
Effective Team
Management with
VSTS and TFS

A Guide for Scrum Masters
—
Chaminda Chandrasekara
Sanjaya Yapa

www.allitebooks.com

http://www.allitebooks.org

Effective Team
Management with

VSTS and TFS
A Guide for Scrum Masters

Chaminda Chandrasekara
Sanjaya Yapa

www.allitebooks.com

http://www.allitebooks.org

Effective Team Management with VSTS and TFS

ISBN-13 (pbk): 978-1-4842-3557-7 ISBN-13 (electronic): 978-1-4842-3558-4
https://doi.org/10.1007/978-1-4842-3558-4

Library of Congress Control Number: 2018945102

Copyright © 2018 by Chaminda Chandrasekara, Sanjaya Yapa

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Nikhil Karkal
Development Editor: James Markham
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc.
(SSBM Finance Inc.). SSBM Finance Inc. is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-3557-7.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Chaminda Chandrasekara
Dedigamuwa,
Colombo, Sri Lanka

Sanjaya Yapa
Kandy, Sri Lanka

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3558-4
http://www.allitebooks.org

Let this book be the ultimate guide for scrum masters to
make their team run the extra mile . . .

www.allitebooks.com

http://www.allitebooks.org

v

Chapter 1: Handling Teams ���1

VSTS and TFS ��1

Team Project Collections, Team Projects, and Teams ��������������������������������������2

Work Items ��3

Iterations/Sprints and Areas ��3

Determining the Ideal Size for Teams ���4

Getting Started ��4

Monitoring the Progress of the Teams ���16

Large Teams ��17

Getting Started with Large Teams ���18

Monitoring the Progress of Multiple Teams ���27

Summary���27

Chapter 2: Working with a Backlog ���29

Defining Work ��30

Work That Delivers Value to Clients ���30

Support Work ��31

Spike Items ��31

Table of Contents

About the Authors ��ix

About the Technical Reviewer ���xi

Acknowledgments ���xiii

Introduction ��xv

www.allitebooks.com

http://www.allitebooks.org

vi

Backlog ���32

Levels of Backlog ��32

Adding Defects/Bugs to the Backlog ���35

Grooming Your Backlog ���36

Prioritizing the Backlog ���42

Estimating Your Backlog Work ���42

Getting Stakeholder Feedback ��45

Defining a Process ��46

Planning with a Small Team ��50

Planning with a Large Team ��55

Visualizing Your Plan��55

The Sprint Zero or the Pre-Sprint ��56

Summary���56

Chapter 3: Working on the Iteration ���57

Starting the Sprint ���58

Daily Activity ���60

Planning the Day ���60

Choosing Work for the Day ��64

Tracking and Resolving Impediments and Other Supportive Work ���������������������66

Handling Supportive Work within the Team ���67

Handling Impediments/Roadblocks ���70

Working with Code ��71

Testing the Work ���72

Monitoring the Progress��74

Avoiding Defects ���78

Facilitating Unavoidable Changes ���81

Handling Disaster Situations ���82

Table of ConTenTsTable of ConTenTs

vii

Release Stability ���84

Visualizing and Positively Impacting the Team ���88

Summary���92

Chapter 4: Work After an Iteration ���93

Review ��94

Handling Partially Done Stories ��96

Moving Partially Completed Work to the Backlog ���96

Visualizing and Analyzing the Completed Work ��100

Velocity ��100

Burndown and Burnup���102

Lead Time and Cycle Time ���105

Cumulative Flow ��106

Planning the Next Iteration ���110

Forecasting Future Work ���112

Planning Capacity for the Next Iteration ��113

Continuous Improvement ��114

Summary���115

Chapter 5: Roadmap/Project Plan and Resources ����������������������������117

Creating the Project Plan/Product Roadmap ���118

Creating the Project Plan/Product Roadmap ���118

Business Analysis ���137

Office Integration ���137

The Mobile Interface ���141

Summary���142

Table of ConTenTsTable of ConTenTs

viii

Chapter 6: Adapting VSTS/TFS to Your Team’s Process ��������������������143

Customizing Shared Resources ��144

Customizing Team Projects and Processes ���144

Customizing VSTS with Template Inheritance ���145

Customizing VSTS with Hosted XML ���154

Customizing with TFS On-premises XML���156

Customizing the Access to Work Tracking Tools ���157

Customizing the Test Experience ��159

Additional Customization Options ���159

The Pros and Cons of VSTS vs� TFS ���160

Summary���161

Index ���163

Table of ConTenTsTable of ConTenTs

ix

About the Authors

Chaminda Chandrasekara is a Microsoft

Most Valuable Professional (MVP) for Visual

Studio Application Lifecycle Management

(ALM) and a Scrum Alliance® Certified

ScrumMaster (CSM) who believes in

continuous improvement of the software

development lifecycle. He is a Senior

Consultant - DevOps for Tentacle Technologies

MSC Sdn.Bhd., Malaysia, assigned to work for

Jabil Circuit Sdn. Bhd. He is an active Microsoft

Community Contributor (MCC) who is well

recognized for his contributions in Microsoft forums, TechNet galleries,

wikis, and Stack Overflow and he contributes extensions to Visual Studio

Team Services/Team Foundation Server (VSTS/TFS) in the Microsoft

Visual Studio Marketplace. He also contributes to other open source

projects in GitHub. Chaminda published his first book, Beginning Build

and Release Management with TFS 2017 and VSTS (www.apress.com/

in/book/9781484228104), in June 2017, and he blogs about technology

at https://chamindac.blogspot.com and http://devopsbeyondms.

blogspot.com/.

http://www.apress.com/in/book/9781484228104
http://www.apress.com/in/book/9781484228104
https://chamindac.blogspot.com/
http://devopsbeyondms.blogspot.com/
http://devopsbeyondms.blogspot.com/

x

Sanjaya Yapa currently works as a Microsoft

Dynamics CRM consultant at Oaktan Pty

Ltd. in Melbourne, Australia. He has more

than 12 years of experience in the industry

and has been working with various Microsoft

technologies since 2005. Sanjaya possess a

wealth of experience in software development,

team leadership, product management, and

consultancy. He specializes in Microsoft

Dynamics CRM and Visual Studio Application

Lifecycle Management. Sanjaya blogs on

technology and has been sharing his knowledge and expertise via

https://techjukebox.wordpress.com and https://almbox.wordpress.com.

abouT The auThorsabouT The auThors

https://techjukebox.wordpress.com/
https://almbox.wordpress.com/

xi

About the Technical Reviewer
Mittal Mehta has total 15 years of IT

experience. Currently, he is working as a

configuration manager and is MCP in TFS

2012. He also has experience working in

build-release, DevOps, automation and

configuration area since last 8 years in

Microsoft Technologies.

xiii

Acknowledgments

A special thank you must go to Indaka Raigama, who has been a

brilliant CEO, mentor, and leader for us, and who has given us so many

opportunities to research with VSTS/TFS while working for him. It is these

opportunities that laid the foundation for this book. Also, we are thankful

for all the mentors who have encouraged and helped us during our careers

and who have provided us with so many opportunities to gain the maturity

and the courage we needed to write this book.

We would also like to thank our friends and colleagues who have

helped and encouraged us in so many ways. Last, but in no way least, we

owe a huge debt to our families. Not only because they have put up with

late-night typing, research, and our permanent air of distraction, but

also because they have had the grace to read what we have written. Our

heartfelt gratitude is offered to them for helping us make this dream come

true.

xv

Introduction

Agility in software development is becoming mandatory as technology

rapidly evolves, causing business processes to improve day by day. Because

Visual Studio Team Services/Team Foundation Server (VSTS/TFS) is an

application lifecycle management tool, it has enormous capabilities for

improving the way a software development team works, if it is used wisely.

The project management role in software development projects/

products is now moving toward servant leadership with Agile/Scrum

practices, and thus it functions more as a facilitator than as a manager.

Tools can help empower teams and enable them to deliver software, with

high quality, while rapidly adapting to the changes happening in the tech

world. Effective Team Management with VSTS and TFS: A Guide for Scrum

Masters gives you essential know-how so you can use TFS/VSTS effectively

and also enables you to empower your teams. This text provides a deep

analysis of practical issues and how to overcome them and details the

process of adopting the tool for your style of work.

Rather than just explaining the features, this book describes VSTS/TFS

features as solutions to the challenges of building better Agile teams. It

also discusses how to handle small, ideally sized Agile teams practically

by facilitating large teams to support large-scale projects, by working

with distributed teams in different geographical locations, and so on—all

skills that deepen your ability to get successful project/product outcomes

from your teams. Special focus is given to common pitfalls that you can

unintentionally fall into while using the tool that will prevent you from

creating teams governed by the terms of the tool, as opposed to teams that

find their own better process for creating long-term sustainability.

https://apressmedia.sharepoint.com/sites/201709/effectiveteamman3

1© Chaminda Chandrasekara, Sanjaya Yapa 2018
C. Chandrasekara and S. Yapa, Effective Team Management with VSTS and TFS,
https://doi.org/10.1007/978-1-4842-3558-4_1

CHAPTER 1

Handling Teams
Agility in software development is becoming mandatory as technology

rapidly evolves causing business processes to improve day by day. The

project management role in software development projects/products

is now moving toward servant leadership with Agile/Scrum practices,

thus it functions more as a facilitator and delivery enabler, rather than as

a manager. Tools can help empower teams and enable them to deliver

software, with high quality, while providing both accountability and

visibility. The scrum masters or delivery enablers should use these tools

effectively without awakening remnants of the autocratic evil attitude of

“I am the project manager, do as I say,” which can happen as a result of

the overwhelming amount of data and information that is available with a

particular tool.

In this chapter, we briefly discuss key concepts of Visual Studio Team

Services (VSTS), a cloud version of TFS provided as a software as a service

(SaaS), and Team Foundation Server (TFS). Then we dive deep into using

VSTS/TFS effectively to overcome the challenges of empowering small,

large, and geographically distributed teams.

 VSTS and TFS
Because VSTS/TFS is an application lifecycle management (ALM) tool,

it has a wide range of capabilities for improving the ability of a software

development team to deliver higher-quality software products/projects in

2

a shorter period of time. In this book, you gain essential knowledge and

understanding so that you can use VSTS/TFS effectively to empower your

teams. The following explanations of VSTS/TFS concepts will help you

digest the details we discuss in this and upcoming chapters.

VSTS/TFS offers a collaborative platform on which teams can manage

versioning of software code files, plan and track work, including code

bugs/defects and issues/impediments they face, and automate the process

of building, testing, and releasing software to enable development and

operation (DevOps). For further information on key concepts of VSTS/

TFS, refer to https://docs.microsoft.com/en-us/vsts/user-guide/

concepts?toc=/vsts/user-guide/toc.json&bc=/vsts/user-guide/

breadcrumb/toc.json.

 Team Project Collections, Team Projects,
and Teams
The account in VSTS or a team project collection in on-premises TFS,

is the isolated broad grouping of team projects. A team project can

represent a product/project team or even an entire development team

that is working on multiple projects for an organization. In a team

project, you are provided with a source control repository (or multiple

repositories) and a place in which a team of developers or teams can

plan, collaborate, and track the work they are carrying out. Additionally,

a team project provides build, test, and deploy components for a software

product(s)/project(s). When you create a new team project, a team with

a team project name is created by default. You can add more than one

team inside your team project.

When you connect to VSTS/TFS, you are connecting with an account

or a team project collection. You can define one or more team projects

within that collection. When you create a team project, a team by the

same name is created by default; this is sufficient for smaller teams.

Chapter 1 handling teams

https://docs.microsoft.com/en-us/vsts/user-guide/concepts?toc=/vsts/user-guide/toc.json&bc=/vsts/user-guide/breadcrumb/toc.json
https://docs.microsoft.com/en-us/vsts/user-guide/concepts?toc=/vsts/user-guide/toc.json&bc=/vsts/user-guide/breadcrumb/toc.json
https://docs.microsoft.com/en-us/vsts/user-guide/concepts?toc=/vsts/user-guide/toc.json&bc=/vsts/user-guide/breadcrumb/toc.json

3

In a scenario that includes multiple projects and multiple teams,

you may need to create multiple team projects and teams under a

single account or project collection. For further reading, please refer

to https://docs.microsoft.com/en-us/vsts/user-guide/team-

projects-teams-repos#what-is-a- team-project. We discuss team

projects and teams in detail, later in this chapter.

 Work Items
A work item is any type of work you do as a team member or as a team.

A work item type (WIT) in VSTS/TFS is provided with fields, a layout, and

a specific workflow that allows you to track the work being carried out by

the team. Features, user stories, product backlog items, bugs, tasks, test

cases, and so on are some of the available work item types by default. You

can also introduce your own work item types and alter the behavior of

the existing default work item types. In Chapter 2, we discuss the effective

usage of these work items to facilitate your team needs.

 Iterations/Sprints and Areas
You should use the iteration/sprint paths to group work into time periods

and this is mapping to Agile/Scrum, iterations and sprints concept. You

can use the area to group the work items for a team, product/project,

or feature/module of a piece of software. To learn more details about

iterations and areas, refer to https://docs.microsoft.com/en-us/vsts/

work/customize/about-areas-iterations. We will discuss these in

further detail later in this chapter.

Now that you have a basic knowledge of VSTS/TFS concepts, let’s

focus on the more important aspects of using this tool. Because you are

a facilitator (you may be thinking, “Am I not the manager anymore?”

The answer is no, you are not the manager any longer. Instead, you are

the delivery enabler, so change your attitude right now!), you may have

Chapter 1 handling teams

https://docs.microsoft.com/en-us/vsts/user-guide/team-projects-teams-repos#what-is-a-team-project
https://docs.microsoft.com/en-us/vsts/user-guide/team-projects-teams-repos#what-is-a-team-project
https://docs.microsoft.com/en-us/vsts/work/customize/about-areas-iterations
https://docs.microsoft.com/en-us/vsts/work/customize/about-areas-iterations

4

a few different types of projects/products to deliver with the help of

your team(s):

• Short-Term Project: This type of project is developed and

delivered within a short period of time. Ideally you can

handle this project with a small Agile/Scrum team made

up of three to nine members as per latest scrum guide.

• Long-Running or Complex and Large Product/Project:

To deliver this type of project, you will require a large

number of team members, and you may have all of

them in the same geolocation.

• Long-Running or Complex and Large Product/Project:

To deliver this type of project, you will require a large

number of team members, and you may have them in

different geolocations and time zones.

 Determining the Ideal Size for Teams
What is the ideal team size? What you need for a small project that can be

completed within three to six months with the short warranty period might

differ from what you need for a long-running product that has a roadmap

for delivering features in very small chunks, which can be facilitated by a

small team. On the other hand you might want to have a large team if it is

required to deliver bulk of work urgently, which we will discuss later in this

chapter. You may encounter many other project/product requirements

that influence team size.

 Getting Started
To begin, it is crucial that you make sure that you are underpinning the

right framework for executing the project/product. Let’s dive deep into the

steps that will help you lay the groundwork for a small team using VSTS/

TFS. First you must create the team project for the team.

Chapter 1 handling teams

5

 Creating a Team Project

Before creating the team project, you need to make the following decisions:

• Determine the process template.

Out of the box, VSTS/TFS comes with three process

templates: Agile, Scrum, and CMMI (Capability

Maturity Model Integration). The process template

defines the work item types and how they behave

in your project. Each template has its own pros

and cons. Once you have selected the template, it

can be customized, but you cannot change it to a

different default template at a later stage. So, be sure

to discuss this choice with your team and decide

which template is best for your project/product

development. You can find more information at this

link: https://docs.microsoft.com/en-us/vsts/

work/guidance/choose- process.

• Decide on the version control repository.

Make sure to consult your technical team before you

decide which version control system to use. VSTS/TFS

comes with Team Foundation Version Controlling (TFVC)

and Git (Team Foundation Git). Each of these repositories

has its own advantages and disadvantages. Use this link

to help you decide on the best version control system for

your situation: https://docs.microsoft.com/en-us/

vsts/tfvc/comparison-git- tfvc.

Chapter 1 handling teams

https://docs.microsoft.com/en-us/vsts/work/guidance/choose-process
https://docs.microsoft.com/en-us/vsts/work/guidance/choose-process
https://docs.microsoft.com/en-us/vsts/tfvc/comparison-git-tfvc
https://docs.microsoft.com/en-us/vsts/tfvc/comparison-git-tfvc

6

Once you have made these two decisions, you can begin creating the

team project. To do so, click the gear icon on top right corner of the home

page of VSTS/TFS. This action takes you to the Administration Overview

page. Click New Team Project to create the new team project.

You can find out more details about creating team projects here:

https://docs.microsoft.com/en-us/vsts/accounts/create-team-

project?tabs=vsts. As illustrated in Figure 1-1, make sure to provide the

Project Name, the Version Control, and the Work Item Process template.

Figure 1-1. Creating a new project

Chapter 1 handling teams

https://docs.microsoft.com/en-us/vsts/accounts/create-team-project?tabs=vsts
https://docs.microsoft.com/en-us/vsts/accounts/create-team-project?tabs=vsts

7

 Managing Backlog

Regardless of the process model you use, you should have a list of items

that you need to complete to deliver a successful project/product. This

list of work is made up of product backlog items (PBIs) in Scrum, user

stories in Agile, and requirements in CMMI, or, you might even have your

own terminology. We discuss backlog management in detail in Chapter 2.

Figure 1-2 illustrates a sample backlog.

Figure 1-2. Backlog view

Chapter 1 handling teams

8

 Isolating the Work of a Small Team

If you are working on a smaller project and you need to deliver it in a short

period of time, you can work with a single team with a backlog. But when

the project becomes complex—for instance, if the project needs support

once it goes live—how do you handle the complexity of working with new

feature development while still supporting production issues?

The challenge here is not to interrupt the ongoing new feature

development while you are catering to client issues and fixing them as

soon as possible. In such scenarios, you must effectively manage both

workloads with full visibility and still require a level of isolation of support

work and new feature development activities.

You can accomplish this easily with the Teams feature inside a team

project of VSTS/TFS. For instance, you can create two different teams in

addition to the default team—one for handling the new development work

and the other for handling the support work. (Creating teams and adding

team members is described here: https://docs.microsoft.com/en-us/

vsts/work/scale/multiple-teams).

One important thing to remember here is that, when you create

these two new teams in the team project, you must create an area that

belongs to each team. You might be wondering what an area is in VSTS/

TFS. Fundamentally, an area enables you to group your work by its team,

product, feature, module, or business functionality. An area not only

provides categorization, but it also controls access to work items. For the

default team that is created for your team project, you get a default area as

well. So, when you create teams, you get the opportunity to select whether

the team requires an area or not (see Figure 1-3). To create a new team,

follow these steps:

 1. Click the Settings(gear) icon on the top right corner

of the project portal.

Chapter 1 handling teams

https://docs.microsoft.com/en-us/vsts/work/scale/multiple-teams
https://docs.microsoft.com/en-us/vsts/work/scale/multiple-teams

9

 2. When you are redirected to the Administration page,

click the New Team option from the Overview tab.

 3. In the Create New Team page, enter your team name, select

your permissions, and make sure the Team Area checkbox

is checked. Click Create Team (see Figure 1-3).

Figure 1-3. Creating a new team

Chapter 1 handling teams

10

In Figure 1-4, you must select an area for each team you create so you

can organize your backlog and the work items. You can create subareas

under each team area, but make sure you do not create an area structure

that is too complex; because doing so will cause too much overhead in

work item management as well as in permissions management.

Figure 1-4. An area structure for a small team

In addition to creating an area structure, you can configure multiple

teams to share the same work area (see https://docs.microsoft.com/

en-us/vsts/work/scale/set-team-defaults#set-team-default-area-

paths). For instance, in some scenarios, you might want, several teams to

share the default area.

You can also use the area to allocate work specific to each team; for

instance, you can assign the development work to the development team

simply by changing the area path of the work item. Similarly, you can

assign the support work that comes from the client to the support team

Chapter 1 handling teams

https://docs.microsoft.com/en-us/vsts/work/scale/set-team-defaults#set-team-default-area-paths
https://docs.microsoft.com/en-us/vsts/work/scale/set-team-defaults#set-team-default-area-paths
https://docs.microsoft.com/en-us/vsts/work/scale/set-team-defaults#set-team-default-area-paths

11

by selecting the relevant area, as illustrated in Figure 1-5. The root or

default team has visibility across all the teams underneath it when you set

it to include subareas for its own area. (Refer to the link in the previous

paragraph for more details).

Figure 1-5. Backlog view from the default/root team

Work item allocation to the relevant area opens the opportunity to

have dedicated backlogs for each team (Figure 1-6). This way, the ongoing

development work and the support work does not get mixed up. Further,

this also allows team members to work across the teams. In general, a

developer may work in both development and support teams, therefore,

you can share your team resources (developers and testers) on demand to

either of the activities.

Chapter 1 handling teams

12

We have now explored how you can use VSTS/TFS teams and areas

to separate the work within a small team depending on its activity. This

enables you to manage the work as well as for individual action teams

(dev/support) to work without any collisions.

 Managing Delivery Cadence

Now that we have set up the teams and the area hierarchy to organize the

backlog, it’s time to come up with a plan for releasing the goods to the end

users. Basically, we need to finalize how often we should do this. We know the

clients would love to see the results of their investments as early as possible.

In theory, with the Agile practice that we incorporate with the project/

product development work, we should release software to the end users in

short iterations. Say you want to have three weeks of iterations; that is, you are

planning to release software at the end of every three weeks or your delivery

cadence is three weeks. Remember, the software delivery cycle time or

delivery cadence might be different based on the complexity of the project.

Once you have decided that the completed work will be released every

three weeks (this can be a different time frame such as one week or a

month depending on your team needs) or, in other words, that the length

of your iterations is three weeks, you can go ahead and set the iterations in

VSTS/TFS (Figure 1-7).

Figure 1-6. Development team backlog view

Chapter 1 handling teams

13

As mentioned earlier, you can use the areas to organize work items into

teams, products, features, modules, or business functionalities, and you

can use the iterations to organize your work items based on the release

priority. This is where you build your release cadence. So, by the end of

each iteration, you and your team will be releasing the software to the end

users. But is this actually possible? The reality is that when you kick off the

project, by the end of the first iteration of the cycle, most of the time you do

not yet have anything to deliver to the users. It might take a minimum of

three to four cycles to get something out. What can you do in the meantime

to get things lined up nicely?

You can easily set up a release cycle with a release hierarchy. That is,

you can organize your iterations under releases as illustrated in Figure 1- 8.

In this scenario, you are releasing goods at the end of each release, but not

at each iteration. In other words, you are making sure that the end user

gets a real business value at the end of each release cycle/iteration.

Figure 1-7. Managing iterations

Chapter 1 handling teams

14

You might want to have a different release cadence for your dev/

feature development team and for the support activities. For example, let’s

say you deliver hotfixes weekly/daily/on demand, whereas you deliver

new features to the system monthly/quarterly. What are your options for

handling such a situation with VSTS/TFS? In each team, you can decide

which iterations are visible or which the team should work with. Here are

the choices:

• Backlog Iteration: This allows you to set which work

items appear in your backlog and boards for the team.

• Default Iteration: This defines which iteration the work

items get assigned to if they are created from the team

context.

Figure 1-8. Iterations grouped into releases

Chapter 1 handling teams

15

You can select a set of iterations to appear in the backlog and the

board view for iterations. Play around with the different settings to figure

out the ideal setup for your team and for your team project. For example,

if you have set up a release cadence comprising two iterations per one

release, as shown in Figure 1-8, it is recommended that you select the

iterations for your team as shown in Figure 1-9 to obtain the Work tab

view shown in Figure 1-10.

Figure 1-9. Iterations selection for the team

Figure 1-10 shows the Backlogs view. If you inspect it carefully,

note that you can see iterations belonging to two releases. Adopting

naming conventions similar to those shown in this sample may help you

recognize which iteration you are referring to and to which release cycle

the iteration belongs.

Chapter 1 handling teams

16

Assuming you use this recommended approach, make sure you

remember to alter these setting to come up with the best solutions for your

needs. Remember not to let the tool dictate the terms of your process; you

should decide how to model the tool to suit the process that works for you.

 Monitoring the Progress of the Teams
Whether you have a single team in your VSTS/TFS team project or multiple

teams, make sure to monitor the progress of the ongoing work. As a scrum

master, if you are not supporting your team, so the team understands and

rectifies any blockings, then your team will fail to keep the momentum

going. Of course, the team may reveal these issues toward the latter part

of an iteration, but you should have an easy way to identify these issues

sooner rather than later. If your team does not identify these delays as early

as possible and work to rectify them, you and the team will fail to deliver

the project on time.

So how can you handle this? This is when you can use the reporting

and work tracking capabilities of VSTS/TFS—such as queries, charts,

Kanban boards, and dashboards—to track the ongoing work on a daily

basis and on demand. We dive deep into this rich set of capabilities

throughout the chapters in this book.

Figure 1-10. The team’s Work tab view

Chapter 1 handling teams

17

 Large Teams
In the previous section of this chapter, we discussed how to handle ideally

sized Agile teams. But in some scenarios, you must manage a much

larger team, maybe due to the complexity and the tight deadlines of the

project/product. Some projects/products are very complex and have many

modules. Others must be delivered in a short period of time with critical

deadlines that must be met along the way. To meet these requirements of

project/product development, you have no other option than to use a large

team, which goes beyond the recommendations of the Agile practice. As

the team gets bigger, naturally it leads to various complications in terms of

teamwork, collaboration, communication, and other issues.

When the team gets larger and the amount of work to be delivered is

huge and critical, the best way to handle the situation is to divide the work

up among team members. Make sure you focus on business modules

rather than technical reasons when you divide teams in this manner.

Simply dividing your team into the Java-Dev team, the C# Dev team, or UI

Development and Backend Development using technical reason as criteria

of division does not help; we discuss this in more depth later in this chapter.

It is also vital that you make sure to monitor the work in progress

for all teams at all times. If you do not, it is very likely that you will miss

the deadlines or that you will run into last-minute impediments or risks

within the software development process. Miscommunication among

stakeholders from different subteams is another thing to keep an eye on.

It is dangerous not to have a clear vision of where the project is heading.

Also, when the teams start to release each of the components of the system

and do the integrations between them, if you did not lay the proper plans

well in advance, things get worse. In the following sections, we discuss

how to divide a large team and manage it effectively and efficiently

while still leveraging the features of VSTS/TFS as an application lifecycle

management (ALM) tool.

Chapter 1 handling teams

18

 Getting Started with Large Teams
As we already discussed for small teams, you start by creating the team

project. This step is pretty much the same, regardless of your team size.

With the help of your technical team, you can decide on which source

control and the VSTS/TFS team project template (Agile, Scrum, or CMMI)

to use.

In order to avoid managerial complexities, you must make required

decisions about how to execute the project/product development at very

early stages of the process. For instance, let’s assume the project is very

complex and has several modules, such as Membership Management,

Events Management, Finance Management, Case Management, and

so on. In such scenarios, what is the ideal way to proceed? You should

modularize the development process so that all application modules are

developed in parallel by multiple teams. Having said that, the challenge is

to decide on how to divide your team to deliver modules in parallel. There

are various ways of doing this, and you should consider the best solution as

the example we are discussing below, that gives the business value quickly

to your product/project end users.

Technically inspired team members might want to divide the team

based on the technical aspects. For instance, they might want to divvy up

the work into categories like the following: front-end development, business

process and plugin development, database development, and so on.

The danger of this approach is that the whole team might eventually lose

the focus of the project’s business purpose and continue to focus only on

its technical aspects. At all times, the aim of the team should be to deliver

value to the end users. With divisions like this, you and the team are not

releasing the value to the end users. Instead, your team is focused on merely

completing the work assigned to them. As a result, the integration becomes

tedious and causes unnecessary delays.

Chapter 1 handling teams

19

Figure 1-11. A nested team structure. This is not possible with VSTS/TFS

Therefore, the most appropriate way of dividing a team is based on the

business functions of the project. For instance, you can create different

teams to develop membership management, finance management, case

management, events management, and so on. Each team has its own set of

developers and testers and its own scrum master. Remember earlier that

we created two different teams to handle development work and support

work. Similarly, you can create the relevant teams under the main team

project and assign the team members to each team you created. You may

want to have both a development and a support subteam for each team.

However, nested teams are not a possibility in VSTS or TFS, which means

you cannot have a team structure like the one shown in Figure 1-11.

Chapter 1 handling teams

20

In fact, it is not necessary to have such a complex team structure.

Obviously, for a large team and a complex project, you might be able to

have one or two separate support teams that are working on all modules

support activity. So, you could set up a team for each module and then set

up a support team or two under the root team.

Having said that, what should you do if you really want to have both

a dev team and a support team for each of the modules because you

are handling each individual module in a totally decoupled manner

technically and each has independent release cadences of its own? A

workaround for this is to create all required teams with areas assigned

to them and then move the required module to dev team areas under

the relevant module areas as children. Does this sound confusing? Let’s

simplify it with few steps.

 1. Create each team with an area (refer back to Figure 1-3)

so that the teams look like those shown in Figure 1-12.

Figure 1-12. Module teams and a dev and support team for each module

Chapter 1 handling teams

21

Now the areas of the team project would look like

Figure 1- 13.

Figure 1-13. Areas created as a flat list

 2. Now drag and drop each of the module Dev and

Support team areas to make it a child area of the

relevant module area to achieve the nested effect

that was not possible with teams as a default, as

shown in Figure 1-11. This means that you will have

an area hierarchy (as shown in Figure 1-14), instead

of team hierarchy, to achieve the team backlog

hierarchal structure.

Chapter 1 handling teams

22

For example, if you take the Module02Dev team, its

default area path is TeamProject(AccountSample)

\Module02\Module02Dev, as shown in Figure 1-15.

Figure 1-14. Nested areas to achieve a hierarchical team structure

Chapter 1 handling teams

23

Figure 1-15. Default area path of the Module02Dev team

You can include subareas for the modules

in the team default area as discussed earlier.

So the backlog items of Module01Dev and

Module01Support team are visible in Module01.

The example shown in Figure 1-15 gives you an idea of the flexibility

of the tool, and you should configure it to accommodate your needs.

Even though many things seem impossible at first glance, after putting in

a little bit of thought and trying to change the configuration of areas and

iterations, you can achieve almost everything you need to help your team

work with a process that is best suited to them. Keep in mind that the tool

should not dictate terms to you or your team; you can change it to behave

the way you want it to since it is flexible.

Chapter 1 handling teams

24

You can share resources and easily add them to multiple teams based

on your requirements. For instance, you can share user experience experts

between teams. It is good practice to nominate someone to lead each of

these teams and take ownership of the scrum master role in each team

so that he or she can track the progress and communicate with the scrum

master (you) who oversees the whole project.

This becomes very complicated if the team is split over different

geolocations. You can follow up with the same principle to divide the

teams, but remember that the team is working from different locations. Do

not divide the team based on the location and assign a module; instead,

always keep a mixture of people from different locations in one team that

is responsible for a module. Again, you can use the Teams feature of VSTS/

TFS along with areas and iterations to manage such teams.

As explained earlier, when you create teams, behind the scenes a

separate work area is created for each team you created. That is the default

behavior. However, you can deselect the “Create an area path with the

name of the team” checkbox that is shown in Figure 1-3 to create a team

without a default area. Then you can go to the team setting and set the

default area of the team to any existing area, or you can create a new area

and set it to the team default area. The important thing to remember is

a team must have a default area to make the backlog, boards, and so on

work. You should experiment and set up the VSTS/TFS team project to

your liking using the flexibility it has.

 Organizing the Backlog of Larger Teams

Because the backlog for a larger project will be so large, a flat structure

of requirements is not going to work simply because multiple business

functions and multiple teams will be working on those functions

simultaneously. Such a scenario is when you get to use the VSTS/TFS work

items (epics/features/user stories) to their full potential. For instance, you

can create a hierarchy of work items as illustrated in Figure 1-16. We discuss

backlog management more in Chapter 2.

Chapter 1 handling teams

25

Figure 1-16. Organized backlog

In the beginning of this section, we discussed how to divide the teams.

Ideally, a larger team should be divided into multiple teams that focus on

the business functionality. As explained previously, this is the appropriate

method for delivering business value to the end user in large projects. As

we know so far, when creating teams, behind the scene VSTS/TFS also

creates the areas by default, which enables you to assign the work items to

the relevant team by simply changing the area path. Now that you have set

up the teams, the work items management is the next step therefore you

should gain an understanding, to begin the project/product development,

which we will discuss in detail in Chapter 2.

Chapter 1 handling teams

26

 Defining the Delivery Cadence for Multiple Teams

As with ideally sized teams, you must define the delivery cadence for the

project/product development for large teams. Remember this is very tricky

since different teams are going to be working on features of each module

they are assigned to and the work they undertake might have different

levels of complexity.

Some teams might demand a longer delivery cadence based on the

functionality on which they are working. For example, one team might

like to have a three-week delivery cadence and another team might like

to have a four-week delivery cadence. Even though VSTS/TFS supports

different lengths of iterations, if you do not properly set up iterations and

manage the work, your project deleivery targets and quality of deleivery

may well end up in chaos. So, to make your work simpler, set up a delivery

cadence of the same length and every team will be aligned with it. This is

very handy when it comes to integration because you will be releasing fully

baked goods to the clients. However, this decision again depends on the

technical architecture and platforms your team chooses to deliver to the

project.

It is important to plan well and define what the delivery cadence is

for each of your teams before you start the project. For this, you need

to get the support of your technical teams and consider all aspects; for

example, if you have a very loosely coupled module design that has the

ability to support previous versions of other modules with newer versions

of a different module, you can consider having different delivery cadences

for each module. Or, you might want to work in different iteration cycles

in each module but maintain the same delivery cadence for all modules.

For this, you can share one level of iterations with all modules to denote

releases and then have different child iterations for each module team.

These are just a few ideas, but to make your iteration setup to really work,

you need to figure out how you want it, and then manipulate VSTS/TFS to

behave the way you want the iterations to behave.

Chapter 1 handling teams

27

 Monitoring the Progress of Multiple Teams
When you start executing the project/product development work, it is

extremely important to know the current status of your teams. When

you are executing large projects, it is vital to identify any setbacks or

delays as early as possible so you can take corrective actions to mitigate

the issues. As explained earlier, VSTS/TFS comes with a set of reporting

tools such as queries, charts, Kanban boards, and dashboards; these

enables you to stay in touch with your teams. We cover these topics in

detail later in this book.

 Summary
This chapter was dedicated to how you should handle teams. We explored

how you can use VSTS/TFS to set up the team project, teams, areas, and

iterations. We also detailed how you can use this tool to manage ideally

sized Agile teams and large-scale Agile teams. You should now have a

good understanding of how to organize the team structure, and with

that, we can move on to Chapter 2 in which we talk more about backlog

management and how to share work with different teams.

Chapter 1 handling teams

29© Chaminda Chandrasekara, Sanjaya Yapa 2018
C. Chandrasekara and S. Yapa, Effective Team Management with VSTS and TFS,
https://doi.org/10.1007/978-1-4842-3558-4_2

CHAPTER 2

Working with a
Backlog
The backlog is the list of items or tasks that you must complete to

successfully deliver your software project/product. We briefly identified

the capability VSTS/TFS offers to manage your backlog in Chapter 1.

This list of work might be comprised of new features to be implemented

(new requirements), alterations to existing features per feedback from

stakeholders (changes to requirements), or issues (bugs) reported in

already delivered components of the software that need to be fixed.

The backlog has to be analyzed for business-value creation and the

difficulty/risk involved in the implementation, and based on those facts,

the list should be prioritized so you deliver the most valuable items first

to the client. In Agile practice, you are familiar with using the backlog

grooming activity to clarify and deepen the knowledge of the requirements

specified in a backlog. This helps your team to identify the risks involved

and the effort required in implementing the requirement.

In this chapter, we explore the essentials of managing an effective

backlog to support your team to deliver the expected outcome of the

software product/project. We discuss the capabilities of VSTS/TFS that

enable you to leverage these to the benefit of your team.

30

 Defining Work
Work is what your team has to do to deliver a software project to your

client. This can be an individual development task, a business functionality

requirement that needs to be implemented, a testing activity, a test case

that is specified to identify how the requirement should be tested, a defect

reported, and so on. These different types of work that you need to perform

can be categorized into the following three main categories: The following

subsections explain them briefly.

• Work that deliver value to clients

• Work that supports the work that delivers value to clients

• Work that will eventually deliver value to clients but

that presently needs ground work to enable it to be

implemented in the future (aka Spike items)

The following subsections explain them briefly.

 Work That Delivers Value to Clients
This type of work is the most important that you need to perform, and you

should understand clearly what you need to do for each task. In general,

this type of work is called requirements of the client. In addition to these

requirements, this type of work can also include issues/defects reported in

software where fixes of them also deliver a value to the client. In the Agile

world, this work is called user stories and any issues/defects are referred

to as bugs; in the Scrum process, you call this work product backlog items

(PBIs), but each issue is still a bug. For the CMMI-based practices, the

terminology used is slightly different; you have requirements as the main

types of work and, again, bugs as the term used for issues or defects. In

VSTS/TFS, the project templates are available with work items using the

same terminology to map with Agile, Scrum, or CMMI processes. You do

Chapter 2 Working With a BaCklog

31

have flexibility to introduce your own types of work items, however; we

discuss this further in Chapter 6.

 Support Work
This type of work helps you complete the work that delivers value to your

client. In order to deliver requirements and defect fixes, your team needs

to perform development tasks, test the requirements and defects, and so

on, but this type of work also includes other supportive tasks like getting a

server environment ready or providing a new laptop to your team member.

This types of supportive work that your team must do needs to be handled

separately from your backlog. We discussing how to handle this in future

chapters.

Important tip of the two categories of work we just discussed,
only work that delivers value to your client should be in your backlog.
if you put other supportive work in your backlog, it will jeopardize the
whole purpose of having a backlog. this is a common mistake made
by many scrum masters and teams that you should avoid.

 Spike Items
You may come across some work that will eventually be valuable to your

client, but that is not right now. For example, you might want to do some

research on a new technological improvement that is not delivering any

value to your client in its current iteration. However, you believe this

research may help improve some components of your product/project

in future iterations, or that it may introduce a new attractive feature to

the software project that will be valuable to the client. Unlike supportive

work, you should add such items to the backlog; mark/tag them as “Spike”

Chapter 2 Working With a BaCklog

32

items by using work item tags. Work item tags in VSTS/TFS help you filter

work items in queries or in backlog, and such tags are one or two keyword

phrases you use to mark/categorize work items. You can reuse a tag you

define for one work item in other work items. (You can learn more about

how to work with work item tags at https://docs.microsoft.com/en-us/

vsts/work/track/add-tags-to-work-items).

 Backlog
Although you may have your own backlog that delivers value to improve

the quality of your life, in this book, we only focus on software delivery.

So, in this text, the backlog we refer to involves the work that delivers

value to your client business processes by providing the functionality of

a software development project/product. This backlog should comprise

requirements and defects to be fixed. Requirements might be vague at a

software project’s initial stages. For instance, you might start with just a list

of user stories in a generic format, that is, “As a person(s), I want something

to happen for some reason.” Later, you have to get clarification from your

client and understand more details about the requirements. This activity

is called backlog grooming; your team and the client should collaborate to

make it a success.

 Levels of Backlog
You might want to group requirements in your backlog to clarify your

requirements list. Grouping them into different levels will help you align

your requirements with your product/project roadmaps. For example, let’s

consider a retail banking solution. This could have several modules such

as Savings Accounts, Lending, Fixed Deposits, Standing Orders, and so on.

The Lending module can be broken down into even smaller divisons, say

Loans and Leasing. Any one of these modules might need several features

Chapter 2 Working With a BaCklog

https://docs.microsoft.com/en-us/vsts/work/track/add-tags-to-work-items
https://docs.microsoft.com/en-us/vsts/work/track/add-tags-to-work-items

33

implemented. For example, the Savings Accounts module may require an

Account Opening feature, a Cash Withdrawal/Deposit feature, an Account

Closing feature, and so on. Each of these features may also have multiple

functionalities, for instance, the Account Opening feature might comprise

Register Customer, Open Account, and First Cash Deposit.

How can you accommodate this requirement in VSTS/TFS? By default,

VSTS/TFS has three levels—Epics, Features, and Stories/Backlog Items/

Requirements—for the backlog, and two of these three levels are already

enabled (Epics is the only one that isn’t). You can easily enable and disable

the levels for the backlog by selecting/deselecting the checkboxes for each,

as shown in Figure 2-1. If you want more levels or you want to alter the

existing backlog levels, you can perform further customizations, which we

discuss in Chapter 6.

Figure 2-1. Selecting backlog levels

Chapter 2 Working With a BaCklog

34

Once you have the required levels enabled for your team, you can start

setting up your backlog in the VSTS/TFS team project Work tab. You can

add Epics and Features to group your backlog items. Then you can add

Stories/Backlog Items/Requirements to your backlog.

You can group your user stories/backlog items/requirements as

children of the feature work item(s) and a feature can be a child item of an

epic. Figure 2-2 shows one backlog organized this way. You can also select

multiple backlog items/stories and drag and drop them to reorganize by

reordering or reparenting them with different features.

Figure 2-2. An organized backlog

Chapter 2 Working With a BaCklog

35

Important tip You have the option of having a parent-child
relationship among user stories (backlog items/requirements), but
this kind of hierarchical backlog with one backlog level is not good
practice. this is especially true in the User Story/requirement/Backlog
item level; in this level, you must not have hierarchies, even though
this is technically possible in VStS/tFS. a flat list of user stories helps
keep things simple, and it also prevents you from creating stories that
violate inVeSt (independent, negotiable, Valuable, estimable, Small,
testable) principles (https://xp123.com/articles/invest-
in-good-stories-and-smart-tasks/).

 Adding Defects/Bugs to the Backlog
Defects/bugs are detected in software once it starts getting tested at

the quality assurance phase. You should add these bugs to the backlog

because fixing them delivers value to your client. As a tool, VSTS/TFS

allows you the flexibility to decide at which level the bugs should be

handled (Figure 2-3). You have the option of keeping them in the same

level of requirements, which allows you to add them as backlog items, or

you can use them in the level of development or other tasks, as achild item

of a requirement that needs to be done for achieving that requirement.

There is also a third option—in which you do not have bugs in either

backlogs or boards—but this is not a recommended approach at all.

Chapter 2 Working With a BaCklog

https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/
https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/

36

If you choose to keep the bugs in the Requirements level, they are

reflected in the Cumulative Flow and Velocity charts of the team. (We look

at these charts in Chapter 3.) If the option of tracking the bugs with tasks is

selected, you are able to reflect effort of the bugs in iteration capacity and

burndown.

Out of these three options, the recommended one is to manage bugs

with requirements, which allows you to execute multiple tasks to get a bug

fixed. Some bugs are very complex, which means it might involve more

than one task to get each fixed; it is useful to track the testing effort in

another task after the bug is fixed.

 Grooming Your Backlog
Grooming the backlog plays a vital role in the successful delivery of a

software project. If the team does not clearly understand the requirement,

it cannot determine the technical implementation, that is, provide the

customer with the expected business process flow. Because of this, it is

essential that you allocate sufficient time during your project development

iterations to groom your backlog.

Make sure to get your product owner (client/business analyst) to help

the team groom the backlog. Remember, the priority of the backlog items

belongs to your product owner. As a result, the order of the backlog is

Figure 2-3. Bug management options

Chapter 2 Working With a BaCklog

37

decided by the product owner. Make sure to support your team to get the

items on the top of the list clarified in the backlog grooming sessions

(see Figure 2-4).

Figure 2-4. The backlog

 Definition of Done (DoD)

How do you make sure your team gets backlog items done (that is,

they make sure each backlog item is developed, tested, and ready for

production)? The key is the acceptance criteria for the backlog items.

When you collaboratively define acceptance criteria with your

product owner, your team should understand the real requirement.

Chapter 2 Working With a BaCklog

38

This collaboration and understanding minimizes the risk and drastically

improves your team’s chance of delivering a requirement successfully.

 Definition of Ready (DoR)

How ready is your backlog item for implementation? Make sure your

backlog items meet the following criteria before you take each into an

iteration/sprint to implement it: the backlog item needs to be clear and

understood by the team, it should have acceptance criteria that is defined

so that everyone agrees on a DoD; the item should be testable; and it

should be feasible to implement within a sprint. Such items are referred

to as DoR-met backlog items, which can be taken into a sprint as shown in

Figure 2-5. If the backlog item does not meet these criteria, it should be

broken down to a more granular level.

Figure 2-5. DoR vs. DoD

Chapter 2 Working With a BaCklog

39

 Using Work Item Fields

You can use the fields in the VSTS/TFS work items to provide more clarity

for your backlog items. Let’s discuss a few such important fields.

• Acceptance Criteria: As discussed earlier, this is the

most important field in any backlog item (user

story/backlog item/requirement and bug work items).

This field defines the criteria that must be met before

the customer accepts the item as done. It is important

to have clear criteria defined in this field to ensure that

the entire team knows exactly what the conditions are

that should be satisfied in the implementation.

• Story Points/Effort/Size: This field contains the relative

effort estimation as a numeric value. It can be defined

with any numeric unit of measurement that your team

prefers to use. This is the Agile/Scrum relative size

value used to identify the team velocity or in other

words how much work (total effort) the team can

perform. VSTS/TFS has automated velocity charts and

the capability to forecast the amount of work that can

be delivered in each iteration, which we discuss later.

You can learn more about team velocity here:

www.agilealliance.org/glossary/velocity.

• Title: This field briefly explains what the backlog item

is. For stories/requirements, you can use the format of

“As a person(s), I want something to happen for some

reason.” For bugs, you can use the same format or just a

few words to clarify what the issue is.

Chapter 2 Working With a BaCklog

http://www.agilealliance.org/glossary/velocity

40

• Description: This field should address three major

questions: why, what, and for whom this item should

be implemented. How it should be implemented

should not be included here; instead this should be

described with the child tasks defined to implement

the story or fix the bug. The team should be able to

define test cases and tasks based on the description of

the backlog item.

• Iteration Path: Iteration defines where the backlog item

belongs. When you define a backlog, normally it should

be at the root of a team project, meaning the team

project name would be the iteration path. We discuss

the other alternatives in Chapter 3.

• Area Path: This field defines which team or which

specific submodule the backlog item belongs to. As we

discussed in Chapter 1, depending on the setting you

have established for each team, the visibility of backlog

items changes when you set the iteration path. We

cover how to use this field more in Chapter 3.

• Priority: Rating of the requirement or bug related to the

business is defined in this field. Allowed values are 1, 2,

and 3, which have the following specific meanings; the

default value is 2.

 1. Cannot ship without implementing this story or

fixing the bug.

 2. Cannot ship without the item, but this value is

not needed to attend to this item immediately.

 3. This value is optional to implement based on

the risk and resource availability.

Chapter 2 Working With a BaCklog

41

The preceding fields are a common set that you can use, but there are

specific fields in each work item type—for example, repro steps field in

bugs helps to capture the steps on how to reproduce a given bug.

 Using Test Cases and Tasks

The test case should describe what the expected implementation of the

backlog item is and how it will be tested. To make the implementation

successful, it is vital that you write test cases as much as possible before

you implement the backlog item. However, it is okay to add more test

cases even after implementation as the actual testing occurs, because new

scenarios that were not predicted before may be visible at this point. In

VSTS/TFS, test cases are added to a user story/backlog item/requirement

or even to a bug with a special relationship link called “tested by.” From the

test case perspective, the relationship is called “tests.” For example, a story

is tested by a test case and a test case tests the user story.

In VSTS/TSF, Task (the Task work item) should be a child relationship

with the backlog items or bugs set to behave as backlog items. This is

possible only if “Bugs are managed with requirements” is selected under

the Product Backlog settings.

A task should describe the full or partial implementation of the backlog

item and how it should be implemented. If it is a small implementation,

one task may be sufficient for describing how the backlog item should

be implemented. If a single task cannot do the full implementation,

multiple tasks can be used to describe the details of implementation by

dividing work among the tasks. In a practical scenario, the team focuses

on completing a task within six hours, and during the estimation, if it is

evident that it is going to take more than six hours, then the team must

divide the task into multiple tasks. There can be tasks other than the

implementation/development of a backlog item such as test case writing

tasks, testing tasks, test automation development tasks, and so on. You can

use Activity field of the task to identify the type of task to which the task can

be linked with team capacity as described later in this chapter.

Chapter 2 Working With a BaCklog

42

 Prioritizing the Backlog
Your team should be involved in grooming the backlog. This means that they

may be introducing new stories and breaking down product-owner- defined

large stories, into smaller, testable, and feasible stories. However, which

story/backlog item should be considered for development first is totally

owned by the product owner or your client. Hence, prioritizing the backlog

is neither your responsibility nor something you or your team should do.

So how can you make sure the items are implementation ready

according to the priority of your client? Make sure your team always

focuses on the top of the backlog when it is performing the grooming

activity. If you must break a larger story into smaller stories, communicate

to the product owner that you have made a few stories out of one to make

the project more feasible. The product owner may then reprioritize the

stories/backlog items. In VSTS/TFS, to prioritize the backlog items, the

product owner can drag and drop items in the preferred order so that

the topmost items are the highest priority items and the priority order is

identified as top to bottom.

 Estimating Your Backlog Work
Estimating work plays an important part in project delivery. In Agile

development, empowering your team and identifying their velocity (how

much they can deliver in an iteration) is vital. To prevent yourself (as the

scrum master) from micromanaging the team, you should focus on a few

things, especially when you are estimating tasks.

Keeping this in mind, let’s look at what the options are for estimating

work. You are already familiar with estimating using relative sizes for backlog

items in general Agile/Scrum practices. In the previous section, we discussed

the Story Points/Effort/Size work item field as being the field you use to

capture the relative size of a backlog item. Relative estimation is described

here: www.agilealliance.org/glossary/relative-estimation/. There

Chapter 2 Working With a BaCklog

http://www.agilealliance.org/glossary/relative-estimation/

43

is one limitation in VSTS/TFS when it comes to relative estimation; you

must always use a numeric scale to estimate relatively. It can be any

numeric scale of your choice. There are few free extensions in Visual Studio

Marketplace (https://marketplace.visualstudio.com/search?term=es

timate&target=VSTS&category=All%20categories&sortBy=Relevance)

to get relative estimation built into your VSTS/TFS backlog. Out of these,

the extension developed by Microsoft DevLabs, is effective and integrates

well with the backlog items so you and your team can play planning poker

(relative estimation game to size the stories with team input) on the backlog

(https://marketplace.visualstudio.com/items?itemName=ms-devlabs.

estimate). You can select a work item and vote for it as a team and play

planning pocker online; once all members vote, you can reveal the votes,

discuss, and revote if you need to (Figure 2-6). Extensions enable you to

record the average estimation (you can edit this value) in the story point of

the backlog item.

Figure 2-6. Estimating the backlog items

Chapter 2 Working With a BaCklog

https://marketplace.visualstudio.com/search?term=estimate&target=VSTS&category=All categories&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=estimate&target=VSTS&category=All categories&sortBy=Relevance
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.estimate
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.estimate

44

For now, let’s skip the topic of estimating tasks since it is more relevant

to work in the iteration. We discuss tasks and task estimation in detail later

in this chapter.

The benefit of estimating your backlog items with a relative size is that

VSTS/TFS provides you with a velocity chart for each iteration. A green

color indicates the cumulative size of all stories/backlog items that have

been completed. Blue shows the total size of all items that have had work

started on them but that have not yet been completed within the iteration.

In Figure 2-7 the last iteration is still in progress and a considerable

amount of work still needs to be completed.

Figure 2-7. A velocity chart

More information on velocity and further enhancements with widgets

can be found at https://docs.microsoft.com/en-us/vsts/report/

dashboards/team-velocity.

Chapter 2 Working With a BaCklog

https://docs.microsoft.com/en-us/vsts/report/dashboards/team-velocity
https://docs.microsoft.com/en-us/vsts/report/dashboards/team-velocity

45

 Getting Stakeholder Feedback
Feedback is vital in order to understand the stakeholder expectations.

A stakeholder may want to give feedback on a user story or on the

application itself. This can take the form of just feedback or it might be a

bug reported by the client. Your team may also want to request feedback

from your client on the application or on a user story/backlog item.

VSTS/TFS provides rich functionality for enabling all such scenarios.

For instance, your stakeholders can add an extension to their browser

from https://marketplace.visualstudio.com/items?itemName=ms.

vss-exploratorytesting-web. This extension allows your stakeholders to

use a browser to provide feedback on the application or report bugs. The

extension should be connected with VSTS/TFS and if a bug is reported

using this extension, it appears on your team’s backlog. In addition to

reporting bugs, stakeholders can create test cases or tasks using the

Test and Feedback extension, as shown in Figure 2-8. When feedback is

provided without a feedback request, it is identified as voluntary feedback.

Figure 2-8. The Test and Feedback browser extension

In the VSTS/TFS web portal, there is an option to request feedback,

and when such a request is made, stakeholders can provide feedback for

the request (https://docs.microsoft.com/en-us/vsts/manual-test/

stakeholder/provide-stakeholder-feedback#provide).

Chapter 2 Working With a BaCklog

https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://docs.microsoft.com/en-us/vsts/manual-test/stakeholder/provide-stakeholder-feedback#provide
https://docs.microsoft.com/en-us/vsts/manual-test/stakeholder/provide-stakeholder-feedback#provide

46

 Defining a Process
How your team wants to work with the backlog is another important

aspect that you should help them identify. Kanban boards help you define

this process for your backlog items. The process can be as simple as

• New ➤ Active ➤ Resolved➤ Closed workflow

or something like this:

• New ➤ Ready ➤ Solutioning ➤ DevReady ➤ Active ➤

Testing ➤ DeployedStaging ➤ ProductionDeployed

VSTS/TFS provides you with a Kanban board for backlog in which you

can define your own columns. You must have a start column and an end

column that are set to the New and Closed states, and then you can alter

the middle set of columns, allow them to be used, and set the work item

state of your preference (Figure 2-9). For each column, you have to define

the state of each backlog item type to be used. You have the ability to

introduce your custom states to work items, which we discuss in Chapter 6.

You can learn how to add/edit columns at https://docs.microsoft.com/

en-us/vsts/work/kanban/add-columns#add-or-rename-columns.

Chapter 2 Working With a BaCklog

https://docs.microsoft.com/en-us/vsts/work/kanban/add-columns
https://docs.microsoft.com/en-us/vsts/work/kanban/add-columns

47

Another important aspect of effective team management is limiting

your work in progress no matter what the process is that you are following.

If your team has four developers and you have each working on a different

backlog item, this is not going to help in achieving iteration goal. Instead,

help your team pick the topmost items from the backlog, and make sure

they finish them before they move down the backlog order. The idea is that

this helps a team move the backlog items from left to right in the Kanban

board as soon as possible. Having too many items and too much work

in progress may end up in disaster because your team will have nothing

totally completed by the end of an iteration. Having 99 percent completed

is not valuable as an iteration goal. We discuss this more in Chapter 3.

VSTS/TFS Kanban boards help you set a work-in-progress (WIP) limit

for each column and indicate in red if you have gone past the number, as

shown in Figure 2-10.

Figure 2-9. Kanban board customization

Chapter 2 Working With a BaCklog

48

You can define the DoD for each of the columns in order to define what

the criteria is to move to the next column. Also, you are able to split a column

on the Kanban board into work-in-progress and work-completed sections.

Let’s say you want to move fast with a few backlog items and you give them

high priority for some reason; in such a case, you can use swimlanes feature

on the Kanban board to introduce an expedited swimlane (horizontal row

accross “in progress” state columns of the Kanaban board). A backlog item

shown on Kanban board is called a card. You have the option of defining

which fields you want the card to show on your board (Figure 2- 11). For more

information on the Kanban board of VSTS/TFS refer to “Filter Your Kanban

Board” under “How-to Guides” at https://docs.microsoft.com/en-us/

vsts/work/kanban/filter-kanban-board.

Figure 2-10. WIP limit exceeded

Chapter 2 Working With a BaCklog

https://docs.microsoft.com/en-us/vsts/work/kanban/filter-kanban-board
https://docs.microsoft.com/en-us/vsts/work/kanban/filter-kanban-board

49

Figure 2-11. Card fields

A Kanban board can be used to provide more information visually.

For instance, you can set different card and text colors to get your team’s

attention on the required items. For example, let’s say a backlog item is

staying on the backlog longer than a week as a development in progress

and it is an alarm to your team, which is indicating possible failure of

achieving the iteration goal. The VSTS/TFS card style rules will help you

indicate such cases visually in the Kanban board as shown in Figure 2-12.

Chapter 2 Working With a BaCklog

50

So far, we have only discussed the backlog and Kanban board and have

not yet discussed the task board details. For a focus on the task board, refer

to Chapter 3, where we discuss the execution of an iteration.

 Planning with a Small Team
We discussed ideal-sized Agile teams in Chapter 1, and we identified

the advantage of using the team concept in VSTS/TFS, that is, to have a

Developmental (Dev) team and a Support team. With this approach, you

can have a different workflow in your Kanban board at the Root/Default

or Team Project level and two different workflows for the Dev team and

Support team on their Kanban boards. This is because you can set up

Kanban columns based on the team.

Figure 2-12. Card style rules

Chapter 2 Working With a BaCklog

51

The advantage of this is from the Team Project perspective; you might

want to monitor both the Dev team and Support team work. For instance,

team project root team Kanban board would be a combination of Kanban

columns of both the teams or a subset of columns for the teams. The Dev

team and the Support team might require different approaches, and you

can decide columns based on each team’s requirement.

You might want to work in the same release cadence or different

release cadences for the two teams. You can set up the iterations for each

team by selecting the required iterations to appear in the backlog, as we

discussed in Chapter 1. The Area Path of each team helps you distinguish

each team’s backlog and isolate one from the other.

Let’s take one team’s perspective and analyze what it needs to do to be

effective. It already has a backlog in place and has test cases defined for top

level backlog items. The team has its backlog items in the ready state (DoR) for

development with clear acceptance criteria (DoD). The backlog is prioritized

by the product owner and the team has performed relative estimations on the

backlog items. From this point, teams first task is to select backlog items from

the top of backlog for the first iteration. The team should do this in an Agile/

Scrum sprint planning session if it is following one of those processes.

 Task Estimations

It is at this point in the process that you and your team might make a lot of

mistakes. Since VSTS/TFS supports hour-based estimates, you may want

to use hours to recrd effort for a task. Then you might start monitoring

team members to see whether they put the right number of hours toward

each task as they complete the task. Eventually the individual goal focus

will develop over the team goal. But a sprint burndown chart (we discuss

the burndown chart more in Chapter 3, but you can also find out more at

https://docs.microsoft.com/en-us/vsts/work/scrum/sprint-burndown)

would be useful, wouldn’t it? How about a story point/size/effort (Backlog

item relative effort value) burndown (Figure 2- 13)? Sounds great, but how

can you do it? Let’s look at the possibilities here.

Chapter 2 Working With a BaCklog

https://docs.microsoft.com/en-us/vsts/work/scrum/sprint-burndown

52

To estimate how long a task will take, you can use the simplest

mechanism—just divide the backlog item size/effort/story points by a

number of tasks, and assign each of the tasks an Original Estimate value

and Remaining Work value before the work starts, as the resultant value.

You may argue that the effort value should not be equal to each of the tasks

as task complexity might differ from task to task and would take a different

amount of effort to achieve. But the thinking here is that the backlog item

is done when all tasks are 100 percent complete. So, you do not really

need to do complex estimations and waste your team’s time. Another

advantage to this estimation of tasks is that it can be fully automated. You

can create a simple PowerShell script to call the REST API of VSTS/TFS and

autocalculate the task estimations; you can then assign the autocalculated

task effort value via the script to each task’s Original Estimate and

Remaining Work fields. Then you can run this script with a scheduled

build each day 15–30 minutes before midnight (or you can let it run every

2 hours or so to get more accuracy) to recalculate task estimation based on

the number of tasks and the available estimate value in backlog item for

each backlog item in the current iteration. You can enhance this script to

Figure 2-13. Story point burndown

Chapter 2 Working With a BaCklog

53

assure that the Remaining Work value of the tasks that are in a Closed state

is set to zero.

This is a practically tested formula for a few teams and it works really

well for two main reasons: one, it is simple to understand and implement;

and two, the team does not have to waste time on estimating tasks after they

estimate the backlog items relatively. If the task effort value calulation and

assignment are automated with scripts, the formula works even better, since

team members just have to close the respective tasks once they are done to

get a burndown working. Even the addition of a new task to the backlog item

in the middle of the sprint does not require a manual calculation because

the script takes care of it and assigns effort with a recalculation. We further

discuss practical usage and the advantages of this approach in Chapter 3.

One other important aspect of being effective in managing teams while

using VSTS/TFS as a tool, is the size of the tasks you define to implement

the backlog items. Generally, a task should fit within a day, meaning the task

should be accomplished within a day or less. A task that expands to more

than a day mostly likely is not defined well enough and is vague. In general,

if a task is defined with a clear DoD and technical implementation details

for a backlog item that is groomed and sized properly, it should fit within a

day. You have to make sure your team understands this fact and breaks the

tasks into achievable, granular levels. There can be some exceptions to this,

but the majority of the tasks should be achievable within a day.

 Capacity Planning

You should know how much effort capacity you have within your team.

This information gives you insight into how much work you can take

on with the team for a given iteration. Especially if you share resources

among Dev and Support teams in your project, this knowledge helps

prevent overallocation. VSTS/TFS provides rich feature capability to allow

for capacity planning in your iterations (https://docs.microsoft.com/

en-us/vsts/work/scale/capacity-planning). Again, for this, use the

Chapter 2 Working With a BaCklog

https://docs.microsoft.com/en-us/vsts/work/scale/capacity-planning
https://docs.microsoft.com/en-us/vsts/work/scale/capacity-planning

54

same unit you have used for the backlog item in your relative estimation.

Define a rough value for each team member of how many story points/

size/effort he/she can do per day. Remember to avoid using hours as your

units—we discussed the disadvantages of the hour-based task estimation

in the previous section. You have the capability to define team off days and

team member holidays, and you can even define how much capacity you

have based on activity type (development, testing, and so on). This activity

type is linked with the Activity field of your Task work items and this gives

valuable information to the team about the capacity they have for a given

iteration (the Iteration backlog view) with respect to the activities and task

requirements shown in Figure 2-14.

Figure 2-14. Capacity

Chapter 2 Working With a BaCklog

55

 Planning with a Large Team
All that we discussed in ideal-sized teams applies to large teams as well,

with the exception that you are applying all of this information to small

teams within a large team. Make sure to use the Area Path to separate each

team’s backlog from the other teams’ and that you share the same iterations

for all teams or that you use different iterations for each team depending on

your requirements. We discussed iterations for large teams in Chapter 1.

If your team is distributed in different geolocations and in different time

zones, you might have a bit of an issue with burndown charts and the like

depending on the default time zone setting in your TFS server or your VSTS

account. The problem is that a team that is working in a different time zone

from VSTS/TFS will not really start or end their work day so that it matches

the start and end of the day shown in burndown or iteration. The ideal

solution is to set up a preferred time zone for each team, but unfortunately

no such feature is available in VSTS/TFS as of the writing of this book. If

such a feature did exist, you could go against the rules we discussed in

Chapter 1—you could mix different geolocation members within teams and

use separate teams for each geolocation. But considering the facts, as we

discussed them in Chapter 1, mixing the team with a bit of discrepancy in

the start and end time of the work day is worthwhile for distributed teams.

 Visualizing Your Plan
Another valuable extension you can add to your VSTS/TFS is

named Delivery Plans, which allows you to visualize the work status of

your teams and team projects on an iteration-based calendar

(https://marketplace.visualstudio.com/items?itemName=ms.vss-plans).

You can set markers for important dates and add filter criteria to filter work

items to be shown in the plan. You can learn more about delivery plans in

https://docs.microsoft.com/en-us/vsts/work/scale/review-team-

plans; we discuss the effective usage of these in Chapter 5.

Chapter 2 Working With a BaCklog

https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://docs.microsoft.com/en-us/vsts/work/scale/review-team-plans
https://docs.microsoft.com/en-us/vsts/work/scale/review-team-plans

56

 The Sprint Zero or the Pre-Sprint
The sprint zero/no-sprint/pre-sprint is the initial time of a project where

you set up the solution structure, get the development machines ready,

and so on. An essential part of the start of a project is to set up the build

deployment pipelines (the continuous integration and continuous delivery

[CI/CD] pipelines). You can learn all the basics you need to implement

successful build and release pipelines in one of the co-author’s books,

Beginning Build and Release Management with TFS 2017 and VSTS, which

is available at www.apress.com/in/book/9781484228104.

You should also get all your test and deployment environments ready

before your project/product development sprints start. This enables

your team to focus on implementing customer requirements rather

than worrying about how to get the work deployed or tested. Many Agile

starting teams have failed because they have not identified how important

the level of automation is to be really agile.

 Summary
In this chapter, we explored how to set up a proper backlog and backlog

tasks for your teams. We identified many features in VSTS/TFS to help you

set up your required backlog and to help you track and visualize the work

your team is planning to do. We also discussed common mistakes you may

make due to the overwhelming capabilities of VSTS/TFS, and we especially

focused on how you can avoid the micromanagement that results from

misuse of features.

In the next chapter, you learn how to leverage VSTS/TFS features to

empower your team while executing a project iteration.

Chapter 2 Working With a BaCklog

http://www.apress.com/in/book/9781484228104

57© Chaminda Chandrasekara, Sanjaya Yapa 2018
C. Chandrasekara and S. Yapa, Effective Team Management with VSTS and TFS,
https://doi.org/10.1007/978-1-4842-3558-4_3

CHAPTER 3

Working on the
Iteration
In the previous two chapters, we discussed how to set up the project,

populate the backlog, define the delivery cadence, create teams, plan for

the team process, groom the backlog, prioritize the backlog items, size the

requirements, and plan the iteration. We even discussed getting things

in place—such as a solutions structure, build and deployment pipelines,

and testing environments—in a pre-iteration time period. Doing all of this

prior to the first iteration enables your team to focus more singlemindedly

on implementing backlog items once you kick off project work, but while

making sure to allocate sufficient time for backlog grooming. In previous

chapters, we also discussed the challenges faced by both ideal-sized and

large teams during this initial planning stage and how you and your team

can use VSTS/TFS features effectively to overcome these challenges.

This chapter is dedicated to executing a project, starting with the first

iteration, and it provides practical solutions to common challenges the

team faces when using VSTS/TFS. We discuss the following in detail:

• Getting ready for the iteration and daily activity

• Tracking and resolving roadblocks and performing

other supportive work

• Working with code and testing the work

58

• Exploring progress-monitoring options

• Avoiding rather than fixing defects

• Facilitating unavoidable and mandatory fixes

• Handling disaster situations during the iteration

• Ensuring the stability of the releases

• Visualizing the iteration and positively impacting

the team

 Starting the Sprint
Now everything is set for you to start your first sprint. That is, your team

has decided what to deliver by the end of the new sprint by selecting a few

backlog items for the sprint from the top of the backlog. As we discussed

in Chapter 2, you should have tasks defined for each of the backlog items

to help get them completed. Make sure you have estimated task efforts by

simply dividing the relative size of backlog items (story points/effort) by

the number of tasks each contains. You have probably already automated

this process, as we recommended in Chapter 2.

Make absolutely sure you have determined each individual team

member’s capacity using the same scale that you used to relatively

estimate backlog items. Again, capacity should have been assigned

according to the activity type, as we discussed in Chapter 2. Make sure the

available capacity to complete each activity (development, testing, etc.) for

the iteration is visible to the entire team in a number of story points/sizes.

Make sure to have your solution architecture ready to start

development work. Another thing that you must understand is

that solution architecture is not similar to the foundation of some

construction project. Because a building is planned fully ahead of time

and is constructed according to this plan, it can have a fixed foundation.

Software, on the other hand, always has to evolve depending on customer

needs as well as technological changes. So, the architecture of a solution

Chapter 3 Working on the iteration

59

should also be flexible so it can evolve and improve as the software

project/product gets developed. That does not mean your team should

not consider platform, tools or architecture when building software. The

team should plan for suitable platforms, a technological architecture, and

development tools with the current knowledge it has about the system that

needs to be implemented. But at the same time, the team should have the

flexibility to let the solution architecture evolve and be willing to adapt to

new platforms or other technologies as the software system matures and as

more of the customer’s requirements get identified and developed.

Your team should have a sufficient number of test cases developed

for the backlog items in the iteration by now. But that is, of course, the

ideal situation, and maybe your team has more work to do in the iteration.

This is fine as long as the team has enough details in the backlog items

and well-defined acceptance criteria, with tasks defined to describe the

implementation. Based on these, the team can add more test cases to the

backlog items during the iteration. However, at a minimum, having at least

a few test cases that describe how to test the backlog item’s main scenarios

definitely helps the team progress with the implementation.

It is important to get the development environments ready, before

the start of the iteration, with the required development tools, software

development kits (SDKs), and any other additional tools your team needs.

Your team might discover more tools and platform it needs during the

iteration as the software project evolves; we discuss how to handle such

situations later in this chapter.

The other most important task you need to perform before you begin

the iteration is getting the testing environments ready to start testing the

software components once their development is complete. Your team has to

get the packaging and deployment of the software automated and deploy it

to another environment for testing. Again, it is okay if not all these tasks are

fully completed before the start of the project development work with the

first iteration. We discuss how to handle such tasks and how to automate the

packaging and deployment of software components later in this chapter.

Chapter 3 Working on the iteration

60

Make sure you utilize your team members effectively to accomplish

all the tasks mentioned so far. Remember that these activities are different

from and are in addition to the main backlog item implementations.

Your team also has to perform backlog grooming activities in your main

backlog to get the items ready for future iterations. For all these reasons,

the team needs a significant amount of time, and you should keep all these

facts in mind when you are setting up capacity for individual members

of the team. Allow the team members having more reduced capacity

in the initial iterations, partially because there might be more non-

backlog implementation work in the initial stages of a project/product

implementations.

You may think that setting up environments, setting up build release

pipelines, or activities associated with backlog grooming should also be in

the backlog so you can track them and know how many resources they are

consuming, but in fact, this not good practice. You need to remember that

these are supportive activities that are not generating value to the customer

directly. These activities should not be in the main product backlog, and

although you should track them, you should do so separately from the main

backlog; we discuss this further in a later section of this chapter.

 Daily Activity
Prior to beginning each iteration—regardless of whether it is the first, a

middle one, or the last one in the project’s life—you and your team need to

do some quick planning for the day to ensure effective execution.

 Planning the Day
Most likely, you are already familiar with the daily stand-up or daily scrum,

which is a 15-minute time-boxed event. Planning for a day does not need

more than 15 minutes since you already have a well-groomed backlog in

place and the team knows what is in their hands to deliver.

Chapter 3 Working on the iteration

61

The general questions defined in such scrums are these:

• What did I do yesterday?

• What will I do today?

• Are there any roadblocks?

Always make sure the discussion of these questions is conducted from

the perspective of the team’s goals rather than personal goals. Take this

time to focus your team and empower them; let them strive toward the

team goal. If you make this quick discussion on a course of action for the

day into a daily update on the status of individuals, each team member

will only worry about getting individual tasks done and about the number

of tasks on her shoulders. Team members will not focus, as they should,

on the team goal of getting backlog items done or on helping each other

get them done. Individual performance is important, but getting the team

to collaboratively and supportively work together, targeting backlog items

to be completed, is what makes the project a success. Having said that, it

is okay to use the sprint board and change the status of tasks during the

daily stand-up. Ideally the team should not wait until the stand-up to make

status changes or other updates to the work items, however.

So, this meeting is not a time for each team member to state, “I have

done this and that, and I will do this today,” to make their individual profile

impressive. After all, consider that team member who helped another

member who was struggling with a task due to a technical difficulty; the

helping team member has nothing of her own to declare accomplished,

so she might get embarrassed. You should encourage team members to

help others, but do not allow a team member to declare that he just helped

another and could not get any of his own work done for days. Helping

others toward an iteration goal is good, but team members cannot just do

nothing on their own goals by claiming that they were helping others all

the time, because this adversely affects the team goals.

Chapter 3 Working on the iteration

62

VSTS/TFS provides a board (sprint board) for sprint execution, which

you can use for planning the day, review the past day, and seeing whether

the team is marching forward toward the iteration goal of getting the

selected backlog items done. You can set up rules similar to the backlog

board card style rules we discussed in Chapter 2 to visualize the work that

is done and to highlight any bottlenecks with different colors (Figure 3-1).

To set up rules, go to Settings page of the relevant board.

Figure 3-1. Taskboard rules

Visualizing the task states and story progress in boards reduces the

time of the stand-up meeting because no one needs to ask what each

individual has done, because it is indicated on the board in colors. For

example, Figure 3-2 shows tasks that have been in progress for more than

two days in red.

Chapter 3 Working on the iteration

63

In addition to the task/iteration board, the team should also look

at the backlog board. It offers insight to the team on how they are

progressing with the backlog. They can use style rules to highlight current

sprint backlog items and can even indicate items waiting in the “in

progress” state for a longer time. Additionally, story point burndown, as

we discussed in Chapter 2, can also provide valuable information to the

team in daily planning and help identify the team’s ability to get the work

completed on time.

In the daily stand-up, the team should bring forward any

impediments/roadblocks that are affecting team progress. These issues

should be handled separately from the main backlog, however; we discuss

them later in this chapter.

Figure 3-2. Taskboard indicating tasks not moving forward

Chapter 3 Working on the iteration

64

 Choosing Work for the Day
Ideally, team members voluntarily pick the tasks they plan to perform

during the day. In Chapter 2, we discussed the size of these tasks, and how

the work necessary to accomplish each task should generally fit within a

day. The team should focus on the top of the iteration backlog and work

from top to bottom. The individual who picks the first task of a particular

backlog item should activate the backlog item as well. The task must be set

to active once the team member starts working on it.

When team members complete tasks, they should change the

task to the done/closed state. These practices allow the automated

burndown of story points (discussed in Chapter 2) to work. Once all the

development tasks of a backlog item are done, it should be moved to a

resolved/committed state or any other custom state that represents that

development is done and testing has been started. When a backlog item is

ready to be closed, some prefer to keep it active until it reaches production.

You can have a custom set of columns on the board that show exactly to

which environment the backlog item is currently deployed and that it is

working as expected. You are able to introduce custom states to represent

the same types of stages; we discuss these in Chapter 6.

Getting the first few backlog items done and moved to the testing

phase takes a couple of days in any given iteration. So, in the first few

days, quality assurance (QA) members of the team might have to work on

getting more test cases added to the backlog items in the iteration, getting

prepared for implementing test automation, and helping the development

members. How to help development members is discussed later in the

chapter. Additionally, QA members can look at the main backlog and

review the items to help the team groom the backlog.

Chapter 3 Working on the iteration

65

What we’ve just described is a typical situation, because, in reality, it is

really hard to find multiskilled team members. If all of your team members

have the ability to code, test, and do other tasks as well, that would be

ideal, because then anyone can pick any type of the tasks. This situation is

rare, though.

Make sure to encourage the team to do deployments to test

environments as much as possible during an iteration. This requires the

team to have automated deployments in place to support the frequent

deployments with stability. Remember that your team may discover bugs

while testing the newly built backlog items. Your team must fix these bugs

within the iteration and they should be added to the iteration backlog, just

below the relevant backlog item. The relevant backlog item should not be

considered ready for production until all bugs have been found in testing

and are fixed. The team should not expect such bugs to be considered

additional work or new backlog issues that have been added to iteration;

these bugs do not remove items from the bottom of backlog as the team is

not meant to create the bugs in the first place if they carefully implement

the backlog items properly. There can, however, be very rare exceptions to

this that we discuss later in this chapter.

Make sure the entire team, with the support of the product owner,

participates in regular backlog grooming sessions. Due to current iteration

goals, you should not skip this activity, as doing so is apt to create bigger

problems for future iterations when team members have unclear backlog

items to work on. Grooming sessions do not have to happen daily but

should happen regularly to make sure sufficient backlog for future

iterations is groomed before the start date of those iterations is reached.

Ideally close to 10 percent of iteration time duration should be spent on

backlog grooming.

Chapter 3 Working on the iteration

66

 Tracking and Resolving Impediments
and Other Supportive Work
As we discussed in Chapter 2 and in previous sections of this chapter,

some tasks support the implementation of other backlog items, such as

getting a test environment ready, implementing build release pipelines,

or removing any other roadblocks the team encounters while trying to

progress with their work in the backlog. Some of these tasks may get

reported in the daily stand-up meetings and some may be identified well

before the project starts.

As you can see, these tasks can be divided into two categories: one is

the roadblocks/impediments identified during project execution, such as

a developer machine does not have enough RAM, a license needs to be

purchased for a software tool, and so on; the other category is things that

would improve and help the team continue the project execution, such

as setting up the testing or staging environment or getting a build release

pipeline implemented to automate deployments. Again, purchasing

machines in a cloud platform or creating virtual machines inside the on-

premises servers in order to set up the testing or staging environment falls

under the first category of roadblocks/impediments. After the team gets

the virtual machines, setting up the testing or staging environment is work

that needs to be carried out by the team. The team may have to get the

automated deployments working for the environment.

As you can see, roadblocks/impediments need some external support

to get resolved, whereas the other supportive work to implement the

backlog can be handled mostly by the team. There is no hard-fixed rule,

but generally, these two types of work are differentiated.

Chapter 3 Working on the iteration

67

 Handling Supportive Work within the Team
First, let’s look at how to get done the work that the team has to do. You

may want to add this work to the backlog, and the problem with that is

your customer/product owner is apt to be confused by work internal to the

team that appears in the backlog.

However, you can consider making a separate backlog of tasks for your

team project. You can keep track of this work to be executed by defining

it with an isolated area path that you make invisible to your customer/

product owner by deselecting it for the default/root team of the team

project. This way it does not appear in the main backlog.

Let’s clarify this with an example setup. First, set up an area for extra

activities (see Figure 3-3).

Figure 3-3. Defining an ExtraActivity area

Chapter 3 Working on the iteration

68

Then, set up the default team with areas you want to be visible other

than the ExtraActivity area (Figure 3-4). This makes work items under the

ExtraActivity area that are not visible to the main backlog so the product

owner does not see these ExtraActivity work items. For this ExtraActivity

area, you can set up a separate team if you prefer to handle this work

separately from your development iterations. If you want to include them

in your development team backlog, make sure the ExtraActivity area

is selected for the development team. This way you can handle these

activities with the team capacity but without confusing your product

owner.

Figure 3-4. Default team without ExtraActivity area

Chapter 3 Working on the iteration

69

Additionally, you can skip the ExtraActivity work items visibility to the

Delivery Plans feature, which we discussed in Chapter 2, by adding a tag to

the backlog items in this area and by adding criteria to omit the tag in the

plan. The tag should be used since Area Path is not currently supported in

the Delivery Plan feature field criteria, as shown in Figure 3-5 (https://

docs.microsoft.com/en-us/vsts/work/scale/review-team-plans#edit-

a-plan-add-field- criteria-customize-cards-and-add-markers).

Figure 3-5. Field criteria in the Delivery Plan

When you handle this supportive work, without having it visible to

the default team, there is likely to be a discrepancy in capacity view if you

share the same iteration information to the default/root team. To prevent

this, set up the root team capacity to disregard the capacity allocated to

the internal extra activities. For on-premise TFS, you can add a custom

activity type by customizing the Task work item Activity field, similar to

steps described for customizing pick list fields (https://docs.microsoft.

com/en-us/vsts/work/customize/add-modify-field#picklist). This

adds new activity types to capacity in iterations. For VSTS, you cannot add

custom activity types as of the writing of this book.

Chapter 3 Working on the iteration

https://docs.microsoft.com/en-us/vsts/work/scale/review-team-plans#edit-a-plan-add-field-criteria-customize-cards-and-add-markers
https://docs.microsoft.com/en-us/vsts/work/scale/review-team-plans#edit-a-plan-add-field-criteria-customize-cards-and-add-markers
https://docs.microsoft.com/en-us/vsts/work/scale/review-team-plans#edit-a-plan-add-field-criteria-customize-cards-and-add-markers
https://docs.microsoft.com/en-us/vsts/work/customize/add-modify-field#picklist
https://docs.microsoft.com/en-us/vsts/work/customize/add-modify-field#picklist

70

 Handling Impediments/Roadblocks
The work that requires external support and the work that does not need

to track with team activities—such as following up on the purchase of a

development tool or SDK, getting a server environment, fixing a failing

development machine, or even preparing a document for some purpose to

support the team—should also be tracked somewhere.

VSTS/TFS has the Impediment/Issue work item type (Impediment in

Scrum template, Issue in the CMMI and Agile templates) that allows you

to track such activities and relate them to your backlog items if you need

to (https://docs.microsoft.com/en-us/vsts/work/backlogs/manage-

issues- impediments). If a particular backlog item or task cannot be

executed without getting the issue/impediment resolved, you can set the

task or backlog item back to the New state and add an Impediment/Issue

related to that work item (Figure 3-6).

Figure 3-6. Adding an Issue to a work item

Chapter 3 Working on the iteration

https://docs.microsoft.com/en-us/vsts/work/backlogs/manage-issues-impediments
https://docs.microsoft.com/en-us/vsts/work/backlogs/manage-issues-impediments

71

 Working with Code
How to do development work, such as version controlling source code,

branching strategies for source code repositories, and so on is not in the

scope of this book. But for the sake of completeness, let’s look at few areas

where you can help your team.

If your team decides to work with the Git version control of TFS, it is a

good practice to have a proper branching strategy. It is a good idea to have

a branch for each backlog item and get it merged to development or the

master branch via a pull request. You also have the option of creating a code

branch from your backlog items as shown in Figure 3-7, which will be useful

to your team. Again, do not interfere too much with these areas; rather,

empower your technical team to make the required decisions, and let them

keep on improving how they want to handle the development aspects.

Figure 3-7. A branch of a backlog item

Chapter 3 Working on the iteration

72

Your team should always associate the work items with the commits/

check-ins they make, regardless of whether they use TFVC (Team

Foundation Version Control) or Git. You can ask the team to follow

instructions in https://docs.microsoft.com/en-us/vsts/work/track/

link-work-items-support-traceability#link-work-items-code-

artifacts- and-builds.

You should encourage your team to use the code review features of

VSTS/TFS to allow them to have good coding standards. If TFVC is used,

your team can follow the instructions at https://docs.microsoft.com/

en-us/vsts/tfvc/get-code-reviewed-vs, and if Git code is used, you can

review it with pull requests (https://docs.microsoft.com/en-us/vsts/

git/pull-requests).

Additionally, your team can utilize tools such as SonarQube and Veracode

to create quality and secure code, which we discuss later in the chapter.

 Testing the Work
Testing plays an important role in software development and you may

want to use Test Driven Development (TDD) as well. Regardless of which

process you use, testing is a key aspect of software development and should

be done thoroughly to ensure your team delivers a quality project/product.

Your team can use unit tests to start development testing, aided by

VSTS/TFS, which will provide code coverage. Your team can then integrate

the unit tests with continuous integration builds (we discuss this later

in the chapter) to automate the process as well as to help publish code

coverage results the team can view (https://docs.microsoft.com/

en-us/vsts/build-release/tasks/test/publish-code-coverage-

results). The extension in Visual Studio Marketplace comes with a

dashboard widget for code coverage with a build (https://marketplace.

visualstudio.com/items?itemName=shanebdavis.code-coverage-

dashboard-widgets). We discuss dashboards later in this chapter.

Chapter 3 Working on the iteration

https://docs.microsoft.com/en-us/vsts/work/track/link-work-items-support-traceability#link-work-items-code-artifacts-and-builds
https://docs.microsoft.com/en-us/vsts/work/track/link-work-items-support-traceability#link-work-items-code-artifacts-and-builds
https://docs.microsoft.com/en-us/vsts/work/track/link-work-items-support-traceability#link-work-items-code-artifacts-and-builds
https://docs.microsoft.com/en-us/vsts/tfvc/get-code-reviewed-vs
https://docs.microsoft.com/en-us/vsts/tfvc/get-code-reviewed-vs
https://docs.microsoft.com/en-us/vsts/git/pull-requests
https://docs.microsoft.com/en-us/vsts/git/pull-requests
https://docs.microsoft.com/en-us/vsts/build-release/tasks/test/publish-code-coverage-results
https://docs.microsoft.com/en-us/vsts/build-release/tasks/test/publish-code-coverage-results
https://docs.microsoft.com/en-us/vsts/build-release/tasks/test/publish-code-coverage-results
https://marketplace.visualstudio.com/items?itemName=shanebdavis.code-coverage-dashboard-widgets
https://marketplace.visualstudio.com/items?itemName=shanebdavis.code-coverage-dashboard-widgets
https://marketplace.visualstudio.com/items?itemName=shanebdavis.code-coverage-dashboard-widgets

73

It is possible to create test plans and test suites to organize the test

cases your team develops related to backlog items. Your team can create

static test suites, requirement-based test suites, and query-based test suites

to organize the test plans. You can find a lot of useful information on this

at https://docs.microsoft.com/en-us/vsts/manual-test/reference-

qa. Your team can track test status as explained here: https://docs.

microsoft.com/en-us/vsts/manual-test/getting-started/track-

test-status. When a test plan is executed, you can view the outcome

graphically in the Test Runs tab of VSTS/TFS, as shown in Figure 3-8.

Figure 3-8. Test outcome

In addition to basic manual testing (https://docs.microsoft.com/

en-us/vsts/manual-test/getting-started/run-manual-tests), it is

possible to execute exploratory testing. Exploratory testing allows the

team to explore the product/project backlog item implementation without

having a test case, and the team can generate the test case depending

on the steps they execute (Figure 3-9). As with normal manual testing,

Chapter 3 Working on the iteration

https://docs.microsoft.com/en-us/vsts/manual-test/reference-qa
https://docs.microsoft.com/en-us/vsts/manual-test/reference-qa
https://docs.microsoft.com/en-us/vsts/manual-test/getting-started/track-test-status
https://docs.microsoft.com/en-us/vsts/manual-test/getting-started/track-test-status
https://docs.microsoft.com/en-us/vsts/manual-test/getting-started/track-test-status
https://docs.microsoft.com/en-us/vsts/manual-test/getting-started/run-manual-tests
https://docs.microsoft.com/en-us/vsts/manual-test/getting-started/run-manual-tests

74

it is possible to create bugs related to the backlog item while executing

the test. But the team can later modify a recorded test case to add more

infromation to the test case or clear any unwanted steps generated

while auto generating the test case, by altering and/or adding required

additional steps. Your team can also use the Test and Feedback extension

we discussed in Chapter 2 to execute exploratory testing (https://docs.

microsoft.com/en-us/vsts/manual-test/getting-started/perform-

exploratory-tests).

Figure 3-9. Creating a test case with exploratory testing

 Monitoring the Progress
The team should monitor their progress and you should facilitate them to

identify any threats to achieving the sprint target and to overcome them.

It is really valuable to detect problems as soon as possible and to take

corrective actions so that the delivery of committed items in the backlog

can be fulfilled. Let’s look at each one of the monitoring options.

• Burndown: A burndown chart shows how your team

progress with the work by showing the remaining work

getting reduced generally as the iteration progress

Chapter 3 Working on the iteration

https://docs.microsoft.com/en-us/vsts/manual-test/getting-started/perform-exploratory-tests
https://docs.microsoft.com/en-us/vsts/manual-test/getting-started/perform-exploratory-tests
https://docs.microsoft.com/en-us/vsts/manual-test/getting-started/perform-exploratory-tests

75

graphically. In Chapter 2, we discussed using a story

point burndown chart to identify the team progress in

the iteration. Remember that even though you can use

burndown with hour estimations on tasks, doing so is

time-consuming, and there is no real benefit to looking

at hours as long as the team does not deliver 100

percent of the backlog items. A story point burndown,

on the other hand, can indicate more effectively the

total story points in the current iteration and how the

team is getting them done. If more and more story

points are getting added due to the discovery of bugs

within the iteration, or due to more backlog items

getting added (we discuss this later in the chapter),

burnup will happen instead of burndown.

• Backlog Capacity View: We discussed capacity in

Chapter 2; Figure 3-10 indicates that in this instance,

overall team capacity would not be enough, even

though some activity types have enough team capacity.

These very early indications help the team take

corrective actions sooner than later.

Chapter 3 Working on the iteration

76

• Task Board and Backlog Board: The team should always

look at these two boards and, as discussed previously,

the styles on the cards on the board will help the team

recognize the bottlenecks or any items that require the

team’s attention. Focusing on boards helps the team

limit the work in progress and attend to the backlog from

top to bottom. The team can take necessary corrective

actions based on the indications it sees on these boards.

Figure 3-10. Capacity on iteration backlog view

Chapter 3 Working on the iteration

77

• Velocity Chart: The velocity chart helps to explain the

team’s capability of achieving story points/size/effort

on backlog items. When you run a couple of sprints,

you can identify the average velocity of the team. This

information helps the team and you to forecast future

work (we discuss forecasting future work in Chapter 4).

• Cumulative Flow Diagram: This diagram shows the

progress from the perspective of all the iterations, from

a defined time period up to the present. The cumulative

flow diagram (Figure 3-11) also indicates the work in

progress and the rate at which work items are getting

completed vs. the rate at which items are getting added

to the team project. In addition to the cumulative flow

chart that is available by default in the backlog view, a

more configurable widget is available in VSTS. You can

view more details on cumulative flow at https://docs.

microsoft.com/en-us/vsts/report/dashboards/

cumulative-flow.

Figure 3-11. The cumulative flow diagram

Chapter 3 Working on the iteration

https://docs.microsoft.com/en-us/vsts/report/dashboards/cumulative-flow
https://docs.microsoft.com/en-us/vsts/report/dashboards/cumulative-flow
https://docs.microsoft.com/en-us/vsts/report/dashboards/cumulative-flow

78

• Queries, Charts, and Dashboards: You can write custom

queries and create charts and dashboards, which

we discuss in the section “Visualizing and Positively

Impacting the Team,” later in this chapter.

• Build Deployments, and Test Outcomes: Teams can

create dashboard widgets, charts, and so on to monitor

the builds, deployments, and test outcomes, which we

discuss further in “Visualizing and Positively Impacting

the Team.”

 Avoiding Defects
Defects/bugs in software are costly and can even affect your team’s

reputation with clients. The cost defect increases as it reaches each

stage in a software delivery lifecycle, and bugs found in production can

even cost you your project, as shown in Figure 3-12. A simple bug that

is miscalculating interest on savings accounts in a banking application

or interest provisioning process can cost millions of dollars, and your

customer, or bank, may be in a big trouble with their clients; surely you

will be in even deeper trouble.

Chapter 3 Working on the iteration

79

You can take many actions to identify bugs/defects as soon as possible. If

your team performs good backlog grooming sessions and prepares test cases

well before the iteration starts, they have a really good starting point from

which to detect defects early. Fixing bugs detected at the backlog grooming

level only costs your team a small amount of time and effort. The team might

have to alter a few test cases and redefine some tasks and backlog item

content, including acceptance criteria. Even if the team has to abandon a

backlog item entirely and re-create new backlog items in agreement with the

product owner, finding bugs early is not a big cost at all.

In the development stage of software, a lot of bugs may occur if your

team did not follow certain good practices. Code review is one such good

practice that your team can follow, as we discussed earlier. Sometimes it is

better to use two minds rather than one to get a component implemented.

You can do this by introducing pair programming when it makes sense

to do so. An article at www.ppig.org/papers/17th-chong.pdf provides

you with more insight on when and how pair programming works. We

mentioned already that sometimes the QA members of the team are

Figure 3-12. The cost of a bug

Chapter 3 Working on the iteration

http://www.ppig.org/papers/17th-chong.pdf

80

idle at the start of iterations and have a bit of time when they can help

the developers. That help can come in the form of pair testing with the

developers. At any time of the iteration, if the developer is ready to show

what he is working on, the tester can sit with him at his developer machine

and test the application. This way your team can identify issues well before

they reach the testing stage.

Your team will also test the backlog items developed in the testing

stage and fixing any bugs they detect. Once the first set of backlog items

completes development, your team starts developing the next set of

backlog items. The team does not have enough time to test all the backlog

items developed in previous iterations in any given iteration. But it is

risky to release the project/product to production without testing each

and every component. Manually doing this sort of regression is not

feasible. Therefore, your team can introduce test automation to reduce

the size of the team needed for regressions. The ideal solution would be

to run a daily smoke test suite on your solutions and deploy nightly to the

testing environment. We discuss VSTS/TFS options to implement such

automation later in the chapter. The work done by the team for automation

can also be tracked with the supportive work tracking strategy that we

discussed in a previous section of this chapter.

Your team should test the applications they develop for load and

performance under stress. This gives the team the opportunity to detect

performance issues and fix them early, otherwise, these may be encountered

in the production a few months after the release. VSTS/TFS with Visual

Studio offers many options to perform load and performance tests as

described at https://docs.microsoft.com/en-us/vsts/load- test/.

You should keep your staging environment set up similar to your

production environment. This allows the team to find bugs that could

occur in production well before they actually reach production.

Chapter 3 Working on the iteration

https://docs.microsoft.com/en-us/vsts/load-test/

81

Your team should also make sure that each deployment to the testing

or staging environment happens in exactly the same way as it would

happen in production. For this to work, before they deploy to testing/

staging, the team should make the a replica equivalent to the production-

deployed version of the product’s testing/staging environment. This means

that if any additional deployment on top of the production version has

happened in these environments, it should be reverted to the production

version before each deployment happens. Infrastructure as code and

automated deployment tools with VSTS/TFS will help your team achieve

this goal. When you perform deployments in this way, you are assured that

production will not fail due to deployment issues.

Identifying the cause of defects in the production environment is a

most difficult activity, but many modern tools can help you with this. One

such tool is Application Insights (https://azure.microsoft.com/en-us/

resources/videos/application-insights-how-to-detect-issues-

solve-problems-and-continuously-improve-your-web-applicati/).

 Facilitating Unavoidable Changes
The unforeseen can happen at any time in life, and in software

development this is no different. For instance, you may discover a bug in

your current iteration development that requires the team to go back to

the drawing board and think things through from the beginning. Or the

team may find a large, unfixable bug within the iteration just as you are

almost at the end of it. You may have to give up a backlog item as a result.

Your product owner/customer may demand that you take a new backlog

item into the sprint. She may say that without it, she will not accept the

iteration. Or perhaps a sudden critical bug will surface in production that

needs the whole team’s attention to fix.

Chapter 3 Working on the iteration

https://azure.microsoft.com/en-us/resources/videos/application-insights-how-to-detect-issues-solve-problems-and-continuously-improve-your-web-applicati/
https://azure.microsoft.com/en-us/resources/videos/application-insights-how-to-detect-issues-solve-problems-and-continuously-improve-your-web-applicati/
https://azure.microsoft.com/en-us/resources/videos/application-insights-how-to-detect-issues-solve-problems-and-continuously-improve-your-web-applicati/

82

No matter how these types of requirements arise, you must help

the team handle them in a graceful manner. For example, if you must

take a new backlog item into the current iteration, negotiate with the

product owner to take out one or more items from the bottom of the

iteration backlog to accommodate the incoming item. Make sure to

discuss the issue with the team and get their technical opinion so you

can constructively communicate with all the stakeholders, including the

product owner, and come to an agreement that everyone is willing to

accept. Facilitating necessary discussions with technical leadership and

business owners is key to your success managing these situations. You can

use VSTS/TFS boards and other progress monitoring options we discussed

earlier to give the current picture to every stakeholder and bring them all

onto the same page. The discussion should focus on how everyone comes

out of this situation instead of devolving into pointing figures at each other.

Certain cases might cause your current iteration work value to become

null and void. In such cases, with the product owner’s consent, it is

possible to abandon an iteration. If this is done, all the remaining work

should return to the backlog and be groomed, sized, and reprioritized

before you start the next sprint. We discuss this more in Chapter 4.

 Handling Disaster Situations
Another challenge in supporting an Agile team is handling disaster

situations. Disaster can come in many forms, for example,

• Your key team members may fall sick during a critical

time.

• Your developer or testing environment hardware may

fail suddenly.

• A natural disaster may interfere with your team

members’ ability to carry out their duties.

Chapter 3 Working on the iteration

83

• Your team may discover a technical design failure in

the project that points to the necessity of a complete

overhaul.

Regardless of the type of disaster, successful management of it relies

heavily on facilitating collaborative and constructive discussion among

all stakeholders. In a situation in which a team member cannot attend

work for some reason, other team members will jump in and cover up

for her if you set the right mood in the team as their facilitator. The team

should always feel that you are there to back them up and that they can

count on you. If you can cultivate the team’s trust in each other and in you

as their servant leader, the team will be able to come out of any situation,

miraculously. It is this team spirit, mutual trust, and collaboration that

makes teams succeed.

Accountability for team members’ or a team’s action and visibility

are also important aspects of team building. VSTS/TFS provides visibility

in all actions of the team, which allows team members to be responsible

for their actions. As their facilitator, you should always support them to

overcome any mistakes they make by helping individual team members

and by letting other team members help, rather than by using accusations,

by pointing fingers, or by placing blame on the team or an individual.

Even though VSTS/TFS provides visibility, sometimes you need to keep

certain problems within the team and manage them yourself rather than

escalating everything to higher management for punishment and control

purposes.

Always discuss the disaster situation with the team, and lay out a plan

together; only then should you present it to stakeholders (product owner,

higher management of the company) alone (without the team) and get

their buy-in for the plan. Keep supporting and facilitating the team and be

with them to overcome the situation. No matter what tool you use, success

lies in how you build trust and relationships within your team. After all,

people and relationships are more important than the tools and processes.

Chapter 3 Working on the iteration

84

 Release Stability
To succeed in agility in software delivery, your team needs to release

rapidly to the testing environments. Some Agile teams even go to the level

of releasing to the test environment nightly and releasing to production at

the end of each iteration. A good example of this is a VSTS team releasing

on a three-week-release cadence.

To make releases often, automation is a must. If your team is only

deploying manually, it will be impossible to do a couple of releases a week,

and forget about releasing nightly as it is impossible to do this manually.

A package should always be built once and should be deployed to

each target environment, with an approved workflow as depicted in

Figure 3- 13. Each stage should be reverted to the production version

before getting deployed with the new version to assure production

deployment stability.

Figure 3-13. The release pipeline

Your team can implement infrastructure deployment with code as well.

VSTS/TFS has a comprehensive set of features and many free marketplace

extensions to manage builds and deployments. You can set up test

automation after deployment to any target environment so it executes

smoke or regression tests on the deployed software. This helps the team

automatically validate the previously implemented functionality before

Chapter 3 Working on the iteration

85

they begin testing on new functionalities. As we discussed earlier, make

sure you keep the backlog items associated with the code submissions to

enable automated release notes with the deployments.

To learn all the basics you and your team need to implement successful

build release pipelines, including test automation, refer to Chaminda

Chandrasekara’s Beginning Build and Release Management with TFS 2017

and VSTS, available at https://www.apress.com/in/book/9781484228104

(Chapter 11 of the build release management book discusses automating

release notes [as shown here in Figure 3-14] based on deploying the target

environment). New unified agent–based test automation capabilities are

described at https://docs.microsoft.com/en-us/vsts/build-release/

test/run-automated-tests-from-test-hub.

Figure 3-14. An automated release note

Chapter 3 Working on the iteration

https://www.apress.com/in/book/9781484228104
https://doi.org/10.1007/978-1-4842-3558-4_11
https://docs.microsoft.com/en-us/vsts/build-release/test/run-automated-tests-from-test-hub
https://docs.microsoft.com/en-us/vsts/build-release/test/run-automated-tests-from-test-hub

86

Even if your team deploys to certain environments manually, they

must prepare a checklist to make sure they are not going to miss any step

of the deployment. However, we recommend you use automation for

deployments as much as possible since it is more systematic, efficient, and

reliable.

Another important aspect of making your release stable is making the

developed software code high quality and secure. To improve the code

quality, you can review the code as we discussed earlier. In addition,

you can analyze the code with tools such as SonarQube to measure its

quality. When integrated with VSTS/TFS builds, SonarQube can alert

your team to the quality gate status after analyzing the code in various

aspects. Even a build can be configured to fail if the quality gate fails, as

shown in Figure 3- 15.

Figure 3-15. Build failing due to quality gate failure

Chapter 3 Working on the iteration

87

The build provides a link to access detail information of the analysis

performed, on the SonarQube server with a lot of drill-down capability so

you can further analyze the reasons for the quality gate status (Figure 3-16).

Your team can learn how to set up SonarQube for VSTS/TFS builds at

http://chamindac.blogspot.com/2017/02/sonarqube-extension-for-

vststfs.html.

Figure 3-16. The SonarQube project dashboard

You can also use the Veracode (not free) platform to analyze the

security aspects of the code with VSTS/TFS builds (Figure 3-17). An

extension is available in the Visual Studio Marketplace (https://

marketplace.visualstudio.com/items?itemName=Veracode.veracode-

vsts- build-extension) that you can use to upload your binaries and

trigger a Veracode scan.

Chapter 3 Working on the iteration

http://chamindac.blogspot.com/2017/02/sonarqube-extension-for-vststfs.html
http://chamindac.blogspot.com/2017/02/sonarqube-extension-for-vststfs.html
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension

88

 Visualizing and Positively Impacting
the Team
In a previous section of the chapter, we discussed many options available

in VSTS/TFS that you can use to monitor the progress of your team. Let’s

look at how queries and dashboards can help you visualize the status of

the project in different aspects.

You can write different queries (https://docs.microsoft.com/en-us/

vsts/work/track/using-queries) to filter your work items in various ways.

You have the ability to create trend charts (https://docs.microsoft.com/

en-us/vsts/report/dashboards/charts) using those queries and then

add them to the default dashboard (https://docs.microsoft.com/en-us/

vsts/report/dashboards/add-charts-to- dashboard), or create your own

Figure 3-17. Veracode scan on a VSTS/TFS build

Chapter 3 Working on the iteration

https://docs.microsoft.com/en-us/vsts/work/track/using-queries
https://docs.microsoft.com/en-us/vsts/work/track/using-queries
https://docs.microsoft.com/en-us/vsts/report/dashboards/charts
https://docs.microsoft.com/en-us/vsts/report/dashboards/charts
https://docs.microsoft.com/en-us/vsts/report/dashboards/add-charts-to-dashboard
https://docs.microsoft.com/en-us/vsts/report/dashboards/add-charts-to-dashboard

89

dashboards in VSTS/TFS (https://docs.microsoft.com/en-us/vsts/

report/dashboards/dashboards) as shown in Figure 3-18.

Figure 3-18. A dashboard with charts

You can include build, deployment-related charts, and test results,

including test automation results, in dashboards. VSTS supports Analytics

widgets in dashboards to allow for further visualizing capability with

the Cumulative Flow Diagram (CFD), Velocity, Lead Time, Cycle Time,

Burndown, and Burnup widgets (https://docs.microsoft.com/

en-us/vsts/report/analytics/analytics-widgets-vsts). All these

visualizations will help you and your team identify any issues and take

corrective actions.

Chapter 3 Working on the iteration

https://docs.microsoft.com/en-us/vsts/report/dashboards/dashboards
https://docs.microsoft.com/en-us/vsts/report/dashboards/dashboards
https://docs.microsoft.com/en-us/vsts/report/analytics/analytics-widgets-vsts
https://docs.microsoft.com/en-us/vsts/report/analytics/analytics-widgets-vsts

90

Bombarded with the overwhelming availability of data on the progress

of your team, at times, you might make wrong choices. Such choices

sometimes cause chaos in projects. For instance, if you are looking at the

burndown on the last day of the iteration, and you tell the team it has done

an awful job, the members are apt to be demotivated, which will lead to

the team giving up on everything.

But how can you make sure you positively impact the team? First,

remember that you should be the facilitator or enabler. You should provide

support to help your team understand and practice Agile/Scrum. You

should help the team focus on team goals rather than individual goals. You

must always energetically look for process improvements and guide the

team to adopt such improvements in an enjoyable way.

You must also play the role of negotiator, especially between the team

and the product owner. You must effectively communicate with both

parties and ensure collaboration between them. Your job is to bridge the

gap between your team and the client’s business. Your responsibility is

to work closely with the product owner to identify business challenges

and also support the team to accommodate business requirements in an

effective way.

You should positively influence your team and the business team and

have the ability to set reasonable expectations in the product owner, by

negotiating and influencing him, if he is highly demanding. You can use

the visualization capability of VSTS/TFS to create the background required

for such negotiations.

You should also be the protector of the team, by shielding them from

interferences and impediments, and you should keep their focus on the

sprint goal. You must strike a balance when protecting the team, however,

as you must also keep in mind the business’s interests. Be resourceful so

you can creatively remove impediments from the team.

Chapter 3 Working on the iteration

91

Conflict resolution also plays an important part in your role. You must

earn everyone’s trust and respect. If conflicts are positively impacting the

work, such as various opinions on technology implementations, encourage

the team to have such conflicts and resolve them constructively to improve

the quality of work. This is also true with challenges that are geared

toward improving the process. But if the conflicts are rising between team

members due to personal issues, make sure these are fixed immediately as

political conflicts within an Agile team spell disaster.

Another of your responsibilities is building your team. It is important

for you to accept your team’s smaller failures since lessons learned from

failure are often worth more than the advice you give before failure. Lower

the bar when necessary and celebrate small, regular successes in the team.

This positive momentum will help you raise the bar later and celebrate

much higher success stories with your team. Happiness in the working

environment is important to making your team succeed, so help your team

enjoy life while they work hard for the team goals.

You should be disruptive when you need to be and be sure to show

empathy for the people around you. Do not be afraid to break the rules

and make changes. Your willingness to experiment and go ahead with

continuous improvements will surely influence your team to strive for

success. Maybe introducing a mid-sprint review to get feedback from the

product owner will be helpful, or perhaps you can conduct this type of

review within the team to check on the team’s progress. However, avoid

micromanaging at all costs; trusting your team and earning their trust is

a vital part of your role, no matter what tools you use or how capable your

tools are in implementing Agile practices.

You can use VSTS/TFS visualization capabilities to build awareness in

the team; they should think about where they are heading and when they

need to take necessary corrective actions. You can influence your team by

showing the team’s progress visually and by parsing the team for success,

so that the team keeps on updating work items as the members progress

Chapter 3 Working on the iteration

92

with work. Correctly representing status is important for the team, and

team members should understand the value of this by experiencing the

benefits of the correct status visibility. Let the team members be innovative

with the VSTS/TFS tool and help them come up with creative solutions

to the challenges they face. Creating automated steps as often as you can,

such as automating the task estimation as we discussed in Chapter 2, is

productive as well as effective to the productivity of the team.

 Summary
In this chapter, we focused on daily activity and positively working with

iteration goals, while effectively using VSTS/TFS as a tool. You learned the

importance of performing backlog grooming activities, while working on

the current iteration in order to make the requirements ready for the next

iterations. We discussed several challenges an Agile team may face and

how you can act as a successful servant leader to overcome them, using

tools as well as other traits that you should cultivate. We also highlighted

the importance of the cultural impact on an Agile team’s success.

In the next chapter, we explore how we should come to the end of

an iteration and set the background to start the next iteration. We then

discuss in more detail what steps you need to followed to make continuous

improvements to the team in the coming iterations.

Chapter 3 Working on the iteration

93© Chaminda Chandrasekara, Sanjaya Yapa 2018
C. Chandrasekara and S. Yapa, Effective Team Management with VSTS and TFS,
https://doi.org/10.1007/978-1-4842-3558-4_4

CHAPTER 4

Work After an Iteration
In previous chapters, you learned about the things that you need to set up

before you and your team can start working on an iteration and how you

can effectively execute an iteration using VSTS/TFS as a tool. In previous

chapters, we also described challenges you will face in the initial planning

and execution of the iteration and how you can use VSTS/TFS capabilities

effectively to overcome them. However, be aware that the features and

information availability in VSTS/TFS may lead you to circumstances

in which micromanagement may creep in and disrupt the purpose of

building agility in your team; we also discussed such pitfalls in previous

chapters to make you cautious and aware of these and to prevent you from

falling into them. With this knowledge, you can build empowered teams

and practice Agile using VSTS/TFS as a helpful tool, rather than one that

misleads your processes and practices.

In this chapter, we go through post-iteration activities and steps

you need to perform to get getting ready for the next iteration. First, it

is important to review the completed work from the previous iteration

and make sure you and your team understand how to handle partially

completed work before you move onto the next iteration. Discussing

challenges faced by the team in previous iteration helps the team make

improvements to how they will work in coming iteration. In this chapter

we discuss in detail how to pick items for the next iteration and what you

should avoid during post-iteration activities and planning for the next

iteration to be an effective Agile team. Our objective here is to explore the

94

Analytics widgets in VSTS that allow you determine the lead times, the

cycle times, and the forecasting capabilities of the work that your team

would deliver in the future iterations, and to help you plan your releases in

a predictable way.

 Review
As we discussed in Chapter 2, each user story or bug fix should meet

the definition of done (DoD) in order for it to be released to the client

environments. A shippable increment of software expected at the end of

an Agile/Scrum iteration should comprise backlog items (stories) and/

or bug fixes that are fully developed and tested and that can be deployed

to production environments, but only if the client is happy with the

implementation.

You should only select the 100-percent developed and tested stories

and fixes while making sure you avoid including partially finished work

in the version that you release after the iteration. Skipping the partially

done work is a challenge in the release increment if proper branching

and/or architectural patterns are not followed by the team. Even though

discussing how to define software architecture so it supports the capability

to switch features on and off in a release is out of scope of the book, it is an

important aspect your team should consider when implementing software.

In such scenarios, feature toggles will save the day. A feature toggle is

a feature switch or flipper that helps you keep your production code in

sync with the development version. This is extremely useful in scenarios

in which the end users are not ready for the new feature. For more details

about feature toggles, check this out: https://dev.to/samueleresca/

continuos-delivery-using-feature-toggle.

By the end of the iteration, your team should have DoD-met stories

and bug fixes deployed to the preproduction environment, but only

after they have been fully tested in previous stages such as development

Chapter 4 Work after an IteratIon

https://dev.to/samueleresca/continuos-delivery-using-feature-toggle
https://dev.to/samueleresca/continuos-delivery-using-feature-toggle

95

integration, quality assurance (QA), user acceptance testing (UAT), and

so on. As per Agile/Scrum practices, teams should demonstrate each of

their completed features in the sprint review meeting to the client/product

owner to get final approval before deploying them to production. If the

demonstration is done in a preproduction environment, the validity and

reliability of the software increment becomes higher as it is much closer to

the production implementation.

Product owners may or may not approve the release to production,

but such releases that are not approved should not be considered total

failures of implementation as long as the team understands what needs

to be fixed and accepted DoD criteria are met for each feature. In cases in

which there is a gap between the team’s understanding of DoD and the

product owner’s, discussion of how to improve the way the criteria for

DoD is defined should ensue; we discuss this later in this chapter. Some

teams follow a different release cadence from iteration length and have

multiple iterations before a release to production happens. Even in such

situations, it is worth demonstrating the completed features at the end of

each iteration, as this gives the team an opportunity to get early feedback

on implementation, and this satisfies the Agile thinking of fail fast, fail

often. This phrase should not be misunderstood as invitation to fail or an

encouragement of failure. Rather, fail fast, fail often allows your teams

to learn fast and fix issues sooner rather than later, which keeps the cost

of fixes lower, because the cost is much higher when bugs are detected

and need to be fixed toward the end of project, or in production, as we

discussed in the Chapter 3. To understand more about fail fast, fail often

in the context of success, take a look at www.arrkgroup.com/thought-

leadership/fail-fast-fail-often-explained/.

Once the review session with the product owner/client is done, the

owner/client can start providing feedback on the implementation of the

iteration. This can happen as voluntary feedback or the team can request

feedback for individual implemented features and get the feedback as we

discussed in Chapter 2.

Chapter 4 Work after an IteratIon

http://www.arrkgroup.com/thought-leadership/fail-fast-fail-often-explained/
http://www.arrkgroup.com/thought-leadership/fail-fast-fail-often-explained/

96

 Handling Partially Done Stories
If work is not 100-percent complete, the features it contains cannot be

included in the increment that is shipping at the end of the iteration, since

partially done work cannot generate value to the client business process

to improve it. The completed portion of the work should remain in the

iteration that just ended, and any in-progress tasks and not-yet-started

tasks of a story or a bug fix should be taken back to the backlog. Some

teams do this incorrectly by moving the incomplete work directly to the

next iteration; this should be avoided because the partially completed

work should be evaluated, reprioritized, and re-estimated before the

decision is made to work on them in the next iteration. This is because

priorities might have changed in the project, so other work may now need

to be given higher priority than the partially completed work from the

previous iteration.

 Moving Partially Completed Work
to the Backlog
You can move the user story/product backlog item (PBI) or a bug work

item to the backlog by changing its iteration path to the backlog iteration

path. Then you have to move all child tasks that are in progress or new to

the backlog by changing their iteration paths to the backlog iteration path.

Instead of changing each work item manually, simply drag and drop the

story/PBI or bug work item to the backlog, which automatically moves

the child tasks that are not closed back to the backlog. Closed child tasks

remain in the iteration since the work for them was already completed in

the iteration, as we discussed earlier. If you need to, you can drag and drop

multiple stories and bugs by highlighting them and dragging (Figure 4-1).

Chapter 4 Work after an IteratIon

97

Instead of dragging and dropping after you highlight required work

items, you can right-click to access the menu, click Move to Iteration, and

then click the Backlog menu option to move them to the backlog with the

child tasks that are not closed (Figure 4-2).

Figure 4-1. Drag and drop the story to the backlog

Chapter 4 Work after an IteratIon

98

When you move the parent work items to the backlog by dragging

and dropping or using the menu, the closed task work items remain in

the iteration; the parent work item remains visible inside the iteration

even though it has been moved to the backlog. This behavior correctly

represents the partially done work (tasks completed) for a story or a bug in

a given iteration. Figure 4-3 illustrates completed tasks that remain in the

iteration with a the user story has been moved to the backlog.

Figure 4-2. Moving stories to the backlog using the menu

Chapter 4 Work after an IteratIon

99

Once moved to the backlog, the story/PBI or bug work items should

be re-estimated after the remaining effort is evaluated. There may have

been changes to acceptance criteria or even requirement changes to these

items. In the planning session for the next sprint, discuss and select these

work items depending on their priority and the priority of other work

items. In other words, once moved back to the backlog, all these items are

considered similarly to other backlog items, and they go through the same

process to get selected for the next or any future iteration. You can even

have a backlog grooming session between the iterations to evaluate these

work items compared to other work items that are already prioritized and

groomed in the backlog. We discuss this more later in the chapter when we

go through the process of planning the next iteration.

Figure 4-3. Completed tasks remains in the iteration

Chapter 4 Work after an IteratIon

100

 Visualizing and Analyzing the Completed Work
Visualizing and analyzing the completed work with the various different

reports and charts that are available in VSTS/TFS helps you make

improvements to the way your team works and allows you to forecast

future deliveries. Let’s look at a few such charts. Please note that some of

them are based on the Analytics service, which is only available for VSTS

and not TFS at the time of the writing of this book.

 Velocity
Fully completed and DoD met stories and fixes, accumulated size gives the

velocity of the iteration that is completed. In VSTS/TFS, the velocity chart

provides information about completed sizes (achieved story points) of

iterations as well as in-progress sizes. It is arguable whether team velocity for a

completed iteration should consider in-progress velocity or not. But in reality,

in-progress work adds no value to the customer, and considering it as team

velocity has no validity. For example, as shown in Figure 4-4, Sprint – 2017.32 is

a completed iteration and it has a DoD-met velocity of 135 points, whereas 14

points are in progress, so the actual team velocity for the iteration is 135 points.

Figure 4-4. The velocity chart

Chapter 4 Work after an IteratIon

101

VSTS provides an additional widget to identify and provide more

information on the velocity of the team. To get this widget, you need to

install the Analytics extension to VSTS from VSTS Marketplace. Once the

extension is installed, you can set up the Velocity widget in the dashboard

(we discussed dashboards in Chapter 3) of the team. This Velocity widget

provides you with achieved velocity vs. planned velocity, and work

completed late also can be identified (Figure 4-5). More information on

this Velocity widget can be found at https://docs.microsoft.com/en-us/

vsts/report/dashboards/team-velocity .

Figure 4-5. The Velocity widget in VSTS

Chapter 4 Work after an IteratIon

https://docs.microsoft.com/en-us/vsts/report/dashboards/team-velocity
https://docs.microsoft.com/en-us/vsts/report/dashboards/team-velocity

102

Using each iteration velocity, you should calculate an average velocity

for the team; do this manually because VSTS/TFS does not provide an

average velocity calculation automatically at the time of the writing of this

book. The following is the formula for this:

Average Velocity = Accumulated Velocity in All Iterations/ No. of Iterations

If you are using the Scrum process template for on-premises TFS

with SQL Server Reporting Services (SSRS), you get a velocity report that

provides an average velocity line that is useful for forecasting work for

future iterations. In other words, if your team has completed a few sprints,

your ability to forecast future sprints greatly improves. For further reading,

please visit https://docs.microsoft.com/en-us/vsts/report/sql-

reports/velocity?view=vsts. We discuss this topic more later in this

chapter.

It is important to keep in mind that velocity is not a key performance

indicator (KPI) for the team. It just provides the capacity of the team and

gives the team the ability to forecast and take on work for future iterations.

You should not expect the team to increase its velocity as a performance

measurement objective; instead the team should find its own velocity that

can work on a sustainable phase.

 Burndown and Burnup
In addition to the velocity chart, the Analytics extension provides a few

other useful widgets. Just search for Analytics in the VSTS Marketplace.

Burndown and Burnup widgets provide you with a wealth of information

on how your team is progressing. You can learn more about these widgets

at https://docs.microsoft.com/en-us/vsts/report/dashboards/

configure-burndown-burnup-widgets. It is important to configure

these charts per your team requirements and understand the meaning

of each of the values and lines shown. The information provided in

Chapter 4 Work after an IteratIon

https://docs.microsoft.com/en-us/vsts/report/sql-reports/velocity?view=vsts
https://docs.microsoft.com/en-us/vsts/report/sql-reports/velocity?view=vsts
https://docs.microsoft.com/en-us/vsts/report/dashboards/configure-burndown-burnup-widgets
https://docs.microsoft.com/en-us/vsts/report/dashboards/configure-burndown-burnup-widgets

103

https://docs.microsoft.com/en-us/vsts/report/dashboards/

configure-burndown- burnup-widgets#interpret-a-burndown-or-

burnup-widget-chart provides a comprehensive overview of the

interpretation of these charts; the following is a summary of the most

critical points:

• Total Scope: The scope change of the project is

represented by the line that considers the completed

work as well. Figure 4-6 shows a significant increase in

scope.

Figure 4-6. The burndown line

Chapter 4 Work after an IteratIon

https://docs.microsoft.com/en-us/vsts/report/dashboards/configure-burndown-burnup-widgets#interpret-a-burndown-or-burnup-widget-chart
https://docs.microsoft.com/en-us/vsts/report/dashboards/configure-burndown-burnup-widgets#interpret-a-burndown-or-burnup-widget-chart
https://docs.microsoft.com/en-us/vsts/report/dashboards/configure-burndown-burnup-widgets#interpret-a-burndown-or-burnup-widget-chart

104

• Burndown: The burndown line plotted in the chart shows

how fast your team gets the work completed. In Figure 4-6,

the average burndown shows as a negative value because

the burndown rate has decreased as an average due to

an increase in the remaining work, probably due to the

significant scope increase in the project.

• Burnup: If the burnup chart is analyzed for the same

time period (see Figure 4- 7), it provides another view

of how the work is progressing. Even though the scope

has increased, the team has completed a significant

amount of work. The total scope increase is almost 50

percent, which justifies the negative burndown average

in Figure 4-6.

Figure 4-7. The burnup chart

Chapter 4 Work after an IteratIon

105

 Lead Time and Cycle Time
Identifying the lead time and cycle time of your team helps you determine

how long it takes for work to go through development and testing to get

completed.

• Lead Time: The total time it takes to complete the work

item starting at the time it was created

• Cycle Time: The time it takes to complete the work item

starting at the time the active work began

The Analytics extensions displayed in Figure 4-8 are available in the

VSTS Marketplace, which we discussed in previous section. To learn how

to configure the extension, go to https://docs.microsoft.com/en-us/

vsts/report/dashboards/cycle-time-and-lead-time.

Chapter 4 Work after an IteratIon

https://docs.microsoft.com/en-us/vsts/report/dashboards/cycle-time-and-lead-time
https://docs.microsoft.com/en-us/vsts/report/dashboards/cycle-time-and-lead-time

106

 Cumulative Flow
In addition to the default cumulative flow chart available in the backlog

view, a more configurable Cumulative Flow widget is available in the VSTS,

which you can enable by installing the Analytics extension from the VSTS

Marketplace. In this Cumulative Flow widget, illustrated in Figure 4-9, you

can set up which backlog level you should consider for cumulative flow,

whereas the default available chart considers all the work items available

to the team.

Figure 4-8. Lead time and cycle time

Chapter 4 Work after an IteratIon

107

Understanding the patterns of cumulative flow helps you identify the

answers to a few questions and you can then use those to make decisions

to take necessary corrective actions.

 Understanding How the Work Is Progressing

When you use the Analytics extension, you can filter the backlog for the

Cumulative Flow widget. Work in progress should have mostly thin parallel

lines, while the last column should increase in size gradually. If a widening

gap appears in the work in progress (WIP), as shown in Figure 4-10, work

is not getting completed and the team is working on too many items in

parallel, which is not a good sign. The team should take action to complete

work together as a team without starting on other new work.

Figure 4-9. The backlog items’ cumulative flow

Chapter 4 Work after an IteratIon

108

 Bulges in Cumulative Flow

When some portion of work is not getting completed as expected, bulges

may occur in the cumulative flow (Figure 4-11). For example, a bulge may

occur in the development-completed state if testing work is happening

slowly and development work is getting completed more quickly. Normally

a bulge indicates an issue in the next stage (state) of the process rather

than in the state in which the bulge is shown. In this example scenario, you

could support your testing members of the team with the development

members who are also participating in testing activity. This is a major

reason why crossfunctional and multiskilled teams are valuable in Agile

practices.

Figure 4-10. Increasing WIP

Chapter 4 Work after an IteratIon

109

 Flat Lines and Scope Changes

A flat line in the cumulative flow diagram (CFD) may occur when the team

takes more time than planned to get work moved from one process state to

another. This could be because the team has not updated the work items

regularly, which may have caused the flat lines. A similar effect can happen

even in burndown and burnup charts if the team does not update work

items regularly. Always encourage the team to drag the work items to the

relevant column in the Kanban boards, and use the daily scrum meeting

to check that and identify if the work item is in the right column. Flat lines

occur when multiple process states do not progress as planned, and if one

state progresses while the other does not, then a bulge, as explained in

previous section, may occur.

Scope changes are also visible (Figure 4-12) when the initial state of the

process is made available to the CFD. You can find details on configuring

the Cumulative Flow widget at https://docs.microsoft.com/en-us/

vsts/report/dashboards/cumulative-flow#configure-the-cfd-widget

and the built-in cumulative flow chart at https://docs.microsoft.com/

en-us/vsts/report/dashboards/cumulative-flow#configure-the-

built-in-cumulative- flow-chart.

Figure 4-11. A Bulge in the cumulative flow

Chapter 4 Work after an IteratIon

https://docs.microsoft.com/en-us/vsts/report/dashboards/cumulative-flow#configure-the-cfd-widget
https://docs.microsoft.com/en-us/vsts/report/dashboards/cumulative-flow#configure-the-cfd-widget
https://docs.microsoft.com/en-us/vsts/report/dashboards/cumulative-flow#configure-the-built-in-cumulative-flow-chart
https://docs.microsoft.com/en-us/vsts/report/dashboards/cumulative-flow#configure-the-built-in-cumulative-flow-chart
https://docs.microsoft.com/en-us/vsts/report/dashboards/cumulative-flow#configure-the-built-in-cumulative-flow-chart

110

All of these charts and widgets provide you and the team with valuable

information about how well your team is progressing with the work. It is

important that you communicate the meaning of these charts to the team

and explain how to interpret them. When the team understands what

each change happening in these charts and widgets indicates, with your

support, they can make quality decisions about necessary improvements

in order to rapidly add value for your end users (clients).

 Planning the Next Iteration
We have already discussed the importance of conducting a review of

previous 100-percent completed iteration work with the participation

of client/product owner, of getting the in-progress work of the previous

Figure 4-12. Flat lines and scope changes

Chapter 4 Work after an IteratIon

111

iteration back to the backlog, and of visualizing and understanding the

completed work with the help of the charts and diagrams that are available

in VSTS/TFS. None of the in-progress work should remain in the previous

iteration; it should all be in the backlog before you plan your next sprint.

In addition, no items should be selected for any of the future iterations

at this stage. Some teams make the mistake of assigning work for a few

iterations into future. This is a really bad practice because until you

complete an iteration, you cannot know what will remain as in-progress

work. Additionally, the priorities of your client business might change and

the backlog may require reprioritization. So we strongly discourage you

from assigning work for future iterations; in your sprint planning session,

you should only assign work for the next immediate iteration if you

really want to embrace agility. You may be wondering how to predict the

releases when you have no work planned for future iterations. You can find

the answer to this later in this chapter, when we discuss the forecasting

capabilities of VSTS/TFS.

Another important factor for successful sprint planning for the next

iteration is having a well-groomed and sized backlog by the end of a given

sprint. Many teams lose focus of the backlog when they start working on an

iteration, and as a result, they run into an imprecise set of backlog items,

which need lots of clarifications, before they can size or add a definition

of done (DoD). In simple terms, backlog items are not met with definition

of ready (DoR), which we discussed in Chapter 2. To prevent this from

happening, your team should invest a required amount of time on the

backlog grooming activity during an iteration, as explained in Chapter 3.

With a DoR-met backlog—including the in-progress items from the

previous iteration re-estimated and reprioritized—and considering the

other backlog items that depend on the current business priorities of the

project, your team should pick the topmost items of the backlog to assign

to the next iteration. How many items your team picks should be based on

the average velocity of the team. Let’s now spend more time on this and

the forecasting capabilities of VSTS/TFS.

Chapter 4 Work after an IteratIon

112

 Forecasting Future Work
VSTS/TFS allows you to forecast work based on the average velocity so

you can predict how many backlog items can be completed at the end

of each future iteration. You can use On/Off forecasting and Show/Hide

in-progress work to get the desired view. As we discussed earlier in the

chapter, you need to calculate the average velocity of your team. When you

have, place it in the “Forecasting based on velocity of” field, as shown in

Figure 4-13. The forecasting lines are drawn based on this velocity value

and the number of future iterations you have selected for the team. For

more information on forecasting with VSTS/TFS refer to https://docs.

microsoft.com/en-us/vsts/work/scrum/forecast.

Even though Figure 4-13 shows in-progress work assigned to an

iteration, no items are assigned to an iteration since the figure was created

in the middle of an iteration. At this point just before a sprint planning

session, when you look at the forecast, you should have no items assigned

to an iteration. However, you can use a forecasting tool at any point in time

to get an idea of how many sprints you need to complete the backlog items

or to find out how much work your team can complete by a given iteration.

Chapter 4 Work after an IteratIon

https://docs.microsoft.com/en-us/vsts/work/scrum/forecast
https://docs.microsoft.com/en-us/vsts/work/scrum/forecast

113

The average-velocity-based forecast gives you a hint on how much of

your backlog your team should pick up for the next iteration. Your team

can just follow this hint or make its own decision on how many items

to pick; for example, it is okay to be a bit overly ambitious or cautious

when you are deciding the work item count for next iteration. It takes few

iterations for the team to get into a rhythm and identify the sustainable

velocity.

 Planning Capacity for the Next Iteration
You can easily copy over the capacity plan from the previous iteration by

clicking the link to copy capacity from the previous iteration, as shown

in Figure 4-14. You may also have to change the team off days and the

individual off days after copying over the capacity, and you may need to

alter whether any member of the team was reallocated or add new team

Figure 4-13. Forecasting with VSTS/TFS

Chapter 4 Work after an IteratIon

114

members. The most important thing to consider here is how to avoid

hour- based capacity planning, as we detailed in Chapter 2. Doing so

promotes story-point-based estimation for tasks as well as capacity planning.

Figure 4-14. Copying capacity from the previous iteration

 Continuous Improvement
At the end of each sprint/iteration, the team should discuss what can be

improved in terms of workflow and how to avoid any unwanted problems

the team encountered during the previous iteration. Most importantly,

make sure to encourage each and every team member to contribute an

idea to a list improvements. Once the team has made this list, it should

discuss these items and prioritize them to identify the most critical

improvements the team can make. It is important that the team picks

only two or three items from the top of this prioritized list and creates

an action plan as well as assigns responsibility to the team to make sure

that the improvements are practiced and followed. As scrum master, you

should guide the team to implement the suggestions and support the team

members in identifying the most critical improvements required.

Chapter 4 Work after an IteratIon

115

During this discussion, make sure to evaluate whether the team’s

previously taken actions on improvements are successfully implemented

or not and the impact of those improvements. Sometimes these

improvement attempts cause more problems to team productivity

and agility, so this evaluation will help the team improve on previous

improvements. In simple terms, there is no best solution—there is always a

better solution than the previous one, however, and the solutions will keep

on improving. Making the team believe in continuous improvements by

letting them experience the benefits of them should be your goal. Without

confining yourself to a framework for this meeting, generally called a

retrospective in the Agile world, you should continually improve how you

handle this meeting using lessons you learned from each past meeting.

 Summary
In this chapter, we discussed how to use VSTS/TFS effectively for

post- iteration activities and for planning the next iteration. We evaluated

some visualizing capabilities used to analyze the completed work in order

to identify issues or any possible improvements.

In this chapter, we continued our focus on organizing and handling

small and large teams, managing backlog, and working as Agile teams in

iterations as well as post-iteration activities. In the next chapter, we look at

some additional features you can utilize as a scrum master and that your

team can utilize to help visualize and plan project roadmaps, facilitate

business analysis, capture requirements, get stakeholder feedback, and

provide visibility and accountability of the team activities.

Chapter 4 Work after an IteratIon

117© Chaminda Chandrasekara, Sanjaya Yapa 2018
C. Chandrasekara and S. Yapa, Effective Team Management with VSTS and TFS,
https://doi.org/10.1007/978-1-4842-3558-4_5

CHAPTER 5

Roadmap/Project
Plan and Resources
So far in this book, we have discussed how to use VSTS/TFS to manage

different stages and issues that the team faces during software product/

project development. In this chapter, we discuss planning the product

roadmap or the project plan, facilitating the Business Analysis phase with

office integration, and the mobile interface of VSTS/TFS. Also, we look

at providing the visibility to top management by effectively utilizing the

resources available within VSTS/TFS.

Whether you are working on a software project or product

development, you and your team must have a plan that describes the

path to completion. For project development, we normally use a project

plan, and for software product development we use a product roadmap to

illustrate when the project will be delivered or when the product features

will be delivered. This chapter guides you on how to use various tools that

you can integrated with VSTS/TFS to build such a plan.

In addition, we discuss how the business analysis functionality is

facilitated with VSTS/TFS using the Microsoft Office integration and

mobility. Also, we talk about how you can use all these resources to increase

the visibility of the top management. Let’s now dive deep into the facts.

118

 Creating the Project Plan/Product Roadmap
As we discussed earlier in this book with Agile practices, the delivery

timelines are tightly coupled to the iterations. That is, at the end of each

iteration, or maybe every x months, the team delivers goods to the end

users. Program managers, project managers, or product owners are

interested in visualizing when the artifacts are delivered to the end users.

This level of information is crucial for the internal stakeholders so that

they can keep the end users up to date with delivery timelines. Ideally,

this information is illustrated in a plan so that both internal and external

stakeholders can see the whereabouts of the development process. For a

software project, as mentioned earlier, this takes the form of the project

plan, and for product development, it is the product roadmap that

showcases such information.

So here’s the challenge: How do you create such a plan and keep the

plan synchronized with ongoing work? There are many tools that you can

used to create such a plan. The problem is that sometimes you have to

manually update your plan based on the ongoing progress, or maybe the

integration of such tools is very painful and time-consuming, or you have

to spend time learning how to use new tools. VSTS/TFS has the answer to

these challenges and also allows you to spending less time on learning and

integration. Let’s look at how you can use these integration tools effectively

to create a nice, high-level picture that the stakeholders can use to see the

project/product vision and the future.

 Creating the Project Plan/Product Roadmap
In earlier chapters, you learned how to create the backlog and set up the

delivery cadence in VSTS/TFS. You can use the out-of-the-box Kanban

boards for tracking daily progress with low-level details, but this does not

give you an idea of the big picture that is relevant to the top-level managers

and external stakeholders. However, one thing you can easily do is look

Chapter 5 roadmap/projeCt plan and resourCes

119

at the Features backlog, and if the target dates are entered, you can get an

idea of when the features will be delivered (Figure 5-1).

Figure 5-1. Features with target dates

This view gets pretty complex the more features you have because each

feature is delivered in a different timeframe based on its business value

and priority. Program managers, project managers, or product owners do

not have time to go through every feature to build that one picture that

illustrates the project plan/product roadmap, and you/your managers

simply cannot present a list of features to the end users. As a workaround,

you could write a query and extract features based on the timelines on

which they will be delivered, or you could group the features using the

query and have a separate list of features extracted to a given criteria.

Neither of these techniques gives you or your superiors the expected level

of information, however; it simply improves the clarity.

Chapter 5 roadmap/projeCt plan and resourCes

120

 Using Microsoft Excel

This is where Microsoft Office integration with VSTS/TFS becomes very

handy without any cost. First, let’s address the issue of preparing the road

map or the project plan using VSTS/TFS integration with Microsoft Excel.

First, you need to write a VSTS/TFS query for the features and extract them

as a whole. The most obvious option is to open the query with Excel. From

the Visual Studio Marketplace, select the Excel add-in and install it on your

system if you don’t already have it installed.

The VSTS Open in Excel extension is available in the VSTS

Marketplace, under the Plan and Track category (Figure 5-2). Just click the

green FREE link and the add-on will be installed.

Figure 5-2. Marketplace extensions

When installed successfully, you can see an Excel icon within the

query toolbar (Figure 5-3).

Figure 5-3. The Open in Excel extension

Chapter 5 roadmap/projeCt plan and resourCes

121

To open your query with Excel, click the Team menu and then click

New List to connect to VSTS/TFS with your credential. Then select the

project and the list of queries is displayed. Figure 5-4 illustrates the query

opened in Excel. Note that the results in Excel are automatically equipped

with filters that you can use to filter out information. The best part of this

is that you can use Excel features to manipulate the data you extract from

VSTS/TFS.

Figure 5-4. A query loaded in Excel

As you can see, the query in Figure 5-4 extract features with target

delivery timelines, which gives interested stakeholders a much better

picture of what is going on. Because pretty much everyone knows how to

use Excel, you can easily share information in this way with your end users.

Basically, stakeholders are more interested in when the features are getting

completed than the actual implementation details. But a view like the one

in Figure 5-4 does not give them the information they want, especially

when there are so many features in the backlog. This is common in large

and complex projects/product development. Therefore in such scenarios,

listing the features top to bottom may not be sufficient. They will still have

to use the filters to see the relevant information, however.

Chapter 5 roadmap/projeCt plan and resourCes

122

By using the chart features in Excel, you can create a Gantt chart that

illustrates the timelines (Figure 5-5). (Go to https://www.ablebits.com/

office-addins-blog/2014/05/23/make-gantt-chart-excel/ to learn

how to create this Gantt chart with Excel.) As you can see, this Gantt chart

clearly shows the timelines and gives your stakeholders an idea of when

the features are going to be available with just a quick glance. This appears

to be a nice way of presenting some complex information. Basically, they

do not have to scan throug a long list of features top to bottom.

Figure 5-5. A Gantt chart

There are some other templates you can use for similar purposes.

In the next section, we look into integrating with Microsoft Project, which

extends more capabilities and features.

Chapter 5 roadmap/projeCt plan and resourCes

https://www.ablebits.com/office-addins-blog/2014/05/23/make-gantt-chart-excel/
https://www.ablebits.com/office-addins-blog/2014/05/23/make-gantt-chart-excel/

123

 Integration with Microsoft Project

The project plan/product roadmap that we developed in the preceding

scenario is kind of primitive. What if your stakeholders want to decide

when to release the features based on client requests or based on the

market demands? Or what if they want to see the resource allocation for

each work item?

Microsoft Project is a great tool for handling such scenarios and it

tracks ongoing work against time. Above all, it is popular among program

managers, project managers, and product owners for tracking progress

and identifying any delays. Whether you are working on a software product

or project development, you can use Project to illustrate the project plan or

the roadmap.

For this example, let’s assume a scenario in which you have created the

backlog with the help of your business analysts and now it is time for the

stakeholders to decide when they want to see the features delivered. This is

actually setting the high-level objectives for the team.

As the scrum master, your objective is to share the work items with the

product owner/project or program managers so that they can decide when

the items will be delivered to the end user. So how can you share the work

items?

The steps are similar to the ones for using Excel:

 1. First you must create a query to extract the required

work items.

 2. Then you need to open the results with Project by

establishing a link between Project and VSTS/TFS.

 3. To establish a connection between VSTS/TFS and

Project, click the New List on Project’s Ribbon. The

Connect to Team Fondation Server window appears.

 4. Select Team Foundation Server from the drop-down

on the top or click the Server button to add a new

connection.

Chapter 5 roadmap/projeCt plan and resourCes

124

 5. Finally, select the team project collection and

then the appropriate team project. For further

information, go to https://docs.microsoft.

com/en-us/vsts/user-guide/connect-team-

projects#connect-from-microsoft-excel-or-

project.

With the latest release of Microsoft Project online, these capabilities

are extended and enhanced. On the Visual Studio Marketplace, you can

find more details (Figure 5-6).

Figure 5-6. Microsoft Project Marketplace extensions

You can find more details on how to use Project here: https://docs.

microsoft.com/en-us/vsts/work/backlogs/office/create-your-

backlog-tasks-using-project.

One could argue that the stakeholders can’t use VSTS/TFS to update

the timelines in our scenario. Of course they can, but only if they are

willing to open each and every feature and enter the starting and ending

timelines. The other problem with our scenario is, as we mentioned earlier,

it does not give stakeholders a high-level view from which to visualize the

Chapter 5 roadmap/projeCt plan and resourCes

https://docs.microsoft.com/en-us/vsts/user-guide/connect-team-projects#connect-from-microsoft-excel-or-project
https://docs.microsoft.com/en-us/vsts/user-guide/connect-team-projects#connect-from-microsoft-excel-or-project
https://docs.microsoft.com/en-us/vsts/user-guide/connect-team-projects#connect-from-microsoft-excel-or-project
https://docs.microsoft.com/en-us/vsts/user-guide/connect-team-projects#connect-from-microsoft-excel-or-project
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/create-your-backlog-tasks-using-project
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/create-your-backlog-tasks-using-project
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/create-your-backlog-tasks-using-project

125

Figure 5-8 illustrate the query opened in Project. Note that it retrieves

features as well as the user stories underneath them.

Figure 5-7. The feature backlog

timelines. Project gives this visualization, however. Figure 5-7 illustrates

the results of the query we created to extract the features. As you can see,

the start and finish dates are blank; your managers will decide when they

want the releases to be available.

Chapter 5 roadmap/projeCt plan and resourCes

126

Now your managers can decide on and enter the dates for the items

that will be delivered. Once this information is updated it can produce a

Gantt Chart similar to the one in Figure 5-9. Stakeholders can even publish

changes, which will update the VSTS/TFS work items as well.

Figure 5-8. Features and stories in Project

Chapter 5 roadmap/projeCt plan and resourCes

127

Note that Project can connect and pass your updates to VSTS/TFS

as soon you click the Publish button on the Ribbon; when you do, your

backlog is updated (Figure 5-10). Project can be your top management

window to the product/project backlog.

Figure 5-9. Gantt chart with Project

Figure 5-10. Dates updated in VSTS/TFS work items

Chapter 5 roadmap/projeCt plan and resourCes

128

This is one particular scenario, but there are many times when you can

use Project to create all the features, user stories, and tasks you need to

build your backlog. Remember synchronizing from VSTS/TFS to Project,

which is other way around, is not straightforward, it requires you to

modify the work item templates and further technical configurations. So

without making things too complicated, use Project to enhance VSTS/TFS

connectivity and keep in mind that doing so is more suitable for project

development than product development.

 Using Delivery Timelines

Now that we have looked into using Excel and Project to create project

plans/product roadmap, you may be wondering what to do if your

stakeholders want to see a more detailed view. Or let’s say, for instance,

that you have multiple teams working on a large project. In such scenarios,

your stakeholders may want to know which team is working on what part

of the project and when the features are going to be delivered. As we all

now know, Project has features to manage resources, but these are two

different tools and you and your stakeholder have to shift between the

tools to access information. This will be cumbersome when there are

multiple teams working in a large complex project. This means that you

are not using VSTS/TFS to its full potential for creating a better plan. You

could integrate on-premises TFS with the Project server, as explained

in https://docs.microsoft.com/en-us/vsts/work/tfs-ps-sync/

synchronize-tfs-project-server, but this is no longer supported in TFS

2017 and newer.

So, by utilizing VSTS/TFS, you can create a nice delivery plan for your

stakeholders by simply installing the Delivery Plans add-on from the Plan

and Track category of the VSTS Marketplace (Figure 5-11). Just click the

green FREE link underneath the title and the add-on will be installed.

Chapter 5 roadmap/projeCt plan and resourCes

https://docs.microsoft.com/en-us/vsts/work/tfs-ps-sync/synchronize-tfs-project-server
https://docs.microsoft.com/en-us/vsts/work/tfs-ps-sync/synchronize-tfs-project-server

129

Once you install the Delivery Plans add-on, you can see a Plan tab

right next to the Backlog and Queries tabs. So, where exactly can we use

this tool and what level of information does it give us? Sometimes two or

more teams will be working together on the same project, probably either

because of the complexity or to speed up the delivery. Your program

manager/product owner wants to see this whole picture.

You can easily put up a delivery plan. No queries are required, and you

can use the existing information from the backlog. Remember, for the tool

to work, you must first set up the teams and your release cadence. Also,

you must assign your work items to the teams. Once you have done this,

it is easy to build the delivery plan. Just click the New button to create a

new plan and in the New Delivery Plan window, provide the Plan Name,

Project, Team, and the Backlog. Once the plan is created, you can see it

listed as illustrated in Figure 5-12.

Figure 5-11. The Delivery Plans extension

Chapter 5 roadmap/projeCt plan and resourCes

130

The nice thing about this add-on is that you can have multiple plans,

which make it an ideal tool for product management. Usually, for product

management, you need to have a current plan and a future plan in which

the future plan provides information to answer end user queries.

So, let’s move back to our scenario in which multiple teams are

working on the same project. When you set up your plan, it will look

something like Figure 5-13.

At the top, this plan highlights when the features will be delivered,

and in order to deliver the features, what user stories must be complete

and when. You can easily move the work items and define the release

timelines; for instance, in this case, every two months there will be a

release. Figure 5-14 illustrates a similar scenario.

Figure 5-12. Delivery plans

Chapter 5 roadmap/projeCt plan and resourCes

131

Fi
gu

re
 5

-1
3.

 A
 d

el
iv

er
y

pl
an

Chapter 5 roadmap/projeCt plan and resourCes

132

Fi
gu

re
 5

-1
4.

 A
n

ot
he

r
de

li
ve

ry
 p

la
n

Chapter 5 roadmap/projeCt plan and resourCes

133

Figure 5-15. The Open in Power BI marketplace extension

For more information on delivery plans, refer to https://docs.

microsoft.com/en-us/vsts/work/scale/review-team-plans.

 Power BI Integration

For progress reporting, Microsoft Power BI is the number one tool

available, and it has some exceptional reporting capabilities. While

executing a project, you are required to report the progress you are

making and how well the project is doing. In addition to built-in

VSTS/TFS dashboards, you can use Power BI integration to build

state-of-the-art dashboards for VSTS. (As of the time of the writing of this

book, Power BI integratation is supported in VSTS only. TFS on-premise

support will be added in a future TFS version). You can find the Open In

Power BI plugin in the VSTS Marketplace under the Plan and Track category

(Figure 5-15). In addition to this extension, there are few dependencies. For

instance, there are three data connection mechanisms and prerequisites

which are listed in detail in the URI provided below.

Once it is installed successfully, you can see the Open in Power BI

links, as illustrated in Figure 5-16.

Chapter 5 roadmap/projeCt plan and resourCes

https://docs.microsoft.com/en-us/vsts/work/scale/review-team-plans
https://docs.microsoft.com/en-us/vsts/work/scale/review-team-plans

134

Remember you must have Power BI installed on your computer,

and you should also check out the other dependencies, described at

https://docs.microsoft.com/en-us/vsts/report/powerbi/overview,

like the Analytics extension, which we discussed in Chapter 4. When you

click these options, the work items of the query are downloaded as .pbit

files. You can open these via the Power BI desktop application, and to do

so, you need to provide credentials. Once you have opened a work item,

you have access to the rich features to create a nice Power BI dashboard

(Figure 5- 17).

Figure 5-16. The Open in Power BI links

Chapter 5 roadmap/projeCt plan and resourCes

https://docs.microsoft.com/en-us/vsts/report/powerbi/overview

135

Fi
gu

re
 5

-1
7.

 T
he

 P
ow

er
 B

I d
as

hb
oa

rd

Chapter 5 roadmap/projeCt plan and resourCes

136

The following links may help you gain more knowledge about Power

BI/VSTS integration.

• Connect to VSTS with the Power BI Date Connector:

https://docs.microsoft.com/en-us/vsts/report/

powerbi/data-connector-connect

• Connect to VSTS using the Power BI ODate feed:

 https://docs.microsoft.com/en-us/vsts/report/

powerbi/access-analytics-power-bi

• Connect using the Power Query and VSTS functions:

https://docs.microsoft.com/en-us/vsts/report/

powerbi/data-connector-functions

• Explore example reports for the Power BI Data

Connector: https://docs.microsoft.com/en-us/

vsts/report/powerbi/data-connector-examples

 Other Integrations

Like the tools explained earlier, there are many other integrations that

you can use to create the project plan or the product roadmap. Some of

them are free and some comes with a price tag. One such integration is

the VSTS Solution Template for Power BI (https://powerbi.microsoft.

com/en-us/blog/announcing-visual-studio-team-services-vsts-

solution-template/). The bottom line is that even though so many fancy

integrations are out there, you must decide which integration is best for

your team.

Chapter 5 roadmap/projeCt plan and resourCes

https://docs.microsoft.com/en-us/vsts/report/powerbi/data-connector-connect
https://docs.microsoft.com/en-us/vsts/report/powerbi/data-connector-connect
https://docs.microsoft.com/en-us/vsts/report/powerbi/access-analytics-power-bi
https://docs.microsoft.com/en-us/vsts/report/powerbi/access-analytics-power-bi
https://docs.microsoft.com/en-us/vsts/report/powerbi/data-connector-functions
https://docs.microsoft.com/en-us/vsts/report/powerbi/data-connector-functions
https://docs.microsoft.com/en-us/vsts/report/powerbi/data-connector-examples
https://docs.microsoft.com/en-us/vsts/report/powerbi/data-connector-examples
https://powerbi.microsoft.com/en-us/blog/announcing-visual-studio-team-services-vsts-solution-template/
https://powerbi.microsoft.com/en-us/blog/announcing-visual-studio-team-services-vsts-solution-template/
https://powerbi.microsoft.com/en-us/blog/announcing-visual-studio-team-services-vsts-solution-template/

137

 Business Analysis
As we all know, business analysis is one of the tedious activities in a project

lifecycle. Either business analysts or product owners must take over this

task, and it is one of the important activities as requirement clarity has

an immense impact on the success of a project. Instinctively, these two

groups are likely to use Microsoft Word to capture the requirements in the

form of a requirements document. Later they will enter the requirements

into the project/product management tool used by your team. Needless to

say, this doubles the effort needed and requires more time.

This task gets even harder when changes are coming in from the end

users before the sign-up. Now the business analyst/product owner must

update both the document and the content in your tool. The problem

becomes worse if the scale of the project is bigger and changes will have

critical impacts. In this section, we discuss the answer to these problems

with more familiar tools such as Microsoft Office integrated with VSTS/TFS.

 Office Integration
Traditionally, business analysts or product owners have written the

requirements as a document, the requirements documentation. But the

development team works with a tool to manage work items such as

VSTS/TFS and conventionally, developers do not like to read lengthy

documents. So, either you, the scrum master, or the business analyst or

product owner must convert and enter the requirements into the VSTS/

TFS, which requires additional effort and time.

We all use Microsoft Office for documentation purposes. Microsoft

Word, PowerPoint, and Visio are key tools required for business analysis

activities. The good news is that to overcome the issues just mentioned,

you don’t have to learn new tools. It is just a matter of using the tools that

you are familiar with together with VSTS/TFS and reducing the workload.

Chapter 5 roadmap/projeCt plan and resourCes

138

 Smart Office4TFS

This third-party tool, available at (www.modernrequirements.com/

product/smartoffice4tfs-professional-2/), is popular among modern

business analysts and directly addresses the issues just mentioned. It

also creates a more collaborative platform on which, from the beginning,

all of your team members can stay up to date with ongoing work. This

tool integrates with Microsoft Word, Visio, Outlook, and Excel. First, let’s

discuss how this tool can help you create requirements.

Let’s assume that your business analyst/product owner has been

commissioned to write the requirements for a project; the process of

identifying and documenting requirements is tedious but vital. If the

requirements are not captured correctly, then the end result will not

meet user expectations. This is not a state that any of us want to be in.

Therefore, to capture the user requirements accurately, the business

analyst or the product owner has to continue discussions with the end

users during the requirements capturing phase. Remember, no matter how

many sessions you participate in to capture the requirements, they will

change. As Agile teams, we accept this fact.

Imagine you are discussing the high-level business flows with the

client, and at the same time, you are using Visio to create the process flow.

Changing this time and again until you finalize the flow with the client is

going to be a painful task. But Smart Visio4Tfs (https://marketplace.

visualstudio.com/items?itemName=ModernRequirementsbyeDevTe

ch.SmartVisio4TFS) will save the day for you by allowing you to create

the feature in TFS as soon as you create the flow diagram. You can easily

publish the changes back to VSTS/TFS by just clicking the Publish button.

And this is not it! For each stage of the process flow, you can create

the user stories and relevant tasks directly from Visio. The same applies

to Smart Word4TFS (https://marketplace.visualstudio.com/

items?itemName=edevtech-mr.SmartOffice4TFS), where you can use the

Chapter 5 roadmap/projeCt plan and resourCes

http://www.modernrequirements.com/product/smartoffice4tfs-professional-2/
http://www.modernrequirements.com/product/smartoffice4tfs-professional-2/
https://marketplace.visualstudio.com/items?itemName=ModernRequirementsbyeDevTech.SmartVisio4TFS
https://marketplace.visualstudio.com/items?itemName=ModernRequirementsbyeDevTech.SmartVisio4TFS
https://marketplace.visualstudio.com/items?itemName=ModernRequirementsbyeDevTech.SmartVisio4TFS
https://marketplace.visualstudio.com/items?itemName=edevtech-mr.SmartOffice4TFS
https://marketplace.visualstudio.com/items?itemName=edevtech-mr.SmartOffice4TFS

139

predefined templates for the Agile, Scrum, or CMMI process templates to

define the work items. These templates can map the work item hierarchy

of your process template.

Additionally, you can use Smart Outlook4TFS to perform the tasks

related to requirements capture. Also, through Outlook, you can easily

manage your backlog.

Smart Excel4TFS is capable of automatically generating various

matrixes, such as such as the Requirements Traceability matrix, Work Item

Decomposition matrixes, and so on. This is especially useful in scenarios

in which exceptionally large volumes of work items exist in your project,

the SmartExcel4TFS allow you to visualize the relationship between

the work items. This setup also allows you to organize the work items

in different perspectives, which is useful in product management and

program management.

 Using PowerPoint for Storyboarding

When we are capturing business requirements, presenting the

requirements as a wireframe helps illustrate our understanding of the

requirements. You can use so many tools to create the wireframes that

are available in the market, but keeping them synchronized with your

requirements is a challenge. The top benefits of creating wireframes are

that they increase the user’s level of understanding and improve the user’s

experience. On the other hand, one picture is worth a thousand words.

Out of the box, TFS/VSTS integrates with Microsoft PowerPoint,

which enables you to create amazing wireframes. Just click the wireframe

link on the drop-down of the work item and you can create a wireframe

to represent your requirements. Figure 5-18 illustrates how to start a

storyboard for a user story.

Chapter 5 roadmap/projeCt plan and resourCes

140

When you are directed to PowerPoint, find the Storyboarding tab on

the Ribbon to open the storyboarding tools (Figure 5-19).

You can use these tools to build up the wireframes for your

requirements (Figure 5-20).

Figure 5-19. Storyboarding tools

Figure 5-18. Starting storyboarding for a user story

Chapter 5 roadmap/projeCt plan and resourCes

141

Figure 5-20. Storyboarding with PowerPoint

Again, when you use this method, you don’t have to learn any new

tools and you use a tool that you already familiar with. You can learn more

about the storyboarding here: https://docs.microsoft.com/en-us/vsts/

work/backlogs/office/storyboard-your-ideas-using-powerpoint.

One important thing to keep in mind is that you might not need all

these integrations. So think carefully and chose the tools that you need to

improve the productivity of the team as a whole.

 The Mobile Interface
At present, mobile access to any application is essential, especially when

we are working at client sites gathering requirements and attending

workshops. It would be ideal if you could enter requirements into the

backlog directly from your tablet while you are discussing them with

your client. To address this, Microsoft has started to improve the mobile

interface of VSTS/TFS. At the time of the writing this book, mobile

access to the application is very primitive, but the good news is that it is

continuously improving.

Chapter 5 roadmap/projeCt plan and resourCes

https://docs.microsoft.com/en-us/vsts/work/backlogs/office/storyboard-your-ideas-using-powerpoint
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/storyboard-your-ideas-using-powerpoint

142

You can find more information about the mobile interface here:

https://docs.microsoft.com/en-us/vsts/collaborate/mobile-work.

 Summary
In this chapter, we discussed several issues/challenges faced by program

managers, product owners, project managers, and business analysts and

how various integrations of TFS can be used to overcome them. The nice

thing about all these Microsoft Office integrations is that you do not have to

spend time learning new tools or practices. Additionally, these integrations

reduce the workload and remove errors, especially in requirements

capture. As a scrum master, you can use these Office integrations together

with your top managers and direct the team to success in delivering the

end-user expectations.

In the next chapter, we look at options for customizing VSTS/TFS to

adopt to your team’s process, rather than your team adapting to the tool.

Chapter 5 roadmap/projeCt plan and resourCes

https://docs.microsoft.com/en-us/vsts/collaborate/mobile-work

143© Chaminda Chandrasekara, Sanjaya Yapa 2018
C. Chandrasekara and S. Yapa, Effective Team Management with VSTS and TFS,
https://doi.org/10.1007/978-1-4842-3558-4_6

CHAPTER 6

Adapting VSTS/TFS
to Your Team’s
Process
In Chapters 1 through 4, we looked at how to run Agile development

while leveraging the capabilities VSTS/TFS has to offer. Then in Chapter 5,

we discussed project roadmaps and project plans and how to integrate

Microsoft Office with VSTS/TFS to understand how VSTS/TFS can help

you get a holistic view of a project/product.

We also talked about how you should not adapt to the tool demands;

instead, you should adapt the tool to a process that works better for your

team. As your team continually improves the process, the tool should be able

to adapt accordingly. In this chapter, we explore the capabilities of VSTS/TFS

from the perspective of adaptability to your process. Customizability in

VSTS/TFS can be identified in following broader categories.

• Customizing shared resources

• Customizing team projects and processes

• Customizing access to work tracking tools

• Customizing the test experience

• Additional customization options

144

VSTS and on-premises TFS have different customization capabilities;

we discuss them in detail under each of the broad categories we cover

in this chapter. You can adapt VSTS/TFS to your team’s needs with this

knowledge.

In addition to customizations, we look at the pros and cons of using

VSTS (cloud) vs. TFS (on-premises) for your team needs.

 Customizing Shared Resources
Area paths, iteration paths, tags, and shared queries are few important

shared resources that you can customize. Area paths allow you to group

work items by product, feature, or team area. Iteration paths allow you

to group work into time-related events, such as iterations/sprints or

milestones. Tags let you filter your backlog items in queries. You can use

shared queries to obtain information on work items and visualize them

using query-based charts and dashboards that include those charts,

which can be shared among the team. Additionally, you can create private

queries only visible to you. We discussed these items and how to use them

effectively in previous chapters.

 Customizing Team Projects and Processes
Customizing the team project and process allows you to change VSTS/TFS

to adapt to the process of your team. VSTS/TFS contains three types of

process templates.

• Agile

• Scrum

• CMMI

Chapter 6 adapting VStS/tFS to Your team’S proCeSS

145

Three major types of process customizations are available in VSTS/TFS

depending on whether you are using the cloud or on-premise instances

and based on how the VSTS (cloud) instance is created.

• Inheritance: This customization is only available in

VSTS and it supports WYSIWIG (what-you-see-is-what-

you-get) editing.

• Hosted XML: This customization is only available

in VSTS accounts migrated from on-premises

TFS. Customizations are possible via the export and

import of process templates.

• On-premises XML: This customization is only available

for on-premises TFS, and customizations are possible

via the export and import of process templates.

 Customizing VSTS with Template Inheritance
VSTS allows you to inherit the default available Agile, Scrum, or CMMI

templates to customize them. You are not normally allowed to customize

the system/default template; in order to do so, you must create an

inherited template. Once you’ve created this template, you can introduce

new fields, hide existing fields, change the status workflow of work items,

introduce new work items, and so on. You can create an inherited process

template using the existing default template in the Process tab of the VSTS

Account Admin mode as shown in Figure 6-1.

Chapter 6 adapting VStS/tFS to Your team’S proCeSS

146

Once you have created an inherited template, you can change the

existing team project to use it or you can create a new team project with

the inherited template. The changes you make in an inherited template

are applied to all projects that use that template. In following sections,

we discuss a few scenarios you may want to customize. You can use the

Witadmin command-line tool in VSTS accounts with the inheritance

process model to list information about team projects (https://docs.

microsoft.com/en-us/vsts/work/customize/reference/witadmin/

witadmin-customize-and-manage-objects-for-tracking-work).

 Adding a Custom Field

You have the option of setting up new fields with different input types;

for example, you may create a field that expects text data or numeric data

or a text-based pick list or a numeric picklist (Figure 6-2). If you require

a checkbox type of a field, you can set its Type as a Boolean field. The

Identity field type allows you to define fields similar to the Assign To field

Figure 6-1. Creating an inherited process template

Chapter 6 adapting VStS/tFS to Your team’S proCeSS

https://docs.microsoft.com/en-us/vsts/work/customize/reference/witadmin/witadmin-customize-and-manage-objects-for-tracking-work
https://docs.microsoft.com/en-us/vsts/work/customize/reference/witadmin/witadmin-customize-and-manage-objects-for-tracking-work
https://docs.microsoft.com/en-us/vsts/work/customize/reference/witadmin/witadmin-customize-and-manage-objects-for-tracking-work

147

in a work item. If you have synced with Azure Active Directory (AAD), this

field lists the users in your active directory in the custom field, which is

similar to the Assigned To field. This type of field is useful for defining a

supervisor, or a Report To user, for the user who is assigned the particular

work item.

Figure 6-2. Adding a custom field

You can make a custom field mandatory for a given work item and

make it nonmandatory for another work item by checking or unchecking

the Required option as shown in Figure 6-3. Additionally, it is possible to

set a default value for a field. By editing the existing system fields in a given

work item, you can also make them mandatory or not.

Chapter 6 adapting VStS/tFS to Your team’S proCeSS

148

You can place an added custom field in any of the available layout

groups, such as Classification, Planning, and so on, or you can create a

new layout group and place the new custom field in it. It is also possible

to edit the layout group of the custom field after you created it, but it is not

possible to change an existing default field layout group (Figure 6-4).

Figure 6-3. Making a filed mandatory for a work item

Figure 6-4. Defining a layout group for a custom field

Chapter 6 adapting VStS/tFS to Your team’S proCeSS

149

You can find more information on custom fields for work items at

https://docs.microsoft.com/en-us/vsts/work/customize/process/

customize-process-field?toc=/vsts/work/customize/toc.json&bc=/

vsts/work/customize/breadcrumb/toc.json#add-a-custom-field.

 Modifying an Existing Field

You may want to alter an existing field or change selectable value options.

But be aware that the only allowed changes for an existing field are

changing a default value, making the field mandatory or not, or changing

its label. If you want to make more modifications to a field, you can hide

the existing field (Figure 6-5) and add a custom field with the same label.

Figure 6-5. Hiding an existing field

Chapter 6 adapting VStS/tFS to Your team’S proCeSS

https://docs.microsoft.com/en-us/vsts/work/customize/process/customize-process-field?toc=/vsts/work/customize/toc.json&bc=/vsts/work/customize/breadcrumb/toc.json#add-a-custom-field
https://docs.microsoft.com/en-us/vsts/work/customize/process/customize-process-field?toc=/vsts/work/customize/toc.json&bc=/vsts/work/customize/breadcrumb/toc.json#add-a-custom-field
https://docs.microsoft.com/en-us/vsts/work/customize/process/customize-process-field?toc=/vsts/work/customize/toc.json&bc=/vsts/work/customize/breadcrumb/toc.json#add-a-custom-field

150

 Changing the Status Workflow of a Work Item

If you do not like the columns in the work item boards, refer back to

Chapter 2, where we discussed how to add new columns or change

existing columns. But in that discussion, you were limited to the available

set of state values in the work item and you may have used the same state

in multiple columns of the board for a work item. With inherited process

templates, you can now define your own states for a work item. You can

use a new custom state that you define in a work item in another work item

as well. You also have the option of hiding existing states (Figure 6-6) in a

work item so that you can create your own custom state workflow.

Figure 6-6. Add a new state or hide an existing state

Chapter 6 adapting VStS/tFS to Your team’S proCeSS

151

However, you cannot hide a state if it is the only state in a given state

category, such as Proposed, InProgress, and so on. You are not allowed to

add new state categories except the categories that are available by default.

Another limitation is that you cannot add a new state or hide an existing

state in the Completed category at the time of the writing of this book.

However, you may add a state to an available but by default unused state

category in a given work item template. For example, the Removed state

category is not used in the Agile template bug work item by default, but

you can introduce a new state to this category in the bug work item using

an inherited template.

Once you set up the new states in your work items, you may have to

alter the board columns in the Work tab (https://docs.microsoft.com/

en-us/vsts/work/kanban/add-columns#add-or-rename-columns) to

reflect the changes and the board may not be viewable until you fix the

board columns with visible states if you have hidden any existing states

from a work item.

 Custom Rules

You may want to add your own rules to work items depending on the field

values or state changes in a work item. For example, you can set a rule so

that a product backlog item cannot move to the InProgress state from a

Proposed state if the work item’s Acceptance Criteria (Definition of Done)

is not defined. Custom rules enable you to enforce the process steps

(Figure 6-7).

Chapter 6 adapting VStS/tFS to Your team’S proCeSS

https://docs.microsoft.com/en-us/vsts/work/kanban/add-columns#add-or-rename-columns
https://docs.microsoft.com/en-us/vsts/work/kanban/add-columns#add-or-rename-columns

152

 Custom Backlog Levels and Work Items

If you find available portfolio backlog levels are not sufficient for your

team’s needs, you can add additional top levels to the portfolio backlog as

shown in Figure 6-8. You can define a new work item type and assign it to

the new level.

Figure 6-7. Defining custom rules

Chapter 6 adapting VStS/tFS to Your team’S proCeSS

153

You can add any additional work item types to any backlog level as you

require (Figure 6-9). You can set the default work item type for the backlog

level and even select a new custom work item as the default work item for

the backlog level.

Figure 6-8. Adding a new portfolio backlog level

Chapter 6 adapting VStS/tFS to Your team’S proCeSS

154

 Customizing VSTS with Hosted XML
Hosted XML is available only in VSTS when you have migrated an on-

premises TFS project collection to VSTS (https://docs.microsoft.

com/en-us/vsts/articles/migrate-to-vsts-from-tfs). In a migrated

VSTS account, default process templates and process templates with

customizations from projects that are migrated are available. You can

export any of the default or project-based custom templates, modify them,

and import them, overwriting a project-based custom template in the

process. You are allowed to export a default template and import it as a

custom template, but you cannot import a process template with a default

template name, meaning you cannot overwrite default templates. Instead,

you can create a new project with the default or custom process templates.

Ignore the warning in Figure 6-10, as this image was taken from a dry run

migration of TFS to VSTS.

Figure 6-9. Custom work item types

Chapter 6 adapting VStS/tFS to Your team’S proCeSS

https://docs.microsoft.com/en-us/vsts/articles/migrate-to-vsts-from-tfs
https://docs.microsoft.com/en-us/vsts/articles/migrate-to-vsts-from-tfs

155

It is possible to create an inherited process template from the default

process templates when you are using a TFS-to-VSTS–migrated account

(Figure 6-11). More information on Hosted XML–based template

customizations can be found at https://docs.microsoft.com/en-us/

vsts/work/customize/import-process/customize-process.

Figure 6-10. Exporting a process template

Chapter 6 adapting VStS/tFS to Your team’S proCeSS

https://docs.microsoft.com/en-us/vsts/work/customize/import-process/customize-process
https://docs.microsoft.com/en-us/vsts/work/customize/import-process/customize-process

156

You can use the Witadmin command-line tool in VSTS accounts with

the Hosted XML process model to list information about team projects

(https://docs.microsoft.com/en-us/vsts/work/customize/reference/

witadmin/witadmin-customize-and-manage-objects-for-tracking-work).

 Customizing with TFS On-premises XML
The most customizable process template type is on-premises XML,

which is only available for TFS (Figure 6-12). This process template type

is similar to Hosted XML; using it, you can export a custom template or a

default template, but you are only allowed to import as a custom template.

However, you cannot create inherited templates from default templates in

on-premises XML, so there is no WYSIWIG editing available for TFS at the

time of the writing of this book. More information on on-premises XML

process model customizations can be found at https://docs.microsoft.

com/en-us/vsts/work/customize/on-premises-xml-process-model.

Figure 6-11. Inheriting and exporting is supported in the default
process template

Chapter 6 adapting VStS/tFS to Your team’S proCeSS

https://docs.microsoft.com/en-us/vsts/work/customize/reference/witadmin/witadmin-customize-and-manage-objects-for-tracking-work
https://docs.microsoft.com/en-us/vsts/work/customize/reference/witadmin/witadmin-customize-and-manage-objects-for-tracking-work
https://docs.microsoft.com/en-us/vsts/work/customize/on-premises-xml-process-model
https://docs.microsoft.com/en-us/vsts/work/customize/on-premises-xml-process-model

157

The Witadmin command-line tool can be used for listing as well as

editing the template in on-premises XML (https://docs.microsoft.

com/en-us/vsts/work/customize/reference/witadmin/witadmin-

customize- and-manage-objects-for-tracking-work).

 Customizing the Access to Work
Tracking Tools
In VSTS/TFS there are many options that restrict or grant users access to

different features or work tracking items. When you add a member to a team

in a team project, by default, the contributor access permissions are granted

to that user, enabling the user to contribute most of the work to code,

builds and deployments, work items, and testing. Refer to https://docs.

microsoft.com/en-us/vsts/security/permissions-access to understand

the general permission and access control settings in VSTS and TFS. More

information is available at https://docs.microsoft.com/en-us/vsts/

security/about-permissions, and subtopics appear under How-To Guides

highlighted in the Figure 6-13.

Figure 6-12. Options for on-premises XML

Chapter 6 adapting VStS/tFS to Your team’S proCeSS

https://docs.microsoft.com/en-us/vsts/work/customize/reference/witadmin/witadmin-customize-and-manage-objects-for-tracking-work
https://docs.microsoft.com/en-us/vsts/work/customize/reference/witadmin/witadmin-customize-and-manage-objects-for-tracking-work
https://docs.microsoft.com/en-us/vsts/work/customize/reference/witadmin/witadmin-customize-and-manage-objects-for-tracking-work
https://docs.microsoft.com/en-us/vsts/security/permissions-access
https://docs.microsoft.com/en-us/vsts/security/permissions-access
https://docs.microsoft.com/en-us/vsts/security/about-permissions
https://docs.microsoft.com/en-us/vsts/security/about-permissions

158

Figure 6-13. Permissions topics

Chapter 6 adapting VStS/tFS to Your team’S proCeSS

159

 Customizing the Test Experience
Testing is an important aspect of the software delivery process as we have

discussed in previous chapters. How to customize the testing experience

for different configurations is explained at https://docs.microsoft.com/

en-us/vsts/manual-test/test-different-configurations.

 Additional Customization Options
If you find that the level of customization to VSTS/TFS as explained in the

preceding sections is not sufficient for your process needs, you can move

on to these unsupported, but often used, customization options:

• As we have discussed several times in this book, you

can use Visual Studio Marketplace tools (https://

marketplace.visualstudio.com/vsts) to add

additional behavior changes to your VSTS/TFS.

• You can create your own tools and add them to your

VSTS/TFS. To create the tools you need, use the extension

project template information at https://marketplace.

visualstudio.com/items?itemName=JoshGarverick.

VSTSExtensionProjectTemplates. When creating your

own tools, you are able to utilize REST API for VSTS/

TFS (https://docs.microsoft.com/en-us/rest/api/

vsts/). The extensions you create can be published to

Visual Studio Marketplace for others to use (https://

docs.microsoft.com/en-us/vsts/extend/publish/

overview).

Chapter 6 adapting VStS/tFS to Your team’S proCeSS

https://docs.microsoft.com/en-us/vsts/manual-test/test-different-configurations
https://docs.microsoft.com/en-us/vsts/manual-test/test-different-configurations
https://marketplace.visualstudio.com/vsts
https://marketplace.visualstudio.com/vsts
https://marketplace.visualstudio.com/items?itemName=JoshGarverick.VSTSExtensionProjectTemplates
https://marketplace.visualstudio.com/items?itemName=JoshGarverick.VSTSExtensionProjectTemplates
https://marketplace.visualstudio.com/items?itemName=JoshGarverick.VSTSExtensionProjectTemplates
https://docs.microsoft.com/en-us/rest/api/vsts/
https://docs.microsoft.com/en-us/rest/api/vsts/
https://docs.microsoft.com/en-us/vsts/extend/publish/overview
https://docs.microsoft.com/en-us/vsts/extend/publish/overview
https://docs.microsoft.com/en-us/vsts/extend/publish/overview

160

• If you do not find the feature you want and you are

unable to create your own tool, then you can opt to

request that feature from Microsoft here: https://

visualstudio.uservoice.com/forums/330519-team-

services.

 The Pros and Cons of VSTS vs. TFS
The major benefits of using VSTS over TFS are that you do not have to

manage the infrastructure needs of TFS and you get feature updates

automatically, every three weeks. Normally you get quarterly updates for

on-premises TFS, but performing those upgrades is your responsibility—

they do not happen automatically.

You also have to perform upgrades to on-premises TFS when new

versions are released, and doing so may require you to upgrade your

servers’ operating systems, their SQL server version, and so on, as per the

requirement of the released TFS version.

However, for VSTS, in order to build your projects, you may need

to maintain your own build infrastructure with agents (https://docs.

microsoft.com/en-us/vsts/build-release/actions/agents/v2-

windows, https://docs.microsoft.com/en-us/vsts/build-release/

actions/agents/v2-osx, https://docs.microsoft.com/en-us/vsts/

build-release/actions/agents/v2-linux) configured on your own

hardware if your team has a specific SDK or other software needs that are

not available in the hosted build services (https://docs.microsoft.com/

en-us/vsts/build- release/concepts/agents/hosted).

You have greater customization ability in on-premise TFS than in

VSTS, but in VSTS, WYSIWIG editing in the inheritance process model is

more appealing than the XML customizations.

VSTS comes with a monthly recurring cost and TFS has a different

pricing model. More details on VSTS/TFS pricing can be found at https://

docs.microsoft.com/en-us/vsts/billing/.

Chapter 6 adapting VStS/tFS to Your team’S proCeSS

https://visualstudio.uservoice.com/forums/330519-team-services
https://visualstudio.uservoice.com/forums/330519-team-services
https://visualstudio.uservoice.com/forums/330519-team-services
https://docs.microsoft.com/en-us/vsts/build-release/actions/agents/v2-windows
https://docs.microsoft.com/en-us/vsts/build-release/actions/agents/v2-windows
https://docs.microsoft.com/en-us/vsts/build-release/actions/agents/v2-windows
https://docs.microsoft.com/en-us/vsts/build-release/actions/agents/v2-osx
https://docs.microsoft.com/en-us/vsts/build-release/actions/agents/v2-osx
https://docs.microsoft.com/en-us/vsts/build-release/actions/agents/v2-linux
https://docs.microsoft.com/en-us/vsts/build-release/actions/agents/v2-linux
https://docs.microsoft.com/en-us/vsts/build-release/concepts/agents/hosted
https://docs.microsoft.com/en-us/vsts/build-release/concepts/agents/hosted
https://docs.microsoft.com/en-us/vsts/billing/
https://docs.microsoft.com/en-us/vsts/billing/

161

 Summary
In this chapter, we looked at the various customization options that are

available in VSTS/TFS to enable you to adapt the tool to suite your process

needs. It is important for you to remember that the tool is not what is

improving how your teams perform, it is the process that is continually

improved by the team that utilizes the tool and adapts the tool to the needs

of the team making successful project/product deliveries a possibility.

In this book, we have gone through how you as a scrum master should

utilize VSTS/TFS as a tool to support your teams process improvements. In

the first four chapters, we discussed various aspects of VSTS/TFS including

handling Agile projects, managing backlogs, planning iterations, working

within a day, and how to work after an iteration. In the final two chapters,

we discussed roadmaps and planning and the customization capabilities

that are available in VSTS/TFS to adapt the tool to the team’s needs.

Chapter 6 adapting VStS/tFS to Your team’S proCeSS

163© Chaminda Chandrasekara, Sanjaya Yapa 2018
C. Chandrasekara and S. Yapa, Effective Team Management with VSTS and TFS,
https://doi.org/10.1007/978-1-4842-3558-4

Index

A
Application lifecycle management

(ALM) tool, 1

B
Backlog

bug management options, 36
defects/bugs, 35
grooming sessions, 32, 37

acceptance criteria, 39
area, 40
description, 40
DoD, 37–38
DoR-met backlog items, 38
estimation, 42
iteration, 40
prioritization, 40, 42
story points/effort/size, 39
stakeholder feedback, 45
title, 39
test and feedback browser, 45
velocity chart, 44
work item fields, 39

iteration, 96
large team planning, 55

levels of, 32
Kanban boards, 46–50
small team planning

advantages, 51
capacity planning, 53–54
Dev team, 50
story point burndown, 52
task estimations, 51–53

sprint zero/no-sprint/
pre- sprint, 56

visualization, 55
work definition

categories, 30
delivers value, 30–31
requirements, 30
spike items, 31–32
support work, 31
user stories, 30

C
Cumulative flow diagram (CFD)

bulges, 108
chart, 106–107
flat lines and scope

changes, 109
work in progress, 107

https://doi.org/10.1007/978-1-4842-3558-4

164

Customization options
broader categories, 143
level of, 159
projects and processes

hosted XML, 154
on-premises XML, 156
template inheritance, 145
types of, 144

shared resources, 144
template inheritance

backlog levels and
work items, 152

custom rules, 152
existing field, 149
fields, 146
layout group, 148
process, 146
work item boards, 150

testing, 159
VSTS vs. TFS, 160
work tracking tools, 158

D, E, F, G, H
Definition of done (DoD)

backlog, 37–38
review, 94

Definition of ready
(DoR), 38

Developmental (Dev)
team, 50

Development and operation
(DevOps), 2

I, J
Iteration

activities and steps, 93
backlog, 96

drag and drop bugs, 96
menu option, 98
task work items, 98–99

backlog item, 71
code process, 71
continuous improvement, 114
defects/bugs, 78
details, 57
monitoring progress

backlog capacity view, 75
build deployments and test

outcomes, 78
burndown, 74
cumulative flow diagram, 77
disaster situations, 82
iteration backlog view, 76
options, 74
queries, charts and

dashboards, 78
task and backlog board 76
velocity chart, 77

partially completed work, 96
planning, 110

capacity, 113
forecast work, 112
in-progress work, 111
progress, 62
scrum, 60

Index

165

sprint planning, 111
taskboard rules, 62

positive impact, 88
release stabilities

automated release note, 85
build failing due, 86
meaning, 84
pipeline, 84
Veracode scan, 88

review, 94
sprint

backlog, 58
development work, 58
pipelines/activities, 60
testing environments, 59

supportive work
default team, 68
delivery plan, 69
ExtraActivity area, 67
impediments/roadblocks, 70
team handling, 67
tracking and resolving

impediments, 66
work item, 70

testing
exploratory, 74
outcome, 73
TDD, 72
unit tests, 72

unavoidable changes, 81
visualizing and

analyzing, 88, 100
burndown and burnup, 102
cumulative flow, 106

lead time and cycle time, 105
velocity, 100

work process, 64

K, L
Kanban boards

card fields, 48–49
customization, 46–47
process definition, 46
VSTS/TFS card style rules, 49–50
WIP limit, 47–48

M, N
Microsoft Project (integration)

connection, 123
dates updates, 127
details, 124
feature backlog, 125
Gantt chart, 127
scenario, 123
stories and features, 126

Mobile interface, 141

O
Office integration

documentation purposes, 137
PowerPoint, 139–141
requirements

documentation, 137
smart office4TFS, 138–139
storyboarding, 139

Index

166

P
Product backlog item

(PBI), 7, 30, 96
Project plan/product roadmap

business analysis, 137
challenges, 118
creation, 118
delivery plans extension, 129
features backlog, 118–119
integration

connection, 123
dates updates, 127
feature backlog, 124–125
Gantt chart, 126–127
Marketplace extension

details, 124
Power BI, 133
scenario, 123
stories and features, 125–126
VSTS/TFS work

items, 127–128
Microsoft Excel

excel extension, 120
Gantt chart, 122
integration, 120
marketplace extensions, 120
query loaded, 121
toolbar, 120

mobile interface, 141
target dates, 119

Q, R
Quality assurance (QA), 64, 95

S
Software development kits

(SDKs), 59
SonarQube project, 87
SQL Server Reporting Services

(SSRS), 102

T
Team Foundation Server (TFS), see

VSTS/TFS
Team Foundation Version

Controlling (TFVC), 5
Test Driven Development (TDD),

72

U
User acceptance testing (UAT), 95

V
Visual Studio Team Services

(VSTS), see VSTS/TFS
VSTS/TFS

collaborative platform, 2
concepts, 1–2
delivery cadence

backlog iteration, 14
default iteration, 14
managing iterations, 13
monitoring progress, 16
releases, 14
selection, 15

Index

167

work tab view, 16
ideal team size, 4

area structure, 10
backlog, 7
default/root team, 11
delivery cadence, 12
development team, 12
small team, 8
team project creation, 5

large teams, 17
business functions, 19
default area path, 23
delivery cadence, 26
flat list, 21
hierarchical team

structure, 22

module teams, 20
monitoring progress, 27
nested team structure, 19
organized backlog, 25
steps, 20

team project collection, 2
iterations/sprints and

areas, 3
work items, 3

W, X, Y, Z
Work item type (WIT), 3
Work in progress (WIP)

cumulative flow, 107
Kanban boards, 47

Index

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Handling Teams
	VSTS and TFS
	Team Project Collections, Team Projects, and Teams
	Work Items
	Iterations/Sprints and Areas

	Determining the Ideal Size for Teams
	Getting Started
	Creating a Team Project
	Managing Backlog
	Isolating the Work of a Small Team
	Managing Delivery Cadence

	Monitoring the Progress of the Teams

	Large Teams
	Getting Started with Large Teams
	Organizing the Backlog of Larger Teams
	Defining the Delivery Cadence for Multiple Teams

	Monitoring the Progress of Multiple Teams

	Summary

	Chapter 2: Working with a Backlog
	Defining Work
	Work That Delivers Value to Clients
	Support Work
	Spike Items

	Backlog
	Levels of Backlog
	Adding Defects/Bugs to the Backlog
	Grooming Your Backlog
	Definition of Done (DoD)
	Definition of Ready (DoR)
	Using Work Item Fields
	Using Test Cases and Tasks

	Prioritizing the Backlog
	Estimating Your Backlog Work
	Getting Stakeholder Feedback

	Defining a Process
	Planning with a Small Team
	Task Estimations
	Capacity Planning

	Planning with a Large Team
	Visualizing Your Plan

	The Sprint Zero or the Pre-Sprint
	Summary

	Chapter 3: Working on the Iteration
	Starting the Sprint
	Daily Activity
	Planning the Day
	Choosing Work for the Day

	Tracking and Resolving Impediments and Other Supportive Work
	Handling Supportive Work within the Team
	Handling Impediments/Roadblocks

	Working with Code
	Testing the Work
	Monitoring the Progress
	Avoiding Defects
	Facilitating Unavoidable Changes
	Handling Disaster Situations
	Release Stability
	Visualizing and Positively Impacting the Team
	Summary

	Chapter 4: Work After an Iteration
	Review
	Handling Partially Done Stories
	Moving Partially Completed Work to the Backlog
	Visualizing and Analyzing the Completed Work
	Velocity
	Burndown and Burnup
	Lead Time and Cycle Time
	Cumulative Flow
	Understanding How the Work Is Progressing
	Bulges in Cumulative Flow
	Flat Lines and Scope Changes

	Planning the Next Iteration
	Forecasting Future Work
	Planning Capacity for the Next Iteration

	Continuous Improvement
	Summary

	Chapter 5: Roadmap/Project Plan and Resources
	Creating the Project Plan/Product Roadmap
	Creating the Project Plan/Product Roadmap
	Using Microsoft Excel
	Integration with Microsoft Project
	Using Delivery Timelines
	Power BI Integration
	Other Integrations

	Business Analysis
	Office Integration
	Smart Office4TFS
	Using PowerPoint for Storyboarding

	The Mobile Interface
	Summary

	Chapter 6: Adapting VSTS/TFS to Your Team’s Process
	Customizing Shared Resources
	Customizing Team Projects and Processes
	Customizing VSTS with Template Inheritance
	Adding a Custom Field
	Modifying an Existing Field
	Changing the Status Workflow of a Work Item
	Custom Rules
	Custom Backlog Levels and Work Items

	Customizing VSTS with Hosted XML
	Customizing with TFS On-premises XML

	Customizing the Access to Work Tracking Tools
	Customizing the Test Experience
	Additional Customization Options
	The Pros and Cons of VSTS vs. TFS
	Summary

	Index

