of

inference, the full softmax value is to be calculated, to obtain a normalized

probability score.

The size of the weight matrix in the hidden layer of the neural network

model is dependent on the overall size of the vocabulary, which is of

higher orders. This results in a huge number of weight parameters. All

the weight parameters are updated in multiple iterations of millions and

billions of training samples. Negative sampling causes the model to update

weights by only a small percentage, for each of the training samples.

The input representation of words given to model is by a one-hot-

encoded vector. Negative sampling randomly selects a given number of

“negative” words (say, 10) for which the weights are updated with the

weights of the “positive” word (or center word). In total, for 11 words

(10 + 1), the weights will be updated. With reference to the figure given

previously, any iteration will result in updating 11 × 300 = 3,300 values

in the weight matrix. However, irrespective of the usage of the negative

sampling, weights of only “positive” words are updated in the hidden layer.

The probability for the selection of the “negative” samples depends

on the frequency of the word in the corpus. The higher the frequency,

the higher will be the probability of the “negative” word being selected.

Chapter 2 Word Vector Representations

92

As mentioned in the paper “Distributed Representations of Words and

Phrases and their Compositionality,” for small training datasets, the count

of negative samples is taken between 5 and 20, and for large training

datasets, it is recommended between 2 and 5.

Practically, negative samples are the inputs for which there should be

no output determination, and just a vector with all 0s should be produced.

Note A combination of subsampling and negative sampling reduces
the training process load up to great extent.

The word2vec models have helped in achieving better quality of vector

representations of words by making use of the combination of models on

a collection of syntactic and semantic language tasks. With the advances

in the computation resources, faster algorithms, and availability of textual

data, it is possible to train high quality word vectors as compared to the

earlier proposed neural network models.

In the next section we will be looking at the implementation of

the skip-gram and CBOW models using TensorFlow. The credit to the

structure of these goes to a combination of online courses and material

available during the time of writing.

�Word2vec Code
The TensorFlow library has made our lives easier by introducing multiple

predefined functions to be used in the implementation of word2vec

algorithms. This section includes the implementation for both the

word2vec algos, skip-gram, and CBOW models.

The first part of the code at the start of this section is common for both

the skip-gram and CBOW models, and it is later followed by the respective

implementations in the skip-gram and CBOW code subsections.

Chapter 2 Word Vector Representations

93

Note T he data used for our exercise is a compressed format of the
English Wikipedia dump made on March 3, 2006. It is available from the
following link: http://mattmahoney.net/dc/textdata.html.

Import the required packages for the word2vec implementation as

follows:

"""Importing the required packages"""

import random

import collections

import math

import os

import zipfile

import time

import re

import numpy as np

import tensorflow as tf

from matplotlib import pylab

%matplotlib inline

from six.moves import range

from six.moves.urllib.request import urlretrieve

"""Make sure the dataset link is copied correctly"""

dataset_link = 'http://mattmahoney.net/dc/'

zip_file = 'text8.zip'

The function data_download() downloads the cleaned up dataset of

Wikipedia articles collected by Matt Mahoney and stores it as a separate

file under the current working directory.

Chapter 2 Word Vector Representations

http://mattmahoney.net/dc/textdata.html

94

def data_download(zip_file):

 """Downloading the required file"""

 if not os.path.exists(zip_file):

 �zip_file, _ = urlretrieve(dataset_link + zip_file, zip_

file)

 print('File downloaded successfully!')

 return None

data_download(zip_file)

> File downloaded successfully!

The zipped text dataset is extracted within an internal folder dataset

and is used later to train the model.

"""Extracting the dataset in separate folder"""

extracted_folder = 'dataset'

if not os.path.isdir(extracted_folder):

 with zipfile.ZipFile(zip_file) as zf:

 zf.extractall(extracted_folder)

with open('dataset/text8') as ft_ :

 full_text = ft_.read()

As the input data has multiple punctuation and other symbols

across the text, the same are replaced with their respective tokens, with

the type of punctuation and symbol name in the token. This helps the

model to identify each of the punctuation and other symbols individually

and produce a vector. The function text_processing() performs this

operation. It takes the Wikipedia text data as input.

def text_processing(ft8_text):

 """Replacing punctuation marks with tokens"""

 ft8_text = ft8_text.lower()

 ft8_text = ft8_text.replace('.', ' <period> ')

Chapter 2 Word Vector Representations

95

 ft8_text = ft8_text.replace(',', ' <comma> ')

 ft8_text = ft8_text.replace('"', ' <quotation> ')

 ft8_text = ft8_text.replace(';', ' <semicolon> ')

 ft8_text = ft8_text.replace('!', ' <exclamation> ')

 ft8_text = ft8_text.replace('?', ' <question> ')

 ft8_text = ft8_text.replace('(', ' <paren_l> ')

 ft8_text = ft8_text.replace(')', ' <paren_r> ')

 ft8_text = ft8_text.replace('--', ' <hyphen> ')

 ft8_text = ft8_text.replace(':', ' <colon> ')

 ft8_text_tokens = ft8_text.split()

 return ft8_text_tokens

ft_tokens = text_processing(full_text)

To improve the quality of the vector representations produced, it is

recommended to remove the noise related to the words, i.e., words with a

frequency of less than 7 in the input dataset, as these words will not have

enough information to provide the context they are present in.

One can change this threshold by checking the distribution of the word

count and in the dataset. For convenience, we have taken it as 7 here.

"""Shortlisting words with frequency more than 7"""

word_cnt = collections.Counter(ft_tokens)

shortlisted_words = [w for w in ft_tokens if word_cnt[w] > 7]

List the top words present in the dataset on the basis of their

frequency, as follows:

print(shortlisted_words[:15])

> ['anarchism', 'originated', 'as', 'a', 'term', 'of', 'abuse',

'first', 'used', 'against', 'early', 'working', 'class',

'radicals', 'including']

Chapter 2 Word Vector Representations

96

Check the stats of the total words present in the dataset.

print("Total number of shortlisted words : ",len(shortlisted_

words))

print("Unique number of shortlisted words : ",len(set(shortlisted_

words)))

> Total number of shortlisted words : 16616688

> Unique number of shortlisted words : 53721

To process the unique words present in the corpus, we have made a

set of the words, followed by their frequency in the training dataset. The

following function creates a dictionary and converts words to integers

and, conversely, integers to words. The most frequent word is assigned the

least value, 0, and in similar fashion, numbers are assigned to other words.

Conversion of words to integers has been stored in a separate list.

def dict_creation(shortlisted_words):

 �"""The function creates a dictionary of the words present

in dataset along with their frequency order"""

 counts = collections.Counter(shortlisted_words)

 vocabulary = sorted(counts, key=counts.get, reverse=True)

 �rev_dictionary_ = {ii: word for ii, word in

enumerate(vocabulary)}

 �dictionary_ = {word: ii for ii, word in rev_dictionary_.

items()}

 return dictionary_, rev_dictionary_

dictionary_, rev_dictionary_ = dict_creation(shortlisted_words)

words_cnt = [dictionary_[word] for word in shortlisted_words]

The variables created up to this point are common and could be used

in the implementation of the either of the word2vec models. The next

subsections include the implementation of both architectures.

Chapter 2 Word Vector Representations

97

�Skip-Gram Code
A subsampling approach has been coupled in the skip-gram model to deal

with the stopwords in the text. All the words with higher frequency and

without any significant context around the center words are removed by

putting a threshold on their frequency. This results in faster training and

better word vector representations.

Note  We have made use of the probability score function given in
the paper on skip-gram for the implementation here. For each word,
wi, in the training set, we’ll discard it with the probability given by 

P w
t

f wi
i

   
 













1

where t is a threshold parameter and f(wi) is the frequency of word
wi in the total dataset.

"""Creating the threshold and performing the subsampling"""

thresh = 0.00005

word_counts = collections.Counter(words_cnt)

total_count = len(words_cnt)

freqs = {word: count / total_count for word, count in word_

counts.items()}

p_drop = {word: 1 - np.sqrt(thresh/freqs[word]) for word in

word_counts}

train_words = [word for word in words_cnt if p_drop[word] <

random.random()]

Chapter 2 Word Vector Representations

98

As the skip-gram model takes the center word and predicts words

surrounding it, the skipG_target_set_generation() function creates the

input for the skip-gram model in the desired format:

def skipG_target_set_generation(batch_, batch_index, word_

window):

 �"""The function combines the words of given word_window

size next to the index, for the SkipGram model"""

 random_num = np.random.randint(1, word_window+1)

 �words_start = batch_index - random_num if (batch_index -

random_num) > 0 else 0

 words_stop = batch_index + random_num

 �window_target = set(batch_[words_start:batch_index] +

batch_[batch_index+1:words_stop+1])

 return list(window_target)

The skipG_batch_creation() function makes use of the skipG_

target_set_generation() function and creates a combined format of the

center word and the words surrounding it on either side as target text and

returns the batch output, as follows:

def skipG_batch_creation(short_words, batch_length, word_

window):

 �"""The function internally makes use of the skipG_target_

set_generation() function and combines each of the label

 �words in the shortlisted_words with the words of word_

window size around"""

 batch_cnt = len(short_words)//batch_length

 short_words = short_words[:batch_cnt*batch_length]

 for word_index in range(0, len(short_words), batch_length):

 input_words, label_words = [], []

 �word_batch = short_words[word_index:word_index+batch_

length]

Chapter 2 Word Vector Representations

99

 for index_ in range(len(word_batch)):

 batch_input = word_batch[index_]

 �batch_label = skipG_target_set_generation(word_

batch, index_, word_window)

 �# Appending the label and inputs to the initial

list. Replicating input to the size of labels in

the window

 label_words.extend(batch_label)

 input_words.extend([batch_input]*len(batch_label))

 yield input_words, label_words

The following code registers a TensorFlow graph for use of the

skip-gram implementation, declaring the variable’s inputs and labels

placeholders, which will be used to assign one-hot-encoded vectors for

input words and batches of varying size, as per the combination of the

center and surrounding words:

tf_graph = tf.Graph()

with tf_graph.as_default():

 input_ = tf.placeholder(tf.int32, [None], name='input_')

 �label_ = tf.placeholder(tf.int32, [None, None],

name='label_')

The code following declares variables for the embedding matrix, which

has a dimension equal to the size of the vocabulary and the dimension of

the word embedding vector:

with tf_graph.as_default():

 �word_embed = tf.Variable(tf.random_uniform((len(rev_

dictionary_), 300), -1, 1))

 embedding = tf.nn.embedding_lookup(word_embed, input_)

Chapter 2 Word Vector Representations

100

The tf.train.AdamOptimizer uses Diederik P. Kingma and Jimmy

Ba’s Adam algorithm (http://arxiv.org/pdf/1412.6980v8.pdf) to

control the learning rate. For further information, refer additionally to the

following paper by Bengio: http://arxiv.org/pdf/1206.5533.pdf.

"""The code includes the following :

 �# Initializing weights and bias to be used in the softmax layer

 # Loss function calculation using the Negative Sampling

 # Usage of Adam Optimizer

 # �Negative sampling on 100 words, to be included in the loss

function

 # 300 is the word embedding vector size

"""

vocabulary_size = len(rev_dictionary_)

with tf_graph.as_default():

 �sf_weights = tf.Variable(tf.truncated_normal((vocabulary_

size, 300), stddev=0.1))

 sf_bias = tf.Variable(tf.zeros(vocabulary_size))

 �loss_fn = tf.nn.sampled_softmax_loss(�weights=sf_weights,

biases=sf_bias,

 �labels=label_,

inputs=embedding,

 �num_sampled=100, num_

classes=vocabulary_

size)

 cost_fn = tf.reduce_mean(loss_fn)

 optim = tf.train.AdamOptimizer().minimize(cost_fn)

Chapter 2 Word Vector Representations

http://arxiv.org/pdf/1412.6980v8.pdf
http://arxiv.org/pdf/1206.5533.pdf

101

To ensure that the word vector representation is holding the semantic

similarity among words, a validation set is generated in the following

section of code. This will select a combination of common and uncommon

words across the corpus and return the words closest to them on the basis

of the cosine similarity between the word vectors.

"""The below code performs the following operations :

 # �Performing validation here by making use of a random

selection of 16 words from the dictionary of desired size

 # Selecting 8 words randomly from range of 1000

 �# Using the cosine distance to calculate the similarity

between the words

"""

with tf_graph.as_default():

 validation_cnt = 16

 validation_dict = 100

 �validation_words = np.array(random.sample(range(validation_

dict), validation_cnt//2))

 �validation_words = np.append(validation_words, random.sample

(range(1000,1000+validation_dict), validation_cnt//2))

 �validation_data = tf.constant(validation_words, dtype=tf.

int32)

 �normalization_embed = word_embed / (tf.sqrt(tf.reduce_

sum(tf.square(word_embed), 1, keep_dims=True)))

 �validation_embed = tf.nn.embedding_lookup(normalization_

embed, validation_data)

 �word_similarity = tf.matmul(validation_embed,

tf.transpose(normalization_embed))

Chapter 2 Word Vector Representations

102

Create a folder model_checkpoint in the current working directory to

store the model checkpoints.

"""Creating the model checkpoint directory"""

!mkdir model_checkpoint

epochs = 2 # �Increase it as per computation

resources. It has been kept low here

for users to replicate the process,

increase to 100 or more

batch_length = 1000

word_window = 10

with tf_graph.as_default():

 saver = tf.train.Saver()

with tf.Session(graph=tf_graph) as sess:

 iteration = 1

 loss = 0

 sess.run(tf.global_variables_initializer())

 for e in range(1, epochs+1):

 �batches = skipG_batch_creation(train_words, batch_

length, word_window)

 start = time.time()

 for x, y in batches:

 �train_loss, _ = sess.run([cost_fn, optim],

 �feed_dict={input_: x,

label_: np.array(y)[:,

None]})

 loss += train_loss

 if iteration % 100 == 0:

 end = time.time()

Chapter 2 Word Vector Representations

103

 �print("Epoch {}/{}".format(e, epochs), ",

Iteration: {}".format(iteration),

 �", Avg. Training loss: {:.4f}".

format(loss/100),", Processing : {:.4f}

sec/batch".format((end-start)/100))

 loss = 0

 start = time.time()

 if iteration % 2000 == 0:

 similarity_ = word_similarity.eval()

 for i in range(validation_cnt):

 �validated_words = rev_dictionary_

[validation_words[i]]

 top_k = 8 # number of nearest neighbors

 �nearest = (-similarity_[i, :]).argsort()

[1:top_k+1]

 log = 'Nearest to %s:' % validated_words

 for k in range(top_k):

 �close_word = rev_dictionary_

[nearest[k]]

 log = '%s %s,' % (log, close_word)

 print(log)

 iteration += 1

 �save_path = saver.save(sess, "model_checkpoint/skipGram_

text8.ckpt")

 embed_mat = sess.run(normalization_embed)

> Epoch 1/2 , Iteration: 100 , Avg. Training loss: 6.1494 ,

Processing : 0.3485 sec/batch

> Epoch 1/2 , Iteration: 200 , Avg. Training loss: 6.1851 ,

Processing : 0.3507 sec/batch

> Epoch 1/2 , Iteration: 300 , Avg. Training loss: 6.0753 ,

Processing : 0.3502 sec/batch

Chapter 2 Word Vector Representations

104

> Epoch 1/2 , Iteration: 400 , Avg. Training loss: 6.0025 ,

Processing : 0.3535 sec/batch

> Epoch 1/2 , Iteration: 500 , Avg. Training loss: 5.9307 ,

Processing : 0.3547 sec/batch

> Epoch 1/2 , Iteration: 600 , Avg. Training loss: 5.9997 ,

Processing : 0.3509 sec/batch

> Epoch 1/2 , Iteration: 700 , Avg. Training loss: 5.8420 ,

Processing : 0.3537 sec/batch

> Epoch 1/2 , Iteration: 800 , Avg. Training loss: 5.7162 ,

Processing : 0.3542 sec/batch

> Epoch 1/2 , Iteration: 900 , Avg. Training loss: 5.6495 ,

Processing : 0.3511 sec/batch

> Epoch 1/2 , Iteration: 1000 , Avg. Training loss: 5.5558 ,

Processing : 0.3560 sec/batch

>

> Nearest to during: stress, shipping, bishoprics, accept,

produce, color, buckley, victor,

> Nearest to six: article, incorporated, raced, interval,

layouts, confused, spitz, masculinity,

> Nearest to all: cm, unprotected, fit, tom, opold, render,

perth, temptation,

> Nearest to th: ponder, orchids, shor, polluted, firefighting,

hammering, bonn, suited,

> Nearest to many: trenches, parentheses, essential, error,

chalmers, philo, win, mba,

>

Chapter 2 Word Vector Representations

105

A similar output will be printed for all other iterations, and the trained

network will have been restored for further use.

"""The Saver class adds ops to save and restore variables to

and from checkpoints."""

with tf_graph.as_default():

 saver = tf.train.Saver()

with tf.Session(graph=tf_graph) as sess:

 """Restoring the trained network"""

 �saver.restore(sess, tf.train.latest_checkpoint('model_

checkpoint'))

 embed_mat = sess.run(word_embed)

> INFO:tensorflow:Restoring parameters from model_checkpoint/

skipGram_text8.ckpt

We have used the t-distributed stochastic neighbor embedding (t-SNE)

for the purpose of visualization (https://lvdmaaten.github.io/tsne/).

The high-dimensional, 300 vector representation of 250 random words has

been used across a two-dimensional vector space. t-SNE ensures that the

initial structure of the vector is reserved in the new dimension, even after

conversion.

word_graph = 250

tsne = TSNE()

word_embedding_tsne = tsne.fit_transform(embed_mat[:word_graph, :])

As we can observe in Figure 2-13, words with semantic similarity

have been placed closer to one another in their representation in the

two-dimensional space, thereby retaining their similarity even after the

dimensions have been further reduced. For example, words such as year,

years, and age have been placed near one another and far from words

Chapter 2 Word Vector Representations

https://lvdmaaten.github.io/tsne/

106

Figure 2-13.  Two-dimensional representation of the word vectors
obtained after training the Wikipedia corpus using a skip-gram model

such as international and religious. The model can be trained for a higher

number of iterations, to achieve a better representation of the word

embeddings, and further changes can be made in the threshold values, to

fine-tune the results.

Chapter 2 Word Vector Representations

107

�CBOW Code
The CBOW model considers the surrounding words and predicts the

center word. Therefore, the batch and label generation have been achieved

using the cbow_batch_creation() function, which assigns the target

word in the label_ variable and the surrounding words in the context in

the batch variable, when the desired word_window size is passed to the

function.

data_index = 0

def cbow_batch_creation(batch_length, word_window):

 �"""The function creates a batch with the list of the label

words and list of their corresponding words in the context of

 the label word."""

 global data_index

 �"""Pulling out the centered label word, and its next word_

window count of surrounding words

 �word_window : window of words on either side of the center

word

 �relevant_words : length of the total words to be picked in

a single batch, including the center word and the word_

window words on both sides

 Format : [word_window ... target ... word_window] """

 relevant_words = 2 * word_window + 1

 �batch = np.ndarray(shape=(batch_length,relevant_words-1),

dtype=np.int32)

 �label_ = np.ndarray(shape=(batch_length, 1), dtype=np.

int32)

 �buffer = collections.deque(maxlen=relevant_words)

Queue to add/pop

Chapter 2 Word Vector Representations

108

 �#Selecting the words of length 'relevant_words' from the

starting index

 for _ in range(relevant_words):

 buffer.append(words_cnt[data_index])

 data_index = (data_index + 1) % len(words_cnt)

 for i in range(batch_length):

 target = word_window # Center word as the label

 �target_to_avoid = [word_window] # Excluding the

label, and selecting only the surrounding words

 # add selected target to avoid_list for next time

 col_idx = 0

 for j in range(relevant_words):

 if j==relevant_words//2:

 continue

 �batch[i,col_idx] = buffer[j] # Iterating till the

middle element for window_size length

 col_idx += 1

 label_[i, 0] = buffer[target]

 buffer.append(words_cnt[data_index])

 data_index = (data_index + 1) % len(words_cnt)

 �assert batch.shape[0]==batch_length and batch.shape[1]==

relevant_words-1

 return batch, label_

Ensuring the cbow_batch_creation() function is working in

accordance with the CBOW model input, a test sample of the first batch of

label and words of window length 1 and 2 around it has been taken and the

results are printed.

Chapter 2 Word Vector Representations

109

for num_skips, word_window in [(2, 1), (4, 2)]:

 data_index = 0

 �batch, label_ = cbow_batch_creation(batch_length=8, word_

window=word_window)

 �print('\nwith num_skips = %d and word_window = %d:' % (num_

skips, word_window))

 �print('batch:', [[rev_dictionary_[bii] for bii in bi] for

bi in batch])

 �print('label_:', [rev_dictionary_[li] for li in label_.

reshape(8)])

>>

> with num_skips = 2 and word_window = 1:

 �batch: [['anarchism', 'as'], ['originated', 'a'], ['as',

'term'], ['a', 'of'], ['term', 'abuse'], ['of', 'first'],

['abuse', 'used'], ['first', 'against']]

 �label_: ['originated', 'as', 'a', 'term', 'of', 'abuse',

'first', 'used']

> with num_skips = 4 and word_window = 2:

 �batch: [['anarchism', 'originated', 'a', 'term'],

['originated', 'as', 'term', 'of'], ['as', 'a', 'of', 'abuse'],

['a', 'term', 'abuse', 'first'], ['term', 'of', 'first',

'used'], ['of', 'abuse', 'used', 'against'], ['abuse', 'first',

'against', 'early'], ['first', 'used', 'early', 'working']]

 �label_: ['as', 'a', 'term', 'of', 'abuse', 'first', 'used',

'against']

The following code declares the variables being used in the CBOW

model configuration. The word-embedding vector has been assigned a

size of 128, and on either side of the target word, 1 word has been taken

into account for the prediction, as follows:

Chapter 2 Word Vector Representations

110

num_steps = 100001

"""Initializing :

 # 128 is the length of the batch considered for CBOW

 # 128 is the word embedding vector size

 # Considering 1 word on both sides of the center label words

 �# �Consider the center label word 2 times to create the

batches

"""

batch_length = 128

embedding_size = 128

skip_window = 1

num_skips = 2

To register a TensorFlow graph for use of the CBOW implementation

and to calculate the cosine similarity between the vectors produced, use

the following code:

Note T his is a separate graph from the one used in the skip-gram
code, so both the codes could be used in a single script.

"""The below code performs the following operations :

 # �Performing validation here by making use of a random

selection of 16 words from the dictionary of desired size

 # Selecting 8 words randomly from range of 1000

 # �Using the cosine distance to calculate the similarity

between the words

"""

tf_cbow_graph = tf.Graph()

with tf_cbow_graph.as_default():

 validation_cnt = 16

Chapter 2 Word Vector Representations

111

 validation_dict = 100

 �validation_words = np.array(random.sample(range(validation_

dict), validation_cnt//2))

 �validation_words = np.append(validation_words,random.sample

(range(1000,1000+validation_dict), validation_cnt//2))

 �train_dataset = tf.placeholder(tf.int32, shape=[batch_

length,2*skip_window])

 �train_labels = tf.placeholder(tf.int32, shape=[batch_

length, 1])

 �validation_data = tf.constant(validation_words, dtype=tf.

int32)

"""

Embeddings for all the words present in the vocabulary

"""

with tf_cbow_graph.as_default() :

 vocabulary_size = len(rev_dictionary_)

 �word_embed = tf.Variable(tf.random_uniform([vocabulary_

size, embedding_size], -1.0, 1.0))

 �# Averaging embeddings accross the full context into a

single embedding layer

 context_embeddings = []

 for i in range(2*skip_window):

 �context_embeddings.append(tf.nn.embedding_lookup(word_

embed, train_dataset[:,i]))

 �embedding = tf.reduce_mean(tf.stack(axis=0,values=context_

embeddings),0,keep_dims=False)

Chapter 2 Word Vector Representations

112

The following section of code computes the softmax loss using the

negative sampling of 64 words and further optimizes the weights, biases,

and word embeddings produced across the model training. The AdaGrad

optimizer(www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf) has

been used for this purpose.

"""The code includes the following :

 # �Initializing weights and bias to be used in the softmax

layer

 # Loss function calculation using the Negative Sampling

 # Usage of AdaGrad Optimizer

 # �Negative sampling on 64 words, to be included in the loss

function

"""

with tf_cbow_graph.as_default() :

 �sf_weights = tf.Variable(tf.truncated_normal([vocabulary_

size, embedding_size],

 �stddev=1.0 / math.sqrt(embedding_size)))

 sf_bias = tf.Variable(tf.zeros([vocabulary_size]))

 �loss_fn = tf.nn.sampled_softmax_loss(weights=sf_weights,

biases=sf_bias, inputs=embedding,

 �labels=train_labels, num_sampled=64,

num_classes=vocabulary_size)

 cost_fn = tf.reduce_mean(loss_fn)

 """Using AdaGrad as optimizer"""

 optim = tf.train.AdagradOptimizer(1.0).minimize(cost_fn)

Chapter 2 Word Vector Representations

http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf

113

Further, a cosine similarity is computed to ensure the closeness of the

semantically similar words.

"""

Using the cosine distance to calculate the similarity between

the batches and embeddings of other words

"""

with tf_cbow_graph.as_default() :

 �normalization_embed = word_embed / tf.sqrt(tf.reduce_

sum(tf.square(word_embed), 1, keep_dims=True))

 �validation_embed = tf.nn.embedding_lookup(normalization_

embed, validation_data)

 �word_similarity = tf.matmul(validation_embed,

tf.transpose(normalization_embed))

with tf.Session(graph=tf_cbow_graph) as sess:

 �sess.run(tf.global_variables_initializer())

 avg_loss = 0

 for step in range(num_steps):

 �batch_words, batch_label_ = cbow_batch_creation(batch_

length, skip_window)

 �_, l = sess.run([optim, loss_fn], feed_dict={train_

dataset : batch_words, train_labels : batch_label_ })

 avg_loss += l

 if step % 2000 == 0 :

 if step > 0 :

 avg_loss = avg_loss / 2000

 �print('Average loss at step %d: %f' % (step,

np.mean(avg_loss)))

 avg_loss = 0

 if step % 10000 == 0:

 sim = word_similarity.eval()

Chapter 2 Word Vector Representations

114

 for i in range(validation_cnt):

 �valid_word = rev_dictionary_[validation_

words[i]]

 top_k = 8 # number of nearest neighbors

 nearest = (-sim[i, :]).argsort()[1:top_k+1]

 log = 'Nearest to %s:' % valid_word

 for k in range(top_k):

 �close_word = rev_dictionary_[nearest[k]]

 log = '%s %s,' % (log, close_word)

 print(log)

 final_embeddings = normalization_embed.eval()

> Average loss at step 0: 7.807584

> Nearest to can: ambients, darpa, herculaneum, chocolate,

alloted, bards, coyote, analogy,

> Nearest to or: state, stopping, falls, markus, bellarmine,

bitrates, snub, headless,

> Nearest to will: cosmologies, valdemar, feeding, synergies,

fence, helps, zadok, neoplatonist,

> Nearest to known: rationale, fibres, nino, logging,

motherboards, richelieu, invaded, fulfill,

> Nearest to no: rook, logitech, landscaping, melee, eisenman,

ecuadorian, warrior, napoli,

> Nearest to these: swinging, zwicker, crusader, acuff, ivb,

karakoram, mtu, egg,

> Nearest to not: battled, grieg, denominators, kyi,

paragliding, loxodonta, ceases, expose,

> Nearest to one: inconsistencies, dada, ih, gallup, ayya,

float, subsumed, aires,

> Nearest to woman: philibert, lug, breakthroughs, ric, raman,

uzziah, cops, chalk,

Chapter 2 Word Vector Representations

115

> Nearest to alternative: kendo, tux, girls, filmmakers,

cortes, akio, length, grayson,

> Nearest to versions: helvetii, moody, denning, latvijas,

subscripts, unamended, anodes, unaccustomed,

> Nearest to road: bataan, widget, commune, culpa, pear,

petrov, accrued, kennel,

> Nearest to behind: coahuila, writeup, exarchate, trinidad,

temptation, fatimid, jurisdictional, dismissed,

> Nearest to universe: geocentric, achieving, amhr, hierarchy,

beings, diabetics, providers, persistent,

> Nearest to institute: cafe, explainable, approached,

punishable, optimisation, audacity, equinoxes, excelling,

> Nearest to san: viscount, neum, sociobiology, axes,

barrington, tartarus, contraband, breslau,

> Average loss at step 2000: 3.899086

> Average loss at step 4000: 3.560563

> Average loss at step 6000: 3.362137

> Average loss at step 8000: 3.333601

>

Using t-SNE for visualization purposes, the high-dimensional, 128,

vector representation of 250 random words has been used to show the

result across a two-dimensional space.

num_points = 250

tsne = TSNE(perplexity=30, n_components=2, init='pca',

n_iter=5000)

embeddings_2d = tsne.fit_transform(final_embeddings[1:num_

points+1, :])

Chapter 2 Word Vector Representations

116

The cbow_plot() function plots the dimensionally reduced vectors.

def cbow_plot(embeddings, labels):

 �assert embeddings.shape[0] >= len(labels), 'More labels

than embeddings'

 pylab.figure(figsize=(12,12))

 for i, label in enumerate(labels):

 x, y = embeddings[i,:]

 pylab.scatter(x, y)

 �pylab.annotate(label, xy=(x, y), xytext=(5, 2),

textcoords='offset points', ha='right', va='bottom')

 pylab.show()

words = [rev_dictionary_[i] for i in range(1, num_points+1)]

cbow_plot(embeddings_2d, words)

Figure 2-14 also illustrates that the words with semantic similarity

are placed closer to one another in their two-dimensional space

representation. For example, words like right, left, and end have been

placed next to one another and far from such words as one, two, three, etc.

Among all the words presented here, we can observe, at the bottom

left of the graph, that those related to a single alphabet are placed closer

to one another. This helps us to understand how the model works and

allocates the single characters with no significant meaning with similar

word embeddings. The absence of such words as a and i in this cluster

indicates that the word embeddings for the two alphabets related to these

two words are not similar to other individual alphabets, as these hold

actual meaning in the English language and are used more often than

other alphabets, in which they are merely signs of a typo in the training

dataset. A further training of the model with higher iterations can attempt

to bring the vectors of these alphabets closer or further from the actual

meaningful words of the language.

Chapter 2 Word Vector Representations

117

Note  Both CBOW and skip-gram methods use the local statistics to
learn the word vector embeddings. Sometimes, better representations
can be learned by exploring the global statistics of word pairs, and GloVe
and FastText methodologies exploit this. One can refer to the following
papers, respectively, for GloVe (https://nlp.stanford.edu/pubs/
glove.pdf) and FastText (https://arxiv.org/pdf/1607.04606.
pdf) for further details on the algorithms concerned.

Figure 2-14.  Two-dimensional representation of the word vectors
obtained after training the Wikipedia corpus using the CBOW model

Chapter 2 Word Vector Representations

https://nlp.stanford.edu/pubs/glove.pdf
https://nlp.stanford.edu/pubs/glove.pdf
https://arxiv.org/pdf/1607.04606.pdf
https://arxiv.org/pdf/1607.04606.pdf

118

�Next Steps
This chapter introduced the word representation models used across

research and industry domains. In addition to word2vec, one can also

explore GloVe and FastText as other options for word embedding. We have

tried to give a sample of one of the available approaches for word embed-

dings, using CBOW and skip-gram. In the next chapter, we will emphasize

the different types of neural networks available, such as RNNs, LSTMs,

Seq2Seq, along with their use cases for textual data. The knowledge com-

bined from all the chapters will assist the reader in executing the entire

pipeline of any project combining deep learning and natural language

processing.

Chapter 2 Word Vector Representations

119© Palash Goyal, Sumit Pandey, Karan Jain 2018
P. Goyal, et al., Deep Learning for Natural Language Processing,
https://doi.org/10.1007/978-1-4842-3685-7_3

CHAPTER 3

Unfolding Recurrent
Neural Networks
This chapter covers the use of contextual information across text. With

textual work in any form, i.e., speech, text, and print, and in any language,

to understand the information provided in it, we try to capture and relate

the present and past contexts and aim to gain something meaningful from

them. This is because the structure of text creates a link within a sentence

and across sentences, just like thoughts, which are persistent throughout.

Traditional neural networks lack the ability to capture knowledge from

previous events and pass it on to future events and related predictions. In

this chapter, we will introduce a family of neural networks that can help us

in persisting information over an extensive period.

In deep learning, all problems are generally classified into two types:

•	 Fixed topological structure: For images having static

data, with use cases such as image classification

•	 Sequential data: For text/audio with dynamic data, in

tasks related to text generation and voice recognition

Most problems with static data are solved using convolution neural

networks (CNNs), and most problems related to sequential data are

handled via recurrent neural networks (RNNs), particularly by long short-

term memory (LSTM) methods. We will be going through both types of

networks in detail throughout this chapter and cover use cases of the RNNs.

120

In a normal feedforward network, the output to be classified at time

t will not necessarily have any relation to the previous outputs that have

been classified. In other words, the previously classified outputs don’t play

any role in the following classification problem.

But this is not practical, as there are few scenarios in which we must

have the previous outputs to predict the new outputs. For example, while

reading a book, we must know and remember the context mentioned in

the chapters and what is being discussed throughout the book. Another

major use case is sentiments analysis of a large portion of text. For all such

problems RNNs have proven to be a very useful resource.

RNNs and LSTM networks have applications in diverse fields,

including

•	 Chatbots

•	 Sequential pattern identification

•	 Image/handwriting detection

•	 Video and audio classification

•	 Sentiment analysis

•	 Time series modeling in finance

�Recurrent Neural Networks
Recurrent neural networks are very effective and are able to perform

computations of almost any type. RNNs have varied sets of use cases and

can implement a set of multiple smaller programs, with each painting a

separate picture on its own and all learning in parallel, to finally reveal the

intricate effect of the collaboration of all such small programs.

Chapter 3 Unfolding Recurrent Neural Networks

121

RNNs are capable of performing such operations for two principal

reasons:

•	 Hidden states being distributive by nature, store a lot of

past information and pass it on efficiently.

•	 Hidden states are updated by nonlinear methods.

�What Is Recurrence?
Recurrence is a recursive process in which a recurring function is called at

each step to model the sets of temporal data.

What is a temporal data? Any unit of data that is dependent on the

previous units of the data, particularly sequential data. For example,

a company’s share price is dependent on the prices of the share on

previous days/weeks/months/years, hence, dependence on previous

times or previous steps is important, thereby making such types of models

extremely useful.

So, the next time you see any type of data having a temporal pattern,

try using the types of models being discussed in the subsequent sections of

this chapter, but be forewarned: have tons of data!

�Differences Between Feedforward and Recurrent
Neural Networks
In a normal feedforward network, data is fed to it discretely, without

taking account of temporal relations. Such types of networks are useful for

discrete prediction tasks, as the features aren’t dependent on each other

temporally. This represents the simplest form of neural network, with

signals flowing in one direction, i.e., from input to output.

Chapter 3 Unfolding Recurrent Neural Networks

122

For example, if we took three months’ stock price data and tried to

predict the next month’s price based on it, a feedforward network would

take the data from the previous three months at once, as if there were no

interdependence of data, which could turn out not to be the case.

However, a recurrent neural network would take the data for each

month at a time, just like a time series model.

x t x t constant   1

A similar functionality of this concept drives RNNs to first perform

some computation on the information of the past interval, say t − 1, and

use it with the computation done on the present interval data, say t, and

combine both to generate results for the next intervals.

A quick look at the differences between feedforward neural networks

and RNNs reveals that the feedforward neural network takes decisions

based only on the current input, and an RNN takes decisions based on the

current and previous inputs and makes sure that the connections are built

across the hidden layers as well.

Following are the main limitations of feedforward neural networks:

•	 Unsuitable for sequences, time series data, video

streaming, stock data, etc.

•	 Do not bring memory factor in modeling

Figure 3-1 illustrates the differences between one type of RNN and a

feedforward neural network.

Chapter 3 Unfolding Recurrent Neural Networks

123

�Recurrent Neural Network Basics
We will quickly cover a thorough use case of RNNs before covering its

basics and getting into its applications for NLP. Let’s consider an example

in which the RNN learns how a sum operator works and try to replicate it.

RNNs belong to family of algorithms with very powerful sequence

modeling, and here we are going to see how, if given a sequence of binary

inputs, the model is capable of adding the digits and providing us the

summation as an output with almost perfect accuracy.

Given a binary string (a string with just 0s and 1s) of length 20,

we must determine the count of 1s in a binary string. For example,

“01010010011011100110” has 11 1s. So, the input for our program will be a

string of length 20 that contains 0s and 1s, and the output must be a single

number between 0 and 20 that represents the number of 1s in the string.

This task seems easy from a normal programming perspective, and

the reader might think it similar to any typical “Hello World” problem.

However, if we think of it from a machine’s point of view, it is a model that

can add numbers, a model that takes sequential binary inputs to give a

summation. Well that’s what we are dealing with!

(a) Recurrent neural network (b) Forward neural network

hidden

hidden

hidden

hidden

hidden

hidden

Figure 3-1.  Structural differentiation between a sample RNN and
feedforward neural network

Chapter 3 Unfolding Recurrent Neural Networks

124

Let’s get our hands dirty and define certain key terms for RNNs. Before

that, one thing to keep in mind while performing any deep learning model

is the shape of a tensor being fed to the model as input. A tensor can be

of any dimension, 3-D/4-D, when fed as input to the model. We can think

of it as a list of lists of lists. This is a bit complex to understand at first, but

we will see how to break this concept into further smaller and meaningful

representations.

Note  [[[]]] is a 3-D tensor with three lists placed in
hierarchically.

RNN requires a 3-D tensor as input, and it can be broken perfectly into

the components shown in Figure 3-2.

Figure 3-2.  Component-wise detail of a 3-D tensor used as input for
RNN

Note T here is no need to remember any of these, and as we go
on looking at the structure of RNNs, you will understand the reasons
behind considering the components in such a manner.

Chapter 3 Unfolding Recurrent Neural Networks

125

In the current problem, we are taking 20 time steps, or a sequence

input of length 20, and each time step is being represented in 1-D, i.e., with

a value of 0 or 1. The input time step can be in a different dimension, as per

the problem at hand. Figure 3-3 shows the architecture of the model we

will be using.

Figure 3-3.  RNN model architecture to compute the number of 1s in
a 20 length sequence of binary digits

In the model diagram, we can see that we have taken each of the

binary units as an input at each of the time steps, i.e., 20 time steps, and

passed them through a hidden layer, which is a recurrent layer in this case,

and taken the output of the final layer to a normal classification multilayer

perceptron.

Chapter 3 Unfolding Recurrent Neural Networks

126

Thus, the input to the TensorFlow’s RNN is of the form

List = �[[[0] [1] [1] [1] [0] [0] [1] [1] [0] [1] [1] [1]

[0] [0] [1] [1] [0] [1] [1] [1]],

 �[[0] [1] [1] [1] [0] [0] [1] [1] [0] [1] [1] [1] [0]

[0] [1] [1] [0] [1] [1] [1]] ,

 �...., [[0] [1] [1] [1] [0] [0] [1] [1] [0] [1] [1]

[1] [0] [0] [1] [1] [0] [1] [1] [1]]]

We recommend not focusing on the actual training part, because once

you understand the data flow process, the training part becomes easier to

understand, and you can train multiple related models. For once, don’t

shift your attention from the hidden RNN layers shown in the figure, and

try to get the gist of the input being given to the model.

We will consider a slightly more complex example and try to use

recurrent neural nets for sentiment classification (one of the most basic

tasks in the field of NLP), as we go further.

�Natural Language Processing and Recurrent
Neural Networks
From the previous theories and explanations, one can easily guess that

RNNs are tailor-made for sequential tasks, and what suits this problem

statement more is language. From childhood, we humans have our brain

specifically trained for proper structuring of any language. Let’s assume

English as being the most common language spoken across a major

population. We know the prevalent structure of the language while we are

talking and writing, because we have been taught it since childhood, and

we are able to decipher it without any great effort.

We are supposed to make use of the proper language by using its

grammar, which makes up the base rules of the language. Traditionally,

NLP tasks are extremely difficult, because of the vastness of the grammar

of different languages.

Chapter 3 Unfolding Recurrent Neural Networks

127

Hard-coding of the constraints with respect to each of the languages

has its own drawbacks. No one wants to get in the weeds of hundreds and

thousands of grammar rules present across diverse languages of world,

and no one wants to learn or code it further, as per custom business

requirements.

What saves us from all such hassles is deep learning, which targets the

learning of the complex local structural formulation of all the languages

and uses this learning to crack the complexities present in the problem set.

So, finally, we let our baby deep learning model, belonging to RNN

category, learn on its own. We feed it the sequences of English sentences

word-by-word and let it train on some supervised label, say, positive or

negative for sentiment classification, or 1,2,3,4,5 for Star rating of text, for

the time being.

Let’s try to understand this by considering an example of the n-gram

language model. Here, if we have four preceding words, 4-gram, our model

has the capability to predict the most probable fifth word, by using the past

information from the occurrences of such types of combinations of four

words. Such types of models have direct use cases in problems such as

Google Search for autocomplete suggestions.

Note T he actual models used for Google Search are not just direct
implementations of any n-gram but a combination of much more
complex models.

Let’s try to understand this concept by considering a basic example.

Suppose we have a normal sentence in English: “Sachin is a great

cricketer.” We can then represent this sentence in accordance with the

input being taken by our deep learning model in the manner shown in

Figure 3-4.

Chapter 3 Unfolding Recurrent Neural Networks

128

Here, the last word, cricketer, can be judged from the sequence of

previous four words Sachin is a great. We can judge that “Sachin is a

great”—what? One answer could be “cricketer,” as our thinking with

respect to such a question and context has been modeled that way.

Similarly, in some cases, we want the model to consider past historical

events and make a prediction regarding future events. The events could be

related to the information we are able to extract from the text as well.

A feedforward network takes the entire sentence as input at one go,

whereas an RNN takes each of the words one by one and then aims to

classify the given text. The preceding diagram would make it clearer.

The RNN takes the input in the form of the word embedding, which

has been covered in Chapter 2, with two different types of models, CBOW

and Skip-gram.

The word2vec models aim to initialize random vectors for each word,

which are further learned to have meaningful vectors, to perform specific

tasks. The word vectors can be formed of any given dimension and are able

to encapsulate the information accordingly.

Figure 3-4.  Inputting the “Sachin is a great” sentence into the
model

Chapter 3 Unfolding Recurrent Neural Networks

129

�RNNs Mechanism
RNNs have creative applications in diverse fields, ranging from audio and

text to images, including music generation, character generation, machine

translation, etc. Let’s try to understand the functional process of RNNs

in a more beginner-friendly way and such that anyone with a non–deep

learning background can understand it as well (Figure 3-5).

We are going to use the NumPy library for vector multiplications and

depict the internal mathematics. This step function is recalled at each time

step, i.e., recursion.

V V V V
W

W

W W W

U U U U

s

x

o
ot -1 ot+1

st -1 st+1

xt -1 xt

st

xt+1

ot

Unfold

Figure 3-5.  Unrolled recurrent neural network

First, defining the RNN class:

class RNN:

 # ...

 def step(self, x):

 # Update the Hidden state

 �self.h = np.tanh(np.dot(self.W_hh, self.h) + np.dot

(self.U_xh, x))

 # Compute the Output vector

 o = np.dot(self.V_hy, self.h)

 return o

Chapter 3 Unfolding Recurrent Neural Networks

130

The preceding pseudo code specifies the forward pass of a basic

RNN. The function step is called at each time step of the RNN class. The

parameters of this RNN are the three matrices (W_hh, U_xh, V_hy).

Following are the dimensions of each of the weight matrices from the

preceding pseudo code and its equivalent entity from Figure 3-5:

•	 Xt is input at time step t.

•	 St is the hidden state at time step t. It’s the “memory”

of the network and is calculated based on the previous

hidden state and the input at the current step.

•	 Uxh is mapping from input (x) to hidden layer (h),

hence, h × dimension (x), where the dimension of x is

the dimension of each time step input (1, in the case

of a binary summation). Refer to the U matrix in the

preceding figure.

•	 Whh is mapping across hidden states, hence, h × h. Refer

to the W matrix in the preceding figure.

•	 Vhy is mapping from the final hidden layer to output

y. Hence, h x dimension (y), where the dimension of

y is the dimension of the output (20, in the case of the

binary summation case considered previously). Refer

to the V matrix in the preceding figure.

•	 ot is the output at step t. For example, if we wanted to

predict the next word in a sentence, it would be a vector

of probabilities across our vocabulary.

The hidden state self.h is initialized with the zero vector. The np.tanh

function implements a nonlinearity that squashes the activations to the

range (-1, 1).

Chapter 3 Unfolding Recurrent Neural Networks

131

Notice briefly how this works. There are two terms inside of the tanh

function: the first is based on the previous hidden state, and the second

is based on the current input. In NumPy, np.dot performs the matrix

multiplication.

The two intermediates interact with the addition and then get

squashed into the new state vector by the tanh function. To infer the

hidden state update in terms of mathematical notation, we can rewrite it as

follows:

h f W h U xt hh t xh t  1 1* *

where f1 is generally taken as tanh or sigmoid and is applied element-wise.

We initialize the matrices of the RNN with random numbers, and

the bulk of work performed during the training stage goes into the

computation of the ideal matrices that give rise to the desirable behavior.

This is measured with some loss function that expresses our preference

for what kinds of outputs, o, we would like to see in response to our input

sequences, x.

We can train an RNN model in multiple ways. However, agnostic to any

specific way, RNNs have a very peculiar problem, and it is faced because,

as the weights are propagated through time, they are multiplied recursively

in the preceding functions, thereby giving rise to the following two types of

scenarios:

•	 Vanishing gradient: If the weights are small, the

subsequent values will keep on getting smaller and

tend to ~0.

•	 Exploding gradient: If the weights are big, the final

value will approach infinity.

Chapter 3 Unfolding Recurrent Neural Networks

132

Both of these problems make RNNs very sensitive to the number of

time step or sequence limits. We can understand this in a detailed way

by considering the output of the RNN. The output of an RNN network is

represented as follows:

h f Ux Vht t t  2 1

where U and V are the weight matrices connecting the inputs and the

recurrent outputs, respectively, and f2 is softmax for classification tasks,

and L2 norm (squared error) is for regression tasks. Softmax here is on the

ht outputs.

Note, however, that if we refer to, say, three time steps in our recurrent

neural network (explained in the previous section), we have the following:

h Ux V Ux V Uxt t t t     ((((()))))1 2

From the preceding equation, we can infer, as the network grows

deeper by the addition of more complex layers, and with propagation over

time, that it will lead to gradient vanishing or exploding problems.

The gradient problem with the sigmoid function occurs when the

input values are such that the output is close to either 0 or 1. At this point,

the gradient is very small and tends to vanish, as shown in Figure 3-6.

Chapter 3 Unfolding Recurrent Neural Networks

133

Figure 3-7 illustrates the vanishing gradient problem in a RNN.

Figure 3-6.  Logistic curve, at top, along with its first degree
differentiation, below

Figure 3-7.  Example of vanishing gradient

As shown in the preceding figure (h0, h1, h2, and h3, are hidden

states), at each time step, when we run the backpropagation algorithm,

the gradient gets smaller and smaller, and by the time we get back to the

beginning of the sentence, we have a gradient so small that it effectively

has no capability to have a significant effect on the parameters that must

be updated. The reason why this effect occurs is because unless d ht − 1/d ht

is exactly 1, or d ht − 1/d ht = 1, it will tend to either diminish or amplify the

Chapter 3 Unfolding Recurrent Neural Networks

134

gradient d l/d ht, and when this diminishes or its amplification is done

repeatedly, it will have an exponential effect on the gradient of the loss.

To solve this problem, a specific type of hidden layer, called a long

short-term memory (LSTM) network, and gated rectified units (GRUs)

are used. The latter are special gated cells designed to intrinsically handle

such scenarios. We will go through these briefly in later sections of this

chapter.

�Training RNNs
One of the most remarkable things about RNNs is their ability to be so

flexible with respect to training that they can perform excellently on a wide

range of problems, in both supervised and unsupervised domains. Before

proceeding to the main topic, let’s learn the deep secret about the hidden

states (LSTM/GRU/sigmoidal neurons).

A curious mind might wonder exactly what a hidden state is. Is it like a

normal feedforward network? Or is it even more complex in nature?

The answer to the preceding questions is that the mathematical

representation of any hidden state is the same as that of any normal

feedforward network, and it does represent the hidden features of the

input, for any static/stateless dimension.

However, as we have seen with the special recurrence property of

RNNs, in the hidden states of RNNs for any time interval step, it represents

a contextual representation of all the previous time steps in a compressed

dense manner. It holds, too, the semantic sequential information in the

dense vector.

For example, the hidden state at time t, H(t), contains some noisy and

some true information of the time intervals X(t-1), X(t-2), . . . , X(0).

Considering the RNN training, for any problem with supervised

learning, we must find a Loss function that helps in the update of weights

that were initialized randomly, either through backpropagation or gradient

descent.

Chapter 3 Unfolding Recurrent Neural Networks

135

Note R eaders unfamiliar with backpropagation implementation
shouldn’t be too worried, as modern libraries like TensorFlow
and PyTorch have super-fast auto-differentiation processes that
make such tasks much easier. One need only define the network
architecture and targets. However, readers are advised to go through
the backpropagation technique thoroughly, to experiment more
with neural networks, as this serves as the backbone of any neural
network training.

Now, let’s create our initial example of binary sequence summation.

Following is an explanation, in a step-by-step manner, of how the network

functions and trains:

	 1.	 Initialize the hidden states to a random number

vector (size of the hidden layer is the free parameter

that we set).

	 2.	 Feed the binary number, 0 or 1, at each sequence

step. Hence, calculating and updating the hidden

vector at each step according to the following

equation:

H t U X t V H t        tanh 1

where, ‘.’ represents the dot product between the two

matrices, and H, X, U, V have the same references as

before.

	 3.	 The last hidden layer (specifically in this case) is

taken as output and fed into another multilayer

perceptron (feedforward network).

Chapter 3 Unfolding Recurrent Neural Networks

136

So, basically, the last layer is a representation of the entire sequence,

and this last layer (hidden representation at time t) is the most important

layer. However, other hidden states at earlier time intervals {t-1, t-2,…, 0}

can also be utilized for other purposes.

Note  Unlike with traditional backpropagation, RNNs have a specific
algorithm called backpropagation through time (BPTT). In BPTT, the
gradient update for a layer at time t, is dependent on time t-1, t-2,…, 0.
So, in all its forms, backpropagation is done through sequential time
steps. However, if one understands BPTT, it becomes apparent that it
is just a special case of normal backpropagation.

Apart from training by taking the output from the last hidden layer,

if one has a curious/intuitive mind, he/she may have wondered why we

have not taken all the hidden states and averaged them out. Indeed, that’s

another means. If the reader has already concluded that, then it’s good to

know he/she is getting a good grasp on RNNs! Figure 3-8 displays multiple

ways of utilizing the model output(s).

Chapter 3 Unfolding Recurrent Neural Networks

137

�Meta Meaning of Hidden State of RNN
The hidden states in an RNN have immense importance. Apart from being

the mathematical output of matrix multiplications, RNN hidden states

hold some critical information about the data, i.e., particularly sequential

information. The last hidden states of an RNN are capable of a wide variety

of highly creative tasks. For example, there is a remarkably intuitive model

called sequence-to-sequence (seq-to-seq or seq2seq) models. These

models are used for machine translation, image captioning, etc. We will

give a brief overview of how it works in the next sections, but coding and

other details related to it is beyond the scope of this book.

Let’s say we have a sentence in English, and we want to automatically

convert/translate it into French using a seq2seq model. Intuitively, we

feed the RNN model with a sequence of words, an English sentence, and

consider only the last hidden output. This hidden output seems to store

the most relevant information of the sentence. Next, we use this hidden

state to initialize another RNN that will do the conversion. So simple, right?

Figure 3-8.  An RNN can be trained in multiple ways, as required.
One can take output of just the last time step, or all the time steps, or
take the average of all the time steps.

Chapter 3 Unfolding Recurrent Neural Networks

138

�Tuning RNNs
RNNs are highly critical to input variables and are very receptive in nature.

A few of the important parameters in RNNs that play a major role in the

training process include the following:

•	 Number of hidden layers

•	 Number of hidden units per layer (usually chosen as

same number in each layer)

•	 Learning rate of the optimizer

•	 Dropout rate (initially successful dropout in RNNs

is applied to feedforward connections only, not to

recurrent ones)

•	 Number of iterations

Generally, we can plot the output with validation curves and learning

curves and check for overfitting and underfitting. Training and testing

the error at each split should be plotted, and according to the problem

we check, if it is an overfit, then we can decrease the number of hidden

layers, or hidden neurons, or add dropout, or increase the dropout rate,

and vice versa.

However, apart from these considerations, the other major problem

is with weights, for which we have weight/gradient clipping and multiple

initialization functions in the TensorFlow library.

�Long Short-Term Memory Networks
LSTM networks were first introduced by Sepp Hochreiter and Jürgen

Schmidhuber in 1997 and solved the problem of retaining information

for RNNs over longer time periods (www.bioinf.jku.at/publications/

older/2604.pdf).

Chapter 3 Unfolding Recurrent Neural Networks

http://www.bioinf.jku.at/publications/older/2604.pdf
http://www.bioinf.jku.at/publications/older/2604.pdf

139

RNNs have proven to be the only choice for dealing with problems

related to sequence classification, and they have proven to be appropriate

to retain the information from the previous input data and to use that

information to modify the output at any time step. However, if the length

of the sequence is long enough, then the gradients computed during the

training process of the RNN model, specifically backpropagation, either

vanishes, owing to the cumulative multiplication effect of values between

0 and 1, or explodes, again owing to the cumulative multiplication of large

values, thereby causing the model to train in a relatively slow manner.

A LSTM network is the savior here. It is the type of RNN architecture

that helps in training the model over lengthy sequences and in the

retention of the memory from previous time steps of input fed to the

model. Ideally, it solves the gradient vanishing or gradient explosion

problem, by introducing additional gates, input and forget gates, which

allow for a better control over the gradient, by enabling what information

to preserve and what to forget, thus controlling the access of the

information to the present cell’s state, which enables better preservation of

“long-range dependencies.”

Even though we could try other activation functions, such as ReLU, to

reduce the problem, they would not solve the problem completely. This

drawback of RNN led to the rise in the use of LSTM networks to effectively

resolve the issue.

�Components of LSTM

LSTM networks also have a chainlike structure, but the repeating module

has a different structure. Instead of having a single neural network layer,

there are four, interacting in a very special way. The structure of an LSTM

cell is shown in Figure 3-9.

Chapter 3 Unfolding Recurrent Neural Networks

https://en.wikipedia.org/wiki/Rectifier_(neural_networks)#_blank

140

LSTM is formed using multiple gates, which serve as a good option for

regulating the information passing through. They have a sigmoid neural

net layer, with output in [0,1] to weigh the passing limit of the component,

and a point-wise multiplication operation.

In the preceding figure, Ci is the cell state, which is present across all

the time steps and is changed by the interactions at each of the time steps.

To retain the information flowing across an LSTM via the cell state, it has

three types of gates:

•	 Input gate: To control the contribution from a new

input to the memory

i W h x bt i t t i    1 ,

tan Ct t t cW h x b= ⋅[]+()−h 1 ,

Here xt denotes the input at time step t, ht - 1 denotes the hidden state

at time step t-1, it denotes the input gate layer output at time step t, Ćt

refers to candidate values to be added to input gate output at time step t,

bi and bc denote the bias for the input gate layer and the candidate value

computation, Wi and Wc denote the weights for the input gate layer and the

candidate value computation.

Ć

+

Ct-1

ht -1 ht

Ct

ht-1

Xt-1 Xt

ht

ft it ot
tanh

+
tanh

×

×

×

× +
tanhtanh

×

×

A

Xt+1

ht+1

+
tanh

×

×

+
tanhtanh

×

×A
tanh

×

Figure 3-9.  LSTM module with four interacting layers

Chapter 3 Unfolding Recurrent Neural Networks

141

C Ct t t t tf i= +* *-1

Here, Ci denotes the cell state after time step i, and ft denotes the forget

state at time step t.

×

ht

xtxx

Ct

ht

ht -1

Ct -1

ot

tanh

tanh

×ot

tanh

tanh

+

ft it

×

×

Ć

Chapter 3 Unfolding Recurrent Neural Networks

142

•	 Forget gate: To control the limit up to which a value is

pertained in the memory

f W h x bt f t t f    1,

Here, ft denotes the forget state at time step t and, Wf and bf denote the

weights and bias for the forget state at time step t.

•	 Output gate: To control up to what limit memory

contributes in the activation block of output

o W h x bt o t t o    . ,1

h o Ct t t  *tanh

Here, ot denotes the output gate output at time step t, and Wo and bo

denote the weights and bias for the output gate at time step t.

Chapter 3 Unfolding Recurrent Neural Networks

143

Today, LSTM networks have become a more popular choice than

basic RNNs, as they have proven to work tremendously on diverse sets of

problems. Most remarkable results are achieved with LSTM networks than

RNNs, and now the phenomenon has extended such that wherever an

RNN is quoted, it usually refers to LSTM network only.

�How LSTM Helps to Reduce the Vanishing Gradient
Problem

As we have mentioned previously, in a basic RNN, a vanishing gradient

occurs during backpropagation, i.e., while calculating the gradient to update

the weights, because it involves cascading of partial derivatives, and each

of the partial derivatives involves a σ term, i.e., a sigmoid neural net layer.

As the value of each of the sigmoid derivatives might become less than 1,

thereby making the overall gradient values small enough that they won’t be

able to further update the weights, that means the model will stop learning!

Chapter 3 Unfolding Recurrent Neural Networks

144

Now, in an LSTM network, the output of the forget gate is

C Ct t t t tf i= +−* *1

So, the partial derivative of C with respect to its time lagged value Ct -1 will

get the value ft°, times the number of times of the partial derivatives. Now,

if we set the output of f = 1, there will be no decay of gradient, which means

that all the past input will be remembered in the cell. During the training

process, the forget gate will decide which information is important to keep

and which to delete.

Understanding GRUs

There is a large number of variations of LSTM being used today. One

such reasonable variation of LSTM is the gated recurrent unit, or GRU

(Figure 3-10). It forms an update gate, by combining the forget and input

gates, and also merges the cell state and the hidden state and makes

changes in the way the output is generated. The resulting models usually

have lesser complexity, compared to the standard LSTM models.

A GRU controls the flow of information like an LSTM unit but without

having to use a memory unit. It just exposes the full hidden content

without any control.

It has been observed that LSTM works better for bigger datasets,

while GRU works better for smaller datasets. As such, there is no hard and

fast rule, as, to some extent, efficiency depends on the data and model

complexity as well.

Ć

Chapter 3 Unfolding Recurrent Neural Networks

145

Limitations of LSTMs

Apart from the complexity of LSTM networks, they are usually slower

than other typical models. With careful initialization and training, even

an RNN can deliver results similar to those of LSTM, and, too, with less

computational complexity. Also, when recent information holds more

importance than older information, there is no doubt that the LSTM

model is always a better choice, but there are problems that we want to go

further into the past to resolve. In such cases, a new mechanism, called the

attention mechanism—which is a slightly modified version—is growing in

popularity. We will cover it in a later subsection, “Attention Scoring.”

�Sequence-to-Sequence Models
Sequence-to-sequence (seq2seq) models are used for everything from

chatbots to speech-to-text to dialog systems to QnA to image captioning.

The key thing with seq2seq models is that the sequences preserve the

order of the inputs, which is not the case with basic neural nets. There’s

certainly no good way to represent the concept of time and of things

changing over time, so the seq2seq models allow us to process information

that has a time, or an order of time, element attached to it. They allow us to

preserve information that couldn’t be by a normal neural network.

Figure 3-10.  LSTM and GRU

Chapter 3 Unfolding Recurrent Neural Networks

146

�What Is It?

In simple terms, a seq2seq model consists of two separate RNNs, the

encoder and decoder. An encoder takes the information as input in

multiple time steps and encodes the input sequence into a context vector.

The decoder takes that hidden state and decodes it into the desired output

sequence. With such kinds of models, one requires a lot of data, like an

unbelievable amount of data.

The key task behind a seq2seq model is to convert a sequence into a

fixed size feature vector that encodes only the important information in the

sequence, while losing the unnecessary information.

Let’s consider the example of a basic question-and-answer system,

in which the question is “How are you?” In this case, the model takes the

sequence of words as input, so we are going to try to get each word in the

sequence into a fixed-size feature vector that can then be used to predict

the output, by model, for a structure answer. The model must remember

the important things in the first sequence and also lose any unnecessary

information in that sequence, to produce the relevant answers.

Figure 3-11 shows the unrolled version of encoder and decoder, for a

better understanding of the whole process.

Chapter 3 Unfolding Recurrent Neural Networks

147

Fi
gu

re
 3

-1
1.

 S
am

pl
e

se
q2

se
q

m
od

el
 w

it
h

in
pu

t a
n

d
ou

tp
u

t s
en

te
n

ce

Chapter 3 Unfolding Recurrent Neural Networks

148

In the encoder stage, we are feeding the network with the embedded

word vector present in the question “How are you?”, along with a set of

weights to the series of LSTMs. On the decoder end, at top, we have a time-

distributed dense network (explained in the code section), which is used to

predict words across the current text’s vocabulary for answers.

The same model could be used for chatbots, language translation, and

other related purposes.

Bidirectional Encoder

In bidirectional encoders, we have one series of LSTMs that covers the

text in the forward direction and another series of LSTMs, right above the

previous series, that covers the text coming in the backward direction.

So, the weights in this case, i.e., A in the preceding figure, is basically

the hidden state, and we end up having two hidden states: one from the

forward direction and one from the backward direction. This allows the

network to learn from text and get full information on the context.

Bidirectional LSTMs generally work better than anything else for

almost each of the NLP tasks (Figure 3-12). The more we add bidirectional

LSTMs layers, the better the result.

Chapter 3 Unfolding Recurrent Neural Networks

149

Stacked Bidirectional Encoder

For stacked bidirectional encoders, such as in the following figure, we have

two bidirectional LSTMs or four layers. (One can go up to six bidirectional

LSTMs, for more complex structures and to achieve better results.)

Each of these LSTM layers has weights inside, which are learning on

their own and simultaneously influencing the weights in the preceding

layers as well.

As the network moves forward in time, with respect to given input, and

encounters new information from incoming text, it produces a hidden state

representing everything useful present in the overall text (Figure 3-13).

Figure 3-12.  Bidirectional encoder

Chapter 3 Unfolding Recurrent Neural Networks

150

Decoder

The encoder outputs the context vector, which offers a snapshot of the

entire sequence occurring before. The context vector is used to predict the

output, by passing it to the decoder.

Figure 3-13.  Stacked bidirectional encoder

Chapter 3 Unfolding Recurrent Neural Networks

151

In the decoder, we have a dense layer with softmax, just as in a normal

neural network, and it is time-distributed, which means that we have one

of these for each time step.

In Figure 3-14, the circles at the top represent the entire vocabulary,

and the one with highest score corresponds to the output of that time

step. This is valid, if we are working with text and are trying to get back

the results in words only, and the top layer will have one neuron for every

single word in the vocabulary. The top layer could often get super big with

the increase in size of the vocabulary.

The important thing is that to start the prediction, we pass in a <GO>

token to initiate the prediction process. What follows next is that we feed

the <GO> token itself as the input on the first cell, and it now makes the

prediction for the first word of our answer, along with the information from

the context vector, following which we take the predicted first word from

the model and feed that into the next time step as input, to get the second

word prediction, and so on. This will lead to the creation of the whole

text for our answer. Theoretically, in an ideal scenario, when predictions

are right, the model should predict whatever we are trying to answer or

translate.

Chapter 3 Unfolding Recurrent Neural Networks

152

�Advanced Sequence-to-Sequence Models
Basic seq2seq models work well for normal tasks on short sentences,

but they start to break on long sentences. Moreover, normal LSTMs can

remember about 30 time steps and start to drop off very quickly after 30

time steps. If they’re not trained enough, they drop off even sooner.

As compared to the basic seq2seq models, attention mechanisms

perform better on the short-term length sequences. Moreover, using

attention mechanisms, we can reach a maximum length of about 50 time

steps. It is one of the major limitations in NLP currently that we don’t

have anything that can really go back in time and remember even a few

paragraphs, let alone a whole book.

Figure 3-14.  Decoder

Chapter 3 Unfolding Recurrent Neural Networks

153

There are a few tricks to get around this. For example, we can flip the

input and train the model backward, i.e., backward going in and forward

coming out. This will often put the end words closer together and help in

relating the predicting words better.

Sequence-to-sequences can be RNNs, LSTMs (preferred), or GRUs,

and for lower-level tasks, bidirectional LSTMs are preferred. We will look at

a few of the advanced models that are used to handle such issues.

�Attention Scoring

Attention models look at the whole content shown and work out ways to

figure out which word is most important for each of the words in the text.

So, it sort of gives a score to every word in your sentence, and with that, it

is able to get a sense that there are certain words that rely on some words a

lot more than other ones.

The previous ways of text generation involved generating sentences

very good at grammar, but that either got the names wrong or repeated

some characters, such as a question mark. The best way to understand

attention models is to think of them as kind of a little memory module

that basically sits above the network and then looks at the words and picks

the ones that are most important. For example, in the following sentence,

clearly not all words are of equal importance:

Last month everyone went to the club, but I stayed at home.

Last month everyone went to the club, but I stayed at home.

The italic words in the second sentence are the ones that are noted

and scored higher, compared to other words in the sentence. This helps in

translation to different languages and for retaining context information as

well, such as the event happened “last month,” as this time information is

required while doing the NLP tasks.

Adding attention helps in getting a fixed length vector, with a score

attributed to each of the words telling us how important each of the words

and the time steps are in the given sequence. This becomes important

while doing translation. As when manual translation is done for a long

Chapter 3 Unfolding Recurrent Neural Networks

154

sentence, we focus more on the particular words or phrases, irrespective

of their position in the sentence. Attention helps in re-creating the same

mechanism for neural networks.

As mentioned earlier, normal models fail to capture the crux of the full

sentence, using a single hidden state only, which gets worse as the length

increases. An attention vector (shown in Figure 3-15) helps in increasing

the model’s performance, by capturing the information from the overall

input sentence at each of the steps of the decoder. This step makes sure

that the decoder is not dependent only on the last decoder state but also

on the combined weights of all the input states.

The best technique is to use bidirectional LSTMs, along with attention

on top of it, in the encoder.

Figure 3-15.  Attention scoring network

Figure 3-16 illustrates one such use case of an attention scoring

network for language translation. The encoder takes the input tokens until

it gets a special end token, say <DONE>, and then the decoder takes over and

starts generating tokens, also finishing with its own end token of <DONE>.

Chapter 3 Unfolding Recurrent Neural Networks

155

The encoder changes its internal state as the English sentence tokens

come in, and then, once the last token arrives, a final encoder state is taken

and passed into the decoder, unchanged and repeatedly. In the decoder,

every single German token is generated. The decoder also has its own

dynamic internal state.

Figure 3-16.  Language translation using an attention scoring
network

Teacher Forcing

Teacher forcing uses the ground truth as input for each of the consecutive

time steps, in lieu of the output of the network.

One can refer to the abstract of the original paper on teacher forcing,

“Professor Forcing: A New Algorithm for Training Recurrent Networks,”

for a cogent explanation of the technique (https://papers.nips.cc/

paper/6099-professor-forcing-a-new-algorithm-for-training-

recurrent-networks.pdf).

The Teacher Forcing algorithm trains recurrent networks by
supplying observed sequence values as inputs during training
and using the network’s own one-step-ahead predictions to do
multi-step sampling. We introduce the Professor Forcing algo-
rithm, which uses adversarial domain adaptation to encour-

Chapter 3 Unfolding Recurrent Neural Networks

https://papers.nips.cc/paper/6099-professor-forcing-a-new-algorithm-for-training-recurrent-networks.pdf
https://papers.nips.cc/paper/6099-professor-forcing-a-new-algorithm-for-training-recurrent-networks.pdf
https://papers.nips.cc/paper/6099-professor-forcing-a-new-algorithm-for-training-recurrent-networks.pdf

156

age the dynamics of the recurrent network to be the same when
training the network and when sampling from the network
over multiple time steps.

To understand this better, as we train the teacher forcing model, while

doing the prediction part, we check whether every word predicted is right

and use this information while backpropagating the network. However, we

don’t feed the predicted word to the next time steps. Instead, while making

every next word prediction, we use the correct word answer of last time

step for next time step prediction. That’s why the process is called “teacher

forcing.” We are basically forcing the decoder part to not only use the

output of the last hidden state but to actually use the correct answers. This

improves the training process for text generation significantly. This process

is not to be followed while doing the actual scoring on the test dataset.

Make use of the learned weights for scoring step.

The teacher forcing technique was developed as an alternative to

backpropagation-through-time for training an RNN. Figure 3-17 shows one

such example of training an RNN using the teacher forcing mechanism.

Figure 3-17.  Teacher forcing approach

Chapter 3 Unfolding Recurrent Neural Networks

157

Peeking

Peeking involves feeding of the hidden state of the context vector straight

through every step of the RNN or LSTM. The hidden state changes every

time it goes through weights, and we make use of this updated hidden

state and also keep the original context vector from the encoder, so that

it checks the regular updates occurring, to figure out the way to better

accuracy.

Peeking was proposed by Yoshua Bengio and others in the research

paper “Learning Phrase Representations using RNN Encoder–Decoder for

Statistical Machine Translation” (https://arxiv.org/abs/1406.1078).

We propose a novel neural network model called RNN Encoder–
Decoder that consists of two RNNs. One RNN encodes a
sequence of symbols into a fixed-length vector representation,
and the other decodes the representation into another sequence
of symbols. The encoder and decoder of the proposed model are
jointly trained to maximize the conditional probability of a
target sequence given a source sequence. The proposed model
learns a semantically and syntactically meaningful represen-
tation of linguistic phrases.

�Sequence-to-Sequence Use Case
For the use case of seq2seq models, we have taken textual content

of annotated corpus used in the research paper “Development of a

benchmark corpus to support the automatic extraction of drug-related

adverse effects from medical case reports” (www.sciencedirect.com/

science/article/pii/S1532046412000615), by H. Gurulingappa.

The work presented here aims at generating a systematically
annotated corpus that can support the development and vali-
dation of methods for the automatic extraction of drug-related
adverse effects from medical case reports. The documents are

Chapter 3 Unfolding Recurrent Neural Networks

https://arxiv.org/abs/1406.1078
http://www.sciencedirect.com/science/article/pii/S1532046412000615
http://www.sciencedirect.com/science/article/pii/S1532046412000615

158

systematically double annotated in various rounds to ensure
consistent annotations. The annotated documents are finally
harmonized to generate representative consensus annotations.

We have used an open source skip-gram model provided
by NLPLab (http://evexdb.org/pmresources/vec-space-
models/wikipedia-pubmed-and-PMC-w2v.bin), which was
trained on all the PubMed abstracts and PMC full texts (4.08
million distinct words). The output of skip-gram model is a set
of word vectors of 200 dimensions.

As usual import all the necessary modules first:

Importing the required packages

import os

import re

import csv

import codecs

import numpy as np

import pandas as pd

import nltk

from nltk.corpus import stopwords

from nltk.stem import SnowballStemmer

from string import punctuation

from gensim.models import KeyedVectors

Check the Keras and TensorFlow version used for this exercise:

import keras

print(keras.__version__)

> 2.1.2

import tensorflow

print(tensorflow.__version__)

> 1.3.0

Chapter 3 Unfolding Recurrent Neural Networks

http://evexdb.org/pmresources/vec-space-models/wikipedia-pubmed-and-PMC-w2v.bin
http://evexdb.org/pmresources/vec-space-models/wikipedia-pubmed-and-PMC-w2v.bin

159

Make sure you have downloaded and saved the word embedding file

from the previously mentioned link in your current working directory.

EMBEDDING_FILE = 'wikipedia-pubmed-and-PMC-w2v.bin'

print('Indexing word vectors')

> Indexing word vectors

word2vec = KeyedVectors.load_word2vec_format(EMBEDDING_FILE,

binary=True)

print('Found %s word vectors of word2vec' % len(word2vec.

vocab))

> Found 5443656 word vectors of word2vec

import copy

from keras.preprocessing.sequence import pad_sequences

> Using TensorFlow backend.

The ADE corpus used from the paper by Gurulingappa is distributed

with three files: DRUG-AE.rel, DRUG-DOSE.rel, and ADE-NEG.txt. We are

making use of the DRUG-AE.rel file, which provides relationships between

drugs and adverse effects.

Following is a sample of the text from the file:

10030778 | Intravenous azithromycin-induced ototoxicity.

| ototoxicity | 43 | 54 | azithromycin | 22 | 34

10048291 | Immobilization, while Paget’s bone disease was

present, and perhaps enhanced activation of dihydrotachysterol

by rifampicin, could have led to increased calcium-release into

the circulation. | increased calcium-release | 960 | 985 |

dihydrotachysterol | 908 | 926

10048291 | Unaccountable severe hypercalcemia in a patient

treated for hypoparathyroidism with dihydrotachysterol. |

hypercalcemia | 31 | 44 | dihydrotachysterol | 94 | 112

Chapter 3 Unfolding Recurrent Neural Networks

160

10082597 | METHODS: We report two cases of pseudoporphyria

caused by naproxen and oxaprozin. | pseudoporphyria | 620 | 635

| naproxen | 646 | 654

10082597 | METHODS: We report two cases of pseudoporphyria

caused by naproxen and oxaprozin. | pseudoporphyria | 620 | 635

| oxaprozin | 659 | 668

The format of the DRUG-AE.rel file is as follows, fields are separated by

pipe delimiters:

Column-1: PubMed-ID

Column-2: Sentence

Column-3: Adverse-Effect

Column-4: Begin offset of Adverse-Effect at ‘document level’

Column-5: End offset of Adverse-Effect at ‘document level’

Column-6: Drug

Column-7: Begin offset of Drug at ‘document level’

Column-8: End offset of Drug at ‘document level’

Note D uring annotation, documents were used in the following
format: PubMed-ID \n \n Title \n \n Abstract.

Reading the text file 'DRUG-AE.rel' which provides relations

between drugs and adverse effects.

TEXT_FILE = 'DRUG-AE.rel'

Next, we want to create input for our model. The input for our model is

a sequence of characters. For the time being, we are ascribing a sequence

length of 200, i.e., we will have a dataset of size = “number of original

characters-sequence length.”

For each input data, i.e., 200-character sequence, next, one character

will be our output in one-hot encoded format. We will append the input

data fields, along with their corresponding labels, in the input_data_ae

and op_labels_ae tensors, as follows:

Chapter 3 Unfolding Recurrent Neural Networks

161

f = open(TEXT_FILE, 'r')

for each_line in f.readlines():

 sent_list = np.zeros([0,200])

 labels = np.zeros([0,3])

 tokens = each_line.split("|")

 sent = tokens[1]

 if sent in sentences:

 continue

 sentences.append(sent)

 begin_offset = int(tokens[3])

 end_offset = int(tokens[4])

 mid_offset = range(begin_offset+1, end_offset)

 word_tokens = nltk.word_tokenize(sent)

 offset = 0

 for each_token in word_tokens:

 offset = sent.find(each_token, offset)

 offset1 = copy.deepcopy(offset)

 offset += len(each_token)

 �if each_token in punctuation or re.search(r'\d', each_

token):

 continue

 each_token = each_token.lower()

 each_token = re.sub("[^A-Za-z\-]+","", each_token)

 if each_token in word2vec.vocab:

 new_word = word2vec.word_vec(each_token)

 if offset1 == begin_offset:

 �sent_list = np.append(sent_list, np.array([new_

word]), axis=0)

 �labels = np.append(labels, np.array([[0,0,1]]),

axis=0)

Chapter 3 Unfolding Recurrent Neural Networks

162

 elif offset == end_offset or offset in mid_offset:

 �sent_list = np.append(sent_list, np.array([new_

word]), axis=0)

 �labels = np.append(labels, np.array([[0,1,0]]),

axis=0)

 else:

 �sent_list = np.append(sent_list, np.array([new_

word]), axis=0)

 �labels = np.append(labels, np.array([[1,0,0]]),

axis=0)

 input_data_ae.append(sent_list)

 op_labels_ae.append(labels)

input_data_ae = np.array(input_data_ae)

op_labels_ae = np.array(op_labels_ae)

Add padding to the input text, with the maximum length of the input at

any time step being 30 (a safe bet!).

input_data_ae = pad_sequences(input_data_ae, maxlen=30,

dtype='float64', padding='post')

op_labels_ae = pad_sequences(op_labels_ae, maxlen=30,

dtype='float64', padding='post')

Check the length of the total number of entries in the input data and

their corresponding labels.

print(len(input_data_ae))

> 4271

print(len(op_labels_ae))

> 4271

Chapter 3 Unfolding Recurrent Neural Networks

163

Import required modules from Keras.

from keras.preprocessing.text import Tokenizer

from keras.layers import Dense, Input, LSTM, Embedding,

Dropout, Activation,Bidirectional, TimeDistributed

from keras.layers.merge import concatenate

from keras.models import Model, Sequential

from keras.layers.normalization import BatchNormalization

from keras.callbacks import EarlyStopping, ModelCheckpoint

Create train and validation datasets, with 4,000 entries in train, and

rest 271 in the validation dataset.

Creating Train and Validation datasets, for 4271 entries,

4000 in train dataset, and 271 in validation dataset

x_train= input_data_ae[:4000]

x_test = input_data_ae[4000:]

y_train = op_labels_ae[:4000]

y_test =op_labels_ae[4000:]

As we have the dataset in a standard format now, here comes the most

important part of the process: defining the model architecture. We are going

to use one hidden layer of a bidirectional LSTM network, with 300 hidden

units and a dropout probability of 0.2. In addition to this, we are making use

of a TimeDistributedDense layer, with a dropout probability of 0.2.

Dropout is a regularization technique by which, while you’re updating

layers of your neural net, you randomly don’t update, or dropout, some

of the layer. That is, while updating your neural net layer, you update

each node with a probability of 1-dropout, and leave it unchanged with a

probability dropout.

Time distributed layers are used for RNN (and LSTMs) to maintain a

one-to-one mapping between input and output. Assume we have 30 time

steps with 200 samples of data, i.e., 30 × 200, and we want to use an RNN

with an output of 3. If we don’t use a TimeDistributedDense layer, we will

Chapter 3 Unfolding Recurrent Neural Networks

164

get a 200 × 30 × 3 tensor. So, we have the output flattened with each time

step mixed. If we apply the TimeDistributedDense layer, we are going to

apply a fully connected dense layer on each of the time steps and get the

output separately by time step.

We are also using categorical_crossentropy as a loss function, adam

as the optimizer, and softmax as the activation function.

You can play around with all these things to have a better idea of how

an LSTM network works.

batch = 1 # �Making the batch size as 1, as showing model

each of the instances one-by-one

�Adding Bidirectional LSTM with Dropout, and Time Distributed

layer with Dropout

Finally using Adam optimizer for training purpose

xin = Input(batch_shape=(batch,30,200), dtype='float')

seq = Bidirectional(LSTM(300, return_sequences=True),merge_

mode='concat')(xin)

mlp1 = Dropout(0.2)(seq)

mlp2 = TimeDistributed(Dense(60, activation='softmax'))(mlp1)

mlp3 = Dropout(0.2)(mlp2)

mlp4 = TimeDistributed(Dense(3, activation='softmax'))(mlp3)

model = Model(inputs=xin, outputs=mlp4)

model.compile(optimizer='Adam', loss='categorical_

crossentropy')

We are going to train our model with 50 epochs and a batch size of 1.

You can always increase the number of epochs, as long as the model keeps

on improving. One can also create checkpoints, so that later, the model

can be retrieved and used. The idea behind creating the checkpoint is to

save the model weights while training, so that later, you do not have to go

through the same process again. This has been left as an exercise for the

reader.

Chapter 3 Unfolding Recurrent Neural Networks

165

model.fit(x_train, y_train,

 batch_size=batch,

 epochs=50,

 validation_data=(x_test, y_test))

> Train on 4000 samples, validate on 271 samples

> Epoch 1/50

4000/4000 [==============================] - 363s 91ms/step -

loss: 0.1661 - val_loss: 0.1060

> Epoch 2/50

4000/4000 [==============================] - 363s 91ms/step -

loss: 0.1066 - val_loss: 0.0894

> Epoch 3/50

4000/4000 [==============================] - 361s 90ms/step -

loss: 0.0903 - val_loss: 0.0720

> Epoch 4/50

4000/4000 [==============================] - 364s 91ms/step -

loss: 0.0787 - val_loss: 0.0692

> Epoch 5/50

4000/4000 [==============================] - 362s 91ms/step -

loss: 0.0698 - val_loss: 0.0636

...

...

...

> Epoch 46/50

4000/4000 [==============================] - 344s 86ms/step -

loss: 0.0033 - val_loss: 0.1596

> Epoch 47/50

4000/4000 [==============================] - 321s 80ms/step -

loss: 0.0033 - val_loss: 0.1650

> Epoch 48/50

Chapter 3 Unfolding Recurrent Neural Networks

166

4000/4000 [==============================] - 322s 80ms/step -

loss: 0.0036 - val_loss: 0.1684

> Epoch 49/50

4000/4000 [==============================] - 319s 80ms/step -

loss: 0.0027 - val_loss: 0.1751

> Epoch 50/50

4000/4000 [==============================] - 319s 80ms/step -

loss: 0.0035 - val_loss: 0.1666

<keras.callbacks.History at 0x7f48213a3b38>

Validating the model results on the validation dataset with 271 entries.

val_pred = model.predict(x_test,batch_size=batch)

labels = []

for i in range(len(val_pred)):

 b = np.zeros_like(val_pred[i])

 b[np.arange(len(val_pred[i])), val_pred[i].argmax(1)] = 1

 labels.append(b)

print(val_pred.shape)

> (271, 30, 3)

Note T he val_pred tensor is of size (271 × 30 × 3).

Check the model performance using F1-score, along with precision

and recall. Import the required modules from the scikit-learn library.

from sklearn.metrics import f1_score

from sklearn.metrics import precision_score

from sklearn.metrics import recall_score

Chapter 3 Unfolding Recurrent Neural Networks

167

Define the variables to keep a record of the model performance.

score =[]

f1 = []

precision =[]

recall =[]

point = []

We can shortlist all the instances in the validation dataset that have an

F1-score of more than 0.6. This will give us a fair idea of the performance,

with our set benchmark, across the validation data.

for i in range(len(y_test)):

 if(f1_score(labels[i],y_test[i],average='weighted')>.6):

 point.append(i)

 �score.append(f1_score(labels[i],

y_test[i],average='weighted'))

 �precision.append(precision_score(labels[i],

y_test[i],average='weighted'))

 �recall.append(recall_score(labels[i],

y_test[i],average='weighted'))

print(len(point)/len(labels)*100)

> 69.37

print(np.mean(score))

> 0.686

print(np.mean(precision))

> 0.975

print(np.mean(recall))

> 0.576

Although the result produced is not quite satisfying, it does achieve

near state-of-the-art results. These limitations could be overcome by

building a denser network, increasing the number of epochs and the

length of the dataset.

Chapter 3 Unfolding Recurrent Neural Networks

168

Training large datasets using CPU takes too much time. That’s why

using GPU has been almost inevitable and very important for quickly

training deep learning models.

Training an RNN is a fun exercise. The same algorithm can be

extended for many other exercises, such as music generation, speech

generation, etc. It can also be efficiently extended to real-life applications,

such as video captioning and language translation.

We encourage the reader to create their own models for diverse

applications at this level. We will be covering a lot more of such examples

in the next chapters.

�Next Steps
The structures presented in this chapter are its most important part

and the core of any RNN type, be it Siamese networks, seq2seq models,

attention mechanisms, or transfer learning. (Readers are advised to take a

further look into these concepts, for a better understanding of the widely

available networks, the variations in their structures, and their respective

use cases.)

Further, if you can intuit how the dimension and multiplication of

3-D vectors work in TensorFlow and NumPy, you are very capable of

implementing the most complex models. So, the focus should be on

grasping the basics as much as you can. Models aiming to increase the

complexity with attention/weights are just a few more iterations/thinking

to improve the model accuracy. These further improvements are more like

hacks, however successful, but still require a structured thought process.

The best recourse, again, is to keep on trying different types of models and

their wide applications, to gain a good hold on the concepts.

Chapter 3 Unfolding Recurrent Neural Networks

169© Palash Goyal, Sumit Pandey, Karan Jain 2018
P. Goyal, et al., Deep Learning for Natural Language Processing,
https://doi.org/10.1007/978-1-4842-3685-7_4

CHAPTER 4

Developing a Chatbot
In this chapter, we will create a chatbot. We will do so in a progressive

manner and will make the chatbot in two layers. The first section of

the chapter introduces the chatbot concept, followed by a section on

implementing a basic rule-based chatbot system. The last section

discusses the training of a sequence-to-sequence (seq2seq) recurrent

neural network (RNN) model on a publicly available dataset. The final

chatbot will be able to answer specific questions asked of the dataset

domain on which the model has been trained. We hope that you have

enjoyed the previous chapters, and this chapter, as well, will keep you

involved in the implementation of deep learning and natural language

processing (NLP).

�Introduction to Chatbot
The fact that we all are using a chatbot, even without knowing exactly how

to define it, makes the idea of a chatbot’s definition irrelevant.

We all are using a variety of apps in our day-to-day life, and it would

be astonishing if someone reading this chapter had not heard about

“chatbots.” Chatbots are just like any other app. The only thing that

separates chatbots from regular apps is their user interface. Chatbots have

170

a chat interface, whereby the user literally chats, rather, messages, with

the app and operates it in a conversational manner, instead of a visual

interface, composed of buttons and icons. We hope the definition is clear

for now and that you can deep-dive into the wonderful world of chatbots.

�Origin of Chatbots
Just like the fact that we hate the idea of origin, we love the idea of origin.

Don’t become a mere recorder of facts, but try to penetrate the
mystery of their origin.

—Ivan Pavlov

It would not be useful to cover chatbots without exploring their

origin. You may be amused by the fact that in 1950, when the world

was recovering from the shock of World War II, Alan Turing, an English

polymath, had the foresight to develop a test to see if a person could

distinguish a human from a machine. This is know as the Turing test

(https://en.wikipedia.org/wiki/Turing_test).

Sixteen years later, in 1966, a computer program called ELIZA

was invented by Joseph Weizenbaum. It imitated the language of a

psychotherapist from only 200 lines of code. You can still talk with it here:

http://psych.fullerton.edu/mbirnbaum/psych101/Eliza.htm.

Chapter 4 Developing a Chatbot

https://en.wikipedia.org/wiki/Turing_test?utm_source=ubisend.com&utm_medium=blog-link&utm_campaign=ubisend#_blank
https://en.wikipedia.org/wiki/Turing_test
http://psych.fullerton.edu/mbirnbaum/psych101/Eliza.htm

171

Recent developments in machine learning have powered chatbots as

never before, interpreting natural language to both understand and learn

better over time. Major corporations, such as Facebook, Apple, Google

(Alphabet), and Microsoft, are devoting significant resources to research

related to imitating real-life conversations between consumers and

machines, with commercially viable business models.

�But How Does a Chatbot Work, Anyway?
OK, enough introduction. Let’s get to the point.

“Hey, what’s up?”

“How’re you doing?”

“Hello!”

Chapter 4 Developing a Chatbot

172

These sentences seem familiar. Don’t they? They are all messages,

of one kind or another, to greet someone. How do we respond to these

greetings? Typically, we respond with “I am good. How about you?”

This is exactly how chatbots work. A typical chatbot finds the so-

called context of the question asked, which, in this case, is the “greeting.”

The bot then picks up the appropriate response and sends it back to the

user. How does it find the appropriate response, and can it deal with such

attachments as image, audio, and video? We will deal with that in the

following sections.

�Why Are Chatbots Such a Big Opportunity?
Research conducted by Forrester (https://go.forrester.com/data/

consumer-technographics/) points out that about ~85 percent of our time

on mobile devices is spent on the major applications, such as e-mail and

messaging platforms. With the great benefits offered by deep learning and

NLP, almost every firm is trying to build applications to keep their potential

consumers engaged with their products and services, and chatbots

uniquely serve that purpose. Multiple human errors and customer requests

handled by a conventional customer care service could be easily avoided by

putting chatbots in place. Moreover, chatbots could allow a customer and a

concerned company to have access to all the previous chat/issue records.

Although a chatbot could be considered an application that conducts

a conversation with an end customer, the tasks and few concerned

applications performed by a chatbot could be classified at a higher level,

under the following categories:

•	 Question answering: One turn per user; useful when a

labeled answer is present

a)	 Product querying use cases

b)	 Extracting user information

Chapter 4 Developing a Chatbot

https://go.forrester.com/data/consumer-technographics/
https://go.forrester.com/data/consumer-technographics/

173

•	 Sentence completion: Filling in of the missing word in

the next utterance in a dialog

a)	 Mapping of right product to the customer

•	 Goal-oriented dialog: Conversation with the task of

achieving a goal

a)	 Recommendation to the customer

b)	 Negotiating a price with the customer

•	 Chit-chat dialog: Conversations having no explicit

goals, more of a discussion

No such use case to focus now

•	 Visual dialog: Tasks with texts, images, and audio

a)	 Exchanging images with customers and building

inferences on those

OK, you may now be thinking, “I am excited. How can I build one?”

�Building a Chatbot Can Sound Intimidating. Is It
Actually?

The difficulty in building a Chatbot is less a technical one and
more of user experience. One of the most prevalent successful
bots in market are the ones that users want to come back to
regularly and that provide consistent value to their daily tasks
and requirements.

—Matt Hartman, Director of Seed Investments at Betaworks

Chapter 4 Developing a Chatbot

174

Prior to building a chatbot, it makes more sense if we resolve the

following four questions in advance and then decide how we want to take

the project forward:

•	 What problem are we going to solve with the bot?

•	 Which platform will our bot will live on (Facebook,

Slack, etc.)?

•	 What server we will be using to host the bot? Heroku

(www.heroku.com) or our own?

•	 Do we want to start from scratch or use the available

chatbot platform tools (following)?

•	 Botsify (https://botsify.com/)

•	 Pandorabots (https://playground.pandorabots.

com/en/)

•	 Chattypeople (www.chattypeople.com/)

•	 Wit.ai (https://wit.ai/)

•	 Api.ai (https://api.ai/)

To gain a deeper understanding of the working methodology of the

different platforms and the best fit as per the use case of the business, one

can refer to the following documentations from the following links to some

popular chatbot platforms:

•	 Facebook Messenger (https://developers.facebook.

com/products/messenger/)

•	 Slack (https://api.slack.com/bot-users)

•	 Discord (https://blog.discordapp.com/the-robot-

revolution-has-unofficially-begun/)

•	 Telegram (https://core.telegram.org/bots/api)

•	 Kik (https://dev.kik.com/#/home)

Chapter 4 Developing a Chatbot

https://www.heroku.com/
http://www.heroku.com/
https://botsify.com/
https://playground.pandorabots.com/en/
https://playground.pandorabots.com/en/
http://www.chattypeople.com/
https://wit.ai/
https://api.ai/
https://developers.facebook.com/products/messenger/
https://developers.facebook.com/products/messenger/
https://api.slack.com/bot-users
https://blog.discordapp.com/the-robot-revolution-has-unofficially-begun/
https://blog.discordapp.com/the-robot-revolution-has-unofficially-begun/
https://core.telegram.org/bots/api
https://dev.kik.com/#/home

175

�Conversational Bot
For the first version of our conversational chatbot, we will be making

a rule-based bot that will help the developer to define his/her desired

answers to a specific category of questions asked by the end user. Creating

such a bot will help us to have a basic understanding of working with bots,

before we proceed to the next level, with text-generating bots.

We will be using Facebook Messenger as our desired platform and

Heroku as our desired server, to launch the basic version of chatbot. First

things first. You must have a Facebook page. If you don’t have one, please

create one. To communicate with a bot, one must access this page and

select the messaging option, to initiate the conversation.

Follow the steps in Figure 4-1 to create the page on Facebook:

	 1.	 Select the Create a Page option.

	 2.	 Select the desired category of the organization and

choose a name to create the page. We have selected

Insurance as the field of the organization, as later

on, we will build test cases around it and use an

Insurance-related conversation dataset to train our

model.

Chapter 4 Developing a Chatbot

176

	 3.	 Add a profile and cover photo, as desired, for the

page.

After performing the preceding steps, the final page, Dl4nlp_cb,

www.facebook.com/dlnlpcb/, will look like Figure 4-2.

Figure 4-1.  Creating a Facebook page

Figure 4-2.  Dl4nlp_cb Facebook page

Chapter 4 Developing a Chatbot

http://www.facebook.com/dlnlpcb/

177

The next step is to create a Facebook app. Visit the following URL

to create one, with your official Facebook account logged in: https://

developers.facebook.com/apps/. This app will subscribe to the created

page and will handle all the responses on behalf of that page (Figure 4-3).

Figure 4-3.  Creating a Facebook app

We have assigned the same display name to the app as to the

previously created Facebook page and have registered it with the desired

e-mail ID. Post the app creation. The App Dashboard will look like that in

Figure 4-4.

Chapter 4 Developing a Chatbot

https://developers.facebook.com/apps/
https://developers.facebook.com/apps/

178

Facebook offers a range of products that can be added to the newly

created app. For the purpose of the chatbot, we are required to select

Messenger as the option (second row, middle option in the preceding

image). Click the Set Up button. This will redirect the user to the Settings

page (Figure 4-5), from which, in addition to selecting tutorials, we can

create the token and set up webhooks (covered following).

Figure 4-4.  Facebook App Dashboard

Figure 4-5.  Facebook app Settings page

Chapter 4 Developing a Chatbot

179

From the Settings page, go to the Token Generation section and select

the page created in the first step. An alert box will pop up and ask to grant

permissions. Click Continue and proceed (Figure 4-6).

Figure 4-6.  Facebook Token Generation

Note O ne can check the information being accessed by Facebook
regarding this application. Click the Review the info that you provide
link to check it.

After selecting the Continue option, you will get another window that

displays the permissions being granted to the page. Users can select the

privileges to be granted. For the current purpose, it is recommended not

to change any of the previously selected options in the privilege section

(Figure 4-7).

Chapter 4 Developing a Chatbot

180

Clicking Choose what you allow will show the permissions granted to the

page. After checking it, click OK and move to additional steps (Figure 4-8).

Figure 4-7.  Privilege grant section

Figure 4-8.  Permissions granted

This will initiate the generation of the token on the app Settings page

(it might take a few seconds to generate the token). See Figure 4-9.

Chapter 4 Developing a Chatbot

181

The page access token is a long string, combination of numbers, and

alphabets that we will use later to create the application with Heroku. It

will be set as a configuration parameter in the Heroku application.

The token is unique to every time it is generated and will be separate

for each application, page, and user combination. After generation, it will

look like the one in Figure 4-10.

Figure 4-9.  Final page access token generation

Figure 4-10.  Page access token

After creating the Facebook page and app, register and open an

account on Heroku (www.heroku.com) and create an app here as well, with

Python as the chosen language.

Creating an app on Heroku will provide us a webhook, to which the

Facebook app will send the request, in case an event is triggered, i.e., for

chatbot, whenever some message is received or sent.

Chapter 4 Developing a Chatbot

https://www.heroku.com/
http://www.heroku.com/

182

Note  Make sure the password being used for Heroku is a combination
of letters, numbers, and symbols—all three, not merely two.

After account creation, the Heroku dashboard will look like that shown

in Figure 4-11.

Figure 4-11.  Heroku dashboard

Click Create New App to make the application on Heroku. For tutorials

related to the Python language, one can visit the shared tutorial by clicking

the Python button: https://devcenter.heroku.com/articles/getting-

started-with-python#introduction. For now, keep the default selection

of “United States,” as it is, and for pipeline, don’t make any selection while

creating the app (Figure 4-12).

Note T he name of the app cannot contain numbers, underscores, or
symbols. Only lowercase letters are allowed in the app name.

Chapter 4 Developing a Chatbot

https://devcenter.heroku.com/articles/getting-started-with-python#introduction
https://devcenter.heroku.com/articles/getting-started-with-python#introduction

183

The Heroku application dashboard will look like that in Figure 4-13,

and by default, the Deploy tab is selected after app creation.

Figure 4-12.  Heroku app creation

Figure 4-13.  Heroku app dashboard

Chapter 4 Developing a Chatbot

184

Now we are all set to go with a Facebook app and page and Heroku

app. The next step is to create code and import it in the Heroku

application.

From the following URL, visit the GitHub repository and clone it to

your personal GitHub account to access the sample code provided for

the test cases on the first version of our chatbot: https://github.com/

palashgoyal1/DL4NLP. The repository contains four important files that

you need to start with.

The .gitignore file tells Git which files (or patterns) it should ignore. It

has the following content:

> *.pyc

> .*

Procfile is used to declare various process types, in our case, a web

app.

> web: gunicorn app:app --log-file=-

The Requirements.txt installs Python dependencies.

> Flask==0.11.1

> Jinja2==2.8

> MarkupSafe==0.23

> Werkzeug==0.11.10

> click==6.6

> gunicorn==19.6.0

> itsdangerous==0.24

> requests==2.10.0

> wsgiref==0.1.2

> chatterbot>=0.4.6

> urllib

> clarifai==2.0.30

> enum34

Chapter 4 Developing a Chatbot

https://github.com/palashgoyal1/DL4NLP
https://github.com/palashgoyal1/DL4NLP

185

App.py is the Python file containing the main code for the chatbot

application. As the file is big, we have put it on the GitHub repository

previously mentioned. Readers are requested to visit it for reference. That

way, it will be easier to clone the repository as well.

Let’s set the webhook. (A webhook is an HTTP callback—an HTTP

POST that occurs when something happens, such as a simple event-

notification via HTTP POST.) We have used Heroku because it provides a

webhook that Facebook uses to send a request and retrieve the appropriate

result, in case of any event.

Visit the app you created in Heroku and then go to the Deploy tab.

There are four methods via which you can deploy your app via Heroku Git,

via GitHub, via Dropbox, and via Container Registry (Figure 4-14). To keep

things simple, we will deploy our code using GitHub.

Figure 4-14.  Heroku deploy app section

Once we select Connect to GitHub, it will ask for the GitHub repository

where the code has been placed. Make sure the name mentioned here

is correct and the home directory as the repository. Click the Connect

button, after selecting the correct repository (Figure 4-15).

Chapter 4 Developing a Chatbot

186

The code will be deployed using the link of your personal GitHub

repository for this particular app, where the code has been placed. From

the Settings tab in Heroku, you can find the domain name of the app,

under the Domains and Certificates subsection, which looks similar in

format to https://*******.herokuapp.com/. For the test application

created previously, it is https://dlnlpcbapp.herokuapp.com/. Note it

down separately, as we will need it later.

Now is the time to integrate the Facebook page Dl4nlp_cb and the

Heroku app dlnlpcbapp. Visit the Facebook App Dashboard and, under

the Messenger Settings tab where the page access token is displayed, go to

webhooks to set up the webhook (Figure 4-16).

Figure 4-15.  Heroku deploy app via GitHub

Figure 4-16.  Setting the webhook

Chapter 4 Developing a Chatbot

https://dlnlpcbapp.herokuapp.com/

187

The pop-up will ask for the following three fields:

•	 Callback URL: The Heroku URL that we set up earlier

(the setup URL that we generated in step 1)

•	 Verification Token: A secret value that will be sent to

your bot, in order to verify that the request is coming

from Facebook. Whatever value you set here, make sure

you add it to your Heroku environment.

•	 Subscription Fields: This tells Facebook what

messaging events you care about and want it to notify

your webhook about. If you’re not sure, check all the

boxes (Figure 4-17).

Figure 4-17.  Setting the webhook—adding relevant information

Note  “Callback verification failed” is one of the most common
errors reported, and it is encountered when Facebook returns an
error message (Figure 4-18) when trying to add the Heroku endpoint
to the Facebook chat application.

Chapter 4 Developing a Chatbot

188

Flask application intentionally returns a 403 Forbidden error if the

token that Facebook sends doesn’t match the token set using the Heroku

configuration variables.

If the error shown in Figure 4-18 is encountered, it means that the

Heroku config values were not set properly. Running heroku config from

the command line within the application and verifying that the key called

VERIFY_TOKEN is set equal to the value typed in the Facebook window will

rectify the error.

The URL shown in the Callback URL box, will be the Heroku

application URL.

Figure 4-18.  Error: “Callback verification failed”

A successful configuration of the webhook will take you to another

screen showing the completion message (Figure 4-19).

Chapter 4 Developing a Chatbot

189

After you’ve configured your webhook, select the desired Facebook

page and click Subscribe (Figure 4-20).

Figure 4-19.  Successful webhook configuration

Figure 4-20.  Subscribe webhook to desired Facebook page Dl4nlp_cb

Now go back again to the Heroku app. Under the Settings tab, you

will find “config variable option.” You will have to set two variables: PAGE_

ACCESS_TOKEN (pick it from earlier steps) and VERIFY_TOKEN (pick it from

the one used while setting up the webhook in App Dashboard). In addition

to the preceding two parameters, fetch as well the App ID and Api Secret

token from the Basic Settings of the App page (Figure 4-21). These two

must also be set in the Heroku configuration parameters (click the Show

button to get the Api Secret token).

Chapter 4 Developing a Chatbot

190

Now open the Settings tab in the Heroku application and set the App

ID as api_key, APP Secret as api_secret, along with PAGE_ACCESS_TOKEN

and VERIFY_TOKEN (Figure 4-22).

Figure 4-21.  Configuring Heroku settings

Figure 4-22.  Adding configuration variables in Heroku settings

Chapter 4 Developing a Chatbot

191

After saving the configuration parameters, go to the Deploy tab on

Heroku, scroll down to the Manual Deploy section, and click the Deploy

Branch button. This will deploy the current branch being selected from the

repository and do the necessary compilations. Make sure that there are no

errors, by checking the Logs section.

Now go to the created Facebook page and click the Message button,

next to the Like button, near the top of the page. This should open a

message pane with the message box of your page. Start chatting with your

custom-made chatbot (Figure 4-23)!

Figure 4-23.  Enjoy your conversations with the chatbot!

�Chatbot: Automatic Text Generation
In the previous section, we built a simple conversational chatbot using

different platforms and libraries. The problem with it is that it can handle

only a fixed set of questions. What if we can build a bot that learns from

existing conversations, between humans. This is where natural language

generation comes in handy. We will make a seq2seq model that can handle

Chapter 4 Developing a Chatbot

192

any type of questions, i.e., even if the question is composed of some

random set of words. Whether that answer will be grammatically and

contextually correct is a whole different issue and will depend on various

factors, such as the size and quality of the dataset.

In this section, we will attempt to build a model that takes a set of

questions and answers as input and predicts the answer when asked a

question related to the input data. The question will be answered in the

best possible manner if it matches the set of questions being used to train

the model.

We will work on the described problem using the sequence-to-

sequence models. The dataset we are using is composed of questions-and-

answers recorded from an insurance domain’s customer service station.

The dataset has been collected from the web site www.insurancelibrary.

com/ and is the first released question-and-answer corpus of its type in

the insurance industry. The questions belong to a set of queries asked by

customers with respect to the multiple services and products offered by

an insurance firm, and the answers have been given by professionals with

deep knowledge of the insurance industry.

The dataset used for training has been taken from the URL https://

github.com/shuzi/insuranceQA, presently hosted at https://github.

com/palashgoyal1/InsuranceQnA, in addition to the desired files for

questions, answers, and vocabulary. The dataset was used in the paper

“Applying Deep Learning to Answer Selection: A Study and an Open Task”

(https://arxiv.org/pdf/1508.01585v2.pdf), by several staff at IBM,

and they have used the CNN framework with multiple variations. In all the

variations, they have made the model learn the word embedding of a given

question and its corresponding answer, and then used cosine distance as a

similarity metric to measure the matching degree.

Figure 4-24 is a snapshot of the multiple architectures being

demonstrated in the paper. For Architectures II, III, and IV, the questions-

and-answers sides share the same weights for the hidden and CNN layers.

Chapter 4 Developing a Chatbot

http://www.insurancelibrary.com/
http://www.insurancelibrary.com/
https://github.com/shuzi/insuranceQA
https://github.com/shuzi/insuranceQA
https://github.com/palashgoyal1/InsuranceQnA
https://github.com/palashgoyal1/InsuranceQnA
https://arxiv.org/pdf/1508.01585v2.pdf

193

The CNNQ and CNNA layers are used to extract the questions-and-answers

sides’ features, respectively.

Figure 4-24.  Architectures used in the research paper

The original dataset present in the GitHub repository has a combination

of the train, validation, and test partitions of the questions. We have

combined the given questions and answers and have performed a few

processing steps before making the final selection of the QnAs to be selected

for the modeling purpose. Also, a set of sequence-to-sequence models has

been used to generate the answers to the questions being asked by the user.

If trained using the appropriate model, and with enough iterations, the

model will be able to answer previously unseen questions as well.

To prepare the data to be used by the model, we have made a few

changes and completed the selection on the initial given dataset. Later, we

made use of the overall dataset vocabulary, and the word tokens used in

Chapter 4 Developing a Chatbot

194

questions and answers, to create the perfect combination of questions and

their corresponding answers in an understandable format in the English

language.

Note B efore starting the code execution, make sure that you have
TensorFlow version 1.0.0 installed and no other version, as there
have been changes in the later updated versions of TensorFlow.

Import the required packages and dataset in the encoded formats.

import pandas as pd

import numpy as np

import tensorflow as tf

import re

import time

tf.__version__

> '1.0.0'

Make sure the vocabulary.txt file and the encoded datasets

for Question and Answer are present in the same folder

reading vocabulary

lines = open('vocabulary.txt', encoding='utf-8',

errors='ignore').read().split('\n')

reading questions

conv_lines = open('InsuranceQAquestionanslabelraw.encoded',

encoding='utf-8', errors='ignore').read().split('\n')

reading answers

conv_lines1 = open('InsuranceQAlabel2answerraw.encoded',

encoding='utf-8', errors='ignore').read().split('\n')

The print command shows the token value associated with each

of the words in the 3 datasets

Chapter 4 Developing a Chatbot

195

print(" -- Vocabulary -- ")

print(lines[:2])

> -- Vocabulary –

> ['idx_17904\trating/result', 'idx_14300\tconsidered,']

print(" -- Questions -- ")

print(conv_lines[:2])

> -- Questions –

> ['medicare-insurance\tidx_1285 idx_1010 idx_467 idx_47610

idx_18488 idx_65760\t16696', 'long-term-care-insurance\

tidx_3815 idx_604 idx_605 idx_891 idx_136 idx_5293 idx_65761\

t10277']

print(" -- Answers -- ")

print(conv_lines1[:2])

> -- Answers –

> ['1\tidx_1 idx_2 idx_3 idx_4 idx_5 idx_6 idx_7 idx_8 idx_9

idx_10 idx_11 idx_12 idx_13 idx_14 idx_3 idx_12 idx_15 idx_16

idx_17 idx_8 idx_18 idx_19 idx_20 idx_21 idx_3 idx_12 idx_14

idx_22 idx_20 idx_23 idx_24 idx_25 idx_26 idx_27 idx_28 idx_29

idx_8 idx_30 idx_19 idx_11 idx_4 idx_31 idx_32 idx_22 idx_33

idx_34 idx_35 idx_36 idx_37 idx_30 idx_38 idx_39 idx_11 idx_40

idx_41 idx_42 idx_43 idx_44 idx_22 idx_45 idx_46 ...

In the next few lines, we have combined the questions with their

corresponding answers on the basis of the ID being allocated to both

questions and answers.

id2line = {}

for line in vocab_lines:

 _line = line.split('\t')

 if len(_line) == 2:

 id2line[_line[0]] = _line[1]

Chapter 4 Developing a Chatbot

196

Creating the word tokens for both questions and answers,

along with the mapping of the answers enlisted for questions

convs, ansid = [], []

for line in question_lines[:-1]:

 _line = line.split('\t')

 ansid.append(_line[2].split(' '))

 convs.append(_line[1])

convs1 = []

for line in answer_lines[:-1]:

 _line = line.split('\t')

 convs1.append(_line[1])

print(convs[:2]) # word tokens present in the question

> ['idx_1285 idx_1010 idx_467 idx_47610 idx_18488 idx_65760',

'idx_3815 idx_604 idx_605 idx_891 idx_136 idx_5293 idx_65761']

print(ansid[:2]) # answers IDs mapped to the questions

> [['16696'], ['10277']]

print(convs1[:2]) # word tokens present in the answer

> ['idx_1 idx_2 idx_3 idx_4 idx_5 idx_6 idx_7 idx_8 idx_9

idx_10 idx_11 idx_12 idx_13 idx_14 idx_3 idx_12 idx_15 idx_16

idx_17 idx_8 idx_18 idx_19 idx_20 idx_21 ...

Creating matching pair between questions and answers on the

basis of the ID allocated to each.

questions, answers = [], []

for a in range(len(ansid)):

 for b in range(len(ansid[a])):

 questions.append(convs[a])

for a in range(len(ansid)):

 for b in range(len(ansid[a])):

 answers.append(convs1[int(ansid[a][b])-1])

Chapter 4 Developing a Chatbot

197

ques, ans =[], []

m=0

while m<len(questions):

 i=0

 a=[]

 while i < (len(questions[m].split(' '))):

 a.append(id2line[questions[m].split(' ')[i]])

 i=i+1

 ques.append(' '.join(a))

 m=m+1

n=0

while n<len(answers):

 j=0

 b=[]

 while j < (len(answers[n].split(' '))):

 b.append(id2line[answers[n].split(' ')[j]])

 j=j+1

 ans.append(' '.join(b))

 n=n+1

The following output of the top-five questions in the Insurance QnA

dataset will give an idea of the kind of questions being asked by the

customers and the respective answers given by the professionals. At the

end of this exercise, our model will try to provide answers in a similar

manner as the questions asked.

Printing top 5 questions along with their answers

limit = 0

for i in range(limit, limit+5):

 print(ques[i])

 print(ans[i])

 print("---")

Chapter 4 Developing a Chatbot

198

> What Does Medicare IME Stand For?

According to the Centers for Medicare and Medicaid Services

website, cms.gov, IME stands for Indirect Medical Education and

is in regards to payment calculation adjustments for a Medicare

discharge of higher cost patients receiving care from teaching

hospitals relative to non-teaching hospitals. I would recommend

contacting CMS to get more information about IME

> Is Long Term Care Insurance Tax Free?

As a rule, if you buy a tax qualified long term care insurance

policy (as nearly all are, these days), and if you are paying

the premium yourself, there are tax advantages you will

receive. If you are self employed, the entire premium is tax

deductible. If working somewhere but paying your own premium

for an individual or group policy, you can deduct the premium

as a medical expense under the same IRS rules as apply to all

medical expenses. In both situations, you also receive the

benefits from the policy tax free, if they are ever needed.

> Can Husband Drop Wife From Health Insurance?

Can a spouse drop another spouse from health insurance? Usually

not without the spouse's who is being dropped consent in

writting. Most employers who have a quality HR department will

require a paper trial for any changes in an employee's benefit

plan. When changes are attempted that could come back to haunt

the employer, steps are usually taken to comfirm something like

this.

> Is Medicare Run By The Government?

Medicare Part A and Part B is provided by the Federal

government for Americans who are 65 and older who have worked

and paid Social Security taxes into the system. Medicare is

Chapter 4 Developing a Chatbot

199

also available to people under the age of 65 that have certain

disabilities and people with End-Stage Renal Disease (ESRD).

> Is Medicare Run By The Government?

Definitely. It is ran by the Center for Medicare and Medicaid

Services, a Government Agency given the responsibility of

overseeing and administering Medicare and Medicaid. Even Medicare

Advantage Plans, which are administered by private insurance

companies are strongly regulated by CMMS. They work along with

Social Security and Jobs and Family Services to insure that your

benefits are available and properly administered.

Although the fourth and fifth questions in the preceding sample are the

same, they have different answers, depending on how many professionals

have answered the question.

Checking the count of the total number of questions and

answers

print(len(questions))

> 27987

print(len(answers))

> 27987

Create a text cleaning function by replacing the short forms of the

words with the actual extended words, so that the words can be replaced

later by their actual tokens.

def clean_text(text):

 """Cleaning the text by replacing the abbreviated words

with their proper full replacement, and converting all the

characters to lower case"""

 text = text.lower()

Chapter 4 Developing a Chatbot

200

 text = re.sub(r"i'm", "i am", text)

 text = re.sub(r"he's", "he is", text)

 text = re.sub(r"she's", "she is", text)

 text = re.sub(r"it's", "it is", text)

 text = re.sub(r"that's", "that is", text)

 text = re.sub(r"what's", "that is", text)

 text = re.sub(r"where's", "where is", text)

 text = re.sub(r"how's", "how is", text)

 text = re.sub(r"\'ll", " will", text)

 text = re.sub(r"\'ve", " have", text)

 text = re.sub(r"\'re", " are", text)

 text = re.sub(r"\'d", " would", text)

 text = re.sub(r"\'re", " are", text)

 text = re.sub(r"won't", "will not", text)

 text = re.sub(r"can't", "cannot", text)

 text = re.sub(r"n't", " not", text)

 text = re.sub(r"n'", "ng", text)

 text = re.sub(r"'bout", "about", text)

 text = re.sub(r"'til", "until", text)

 text = re.sub(r"[-()\"#/@;:<>{}`+=~|.!?,']", "", text)

 return text

Applying the 'clean_text()' function on the set of Questions

and Answers

clean_questions = []

for question in ques:

 clean_questions.append(clean_text(question))

clean_answers = []

for answer in ans:

 clean_answers.append(clean_text(answer))

Chapter 4 Developing a Chatbot

201

Take a look at how the dataset appears after performing the cleaning

operation on both questions and answers. This cleaned dataset will be

fed as input to our model, to ensure that the inputs given to the model are

synchronous with each other in their structure and format:

limit = 0

for i in range(limit, limit+5):

 print(clean_questions[i])

 print(clean_answers[i])

 print()

> what does medicare ime stand for

according to the centers for medicare and medicaid services

website cmsgov ime stands for indirect medical education and is

in regards to payment calculation adjustments for a medicare

discharge of higher cost patients receiving care from teaching

hospitals relative to nonteaching hospitals i would recommend

contacting cms to get more information about ime

> is long term care insurance tax free

as a rule if you buy a tax qualified long term care insurance

policy as nearly all are these days and if you are paying the

premium yourself there are tax advantages you will receive if

you are self employed the entire premium is tax deductible if

working somewhere but paying your own premium for an individual

or group policy you can deduct the premium as a medical expense

under the same irs rules as apply to all medical expenses in

both situations you also receive the benefits from the policy

tax free if they are ever needed

> can husband drop wife from health insurance

can a spouse drop another spouse from health insurance usually

not without the spouses who is being dropped consent in

Chapter 4 Developing a Chatbot

202

writting most employers who have a quality hr department will

require a paper trial for any changes in an employees benefit

plan when changes are attempted that could come back to haunt

the employer steps are usually taken to comfirm something like

this

> is medicare run by the government

medicare part a and part b is provided by the federal

government for americans who are 65 and older who have worked

and paid social security taxes into the system medicare is

also available to people under the age of 65 that have certain

disabilities and people with endstage renal disease esrd

> is medicare run by the government

definitely it is ran by the center for medicare and medicaid

services a government agency given the responsibility of

overseeing and administering medicare and medicaid even medicare

advantage plans which are administered by private insurance

companies are strongly regulated by cmms they work along with

social security and jobs and family services to insure that

your benefits are available and properly administered

Analyze the questions and answers on the basis of the number of

words coming in for both and checking the percentiles for different

intervals.

lengths.describe(percentiles=[0,0.25,0.5,0.75,0.85,0.9,0.95,0.99])

> counts

 count 55974.000000

 mean 54.176725

Chapter 4 Developing a Chatbot

203

 std 67.638972

 min 2.000000

 0% 2.000000

 25% 7.000000

 50% 30.000000

 75% 78.000000

 85% 103.000000

 90% 126.000000

 95% 173.000000

 99% 314.000000

 max 1176.000000

As the data being fed to the model requires the full answer to the asked

question, and not a half-baked one, we must make sure that the questions-

and-answers combination we are selecting for the model training have a

sufficient number of words presented across both questions and answers,

thereby putting a minimum cap on the word count. At the same time,

we want the model to produce concise and to-the-point answers to the

questions, so we are putting the maximum cap on the count of words in

questions and answers as well.

Here, we are shortlisting only the text with a minimum of two words

and a maximum of 100 words.

Remove questions and answers that are shorter than 1 words

and longer than 100 words.

min_line_length, max_line_length = 2, 100

Filter out the questions that are too short/long

short_questions_temp, short_answers_temp = [], []

Chapter 4 Developing a Chatbot

204

i = 0

for question in clean_questions:

 �if len(question.split()) >= min_line_length and

len(question.split()) <= max_line_length:

 short_questions_temp.append(question)

 short_answers_temp.append(clean_answers[i])

 i += 1

Filter out the answers that are too short/long

short_questions, short_answers = [], []

i = 0

for answer in short_answers_temp:

 �if len(answer.split()) >= min_line_length and len(answer.

split()) <= max_line_length:

 short_answers.append(answer)

 short_questions.append(short_questions_temp[i])

 i += 1

Dataset stats after performing the preceding selection follow:

print("# of questions:", len(short_questions))

> # of questions: 19108

print("# of answers:", len(short_answers))

> # of answers: 19108

print("% of data used: {}%".format(round(len(short_questions)/

len(questions),4)*100))

> % of data used: 68.27%

The problem with directly feeding the text input is that the model

cannot handle variable length sequences, and the next big problem is the

vocabulary size. The decoder has to run softmax over a large vocabulary,

say, 20,000 words, for each word in the output. This will slow down the

training process. So, how do we deal with this problem? Padding.

Chapter 4 Developing a Chatbot

205

Padding is a way to convert a variable length sequence into a fixed

length sequence. Assuming we want the sentence “How are you?” to be of

a fixed length of, say, 10, after applying padding, this pair is converted to

[PAD, PAD, PAD, PAD, PAD, PAD, “?”, “you”, “are”, “How”].

def pad_sentence_batch(sentence_batch, vocab_to_int):

"""Including <PAD> token in sentence to make all batches of

same length"""

 �max_sentence = max([len(sentence) for sentence in sentence_

batch])

 �return [sentence + [vocab_to_int['<PAD>']] * (max_

sentence - len(sentence)) for sentence in sentence_batch]

The following code maps the words in the vocabulary of the newly

formed training dataset and assigns a frequency token to each of the

words.

Create a dictionary for the frequency of the vocabulary

vocab = {}

for question in short_questions:

 for word in question.split():

 if word not in vocab:

 vocab[word] = 1

 else:

 vocab[word] += 1

for answer in short_answers:

 for word in answer.split():

 if word not in vocab:

 vocab[word] = 1

 else:

 vocab[word] += 1

Chapter 4 Developing a Chatbot

206

As with the operations performed in Chapter 2, we will remove the

words that have low frequency in the training dataset, as such words that

won’t introduce any significant information to model.

Remove rare words from the vocabulary.

threshold = 1

count = 0

for k,v in vocab.items():

 if v >= threshold:

 count += 1

print("Size of total vocab:", len(vocab))

> Size of total vocab: 18983

print("Size of vocab we will use:", count)

> Size of vocab we will use: 18983

Create dictionaries to provide a unique integer for each

word.

questions_vocab_to_int = {}

word_num = 0

for word, count in vocab.items():

 if count >= threshold:

 questions_vocab_to_int[word] = word_num

 word_num += 1

answers_vocab_to_int = {}

word_num = 0

for word, count in vocab.items():

 if count >= threshold:

 answers_vocab_to_int[word] = word_num

 word_num += 1

Chapter 4 Developing a Chatbot

207

As there are multiple words or customized symbols being generated

by the decoder, we must add new tokens to the present vocabulary of the

training dataset and include these in the current dictionary as well. Basic

information regarding the four tokens included follows:

•	 GO: This is the same as the <start> token. It is the very

first token fed to the decoder, along with the thought

vector, to start token generation for the answer.

•	 EOS: “End of sentence,” the same as the <end> token

that signifies the end of the sentence or completion of

an answer. We can’t make use of punctuation marks

in place of this, as they have totally different meanings

with respect to the surrounding context. The EOS token

indicates the completion of an answer, as soon as it is

generated by the decoder.

•	 UNK: “Unknown” token. This is used to replace

words with much less frequency in the vocabulary,

if no additional check/shortlist has been made on

the minimum count of occurrence of words. For

example, the input sentence Insurance is highly

criticalll1090 will be converted to Insurance is

highly <UNK>.

•	 PAD: As the training data is processed in batches of

equal length, with all sequences in a batch also being

of the same length, the input sentences will be padded

with the PAD token on either of the required sides of the

sentence. For example, the input sentence Insurance

is highly criticalll1090 will be converted to

Insurance is highly criticalll1090 <PAD> <PAD>

<PAD> <PAD>, for a case in which a maximum length is

allowed.

Chapter 4 Developing a Chatbot

208

Figure 4-25 displays the usage of the user-defined tokens in the model

response (source: http://colah.github.io/). The code to add these

tokens follows.

Figure 4-25.  Sample encoder-decoder with usage of tokens

Adding unique tokens to the present vocabulary

codes = ['<PAD>','<EOS>','<UNK>','<GO>']

for code in codes:

 �questions_vocab_to_int[code] = len(questions_vocab_to_

int)+1

for code in codes:

 answers_vocab_to_int[code] = len(answers_vocab_to_int)+1

Creating dictionary so as to map the integers to their

respective words, inverse of vocab_to_int

questions_int_to_vocab = {v_i: v for v, v_i in

questions_vocab_to_int.items()}

answers_int_to_vocab = {v_i: v for v, v_i in

answers_vocab_to_int.items()}

print(len(questions_vocab_to_int))

> 18987

print(len(questions_int_to_vocab))

> 18987

Chapter 4 Developing a Chatbot

http://colah.github.io/

209

print(len(answers_vocab_to_int))

> 18987

print(len(answers_int_to_vocab))

> 18987

We try to reduce the effective vocabulary size, which will speed up

both training and test steps, by simply limiting it to a small number and

replacing words outside the vocabulary with a UNK tag. Now, both training

and test time can be significantly reduced, but this is obviously not ideal,

because we may generate outputs with lots of UNK, but for now, we ensured

that the percentage of these tokens is low enough that we won’t face any

serious issue.

Also, before we feed our data into the model, we must convert every

word in the sentence to a unique integer. This can be done by making a

vocabulary consisting of all the words and assigning unique numbers to

them (one-hot encoded vector).

Convert the text to integers, and replacing any of the words

not present in the respective vocabulary with <UNK> token

questions_int = []

for question in short_questions:

 ints = []

 for word in question.split():

 if word not in questions_vocab_to_int:

 ints.append(questions_vocab_to_int['<UNK>'])

 else:

 ints.append(questions_vocab_to_int[word])

 questions_int.append(ints)

answers_int = []

for answer in short_answers:

 ints = []

Chapter 4 Developing a Chatbot

210

 for word in answer.split():

 if word not in answers_vocab_to_int:

 ints.append(answers_vocab_to_int['<UNK>'])

 else:

 ints.append(answers_vocab_to_int[word])

 answers_int.append(ints)

Further check on the count of words being replaced with the <UNK>

token. As we have already done the preprocessing step with the removal of

the words with low frequency in the vocabulary, none of the words will be

replaced by the <UNK> token. It is recommended, however, to include them

in a general script.

Calculate what percentage of all words have been replaced

with <UNK>

word_count = 0

unk_count = 0

for question in questions_int:

 for word in question:

 if word == questions_vocab_to_int["<UNK>"]:

 unk_count += 1

 word_count += 1

for answer in answers_int:

 for word in answer:

 if word == answers_vocab_to_int["<UNK>"]:

 unk_count += 1

 word_count += 1

unk_ratio = round(unk_count/word_count,4)*100

print("Total number of words:", word_count)

> Total number of words: 1450824

Chapter 4 Developing a Chatbot

211

print("Number of times <UNK> is used:", unk_count)

> Number of times <UNK> is used: 0

print("Percent of words that are <UNK>: {}%".format(round(unk_

ratio,3)))

> Percent of words that are <UNK>: 0.0%

Create ordered sets of the questions and answers on the basis of the

number of words in the questions. Sorting the text this way will help in the

padding approach we will be using later.

�Next, sorting the questions and answers on basis of the

length of the questions.

�This exercise will reduce the amount of padding being done

during the training process.

�This will speed up the training process and reduce the

training loss.

sorted_questions = []

short_questions1 = []

sorted_answers = []

short_answers1= []

for length in range(1, max_line_length+1):

 for i in enumerate(questions_int):

 if len(i[1]) == length:

 sorted_questions.append(questions_int[i[0]])

 short_questions1.append(short_questions[i[0]])

 sorted_answers.append(answers_int[i[0]])

 short_answers1.append(short_answers[i[0]])

print(len(sorted_questions))

> 19108

print(len(sorted_answers))

Chapter 4 Developing a Chatbot

212

> 19108

print(len(short_questions1))

> 19108

print(len(short_answers1))

> 19108

print()

for i in range(3):

 print(sorted_questions[i])

 print(sorted_answers[i])

 print(short_questions1[i])

 print(short_answers1[i])

 print()

> [219, 13]

[219, 13, 58, 2310, 3636, 1384, 3365...]

why can

why can a simple question but yet so complex why can someone

do this or why can someone do that i have often pondered for

hours to come up with the answer and i believe after years of

thoughtprovoking consultation with friends and relativesi have

the answer to the question why can the answer why not

[133, 479, 56]

[242, 4123, 3646, 282, 306, 56, ...]

who governs annuities

if youre asking about all annuities then here are two governing

bodies for variable annuities finra and the department of

insurance variable products like variable annuities are registered

products and come under the oversight of finras jurisdiction but

because it is an annuity insurance product as well it falls under

the department of insurance non finra annuities are governed by

the department of insurance in each state

Chapter 4 Developing a Chatbot

213

[0, 201, 56]

[29, 202, 6, 29, 10, 3602, 58, 36, ...]

what are annuities

an annuity is an insurance product a life insurance policy

protects you from dying too soon an annuity protects you from

living too long annuities are complex basically in exchange for

a sum of money either immediate or in installments the company

will pay the annuitant a specific amount normally monthly for

the life of the annuitant there are many modifications of this

basic form annuities are taxed differently from other programs

Check a random question answer from the sorted pairs.

print(sorted_questions[1547])

> [37, 6, 36, 10, 466]

print(short_questions1[1547])

> how is life insurance used

print(sorted_answers[1547])

> [8, 36, 10, 6, 466, 26, 626, 58, 199, 200, 1130, 58, 3512,

31, 105, 208, 601, 10, 6, 466, 26, 626, ...

print(short_answers1[1547])

> term life insurance is used to provide a death benefit

during a specified period of time permanent insurance is used

to provide a death benefit at any time the policy is in force

in order to accomplish this and have level premiums policies

accumulate extra funds these funds are designed to allow the

policy to meet its lifelong obligations however these funds

accumulate tax free and give the policy the potential of

solving many problems from funding education to providing long

term care

Chapter 4 Developing a Chatbot

214

Now is the time to define the helper functions that will be used by the

seq2seq model. A few of these functions have been drawn from the GitHub

code repository (https://github.com/Currie32/Chatbot-from-Movie-

Dialogue), which has a similar application.

Define the function to create placeholders for our model’s inputs.

def model_inputs():

 �input_data = tf.placeholder(tf.int32, [None, None],

name='input')

 �targets = tf.placeholder(tf.int32, [None, None],

name='targets')

 lr = tf.placeholder(tf.float32, name='learning_rate')

 keep_prob = tf.placeholder(tf.float32, name='keep_prob')

 return input_data, targets, lr, keep_prob

Delete the last word ID in each of the batches and append the <GO>

token at the start of each of the batches.

def process_encoding_input(target_data, vocab_to_int, batch_

size):

 �ending = tf.strided_slice(target_data, [0, 0],

[batch_size, -1], [1, 1])

 �dec_input = tf.concat([tf.fill([batch_size, 1], vocab_to_

int['<GO>']), ending], 1)

 return dec_input

The normal RNN takes care of past states (preserves them into a

memory), but what if you want to somehow include future also into the

context. By using bidirectional RNNs, we can connect two hidden layers of

opposite directions to the same output. By this structure, the output layer

can get information from past and future states.

Chapter 4 Developing a Chatbot

https://github.com/Currie32/Chatbot-from-Movie-Dialogue
https://github.com/Currie32/Chatbot-from-Movie-Dialogue

215

Thus, we define the encoding layer of the seq2seq model with LSTM

cells and a bidirectional encoder. The encoder layer’s state, i.e., weights, is

taken as an input to the decoding layer.

def encoding_layer(rnn_inputs, rnn_size, num_layers, keep_prob,

sequence_length):

 lstm = tf.contrib.rnn.BasicLSTMCell(rnn_size)

 �drop = tf.contrib.rnn.DropoutWrapper(lstm, input_keep_prob

= keep_prob)

 �enc_cell = tf.contrib.rnn.MultiRNNCell([drop] * num_layers)

 �_, enc_state = tf.nn.bidirectional_dynamic_rnn(cell_fw =

enc_cell, cell_bw = enc_cell, sequence_length = sequence_

length, inputs = rnn_inputs, dtype=tf.float32)

 return enc_state

The attention mechanism, explained in Chapter 3, has been used. This

will reduce the generated loss significantly. The attention states are set to

0, to maximize the model performance, and for the attention mechanism,

a lesser expensive Bahdanau attention is used. Refer to the paper “Effective

Approaches to Attention-based Neural Machine Translation” (https://

arxiv.org/pdf/1508.04025.pdf) for a comparison of the Luong and

Bahdanau attention techniques.

def decoding_layer_train(encoder_state, dec_cell, dec_embed_

input, sequence_length, decoding_scope, output_fn, keep_prob,

batch_size):

 �attention_states = tf.zeros([batch_size, 1, dec_cell.

output_size])

 �att_keys, att_vals, att_score_fn, att_construct_fn =

tf.contrib.seq2seq.prepare_attention(attention_states,

attention_option="bahdanau", num_units=dec_cell.output_size)

Chapter 4 Developing a Chatbot

https://arxiv.org/pdf/1508.04025.pdf
https://arxiv.org/pdf/1508.04025.pdf

216

 �train_decoder_fn = tf.contrib.seq2seq.attention_decoder_fn_

train(encoder_state[0], att_keys, att_vals, att_score_fn,

att_construct_fn, name = "attn_dec_train")

 �train_pred, _, _ = tf.contrib.seq2seq.dynamic_rnn_

decoder(dec_cell, train_decoder_fn, dec_embed_input,

sequence_length, scope=decoding_scope)

 train_pred_drop = tf.nn.dropout(train_pred, keep_prob)

 return output_fn(train_pred_drop)

The decoding_layer_infer() function creates the proper responses to

the queried questions. The function makes use of the additional attention

parameters, to predict the words in the answers, and it is not coupled with

any dropout, as during the final scoring phase. Here, while generating

answers, dropout is not taken into consideration, so as to make use of all

the neurons present across the network.

def decoding_layer_infer(encoder_state, dec_cell, dec_

embeddings, start_of_sequence_id, end_of_sequence_id,

 �maximum_length, vocab_size, decoding_

scope, output_fn, keep_prob, batch_

size):

 �attention_states = tf.zeros([batch_size, 1, dec_cell.

output_size])

 �att_keys, att_vals, att_score_fn, att_construct_fn =

tf.contrib.seq2seq.prepare_attention(attention_states,

attention_option="bahdanau", num_units=dec_cell.output_

size)

Chapter 4 Developing a Chatbot

217

 �infer_decoder_fn = tf.contrib.seq2seq.attention_decoder_

fn_inference(output_fn, encoder_state[0], att_keys, att_

vals, att_score_fn, att_construct_fn,

 �dec_embeddings, start_of_sequence_id,

end_of_sequence_id, maximum_length,

vocab_size, name = "attn_dec_inf")

 �infer_logits, _, _ = tf.contrib.seq2seq.dynamic_rnn_

decoder(dec_cell, infer_decoder_fn, scope=decoding_scope)

 return infer_logits

The decoding_layer() function creates the inference and training

logits and initializes the weights and biases with the given standard

deviation, using the truncated normal distribution.

def decoding_layer(dec_embed_input, dec_embeddings, encoder_

state, vocab_size, sequence_length, rnn_size,

 �num_layers, vocab_to_int, keep_prob, batch_

size):

 with tf.variable_scope("decoding") as decoding_scope:

 lstm = tf.contrib.rnn.BasicLSTMCell(rnn_size)

 �drop = tf.contrib.rnn.DropoutWrapper(lstm, input_keep_

prob = keep_prob)

 �dec_cell = tf.contrib.rnn.MultiRNNCell([drop] * num_

layers)

 weights = tf.truncated_normal_initializer(stddev=0.1)

 biases = tf.zeros_initializer()

 �output_fn = lambda x: tf.contrib.layers.fully_

connected(x, vocab_size, None, scope=decoding_scope,

weights_initializer = weights, biases_initializer =

biases)

Chapter 4 Developing a Chatbot

218

 �train_logits = decoding_layer_train(encoder_state,

dec_cell, dec_embed_input, sequence_length, decoding_

scope, output_fn, keep_prob, batch_size)

 decoding_scope.reuse_variables()

 �infer_logits = decoding_layer_infer(encoder_state,

dec_cell, dec_embeddings, vocab_to_int['<GO>'], vocab_

to_int['<EOS>'],

 �sequence_length - 1, vocab_size, decoding_

scope, output_fn, keep_prob, batch_size)

 return train_logits, infer_logits

The seq2seq_model() function has been used to put all the previously

defined functions together and also to initialize the embeddings using

random uniform distribution. The function will be used in the final graph

to compute the training and inference logits.

def seq2seq_model(input_data, target_data, keep_prob, batch_

size, sequence_length, answers_vocab_size,

 �questions_vocab_size, enc_embedding_size,

dec_embedding_size, rnn_size, num_layers,

 questions_vocab_to_int):

 �enc_embed_input = tf.contrib.layers.embed_sequence(input_

data, answers_vocab_size+1, enc_embedding_size,

initializer = tf.random_uniform_initializer(0,1))

 �enc_state = encoding_layer(enc_embed_input, rnn_size,

num_layers, keep_prob, sequence_length)

 �dec_input = process_encoding_input(target_data,

questions_vocab_to_int, batch_size)

Chapter 4 Developing a Chatbot

219

 �dec_embeddings = tf.Variable(tf.random_uniform([questions_

vocab_size+1, dec_embedding_size], 0, 1))

 �dec_embed_input = tf.nn.embedding_lookup(dec_embeddings,

dec_input)

 �train_logits, infer_logits = decoding_layer(dec_embed_

input, dec_embeddings, enc_state, questions_vocab_size,

 �sequence_length, rnn_size,

num_layers, questions_vocab_to_

int, keep_prob, batch_size)

 return train_logits, infer_logits

When the total number of training instances (N) is large, a small

number of training instances (B<<N), which constitute a batch, can be

used in one iteration, to estimate the gradient of the loss function and

update the parameters of the network.

Note I t takes n (=N/B) iterations to use the entire training data
once. This constitutes an epoch. So, the total number of times the
parameters get updated is (N/B)*E, where E is the number of epochs.

Finally, we have defined our seq2seq model that will take the encoding

and decoding part and train them simultaneously. Now, set the following

model parameters and start the session for optimization.

•	 Epoch: A single pass through the entire training set

•	 Batch size: Simultaneous number of sentences in input

•	 Rnn_size: Number of nodes in hidden layer

•	 Num_layers: Number of hidden layers

•	 Embedding size: Embedding dimension

Chapter 4 Developing a Chatbot

220

•	 Learning rate: How quickly a network abandons old

beliefs for new ones

•	 Keep probability: Used to control the dropout.

Dropout is a simple technique to prevent over-fitting. It

essentially drops some of the unit activations in a layer,

by making them zero.

Setting the model parameters

epochs = 50

batch_size = 64

rnn_size = 512

num_layers = 2

encoding_embedding_size = 512

decoding_embedding_size = 512

learning_rate = 0.005

learning_rate_decay = 0.9

min_learning_rate = 0.0001

keep_probability = 0.75

tf.reset_default_graph()

Starting the session

sess = tf.InteractiveSession()

Loading the model inputs

input_data, targets, lr, keep_prob = model_inputs()

Sequence length is max_line_length for each batch

sequence_length = tf.placeholder_with_default(max_line_length,

None, name='sequence_length')

Finding shape of the input data for sequence_loss

input_shape = tf.shape(input_data)

Create the training and inference logits

Chapter 4 Developing a Chatbot

221

train_logits, inference_logits = seq2seq_model(

tf.reverse(input_data, [-1]), targets, keep_prob, batch_size,

sequence_length, len(answers_vocab_to_int),

 len(questions_vocab_to_int), encoding_embedding_size,

decoding_embedding_size, rnn_size, num_layers, questions_

vocab_to_int)

Create inference logits tensor

tf.identity(inference_logits, 'logits')

with tf.name_scope("optimization"):

 # Calculating Loss function

 �cost = tf.contrib.seq2seq.sequence_loss(train_logits,

targets, tf.ones([input_shape[0], sequence_length]))

 # Using Adam Optimizer

 optimizer = tf.train.AdamOptimizer(learning_rate)

 �# Performing Gradient Clipping to handle the vanishing

gradient problem

 gradients = optimizer.compute_gradients(cost)

 �capped_gradients = [(tf.clip_by_value(grad, -5., 5.), var)

for grad, var in gradients if grad is not None]

 train_op = optimizer.apply_gradients(capped_gradients)

The batch_data() function helps to create batches for both questions

and answers.

def batch_data(questions, answers, batch_size):

 for batch_i in range(0, len(questions)//batch_size):

 start_i = batch_i * batch_size

 �questions_batch = questions[start_i:start_i + batch_

size]

Chapter 4 Developing a Chatbot

222

 answers_batch = answers[start_i:start_i + batch_size]

 �pad_questions_batch = np.array(pad_sentence_

batch(questions_batch, questions_vocab_to_int))

 �pad_answers_batch = np.array(pad_sentence_

batch(answers_batch, answers_vocab_to_int))

 yield pad_questions_batch, pad_answers_batch

Hold 15 percent of the total dataset for validation, and rest 85 percent

to train the model.

Creating train and validation datasets for both questions and

answers, with 15% to validation

train_valid_split = int(len(sorted_questions)*0.15)

train_questions = sorted_questions[train_valid_split:]

train_answers = sorted_answers[train_valid_split:]

valid_questions = sorted_questions[:train_valid_split]

valid_answers = sorted_answers[:train_valid_split]

print(len(train_questions))

print(len(valid_questions))

Set the training parameters and initializing the declared variables.

display_step = 20 # �Check training loss after every 20

batches

stop_early = 0

stop = 5 # �If the validation loss decreases after

5 consecutive checks, stop training

validation_check = ((len(train_questions))//batch_size//2)-

1 # Counter for checking validation loss

total_train_loss = 0 # �Record the training loss for each

display step

Chapter 4 Developing a Chatbot

223

summary_valid_loss = [] # �Record the validation loss for

saving improvements in the model

checkpoint= "./best_model.ckpt" # �creating the checkpoint

file in the current

directory

sess.run(tf.global_variables_initializer())

Train the model.

for epoch_i in range(1, epochs+1):

 for batch_i, (questions_batch, answers_batch) in enumerate(

 �batch_data(train_questions, train_answers, batch_

size)):

 start_time = time.time()

 _, loss = sess.run(

 [train_op, cost],

 �{input_data: questions_batch, targets: answers_

batch, lr: learning_rate,

 �sequence_length: answers_batch.shape[1], keep_

prob: keep_probability})

 total_train_loss += loss

 end_time = time.time()

 batch_time = end_time - start_time

 if batch_i % display_step == 0:

 �print('Epoch {:>3}/{} Batch {:>4}/{} - Loss:

{:>6.3f}, Seconds: {:>4.2f}'

 .format(epoch_i, epochs, batch_i,

 �len(train_questions) // batch_size,

total_train_loss / display_step,

 batch_time*display_step))

 total_train_loss = 0

Chapter 4 Developing a Chatbot

224

 if batch_i % validation_check == 0 and batch_i > 0:

 total_valid_loss = 0

 start_time = time.time()

 �for batch_ii, (questions_batch, answers_batch)

in enumerate(batch_data(valid_questions, valid_

answers, batch_size)):

 valid_loss = sess.run(

 �cost, {input_data: questions_batch, targets:

answers_batch, lr: learning_rate,

 �sequence_length: answers_batch.shape[1],

keep_prob: 1})

 total_valid_loss += valid_loss

 end_time = time.time()

 batch_time = end_time - start_time

 �avg_valid_loss = total_valid_loss / (len(valid_

questions) / batch_size)

 �print('Valid Loss: {:>6.3f}, Seconds: {:>5.2f}'.

format(avg_valid_loss, batch_time))

 �# Reduce learning rate, but not below its minimum

value

 learning_rate *= learning_rate_decay

 if learning_rate < min_learning_rate:

 learning_rate = min_learning_rate

 summary_valid_loss.append(avg_valid_loss)

 if avg_valid_loss <= min(summary_valid_loss):

 print('New Record!')

 stop_early = 0

 saver = tf.train.Saver()

 saver.save(sess, checkpoint)

Chapter 4 Developing a Chatbot

225

 else:

 print("No Improvement.")

 stop_early += 1

 if stop_early == stop:

 break

 if stop_early == stop:

 print("Stopping Training.")

 break

> Epoch 1/50 Batch 0/253 - Loss: 0.494, Seconds: 1060.06

> Epoch 1/50 Batch 20/253 - Loss: 8.450, Seconds: 905.71

> Epoch 1/50 Batch 40/253 - Loss: 4.540, Seconds: 933.88

> Epoch 1/50 Batch 60/253 - Loss: 4.401, Seconds: 740.15

> Epoch 1/50 Batch 80/253 - Loss: 4.453, Seconds: 831.04

> Epoch 1/50 Batch 100/253 - Loss: 4.338, Seconds: 774.67

> Epoch 1/50 Batch 120/253 - Loss: 4.295, Seconds: 832.49

Valid Loss: 4.091, Seconds: 675.05

New Record!

> Epoch 1/50 Batch 140/253 - Loss: 4.255, Seconds: 822.40

> Epoch 1/50 Batch 160/253 - Loss: 4.232, Seconds: 888.85

> Epoch 1/50 Batch 180/253 - Loss: 4.168, Seconds: 858.95

> Epoch 1/50 Batch 200/253 - Loss: 4.093, Seconds: 849.23

> Epoch 1/50 Batch 220/253 - Loss: 4.034, Seconds: 846.77

> Epoch 1/50 Batch 240/253 - Loss: 4.005, Seconds: 809.77

Valid Loss: 3.903, Seconds: 509.83

New Record!

...

...

...

...

...

Chapter 4 Developing a Chatbot

226

Define the question_to_seq() function to take the input question

either from the user, or pick a random question from the dataset and

convert it to the integer format to be used by the model.

def question_to_seq(question, vocab_to_int):

 """Creating the question to be taken as input by the model"""

 question = clean_text(question)

 �return [vocab_to_int.get(word, vocab_to_int['<UNK>']) for

word in question.split()]

Now is the time to get fruits from the tree planted at the start of this

section. So, here we will check the output of our seq2seq model by giving

a random question as input. The answer will be generated by the trained

model.

Selecting a random question from the full lot

random = np.random.choice(len(short_questions))

input_question = short_questions[random]

print(input_question)

> what exactly does adjustable life insurance mean

Transforming the selected question in the desired format of

IDs and Words

input_question = question_to_seq(input_question, questions_

vocab_to_int)

Applying Padding to the question to reach the max_line_length

input_question = input_question + [questions_vocab_to_

int["<PAD>"]] * (max_line_length - len(input_question))

Correcting the shape of input_data, by adding the empty questions

batch_shell = np.zeros((batch_size, max_line_length))

Chapter 4 Developing a Chatbot

227

Setting the input question as the first question

batch_shell[0] = input_question

Passing input question to the model

answer_logits = sess.run(inference_logits, {input_data: batch_

shell, keep_prob: 1.0})[0]

Removing padding from Question and Answer both

pad_q = questions_vocab_to_int["<PAD>"]

pad_a = answers_vocab_to_int["<PAD>"]

Printing the final Answer output by the model

print('Question')

print('Word Ids: {}'.format([i for i in input_question if i !=

pad_q]))

print('Input Words: {}'.format([questions_int_to_vocab[i] for i

in input_question if i != pad_q]))

print('\n')

> Question

> Word Ids: [17288, 16123, 9831, 13347, 1694, 11205, 7655]

> Input Words: ['what', 'exactly', 'does', 'adjustable',

'life', 'insurance', 'mean']

print('\nAnswer')

print('Word Ids: {}'.format([i for i in np.argmax(answer_

logits, 1) if i != pad_a]))

print('Response Words: {}'.format([answers_int_to_vocab[i] for

i in np.argmax(answer_logits, 1) if i != pad_a]))

print('\n')

Chapter 4 Developing a Chatbot

228

print(' '.join(([questions_int_to_vocab[i] for i in input_

question if i != pad_q])))

print(' '.join(([answers_int_to_vocab[i] for i in

np.argmax(answer_logits, 1) if i != pad_a])))

> Answer

> Word Ids: [10130, 10344, 13123, 2313, 1133, 1694,

11205, 6968, 966, 10130, 3030, 2313, 5964, 10561, 10130, 9158,

17702, 13344, 13278, 10130, 7457, 14167, 17931, 14479, 10130,

6968, 9158, 8521, 10130, 9158, 17702, 12230, 10130, 6968, 8679,

1688, 10130, 7457, 14167, 17931, 9472, 10130, 9158, 12230,

10130, 6968, 8679, 1688, 10130, 7457, 14167, 17931, 18293,

10130, 16405, 16640, 6396, 3613, 2313, 10130, 6968, 10130,

6968, 8679, 1688, 10130, 7457, 14167, 17931, 18293, 10130,

16405, 16640, 6396, 3613, 10628, 13040, 10130, 6968]

> Response Words: ['the', 'face', 'value', 'of', 'a', 'life',

'insurance', 'policy', 'is', 'the', 'amount', 'of', 'time',

'that', 'the', 'insured', 'person', 'passes', 'with', 'the',

'death', 'benefit', 'proceeds', 'from', 'the', 'policy',

'insured', 'if', 'the', 'insured', 'person', 'dies', 'the',

'policy', 'will', 'pay', 'the', 'death', 'benefit', 'proceeds',

'whenever', 'the', 'insured', 'dies', 'the', 'policy', 'will',

'pay', 'the', 'death', 'benefit', 'proceeds', 'within', 'the',

'two', 'year', 'contestability', 'period', 'of', 'the',

'policy', 'the', 'policy', 'will', 'pay', 'the', 'death',

'benefit', 'proceeds', 'within', 'the', 'two', 'year',

'contestability', 'period', 'specified', 'in', 'the', 'policy']

> what exactly does adjustable life insurance mean

> the face value of a life insurance policy is the amount of

time that the insured person passes with the death benefit

Chapter 4 Developing a Chatbot

229

proceeds from the policy insured if the insured person dies

the policy will pay the death benefit proceeds whenever the

insured dies the policy will pay the death benefit proceeds

within the two year contestability period of the policy the

policy will pay the death benefit proceeds within the two year

contestability period specified in the policy

The last paragraph is the output of the question “What exactly does

adjustable life insurance mean?” that we have put into the model. Well,

it does not sound grammatically correct, but that is a whole different

issue that could be dealt in a better way by training the model with more

datasets and refined embeddings.

Assuming there is no major update happening in the conversation

text over time, one can make use of the trained model object and imbibe

it in the chatbot application, to produce beautiful replies to the questions

posed by the end user of the chatbot. This has been left as an exercise for

the reader. Enjoy conversing with your own chatbot! For additional fun,

you can try training the model on personal chats with your friends, to see

whether your chatbot is able to resemble of your loved ones successfully

or not. Now you know that all that is needed is the conversation text file of

two persons to create a fully functional chatbot.

�Next Steps
This chapter made use of the concepts explained in Chapter 3 and helped

in making a chatbot and training a text-generating model that can be

further embedded to the Facebook Messenger chatbot. In Chapter 5,

we will present an implementation of the sentiment classification taken

from a paper released at the 5th International Conference on Learning

Representations (ICLR 2017). We recommend that our readers replicate

the examples in the chapter and explore different use cases of text

generation techniques on the diverse set of available public datasets.

Chapter 4 Developing a Chatbot

231© Palash Goyal, Sumit Pandey, Karan Jain 2018
P. Goyal, et al., Deep Learning for Natural Language Processing,
https://doi.org/10.1007/978-1-4842-3685-7_5

CHAPTER 5

Research Paper
Implementation:
Sentiment
Classification
Chapter 5 concludes this book with the implementation of sentiment

analysis from a research paper. The first section of this chapter details

the approach mentioned, followed by a second section devoted to its

implementation, using TensorFlow. To ensure there is a difference

between the actual paper we used and our results, we have selected a

different dataset for test purposes, so the accuracy of our results may vary

from those presented in the actual research paper.

The dataset being used is available for public use and is included as

a sample dataset in the Keras library. This chapter links the theories and

practical examples shared in Chapters 2 and 3 and creates an additional

layer, by using the modeling approaches followed in the research paper.

Our implementation exercise owes its success to the paper

“A Structured Self-attentive Sentence Embedding” (https://arxiv.

org/pdf/1703.03130.pdf), presented at ICLR 2017 (5th International

Conference on Learning Representations) by a team of research scientists

https://arxiv.org/pdf/1703.03130.pdf
https://arxiv.org/pdf/1703.03130.pdf

232

from IBM Watson and the Montreal Institute for Learning Algorithms

(MILA) of the University of Montreal (Université de Montréal) and

subsequently published.

The paper suggests a new modeling technique to extract an

interpretable sentence embedding, by introducing a self-attention

mechanism. The model uses a two-dimensional matrix to represent the

sentence embedding, in place of a vector, in which each of the matrices

represents a different segment of the sentence. In addition, a self-

attention mechanism and a unique regularization term are proposed.

The embedding method proposed can be visualized easily, to figure out

what specific parts of the sentence ultimately are being encoded into the

sentence embedding. The research conducted shares the performance

evaluation of the proposed model on three different types of tasks.

•	 Author profiling

•	 Sentiment classification

•	 Textual entailment

The model has turned out to be quite promising, compared to other

current sentence-embedding techniques, for all three of the preceding

types of tasks.

�Self-Attentive Sentence Embedding
Various supervised and unsupervised sentence-embedding models

have been proposed previously, such as skip-thought vectors, paragraph

vectors, recursive autoencoders, sequential denoising autoencoders,

FastSent, etc., but the proposed method in the paper concerned uses a new

self-attention mechanism that allows it to extract different aspects of the

sentence into multiple vector representations. The matrix structure, with

the penalization term, gives the model a greater capacity to disentangle the

latent information from the input sentence.

Chapter 5 Research Paper Implementation: Sentiment Classification

http://www.umontreal.ca/en/

233

Moreover, the linguistic structures are not used to guide the sentence

representation model. Additionally, using this method, one can easily

create visualizations that help in the interpretation of the learned

representations.

The skip-thought vector is an unsupervised learning of a generic

distributed sentence encoder. Using the continuity of text from books,

an encoder-decoder model is trained to attempt to reconstruct the

surrounding sentences of an encoded passage. Sentences that share

semantic and syntactic properties are thus mapped to similar vector

representations. For further information related to this, refer to the original

paper, available at https://arxiv.org/abs/1506.06726.

A paragraph vector is an unsupervised algorithm that learns fixed-

length feature representations from variable-length pieces of texts, such

as sentences, paragraphs, and documents. The algorithm represents

each document by a dense vector that is trained to predict words in the

document. Empirical results presented in the paper show that paragraph

vectors outperform bag-of-words models, as well as other techniques for

text representations. A more detailed explanation on this is included in the

original research paper, available at https://arxiv.org/abs/1405.4053.

Figure 5-1 shows a sample model structure used to showcase the

sentence-embedding model when combined with a fully connected and

softmax layer for sentiment analysis.

Note  Blue shapes stand for hidden representations, and red shapes
stand for weights, annotations, or input/output.

Chapter 5 Research Paper Implementation: Sentiment Classification

https://arxiv.org/abs/1506.06726
https://arxiv.org/abs/1405.4053

234

�Proposed Approach
This section covers the proposed self-attentive sentence-embedding

model and the regularization term proposed for it. Both concepts are

explained in separate subsections and are like those mentioned in the

Figure 5-1.  The sentence-embedding model is computed as multiple
weighted sums of hidden states from a bidirectional long short-term
memory (LSTM) (h1, …, hn)

Chapter 5 Research Paper Implementation: Sentiment Classification

235

actual paper. The reader has the option of referring to the original paper

for additional information, although the content presented in this section

is sufficient for a general understanding of the proposed approaches.

The proposed attention mechanism is only performed once, and

it focuses directly on the semantics that make sense for discriminating

the targets. It is less focused on relations between words, but more so

on the semantics of the whole sentence that each word contributes to.

Computation-wise, the method scales up well with the sentence length,

as it doesn’t require the LSTM to compute an annotation vector over all its

previous words.

�Model

The proposed sentence-embedding model in “A Structured Self-attentive

Sentence Embedding” consists of two parts:

•	 Bidirectional LSTM

•	 Self-attention mechanism

The self-attention mechanism provides a set of summation weight

vectors for the LSTM hidden states (Figure 5-2).

Chapter 5 Research Paper Implementation: Sentiment Classification

236

The set of summation weight vectors is dotted with the LSTM hidden

states, and the resulting weighted LSTM hidden states are considered as

an embedding for the sentence. It can be combined with, for example, a

multilayer perceptron (MLP), to be applied on a downstream application.

The figures shown belong to an example in which the proposed sentence-

embedding model is applied to sentiment analysis, combined with a fully

connected layer and a softmax layer.

Figure 5-2.  The summation weights (Ai1, …, Ain) are computed as
illustrated

Chapter 5 Research Paper Implementation: Sentiment Classification

237

Note F or the sentiment analysis exercise, the figures used in the
preceding illustration will be sufficient to describe the desired model.

(Optional)  In addition to using a fully connected layer, an approach
that prunes weight connections by utilizing the two-dimensional
structure of matrix sentence embedding has also been proposed in
the paper and has been detailed in its Appendix A.

Suppose we have a sentence that has n tokens, represented in a

sequence of word embeddings.

S   w w wn1 2, , ,

Here, wi is a vector standing for a d dimensional word embedding for

the i-th word in the sentence. S is thus a sequence represented as a

two-dimensional matrix, which concatenates all the word embeddings

together. S should have the shape n-by-d.

Now, each entry in the sequence S is independent of the other. To gain

some dependency between adjacent words within a single sentence, we

use a bidirectional LSTM to process the sentence

h LSTM w ht t t

�� � ������� � ����
   , 1

h LSTM w ht t t

�� � ������� � ����
   , 1

We then concatenate each ht
��

 with ht
��

, to obtain a hidden state ht. Let the

hidden unit number for each unidirectional LSTM be u. For simplicity, we

note all the n ht s as H, which have the size n-by-2u.

H = (h1, h2, …, hn)

Chapter 5 Research Paper Implementation: Sentiment Classification

238

Our aim is to encode a variable-length sentence into a fixed-size

embedding. We achieve that by choosing a linear combination of the n

LSTM hidden vectors in H. Computing the linear combination requires the

self-attention mechanism. The attention mechanism takes all of the LSTM

hidden states H as input and outputs a vector of weights a, as follows:

a softmax w HT   Ws2 tanh s1

Here, Ws1 is a weight matrix with a shape of da-by-2u, and Ws2 is a

vector of parameters with size da, where da is a hyperparameter we can set

arbitrarily. Because H is sized n-by-2u, the annotation vector a will have

a size n. The softmax() ensures all the computed weights add up to 1. We

then add up the LSTM hidden states H according to the weights provided

by a, to get a vector representation m of the input sentence.

This vector representation usually focuses on a specific component

of the sentence, such as a special set of related words or phrases. So,

it is expected to reflect an aspect, or component, of the semantics in a

sentence. However, there can be multiple components in a sentence that

together form the overall semantics of it, especially for long sentences.

(For example, two clauses linked together by an “and”) Thus, to represent

the overall semantics of the sentence, we need multiple m’s that focus on

different parts of the sentence. Thus, we must perform multiple hops of

attention. Say we want r different parts to be extracted from the sentence.

For this, we extend the Ws2 into an r-by-da matrix, note it as Ws2, and the

resulting annotation vector a becomes annotation matrix A.

Formally,

A softmax W W Hs s
T   2 tanh 1

Chapter 5 Research Paper Implementation: Sentiment Classification

239

Here, the softmax() is performed along the second dimension of its

input. We can deem the preceding equation as a two-layer MLP without

bias, whose hidden unit numbers is da, and whose parameters are {Ws2, Ws1}.

The embedding vector m then becomes an r-by-2u embedding

matrix M. We compute the r weighted sums by multiplying the annotation

matrix A and LSTM hidden states H. The resulting matrix is the sentence

embedding:

M = A H

�Penalization Term

The embedding matrix M can suffer from redundancy problems, if the

attention mechanism always provides similar summation weights for all

the r hops. Thus, we need a penalization term, to encourage the diversity

of summation weight vectors across different hops of attention.

The best way to evaluate the diversity is definitely the Kullback Leibler

divergence (KL) between any two of the summation weight vectors.

KL divergence is used to measure the difference between two probability

distributions over the same variable x. It is related to cross entropy and

information divergence. For the given two probability distributions, p(x) and

q(x), KL divergence serves as a nonsymmetric measure of the divergence

of q(x) from p(x), is denoted as DKL(p(x), q(x)), and is a measure of the

information lost when q(x) is used to approximate p(x).

For a discrete random variable x, if p(x) and q(x) are its two probability

distributions, then both p(x) and q(x) add up to 1, and p(x) > 0 and q(x) > 0

for any x in X.

D p x q x p x
p x

q xKL
x X

         
 

, ln

Chapter 5 Research Paper Implementation: Sentiment Classification

240

where,

D p x q xKL     , 0,

D P QKL ||   0, if and only if, P = Q

The KL divergence measures the expected number of extra bits

required to code samples from p(x) when using a code based on q(x),

rather than using a code based on p(x). Usually, p(x) represents the

“actual” data distribution of observations, or a precisely calculated

theoretical distribution, and q(x) represents a theory, or model, or

approximation of p(x). Similar to the discrete version, KL divergence holds

continuous version as well.

KL divergence is not a distance measure, even though it measures

the “distance” between two distributions, as it is not a metric measure.

Moreover, it is not symmetric in nature, i.e., the KL divergence value from

p(x) to q(x) is not the same as the KL divergence value from q(x) to p(x), in

most of cases. Also, it might not satisfy the triangular inequality.

However, that is not very stable in this case, as, here, maximization

of a set of KL divergence is being tried (instead of minimizing only one,

which is the usual case), and as optimization of the annotation matrix

A is performed, to have a lot of sufficiently small or even zero values at

different softmax output units, the vast amount of zeros makes the training

unstable. There is another feature that KL divergence doesn’t provide and

is the need of the hour, which is each individual row to focus on a single

aspect of semantics. This requires the probability mass in the annotation

softmax output to be more focused, but with a KL divergence penalty, it

won’t serve the purpose.

Thus, a new penalization term is introduced that overcomes the

previously mentioned shortcomings. Compared to the KL divergence

penalization, this term consumes only one-third of the computation. The

Chapter 5 Research Paper Implementation: Sentiment Classification

241

dot product of A and its transpose are used, subtracted from an identity

matrix, as a measure of redundancy.

P AA IT  || || F
2

In the preceding equation, || ||� F
2

 stands for the Frobenius norm of a

matrix. Like adding an L2 regularization term, this penalization term, P,

will be multiplied by a coefficient, and we minimize it, together with the

original loss, which is dependent on the downstream application.

Let’s consider two different summation vectors, ai and aj, in A. Because

of softmax, all entries within any summation vector in A should add up to 1.

Thus, they can be deemed as probability masses in a discrete probability

distribution. For any non-diagonal elements aij (i ≠ j) in the A.AT matrix,

it corresponds to a summation over the element-wise product of two

distributions:

0 1
1

  

a a aij
k

n

k
i

k
j

Where ak
i and ak

j are the k-th element in the ai and aj vectors, respectively.

In the most extreme case, where there is no overlap between the

two probability distributions ai and aj, the corresponding aij will be 0

otherwise it will have a positive value. On the other extreme end, if the

two distributions are identical, and all concentrate on one single word,

it will have a maximum value of 1. We subtract an identity matrix from

A.AT, which forces the elements on the diagonal of A.AT to approximate 1,

which encourages each summation vector ai to focus on as few numbers

of words as possible, forcing each vector to be focused on a single aspect,

and all other elements to 0, which punishes redundancy between different

summation vectors.

Chapter 5 Research Paper Implementation: Sentiment Classification

242

�Visualization
The General case visualization presents the results of the Author Profiling

task and shows the two types of visualization being used. The second case,

on sentiment analysis, makes use of the second means of visualization, for

a heatmap of reviews on Yelp.

�General Case

The interpretation of the sentence embedding is quite straightforward,

because of the existence of annotation matrix A. For each row in the

sentence embedding matrix M, its corresponding annotation vector ai is

present. Each element in this vector corresponds to how much contribution

the LSTM hidden state of a token on that position contributes to. Thus, a

heatmap could be drawn for each row of the embedding matrix M.

This method of visualization hints at what is encoded in each part of

the embedding, adding an extra layer of interpretation. Figure 5-3 shows

heat maps for two models trained on the Twitter Age dataset (http://pan.

webis.de/clef16/pan16-web/author-profiling.html).

Chapter 5 Research Paper Implementation: Sentiment Classification

http://pan.webis.de/clef16/pan16-web/author-profiling.html
http://pan.webis.de/clef16/pan16-web/author-profiling.html

243

The second means of visualization can be achieved by adding up the

overall annotation vectors and then normalizing the resulting weight

vector to add up to 1. Because it adds up all aspects of semantics of a

sentence, it yields a general view of what the embedding mostly focuses

on. One can figure out which words the embedding takes into account

the most and which are skipped by the embedding. Figure 5-4 represents

Figure 5-3.  Heatmaps of six random detailed attentions from 30
rows of matrix embedding, and for two models without and with 1.0
penalization

Chapter 5 Research Paper Implementation: Sentiment Classification

244

this concept of the overall attention by adding up all 30 attention weight

vectors, with and without penalization.

Figure 5-4.  Overall attention without penalization and with 1.0
penalization

�Sentiment Analysis Case

For the research paper, a Yelp dataset (www.yelp.com/dataset_challenge)

has been selected for the sentiment analysis task. It consists of 2.7M Yelp

reviews, from which 500K review-star pairs have been randomly selected

as the training set, 2,000 for the development set, and 2,000 for the test

set. The review is taken as input, and the number of stars is predicted in

accordance with what the user has actually written for each of the reviews

corresponding to the business store.

A 100-dimensional word2vec is used to initialize word embeddings,

and the embeddings are further tuned during training. The target number

of stars is an integer number in the range of [1,2,3,4,5], inclusive, and,

thus, the task is treated as a classification task, i.e., classifying a review

text into one of the five classes, and the classification accuracy is used for

measurement. For the two baseline models, a batch size of 32 is used, and

the hidden unit numbers in the output MLP is chosen as 3,000.

As an interpretation of the learned sentence embedding, the second

way of visualization is used below, to plot the heat maps for some of the

reviews in the dataset. Three reviews are selected randomly. As inferred

from Figure 5-5, the model majorly learns to capture some key factors in

the review that indicate strongly the sentiment behind the sentence. For

Chapter 5 Research Paper Implementation: Sentiment Classification

http://www.yelp.com/dataset_challenge

245

most of the short reviews, the model manages to capture all the key factors

that contribute to an extreme score, but for longer reviews, the model is

still not able to capture all related factors. As reflected in the first review, a

lot of focus is placed on one single factor, “be nothing extraordinary,” and

little attention is on other key points, such as “annoying thing,” “so hard/

cold,” etc.

Figure 5-5.  Attention of sentence embedding on three different Yelp
reviews, trained without and with 1.0 penalization

Chapter 5 Research Paper Implementation: Sentiment Classification

246

�Research Findings
The paper introduces a fixed size, matrix sentence embedding with a self-

attention mechanism, which helps in interpreting the sentence embedding

in depth in the model. Introducing the attention mechanism allows the

final sentence embedding to directly access previous LSTM hidden states,

via the attention summation. Thus, the LSTM doesn’t have to carry every

piece of information toward its last hidden state. Instead, each LSTM

hidden state is only expected to provide shorter-term context information

about each word, while the higher-level semantics, which requires

longer term dependency, can be picked up directly by the attention

mechanism. This setting relieves the burden of LSTM to carry on long-

term dependencies. The notion of adding up elements in the attention

mechanism is very primitive. It can be something more complex than that,

which will allow more operations on the hidden states of LSTM.

The model can encode any sequence of variable length into a fixed-

size representation, without suffering from long-term dependency

problems. This brings a lot of scalability to the model, and without any

significant modification, it can be applied directly to longer contents, such

as paragraphs, articles, etc.

�Implementing Sentiment Classification
We have made use of the Internet Movie Database, popularly known as

IMDb (www.imdb.com), to select the dataset for the sentiment classification

problem. It offers a great number of datasets, both image and text, which

are useful for multiple research activities in deep learning and data

analysis.

For sentiment classification, we have made use of a set of 25,000

movie reviews, which have their positive and negative label attached.

The publicly available reviews have been already preprocessed and are

encoded as a sequence of word indexes, i.e., integers. The words are

Chapter 5 Research Paper Implementation: Sentiment Classification

http://www.imdb.com/

247

ordered on the basis of their overall frequency in the dataset, i.e., the token

or word with the second-highest frequency has been indexed as 2, and so

on. Attaching such an index to the words will help in shortlisting the words

on the basis of their frequency, such as to pick the top 2,000 most common

words or remove the top-10 most common words. Following is code to

view a sample of the training dataset.

from keras.datasets import imdb

(X_train,y_train), (X_test,y_test) = imdb.load_data(num_

words=1000, index_from=3)

Getting the word index used for encoding the sequences

vocab_to_int = imdb.get_word_index()

vocab_to_int = {k:(v+3) for k,v in vocab_to_int.items()}

Starting from word index offset onward

Creating indexes for the special characters : Padding, Start

Token, Unknown words

vocab_to_int["<PAD>"] = 0

vocab_to_int["<GO>"] = 1

vocab_to_int["<UNK>"] = 2

int_to_vocab = {value:key for key,value in vocab_to_int.

items()}

print(' '.join(int_to_vocab[id] for id in X_train[0]))

>

<GO> this film was just brilliant casting <UNK> <UNK> story

direction <UNK> really <UNK> the part they played and you could

just imagine being there robert <UNK> is an amazing actor and

now the same being director <UNK> father came from the same

<UNK> <UNK> as myself so i loved the fact there was a real <UNK>

with this film the <UNK> <UNK> throughout the film were great

it was just brilliant so much that i <UNK> the film as soon as

Chapter 5 Research Paper Implementation: Sentiment Classification

248

it was released for <UNK> and would recommend it to everyone

to watch and the <UNK> <UNK> was amazing really <UNK> at the

end it was so sad and you know what they say if you <UNK> at a

film it must have been good and this definitely was also <UNK>

to the two little <UNK> that played the <UNK> of <UNK> and paul

they were just brilliant children are often left out of the

<UNK> <UNK> i think because the stars that play them all <UNK>

up are such a big <UNK> for the whole film but these children

are amazing and should be <UNK> for what they have done don't

you think the whole story was so <UNK> because it was true and

was <UNK> life after all that was <UNK> with us all

�Sentiment Classification Code
The last section of this book covers the implementation of the concept

described in the previously mentioned paper and its use for sentiment

classification of the selected IMDb datasets. The required IMDb datasets

can be downloaded automatically from the following code. If required,

one can also download the dataset from the following URL and look at

the set of reviews available: https://s3.amazonaws.com/text-datasets/

imdb_full.pkl.

Note M ake sure you have an open Internet connection on the
machine before running the code, to enable the dataset download,
and TensorFlow version 1.3.0.

“0” has not been used to encode any word, as it is used to encode
the unknown word in the vocabulary.

Chapter 5 Research Paper Implementation: Sentiment Classification

https://s3.amazonaws.com/text-datasets/imdb_full.pkl
https://s3.amazonaws.com/text-datasets/imdb_full.pkl

249

Import the required packages and checking packages version, where

required.

Importing TensorFlow and IMDb dataset from keras library

from keras.datasets import imdb

import tensorflow as tf

> Using TensorFlow backend.

Checking TensorFlow version

print(tf.__version__)

> 1.3.0

from __future__ import print_function

from tensorflow.python.ops import rnn, rnn_cell

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

The next step is to create the train/test datasets from the reviews

dataset of IMDb. Keras datasets offers a built-in function for it, which

returns the following couple of tuples with the sequence and labels list:

•	 X_train, X_test: These are lists of sequences that

have the lists of indexes, i.e., normal integers assigned

to each of the words. If, while importing the dataset,

the num_words argument is specified, the maximum

possible index value selected is num_words-1, and if the

maxlen argument is specified, then it is used to pick the

largest possible sequence length.

•	 y_train, y_test: These are the lists of integer labels,

assigned 1 or 0, for positive and negative reviews,

respectively.

Chapter 5 Research Paper Implementation: Sentiment Classification

250

The imdb.load_data() function takes eight arguments to customize

the review dataset selection. Following is a detailed explanation of these

arguments:

•	 path: If the data is not present locally in the Keras

datasets folder, it will be downloaded to the specified

location.

•	 num_words: (Type: integer or None) Selects the top

most frequent words to be considered for the modeling

purpose. Words out of this range and with a frequency

less than these will be replaced with the oov_char value

in the sequence data.

•	 skip_top: (Type: integer) This skips the top most-

frequent words from the selection. Such bypassed

words are replaced with the oov_char value in the

sequence data.

•	 maxlen: (Type: int) Used to specify the maximum

length of the sequence. Sequences longer then the

specified length will be truncated.

•	 seed: (Type: int) Sets the seed to reproduce the data

shuffling

•	 start_char: (Type: int) This character marks the start

of a sequence. It is set to 1, because 0 is usually used to

pad characters.

Chapter 5 Research Paper Implementation: Sentiment Classification

251

•	 oov_char: (Type: int) Words cut out by the num_words

or skip_top arguments will be replaced by this

character.

•	 index_from: (Type: int) Indexes actual words and

more. It is a Word indexing offset.

Creating Train and Test datasets from labeled movie reviews

(X_train, y_train), (X_test, y_test) = imdb.load_

data(path="imdb_full.pkl",num_words=None, skip_top=0,

maxlen=None, seed=113, tart_char=1, oov_char=2, index_from=3)

> Downloading data from https://s3.amazonaws.com/text-datasets/

imdb.npz

Each of the sequences in the review set is of a length of 200, and further

vocabulary has been created from the training dataset. Figure 5-6 shows

the distribution of the word count in reviews.

X_train[:2]

> array([list([1, 14, 22, 16, 43, 530, 973, 1622, 1385, 65,

458, 4468, 66, 3941, 4, 173, 36, 256, 5, 25, 100, 43, 838, 112,

50, 670, 22665,

t = [item for sublist in X_train for item in sublist]

vocabulary = len(set(t))+1

a = [len(x) for x in X_train]

plt.plot(a)

Chapter 5 Research Paper Implementation: Sentiment Classification

252

Specify a maximum length for the selection of a sequence from the

sentence, and if the review length is lower than it, append the newly

created sequence with padding, up to the maximum length.

max_length = 200 # specifying the max length of the sequence in

the sentence

x_filter = []

y_filter = []

If the selected length is lesser than the specified max_

length, 200, then appending padding (0), else only selecting

desired length only from sentence

for i in range(len(X_train)):

 if len(X_train[i])<max_length:

 a = len(X_train[i])

 X_train[i] = X_train[i] + [0] * (max_length - a)

Figure 5-6.  Distribution of word counts in each of the reviews

Chapter 5 Research Paper Implementation: Sentiment Classification

253

 x_filter.append(X_train[i])

 y_filter.append(y_train[i])

 elif len(X_train[i])>max_length:

 X_train[i] = X_train[i][0:max_length]

Declare the model hyperparameters with word embedding size,

number of hidden units, learning rate, batch size, and total number of

training iterations.

#declaring the hyper params

embedding_size = 100 # �word vector size for initializing the

word embeddings

n_hidden = 200

learning_rate = 0.06

training_iters = 100000

batch_size = 32

beta =0.0001

Declare additional parameters related to the current model

architecture and dataset, max_length, number of classes to classify in,

number of units in hidden layer of self-attention MLP, and number of rows

in matrix embedding.

n_steps = max_length # timestepswords

n_classes = 2 # �0/1 : binary classification for

negative and positive reviews

da = 350 # �hyper-parameter : Self-attention

MLP has hidden layer with da

units

r = 30 #� count of different parts to be

extracted from sentence (= number

of rows in matrix embedding)

display_step =10

hidden_units = 3000

Chapter 5 Research Paper Implementation: Sentiment Classification

254

Transform the training dataset values and labels in the desired format

of array post transformation and encoding, respectively.

y_train = np.asarray(pd.get_dummies(y_filter))

X_train = np.asarray([np.asarray(g) for g in x_filter])

Create an internal folder to record logs.

logs_path = './recent_logs/'

Create a DataIterator class, to yield random data in batches of given

batch size.

class DataIterator:

 """ Collects data and yields bunch of batches of data

 Takes data sources and batch_size as arguments """

 def __init__(self, data1,data2, batch_size):

 self.data1 = data1

 self.data2 = data2

 self.batch_size = batch_size

 self.iter = self.make_random_iter()

 def next_batch(self):

 try:

 idxs = next(self.iter)

 except StopIteration:

 self.iter = self.make_random_iter()

 idxs = next(self.iter)

 X =[self.data1[i] for i in idxs]

 Y =[self.data2[i] for i in idxs]

 X = np.array(X)

 Y = np.array(Y)

 return X, Y

Chapter 5 Research Paper Implementation: Sentiment Classification

255

 def make_random_iter(self):

 �splits = np.arange(self.batch_size, len(self.data1),

self.batch_size)

 �it = np.split(np.random.permutation(range(len(self.

data1))), splits)[:-1]

 return iter(it)

Initialize weights and biases and input placeholders in the next step.

The general rule for setting the weights in a neural network is to be close

to zero, without being too small. A good practice is to start your weights in

the range of [−y, y], where y = 1/ n (n is the number of inputs to a given

neuron).

############ Graph Creation ################

TF Graph Input

with tf.name_scope("weights"):

 �Win = tf.Variable(tf.random_uniform([n_hidden*r, hidden_

units],-1/np.sqrt(n_hidden),1/np.sqrt(n_hidden)), name=

'W-input')

 �Wout = tf.Variable(tf.random_uniform([hidden_units,

n_classes],-1/np.sqrt(hidden_units),1/np.sqrt(hidden_

units)), name='W-out')

 �Ws1 = tf.Variable(tf.random_uniform([da,n_hidden],-1/

np.sqrt(da),1/np.sqrt(da)), name='Ws1')

 �Ws2 = tf.Variable(tf.random_uniform([r,da],-1/

np.sqrt(r),1/np.sqrt(r)), name='Ws2')

with tf.name_scope("biases"):

 �biasesout = tf.Variable(tf.random_normal([n_classes]),

name='biases-out')

 �biasesin = tf.Variable(tf.random_normal([hidden_units]),

name='biases-in')

Chapter 5 Research Paper Implementation: Sentiment Classification

256

with tf.name_scope('input'):

 �x = tf.placeholder("int32", [32,max_length], name=

'x-input')

 y = tf.placeholder("int32", [32, 2], name='y-input')

Create tensors in the same default graph context with the embedded

vectors. This takes the embedding matrix and an input tensor, such as the

review vectors.

with tf.name_scope('embedding'):

 �embeddings = tf.Variable(tf.random_uniform([vocabulary,

embedding_size],-1, 1), name='embeddings')

 embed = tf.nn.embedding_lookup(embeddings,x)

def length(sequence):

 �# Computing maximum of elements across dimensions of a

tensor

 �used = tf.sign(tf.reduce_max(tf.abs(sequence), reduction_

indices=2))

 length = tf.reduce_sum(used, reduction_indices=1)

 length = tf.cast(length, tf.int32)

 return length

Reuse the weights and biases using the following:

with tf.variable_scope('forward',reuse=True):

 lstm_fw_cell = rnn_cell.BasicLSTMCell(n_hidden)

with tf.name_scope('model'):

 �outputs, states = rnn.dynamic_rnn(lstm_fw_

cell,embed,sequence_length=length(embed),dtype=tf.

float32,time_major=False)

 �# in the next step we multiply the hidden-vec matrix with

the Ws1 by reshaping

Chapter 5 Research Paper Implementation: Sentiment Classification

257

 �h = tf.nn.tanh(tf.transpose(tf.reshape(tf.

matmul(Ws1,tf.reshape(outputs,[n_hidden,batch_size*n_

steps])), [da,batch_size,n_steps]),[1,0,2]))

 # in this step we multiply the generated matrix with Ws2

 �a = tf.reshape(tf.matmul(Ws2,tf.reshape(h,[da,batch_size*n_

steps])),[batch_size,r,n_steps])

 def fn3(a,x):

 return tf.nn.softmax(x)

 h3 = tf.scan(fn3,a)

with tf.name_scope('flattening'):

 �# here we again multiply(batch) of the generated batch with

the same hidden matrix

 h4 = tf.matmul(h3,outputs)

 # flattening the output embedded matrix

 last = tf.reshape(h4,[-1,r*n_hidden])

with tf.name_scope('MLP'):

 �tf.nn.dropout(last,.5, noise_shape=None, seed=None,

name=None)

 pred1 = tf.nn.sigmoid(tf.matmul(last,Win)+biasesin)

 pred = tf.matmul(pred1, Wout) + biasesout

Define loss and optimizer

with tf.name_scope('cross'):

 �cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_

logits(logits =pred, labels = y) + beta*tf.nn.l2_loss(Ws2))

with tf.name_scope('train'):

 �optimizer = tf.train.AdamOptimizer(learning_rate=learning_

rate)

 gvs = optimizer.compute_gradients(cost)

 �capped_gvs = [(tf.clip_by_norm(grad,0.5), var) for grad,

var in gvs]

Chapter 5 Research Paper Implementation: Sentiment Classification

258

 optimizer.apply_gradients(capped_gvs)

 optimized = optimizer.minimize(cost)

Evaluate model

with tf.name_scope('Accuracy'):

 correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))

 �accuracy = tf.reduce_mean(tf.cast(correct_pred,

tf.float32))

tf.summary.scalar("cost", cost)

tf.summary.scalar("accuracy", accuracy)

> <tf.Tensor 'accuracy:0' shape=() dtype=string>

merge all summaries into a single "summary operation" which

we can execute in a session

summary_op =tf.summary.merge_all()

Initializing the variables

train_iter = DataIterator(X_train,y_train, batch_size)

init = tf.global_variables_initializer()

This could give warning if in case the required port is being

used already

Running the command again or releasing the port before the

subsequent run should solve the purpose

Start to train the model. Make sure the batch_size is sufficient enough

to fit system requirements.

with tf.Session() as sess:

 sess.run(init)

 # Creating log file writer object

 �writer = tf.summary.FileWriter(logs_path, graph=tf.get_

default_graph())

 step = 1

Chapter 5 Research Paper Implementation: Sentiment Classification

259

 # Keep training until reach max iterations

 while step * batch_size < training_iters:

 batch_x, batch_y = train_iter.next_batch()

 sess.run(optimized, feed_dict={x: batch_x, y: batch_y})

 # Executing the summary operation in the session

 �summary = sess.run(summary_op, feed_dict={x: batch_x,

y: batch_y})

 �# Writing the values in log file using the FileWriter

object created above

 writer.add_summary(summary, step*batch_size)

 if step % display_step == 2:

 # Calculate batch accuracy

 �acc = sess.run(accuracy, feed_dict={x: batch_x, y:

batch_y})

 # Calculate batch loss

 �loss = sess.run(cost, feed_dict={x: batch_x, y:

batch_y})

 print ("Iter " + str(step*batch_size) + ",

 �Minibatch Loss= " + "{:.6f}".format(loss)

+ ", Training Accuracy= " + "{:.2f}".

format(acc*100) + "%")

 step += 1

 print ("Optimization Finished!")

> Iter 64, Minibatch Loss= 68.048653, Training Accuracy= 50.00%

> Iter 384, Minibatch Loss= 69.634018, Training Accuracy= 53.12%

> Iter 704, Minibatch Loss= 50.814949, Training Accuracy= 46.88%

> Iter 1024, Minibatch Loss= 39.475891, Training Accuracy= 56.25%

> Iter 1344, Minibatch Loss= 11.115482, Training Accuracy= 40.62%

> Iter 1664, Minibatch Loss= 7.060193, Training Accuracy= 59.38%

Chapter 5 Research Paper Implementation: Sentiment Classification

260

> Iter 1984, Minibatch Loss= 2.565218, Training Accuracy= 43.75%

> Iter 2304, Minibatch Loss= 18.036911, Training Accuracy= 46.88%

> Iter 2624, Minibatch Loss= 18.796995, Training Accuracy= 43.75%

> Iter 2944, Minibatch Loss= 56.627518, Training Accuracy= 43.75%

> Iter 3264, Minibatch Loss= 29.162407, Training Accuracy= 43.75%

> Iter 3584, Minibatch Loss= 14.335728, Training Accuracy= 40.62%

> Iter 3904, Minibatch Loss= 1.863467, Training Accuracy= 53.12%

> Iter 4224, Minibatch Loss= 7.892468, Training Accuracy= 50.00%

> Iter 4544, Minibatch Loss= 4.554517, Training Accuracy= 53.12%

> Iter 95744, Minibatch Loss= 28.283163, Training Accuracy= 59.38%

> Iter 96064, Minibatch Loss= 1.305542, Training Accuracy= 50.00%

> Iter 96384, Minibatch Loss= 1.801988, Training Accuracy= 50.00%

> Iter 96704, Minibatch Loss= 1.896597, Training Accuracy= 53.12%

> Iter 97024, Minibatch Loss= 2.941552, Training Accuracy= 46.88%

> Iter 97344, Minibatch Loss= 0.693964, Training Accuracy= 56.25%

> Iter 97664, Minibatch Loss= 8.340314, Training Accuracy= 40.62%

> Iter 97984, Minibatch Loss= 2.635653, Training Accuracy= 56.25%

> Iter 98304, Minibatch Loss= 1.541869, Training Accuracy= 68.75%

> Iter 98624, Minibatch Loss= 1.544908, Training Accuracy= 62.50%

> Iter 98944, Minibatch Loss= 26.138868, Training Accuracy= 56.25%

> Iter 99264, Minibatch Loss= 17.603979, Training Accuracy= 56.25%

> Iter 99584, Minibatch Loss= 21.715031, Training Accuracy= 40.62%

> Iter 99904, Minibatch Loss= 17.485657, Training Accuracy= 53.12%

> Optimization Finished!

Chapter 5 Research Paper Implementation: Sentiment Classification

261

�Model Results
The modeling results have been recorded using the TensorFlow

summaries, or logs, and saved while running the model script. To write

the logs, log writer FileWriter() has been used, which internally creates

the log folder and saves the graph structure. The recorded summary

operations are later used by TensorBoard for visualization purposes. We

have saved the logs at the following internal folder location of the current

working directory: logs_path = './recent_logs/'.

To start the TensorBoard, specify the port, per your choice:

tensorboard --logdir=./ --port=6006.

�TensorBoard
To make the TensorBoard visualization more readable, we have added the

name for placeholders and variables, wherever required. TensorBoard

helps in debugging and optimization of the code.

We have added the graph of the overall model and a few of its

segments, to help in relating the code with the TensorFlow graph visual. All

the segments are relatable with their corresponding code segments in the

previous subsection.

Figure 5-7 shows the full network architecture for the sentiment

classification. The graph shows the variables that have been scoped

throughout the code, which helps in understanding the flow of the data

and connections across the model.

Chapter 5 Research Paper Implementation: Sentiment Classification

262

Figure 5-8 shows the MLP component of the graph, which is used to

add the addition of dropout to the last layer, and the sigmoid function to

predict the final sentiment classification results. The final predictions are

further used to gather the model’s accuracy and cost.

Figure 5-7.  TensorFlow graph of the overall model

Chapter 5 Research Paper Implementation: Sentiment Classification

263

Figure 5-8.  TensorBoard graph for the MLP segment

Chapter 5 Research Paper Implementation: Sentiment Classification

264

Figure 5-9 shows the embedding component of the network. It is

used to initialize the embeddings variable, composed of random values

of uniform distribution in the range of [-1,1). The embedding_lookup()

technique is used to perform parallel lookups on the embeddings tensor,

which are further used as input to the LSTM layer.

Figure 5-9.  TensorBoard graph for the embedding segment

Chapter 5 Research Paper Implementation: Sentiment Classification

265

�Model Accuracy and Cost

Following are the model accuracy and cost graphs for the four simulations

performed on the IMDb dataset and for two cases with different smoothing

filter parameter values.

Note A smoothing filter is used in TensorBoard as a weighing
parameter that controls the window size. A weight of 1.0 means
using 50 percent of the entire dataset as the window, while a weight
of 0.0 means using a window of 0 (and, thus, replacing each point
with itself). The filter acts as an additional parameter to interpret
graphs thoroughly.

Case 1

For the first case, the smoothing filter value has been set as 0.191, and

we have compared the model accuracy and cost over four different

simulations (Figures 5-10 and 5-11).

Figure 5-10.  TensorBoard graph for the accuracy parameter

Chapter 5 Research Paper Implementation: Sentiment Classification

266

Case 2

For the second case, the smoothing value has been set as 0.645, and

we have compared the model accuracy and cost over four different

simulations (Figures 5-12 and 5-13).

Figure 5-11.  TensorBoard graph for the cost parameter

Figure 5-12.  TensorBoard graph for accuracy parameter

Chapter 5 Research Paper Implementation: Sentiment Classification

267

Figure 5-13.  TensorBoard graph for cost parameter

�Scope for Improvement
As inferred from the preceding graphs, the model accuracy is not

significantly great and reaches close to 70 percent in some cases. There

are a few ways by which the results achieved from the preceding exercise

could be further improved, by making variations in the training data

fed to the model and by refining the hyperparameters of the model. The

training dataset used for sentiment analysis in the paper comprises 500K

of Yelp reviews and rest for development and test purposes. In the exercise

performed, we have taken 25K reviews. To further improve the model’s

performance, readers are invited to make changes in the code and compare

the results of multiple iterations. The changes made to improve the results

should be in accordance with the values mentioned in the paper, thereby

helping in the comparison of results across multiple datasets.

�Next Steps
This last chapter of the book presented the implementation of a chosen

research paper’s sentiment analysis. We would like readers of all

backgrounds to carry out such activities and attempt to replicate, on

their chosen datasets in their preferred languages, the algorithms and

Chapter 5 Research Paper Implementation: Sentiment Classification

268

approaches presented across different papers and conferences. We believe

such exercises heighten the understanding of the research papers and

widen understanding of the different types of algorithms that can be

applied to the relevant datasets for solving specific problems.

We hope readers have enjoyed the journey through all the use cases

featured in this book. We would be very grateful to them for suggestions to

improve the quality of the code and theory presented herein, and we will

ensure that any relevant changes are made in our code repository.

Chapter 5 Research Paper Implementation: Sentiment Classification

269© Palash Goyal, Sumit Pandey, Karan Jain 2018
P. Goyal, et al., Deep Learning for Natural Language Processing,
https://doi.org/10.1007/978-1-4842-3685-7

Index

A
Activation potential, 40
Annotated corpus

add padding, 162
check versions, 158
create checkpoints, 164, 166
create input, 160
create train and validation

datasets, 163
dropout, 163
DRUG-AE.rel file, 160
embedding file, 159
import modules, 158
Keras modules, 163
LSTM network, 164
performance, 166–167
text file, 159–160
time distributed

layers, 163
validation dataset, 166

Artificial neural network
(ANN), 36–37

backpropagation
mechanism, 59

Attention scoring
network, 152–155

B
Backpropagation algorithm, 57–60
Backpropagation through time

(BPTT), 136
Bag-of-word models, 76
Bidirectional encoders, 148–149
Binary sequence summation, 135
Blood transfusion dataset, 70–73

C
Chatbots

building, 174
definition, 18, 169–170
Facebook (see Facebook,

chatbot)
higher level, 172–173
insurance dataset (see

Insurance QnA dataset)
origin of, 170–171
platforms, 174
working, 172

Continuous bag-of-words (CBOW)
model, 81

AdaGrad optimizer, 112–113
architecture, 87

https://doi.org/10.1007/978-1-4842-3685-7

270

cbow_batch_creation()
function, 107

cosine, 113
TensorFlow graph, 110, 112
t-SNE, 115
two-dimensional space

representation, 116–117
variables, 109

Convolutional neural networks, 46
Counter vectorization, 33

D
Data flow graphs, 65–66
Deep learning

algorithms, 36
definition, 35
hidden layers, 38
Keras (see Keras libraries)
and shallow network, 36–37
TensorFlow (see TensorFlow

libraries)
Theano (see Theano libraries)

Discourse, 20
Distributed representation

approach, 76

E
ELIZA, 170–171
Embedding layer, 79
Encoder-decoder networks, 49

Encoding RNNs, 48
End of sentence (EOS) token, 207
Exploding gradient, 131
Exponential function, 42
Exponential Linear Unit (ELU), 44

F
Facebook, chatbot

add profile and cover photo, 176
App Dashboard, 177–178
app Settings page, 178–179
create app, 177
create page, 175–176
Heroku (see Heroku app)
page access token, 181
permissions granted, 180
privilege section, 179–180
token generation, 179

Feedforward neural net language
model (FNNLM), 79–80

Feedforward neural networks
multilayer, 46
output, 120
vs. RNNs, 121–123

Fixed topological structure, 119
Forrester, 172

G
Gated recurrent unit (GRU), 144–145
General RNNs, 48
Generating RNNs, 48
Gensim libraries, 27–28

Continuous bag-of-words (CBOW)
model (cont.)

Index

271

H
Heroku app

configure settings, 190
configure variables, 191
create new app, 182–183
creating, 181
dashboard, 182
Deploy tab, 183
Facebook page

error message, 188
select and subscribe, 189
setting webhook, 186
start chatting, 191
successful

configuration, 188
GitHub repository

App.py, 185
deploy app via, 185–186
.gitignore file, 184
Procfile, 184
Requirements.txt, 184

Hidden layers, 51, 84–86
Hidden neurons, 51
Hidden states, 134, 137

I, J
Insurance QnA dataset

attention mechanism, 215
batch_data() function, 221–222
check percentiles, 202
check random QnA, 213–214
convert text to integers, 209
create dictionary, 205

create placeholders, 214
create text cleaning

function, 199, 201
decoding_layer()

function, 217
decoding_layer_infer()

function, 216
encoding layer, 215
EOS token, 207
GO token, 207
ID, 195
import packages and

dataset, 194
multiple architectures, 192–193
PAD token, 207
padding, 205
question_to_seq()

function, 226
remove words, 206–207
replace words, 210
select random question, 226
seq2seq_model()

function, 218–219
setting model

parameters, 219–221
shortlist text, 203–204
sort text, 211
stats, 204
tokens, 207–208
top-five QnA, 197, 199
training parameters, 222–223
train model, 223
UNK token, 207
validation dataset, 222

Index

272

Intermediate layer(s), 80
Internet Movie Database (IMDb)

batch_size, 258
create tensors, 256
create graph, 255–256
create train/test

datasets, 249–251
DataIterator class, 254–255
download, 248
hyperparameters, 253
imdb.load_data() function, 250
import packages, 249
maximum length, 252–253
parameters, 253–254
record logs, 254
reuse weights and biases, 256
smoothing filter, 265–266
TensorBoard visualization,

261–264
training dataset, 247–248
word count in

reviews, 251–252

K
Keras libraries

blood transfusion
dataset, 70–73

definition, 69
installation, 69
principles, 70
sequential model, 70

Kullback Leibler divergence
(KL), 239–241

L
Leaky ReLUs (LReLUs), 44
Lemmatizing words, 21
Long short-term memory (LSTM)

applications, 120
forget gate, 142
gates, 139–140
GRUs, 144–145
input gate, 140, 142
limitations of, 145
output gate, 142
structure of, 139
vanishing gradient, 143–144

M
Map function, 11
Morphology, 19
Multilayer perceptrons (MLPs)

activation functions, 52
hidden layers, 51
hidden neurons, 51
layers, 50–51
multilayer neural

network, 52–53
output nodes, 52

N
Named entity recognition, 18
Natural language processing (NPL)

ambiguity, 17
benefit, 16
chatbot, 18

Index

273

counter vectorization, 33
definition, 16
difficulty, 16–17
discourse, 20
libraries

Gensim, 27–28
NLTK, 20–21
Pattern, 29
SpaCY, 25–26
Stanford CoreNLP, 29
TextBlob, 22, 24

meaning level, 17
morphology, 19
named entity recognition, 18
phonetics/phonology, 19
pragmatics, 19
and RNNs, 126–128
semantics, 19
sentence level, 17
speech recognition, 19
syntax, 19
text

accessing from web, 32
class, 35
to list, 30
preprocessing, 31–32
search using RE, 30
stopword, 32–33
summarization, 18
tagging, 18

TF-IDF score, 33, 35
word level, 17

Negative sampling, 91–92

Neural networks
architecture, 45
artificial neuron/perceptron, 40
convolutional networks, 46
definition, 38
different tasks, 39
ELU, 44
encoder-decoder networks, 49
exponential function, 42
feedforward networks, 46
hidden layers, 44
LReLUs, 44
paradigm, 39
platforms, 40
recursive network, 49
ReLU, 43
RNNs (see Recurrent neural

networks (RNNs))
sigmoid function, 42
softmax, 44
step function, 41

n-gram language model, 127
NLTK libraries, 20–21
Noise contrastive estimation

(NCE), 91
Normalized exponential

function, 44
NumPy package, 3–4, 6–7

O
One-hot-encoding schemes, 76
Optimization techniques, 39

Index

274

P
Padding, 205
Pandas package, 8, 11, 13
Paragraph vector, 233
Pattern libraries, 29
Phonetics/phonology, 19
Pragmatics, 19
Python package

NumPy, 3–4, 6–8, 11, 13
reference, 2
SciPy, 13–14

Q
Question-and-answer system, 146

R
Rectified linear unit (ReLU), 43
Recurrence, 121
Recurrence property, 134
Recurrent neural networks (RNNs)

applications, 120, 129
architecture, 125
binary sequence

summation, 135
binary string, 123
class, 129
definition, 120
dimensions of weight

matrices, 130–132
3-D tensor, 124
encoding, 47
exploding gradient, 131

vs. feedforward neural
network, 121–123

general, 48
generating, 48
hidden states, 121, 134, 137
limitations, 139
and natural language

processing, 126–128
n-gram language model, 127
recurrence property, 134
sequence-to-sequence

model, 137
sigmoid function, 132, 133
tanh function, 131
TensorFlow, 126
time series model, 122
training process, 134–136, 138
unrolled, 129
use case of, 123
vanishing gradient, 131, 133

Recursive neural network, 49
Regular expression (RE), 30

S
SciPy package, 13–14
Self-attentive sentence embedding

bidirectional LSTM, 237
definition, 232
heat maps for models, 242–243
KL, 239–241
paragraph vector, 233
penalization, 243–244
sentiment analysis, 233–234

Index

275

skip-thought vector, 233
two-dimensional matrix, 237
vector representation, 238
weight vectors, LSTM hidden

states, 235–236
Yelp reviews, 244–245

Semantics, 19
Sentence-embedding model, 232
Sequence-to-sequence (seq2seq)

models
annotated corpus

add padding, 162
check versions, 158
create checkpoints, 164, 166
create input, 160
create train and validation

datasets, 163
dropout, 163
DRUG-AE.rel file, 160
embedding file, 159
import modules, 158
Keras modules, 163
LSTM network, 164
performance, 166–167
text file, 159–160
time distributed layers, 163
validation dataset, 166

attention scoring
network, 152–155

decoder, 146, 150–152
definition, 145
encoder

bidirectional, 148–149
context vector, 146

stacked bidirectional, 149–150
unrolled version of, 146

key task, 146
peeking, 157
preserve order of inputs, 145
question-and-answer

system, 146
teacher forcing

model, 155–156
Sequential data, 119
Skip-gram model, 81

architecture, 83
embedding matrix, 99
model_checkpoint, 102
operations, 101
predictions, 82
skipG_batch_creation()

function, 98
skipG_target_set_generation()

function, 98
TensorFlow graph, 99
tf.train.AdamOptimizer, 100
training process, 83
t-SNE, 105
two-dimensional

representation, 105
Skip-thought vector, 233
Softmax, 44, 80, 91, 132, 164,

238, 239
SpaCY libraries, 25–26
Speech recognition, 19
Stacked bidirectional

encoders, 149–150
Stanford CoreNLP libraries, 29

Index

276

Stemming words, 21
Stochastic gradient descent

cost function, 54
learning rate, 55–56
loss functions, 54

Stopword, 32–33
Subsampling frequent words

negative sampling, 91–92
rate, 89
survival function, 88–89

Syntax, 19

T
t-distributed stochastic

neighbor embedding
(t-SNE), 105

Teacher forcing
model, 155–156

Temporal data, 121
TensorFlow libraries

basics of, 67
data flow graphs, 65–66
definition, 64
Google, 65
GPU-oriented platforms, 64
installation, 66
run() method, 67
using Numpy, 67, 69

Term frequency and inverse
document frequency
(TF-IDF), 33, 35

TextBlob libraries, 22, 24
Text summarization, 18
Text tagging, 18
Theano libraries

addition operation, 64
definition, 60
installation, 62
Tensor subpackage, 63

Time distributed layers, 163

U
Universal approximators, see

Multilayer perceptrons
(MLPs)

Unknown token, 207

V
Vanishing gradient, 131, 133,

143–144

W, X
Word2vec models, 82

architecture, 81, 83–84
CBOW (see Continuous bag-of-

words (CBOW) model)
conversion of words to

integers, 96
data_download(), 93
hidden layer, 84–86

Index

277

implementation, 93
negative sampling, 92
offers, 81
output layer, 86
skip-gram (see Skip-gram

model)
text_processing(), 94
words present, 96
zipped text dataset, 94

Word embeddings models
definition, 76
one-hot-encoding schemes, 76
Rome, Italy, Paris, France, and

country, 76–77, 79

Y, Z
Yelp reviews, 244–245

Index

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Natural Language Processing and Deep Learning
	Python Packages
	NumPy
	Pandas
	SciPy

	Introduction to Natural Language Processing
	What Is Natural Language Processing?
	Good Enough, But What Is the Big Deal?
	What Makes Natural Language Processing Difficult?
	Ambiguity at Word Level
	Ambiguity at Sentence Level
	Ambiguity at Meaning Level

	What Do We Want to Achieve Through Natural Language Processing?
	Common Terms Associated with Language Processing

	Natural Language Processing Libraries
	NLTK
	TextBlob
	SpaCy
	Gensim
	Pattern
	Stanford CoreNLP

	Getting Started with NLP
	Text Search Using Regular Expressions
	Text to List
	Preprocessing the Text
	Accessing Text from the Web
	Removal of Stopwords
	Counter Vectorization
	TF-IDF Score
	Text Classifier

	Introduction to Deep Learning
	How Deep Is “Deep”?

	What Are Neural Networks?
	Basic Structure of Neural Networks
	Types of Neural Networks
	Feedforward Neural Networks
	Convolutional Neural Networks
	Recurrent Neural Networks
	Encoder-Decoder Networks
	Recursive Neural Networks

	Multilayer Perceptrons
	Stochastic Gradient Descent
	Backpropagation
	Deep Learning Libraries
	Theano
	Theano Installation
	Theano Examples
	TensorFlow
	Data Flow Graphs
	TensorFlow Installation
	TensorFlow Examples
	Keras
	Keras Installation
	Keras Principles
	Keras Examples

	Next Steps

	Chapter 2: Word Vector Representations
	Introduction to Word Embedding
	Neural Language Model

	Word2vec
	Skip-Gram Model
	Model Components: Architecture
	Model Components: Hidden Layer
	Model Components: Output Layer
	CBOW Model

	Subsampling Frequent Words
	Negative Sampling

	Word2vec Code
	Skip-Gram Code
	CBOW Code
	Next Steps

	Chapter 3: Unfolding Recurrent Neural Networks
	Recurrent Neural Networks
	What Is Recurrence?
	Differences Between Feedforward and Recurrent Neural Networks
	Recurrent Neural Network Basics
	Natural Language Processing and Recurrent Neural Networks
	RNNs Mechanism
	Training RNNs
	Meta Meaning of Hidden State of RNN
	Tuning RNNs
	Long Short-Term Memory Networks
	Components of LSTM
	How LSTM Helps to Reduce the Vanishing Gradient Problem
	Understanding GRUs
	Limitations of LSTMs

	Sequence-to-Sequence Models
	What Is It?
	Bidirectional Encoder
	Stacked Bidirectional Encoder
	Decoder

	Advanced Sequence-to-Sequence Models
	Attention Scoring
	Teacher Forcing
	Peeking

	Sequence-to-Sequence Use Case

	Next Steps

	Chapter 4: Developing a Chatbot
	Introduction to Chatbot
	Origin of Chatbots
	But How Does a Chatbot Work, Anyway?
	Why Are Chatbots Such a Big Opportunity?
	Building a Chatbot Can Sound Intimidating. Is It Actually?

	Conversational Bot
	Chatbot: Automatic Text Generation
	Next Steps

	Chapter 5: Research Paper Implementation: Sentiment Classification
	Self-Attentive Sentence Embedding
	Proposed Approach
	Model
	Penalization Term

	Visualization
	General Case
	Sentiment Analysis Case

	Research Findings

	Implementing Sentiment Classification
	Sentiment Classification Code
	Model Results
	TensorBoard
	Model Accuracy and Cost
	Case 1
	Case 2

	Scope for Improvement
	Next Steps

	Index

