
M A N N I N G

Steve Kinney

www.allitebooks.com

http://www.allitebooks.org

Electron in Action
 www.allitebooks.com

http://www.allitebooks.org

 www.allitebooks.com

http://www.allitebooks.org

Electron in Action
STEVEN KINNEY

M A N N I N G
SHELTER ISLAND
 www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2019 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Helen Stergius
20 Baldwin Road Technical development editor: Nickie Buckner
PO Box 761 Review editor: Aleksandar Dragosavljević
Shelter Island, NY 11964 Project editor: Lori Weidert

Copy editor: Pamela Hunt
Proofreader: Elizabeth Martin

Technical proofreader: Doug Warren
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617294143
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – DP – 23 22 21 20 19 18
 www.allitebooks.com

www.manning.com
http://www.allitebooks.org

 This book is dedicated to my wife, Logan, and my sons, Wes and Jack.
You are the loves of my life.

brief contents
PART 1 GETTING STARTED WITH ELECTRON1

1 ■ Introducing Electron 3

2 ■ Your first Electron application 17

PART 2 BUILDING CROSS-PLATFORM APPLICATIONS
WITH ELECTRON ...45

3 ■ Building a notes application 47

4 ■ Using native file dialog boxes and facilitating
interprocess communication 65

5 ■ Working with multiple windows 87

6 ■ Working with files 98

7 ■ Building application and context menus 123

8 ■ Further operating system integration and
dynamically enabling menu items 143

9 ■ Introducing the tray module 159

10 ■ Building applications with the menubar library 181

11 ■ Using transpilers and frameworks 199
vii

BRIEF CONTENTSviii
12 ■ Persisting use data and using native Node.js modules 222

13 ■ Testing applications with Spectron 243

PART 3 DEPLOYING ELECTRON APPLICATIONS257

14 ■ Building applications for deployment 259

15 ■ Releasing and updating applications 272

16 ■ Distributing your application through
the Mac App Store 293

contents
preface xvii
acknowledgments xix
about this book xxi
about the cover illustration xxv

PART 1 GETTING STARTED WITH ELECTRON1

1 Introducing Electron 3
1.1 What is Electron? 4

What is the Chromium Content Module? 5 ■ What is Node.js? 6

1.2 Who’s using Electron? 6
1.3 What do I need to know? 8
1.4 Why should I use Electron? 8

Building on your existing skill set 9 ■ Access to native operating
system APIs 10 ■ Enhanced privileges and looser restrictions 10
Accessing Node from the browser context 13 ■ Offline first 13

1.5 How does Electron work? 13
The main process 14 ■ Renderer processes 14

1.6 Electron vs. NW.js 15
ix

CONTENTSx
2 Your first Electron application 17
2.1 Building a bookmark list application 18

Structuring the Electron application 19 ■ package.json 20
Downloading and installing Electron in our project 21

2.2 Working with the main process 23
2.3 Creating a renderer process 24

Loading code from the renderer process 26 ■ Requiring files in the
renderer process 29 ■ Adding styles in the renderer process 29

2.4 Implementing the UI 30
Making cross-origin requests in Electron 32 ■ Parsing
responses 33 ■ Storing responses with web storage APIs 34
Displaying request results 35 ■ The unhappy path 38
An unexpected bug 40

PART 2 BUILDING CROSS-PLATFORM APPLICATIONS
WITH ELECTRON ...45

3 Building a notes application 47
3.1 Defining our application 48
3.2 Laying the foundation 49
3.3 Bootstrapping the application 51

Implementing the UI 51 ■ Gracefully displaying the browser
window 56

3.4 Implementing the base functionality 57
3.5 Debugging an Electron application 59

Debugging renderer processes 59 ■ Debugging the main
process 61 ■ Debugging the main process with Visual
Studio Code 61

4 Using native file dialog boxes and facilitating interprocess
communication 65
4.1 Triggering native file dialog boxes 66
4.2 Reading files using Node 69

Scoping the Open File dialog 70 ■ Implementing dialog sheets
in macOS 71

4.3 Facilitating interprocess communication 74
Introducing the remote module 77

CONTENTS xi
4.4 Triggering the Open File function using
interprocess communication 79
Understanding the CommonJS require system 79 ■ Requiring
functionality from another process 79

4.5 Sending content from the main process to
the renderer process 81
Sending the file contents to the renderer contents 82

5 Working with multiple windows 87
5.1 Creating and managing multiple windows 88

Communicating between the main process and multiple
windows 90 ■ Passing a reference to the current window
to the main process 91

5.2 Improving the user experience of creating
new windows 93

5.3 Integrating with macOS 95

6 Working with files 98
6.1 Keeping track of the current file 99

Updating the window title based on the current file 101
Determining whether the current file has changed 103
Enabling the Save and Revert buttons in the UI 105
Updating the represented file on macOS 105

6.2 Tracking recently opened files 106
6.3 Saving files 108

Exporting the rendered HTML output 109 ■ Common
paths 110 ■ Saving files from the renderer process 110
Saving the current file 111 ■ Reverting files 112

6.4 Opening files using drag and drop 112
Ignoring dropped files everywhere else 113 ■ Providing visual
feedback 113 ■ Opening dropped files 116

6.5 Watching files for changes 117
6.6 Prompting the user before discarding changes 119

7 Building application and context menus 123
7.1 Replacing and replicating the default menu 125

macOS and the case of the missing Edit menu 126
The hidden cost of replacing Electron’s default menu 128

CONTENTSxii
Implementing the Edit and Window menus 129 ■ Defining menu
item roles and keyboard shortcuts 130 ■ Restoring the application
menu on macOS 131 ■ Adding a Help menu 134

7.2 Adding application-specific menu functionality 136
Handling the case of having no focused window 138

7.3 Building context menus 140

8 Further operating system integration and dynamically
enabling menu items 143

8.1 Using the shell module from the UI
in the renderer process 145

8.2 Using the shell module in the application menu 146
Additional features of the Electron shell module 148

8.3 Accessing the shell module from a context menu 148
Deciding between putting functionality in a menu or in the
browser 149 ■ Deciding between putting functionality in the
application or context menu 150

8.4 Disabling menu items when appropriate 150
Dynamically enabling and disabling menu items in the context
menu 150 ■ Dynamically enabling and disabling menu items
in the application menu 153

9 Introducing the tray module 159

9.1 Getting started with Clipmaster 161
9.2 Creating an application with the tray module 161

Using the correct icon for macOS and Windows 163
Supporting dark mode in macOS 164 ■ Reading from
the clipboard and storing clippings 164

9.3 Reading from and writing to the clipboard 167
Writing to the clipboard 168 ■ Handling edge cases 170

9.4 Registering global shortcuts 172
Checking registrations and unregistering global shortcuts 174

9.5 Displaying notifications 174
9.6 Switching menu bar icons when pressed in macOS 177
9.7 Completed code 178

CONTENTS xiii
10 Building applications with the menubar library 181

10.1 Starting an application with menubar 182
10.2 Adding clippings to the UI 186
10.3 Working with clippings in the application 188

Preventing memory leaks using event delegation 188
Removing a clipping 189 ■ Writing to the clipboard 190

10.4 Publishing clippings 191
Setting up request 192

10.5 Displaying notifications and registering
global shortcuts 193
Registering global shortcuts 194 ■ Solving for the edge case that
occurs if the window has never been shown 196

10.6 Adding a secondary menu 197

11 Using transpilers and frameworks 199

11.1 Introducing electron-compile 201
11.2 Laying the application’s foundation 202
11.3 Building the UI in React 207

The Application component 208 ■ Displaying the lists
of items 210

11.4 Adding new items 214
11.5 Live reload and hot module reloading 217

Enabling live reload 217 ■ Setting up hot module reloading 218

12 Persisting user data and using native Node.js modules 222

12.1 Storing data in an SQLite database 223
Using the right versions with electron-rebuild 224 ■ Setting up
SQLite and Knex.js 224 ■ Hooking the database into React 226
Fetching all of the items from the database 227 ■ Adding items
to the database 228 ■ Updating items in the database 230
Deleting items 232 ■ Storing the database in the right place 235

12.2 IndexedDB 236
Creating a store with IndexedDB 236 ■ Getting data from
IndexedDB 237 ■ Writing data to IndexedDB 238
Connecting the database to the UI 241

CONTENTSxiv
13 Testing applications with Spectron 243
13.1 Introducing Spectron 245
13.2 Getting comfortable with Spectron and

WebdriverIO 247
13.3 Setting up Spectron and the test runner 248
13.4 Writing asynchronous tests using Spectron 250

Waiting for the window to load 251 ■ Testing Electron
BrowserWindow APIs 252 ■ Traversing and testing the
DOM with Spectron 252 ■ Controlling Electron’s APIs
with Spectron 254

PART 3 DEPLOYING ELECTRON APPLICATIONS257

14 Building applications for deployment 259

14.1 Introducing Electron Packager 260
Setting up Electron Packager 260 ■ Configuring the output
directory 262 ■ Configuring the application’s name and
version 262 ■ Updating the application icon 263
Building for multiple operating systems 264

14.2 Using asar 265
14.3 Electron Forge 268

Importing an Electron application into Electron Forge 269
Building the application with Electron Forge 269

15 Releasing and updating applications 272

15.1 Collecting crash reports 273
Setting up the crash reporter 273 ■ Setting up a server to receive
crash reports 275 ■ Reporting uncaught exceptions 278

15.2 Signing your applications 281
Signing applications for macOS 281 ■ Building an installer
and code signing on Windows 284

15.3 Automatically updating applications 287
Setting up automatic updates in Electron 287 ■ Setting up a server
for automatic updates 289

CONTENTS xv
16 Distributing your application through the Mac App Store 293
16.1 Submitting your application to the Mac App Store 293

Signing the application 294 ■ Registering your application with
the Mac App Store 301 ■ Adding the application to iTunes
Connect 302 ■ Packaging your application for the Mac App
Store 304 ■ Configuring application categories 308
Register the application to open a file type 308

16.2 Validating and uploading your application 309
16.3 Finishing touches 311

appendix Code samples from Fire Sale and Clipmaster 9000 313

index 339

preface
Electron is one of the technologies that I’m most excited about right now. That excite-
ment is something that I hope you catch on to as you read Electron in Action. As I’ll explain
ad nauseam throughout this book, Electron allows web developers the ability to create
desktop applications with capabilities that are not available in the browser. It allows you
to create graphical user interfaces for our command-line tools, opening our creations to
a wider audience that may not be familiar with the terminal. Electron enables you to
build applications with web technologies that you couldn’t build otherwise.

 Electron hits a sweet spot that’s rare in open source. It’s low-level enough that you
will quickly wrap your head around the basics, and powerful enough to allow you to
build incredibly sophisticated applications. It abstracts over some of the more tedious
things you’d need to do to build a desktop application, while not falling into the trap
of relying on too much black magic. The platform is supported by an enthusiastic
community that has provided libraries that will help you accomplish a wide range of
features with ease.

 You might have heard of Electron through Atom, Slack, Visual Studio Code, or any
of the other big-name applications that use it. But I wrote this book for the hobbyist or
indie developer who wants to build something original and new. Electron is popular
among larger teams, but it’s also great for the single developer who wants to build an
application that only they might use, or for the small team that needs to build tools for
internal use.

 It’s a tool that, as you become familiar with it, opens up new avenues that wouldn’t
otherwise be possible. When you’re becoming comfortable with Electron, it immedi-
xvii

PREFACExviii
ately seems cool, but it might be hard to come up with a use case at first. Let it sink in,
and you’ll soon catch yourself walking down the street coming up with ideas for appli-
cations you can build.

 That’s how it happened for me and I’ve taught Electron to enough people to
develop a strong suspicion that that’s how it will work for you as well. Electron in Action
came to be as I was traveling around the United States and to Colombia, teaching
workshops on building cross-platform desktop applications with Electron. Manning
invited me to write a book on the topic and I jumped at the opportunity. The book
informed the workshops, and delivering the workshops gave me new insights that
helped improve the book.

 If left to my own devices, I would have kept refining this book in perpetuity. It has
helped me clarify my own thinking about building Electron applications and became
a working diary as I tackled new challenges and implemented features in my projects.
It’s a virtuous cycle that I’ll miss, although, I will be happy to have my nights and week-
ends back.

acknowledgments
One thing that surprised me most about writing a book is how much work it is. Second
is how many people are involved in making it happen. First and foremost, I need to
thank my wife, Logan, who tolerated my working on this book during nights and
weekends that I should have been spending with my family. Her tolerance and sup-
port have been crucial in producing this book.

 Thank you to Helen Stergius, who put up with deadlines whizzing by as I balanced
my family, my day job, and this book—often poorly. Helen kept a positive attitude
regardless of how stressed out I was at any given moment. Thank you to Nickie Buckner
who ran through the code as I was writing the book, provided encouragement, and
fixed my typos along the way. Thanks to Doug Warren who did a final technical pass as
the book was nearing completion. Thanks to Brian Sawyer for reaching out and invit-
ing me to write this book in the first place, as well as Marjan Bace who green-lit the
project.

 Thank you to Marc Grabanski of Frontend Masters for letting me workshop this
content in front of a global audience and providing insightful feedback. Thanks to
Jeff Casimir for giving me a platform to teach an endless stream of budding software
engineers. Thank you to Meeka Gayhart, Louisa Barrett, Jhun de Andreas, Brenna
Martenson, and Brittany Storoz for tolerating me as I dropped the ball on various
things they were relying on me for, as well as putting up with me in general.

 Thank you to the following reviewers, who read this book as it was being devel-
oped, and left feedback in the forums: Aiden Mark Humphreys, Alan Bogusiewicz,
Alexey Galiulin, Anto Aravinth, Ashwin Raj, Buu Nguyen, Daniel Posey, Frederic
xix

ACKNOWLEDGMENTSxx
Flayol, Harald Kuhn, Hari Khalsa, Iain Shigeoka, Jay Kelkar, Jim McGinn, Jimmy Qiu,
Jon Riddle, Matteo Gildone, Mladen Ðurić, Philippe Charrière, Raq Khan, and William
Wheeler. You helped me improve the content and catch mistakes along the way.

 Thank you to Cheng Zhao and all of the people who maintain Electron. Without
all of your incredible work, this book would not exist. In addition, your careful atten-
tion to detail and user-first mindset made it easy for me explain how to implement fea-
tures that might otherwise be difficult on another platform. As you read Electron in
Action, there will be many times where I just reach for some API that is built-in to Elec-
tron to tackle a tricky problem. Thank you to the wonderful community that provides
an ecosystem of third-party libraries to help with Electron applications. In the rare
case where Electron can’t do something out of the box, there is invariably a library out
there that will solve your problem for you. A platform is only as good as the commu-
nity around it.

 Lastly, thank you to Novo Coffee in Denver and their cold brew for giving me a
place to write, and the caffeine required to get the words out.

about this book
The primary goal of Electron in Action is to get you started building Electron applica-
tions quickly. We explore many of the foundational concepts by learning them as we
put them to practice in code. This book seeks to not only introduce you to the basics
of Electron, but also provide you with inspiration and ideas for applications of your
own.

Who should read this book
The book is for anyone who wants to build applications that defy the limits put in
place in the browser. It’s a book for anyone who wants to scratch their own itch and
build desktop applications without having to learn a new programming language or
framework. It’s a book for small teams punching above their weight and delivering
applications that run on multiple operating systems from one code base. Nearest to
my heart, this book is for anyone who wants to take a command-line application and
provide a GUI or remove the requirement that a user have Node.js installed on their
computer in order to use their application or tool.

 I’ll assume that you’re familiar with JavaScript, but will guide you through any
parts of the web platform or Node.js that might be unfamiliar to you, since you might
only have experience in one of those areas depending on your background.
xxi

ABOUT THIS BOOKxxii
Roadmap
This book is split into sixteen chapters. It’s true that many chapters continue from
where the last one left off, but my hope is that you’ll be able to read the chapters out
of order if you’re simply looking to implement a specific feature in your application.

 In chapter 1, we’ll cover what Electron is, as well as what it isn’t. We’ll look at some
of the things that you can do with Electron that you couldn’t do with either the
browser or Node.js alone.

 In chapter 2, we start with a very simple Electron application. The goal here is to
get our hands dirty and demonstrate that it’s easy to get started with Electron.

 Chapter 3 introduces you to one of the main applications in this book: Fire Sale,
which is an application that allows users to open Markdown files on their filesystem
and edit them.

 In chapter 4, we use native system dialogues and alerts that will allow users to select
a file from their filesystem for editing in Fire Sale. The application will blur the lines
between the DOM and Node’s standard library, coordinating between both to imple-
ment this feature.

 In chapter 5, we will add multi-window support to your application, which intro-
duces a set of challenges that you’re not used to dealing with in a single browser tab or
in Node.js, where there aren’t any windows to speak of.

 Chapter 6 brings further integration into the native operating system. We’ll
append the documents opened in Fire Sale to the operating system’s list of recently
opened files, set up listeners to see if other applications have changed the contents of
files you have open, and update the title bar of the window based on whether or not
the file has unsaved changes.

 Chapter 7 explores techniques for building native applications that are shared
across all of the windows in your desktop application and context menus that are avail-
able upon right-clicking in the application.

 In chapter 8, we look into how to update the application menu based on the state
of the application—enabling and disabling menu items as appropriate.

 In chapter 9, we switch gears and create a new type of application, one that lives in
the menu bar on macOS or the system tray in Windows. This is not a place we’re used
to building web applications. In this chapter, you build Clipmaster, which is a small
clipboard manager that can read and write to the system clipboard, respond to global
hotkeys, and display notifications.

 Chapter 10 ups the ante and uses a third-party library to create a version of Clip-
master that has DOM-based UI—just like Fire Sale. Clipmaster 9000, as it’s called, is
able to access GitHub’s Gist API and publish clippings with a single keystroke.

 Up until chapter 11, we have been using vanilla JavaScript to implement features
in our Electron application. In this chapter, I’ll show you how easy it is to use compile-
to-JavaScript tools like Babel, TypeScript, and CoffeeScript in your application as well
as Sass and Less for styling. In this chapter, you’ll build a packing list application
called Jetsetter using React.

ABOUT THIS BOOK xxiii
 In chapter 12, we’ll look at strategies for persisting data beyond just writing to the
filesystem. I’ll demonstrate how to set up an SQLite database that you can read from
and write to from your client-side code. We’ll then take a second swing at the problem
using the browser-based IndexedDB.

 Chapter 13 introduces Spectron, which allows you to write Selenium tests for your
Electron application. We’ll write a set of tests for the Clipmaster 9000 application we
created earlier.

 In chapter 14, we’ll look at tools that help us package our Electron applications for
distribution to users that aren’t interested in starting the application up using the
command line—pretty much everyone who is not a developer and, frankly, many
developers as well.

 Chapter 15 covers how to sign your application for macOS, create an installer for
Windows, and set up a simple server for collecting error logs and crash reports.

 In chapter 16, I step through the process of getting your application into the Mac
App Store. This isn’t a required step if you prefer to distribute your application on
your own, but is certainly useful if you don’t have experience with Apple’s process.

About the code
This book contains many examples of source code both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light code that has changed from previous steps in the chapter, such as when a new
feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

 All of the code for this book is available from the publisher’s website at www
.manning.com/books/electron-in-action and also on Github at https://github.com/
electron-in-action. In most cases, there is a branch for each chapter. For some of the
later chapters where we pick up an application from earlier in the book, I have pro-
vided a branch for the starting point at the beginning of the chapter as well as one for
where we left the code at the end of the chapter. If the final code for a chapter is
short, I have included it at the end of the chapter. Code for chapters with longer exam-
ples can be found in the appendix of this book. In May of 2018, GitHub announced a
web service and npm package that make it easy to implement auto-updating for open-
source Electron applications published using GitHub releases (https://electronjs.org/
blog/autoupdating-electron-apps). If your application meets those criteria, you might
consider using update-electron-app. Chapter 15 covers how to roll your own solution
in the event that you cannot or do not want to use update-electron-app.

http://www.manning.com/books/electron-in-action
http://www.manning.com/books/electron-in-action
http://www.manning.com/books/electron-in-action
https://github.com/electron-in-action
https://github.com/electron-in-action
https://electronjs.org/blog/autoupdating-electron-apps
https://electronjs.org/blog/autoupdating-electron-apps
https://electronjs.org/blog/autoupdating-electron-apps

ABOUT THIS BOOKxxiv
 One of the scariest parts of writing a book is that a new version of Electron,
Node.js, or Chromium—even a minor version—might break one of the examples. This
happened more than once as I was writing the book.

 I am committed to keeping this code up-to-date and will provide any errata in the
README.md on that chapter’s branch. If something does not work as expected in the
book itself, be sure to check the repository on GitHub or check the book’s forum.

Book forum
Purchase of Electron in Action includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the author and from other users. To access the forum, go
to https://forums.manning.com/forums/electron-in-action. You can also learn more
about Manning’s forums and the rules of conduct at https://forums.manning.com/
forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

About the author
STEVE KINNEY a principal engineer at SendGrid, an international speaker, and an orga-
nizer of DinosaurJS—a JavaScript conference in Denver, Colorado, Previously, he was
the founding Director of the Front-End Engineering program at the Turing School of
Software and Design and a New York City teacher for seven years.

https://forums.manning.com/forums/electron-in-action
https://forums.manning.com/forums/about
https://forums.manning.com/forums/about

about the cover illustration
The figure on the cover of Electron in Action is captioned “A Gypsy Woman.” The illus-
tration is taken from a collection of costumes of people, both simple and grand, of the
Ottoman Empire, published on January 1, 1802, by William Miller of Old Bond Street,
London. The title page is missing from the collection, and we’ve so far been unable
to track it down. The book’s table of contents identifies the figures in both English
and French, and each illustration also bears the names of two artists who worked on
it, both of whom would no doubt be surprised to find their art gracing the front cover
of a computer programming book 200 years later.

 The collection was purchased by a Manning editor at an antiquarian flea market in
the “Garage” on West 26th Street in Manhattan. The seller was an American
based in Ankara, Turkey, and the transaction took place just as he was packing up
his stand for the day. The Manning editor didn’t have on his person the substantial
amount of cash that was required for the purchase, and a credit card and check
were both politely turned down. With the seller flying back to Ankara that evening,
the situation seemed hopeless. What was the solution? It turned out to be nothing
more than an old-fashioned verbal agreement sealed with a handshake. The seller pro-
posed that the money be transferred to him by wire, and the editor walked out with the
bank information on a piece of paper and the portfolio of images under his arm.
Needless to say, we transferred the funds the next day, and we remain grateful and
impressed by this unknown person’s trust in one of us. It recalls something that might
have happened a long time ago.
xxv

ABOUT THE COVER ILLUSTRATIONxxvi
 The pictures from the Ottoman collection, like the other illustrations that appear on
Manning’s covers, bring to life the richness and variety of dress customs of two
centuries ago. They recall the sense of isolation and distance of that period—and of
every other historic period except our own hyperkinetic present. Dress codes have
changed since then, and the diversity by region, so rich at the time, has faded away.
It’s now often hard to tell the inhabitant of one continent from that of another. Per-
haps, viewed optimistically, we’ve traded a cultural and visual diversity for a more var-
ied personal life. Or a more varied and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of
the computer business with book covers based on the rich diversity of regional life as
it was two centuries ago‚ brought back to life by the pictures from this collection.

Part 1

Getting started
with Electron

Have you used Slack recently? Maybe you’ve written some code in Atom
or Visual Studio Code or sent a message to a friend using the WhatsApp desktop
application. If so, then you’ve used an Electron application. So, what is Electron?
The short version is that it’s a platform for building desktop applications that
run on macOS, Windows, and Linux using web technologies. Electron combines
Node.js with Chromium—the open source foundation of Google Chrome. The
long answer is the focus of this book in general and chapter 1 in particular.

 If you’re part of a small team tasked with building desktop applications for
multiple platforms, Electron is a great way to build your product without the has-
sle of managing two or three distinct code bases, squashing related bugs on two
or three platforms, or implementing the same feature two or three times. If
you’re a Node.js developer who wants to get your command-line application in
front of a wider audience, Electron makes it easy to build a graphical user inter-
face (GUI) without having to learn an entirely new skill set. If you’re a web devel-
oper who has grown accustomed to building your own solutions to problems,
Electron makes it easy to access the parts of your computer that exist outside of
the browser’s sandbox.

 In my experience, learning Electron has both short- and long-term implica-
tions. It’s immediately gratifying to see an icon appear in your dock or task bar
when you start it up or trigger a native file dialog box from the operating system
using JavaScript. But, as you become more and more comfortable with Electron,

you’ll find ideas for applications that you couldn’t build with either the browser or
Node.js alone. You’ll be able to build a new class of applications that you may not have
been able to build otherwise. My hope is that the examples in this book provide inspi-
ration rather than merely guidelines as you embark on your journey as a desktop
application developer.

 In part 1, we’ll tease out exactly what Electron is and isn’t. We’ll look at some of the
big players using it in the wild. I’ll elaborate on what makes it different from browser-
based applications in chapter 1. In chapter 2, we’ll build a simple Electron application
in a thinly veiled attempt to convince you that building applications with Electron is
both easy and fun.

Introducing Electron
One of the big things that the web has going for it is ubiquity. It’s an amazing plat-
form for creating collaborative applications that can be accessed from a wide range
of devices running different operating systems. That said, entire classes of applica-
tions can’t be built in the browser environment. Web applications can’t access the
filesystem. They can’t execute code that isn’t written in JavaScript. They can’t hook
into many of the operating system APIs that desktop applications can. Most web
applications aren’t available when there isn’t a reliable internet connection.

 For a long time, building for the desktop has involved adopting a completely
different skill set. Many of us don’t have the bandwidth to take on the long learning
curve necessary for learning new languages and frameworks. With Electron, you

This chapter covers
 Understanding what Electron is

 Learning which technologies Electron is built on

 Understanding how using Electron differs from
traditional web applications

 Structuring Electron applications

 Using Electron in production to build real-world
applications
3

4 CHAPTER 1 Introducing Electron
can use your existing skills as a web developer to build applications that have many of
the capabilities of a native desktop application.

1.1 What is Electron?
Electron is a runtime that allows you to create desktop applications with HTML5, CSS,
and JavaScript. It’s an open source project started by Cheng Zhao (aka zcbenz), an
engineer at GitHub. Previously called Atom Shell, Electron is the foundation for
Atom, a cross-platform text editor by GitHub built with web technologies.

 You may have heard of—or used—Apache Cordova or Adobe PhoneGap for build-
ing web applications—wrapped in native shells—for mobile operating systems such as
iOS, Android, and Windows Phone. If so, then it might be helpful to think of Electron
as a similar tool for building desktop applications.

 Electron allows you to use the web technologies you already know to build applica-
tions that you wouldn’t otherwise build. In this book, you’ll learn how to build appli-
cations that hook into native operating system APIs on Windows, macOS, and Linux.

 Electron combines the Chromium Content Module and Node.js runtimes. It
allows developers to build GUIs with web pages as well as access native operating sys-
tem capabilities on Windows, macOS, and Linux through an OS-agnostic API.

 Chromium and Node are both wildly popular application platforms in their own
right, and both have been used independently to create ambitious applications. Elec-
tron brings the two platforms together to allow you to use JavaScript to build an
entirely new class of application. Anything you can do in the browser, you can do with
Electron. Anything you can do with Node, you can do with Electron.

 The exciting part is what you can do with the two technologies together. You can
build applications that take advantage of both platforms and build applications that
wouldn’t otherwise be possible on only one. That’s what this book is all about. Elec-
tron is not only a great choice for building web applications that behave like native
desktop applications; it’s also a great choice for building a GUI around Node applica-
tions that would otherwise be limited to a command-line interface. See figure 1.1.

 Let’s say that you want to build an application that allows you to view and edit a folder
of images on your computer. Traditional browser applications can’t access the filesystem.
They couldn’t access the directory of photographs, load any of the photographs in the
directory, or save any of the changes that you made in the application. With Node, you
could implement all those features, but you couldn’t provide a GUI, which would make
your application difficult to use for the average user. By combining the browser environ-
ment with Node, you can use Electron to create an application where you can open and
edit photographs as well as provide a UI for doing so. See figure 1.2.

 Electron isn’t a complicated framework—it’s a simple runtime. Similar to the way
you might use node from the command line, you can run Electron applications using
the electron command-line tool. You don’t have to learn many conventions to get
started, and you’re free to structure your application however you’d like—although
I’ll provide tips and best practices throughout this book.

5What is Electron?
1.1.1 What is the Chromium Content Module?

Chromium is the open source version of Google’s Chrome web browser. It shares
much of the same code and features with a few minor differences and different licens-
ing. The Content Module is the core code that allows Chromium to render web pages
in independent processes and use GPU acceleration. It includes the Blink rendering

Figure 1.1 LevelUI is a GUI for Node’s LevelUp database built with Electron. You couldn’t build this application
in a traditional browser because it wouldn’t have the ability to access a local database on the user’s computer. It
also couldn’t use the LevelUI library because it’s a compiled C++ module, which only Node—and not the browser—
can use.

Electron

Filesystem access

Support for compiled

modules

CommonJS Module

System

Rendering HTML

and CSS

Document Object

Model (DOM)

Web APIs

Node.js
Chromium Content

Module

Figure 1.2 Electron combines the core
web browsing component of Chromium with
the low-level system access of Node.

6 CHAPTER 1 Introducing Electron
engine and the V8 JavaScript engine. The Content Module is what makes a web
browser a web browser. It handles fetching and rendering HTML from a web server,
loading any referenced CSS and JavaScript, styling the page accordingly, and execut-
ing the JavaScript.

 The easiest way of thinking about the Content Module is to consider what it
doesn’t do. The Content Module doesn’t include support for Chrome extensions. It
doesn’t handle syncing your bookmarks and history with Google’s cloud services.
It doesn’t handle securely storing your saved passwords or automatically filling them
in for you when you visit a page. It doesn’t detect if a page was written in another
language and subsequently call on Google’s translation services for assistance. The
Content Module includes only the core technologies required to render HTML,
CSS, and JavaScript.

1.1.2 What is Node.js?

For the first 15 years of its existence, JavaScript was traditionally isolated within the
web browser. There wasn’t much in the way of support for running JavaScript on
the server. Projects existed, but they never got any traction. The Node.js project was
initially released in 2009 as an open source, cross-platform runtime for developing
server-side applications using JavaScript. It used Google’s open source V8 engine to
interpret JavaScript and added APIs for accessing the filesystem, creating servers, and
loading code from external modules.

 Over the last few years, Node has enjoyed a surge of interest and popularity and is
used for a wide range of purposes, from writing web servers to controlling robots to—
you guessed it—building desktop applications. Node comes bundled with a package
manager called npm, which makes it easy to lean on the more than 250,000 libraries
available in its registry.

1.2 Who’s using Electron?
Electron is used by companies, large and small, to build desktop applications. As dis-
cussed earlier, it was originally developed as the foundation for GitHub’s Atom text
editor. Atom needed access to the filesystem to fulfill its duties as a text editor. Simi-
larly, other companies have turned to Electron as the foundation of their text-editing
applications. Facebook released Nuclide as a package on top of Atom that turns the
text editor into a full-fledged integrated development environment (IDE) with first-
class support for working with React Native, Hack, and Flow projects. Microsoft also
uses Electron for its cross-platform Visual Studio Code editor, which runs on macOS,
Windows, and Linux.

 You can build more than text editors with Electron. Slack, the popular messaging
application, uses Electron for its Windows and Linux versions. Nylas used Electron for
its N1 email client, which is designed to look beautiful across all the major platforms.
It also supports a JavaScript plugin architecture that allows third-party developers to
add features and extend the UI.

7Who’s using Electron?
 Particle, which produces development kits for creating custom hardware, uses
Electron for its IDE, which lets users write code and deploy it to hardware devices
through a cellular or Wi-Fi network. Using Mapbox Studio, users can import data
stored locally and process it on their computers without having to send it over the
internet to Mapbox’s servers. The result is a faster and better experience that allows
designers to create custom maps easily.

 Dat is an open source tool for sharing, syncing, and versioning decentralized data.
The grant-funded project consists of a team of three web developers. Despite being a
relatively small team, Dat released a desktop application for the project using Elec-
tron. In 2015, Wiredcraft—a software consultancy—used Electron to build an offline-
friendly Windows application for collecting and correcting voter registration informa-
tion in Myanmar. The firm needed an application that could store the collected data
offline and then publish it when the device was connected to the network. The com-
pany chose Electron as an alternative to building it using C++ because it allowed
Wiredcraft to take advantage of its existing HTML, CSS, and JavaScript prowess
instead of relearning those skills for a different ecosystem.

 Brave—a new browser focused on speed and security by Brendan Eich, the creator
of JavaScript—is itself built on top of Electron. See figure 1.3. That’s right, you can
even use web technologies to build a web browser.

 New projects built on top of Electron are being released every day as companies
and developers see the value in building products that use the power afforded to desk-
top applications while still maintaining the web’s intrinsic platform agnosticism. By

Figure 1.3 Brave is an entire web browser built on top of Electron.

8 CHAPTER 1 Introducing Electron
the end of this book, you’ll take your existing web development skills and apply them
to create new applications that wouldn’t have been possible in the traditional browser
environment.

1.3 What do I need to know?
Let’s start with what you don’t need to know. This book is for web developers who
want to use their existing skill set to create desktop applications that wouldn’t be pos-
sible in the traditional browser environment. You don’t need any experience building
desktop applications to get value out of this book.

 That said, you should be comfortable with writing JavaScript, HTML, and CSS, but
by no means do you need to be an expert. I won’t be covering variables or condition-
als in this book, but if you’re familiar with general language features of JavaScript,
then you probably have the requisite skills to follow along. It’s also helpful if you’re
familiar with some of the conventions and patterns from Node.js, such as how the
module system works. We’ll explore these concepts as we come across them.

1.4 Why should I use Electron?
When you’re writing applications for a web browser, you have to be conservative in
what technologies you choose to use and cautious in how you write your code. This is
because—unlike many server-side situations—you’re writing code that will be exe-
cuted on someone else’s computer.

 Your users could be using the latest version of a modern browser such as Chrome
or Firefox, or they could be using an outdated version of Internet Explorer. You have
little to no say in where your code is being rendered and executed. You have to be
ready for anything.

 You typically must write code for the lowest common denominator of features that
have the widest support across all versions of all browsers in use today. Even if a better,
more efficient, or generally more appealing solution exists to a problem, you might
not be able to use that approach. When you decide to reach for a modern browser fea-
ture, you usually need to implement a contingency plan of graceful fallbacks, feature
detection, and progressive enhancement that adds a nontrivial amount of friction to
your development workflow.

 When you build your applications with Electron, you’re packaging a particular ver-
sion of Chromium and Node.js, so you can rely on whatever features are available in
those versions. You don’t have to concern yourself with what features other browsers
and their versions support. If the build of Chromium included with your application
supports the Service Worker API, for example, then you can confidently rely on that
API in your application. See figure 1.4.

 Electron allows you to use cutting-edge web platform features because it includes
a relatively recent version of Chromium. Generally speaking, the version of Chromium
in Electron is about one to two weeks behind the most recent stable release—and a

9Why should I use Electron?
new stable release comes out every six weeks. Electron typically includes new ver-
sions of Node.js about a month after they’re released to ensure it contains the most
recent version of V8. Electron already includes a modern build of V8 from Chro-
mium and can afford to wait for minor bug fixes before upgrading to the latest ver-
sion of Node.

1.4.1 Building on your existing skill set

If you’re like me, you probably have much more experience building web applications
than desktop applications. You’d love to add the ability to create desktop applications
to your set of tools, but you don’t have the bandwidth to learn not only a new pro-
gramming language but likely a new framework as well.

 Learning a new language or framework is an investment that’s not to be taken
lightly. As a web developer, you’re used to writing applications that work equally well
for all your users—even if that means fighting with idiosyncrasies of a particular
browser or screen size. But when you’re contemplating building traditional desktop
applications, you’re talking not only about learning one language and framework.
You’re also looking at learning at least three different languages and frameworks if
you want to target Windows, macOS, and Linux.

Figure 1.4 In a browser-based web application, it might not be practical to rely on the Fetch API, given its
inconsistent support. But in your Electron applications, you’re bundling the current stable build of Chromium with
full support for the Fetch API.

10 CHAPTER 1 Introducing Electron
 Individuals and small teams can use Electron to offer desktop applications in situa-
tions where they couldn’t otherwise. For a small team, hiring a developer skilled in
building applications for each of those platforms may not be an option. Electron lets
you use your existing skill set and deploy your application to all the major platforms.
With Electron, you can support multiple operating systems with less effort than you’re
normally used to for supporting multiple browsers.

1.4.2 Access to native operating system APIs

Electron applications are similar to any other desktop application. They live in the
filesystem with the rest of your native applications. They sit in the dock in macOS or
taskbar in Windows and Linux where all the other native applications hang out. Elec-
tron applications can trigger native Open and Save File dialog boxes. These dialog
boxes can be configured to allow the operating system to select only files with a partic-
ular file extension, whole directories, or multiple files at the same time. You can drag
files onto your Electron applications and trigger different actions.

 Additionally, Electron applications can set custom application menus like any
other application. See figure 1.5. They can create custom context menus that spring
into action when the user right-clicks from within the application. You can use Chro-
mium’s notification API to trigger system-level notifications. They can read from the
system clipboard and write text, images, and other media to it as well.

Unlike traditional web applications, Electron applications aren’t limited to the browser.
You can create applications that live in the menu bar or the system tray. See figure 1.6.
You can even register global shortcuts to trigger these applications or any of their abil-
ities with a special keystroke from anywhere in the operating system.

 Electron applications have access to system-level information—such as whether the
computer is on battery power or plugged into the wall. They can also keep the operat-
ing system awake and prevent it from going into power-saving mode, if necessary.

1.4.3 Enhanced privileges and looser restrictions

The web is the largest distributed application platform in history. It’s so ubiquitous that
web developers take many of the associated headaches for granted. Building web appli-
cations involves carefully choreographing the communication between the server-side
application and the potentially thousands of instances of the client-side application.
Your client-side code runs in the user’s web browser—far removed from the server.

Figure 1.5 Electron allows you to create custom application menus.

11Why should I use Electron?
Anything that happens in the client is unique to that browser session unless the
changes are sent back to your server. By the same token, if anything changes on your
end, you have to wait until the client sends another HTTP request asking for updates;
or you can potentially send the updates over WebSockets, if you’ve implemented that
capability on both the client and the server.

 Desktop applications enjoy a wider range of abilities and fewer restrictions on what
they’re allowed to do because the user explicitly went out of their way to download,
install, and open the application. When you’re browsing the web, however, you don’t
have the same amount of agency. You’re executing code that you didn’t choose to
install on your computer. As a result, web applications have many limits on what
they’re allowed to do.

 When the browser visits a page on the web, it happily downloads all the assets refer-
enced in the HTML code of the document it’s loading, as well as any additional
dependencies added by those first assets, and then begins executing the code. Over
the years, browser vendors have added restrictions to what the browser can do to pre-
vent malicious code from harming the user or other sites on the internet.

 I’m not a bad person, but let’s say—for the sake of argument—that I am. Let’s also
say that I run a popular site that sells artisanal, hand-crafted widgets. One day, a compet-
itor pops onto my radar selling equally pretentious widgets at a steep discount. My site is
still getting more traffic for now, but this new challenger is affecting my beauty sleep.

 Being a bad person, I decide to add JavaScript to my website that fires off an AJAX
request every few milliseconds to my competitor’s site with the hope that the thousands
of visitors to my site will download this code and effectively flood my sworn enemy’s
server and make it unable to handle any legitimate request. It will also degrade the

Figure 1.6 You can create an application that lives in the operating system’s menu bar or system tray.

12 CHAPTER 1 Introducing Electron
experience my visitors have on my site, but that’s a price I’m willing to pay to bring my
competitor’s website to its knees.

 Despite the diabolical nature of my plan, it won’t work. Modern browsers restrict
client-side code from making requests to a third-party server unless that server explic-
itly declares a policy that it allows such requests.

 Generally speaking, most sites don’t do this. If you want to send a request to a third-
party server, then you have to first make a request to your own server, have it contact the
third party, and relay the results back to the client. In the previous example, this adds
my server as a bottleneck for those thousands of requests, which would make it infeasi-
ble for me to launch this kind of attack and trivially easy for my competitor to block my
single IP address as opposed to the IPs of the thousands of visitors to my site.

 The browser also places strict limits on what client-side code has access to and what
it can do. All of this makes for a safer, more secure, and—ultimately—better experi-
ence for the user. It’s all incredibly practical and is part of what makes the web such a
fantastic and approachable platform for users.

 That said, all these useful and important security restrictions severely limit the
kinds of applications you can build using web technologies. The user explicitly down-
loads and installs Electron applications like any other native application. You’re free
to access the filesystem like any native desktop application or server-side Node process
would. You’re also free to make requests to third-party APIs without going through a
Node server because you have access to the same privileges and capabilities as any
other Node process. See figure 1.7.

My erver pplications a

My lient- ide odec s c A APIthird-party

In a traditional web application, client-side code
cannot request data from a third-party API.

Requests must be proxied through a
server-side application.

Traditional eb pplicationw a

My lient- ide odec s c A APIthird-party

In an Electron application, client-side
code has all of the same privileges as

server-side code and can make requests
to a third-party API directly.

Electron pplicationa

Figure 1.7 Electron applications can use their Node.js runtimes to make requests to
third-party APIs.

13How does Electron work?
1.4.4 Accessing Node from the browser context

Along with granting access to the filesystem and the ability to fire up a web server,
Node.js uses a module system based on the CommonJS modules specification. From
its earliest incarnations, Node has supported the ability to break out code into mul-
tiple modules and explicitly include ones you require from within a given file.

 Packaging any nontrivial amount of JavaScript code for the browser hasn’t always
been so easy. For a small amount of code, you can include it in your markup
between a matching pair of opening and closing <script> tags. For larger blocks of
code, you can use the src attribute to reference an external JavaScript file. You’re
welcome to do that as many times as you wish, but you’ll have to pay the perfor-
mance penalties as the browser fires off an additional request to fetch each external
asset.

 You’re welcome to use a build tool such as webpack or Browserify if you like, but
it’s often not necessary in Electron applications because all of Node’s global proper-
ties (for example, require, module, and exports) are available in the browser con-
tent. You can use Node’s module system on what you’d traditionally think of as the
client side without needing to add a build process to your application.

 You can access all of Node’s APIs from the browser context of your Electron appli-
cation. On top of taking advantage of Node’s module system, you can also use com-
piled modules with native extensions, access the filesystem, as well as do a bevy of
other things that aren’t typically supported in the browser environment.

1.4.5 Offline first

As anyone who has ever taken a computer on a transcontinental flight can attest, most
browser-based web applications aren’t much good without a connection to the inter-
net. Even advanced web applications using any of the popular client-side frameworks
like Ember, React, or Angular typically need to connect to a remote server to down-
load their assets.

 Electron applications have already been downloaded to the user’s computer. Typi-
cally, they load a locally stored HTML file. From there, they can request remote data
and assets if a connection is available. Electron even provides APIs that allow you to
detect if a connection is available. No special manifests or bleeding-edge technologies
are necessary to build an offline application using Electron—it’s the default state
unless the application explicitly requests something from the internet. Barring a spe-
cial circumstance—you’re building a chat client, for example—Electron applications
work as well offline as any other application.

1.5 How does Electron work?
Electron applications consist of two types of processes: the main process and zero or
more renderer processes. Each process plays a different role in the application. The
Electron runtime includes different modules to assist you in building your application.
Certain modules, such as the ability to read and write from the system’s clipboard, are

14 CHAPTER 1 Introducing Electron
available in both types of processes. Others, such as the ability to access an operating
system’s APIs, are limited to the main process. See figure 1.8.

When Electron starts up, it turns to the start entry in your package.json manifest
included in your project to determine the entry point of your application. This file
can be named anything you’d like, as long as it’s included properly in package.json.
Electron runs this file as your main process.

1.5.1 The main process

The main process has a few important responsibilities. It can respond to application
lifecycle events such as starting up, quitting, preparing to quit, going to the back-
ground, coming to the foreground, and more. The main process is also responsible
for communicating to native operating system APIs. If you want to display a dialog box
to open or save a file, you do it from the main process.

1.5.2 Renderer processes

The main process can create and destroy renderer processes using Electron’s Browser-
Window module. Renderer processes can load web pages to display a GUI. Each process
takes advantage of Chromium’s multiprocess architecture and runs on its own thread.
These pages can then load in additional JavaScript files and execute code in this pro-
cess. Unlike normal web pages, you have access to all the Node APIs in your renderer
processes, allowing you to use native modules and lower-level system interactions.

Main process

Renderer process

Renderer process

Renderer process

The main process can create
multiple renderer processes.

Renderer processes can communicate
with the main process if they need to

access an OS-level API.

Electron reads the “main”
entry in our package.json to
determine which file to run

as the main process.

Figure 1.8 Electron’s multiprocess architecture

15Electron vs. NW.js
 Renderer processes are isolated from each other and unable to access operating
system integration APIs. Electron includes the ability to facilitate communication
between processes to allow renderer processes to communicate with the main process
in the event that they need to trigger an Open or Save File dialog box or access any
other OS-level integration.

1.6 Electron vs. NW.js
Electron is similar to another project called NW.js (previously known as node-webkit).
The two have much in common. In fact, zcbenz was a heavy contributor to NW.js
before starting work on Electron. That said, they’re different in several important
ways, as shown in table 1.1.

NW.js uses a forked version of Chromium. Electron uses Chromium and Node.js but
doesn’t modify them. This makes it easier for Electron to keep pace with the most
recent versions of Chromium and Node. Electron also includes modules for automati-
cally downloading updates and reporting crashes. NW.js doesn’t.

 NW.js applications start from an HTML page. Each browser window shares a com-
mon Node process. If more than one window is opened, they all share the same Node
process. Electron keeps the Node and browser processes separate. In Electron, you
start a main process from Node. This main process can open browser windows, each
of which is its own process. Electron provides APIs for facilitating communication
between the main process and the browser windows, which we call renderer processes
throughout this book.

 If backward compatibility is a concern, then NW.js might be a better choice
because it supports Windows XP and Vista. Electron supports only Windows 7 and
later. For multimedia-focused applications, Electron is typically a better choice because
Chromium’s FFmpeg library is a statically linked dependency, so Electron supports
more codecs out of the box. With NW.js, you need to manually link the FFmpeg
library.

Table 1.1 A comparison of some of the main differences between Electron and NW.js

Electron NW.js

Platform Officially supported Chromium Content Module
from recent build

Forked version of Chromium

Process model Separate processes Shared Node process

Crash reporting Built in Not included

Auto-updater Built in Not included

Windows support Windows 7 and later Windows XP and later

16 CHAPTER 1 Introducing Electron
Summary
 Electron is a runtime for building desktop applications using web technologies.
 The project began at GitHub as the foundation for the Atom text editor.
 Electron combines the Chromium Content Module, which is a stripped-down

version of the Chrome web browser with Node.
 This combination allows you to build applications that can access the filesystem

and compiled modules, as well as render a UI and use web APIs.
 Electron is used by applications large and small such as Atom, Microsoft’s Visual

Studio Code, and Slack.
 Electron is great for individuals or small teams who may want to target more

than one platform without having to learn three or more languages, as well as
each platform’s frameworks.

 Electron allows web developers to use their existing skill set to build applica-
tions that wouldn’t otherwise be possible within the browser environment.

 Electron ships with a modern version of Chromium and Node, which means
you can use the latest and greatest features of the web platform.

 Electron applications can access operating system APIs such as application and
context menus, File Open and Save dialog boxes, battery status and power set-
tings, and more.

 Electron applications are permitted enhanced privileges and have fewer restric-
tions imposed on their capability as compared to browser-based web applications.

 Electron applications consist of one main process and one or more renderer
processes.

 The main process handles OS integration, manages the lifecycle of the applica-
tion, and creates renderer processes.

 Renderer processes display the UI and respond to user events.
 Electron differs from NW.js in that it uses the officially supported content module

from Chromium as opposed to NW.js, which uses a custom fork of Chromium.

Your first Electron
application
In chapter 1, we discussed what Electron is at a high level. That said, this book is
called Electron in Action, right? In this chapter, we learn the ropes of Electron by
setting up and building a simple application from the ground up to manage a list
of bookmarks. The application will take advantage of features available only in the
most modern browsers.

This chapter covers
 Structuring and setting up an Electron application

 Generating a package.json, and configuring it to work
with Electron in development

 Including a prebuilt version of Electron for your platform
in your project

 Configuring your package.json to start up your main
process

 Creating renderer processes from your main process

 Taking advantage of Electron’s relaxed sandboxing
restrictions to build functionality that normally would not
be possible inside of the browser

 Using Electron’s built-in modules to side-step some
common issues
17

18 CHAPTER 2 Your first Electron application
 In that high-level discussion from the previous chapter, I mentioned that Elec-
tron is a runtime like Node. That’s still true, but I want to revisit that point for a
moment. Electron is not a framework—it does not provide any scaffolding or have
strong rules about how you structure your application or name your files. Those
choices are left up to us, the developers. On the bright side, it also doesn’t enforce
any conventions, and we have less conceptual boilerplate information to discuss
before getting our hands dirty.

2.1 Building a bookmark list application
Let’s start by building a simple and somewhat naive Electron application to reinforce
everything we’ve covered. Our application accepts URLs. When the user provides a
URL, we fetch the title of the page that the URL refers to and save it in our applica-
tion’s localStorage. Finally, we display all the links in the application. You can find
the completed source code for this chapter on GitHub (https://github.com/electron-
in-action/bookmarker).

 Along the way, we uncover some of the advantages of building an application in
Electron, such as the ability to bypass the need for a server and use cutting-edge web
APIs that do not have wide support across all the browsers but are implemented in
modern versions of Chromium. Figure 2.1 is a wireframe of the application we build
in this chapter.

When users add the URL of a website that they would like to save to the list below the
input fields, the application sends a request to the website to fetch the markup. After
it successfully receives the markup, the application pulls the title of the website and
appends both the title and URL to the list of websites, which is stored in the browser’s

Bookmarker

URL Submit

Link Title

http://example.org

Link Title

http://example.org

Link Title

http://example.org

Clear Storage

Figure 2.1 A wireframe of the application we build in this chapter

https://github.com/electron-in-action/bookmarker
https://github.com/electron-in-action/bookmarker

19Building a bookmark list application
localStorage. When the application starts, it reads from localStorage and restores
the list. We add a button with a command to clear localStorage in case anything goes
wrong. Because this simple application is designed to help you get comfortable with
Electron, we won’t implement advanced moves, such as removing individual websites
from the list.

2.1.1 Structuring the Electron application

How you choose to structure your application is up to your team or the individual
working on the application. Many developers take slightly different approaches.
Looking at some of the more established Electron applications, we can discern com-
mon patterns and make decisions on how we’d like to approach our applications in
this book.

 For our purposes, let’s agree upon a file structure for the remainder of this book.
We have an app directory where we store all of our application code. We also have a
package.json that will store a list of dependencies, metadata about our application,
and scripts and declare where Electron should look for our main process. After we
install our dependencies, we end up with a node_modules directory that Electron
creates on our behalf, but we won’t include that in the initial setup.

 As far as files are concerned, let’s start with two files in our app: main.js and ren-
derer.js. These are purposely simple filenames so we can track the two types of pro-
cesses. The start of all the applications that we build in this book roughly follows the
directory structure shown in figure 2.2. (If you’re running macOS, you can install
the tree command using brew install tree.)

Make a directory called “bookmarker,” and navigate to it. You can create this structure
quickly by running the following two commands from the command line. You will
generate a package.json file later using npm init.

mkdir app
touch app/main.js app/renderer.js app/style.css app/index.html

Figure 2.2 The file tree structure for our first Electron application

20 CHAPTER 2 Your first Electron application
Electron doesn’t require this structure, but it is inspired by some of the best practices
established by other Electron applications. Atom keeps all of the application code in
an app directory and all of its stylesheets and other assets such as images in a static
directory. LevelUI has an index.js and a client.js on the top level and keeps all the
dependent files in an src directory and stylesheets in a styles directory. Yoda keeps all
of its files—including the file that loads the rest of the application—in an src direc-
tory. app, src, and lib are common names for the folder that holds the majority of the
application’s code, and styles, static, and assets are common names for the directory
that holds the static assets used in the application.

2.1.2 package.json

The package.json manifest is used in many—if not most—Node projects. This mani-
fest contains important information about the project. It lists metadata such as the
name of the author as well as their email address, which license the project is released
under, the location of the project’s git repository, and where to file issues. It also
defines scripts for common tasks such as running the test suite or—pertinent to our
needs—building the application. The package.json file also lists all of the dependen-
cies used to run and develop the application.

 In theory, you could potentially have a Node project that does not have a pack-
age.json. But Electron relies on this file and its main property to figure out where to
start when it loads or builds your application.

 npm, the package manager that ships with Node, comes with a helpful tool for
generating package.json. From the “bookmarker” directory you created earlier, run
npm init. If you leave a prompt blank, npm uses whatever is in the parentheses after
the colon as the default answer. Your answers should look something like figure 2.3,
with the exception of the author’s name, of course.

 Of note is the main entry in the sample package.json. Here, you can see that I set it
to point to ./app/main.js, based on how we set up the application. You can point to
any file you want. The main file we’re going to use happens to be called main.js, but it
could be named anything (e.g., sandwich.js, index.js ,app.js).

21Building a bookmark list application
2.1.3 Downloading and installing Electron in our project

We have the basic structure of our application set up, but Electron is nowhere to be
found. Building Electron from source takes a while and can be tedious. We rely on
prebuilt versions of Electron for each platform (macOS, Windows, and Linux) and
both architectures (32- and 64-bit). We install Electron using npm.

 npm allows us to install binaries globally or locally to each project. Installing Elec-
tron globally seems convenient, but it can cause trouble down the road if we have

Figure 2.3 npm init provides a series of prompts and sets up a package.json file

22 CHAPTER 2 Your first Electron application
multiple applications using different versions of Electron. We’re better off specifying
and installing a unique version of Electron for each project we work on.

 Downloading and installing Electron is easy. Run the following command from
inside the project directory where you ran npm init previously:

npm install electron–-save

This command will download and install Electron in your project’s node_modules
directory. (It will also create the directory if you don’t already have one.) The --save
flag adds it to the list of dependencies in our package.json. This means that if some-
one downloads the project and runs npm install, they will get electron by default.

npm also lets you define shortcuts for running common scripts in your package.json.
When you run a script defined in your package.json, npm automatically adds node
_modules to the path. This means that it will use the locally installed version of Elec-
tron by default. Let’s add a start script to our package.json.

{
 "name": "bookmarker",
 "version": "1.0.0",
 "description": "Our very first Electron application",
 "main": "./app/main.js",
 "scripts": {
 "start": "electron .",
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "Steve Kinney",
 "license": "ISC",
 "dependencies": {
 "electron": "^2.0.4"
 }
}

Now when we run npm start, npm uses our locally installed version of electron to
start the Electron application. You’ll notice that not much seems to happen. You
should see the following code in your terminal application:

> bookmarker@1.0.0 start /Users/stevekinney/Projects/bookmarker
> electron .

A word on electron-prebuilt
As you acclimate yourself to the world of Electron, you may see blog posts, documen-
tation, and even earlier versions of this book that refer to the electron-prebuilt
package instead of electron. In the past, the former was the preferred way to install
a precompiled version of Electron for your operating system. The latter is the new pre-
ferred way. As of early 2017, electron-prebuilt is no longer supported.

Listing 2.1 Adding a start script to package.json

What npm will
run when we use
npm start.

23Working with the main process
You’ll also see a new application in your dock or task bar—the Electron application we
just set up—as shown in figure 2.4. Right now, it’s called simply “Electron,” and it uses
Electron’s default application icon. In later chapters, we’ll see how we can customize
these properties, but the default is good enough for now. All of our implementation
files are completely blank. As a result, there isn’t a lot going on with this application,
but it exists and starts up correctly. We count that as a win for the time being. Closing
all windows of the application on Windows or selecting Quit from the application
menu terminates the process. Alternatively, you can press Control-C in the Windows
Command prompt or Terminal to quit the application. Pressing Command-Period ter-
minates a process on macOS.

2.2 Working with the main process
Now that we have an Electron application, it would be cool if we could actually get it
to do something. If you recall from chapter 1, Electron starts with a main process that
can create one or more renderer processes. We start by writing code in main.js to get
our application off the ground.

 To work with Electron, we need to import the electron library. Electron comes
with a number of useful modules that we use throughout this book. The first—and
arguably, most important—is the app module.

const {app} = require('electron');

app.on('ready', () => {
 console.log('Hello from Electron');
});

app is a module that handles the lifecycle and configuration of our application. We
can use it to quit, hide, and show the application as well as get and set the applica-
tion’s properties. The app module also runs events—including before-quit, window
-all-closed, browser-window-blur, and browser-window-focus—when the applica-
tion enters different states.

Listing 2.2 Adding a basic main process: ./app/main.js

Figure 2.4 The application in the dock isn’t just any Electron application; it’s the Electron application we just
set up.

Called as soon as
the application has
fully launched.

24 CHAPTER 2 Your first Electron application
 We cannot work with our application until it has completely started up and is ready
to go. Luckily, app fires a ready event. This means we need to wait patiently and listen
for the application to start the ready event before we do anything. In the previous
code, we logged into the console, which is something we could easily do without Elec-
tron, but this code highlights how to listen for the ready event.

2.3 Creating a renderer process
Our main process is a lot like any other Node process. It has access to all of Node’s
built-in libraries as well as a special set of modules provided by Electron, which we
explore over the course of this book. But, like any other Node process, our main pro-
cess does not have a DOM (Document Object Model) and cannot render a UI. The
main process is responsible for interacting with the operating system, managing state,
and coordinating with all the other processes in our application. It is not in charge of
rendering HTML and CSS. That’s the job of the renderer processes. One of the pri-
mary reasons we signed up for this whole Electron adventure is that we wanted to cre-
ate a GUI for Node processes.

 The main process can create multiple renderer processes using the BrowserWindow
module. Each BrowserWindow is a separate and unique renderer process that includes
a DOM, access to the Chromium web APIs, and the Node built-in module. We can
access the BrowserWindow module the same way we got our hands on the app module.

const {app, BrowserWindow} = require('electron');

You may have noticed that the BrowserWindow module starts with a capital letter.
According to standard JavaScript convention, this usually means that we call it as a
constructor with the new keyword. We can use this constructor to create as many ren-
derer processes as we like or our computer can handle. When the application is ready,
we create a BrowserWindow instance. Let’s update our code as follows.

const {app, BrowserWindow} = require('electron');

let mainWindow = null;

app.on('ready', () => {
 console.log('Hello from Electron.');
 mainWindow = new BrowserWindow();
});

We declared mainWindow outside the ready event listener. JavaScript uses function
scope. If we declared mainWindow inside the event listener, mainWindow would be eligi-
ble for garbage collection because the function assigned to the ready event has run to
completion. If garbage is collected, our window would mysteriously disappear. If we

Listing 2.3 Requiring the BrowserWindow module: ./app/main.js

Listing 2.4 Creating a BrowserWindow: ./app/main.js

Creates a variable in the
top-level scope for the main
window of our application

 When the application is ready, creates
a browser window, and assigns it to the
variable created in the top-level scope

25Creating a renderer process
run this code, we see a humble little window displayed in the center of our screen, as
shown in figure 2.5.

It’s a window, but it’s not much to look at. The next step is to load an HTML page into
that BrowserWindow instance we created. All BrowserWindow instances have a web-
Contents property, which has several useful features, such as loading an HTML file
into the renderer process’s window, sending messages from the main process to the
renderer process, printing the page to either PDF or a printer, and much more. Right
now, our biggest concern is loading content into that boring window we just created.

 We need an HTML page to load, so create an index.html in the app directory of
your project. Let’s add the following content to the HTML page to make it a valid
document.

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<meta http-equiv="Content-Security-Policy"

Listing 2.5 Creating index.html: ./app/index.html

Figure 2.5 An empty BrowserWindow without an HTML document loaded

26 CHAPTER 2 Your first Electron application
 content="
 default-src 'self';
 script-src 'self' 'unsafe-inline';
 connect-src *
 "
>
<meta name="viewport" content="width=device-width,initial-scale=1">
<title>Bookmarker</title>
</head>
<body>

<h1>Hello from Electron</h1>

</body>

</html>

It’s simple, but it gets the job done and gives a good foundation on which to build. We
add the following to app/main.js to tell the renderer process to load this HTML doc-
ument inside of the window we created earlier.

app.on('ready', () => {
 console.log('Hello from Electron.');
 mainWindow = new BrowserWindow();
 mainWindow.webContents.loadFile('index.html');
});

We use the file:// protocol and the __dirname variable, which is globally available in
Node. __dirname is the full path to the directory where our Node process is being exe-
cuted. In my case, __dirname expands to /Users/stevekinney/Projects/bookmarker/
app. It’s like typing pwd in macOS and Linux or chdir in Windows.

 Now, we can use npm start to start our application and watch it load our new
HTML file. If all goes well, you should see something resembling figure 2.6.

2.3.1 Loading code from the renderer process

From the HTML file loaded by the renderer process, we can load any other files we
might need just like we would in a traditional browser-based web application—namely,
<script> and <link> tags.

 What makes Electron different from what we’re used to in the browser is that we
have access to all of Node—even from what we would normally consider “the client.”
This means that we can use require or even Node-only objects and variables like
__dirname or the process module. At the same time, we have all the browser APIs
available as well. The division between what we can do only on the client and what we
can do only on the server begins to fade away.

Listing 2.6 Loading an HTML document into the main window: ./app/main.js

Tells the browser window to
load an HTML file located in
the same directory as the
main process

27Creating a renderer process
Let’s look at this in action. __dirname is not available in the traditional browser envi-
ronment, and document or alert are not available in Node. But in Electron we can
seamlessly use them together. Let’s add a button to the page.

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<meta http-equiv="Content-Security-Policy"
 content="
 default-src 'self';
 script-src 'self' 'unsafe-inline';
 connect-src *
 "
>
<meta name="viewport" content="width=device-width,initial-scale=1">
<title>Bookmarker</title>
</head>
<body>

<h1>Hello from Electron</h1>

Listing 2.7 Adding a button to an HTML document: ./app/index.html

Figure 2.6 A BrowserWindow with a simple HTML document loaded

28 CHAPTER 2 Your first Electron application
<p>
<button class="alert">Current Directory</button>
</p>

</body>

</html>

Now that we have our button, let’s add an event listener that alerts us to the current
directory from which our application is running.

<script>
 const button = document.querySelector('.alert');

 button.addEventListener('click', () => {
 alert(__dirname);
 });
</script>

alert() is available only in the browser. __dirname is available only in Node. When we
click the button, we are treated to Node and Chromium working together in sweet,
sweet harmony, as shown in figure 2.7.

Listing 2.8 Adding script with Node.js global in the browser context: ./app/index.html

This is our
new button.

When the button is clicked,
uses a browser alert to display
a Node global variable

Figure 2.7 The BrowserWindow executing JavaScript from the context of the renderer process.

29Creating a renderer process
2.3.2 Requiring files in the renderer process

Writing code in our HTML file clearly works, but it’s probably not hard to imagine a
situation where our code might grow to the point where this method is no longer
feasible. We can add script tags with src attributes to reference other files, but this
also becomes cumbersome quickly.

 This is where web development gets tricky. Although modules were added to the
ECMAScript specification, no browsers currently have a working implementation of a
module system. On the client, this is the point where we might consider some kind of
build tool like Browserify (http://browserify.org) or the module bundler, webpack,
and possibly a task runner like Gulp or Grunt.

 We can use Node’s module system with no additional configuration. Let’s move all
of the code from inside those <script> tags to our—currently empty—app/renderer.js
file. Now we can replace the contents inside of the <script> tags with just a reference
to renderer.js.

<script>
 require('./renderer');
</script>

If we start up our application, you’ll see that its functionality hasn’t changed. Every-
thing still works as it should. That rarely happens in software development. Let’s
briefly savor that feeling before moving on.

2.3.3 Adding styles in the renderer process

Few surprises occur when we reference stylesheets in our Electron applications. Later,
we talk about using Sass and Less with Electron. Adding a stylesheet in an Electron
application isn’t much different than it would be with a traditional web application.
That said, a few nuances are worth talking about.

 Let’s start by adding a style.css file to our app directory. We add the following con-
tent to that style.css.

html {
 box-sizing: border-box;
}

*, *:before, *:after {
 box-sizing: inherit;
}

body, input {
 font: menu;
}

Listing 2.9 Loading JavaScript from renderer.js: ./app/index.html

Listing 2.10 Adding basic styles: ./app/style.css

Uses Node’s require function to load
additional JavaScript modules into
the renderer process

Uses the default system font
for the operating system
the page is running on

http://browserify.org

30 CHAPTER 2 Your first Electron application
That last declaration might look a little unfamiliar. It is unique to Chromium and allows
us to use the system font in CSS. This ability is important to make our application fit in
with its native siblings. On macOS, it’s the only way to use San Francisco, the system
font that ships with El Capitan 10.11 and later.

 We should consider one other important distinction when working with CSS inside
of our Electron applications. Our applications will run only in the version of Chro-
mium that we ship with the application. We don’t have to worry about cross-browser
support or legacy compatibility. As mentioned in chapter 1, Electron ships with a rela-
tively recent version of Chromium. This means we can freely use technologies like
flexbox and CSS variables.

 We reference our new stylesheet just like we would in the traditional browser envi-
ronment, then add the following to the <head> section of index.html. I’ll include the
HTML tag for linking to a stylesheet—because, in my 20 years as a web developer, I
still can never remember how to do it on the first try.

<link rel="stylesheet" href="style.css" type="text/css">

2.4 Implementing the UI
We start by updating our index.html with the markup that we need for the UI.

<h1>Bookmarker</h1>

<div class="error-message"></div>

<section class="add-new-link">
 <form class="new-link-form">
 <input type="url" class="new-link-url" placeholder="URL"size="100"

required>
 <input type="submit" class="new-link-submit" value="Submit" disabled>
 </form>
</section>

<section class="links"></section>

<section class="controls">
 <button class="clear-storage">Clear Storage</button>
</section>

We have a section for adding a new link, a section for displaying all of our wonderful
links, and a button for clearing all links and starting over. The <script> tag in your
application should be just as we left it earlier in this chapter, but just in case it isn’t,
here is what it should look like at this point:

<script>
 require('./renderer');
</script>

Listing 2.11 Referencing a stylesheet in the HTML document: ./app/index.html

Listing 2.12 Adding the markup for the UI of the application: ./app/index.html

31Implementing the UI
With our markup in place, we can now turn our attention to the functionality. Let’s
clear away anything we might have in app/renderer.js and start fresh. Throughout our
time together, we’re going to need to work with a few of the elements we added to the
markup, so let’s start by querying for those selectors and caching them into variables.
Add the following to app/renderer.js.

const linksSection = document.querySelector('.links');
const errorMessage = document.querySelector('.error-message');
const newLinkForm = document.querySelector('.new-link-form');
const newLinkUrl = document.querySelector('.new-link-url');
const newLinkSubmit = document.querySelector('.new-link-submit');
const clearStorageButton = document.querySelector('.clear-storage');

If you look back at listing 2.12, you’ll notice that we set the input element’s type attri-
bute to "url" in the markup. Chromium will mark the field as invalid if the contents
do not match a valid URL pattern. We can style valid and invalid states of the element
and even check its state using JavaScript. Unfortunately, we don’t have access to the
built-in error message popups in Chrome or Firefox. Those popups are not part of
the Chromium content module and—as a result—not part of Electron. For now, we
disable the start button by default and then check to see if we have a valid URL pat-
tern every time the user types a letter into the URL field.

 If the user has provided a valid URL, then we flip the switch on that submit button
and allow them to submit the URL. Let’s add this code to app/renderer.js.

newLinkUrl.addEventListener('keyup', () => {
 newLinkSubmit.disabled = !newLinkUrl.validity.valid;
});

Now is also a good time to add a small helper function to clear out the contents of the
URL field. In a perfect world, we call this whenever we’ve successfully stored the link.

const clearForm= () => {
 newLinkUrl.value = null;
};

When the user submits a link, we want the browser to make a request for that URL
and then take the response body, parse it, find the title element, get the text from that
title element, store the title and URL of the bookmark in localStorage, and then—
finally—update the page with the bookmark.

Listing 2.13 Caching DOM element selectors: ./app/renderer.js

Listing 2.14 Adding an event listener to enable the submit button: ./app/renderer.js

Listing 2.15 Adding a helper function to clear out form input: ./app/renderer.js

When a user types in the input field, this uses Chromium’s
ValidityState API to determine if the input is valid. If so,
removes the disabled attribute from the submit button.

Clears the value of the new
link input field by setting
its value to null.

32 CHAPTER 2 Your first Electron application
2.4.1 Making cross-origin requests in Electron

You may or may not feel some of the hairs on the back of your neck begin to stand at
attention. You might even be thinking to yourself, “There is no way that this plan will
work. You can’t make requests to third-party servers. The browser doesn’t allow this.”

 Normally, you’d be right. In a traditional browser-based application, you’re not
allowed to have your client-side code make requests to other servers. Typically, your
client-side code makes a request to your server which in turn proxies the request to
the third-party server. When it hears back, it proxies the response back to the client.
We discussed some of the reasoning behind this in chapter 1.

 Electron has all the abilities of a Node server along with all the bells and whistles of
a browser. This means that we’re free to make cross-origin requests without the need
for a server to get in the way.

 Another perk of writing this application in Electron is that we’re able to use the
up-and-coming Fetch API to make requests to remote servers. The Fetch API spares us
the hassle of setting up XMLHttpRequests by hand and gives a nice, promise-based
interface for working with our requests. As of this writing, Fetch has limited support
among the major browsers. That said, it has full support in the current version of
Chromium, which means we can use it.

 We add an event listener to the form to spring into action whenever the form has
been submitted. We don’t have a server, so we need to be sure to prevent the default
action of making a request. We do this by preventing the default action. We also cache
the value of the URL input field for future use.

newLinkForm.addEventListener('submit', (event) => {
 event.preventDefault();

 const url = newLinkUrl.value;

 // More code to come…
});

The Fetch API is available as a globally available fetch variable. Fetching a URL
returns a promise object, which will be fulfilled when the browser has completed
fetching the remote resource. With this promise object, we could handle the response
differently depending on if we decided to fetch a webpage, an image, or some other
kind of content. In this case, we’re fetching a webpage, so we convert the response to
text. We start with the following code inside our event listener.

fetch(url)
 .then(response => response.text());

Listing 2.16 Adding an event listener to the submit button: ./app/renderer.js

Listing 2.17 Using the Fetch API to request a remote resource: ./app/renderer.js

Tells Chromium not to trigger an
HTTP request, the default action
for form submissions

Grabs the URL in the new link input
field. We’ll need this value shortly.

Uses the Fetch API
to fetch the content
of the provided URL.

Parses the response
as plain text

33Implementing the UI
Promises are chainable. We can take the return value of the previous promise and tack
on another call to then. Additionally, response.text() itself returns a promise. Our
next step will be to take the big block of markup that we received and parse it to tra-
verse it and find the <title> element.

2.4.2 Parsing responses

Chromium provides a parser that will do this for us, but we need to instantiate it. At the
top of app/renderer.js, we create an instance of DOMParser and store it for later use.

const parser = new DOMParser();

Let’s set up a pair of helper functions that parse the response and find the title for us.

const parseResponse = (text) => {
 return parser.parseFromString(text, 'text/html');
}

const findTitle = (nodes) =>{
 return nodes.querySelector('title').innerText;
}

We can now add those two steps to our promise chain.

fetch(url)
 .then(response => response.text())
 .then(parseResponse)
 .then(findTitle);

At this point, the code in app/renderer.js looks like this.

const parser = new DOMParser();

const linksSection = document.querySelector('.links');
const errorMessage = document.querySelector('.error-message');
const newLinkForm = document.querySelector('.new-link-form');
const newLinkUrl = document.querySelector('.new-link-url');
const newLinkSubmit = document.querySelector('.new-link-submit');
const clearStorageButton = document.querySelector('.clear-storage');

newLinkUrl.addEventListener('keyup', () => {
 newLinkSubmit.disabled = !newLinkUrl.validity.valid;
});

Listing 2.18 Instantiating a DOMParser: ./app/renderer.js

Listing 2.19 Adding functions for parsing response and finding the title: ./app/renderer.js

Listing 2.20 Parsing response and finding the title when fetching a page: ./app/renderer.js

Listing 2.21 Current contents of app/renderer.js

Creates a DOMParser instance.
We’ll use this after fetching the text
contents of the provided URL.

Takes the string of HTML
from the URL and parses
it into a DOM tree.

Traverses the DOM tree to
find the <title> node.

34 CHAPTER 2 Your first Electron application
newLinkForm.addEventListener('submit', (event) => {
 event.preventDefault();

 const url = newLinkUrl.value;

 fetch(url)
 .then(response => response.text())
 .then(parseResponse)
 .then(findTitle)
});

const clearForm = () => {
 newLinkUrl.value = null;
}

const parseResponse = (text) => {
 return parser.parseFromString(text, 'text/html');
}

const findTitle = (nodes) => {
 return nodes.querySelector('title').innerText;
}

2.4.3 Storing responses with web storage APIs

localStorage is a simple key/value store that is built into the browser and persists
between sessions. You can store simple data types like strings and numbers under an
arbitrary key. Let’s set up another helper function that will make a simple object out
of the title and URL, convert it into a string using the built-in JSON library, and then
store it using the URL as the key.

const storeLink = (title, url) => {
 localStorage.setItem(url, JSON.stringify({ title: title, url: url }));
};

Our new storeLink function needs the title as well as the URL to get its job done, but
the previous promise returns only the title. We use an arrow function to wrap our call
to storeLink in an anonymous function that has access to the url variable in scope. If
that is successful, we clear the form as well.

fetch(url)
 .then(response => response.text())
 .then(parseResponse)
 .then(findTitle)
 .then(title => storeLink(title, url))
 .then(clearForm);

Listing 2.22 Creating a function to persist links in local storage: ./app/renderer.js

Listing 2.23 Storing a link and clearing the form upon fetching remote resource:
./app/renderer.js

Stores the title and
URL into localStorage.

35Implementing the UI
2.4.4 Displaying request results

Storing the links is not enough. We also want to display them to the user. This means
that we need to create the functionality to go through all the links that we stored, turn
them into DOM nodes, and then add them to the page.

 Let’s start with the ability to get all the links out of localStorage. If you recall,
localStorage is a key/value storage. We can use Object.keys to get all the keys out
of an object. We have to give ourselves another helper function to get all the links out
of localStorage. This isn’t a huge deal because we needed to convert them from
strings back into real objects anyway. Let’s define a getLinks function.

const getLinks = () => {
 return Object.keys(localStorage)
 .map(key => JSON.parse(localStorage.getItem(key)));
}

Next, we take these simple objects and convert them into markup so that we can add
them to the DOM later. We create a simple convertToElement helper that can take
care of this as well. It’s important to mention that our convertToElement function is a
bit naive and does not try to sanitize user input. In theory, your application is vulnera-
ble to script-injection attacks. It’s a bit outside of the scope of this chapter, so we do
just the bare minimum to render these links onto the page. I’ll leave it as an exercise
to the reader to secure this feature.

const convertToElement = (link) => {
 return `
<div class="link">
<h3>${link.title}</h3>
<p>
${link.url}
</p>
</div>
`;
};

Finally, we create a renderLinks() function that calls getLinks, concatenates them, con-
verts the collection using convertToElement(), and then replaces the linksSection
element on the page.

Listing 2.24 Creating a function for getting links from local storage: ./app/renderer.js

Listing 2.25 Creating a function for creating DOM nodes from link data: ./app/renderer.js

Gets an array of all the keys
currently stored in localStorage

For each key, gets its value and parses it
from JSON into a JavaScript object

36 CHAPTER 2 Your first Electron application
const renderLinks = () => {
 const linkElements = getLinks().map(convertToElement).join('');
 linksSection.innerHTML = linkElements;
};

We can now add now add this final step to our promise chain.

fetch(url)
 .then(response => response.text())
 .then(parseResponse)
 .then(findTitle)
 .then(title => storeLink(title, url))
 .then(clearForm)
 .then(renderLinks);

We also render all of the links when the page initially loads simply by calling render-
Links() at the top-level scope.

renderLinks();

One of the advantages of using promises in coordination with breaking out function-
ality into named helper functions is that it’s very clear what our code is doing as it
works through fetching the external webpage, parsing it, storing the result, and re-
rendering the list of links.

 The final thing we need to complete all of the functionality for our simple applica-
tion is to wire up the Clear Storage button. We call the clear method on localStorage
and then empty the list in linksSection.

clearStorageButton.addEventListener('click', () => {
 localStorage.clear();
 linksSection.innerHTML = '';
});

With the Clear Storage button in place, it seems we have most of the functionality in
place. Our application now looks something like figure 2.8. At this point, our code for
our renderer process should look like listing 2.30.

Listing 2.26 Creating a function to render all links and add them to the DOM:
./app/renderer.js

Listing 2.27 Rendering links after fetching a remote resource: ./app/renderer.js

Listing 2.28 Loading and rendering links: ./app/render.js

Listing 2.29 Wiring the Clear Storage button: ./app/renderer.js

Converts all the links to HTML
elements and combines them

Replaces the contents of
the links section with the
combined link elements

Calls the renderLinks() function we created
earlier as soon as the page loads

Empties all the links
from localStorage

Removes the links
from the UI

37Implementing the UI
const parser = new DOMParser();

const linksSection = document.querySelector('.links');
const errorMessage = document.querySelector('.error-message');
const newLinkForm = document.querySelector('.new-link-form');
const newLinkUrl = document.querySelector('.new-link-url');
const newLinkSubmit = document.querySelector('.new-link-submit');
const clearStorageButton = document.querySelector('.clear-storage');

newLinkUrl.addEventListener('keyup', () => {
 newLinkSubmit.disabled = !newLinkUrl.validity.valid;
});

newLinkForm.addEventListener('submit', (event) => {
 event.preventDefault();

 const url = newLinkUrl.value;

 fetch(url)
 .then(response => response.text())
 .then(parseResponse)

Listing 2.30 Renderering process to fetch, store, and render links: ./app/renderer.js

Figure 2.8 The complete Bookmarker application

38 CHAPTER 2 Your first Electron application
 .then(findTitle)
 .then(title => storeLink(title, url))
 .then(clearForm)
 .then(renderLinks);
});

clearStorageButton.addEventListener('click', () => {
 localStorage.clear();
 linksSection.innerHTML = '';
});

const clearForm = () => {
 newLinkUrl.value = null;
}

const parseResponse = (text) => {
 return parser.parseFromString(text, 'text/html');
}

const findTitle = (nodes) => {
 return nodes.querySelector('title').innerText;
}

const storeLink = (title, url) => {
 localStorage.setItem(url, JSON.stringify({ title: title, url: url }));
}

const getLinks = () => {
 return Object.keys(localStorage)
 .map(key => JSON.parse(localStorage.getItem(key)));
}

const convertToElement = (link) => {
 return `<div class="link"><h3>${link.title}</h3>
<p>${link.url}</p></div>`;
}

const renderLinks = () => {
 const linkElements = getLinks().map(convertToElement).join('');
 linksSection.innerHTML = linkElements;
}

renderLinks();

2.4.5 The unhappy path

So far, everything appears to work. Our application fetches the title from the external
webpage, stores the link locally, renders the links on the page, and clears them from
the page when we ask it to.

 But what happens if something goes wrong? What happens if we give it an invalid
link? What happens if the request times out? We’ll handle the two most likely cases:
when the user provides a URL that passed the validation check on the input field

39Implementing the UI
but is not in fact valid, and when the URL is valid but the server returns a 400- or
500-level error.

 The first thing we add is the ability to handle any error. Promise chains support a
catch method, which is called into action in the event of an uncaught error. We define
another helper method in this event.

const handleError = (error, url) => {
 errorMessage.innerHTML = `
There was an issue adding "${url}": ${error.message}
 `.trim();
 setTimeout(() => errorMessage.innerText = null, 5000);
}

We can add that to the chain. We use another anonymous function to pass along the
URL with our error message. This is primarily for providing better error messages. It’s
not necessary if you don’t want to include the URL in the error message.

fetch(url)
 .then(response => response.text())
 .then(parseResponse)
 .then(findTitle)
 .then(title => storeLink(title, url))
 .then(clearForm)
 .then(renderLinks)
 .catch(error => handleError(error, url));

We also add a step early on to the chain that checks to see if the request was successful.
If so, it passes the request along to the next promise in the chain. If it was not success-
ful, then we throw an error, which circumvents the rest of the promises in the chain
and skips directly to the handleError() step. There is an edge case here that I didn’t
handle: the promise returned from the Fetch API rejects outright if it cannot establish
a network connection. I leave that as an exercise to the reader to handle because we
have a lot to cover in this book and a limited number of pages to do it in. response.ok
will be false if its status code is in the 400- or 500-range.

const validateResponse = (response) => {
 if (response.ok) { return response; }
 throw new Error(`Status code of ${response.status}

${response.statusText}`);
}

Listing 2.31 Displaying an error message: ./app/renderer.js

Listing 2.32 Catching errors when fetching, parsing, and rendering links: ./app/renderer.js

Listing 2.33 Validating responses from remote servers: ./app/renderer.js

Sets the contents of the
error message element
if fetching a link fails

Clears the error
message after
5 seconds

If any promise in this chain
rejects or throws an error,
catches the error and
displays it in the UI

If the response was
successful, passes it along
to the next promise.

Throws an error if the
request received a 400-
or 500-series response.

40 CHAPTER 2 Your first Electron application
This code passes the response object along if there is nothing wrong. But if there is
something wrong, it throws an error, which is caught by handleError() and dealt with
accordingly.

fetch(url)
 .then(validateResponse)
 .then(response => response.text())
 .then(parseResponse)
 .then(findTitle)
 .then(title => storeLink(title, url))
 .then(clearForm)
 .then(renderLinks)
 .catch(error => handleError(error, url));

2.4.6 An unexpected bug

We’re not out of the woods yet—we also have an issue in the event that everything
goes well. What happens if we click one of the links in our application? Perhaps unsur-
prisingly, it goes to that link. The Chromium part of our Electron application thinks
that it is a web browser, and so it does what web browsers do best—it goes to the page.

 Except our application is not really a web browser. It lacks important things like a
Back button or a location bar. If we click any of the links in our application, we’re
pretty much stuck there. Our only option is to kill the application and start all over.

 The solution is to open the links in a real browser. But this raises the question,
which browser? How can we tell what the user has set as their default browser? We cer-
tainly don’t want to take any lucky guesses because we don’t know what browsers the
user has installed and no one likes seeing the wrong application start opening just
because they clicked a link.

 Electron ships with the shell module, which provides some functions related to
high-level desktop integration. The shell module can ask the user’s operating sys-
tem what browser they prefer and pass the URL to that browser to open. Let’s start
by pulling in Electron and storing a reference to its shell module at the top of
app/renderer.js.

const {shell} = require('electron');

We can use JavaScript to determine which URLs we want to handle in our application
and which ones we want to pass along to the default browser. In our simple applica-
tion, the distinction is easy. We want all of the links to open in the default browser.
Links are being added and removed in this application, so we set an event listener on
the linksSection element and allow click events to bubble up. If the target element

Listing 2.34 Adding validateResponse() to the chain: ./app/renderer.js

Listing 2.35 Requiring Electron’s shell module: ./app/renderer.js

41Implementing the UI
has an href attribute, we prevent the default action and pass the URL to the default
browser instead.

linksSection.addEventListener('click', (event) => {
 if (event.target.href) {
 event.preventDefault();
 shell.openExternal(event.target.href);
 }
});

With that relatively simple change, our code behaves as expected. Clicking a link will
open that page in the user’s default browser. We have a simple—yet fully functional—
desktop application.

 Our finished code should look something like the following code example. You
may have your functions in a different order.

const {shell} = require('electron');

const parser = new DOMParser();

const linksSection = document.querySelector('.links');
const errorMessage = document.querySelector('.error-message');
const newLinkForm = document.querySelector('.new-link-form');
const newLinkUrl = document.querySelector('.new-link-url');
const newLinkSubmit = document.querySelector('.new-link-submit');
const clearStorageButton = document.querySelector('.clear-storage');

newLinkUrl.addEventListener('keyup', () => {
 newLinkSubmit.disabled = !newLinkUrl.validity.valid;
});

newLinkForm.addEventListener('submit', (event) => {
 event.preventDefault();

 const url = newLinkUrl.value;

 fetch(url)
 .then(response => response.text())
 .then(parseResponse)
 .then(findTitle)
 .then(title => storeLink(title, url))
 .then(clearForm)
 .then(renderLinks)
 .catch(error => handleError(error, url));
});

Listing 2.36 Opening links in the user’s default browser: /app/renderer.js

Listing 2.37 Completed application: ./app/renderer.js

Checks to see if the element
that was clicked was a link by
looking for an href attribute

If it was a link, don’t
open it normally.

Uses Electron’s shell module
to open a link in the user’s

default browser

42 CHAPTER 2 Your first Electron application
clearStorageButton.addEventListener('click', () => {
 localStorage.clear();
 linksSection.innerHTML = '';
});

linksSection.addEventListener('click', (event) => {
 if (event.target.href) {
 event.preventDefault();
 shell.openExternal(event.target.href);
 }
});

const clearForm = () => {
 newLinkUrl.value = null;
};

const parseResponse = (text) => {
 return parser.parseFromString(text, 'text/html');
};

const findTitle = (nodes) => {
 return nodes.querySelector('title').innerText;
};

const storeLink = (title, url) => {
 localStorage.setItem(url, JSON.stringify({ title: title, url: url }));
};

const getLinks = () => {
 return Object.keys(localStorage)
 .map(key => JSON.parse(localStorage.getItem(key)));
};

const convertToElement = (link) => {
 return `<div class="link"><h3>${link.title}</h3>
<p>${link.url}</p></div>`;
};

const renderLinks = () => {
 const linkElements = getLinks().map(convertToElement).join('');
 linksSection.innerHTML = linkElements;
};

const handleError = (error, url) => {
 errorMessage.innerHTML = `
 There was an issue adding "${url}": ${error.message}
 `.trim();
 setTimeout(() => errorMessage.innerText = null, 5000);
};

const validateResponse = (response) => {
 if (response.ok) { return response; }

43Summary
 throw new Error(`Status code of ${response.status}
${response.statusText}`);

}

renderLinks();

Summary
 Electron does not recommend or enforce a particular project structure.
 Electron uses npm’s package.json manifest to determine what file it should load

as the main process.
 We can generate a package.json from a boilerplate by using npm init.
 We typically install Electron locally in each project we work on. This allows us to

have project-specific versions of Electron.
 We can use require('electron') in Electron applications to access Electron-

specific modules and functionality.
 The app module manages the lifecycle of our Electron application.
 The main process cannot render a UI.
 We can create renderer processes from the main process using the Browser-

Window module.
 Electron allows us to make requests from a third-party server directly from the

browser without an intermediary server. Traditional web applications are not
permitted to do this.

 Storing data in localStorage will allow it to persist when we quit and reopen
the application.

Part 2

Building cross-platform
applications with Electron

In part 1, I talked a bit about what makes Electron interesting and special,
but our first run at building an Electron application was deliberately simple
and—I’ll admit—a bit uninspired. In part 2—which takes up the lion’s share of
this book—we’ll start digging into Electron’s more compelling abilities. In this
section, we’ll build three applications: a Markdown text editor with a live pre-
view and direct access to the filesystem, a clippings manager that lives in your
operating system’s menu bar or system tray and can read and write to the system
clipboard, and a travel packing list built with React that can read and write
directly to a native database.

 In part 2, I try to walk a fine line by having you build applications that are
simple enough that you can understand them in short order while also having
just enough complexity that we’ll run into some of the problems waiting for us
in larger, more complex applications.

 In chapter 3, we’ll lay the foundation for Fire Sale, our Markdown editor, by
implementing the UI. We’ll also look into the finer points of debugging an Elec-
tron application. In chapter 4, we’ll explore the relationship between the main
Node.js process and the one or more browser windows—which are called ren-
derer processes—you can spawn. We’ll read from and write to the filesystem and
send data back and forth between processes. In chapter 5, I’ll cover how to man-
age multiple windows and dig a bit deeper into Electron’s interprocess commu-
nication model.

 Chapter 6 covers some of the finer points of integrating with the native operating
system. We’ll determine whether a file has unsaved changes and update the title bar
provided by the operating system accordingly. We’ll append our documents to the
operating system’s list of recent documents and listen to see if another application has
changed a file currently open in Fire Sale. Chapter 7 explores how to build native
application and context menus, which is not normally something web and Node.js
developers encounter often. In chapter 8, we’ll put the finishing touches on Fire Sale
by implementing additional integrations with the host operating system as well as
dynamically updating menus by enabling and disabling menu items as the state of the
application changes.

 In chapter 9, we’ll set out to build an application in a place where no web devel-
oper has gone before: the menu bar in macOS and the system tray in Windows. Clip-
master is a simple application that allows you to read text from the system clipboard
and store it in memory. When an item is selected, it’s written back to the clipboard for
easy pasting. It’s an application I used thoroughly in writing this book. In chapter 10,
we’ll burn the entire application down and start over from scratch, giving it a more
robust UI in the process.

 Until chapter 11, we use a very limited set of tools for manipulating the DOM. As
you read through the chapters leading up to chapter 11, you may be getting grand
ideas about how you would integrate your favorite frontend framework. Your patience
will be rewarded as we see that implementing tools like Babel, TypeScript, or Sass are
easier than you could have imagined. We’ll build a simple list manager called Jetsetter
that keeps track of the items you need to pack before your next great adventure. I’ll
be using React solely because it has the gentlest learning curve, but I assure you that
there are great libraries for Ember, Angular, and Vue as well.

 You may have used a tool like webpack or Browserify to pull dependencies from
npm into your application. If so, you might have come across a set of modules, which
typically use compiled C++ code, that are off limits. Browsers, generally speaking, can
work only with JavaScript. But Electron applications are not mere browser applica-
tions. In chapter 12, we’ll take Jetsetter and hook it directly to a portable SQLite data-
base. We’ll figure out how to correctly compile your modules for the version of
Node.js that ships with Electron. I’ll implement persistent storage in a browser-based
IndexedDB database, in an effort to help you determine which approach you might
prefer for your own applications.

 Chapter 13 covers end-to-end testing using Spectron, which is based on Selenium.
In this chapter, I’ll show you how to write tests that spin up your Electron application
and take it for a ride. By the end of part 2, you’ll be comfortable with a large subset of
everything Electron has to offer, and the creative juices will certainly be flowing.

Building a notes
application
Our bookmark manager was a fine place to start, but it only scratches the surface of
what we can do with Electron. In this chapter, we dig a little bit deeper and lay the
foundation for an application with stronger ties to the user’s operating system.
Over the course of the next few chapters, we’ll implement features that trigger
the operating system’s GUIs, read from and write to the filesystem, and access the
clipboard.

This chapter covers
 Introducing the application we’ll build over the

next few chapters

 Configuring our CSS stylesheet to look more like
a native application

 Reviewing the relationship between the main and
renderer processes in Electron

 Implementing the basic functionality for our main
and renderer processes

 Accessing the Chrome Developer Tools in the
renderer process in Electron
47

48 CHAPTER 3 Building a notes application
 We are building a simple note editor that allows us to create new or open existing
Markdown files, convert them to HTML, and save the HTML to the filesystem and
clipboard. Let’s call the application Fire Sale as an only slightly clever play on price
markdowns—because it’s a Markdown editor after all. At the end of the chapter, we’ll
discuss the techniques and tools available for debugging our Electron applications
when things go awry.

3.1 Defining our application
Let’s start by setting goals for our humble, little application. Many of our features
might seem a bit banal for a desktop application, and that’s the point. They’re stan-
dard fare for a desktop application but completely outside of the realm of abilities
for traditional web applications, which cannot access anything outside of their iso-
lated browser tab. Our application will consist of two panes: a left pane where the
user can write or edit Markdown and a right pane that displays the user’s Markdown
rendered as HTML. Along the top we have a series of buttons, which will allow the
user to load a text file from the filesystem as well as write the result to the clipboard
or filesystem.

 In the first phase of our application, we build a UI based on the wireframe in fig-
ure 3.1. We can also add additional UI elements to the wireframe—and subsequently
our application—as we go along, but this is a good place to start.

Some Very Important Markdown

Lorem ipsum dolor sit amet,
consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore
et dolore magna aliqua. Ut enim ad
minim veniam, quis nostrud
exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat. Duis
aute irure dolor in reprehenderit in
voluptate velit esse cillum dolore eu
fugiat nulla pariatur. Excepteur sint
occaecat cupidatat non proident, sunt
in culpa qui officia deserunt mollit
anim id est laborum.

Lorem ipsum dolor sit amet, consectetur

adipisicing elit, sed do eiusmod tempor incididunt

ut labore et dolore magna aliqua. Ut enim ad

minim veniam, quis nostrud exercitation ullamco

laboris nisi ut aliquip ex ea commodo consequat.

Duis aute irure dolor in reprehenderit in voluptate

velit esse cillum dolore eu fugiat nulla pariatur.

Excepteur sint occaecat cupidatat non proident,

sunt in culpa qui officia deserunt mollit anim id est

laborum.

New File Open File Save File Revert …

Some Very Important Markdown

Figure 3.1 A wireframe of our application shows that the user can enter text in the left pane or load
it from a file from the user’s filesystem.

49Laying the foundation
In this chapter, we lay the foundation for our application. We create the project’s
structure, install our dependencies, set up our main and renderer processes, build
our UI, and implement the Markdown-to-HTML rendering when the user enters text
into the left pane.

 We build the remainder of the application in phases over the next several chapters.
In each chapter, you’ll download the current state of our application. This way you
can flip to a chapter that covers the functionality you’re interested in without having
to build the entire application from scratch.

 In the first phase, our application will be able to

 Open and save files to the filesystem
 Take Markdown content from those files
 Render the Markdown content as HTML
 Save the resulting HTML to the filesystem
 Write the resulting HTML to the clipboard

In later chapters, our application tracks recently opened documents using the native
operating system APIs. We can drag Markdown files from the Finder or Windows
Explorer onto our application and have the application immediately open that Mark-
down file. Our application will have its own custom application menu as well as cus-
tom context menus when we right-click on different areas of our application.

 We also take advantage of OS-specific features such as updating the application’s
title bar to show the file that is currently open and whether it has been changed since
the last time it was saved. We also implement additional features such as updating the
content in the application if some other application on the computer changes the file
while we have it open.

3.2 Laying the foundation
The file structure, shown in figure 3.2, is unsurprisingly similar to the structure we
agreed upon and used for our bookmark manager in the previous chapter. For the
sake of simplicity and clarity as we continue to get comfortable with Electron, we keep
all of the code for the main process in app/main.js and all of the code for our single

README.md

app

package.json

index.html

main.js

renderer.js

style.css

LICENSE

Project

Figure 3.2 The structure of our project

50 CHAPTER 3 Building a notes application
renderer process in app/renderer.js. We store the app folder on a UNIX-based operat-
ing system so we can generate it quickly, as shown in the following listing. Alterna-
tively, you can check out the master branch for this project on GitHub at https://
github.com/electron-in-action/firesale.

mkdir app && touch app/index.html app/main.js app/renderer.js app/style.css

The parts of the project are

 index.html—Contains all of the HTML markup that provides structure for
our UI

 main.js—Contains the code for our main process
 renderer.js—Contains all of the code for interactivity of our UI
 style.css—Contains the CSS that styles our UI
 package.json—Contains all of our dependencies and points Electron to main.js

when it loads the main process on start-up

To keep things simple, we start with two dependencies in addition to Electron as our
run time. We use a library called marked to handle the heavy lifting of converting
Markdown to HTML.

 To generate a package.json for this project, run npm init --yes. The --yes flag
allows you to skip the prompts from the previous chapter. After you generate the pack-
age.json file, run the following command to install the necessary dependencies:

npm install electron marked --save

Listing 3.1 Generating the application’s file structure

Main process Renderer process

Loads one or more
renderer processes

using BrowserWindow.

Electron reads the main entry in our
package.json to determine which file to run

as the main process.

Figure 3.3 Electron starts by looking for our single main process, which is in charge of spawning
one or more renderer processes in charge of displaying our UI.

https://github.com/electron-in-action/firesale
https://github.com/electron-in-action/firesale
https://github.com/electron-in-action/firesale

51Bootstrapping the application
3.3 Bootstrapping the application
The main entry in our package.json is configured to load index.js as the main process
for our application shown in figure 3.3. We need to adjust this to app/main.js. We also
need to fire up a renderer process to present the user with an interface for our applica-
tion. In app/main.js, let’s add the following code.

const { app, BrowserWindow } = require('electron');

let mainWindow = null;

app.on('ready', () => {
 mainWindow = new BrowserWindow();

 mainWindow.loadFile('index.html');

 mainWindow.on('closed', () => {
 mainWindow = null;
 });
});

This is enough to start up our application. That said, there is not a lot going on
because our main process currently loads an empty file in the renderer process.

3.3.1 Implementing the UI

Implementing the requisite amount of HTML and CSS to get a workable version of
the wireframe in figure 3.1 is fairly easy in Electron because we need to support only
one browser, and that browser supports the latest and greatest features that the web
platform offers, as shown in figure 3.4.

In index.html, we add the markup in listing 3.3 to create the browser window in fig-
ure 3.5.

Listing 3.2 Bootstrapping the main process: ./app/main.js

Declares mainWindow at the top level
so that it won’t be collected as garbage
after the “ready” event completes

Creates a new
BrowserWindow
using the default
properties

 Loads app/index.html
in the BrowserWindow
instance we just created

Sets the process
back to null when
the window is
closed

main.js index.html

renderer.js

style.css

Figure 3.4 The main process will create a renderer process and
tell it load index.html, which will then load CSS and JavaScript
just as it would in the browser.

52 CHAPTER 3 Building a notes application
<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width,initial-scale=1">
 <title>Fire Sale</title>
 <link rel="stylesheet" href="style.css" type="text/css">
 </head>
 <body>

 <section class="controls">
 <button id="new-file">New File</button>
 <button id="open-file">Open File</button>
 <button id="save-markdown" disabled>Save File</button>
 <button id="revert" disabled>Revert</button>
 <button id="save-html">Save HTML</button>
 <button id="show-file" disabled>Show File</button>
 <button id="open-in-default" disabled>Open in Default

➥ Application</button>
 </section>

Listing 3.3 Our application’s markup: ./app/index.html

Figure 3.5 The unstyled beginnings our first Electron application

The .controls section added
the buttons for opening
and saving files along the
top. We’ll add functionality
to these buttons later.

53Bootstrapping the application
 <section class="content">
 <label for="markdown" hidden>Markdown Content</label>
 <textarea class="raw-markdown" id="markdown"></textarea>
 <div class="rendered-html" id="html"></div>
 </section>

 </body>
 <script>
 require('./renderer');
 </script>
</html>

Our application isn’t much to look at just yet. If you’re anything like me, you’ve been
a bit skeptical about that two-column interface I introduced in the wireframe. The
word easy is rarely used when discussing how to implement columns using HTML and
CSS. Luckily, we can confidently use a new layout mode added to CSS3 called Flexbox
to quickly define the two-column layout of our application. Flexbox makes it easy to
create page layouts that behave predictably across a wide range of screen sizes, as
shown in listing 3.4. It’s relatively new to CSS and—until recently—was not supported
by Internet Explorer. As we discussed in chapters 1 and 2, our applications are always
coupled with a recent version of Chrome, so we can confidently use the Flexbox lay-
out mode without having to worry about cross-browser compatibility.

html {
 box-sizing: border-box;
}

*, *:before, *:after {
 box-sizing: inherit;
}

html, body {
 height: 100%;
 width: 100%;
 overflow: hidden;
}

body {
 margin: 0;
 padding: 0;
 position: absolute;
}

body, input {
 font: menu;
}

Listing 3.4 Using Flexbox to create page layouts: ./app/style.css

Our application allows us to write and edit content
in the text area with the class of .raw-markdown and
render that content in the div element with the class
of .rendered-html.

The <label> tags are
optional and included to

make the application
more accessible for

visually impaired users.

In the <script> tags at
the end of the file, we
require the code for our
renderer process, which
lives in renderer.js in the
same directory.

Opts in to an updated CSS
box model that will correctly
set the width and height of
elements

Passes this setting to
every other element and
pseudoelement on the page

Uses the operating
system’s default font
throughout the application

54 CHAPTER 3 Building a notes application
textarea, input, div, button {
 outline: none;
 margin: 0;
}

.controls {
 background-color: rgb(217, 241, 238);
 padding: 10px 10px 10px 10px;
}

button {
 font-size: 14px;
 background-color: rgb(181, 220, 216);
 border: none;
 padding: 0.5em 1em;
}

button:hover {
 background-color: rgb(156, 198, 192);
}

button:active {
 background-color: rgb(144, 182, 177);
}

button:disabled {
 background-color: rgb(196, 204, 202);
}

.container {
 display: flex;
 flex-direction: column;
 min-height: 100vh;
 min-width: 100vw;
 position: relative;
}

.content {
 height: 100vh;
 display: flex;
}

.raw-markdown, .rendered-html {
 min-height: 100%;
 max-width: 50%;
 flex-grow: 1;
 padding: 1em;
 overflow: scroll;
 font-size: 16px;
}

.raw-markdown {
 border: 5px solid rgb(238, 252, 250);;
 background-color: rgb(238, 252, 250);
 font-family: monospace;
}

Removes the browser’s
default highlighting around
active input fields

Uses Flexbox to align
the two panes of our
application

Sets both panes
to an equal width
using Flexbox

55Bootstrapping the application
We have two major goals for the stylesheet. First, we want to take advantage of mod-
ern CSS features like Flexbox to lay out our UI. Second, we want to take small steps
toward making our application look and feel a bit more like a real web application
(see figure 3.6).

The box-sizing property handles an historical oddity in CSS where adding 50 pixels
of padding to an element with a width of 200 pixels would cause it to be 300 pixels
wide (adding 50 pixels of padding on each side), with the same being true for borders
as well. When box-sizing is set to border-box, our elements respect the height and
width that we set them to. Generally speaking, this is a good thing. In this CSS rule, we
also have every other element and pseudoelement respect the hard work we did by
setting box-sizing to border-box.

 We want our applications to fit in with their native colleagues. One important step
in that direction is to use the system font that all of the other applications use. That’s
easier said than done. For example, despite the fact that macOS uses San Francisco as
the default font throughout the operating system, it’s not available as a regular font.
We set the font property to menu, which defers to the operating system to use its
default font—even if we wouldn’t otherwise have access to it.

Figure 3.6 Our application has been given some basic styling using modern features of CSS.

56 CHAPTER 3 Building a notes application
 The browser puts a border around whatever UI element is currently active. In
macOS, this border is a blue glow. You’ve probably never thought much about it,
because we’re used to it on the web, but it looks out of place when we’re developing a
desktop application. It looks especially bad in our application where one-half of the
UI is effectively a large text input. By setting outline to none, we remove the unnatu-
ral glow around the active element.

 In the .content, .raw-markdown, and .rendered-html rules, we implement a sim-
ple Flexbox layout, which will make our application look more like the wireframe we
introduced in figure 3.1. The element with the content class will hold our two columns.
We set the display property to flex to use the Flexbox technology we discussed earlier.
In the next step, we set flex-grow, which specifies the grow factor for a flex item, of
course. It’s probably helpful to think of this as the element’s scale in relation to its
sibling. In this case, we set both columns to an equal ratio using Flexbox.

3.3.2 Gracefully displaying the browser window

If you look closely as your application launches, you’ll notice a brief moment when
the window is completely blank before Electron loads index.html and renders the
DOM in the window. Users are not used to seeing this in native applications, and we
can avoid it by rethinking how we launch the window.

 The flash of nothingness when the application first launches makes sense if you
consider the code in the main process: it creates a window and then loads content in
it. What if we hide the window until the content is loaded? Then, when the UI is ready,
we show the window and avoid briefly exposing an empty window.

app.on('ready', () => {
 mainWindow = new BrowserWindow({ show: false });

 mainWindow.loadFile('index.html');

 mainWindow.once('ready-to-show', () => {
 mainWindow.show();
 });

 mainWindow.on('closed', () => {
 mainWindow = null;
 });
});

We passed an object to the BrowserWindow constructor, setting it as hidden by default.
When the BrowserWindow instance fires its 'ready-to-show' event, we’ll call its show()
method, which will bring it out of hiding after the UI is fully ready to go. This
approach is even more useful when the application is loading a remote resource over
the network, which is likely to take much longer to initialize the page.

Listing 3.5 Gracefully showing the window when the DOM’s ready: ./app/main.js

Begin by hiding
the window when
it’s first created.

Add a single event
listener to the window’s
“ready-to-show” event.

Show the window when
the DOM is ready.

57Implementing the base functionality
3.4 Implementing the base functionality
Let’s put a stake in the ground by getting some of the basic functionality in place. For
starters, we want to update the rendered HTML view in the right pane whenever the
Markdown in the left pane changes (see figure 3.7). This is where our one dependency—
marked—comes in to play.

Bringing in our dependencies is easy because we can use Node’s require to pull in
marked. Let’s add the following in app/renderer.js.

const marked = require('marked');

Now, we have access to Marked using marked. Given our discussion of the application’s
functionality along with the diagram in figure 3.7, you’ve probably begun to suspect
that we’ll be working with the #markdown text area and the #html element a fair
amount as we develop our application. Let’s use a pair of variables to store a reference
to each element so that they’re easier to work with, as shown in listing 3.7. While we’re
at it, let’s also create variables for each of the buttons along the top of the UI.

Listing 3.6 Requiring our dependencies: ./app/renderer.js

markdownView htmlView

New File Open File

markdownView.addEventListener('keyup')

Re-render the
HTML view when
the Markdown

changes

Changes trigger
a keyup event

…

Figure 3.7 We’ll add an event listener to the left pane that will render the Markdown as HTML
and display it in the right pane.

58 CHAPTER 3 Building a notes application
const markdownView = document.querySelector('#markdown');
const htmlView = document.querySelector('#html');
const newFileButton = document.querySelector('#new-file');
const openFileButton = document.querySelector('#open-file');
const saveMarkdownButton = document.querySelector('#save-markdown');
const revertButton = document.querySelector('#revert');
const saveHtmlButton = document.querySelector('#save-html');
const showFileButton = document.querySelector('#show-file');
const openInDefaultButton = document.querySelector('#open-in-default');

We also render Markdown into htmlView fairly frequently, so we want to give ourselves
a function to make this easier for us in the future.

const renderMarkdownToHtml = (markdown) => {
 htmlView.innerHTML = marked(markdown, { sanitize: true });
};

marked takes the Markdown content we want to render as the first argument and an
object of options as the second argument. We’d like to protect ourselves from acciden-
tal script injections, so we pass in an object with the sanitize property set to true.

 Finally, we add an event listener to markdownView that on keyup will read its con-
tents (which, in textarea elements, is stored in its value property), run them
through marked, and then load them into htmlView. The result is shown in figure 3.8.

markdownView.addEventListener('keyup', (event) => {
 const currentContent = event.target.value;
 renderMarkdownToHtml(currentContent);
});

Listing 3.7 Caching DOM selectors: ./app/renderer.js

Listing 3.8 Converting Markdown to HTML: ./app/renderer.js

Listing 3.9 Re-rendering the HTML when Markdown changes: ./app/renderer.js

Figure 3.8 Our application takes the content typed by the user in the left pane and automatically
renders it as HTML in the right pane. This content was provided by the user and is not part of our
application.

59Debugging an Electron application
The basic functionality is in place and we’re ready to begin working on the features
that would only be possible in an Electron application—starting with reading and writ-
ing files from and to the filesystem. When all is said and done, the renderer process of
our application should look like this.

const marked = require('marked');

const markdownView = document.querySelector('#markdown');
const htmlView = document.querySelector('#html');
const newFileButton = document.querySelector('#new-file');
const openFileButton = document.querySelector('#open-file');
const saveMarkdownButton = document.querySelector('#save-markdown');
const revertButton = document.querySelector('#revert');
const saveHtmlButton = document.querySelector('#save-html');
const showFileButton = document.querySelector('#show-file');
const openInDefaultButton = document.querySelector('#open-in-default');

const renderMarkdownToHtml = (markdown) => {
 htmlView.innerHTML = marked(markdown, { sanitize: true });
};

markdownView.addEventListener('keyup', (event) => {
 const currentContent = event.target.value;
 renderMarkdownToHtml(currentContent);
});

3.5 Debugging an Electron application
In an ideal world, we’d never make mistakes when writing code. APIs and methods
would never change between versions and your author wouldn’t have to hold his
breath every time a new version of a dependency used by the applications in this book
was released. We don’t live in that world. Thus, we have developer tools at our disposal
to aide us in tracking down and—hopefully—eliminating bugs.

3.5.1 Debugging renderer processes

Everything has been going pretty smoothly so far, but it probably won’t be long before
we’re going to have to debug some tricky situation. Because Electron applications are
based on Chrome, it’s no surprise that we have access to the Chrome Developer Tools
when building Electron applications (figure 3.9).

 Debugging the renderer process is relatively straightforward. Electron’s default
application menu provides a command for opening up the Chrome Developer Tools
in our application. In chapter 6, we’ll learn how to create our own custom menu and
eliminate this feature in the event that you’d prefer not to expose it your users.

 There are also two other ways to access the Developer Tools. At any point, you
can press Command-Option-I on macOS or Control-Shift-I on Windows or Linux to
open up the tools (figure 3.10). In addition, you can trigger the Developer Tools

Listing 3.10 The renderer process: ./app/renderer.js

60 CHAPTER 3 Building a notes application
programmatically. The webContents property on BrowserWindow instances has a
method called openDevTools(). This method, as explained in listing 3.11, will open
the Developer Tools in the BrowserWindow it’s called on.

Figure 3.9 The Chrome Developer Tools are available in the renderer process just as they would be in
a browser-based application.

Figure 3.10 The tools can be toggled on and off in the default menu provided by Electron. You can also toggle
them using Control-Shift-I on Windows or Command-Option-I on macOS.

61Debugging an Electron application
app.on('ready', () => {
 mainWindow = new BrowserWindow();

 mainWindow.loadFile('index.html');

 mainWindow.once('ready-to-show', () => {
 mainWindow.show();
 mainWindow.webContents.openDevTools();
 });

 mainWindow.on('closed', () => {
 mainWindow = null;
 });
});

3.5.2 Debugging the main process

Debugging the main process is not so easy. Node Inspector, a common tool for debug-
ging Node.js applications, is not fully supported by Electron at this time. You can start
your Electron application in debug mode using the --debug flag, which will—by
default—enable remote debugging on port 5858.

 Limited support for using Node Inspector with Electron is available in the official
documentation. As this is still in a bit of flux for the time being, you should review the
most recent version of the documentation if you are not using Visual Studio Code
(http://electron.atom.io/docs/tutorial/debugging-main-process/). That said, I haven’t
found this technique particularly stable and wouldn’t recommend it. Your mileage
may vary.

3.5.3 Debugging the main process with Visual Studio Code

Visual Studio Code is a free, open source IDE available for Windows, Linux, and
macOS and is—coincidentally—built on top of Electron by Microsoft. Visual Studio
Code comes with a rich set of tools for debugging Node applications that make it
much easier to debug Electron applications than noted previously. A quick way to set
up a build task is to ask Visual Studio Code to build the application without a build
task. Press Control-Shift-B on Windows or Command-Shift-B on macOS and you’ll be
prompted to create a build task, as shown in figure 3.11.

 Clicking on the Configure Build Task menu item will prompt you to select whether
you want to create a “start” or “test” task. Choosing “start” will generate a task that calls
npm start. Choosing “test” will generate npm test. Listing 3.12 is an example of what a
“start” task looks like.

Listing 3.11 Opening the Developer Tools from the main process: ./app/main.js

We can programmatically
trigger the opening of the
Developer Tools on the main
window as soon as it’s loaded.

http://electron.atom.io/docs/tutorial/debugging-main-process/

62 CHAPTER 3 Building a notes application
{
 // See https://go.microsoft.com/fwlink/?LinkId=733558
 // for the documentation about the tasks.json format
 "version": "2.0.0",
 "tasks": [
 {
 "type": "npm",
 "script": "start",
 "group": {
 "kind": "build",
 "isDefault": true
 }
 }
]
}

Now, when you press Control-Shift-B on Windows or Command-Shift-B on macOS,
your Electron application will start up. Not only is this important in order to set up
debugging within Visual Studio Code, it’s also a convenient way to start up your appli-
cation in general. The next step is to set up Visual Studio Code to launch the applica-
tion and connect it to its built-in debugger (figure 3.12).

 To create a launch task, go the Debug tab in the left pane and click on the small
gear in the upper-left corner. Visual Studio Code will ask you what kind of configura-
tion file you’d like to create. Select Node and replace the contents of the file with list-
ing 3.13.

Listing 3.12 Setting up a build task in Visual Studio Code for Windows: tasks.json

Figure 3.11 Triggering the build task without one in place will prompt Visual Studio Code to create one on
your behalf.

63Debugging an Electron application
{
 "version": "0.2.0",
 "configurations": [
 {
 "name": "Debug Main Process",
 "type": "node",
 "request": "launch",
 "cwd": "${workspaceRoot}",
 "runtimeExecutable":
 "${workspaceRoot}/node_modules/.bin/electron",
 "windows": {
 "runtimeExecutable":
 "${workspaceRoot}/node_modules/.bin/electron.cmd"
 },
 "args":
 "."
]
 }
]
}

With this configuration file in place, you can click on the left margin of any line in
your main process to set a breakpoint and then press F5 to run the application. Execu-
tion will pause at the breakpoint, allowing you to inspect the call stack, determine
what variables are in scope, and interact with a live console. Breakpoints aren’t the
only way to debug your code. You can also watch for particular expressions or drop
into the debugger whenever an uncaught exception is thrown (figure 3.13).

 There is a high chance that you’re not using Visual Studio Code. That’s fine. It’s
not a prerequisite for this book and you will almost definitely be fine using the text

Listing 3.13 Setting up a launch task for Visual Studio Code for Windows: launch.json

Figure 3.12 Inside the Debug tab, click on the gear and Visual Studio Code will create a configuration file for
launching the debugger on your behalf.

64 CHAPTER 3 Building a notes application
editor or IDE you’re most comfortable with. In addition, Visual Studio Code isn’t the
only one with support for debugging the main process. For example, you can find
details for configuring WebStorm here: http://mng.bz/Y5T6.

Summary
 Over the next few chapters, we’ll be working on a Markdown-to-HTML renderer.
 Flexbox is supported by modern browsers and allows us to easily implement a

two-pane interface that will adapt as the user changes the size of the window.
 Chrome Developer Tools are available in all renderer processes and can be trig-

gered from the default application in Electron, a keyboard shortcut, or from
the main process.

 The Node Inspector is not fully supported in Electron at this time.
 Visual Studio Code provides a rich set of tools for debugging problems in the

main process of your application.

Figure 3.13 The debugger built in to Visual Studio Code allows you to pause the execution of your application
and drop in to investigate bugs.

http://mng.bz/Y5T6

Using native file dialog boxes
and facilitating interprocess

communication
In the previous chapter, we laid the foundation for our first Electron project, a
notes application that takes Markdown from the left pane and renders it as HTML
in the right pane. We set up our main process and configured it to spawn a ren-
derer. We set up package.json, installed the necessary dependencies, created the
main and renderer processes, and laid out the UI. We also explored ways we can

This chapter covers
 Implementing a native open file dialog box using

Electron’s dialog module

 Facilitating communication between the main process
and a renderer process

 Exposing functionality from the main process to
renderer processes

 Importing functionality from the main process into the
renderer process using Electron’s remote module

 Sending information from the main process to a
renderer process using the webContents module and
setting up a listener for messages from the main
process using the ipcRenderer module
65

66 CHAPTER 4 Using native file dialog boxes and facilitating interprocess communication
make our application feel like a desktop application, but we haven’t added a feature
that is far outside the scope of what a traditional web application could do yet.

 Right now, the application allows the user to write in the Markdown view. When
the user presses a key in the Markdown view, the application automatically renders the
Markdown to HTML and displays it in the HTML view.

 In this chapter, we’ll add the ability to trigger a native file dialog box and select a
text file from anywhere on the filesystem and load it into our application. By the end
of the chapter, the Open File button in the renderer process’s browser window will
trigger the Open File dialog box from the main process. Before we can do that, it’s
important to discuss how to communicate between processes in a bit more depth. We
start on the chapter-3 branch, which can be found at http://mng.bz/11Kd. The code
at the end of the chapter can be found at http://mng.bz/0C34. Alternatively, you can
pull down the master branch and check out either of these two branches.

git clone https://github.com/electron-in-action/firesale.git chapter-3
git checkout -f chapter3

4.1 Triggering native file dialog boxes
An easy way to get started is to prompt the user for a file to open when the application
first starts and emits its ready event, as shown in figure 4.1. Our application is already
listening for the ready event before we create our BrowserWindow instance. Later in
this chapter, we learn how to trigger this functionality from the UI. In the next chap-
ter, we learn how to trigger it from the application menu as well.

You create native dialogs using Electron’s dialog module. Add the code in listing 4.1
to app/main.js just beneath where the other Electron modules are required.

Electron

Main rocessp

app.on('ready')

Create BrowserWindow and

store it in mainWindow

Load index.html into

mainWindow

Display file open dialog

Open developer tools

Add event listener for when

mainWindow closes

Add the open file dialog
when the application

is first ready.

Reads package.json
to load the main process

Figure 4.1 Our application will trigger the Open File dialog box when it starts. By the
end of the chapter, this functionality will be replaced by the ability to trigger the dialog
box from the UI.

http://mng.bz/11Kd
http://mng.bz/0C34

67Triggering native file dialog boxes
const { app, BrowserWindow, dialog } = require('electron');

Eventually the application should trigger our file-opening functionality from multiple
places. The first step is to create a function to reference later. Start by logging the
name of the file selected to the console after it has been selected.

const getFileFromUser = () => {
 const files = dialog.showOpenDialog({
 properties: ['openFile']
 });

 if (!files) { return; }

 console.log(files);
};

Our getFileFromUser() function is a wrapper over dialog.showOpenDialog() that
we can use in multiple places in our application without having to repeat ourselves. It
will trigger the showOpenDialog() method on dialog and pass it a JavaScript object
with different settings that we can adjust as needed. In JavaScript, an object’s keys
are called its properties. The properties of the object passed to dialog.showOpen-
Dialog()configure certain characteristics of the dialog box we’re creating. One such
setting is the properties of the dialog box itself. The properties property on the con-
figuration object takes an array of different flags we can set on the dialog box. In this
case, we’re activating only the openFile flag, which signifies that this dialog box is for
selecting a file to open—as opposed to selecting a directory or multiple files. The
other flags available are openDirectory and multiselections.

 dialog.showOpenDialog()returns the names of the files selected. An array of
the paths selected by the user are stored in a variable called files. If the user
presses cancel, dialog.showOpenDialog()returns undefined and breaks if we try to
call any methods on files while it’s undefined. The return statement guards
against that by leaving the function early if files is a false value—and undefined is,
in fact, a false value.

 getFileFromUser()must be called somewhere in our application to trigger the
dialog box. Eventually, it will be called from the UI and the application menu. A con-
venient place to do this—for now—is when the application starts. Call getFileFrom-
User() when the app module fires its ready event, as shown in the following listing.
This step will be removed when our UI is configured to trigger getFileFromUser()
from the renderer process.

Listing 4.1 Importing the dialog module: ./app/main.js

Listing 4.2 Creating a getFileFromUser() function: ./app/main.js

Triggers the operating system’s Open
File dialog box. We also pass it a JavaScript
object of different configuration arguments
to the function.

The configuration object
sets different properties
on the Open File dialog.

If we don’t have any files,
return early from the
function.

Logs the files
to the console

68 CHAPTER 4 Using native file dialog boxes and facilitating interprocess communication
app.on('ready', () => {
 mainWindow = new BrowserWindow({ show: false });

 mainWindow.loadFile('index.html');

 mainWindow.once('ready-to-show', () => {
 mainWindow.show();
 getFileFromUser();
 });

 mainWindow.on('closed', () => {
 mainWindow = null;
 });
});

When our application starts and the window is fully loaded, users immediately will see
a File dialog box, which will allow them to select a file (see figure 4.2). We eventually
remove this function call from the launch process and assign it to the Open File but-
ton in the UI.

In figure 4.3, we can see the results of our selection in the Open File dialog box dis-
played in our terminal. Notice that dialog.showOpenDialog() returns an array. If
multiselections is activated in the dialog’s properties array, the user can select
multiple files. Electron always returns an array for consistency.

Listing 4.3 Invoking getFileFromUser() when the application is first ready

We’ll call getFileFromUser()
when the window is ready to
show. getFileFromUser() is
defined in listing 4.2.

Figure 4.2 Electron is able to trigger native file dialog boxes in each of its supported operating systems.

69Reading files using Node
4.2 Reading files using Node
dialog.showOpenDialog() returns an array consisting of the paths of the file or files
that the user selected, but it does not read them on our behalf. Depending on what
kind of file we’re building, we might want to handle opening the file differently. In
this application, the contents of the file are read and immediately displayed in the UI.
A different application that handles copying images or uploads them to an external
service might take a contrasting approach when the user selects a file. Still another
application might add a large movie to a playlist to watch later. In this case, it would be
wasteful to immediately start opening the large file.

 Node comes with a set of tools for working with files in its standard library. The
built-in fs library handles common filesystem operations such as reading and writing
files, so you should require it near the top of app/main.js.

const { app, BrowserWindow, dialog } = require('electron');
const fs = require('fs');

app.on('ready',() => { … });

const getFileFromUser = () => {
 const files = dialog.showOpenDialog(mainWindow, {
 properties: ['openFile']
 });

 if (!files) { return; }

 const file = files[0];
 const content = fs.readFileSync(file).toString();

 console.log(content);
};

Listing 4.4 Importing Node’s fs module: ./app/main.js

Figure 4.3 Upon selecting a file, the full path of the file is logged to the console in our
terminal window.

Requires Node’s
fs library.

Code omitted
for clarity.

Pulls the first file
out of the array

Reads from the file, and
converts the resulting
buffer to a string.

70 CHAPTER 4 Using native file dialog boxes and facilitating interprocess communication
In listing 4.4, the application opens only one file at a time. files[0] selects the first—
and only—file path out of the array from dialog.showOpenDialog(). In fs.read-
FileSync(file) the file path is passed as an argument to fs.readFileSync(). Node
doesn’t know what kind of file was opened, so fs.readFileSync() returns a buffer
object. We know, however, that we typically work with plain text in this particular appli-
cation. We convert it to a string and log the contents of the file to the terminal, as
shown in figure 4.4.

4.2.1 Scoping the Open File dialog

As you can see in figure 4.4, getFileFromUser()successfully logs the contents of a text
file to the terminal. But there is a problem. By default, dialog.showOpenDialog()lets
us open any file on our computer, with no consideration for what types of files we’re
prepared to handle. Figure 4.5 shows the problematic result when we open an image
file instead of a text file through the dialog box.

Figure 4.4 The contents of the file are logged to the user’s terminal.

Figure 4.5 If the user selects a nontext file, the function logs the binary data.

71Reading files using Node
Many desktop applications can limit the file types that the users can open. This is also
true for applications built with Electron. Our application isn’t suited for opening
music files, so we should probably not let the user select MP3s. Additional options can
be added to the configuration object passed to dialog.showOpenDialog() to restrict
the dialog box to file extensions that we’ve whitelisted.

const getFileFromUser = () => {
 const files = dialog.showOpenDialog({
 properties: ['openFile'],
 filters: [
 { name: 'Text Files', extensions: ['txt'] },
 { name: 'Markdown Files', extensions: ['md', 'markdown'] }
]
 });

 if (!files) { return; }

 const file = files[0];
 const content = fs.readFileSync(file).toString();

 console.log(content);
};

In the listing we added a second property to the object passed to dialog.showOpenDia-
log(). In Windows, the dialog displays the name Markdown Files in the drop-down
menu, as seen in figure 4.6. In macOS, there is no drop-down menu, but we cannot
select images that do not have one of the extensions, as shown in figure 4.7.

4.2.2 Implementing dialog sheets in macOS

Electron applications are designed to be cross-platform, meaning they work on macOS,
Windows, and Linux. Electron provides interfaces to native features and APIs that
exist in each of the supporting operating systems but do not exist in the others. We
saw this earlier when we provided a name for our file extension filters. This name
appears in Windows, but macOS does not have this capability. Electron takes advan-
tage of this feature if it is available, but it still works in the cases where it isn’t.

 In macOS, we’re able to display dialog boxes that drop down as sheets from the
top of the window instead of being displayed in front of it (listing 4.6). We can create
this UI easily in Electron by passing a reference to the BrowserWindow instance—
which we’ve stored in mainWindow—as the first argument to dialog.showOpenDialog(),
before the configuration object.

Listing 4.5 Whitelisting specific file types: ./app/main.js

The filters property allows us to specify
what types of files our application should
be able to open and disables any file that
doesn’t match our criteria.

72 CHAPTER 4 Using native file dialog boxes and facilitating interprocess communication
Figure 4.6 In Windows, we can switch between different types of files.

Figure 4.7 macOS does not support switching between types of files but does allow us to select any
file that is eligible as defined by the filters option.

73Reading files using Node
const getFileFromUser = () => {
 const files = dialog.showOpenDialog(mainWindow, {
 properties: ['openFile'],
 filters: [
 { name: 'Text Files', extensions: ['txt'] },
 { name: 'Markdown Files', extensions: ['md', 'markdown'] }
]
 });

 if (!files) { return; }

 const file = files[0];
 const content = fs.readFileSync(file).toString();

 console.log(content);
};

With this simple change, Electron now displays the Open File dialog as a sheet that
drops down from the window passed to the method, as shown in figure 4.8.

Listing 4.6 Creating sheet dialogs in macOS: ./app/main.js

Passing a reference to a
BrowserWindow instance
to dialog.showOpenDialog

will cause macOS to
display the dialog box as a

sheet coming down from
the title bar of the

window. It has no effect
on Windows and Linux.

Figure 4.8 Instead of appearing as an additional window in front of our application’s window, the Open File dialog
box now drops down from the menu’s title bar in macOS.

74 CHAPTER 4 Using native file dialog boxes and facilitating interprocess communication
4.3 Facilitating interprocess communication
We’ve written all of the code for selecting files and reading files in our main process.
But how do we send the contents of the file to the renderer process? How do we trig-
ger the getFileFromUser() function in our main process from our UI?

 We have to deal with similar issues when building traditional web applications. It’s
not exactly the same because all of the code runs on the client’s computer, but think-
ing about how we usually build web applications can serve as a helpful metaphor for
understanding how to structure our Electron applications. See figure 4.9.

On the web, we typically write code that runs in one of two places: on our servers or
client-side code that runs in our users’ browsers. The client-side code is what renders
the UI. It listens for and handles user actions and updates the UI to display the cur-
rent state of the application. There are, however, limits to what we can do with client-
side code. As we discussed in chapter 1, we cannot read from or write to the database
or filesystem. Server-side code runs on our computer. It has access to the database. It
can write to the log files on our system.

 In traditional web applications, we typically facilitate communication between the
client- and server-side processes using a protocol like HTTP. With HTTP, the client
can send a request with information. The server receives this request, handles it
appropriately, and sends a response to the client.

 In Electron applications, things are a little different. As we’ve discussed in the pre-
vious chapters, Electron applications consist of multiple processes: one main process
and one or more renderer processes. Everything runs on our computer, but there is a

Client's computerYour server

T
ra

d
it
io

n
a
l
w

e
b
 a

p
p
lic

a
ti
o
n
s

E
le

c
tr

o
n
 a

p
p
lic

a
ti
o
n
s

Server code

Writes to the

filesystem or database.

Coordinates between

clients. Communicates

with the operating

system.

Client code

Renders the UI.

Responds to user

events.

Renderer process

Renders the UI.

Responds to user

events.

Main process

Writes to the

filesystem or database.

Coordinates between

clients. Communicates

with the operating

system.

Server code

Optional. Electron

applications could

work with an external

server to coordinate

between multiple

clients.

Figure 4.9 The division of responsibilities in Electron applications versus traditional web applications.

75Facilitating interprocess communication
similar separation of roles to the client-server model. We don’t use HTTP to commu-
nicate between processes. Instead Electron provides several modules for coordinating
communication between the main and renderer processes.

 Our main process is in charge of interfacing with the native operating system APIs.
It’s in charge of spawning renderer processes, defining application menus, displaying
Open and Save dialog boxes, registering global shortcuts, requesting power information
from the OS, and more. Electron enforces this by making many of the modules needed
to perform these tasks available only in the main process, as shown in figure 4.10.

Electron provides only a subset of its modules to each process and doesn’t keep us
from accessing Node APIs that are separate from Electron’s modules. We can access a
database or the filesystem from the renderer process if we want, but there are compel-
ling reasons to keep this kind of functionality in the main process. We could poten-
tially have many renderer processes, but we will always have only one main process.
Reading from and writing to the filesystem from one of our renderer processes could
become problematic; we could end up in a situation where one or more processes try
to write to the same file at the same time or read from a file while another renderer
process is overwriting it.

Modules available to

the main process

Modules available

to renderer processes

Modules available

to both processes

app

autoUpdater

BrowserWindow

contentTracing

dialog

globalShortcut

ipcMain

Menu

MenuItem

powerMonitor

powerSaveBlocker

protocol

session

webContents

tray

desktopCapturer

ipcRenderer

remote

webFrame

clipboard

crashReporter

nativeImage

screen

shell

Figure 4.10 Electron provides different modules to the main and renderer processes. These modules
represent the code capabilities of Electron. This list is likely to grow and may be incomplete by the time
you read this. I encourage you to visit the documentation to see the latest and greatest features.

76 CHAPTER 4 Using native file dialog boxes and facilitating interprocess communication
 A given process in JavaScript executes our code on a single thread and can do only
one thing at a time. By delegating these tasks to the main process, we can be confident
that only one process is performing reading or writing to a given file or database at a
time. Other tasks follow the normal JavaScript protocol of patiently waiting in the
event queue until the main process is done with its current task.

 It makes sense that the main process handles tasks that call native operating system
APIs or provides filesystem access, but the UI that likely triggers these operations is
called in the renderer process. Even though all of the code is running on the same
computer, we still have to coordinate the communication between our processes, just
as we would have to coordinate communication between the client and server.

 More recently, protocols like WebSockets and WebRTC have emerged that allow
for two-way communication between the client and server, and even communication
between clients, without needing a central server to facilitate communication. When
we’re building desktop applications, we typically won’t be using HTTP or WebSockets,
but Electron has several ways to coordinate interprocess communication, which we
begin to explore in this chapter and is shown in figure 4.11.

Our UI contains a button with the label Open File. When the user clicks this button,
our application should provide a dialog box allowing the user to select a file to open.
After the user selects a file, our application should read the contents of the file, dis-
play them in the left pane of our application, and render the corresponding HTML in
the right pane.

 As you might have guessed, this requires us to coordinate between the renderer
process, where the button was clicked, and the main process, which is responsible for

Main process creates a native

open file dialog

User selects a file from the

filesystem using the dialog

Main process reads the contents of

the file using Node’s fs module

Main process Renderer process

Renderer process updates the Markdown

view with the contents of the file

Renderer process converts the Markdown

to HTML and updates the HTML view

User clicks the Open File button

Renderer process
triggers the openFile
in the main process

Main process sends the file
contents back to the renderer process

Figure 4.11 Implementing the Open File button involves coordinating communication between the
renderer process and the main process.

77Facilitating interprocess communication
displaying the dialog and reading the chosen file from the filesystem. After reading
the file, the main process needs to send the contents of the file back over to the ren-
derer process (next listing) to be displayed and rendered in the left and right panes,
respectively.

const marked = require('marked');

const markdownView = document.querySelector('#markdown');
const htmlView = document.querySelector('#html');
const newFileButton = document.querySelector('#new-file');
const openFileButton = document.querySelector('#open-file');
const saveMarkdownButton = document.querySelector('#save-markdown');
const revertButton = document.querySelector('#revert');
const saveHtmlButton = document.querySelector('#save-html');
const showFileButton = document.querySelector('#show-file');
const openInDefaultButton = document.querySelector('#open-in-default');

const renderMarkdownToHtml = (markdown) => {
 htmlView.innerHTML = marked(markdown, { sanitize: true });
};

markdownView.addEventListener('keyup', (event) => {
 const currentContent = event.target.value;
 renderMarkdownToHtml(currentContent);
});

openFileButton.addEventListener('click', () => {
 alert('You clicked the "Open File" button.');
});

Start by adding an event listener to the Open File button in our renderer process.
With our event listener in place, it’s time to coordinate with the main process to trig-
ger the Open File dialog box we created earlier.

4.3.1 Introducing the remote module

Electron provides numerous ways to facilitate interprocess communication. The first
one is the remote module—a simple way to perform interprocess communication
from the renderer process to the main process. The remote module, available only in
the renderer process, works as a proxy to the main process by mirroring the modules
that are accessible in the main process. The remote module also takes care of commu-
nication to and from the main process when we access any of those properties.

 Depicted in figure 4.12, the remote module has several properties that overlap
with the modules available only to the main process. In our renderer process, we can
require the remote module, and it provides access to objects and properties in the
main process, as shown in figure 4.13.

 When we call a method or property on the remote object, it sends a synchronous
message to the main process, executes in the main process, and sends a message back

Listing 4.7 Adding an event listener in the renderer process: ./app/renderer.js

Opts in to an updated CSS
box model that will correctly
set the width and height of
elements

78 CHAPTER 4 Using native file dialog boxes and facilitating interprocess communication
Modules available to

remote module

app

autoUpdater

BrowserWindow

contentTracing

dialog

globalShortcut

ipcMain

Menu

MenuItem

powerMonitor

powerSaveBlocker

protocol

session

webContents

tray

clipboard

crashReporter

nativeImage

screen

shell

Modules available

to the main process

Figure 4.12 The remote module shares many of the same properties as
the Electron module in the main process.

const electron = require('electron');

const globalShortcut = electron.globalShortcut;

Main process Renderer process

const app = electron.app;

const BrowserWindow = electron.BrowserWindow;

const electron = require('electron');

const globalShortcut = remote.globalShortcut;

const app = remote.app;

const BrowserWindow = remote.BrowserWindow;

const remote = electron.remote;

Figure 4.13 The remote module provides access to modules normally available only to the
main process.

79Triggering the Open File function using interprocess communication
to the renderer process with the results. The remote module allows us to define func-
tionality in the main process and easily makes it available to our renderer processes.

4.4 Triggering the Open File function using
interprocess communication
The application can now trigger an Open File dialog box and read the contents of the
file that the user selected in the main process. We’ve also added an event listener to
the Open File button in the renderer process. Now it’s just a matter of connecting
them using the interprocess communication techniques we explored earlier.

4.4.1 Understanding the CommonJS require system

To use functionality from the main process using the remote module, we need to take
advantage of Node’s CommonJS module system to expose that functionality to other
files in our application. We’ve used require in this book to pull in functionality from
Electron, the Node standard library, and third-party libraries, but this is the first time
we use it with our own code. Let’s spend a few minutes reviewing how it works.

 Node’s module system consists of two primary mechanisms: the ability to require
functionality from other sources, and the ability to export functionality to be con-
sumed by other sources. When we require code from other sources, the other source
could be a file we’ve written, a third-party module, a module from the Node, or a
module provided by Electron. We’ve used Node’s built-in require function at the top
of both our main and renderer processes.

 When we require a module, what exactly are we importing? In Node, we explicitly
declare what functionality should be exported from the module, as shown in listing 4.8.
This function is imported in listing 4.9. Every module in Node has a built-in object
called exports that starts out as an empty object. Anything we add to the exports
object is available when we require it from another file.

exports.addTwo = n => n + 2;

const basicMath = require('./basic-math');

basicMath.addTwo(4); // returns 6

4.4.2 Requiring functionality from another process

The built-in require function does not work across processes. When we’re working
in the renderer process, any functionality we use from the built-in require function
to import will be part of the renderer process. When we’re working in the main pro-
cess, any functionality we require will be part of the main process. But what happens

Listing 4.8 Exporting a function in Node: basic-math.js

Listing 4.9 Importing a function in Node

80 CHAPTER 4 Using native file dialog boxes and facilitating interprocess communication
when we are in the renderer process and we want to require functionality from the
main process?

 Electron’s remote module has its own require method that allows it to require
functionality from the main process in our renderer process. Using remote.require
returns a proxy object—like the other properties on the remote object. Electron takes
care of all of the interprocess communication on our behalf.

 To implement the functionality we set out at the beginning of this chapter, the
main process must export its getFileFromUser() function so that we can import it
into our renderer code. This listing updates a single line in app/main.js.

const getFileFromUser = exports.getFileFromUser = () => {
 const files = dialog.showOpenDialog(mainWindow, {
 properties: ['openFile'],
 filters: [
 { name: 'Text Files', extensions: ['txt'] },
 { name: 'Markdown Files', extensions: ['md', 'markdown'] }
]
 });

 if (!files) { return; }

 const file = files[0];
 const content = fs.readFileSync(file).toString();

 console.log(content);
};

The code takes the getFileFromUser() function we created and exports it as a prop-
erty with the same name on the exports object. The render process needs to bring in
Electron’s remote module and then use the remote.require function to get a refer-
ence to the getFileFromUser() function from the main process in our renderer pro-
cess. This is different from the built-in require function shown in listing 4.11 because
the imported code is evaluated in terms of the main process, not the renderer process
in which it was required. This is accomplished in four steps:

1 Require Electron in our renderer process.
2 Store a reference to the remote module.
3 Use remote.require to require the main process.
4 Store a reference to the getFileFromUser() function exported from the main

process.

Listing 4.10 Exporting ability to open the file dialog from the renderer process:
./app/main.js

In addition to creating a constant in this file, we assign it
as a property of the exports object, which will be accessible

from other files—specifically, the renderer process.

81Sending content from the main process to the renderer process
const { remote } = require('electron');
const mainProcess = remote.require('./main.js');

We can now call the getFileFromUser() function we exported from the main process
in our renderer process. Let’s replace the functionality in our event listener to trigger
the Open File dialog box instead of firing an alert.

openFileButton.addEventListener('click', () => {
 mainProcess.getFileFromUser();
});

If we start our Electron application and click the Open File button, it correctly trig-
gers the Open File dialog box. With that in place, we’re still logging the files only to
the console in the main process. To complete our feature, the main process must send
the file’s contents back to the renderer process to be displayed in our application.

4.5 Sending content from the main process to
the renderer process
The remote module facilitates access to functionality from the main process in our
renderer processes, but it doesn’t allow for the inverse. To send the contents of the file
that the user selected back to the renderer process to be rendered in the UI, we need
to learn another technique for communicating between processes.

 Each BrowserWindow instance has a property called webContents, which stores an
object responsible for the web browser window that we create when we call new Browser-
Window(). webContents is similar to app because it emits events based on the lifecycle
of the web page in the renderer process.

 The following is an incomplete list of some of the events that you can listen for on
the webContentsobject:

 did-start-loading

 did-stop-loading

 dom-ready

 blur

 focus

 resize

 enter-full-screen

 leave-full-screen

webContents also has a number of methods that can trigger different functions in the
renderer process from the main process. In the previous chapter, we opened the

Listing 4.11 Requiring functions from the main process in the renderer process:
./app/renderer.js

Listing 4.12 Triggering getFileFromUser() in the main process from the UI:
./app/renderer.js

82 CHAPTER 4 Using native file dialog boxes and facilitating interprocess communication
Chrome Developer Tools in the renderer process from the main process using main-
Window.webContents.openDevTools(). mainWindow.loadURL('file://${__dirname}/
index.html'), an alias for mainWindow.webContents.loadURL(), loaded our HTML
file into the renderer process when the application first launched. Figure 4.14 shows
more aliases.

webContents has a method called send()which sends information from the main pro-
cess to a renderer process. webContents.send() takes a variable number of argu-
ments. The first argument, which is an arbitrary string, is the name of the channel on
which to send the message. An event listener in the renderer process listens on the
same channel. This flow will become clearer when we see it in action. All of the subse-
quent arguments after the first are passed along to the renderer process.

4.5.1 Sending the file contents to the renderer contents

Our current implementation reads the file that the user selected and logs it to the termi-
nal. mainWindow.webContents.send()sends the contents of the file to the renderer pro-
cess instead. The next chapter covers additional ways to open files that do not require a
dialog box prompting the user to select a particular file because we do encounter situa-
tions where we will want to open a file without triggering the dialog box.

const getFileFromUser = exports.getFileFromUser = () => {
 const files = dialog.showOpenDialog(mainWindow, {
 properties: ['openFile'],
 filters: [
 { name: 'Text Files', extensions: ['txt'] },
 { name: 'Markdown Files', extensions: ['md', 'markdown'] }
]
 });

Listing 4.13 Sending content from the main to a renderer process: ./app/main.js

mainWindow.loadURL() mainWindow.webContents.loadURL()is an alias for

mainWindow.reload() mainWindow.webContents.reload()is an alias for

mainWindow.print() mainWindow.webContents.print()is an alias for

mainWindow.printToPDF() mainWindow.webContents.printToPDF()is an alias for

Figure 4.14 BrowserWindow instances have methods that are aliases to Electron’s
webContents API.

83Sending content from the main process to the renderer process
 if (files) { openFile(files[0]); }
};

const openFile = (file) => {
 const content = fs.readFileSync(file).toString();
 mainWindow.webContents.send('file-opened', file, content);
};

The main process is now broadcasting the name of the file and its contents over the
file-opened channel. The next step is to set up a listener on the file-opened chan-
nel in the renderer process using the ipcRenderer module. Electron comes with two
basic modules for sending messages back and forth between processes: ipcRenderer
and ipcMain. Each module is available only in the process type with which it shares
a name.

 ipcRenderer can send messages to the main process. More important to our imme-
diate needs, it can also listen for messages that were sent from the main process using
webContents.send(). It requires the ipcRenderer module in the renderer process.

const { remote, ipcRenderer } = require('electron');
const mainProcess = remote.require('./main.js');

With that in place, we can now set up a listener. ipcRenderer listens on the file-
opened channel, adds the content to the page, and renders the Markdown as HTML.

ipcRenderer.on('file-opened', (event, file, content) => {
 markdownView.value = content;
 renderMarkdownToHtml(content);
});

ipcRenderer.on()takes two arguments: the channel to listen on and a callback func-
tion that defines an action to take when the renderer process receives a message on
the channel on which you’re setting up the listener. The callback function is provided
with a few arguments when it is called. The first is an event object, which is just like a
normal event listener in the browser. It contains information about the event for
which we set up the listener. The additional arguments are what were provided when
using webContents.send() in the main process. In listing 4.13, we sent the name of
the file and its contents. Those will be additional arguments passed to our listener.

 With these new additions, the user can now click the Open File button, select a file
using a native file dialog box, and render the contents in the UI. We’ve successfully

Listing 4.14 Importing the ipcRenderer module: ./app/renderer.js

Listing 4.15 Listening for messages on the file-opened channel: ./app/renderer.js

Previously, we interrupted the function with a return statement in
the event that files were undefined. In this example, we’ll flip that
logic and pass the first file to Open File when dialog.showOpenFile()
successfully returns an array of file paths.

We’ll send the
name of the file
and its content
to the renderer
process over the
“file-opened”
channel.

We’ll import the
ipcRenderer module in
our renderer process.

84 CHAPTER 4 Using native file dialog boxes and facilitating interprocess communication
implemented the feature that we set out to implement at the beginning of the chap-
ter. The code for our main and renderer processes should look something like the fol-
lowing two listings.

const { app, BrowserWindow, dialog } = require('electron');
const fs = require('fs');

let mainWindow = null;

app.on('ready', () => {
 mainWindow = new BrowserWindow({ show: false });

 mainWindow.loadFile('index.html');

 mainWindow.once('ready-to-show', () => {
 mainWindow.show();
 });

 mainWindow.on('closed', () => {
 mainWindow = null;
 });
});

const getFileFromUser = exports.getFileFromUser = () => {
 const files = dialog.showOpenDialog(mainWindow, {
 properties: ['openFile'],
 filters: [
 { name: 'Text Files', extensions: ['txt'] },
 { name: 'Markdown Files', extensions: ['md', 'markdown'] }
]
 });

 if (files) { openFile(files[0]) }
};

const openFile = (file) => {
 const content = fs.readFileSync(file).toString();
 mainWindow.webContents.send('file-opened', file, content);
};

const { remote, ipcRenderer } = require('electron');
const mainProcess = remote.require('./main.js');

const marked = require('marked');

const markdownView = document.querySelector('#markdown');
const htmlView = document.querySelector('#html');
const newFileButton = document.querySelector('#new-file');
const openFileButton = document.querySelector('#open-file');

Listing 4.16 Open File functionality implemented in the main process: ./app/main.js

Listing 4.17 Open File functionality implemented: ./app/renderer.js

85Summary
const saveMarkdownButton = document.querySelector('#save-markdown');
const revertButton = document.querySelector('#revert');
const saveHtmlButton = document.querySelector('#save-html');
const showFileButton = document.querySelector('#show-file');
const openInDefaultButton = document.querySelector('#open-in-default');

const renderMarkdownToHtml = (markdown) => {
 htmlView.innerHTML = marked(markdown, { sanitize: true });
};

markdownView.addEventListener('keyup', (event) => {
 const currentContent = event.target.value;
 renderMarkdownToHtml(currentContent);
});

openFileButton.addEventListener('click', () => {
 mainProcess.getFileFromUser();
});

ipcRenderer.on('file-opened', (event, file, content) => {
 markdownView.value = content;
 renderMarkdownToHtml(content);
});

Summary
 Electron provides the dialog module for creating a variety of native operating

system dialogs.
 Open dialog boxes can be configured to allow for a single file or directory as

well as multiple files or directories.
 Open dialog boxes can be configured to allow the user to select only certain file

types.
 Open dialog boxes return an array consisting of the one or more files or direc-

tories selected by the user.
 Electron does not include an ability to read files. Instead, we use Node’s fs

module to read from and write to the filesystem.
 Each operating system offers a different set of features. Electron uses the fea-

tures available while providing a graceful fallback if that feature does not exist
in a given operating system.

 In macOS, we can have a dialog box drop down as a sheet from one of the win-
dows by providing a reference to that window as the first argument in dialog
.showOpenDialog().

 Native operating system APIs and filesystem access should be handled by the
main process, while rendering the UI and responding to user input should be
handled by the renderer process.

 Electron provides a different set of modules to the main process and renderer
processes.

86 CHAPTER 4 Using native file dialog boxes and facilitating interprocess communication
 Electron provides a number of mechanisms for communicating between
processes.

 The remote module provides a proxy to the main process modules and func-
tions and makes that functionality available in our renderer processes.

 We can send messages from the main process to a renderer process using
webContents.send().

 We can listen for messages sent from the main processes in our renderer pro-
cesses using the ipcRenderer module.

 We can namespace messages using channels, which are arbitrary strings. In this
chapter, we used the file-opened channel to send and listen for messages.

Working with
multiple windows
Right now, when Fire Sale starts up, it creates a single window for the UI. When that
window is closed, the application quits. Although this behavior is perfectly accept-
able, we typically expect to be able to open multiple, independent windows. In this
chapter, we convert Fire Sale from a single-window application to one that supports
multiple windows. Along the way, we’ll explore new Electron APIs as well as some of
JavaScript’s more recent additions. We also explore solutions to problems that
occur when taking a main process that is configured to communicate with one ren-
derer process (see figure 5.1) and refactoring it to manage a variable number of
processes (see figure 5.2). The completed code at the end of this chapter can be
found at http://mng.bz/V145. We start from the chapter-4 branch, however.

 We start by instantiating a Set data structure, which was added to JavaScript in
2015 and tracks all of the user’s windows. Next, we create a function that manages

This chapter covers
 Tracking multiple windows using the JavaScript

Set data structure

 Facilitating communication between the main
process and multiple renderer processes

 Using Node APIs to detect what platform the
application is running on
87

http://mng.bz/V145

88 CHAPTER 5 Working with multiple windows
the lifecycle of an individual window. After that’s in place, we modify the functions
that we created in chapter 4 for prompting the user to select a file and opening it to
target the correct window. In addition, we also take care of some common edge cases
and other quirks that arise along the way, such as windows that eclipse each other.

5.1 Creating and managing multiple windows
Sets are a new data structure to JavaScript and were added in the ES2015 specifica-
tion. A set is a collection of unique elements; an array can have duplicate values in it. I
chose to use a set rather than an array because it’s easier to remove an element. This
listing shows how to create a Set in JavaScript.

const windows = new Set();

With an array, we’d have to either find the index of the window and remove it, or cre-
ate an array without that window. Neither approach is as simple as calling the delete
method on the set and passing it a reference to the window that we want to remove.

Listing 5.1 Creating a Set to keep track of new windows: ./app/main.js

Main rocessp
Renderer

process

remote

mainWindow.webContents.send

Figure 5.1 In chapter 4, we set up communication between the main process and one
renderer process.

Main rocessp
Renderer

process

remote

targetWindow.webContents.send

Renderer

process

Renderer

process

remote

targetWindow.webContents.send

remote

targetWindow.webContents.send

Figure 5.2 In this chapter, we update Fire Sale to support multiple windows and facilitate
communication between them.

89Creating and managing multiple windows
 With a data structure in place to track all of the application’s windows, the next
step is to move the process of creating a BrowserWindow (listing 5.2) out of the appli-
cation’s “ready” event listener and into its own function.

const createWindow = exports.createWindow = () => {
 let newWindow = new BrowserWindow({ show: false });

 newWindow.loadFile('index.html');

 newWindow.once('ready-to-show', () => {
 newWindow.show();
 });

 newWindow.on('closed', () => {
 windows.delete(newWindow);
 newWindow = null;
 });

 windows.add(newWindow);
 return newWindow;
};

The createWindow() function creates a BrowserWindow instance and adds it to the set
of windows that we created in listing 5.1. Next we repeat the steps for creating a new
window from the previous chapters. Closing the window removes it from the set.
Finally, we return a reference to the window that was just created. We need this refer-
ence in the next chapter.

 When the application is ready, call the new createWindow() function, shown in
the following listing. The application should start in the same manner as it did before
we implemented this change, but it also sets the stage to create additional windows in
other contexts.

app.on('ready', () => {
 createWindow();
});

The application starts as before, but if you try to click the Open File button, you’ll
notice that it’s broken. This is because we’re still referencing mainWindow in a few
places. It’s referenced in dialog.showOpenDialog()to display the dialog box as a
sheet in macOS. More importantly, it is referenced in openFile() after the file’s con-
tents have been read from the filesystem and we send it to the window.

Listing 5.2 Implementing a function to create new windows: ./app/main.js

Listing 5.3 Creating a window when the application is ready: ./app/main.js

Removes the reference
from the windows set
when it has been closed

Adds the window to
the windows set when
it has been opened

90 CHAPTER 5 Working with multiple windows

ine

e
ile
er.
5.1.1 Communicating between the main process and multiple windows

Having multiple windows raises the question: to which window do we send the file
path and contents? To support multiple windows, these two functions must reference
the window where the dialog box should be displayed and the contents sent, as shown
in figure 5.3.

In listing 5.4, let’s refactor the getFileFromUser() function to accept a given window as
an argument instead of always assuming that there is a mainWindow instance in scope.

const getFileFromUser = exports.getFileFromUser = (targetWindow) => {
 const files = dialog.showOpenDialog(targetWindow, {
 properties: ['openFile'],
 filters: [
 { name: 'Text Files', extensions: ['txt'] },
 { name: 'Markdown Files', extensions: ['md', 'markdown'] }
]
 });

 if (files) { openFile(targetWindow, files[0]); }
};

Listing 5.4 Refactoring getFileFromUser() to work with a specific window:
./app/main.js

Main process

Renderer rocessp

getFileFromUser openFile

Passes a reference
to itself using the
remote module

Passes along the window
reference and the file path

Sends the file path
and content to the
requesting window

Figure 5.3 To figure out to which window to send the file’s content, the renderer
process must send a reference to itself when communicating to the main process
to call getFileFromUser().

Takes a reference to a browser window to determine
which window should display the file dialog and
subsequently load the file selected by the user.

dialog.showOpenDialog()
takes a reference to a
browser window object

The openFile()
function takes a
reference to a
browser window
object to determ
which window
should receive th
contents of the f
opened by the us

91Creating and managing multiple windows
In the code excerpt, we’ve modified getFileFromUser() to take a reference to a win-
dow as an argument. I avoided naming the argument window because it might be con-
fused with the global object in the browser. After the user has selected a file, we pass
the targetWindow to openFile() in addition to the file path, shown here.

const openFile = exports.openFile = (targetWindow, file) => {
 const content = fs.readFileSync(file).toString();
 targetWindow.webContents.send('file-opened', file, content);
};

5.1.2 Passing a reference to the current window to the main process

After the contents of the file have been read from the filesystem, we send the file’s
path and content to the window passed in as the first argument. This raises the ques-
tion, though: How do we get a reference to the window?

 getFileFromUser() is called from the renderer process using the remote module
to facilitate communication to the main process. As we saw in the previous chapter,
the remote module contains references to all the modules that would otherwise be
exclusively available to the main process. It turns out that remote also has a few other
methods—notably, remote.getCurrentWindow(), which returns a reference to the
BrowserWindow instance from which it was called, shown here.

const currentWindow = remote.getCurrentWindow();

Now that we have a reference to the window, the last step necessary to complete the fea-
ture is to pass it along to getFileFromUser(). This lets the functions in the main process
know which—of our soon to be many—browser windows they’re working with.

openFileButton.addEventListener('click', () => {
 mainProcess.getFileFromUser(currentWindow);
});

When we implemented the Markup for the UI in chapter 3, we included a New File
button. We now have the createWindow() function implemented in and exported
from the main process. We can quickly wire up that button as well.

Listing 5.5 Refactoring openFile() to work with a specific window: ./app/main.js

Listing 5.6 Getting a reference to the current window in the renderer process:
./app/renderer.js

Listing 5.7 Passing a reference to the current window to the main process:
./app/renderer.js

Accepts a reference to a
browser window object

Sends the contents of the file to
the browser window provided

92 CHAPTER 5 Working with multiple windows
newFileButton.addEventListener('click', () => {
 mainProcess.createWindow();
});

We can make a few more enhancements to our implementation of multiple windows
in the main process, but we’re finished in the renderer process for this chapter. The
current state of the code in app/renderer.js follows.

const { remote, ipcRenderer } = require('electron');
const mainProcess = remote.require('./main.js');
const currentWindow = remote.getCurrentWindow();

const marked = require('marked');

const markdownView = document.querySelector('#markdown');
const htmlView = document.querySelector('#html');
const newFileButton = document.querySelector('#new-file');
const openFileButton = document.querySelector('#open-file');
const saveMarkdownButton = document.querySelector('#save-markdown');
const revertButton = document.querySelector('#revert');
const saveHtmlButton = document.querySelector('#save-html');
const showFileButton = document.querySelector('#show-file');
const openInDefaultButton = document.querySelector('#open-in-default');

const renderMarkdownToHtml = (markdown) => {
 htmlView.innerHTML = marked(markdown, { sanitize: true });
};

markdownView.addEventListener('keyup', (event) => {
 const currentContent = event.target.value;
 renderMarkdownToHtml(currentContent);
});

newFileButton.addEventListener('click', () => {
 mainProcess.createWindow();
});

openFileButton.addEventListener('click', () => {
 mainProcess.getFileFromUser(currentWindow);
});

ipcRenderer.on('file-opened', (event, file, content) => {
 markdownView.value = content;
 renderMarkdownToHtml(content);
});

Listing 5.8 Adding listener to newFileButton: ./app/renderer.js

Listing 5.9 newFileButton implemented in the renderer process: ./app/renderer.js

93Improving the user experience of creating new windows
5.2 Improving the user experience of creating
new windows
When clicking the New File button after implementing the event listener in the previ-
ous chapter, you might have been confused whether it was working. You may have
noticed that the drop shadow around the window got darker, or you may have clicked
and dragged the new window and revealed the previous window underneath.

 The minor problem that we have right now is that each new window appears in the
same default position as the first window and completely eclipses it. It might be more
obvious that the new window is created if it is slightly offset from the previous window,
as shown in figure 5.4. This listing shows how to offset the window.

const createWindow = exports.createWindow = () => {
 let x, y;

 const currentWindow = BrowserWindow.getFocusedWindow();

 if (currentWindow) {
 const [currentWindowX, currentWindowY] = currentWindow.getPosition();
 x = currentWindowX + 10;
 y = currentWindowY + 10;
 }

 let newWindow = new BrowserWindow({ x, y, show: false });

 newWindow.loadFile('index.html');

 newWindow.once('ready-to-show', () => {
 newWindow.show();
 });

 newWindow.on('closed', () => {
 windows.delete(newWindow);
 newWindow = null;
 });

 windows.add(newWindow);
 return newWindow;
};

In addition to instantiating instances with the new keyword, the BrowserWindow mod-
ule also has methods of its own. We can use BrowserWindow.getFocusedWindow() to
get a reference to the window with which the user is currently working. When the
application is first ready and we call createWindow(), there isn’t a focused window

Listing 5.10 Offsetting new windows based on the currently focused window:
./app/main.js

Gets the browser
window that is
currently active.

If there is a currently active window from the previous
step, sets the coordinates of the next window down
and to the right of the currently active window.

Creates the new window,
hiding it at first with the x- and
y-coordinates. These are set if
the code in the previous step

ran and are undefined if it did
not, in which case the window is

created in the default position.

94 CHAPTER 5 Working with multiple windows
and BrowserWindow.getFocusedWindow()returns undefined. If there is a window, we
call its getWindow() method, which returns an array with the x - and y -coordinates of
the window. We’ll store these values in two variables outside of the conditional block
and pass them to the BrowserWindow constructor. If they’re still undefined (for exam-
ple, there was no focused window), then Electron uses the defaults, just as it did
before we implemented this feature. Figure 5.4 shows a second window offset from
the first.

This isn’t the only way to implement this feature. Alternatively, you could track an ini-
tial x - and y -position and increment those values on each new window. Or, you could
add a slight bit of randomness to the default x - and y -values so that each window is
slightly offset. I leave those methods as exercises to the reader.

Figure 5.4 New windows are offset from the current window.

95Integrating with macOS
5.3 Integrating with macOS
In macOS, many—but not all—applications remain open, even when all their win-
dows are closed. For example, if you closed all your windows in Chrome, the applica-
tion remains active in the dock and still appears in the application switcher. Fire Sale
doesn’t do that.

 In earlier chapters, this might have been acceptable. We had one window and no
way of creating additional windows. In this section, we enable the application to
remain open only in macOS. By default, Electron quits the application when it fires its
window-all-closed event. If we want to prevent this behavior, we must listen for this
event and conditionally stop it from closing if we’re running on macOS.

app.on('window-all-closed', () => {
 if (process.platform === 'darwin') {
 return false;
 }
 app.quit();
});

The process object is provided by Node and globally available without needing to be
required. process.platform returns the name of the platform in which the applica-
tion is currently executing. As of this writing, process.platform returns one of five
strings: darwin, freebsd, linux, sunos, or win32. Darwin is the UNIX operating sys-
tem that macOS is built on. In listing 5.11, we checked if process.platform is equal
to darwin. If it is, then the application is running on macOS and we want to return
false to stop the default action from occurring.

 Keeping the application alive is half the battle. What happens if the user clicks the
application in the dock and no windows are open? In this situation Fire Sale should
open a new window and display it to the user as shown here.

app.on('activate', (event, hasVisibleWindows) => {
 if (!hasVisibleWindows) { createWindow(); }
});

The activate event passes two arguments to the callback function provided. The first
is the event object. The second is a Boolean, which returns true if any windows are
visible and false if all the windows are closed. In the case of the latter, we call the
createWindow() function that we wrote earlier in the chapter.

Listing 5.11 Keeping the application alive when all windows are closed: ./app/main.js

Listing 5.12 Creating a window when application is opened and there are no windows:
./app/main.js

Checks to see if
the application is
running on macOS

If it is, returns false to
prevent the default action

If it isn’t, quits
the application

Electron provides the hasVisibleWindows
argument, which will be a Boolean. If there are no visible

windows when the
user activates the
application, creates
one.

96 CHAPTER 5 Working with multiple windows
 The activate event fires only on macOS, but there are plenty of reasons why you
might choose to have your application remain open on Windows or Linux, particu-
larly if the application is running background processes that you want to continue
even if the window is dismissed. Another possibility is that you have an application that
can be hidden, or shown with a global shortcut, or from the tray or menu bar. We
implement each of these in later chapters.

 With these two additional events, we’ve converted Fire Sale from a single-window
application to one that supports multiple windows. This listing shows the code for the
main process in its current form.

const { app, BrowserWindow, dialog } = require('electron');
const fs = require('fs');

const windows = new Set();

app.on('ready', () => {
 createWindow();
});

app.on('window-all-closed', () => {
 if (process.platform === 'darwin') {
 return false;
 }
});

app.on('activate', (event, hasVisibleWindows) => {
 if (!hasVisibleWindows) { createWindow(); }
});

const createWindow = exports.createWindow = () => {
 let x, y;

 const currentWindow = BrowserWindow.getFocusedWindow();

 if (currentWindow) {
 const [currentWindowX, currentWindowY] = currentWindow.getPosition();
 x = currentWindowX + 10;
 y = currentWindowY + 10;
 }

 let newWindow = new BrowserWindow({ x, y, show: false });

 newWindow.loadFile('index.html');

 newWindow.once('ready-to-show', () => {
 newWindow.show();
 });

 newWindow.on('closed', () => {
 windows.delete(newWindow);

Listing 5.13 Multiple windows implemented in the main process: ./app/main.js

97Summary
 newWindow = null;
 });

 windows.add(newWindow);
 return newWindow;
};

const getFileFromUser = exports.getFileFromUser = (targetWindow) => {
 const files = dialog.showOpenDialog(targetWindow, {
 properties: ['openFile'],
 filters: [
 { name: 'Text Files', extensions: ['txt'] },
 { name: 'Markdown Files', extensions: ['md', 'markdown'] }
]
 });

 if (files) { openFile(targetWindow, files[0]); }
};

const openFile = exports.openFile = (targetWindow, file) => {
 const content = fs.readFileSync(file).toString();
 targetWindow.webContents.send('file-opened', file, content);
};

Summary
 When creating an Electron application with multiple windows, we can no lon-

ger hard-code a window for the main process to send data to.
 We can use Electron’s remote module to ask the window in the renderer pro-

cess for a reference to itself and send that reference along when communicat-
ing with the main process.

 Applications on macOS do not always quit when all the windows are closed. We
can use Node’s process object to determine on what platform the application is
running.

 If process.platform is darwin, then the application is running on macOS.
 Returning false in a function that listens for app’s windows-all-closed event

prevents the application from quitting.
 On macOS, app fires an activate event when the user clicks the dock icon.
 The activate event includes a Boolean called hasVisibleWindows as the sec-

ond argument passed to the callback function. This is true if any windows are
currently open, and false if there are none. We can use this to determine if a
new window should be opened.

 Working with files
Over the previous two chapters, we implemented the ability to read a file from the
filesystem and display it in a browser window of our application. This exercise
demonstrated how interprocess communication works in Electron, as well as Elec-
tron’s ability to bridge the gap between a traditional browser-based application and
a Node.js application. In the previous chapter, we also added support for multiple
browser windows.

This chapter covers
 Determining if the content has been edited and is

unsaved

 Modifying the window’s title based on the state of
the currently active document

 Using custom interactions available to windows in
applications running on macOS

 Implementing append documents to the operating
system’s list of recent documents

 Watching for changes to the current file from the
operating system
98

99Keeping track of the current file
 In the name of clarity, I kept our initial implementation naively simple. It turns out
that users interact with files in a surprising number of different ways—even in a simple
note-taking application like Fire Sale. A user might start writing a new note from the
empty window spawned when the application initially launches, or they may choose to
open an existing file from the filesystem. A user might click the Open File button we
implemented earlier, or they might select the file from a list of recently opened docu-
ments. The path a user chooses impacts how our application behaves when they wish
to save it. If it’s a new file, then we must prompt the user to provide a location to write
the new file. If it’s an existing file, then the application should just overwrite the file
the user originally selected from the Open File dialog box.

 Users have come to expect several features from modern applications. Our appli-
cation should provide visual indications that a file has been changed since it was origi-
nally opened or the last time it was saved. It should integrate with the operating
system’s list of recent documents and follow OS-level conventions for how the win-
dow’s title bar should look, depending on the state of the file.

 In this chapter, we rethink our approach to managing files as we implement the
ability to save the Markdown text of our application, export the rendered HTML, and
revert changes to unsaved files. We also explore additional ways to open files, such as
using the HTML5 File API to implement a drag-and-drop feature to the left pane of
the application. Finally, we don’t want our users to end up in a situation where they
edit a Markdown file in some other application and accidentally overwrite the changes
when they save the file in Fire Sale. Therefore, we listen for external changes to the
current file by other applications. Throughout this chapter, we implement all the
functionality outlined in figure 6.1.

 I’ll be starting from the chapter-5 branch of the repository as a starting point. You
can also find the completed example in the chapter-6 branch.

6.1 Keeping track of the current file
As we begin working with different files in our application, it’s helpful to track the file
with which we’re currently working. This way, we know which file a user is working on
if they ask to save it. Suppose that Mildred has an important stroke of inspiration and
wants to record her genius idea into Fire Sale. She opens her list of important
thoughts and jots down notes. Right now, Fire Sale doesn’t know if Mildred is editing a
new or existing file. The application also doesn’t have a way to track what file Mildred
is working on when she selects a file to open.

 To solve this problem, we need to implement the ability to keep track of what file
Fire Sale is currently working with. In chapter 4, whenever a new file was opened, we
sent the contents of the file as well as the path of the file that was just opened from the
main process to the renderer process that requested the file. We populated the right
and left panes of the application with the content. Our next step is to enable the ren-
derer process to track the path of the file that is currently being displayed to the user.
Doing so allows us to save changes without prompting the user for a file location.

100 CHAPTER 6 Working with files
We also have a Revert button in the UI. If the user clicks this button, it should roll
back any unsaved changes and return the content to its last saved state. A simple way
to handle this action is to store a copy of the content whenever a file is opened. If the
user clicks Revert, Fire Sale replaces the content in the UI with the cached content
from the last time the file was opened.

 Let’s start with some sensible defaults for the case where the user opens a new win-
dow that isn’t yet tied to a given file. We declare two variables in the top level of the
renderer process to track the original content of the current file and its file path.

let filePath = null;
let originalContent = '';

I chose to use an empty string instead of null for originalContent because that’s the
value of an empty input or textarea in the browser. Later in the chapter, this setting
makes it easier for us to see if a new document has been edited.

Listing 6.1 Declaring global variables for keeping track of the current file:
./app/renderer.js

User opens

a file

Read the file's

contents

Start watching

the new file

for changes

Update the

window title

Render contents

in the UI

User saves

a new file

Prompt user for

new file name

User saves

an existing file
Write contents

to the filesystem

Update the edited

state and window title

User edits

an unsaved file

User edits

a file on disk

Stop watching

the previous file

for changes

User closes

a file or the

window

Window opens

with an already

active file

Figure 6.1 Users expect to interact with files in
several ways. In this chapter, we implement all
the necessary features to meet our users’
expectations.

101Keeping track of the current file
 Whenever a file has been opened and sent to the renderer process, we need to
update these values. We take care of this in the IPC event listener on the file-opened
channel we set up in chapter 4.

ipcRenderer.on('file-opened', (event, file, content) => {
 filePath = file;
 originalContent = content;

 markdownView.value = content;
 renderMarkdownToHtml(content);
});

6.1.1 Updating the window title based on the current file

Mildred can open a file on her computer, edit it, and save the changes, but she cur-
rently has no way of knowing what file she is working with. Are these the meeting min-
utes from this week, or the meeting she missed while on vacation in Greenland? She
has multiple windows open and can’t tell which is which. In the previous section, we
implemented a feature that allowed each window in Fire Sale to keep a reference to
the current file, but we did not add anything to the UI to share that information with
the user. The common pattern for desktop applications is to show the name of the file
that is currently active in the title bar of the window, as shown in figure 6.2. In this sec-
tion, we’ll follow best practices and implement this pattern in Fire Sale.

Listing 6.2 Updating global variables when a new file is opened: ./app/renderer.js

Updates the path of the
currently opened file stored
in the top-level scope

Updates the original
content to determine if the
file has unsaved changes

Updates the Markdown content in the UI

Updates the HTML content in the UI

Figure 6.2 The name of file in the filesystem is displayed in the window’s title.

102 CHAPTER 6 Working with files
By default, the application’s window displays the title of the HTML page, which is
defined in app/index.html. This is a reasonable default, but many native desktop
applications display the name or path of the current file. One approach is to update
the title of the window whenever the user opens a new file. In addition to displaying
the name of the currently open file (as in listing 6.3), we may want to display other
information in the window’s title such as whether the current file has been edited
since it was saved. We also need to update the window’s title for a few different con-
texts, such as editing and saving the file.

 All BrowserWindow instances have a method called setTitle() that allows us to
programmatically manipulate the window’s title. Later in this chapter, we display
information about whether the file has been edited since the last time it was saved or
since it was opened. We create a method called updateUserInterface() that eventu-
ally encapsulates all of this logic as well as some other features down the road like
enabling the Save File and Revert buttons if the file contains unsaved changes.

const path = require('path');

const updateUserInterface = () => {
 let title = 'Fire Sale';
 if (filePath) { title = `${path.basename(filePath)} - ${title}`; }
 currentWindow.setTitle(title);
};

We start with the default title. If a file is currently open, we modify the title to include
the file path. The path can be long and most of the information, such as the root of
the filesystem or where the users’ folders are stored, is not important to our users. We
use path.basename() to extract the name of the file itself from the full file path.
Finally, we take the reference to the current window that we defined in chapter 5 and
set its title. We’ll call this function as the last step whenever a new file is opened.

ipcRenderer.on('file-opened', (event, file, content) => {
 filePath = file;
 originalContent = content;

 markdownView.value = content;
 renderMarkdownToHtml(content);

 updateUserInterface();
});

Listing 6.3 Updating the window title based on the current file: ./app/renderer.js

Listing 6.4 Calling updateUserInterface() when a new file is opened:
./app/renderer.js

If a file is open, prepends the
name of that file to the title

Updates the title
of the window

Calls the method that
updates the window’s
title bar whenever a
new file is opened.

103Keeping track of the current file
6.1.2 Determining whether the current file has changed

In the midst of taking important notes in Fire Sale, Mildred realizes that she’s 20 min-
utes late for a meeting. She wants to close Fire Sale before rushing down to the fifth
floor, but she is unsure if she has saved her recent changes to the file she was working
on. We have lots of good reasons to track whether the user has edited the file since
they opened it. We might want to prompt the user if they attempt to close the window
and they have unsaved changes. Or, we might want to show only certain UI elements if
the file has been modified (see figure 6.3).

In this section, we add a visual cue in the UI. The Save File button is enabled only if
the file has been modified. In addition, we append (Edited) to the title bar (see fig-
ure 6.4). To add this feature, we’ll take advantage of the abstraction we began build-
ing earlier in this chapter and add functionality to detect if the file has been modified.
We have a few approaches we could take.

 A naive—and flawed—way to check if a file has changed is to listen for either a
keyup or change event in our UI. If the user adds a character and then removes it, this
approach still considers the file modified, which is not consistent with how other
native desktop applications behave.

 To determine whether the file has been modified, we need two pieces of informa-
tion: the original and current contents of the file. We were crafty enough to store the
original contents in listing 6.2. If those two pieces of information are identical, then
the file has not changed. But if they differ, even slightly, then we know we have a mod-
ified file on our hands.

 To implement this feature, modify updateUserInterface() to take an argument
called isEdited. On keyup, we compare the current value of the textarea with the

Figure 6.3 The Fire Sale UI when the file has not been modified. Notice that the Save File and
Revert buttons have been disabled.

104 CHAPTER 6 Working with files
originalContent and call updateUserInterface() with the result. BrowserWindow
instances have a setDocumentEdited() method, which takes a Boolean. This will sub-
tly modify the window on macOS; for Windows and Linux users, we append (Edited)
to the window title.

const updateUserInterface = (isEdited) => {
 let title = 'Fire Sale';

 if (filePath) { title = `${path.basename(filePath)} - ${title}`; }
 if (isEdited) { title = `${title} (Edited)`; }

 currentWindow.setTitle(title);
 currentWindow.setDocumentEdited(isEdited);
};

The last step is to have the renderer process call the updateUserInterface() method
every time the user lifts their finger from a key while typing.

markdownView.addEventListener('keyup', (event) => {
 const currentContent = event.target.value;
 renderMarkdownToHtml(currentContent);
 updateUserInterface(currentContent !== originalContent);
});

Listing 6.5 Updating the UI if the document has unsaved changes: ./app/renderer.js

Listing 6.6 Checking for changes whenever the user types: ./app/renderer.js

Figure 6.4 The Fire Sale UI when the file has been modified. Notice that the title bar content has
(Edited) appended to it and the Save File and Revert buttons are no longer disabled.

Passes in a Boolean that
represents whether the
document has unsaved changes

If isEdited is true, then
updates the window
accordingly

Whenever the user inputs a keystroke into the Markdown view,
checks to see if the current content matches the content that

we stored in a variable and updates the UI accordingly.

105Keeping track of the current file
6.1.3 Enabling the Save and Revert buttons in the UI

With these steps in place, your application can tell if it is in an edited and unsaved
state. But we have a problem. The Save File and Revert buttons are still disabled.
These buttons should be enabled only if there are unsaved changes. It’s easy to take
care of this as we update the window itself.

const updateUserInterface = (isEdited) => {
 let title = 'Fire Sale';

 if (filePath) { title = `${path.basename(filePath)} - ${title}`; }
 if (isEdited) { title = `${title} (Edited)`; }

 currentWindow.setTitle(title);
 currentWindow.setDocumentEdited(isEdited);

 saveMarkdownButton.disabled = !isEdited;
 revertButton.disabled = !isEdited;
};

We implement the functionality for these buttons later in the chapter.

6.1.4 Updating the represented file on macOS

macOS windows support small representations of the current file in the window’s menu
bar. Hold and press Command while clicking the file icon to trigger a drop-down menu
showing where the file exists in the filesystem’s hierarchy, as shown in figure 6.5. You can
also click and drag the icon—it acts as if you dragged the file from Finder. All Browser-
Window instances have a method called setRepresentedFilename(), which accepts a

Listing 6.7 Enabling the Save and Revert buttons when there are unsaved changes:
./app/renderer.js

If the document is
unedited, disables
the Save button

If the document has no unsaved
changes, disables the button
that reverts unsaved changes

Figure 6.5 Pressing and holding Command while clicking the file icon in the title bar allows us to see
its location on the filesystem. We can also drag and drop the icon as if it were the file itself.

106 CHAPTER 6 Working with files

valid file path as an argument. This method has no effect in Windows. Let’s add this fea-
ture to our updateWindowTitle() method. Then we check to see if we have a valid path
property and—if so—set it as the represented file for macOS windows.

 This is unlike updating the title of the window with additional information, like
whether the file has been edited. The represented file remains the same until the user
opens another file in the same window. We don’t need to update this value on keyup.
We have two options: We could set the represented file in the main process before
sending the path and content to the renderer process, or we could use the current-
Window reference in the renderer process after it has received the file. I’m going to go
with the former, but both approaches are acceptable.

const openFile = exports.openFile = (targetWindow, file) => {
 const content = fs.readFileSync(file).toString();
 targetWindow.setRepresentedFilename(file);
 targetWindow.webContents.send('file-opened', file, content);
};

6.2 Tracking recently opened files
Now that Mildred is back from her meeting, she wants to get back to work. It was a
long meeting, and she doesn’t quite remember what notes she’s been working on
recently. Our current implementation doesn’t have a way to help her out either. The
operating system, however, does this stuff all the time. Whenever the user opens a file,
let’s have Electron notify the operating system that it should add the file to the list of
recently opened files.

 When opening a file in either macOS or Windows, Electron can add the file path
to the operating system’s list of recently opened documents. This list is available by
right-clicking the Dock icon in macOS (figure 6.6) or the Taskbar icon in Windows
(figure 6.7).

 The operating system tracks the files opened by each application. It also provides a
master list of recently opened files. In Windows, this list is found in the File Explorer.
In macOS, you can find the list of Recent Items in the Apple menu (figure 6.8). When

Listing 6.8 Setting the represented file in macOS: ./app/main.js

BrowserWindow
instances have a
method that allows
you to set the
represented file.

Figure 6.6 Recent files in macOS

107Tracking recently opened files

.

a document is selected from the global list of recent documents, it is opened in the
default application for that type of document. In this chapter, we primarily concern
ourselves with the list of recent documents specific to our application.

 You can add a file path to the recent documents list in Electron using app.add-
RecentDocument() and providing the file path as an argument. In the next listing, we
add the path of the file we’re opening with openFile() to the list of recent documents.

const openFile = exports.openFile = (targetWindow, file) => {
 const content = fs.readFileSync(file).toString();
 app.addRecentDocument(file);
 targetWindow.setRepresentedFilename(file);
 targetWindow.webContents.send('file-opened', file, content);
};

Listing 6.9 Appending to the list of recent documents: ./app/main.js

Figure 6.7 Recent files in Windows 10

Figure 6.8 System-wide recent documents in macOS

Electron’s app
module provides
a method for
appending to the
operating system’s
list of recently
opened documents

108 CHAPTER 6 Working with files
If you open a few files in Fire Sale, you see that they’re being appended to the list of
recent files. But if you try to select any of the entries in this list, nothing happens. The
operating system is asking Fire Sale to open the file, but our application doesn’t know
how to yet. We must implement this feature ourselves.

 In chapter 4 we added the ability to trigger an Open File dialog from the UI. When
a user selects a file using the dialog, the file path is passed to an open file, which reads
the contents of the file and sends those contents to the renderer process to be dis-
played in the left pane, which—finally—triggers the right pane to be updated with the
resulting HTML. At the time, we briefly discussed that there were other ways a user
might open a file, and that’s why it makes sense to separate the process of triggering
the dialog box from the process of opening the file.

 Selecting an item from the Recent Documents menu is one instance where the
user wants to open a file without being prompted with an Open File dialog box.
Whenever a file is opened from outside of the application, Electron’s app module fires
an open-file event. In our code, we can listen for the open-file event and handle it
accordingly. We should, however, wait until the application is fully up and running, so
we’ll set up our listener once the application fires its will-finish-launching event in
app/main.js.

app.on('will-finish-launching', () => {
 app.on('open-file', (event, file) => {
 const win = createWindow();
 win.once('ready-to-show', () => {
 openFile(win, file);
 });
 });
});

Now when the user selects a file in Fire Sale’s list of recent documents, the application
creates a new window and opens the file path in the new window—just as if you’d
selected it using the Open File button in the UI that we implemented in chapter 4.

6.3 Saving files
Saving files with Electron is similar to opening files, but with one difference: users
might want to save changes to the Markdown file, or they might want to export the
HTML that was generated by their application.

 If the user is saving a new file for the first time, then the application should ask
where the user wants to save the file and what name they want to give it. After that, it
should keep track of that name and update the window title as it if had originally
opened the file from the filesystem. If the user is saving changes to an existing Mark-
down file, then the application does not need to prompt to specify a location and
filename for the file. Implementing the ability to save files is more than just writing
content to the filesystem. We must also update the UI to show where the current file

Listing 6.10 Responding to external requests to open a file: ./app/main.js

Listens for the open-file event,
which provides the path of the
externally opened file, and
then passes that file path to
our openFile() function.

109Saving files
is being saved and if it has been modified since the last time it was saved to the
filesystem.

 In the Fire Sale case, saving the HTML output is a bit more straightforward since
the application doesn’t allow the user to edit the HTML output after it has been
saved. Exporting the generated HTML is a lot like saving a file for the first time, but
we don’t need to track where it was saved or reflect its new location in the UI. It’s the
easiest of the three to implement, so let’s take care of that feature first.

6.3.1 Exporting the rendered HTML output

To allow for exporting the generated HTML, we add a saveHtml() function to the
main process that asks the user where they’d like to save the HTML file, grabs the con-
tent from the HTML view, and then writes the file to the filesystem.

 As you might expect, triggering the native dialog box for saving files is similar to
triggering one for opening files. The biggest difference is that instead of prompting
the user to select a specific file to open, we will ask the user for a filename and loca-
tion to write to the filesystem. The contents of the file is passed as an argument to the
showSaveFileDialog()function.

 In the app/main.js, add the function shown in listing 6.11. When this function is
run, Electron presents a dialog box asking the user to select a file path where the con-
tents should be written. Once the user selects a file path, we use Node’s built-in fs
module to write the contents of the file to the filesystem.

const saveHtml = exports.saveHtml = (targetWindow, content) => {
 const file = dialog.showSaveDialog(targetWindow, {
 title: 'Save HTML',
 defaultPath: app.getPath('documents'),
 filters: [
 { name: 'HTML Files', extensions: ['html', 'htm'] }
]
 });

 if (!file) return;

 fs.writeFileSync(file, content);
};

In the example, dialog.showSaveDialog() takes two arguments. The first is a refer-
ence to a BrowserWindow, which is used to display the dialog box as a sheet in macOS
only. The second argument is an options object that allows you to pass keys and values
to configure the dialog box itself. The object provided to dialog.showSaveDialog()
works with the following options:

 title: Sets the title of the dialog box. This will not appear in macOS.
 defaultPath: Sets the default directory for the Save dialog box.

Listing 6.11 Saving the generated output: ./app/main.js

Defaults to the user’s
“documents” directory
as defined by the
operating system

If the user selects cancel
in the File dialog box,
aborts the function.

110 CHAPTER 6 Working with files
 buttonLabel: Allows you to set custom text for the Save button.
 filters: Sets what files are enabled to select to overwrite. Electron also uses

this option to set a default file extension, if the user does not provide one.

6.3.2 Common paths

We’re implementing the ability to save files, but where should we prompt the user to
save those files and how does it differ depending on which operating system they’re
using? Windows, macOS, and Linux organize their files differently. Ideally, a cross-
platform Electron application should default to show the correct directory on each plat-
form. Electron provides app.getPath(), which automatically returns the correct file path
based on the user’s platform, saving the developer from having to write error-prone con-
ditional logic. In listing 6.11, we set the default path to app.getPath('documents'),
which will be My Documents on Windows and the Documents folder in the user’s
home directory on macOS. Electron provides the following additional paths:

 home resolves to the user’s home directory.
 desktop, documents, downloads, pictures, music, and videos each resolve to

the corresponding path within the user’s home directory.
 temp resolves to the operating system’s temporary file directory.
 exe resolves to the location of the current executable.
 appData resolves to the user’s application data directory. This would be

%APPDATA% on Windows, ~/Library/Application/Support on macOS, and
either $XDG_CONFIG_HOME or ~/.config on Linux.

 userData resolves to appData with the name of the application appended. For
example, on macOS, userData would resolve to ~/Library/Application/Sup-
port/fire sale for the application in this chapter. This name comes from the
name entry in your package.json.

You might want your application to override one of the defaults provided by app.get-
Path(). You can do this using app.setPath(), which takes two arguments: the name
from the previous list and the new path to which you’d like it to resolve. It’s important
to note that you can override only paths from the previous list. If you’re going to over-
ride one of these paths, you must do it before the application fires its “ready” event.

 We didn’t implement a default path in the showOpenFile() function in the previous
chapter, but that’s a good candidate for using this approach as well. It would make sense
for a music player to default to the directory where users typically store their music, or a
photograph management application to default to app.getPath('pictures').

6.3.3 Saving files from the renderer process

Now we enable the Fire Sale application to save the rendered HTML content, shown
in figure 6.9. To focus on learning the fundamentals of Electron, we’ll simply take the
HTML content of the right pane and pass it to showSaveFileDialog(). A more robust
approach would be to add a doctype as well as <html>, <head>, and <body> tags to

111Saving files
make it a valid HTML document. Additionally, we could add metadata about the doc-
ument and a default style sheet, but that is beyond the scope of this book. In the next
chapter, we add in the ability to trigger this functionality from the application’s menu
as well.

saveHtmlButton.addEventListener('click', () => {
 mainProcess.saveHtml(currentWindow, htmlView.innerHTML);
});

6.3.4 Saving the current file

Saving the current file is like saving the HTML output with one small difference: if the
file was opened from the filesystem, then the application does not need to prompt the
user for a file path. Instead, the application just uses filePath as the location where
the file should be written.

const saveMarkdown = exports.saveMarkdown = (targetWindow, file, content) => {
 if (!file) {
 file = dialog.showSaveDialog(targetWindow, {
 title: 'Save Markdown',
 defaultPath: app.getPath('documents'),
 filters: [
 { name: 'Markdown Files', extensions: ['md', 'markdown'] }
]
 });
 }

Listing 6.12 Triggering the Save File dialog box from the renderer process:
./app/renderer.js

Listing 6.13 Saving the current file: ./app/main.js

Figure 6.9 Fire Sale allows users to save their Markdown content in the left pane as well as the
rendered HTML output shown in the right pane.

If this is a new file without
a file path, prompts the
user to select a file path
with a dialog box

112 CHAPTER 6 Working with files
 if (!file) return;

 fs.writeFileSync(file, content);
 openFile(targetWindow, file);
};

This code is flexible enough to handle the case where we’re saving a new file, as well
as the case where we’re updating an existing file. If you recall from earlier in the chap-
ter, the filePath property’s value defaults to null until the user opens a file. If the
filePath property is false, then Electron prompts the user to select a file path using
the native Save File dialog. It then saves the user-selected location to the filePath
property.

 Conversely, if it already knows where the file is located, then it moves forward and
skips directly to writing the content to the filesystem. For the sake of brevity, I called
openFile() on the file we just saved. If it’s a new file that we’re saving for the first time,
then we would want to add it to the operating system’s list of recent documents and
set it as the represented file. Abstracting that out into its own function that we can call
without having to read the file from disk again is an exercise that I leave to the reader.

 No functionality is complete if there is no way to trigger it. The application needs
an event listener on the Save File button that triggers our new functionality.

saveMarkdownButton.addEventListener('click', () => {
 mainProcess.saveMarkdown(currentWindow, filePath, markdownView.value);
});

6.3.5 Reverting files

Given the way we’ve structured our application so far, adding a feature is easy. When
the user clicks the Revert button, we replace the value of the Markdown view with the
original content of the file that we cached when we last opened or saved it, and then
trigger the HTML view to be re-rendered with the cached content as well.

revertButton.addEventListener('click', () => {
 markdownView.value = originalContent;
 renderMarkdownToHtml(originalContent);
});

Later in the chapter, we’ll prompt the user to make sure that they want to blow away
all their changes before moving forward.

6.4 Opening files using drag and drop
Electron applications support the HTML5 File API, which allows us to create a feature
for our application where users can drag a file onto certain elements in the DOM and

Listing 6.14 Adding an event listener to the Save File button: ./app/renderer.js

Listing 6.15 Reverting content in UI to last saved content: ./app/renderer.js

If the user selects Cancel
in the File dialog box,
aborts the function

Writes the contents of the
buffer to the filesystem

113Opening files using drag and drop
drop them. You have seen this API used for uploading photographs in Twitter’s web
application or attaching a file to an email in Gmail. In Fire Sale, we take advantage
of this API to allow the user to open files by dragging them onto the Markdown view
of the UI.

6.4.1 Ignoring dropped files everywhere else

The default action of a web browser when a file is dropped into the browser window is
to open the file in the browser itself. We can drag files onto our application and watch
in terror as the contents of the file completely replace the UI. This is even more prob-
lematic when you consider that we don’t have a Back button to rely on.

 The first step to creating a drag-and-drop feature for our application is to disable
the default behavior by adding an event listener to the document itself that prevents
the default action. Later, we’ll opt back in and customize the behavior for the Mark-
down pane in our UI.

document.addEventListener('dragstart', event => event.preventDefault());
document.addEventListener('dragover', event => event.preventDefault());
document.addEventListener('dragleave', event => event.preventDefault());
document.addEventListener('drop', event => event.preventDefault());

6.4.2 Providing visual feedback

Though it’s not necessary to implement the feature itself, it’s often helpful to give the
user a visual indication that they can drag a file onto an area within your application.
We define two additional CSS classes that can be added and removed with JavaScript,
depending upon whether the item being dragged is valid.

.raw-markdown.drag-over {
 background-color: rgb(181, 220, 216);
 border-color: rgb(75, 160, 151);
}

.raw-markdown.drag-error {
 background-color: rgba(170, 57, 57,1);
 border-color: rgba(255,170,170,1);
}

Before we begin implementing this feature, shown in listing 6.18, it would be nice to
have some helper functions. I’m going to create two suspiciously similar functions:
getDraggedFile() and getDroppedFile(). One important distinction between the
two: When a user is dragging a file, we have access only to its metadata. Only after
the user officially drops the file do we have access to the File object. getDragged-
File() will pick the file’s metadata—in the form of a DataTransferItem object—out of

Listing 6.16 Setting up foundation for drag-and-drop events: ./app/renderer.js

Listing 6.17 Adding styles for drag-and-drop functionality: ./app/style.css

This deep teal color
signifies to the user that
this a valid drop target.

This red color indicates that
there is a problem with the
file the user is dropping.

114 CHAPTER 6 Working with files
the event object, which has a large number of other properties, such as where the
mouse was when the event was fired and much more. getDroppedFile()pulls the
first element from the files array, which was empty when the user was simply drag-
ging the file.

 This process might seem arduous, but it is all in the name of security. You might
pass over windows that should not know about the file you’re attempting to drop on
your way to your intended application because that file could very well contain sensi-
tive information. But once you’ve let go and dropped the file, then the browser
assumes that this action is intentional and allows the application to read the file.
fileTypeIsSupported() checks to see if the type of file being dragged is either of the
two types supported by Fire Sale and returns a Boolean based on the result.

const getDraggedFile = (event) => event.dataTransfer.items[0];
const getDroppedFile = (event) => event.dataTransfer.files[0];

const fileTypeIsSupported = (file) => {
 return ['text/plain', 'text/markdown'].includes(file.type);
};

When the user drags a file over the browser window, it rapid-fires dragover events
until the user either leaves the target area—in which case, a dragleave event—or the
user lifts their finger from the mouse or trackpad and drops the file onto the target
area, which triggers a drop event.

 During the dragover phase, we can give the user a visual clue as to whether the
drop is going to be successful, as shown in figure 6.10. If the user is dragging a file
type that we’re not prepared to support, we can add the .drag-error class to the ele-
ment (see figure 6.11). Otherwise, we’ll add the .drag-over class to indicate that the
user can drop a file here. When the user removes the file from the target area, we’ll
clean up any classes that were added and restore the UI to its default state.

markdownView.addEventListener('dragover', (event) => {
 const file = getDraggedFile(event);

 if (fileTypeIsSupported(file)) {
 markdownView.classList.add('drag-over');
 } else {

Listing 6.18 Helper methods: ./app/renderer.js

Listing 6.19 Adding and removing classes on dragover and dragleave:
./app/renderer.js

This will always be an array in case the user
selects multiple items. The application

supports only one file at a time. We
grab the first item in the array.

This is similar to the getDraggedFile(),
but after the user has officially dropped
the file, we have access to the file itself,
not just its metadata.

This helper function returns true or false if the
file’s type is in the array of supported file types.

If the file type is supported,
adds a CSS class to indicate
this is a valid place to drop
the file.

115Opening files using drag and drop
 markdownView.classList.add('drag-error');
 }
});

markdownView.addEventListener('dragleave', () => {
 markdownView.classList.remove('drag-over');
 markdownView.classList.remove('drag-error');
});

If the file type is not
supported, adds a CSS
class to indicate that
although this is a valid
place to drop a file, this
file is not accepted.

If the user takes the file from
the Markdown view, takes off
the classes we added earlier.

Figure 6.10 Adding a CSS class to the Markdown view provides a visual cue to the user that this is a valid place
to drop this file.

116 CHAPTER 6 Working with files
6.4.3 Opening dropped files

When the user successfully drops the file onto the left pane, the code in listing 6.20
once again confirms that Fire Sale supports this type of file. If it does, we pass it over to
the activeFile object in the main process that we created earlier, to be opened as if
we selected it from the dialog box or from the recent documents list.

markdownView.addEventListener('drop', (event) => {
 const file = getDroppedFile(event);

 if (fileTypeIsSupported(file)) {
 mainProcess.openFile(currentWindow, file.path);
 } else {
 alert('That file type is not supported');
 }

Listing 6.20 Drag-and-drop functionality: ./app/renderer.js

Figure 6.11 In the same vein, Fire Sale does not support images. The code we’re about to write will reject any
file that is not one of our supported types, but visually showing the user that the file won’t be accepted allows
them to cancel their action in advance.

If the file type is supported,
the renderer process
communicates with the
main process.

If the file type is
not supported, the
application alerts
the user.

117Watching files for changes
 markdownView.classList.remove('drag-over');
 markdownView.classList.remove('drag-error');
});

With very little new code, we’ve successfully implemented a drag-and-drop feature
reminiscent of a native desktop application.

6.5 Watching files for changes
A potentially dangerous edge case exists in our application right now. If we open a
Markdown file in some other editor and make changes to it, Fire Sale is blissfully
unaware. This means that if we save the file in Fire Sale after making changes in our
other editor, it will destructively overwrite those changes.

 We have a few ways around this. We could, for example, reread the file when Fire
Sale comes back into focus. We could regularly check the file and see if its contents
have changed. The way we approach it for now is to take advantage of Node’s
fs.watchFile feature, which uses operating system-specific libraries to monitor a file
or directory and emit an event if the file changes.

 The one caveat of this approach is that we must be careful to stop watching files
when we open new ones. Otherwise, we keep adding watchers without letting any go,
which is a memory leak. This is further complicated by the fact that we have multiple
windows. If a file changes, we must make sure that we send it to the correct window.
Our feature will work as follows:

1 Sets up a data structure for tracking our file watchers and the window that
they’re associated with.

2 Begins watching for file changes upon opening a file.
3 When opening subsequent files, closes the existing watcher before creating a

new one.
4 Closes the watcher when the window is closed.

Our first task will be to figure out a way to manage the relationship between a win-
dow, the file currently displayed in the window, and/or the watcher for the file. In
chapter 5, we used a Set to keep track of all the windows currently open in the appli-
cation. In this section, we’ll use another recent addition to the JavaScript lan-
guage—a Map.

 Maps are key-value stores, much like regular objects in JavaScript, with an import-
ant distinction. Objects can have only strings and numbers as keys. Maps can use any
type of object or value as a key. To implement this feature, we instantiate a Map that
uses BrowserWindow instances as keys and file watchers as values. When the user closes
a window, we find the watcher associated with that window and stop it.

const openFiles = new Map();

Listing 6.21 Setting up a Map to watch files: ./app/main.js

118 CHAPTER 6 Working with files
As I mentioned earlier, we want to start watching a file path when it’s opened and stop
watching when either the window has been closed or the user opens a different file in
the window. Let’s set up two functions: startWatchingFile() and stopWatching-
File().

const startWatchingFile = (targetWindow, file) => {
 stopWatchingFile(targetWindow);

 const watcher = fs.watchFile(file, (event) => {
 if (event === 'change') {
 const content = fs.readFileSync(file);
 targetWindow.webContents.send('file-opened', file, content);
 }
 });

 openFiles.set(targetWindow, watcher);
};

const stopWatchingFile = (targetWindow) => {
 if (openFiles.has(targetWindow)) {
 openFiles.get(targetWindow).stop();
 openFiles.delete(targetWindow);
 }
};

In the listing, we start watching a given file path. If the watcher fires a “change” event,
we send a message to the window alerting it to the fact that the file has changed.
Lastly, add the window and the associated watcher to the openFiles Map, which allows
us to find it later when it comes time to close the watcher. As an added precaution,
let’s close any existing watcher for that window before creating a new one. Doing so is
helpful if the user opens a file window that was already watching a file.

const createWindow = exports.createWindow = () => {
 let x, y;

 const currentWindow = BrowserWindow.getFocusedWindow();

 if (currentWindow) {
 const [currentWindowX, currentWindowY] = currentWindow.getPosition();
 x = currentWindowX + 10;
 y = currentWindowY + 10;
 }

 let newWindow = new BrowserWindow({ x, y, show: false });

 newWindow.loadFile('index.html');

Listing 6.22 Setting up a listener: ./app/main.js

Listing 6.23 Closing the watcher when the browser window closes: ./app/main.js

Closes the existing
watcher if there is one.

If the watcher fires a change
event, rereads the file.

Sends a message to the renderer
process with the content of the file.

Tracks the watcher so
we can stop it later.

Checks if we have a
watcher running for
this window.

Stops the watcher.Deletes the watcher from
the maps of open windows.

119Prompting the user before discarding changes
 newWindow.once('ready-to-show', () => {
 newWindow.show();
 });

 newWindow.on('close', (event) => {
 if (newWindow.isDocumentEdited()) {
 // …
 }
 });

 newWindow.on('closed', () => {
 windows.delete(newWindow);
 stopWatchingFile(newWindow);
 newWindow = null;
 });

 windows.add(newWindow);
 return newWindow;
};

6.6 Prompting the user before discarding changes
Right now, the window’s title reflects whether the user has made changes to the cur-
rent document that haven’t been saved. But what if the user tries to close the window?
The changes are gone and unrecoverable. In the previous section, we added the abil-
ity to watch the currently active file path. If the file is changed by another application,
Fire Sale overwrites the changes without warning. In both cases, this is unacceptable
behavior for a desktop application. Users expect to be prompted if they are about to
lose their work. In this section, we implement those safeguards.

 In chapter 5, we set up a listener for the closed event, which is fired when the win-
dow has successfully been closed. Electron also supports a close event, which fires
when the user attempts to close the window. If the user has unsaved changes, we can
intervene and prompt the user to confirm that they—in fact—want to close the win-
dow and lose their changes.

 newWindow.on('close', (event) => {
 if (newWindow.isDocumentEdited()) {
 event.preventDefault();

 const result = dialog.showMessageBox(newWindow, {
 type: 'warning',
 title: 'Quit with Unsaved Changes?',
 message: 'Your changes will be lost if you do not save.',
 buttons: [
 'Quit Anyway',

Listing 6.24 Prompting the user if they try to close a window with unsaved changes:
./app/main.js

When the window is closed,
stops the watcher for the file
associated with that window.

Checks if the document has been edited. We set this in the
renderer process on every keyup in the Markdown view by

comparing the current content with the original content.

If the window has unsaved changes,
prevents it from closing.

Prompts the user with
a custom message box
asking if they are sure
they’d like to close the
window and lose their
changes. Saves their
selection into “result”.

Provides a list of button labels.

120 CHAPTER 6 Working with files
 'Cancel',
],
 defaultId: 0,
 cancelId: 1
 });

 if (result === 0) newWindow.destroy();
 }
 });

In previous chapters, we used dialog.showOpenDialog() and dialog.showSave-
Dialog() for prompting the user to select a file. dialog.showMessageBox() is a
general-purpose, customizable dialog box. You can provide a list of button labels to
the buttons array. dialog.showMessageBox()returns the index of the button that the
user selected. If the user selects the first button, dialog.showMessageBox()returns 0.
We can use the return value to figure out how to proceed in our application based on
the user’s preference. dialog.showMessageBox() also takes additional options that
allow us to specify what the default action should be if the user clicks the Return but-
ton and what option should be returned if the user dismisses the dialog box.

 In the previous example, we listen for the close event. If the window has unedited
changes, we prompt the user. Based on the user’s response, we either prevent the win-
dow from closing or purposely destroy the window.

 We also need to safeguard against two other situations where the user could lose
their changes. The first is if the user attempts to open another file in the same window
when there are unsaved changes; the second is if another application changes the file.
The major difference between these two functions is in the message shown to the user.
Either way, if the user decides to move forward, then we load the file and replace the
content in the UI. In an effort to avoid repeating ourselves, we’ll move this process
into its own function to use it in both places.

const renderFile = (file, content) => {
 filePath = file;
 originalContent = content;

 markdownView.value = content;
 renderMarkdownToHtml(content);

 updateUserInterface(false);
};

With our new renderFile() function in place, we can set up two IPC listeners. When
the user opens a new file (listing 6.26), we continue to use the file-opened channel.
But if the file has been modified by another application (listing 6.27), we send a mes-
sage over the file-changed channel instead. Based on from which channel we receive
the message, we display a different message to the user.

Listing 6.25 Refactoring the process of displaying a new file: ./app/renderer.js

Sets the first option as the default
option if the user hits the Return key.

Sets the second button as the button selected
if the user dismisses the message box.

If the user selects “Quit Anyway,”
forces the window to close.

121Prompting the user before discarding changes
ipcRenderer.on('file-opened', (event, file, content) => {
 if (currentWindow.isDocumentEdited()) {
 const result = remote.dialog.showMessageBox(currentWindow, {
 type: 'warning',
 title: 'Overwrite Current Unsaved Changes?',
 message: 'Opening a new file in this window will overwrite your unsaved

changes. Open this file anyway?',
 buttons: [
 'Yes',
 'Cancel',
],
 defaultId: 0,
 cancelId: 1
 });

 if (result === 1) { return; }
 }

 renderFile(file, content);
});

ipcRenderer.on('file-changed', (event, file, content) => {
 const result = remote.dialog.showMessageBox(currentWindow, {
 type: 'warning',
 title: 'Overwrite Current Unsaved Changes?',
 message: 'Another application has changed this file. Load changes?',
 buttons: [
 'Yes',
 'Cancel',
],
 defaultId: 0,
 cancelId: 1
 });

 renderFile(file, content);
});

The last step is to modify the startWatchingFile() function to send a message over
the file-changed channel, instead of the file-opened channel, to trigger the correct
message box.

const startWatchingFile = (targetWindow, file) => {
 stopWatchingFile(targetWindow);

 const watcher = fs.watch(file, (event) => {
 if (event === 'change') {

Listing 6.26 Prompting the user when opening a new file if there are unsaved changes:
./app/renderer.js

Listing 6.27 Prompting the user when a file changes: ./app/renderer.js

Listing 6.28 Sending a message over the file-changed channel: ./app/main.js

Uses the remote module to
trigger the dialog box from

the main process.

If the user cancels, returns
from the function early.

Sets the window to its
unedited state because the
user just opened a new file.

In this situation, we don’t
care if the document has been

edited. We want to prompt
the user regardless.

122 CHAPTER 6 Working with files
 const content = fs.readFileSync(file).toString();
 targetWindow.webContents.send('file-changed', file, content);
 }
 });

 openFiles.set(targetWindow, watcher);
};

And with that, our application now supports drag-and-drop functionality, watches the
filesystem for changes, adds files to the operating system’s list of recently opened files,
updates the window’s title bar, sets a represented file on macOS, and alerts the user
before discarding unsaved changes. The code for the application can be found at
https://github.com/electron-in-action/firesale/tree/chapter-6, or the appendix.

Summary
 When implementing the ability to save a file, we must consider if this is a new or

existing file and handle each scenario differently.
 When saving a new file, we can use dialog.showSaveFileDialog() to prompt

the user to select a location to which to write the file.
 When saving an existing file, Fire Sale writes to the existing file’s current location.
 By default, Electron windows display the contents of the HTML documents’

<title> tag. The setTitle() method on all BrowserWindow instances allows users
to update and customize a window’s title based on the state of the application.

 Electron provides the ability to further customize windows in macOS.
– We can set the “represented file” to a given path, and it is added to the menu

bar. macOS allows users to drag the file as if they were dragging it from the
Finder.

– We can use the setDocumentedEdited() method on BrowserWindow instances
to display a small dot in the window’s close button that signifies to the user
that they have unsaved changes.

 Electron provides the app.addRecentDocument() method, which appends a
given file path to the operating system’s list of recently opened documents. This
works across all the supported platforms.

 When the user selects a file from the operating system’s list of recently opened
documents, Electron does not know how to handle this by default. We must
provide a custom listener on the app object that handles file-open events.

 Electron provides several shortcuts to common locations where users typically
want to save files. This is done under the hood, relieving us from the responsi-
bility of customizing the default location for each supported operating system.

 In addition to the file selection dialogs provided by Electron, we can also use
the HTML File API to support drag-and-drop actions from the user.

 Node provides the fs.watch() method, which allows us to watch currently
open files and alerts us if they have been changed by other applications.

Fires a different event if
there has been a change

to the current file

https://github.com/electron-in-action/firesale/tree/chapter-6

Building application
and context menus
In browser-based applications, developers have access only to the visible area of
the application’s window. They can’t add controls to the browser’s tool bar or
menu bar. The entire UI for the application’s functionality must be inside of the
window. Developers also face limitations within the window. They can’t modify
the context menus that appear when the user right-clicks their UI. It can be a
challenge to find a place for every option and command. Electron, on the other

This chapter covers
 Creating menus using Electron’s Menu and

MenuItem modules

 Building menus from a template

 Defining custom menus for target operating
systems

 Assigning common operating system roles to
our menu items

 Making menu items with custom, application-
specific functionality

 Creating custom context menus for different
parts of your UI
123

124 CHAPTER 7 Building application and context menus
hand, enables developers to add functionality outside of the browser window, such
as custom application and context menus that appear when the user right-clicks a
component of the UI.

 In this chapter, we explore how to create and configure these menus in Fire Sale.
We’ll replace the default menu provided by Electron with our own and walk through
exposing common operating system functionality in our menus. We assign keyboard
shortcuts to menu items to make them easy to trigger from anywhere in the applica-
tion. With the basic menu functionality implemented, we then add in our own appli-
cation-specific menu items—notably, the ability to open a Markdown file from the
filesystem, display it in the left pane of our UI, and render its contents as HTML in the
right pane. Finally, we create a custom context menu containing common text manip-
ulation tasks (cut, copy, and paste, as shown in figure 7.1) whenever the user right-
clicks the left pane.

Throughout the previous few chapters, we’ve had a menu in Fire Sale. So why build a
custom one now? Developers can overwrite Electron’s default menu, but then they are
responsible for building the menu from the ground up. Over the course of this chap-
ter, we restore some of the basic functionality common to most desktop applications.
After the foundation has been laid, we extend it with our own custom functionality.
From our menu users can save the currently active file as well as export the HTML to
its own file. In addition to being able to access this functionality from the application’s
menu, users can use keyboard shortcuts to trigger the menu items. In this chapter, we
build a menu for Fire Sale that has the structure shown in figure 7.2.

Figure 7.1 In this chapter, we build custom menu items that trigger some of the functionality found in the UI.

125Replacing and replicating the default menu
7.1 Replacing and replicating the default menu
To get started, make a new file called ./app/application-menu.js. This file will grow
large by the end of the chapter, so we address that now by breaking it out into its own
file. Let’s begin by adding copy and paste back to the application menu.

const { app, BrowserWindow, Menu, shell } = require('electron');
const mainProcess = require('./main');

const template = [
 {
 label: 'Edit',
 submenu: [

Listing 7.1 Creating an Edit menu with copy and paste: ./app/application-menu.js

Application
(macOS only)

File

Edit

Window Help

Open File Save File Export HTML

Undo Redo Cut Copy Paste Select All

Minimize Close
Search

(macOS only)
Visit Website

About Services Hide Hide Others Show All Quit

Figure 7.2 The structure of the application menu for Fire Sale

Requires the modules that
we need as we build the

application menu
throughout this chapter

Creates a template array
that will serve as the
blueprint for the menu

126 CHAPTER 7 Building application and context menus

m
 {
 label: 'Copy',
 accelerator: 'CommandOrControl+C',
 role: 'copy',
 },
 {
 label: 'Paste',
 accelerator: 'CommandOrControl+V',
 role: 'paste',
 },
]
 }
];

module.exports = Menu.buildFromTemplate(template);

Next, set the menu as the application’s menu when app fires the ready event.

const { app, BrowserWindow, dialog, Menu } = require('electron');
const applicationMenu = require('./application-menu');
const fs = require('fs');

const windows = new Set();
const openFiles = new Map();

app.on('ready', () => {
 Menu.setApplicationMenu(applicationMenu);
 createWindow();
});

// … Additional methods below …

Electron includes the Menu and MenuItem modules for building menus. In theory, we
could build a menu out of individual MenuItems, but this method can be tedious and
error prone. As a convenience, Menu provides the buildFromTemplate() method that
accepts an array of regular JavaScript objects. Internally, Electron creates the Menu-
Items based on the array you provided.

7.1.1 macOS and the case of the missing Edit menu

If you start the application in Windows, you should see an Edit menu with two menu
items: Copy and Paste. This is to be expected. But if you’re testing the application on
macOS, you’ll see something a bit different, as shown in figure 7.3.

 In macOS, the menu is called Electron rather than Edit because the first menu on
macOS is always the Application menu. To solve this issue in Electron, we need to shift
the Edit menu—and all subsequent menu items in the future—down one spot, as
shown in listing 7.3 and figure 7.4, to make room for the Application menu, which we
implement later in this chapter.

Listing 7.2 Loading the menu in the main application file: ./app/main.js

Creates a template array
that will serve as the
blueprint for the menu

Menu items can be given
keyboard shortcuts
called accelerators.

Builds a menu from the
template, and exports it
so it can be used in the
main process.

Requires
the Menu
module fro
Electron Requires the menu built

in the previous listing

Sets it as the application
menu upon successful
launch

127Replacing and replicating the default menu
const { app, BrowserWindow, Menu, shell } = require('electron');
const mainProcess = require('./main');

const template = [
 // … Menu template from the last section. …
];

if (process.platform === 'darwin') {
 const name = 'Fire Sale';
 template.unshift({ label: name });
}

module.exports = Menu.buildFromTemplate(template);

One of the great things about building applications with Electron is that developers
can target macOS, Windows, and Linux with one codebase. The caveat is that the devel-
oper should consider the idiosyncrasies of each of the supported operating systems

Listing 7.3 Prepending to the list of menu items in macOS: ./app/application-menu.js

Figure 7.3 macOS takes the first menu item and uses it as the Application menu, which is not always
the expected or intended behavior.

Figure 7.4 By shifting all of the menus down one position, the Edit menu renders correctly. Soon, we
implement an Application menu that behaves like a native macOS application.

Asks Node’s process global what
platform the application is running
on. macOS reports that it is darwin.
If this is the case, moves a new
menu item to the beginning of
the template array.

Gets the name of the application.
This won’t show up in the menu
now but is useful down the road.

128 CHAPTER 7 Building application and context menus
when writing the code. Luckily, Node provides the process object, which has several
properties, methods, and events that provide introspection into the environment in
which the application is running.

 process.platform returns the name of the platform in which the application is
currently executing. As of this writing, process.platform returns one of five strings:
darwin, freebsd, linux, sunos, or win32. Darwin is the UNIX operating system upon
which macOS is built. We can adjust our menu at runtime by checking if process
.platform is equal to darwin. If it is, then the application is running on macOS and
all the menu items should be shifted one place to the right.

 For all of the extra work required to get menus in the correct order, you may have
noticed in figure 7.4 that we were rewarded with dictation and emoji support without
having to implement it just by having an Edit menu.

7.1.2 The hidden cost of replacing Electron’s default menu

Electron provides a default menu, but it’s an all or nothing affair. When we replace the
menu, we lose all its original functionality. Not only do we lose a few menu items, we also
lose their keyboard shortcuts. Try to use the Command-X keyboard shortcut on macOS,
or Control-X on Windows and Linux, to cut text from the left pane. What about Com-
mand-A or Control-A on macOS or Windows, respectively, to select all the text? How
about Command-Z or Control-Z to undo? Nothing happens. If you’re on macOS, try to
press Command-Q to quit the application. Again, nothing happens. We also lose the
functionality to hide this application and other applications in macOS. On all operating
systems, we lose the ability to undo and redo changes, minimize and close the window,
and select all text in each field. All that’s left is the ability to copy and paste, shown in fig-
ure 7.5—and that’s only because it was added back in our custom menu.

It’s up to the developer to add these features back to the application. If we want to
omit any of these features from our application, we can. Your first thought might be

Figure 7.5 The Edit and Window menus as implemented in Electron’s built-
in menu

129Replacing and replicating the default menu
that re-implementing this functionality is a bit like reinventing the wheel. Luckily,
Electron makes it easy to create menu items that perform common operating system
tasks. When a new menu item is created, a number of options can be set on it. So far,
we’ve been exposed to the label option and the type option, which we set to separator
on the third menu item in each of the previous listings.

7.1.3 Implementing the Edit and Window menus

To get practice building menus in Electron, let’s start by implementing the Edit and
Window menus similar to how they were defined in Electron’s default menu, as shown
in figure 7.5.

const template = [
 {
 label: 'Edit',
 submenu: [
 {
 label: 'Undo',
 accelerator: 'CommandOrControl+Z',
 role: 'undo',
 },
 {
 label: 'Redo',
 accelerator: 'Shift+CommandOrControl+Z',
 role: 'redo',
 },
 { type: 'separator' },
 {
 label: 'Cut',
 accelerator: 'CommandOrControl+X',
 role: 'cut',
 },
 {
 label: 'Copy',
 accelerator: 'CommandOrControl+C',
 role: 'copy',
 },
 {
 label: 'Paste',
 accelerator: 'CommandOrControl+V',
 role: 'paste',
 },
 {
 label: 'Select All',
 accelerator: 'CommandOrControl+A',
 role: 'selectall',
 },
],
 },

Listing 7.4 Edit menu template: ./app/application-menu.js

130 CHAPTER 7 Building application and context menus
 {
 label: 'Window',
 submenu: [
 {
 label: 'Minimize',
 accelerator: 'CommandOrControl+M',
 role: 'minimize',
 },
 {
 label: 'Close',
 accelerator: 'CommandOrControl+W',
 role: 'close',
 },
],
 },
];

if (process.platform === 'darwin') {
 const name = app.getName();
 template.unshift({ label: name });
}

module.exports = Menu.buildFromTemplate(template);

7.1.4 Defining menu item roles and keyboard shortcuts

One thing you may have noticed is that all of the menu items added so far have a spe-
cial role property. This setting is important because functionality like copy and paste
is hard to implement by hand. Menu items can have a role, which correlates to a
built-in capability provided by the operating system to all applications. On Windows,
Linux, and macOS, the role of a menu item can be set to any of the following:

 undo

 redo

 cut

 copy

 paste

 selectall

 minimize

 close

These roles overlap with much of the functionality we lost when we replaced the
default menu with our own. Adding menu items with these roles restores the function-
ality to the menu but not the keyboard shortcuts that many users are accustomed to.

 Electron provides an additional property called accelerator for defining a key-
board shortcut to trigger a menu item’s action. When creating menu items, you can
set the accelerator property to a string that follows a set of Electron-specific conven-
tions. Listing 7.5 codes a menu item that adds the copy functionality.

131Replacing and replicating the default menu
const { app, BrowserWindow, Menu, MenuItem, shell } = require('electron');

const copyMenuItem = new MenuItem({
 label: 'Copy',
 accelerator: 'CommandOrControl+C',
 role: 'copy'
});

On Windows and Linux, it’s common to prefix keyboard shortcuts with the Control
key. On macOS, it’s common to use the Command key for a similar purpose. In addi-
tion to being unconventional, the Command key isn’t available on Linux and Win-
dows. Rather than needing to rely on process.platform along with conditional logic
in our menu items, Electron provides the CommandOrControl shorthand. On macOS,
this binds the keyboard shortcut to the Command key. On Windows and Linux, Elec-
tron uses the Control key instead. As additional shorthand, Electron provides Cmd,
Ctrl, and CmdOrCtrl, which are aliased to Command, Control, and CommandOrControl,
respectively.

7.1.5 Restoring the application menu on macOS

When Electron runs, it compiles the template into a collection of MenuItems and sets
the application’s menu accordingly. Keyboard shortcuts for common operations like
copying and pasting are restored, and the application behaves as expected in Win-
dows and Linux. In macOS, however, the application is still missing important func-
tionality, not least of which is the ability to quit the application. Standard application
menus in macOS have the structure shown in figure 7.6.

When running on macOS, Electron provides an additional set of roles that make it
easy to restore the application menu common to most Mac applications. These addi-
tional roles are

 about

 hide

 hideothers

 unhide

 front

Listing 7.5 Using roles and accelerators: ./app/application-menu.js

Application
(macOS only)

About Services Hide Hide Others Show All Quit

Figure 7.6 The structure of the application menu in macOS applications

132 CHAPTER 7 Building application and context menus
 window

 help

 services

The default application menu provided by Electron has menu items for showing the
application’s About panel, exposing services provided by macOS, hiding the applica-
tion, hiding all other applications, and quitting the application, as shown in figure 7.7.

Implementing the application menu is similar to implementing the Edit and Window
menus. Command is preferable over CommandOrControl for defining accelerators,
because this menu appears only on macOS. In addition, we use template strings to get
the application’s name for the About, Hide, and Quit menus because it is customary
to include the application’s name in these menu items.

if (process.platform === 'darwin') {
 const name = 'Fire Sale';
 template.unshift({
 label: name,
 submenu: [
 {
 label: `About ${name}`,
 role: 'about',
 },
 { type: 'separator' },
 {
 label: 'Services',
 role: 'services',
 submenu: [],
 },
 { type: 'separator' },

Listing 7.6 Application menu for macOS: ./app/application-menu.js

Figure 7.7 Menu items in the application menu use special roles in Electron that
allow you to trigger operating system functionality without reinventing the wheel.

133Replacing and replicating the default menu
 {
 label: `Hide ${name}`,
 accelerator: 'Command+H',
 role: 'hide',
 },
 {
 label: 'Hide Others',
 accelerator: 'Command+Alt+H',
 role: 'hideothers',
 },
 {
 label: 'Show All',
 role: 'unhide',
 },
 { type: 'separator' },
 {
 label: `Quit ${name}`,
 accelerator: 'Command+Q',
 click() { app.quit(); },
 },
],
 });
}

Our application now has almost all of the functionality of a native application on
macOS, but we still need to address a few subtle differences. On macOS, the Window
menu has a few additional menu items—most notably Bring All to Front, which moves
all of the windows of the application to the front of the stack. In addition, the macOS-
exclusive window role adds the ability to close and minimize the current window from
the Window menu, as well as a list of all of the application’s windows, and the ability to
bring them all to the front. This role is ignored on platforms that don’t support it.

const template = [
 {
 label: 'Edit',
 submenu: [
 // "Edit" menu shown in Listing 7.4
],
 },
 {
 label: 'Window',
 role: 'window',
 submenu: [
 // "Window" menu shown in Listing 7.4
],
 },
];

if (process.platform === 'darwin') {
 const name = app.getName();
 template.unshift({

Listing 7.7 Combining the application, Edit, and Window menus: ./app/application-menu.js

There is no built-in role for quitting
an application. Instead, we add a
click method that is called whenever
the menu item is clicked or keyboard
shortcut activated.

The window role on the Window
menu causes Electron to add a list
of all open windows at the end of
the menu when running in macOS.

134 CHAPTER 7 Building application and context menus
 label: name,
 submenu: [
 // #Application menu shown in Listing 7.6
],
 });

 const windowMenu = template.find(item => item.label === 'Window');
 windowMenu.role = 'window';
 windowMenu.submenu.push(
 { type: 'separator' },
 {
 label: 'Bring All to Front',
 role: 'front',
 }
);
}

7.1.6 Adding a Help menu

Adding a Help menu is a good practice regardless of platform, but there is an added
benefit for doing so on macOS. Even if your application does not have any documen-
tation or support yet, the built-in Help menu allows users to search the application to
find menu items, as shown in figure 7.9. This works in most macOS applications and is
useful for searching through deeply nested menus quickly. You can access the menu
search by pressing Command-Shift-? at any time.

 To add a Help menu to your application, such as the structure shown in figure 7.10,
add an additional menu with the role of help and a submenu of additional menu items.
You must provide an array as the submenu, as shown in listing 7.8, even if it’s empty. For
now, we can also add the ability to trigger the developer tools. Depending on the appli-
cation, you might want to remove this feature before publishing the application. That
said, popular applications such as Atom, Nylas Mail, and Visual Studio Code have cho-
sen to leave it in.

The Array.prototype.find() method
traverses our menu template and

looks for the menu with the label of
Window. If the order of the items

ever changes, this approach is
resilient to change.

Sets the menu’s role to “window”.
This enables the display of a list of
currently open windows as shown

in figure 7.8.

Figure 7.8 The Window menu in
macOS allows you to see all of the
windows currently open in the
application.

135Replacing and replicating the default menu
const template = [
 // "Edit" and "Window" menus defined in Listing 7.7
 {
 label: 'Help',
 role: 'help',
 submenu: [
 {
 label: 'Visit Website',
 click() { /* To be implemented */ }
 },
 {
 label: 'Toggle Developer Tools',
 click(item, focusedWindow) {
 if (focusedWindow) focusedWindow.webContents.toggleDevTools();
 }
 }
],
 }
];

The click() method can optionally take up to three arguments: the menu item itself,
the currently focused BrowserWindow instance, and an event object. In listing 7.8, we

Listing 7.8 Creating a Help menu: ./app/application-menu.js

Figure 7.9 On macOS, the Help menu allows you to search for items in your menu.

Help

Search
(macOS only)

Visit Website Figure 7.10 The structure of the Help
menu that we build in listing 7.8.

Click methods can optionally
take the menu item itself and
the currently focused window
as arguments.

136 CHAPTER 7 Building application and context menus
use the second argument—the currently focused window—to determine which win-
dow we should tell to toggle the developer tools.

7.2 Adding application-specific menu functionality
Going through all that work to restore a lot of the functionality, which we originally
got for free, is worth it only if we use it as a template to add custom functionality. Users
typically expect to be able to open and save files from the File menu. Fire Sale cur-
rently lacks this functionality. Right now, we can select and open a Markdown file from
the filesystem using the Open File button in the UI. Our next step, shown in figure 7.11,
is to modify the File menu with New File, Open File, Save File, and Export HTML
menu items along with keyboard shortcuts to trigger each action.

When the user clicks the Open File menu item or presses the keyboard shortcut, the
menu item triggers the same openFile() function from the main process that the but-
ton in the UI triggers. Clicking New File calls the createWindow() function from the
main process. Let’s start by adding a File menu to our template with each of the fea-
tures shown in figure 7.11 as menu items to its submenu array.

 In the case of saving or exporting a file, however, we need the current contents of
the Markdown pane or the HTML pane, respectively. We’ll also need the name of the
currently open file if there is one because the main process doesn’t have access to this
information. Instead, we send a message to the currently focused window that it
should gather this information for us and then trigger the same functionality it would
if a user clicked on a button in the UI.

const template = [
 {
 label: 'File',
 submenu: [
 {
 label: 'New File',
 accelerator: 'CommandOrControl+N',
 click() {
 mainProcess.createWindow();

Listing 7.9 Custom menu functionality: ./app/application-menu.js

Figure 7.11 In this section, we will add a File menu with application-specific functionality.

Tells the main process to
create a new window when
New File is selected

137Adding application-specific menu functionality
 }
 },
 {
 label: 'Open File',
 accelerator: 'CommandOrControl+O',
 click(item, focusedWindow) {
 mainProcess.getFileFromUser(focusedWindow);
 },
 },
 {
 label: 'Save File',
 accelerator: 'CommandOrControl+S',
 click(item, focusedWindow) {
 focusedWindow.webContents.send('save-markdown');
 },
 },
 {
 label: 'Export HTML',
 accelerator: 'Shift+CommandOrControl+S',
 click(item, focusedWindow) {
 focusedWindow.webContents.send('save-html');
 },
 },
],
 },
 // "Edit", "Window", and "Help" menus are defined here as well.
];

Sending a message to the focused window is half the battle. We still need to configure
the renderer process to listen for these messages and act accordingly. Let’s set up an
IPC listener to receive these messages and call our existing save and export functional-
ity whenever a message is received.

ipcRenderer.on('save-markdown', () => {
 mainProcess.saveMarkdown(currentWindow, filePath, markdownView.value);
});

ipcRenderer.on('save-html', () => {
 mainProcess.saveHtml(currentWindow, filePath, markdownView.value);
});

Listing 7.10 Add IPC listeners to the renderer process: ./app/renderer.js

Prompts the user to
select a new file to open
in the current window

Sends a message
to the currently
focused window to
save its Markdown

Sends a message
to the currently
focused window to
export its HTML

When a message is received on the save-markdown channel,
sends a message back to the main process with the name of the

currently open file—if any—and the text content from the DOM.

When a message is received on the save-html channel,
sends a message back to the main process with the name of
the currently open file and the rendered HTML.

138 CHAPTER 7 Building application and context menus
7.2.1 Handling the case of having no focused window

In Windows and Linux, the application quits when all the windows are closed. On
macOS the application remains running even when all the windows have been closed.
A new window is opened when the icon is clicked, but in some cases, the user might
select one of the three menu items we just implemented and the focused window is
undefined. In chapter 9, we cover how to enable and disable menu items. For now, we
take a simpler approach: open a new window if the user selects Open File, and display
an error message if there is no content to save or export.

 To display the error messages when a user tries to save or export a nonexistent file,
we use dialog.showErrorBox(), which is similar to dialog.showMessageBox() but
specializes in displaying error messages and doesn’t have as many options for configu-
ration.

const { app, dialog, Menu, MenuItem shell } = require('electron');
const mainProcess = require('./main');

const template = [
 {
 label: 'File',
 submenu: [
 {
 label: 'New File',
 accelerator: 'CommandOrControl+N',
 click() {
 mainProcess.createWindow();
 }
 },
 {
 label: 'Open File',
 accelerator: 'CommandOrControl+O',
 click(item, focusedWindow) {
 mainProcess.getFileFromUser(focusedWindow);
 },
 },
 {
 label: 'Save File',
 accelerator: 'CommandOrControl+S',
 click(item, focusedWindow) {
 if (!focusedWindow) {
 return dialog.showErrorBox(
 'Cannot Save or Export',
 'There is currently no active document to save or export.'
);
 }
 focusedWindow.webContents.send('save-markdown');
 },
 },
 {

Listing 7.11 Displaying an error when trying to save or export a file that doesn’t exist:
./app/application-menu.js

Requires
Electron’s

dialog module

Uses dialog.showErrorBox()
to display an alert, and
returns from the
function early

139Adding application-specific menu functionality

()
e
5.

w

t

 label: 'Export HTML',
 accelerator: 'Shift+CommandOrControl+S',
 click(item, focusedWindow) {
 if (!focusedWindow) {
 return dialog.showErrorBox(
 'Cannot Save or Export',
 'There is currently no active document to save or export.'
);
 }
 focusedWindow.webContents.send('save-html');
 },
 },
],
 },

Things are not nearly as hopeless if the user selects Open File and there is no window
available to receive the command. We simply make a new window, wait for it to be
shown, and then trigger the File Selection dialog box as if the window had been there
all along.

const template = [
 {
 label: 'File',
 submenu: [
 {
 label: 'Open File',
 accelerator: 'CommandOrControl+O',
 click(item, focusedWindow) {
 if (focusedWindow) {
 return mainProcess.getFileFromUser(focusedWindow);
 }

 const newWindow = mainProcess.createWindow();

 newWindow.on('show', () => {
 mainProcess.getFileFromUser(newWindow);
 });
 },
 }, // "Save File" and "Export HTML" menus are defined here.
],
 }, // "Edit", "Window", and "Help" menus are defined here.
];

First, we check if there is a focusedWindow. If there is, we want to trigger the function-
ality that we implemented earlier and return from the function early. If there isn’t a
focused window, we need to create one. Luckily, we created a function in chapter 5 to
assist us with this process. When the new window has finished initalizing, we use it as
we would use any existing window. Our code is now resilient to this case, and we’re
ready to move on.

Listing 7.12 Creating a window when the user opens a new file if one does not exist:
./app/application-menu.js

Provides the same
functionality if the
user tries to export
a nonexistent file

If focusedWindow
is defined, uses the

functionality we defined
earlier in the chapter.

If there is no focused-
Window, creates one
using the createWindow
function we created in th
main process in chapter

When the new
indow has been
shown, prompts
he user to select

a file as if the
window had

been there all
along.

140 CHAPTER 7 Building application and context menus
7.3 Building context menus
In the previous section, we defined a menu and set it as the application menu in the
main process when the app module fired its “ready” event. Our application can only
have one application menu at a time. We can, however, define additional menus in
the renderer process, shown in figure 7.12, that spring into action when the user
right-clicks (or does a two-finger click on certain computers) a part of the UI.

Next, we listen for contextmenu events in the left-hand markdown pane.

markdownView.addEventListener('contextmenu', (event) => {
 event.preventDefault();
 alert('One day, a context menu will go here.');
});

Notice that the alert does not fire unless the user clicks the left pane. If you want a
context menu that is triggered from anywhere within the application, listen on the
window object instead of on a DOM node. The Menu module is not available from
within the renderer process, but it can be accessed from the context of the main pro-
cess using the remote module as shown in the following listing. Once imported, we
can use Menu.buildFromTemplate() to construct a menu as shown in listing 7.15.

const { remote, ipcRenderer } = require('electron');
const { Menu } = remote;
const path = require('path');
const mainProcess = remote.require('./main.js');
const currentWindow = remote.getCurrentWindow();

Listing 7.13 Listening for contextmenu events: ./app/renderer.js

Listing 7.14 Creating a context menu: ./app/renderer.js

Figure 7.12 Electron allows developers to define custom context menus when the user right-
clicks on a specific part of the DOM.

Requires the Menu module
from the context of the
main process via the
remote module.

141Summary
// Our existing renderer code…

const markdownContextMenu = Menu.buildFromTemplate([
 { label: 'Open File', click() { mainProcess.getFileFromUser(); } },
 { type: 'separator' },
 { label: 'Cut', role: 'cut' },
 { label: 'Copy', role: 'copy' },
 { label: 'Paste', role: 'paste' },
 { label: 'Select All', role: 'selectall' },
]);

To trigger this menu, replace the contextmenu event listener with a function that will
call the popup() method on the newly created menu, shown here.

markdownView.addEventListener('contextmenu', (event) => {
 event.preventDefault();
 markdownContextMenu.popup();
});

The popup() method takes four arguments: a BrowserWindow, x, y, and a positioning-
Item. All of these arguments are optional, and if they’re omitted, then the context
shows up in the current browser window directly under the mouse cursor, which is the
behavior we expect in this context. With that code in place, we can now trigger a con-
text menu in our Markdown pane. We add functionality to the context menu as well as
additional context menus as we add more features to our application. The complete
code for this chapter can be found at https://github.com/electron-in-action/firesale/
tree/chapter-7 or in the appendix. Alternatively, you can clone from the GitHub reposi-
tory at https://github.com/electron-in-action/firesale.git, check out the chapter-7
branch, and run npm install to see it in action.

Summary
 Electron allows developers to build custom application and context menus.
 Electron provides the Menu and the MenuItem modules for building menus.
 Menu.buildFromTemplate() allows developers to build a menu out of an array

of JavaScript objects instead of having to use the MenuItem constructor.
 Electron comes with a built-in application menu filled with sensible defaults.

Overriding this menu means that we have to replace the built-in functionality.
 process.platform allows developers to detect what operating system their

application is running in.
 macOS expects a special application menu as its first menu item.
 Electron provides roles for MenuItems allowing developers to easily implement

common, operating system-level functionality.

Listing 7.15 Triggering the context menu: ./app/renderer.js

https://github.com/electron-in-action/firesale/tree/chapter-7
https://github.com/electron-in-action/firesale/tree/chapter-7
https://github.com/electron-in-action/firesale/tree/chapter-7
https://github.com/electron-in-action/firesale.git

142 CHAPTER 7 Building application and context menus
 MenuItems have a click() method that defines their behavior when clicked by
the user.

 MenuItems support an accelerator property that allow developers to define a
keyboard shortcut to trigger its action.

 Electron supports a contextmenu event in the renderer process that fires when-
ever a user right-clicks the DOM.

Further operating system
integration and dynamically

enabling menu items
In addition to creating custom application modules, opening isolated browser win-
dow processes, and accessing native file dialogs in Electron, we can use the shell
module to interact with the operating system.

 How does your application know your system’s default browser for opening web-
sites? If you want to open an image file in its default application, which application
should you send it to?

 Users of our applications typically set these preferences in the operating system
itself. Instead of trying to figure out our user’s settings, we’re better off just asking
the operating system for the answer. Electron provides the shell module to make
this easy for us.

This chapter covers
 Showing files in the native operating system’s

filesystem manager

 Opening a file in the operating system’s default
application for that file type

 Modifying application and context menus
dynamically

 Opening the URLs in the default browser instead
of the application itself
143

144 CHAPTER 8 Further operating system integration and dynamically enabling menu items
 The shell module is relatively small compared to some of the other modules pro-
vided by Electron. It allows us to open a given file path in the operating system’s file
browser, send it to its default application, move it to the trash, trigger a system beep,
and create shortcut links in Windows. The shell module made a brief appearance in
chapter 2, when we used it to make sure that hyperlinks open in the user’s web
browser of choice instead of in the application itself, which also happens to be a web
browser.

 In this chapter, we take a subset of these features—opening a file’s location in the
file browser and sending a file to the operating system’s default application—and
implement them in multiple places in Fire Sale, as shown in figure 8.1. We add this
functionality to Fire Sale’s UI, to the context menu that opens when the user right-
clicks the editor pane, and to the application’s menu. Depending on the feature
you’re implementing in your application, all or a subset of these might be the right
approach for your purposes. As we implement them in each of the three places
throughout the chapter, I discuss the advantages and disadvantages of each approach.
All the code from this chapter is available on GitHub in the chapter-8 branch
(https://github.com/ electron-in-action/firesale/tree/chapter-8).

Figure 8.1 Electron allows us to integrate with the operating system to trigger the file browser to navigate to the
location of a given file or to open a file path in the default application for that file type.

https://github.com/electron-in-action/firesale/tree/chapter-8

145Using the shell module from the UI in the renderer process
8.1 Using the shell module from the UI
in the renderer process
In chapter 7, in learning how to implement custom menus, we added features to Fire
Sale like we would in a traditional browser environment: by adding buttons to the
DOM. The Electron shell module, which is available in the main process as well as
the renderer process, can be triggered from buttons in the UI, from application and
context menu items, through keystrokes, and more. But let’s start with what we’re good
at: triggering functionality from the UI. The Show File and Open in Default Applica-
tion buttons, shown in figure 8.2, have been in the UI since chapter 3. Now it’s their
turn to shine. When a file is opened or a new file is first saved to the filesystem, the
buttons are enabled. When a user clicks the Show File button, the file browser opens
so the user can navigate to the directory containing the currently open file. When the
Open in Default Application button is selected, the operating system opens the file in
the application that typically opens Markdown and text files on the user’s computer.

In the previous chapters, the Show File and Open in Default Application buttons have
been disabled by default. Like the Save and Revert buttons implemented in a previous
chapter, there are situations where the buttons should be enabled. With the Save and
Revert buttons, this was whenever the original content of the file—or an empty string
in the case of a new, unsaved file—differed from what was currently shown in the left
editor pane. Thus, we listened for keyup events in the editor and compared the con-
tents to evaluate if the buttons should be enabled. For Show File and Open in Default
Application, we do not care so much whether they have been modified. What we want
is a file path to either show or open, respectively.

const renderFile = (file, content) => {
 filePath = file;
 originalContent = content;

Listing 8.1 Enabling the buttons when there is a file to show: ./app/renderer.js

Figure 8.2 The Show File and the Open in Default Application buttons have been present
since chapter 3. In this chapter, we’ll use the Electron shell module to implement their
functionality.

146 CHAPTER 8 Further operating system integration and dynamically enabling menu items
 markdownView.value = content;
 renderMarkdownToHtml(content);

 showFileButton.disabled = false;
 openInDefaultButton.disabled = false;

 updateUserInterface(false);
};

The Show File and Open in Default Editor buttons should be enabled whenever we
are working with a file that is stored in the filesystem, not a new, unsaved file. When-
ever the active file is changed, we update the filePath variable. After this variable has
been set, enable the buttons.

const showFile = () => {
 if (!filePath) {
 return alert('This file has not been saved to the filesystem.');
 }
 shell.showItemInFolder(filePath);
};

const openInDefaultApplication = () => {
 if (!filePath) {
 return alert('This file has not been saved to the filesystem.');
 }
 shell.openItem(filePath);
};

showFileButton.addEventListener('click', showFile);
openInDefaultButton.addEventListener('click', openInDefaultApplication);

Enabling the buttons is helpful, but it would be even better if the buttons did some-
thing. Whenever a button is clicked, it triggers the appropriate method from the
shell module. You might notice that I decided to define the functions in constants
instead of just passing anonymous functions to addEventListener. Later in this chap-
ter, we call these functions from Fire Sale’s application menu as well as from a context
menu. These names allow me to reference the two functions later.

8.2 Using the shell module in the application menu
The first place we might consider adding this functionality is in the application menu,
just below the menu items that allow the user to save and export files. In this section,
we implement two new menu items, Show File and Open in Default Editor, as shown

Listing 8.2 Adding event listeners to the buttons: ./app/renderer.js

When a file path has been sent
to the renderer process to be
displayed, we activate the Show
File and Open in Default buttons.

It seems unlikely that a user could click a
disabled button, but we guard against them
seeing a cryptic error by showing a more
helpful one and returning from the function.

Triggers the operating system’s native
file browser to open a new window with
the provided file path highlighted.

Requests that the provided operating
system be opened by the default
application designated by the user.

When either button is clicked, we trigger the two functions declared earlier.
By omitting the parentheses, we provide a reference to the function to be
executed when the button is clicked instead of immediately invoking it.

147Using the shell module in the application menu
in figure 8.3, which exposes the file in its containing folder, and opens it in the appli-
cation set as the default for Markdown files in the operating system, respectively.

You must add these two new menu items to the application menu template to appear
when the application starts. What if no windows are open? In a perfect world, we
would disable the menu items unless at least one window was open. But that’s beyond
the scope of this chapter, so we’ll do the next best thing and display a useful error
message to help the user see the error of their ways.

const { app, BrowserWindow, dialog, Menu, shell } = require('electron');
const mainProcess = require('./main');

const template = [
 {
 label: 'File',
 submenu: [
 //Additional submenu items above.
 { type: 'separator' },
 {
 label: 'Show File',
 accelerator: 'Shift+CommandOrControl+S',
 click(item, focusedWindow) {
 if (!focusedWindow) {
 return dialog.showErrorBox(
 'Cannot Show File\'s Location',
 'There is currently no active document show.'
);
 }
 focusedWindow.webContents.send('show-file');
 },
 },
 {
 label: 'Open in Default Editor',
 accelerator: 'Shift+CommandOrControl+S',
 click(item, focusedWindow) {
 if (!focusedWindow) {
 return dialog.showErrorBox(

Listing 8.3 Adding additional menu items: ./app/application-menu

Figure 8.3 Menu items that work with the Electron shell module to
communicate with the native operating system

Adds Electron’s shell module to the
list of modules being required

from the electron library.

Electron’s menu templates allow us
to easily define separators between
other—more functional—menu items.

If there is no focused window,
then we display an error to the
user and return from the function.

If the user selects the
Show File menu item,
we send a message
over the show-file
channel via IPC to the
frontmost window.

148 CHAPTER 8 Further operating system integration and dynamically enabling menu items

lt

e

 'Cannot Open File in Default Editor',
 'There is currently no active document to open.'
);
 }
 focusedWindow.webContents.send('open-in-default');
 },
 },
],
 },
 // Edit, Window, and Help menus defined here.
];

In listing 8.3, we add a separator between the menu items we added in the previous
chapter and the ones we’re adding in this chapter. This separator is solely for aesthetic
reasons and is not required for the menu to work properly. After the separator, we have
added two new menu items: Show File and Open in Default Editor. Each window has a
reference to the path of the file that is currently rendered in it. So, how do we know
what file to show or open? We could devise a complicated system for figuring out which
files were opened in which windows, or we could just send a message to the window over
interprocess communication (IPC) and let the window figure it out for itself.

 To get this working, we listen for IPC messages over the show-file and open-in-
default channels. Luckily, we were smart enough earlier to name the functions respon-
sible for handling these requests. This makes setting up the listeners easy.

ipcRenderer.on('show-file', showFile);
ipcRenderer.on('open-in-default', openInDefaultApplication);

8.2.1 Additional features of the Electron shell module

The Electron shell module also allows developers to move a given file to the macOS
Trash or the Windows Recycle Bin without concerning themselves with the finer
points of how that works on each platform. It can also allow developers to trigger a sys-
tem beep. On Windows, developers can create and read shortcut links as well.

8.3 Accessing the shell module from a context menu
You can also add these features to the context menu we originally added to the appli-
cation in chapter 7. This menu appears when a user right-clicks the left editor pane,
shown in figure 8.4. To implement this feature, we need to combine the two
approaches from earlier in this chapter: we add menu items to the template, but

Listing 8.4 Implementing IPC listeners for Show File and Open in Default applications:
./app/renderer.js

If the user selects
the Open in Defau
Editor menu item,
we send a messag
over the open-in-
default channel via
IPC to the front-
most window.

When the ipcRenderer receives a
show-file event from the main process,
triggers the showFile() function.

When the ipcRenderer receives a open-in-default
event from the main process, triggers the

openInDefaultApplication() function.

149Accessing the shell module from a context menu

because we’re in the renderer process already, we can call the functions directly—just
as we did with the buttons in the UI—instead of having to send messages via IPC.

const { remote, ipcRenderer, shell } = require('electron');
const { Menu } = remote;
const path = require('path');
const mainProcess = remote.require('./main.js');
const currentWindow = remote.getCurrentWindow();

// Other renderer code from the previous chapters will remain here, but has
been ommited for brevity…

const markdownContextMenu = Menu.buildFromTemplate([
 { label: 'Open File', click() { mainProcess.getFileFromUser(); } },
 {
 label: 'Show File in Folder',
 click: showFile
 },
 {
 label: 'Open in Default Editor',
 click: openInDefaultApplication
 },
 { type: 'separator' },
 { label: 'Cut', role: 'cut' },
 { label: 'Copy', role: 'copy' },
 { label: 'Paste', role: 'paste' },
 { label: 'Select All', role: 'selectall' },
]);

8.3.1 Deciding between putting functionality in a menu
or in the browser

When is adding buttons to the UI a better choice than adding the same functionality
to menu items in an application or context menu? It depends on the role that the fea-
ture plays in your application. Contextual menu items are obscure; a user may never
think to right-click a given part of your application. If the feature you’re implement-
ing is essential to the application, it is better to put it in the UI. That said, there is only
a limited amount of space to work with, and less used, but nice-to-have, functionality is
a great fit for contextual menu items.

Listing 8.5 Adding shell module access to the context menu template:
./app/renderer.js

Figure 8.4 Accessing the shell module from
context menus. Show File in Folder and Open in
Default Editor are disabled when working on a
new, unsaved file because unsaved files do not
have a valid file path for the shell module’s
methods.

Add the shell module
and other modules
being required from
Electron in the
renderer process.

The syntax is a little different here because
we’re just pointing the click method to a
reference of the showFile() function. When
the user clicks the menu item, it is opened.

We take a similar approach
with the Open in Default
Editor button.

150 CHAPTER 8 Further operating system integration and dynamically enabling menu items
8.3.2 Deciding between putting functionality in the application
or context menu

When would using a context menu be a better approach than including these menu
items in the application menu as we did in the previous section? To keep Fire Sale sim-
ple, it was designed as a single-window application where the user edits a single file at
a time. When a user selects Open File in Default Editor, the application implicitly
knows which file because there is only one.

 But what if we were building a photo-management application, and we wanted to
add a feature where the user could right-click each of the photographs to show it in
the Finder or Windows Explorer? This feature would be difficult to add to the applica-
tion menu, because it would be hard to decipher exactly which photograph the user
wanted to see in its containing folder. By using a context menu, we can easily deter-
mine which photograph the user right-clicks.

8.4 Disabling menu items when appropriate
Right now, Fire Sale shows an error message if the user selects a menu item that isn’t
available. It’s better than crashing or throwing an indecipherable error message, but
it’s not going to win any awards for being a great user experience. What if we disable
the context and application menu items that would otherwise throw an error if
clicked? This way, it’s clear to the user that this is not a valid action.

 It is possible to mutate menus after they have been set, but it’s tricky. Menu items
are stored as arrays, and finding a given menu item involves traversing all the top-level
menu items and their submenus. Most of the time, it’s easier to either generate a new
context menu based on the current state of the window just before displaying it to the
user or to regenerate a new application menu when the state of the application has
changed.

 How we approach solving this problem depends on which menu we’re working
with. Context menus within a window are easier because we’re working with only a sin-
gle window and we’re storing the filePath variable in the global scope. If there is a
filePath, then we enable Show File in Folder and Open in Default. If filePath is
false, then these menu items are disabled.

 The application menu is a little trickier. In addition to Show File and Open in
Default Application, we also have Save File and Export HTML, which can remain
enabled if the file has not been saved to the filesystem but should be enabled only if
there is at least one window open. See figure 8.5.

8.4.1 Dynamically enabling and disabling menu items in
the context menu

Earlier in this chapter, we created a context menu from a template and then called
its popup() method whenever a contextmenu DOM event is fired. To dynamically
enable or disable the Show File and Open in Default menu items, as in figure 8.6,
let’s create a context menu each time the user right-clicks the Markdown view. We

151Disabling menu items when appropriate
enable these items based on whether there is a filePath. To accomplish this, we
move the creation of the menu into a function, which allows us to re-create the
menu each time it is called.

const createContextMenu = () => {
 return Menu.buildFromTemplate([
 { label: 'Open File', click() { mainProcess.getFileFromUser(); } },
 {

Listing 8.6 Creating a function to dynamically create context menus: ./app/renderer.js

Is there at least one

window open?

Enable Save File

and Export HTML

Disable Save File,

Export HTML,

Show File, and

Open in Default Application

Is there a file loaded

in the currently

focused window?

Enable Show File and

Open in Default

Application

Disable Show File

and Open in

Default Application

Yes No

Yes No

Application Menu

Context Menu

Figure 8.5 Certain menu items are either enabled or disabled depending on the
state of the application. In this application, we have two menus: application and
context. The application menu must track all the open windows, whereas the
context menu should deal with only a subset of the same concerns because it
can assume that at least one window is open.

In chapter 7, we made a single context menu that was shown every time
the user right-clicked the Markdown view. In this chapter, we replace

that menu with a function that creates a new context menu each time.

The return value of this
function is a Menu object
created using Electron’s
Menu.buildFromTemplate()
function.

152 CHAPTER 8 Further operating system integration and dynamically enabling menu items
 label: 'Show File in Folder',
 click: showFile,
 enabled: !!filePath
 },
 {
 label: 'Open in Default',
 click: openInDefaultApplication,
 enabled: !!filePath
 },
 { type: 'separator' },
 { label: 'Cut', role: 'cut' },
 { label: 'Copy', role: 'copy' },
 { label: 'Paste', role: 'paste' },
 { label: 'Select All', role: 'selectall' },
]);
};

In the previous code sample, we created a createContextMenu() function that
returns a new menu each time it is called. As it creates the Show File and Open in
Default menu items, it checks to see if filePath can be coerced to true using the !!
operator. The enabled property expects a Boolean—either true or false. If you’re
not familiar with this technique, it’s a trick to take a truthy or falsey value and coerce it
into true or false, respectively. The ! operator returns false for any truthy value,
and true for any falsey value. Using it a second time flips it back, but this time to a
Boolean primitive, as shown in listing 8.7.

null // Null falsey in JavaScript.
!null // Returns true.
!!null // Returns false.

Listing 8.7 Converting values into Booleans

Upon creating the menu, we
check to see whether filePath has
a value. We coerce filePath into a
Boolean to enable or disable the
menu accordingly.

Figure 8.6 Show File in Folder and Open in Default is disabled if there is no file open.

153Disabling menu items when appropriate
'/Users/stevekinney/Notes/Groceries.txt' // A file path
!/Users/stevekinney/Notes/Groceries.txt' // Returns false.
!!/Users/stevekinney/Notes/Groceries.txt' // Returns true.

The next step is to modify our event listener to use the function we just created. Each
time it generates a new menu, the function checks if filePath is truthy or falsey and
enables Show File and Open in Default Application accordingly. The next step is to
use this function to generate a new menu on the fly each time the user right-clicks the
Markdown view of the application.

markdownView.addEventListener('contextmenu', (event) => {
 event.preventDefault();
 createContextMenu().popup();
});

With this change, the user gets a new menu each time they request one. If there is a
file to show in the filesystem or open in another application, the respective menu
items are enabled. If not, they are disabled. Now it’s time to turn our attention to
the—slightly trickier—application menu.

8.4.2 Dynamically enabling and disabling menu items
in the application menu

The process of dynamically enabling menu items in the application menu shares some
similarities with doing so in the context menu. We use the same approach of generat-
ing new menus and replacing the existing application menu but with a few catches:
the application menu is shared across all windows. The first window might have a file
loaded that we can show or open in another application, but the second one may not.
On macOS, we might run into the scenario where there are no windows open. In this
case, the Save File and Export HTML menu items should be disabled along with Show
File and Open in Default Application, as shown in figure 8.7. Furthermore, our con-
text menu could take advantage of the fact that filePath was in scope. The applica-
tion menu lives in the main process and doesn’t have access to this variable. See
figures 8.8 and 8.9.

 To implement this feature, we take the following approach. First we’ll create a
function that returns a new application menu based on the one we implemented in
the previous chapter. Each time we create a new menu, we check if there are any win-
dows and if the currently focused window is representing a file on the filesystem. With
this in place, we’ll modify the main process to generate a new application menu when

 The application fires its “ready” event
 A window is closed.
 A window gains focus (thereby becoming the new focused window).
 A file is opened.

Listing 8.8 Creating a context menu each time a contextmenu event is fired:
./app/renderer.js

Instead of using a preexisting menu, we call
createContextMenu() to create a menu each time
and then immediately call its popup() method.

154 CHAPTER 8 Further operating system integration and dynamically enabling menu items
Figure 8.7 If there are no windows open, Save File, Export HTML, Show File, and Open
in Default Application should be disabled.

Figure 8.8 If there is a focused window, but the user is working on a file that has not
yet been saved to the filesystem, then the Save File and Export HTML items should be
enabled. The Show File and Open in Default Application menu items should not be,
however, because there is no file location to show or open.

Figure 8.9 If the window is representing a file on the filesystem, all the menu items
should be enabled.

155Disabling menu items when appropriate
Let’s start by refactoring the template in application-menu.js to a function that will
generate a menu and set it as the new application menu.

const { app,
 BrowserWindow,
 dialog,
 Menu,
 shell
 } = require('electron');
const mainProcess = require('./main');

const createApplicationMenu = () => {
 const hasOneOrMoreWindows = !!BrowserWindow.getAllWindows().length;
 const focusedWindow = BrowserWindow.getFocusedWindow();
 const hasFilePath = !!(focusedWindow &&

focusedWindow.getRepresentedFilename());

 const template = [
 {
 label: 'File',
 submenu: [
 {
 label: 'New File',
 accelerator: 'CommandOrControl+N',
 click() {
 mainProcess.createWindow();
 }
 },
 {
 label: 'Open File',
 accelerator: 'CommandOrControl+O',
 click(item, focusedWindow) {
 // Omitted for brevity…
 },
 },
 {
 label: 'Save File',
 accelerator: 'CommandOrControl+S',
 enabled: hasOneOrMoreWindows,
 click(item, focusedWindow) {
 // Omitted for brevity…
 },
 },
 {
 label: 'Export HTML',
 accelerator: 'Shift+CommandOrControl+S',
 enabled: hasOneOrMoreWindows,
 click(item, focusedWindow) {
 // Omitted for brevity…
 },
 },

Listing 8.9 Generating a new application menu based on the application’s menu:
./app/application-menu.js

We imported the BrowserWindow module
because it has methods that are useful for
reasoning about the windows in our application.

An easy way to see if any windows are open
is to use BrowserWindow.getAllWindows().

If no windows are open, this array will
be empty with a length of 0, which is

falsey in JavaScript.

Gets the currently
focused window
(or null if there is
no focused window).

If there is a focused window,
we use its getRepresentedFile()
method to get a reference to the
current file path. If one exists,
we’ll set the hasFilePath Boolean.

The Save File and Export
HTML menu items are set
based on the hasOneOr-
MoreWindows Boolean.

156 CHAPTER 8 Further operating system integration and dynamically enabling menu items
 { type: 'separator' },
 {
 label: 'Show File',
 enabled: hasFilePath,
 click(item, focusedWindow) {
 // Omitted for brevity…
 },
 },
 {
 label: 'Open in Default Application',
 enabled: hasFilePath,
 click(item, focusedWindow) {
 // Omitted for brevity…
 },
 },
],
 },
 // Additional Menus…
];

 // Additional Functionality…

 return Menu.setApplicationMenu(Menu.buildFromTemplate(template));
};

module.exports = createApplicationMenu;

In chapter 7, we built the menu once when the application started and set it as the
application menu as soon as it was ready. This approach still works, now that this mod-
ule exports a function that creates the menu and sets it as the application menu.
Along the way, it checks if there are any browser windows, and if there is a focused win-
dow, it checks whether that window has a represented file set, shown in listing 8.10. If
you recall, we set the represented file in chapter 4 when opening a file. At the time, we
did this to get the little file icon in the window’s title bar in macOS. (Calling this
method has no discernible visual effect on Windows or Linux.)

const openFile = exports.openFile = (targetWindow, file) => {
 const content = fs.readFileSync(file).toString();
 startWatchingFile(targetWindow, file);
 app.addRecentDocument(file);
 targetWindow.setRepresentedFilename(file);
 targetWindow.webContents.send('file-opened', file, content);
};

With these two pieces of information—the number of open windows and whether the
focused window is representing a file path—we can toggle the menu items appropri-
ately. The next step is to trigger this process whenever either of these two might have
changed. Triggering events include when the application first launches, when a new
window takes focus, when a window is closed (it could be the last window), and when

Listing 8.10 Setting the represented file: ./app/main.js

The Show File and Open in
Default Application menu
items are set based on
the hasFilePath Boolean.

Builds the menu from the
template, and sets it as

the application menu.

We set the
represented
file path when
opening a file.

157Disabling menu items when appropriate
the user opens a file. Whenever one of these events occurs, we re-create the applica-
tion menu.

const { app, BrowserWindow, dialog, Menu } = require('electron');
const createApplicationMenu = require('./application-menu');
const fs = require('fs');

const windows = new Set();
const openFiles = new Map();

app.on('ready', () => {
 createApplicationMenu();
 createWindow();
});

app.on('window-all-closed', () => {
 // Omitted for brevity…
});

app.on('activate', (event, hasVisibleWindows) => {
 if (!hasVisibleWindows) { createWindow(); }
});

const createWindow = exports.createWindow = () => {
 let x, y;

 const currentWindow = BrowserWindow.getFocusedWindow();

 if (currentWindow) {
 const [currentWindowX, currentWindowY] = currentWindow.getPosition();
 x = currentWindowX + 10;
 y = currentWindowY + 10;
 }

 let newWindow = new BrowserWindow({ x, y, show: false });

 newWindow.loadFile('index.html');

 newWindow.once('ready-to-show', () => {
 newWindow.show();
 });

 newWindow.on('focus', createApplicationMenu);

 newWindow.on('close', (event) => {
 // Omitted for brevity…
 });

 newWindow.on('closed', () => {
 windows.delete(newWindow);
 createApplicationMenu();

Listing 8.11 Generating a new application menu when state might have changed:
./app/main.js

Updates the require statement
to reflect the new function,

createApplicationMenu,
we’re importing

Creates an application menu
when the application is first
launched and is ready

Creates a new application
menu whenever a new
window gains focus

Creates a new application
whenever a window is
closed

158 CHAPTER 8 Further operating system integration and dynamically enabling menu items
 newWindow = null;
 });

 windows.add(newWindow);
 return newWindow;
};

const getFileFromUser = exports.getFileFromUser = (targetWindow) => {
 // Omitted for brevity…
};

const openFile = exports.openFile = (targetWindow, file) => {
 const content = fs.readFileSync(file).toString();
 startWatchingFile(targetWindow, file);
 app.addRecentDocument(file);
 targetWindow.setRepresentedFilename(file);
 targetWindow.webContents.send('file-opened', file, content);
 createApplicationMenu();
};

// Additional functions below…

With the ability to create application menus and replace the existing one, implement-
ing this functionality in main.js is just a matter of invoking this function at the right
time. With this in place, we’ve accomplished the feature that we set out to implement
at the beginning of this section. The full code at the end of this chapter can be found in
the appendix book or on GitHub at https://github.com/electron-in-action/firesale.

Summary
 The shell module enables the application to communicate with the operating

system to show files in the file browser, open files in their default application,
move files to the Trash or Recycling Bin (depending on the operating system),
trigger a system beep, and create or read shortcut links in Windows.

 The shell module is available in the main process as well as the renderer pro-
cesses. Thus, it can be used in the application menus, context menus, or in
event listeners on UI elements.

Creates a new application menu
whenever a file has been opened and
the represented file has been set

https://github.com/electron-in-action/firesale

Introducing
the tray module
For most of the first half of the book, we worked on Fire Sale. Although its initial
feature set in chapter 3 could have conceivably been matched by a traditional,
browser-based web application, we spent the subsequent chapters adding function-
ality outside the scope of what most browsers allow. In this chapter, we begin well
outside the realm of where we expect to find web technologies: the macOS menu
bar and Windows system tray. In the beginning, we won’t have a renderer process

This chapter covers
 Building a simple application that lives in the

menu bar on macOS or the system tray in
Windows.

 Using Electron’s tray module to create
applications that live in the operating system’s
menu bar or system tray.

 Reading from and writing to the system clipboard.

 Registering global shortcuts that listen for
specific keystrokes even when the application is
not in use.

 Triggering native notifications in macOS and
Windows 10.
159

160 CHAPTER 9 Introducing the tray module
or the DOM. By the end of this chapter, we explore how to create hidden renderer
processes to access features not available to the main process. In the next chapter, we
create a BrowserWindow to serve as the UI for our tray application.

 With Fire Sale behind us, we’ll embark on building a new application: Clipmaster,
shown in figure 9.1. By the end of this chapter, we launch the application. It will have
no dock, taskbar icon, or windows of its own. We activate it by pressing a keyboard
shortcut that is globally available throughout the operating system. When the shortcut
is triggered, Clipmaster reads from and records the contents of the user’s clipboard. If
the user selects a previously saved clipboard item from the menu, the app places it
back onto the system clipboard for pasting in another application.

As shown in the figure, we need to implement the following:

 A menu bar or tray icon that is available from anywhere in the respective oper-
ating system.

 A menu item that reads from the clipboard and places its contents in a menu
item.

 A list of menu items. When the user clicks one of the menu items in this sec-
tion, Clipmaster writes the string of text back to the clipboard.

 A final menu item for quitting Clipmaster.

If you look closely, you’ll notice that each of these items has a keyboard shortcut as
well. In addition to these menu-based accelerators, we register global shortcuts with
the operating system that allow the user to activate this menu or create a new clipping
from anywhere.

 The source code for Clipmaster is available at https://github.com/electron-in-
action/clipmaster. I use the master branch as a boilerplate and starting point for the

Figure 9.1 This is what the application looks like when completed. macOS is on the top, and
Windows is on the bottom.

https://github.com/electron-in-action/clipmaster
https://github.com/electron-in-action/clipmaster

161Creating an application with the tray module
code in this chapter. There is also a branch called “completed-example” that contains
the code shown at the end of this chapter. I show the code as we go along, and a com-
pleted version will be available at the end.

9.1 Getting started with Clipmaster
The folder structure for Clipmaster is roughly the same as we saw in Fire Sale with
much of the code in the ./app directory. You might notice that there isn’t a ren-
derer.js or index.html. Those are added by the end of the chapter but aren’t needed
in the beginning. You may also notice a few small image files. Our application needs
an icon if it’s going to live in the tray or menu bar. macOS expects this icon to be a
PNG file, and Electron automatically checks if there is a version of the image with the
suffix “@2px” if it is running on a device with a retina screen. Windows accepts a
PNG but works best with an ICO file. Unlike the built-in switch between high- and
low-resolution versions based on the density of the display, we need to manually check
which operating system the application is running on to select the best image.

 To get started, clone the master branch, and run either npm install or yarn
install to download the dependencies. After everything is installed, we can get started
on building Clipmaster.

9.2 Creating an application with the tray module
To get the ball rolling, we can add our application to the system tray or menu bar with
just one feature: the ability to click Quit and close the application (see figure 9.2). To
accomplish this heroic task, we need help from Electron’s tray module. You can think
of the tray module as a peer to BrowserWindow. It’s a constructor that—when instanti-
ated—creates a system tray or menu bar item in much the same way that Browser-
Window creates a browser window.

To do this, as you’ll see in listing 9.1, we need to wait until the application is ready, cre-
ate a tray instance, and provide it with an icon and a menu loaded up with the Quit
command. When the application is ready, we create the menu and set it as the context

Figure 9.2 In the first iteration, Clipmaster is nothing more than a small application
that allows the user to immediately quit it. Don’t worry: there is more functionality to
come, and you’ll have a fully functional application by the end of the chapter.

162 CHAPTER 9 Introducing the tray module
menu of the tray instance. In a fit of ambition, we also set a tooltip that will be shown
when the user hovers over our proud new tray icon. See figure 9.3.

const path = require('path');
const {
 app,
 Menu,
 Tray,
 } = require('electron');

let tray = null;

app.on('ready', () => {
 tray = new Tray(path.join(__dirname, '/Icon.png'));

 if (process.platform === 'win32') {
 tray.on('click', tray.popUpContextMenu);
 }

 const menu = Menu.buildFromTemplate([
 {
 label: 'Quit',
 click() { app.quit(); }
 }
]);

 tray.setToolTip('Clipmaster');
 tray.setContextMenu(menu);
});

As with the windows in Fire Sale, we declared the tray variable in the global scope to
prevent it from being thrown out sometime after the event listener on the app’s ready
event has run to completion. Inside the event listener, we assign a new tray instance
to the variable with a reference to the image we want to use as an icon.

 If you recall from chapter 7, Menu.buildFromTemplate() is an abstraction that
allows you to create complicated menu structures using objects and arrays. This menu

Listing 9.1 Creating a tray instance: ./app/main.js

Figure 9.3 When the user hovers over the icon, they see the tooltip. This can be customized and
changed based on the state of the application.

Declares a variable in
the global scope that
eventually stores a
reference to the tray
instance Creates a tray

instance by calling
the constructor with
a path to an image

On Windows, we register
a click event listener to
open the menu.

Builds a menu in the same fashion
that we built application and context
menus in earlier chapters

Optionally, defines a tooltip
to be shown when the user
hovers over the tray icon

Takes the menu created and sets it as the menu that
appears when the user clicks the icon in the menu or
system tray in macOS and Windows, respectively.

163Creating an application with the tray module
isn’t exactly complicated, but it’s still easier than building a menu by instantiating
MenuItem instances one at a time. At this point, the menu has one item with Quit as
its label. When it’s clicked—or later activated by a keystroke—it will tell Electron to
quit the application. With the menu built, all that is left is to set it as the context
menu for tray.

 Windows treats the tray instances menu as a context menu. This means the menu
shows up only if the icon is right-clicked. In listing 9.1, we also register a click event
that triggers the menu if the application is running on Windows.

 The application works, but if you fire it up on macOS, you can notice that it also
shows up in the dock. Clicking it doesn’t do anything, because the application doesn’t
have any browser windows to show. We could add functionality such as the ability to
trigger the menu from the menu bar when the dock icon is clicked, but I vote that we
hide the dock icon altogether.

app.on('ready', () => {
 if (app.dock) app.dock.hide();

 // …
}

The line of code checks if the app has a dock object, which it does if it’s running on
macOS. If so, then Electron tells the dock icon to hide itself. This approach is interest-
ing because it leaves the developer room to hide or show the dock icon at will,
depending on what mode their application is in or the user’s preference. In our case,
we hide it when the application launches and never show it again.

9.2.1 Using the correct icon for macOS and Windows

macOS and Windows prefer different file types for icons. Their UIs each work better
with a different color. By default, the menu bar on macOS is white and works better
with dark icons whereas Windows 10 has a dark task bar and works better with white
icons. Windows prefers ICO files, and macOS uses PNG files. To solve this issue, Node
checks the platform it’s running on and gets the appropriate icon based on the plat-
form. Electron does such a good job of providing a consistent cross-platform experi-
ence that this is one of the few times in this book that we find ourselves doing
something like this.

const getIcon = () => {
 if (process.platform === 'win32') return 'icon-light@2x.ico';
 return 'icon-dark.png';
};

app.on('ready', () => {
 if (app.dock) app.dock.hide();

Listing 9.2 Hiding the dock icon on macOS: ./app/main.js

Listing 9.3 Conditionally choosing an icon based on the platform: ./app/main.js

Hides the dock icon if
running on macOS.

The getIcon() function checks
the platform the application is

running on and returns the
appropriate filename.

164 CHAPTER 9 Introducing the tray module
 tray = new Tray(path.join(__dirname, getIcon()));
 // … More code below …
});

If we’re on Windows, it gives us the filename of the light ICO icon. Otherwise, it gives
us the filename of the dark PNG icon. When the application is ready, we use the new
getIcon() function instead of the string we had hard-coded originally.

9.2.2 Supporting dark mode in macOS

Earlier, I said that the macOS menu bar is white by default. In macOS El Capitan and
later, users can turn on dark mode, which inverts the color of the menu bar and dock.
In this case, we would want to use a PNG file like we would normally for macOS, but
we also want to use the light versions like we would with the transparent black system
tray in Windows 10, as shown in listing 9.4 and figure 9.4.

const path = require('path');
const {
 app,
 Menu,
 Tray,
 systemPreferences,
} = require('electron');

let tray = null;

const getIcon = () => {
 if (process.platform === 'win32') return 'icon-light.ico';
 if (systemPreferences.isDarkMode()) return 'icon-light.png';
 return 'icon-dark.png';
};

Electron makes this easy using the systemPreferences module, which conveniently
has a method called isDarkMode() that returns a Boolean. I leave it as an exercise to
the reader to determine under which conditions it returns true or false.

9.2.3 Reading from the clipboard and storing clippings

This application is supposed to store clippings, and we have many ways we could go
about doing this. In chapter 11, we look at using an SQLite database to store clippings.

Listing 9.4 Supporting dark mode on macOS: ./app/main.js

When creating a new tray
instance, use getIcon() to
get the correct filename.

Figure 9.4 If the macOS menu bar is in dark mode, we’ll use the inverted icon.

Imports the
systemPreferences
module from Electron

Uses the system-
Preferences.isDarkMode()

to detect if macOS is in
dark mode

165Creating an application with the tray module
But for now, let’s start with the easiest possible solution: storing them in memory. This
approach is easy because it allows us to use a built-in JavaScript data structure, but it
has the disadvantage of being cleared away whenever the user quits the application.

 To ship this feature, we need to create an array to hold our clippings. We also need
to create a function that reads from the clipboard and adds the contents to the array,
as well as a way for the user to trigger this function. Finally, we want to update the
menu with the clippings we stored and allow users to select one to be added back to
the clipboard. See figures 9.5 and 9.6.

We update the menu whenever the user saves a new clipping. As we discussed in
chapter 7, it’s possible to traverse and mutate the menu after it is created, but it’s
often easier and more efficient to completely replace it. To facilitate this, we move
the code to create the context menu into its own function that we can call whenever
we need to update the menu.

const path = require('path');
const {
 app,
 Menu,
 Tray,
 systemPreferences,
} = require('electron');

const clippings = [];
let tray = null;

Listing 9.5 Storing clippings in memory using an array: ./app/main.js

Figure 9.5 The application with its two basic commands on macOS

Figure 9.6 In addition to being able to quit the application, users need a way to add a clipping to the
application. Here the application is shown in the Windows tray.

Declares an empty array
to store clippings

166 CHAPTER 9 Introducing the tray module

nu
en

t
e

const getIcon = () => {
 if (process.platform === 'win32') return 'icon-light.ico';
 if (systemPreferences.isDarkMode()) return 'icon-light.png';
 return 'icon-dark.png';
};

app.on('ready', () => {
 if (app.dock) app.dock.hide();

 tray = new Tray(path.join(__dirname, getIcon()));

 if (process.platform === 'win32') {
 tray.on('click', tray.popUpContextMenu);
 }

 updateMenu();

 tray.setToolTip('Clipmaster');
});

const updateMenu = () => {
 const menu = Menu.buildFromTemplate([
 {
 label: 'Create New Clipping',
 click() { null; }
 },
 { type: 'separator' },
 ...clippings.map((clipping, index) => ({ label: clipping })),
 { type: 'separator' },
 {
 label: 'Quit',
 click() { app.quit(); },
 }
]);

 tray.setContextMenu(menu);
};

We start by creating a simple array called clippings with a global scope that stores
clippings and is accessed throughout our application. Next, we create a function
called updateMenu() to generate a new menu and set it as the context menu for the
tray instance. updateMenu() takes the contents of the clippings array, maps it into
objects that can be turned into MenuItem instances, and then uses the ECMAScript
2015 spread operator to include them as siblings with Create New Clipping and Quit-
menu items.

 We added a menu item with the label Create New Clipping (see figure 9.7), but
if you look closely, you’ll notice that we haven’t yet added any functionality. To get
it working, we need to figure out a way to access the operating system’s native
clipboard. Once we can do that, we can update this function to read from the clip-
board and push its contents into the array of clippings and then call updateMenu()
to re-render it.

Updates the me
immediately wh
the application
starts to build i
for the first tim

Eventually, we implement
the ability to add clippings
to the array.

Each time updateMenu() is
called, we map through the

array of clippings and render
them as simple menu items.

tray.setContextMenu() has been moved into
updateMenu() to replace the menu whenever
the list of clippings has been modified.

167Reading from and writing to the clipboard
9.3 Reading from and writing to the clipboard
At this point, it should come as no surprise that Electron provides a module that
makes it easy to access the operating system’s clipboard on Linux, macOS, and Win-
dows. It should come as even less of a surprise that this module is conveniently called
clipboard.

 The clipboard module is available in the main process as well as in the renderer
process, and it has several useful methods for reading images, rich text, HTML, book-
marks, and other formats. For now, let’s keep it simple and stick to working with
strings of plain text. Figure 9.7 shows our application with a single clipping.

To get the Create New Clipping menu item to work, we want to create a function that
we can call that reads from the clipboard and adds it to the clippings array. In the
spirit of simplicity and clarity, we call this function addClipping().

const path = require('path');
const {
 app,
 clipboard,
 Menu,
 Tray,
 systemPreferences
} = require('electron');

const clippings = [];
let tray = null;

app.on('ready', () => {
 // …
});

const updateMenu = () => {
 const menu = Menu.buildFromTemplate([
 {
 label: 'Create New Clipping',
 click() { addClipping(); },

Listing 9.6 Adding a clipping to the array when the menu item is clicked: ./app/main.js

Figure 9.7 When clippings are added to the array, the menu is updated with a
new menu item with the clipping’s content as the label.

Pulls in the clipboard
module from Electron

When a user clicks the Create
New Clipping menu item, calls
the addClipping() function

168 CHAPTER 9 Introducing the tray module

acce
the C
Clip

it
avai

t

 accelerator: 'CommandOrControl+Shift+C'
 },
 { type: 'separator' },
 ...clippings.map((clipping, index) => ({ label: clipping })),
 { type: 'separator' },
 {
 label: 'Quit',
 click() { app.quit(); },
 accelerator: 'CommandOrControl+Q'
 }
]);

 tray.setContextMenu(menu);
};

const addClipping = () => {
 const clipping = clipboard.readText();
 clippings.push(clipping);
 updateMenu();
 return clipping;
};

To do anything with the Electron’s clipboard module, we need to include it like every
other module from Electron. With the module included, addClipping() can read
text from the clipboard and push it onto the array. With a new clipping in the array,
the next logical step is to update the menu and display the new contents to the user as
shown in figure 9.7.

9.3.1 Writing to the clipboard

With this feature in place, we can read from the clipboard and save the text snippets
in our application, but we haven’t yet written the functionality to take one of the saved
clippings and write it back to the clipboard. As it stands, our application is a scrap-
book of the clippings we’ve saved in the past.

 Writing to the clipboard isn’t much different from reading from it. So, let’s up the
ante and assign keyboard shortcuts to the menu items associated with the clippings, as
shown in figure 9.8 and in listing 9.7. When a user presses the keystroke, the respec-
tive clipping is written to the clipboard.

Adds an
lerator for
reate New
ping menu
em. This is
lable when
he menu is

active.
Adds an accelerator for the Quit
menu item. This is available when
the menu is active.

Uses Electron’s clipboard
module to read text from
the system clipboard

Pushes the text read from the
clipboard into the array of clippings

Regenerates the menu to display
the new clipping as a menu item

Figure 9.8 The application now has keyboard shortcuts.

169Reading from and writing to the clipboard
const path = require('path');
const {
 app,
 clipboard,
 Menu,
 Tray,
 systemPreferences
} = require('electron');

const clippings = [];
let tray = null;

app.on('ready', () => {
 // …
});

const updateMenu = () => {
 const menu = Menu.buildFromTemplate([
 {
 label: 'Create New Clipping',
 click() { addClipping(); },
 accelerator: 'CommandOrControl+Shift+C'
 },
 { type: 'separator' },
 ...clippings.map(createClippingMenuItem),
 { type: 'separator' },
 {
 label: 'Quit',
 click() { app.quit(); },
 accelerator: 'CommandOrControl+Q'
 }
]);

 tray.setContextMenu(menu);
};

const addClipping = () => {
 // …
};

const createClippingMenuItem = (clipping, index) => {
 return {
 label: clipping,
 click() { clipboard.writeText(clipping); },
 accelerator: `CommandOrControl+${index}`
 };
};

Mapping the strings into menu items inside of the array with an anonymous function
was a short-term solution at best. Now that we’re adding click methods and accelerators

Listing 9.7 Listing out the clippings as menu items: ./app/main.js

Uses the createClippingMenu() in
place of the anonymous function
we were using previously when
mapping over the array of
clippings.

Creates a function called
createClippingMenuItem()

When a user clicks on a
given clipping, writes it to
the clipboard. The correct
clipping is wrapped inside
of a closure.

Assigns the menu item an
accelerator based on its index

inside of the clippings array

170 CHAPTER 9 Introducing the tray module
to each menu item, it makes sense to break out this process into its own function.
createClippingMenuItem() takes the first two arguments passed by Array.prototype
.map() to its callback function: the item currently being iterated over and its index.
We use this index to determine which accelerator to assign to it.

9.3.2 Handling edge cases

With this in place, the user can now write a clipping back to the clipboard with a key-
stroke. That’s great, but what happens if the user copies a big string of text? Eventually
the operating system will trim stuff down, as shown in figure 9.9, but we need to step
in and do better.

When we iterate over the clippings to create menu items, we check if it is over 20 char-
acters long. If it is, slice off the first 20 characters, add an ellipsis, and use that as the
label. Figure 9.10 shows an example of a shortened menu item name and listing 9.8
gives the code for truncating the labels. This truncation has no effect on the clipping
itself. If the user selects the clipping, its full text is written back to the clipboard. If the
clipping is less than than 20 characters, use it as the label without modification.

const createClippingMenuItem = (clipping, index) => {
 return {
 label: clipping.length > 20
 ? clipping.slice(0, 20) + '…'

Listing 9.8 Truncating menu item labels: ./main/app.js

Figure 9.9 The operating system will eventually truncate long menu item labels, but even this is a bit unwieldy.

Figure 9.10 Clipping menu item labels are now capped at 20 characters. You can
adjust this to your liking, or create a setting to allow users to control the length.

171Reading from and writing to the clipboard
 : clipping,
 click() { clipboard.writeText(clipping); },
 accelerator: `CommandOrControl+${index}`
 };
};

I chose 20 as an arbitrary number. You can choose another number if you prefer. In a
larger application, it might make sense to allow the user to express their preference
and use that number instead.

 What if a user accidentally added a clipping that is already stored in our array? To
get around this, we check if the array includes the current clipping. If it does, then
return early to short-circuit the function. Another option would be to use a set instead
of an array, which is the approach we took with managing unique windows in Fire
Sale. This method works for preventing duplicates, but sets do not have a map()
method, so we would need to come up with another method for turning the clippings
into menu items.

const addClipping = () => {
 const clipping = clipboard.readText();
 if (clippings.includes(clipping)) return;
 clippings.push(clipping);
 updateMenu();
 return clipping;
};

Array.prototype.push() adds items to the end of the array, so the first clipping
added always is assigned Command-0 or Control-0 as an accelerator. Array.prototype
.unshift() adds the new item to the beginning of the array. This means that the most
recently saved clipping is accessible with Command-0 or Control-0, the second most
recently saved clipping is accessible with Command-1 or Control-1, and so on.

const addClipping = () => {
 const clipping = clipboard.readText();
 if (clippings.includes(clipping)) return;
 clippings.unshift(clipping);
 updateMenu();
 return clipping;
};

If the user falls in love with our application, it could get fairly long. Therefore, it
makes sense to limit the number of clippings in the menu. I chose to limit it to 10
items because we’re assigning keyboard shortcuts based on the array indices, and
there is no “11” key on most keyboards.

Listing 9.9 Preventing duplicate clippings: ./app/main.js

Listing 9.10 Adding clippings to the beginning of the array: ./main.js

If the length of the
clipping is longer than
20 characters, slices off
the first 20 characters
and adds an ellipsis.

Checks if the clippings
array already contains
the current clippings. If
so, returns early from
the function.

Unshift adds an element
to the beginning of an
array.

172 CHAPTER 9 Introducing the tray module

const menu = Menu.buildFromTemplate([
 {
 label: 'Create New Clipping',
 click() { addClipping(); },
 accelerator: 'CommandOrControl+Shift+C'
 },
 { type: 'separator' },
 ...clippings.slice(0, 10).map(createClippingMenuItem),
 { type: 'separator' },
 {
 label: 'Quit',
 click() { app.quit(); },
 accelerator: 'CommandOrControl+Q'
 }
]);

These shortcuts have a limitation—they work only when we are actively working with the
menu. This means the user would have to mouse over to the menu bar or system tray
icon and click it. After that action they can use one of the keyboard shortcuts provided.
This is slightly useful, but not as useful as if the shortcuts were globally available.

9.4 Registering global shortcuts
All the accelerators we’ve used so far have worked only when the application is actively
being used. By using the globalShortcut module, Electron also allows us to register
global shortcuts with the operating system that can be activated even when the appli-
cation is in the background. We’ll register two global shortcuts for Clipmaster: one to
trigger the menu to appear, and another to save the contents of the clipboard to Clip-
master without needing to trigger the menu at all.

const path = require('path');
const {
 app,
 clipboard,
 globalShortcut,
 Menu,
 Tray,
 systemPreferences
} = require('electron');

const clippings = [];
let tray = null;

app.on('ready', () => {
 if (app.dock) app.dock.hide();

 tray = new Tray(path.join(__dirname, '/Icon.png'));

Listing 9.11 Displaying only the first 10 clippings: ./app/main.js

Listing 9.12 Registering a global shortcut: ./app/main.js

Displays only the first
10 items of an array by
using Array.prototype
.slice()

Requires the global-
Shortcut module
from Electron

173Registering global shortcuts

W

c

 if (process.platform === 'win32') {
 tray.on('click', tray.popUpContextMenu);
 }

 const activationShortcut = globalShortcut.register(
 'CommandOrControl+Option+C',
 () => { tray.popUpContextMenu(); }
);

 if (!activationShortcut) {
 console.error('Global activation shortcut failed to register');
 }

 const newClippingShortcut = globalShortcut.register(
 'CommandOrControl+Shift+Option+C',
 () => { addClipping(); }
);

 if (!newClippingShortcut) {
 console.error('Global new clipping shortcut failed to register');
 }

 updateMenu();

 tray.setToolTip('Clipmaster');
});

const updateMenu = () => {
 // …
};

const addClipping = () => {
 // …
};

const createClippingMenuItem = (clipping, index) => {
 // …
};

The first thing we need to do is require the globalShortcut module from Electron.
After we have the module, we can use its register() method, which takes two argu-
ments: an accelerator, and a function to call when it has been activated. If the global
shortcut is already taken, Electron returns null instead of throwing an error,
which—if uncaught—could take down the entire application. In this case, we log a
message to the console informing us that the registration has failed. In a more
robust application, you could prompt the user to select a new shortcut or fallback to
a second choice.

 This functionality behaves slightly differently on macOS and Windows. On macOS
the menu appears in the same manner as it would if the user clicked it. On Windows,
however, the menu appears beneath the cursor, as shown in figure 9.11, instead of
above the system tray icon as you might expect.

Passes a string defining
the accelerator and an
anonymous function that
should be invoked whenever
the accelerator is pressed

If registration fails, Electron
does not throw an error.

Instead, it returns undefined.
In this line, we check if the

activationShortcut is defined.e register
a second
shortcut
to add a

lipping to
the array.

If either shortcut fails, we log the
issue with console.error. In a more
robust application, you might show
the user that there was an issue or

implement a fallback.

174 CHAPTER 9 Introducing the tray module
9.4.1 Checking registrations and unregistering global shortcuts

Electron’s globalShortcut module also provides other useful methods for working
with shortcuts. globalShortcut.isRegistered() returns a Boolean that is true if the
application has already registered the shortcut; otherwise, it returns false. However,
it also returns false if another application has registered that shortcut.

 In Clipmaster, you’ve chosen to hard-code our global shortcuts, but you may
choose to create a UI that allows users to set their own keyboard shortcuts. If a user
decides to switch shortcuts for a given command, we want to unregister the old short-
cut with globalShortcut.unregister() after we’ve successfully registered the new
one. We can also unregister all global shortcuts using the conveniently named global-
Shortcut.unregisterAll() method.

9.5 Displaying notifications
With our global shortcuts in place, users can save new clippings from anywhere with a
touch of a few buttons. But how does the user know when they’ve successfully saved a
clipping? Not only does our application not have much of a UI to begin with, it isn’t
being shown when they activate it using a global shortcut. One solution would be to
show a native system notification, such as that shown in figures 9.12 and 9.13.

Support for notifications
Notifications work out of the box on macOS and Windows 10. They also work with the
most common Linux desktop environment. Things get a bit tricky when working with
older versions of Windows. This is beyond the scope of this book, but it is covered in
the official documentation: http://mng.bz/nJR0.

Figure 9.11 On Windows, the menu appears beneath the cursor when triggered with the
global shortcut.

http://mng.bz/nJR0

175Displaying notifications
This is the solution that we’re going with, but it’s not without its complications. Electron
applications can create notifications using Chromium’s Notification API. As a web API,
Notifications are available only in the renderer process and not in the main process.

 To deliver this feature, we need to create a hidden BrowserWindow instance. When
the user saves a new clipping using the global shortcut, we send a message via IPC to
the renderer process. When the renderer process receives this message, it triggers the
notification.

 Let’s start by making an invisible process and then send messages to it and let it
trigger the notifications. If you recall from Fire Sale, BrowserWindow instances can
load HTML, which in turn can load JavaScript like a traditional web page would. The
first thing we need is a bare minimum HTML page.

<!DOCTYPE html>
<html lang="en">

<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width,initial-scale=1">
 <title>Clipmaster</title>
</head>

<body></body>

<script>
 require('./renderer');
</script>

</html>

Listing 9.13 Setting up a simple HTML document: ./app/index.html

Figure 9.12 A notification in Windows 10

Figure 9.13 A notification in macOS

The purpose of this HTML file
is to load the JavaScript for
the renderer process.

176 CHAPTER 9 Introducing the tray module
This page has some basic markup to make it a valid HTML page. The important part
is that it contains a script tag that loads renderer.js, which contains the code that lis-
tens for messages from the main process and triggers the notification. Next, let’s set
up that listener and write the code to display the notification.

const { ipcRenderer } = require('electron');

ipcRenderer.on('show-notification', (event, title, body) => {
 const myNotification = new Notification(title, { body });
});

We pull in the ipcRenderer module and begin listening for notifications on the
appropriately named show-notification channel. This listener expects three argu-
ments in addition to the event object that is included by default: a title and body for
the notification, as well as a function detailing what to do if the user clicks the notifica-
tion. If no function is provided, onClick is an empty function by default.

 With the code for our renderer process in place, we need to run it when the appli-
cation starts. In Fire Sale, we created BrowserWindow instances that started out hidden
and then were displayed when the content has been loaded. In Clipmaster, there isn’t
any content to display, so we never show the window itself. Include this code snippet
inside the app.on ready block.

const {
 // . . .
 BrowserWindow,
 // . . .
} = requre('electron');

browserWindow = new BrowserWindow({
 show: false
 });

browserWindow.load.URL(`file://{$_dirname}/index.html`);

Even though the window is not shown, we can load the HTML page we created earlier
to execute the code and set up our listener. Now when we add a clipping, we send a
message to the renderer process to have it show a notification.

constnewClippingShortcut=globalShortcut.register(
 'CommandOrControl+Shift+Option+C',

Listing 9.14 Listening for messages and displaying notifications: ./app/renderer.js

Listing 9.15 Launching the hidden browser window: ./app/main.js

Listing 9.16 Sending a message to the renderer process: ./app/main.js

Notifications are part of Chromium’s built-in APIs and are not specific to Electron. It
takes two arguments: a string for the title, and an object of additional parameters.

In this example, we’re providing a body using ES2015’s enhanced object literal
syntax. This is equivalent to { body: body }.

177Switching menu bar icons when pressed in macOS
 () => {
 constclipping=addClipping();
 if (clipping) {
 browserWindow.webContents.send(
 'show-notification',
 'Clipping Added',
 clipping,
);
 }
 },
);

When a clipping has been added, a message is sent to the renderer process. Before
sending the message, we check if addClipping() returned a value. If you recall, if the
list of clippings already contains the new clipping, then the function returns early with
a value of undefined. This conditional prevents the message from being sent if no
new clipping was saved. I leave it as an exercise to the reader to display a useful notifi-
cation informing the user that the clipping already exists.

9.6 Switching menu bar icons when pressed in macOS
On macOS, our menu bar icon doesn’t behave the same way as its peers. The
expected behavior is that the icon’s colors are inverted when the menu is activated.
Luckily, Electron makes it easy to implement this feature. See figure 9.14.

The tray module has a method called setPressedImage(). On Windows, this method
is ignored. On macOS it allows us to provide the path to a second image file. When the
menu bar icon is clicked, Electron swaps out the primary image for this second image.
The code in this listing belongs immediately after the statement that sets tray, which
also invokes getIcon().

tray.setPressedImage(path.join(__dirname, 'icon-light.png'));

You may be asking, “What about dark mode?” It turns out that the default behavior in
macOS is not to invert the icons when they’re pressed in dark mode. As a result, you
do not need to implement any additional logic to handle that situation.

Listing 9.17 Setting an alternate icon for when icon is pressed: ./app/main.js

addClipping() returns the
string of the clipping that
was added to the array.

If there was a clipping saved, we send
a notification to the renderer process,
which triggers the notification.

Figure 9.14 macOS can use an alternate icon when the menu bar
application is clicked. In this example, we used an inverted version of
the icon to match the rest of the menu bar icons.

178 CHAPTER 9 Introducing the tray module
9.7 Completed code
The code for Clipmaster, in line with the features in this chapter, has been implemented
as follows: Listing 9.18 shows the code for the main process and listing 9.19 shows the
code for the renderer process. You can also find this code on the completed-example
branch of the repository you cloned at the beginning of this chapter (http://
mng.bz/xJ98).

const path = require('path');
const {
 app,
 BrowserWindow,
 clipboard,
 globalShortcut,
 Menu,
 Tray,
 systemPreferences,
} = require('electron');

const clippings = [];
let tray = null;
let browserWindow = null;

const getIcon = () => {
 if (process.platform === 'win32') return 'icon-light@2x.ico';
 if (systemPreferences.isDarkMode()) return 'icon-light.png';
 return 'icon-dark.png';
};

app.on('ready', () => {
 if (app.dock) app.dock.hide();

 tray = new Tray(path.join(__dirname, getIcon()));
 tray.setPressedImage(path.join(__dirname, 'icon-light.png'));

 if (process.platform === 'win32') {
 tray.on('click', tray.popUpContextMenu);
 }

 browserWindow = new BrowserWindow({
 show: false,
 });

 browserWindow.loadURL(`file://${__dirname}/index.html`);

 const activationShortcut = globalShortcut.register(
 'CommandOrControl+Option+C',
 () => {
 tray.popUpContextMenu();
 },
);

Listing 9.18 Clipmaster’s completed main process: ./app/main.js

http://mng.bz/xJ98
http://mng.bz/xJ98
http://mng.bz/xJ98

179Completed code
 if (!activationShortcut)
 console.error('Global activation shortcut failed to regiester');

 const newClippingShortcut = globalShortcut.register(
 'CommandOrControl+Shift+Option+C',
 () => {
 const clipping = addClipping();
 if (clipping) {
 browserWindow.webContents.send(
 'show-notification',
 'Clipping Added',
 clipping,
);
 }
 },
);

 if (!newClippingShortcut)
 console.error('Global new clipping shortcut failed to regiester');

 updateMenu();

 tray.setToolTip('Clipmaster');
});

const updateMenu = () => {
 const menu = Menu.buildFromTemplate([
 {
 label: 'Create New Clipping',
 click() {
 addClipping();
 },
 accelerator: 'CommandOrControl+Shift+C',
 },
 { type: 'separator' },
 ...clippings.slice(0, 10).map(createClippingMenuItem),
 { type: 'separator' },
 {
 label: 'Quit',
 click() {
 app.quit();
 },
 accelerator: 'CommandOrControl+Q',
 },
]);

 tray.setContextMenu(menu);
};

const addClipping = () => {
 const clipping = clipboard.readText();
 if (clippings.includes(clipping)) return;
 clippings.unshift(clipping);
 updateMenu();

180 CHAPTER 9 Introducing the tray module
 return clipping;
};

const createClippingMenuItem = (clipping, index) => {
 return {
 label: clipping.length > 20 ? clipping.slice(0, 20) + '…' : clipping,
 click() {
 clipboard.writeText(clipping);
 },
 accelerator: `CommandOrControl+${index}`,
 };
};

const { ipcRenderer } = require('electron');

ipcRenderer.on('show-notification', (event, title, body, onClick = () => { })
=> {

 const myNotification = new Notification(title, { body });

 myNotification.onclick = onClick;
});

Summary
 The clipboard module provides several ways to read and write content to and

from the clipboard.
 The globalShortcut module allows Electron applications to register listeners

for keyboard shortcuts.
 Renderer processes can be used as background threads and don’t always need

to be shown.
 Chromium’s Notification API allows us to trigger native notifications on macOS

and Windows 10.

Listing 9.19 Clipmaster’s completed renderer process: ./app/renderer.js

Building applications
with the menubar library
In the previous chapter, we created an application that lived in the menu bar on
macOS or the system tray on Windows. Out of the box, Electron’s tray module
allows you to set a menu to display when the user clicks the tray icon. This is the
same type of menu used in the application and context menus that we built in Fire
Sale. This menu also has the same limitations: it is limited to text, is hard to modify,
and provides limited functionality.

 Being able to build applications that live in the system tray or menu bar allows
us to build entire classes of applications that we couldn’t build in the browser. It’s
unfortunate that we have these restrictions, but—luckily—we can work around them.
In this chapter, we explore a clever way to get around the limitations of the tray
module using a third-party library conveniently called menubar.

 menubar is an abstraction built on a set of core Electron modules that we’ve
used previously in the book. A high-level explanation is that it creates an empty

This chapter covers
 Creating an application with the menubar library

 Sending HTTP requests with the request library

 Creating clickable notifications

 Adding secondary menus to tray instances
181

182 CHAPTER 10 Building applications with the menubar library
tray module. When the user clicks the icon, menubar shows a frameless, correctly
positioned BrowserWindow instance beneath the icon, which creates the illusion that
it’s attached to the icon. menubar also provides a cute cat icon by default.

 In this chapter, we’ll rebuild Clipmaster from the ground up into a completely new
application. This time it has a much more pleasant UI, shown in figure 10.1, com-
pared to its predecessor. We add the ability to remove a clipping from the list or pub-
lish it to the web using an example API so that it can be shared publicly. Finally, we
add some interactivity to our notifications and global shortcuts to trigger the applica-
tion’s functionality using predetermined keystrokes.

10.1 Starting an application with menubar
The menubar library provides a function that allows you to create new menu bar appli-
cations. It uses the app module to control the lifecycle of the application, an instance
from the tray module to create the icon in the operating system’s menu bar or system
tray, and a BrowserWindow instance for displaying the UI (as shown in figure 10.2).
menubar uses another third-party library called electron-positioner to correctly
position the BrowserWindow instance under the icon. It also provides methods for hid-
ing and showing the window programmatically.

 A boilerplate for Clipmaster 9000 is available on Github (https://github.com/
electron-in-action/clipmaster-9000). You can start on the master branch and code
along or check out the completed-example branch to see the code in its state at the
end of the chapter.

Figure 10.1 This is what the application will look like at the end of the chapter.

https://github.com/electron-in-action/clipmaster-9000
https://github.com/electron-in-action/clipmaster-9000
https://github.com/electron-in-action/clipmaster-9000

183Starting an application with menubar
const Menubar = require('menubar');

const menubar = Menubar();

menubar.on('ready', () => {
 console.log('Application is ready.');
});

In listing 10.1, we don’t require the app module from Electron. menubar does that for
us when we call the function and create the instance. You can also see that we’re lis-
tening for the ready event on menubar instead of app. menubar’s event is waiting on
getting everything else set up, in addition to listening to the app’s ready event.

You can start the simple application using the npm start command. If all goes well,
you should see a message in your terminal as well as a small cat in either your menu
bar or system tray, depending on which platform the application is running on. If you
click the icon, you see an empty browser window. menubar created a BrowserWindow
instance on our behalf, but it did not load an HTML document into the window.

 To get a UI in that window, we need to do a few things shown in the listing 10.2.
First, we need to create an HTML document with some basic markup. Second, we
need to define a CSS to style the UI. Third, we need the HTML document to load the
code for our UI from renderer.js.

Listing 10.1 Getting started with menubar: ./app/main.js

Instead of requiring the app
module from Electron, we create
an instance of menubar.

menubar wraps up several common
Electron modules. It fires its ready event
when the app module fires its ready event.

Figure 10.2 By default, menubar creates a browser window but does not load an HTML document into it.

184 CHAPTER 10 Building applications with the menubar library
<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width,initial-scale=1">
 <meta http-equiv="Content-Security-Policy"
 content="
 default-src 'self';
 script-src 'self' 'unsafe-inline';
 connect-src https://cliphub.glitch.com/*
 "
 >
 <!--
 Change the URL in the line above if you fork the back end server.
 -->
 <title>Clipmaster 9000</title>
 <link rel="stylesheet" href="style.css" type="text/css">
 </head>
 <body>
 <div class="container">
 <section class="controls">
 <button id="copy-from-clipboard">Copy from Clipboard</button>
 </section>

 <section class="content">
 <div id="clippings-list"></div>
 </section>
 </div>
 <script>
 require('./renderer');
 </script>
 </body>
</html>

I included the stylesheet in the repository, but let’s highlight some of the interesting
bits next. I use one or two Electron-specific techniques in the CSS to give the applica-
tion a more native feel; renderer.js starts out completely empty, but we add to it as the
chapter goes on.

// …Omitted for brevity…

body > div {
 height: 100%;
 overflow: scroll;
 -webkit-overflow-scrolling: touch;
}

Listing 10.2 The markup for the UI: ./app/index.html

Listing 10.3 Styling for the UI: ./app/style.css

This element contains the
Copy from Clipboard button,
as seen in figure 10.1.

This element contains all the
clippings that the user has
saved using the application.

Requires the JavaScript for
the renderer process.

To give Clipmaster 9000 the feel of
a native application on macOS, we
turn on momentum scrolling. You
can read more about this on CSS
Tricks (http://mng.bz/i82A).

http://mng.bz/i82A

185Starting an application with menubar
.container {
 position: absolute;
 top: 0;
 bottom: 0;
 left: 0;
 right: 0;
 overflow: auto;
}

textarea, input, div, button { outline: none; }

// …Omitted for brevity…

.clipping-text::-webkit-scrollbar {
 display: none;
}

.clipping-controls {
 margin-top: 0.5em;
}

// …Omitted for brevity…

With these files in place, we now have the foundation for building our application.
menubar does not create a window immediately. Instead, it creates a BrowserWindow
instance the first time the user clicks the icon and triggers the window. This behavior
comes back to bite us later in the chapter when we try to manipulate the DOM before
it has been loaded, but let’s follow the happy path for now by listening for an event
that is fired after the window has been created and subsequently loading the HTML in
the newly created window.

menubar.on('after-create-window', () => {
 menubar.window.loadURL(`file://${__dirname}/index.html`);
});

Your application at this stage should look like figure 10.3. At this point, the button
should not work, because we have not written any JavaScript for the frontend.

Listing 10.4 Loading the HTML page after a window has been created: ./app/main.js

We don’t want to show a scroll
bar that might appear on top of
the shadow of a clipping.

The after-create-window event is fired after a window has been created. By
default, menubar does not create a window when it first loads. It instead waits

until the menu bar or tray icon is clicked and needs to show a window.

186 CHAPTER 10 Building applications with the menubar library
10.2 Adding clippings to the UI
We have a UI for our application, but it doesn’t do anything yet. Just like in chapter 9,
we first want to allow the user to add clippings to the application. This is slightly more
complicated than it was in the previous chapter because we must generate DOM
nodes for the clipping. We need to add this new node to the node in our Markup that
contains the list of clippings. Finally, we need to add an event listener to the button to
call the two methods we just described. Let’s start by querying and caching two of the
selectors that we use frequently as we move through the chapter.

const clippingsList = document.getElementById('clippings-list');
const copyFromClipboardButton = document.getElementById(
 'copy-from-clipboard'
);

Creating the element is straightforward, with one important catch. In listing 10.6, we
create an article element and add the .clippings-list-item class to it so that it’s
styled appropriately. Next, we set its inner content. We query for the node in charge of
displaying the text of the clipping and set its inner text accordingly. Finally, we return
our new element so that it can be added to the DOM.

Listing 10.5 Querying for and caching frequently used selectors: ./app/renderer.js

Figure 10.3 The basic UI for Clipmaster 9000 is in place.

187Adding clippings to the UI

Cre
DOM
to d

the cl
in
const createClippingElement = (clippingText) => {
 const clippingElement = document.createElement('article');

 clippingElement.classList.add('clippings-list-item');

 clippingElement.innerHTML = `
 <div class="clipping-text" disabled="true"></div>
 <div class="clipping-controls">
 <button class="copy-clipping">→ Clipboard</button>
 <button class="publish-clipping">Publish</button>
 <button class="remove-clipping">Remove</button>
 </div>
 `;

 clippingElement.querySelector('.clipping-text').innerText = clippingText;

 return clippingElement;
};

You might be wondering why I didn’t use interpolation with the template literal when
setting the inner HTML of the element. We’re not setting the content of the new ele-
ment using innerHTML, because it does not escape the input and render it as HTML. If
a user had copied HTML to the clipboard, it would render the Markup, which is not
what we want. Instead we use innerText to set the content of that node, which escapes
any HTML and renders it as the user might expect.

 We can now take an arbitrary string of text and return the element needed for the
UI. The next step is to get the text to feed this function, take the result, and add it to
the page.

const { clipboard } = require('electron');

const addClippingToList = () => {
 const clippingText = clipboard.readText();
 const clippingElement = createClippingElement(clippingText);
 clippingsList.prepend(clippingElement);
};

copyFromClipboardButton.addEventListener('click', addClippingToList);

Reading from the system’s clipboard is as easy as requiring the clipboard module
from Electron and calling its readText() method. With the clipping text, we create

Listing 10.6 Creating an element for the UI based on the clipping’s text: ./app/renderer.js

Listing 10.7 Reading from clipboard and adding a clipping to list: ./app/renderer.js

Creates a new
element for the
clipping

Sets the inner
HTML of the
new element

Finds the node where the clipping
text should go, and sets its content

to the text of the clipping
Returns the
new element

Requires the clipboard
module from Electron

Uses Electron’s clipboard module
to read text from the clipboard

ates a
 node
isplay
ipping
the UI

Adds it to the top of the
list of clippings in the UI

Triggers addClippingToList() whenever the user clicks
the Copy from Clipboard button in the UI.

188 CHAPTER 10 Building applications with the menubar library
the element and then add it to the top of the list of clippings. Last, we add an event lis-
tener to the Copy from Clipboard button that triggers this entire process.

10.3 Working with clippings in the application
Users can now save clippings to Clipmaster 9000, but that is only half the battle. What
if they want to write the contents of a clipping back to the clipboard? Technically,
because this new version of the application has a UI, they could select the text and
copy it again, but we can do better than that. In addition, Clipmaster 9000 will be an
improvement over the old version by letting users remove clippings they no longer
want to store and publish them on the web to share publicly if they desire.

10.3.1 Preventing memory leaks using event delegation

The most obvious approach to implementing the functionality described in the previ-
ous section would be to add an event listener to each button that calls the appropriate
function. When creating a new element for each clipping using createClipping-
Element(), we could add these event listeners.

 The problem here is that if a user removes a clipping, we also need to remove
these event listeners. Failing to do so would cause a memory leak, because the event
listener and the DOM element would still reference each other. It’s much easier to
take advantage of the fact that events bubble up the DOM.

 If you click a button, the browser checks that element for any event listeners for a
click event. Next it checks that element’s parent. It will continue this process until it
gets to the top of the DOM tree. By adding an event listener to the clippingsList, we
can catch an event that originated for a particular clipping. Because the list itself will
never be removed from the DOM, we don’t need to worry about removing event lis-
teners whenever a clipping is removed from the UI.

 All event objects in the DOM come with a target property, which contains a refer-
ence to the element that triggered the event. We look at this to figure out which but-
ton was clicked on which clipping and then take the appropriate action.

clippingsList.addEventListener('click', (event) => {
 const hasClass = className =>
 event.target.classList.contains(className);

 if (hasClass('remove-clipping')) console.log('Remove clipping');
 if (hasClass('copy-clipping')) console.log('Copy clipping');
 if (hasClass('publish-clipping')) console.log('Publish clipping');
});

Listing 10.8 Setting up an event listener for each clipping’s buttons: ./app/renderer.js

Adds an event listener to the list of clippings. Click
events from individual clippings bubble up the list. Creates a helper

function that
determines whether
the target element
has a given class.

Right now, we’re going to determine what kind of button was
clicked and log an appropriate message to the console. The

functionality will be added as the chapter progresses.

189Working with clippings in the application
We check the element for three different classes, so it makes sense to create a small
helper method called hasClass() to aid in this process. Based on the class, we need to
call different functions. We haven’t written those functions yet, so we’ll simply log to the
console for now to confirm that everything works as it should.

10.3.2 Removing a clipping

To remove a clipping, we navigate up to its grandparent, which is the element for the
entire clipping.

const removeClipping = (target) => {
 target.parentNode.parentNode.remove();
};

When we have a reference to the element for the clipping, removing it from the page
is as simple as calling the element’s remove() method.

clippingsList.addEventListener('click', (event) => {
 const hasClass = className => event.target.classList.contains(className);

 if (hasClass('remove-clipping')) removeClipping(event.target);
 if (hasClass('copy-clipping')) console.log('Copy clipping');
 if (hasClass('publish-clipping')) console.log('Publish clipping');
});

Instead of logging to the console whenever the user clicks a clipping’s Remove button,
we call removeClipping() and pass it a reference to the button. That works, but we
can do a little bit better. Looking ahead, it’s safe to assume that we’ll need to get either a
reference to the clipping element or its text. It makes sense to pull these out into their
own functions.

const getButtonParent = ({ target }) => {
 return target.parentNode.parentNode;
};

const getClippingText = (clippingListItem) => {
 return clippingListItem.querySelector('.clipping-text').innerText;
};

getButtonParent() can navigate to the parent from any of the three buttons. Although
simple, this function is useful in case we ever update the Markup. You don’t want to
have to change the code for traversing up the DOM from a button to the clipping

Listing 10.9 Removing a clipping from the DOM: ./app/renderer.js

Listing 10.10 Configuring the event listener to remove clippings: ./app/renderer.js

Listing 10.11 Setting up helper methods for working with clippings: ./app/renderer.js

Removes the entire clipping from
the DOM. This effectively removes
it from memory as well.

Replaces the log with the new
function to remove the clipping.

Creates an abstraction to
navigate to the DOM node that
contains the entire clipping.

Creates an abstraction for traversing the clipping and
finding the text that was originally saved by the user.

190 CHAPTER 10 Building applications with the menubar library
element three times. From the parent, we need to get the text of the clipping because
we’re effectively using the DOM as our data store. Luckily, traversing down the DOM
is easier than traversing up, and getClippingText() can take advantage of the query-
Selector() method. We can now use this method in our event listener.

clippingsList.addEventListener('click', (event) => {
 const hasClass = className =>
 event.target.classList.contains(className);

 const clippingListItem = getButtonParent(event);

 if (hasClass('remove-clipping')) removeClipping(clippingListItem);
 if (hasClass('copy-clipping')) console.log('Copy clipping',

➥ getClippingText(clippingListItem));
 if (hasClass('publish-clipping')) console.log('Publish clipping',

➥ getClippingText(clippingListItem));;
});

In the previous listing, we immediately get a reference to the clipping element because
we’ll need it in every case. Now that getting the clipping text is easy, let’s update our con-
sole logs to include the clipping text as well to verify that we’ve implemented this func-
tionality correctly. removeClipping() can now get a lot simpler as well. It’s arguable that
we don’t need a function for this at all, but it’s conceivable that we might want to add
more functionality later. As a result, it makes sense to leave it for now.

const removeClipping = (target) => {
 target.remove();
};

10.3.3 Writing to the clipboard

Not only did we implement the ability to write to the clipboard in the previous chap-
ter, we’ve already laid a lot of the groundwork in this chapter to make implementing
this feature easy. The first thing that we need is a function that handles writing the
text of the clipping to the clipboard.

const writeToClipboard = (clippingText) => {
 clipboard.writeText(clippingText);
};

We add more to this function later in the chapter, so it makes sense to keep it as a
function instead of just adding inline in our event listener. The next step is to replace

Listing 10.12 Configuring the event listener to display the clipping’s text:
./app/renderer.js

Listing 10.13 Refactoring the removeClipping() function: ./app/renderer.js

Listing 10.14 Creating a function to write a clipping to the clipboard: ./app/renderer.js

Gets the containing
DOM node at the very
beginning instead of
within each function

Passes the clipping element to
removeClipping() instead of the event

Refactors the removeClipping()
function to use the element instead
of the event’s target node.

Creates a function that takes care
of writing text to the clipboard.
This is simple now, but we add
more to it later in the chapter.

191Publishing clippings

ew
lity
the console log in the event listener with this new function and pass the function the
text of the clipping that was selected by the user.

clippingsList.addEventListener('click', event => {
 const hasClass = className => event.target.classList.contains(className);

 const clippingListItem = getButtonParent(event);

 if (hasClass('remove-clipping')) removeClipping(clippingListItem);
 if (hasClass('copy-clipping'))
 writeToClipboard(getClippingText(clippingListItem));
 if (hasClass('publish-clipping'))
 console.log('Publish Clipping', getClippingText(clippingListItem));
});

10.4 Publishing clippings
We now have the core functionality that any self-respecting application that calls itself
Clipmaster 9000 would need to do its job. It’s time to start going for extra credit. Let’s
implement the ability to publish clippings to an example API, as shown in figure 10.4.

Listing 10.15 Adding writeToClipboard() to the event listener: ./app/renderer.js

Sets the
Write to
Clipboard
button to
call our n
functiona

Figure 10.4 A published clipping on the ClipHub service

192 CHAPTER 10 Building applications with the menubar library

We cannot do this in a browser for the same security reasons we discussed in chapter 2.
In addition, we use a Node library that would not normally work in the browser to
send our requests to the API.

 In the name of focus, we’ll take a few shortcuts. This is a deliberatively simple
API—it stores the clippings in memory. All of the clippings will be cleared out period-
ically. The source code for the server can be found at https://glitch.com/~cliphub.

10.4.1 Setting up request

request is another popular, well-named library that makes it easy to perform HTTP
requests to remote servers. request allows us to set defaults for every request that
it makes. For this application, we send all our requests to the same API endpoint, so it
makes sense to set that as a default. We will also create a custom user agent string that
will differentiate Clipmaster from an ordinary browser.

 In this section, we set up request to make requests to the ClipHub API, format our
clippings so that the ClipHub API will accept those requests, and then set up our UI to
make the requests.

const request = require('request').defaults({
 url: 'https://cliphub.glitch.me/clippings',
 headers: { 'User-Agent': 'Clipmaster 9000' },
 json: true,
});

Now we can format the text of a clipping for the API and send an HTTP request to the
API. The next step is to tie these two functions together and show the user whether
the request was successful, along with the URL of the clipping on ClipHub if it was
successful.

const publishClipping = (clipping) => {
 request.post({ json: { clipping } }), (error, response, body) => {
 if (error) { return alert(JSON.parse(error).message); }

 const url = body.url;

 alert(url);
 clipboard.writeText(url);
 });
};

Listing 10.16 Requiring and configuring default parameters for request:
./app/renderer.js

Listing 10.17 Creating a function to publish a clipping to ClipHub’s API: ./app/renderer.js

request allows you to set
default parameters for
every HTTP request

Normally, the browser sets the
user agent string. Because we
are using a library, we can set
our own user agent.

When set to true, request
will automatically parse and
stringify JSON on our behalf.

Formats the clipping text and sends it via
a POST request to the ClipHub API.

If there is an error
for some reason, we
display an alert to
the user.

Finds the URL of the
published clipping.

Displays it to the
user via an alert.Writes it to

the clipboard.

https://glitch.com/~cliphub

193Displaying notifications and registering global shortcuts
request.post() sends a POST request to a URL. We set the default URL earlier, so
there is no need to specify it now. request.post() takes two arguments: the data we
want to send and a callback that is invoked when we hear back from the server.
request passes three arguments to the callback: an error object in the event the
request is not successful, the full HTTP response, and the body of the response. If the
request was successful, error is null.

 If the request is successful, we get the url property, which contains the URL for
our new published clipping. For now, we use an alert to display the URL. We also write
it to the clipboard so that the user can paste it into the address bar of their favorite
web browser. With the code for this feature in place, the last thing to do is call it when
the user clicks the Publish button on a clipping.

clippingsList.addEventListener('click', (event) => {
 const hasClass = className => event.target.classList.contains(className);

 const clippingListItem = getButtonParent(event);

 if (hasClass('remove-clipping')) removeClipping(clippingListItem);
 if (hasClass('copy-clipping'))

writeToClipboard(getClippingText(clippingListItem));
 if (hasClass('publish-clipping'))

publishClipping(getClippingText(clippingListItem));
});

In this listing, we used a technique similar to writing the clipping’s text to the
clipboard. The only difference is that we swap out writeToClipboard() in favor of
publishClipping().

10.5 Displaying notifications and registering
global shortcuts
We let the user know that something has happened in Clipmaster in various ways. We
silently write to the clipboard without informing the user as to whether the action
ended in success. When publishing we use an alert that locks up the application until
the user dismisses it.

 Later in this chapter, we implement global shortcuts that allow the user to trigger
the application’s functionality without having it open. In this situation, having useful
notifications is even more important. Displaying these notifications is simple because
we do all the heavy lifting in the renderer process and don’t have to worry about IPC.
With that in mind, we look at how to add event handlers to our notifications to add
functionality that wasn’t present in the previous chapter.

 Let’s start by tackling the alert that pops up whenever the user publishes a clip-
ping. In its place, we display one of two notifications, shown in listing 10.19: that an
error occurred with the message received from the server, or that the request was

Listing 10.18 Adding publishClipping() to the event listener: ./app/renderer.js

Correctly sets
up the Publish
Clipping button.

194 CHAPTER 10 Building applications with the menubar library
successful with the URL of the newly published clipping on ClipHub. If the request
was successful, we add an event handler to the notification that opens ClipHub in
their default browser when the user clicks the notification.

const { clipboard, shell } = require('electron');

// Code omitted for clarity…

const publishClipping = (clippingText) => {
 request.post({ json: { clipping } }), (error, response, body) => {
 if (error) {
 return new Notification('Error Publishing Your Clipping', {
 body: JSON.parse(error).message
 });
 }

 const url = body.url;
 const notification = new Notification(
 'Your Clipping Has Been Published',
 { body: `Click to open ${url} in your browser.` }
);

 notification.onclick = () => { shell.openExternal(url); };

 clipboard.writeText(url);
 };
};

To open a URL in the user’s default browser, we need to pull in the shell module
from Electron. We’ll set the onclick method of the notification to an anonymous
function that is triggered when the user clicks the notification.

10.5.1 Registering global shortcuts

Asking the user to take their hand off the keyboard and navigate to a small icon in the
menu bar or system tray isn’t always optimal. They’re likely typing when they want to
create a clipping, and they want the convenience of having a key combination that
they can press from anywhere in the operating system to trigger a command inside
Clipmaster 9000.

 If you remember from the previous chapter, we must register global shortcuts in
the main process. In chapter 9, we implemented most of the application’s functional-
ity in the main process, and we could call functions directly. In this chapter, the oppo-
site is true, and we need to set up some IPC. In the following listing, let’s start by
registering a shortcut to create a new clipping. We start by having it log to the console
for now. In the next step, we implement its functionality.

Listing 10.19 Setting up notifications when publishing a clipping: ./app/renderer.js

Creates a notification
in the event there is

an error

Creates a notification
when the clipping is
successfully published

If the user clicks the
notification, takes them to

the published clipping.

195Displaying notifications and registering global shortcuts

es
const { globalShortcut } = require('electron');
const Menubar = require('menubar');

const menubar = Menubar();

menubar.on('ready', function() {
 console.log('Application is ready.');

 const createClipping = globalShortcut.register('CommandOrControl+!', ()

➥ => {
 console.log('This will eventually trigger creating a new clipping.');
 });

 if (!createClipping) {
 console.error('Registration failed', 'createClipping');
 }
});

menubar.on('after-create-window', () => {
 menubar.window.loadURL(`file://${__dirname}/index.html`);
});

This is similar to what we did in the previous chapter. The important difference is that
we’re storing all the clippings in the DOM in the renderer process. As a result, we
need to communicate with the renderer process to create the clipping. In Fire Sale,
we kept a reference to each window that we created. menubar created a browser win-
dow on our behalf and stored it in its window property. Let’s update our global short-
cut to send a message to the renderer process whenever the user presses the keystroke
to create a new shortcut. We can also register shortcuts for writing clippings back to
the clipboard and publishing them to ClipHub.

const createClipping = globalShortcut.register('CommandOrControl+!', () => {
 menubar.window.webContents.send('create-new-clipping');
});

const writeClipping = globalShortcut.register('CmdOrCtrl+Alt+@', () => {
 menubar.window.webContents.send('write-to-clipboard');
});

const publishClipping = globalShortcut.register('CmdOrCtrl+Alt+#', () => {
 menubar.window.webContents.send('publish-clipping');
});

if (!createClipping) {
 console.error('Registration failed', 'createClipping');
}

Listing 10.20 Setting up a simple global shortcut: ./app/main.js

Listing 10.21 Setting up global shortcuts with IPC: ./app/main.js

Requires the
globalShortcut
module from Electron

Creates a global
shortcut that
eventually creat
a new function

If registering the
global shortcut fails,
logs an error to the
console

196 CHAPTER 10 Building applications with the menubar library

he
ey

, so
 if (!writeClipping) {
 console.error('Registration failed', 'writeClipping');
 }

 if (!publishClipping) {
 console.error('Registration failed', 'publishClipping');
 }

Each shortcut is sending a message on a different channel. In this case, we send no
additional information to the renderer process because the process reads from the
clipboard. The next step is to configure the renderer process to receive the messages
sent from the main process. The user may not have the application open when they
press the keystroke, so we add notifications where appropriate.

const { clipboard, ipcRenderer, shell } = require('electron');

ipcRenderer.on('create-new-clipping', () => {
 addClippingToList();
 new Notification('Clipping Added', {
 body: `${clipboard.readText()}`
 });
});

ipcRenderer.on('write-to-clipboard', () => {
 const clipping = clippingsList.firstChild;
 writeToClipboard(getClippingText(clipping));
});

ipcRenderer.on('publish-clipping', () => {
 const clipping = clippingsList.firstChild;
 publishClipping(getClippingText(clipping));
});

In chapter 9, we stored all the clippings in an array in the main process. In this chap-
ter, we’re using the DOM as our temporary data store. If the user clicks the button to
write to the clipboard or publish the clipping, we know which clipping, based on the
button clicked. But how do we find the appropriate clipping when the user activates a
global shortcut? In the previous listing, we traverse to the first child of the clippings
list and call one of the functions we wrote earlier in the chapter with that element.

10.5.2 Solving for the edge case that occurs if the window has never
been shown

You might have noticed a bug when implementing the last feature. If you start your
application and immediately press one of your new global shortcuts, you get an error,

Listing 10.22 Setting up IPC listeners in the renderer process: ./app/renderer.js

Pulls in the ipcRenderer
module from Electron

If an IPC message comes across on the
create-new-clipping channel, calls the
function that is called when a user
clicks the Copy to Clipboard button.

After adding the clipping, displays a notification
because the user does not have the UI open and may
not know that it was added successfully.

Previously, we knew what clipping t
user wanted based on the button th
clicked. In this case, we don’t know
we grab the first one on the list.

Writes that clipping to the clipboard.

The process of publishing the
clipping is similar to writing it to
the clipboard: Find the first one,
and pass it to the function.

197Adding a secondary menu
shown in figure 10.5, that reads “TypeError: Cannot read property 'webContents' of
undefined.” If you look at the previous listing, you’ll notice that we’re attempting to
access the webContents property on menubar.window, which is apparently undefined.
Click the cat icon to open the window and try the shortcut again. It should work
this time.

So why does it suddenly work? menubar lazily loads the window the first time it is
needed. To prevent this error, we must tell menubar to immediately load the window
when it starts up. We also want it to load our HTML page, which—in turn—loads ren-
derer.js, which sets up our IPC listeners.

const menubar = Menubar({
 preloadWindow: true,
 index: `file://${__dirname}/index.html`,
});

Previously, we were invoking the Menubar() function with no arguments. In listing 10.23,
we modified the function call and passed in a configuration object. We preload the
window before the first time the user clicks on the menu bar or tray icon and we load
in our HTML page as soon as menubar loads the window.

10.6 Adding a secondary menu
In Fire Sale, I boasted that one of the great things about building applications in Elec-
tron is that we could use application and context menus to provide functionality with-
out needing to find a place for it in the UI. In the previous chapter, we could have
created additional submenus if necessary. But what about Clipmaster 9000? It turns
out that the tray module allows us to display a secondary menu when the user right-
clicks the icon. Let’s create a simple menu that allows users to quit the application. We
accomplish this in three steps: create the menu using Menu.buildFromTemplate(),

Listing 10.23 Preloading window and contents on start-up: ./app/main.js

Figure 10.5 If you try to use one of your global shortcuts before
the window is opened for the first time, you see this error.

Sets the preloadWindow option to
true to load the UI, even if it has
never been requested.

Specifies the HTML document
that should be preloaded.

198 CHAPTER 10 Building applications with the menubar library
add an event handler for right-clicks on menubar.tray, and pop up the menu when
the user right-clicks the icon.

const { globalShortcut, Menu } = require('electron');

const secondaryMenu = Menu.buildFromTemplate([
 {
 label: 'Quit',
 click() { menubar.app.quit(); },
 accelerator: 'CommandOrControl+Q'
 },
]);

menubar.on('ready', function () {
 console.log('Application is ready.');

 menubar.tray.on('right-click', () => {
 menubar.tray.popUpContextMenu(secondaryMenu);
 });

 // Omitted for brevity…
});

With this small change, we create an entire secondary interface to the application.
This would be a great place for user preferences and other advanced options that
don’t have a good place in the main UI of the application.

 The first phase of Clipmaster 9000 is now complete. You can find the complete
code in the appendix or on the completed-example branch of this repository (http://
mng.bz/UE9).

Summary
 menubar is a third-party library that is a high-level abstraction around core Elec-

tron modules and another third-party library called electron-positioner.
 menubar creates a browser window and positions it directly below the menu bar

icon (on macOS) or above the tray icon (on Windows).
 Event delegation is a technique that allows you to add an event listener to a par-

ent node and wait for the event to bubble up rather than manually adding and
removing listeners from child nodes to prevent memory leaks.

 request is a library for Node.js that allows you to make HTTP requests to exter-
nal URLs.

 We can define Notifications’ onclick method to allow custom behavior when a
user clicks a notification.

 menubar’s browser window instance can be preloaded when the application starts.
 A secondary menu can be added to the tray instance to provide additional

functionality.

Listing 10.24 Creating a secondary menu: ./app/main.js

Requires the
menu module
from Electron.

Builds a menu from
a JavaScript object.

Gets a reference to the app
module, and tells it to quit.

Listens for a right-click
event on the menu bar
or system tray icon.

Triggers a
pop-up menu.

http://mng.bz/UE9R
http://mng.bz/UE9R
http://mng.bz/UE9R

Using transpilers
and frameworks
In the chapters leading up to this one, we’ve been writing all of our UIs using
vanilla JavaScript and CSS. This was intentional—this is a book on Electron, after
all. It’s not a book on client-side frameworks. That said, it’s impossible to ignore
that modern web developers use a wide variety of languages, frameworks, and tools
to build the increasingly complex UIs that users have come to expect from the web.

 In this chapter, I’ll show you how to set up Electron to work with an assortment
of web languages. With that covered, we build a small application using three

This chapter covers
 Setting up electron-compile to transpile

CoffeeScript, TypeScript, and upcoming
JavaScript features (using Babel) without a build
step in an Electron application.

 Using electron-compile to transpile Less, Sass,
and Stylus to CSS and Jade to HTML.

 Building a simple Electron application using
React, Sass, and Jade.

 Setting up live reload, which reloads the browser
window whenever the code in the renderer
process has been changed.
199

200 CHAPTER 11 Using transpilers and frameworks
languages: React (using JSX and upcoming JavaScript features that are not yet sup-
ported by Node or Chromium), Sass, and Jade. It’s not a requirement that you’ve used
React or any of the other languages. In fact, if you’re an expert in any of them, you
might notice that we kept them deliberately simple and omit things like PropTypes.
I chose React, Sass, and Jade because they hit the sweet spot of being popular and rel-
atively approachable for developers unfamiliar with them. Though this book is not on
React, Sass, or Jade, it is titled Electron in Action so we we’re going to learn by doing. We
use this application in the next chapter when we hook up real, persistent data stores to
the application. A branch of this application is ready for you to use if you are already
familiar with React or don’t have a strong desire to learn it. That said, do not miss sec-
tion 11.5 where I cover how to enable live reloading using electron-compile.

 In this chapter, we build an application called Jetsetter, shown in figure 11.1. This
application solves a problem that I’ve been having. I’ve been traveling a lot recently to
speak at JavaScript conferences, and the only thing worse than showing up to the con-
ference venue without the right adapter is showing up at the hotel without enough
socks for the week. In the past, I’ve tried to use a to-do list to track everything I needed
to pack. But to-do list applications aren’t really built for this purpose, and I find it
tedious to check and uncheck all the tasks when I’m packing for the next trip. Hence,
Jetsetter was born.

 You can find the source code for Jetsetter at https://github.com/electron-in-
action/jetsetter. We start with the master branch as the foundation of the application
as we go through this chapter, but you can also find a completed version on the
branch named completed-example. To get started, clone the repository, and install
the dependencies.

We build an application that allows the user to add items and mark them as either
packed or unpacked. A button at the bottom of the UI allows the user to mark every-
thing as unpacked again when they’re getting ready for the next trip. The version we

Figure 11.1 In this chapter, we build an
application to track what we need to
pack for an upcoming trip.

https://github.com/electron-in-action/jetsetter
https://github.com/electron-in-action/jetsetter

201Introducing electron-compile
are building in this chapter has a fatal flaw: it doesn’t save the list of items anywhere.
This means that whenever you close the application, all your new items are lost. Chap-
ter 12 addresses this issue by showing how to persist data in several different ways,
from in-browser storage to directly accessing databases from the UI.

11.1 Introducing electron-compile
Despite all the languages that developers use to build web applications these days, the
browser understands only three of them: HTML, CSS, and JavaScript. Some minor
exceptions have existed over the years—Google’s Dartium, which was a build of Chro-
mium that ran Dart alongside JavaScript, and Netscape Navigator’s short-lived support
of JavaScript Stylesheets come to mind—but, for the most part, this situation has been
true for as long as the web has been around.

 In addition to compiling from alternative languages into JavaScript, it has become
fashionable to compile JavaScript into JavaScript. Tools such as Babel allow developers
to use the latest and greatest—and in some cases, upcoming—features of the lan-
guage and then compile them down into more verbose versions that older browsers
support. We’re not concerned with older browsers when building Electron applica-
tions because we’re shipping our own modern versions of Chromium and Node, but
Babel plugins are available for upcoming language features and alternative syntaxes
like JSX or Flow, the former of which we use in this chapter.

 Typically, developers write in their language of choice and then use a build tool to
compile their code into JavaScript, CSS, or HTML for the browser. This process is
commonly called transpilation because we’re compiling one language into another
instead of into byte code or assembly. We could certainly do that in this chapter, but it
requires running a separate process to compile our code. We’d have to wait for that
process to finish before refreshing the Electron application’s browser window to see
the changes.

 More importantly, the process is not much different for Electron applications than it
is for traditional web applications and certainly doesn’t warrant an entire chapter in this
book. And so, it is with great pleasure that I get to introduce you to electron-compile.

 electron-compile enables Electron to use alternative languages in addition to the
ones supported by Chromium and Node, as illustrated in figure 11.2. They are transpiled
on the fly and without the need for an additional build process.

electron-compile

JavaScript

JavaScript

(Babel)
CoffeeScript TypeScript GraphQL

CSS

Sass Less Stylus

HTML

Jade

Vue.js 2.0

(single-file

components)

JSON

CSON

(CoffeeScript)

Figure 11.2 electron-compile supports a wide variety of languages.

202 CHAPTER 11 Using transpilers and frameworks
As you can see in figure 11.2, electron-compile supports a healthy number of lan-
guages. Getting started with electron-compile is suspiciously easy. In the pack-
age.json file of the application, you’ll find the important dependency electron as well
as electron-prebuilt-compile, which is a version of Electron that has been config-
ured with electron-compile.

 electron-compile determines the language by looking at the file extension. If you
load a file with a .coffee extension, it automatically transpiles it using CoffeeScript.
The same goes for TypeScript with the .ts extension and so on. All files with a .js exten-
sion will be transpiled using Babel. By default, Babel doesn’t do anything, so it has no
effect on your JavaScript files unless you intentionally configure it to, which I cover in
the next section.

 For now, if you run npm start, the application starts as you’d expect, but it now has
full support for electron-compile. If your needs are simple, then this is all that you
must do. In the next section, we configure electron-compile to support JSX and
other upcoming features to JavaScript as well as support source maps in development.

11.2 Laying the application’s foundation
In this chapter, we use JavaScript with a few additional features and support for JSX—
an HTML-like syntax that makes it easier to define React components. As such, we
need to configure Babel to support these features. When the application starts,
electron-compile looks to a file called .compilerc for any additional configuration
beyond the default. I’ve included this file for you in the repository you cloned earlier
in this chapter, but let’s look at it in this listing.

{
 "env": {
 "development": {
 "application/javascript": {
 "presets": [
 [
 "env",
 {
 "targets": {
 "electron": "1.8"
 }
 }
],
 "react"
],
 "plugins": [
 "transform-es2015-classes",
 "transform-es2015-modules-commonjs",
 "transform-object-rest-spread"

Listing 11.1 Configuring Babel for use with electron-compile: ./.compilerc

electron-compile allows you to specify
different configurations for development

as opposed to production. This is the
configuration for development.

electron-compile supports a variety of file
types. This is the configuration that
applies to JavaScript files.

The list of
Babel presets

we wish to
use. Presets
are groups
of plugins.

babel-env allows us to dynamically
select plugins based on the target.

Jetsetter uses Electron 1.6. This
setting tells Babel not to transpile
features already supported by
Electron 1.6.

Loads
the preset

collection of
React plugins

for Babel

Despite supporting most of
ES2015, Node doesn’t support ES
modules. This plugin adds support.

Object Rest Spread is a stage 3
proposal commonly used by
React developers to make
copies of objects.

203Laying the application’s foundation
],
 "sourceMaps": "inline"
 },
 "text/jade": {
 "pretty": true
 }
 },
 "production": {
 "application/javascript": {
 "presets": [
 [
 "env",
 {
 "targets": {
 "electron": "1.8"
 }
 }
],
 "react"
],
 "plugins": [
 "transform-es2015-classes",
 "transform-es2015-modules-commonjs",
 "transform-object-rest-spread"
],
 "sourceMaps": "none"
 }
 }
 }
}

At first glance, this configuration file can be overwhelming, but there is a beauty to it.
First, electron-compile allows us to maintain two separate configuration sets: one for
development, and one for production. We chose to omit source maps and not format the
HTML generated by Jade for production. Source maps are a convenience for developers.

 When we are using transpilation, the code we write is not the code that is being
executed by the browser. This inherently makes sense because that’s the whole point
of using transpilation, but the catch is that it can be hard to debug code that has been
compiled. An error on line 36 of the code in the output may be on line 12 of the code
you wrote. Source maps allow Chromium to map the output to the input and show
you where that error is in the code you wrote. Generating source maps can take time,
so they are generally omitted from production versions of the application.

 electron-compile doesn’t configure the transpilation process itself. It simply
passes on those options to the tool doing the actual transpilation. Under the develop-
ment key, we have two additional keys: text/jade and application/javascript.
These options are passed to Jade and Babel, respectively. Any options listed under an
application/coffeescript are passed to the CoffeeScript compiler.

 Within the options being passed to Babel, we see that we’re using both plugins and
presets. Presets are just groups of plugins. The react preset includes all the presets

Source maps allow developers to
see the untranspiled source in
their developer tools.

By default, Jade formats its
output without any spaces or new
lines. This setting generates more
human-readable output.

In production, we instruct electron-
compile not to include source maps
or format Jade’s output.

204 CHAPTER 11 Using transpilers and frameworks
related to React, such as the ability to parse and transform JSX. Many other presets are
available on npm, but babel-preset-env is a bit of a special beast. It maintains a list of
commonly used plugins and the browsers—Electron is included among these—that
already have built-in support and do not require a plugin. This allows Babel to intelli-
gently skip transpiling features that are already natively supported by Electron.

 In addition to the presets, we include a few other plugins. Node.js does not cur-
rently support the ES modules, so I included a plugin that will convert the ES module
syntax into the CommonJS module syntax that we’ve been using thus far in this book.
We also add support for an upcoming language feature called Object Rest Spread,
which is popular with React developers and used to clone objects to avoid mutation.

With electron-compile configured, let’s look at the foundation of the application.
Instead of an HTML file, we use Jade as the markup language. This file is relatively
simple, because React handles most of the heavy lifting for the UI. Replace index.html
with index.jade, and add the following content.

doctype html
html(lang='en')
 head
 title Jetsetter
 meta(charset='UTF-8')
 meta(name='viewport', content='width=device-width, initial-scale=1')
 meta(
 http-equiv="Content-Security-Policy",
 content="default-src 'self'; script-src 'self' 'unsafe-inline'"
)
 link(rel='stylesheet', href='style.scss')
 body
 #application
 .loading Loading…
 script.
 require('./renderer');

Jade was officially renamed Pug a while back due to a trademark dispute, but it is still
referred to as Jade by electron-compile, so I do the same for the remainder of this

What’s with the support for ECMAScript classes?
You may have noticed that I’ve included a plugin for ECMAScript classes, which are
already supported in both Node and Chromium, so this plugin is not required. At the
time of this writing, a bug with hot module reloading in React requires that this plugin
be included. I mention this because if you try to apply the concepts from this chapter
in the future, you may also run into this bug (https://github.com/gaearon/react-hot-
loader/issues/313). This bug has been open for just over a year and a half, so you
may run into it and lose the better part of your afternoon, like I did.

Listing 11.2 The renderer process’s HTML file written in Jade: ./app/index.jade

https://github.com/gaearon/react-hot-loader/issues/313
https://github.com/gaearon/react-hot-loader/issues/313

205Laying the application’s foundation
chapter. We also write our stylesheet in Sass, a feature-rich alternative to CSS. Rename
style.css to style.scss, and update the content as follows.

$accent-color: rgb(243,46,91);

html {
 box-sizing: border-box;
}

body, input {
 font: caption;
}

input {
 padding: 0.5em;
 border: 1px solid $accent-color;
 background-color: lighten($accent-color, 30);
}

button, .button, input[type="submit"] {
 background-color: $accent-color;
 border: 1px solid darken($accent-color, 10);
 color: white;
 padding: 0.5em;
 &:hover {
 background-color: lighten($accent-color, 10);
 }
 &:active {
 background-color: lighten($accent-color, 5);
 }
 &.full-width {
 width: 100%;
 margin: 1em 0;
 }
}

.NewItem {
 display: flex;
}

.NewItem-input {
 width: 100%;
}

Sass supports a wide range of features—many of which I won’t discuss in this chapter.
In the previous example, I used a variable to set the main color of the buttons and
input fields and used built-in helper functions such as lighten() and darken() to
adjust the color for different parts of the UI.

 With the markup and styling in place, we can set up our main and renderer pro-
cesses. The main process is deliberately simpler than it has been in previous chapters
because it’s not the focus.

Listing 11.3 Application styles using Sass: ./app/style.scss

Sass supports
variables.

Sass includes many helper
functions for working with
colors. The first argument
is the color. The second
argument is the amount you
wish to adjust the color.

Sass allows you to nest
selectors. This is the
equivalent to writing
each of the selectors
with the addition of the
:hover pseudo-selector.

206 CHAPTER 11 Using transpilers and frameworks
import { app, BrowserWindow } from 'electron';

let mainWindow;

app.on('ready', () => {
 mainWindow = new BrowserWindow({
 width: 300,
 height: 600,
 minWidth: 300,
 minHeight: 300,
 show: false
 });
 mainWindow.loadFile('index.jade');
 mainWindow.once('ready-to-show', () => {
 mainWindow.show();
 });
});

Notice that we can use files with extensions that are not normally supported in the
browser. electron-compile transpiles this to an HTML file on the fly, and Chromium
is none the wiser. If you look again at listing 11.2, you notice that we requested a
stylesheet named style.scss instead of style.css. The .scss extension is used by Sass, and
electron-compile transpiles it using Sass before handing the CSS off to Chromium.
The last piece of the puzzle is to set up the renderer process.

import React from 'react';
import { render } from 'react-dom';

const Application = () => {
 return (
 <div>
 <h1>Hello world!</h1>
 <button className="full-width">
 This button does not do anything.
 </button>
 </div>
);
};

render(<Application />, document.getElementById('application'));

If this is your first time seeing React, you might be surprised to see HTML in your
JavaScript. This syntax is known as JSX (JavaScript with XML). It’s a convenient way of
describing the markup that a React component should create. Babel transpiles this
code into traditional JavaScript to be read by the browser. The actual JavaScript looks
like this listing.

Listing 11.4 The main process for Jetsetter: ./app/main.js

Listing 11.5 A simple component using JSX and React: ./app/renderer.js

electron-compile
allows us to use
nonstandard file
extensions

Requires the React library.

Pulls in the render() method
from the ReactDOM library.

Creates an Application
component with some
placeholder content.

Renders the Application component into the
DOM node with the ID of “application.”

207Building the UI in React
const Application = () => {
 return React.createElement(
 "div",
 null,
 React.createElement(
 "h1",
 null,
 "Hello world!"
),
 React.createElement(
 "button",
 { className: "full-width" },
 "This button does not do anything."
)
);
};

Listing 11.5 is a bit easier on the eyes than listing 11.6—especially as the application
begins to grow. We didn’t need to set up a build chain using webpack or Gulp. electron-
compile takes care of configuring Babel based on the options we specify in .compil-
erc. If you fire up the application using npm start, you should see a slightly taller ver-
sion of figure 11.3.

11.3 Building the UI in React
Our Application component is the starting point for Jetsetter’s UI. Jetsetter has four
main parts: a form for adding new items, a list of all the items that still need to be
packed, a list of all the items that have been packed, and a button for returning all of
the items marked as packed to the unpacked list.

Listing 11.6 The Application component after transpilation

Figure 11.3 The foundation of
our application using React,
Sass, and Jade.

208 CHAPTER 11 Using transpilers and frameworks
 The two lists are pretty much the same, so they use the same component, but each
list also has a subcomponent for every item on the list. In addition to modifying
Application to be a bit more useful, we need to create three more components: Item,
Items, and NewItem. The Mark All as Unpacked button can use a standard <button>
element. The hierarchy of the components is laid out in figure 11.4.

11.3.1 The Application component

Our pleasant greeting to the world and useless button serve admirably as proof that
electron-compile processed our JavaScript, but we need to swap it out with some-
thing a bit more functional. We haven’t built our NewItem form, Items list, or individ-
ual Item components yet, but we lay the groundwork now for managing the state of
our application and getting the bones in place. By the end of this section, our applica-
tion will look like figure 11.5.

 The first version of our Application component was what’s known as a stateless
functional component. It was a function and, when called, returned a value. It
couldn’t maintain any UI state. In this chapter, the Application component main-
tains the master list of all the items being tracked in Jetsetter. Like with Clipmaster,
we use a simple array in memory to track the list. In chapter 12, we’ll replace this
array with a persistent data store so that we don’t lose our list every time we quit the
application.

<Application />

container

<NewItem />

form

Unpacked

<Items />

<Item />

<Item />

<Item />

Packed

<Items />

<Item />

<Item />

<Item />
<button>

Mark All As

Unpacked

</button>

Figure 11.4 Jetsetter is broken into small components as
illustrated here.

209Building the UI in React
The Application component tracks the items in Jetsetter, adds new items to that list,
and marks them as either packed or unpacked. We add these features as we need
them. Let’s start by initializing the component with a list of items and adding place-
holder methods for adding and marking the items. We also set up a foundation for
the UI as shown in figure 11.1. You’ll find a file for the Application component in
the ./app/components directory.

import React, { Component } from 'react';

class Application extends Component {
 constructor(props) {
 super(props);
 this.state = {
 items: [{ value: 'Pants', id: Date.now(), packed: false }]
 };

 this.addItem = this.addItem.bind(this);
 this.markAsPacked = this.markAsPacked.bind(this);
 this.markAllAsUnpacked = this.markAllAsUnpacked.bind(this);
 }

 addItem(item) {} // To be implemented…

 markAsPacked(item) {} // To be implemented…

 markAllAsUnpacked() {} // To be implemented…

Listing 11.7 Application component foundation: ./app/components/Application.js

Figure 11.5 The Application
component without items

In addition to importing
React, we import its

Component class.

The Application component
is a subclass of React’s
component class.

The constructor() method is
called when the component
is first initialized.

When the component is
initialized, we set its state
to include an array of items
with one item in it.

Each of the actions happens on
the event loop, which means
that they lose context of this

component. Binding the
methods to the current

instance of the Application
component is a common

pattern in React.

210 CHAPTER 11 Using transpilers and frameworks

ems
nt’s
ly,

the
.

Filter
to fin

items
not
as

Filters
find a
that a
 render() {
 const { items } = this.state;
 const unpackedItems = items.filter(item => !item.packed);
 const packedItems = items.filter(item => item.packed);

 return (
 <div className="Application">
 {/* To be implented: <NewItem /> */}
 {/* To be implented: <Items title=”Unpacked Items” /> */}
 {/* To be implented: <Items title=”Packed Items” /> */}
 <button
 className="full-width" onClick={this.markAllAsUnpacked}
 >
 Mark All As Unpacked
 </button>
 </div>
);
 }
}

export default Application;

Components that inherit from React’s Component class can have methods and hold
onto state. In the previous listing, we initialize the state to have an array of items. For
now, we put an important article of clothing in there. In chapter 12, we’ll fetch this
item from persistent storage when the application launches. We also follow a common
React pattern of binding the methods to the new instance when it’s initialized. This
ensures that the methods are bound to the correct this when they are called later. We
put in empty placeholders for addItem(), markAsPacked(), and markAllAsUnpacked()
for now. We fill these in as we move through the chapter.

 When it’s time to render the component to the DOM, we separate the complete
list of items into smaller lists of packed and unpacked items. We haven’t built the rest
of the components needed to render the UI, so we include placeholders for now. We
are, however, able to place the Mark All as Unpacked button at the bottom of the
page. The last thing we need to do is replace that placeholder Application compo-
nent in ./app/renderer.js with the real—if incomplete—thing.

import React from 'react';
import { render } from 'react-dom';
import Application from './components/Application';

render(<Application />, document.getElementById('application'));

11.3.2 Displaying the lists of items

An application that tracks your packed and unpacked items isn’t much good if it can’t
display those items to you. In this section, we implement the two lists, as well as the

Listing 11.8 Mounting the new Application component onto the DOM:
./app/renderer.js

Pulls the list of it
off the compone
state. Alternative
you could use
this.state.items
everywhere that
you see items in
code that follows

s the list
d all the
 that are
 marked
 packed.

 the list to
ll the items
re marked
as packed.

React components use
className, instead of
class, because class is

a reserved word in
JavaScript.

export default is similar
to module.exports in
CommonJS modules,
which is what we used
in previous chapters.

Imports the
new Application
component.

211Building the UI in React

ability to toggle an item between its packed and unpacked states. This capability
requires creating components for individual items and for the lists of items. With the
ability to mark items as packed or unpacked in place, we also go the extra mile and
connect the Mark All as Unpacked button to the list of items. At the end of this sec-
tion, the application looks like figure 11.6.

INDIVIDUAL ITEMS

The Application component is doing the hard work of tracking all of the items
loaded into Jetsetter. The individual Item just needs to be told what it should display
and given a function to be called in the event that a user clicks its check box.

import React from 'react';

const Item = (({ packed, id, value, onCheckOff }) => {
 return (
 <article className="Item">
 <label>
 <input type="checkbox" checked={packed} onChange={onCheckOff} />
 {value}
 </label>
 </article>
);
});

export default Item;

The individual Item component is relatively straightforward. It’s a container with a
check box and a label. Surrounding the input in the <label> tag allows the user to
click the label in addition to the check box to check or uncheck the box. React triggers
the function passed to onChange() whenever the check box is checked or unchecked.

Listing 11.9 Individual Item component: ./app/components/Item.js

Figure 11.6 The application now includes
lists of packed and unpacked items.

This functional
component expects four
properties and stores
them as local variables
inside of the function.

The function passed to the input as
the onChange property is called

whenever checkbox is clicked.

212 CHAPTER 11 Using transpilers and frameworks
This functionality eventually becomes the Application component’s markAsPacked()
method.

 Having individual items is well and good, but they need a container. In the follow-
ing listing we create a simple component that accepts a list of items along with what to
do if one of them is clicked. It returns a <section> with each item as a child. It also
takes a title property to help us differentiate between the packed and unpacked lists.

import React from 'react';
import Item from './Item';

const Items = ({ title, items, onCheckOff }) => {
 return (
 <section className="Items">
 <h2>{ title }</h2>
 {items.map(item => (
 <Item
 key={item.id}
 onCheckOff={() => onCheckOff(item)}

 {...item}
 />
))}
 </section>
);
};

export default Items;

The Items component takes the title property for itself and then creates a set of Item
components based on the array of items it was provided and passes the onCheckoff()
function it was given to each of them with a reference to the specific item. We now have
the UI elements we need. It’s time to hook them up to the Application component.

 The Items component knows how to work with the individual Item components,
so we only need to bring the Items component into the Application component. We
do need to implement markAsPacked() and markAllAsUnpacked().

import React, { Component } from 'react';
import Items from './Items';

class Application extends Component {
 constructor(props) {
 // Omitted for brevity…
 }

 addItem(item) {} // To be implemented…

Listing 11.10 Item list component: ./app/components/Items.js

Listing 11.11 Item and Items in the Application component:
./app/components/Application.js

When working with an array
of components, React requires
that each component has a
unique key.

Passes the specific item
that should be checked
off to onCheckOff()The spread operator

passes all the item’s
properties to the
component.

Imports the Items
component

213Building the UI in React

n

it
ar

o
lo

e

.

.

R
th

ne
of i
jus
 markAsPacked(item) {
 const otherItems = this.state.items.filter(
 other => other.id !== item.id
);
 const updatedItem = { ...item, packed: !item.packed };
 this.setState({ items: [updatedItem, ...otherItems] });
 }

 markAllAsUnpacked() {
 const items = this.state.items.map(item => ({ ...item, packed: false }));
 this.setState({ items });
 }

 render() {
 const { items } = this.state;
 const unpackedItems = items.filter(item => !item.packed);
 const packedItems = items.filter(item => item.packed);

 return (
 <div className="Application">
 <Items
 title="Unpacked Items"
 items={unpackedItems}
 onCheckOff={this.markAsPacked}
 />
 <Items
 title="Packed Items"
 items={packedItems}
 onCheckOff={this.markAsPacked}
 />
 <button
 className="button full-width"
 onClick={this.markAllAsUnpacked}
 >
 Mark All As Unpacked
 </button>
 </div>
);
 }
}

export default Application;

We start by bringing in the Items component that we created in the previous section.
We use it twice in the render() method: once for packed items, and once for the
unpacked items. We pass each instance its respective list of items along with a title and
the markAsPacked() method, which will eventually be passed down to the individual
components.

 The trickier part lies in the markAsPacked() and markAllAsPacked() methods.
Both are modifying and updating the array of items being passed to the two lists. A
core tenant of building React actions is that we try not to mutate objects and arrays;

Creates a
ew array
of all the
ems that
e not the
ne we’re
oking for

Uses the object
rest spread
operator to mak
a clone of the
object replacing
the packed key
with its oppositeReplaces the items in the component’s state

with the item and all the other items

Makes a new array of items with
copies of the existing items with

their packed property set to false

eplaces
e items
in state

with the
w array

tems we
t made.

Uses the new Items
component to display
the unpacked items.

Uses the new Items
component to display
the packed items.

Calls the markAllAsUnpacked()
method when the Mark All as
Unpacked button is clicked.

214 CHAPTER 11 Using transpilers and frameworks
instead, we create new ones. It is easier for React’s virtual DOM diffing algorithm to
see that it’s working with a totally new object, as opposed to a new version of an exist-
ing object that has been subtly changed.

 In markAsPacked(), we start with a list of all of the items we’re not working with
and put them aside. We then make a copy of the item passed to the method. We
keep everything the same but override the packed key with its opposite. If it was
true, now it’s false; if it was false, now it’s true. We then update the state of the
component with a new array containing our new item mixed in with all the items we
put aside earlier.

 In markAllAsPacked(), we create an array of items by mapping over the existing
items and replacing their packed key with a value of false. The Mark All as Unpacked
button should set the item back to unpacked, regardless. With these methods in place,
you should be able to mark “Pants” as either packed or unpacked. This application
benefits from the fact that we hard-coded an item into the initial state of the applica-
tion, but it’s high time we gave users the ability to add their own items to Jetsetter.

11.4 Adding new items
Our next step is to create the NewItem component and connect it to the applica-
tion’s state. Unlike Item and Items, NewItem needs to hold on to its own piece of
state: the contents of the input field. At the end of this section, the application will
look like figure 11.7.

NewItem is another stateful component. It needs to track the value of the input field to
correctly name the new item that it creates when the user submits the form. It updates
its internal state to reflect the value whenever the user types into the input field. This
change itself is represented in the input field, creating a virtuous cycle.

Figure 11.7 The application can now add
a new item in addition to “Pants.”

215Adding new items

t

t()

nent

Upd
sta
co

base
val
in

curr
of t

field
com

han
m

import React, { Component } from 'react';

class NewItem extends Component {
 constructor(props) {
 super(props);
 this.state = {
 value: ''
 };

 this.handleChange = this.handleChange.bind(this);
 this.handleSubmit = this.handleSubmit.bind(this);
 }

 handleChange(event) {
 const { value } = event.target;
 this.setState({ value });
 }

 handleSubmit(event) {
 const { onSubmit } = this.props;
 const { value } = this.state;

 event.preventDefault();
 onSubmit({ value, packed: false, id: Date.now() });
 this.setState({ value: '' });
 }

 render() {
 const { value } = this.state;

 return (
 <form className="NewItem" onSubmit={this.handleSubmit}>
 <input
 className="NewItem-input"
 type="text"
 value={value}
 onChange={this.handleChange}
 />
 <input className="NewItem-submit button" type="submit" />
 </form>
);
 }
}

NewItem.defaultProps = {
 onSubmit: () => {}
};

export default NewItem;

Listing 11.12 Adding a NewItem: ./app/components/NewItem.js

Sets the initial state
of the input field as
an empty string

Binds the handleChange()
method so that it has a
reference to the componen
when invoked from the
event queue

Binds the handleSubmi
method so that it has a
reference to the compo
when invoked from the
event queue

event.target is the DOM node that triggered
the event. In this case, that is the input field.
We pull the value from the input field.

ates the
te of the
mponent
d on the
ue of the
put field.

We pass in a function dictating what to do
when the user clicks submit (or presses
the return key) from the Application as a
prop to this component.

Pulls the
ent value
he input
from the
ponent’s

state.

Passes an object
representing the
new item using
the current UNIX
timestamp as a
plausibly unique
identifier.

Resets the value of
the input to an
empty string to make
it easy for the user to
enter another item.

Triggers the
dleSubmit()
ethod when

the user
submits the

form.

Uses the current value in state
when the user submits the form.

Updates the value in state
whenever the user makes a

change to the input field.

Sets the default value of onSubmit()
to an empty function so that we don’t
accidentally trigger “undefined is not a
function” as an error if it’s omitted.

216 CHAPTER 11 Using transpilers and frameworks
The user typing in the input field triggers the function passed in as its onChange prop.
We’re using the aptly named handleChange() method for this purpose. onChange
passes in a representation of the DOM event to handleChange(). event.target is the
input field’s DOM node. We ask for its value as we did with the text area in Fire Sale.
With this value, we update the state of the component, which also updates the value of
the input as shown in the UI.

 In React, components do not typically know about their parents. NewItem cannot
talk to Application directly. Instead, Application passes in a function as a prop to
NewItem. NewItem uses this function when the user submits the form. We haven’t writ-
ten this function yet, but—when we do—it simply adds the new item to Application’s
array of items, which—as of right now—contains only a lonely pair of pants.

 When the user submits the form, the function passed in as its onSubmit prop is
called. Again, we are good at naming things and opted to name this method handle-
Submit(). On form submission, create an item and pass it in to the method passed in
as the NewItem’s onSubmit prop. The Application component will pass one of its
methods to NewItem as its onSubmit prop. NewItem, in turn, passes it as the onSubmit
prop to the form that it creates. Once the form is submitted, we replace the value in
state with an empty string—allowing the user to enter another item.

 NewItem currently lives in a vacuum. It theoretically works, but it needs to be added
to the Application component before we can effectively use it. Our next step is to
add it to the UI and pass it a function that adds it to Application’s list of items. We do
this here.

import React, { Component } from 'react';
import NewItem from './NewItem';
import Items from './Items';

class Application extends Component {
 constructor(props) {
 // Omitted for brevity…
 }

 addItem(item) {
 this.setState({ items: [item, ...this.state.items] });
 }

 markAsPacked(item) {
 // Omitted for brevity…
 }

 markAllAsUnpacked() {
 // Omitted for brevity…
 }

 render() {
 const { items } = this.state;

Listing 11.13 NewItem in the Application component:
./app/components/application.js

addItem() sets the state to a
new array consisting of all of the

existing items along with the item
passed in as an argument.

217Live reload and hot module reloading
 const unpackedItems = items.filter(item => !item.packed);
 const packedItems = items.filter(item => item.packed);

 return (
 <div className="Application">
 <NewItem onSubmit={this.addItem} />
 <Items
 title="Unpacked Items"
 items={unpackedItems}
 onCheckOff={this.markAsPacked}
 />
 <Items
 title="Packed Items"
 items={packedItems}
 onCheckOff={this.markAsPacked}
 />
 <button
 className="button full-width"
 onClick={this.markAllAsUnpacked}
 >
 Mark All As Unpacked
 </button>
 </div>
);
 }
}

export default Application;

With the NewItem component added to the Application component, you should now
be able to create additional items, toggle them between the unpacked and packed
lists, and move all items to the unpacked list.

11.5 Live reload and hot module reloading
Throughout this book, we’ve developed muscle memory by pressing Command-R or
Control-R to refresh the renderer process after changes on macOS and Windows/
Linux, respectively. It can get a bit tedious, however, to switch back and forth between
your text editor and your application every time you make a relatively small change.

 electron-compile can trigger a reload whenever the file is changed on disk. This
means that when you save the file in your text editor, it instantly reloads the open ren-
derer processes—allowing you to see your changes immediately. electron-compile
also supports hot module reloading in React, which takes live reloading one step fur-
ther by swapping modules that have been updated on the fly without reloading the
page itself. In this section, we look at implementing each of these approaches.

11.5.1 Enabling live reload

Until this point, electron-compile has just worked. We used electron-compile-
prebuilt in place of electron in our package.json, did some minimal—and optional—
configuration, and we were off to the races. electron-compile can also be required

We add the NewItem
component to the Application
component and pass it the
addItem() method as its
onSubmit prop.

218 CHAPTER 11 Using transpilers and frameworks
like any other module. The module provides an enableLiveReload() method that
does what it says on the tin.

import { app, BrowserWindow } from 'electron';
import { enableLiveReload } from 'electron-compile';

enableLiveReload();

let mainWindow;

app.on('ready', () => {
 // Omitted for brevity…
});

When we call the enableLiveReload() function before the application has started,
electron-compile sets up an IPC connection that listens for filesystem changes and
sends a message to the renderer process, requesting that it reload whenever it detects
a change.

11.5.2 Setting up hot module reloading

enableLiveReload() is framework-agnostic and works even in simple applications like
Fire Sale and Clipmaster 9000. enableLiveReload() also supports hot module reload-
ing with React applications. The first step is to let enableLiveReload() know that we
prefer it to use hot module reloading as an alternative to refreshing the entire page.

import { app, BrowserWindow } from 'electron';
import { enableLiveReload } from 'electron-compile';

enableLiveReload({ strategy: 'react-hmr' });

let mainWindow;

app.on('ready', () => {
 // Omitted for brevity…
});

With enableLiveReload() configured to use hot module reloading, it no longer
refreshes the page when you change a file. But hot module reloading doesn’t work,
either. Bummer. We’re effectively back at square one. We have a little more work to do.

 If you’re using TypeScript, you can skip this next step. But we haven’t been using
TypeScript in this chapter, so it’s on us to let Babel know that we are using hot module
reloading. We add it to the list of plugins in .compilerc. We won’t add it as a plugin in
production, because we’ll likely not be changing files often on our users’ machines.

Listing 11.14 Enabling live reload: ./app/main.js

Listing 11.15 Setting up hot module reloading: ./app/main.js

Pulls in the enableLive-
Reload() function from
the electron-compile
module

Invokes the function
before the application
is ready to enable live
reloading

Passes enableLiveReload()
an object that tells it to use
hot module reloading

219Live reload and hot module reloading
{
 "env": {
 "development": {
 "application/javascript": {
 // Omitted for brevity…
 "plugins": [
 "react-hot-loader/babel",
 // Additional plugins here…
],
 "sourceMaps": "inline"
 },
 "text/jade": {
 "pretty": true
 }
 },
 "production": {
 // Omitted for brevity…
 }
}

We’re not out of the woods yet—there is one other change that we need to make: our
application needs to be wrapped in a container component that listens for the
changes and passes those changes to our Application component. The good news is
that we don’t have to write this component ourselves; we only have to require it from
the react-hot-loader module.

import React from 'react';
import { render } from 'react-dom';
import { AppContainer } from 'react-hot-loader';

const renderApplication = () => {
 const { default: Application } = require('./components/Application');
 render(
 <AppContainer>
 <Application />
 </AppContainer>,
 document.getElementById('application')
);
};

renderApplication();

if (module.hot) { module.hot.accept(renderApplication); }

Listing 11.16 Adding Babel support for hot module reloading: ./.compilerc

Listing 11.17 Using AppContainer to subscribe to updates: ./app/renderer.js

Adds react-hot-loader/babel
to the list of Babel plugins

Wraps our initial
render method in a
function that we can
call repeatedly

Requires a fresh version of the
Application, which requires all

the other modules in our
application when rendering

Renders the application as we would
normally when the application starts
for the first time

If hot module reloading is enabled, renders the
application again whenever we receive a message

that the components have changed.

220 CHAPTER 11 Using transpilers and frameworks
We have a few moving pieces. In our original implementation, we pull in the
Application component and render it when the renderer process starts. This
method is standard practice when building React applications and not specific to the
fact that we’re doing all of this inside of Electron. But if we are going to take advan-
tage of hot module reloading, we need to make some adjustments. We need to move
the act of rendering the application into a function that we can call repeatedly. We
name this function renderApplication() and call it when the renderer process is first
evaluated. This function mimics the existing functionality before we implemented the
changes described earlier.

 When rendering the application, we need a fresh version of the Application
component because it may have changed. As of this writing, ECMAScript’s module
imports can be used only at the top level, so we have to fall back on the CommonJS
require() function to pull in the Application component. We wrap Application in
react-hot-loader’s AppContainer component, which lets it know about changes to
the filesystem, and mounts it to the same DOM node that we did at the beginning of
the chapter.

 With all of this in place, hot module reloading should be enabled and you can see
the changes to your modules in real time. If the mix of the CommonJS require() and
ECMAScript import statements make you feel weird inside, you do have some options.
An upcoming change to the specification allows for a second version of import() that
can asynchronously fetch modules using a promise-based API. Listing 11.19 shows
how to implement this. We used export default in ./components/Application.js, so
we need to destructure the default property of the object passed to the promise and
name it Application.

const renderApplication = () => {
 import('./components/Application').then(
 ({ default: Application }) => {
 render(
 <AppContainer>
 <Application />
 </AppContainer>,
 document.getElementById('application'),
);
 }
);
};

Both Node and Chromium support the upcoming async/await syntax that allows for
a more traditional, synchronous syntax when using promised-based APIs. You can use
this without Babel and electron-compile, because it is natively supported by Node
and the browser.

Listing 11.18 Using import() to asynchronously load dependencies: ./app/renderer.js

import() returns a promise
with the contents of the
module.

221Summary
const renderApplication = async () => {
 const { default: Application } = await import('./components/Application');
 render(
 <AppContainer>
 <Application />
 </AppContainer>,
 document.getElementById('application')
);
};

Both refactors are completely optional and exist mostly to illustrate the fact that Elec-
tron supports cutting-edge syntax out of the box and that electron-compile makes it
easy to use Babel to add support for future features of the JavaScript language.

Summary
 electron-compile allows developers to use an assortment of languages that

compile to HTML, JavaScript, and CSS such as Jade, TypeScript, CoffeeScript,
Sass, and Less.

 electron-prebuilt-compile is a version of the Electron binary with electron-
compile installed.

 Many languages can be used without configuration, but electron-compile also
supports a .compilerc file that allows developers to configure each language.

 electron-compile can be configured to compile JSX using Babel.
 electron-compile can automatically detect which transpiler to use based on

the file extension.
 Electron applications using electron-compile can use live reloading to auto-

matically refresh all open browser windows.
 electron-compile’s live reloading feature also supports hot module reloading

in React applications

Listing 11.19 Using async/await to asynchronously load dependencies:
./app/renderer.js

Persisting user
 data and using

 native Node.js modules
In chapter 11, we built a small application to track items we needed to pack
between trips. By the end of the chapter, we got the UI working, but the application
still had a fatal flaw: it lost all of its data whenever the page refreshed. That’s a bit
of a deal killer for an application that is allegedly supposed to help you remember
things. Fire Sale was working with files stored on disk, so it wasn’t an issue, but
Clipmaster and Clipmaster 9000 had this problem as well. All clippings were lost
whenever a user quit the application, or we refreshed the page in development.

 In this chapter, we solve this problem once and for all. Data is persisted between
page loads and remains available even if the user quits the application and restarts
their computer. For good measure, we solve this problem two ways: we create a

This chapter covers
 Using Node.js modules built with C++ in your

main and renderer processes

 Getting the correct versions of your dependencies
for Electron’s version of Node

 Using SQLite and IndexedDB databases to
persist data

 Storing user-specific application data in the
operating system’s designated location
222

223Storing data in an SQLite database
local SQLite database and a browser-based IndexedDB storage. Along the way, we also
cover some interesting implementation details: Where do we store data on a per-user
basis? How do we build compiled modules for Electron’s version of Node if it differs
from the version installed on our computers? How does working with an SQL data-
base like SQLite differ from a NoSQL database like IndexedDB?

 Removing items wasn’t particularly important in chapter 11 when we couldn’t hold
on to data, but it certainly is now. By the end of this chapter, we’ll have an application
that looks suspiciously similar to what we had at the beginning but with a few major
differences: The data is persisted to disk and users can remove items from the list and
remove all items that haven’t been packed.

12.1 Storing data in an SQLite database
The first approach that we take is storing our data in an SQLite database. This approach
is commonly used by traditional native applications, particularly on macOS and iOS.
SQLite is a good choice because the database is stored in a file and doesn’t require the
user to have MySQL or PostgreSQL installed on their system.

 If you’re a recovering database administrator, I’ll give you fair warning: I’m not
going to optimize every query, and some techniques might be a little wasteful. I’m
optimizing for clarity of the code over performance. We know that—in this case—
we’re working with a very small data set.

 If you’re coming from a frontend, web development background, you may not
have thought to use an SQLite database in your application. You’ve typically sent
HTTP requests to a server or used a browser-based solution like IndexedDB, WebSQL,
or LocalStorage. The reason that SQLite databases aren’t used frequently in tradi-
tional web applications is because they can’t be. We don’t have access to the filesystem
from the browser. Also, we can’t use what I’m going to refer to as native modules for
the duration of this chapter.

 What is a native module? Many libraries—like Lodash or Moment.js—are written
purely in JavaScript. Both the browser and Node can execute JavaScript, so these mod-
ules can be used in either context. Some libraries—like jQuery—are tightly coupled
with the DOM and therefore work only in the browser context. Native modules typi-
cally wrap a C or C++ library in JavaScript. The C or C++ component of the library
must be compiled for the operating system in which the library will be used. SQLite—
and most other database drivers—have libraries written in C or C++. The sqlite3
modules on npm wrap this library in JavaScript bindings so that we can use it from
within our Node applications. Not only does the browser not have access to the filesys-
tem, it also can’t run platform-specific C and C++ code. Some projects like Emscripten
compile C code to run on the JavaScript virtual machine, but that is far beyond the
scope of this book.

 As we’ve discussed throughout the book, Electron applications combine a Chro-
mium browser runtime with a Node runtime, so we can use native modules in our
applications. We start by setting up an SQLite database, creating a table for our items,

224 CHAPTER 12 Persisting user data and using native Node.js modules
and connecting the UI to read from and write to the database—directly from the ren-
derer process.

12.1.1 Using the right versions with electron-rebuild

When we install a native module in Node, it is compiled against the current version of
the V8 engine used by Node. Upgrading versions of Node typically results in having to
recompile all the native modules used by the application. Electron ships with its own
Node runtime, which may or may not be the same version as the Node running on
your computer when you run npm install or yarn install. This mismatch can cause
problems when you attempt to use native modules with an Electron application.

 Lucky for us, the community has been kind enough to provide us with a solution
called electron-rebuild, which rebuilds native modules against the version of Node
used by Electron as opposed to the version installed on the filesystem. You can install
electron-rebuild via npm using npm install electron-rebuild --save-dev. It
can then be triggered by using $(npm bin)/electron-rebuild on macOS or .\node
_modules\.bin\electron-rebuild.cmd on Windows.

 I prefer not to be burdened by having to remember to call it every time I install a
dependency. Instead, I recommend using a postinstall hook in your package.json,
which will run after every install.

{
 "name": "jetsetter",
 "version": "1.0.0",
 "description": "An application for keeping track of the things you need

➥ to pack.",
 "main": "app/main.js",
 "scripts": {
 "start": "electron .",
 "test": "echo \"Error: no test specified\" && exit 1",
 "postinstall": "electron-rebuild"
 },
 // Additional configuration omitted for brevity.
}

By default, npm checks for a pre– or postscript before running any script. When you
run npm test, it first tries to run pretest, then test, followed by posttest. I’ve found
this trick incredibly helpful across a wide variety of projects over the years.

12.1.2 Setting up SQLite and Knex.js

In this chapter, we’re using a helpful library called Knex.js to make working with SQL
in Node a bit easier. It acts as our interface between our application code and the
underlying SQLite queries. This is set up for you in the chapter-12-beginning
branch on the Jetsetter repository. If you want to build off your implementation from
chapter 11, you can install these dependencies using npm install sqlite3 knex.

Listing 12.1 Adding a postinstall hook: /package.json

The postinstall script
is called after each
run of npm install.

225Storing data in an SQLite database

Cr
ite

Sets th
colum

string
width

cha
 Before we can integrate SQLite into our application, we have to do some initial
setup. As I mentioned earlier, SQLite stores data in a file so we need to figure out
where we’re going to store this file. We start with a simple but flawed solution for now.
Later in the chapter, I’ll revisit the best place to store user data, but for now let’s focus
on getting our application working.

import 'sqlite3';
import knex from 'knex';

const database = knex({
 client: 'sqlite3',
 connection: {
 filename: './db.sqlite'
 },
 useNullAsDefault: true
});

export default database;

We need to include the sqlite3 library so it’s loaded into the application when Knex
goes looking for it, as well as let Knex know that we’ll be using SQLite as our database
for this application.

 Calling this property connection is a bit of a misnomer here. If we were connect-
ing to a MySQL server, this name would be fine, but as I mentioned, SQLite uses a file
stored on disk, so we put the name of the location where we want to store the file
here. I’ve called it db.sqlite for now. We revisit this later.

 What’s with that useNullAsDefault option? Knex.js isn’t a library specifically for
SQLite. Rather, it works with PostgreSQL, MySQL, MSSQL, and Oracle databases.
Many of these support default values for columns in the database. SQLite doesn’t, and
Knex displays a warning if we don’t turn on this option, which causes Knex.js to opt
for NULL instead of attempting to use a default value.

 This isn’t enough to get us all the way there. We created the database, but we still
haven’t configured it with a table to store our items. When the application starts, we
check if there’s a table for storing items. If there isn’t, then we create the table.

import 'sqlite3';

const database = require('knex')(//…);

database.schema.hasTable('items').then(exists => {
 if (!exists) {
 return database.schema.createTable('items', t => {
 t.increments('id').primary();
 t.string('value', 100);

Listing 12.2 Setting up an SQLite database: ./app/database.js

Listing 12.3 Creating a table to store items: ./app/database.js

Pulls in the SQLite library

Tells Knex.js that we’re intending
to use it with an SQLite database

Specifies the location where the
SQLite database should be created

Configures Knex.js to use NULL whenever a
value for a particular column isn’t provided.

Exports the configured database.

Checks if the database already
has an items table Moves forward only if the

items table doesn’t exist
eates the
ms table

Creates an id
column to serve as
the primary key and
auto-increments it

e value
n to a

 with a
 of 100
racters

226 CHAPTER 12 Persisting user data and using native Node.js modules
 t.boolean('packed');
 });
 }
});

export default database;

Knex.js uses a promise-based API. The check for the table returns a promise that is ful-
filled with a Boolean based on whether it does in fact exist. All of our queries in the
next section are based on promises. The data in Jetsetter is deliberately simple, and
our schema reflects that. SQLite creates a unique ID and auto-increments the ID on
each new item added to the database. We also store the item’s name as a string in the
value column and a Boolean that represents whether the item has been packed.

12.1.3 Hooking the database into React

In a traditional web application, if we want to put something into an SQLite database,
we’d likely have to send AJAX requests to a server, which would interact with the data-
base. This means that we’d probably also implement some kind of authentication as
well as authorization to make sure that users couldn’t read or edit another user’s data.
In an Electron application, we can talk directly to the database from our client code.

 At the top level, we pull in the configured database we just created and pass it to
the Application component as a prop—React-speak for “property”—which has access
to the database inside of its methods.

import React from 'react';
import { render } from 'react-dom';
import { AppContainer } from 'react-hot-loader';
import database from './database';

const renderApplication = async () => {
 const { default: Application } = await import('./components/Application');
 render(
 <AppContainer>
 <Application database={database} />
 </AppContainer>,
 document.getElementById('application')
);
};

renderApplication();

if (module.hot) { module.hot.accept(renderApplication); }

Now comes the fun part. Previously, we stored the state of the application in the
Application component. Every time the application is reloaded, that state is replaced.
Every time the user quits the application, the state is gone for good. In the next few
examples, we replace this behavior with reading from and writing to the database.

Listing 12.4 Passing the database into the application component: ./app/renderer.js

Sets the packed
column to store a
Boolean type

Requires the
database we created
in ./app/database.js.

Passes it into
the Application
as a property.

227Storing data in an SQLite database
 This process contains a few pieces. When the Application component starts for
the first time, it reads all of the items from the database and loads them into its inter-
nal state. It also does this whenever it has reason to believe that the data has changed,
which allows us to have one source of truth: the database. Depending on your needs,
you may decide you want to approach your data storage strategy differently, but this
method works for us in Jetsetter.

 When a user creates a new item, we add it to the database. When they check off an
item, we update it in the database by flipping the “packed” Boolean to its opposite.
When the user selects Mark All as Unpacked, we—unsurprisingly—select all of the
items for the database and set their “packed” property to false.

 As I mentioned at the beginning of the chapter, we’re adding the ability to remove
an item from the database. This capability wasn’t important back when we lost every-
thing on every reload, but it’s necessary now. In addition, we add a button to remove
all of the unpacked items from the database.

12.1.4 Fetching all of the items from the database

We continue using this.state to hold a list of the items most recently fetched from
the database. But instead of hard-coding a pair of pants into this list, we add a method
that fetches all of the items from the database and then updates this list. We also call
this method whenever the component starts for the first time.

class Application extends Component {
 constructor(props) {
 super(props);

 this.state = {
 items: []
 };

 this.fetchItems = this.fetchItems.bind(this);
 this.addItem = this.addItem.bind(this);
 this.markAsPacked = this.markAsPacked.bind(this);
 this.markAllAsUnpacked = this.markAllAsUnpacked.bind(this);
 }

 componentDidMount() {
 this.fetchItems();
 }

 fetchItems() {
 this.props
 .database('items')
 .select()
 .then(items => this.setState({ items }))
 .catch(console.error);
 }

Listing 12.5 Fetching items from the database: ./app/components/Application.js

Sets the initial state
of the component to
an empty array Binds the fetching

function so that it
has access to the
correct context

Fetches the items from the database
as soon as the component starts

Queries the database
for a list of items

Updates the array of
items stored in state

228 CHAPTER 12 Persisting user data and using native Node.js modules
 addItem(item) { … }
 markAsPacked(item) { … }
 markAllAsUnpacked() { … }

 render() { … }
}

export default Application;

We don’t want to get any errors about trying to map or iterate over an undefined
value, so we set the component’s initial state to an empty array. In the previous exam-
ple, we take the database instance that was passed into the Application component as
a property and ask for its items table, which we set up earlier. The .select() method
selects all of the rows from that table—which are all of the items in our case—and
returns a promise. If everything is successful, we can use .then() to take the results
from the .select() method and work with those rows.

 We start with the list of items being an empty array. this.fetchItems()queries the
database and returns a promise. When this promise resolves, we swap out items being
stored in the component’s state with the items we received from the database. React is
smart enough to figure out what this means in terms of changing the UI on our
behalf. We don’t need to worry about that.

 Because this.fetchItems() does its work asynchronously, we need to bind it to the
context of the component as we did with this.addItem(), this.markAsPacked(), and
this.markAllAsPacked(). Finally, we need to call this.fetchItems()to load the ini-
tial state. We do this once the component has started, which immediately updates the
state of the component.

12.1.5 Adding items to the database

The functionality we implemented is impressive. We’re connecting directly to the
database from the UI. This isn’t something we’ve been able to do in traditional web
applications. But it doesn’t seem to feel that impressive just yet, because there isn’t
anything in the database to show. It’s only an empty list at the moment. We could put
mock data in there, but let’s cut to the chase and implement the ability to add new
items to the database.

 If you recall from chapter 11, we passed a function from the Application compo-
nent to the NewItem component. When a user clicks the Submit button, the NewItem
component took the contents of its input field and passed it into the function pro-
vided by the Application component, which—in turn—pushed it onto the end of the
array of items stored in state.

 We’re going to leave much of this functionality in place with one notable exception:
instead of pushing the item onto the end of the array stored in the Application compo-
nent’s state, we insert it into the database and then trigger this.fetchItems() to
reload all of the items now in the database. We start by rewriting this.addItem() in the
Application component to use the database instead of an in-memory array.

229Storing data in an SQLite database
class Application extends Component {
 constructor(props) { … }
 componentDidMount() { … }
 fetchItems() { … }

 addItem(item) {
 this.props
 .database('items')
 .insert(item)
 .then(this.fetchItems);
 }

 markAsPacked(item) { … }
 markAllAsUnpacked() { … }

 render() { … }
}

export default Application;

Accessing the items table in the database is the same as it is for fetching all of the
items. The main difference is that we use the insert() method to add the new item
from the NewItem component to the database. When that has successfully completed,
we call this.fetchItems(), which gets the most up-to-date list of items and subse-
quently updates the state of the UI.

 We can add items to the database and see them in the UI, but we have a subtle
problem. React is particular about having unique keys for every item. We engaged in a
less-than-optimal hack by using the current date as an integer for the unique key. This
worked, but I didn’t feel good about it at the time, and I certainly don’t feel good
about it now, considering we have a database that tracks and auto-increments unique
IDs. Let’s remove our trick for manually creating unique IDs.

class NewItem extends Component {
 constructor(props) { … }
 handleChange(event) { … }

 handleSubmit(event) {
 const { onSubmit } = this.props;
 const { value } = this.state;

 event.preventDefault();
 onSubmit({ value, packed: false });
 this.setState({ value: '' });
 }

Listing 12.6 Implementing the ability to add items to the database:
./app/components/Application.js

Listing 12.7 Letting the database handle incrementing the ID:
./app/components/NewItem.js

Inserts the item into
the database.

When inserting the item into
the database has completed,
refetches all of the items.

Removes the property
that sets an ID on our
new item

230 CHAPTER 12 Persisting user data and using native Node.js modules
 render() { … }
}

It might be difficult at first to notice the change, but we just engaged in one of my favorite
activities as a software engineer: deleting code. Previously, we passed in three properties:
value, packed, and id. By omitting our own ID, SQLite creates one on our behalf, thus
eliminating our need to rely on weird tricks involving the time-space continuum.

12.1.6 Updating items in the database

Most applications that work with data implement the four basic CRUD operations:
create, read, update, and delete. We’re able to read all of the items from the database,
and we just implemented the ability to create new items. We’re halfway there. Our
next step is to be able to update existing items.

 The UI of our application provides two ways to update the state of an item in the
database: Users can check or uncheck the check box input associated with the item.
Users can click the Mark All as Unpacked button to manipulate all of the items in the
database. We need two, slightly different approaches for each case.

 Let’s start with the case where we want to update a single item in the database. To
accomplish this, we need to perform two operations: find the particular item we want
to update and then update it.

class Application extends Component {
 constructor(props) { // … }
 componentDidMount() { // … }
 fetchItems() { // … }
 addItem(item) { // … }

 markAsPacked(item) {
 this.props
 .database('items')
 .where('id', '=', item.id)
 .update({
 packed: !item.packed
 })
 .then(this.fetchItems)
 .catch(console.error);
 }

 markAllAsUnpacked() { // … }

 render() { // … }
}

export default Application;

We find all of the items where the value in the id column matches the ID of the item
in the UI that was just clicked. Hint: Only one of these exists. We then use the

Listing 12.8 Marking items as packed: ./app/components/Application.js

Finds the item with
the correct ID

Updates the packed column
of the item to the opposite
of its current state

231Storing data in an SQLite database
update() method to update the packed column to the opposite of whatever the item
is in the UI. If this action is successful, we get all of the items—including our newly
updated item—and refresh the UI. If something goes wrong, we log that error to the
console for debugging purposes. A more robust application would either implement a
fallback here or—at the very least—display some kind of notification alerting the user
to the fact that their change couldn’t be completed successfully.

 We can now change the status of one item, but what about all of them? The
answer lies somewhere between the implementation of this.fetchItems() and
this.markAsPacked(). With this.markAsPacked(), we found the item with an ID
that matched the one we’re looking for and then updated it. With this.fetchItems(),
we used select() to get all of the items. To implement this.markAllAsPacked(), we
get all of the items in the entire set.

class Application extends Component {
 constructor(props) { // … }
 componentDidMount() { // … }
 fetchItems() { // … }
 addItem(item) { // … }
 markAsPacked(item) { // … }

 markAllAsUnpacked() {
 this.props
 .database('items')
 .select()
 .update({
 packed: false
 })
 .then(this.fetchItems)
 .catch(console.error);
 }

 render() { // … }
}

export default Application;

As I mentioned before, this implementation roughly combines two of our previous
approaches. Selecting all of the items from the database allows you to make changes
in bulk using SQL. This case is also true for the .where() method that we used when
updating a single item. It just happened to be that when you query based on a unique
identifier, you—hopefully—end up with only one record. this.markAllAsPacked()
could be changed to use .where() to find all of the items where packed was set to
true. I leave this as an exercise to the reader because I’m going to discuss it in the
next section.

Listing 12.9 Marking all items as packed: ./app/components/Application.js

Selects all of the items
from the database

Updates all of the items
by setting their packed
column to false.

232 CHAPTER 12 Persisting user data and using native Node.js modules
12.1.7 Deleting items

When our application lost all of its data on every reload, we didn’t have a lot of users
clamoring for the ability to remove items. But now we’re in a place where we’ve imple-
mented persistent storage. Maybe you’ve decided that you don’t need to travel with
your selfie stick anymore, and you’d like to remove it from the list.

 We now implement two features: the ability to remove an individual item, and the
ability to remove all items that weren’t packed, which might include our selfie stick,
Furby, and ugly sweater. We need UI elements for this as well, but let’s start with the
database piece of this.

class Application extends Component {
 constructor(props) {
 super(props);

 // Omitted for brevity…

 this.deleteItem = this.deleteItem.bind(this);
 this.deleteUnpackedItems = this.deleteUnpackedItems.bind(this);

 }

 componentDidMount() { … }
 fetchItems() { … }
 addItem(item) { … }
 markAsPacked(item) { … }
 markAllAsUnpacked() { … }

 deleteItem(item) {
 this.props
 .database('items')
 .where('id', item.id)
 .delete()
 .then(this.fetchItems)
 .catch(console.error);
 }

 deleteUnpackedItems() {
 this.props
 .database('items')
 .where('packed', false)
 .delete()
 .then(this.fetchItems)
 .catch(console.error);
 }

 render() { … }
}

export default Application;

Listing 12.10 Deleting items: ./app/components/Application.js

Binds the context for
the this.deleteItem()
method

Binds the context for the
this.deleteUnpackedItems() method

Finds the item that
matches the ID of the item
selected from the UI

Uses the delete() method
to remove the item from
the database

Finds all of the items
where the packed
property is set to false

233Storing data in an SQLite database
Careful readers can see I used a slightly different syntax here than this.mark-
AsPacked(). When you’re trying to match based on equality, you can use this short-
hand where you provide the name of the column and the value you’re trying to
match. In the previous example, we provided an operator. This method is powerful
because we could filter using more sophisticated logic. In this.deleteUnpacked-
Items(), we are using the where() method to find all of the items where the packed
property is set to false.

 This is all well and good, but it’s somewhat difficult to know if they work because
we don’t have any UI to trigger these methods. This is suspiciously similar to how we
set the check boxes to toggle items between their packed and unpacked states, but
that was an entire chapter ago. Let’s review the process.

 We pass the this.deleteItem() method to each of the lists. Each list, in turn,
passes this method to the items on the list. We add a check box X button to each item.
When a user clicks the X button, we pass a reference to the specific item to this
.deleteItem() that was passed down from the Application component. These addi-
tions give us everything we need to trigger the method we implemented moments ago.
We also add a Remove Unpacked Items button beneath the Mark All as Unpacked but-
ton. This button is a lot simpler as it doesn’t need to pass that method along.

class Application extends Component {
 constructor(props) { … }

componentDidMount() { … }
 fetchItems() { … }
 addItem(item) { … }
 markAsPacked(item) { … }
 markAllAsUnpacked() { … }
 deleteItem(item) { … }
 deleteUnpackedItems() { … }

 render() {
 const { items } = this.state;
 const unpackedItems = items.filter(item => !item.packed);
 const packedItems = items.filter(item => item.packed);

 return (
 <div className="Application">
 <NewItem onSubmit={this.addItem} />
 <Items
 title="Unpacked Items"
 items={unpackedItems}
 onCheckOff={this.markAsPacked}
 onDelete={this.deleteItem}
 />
 <Items
 title="Packed Items"
 items={packedItems}

Listing 12.11 Passing in delete methods: ./app/components/Application.js

Passes this.deleteItem()
to the Unpacked Items

234 CHAPTER 12 Persisting user data and using native Node.js modules
 onCheckOff={this.markAsPacked}
 onDelete={this.deleteItem}
 />
 <button
 className="button full-width"
 onClick={this.markAllAsUnpacked}>
 Mark All As Unpacked
 </button>
 <button
 className="button full-width secondary"
 onClick={this.deleteUnpackedItems}>
 Remove Unpacked Items
 </button>
 </div>
);
 }
}

export default Application;

The Remove Unpacked Items button should be fully functional at this point. But we
still need to keep passing this.deleteItem() along. The next step is to receive it as
the onDelete property in the Items component, which powers the Packed Items and
Unpacked Items, and then pass it down to each individual item with a reference to the
specific item.

const Items = ({ title, items, onCheckOff, onDelete }) => {
 return (
 <section className="Items">
 <h2>{ title }</h2>
 {items.map(item => (
 <Item
 key={item.id}
 onCheckOff={() => onCheckOff(item)}
 onDelete={() => onDelete(item)}
 {...item}
 />
))}
 </section>
);
};

export default Items;

There isn’t a lot that’s new here. I included it for the sake of completeness. We’re
almost there, and the next step is to add the button to the individual item. This button
should have a click event that triggers the this.deleteItem() method that was passed
in from the Application component as the onDelete() command.

Listing 12.12 The Items component: ./app/components/Items.js

Passes this.deleteItem()
to the Packed Items

Adds a button to trigger
this.deleteUnpackedItems().

235Storing data in an SQLite database
const Item = (({ packed, id, value, onCheckOff, onDelete }) => {
 return (
 <article className="Item">
 <label>
 <input type="checkbox" checked={packed} onChange={onCheckOff} />
 {value}
 </label>
 <button className="delete" onClick={onDelete}>?</button>
 </article>
);
});

With this last piece, the delete functionality is now in place. We have implemented the
ability to create, read, update, and delete items from the database. If the user quits Jet-
setter, restarts their computer, and then restarts the application, their items will be in
the same state as when they left them. Maybe.

12.1.8 Storing the database in the right place

For the sake of expediency, I had you place the application in the root of the project
directory. But this isn’t normally where user-specific data goes. As it stands, this data-
base is shared by all users on a given computer, which is certainly confusing.

 On one hand, operating systems have solved this problem for us. Users have desig-
nated places where their particular data should be stored. But, each operating system
solves this problem in a slightly different way. Luckily, we aren’t concerned about
this because Electron protects us. The Electron app module exposes a method
called getPath(), which figures out the operating system–specific path for a com-
mon location. We’re going to look for the userData path, but you can see a full list of
the paths available at (https://electron.atom.io/docs/api/app/ #appgetpathname).

import * as path from 'path';
import { app } from 'electron';

const database = knex({
 client: 'sqlite3',
 connection: {
 filename: path.join(
 app.getPath('userData'),
 'jetsetter-items.sqlite'
)
 },
 useNullAsDefault: true
});

Listing 12.13 The Item component: ./app/component/Item.js

Listing 12.14 Storing the database in the appropriate location: ./app/database.js

Pulls in the onDelete() property
using object destructuring

Adds the button and set its click event handler to
the onDelete() function passed in from the parent

Uses Electron’s built-in API
for finding the correct path
for user data depending on
the operating system

Gives the database a unique
name in development

https://electron.atom.io/docs/api/app/#appgetpathname

236 CHAPTER 12 Persisting user data and using native Node.js modules
I tend to give files stored outside of the project unique names to avoid the chance of
colliding with another project on my machine. Before branding, all Electron applica-
tions are called “Electron.” If I give things a unique name, it won’t matter much in the
event they happen to end up in the same folder under the hood.

12.2 IndexedDB
You can store data in an Electron application in many ways. We discussed SQLite ear-
lier, but you could just as easily use a NoSQL database such as LevelDB. You could
even just use a JSON file that you write to and read from.

 If managing files and recompiling dependencies seems like a bit much for your
application, you can opt for browser-based storage. In chapter 2, we used localStorage
to track our bookmarks. localStorage is great, but it has some limitations: everything
must be stored as a large JSON object of strings. We must parse and resave the object
every time we want to read or write to localStorage.

 Before we start using IndexedDB, we should cover some terminology. SQL data-
bases contain tables of rows and columns. They’re a lot like incredibly powerful,
interconnected spreadsheets. NoSQL databases are typically key-value stores—much
like a giant JavaScript object. When working with IndexedDB, you create stores of
data, which contain a series of keys. Each key points to an object. IndexedDB differs
from SQLite in that keys and values can be any valid JavaScript type—including
objects, arrays, maps, and sets.

 All interactions with IndexedDB are asynchronous, which makes sense. Natively,
however, IndexedDB uses events to handle asynchrony, which can be confusing to
read and understand. Luckily, Jake Archibald—a developer advocate at Google—has
done the yeoman’s work of wrapping the event-based API with a promise-based API
called idb. The abstraction is lightweight and doesn’t hide any of the inner workings
of IndexedDB. It’s what I personally recommend, and after you’re comfortable with a
promise-based API, it’s easier to wrap your head around than the event-based one. You
normally don’t need a library to use IndexedDB, but you do need to import idb if
you’d like to use the promise-based API.

12.2.1 Creating a store with IndexedDB

In this example, we start by opening the jetsetter database. The name of this database
is completely arbitrary. You could name it eggplant-parmigiana, if that is more
appealing to you. We also passed the number 1, which represents the version of our
database. Version 1 is a good place to start. (There’s no schema like SQLite!)

import idb from 'idb';

const database = idb.open('jetsetter', 1, upgradeDb => {
 upgradeDb.createObjectStore('items', {

Listing 12.15 Setting up a store in IndexedDB: ./app/database.js

Opens up version 1 of
the jetsetter database

Creates a store
for the items in
the application

237IndexedDB

We’ll u
proper
objects

as
 keyPath: 'id',
 autoIncrement: true
 });
});

Versioning is important in that in web applications, each user stores their IndexedDB
locally in their browser. If you change the way your code works, it could corrupt the
user’s data if they are using an old version of the database.

 Having a version number allows you to bump up that number whenever you make
a change to how your database works. In that event, you’d be able to migrate the data
to be compatible with the changes you’ve made before any other application code
accesses the database. We stick with one version of the database in this chapter because
our data is very simple.

 Typically, you have one database. This is similar to the fact that most smaller and
medium-sized, server-side web applications have just one database that they work with in
a given environment (e.g., production). But you may have many stores. Think of stores
like tables in an SQL database. In this application, we have only one store for items, but
you could have a store for people, locations, or any other model in your application.

 We created a store called items, which is a reasonable name for a place where we are
going to store all of our items. We also passed two options: we set the keyPath to id and
autoIncrement to true. What does this mean? It means that if we pass in an item with
an id property, it uses that property as the key. If we don’t, then it adds one to the object
and sets it as the key, incrementing the number each time so that the key is unique.

12.2.2 Getting data from IndexedDB

We cheated a bit when we implemented SQLite by using Knex.js to eliminate a lot of the
tedium. idb is an abstraction over IndexedDB, but it’s more lightweight than Knex.js.
This means we have to do a bit more of the manual labor ourselves. There are libraries
like localForage (https://github.com/localForage/localForage) that provide higher-level
abstractions over IndexedDB, but let’s stick with idb and create our own abstraction.

 Here is the approach we take: in ./app/database.js, we create an object with meth-
ods to get all of the items from IndexedDB, create new items, update existing items,
and delete items. We then use these methods in the Application component, replac-
ing the calls to SQLite as we go. Let’s start by writing a method to get all of the items
from the database.

export default {
 getAll() {
 return database.then(db => {
 return db.transaction('items')
 .objectStore('items')
 .getAll();
 });
 },

Listing 12.16 Getting all of the items from IndexedDB: ./app/database.js

se the id
ty of the
 to serve
 the key.

Tells IndexedDB to take
care of autoincrementing
the id key on our behalf

Accesses the
database Starts a transaction and declares

that you’ll be working with the
items store.

Accesses the
items storeGets all of the items

from the store

https://github.com/localForage/localForage

238 CHAPTER 12 Persisting user data and using native Node.js modules
 add(item) { },
 update(item) { },
 markAllAsUnpacked() { },
 delete(item) { },
 deleteUnpackedItems() { }
};

I began by exporting an object with all of the methods that we need to match the func-
tionality of SQLite. Most of those methods are empty right now, but we fill them in as
we go through the chapter. I did, however, implement the getAll() method.

 We start by accessing the database, similar to what we did with Knex.js and SQLite.
Next, we start a transaction. Transactions prevent multiple changes to the database
from occurring at the same time. If something blows up in a transaction, all of the
changes made in the transaction are reverted. This practice protects data from cor-
ruption. All interactions with IndexedDB must be wrapped in a transaction. Once
inside our transaction, we access the items store and get all of the items from it.

12.2.3 Writing data to IndexedDB

Getting all of the items from IndexedDB isn’t particularly helpful if there aren’t any
items in the store to begin with. Let’s implement the ability to add an item to the data-
base. This procedure is similar to reading from the database with a few important dis-
tinctions. When reading from the database, the transaction is complete when we finish
reading. Modifying the database is a little more complicated. As a result, we need to
be more explicit about when a transaction has completed. We also need to let
IndexedDB know that we intend to write to the database. After that, it’s a matter of
adding the item to the database and then calling the transaction complete.

export default {
 getAll() { … },
 add(item) {
 return database.then(db => {
 const tx = db.transaction('items', 'readwrite');
 tx.objectStore('items').add(item);
 return tx.complete;
 });
 },
 update(item) { },
 markAllAsUnpacked() { },
 delete(item) { },
 deleteUnpackedItems() { }
};

When we fetched all of the items, we chained the promises together neatly. If this
code looks a bit more complicated, don’t worry—it’s similar. We need to return the
transaction promise we created on the first line, so we store it in a variable. Inside of
the transaction, we add the item passed as an argument to the items store. If we had

Listing 12.17 Adding an item to IndexedDB: ./app/database.js

Creates a new
read/write transaction

with the items store Accesses the
items store, and
adds the item to
the database

Returns the
completed
transaction

239IndexedDB
other work to do, we could do it here. Finally, we return a promise that resolves when
the transaction has been completed.

export default {
 getAll() { … },
 add(item) { … },
 update(item) {
 return database.then(db => {
 const tx = db.transaction('items', 'readwrite');
 tx.objectStore('items').put(item);
 return tx.complete;
 });
 },
 markAllAsUnpacked() { },
 delete(item) { },
 deleteUnpackedItems() { }
};

Updating an item in the database is similar to adding a new item to the database
except we use the put() method instead of the add() method. Updating all of them,
however, is a little more involved. First, we need to get all of the items from the data-
base. Then we change the packed status of each of them to false. Finally, we create a
transaction where we update each item in the database.

export default {
 getAll() { … },
 add(item) { … },
 update(item) { … },
 markAllAsUnpacked() {
 return this.getAll()
 .then(items => items.map(item => ({ ...item, packed: false })))
 .then(items => {
 return database.then(db => {
 const tx = db.transaction('items', 'readwrite');
 for (const item of items) {
 tx.objectStore('items').put(item);
 }
 return tx.complete;
 });
 });
 },
 delete(item) { },
 deleteUnpackedItems() { }
};

If a single update fails, the entire transaction fails, and all of the items return to their
original state. The advantage of using transactions is that it ensures you can’t end up

Listing 12.18 Updating an item in IndexedDB: ./app/database.js

Listing 12.19 Marking all items as packed: ./app/database.js

Gets all of the items
from the database

Sets the packed
status of each

item to false

Creates a
transaction

for updating
the items in

the database

Iterates over
all of the items

Updates the item
in the database

Completes the
transaction

240 CHAPTER 12 Persisting user data and using native Node.js modules

in a state where half of your data has been updated and half remains unchanged.
Transactions are an all-or-nothing affair.

 Deleting items from the database is virtually the same as updating them. We use
the IndexedDB delete() method instead of update(). If you want to be clever, you
could probably provide an abstraction over the shared pieces of these implementa-
tions, but my job as your author is to be clear rather than clever.

export default {
 getAll() { … },
 add(item) { … },
 update(item) { … },
 markAllAsUnpacked() { … },
 delete(item) {
 return database.then(db => {
 const tx = db.transaction('items', 'readwrite');
 tx.objectStore('items').delete(item.id);
 return tx.complete;
 });
 },
 deleteUnpackedItems() { }
};

When we implemented markAllAsUnpacked(), we mapped over all of the items, regard-
less of their status. In implementing deleteUnpackedItems(), we need to be more
careful. Our job is to delete only those that have their packed property set to false.

export default {
 getAll() { … },
 add(item) { … },
 update(item) { … },
 markAllAsUnpacked() { … },
 delete(item) { … },
 deleteUnpackedItems() {
 return this.getAll()
 .then(items => items.filter(item => !item.packed))
 .then(items => {
 return database.then(db => {
 const tx = db.transaction('items', 'readwrite');
 for (const item of items) {
 tx.objectStore('items').delete(item.id);
 }
 return tx.complete;
 });
 });
 }
};

Listing 12.20 Removing an item from IndexedDB: ./app/database.js

Listing 12.21 Deleting all unpacked items from IndexedDB: ./app/database.js

Uses the delete
method to remove
an item from the
database

Filters out all of the
items that have been
packed, and returns
an array of items that
remain unpacked.

Deletes each of
those items

241IndexedDB
Unlike SQLite, IndexedDB doesn’t provide support for querying the database, which
makes a certain amount of sense considering it is a NoSQL database. When working
with NoSQL databases, you can take some interesting approaches, such as storing
your data in multiple places with different indices for quick retrieval, but that is a bit
outside the scope of this book.

 We’re opting for the simplest approach—and one that is a perfect fit for our data
set, which is to simply fetch all of the items from the database and find only the ones
that meet our criteria. Again, we do this in a transaction. If deleting any of these items
fails, the database returns to the state that it was in before we triggered this method.

12.2.4 Connecting the database to the UI

With this last method in place, we need to connect all of the new database methods to
the UI. By building the database methods in the previous section, we’ve made transi-
tioning from the SQLite implementation to one based on IndexedDB relatively pain-
less. The main difference is that we aren’t querying for items in the database.

 fetchItems() {
 this.props
 .database
 .getAll()
 .then(items => this.setState({ items }))
 .catch(console.error);
 }

 addItem(item) {
 this.props.database.add(item).then(this.fetchItems);
 }

 deleteItem(item) {
 this.props
 .database
 .delete(item)
 .then(this.fetchItems)
 .catch(console.error);
 }

 markAsPacked(item) {
 const updatedItem = { ...item, packed: !item.packed };
 this.props
 .database
 .update(updatedItem)
 .then(this.fetchItems)
 .catch(console.error);
 }

 markAllAsUnpacked() {
 this.props

Listing 12.22 Updating the Application component to use IndexedDB:
./app/components/Application.js

242 CHAPTER 12 Persisting user data and using native Node.js modules
 .database
 .markAllAsUnpacked()
 .then(this.fetchItems)
 .catch(console.error);
 }

 deleteUnpackedItems() {
 this.props
 .database
 .deleteUnpackedItems()
 .then(this.fetchItems)
 .catch(console.error);
 }

Summary
 Compiled dependencies work only with the version of the V8 engine used by

Node that they were compiled against.
 The version of Node on your system may differ from the version of Node bun-

dled with Electron.
 Normally, when you install dependencies using npm install or yarn install,

the dependencies are built against the system version of Node—not that of
Electron.

 electron-rebuild goes through your installed dependencies and rebuilds
them for the version of Node packaged with Electron.

 User data should be stored in the appropriate place on the filesystem. This dif-
fers between filesystems, but Electron provides a helpful abstraction called
app.getPath()that can determine the correct path on your behalf.

 SQLite is a common choice for native applications because it stores data in a
file instead of requiring that a database server be installed and running.

 IndexedDB is a popular browser-based option for storing user data on the cli-
ent. It is a NoSQL database provided by Chromium.

Testing applications
 with Spectron
At this point in the book, we’ve built a number of Electron applications. Testing
these applications to make sure that they work as expected has been something of a
manual process. Make a change, start the application, and click around to ensure
that everything works. This is fine for small applications, but this method can
become tedious in larger applications. What if a change in the code in one part of
the application breaks some functionality elsewhere?

 In these situations, it’s helpful to automate the tests. Let the computer do the
boring, repetitive work, while you focus on the features that bring value to your cus-
tomers. That sounds great, but how do we do that? In a traditional web application,
you might point something like Selenium WebDriver to your website, make some
assertions as to how the site should behave, and then have it click around and con-
firm that everything works as expected.

 That’s great, but we have a few problems: our Electron applications don’t have
web addresses per se, but they do support APIs that give us unprecedented access

This chapter covers
 Using Spectron to test Electron applications

 Understanding the relationship among Spectron,
WebdriverIO, and Selenium WebDriver

 Controlling Electron APIs within integration tests
243

244 CHAPTER 13 Testing applications with Spectron
to the underlying operating systems, which are typically not supported by web brows-
ers. At this point, it shouldn’t surprise you that this tricky problem has an easy solu-
tion. The Electron team supports a project called Spectron, which allows developers
to write integration tests for our Electron applications.

 In this chapter, we write integration tests for a special version of Clipmaster 9000
that does not live in the menu bar, as shown in figure 13.1. We test all the core func-
tionality and learn a few tricks along the way. To get started, you need to add Spectron
and a test runner to your package.json. I’ve opted to use Mocha in an attempt to stay
consistent with the official documentation, but you could use Jest, Karma, Jasmine, or
any other test runner that makes you happy. I’ve included this in the example reposi-
tory (http://mng.bz/UxHY), but if you’re working on your own, you can run npm
install --save-dev spectron mocha.

First, it’s important to understand the relationship among Spectron, WebdriverIO, and
Selenium WebDriver because we use methods from more than one of them in a given
test. Let’s start at the bottom and work our way up. Selenium WebDriver allows devel-
opers to write tests that control a web browser so they can test their applications from a
user’s perspective—as opposed to unit tests, which exercise a given piece of code in iso-
lation. Selenium WebDriver is a language-agnostic library and is typically wrapped by a
library that gives it native API bindings for a given programming language.

Figure 13.1 A simplified version of Clipmaster
9000 that does not live in the menu bar.

http://mng.bz/UxHY

245Introducing Spectron
 Enter WebdriverIO, which wraps Selenium WebDriver with a pleasant JavaScript API
and makes it easy to use from within Node.js—or an Electron application, in our case.
But as I pointed out in the beginning of this chapter, Electron applications have some
major differences from traditional web applications, as well as a lot of additional power
and functionality. Spectron wraps WebdriverIO, as shown in figure 13.2, and allows us to
access this functionality in an environment custom-tailored for Electron applications.

We won’t need to touch Selenium WebDriver in this chapter. WebdriverIO takes care
of controlling Selenium WebDriver on our behalf. We douse methods from both Spec-
tron and WebdriverIO. In practice, you don’t really have to think about the line
between the two, but some of Spectron’s methods delegate to WebdriverIO. Where
this ends up being important is when it comes time to look up the documentation for
a given method. I’ll make sure to point out when we’re delegating to WebdriverIO, as
opposed to using a method that belongs to Spectron itself.

13.1 Introducing Spectron
Spectron makes it easy to start our application and control its UI from our test suite.
The primary way to use Spectron is to create an Application instance. This object

Spectron

Webdriver.io

Selenium

Drives a web browser
like Chrome. This allows
you to automate tests.

Bindings for Selenium
that allow you to control

it using JavaScript.

Additional functionality
that allows you to use

WebdriverIO with
Electron applications.

Figure 13.2 Spectron is a wrapper around WebdriverIO, which—in turn—is a wrapper around Selenium
WebDriver.

246 CHAPTER 13 Testing applications with Spectron
includes a number of child objects that allow us to access different parts of our appli-
cation, as shown in figure 13.2

Spectron is broken up into the following parts:

1 client is the underlying WebdriverIO instance and exposes all of its methods.
(This is only partly true, as I explain in the next section.) You use this when you
want to search the DOM for a particular node or trigger click events.

2 electron is Electron’s renderer process API. Anything available when using
require('electron') in the renderer process is available here. As a result, you
can use electron.remote to access the main process in the same manner as you
would in the renderer process.

3 browserWindow is a convenient alias to access the currently focused browser
window in your application. It’s equivalent to electron.remote.getCurrent-
Window(). In addition, browserWindow.capturePage() is useful when you
want to take a screenshot of the currently active browser window and save it to
the desktop. This can be useful when you’re trying to diagnose why your tests
are failing.

4 webContents is an alias to Electron’s webContents API, which is useful for get-
ting information about, or controlling the browser that is executing, your applica-
tion. It is an alias for electron.remote.getCurrentWebContents(). Throughout
this book, we’ve used this API to load an HTML page into a newly created
BrowserWindow instance or to toggle the developer tools. The API provides
access to browser functionality like the forward and back buttons, printing the
page, setting the zoom level, and reloading the page. It emits events as the
browser loads that can be useful for testing. It also provides the webContents
.savePage() method, which allows you to save the currently loaded page as an

new Application()

client: The underlying WebdriverIO instance.

electron: Electron’s Renderer Process API.

browserWindow: The currently focused

browser window.

webContents: Electron’s WebContents API.

mainProcess: Node’s process object

in the Main process.

rendererProcess: Node’s process object

in the Renderer process.

Figure 13.3 The Spectron API

247Getting comfortable with Spectron and WebdriverIO
HTML file on your filesystem for further inspection if your tests are not behav-
ing as expected.

5 mainProcess is an alias to Node’s process global in the main process. It is
equivalent to electron.remote.process. It’s important to note that main-
Process is not an alias to Electron’s main process API, but it can be accessed
using electron.remote. mainProcess is useful if you need to access the envi-
ronment variables or the arguments passed to Electron when it was started.

6 rendererProcess is similar to mainProcess and provides access to the ren-
derer process’s global.process object. Again, this can be useful for reading
environment variables. If you need Electron’s renderer process APIs, use
electron instead.

The first two properties of the Application instance provide deep access to the
browser’s APIs as well as Electron’s own APIs. With this combination, we have deep,
programmatic insight into and control over almost all of the inner workings of our
application at any time. This access makes testing Electron applications easy once you
get the hang of it. The browserWindow, webContents, mainProcess, and render-
erProcess properties provide convenient aliases to the first two properties.

13.2 Getting comfortable with Spectron and WebdriverIO
In the previous section, I mentioned that I was fibbing I bit when I said that the client
property delegated to WebdriverIO. That statement is technically true—but it isn’t the
whole truth. client also has additional, Electron-specific methods, shown in figure 13.4,
to make your testing experience even more pleasant.

app.client

getMainProcessLogs()

getRenderProcessLogs()

getSelectedText()

getWindowCount()

waitUntilTextExists(selector, text)

waitUntilWindowLoaded()

windowByIndex(index)

(All of the Webdriver.io API)

Figure 13.4 Spectron adds a number of utility methods to the WebdriverIO API. This is an exploded view
of the client in figure 13.3.

248 CHAPTER 13 Testing applications with Spectron
Some of the methods look familiar if you’ve written integration tests in the past. Meth-
ods like getSelectedText(), for example, consider that your application might have
multiple windows—something that isn’t possible in a traditional web application. Oth-
ers are unique to testing Electron applications. I introduce you to these methods now
as a reference. We use many of them in the sections that follow.

 getMainProcessLogs() and getRenderProcessLogs() return a promise that
resolves to an array of messages that have been logged to the respective console. As
soon as either method is called, it clears the messages from the console. This means
that subsequent calls contain only messages that have been logged to the console
since the last time the method was called.

 getWindowCount() returns a promise that resolves to an integer that—unsurpris-
ingly—represents the number of windows currently open in the application. This
value might be useful if you are writing tests for an application like Fire Sale, which
has a button allowing users to open another window. app.browserWindow references
the currently focused window. app.client.windowByIndex() allows you to focus on
an alternate window instead.

 waituUntilWindowLoaded() takes a given number of milliseconds as an argument
and returns a promise. If the window loads in the allotted time, the promise resolves.
Otherwise the promise is rejected. This method allows you to delay execution of your
tests until you’ve confirmed that the window has actually loaded.

 waitUntilTextExists() takes three arguments: a selector, a string of text, and an
optional number of milliseconds to wait before giving up. It returns a promise that
resolves when the selector contains the text, Alternatively, it rejects if the 5 seconds or
the provided number of milliseconds pass and the text has not appeared. This setting
is useful for UI components where the content may come in asynchronously shortly
after the window has loaded. Normal tests would fail because they would run immedi-
ately, before the asynchronous content has loaded.

13.3 Setting up Spectron and the test runner
Spectron provides the ability to start an Electron application and control it from your
tests, but it doesn’t provide a framework for running your tests or verifying that your
application works as expected. As mentioned earlier, we use a simplified version of
Clipmaster 9000. A starting point for the code can be found here at https://github
.com/electron-in-action/clipmaster-9000-spectron.

 This is a very good thing because it allows you to use whatever test runner and
assertion library you prefer. Just require Spectron in your test runner of choice, con-
figuring it as we’ll see in listing 13.2. In this chapter, I use Mocha along with Node’s
built-in assert library, but you can certainly use Chai and an assertion library or Jest,
Karma, Jasmine, or any other framework, if you prefer. Spectron is not opinionated
on this front. Instead, it allows you to drive your Electron application from the frame-
work of your choice.

https://github .com/electron-in-action/clipmaster-9000-spectron
https://github .com/electron-in-action/clipmaster-9000-spectron
https://github .com/electron-in-action/clipmaster-9000-spectron

249Setting up Spectron and the test runner

P
Spe
appl

Points
root di

appl
i

a s
point

appl
 I’ve already included Mocha as one of the development dependencies for the
example project. As I mentioned earlier, if you’re working on your own application
and following along, you can run npm install --save-dev spectron mocha from the
command line to install both Spectron and Mocha. This will install the mocha com-
mand line tool into your node_modules directory, which can be run by typing
./node_modules/.bin/mocha. This can be tedious. It would be much easier to assign
it to be run using npm test. So, let’s add it to our project’s scripts in our package.json.
(This should already be set up for you if you’ve cloned the repository from GitHub.)

 "scripts": {
 "start": "electron .",
 "test": "mocha"
 }

Now whenever we run npm test, Jest runs our test suite by looking for all files with
a *.test.js suffix. You can also use this suffix for any unit tests that you want to
write—Mocha runs those as well. In a larger application, you might create a folder
for all of your tests or include them alongside your implementation files. For the
sake of simplicity, I’m going to use a single file called test.js to hold all of the tests
for our application.

 Let’s begin by examining the boilerplate provided in the repository to start our
application before each test and stop the application after the individual test has run.
This gives us a fresh instance of the application for each test, which eliminates the
need to clean up any of the side effects and leftover state from previous tests.

const assert = require('assert');
const path = require('path');
const Application = require('spectron').Application;
const electronPath = require('electron');

const app = new Application({
 path: electronPath,
 args: [path.join(__dirname, '..')],
});

describe('Clipmaster 9000', function () {
 this.timeout(10000);

 beforeEach(() => {
 return app.start();
 });

Listing 13.1 Setting up Mocha as a test script: ./package.json

Listing 13.2 Writing up Spectron with the test runner: ./test/spec.js

Sets npm test to run
the locally installed
version of Mocha

Requires Node’s built-in
assertion library

Brings in Node’s helper utility
for working with file pathsulls in

ctron’s
ication
driver Requires Electron. This will

give us access to a locally
installed development
version of Electron.

Tells Spectron’s application to use
the locally installed development
version of Electron

 to the
rectory

of the
ication
tself as
tarting
for the
ication

Increases Mocha’s default
timeout because launching the
application can take a while

Starts the application
before each test

250 CHAPTER 13 Testing applications with Spectron
 afterEach(() => {
 if (app && app.isRunning()) {
 return app.stop();
 }
 });
});

The first thing we need is the location of the Electron application that we want to test.
Theoretically, you could point Spectron to any of the Electron-based applications on
your computer and control them programmatically, but I leave that as a devious exer-
cise for the reader. I’m going to be a boring rule follower and get the path to the
locally installed version of Electron that we pulled down from npm when we installed
our dependencies using npm install.

 We want access to a variable holding the instance of our application in each of our
tests, so we declare it in the describe() block. Before each test, we create an applica-
tion instance and assign it to the app variable. The new Application() constructor
takes the path of the Electron binary, as well as the location of the directory where we
would normally type npm start. This should be the directory that contains the pack-
age.json, which references the JavaScript file containing the code for the main pro-
cess. After the instance has been created, we start the application. We’re now ready to
test—despite the fact that we haven’t written a test case just yet. But imagine that we
had a test and it has run. We check that there is a value assigned to the app variable
and the application is still running. (It may have crashed.) If both of those cases are
true, then we stop the application and move onto the next test case, where we go
through this process again.

13.4 Writing asynchronous tests using Spectron
We’ve talked about our testing tools. We’ve set them up. Now let’s sit down and write
some tests. Over the course of the chapter, we’ll check that Clipmaster

 Shows an initial window when it starts
 Displays “Clipmaster 9000” as the title
 Doesn’t have the Developer Tools open when it starts
 Has a button with the text Copy from Clipboard
 Doesn’t have any clippings displayed in the UI when the application starts
 Contains one clipping when the Copy from Clipboard button has been pressed

a single time
 Successfully removes a clipping when a clipping’s Remove button has been

clicked
 Has the correct text when a new clipping is created
 Writes the text of the clipping to the clipboard when the Copy button is clicked

We’ll start with a simple test: start the application, and confirm that this special ver-
sion of Clipmaster 9000 creates a single browser window. Spectron and WebdriverIO

Stops the application
after each test

251Writing asynchronous tests using Spectron

et
.

r
use an asynchronous, promise-based API for controlling Electron and the web appli-
cation within. Most methods return promises, which can be chained. As I’ve men-
tioned repeatedly throughout this book, Electron provides us with a modern version
of Node and Chromium. We frequently have the latest and greatest browser and lan-
guage features at our disposal. This includes the async/await syntax for working with
asynchronous APIs in a way that’s as easy to wrap our head around as synchronous
code. With this syntax, you don’t have to worry about passing around callbacks or
chaining promises.

 As shown in listing 13.3, we use the async keyword before the arrow function to
denote that we’ll be using the async/await syntax in this function. The await key-
word pauses until app.client.getWindowCount() has resolved and then assigns the
result to the count variable. After this is done, we expect the count to equal one.
Mocha expects asynchronous tests to return a promise when they’re done, so you
need to make sure that you prefix your expectation with the return keyword. Your
author failed to do that on multiple occasions when writing this chapter before his
first cup of coffee. He paid dearly for that oversight with his time and sanity.

it('shows an initial window', async () => {
 const count = await app.client.getWindowCount();
 return assert.equal(count, 1);
});

This test is simple, and a traditional implementation using promises would not look
that much different, but more involved tests require longer promise chains that might
become tedious to write or confusing to reason about at best.

13.4.1 Waiting for the window to load

In many tests, you have to wait for the window to load the HTML, CSS, and JavaScript
before you can continue testing the application. Electron loads the HTML quickly,
but it’s not instantaneous. We frequently use the app.client.waitUntilWindow-
Loaded() method described earlier to wait until the application has fully loaded
before moving forward. Let’s write a test confirming that the window’s title is the
name of the application.

it('has the correct title', async () => {
 const title = await app.client.waitUntilWindowLoaded().getTitle();
 return assert.equal(title, 'Clipmaster 9000');
});

Listing 13.3 Writing a test to count the number of windows: ./test/spec.js

Listing 13.4 Writing a test to verify the window title: ./test/spec.js

The application has started; g
a count of all of the windows

Verify that this version of Clipmaste
creates only one window.

After the window has loaded,
gets the title of that window

Verifies that the title of the
window is what we expect

252 CHAPTER 13 Testing applications with Spectron

Ch
s

de
t

Many of Spectron’s methods are chainable, with each subsequent method in the
chain being called after the promise returned from the previous method has resolved.
In the previous example, we wait for the window to finish loading and then get the
title of the window and store it in the title variable; after that asynchronous operation
is complete, we can verify that the window’s title is what we expect it to be.

13.4.2 Testing Electron BrowserWindow APIs

Traditionally, integration-testing tools like Selenium and WebdriverIO point a browser
to a webpage and interact with it. They typically don’t have much more access to the
internals of the browser itself like we do as developers. Electron allows developers to
programmatically open the developer tools when the window first loads. That said, it
would be bad if we accidentally forgot to remove this code and shipped this to users.
Let’s write a test that verifies that developer tools are not opened when the application
is loaded.

it('does not have the developer tools open', async () => {
 const devToolsAreOpen = await app.client
 .waitUntilWindowLoaded()
 .browserWindow.isDevToolsOpened();
 return assert.equal(devToolsAreOpen, false);
});

The isDevToolsOpened() method is available on all BrowserWindow instances. When
the application has loaded, we get the current browser window and ask it whether it
has the developer tools open. We expect this to be false. If it is true, the test will fail.

13.4.3 Traversing and testing the DOM with Spectron

In addition to testing Electron APIs, we almost definitely want to test the UI of our
application like we would a traditional application. Let’s start with a simple example
where we search the page for a particular element and verify that it has the copy that
we expect.

it('has a button with the text "Copy from Clipboard"', async () => {
 const buttonText = await app.client
 .getText('#copy-from-clipboard');
 return assert.equal(buttonText, 'Copy from Clipboard');
});

The getText() method is provided by WebdriverIO as opposed to Spectron. It
accepts a selector as an argument, finds the first node that matches that selector, and
returns a promise that resolves to the text content of that node. Finally, we confirm
that the text is what we expect it to be.

Listing 13.5 Testing that the developer tools are not open: ./test/spec.js

Listing 13.6 Testing the content of the Copy from Clipboard button: ./test/spec.js

Gets a reference
to the browser
window instance

ecks to
ee if the
veloper
ools are

open
Verifies that the
developer tools
are not open

Uses the WebdriverIO
API to get the text from
a DOM node on the page

253Writing asynchronous tests using Spectron

t

PI
e

 items

n

F
the
on
 This works, but what about more complicated traversal? When the application
starts, the clippings list is empty—remember this was before we knew how to persist
data in our Electron applications. Each time the user clicks that Copy from Clipboard
button, a new clipping should be added to the page. How might we go about testing
these scenarios? Let’s start with the first case: when the application starts, there should
not be any clippings on the page.

it('should not have clippings when it starts up', async () => {
 await app.client.waitUntilWindowLoaded();
 const clippings = await app.client.$$('.clippings-list-item');
return assert.equal(clippings.length, 0);
});

Webdriver exposes $ and $$ methods, which are aliased to document.querySelector
and document.querySelectorAll, respectively. We use $$ to select all of the clipping
list items on the page, which returns a NodeList object. Ideally, there are no clipping
list items on the page and the length of that NodeList is 0.

 So far we’ve inspected and verified the state of the application when it starts—an
important task but typically only a small portion of the tests we write for a given appli-
cation. We’ve confirmed that there are no clippings on the page when the applica-
tion starts. It stands to reason that when the user adds a clipping, it should be added
to the UI. We already know how to check for the number of elements matching a
given selector on a page. But how do you add a clipping? You click the Copy from
Clipboard button. We need to figure out how to program WebdriverIO to click on a
particular element on a page.

 it('should have one clipping when the "Copy from Clipboard" button has been
pressed', async () => {

 await app.client.waitUntilWindowLoaded();
 await app.client.click('#copy-from-clipboard');
 const clippings = await app.client.$$('.clippings-list-item');
 return assert.equal(clippings.length, 1);
 });

Lucky for us, app.client provides a click() method that does exactly what you
might expect: it triggers a click event on a node that matches the selector provided.
When we click the Copy from Clipboard button, we expect that a clipping is added to
the page. The prior test verifies that there is one clipping on the page after the Copy
from Clipboard button has been clicked.

Listing 13.7 Testing the initial state of the UI: ./test/spec.js

Listing 13.8 Testing a click interaction: ./test/spec.js

Waits until
the window has
loaded its conten

Uses Web-
driverIO’s A
to find all th
clipping list
on the page

Verifies that, by default, there
are no clipping list items

Triggers a
click event o
the Copy from
Clipboard
button

inds all of
 clippings
 the page

Verifies that
there is one
clipping now

254 CHAPTER 13 Testing applications with Spectron
 What about the flip side? If you recall, clippings can also be removed from the UI.
But there is a catch—the Remove button appears only when the user’s cursor is hover-
ing over the clipping. We can’t simply query for the Remove button, because it’s not
on the page yet. Instead, we need to take control of the cursor and move it over the
clipping to have the Remove button appear.

 it('should successfully remove a clipping', async () => {
 await app.client.waitUntilWindowLoaded();
 await app.client
 .click('#copy-from-clipboard')
 .moveToObject('.clippings-list-item')
 .click('.remove-clipping');
 const clippings = await app.client.$$('.clippings-list-item');
 return assert.equal(clippings.length, 0);
 });

After clicking the Copy from Clipboard button, we use the moveToObject() method to
move the cursor over the new clipping, which causes the Remove button to appear. We
click Remove and then verify that the clipping is no longer on the page.

13.4.4 Controlling Electron’s APIs with Spectron

At this point, we have tested that we can add and remove clippings from the page, but
we still have a major blind spot: we have no idea whether the clipping is displaying the
correct text. If you were able to squint at the application during the previous tests, you
might have noticed that the clipping that was added contained whatever was on our

Listing 13.9 Moving the cursor in a test: ./test/spec.js

But Steve, I see a deprecation warning whenever I run this test!
Seeing a warning is normal, unfortunately. When you run the test in listing 13.9, you
see a deprecation warning related to moveTo because of an incompatibility with
recent versions of Firefox—an issue that doesn’t concern us. The problem is that
although moveTo has been deprecated, there isn’t a replacement at the time of this
writing. A number of open issues exist on GitHub about this. A good example can be
found at https://github.com/webdriverio/webdriverio/issues/2076. You’re not the
only one seeing—and being frustrated by—these warnings.

To suppress these warnings, you can configure WebdriverIO’s options when creating
your Spectron application as follows:

const app = new Application({
 path: electronPath,
 args: [path.join(__dirname, '..')],
 webdriverOptions: {
 deprecationWarnings: false
 }
});

Moves the cursor to the
clipping to trigger the
Remove button to appear

Clicks the
Remove
button

Verifies that the clipping is
no longer on the page

https://github.com/webdriverio/webdriverio/issues/2076

255Writing asynchronous tests using Spectron

ther
 the
rd

th
th

copy
ba

c

clipboard at the time. This will be tricky because our tests should be isolated from the
outside world.

 What we need to do is use Electron’s clipboard module to write text to the clip-
board and then verify that the provided text is, in fact, what is displayed in the UI.
Luckily, Spectron gives us access to all of Electron’s APIs. This means we can manipu-
late what is currently on the clipboard as part of the test and confirm that it is what’s
found in the UI when the clipping is added to the page.

 it('should have the correct text in a new clipping', async () => {
 await app.client.waitUntilWindowLoaded();
 await app.electron.clipboard.writeText('Vegan Ham');
 await app.client.click('#copy-from-clipboard');
 const clippingText = await app.client.getText('.clipping-text');
 return assert.equal(clippingText, 'Vegan Ham');
 });

The clipboard module is available in both the main and renderer processes, so there
is no need to use electron.remote. Before clicking the Copy from Clipboard button,
we write text to the clipboard. We then click the button and verify that the clipping’s
text is exactly what we wrote to the clipboard.

 This covers half of Clipmaster 9000’s functionality. The flip side of the coin is that
the user should be able to copy the clipping back to the clipboard when the clipping’s
 Clipboard button is clicked. To test this, we need to build on the work we did in the
previous test. After clicking the Copy from Clipboard button and adding it to the
page, we change the clipboard’s content to something else, then click the  Clip-
board button, read from the clipboard, and verify that it is back to the original text
that we added to Clipmaster 9000.

 it('should write the clipping text to the clipboard', async () => {
 await app.client.waitUntilWindowLoaded();
 await app.electron.clipboard.writeText('Vegan Ham');
 await app.client.click('#copy-from-clipboard');
 await app.electron.clipboard.writeText('Something different');
 await app.client.click('.copy-clipping');
 const clipboardText = await app.electron.clipboard.readText();
 return assert.equal(clipboardText, 'Vegan Ham');
 });

Listing 13.10 Accessing Electron APIs in a test: ./test/spec.js

Listing 13.11 Testing that the application writes to the clipboard: ./test/spec.js

Accesses Electron’s API to write
text to the system’s clipboard

Gets the text of
the new clipping
that was created

Verifies that the new clipping contains
the content of the clipboard

Writes text to the clipboard
using Electron’s API

Clicks the Copy from
Clipboard button

Writes
some o
text to
clipboaClicks

e button
at should
allegedly
 the text
ck to the
lipboard

Reads the
text from

the clipboard
Verifies that the text is now the content of the clipping and
not the text we manually wrote to the clipboard in our test

256 CHAPTER 13 Testing applications with Spectron
With this final test in place, we can verify that all of the UI elements work and behave
as expected. We were able to use a combination of WebdriverIO and Electron APIs to
test the application from multiple angles. The code as it stands at the end of this chap-
ter can be found on the completed-example branch of the repository.

Summary
 Spectron is an officially supported library for testing Electron applications.
 Spectron wraps WebdriverIO, which provides Selenium with Node.js bindings.
 All of Electron’s APIs are available in Spectron.
 Spectron does not provide its own test running or assertion library. Instead, it

allows you to choose which one you want to use.
 Electron supports async/await syntax, which greatly simplifies writing asyn-

chronous code.

Part 3

Deploying Electron
applications

In part 2, we built a number of applications, but each shared a common flaw:
our users would need to navigate to the appropriate directory using the com-
mand line and have Node.js installed to start the application. This isn’t exactly
ideal. As I’m sure you’ve guessed, things don’t have to be this way. That’s not the
way I started Slack this morning. Part 3 covers the intricacies of packaging and
distributing our wonderful applications.

 Chapter 14 directly takes on the problem I illustrated in the previous para-
graph by introducing us to two different ways to package our applications for dis-
tribution. We’ll create standalone versions of Fire Sale and Jetsetter in the
process. In chapter 15, I’ll address a fear that may or may not have crossed your
mind: how do we know if our application is working as intended once we release
it into the wild? We’ll wire up Fire Sale with Electron’s built-in crash reporter.
We’ll also set up a simple server to receive and keep track of crash reports. Full-
on crashes are not the only issue our users might come across. We’ll also build
our own ability to capture uncaught exceptions and report them to our server as
well. This is above and beyond what Electron gives us out of the box, but, ulti-
mately, it is fairly simple to implement.

 Chapter 16 discusses how to get your application prepped and ready for the
Mac App Store. You, by no means, have to go down this route, but it does solve
some of the problems that you might come across if you decide that you’d like to
get rich off of your Electron applications.

Building applications
 for deployment
Throughout this book, we’ve built several applications. We’ve started each of them
the same way: open the terminal, navigate to the directory, and launch the applica-
tion using npm. If you’ve downloaded any of my completed applications, then it’s
likely that you went to the project on GitHub, cloned the repository, and installed
its dependencies. This is all a bit tedious and—frankly—an unacceptable experi-
ence for our users. Our Electron applications should behave like any other desktop
application. Users should be able to navigate to a website, download the applica-
tion, and double-click its icon to launch the application. No terminal. No installing
dependencies. No cloning repositories.

 In this chapter, we take an application that we built earlier in this book—Fire
Sale—and build it as a desktop application using a third-party library called Electron

This chapter covers
 Packaging your application for distribution

 Setting a custom name and icon for your
packaged application

 Easily packaging applications containing
transpiled code using Electron Forge

 Building source code in Electron archives (asar)
259

260 CHAPTER 14 Building applications for deployment
Packager. You can find the repository on GitHub at https://github.com/electron-in-
action/firesale. We’ll start by checking out a branch conveniently called chapter-14-
beginning. This is roughly where we left off in chapter 8.

 We start by setting up Electron Packager. We use command-line flags to customize
things like the output directory and set up npm scripts that allow us to build for multi-
ple platforms at once—although I’ll explain why this might be ill-advised. Next, we
add a custom icon for Fire Sale. Finally, we discuss Electron’s asar archive format and
add it to our build process.

 After building Fire Sale with Electron Packager, we build Jetsetter using an alter-
native called Electron Forge. Where Electron Packager is simple, low-level, and a
great way to understand what’s happening without getting too deep into the weeds,
Forge contains more bells and whistles. I chose it for Jetsetter because we’re using
electron-compile to transform JSX to vanilla JavaScript. Electron Forge is also
great for laying the foundation for a new Electron application. In the name of
learning and getting our hands dirty, I chose not to use Electron Forge, but you may
want to consider it when starting your next Electron application. This chapter cov-
ers how to transition an Electron application that wasn’t originally created with
Electron Forge.

 By the end of this short chapter, we’ll have an executable Electron application that
doesn’t need to be started from the command line and can be used by someone who
does not have Node installed on their computer. Chapters 15 and 16 go deeper and
discuss how to properly package your application for macOS and Windows.

14.1 Introducing Electron Packager
Electron Packager is an abstraction around the numerous steps required to develop
an application and package it for distribution. In development, we’ve downloaded a
prebuilt version of Electron for our platform (macOS, Windows, or Linux) and pro-
cessor architecture (32- or 64-bit). We don’t necessarily know what platform and
architecture our users are using, and they won’t build it themselves. It’s our responsi-
bility to build a version of the application for each platform and architecture combi-
nation we plan to support. Electron Packager is here to help us with that endeavor.

14.1.1 Setting up Electron Packager

You can install Electron Packager globally using npm install electron-packager -g
or yarn global add electron-packager. I prefer to install it locally on the individual
project because then each project specifies its own version of Electron Packager. I
added it to the devDependencies in the project’s package.json. If you’ve cloned the
repository and installed the dependencies, you should be good to go.

 We begin by adding a build script to package.json. In this chapter, we start with a
deliberately simple configuration and build on top of it as we go along, refining this
build script along the way.

https://github.com/electron-in-action/firesale
https://github.com/electron-in-action/firesale

261Introducing Electron Packager
{
 // …Omitted…
 "scripts": {
 "start": "electron .",
 "build": "electron-packager .",
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 // …Omitted…
}

With our build script in place, it’s time to start Electron Packager. You can run the
build script using npm run build, which runs the local version of electron-packager
installed in the node_modules directory. When the build is finished, you should see an
additional directory with the name of the application along with the platform and
architecture you’re currently using, as shown in figure 14.1. As I write this, I’m using a
64-bit Mac and the directory is called firesale-darwin-x64.

The firesale-darwin-x64 directory contains the desktop application named firesale
along with the license and a small text file containing the version. Double-click the
application to open it like any other application. If you need to prove it to yourself,
feel free to drag the application to another directory and launch it from there.

Listing 14.1 Adding a build script: ./package.json

Adds a simple build
script to package.json

Figure 14.1 By default Electron Packager places builds inside the project’s root. This can be
problematic because we typically do not want to commit our built application into source control.

262 CHAPTER 14 Building applications for deployment
 The output of Electron Packager on Windows is a bit more verbose. On macOS
applications are effectively folders that hide much of this complexity from us. In
chapter 15, we’ll cover how to make an installer for Windows that hides this com-
plexity from our users.

 This was fast and simple, but there is still a lot left to be desired. The filename isn’t
capitalized, we’re still using the stock Electron icon, and we’ve built a version for only
our current architecture and platform, among other issues.

14.1.2 Configuring the output directory

The concerns I just listed are all valid, and we do solve each of them, but we have a
more pressing problem to address first. We may not want to check our built applica-
tions into version control. Building the applications to the root directory of the proj-
ect makes that difficult. It adds an increasing amount of visual noise and clutter as we
begin building additional platforms and architectures.

 If you type ./node_modules/.bin/electron-packager --help from the command
line, Electron Packager shows you all the options and flags that it accepts. To specify
the directory into which we want Electron Packager to place our applications, we can
use the --out flag. Update the build script to electron-packager . --out=build.
You can add the build directory to your .gitignore file to keep your compiled applica-
tions out of version control. I’ve already done this for you in this project.

14.1.3 Configuring the application’s name and version

Electron Packager uses information in your project’s package.json to set certain
parameters during the build process. For example, it reads the version field to
determine what version of the application this is. It used the name field to set the
name of the application as well. But, this has some limitations. You can’t use spaces
or capitalization in the name field in a package.json. Luckily, a package.json is only
a text file, and npm ignores any properties it doesn’t understand. This is a good
place to store additional information that might be meaningful to Electron Pack-
ager. We know that we’d like to change the name of the application, as shown in
figure 14.2.

A quick word on dependencies
By default, Electron Packager includes all of the dependencies in your node_modules
directory that are listed in your package.json. It does omit dependencies listed under
devDependencies in your package.json. This is not an issue that we run into with
any of the applications in the book, but it is something you might encounter in your
adventures. You can deal with this in two ways: move the dependency from dev-
Dependencies to dependencies or pass the --no-prune flag to Electron Packager.

263Introducing Electron Packager
{
 "name": "firesale",
 "version": "1.0.0",
 "description": "Completed code from [Electron in

Action](http://bit.ly/electronjs).",
 "productName": "Fire Sale",
 // …Additional properties omitted…
}

14.1.4 Updating the application icon

I like Electron’s logo. It’s done well by us throughout this book. But if every applica-
tion built on top of Electron used the same logo, it would be hard to tell one appli-
cation from another. Let’s replace the logo with our own.

 As we saw in chapter 9, different operating systems have different preferences
regarding the file format of its icons. At this point, we’re building for our own operating
system, so we’ll make a choice based on which one we’re using, as shown in figure 14.3.
Later in the chapter, we add some nuance to guide Electron Packager in selecting the
correct icon for a given platform.

 macOS supports .icns files. Windows supports .ico files. Linux supports .png files.
For now, pass the appropriate file to the --icon flag based on your current operating
system as shown in listing 14.3.

Listing 14.2 Customizing the applications name and version: ./package.json

Electron Packager uses the
productName field, if it is
present, as the name of the
application instead of the
name, which cannot include
spaces or capitalization.

Figure 14.2 With the productName set, our application has the correct name after it is built.

264 CHAPTER 14 Building applications for deployment
electron-packager . --overwrite --out=build --icon=icons/Icon.icns
electron-packager . --overwrite --out=build --icon=icons/Icon.ico
electron-packager . --overwrite --out=build --icon=icons/Icon.png

14.1.5 Building for multiple operating systems

Electron Packager supports the --all flag, which creates five builds of the applica-
tion: 64-bit macOS, 32- and 64-bit Windows, and 32- and 64-bit Linux. Later in this
chapter we discuss why this isn’t always possible. Although the --all flag provides a
simple way to create builds for each platform, in the previous section we created
different icons for each platform. As a result, we want to pass different options to
Electron Packager on the platform.

{
 // …Omitted…
 "scripts": {
 "start": "electron .",
 "build": "npm run build-mac && npm run build-win

Listing 14.3 Building the application with a custom icon: ./package.json

Listing 14.4 Building for multiple platforms: ./package.json

Figure 14.3 Hey, look! We have a custom icon now!

Uses this option
on macOS

Uses this option
on Windows

Uses this option on Linux

265Using asar
➥ && npm run build-linux",
 "build-mac": "electron-packager . --platform=darwin

➥ --out=build --icons=icons/Icon.icns --overwrite",
 "build-win": "electron-packager . --platform=win32

➥ --out=build --icons=icons/Icon.ico --overwrite",
 "build-linux": "electron-packager . --platform=linux

➥ --out=build --icons=icons/Icon.png --overwrite",
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 // …Omitted…
}

If you’re using macOS, you can build Windows binaries if you have Wine installed as
well as binaries for Linux. Wine is a utility for running Windows applications on Linux
and macOS that can be downloaded from www.winehq.org. On Windows, you cannot
create symlinks for macOS and cannot build applications as a result. In chapters 15
and 16, we discuss code signing on macOS, which can be done only on a Mac.

14.2 Using asar
Electron applications are like traditional web applications in that all our code is hid-
den in plain sight. In a web application a user might right-click and select View Source
or open the Developer Tools. In our Electron application, a curious user could open
the application bundle and navigate to our source code, as shown in figure 14.4.

 If you’re using Windows, you can see a folder called resources in the same direc-
tory as the application. If you’re using macOS, right-click Fire Sale and select Show

The build script calls each of the
three subsequent build scripts.

Builds the application
for macOS

Builds the application
for Windows

Builds the application
for Linux

Figure 14.4 The application’s source code is located within the application itself.

https://www.winehq.org

266 CHAPTER 14 Building applications for deployment
Package Contents. Next, you see a folder called Contents. Navigate into the Contents
directory and then into Resources. Inside this folder are many folders. The one we’re
interested in is called app. Open this folder and you find all of Fire Sale’s source code.

 Your next impulse might be to run the same experiment on a popular Electron
application such as Slack, Atom, or Visual Studio Code. But you won’t find a folder
containing the application’s source code. Instead, you’ll see a file with an unfamiliar
file extension called app.asar, as shown in figure 14.5.

What’s this? Asar is an archive format used by Electron applications. It effectively con-
catenates the files and prepends a JSON object with the start location of each file
along with its length, which allows random access to a specific file in the archive.

 Why use asar? Asar speeds up requiring files in Node because they are all colo-
cated in the same file, which is loaded into memory when the application launches. It
also helps us avoid a bug in Windows caused by long filenames. The error is fairly
self-explanatory: the specified path, filename, or both are too long. The fully quali-
fied filename must be less than 260 characters, and the directory name must be less
than 248 characters. While you could practice the discipline of avoiding incredibly
long filenames, you don’t have control over dependencies—particularly those writ-
ten by developers using computers running macOS or Linux. Asar solves this prob-
lem by creating a single file called app.asar.

 Creating an asar archive with Electron Packager is incredibly easy. Simply add the
--asar flag to the command and build the application. The folder disappears and is
replaced with the archive.

Figure 14.5 The application wrapped in an asar archive.

267Using asar
{
 // …Omitted…
 "scripts": {
 "start": "electron .",
 "build": "npm run build-mac && npm run build-win && npm run build-linux",
 "build-mac": "electron-packager . --platform=darwin

➥ --out=build --icons=icons/Icon.icns --asar --overwrite",
 "build-win": "electron-packager . --platform=win32

➥ --out=build --icons=icons/Icon.ico --asar --overwrite",
 "build-linux": "electron-packager . --platform=linux

➥ --out=build --icons=icons/Icon.png --asar --overwrite",
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 // …Omitted…
}

Asar is not a way to secure or conceal your source code. The asar module on npm
allows anyone to extract the folder structure from the archive. Alternatively, opening
the archive in a text editor shows you that asar doesn’t do anything in the way of
obfuscation. If you wanted to peek at the source code of an Electron application,
globally install the asar binary, navigate to the application’s app.asar, and extract the
folder structure.

 Electron does not offer a way to hide or encrypt your HTML, CSS, and JavaScript
code. If this is a business requirement for you, you might want to consider writing the
sensitive parts of your application in a compiled language, like C++ with Node bind-
ings. To the same end, there is nothing stopping you from cracking open your favorite
Electron application—Slack, for example—and checking out some of the approaches
used in producing for Electron applications.

We have successfully set up packaging for Fire Sale. You can find the code for Fire Sale
in the chapter-14-ending branch (http://mng.bz/vI4g). This setup works for a sim-
ple application like Fire Sale, but what about an application that has code that needs
to be transpiled? Yes, you could set up some Gulp tasks or some other kind of build
step that takes place before packaging, but at this point in the book, it shouldn’t sur-
prise you that the Electron community has already solved this problem for you. In the

Listing 14.5 Building for multiple platforms with asar: ./package.json

Using asar in your Electron applications
Electron patches the Node APIs for reading from and writing to the filesystem to sup-
port asar automatically. This means you can treat an asar archive as if it were the
original folder structure. If you need to use the unpatched version of Node’s built-in
fs module, you can use Electron’s built-in original-fs module.

Adds the --asar
flag to the build
script for macOS

Adds the --asar flag to the
build script for Windows

Adds the --asar
flag to the build
script for Linux

http://mng.bz/vI4g

268 CHAPTER 14 Building applications for deployment
next section, we’ll look at using Electron Forge to build and package Jetsetter, which
requires a compile step before packaging.

14.3 Electron Forge
Electron Forge (https://github.com/electron-userland/electron-forge) is an abstrac-
tion around electron-compile, electron-rebuild, Electron Packager, and other
popular third-party Electron libraries. Electron Forge lays the foundation for a brand-
new Electron application using one of several different blueprints. It can also import
existing applications. We use Electron Forge with the Jetsetter app from chapters 11
and 12 because it relies on electron-compile and electron-rebuild. Using these
with tools like Electron Packager is certainly not impossible, but it’s tedious com-
pared to how easy the process is with Electron Forge, which has built-in support for
electron-compile and electron-rebuild.

 You’ll start from the chapter-14-beginning branch, which can be found on
GitHub (http://mng.bz/MdLb). You can also reference the completed example on
the chapter-14-ending branch (http://mng.bz/mzhH).

Out of the box, Electron Forge also handles many of the concerns around distributing
your application that we’ll cover in chapters 15 and 16. It can take care of publishing
your application to Amazon S3, GitHub Releases, or your own custom server. As I
stated earlier, we’ve opted to do a lot of the work by hand in the name of understand-
ing how Electron works, but I highly recommend considering Electron Forge for your
next application. In this section, we cover how to convert an application that was not
originally created with Electron Forge in mind to one that is ready and able to take
advantage of Electron Forge.

 We first need to complete a few steps: install the electron-forge binary, convert
Jetsetter to an Electron Forge application, and run the build command. Electron
Forge uses Yarn, an alternative to npm, for installing and managing packages. You
need to install it if you haven’t already. Visit the official documentation (https://
yarnpkg.com/en/docs/install) for up-to-date instructions and to learn how to install
it on your operating system.

 After you install Yarn on your system, run yarn global add electron-forge. This
installs the command-line tool that allows you to create Electron Forge applications,
as well as converts existing Electron applications for use with Electron Forge.

A quick note on third-party dependencies
The trouble with publishing a book is that, sometimes, libraries change. In this sec-
tion, we’re working at the intersection of a few different libraries: Electron, electron-
precompile, Electron Forge, React, and others. The cross-compatibility of all of these
libraries fills your author with a sense of existential dread. If you have any trouble with
the code printed in this section, I encourage you to visit the repository on GitHub,
which should work with the most recent versions of the libraries involved.

http://mng.bz/MdLb
http://mng.bz/mzhH
https://yarnpkg.com/en/docs/install)
https://yarnpkg.com/en/docs/install)
https://yarnpkg.com/en/docs/install)
https://github.com/electron-userland/electron-forge

269Electron Forge
14.3.1 Importing an Electron application into Electron Forge

When we built Jetsetter in chapter 11, we had not yet discussed Electron Forge. It fol-
lows that Jetsetter is not an Electron Forge application. Luckily, it’s easy to convert it to
one. From inside the jetsetter directory, run electron-forge import. At this point,
you are asked a series of questions about how you’d like the script to proceed. Answer
the questions as follows:

1 WARNING: We will now attempt to import "/Users/<username>/Projects/
jetsetter". This will involve modifying some files, are you sure you want to
continue? Yes.

2 Do you want us to change the "main" attribute of your package.json? If you are
currently using Babel and pointing to a "build" directory say yes. No.

3 Do you want us to update the "start" script to instead call the electron-forge
task "electron-forge start"? Yes.

4 Do you want us to update the "package" script to instead call the electron-forge
task "electron-forge package"? Yes.

5 Do you want us to update the "make" script to instead call the electron-forge
task "electron-forge make"? Yes.

The first question is asking your permission to modify your application’s package
.json file. This is necessary. Answering no aborts the process. The second question
does not apply to us. Jetsetter uses Electron Compile to transpile JavaScript, Sass, and
other languages on the fly. If we were instead using a task runner such as Gulp,
Grunt, or webpack to transpile our source code into another directory, we would
answer yes to this question.

 The final three questions are asking if we’d like to use Electron Forge to start our
application in development, package the application as we did earlier in this chapter
to Fire Sale, and build a distributable—which we’ll cover in the next chapter. Because
this is why we’re importing the application to begin with, we’ll answer yes to each of
these questions.

14.3.2 Building the application with Electron Forge

As I mentioned earlier, Electron Forge is an abstraction around several helpful librar-
ies in the Electron ecosystem. It exists to make common tasks easier. Building your
application is as simple as running yarn run package. This drives Electron Packager
through many of the steps we covered earlier in this chapter with Fire Sale.

 Electron Forge passes parameters to Electron Packager. It calls the output direc-
tory out instead of build. Electron Packager pulls modules from your node_modules
directory and installs them into your application. As of this writing, there is an issue
where the modules were not moved properly. This issue appears with the current
version of npm and may be alleviated by the time you read these words. In the mean-
time, I found that it was easy to work around this issue by using Yarn instead of npm.

270 CHAPTER 14 Building applications for deployment
Electron Forge adds a few fields to your package.json, so finds the field titled electron-
PackagerConfig, and modify it to match this listing.

"electronPackagerConfig": {
 "packageManager": "yarn"
}

With this code in place, run yarn run package. Your application should build success-
fully. See figure 14.6. You may have noticed that Electron Forge adds a few other con-
figuration fields to package.json. As I mentioned earlier, Electron Forge also assists
with creating installers and publishing your application to the web. We cover those
features in the upcoming chapters.

With Electron Forge, everything is set up on your behalf. At this point, you probably
fall into one of two categories: you’re either amazed by how much simpler Forge is
compared to Packager, or you’re bewildered by all of the black magic. Those reactions
are both fair and underscore some of the trade-offs made along the spectrum between
convention and configuration. My hope is that by trying both, you’ll have a sense of
which you prefer for your own applications.

Summary
 Electron Packager automates the otherwise manual and error-prone process of

packaging an Electron application for distribution.
 The application should be packaged on each of the target platforms to which

you wish to distribute.
 Setting the productName key in the package.json instructs Electron Packager to

use a custom name that supports spaces and capitalization.
 Electron Packager accepts an --icon flag and allows you to define a custom

icon for your application.

Listing 14.6 Using Yarn as your package manager: ./package.json

Figure 14.6 Packaging an application with Electron Forge

271Summary
 Asar is an archive format used by Electron applications that concatenates files
and allows random access to a specific file in the archive.

 Electron Forge can be used as a boilerplate for new Electron projects. It can
also be used to facilitate building applications that rely on electron-compile.

Releasing and
 updating applications
You’ve built your application, and you’re ready to distribute it to the world. You’ve
prepared your announcement, and your cursor is hovering over the Publish button
when—all of a sudden—your mind begins to race with some very important ques-
tions: What if it doesn’t work on all platforms as you expected? What if there is a
bug you haven’t encountered yet? What if you need to push out a new version of
the application to your users?

 These concerns are all valid. The good news is that Electron has you covered on
each front. In this chapter, we cover how to collect crash reports and—in the event
you receive an unexpectedly large number of them—how to push an update to all
of the users that currently have the application installed on their system.

This chapter covers
 Sending crash reports from Electron

 Sending reports of uncaught exceptions from
Electron

 Creating a server to collect crash and exception
reports

 Automatically pushing application updates to
users
272

273Collecting crash reports
15.1 Collecting crash reports
Despite how good your skills as a developer are, your application is going to have
bugs. Some users report them, but many others suffer in silence. Even among the
users who report bugs, it can be difficult to determine how common a given issue is
among your user base as a whole. Crash reporting is critical for discovering what types
of problems occur and at what frequency your users are experiencing them.

 Though it is certainly a relief that Electron includes support for crash reporting,
it’s surprising. As we’ve covered throughout this book, Electron is built on top of
Chromium, and crash reporting is certainly something that the Chromium team deals
with in their project. To stand on the shoulder of giants, however, we need to set up
the crash reporter in our Electron application, as well as deploy a simple server to col-
lect these crash reports for later analysis.

 In this chapter, we implement crash reporting and auto-updating into Fire Sale, which
is the application we began getting ready for deployment in chapter 14. We begin working
on the chapter-15-beginning branch, found at https://github.com/electron-in-action/
firesale.

 We tackle the following:

 Configuring Electron’s built-in ability to send a crash report when the applica-
tion—umm—crashes unexpectedly. The crash reporter is triggered when the
application goes down completely.

 Setting up a naively simple server to receive and collect the crash reports sent
from versions of our application out in the wild.

 Configuring our application to listen for uncaught exceptions that occur at
runtime. This code is our own handiwork and not something provided by Elec-
tron out of the box. This functionality is triggered when smaller errors occur
that necessarily result in a complete failure of the application itself.

 Updating our server to receive those error reports as well.

15.1.1 Setting up the crash reporter

Under the hood, Electron uses one of two crash-reporting systems: on macOS, the
Chrome team’s Crashpad reporting engine; on Windows and Linux, an older
engine known as Breakpad. These options impact how we implement crash report-
ing in Electron. The main difference is that Breakpad crash reporting needs to be
set up only in the main process, whereas Crashpad must be started in the main and
renderer processes.

 Yes, you could copy and paste the code from the main process into each of the ren-
derer processes. (We’re lucky to have only one in Fire Sale.) But that means you’d
have to remember to be diligent enough to change it in multiple places in the event
you needed to update the configuration. Personally, I’d prefer to spend a few extra
moments of effort now for a lifetime of laziness. Let’s set up a single function that we
can use in both places.

https://github.com/electron-in-action/firesale
https://github.com/electron-in-action/firesale
https://github.com/electron-in-action/firesale

274 CHAPTER 15 Releasing and updating applications
const { crashReporter } = require('electron');

const host = 'http://localhost:3000/';

const config = {
 productName: 'Fire Sale',
 companyName: 'Electron in Action',
 submitURL: host + 'crashreports',
 uploadToServer: true,
};

crashReporter.start(config);

console.log('[INFO] Crash reporting started.', crashReporter);

module.exports = crashReporter;

We set up a reusable module for starting up the crash reporter, but you can change
the value of any of those options. Particularly, we need to change submitURL because
it is both unlikely that our users happen to be running a server on that port and ulti-
mately unhelpful to us if they’re collecting crash reports locally and never sending
them to us.

 The code by itself does not start the crash-reporting engine unless it is pulled into
the main and renderer processes. We start by pulling it into the main process.

const { app, BrowserWindow, dialog, Menu } = require('electron');
const createApplicationMenu = require('./application-menu');
const fs = require('fs');

require('./crash-reporter');

const windows = new Set();
const openFiles = new Map();

// The rest of the main process code…

This method is effectively enough to implement the ability to send crash reports on
Windows and Linux. We can verify that the code inside the crash reporter has executed
by checking the terminal for the message we logged to the console in listing 15.1 when
the application starts, as shown in figure 15.1.

 As I mentioned earlier, we need to do one more—arguably simple—step to get
crash reporting working on macOS: execute the same code in the renderer process.

Listing 15.1 Creating a file to configure and start up the Crash Reporter:
./app/crash-reporter.js

Listing 15.2 Starting the crash reporter in the main process: ./app/main.js

The URL where the crash reports
are sent via an HTTP POST request.

Indicates that you want
the crash results to be
sent to the server

Starts the Crashpad or Breakpad
crash reporter using the
configuration options passed in

We require crash-reporter.js,
which will start it up.

275Collecting crash reports
const { remote, ipcRenderer, shell } = require('electron');
const { Menu } = remote;
const path = require('path');
const mainProcess = remote.require('./main.js');
const currentWindow = remote.getCurrentWindow();

require('./crash-reporter');

We can verify that the crash reporter has started by opening the Developer Tools in
the Fire Sale UI and confirming that the console message has been logged correctly,
as seen in figure 15.2.

15.1.2 Setting up a server to receive crash reports

We can send crash reports—but where? We can trigger a crash by typing process
.crash() into the Developer Tools in the renderer process. As shown in figures 15.3
and 15.4, doing so results in the following: the page crashing, the Developer Tools
locking up, and the main process logging an error.

 The immediate issue that we need to solve is the error in our terminal. The exact con-
tents of the error varies by operating system, but the gist is that the crash reporter cannot
connect to the server. This makes sense, because we haven’t yet set up a server.

 Depending on your application, you may already be using an API server. If so, I’d
recommend adding an endpoint for receiving POST requests from your application.
That said, Fire Sale has not had the need for an API server, and I’m going to work
under the assumption that we don’t have one. For those of you that do, I suspect what
follows is still helpful because it illustrates what kind of payload you can expect when a
crash is reported.

 As described in listing 15.4, let’s create a simple server for capturing and recording
crash reports. The code can be found on GitHub at http://mng.bz/k6eT.

Listing 15.3 Starting the crash reporter in the renderer process: ./app/renderer.js

Figure 15.1 The console message verifies that the code inside crash-reporter.js has executed.

Starts the crash reporter
in the renderer process

http://mng.bz/k6eT

276 CHAPTER 15 Releasing and updating applications
Figure 15.2 Verify that the crash reporter code has been executed by checking the console.

Figure 15.3 Triggering a crash in the render process requires a reload of the UI.

277Collecting crash reports
const express = require('express');
const multer = require('multer');
const bodyParser = require('body-parser');
const uuid = require('uuid');
const writeFile = require('write-file');
const path = require('path');
const http = require('http');

const app = express();
const server = http.createServer(app);

app.use(bodyParser.urlencoded({ extended: false }));

const crashesPath = path.join(__dirname, 'crashes');

const upload = multer({
 dest: crashesPath,
}).single('upload_file_minidump');

app.post('/crashreports', upload, (request, response) => {
 const body = {
 ...request.body,
 filename: request.file.filename,
 date: new Date(),
 };
 const filePath = `${request.file.path}.json`;
 const report = JSON.stringify(body);

 writeFile(filePath, report, error => {
 if (error) return console.error('Error Saving', report);
 console.log('Crash Saved', filePath, report);
 });

Listing 15.4 Creating a simple crash reporting server

Figure 15.4 Electron attempts to send the crash report but cannot find the server.

Express is a simple
web server library
for Node.js. The bodyParser

library is middleware
for Express to work
with the body of
HTTP requests.

Multer allows us to receive multipart
files (such as the crash report mini-
dumps generated by Electron).

Adds the filename of
the mini-dump and the
current time to the JSON
in the request body

Writes the file to
the filesystem

278 CHAPTER 15 Releasing and updating applications
 response.end();
});

server.listen(3000, () => {
 console.log('Crash report server running on Port 3000.');
});

If you clone the library from GitHub, install the dependencies, and run npm start.
You should have a server ready and able to collect crash reports running on http://
localhost:3000, which is exactly where we pointed the Electron crash reporter in list-
ing 15.1.

 Each crash report creates two files in the ./crashes directory: a mini-dump from
Chromium and a JSON file with additional metadata about the crash. The JSON file
contains useful data about the version of your application that crashed and the plat-
form that it was running on.

{
 "_companyName": "Electron in Action",
 "_productName": "Fire Sale",
 "_version": "1.0.0",
 "guid": "46cecb8f-f2de-4159-a235-dc8713f8393f",
 "platform": "darwin",
 "process_type": "renderer",
 "prod": "Electron",
 "ver": "2.0.4",
 "filename": "a51d2ca2e13cad25cea6c2bd15ae4d4d"
}

When a crash is reported, the server saves two files to the /crashes directory: a51d2-
ca2e13cad25cea6c2bd15ae4d4d and a51d2ca2e13cad25cea6c2bd15ae4d4d.json. The
former is a dump from Chromium of everything that was happening when the appli-
cation crashed. This file is in a binary format and cannot be opened in a text editor.

 The easiest way to parse this file is to use the minidump library from the Electron
team. You can install this globally using npm install -g minidump. After you install it,
you have the minidump_stackwalk command-line tool at your disposal and can use
minidump_stackwalk <name of mini-dump file> to read the contents of the dump.
Alternatively, you can use this tool programmatically on your crash-report server as
outlined in the tool’s documentation (www.npmjs.com/package/minidump).

15.1.3 Reporting uncaught exceptions

Electron’s built-in crash reporter is good at what it claims to do on the box—reporting
crashes. But in my experience, general bugs and minor errors are much more com-
mon than outright crashes. It would be great if we could collect these errors as well, to

Listing 15.5 An example of the JSON metadata from a crash report

The platform that the
crash occurred on.

The process type that
the crash occurred on.

The version of Electron
currently in use.

The name of the file where
the mini-dump is located.

http://localhost:3000
http://localhost:3000
http://localhost:3000
http://www.npmjs.com/package/minidump

279Collecting crash reports

have better insight into where the rough edges of our application are and exactly how
to fix them.

 Unfortunately, this is not a tool that is already built into Electron. The good news is
that this feature is relatively easy to implement given the knowledge we’ve already
gained throughout the course of this book.

 To implement this feature, we have to listen for any uncaught exceptions. The syn-
tax for this is slightly different between the main and renderer processes, but the
implementation is the same, as shown in the following listing. When an uncaught
exception occurs, send an HTTP POST request to our crash server, which will then
log the error to a JSON file.

const { crashReporter } = require('electron');
const request = require('request');
const manifest = require('../package.json');

const host = 'http://localhost:3000/';

const config = {
 productName: 'Fire Sale',
 companyName: 'Electron in Action',
 submitURL: host + 'crashreports',
 uploadToServer: true,
};

crashReporter.start(config);

const sendUncaughtException = error => {
 const { productName, companyName } = config;
 request.post(host + 'uncaughtexceptions', {
 form: {
 _productName: productName,
 _companyName: companyName,
 _version: manifest.version,
 platform: process.platform,
 process_type: process.type,
 ver: process.versions.electron,
 error: {
 name: error.name,
 message: error.message,
 stack: error.stack,
 },
 },
 });
};

if (process.type === 'browser') {
 process.on('uncaughtException', sendUncaughtException);
} else {

Listing 15.6 Updating the crash reporter to report uncaught exceptions:
./app/crash-reporter.js

Sets up a function
to report uncaught
exceptions

Sends an HTTP POST
request to the crash
server we created earlier

Sends information
about the error
that was fired

Checks if we’re
running in the main
or renderer process

If the error occurred
in the main process,
uses Node’s
uncaughtException
event

280 CHAPTER 15 Releasing and updating applications

ed

 window.addEventListener('error', sendUncaughtException);
}

console.log('[INFO] Crash reporting started.', crashReporter);

module.exports = crashReporter;

Any time an error is fired and it bubbles up to the window object without being han-
dled, a report is sent to our server. But just as last time, our server has not been set up
yet to handle this report. We need to add another route to log this error.

const express = require('express');
const multer = require('multer');
const bodyParser = require('body-parser');
const uuid = require('uuid');
const writeFile = require('write-file');
const path = require('path');
const http = require('http');

const app = express();
const server = http.createServer(app);

app.use(bodyParser.urlencoded({ extended: false }));

const crashesPath = path.join(__dirname, 'crashes');
const exceptionsPath = path.join(__dirname, 'uncaughtexceptions');

const upload = multer({
 dest: crashesPath,
}).single('upload_file_minidump');

app.post('/crashreports', upload, (request, response) => {
 // …
});

app.post('/uncaughtexceptions', (request, response) => {
 const filePath = path.join(exceptionsPath, `${uuid()}.json`);
 const report = JSON.stringify({
 ...request.body,
 date: new Date()
 });

 writeFile(filePath, report, error => {
 if (error) return console.error('Error Saving', report);
 console.log('Exception Saved', filePath, report);
 });

 response.end();
});

Listing 15.7 Setting up a server route to receive reports of uncaught exceptions

If the error occurr
in the renderer
process, adds an
event listener to
the global object

Adds a path on
the filesystem for
storing uncaught
exception reports

Uses the
UUID module to
create a unique

identifier for the
crash report

Adds the date to
the crash report

Writes the
report to the
filesystem

281Signing your applications
server.listen(3000, () => {
 console.log('Crash report server running on Port 3000.');
});

15.2 Signing your applications
In chapter 14, we packaged our application so that users don’t need to have Node
installed or be familiar with the command line to start it up. In the previous section,
we added crash and exception reporting to be confident that we’ll be notified in the
event our application does not work as intended. Our next step is to sign our applica-
tion so that our users can be certain that they’re getting the real thing and not a cheap
substitute.

 This process differs on macOS and Windows, so let’s walk through each platform
separately. Although some of the steps for macOS seem repetitive when we package
Fire Sale for the Mac App Store in chapter 16, myriad subtle differences exist.

 Before we get into the nitty-gritty of code signing our applications, I’ll take a
moment to explain what code signing is. The internet is a wild place. You can think of
code signing as a tamper-proof seal around your application. Signing our applications
allows users to be confident that it both came from you and that no one modified it or
otherwise tampered with it along the way. On top of being a generally good idea,
macOS and Windows prefer that users work with signed applications and present a
series of warnings if they attempt to open an unsigned application. Depending on
their settings, users may not be able to open unsigned applications at all.

15.2.1 Signing applications for macOS

You need a few prerequisites in place to sign a macOS application. First, you must be a
registered member of the Apple Developer Program (https://developer.apple.com/
programs/). Second, you must have Xcode installed. This can be downloaded from the
Mac App Store or from Apple’s Developer site (https://developer.apple.com/xcode/
download/). In addition to having Xcode installed, you also need to have the Xcode
command-line tools installed. To set these up, type xcode-select –install from the
command line, and follow all of the subsequent prompts.

CREATING CERTIFICATES

To sign your application, you need to create certificates either through iTunes Con-
nect or from within Xcode. We spend an uncomfortable amount of time in iTunes
Connect in chapter 16, so we’ll do it in Xcode this time.

 We generate two certificates: a “Developer ID Application” and a “Developer ID
Installer” certificate. To create these certificates

1 Open Xcode
2 Select Preferences from the Xcode menu (as shown in figure 15.5)
3 Select the Accounts tab
4 Select your team
5 Click the Manage Certificates button (as shown in figure 15.6)

https://developer.apple.com/programs/
https://developer.apple.com/programs/
https://developer.apple.com/programs/
https://developer.apple.com/xcode/download/
https://developer.apple.com/xcode/download/
https://developer.apple.com/xcode/download/

282 CHAPTER 15 Releasing and updating applications
Figure 15.5 Select Preferences from the Application menu.

Figure 15.6 Select your team from the Accounts tab, and click Manage Certificates.

283Signing your applications
6 Click the + button in the lower-left corner
7 Choose Developer ID Application from the drop-down menu (shown in fig-

ure 15.7)
8 Repeat this process with Developer ID Installer

Xcode automatically adds these certificates to your Keychain. Electron Packager looks
these up when it comes time to package your application and sign it. First, we need to
modify the packaging script in our package.json.

"build-mac": "electron-packager . --platform=darwin

➥--out=build --icon=./icons/Icon.icns --asar –overwrite

➥--app-bundle-id=\"net.stevekinney.firesale\"

➥--app-version=\"1.0.0\" --build-version=\"1.0.100\" --osx-sign",

Listing 15.8 Updated Mac packaging script: ./package.json

Figure 15.7 Select Developer ID Application and Developer ID Installer from the drop-down menu.

284 CHAPTER 15 Releasing and updating applications
This line is getting a bit long, and we begin to break it out a bit in chapter 16, but for
now, we add a few important new arguments to the existing script: --app-bundle-id,
--app-version, --build-version, and --osx-sign.

 When running npm run build-mac, you are prompted for your password multiple
times, as shown in figure 15.8, because Electron Packager accesses your keychain to
use the certificates to sign your application.

15.2.2 Building an installer and code signing on Windows

On Windows, you need a code-signing certificate. Microsoft recommends buying a
certificate from a list of certificate authorities listed in their documentation (http://
mng.bz/3VEH).

 You can still build an installer without a certificate, but you might have difficulty
distributing your application to users without one. Microsoft’s SmartScreen filter may
block your application from being downloaded, and many antivirus programs might
mislabel your application as malware. For the purposes of this chapter, as we go
through the process of building an installer, I show you where to plug in your certifi-
cate, should you move forward and decide to purchase one.

 The Electron team maintains a helpful library for building installers on Windows.
You can install this tool using npm install --save-dev electron-winstaller. We cre-
ate a new folder called scripts and make a file called scripts/windows.js to store the
configuration for our Windows installer. Add the content in listing 15.9 to the file we
just created.

const { createWindowsInstaller } = require('electron-winstaller');
const path = require('path');

const iconPath = path.resolve(__dirname, '../icons/Icon.ico');

Listing 15.9 Windows installer configuration: ./scripts/windows.js

Figure 15.8 macOS’s codesign utility accesses your keychain to use
the certificates you generated to sign the application.

Imports the function to
create a Windows installer

Locates the path to the
icons for the application

http://mng.bz/3VEH
http://mng.bz/3VEH
http://mng.bz/3VEH

285Signing your applications
const result = createWindowsInstaller({
 title: 'Fire Sale',
 authors: 'Steve Kinney',
 appDirectory: path.resolve(
 __dirname,
 '../build/Fire Sale-win32-x64'
),
 outputDirectory: path.resolve(
 __dirname,
 '../build/Fire Sale-win32-x64-installer'
),
 icon: iconPath,
 setupIcon: iconPath,
 name: 'FireSale',
 setupExe: 'FireSaleSetup.exe',
 setupMsi: 'FireSaleSetup.msi',
});

result
 .then(() => console.log('Success'))
 .catch(error => console.error('Failed', error));

If you have your certificates handy, you can add them to the configuration object.
certificateFile should point to the path where the certificate is located. This pro-
cess is similar to how we locate the iconPath. certificatePassword is the password
for the certificate. Do not store the password in version control—particularly if your
application is or ever will be open source.

SETTING UP SQUIRREL EVENTS

If you get really excited and double-click the FireSaleSetup executable, you may
notice that things are a little strange. You see a loading GIF followed by the applica-
tion immediately opening. It didn’t add a shortcut to the desktop, or any other way of
getting back to the application.

 Uninstalling the application adds its own set of oddities. When you click the but-
ton in the Add and Remove Programs settings panel, you see the application open
again before it finally uninstalls. We need to address this.

 The Windows installer is set up with the Squirrel.Windows framework. When you
start the application for the first time, or when it is being uninstalled, has been
updated, or finds an available update, Squirrel passes an argument to your applica-
tion. Luckily, working with Squirrel on Windows can range from incredibly simple to
very easy. Let’s start with the incredibly simple way, and then I’ll show you what’s hap-
pening under the hood.

 The easiest way to get started is to delegate the work to someone else by installing
electron-squirrel-startup using npm install electron-squirrel-startup. After
you install this package, add the code from this listing to your ./app/main.js.

Creates an installer.
This returns a promise.

Locates the packaged
application that you first
built in chapter 14.

Specifies the directory
where you would like the
installer to be generated

Sets the icon for the
application itself

Sets the icon for the
installer packager. I’ve
opted to use the same icon.

If the installer was
created successfully,
the promise resolves.If an error occurred and the promise

fails, log the error to the console.

286 CHAPTER 15 Releasing and updating applications

a

u

const { app, BrowserWindow, dialog, Menu } = require('electron');
const createApplicationMenu = require('./application-menu');
const fs = require('fs');

require('./crash-reporter');

if(require('electron-squirrel-startup')) return;

// …

With that simple change, all the oddities we encountered when working with Fire-
SaleSetup.exe are squared away. So, what’s happening in this module? The module is
open source and can be found on GitHub (https://github.com/mongodb-js/electron-
squirrel-startup), but it’s a small file, and for the sake of completeness I list it here as
well.

var path = require('path');
var spawn = require('child_process').spawn;
var debug = require('debug')('electron-squirrel-startup');
var app = require('electron').app;

var run = function(args, done) {
 var updateExe = path.resolve(
 path.dirname(process.execPath), '..', 'Update.exe'
);
 debug('Spawning `%s` with args `%s`', updateExe, args);
 spawn(updateExe, args, {
 detached: true
 }).on('close', done);
};

var check = function() {
 if (process.platform === 'win32') {
 var cmd = process.argv[1];
 debug('processing squirrel command `%s`', cmd);
 var target = path.basename(process.execPath);

 if (cmd === '--squirrel-install' || cmd === '--squirrel-updated') {
 run(['--createShortcut=' + target + ''], app.quit);
 return true;
 }
 if (cmd === '--squirrel-uninstall') {
 run(['--removeShortcut=' + target + ''], app.quit);
 return true;
 }
 if (cmd === '--squirrel-obsolete') {
 app.quit();
 return true;

Listing 15.10 Setting up Squirrel events in the main process: ./app/main.js

Listing 15.11 electron-squirrel-startup

If the function in
electron-squirrel-
startup returns true,
exits the main process.

Gets the path of the
Squirrel updater

Does any of the
following, only if the

application is running
on Windows

Gets the
first argument
passed from the
command line

Checks if the
application is

being run as an
installer or

updater

Creates an
application
shortcut on
the desktop,
and quits

Returns
true, which

fulfills the
conditional
in the main

process

Checks
if the

pplication
is being

ninstalled
Removes the

shortcut from the
desktop, and quits

the application

https://github.com/mongodb-js/electron-squirrel-startup
https://github.com/mongodb-js/electron-squirrel-startup

287Automatically updating applications
 }
 }
 return false;
};

module.exports = check();

If Squirrel did anything, it returns true. Recall in ./app/main.js that we used a condi-
tional and if require('electron-squirrel-startup') returned true, we ended the
main process early. This allows us to tap into the Squirrel framework when necessary
and not start the application when we’re installing or uninstalling it. You can also see
that on installation and uninstallation, Squirrel creates and removes the desktop
shortcut as needed.

15.3 Automatically updating applications
Whether you’ve completed a hot new feature that you want everyone to have or you’re
trying to correct a critical bug that you found after implementing the crash and error
report, the ability to push out updates to your users is important.

 We tend to take this capability for granted as web developers. Whenever we deploy
a new application to the web, we can reasonably expect that users are getting the latest
and greatest version of it. But that’s not necessarily true when we’re building desktop
applications. We can tell users about it, but there is no guarantee that they’re going to
take the time to download it.

 Browsers used to suffer from this problem. New JavaScript language and web plat-
form features would be released, but you couldn’t use them because users typically did
not update their browsers on a regular basis. Today, modern browsers like Chrome
and Firefox push out new versions to users every six weeks or so. The update is auto-
matically downloaded, and the next time the user starts the browser, the new one is
swapped in without them having to think about the tedious process of upgrading.

 It shouldn’t be a surprise at this point to hear that Electron provides a mechanism
for us to do this with our applications—with some exceptions. As of this writing, this
feature is limited to macOS and Windows. There is currently no support for auto-
updating Electron applications on Linux.

15.3.1 Setting up automatic updates in Electron

Like crash reporting, implementing automatic updates has two sides: your application
and a server to host releases of your application. We get into the details momentarily,
but let’s talk about how this works at a high level first. After you’ve configured the
autoUpdater module, it pings your release server every time the application starts. If
the server responds with an HTTP 204 response, then Electron knows that it is run-
ning the latest version of the application. If there is a new version, the server returns
an HTTP 200 JSON-formatted response with the URL of the new release.

 You may have your own server for hosting releases. That’s perfectly fine. If you do
not, we create a simple server to get you off the ground and demonstrate auto-updating

If none of the cases
are true, returns false.

288 CHAPTER 15 Releasing and updating applications

Get
cu
ve

o
applic

w
cl
in action. But this is not meant to be prescriptive. As long as you have a server that
responds with the correct HTTP status codes and payload if there is a new release,
Electron does not have strong opinions on the implementation details, and we won’t
either, for the time being.

 To get this working, we check if we’re using a production version of the applica-
tion. If so, we send a request to the server asking for the most recent version of the
application. If a new version exists, ask the user if they are interested in updating.
When they agree, tell the autoUpdater module to quit the application and install the
new version on our behalf.

const { app, autoUpdater, dialog, BrowserWindow } = require('electron');

const isDevelopment = app.getPath('exe').indexOf('electron') !== -1;

const baseUrl = 'https://firesale-releases.glitch.me';

const platform = process.platform;
const currentVersion = app.getVersion();

const releaseFeed =
`${baseUrl}/releases/${platform}?currentVersion=${currentVersion}`;

if (isDevelopment) {
 console.info('[AutoUpdater]', 'In Developement Mode. Skipping…');
} else {
 console.info('[AutoUpdater]', `Setting release feed to ${releaseFeed}.`);
 autoUpdater.setFeedURL(releaseFeed);
}

autoUpdater.addListener('update-available', () => {
 dialog.showMessageBox({
 type: 'question',
 buttons: ['Install & Relaunch', 'Not Now'],
 defaultId: 0,
 message: `${app.getName()} has been updated!`,
 detail: 'An update has been downloaded and can be installed now.'
 }, response => {
 if (response === 0) {
 setTimeout(() => {
 app.removeAllListeners('window-all-closed');
 BrowserWindow.getAllWindows().forEach(win => win.close());
 autoUpdater.quitAndInstall();

Listing 15.12 Implementing Electron’s autoUpdater: ./app/auto-updater.js

Checks if we’re running this Electron
application in development

Stores the base URL
of the server where
you host releases

Gets the current OS on which
application is running

s the
rrent
rsion
f the
ation

Creates the path from which to
request an update, based on the

OS and application version

If the application is in development
mode, does not check for an update . . .

. . . otherwise, sets the feed of
the autoUpdater to the URL

you just created.

If an update is
available, performs
the action provided

Removes
the event

listener
for the

indows-all-
osed event

Closes all of
the windows

Quits the
application,
and installs
the update

289Automatically updating applications
 }, 0);
 }
 });
});

module.exports = autoUpdater;

On macOS, autoUpdater fails if the application has not been code signed. When we’re
developing the application, we use a version that has not been signed. These two facts
are in direct opposition. The best course of action is not to fetch an update if we’re in
development. This outcome also makes sense, because we’re likely working on the next
version of the application, as opposed to the most recently released version.

 You can implement this in a few ways. You could, for example, try to set the feed
URL and then catch the error if the application hasn’t been code signed. Based purely
on aesthestic reasons, this is not something I like to do. Electron does not have an API
to let us know whether we’re in development, but when we are in development, we’re
using a version of Electron buried inside of our node_modules directory. In my case, it’s
located at ./node_modules/electron/dist/Electron.app/Contents/MacOS/Electron.
In production it is located in the application bundle itself. I’ve taken advantage of this
fun fact to determine whether the application is in development.

 If it’s not in development, then we create a URL to look for updates based on the
platform on which the application is running. This URL can technically be anything
you want. You don’t have to follow my example, if your setup is different than the one
we write together next.

 We tell the autoUpdater module to send a request to the URL provided and ask if
there are any updates. If there are, then the updates-available event runs. We’ve set
up a listener for that event. If an update is available, we ask the user if they would like
to update to the latest and greatest version of Fire Sale. If they agree, then we take a
series of steps to gracefully transition them to the new version.

 First, I remove the event listener that we set up in ./app/main.js that prevents the
application from quitting if all of the windows are closed on macOS. Next, we iterate
through the windows and close them. We do this to prompt the user to save any
changes made to the file. Finally, we call autoUpdater.quitAndInstall(), which—
unsuprisingly—closes the application and installs the newly downloaded update.
Squirrel takes care of all of this on our behalf.

15.3.2 Setting up a server for automatic updates

As with the crash reporter, we set up a deliberately simple server for notifying your
users of updates. A more robust example might use a database to store the most
recent version along with release notes and more. You could store your application
bundles on S3, but going through the process of creating a full-featured web server is
outside the scope of this book.

 As I mentioned earlier, our server must fulfill a simple contract to play nicely with
Electron’s autoUpdater module. If the application matches the latest release, the

290 CHAPTER 15 Releasing and updating applications

P

OS p
from

para

re
H

sta
server should return a response with a 204 status code. If an update is available, the
servers should return a JSON object that has a url property with the URL to the new
application as its value.

 I’ve hosted the server (https://firesale-releases.glitch.me/) and its code (https://
glitch.com/edit/#!/firesale-releases) on Glitch, where you can remix it for your own
purposes. Glitch also hosts the application, so we can use it in Fire Sale to pull down
an update. I encourage you to visit the link to the previous code for the most recent
version, but I include an annotated version here as well.

const express = require('express');
const fs = require('fs');
const path = require('path');
const app = express();

app.use(express.static('public'));

const latestRelease = '1.2.0';

app.get("/", (request, response) => {
 response.sendFile(__dirname + '/views/index.html');
});

app.get('/releases/:platform', (request, response) => {
 const { platform } = request.params;
 const { currentVersion } = request.query;

 if (currentVersion === latestRelease) {
 response.status(204);
 return response.end();
 }

 if (platform === 'darwin') {
 return response.json({
 url: …
 });
 }

 if (platform === 'win32') {
 return response.json({
 url: …
 });
 }

 if (platform === 'linux') {
 return response.json({
 url: …
 });
 }

 response.status(404).end();
});

Listing 15.13 Setting up the release server

This is the most recent
release of Fire Sale.

Sets up a route that
listens for GET requests
on a specific platform
with an optional
version passed in

ulls the
latform
the URL
meters

Pulls the current
version from a
query parameter

Checks if the current
version equals the latest
version referenced earlier

If it
matches,
turns an
TTP 204
tus code

If the platform is macOS, returns
a payload with the URL to the
newest bundle for macOS

If the platform is Windows, returns
a payload with the URL to the
newest bundle for Windows

If the platform is Linux, returns
a payload with the URL to the
newest bundle for Linux

https://glitch.com/edit/#!/firesale-releases
https://glitch.com/edit/#!/firesale-releases
https://glitch.com/edit/#!/firesale-releases
https://firesale-releases.glitch.me/

291Automatically updating applications
const listener = app.listen(process.env.PORT, () => {
 console.log('Your app is listening on port ' + listener.address().port);
});

I started by storing a reference to the most recent version of Fire Sale in a variable.
Next, I set up a dynamic route. If you recall, Fire Sale requests updates based on the
platform on which it’s running. Versions running on macOS, Windows, and Linux
request updates from /releases/darwin, /releases/win32, and /releases/linux, respec-
tively. We also check if the version number is included as a query parameter.

 If the current version and the latest release match, then we respond with a 204 sta-
tus code to let the application know that it is currently running the most recent ver-
sion. If they do not match, we assume that an update is available. We then check which
platform the user requested and send them the URL for the appropriate flavor of the
latest release of Fire Sale, a shown in figure 15.9.

 If you’ve used the code I provided for the autoUpdater and pointed it at
https://firesale-releases.glitch.me/, then you should be notified about a very import-
ant update to Fire Sale.

Figure 15.9 Fire Sale automatically notifies users when a new version is available on the server.

https://firesale-releases.glitch.me/

292 CHAPTER 15 Releasing and updating applications
Summary
 Electron includes built-in modules for handling crash reports and automatic

updates.
 The crash report sends reports in a mini-dump format when the application

outright crashes.
 Uncaught exceptions can also be monitored and reported to a server for addi-

tional insight.
 Applications should be code signed to verify that they have not been tam-

pered with.
– On macOS, code-signing certificates can be generated from Xcode.
– On Windows, developers can purchase certificates from a certificate authority.

 Windows installers can be easily created using the electron-winstaller and
electron-squirrel-startup packages on npm.

 Electron’s autoUpdater module checks for updates on start up.
 autoUpdater uses the open source Squirrel framework under the hood to man-

age installation and updates.

Distributing your
application through

the Mac App Store
In the previous chapter, we built two of our projects from earlier in the book. This
eliminated the need for our users to install Node.js and use the command line to
start one of our applications. In this chapter, we discuss strategies for distributing
an application built with Electron.

16.1 Submitting your application to the Mac App Store
Distributing your application through the Mac App Store has a few distinct advan-
tages. First, you can easily charge money for your application if you’re interested in
going down that road. Second, the Mac App Store handles application updates on
your behalf. The disadvantages are that enrolling in Apple’s Developer Program
isn’t free and—should you decided to charge for your application—Apple takes a
30% cut of the sale price of your application.

 Submitting your application to the Mac App Store takes many steps beyond simply
packaging your application—as we did in chapter 14. You must also create security

This chapter covers
 Packing your application for the Mac App Store

 Creating certificates and signing your application

 Uploading your application to iTunes Connect
293

294 CHAPTER 16 Distributing your application through the Mac App Store
certificates and sign your application to ensure that users are receiving an official version
of it. Signing your application is good practice in general, and this chapter is worth read-
ing, even if you do not intend to submit your application to the Mac App Store. The pro-
cess of signing and uploading your application is primarily performed through native
and web-based UIs provided by Apple. As a result, this chapter is highly visual.

 Before you can submit an application to the Mac App Store, you must have Xcode
installed on your Mac, and you need to sign up for the Apple Developer Program.
Xcode, which is available on the Mac App Store, is a large application, so start that
download first before enrolling in the developer program. To do this, visit https://
developer.apple.com/programs/, and enroll in the program as either an individual or
an organization.

16.1.1 Signing the application

Code signing is a technology that allows you to certify that your application is, in fact,
created by you and not some imposter. When a user first installs your application, the
operating system tracks the certificate you included. Only you can generate this certif-
icate, which means if it changes, the new version of the application could be from a
malicious attacker.

 We need two certificates: one for the application itself, and one for the installer we
upload to the Mac App Store—which we create later in this chapter. To create these
certificates, open the Keychain Access application, shown in figure 16.1, located in the
/Applications/Utilities directory. This application is included in macOS and should
be available even if you haven’t installed Xcode yet.

With the application open, navigate to the Keychain Access application menu, then
select Certificate Assistant, followed by Request a Certification From a Certificate
Authority, as shown in figure 16.1. This action triggers a dialog box, shown in fig-
ure 16.2, where you can add additional information about the certificate to be
generated.

 Make sure you select Saved to Disk when creating the certificate. After you click
Continue, you are prompted to save a file with the name CertificateSigningRequest
.certSigningRequest. Where you choose to save the file is up to you—it doesn’t make a
difference as long as you can find it again later.

Other uses of Keychain Access
As you might be able to guess from the name, Keychain Access does more than just
generate certificates for signing applications. It is where macOS stores all of your
saved passwords and certificates. It also stores all of the passwords for wireless net-
works that you’ve asked it to remember. If you ever need to look up a password, you
can do so using Keychain Access.

https://developer.apple.com/programs/
https://developer.apple.com/programs/
https://developer.apple.com/programs/

295Submitting your application to the Mac App Store
When you have a certificate, you need to let Apple know about it. Visit the Apple
Developer Program Member Center (https://developer.apple.com/account), and
select Certificates, IDs, and Profiles from the left-hand sidebar. By default, the page
for managing iOS certificates opens. Select macOS as the target platform, as shown in
figure 16.3.

Figure 16.1 Request a certificate using Keychain Access.

Figure 16.2 Enter information for your application signing certificate request.

https://developer.apple.com/account

296 CHAPTER 16 Distributing your application through the Mac App Store
After you switched from iOS to macOS, you see either a list of the certificates that
you’ve uploaded in the past or an empty state. Either way, because we’re uploading a
new certificate, click the + button in the upper-right corner of the screen, as shown in
figure 16.4.

The certificate can be used for a variety of purposes. In addition to signing your appli-
cation, certificates can be used to sign server-generated push messages, which you may
have seen on mobile platforms to inform users that something has happened in an
application that is not currently open.

Figure 16.3 Select macOS as the target platform.

Figure 16.4 Add the certificate request you generated earlier.

297Submitting your application to the Mac App Store
 This is outside of the scope of this book and a topic for another day. As you may
have guessed, we want to create a production-ready Mac App Store version of Fire Sale
and need a Mac App Store certificate to do that. Scroll past the development options
along the top, and select Mac App Store, as shown in figure 16.5.

Figures 16.6 through 16.8 show that I am creating a Mac App Distribution certificate.
In practice however, you need to go through these steps twice—once with Mac App
Distribution selected and once with Mac Installer Distribution selected. The process is
exactly the same for both, and you receive two certificates at the end. The only differ-
ence is which radio button you choose at the very beginning of the process.

Figure 16.5 Select Mac App Store as the type of certificate that you’re requesting.

298 CHAPTER 16 Distributing your application through the Mac App Store
Earlier in the chapter, we created a file with the extension certSigningRequest. We use
this file to request certificates from Apple, which are signed by the Apple Worldwide
Developer Relations Certification Authority. When you sign an application, you use a
key that can be generated only with a private key stored locally on your computer. It’s
important that you are careful with this private key. It’s the only way to sign an applica-
tion that matches the public key, and anyone with access to your private key can sign
applications on your behalf.

Figure 16.6 Generate certificates for the application and installer.

299Submitting your application to the Mac App Store
When prompted, upload the certificate-signing request that you generated in Key-
chain Access. Apple signs the certificate and prompts you to download it, as shown in
figure 16.8. After downloading the certificate, you can double-click it to add to Key-
chain Access automatically.

Figure 16.7 Upload the certificate signing request file you created earlier.

300 CHAPTER 16 Distributing your application through the Mac App Store
When you complete this process for both Mac App Distribution and Mac Installer Dis-
tribution certificates, you should see both certificates inside Keychain Access, as
shown in figure 16.9. Congratulations—you’re now ready to sign your application and
begin getting it ready for submission to the Mac App Store. In the next section, we
begin the process of registering the application with Apple and providing the meta-
data required to be listed in the App Store.

Figure 16.8 Download your completed certificate.

301Submitting your application to the Mac App Store
16.1.2 Registering your application with the Mac App Store

With your certificates in place, you must register the application itself with Apple
before you can upload your application binary. Even if you have no intention of dis-
tributing an application through the Mac App Store, signing your application and
registering it with Apple is a good practice. Unsigned applications trigger those
intimidating gatekeeper errors that Apple displays when a user tries to open an
unsigned application inside modern versions of macOS. In addition, depending on a
user’s settings, they may not be allowed to open unsigned applications at all. Inside
the Certificates, Identifiers, and Profiles section, select App ID from the sidebar on
the left, as shown in Figure 16.10.

Figure 16.9 The application and installer certificates listed in Keychain Access.

302 CHAPTER 16 Distributing your application through the Mac App Store
An App ID is a unique identifier for your application. Creating an App ID consists of
three steps. The first is to give it an App ID description. This is a colloquial name for
the application and is generally what users see as the title of your application when
viewing it in the App Store.

 The second is a list of services that your application requests access to, such as
sending push notifications, displaying maps, or saving or retrieving files from iCloud.
Fire Sale does not use any of these, so we’ll stick with the defaults. Third, you create an
App ID Suffix, which is the truly unique identifier for your application. It’s a lot like a
backward web domain. In this case, I used net.stevekinney.firesale as opposed to fire-
sale.stevekinney.net, which is something you might expect to find on the web.

16.1.3 Adding the application to iTunes Connect

You’re not out of the woods yet. Your next step is to add the application to iTunes Con-
nect (https://itunesconnect.apple.com/), which represents the application’s listing in
the Mac App Store. From here, you can add a description of your application, screen-
shots, and more. A word of caution: I won’t cover every aspect of uploading screenshots
and things along those lines, but I will tell you that Apple takes this seriously and will
reject your application if you fail to include all of the necessary information—including a
link to a valid webpage where users can find support for your application.

Figure 16.10 Register your App ID.

https://itunesconnect.apple.com/)

303Submitting your application to the Mac App Store
 Once inside iTunes Connect, click the My Apps icon in the upper-left corner,
shown in figure 16.11. In this section, you see either a list of your existing applications
or an empty state if this is your first application. Click the + button in the upper-left
side of the window, and select New Mac App, as shown in figure 16.12.

Figure 16.11 Select My Apps in iTunes Connect.

Figure 16.12 Add a new Mac application in iTunes Connect.

304 CHAPTER 16 Distributing your application through the Mac App Store
At this stage, as shown in figure 16.13, you are asked for some cursory information
about your application: its name, primary language, the App ID description and suffix
you created in the previous section, and more. The SKU is optional and is just used to
identify application sales for the sake of accounting.

16.1.4 Packaging your application for the Mac App Store

In chapter 14, we performed all of our configuration inline in the package.json file. To
package our application for the Mac App Store, we need to sign it as well as provide
some other metadata to aid in operating system integration. macOS applications use
property list (.plist) files, which resemble XML, to store important metadata such as the
name and what permissions the application is requesting from the operating system.

 A simple application might be able to get away with a single property list file. But
Electron applications aren’t exactly simple applications. If you recall from chapter 1,
each process—both the main and renderer processes—are separated out. This mean
that we’ll need to set permissions for our child processes, as well as the main applica-
tion process. In addition, Electron bundles its own frameworks as well as libraries for
media playback. These must be signed as well.

 To accomplish this, we set up three property list files: info.plist stores the generic
metadata for our application, parent.plist stores the sandbox permissions for the

Figure 16.13 Provide details about the application in iTunes Connect.

305Submitting your application to the Mac App Store

Ident
te

the
an
parent process, and child.plist stores the sandbox permissions for the child process. In
this example, child processes extend the parent’s permissions. These eventually are
installed using a build script. As a result, I’ve decided to place each of these in a
folder called ./scripts/mas. My naming conventions are not important. If you’d like to
store these files somewhere else, that’s fine. The Electron API Demos application
stores the property lists in its assets folder. For the purposes of simplicity and clarity,
I’ve chosen to keep all of the files in listings 16.1–16.3 in the same folder as the build
script that we’ll create together shortly.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
 <dict>
 <key>CFBundleURLTypes</key>
 <array>
 <dict>
 <key>CFBundleURLSchemes</key>
 <array>
 <string>firesale</string>
 </array>
 <key>CFBundleURLName</key>
 <string>Fire Sale</string>
 </dict>
 </array>
 <key>ElectronTeamID</key>
 <string>XD3V298ZRK</string>
 </dict>
</plist>

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
 <dict>
 <key>com.apple.security.app-sandbox</key>
 <true/>
 <key>com.apple.security.application-groups</key>
 <string>XD3V298ZRK.net.stevekinney.firesale</string>
 <key>com.apple.security.files.user-selected.read-write</key>
 <true/>
 </dict>
</plist>

All applications on the Mac App Store must enable sandboxing, which wraps each
application into an isolated container and limits its ability to access the rest of the
operating system. Apple does this in the name of security. That said, many applications

Listing 16.1 Setting up the application: ./scripts/mas/info.plist

Listing 16.2 Setting parent permissions: ./scripts/mas/parent.plist

This is the same as the
productName field in
your package.json.

Your Apple Team ID.

Mac App Store applications
must use sandboxing.

Allows access to the
sandboxed containers
of other applications
by your teamifies your

am using
 Team ID
d bundle
identifier

Asks for permission to read and write files
using the Open and Save dialog boxes

306 CHAPTER 16 Distributing your application through the Mac App Store
can’t do their jobs if isolated to a sandbox. Apple understands this and allows applica-
tions to clearly state what entitlements they need. We know that Fire Sale uses Open
and Save dialog boxes to read and write from the filesystem, so we clearly state that we
need that access.

 One exception to sandboxing is that applications are allowed to reach into the
containers of other applications created by the same developer. We never created
tight integrations between Fire Sale and Clipmaster 900 or Jetsetter, but we may down
the line. Stating the application group lets macOS know that this application is part of
a family—even if it’s a one-person family for now.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
 <dict>
 <key>com.apple.security.app-sandbox</key>
 <true/>
 <key>com.apple.security.inherit</key>
 <true/>
 </dict>
</plist>

With the three property lists in place, we use electron-packager to build the applica-
tion. This approach is similar to the technique we used in chapter 14, with some
important changes. First, we tell electron-packager that we’re targeting the mas
(Mac App Store) platform as opposed to darwin for regular macOS applications. We
also script the rather tedious process of code signing all of the processes, frameworks,
and libraries used by our application. This script uses the Xcode codesign command-
line interface tool. This script is inspired by the approach used by the Electron Core
Team to build the Electron API Demos application (https://github.com/electron/
electron-api-demos). Make sure you have Xcode installed before running the script in
the following listing. You also need to make sure you use the names of the certificates
you generated earlier in this chapter.

#!/bin/bash

set -ex

APP="Fire Sale"

electron-packager . \
 "$APP" \
 --asar \
 --overwrite \
 --platform=mas \

Listing 16.3 Extending permissions: ./scripts/mas/child.plist

Listing 16.4 The build script

Tells Apple that child
processes will inherit
the same permissions
as the main process

This script runs similar to
the build scripts used in
package.json in chapter 14.

One minor change is that
we’re setting the platform to
mas for the Mac App Store.

https://github.com/electron/electron-api-demos
https://github.com/electron/electron-api-demos
https://github.com/electron/electron-api-demos

307Submitting your application to the Mac App Store

Optio
a p

m
with

includ
E

cer

in
 --app-bundle-id=net.stevekinney.firesale \
 --app-version="$npm_package_version" \
 --build-version="1.0.0" \
 --arch=x64 \
 --icon=./icons/Icon.icns \
 --out=build \
 --extend-info=scripts/mas/info.plist

APP_PATH="./build/$APP-mas-x64/$APP.app"
RESULT_PATH="./build/$APP.pkg"
APP_KEY="3rd Party Mac Developer Application:

➥ Turing School of Software and Design (XD3V298ZRK)"
INSTALLER_KEY="3rd Party Mac Developer Installer:

➥ Turing School of Software and Design (XD3V298ZRK)"
FRAMEWORKS_PATH="$APP_PATH/Contents/Frameworks"
CHILD_PLIST="./scripts/mas/child.plist"
PARENT_PLIST="./scripts/mas/parent.plist"

codesign -s "$APP_KEY" -f --entitlements "$CHILD_PLIST"

➥ "$FRAMEWORKS_PATH/Electron Framework.framework/Versions/A/Electron

➥ Framework"
codesign -s "$APP_KEY" -f --entitlements "$CHILD_PLIST"

➥ "$FRAMEWORKS_PATH/Electron

➥ Framework.framework/Versions/A/Libraries/libffmpeg.dylib"
codesign -s "$APP_KEY" -f --entitlements "$CHILD_PLIST"

➥ "$FRAMEWORKS_PATH/Electron

➥ Framework.framework/Versions/A/Libraries/libnode.dylib"
codesign -s "$APP_KEY" -f --entitlements "$CHILD_PLIST"

➥ "$FRAMEWORKS_PATH/Electron Framework.framework"
codesign -s "$APP_KEY" -f --entitlements "$CHILD_PLIST"

➥ "$FRAMEWORKS_PATH/$APP Helper.app/Contents/MacOS/$APP Helper"
codesign -s "$APP_KEY" -f --entitlements "$CHILD_PLIST"

➥ "$FRAMEWORKS_PATH/$APP Helper.app/"
codesign -s "$APP_KEY" -f --entitlements "$CHILD_PLIST"

➥ "$FRAMEWORKS_PATH/$APP Helper EH.app/Contents/MacOS/$APP Helper EH"
codesign -s "$APP_KEY" -f --entitlements "$CHILD_PLIST"

➥ "$FRAMEWORKS_PATH/$APP Helper EH.app/"
codesign -s "$APP_KEY" -f --entitlements "$CHILD_PLIST"

➥ "$FRAMEWORKS_PATH/$APP Helper NP.app/Contents/MacOS/$APP Helper NP"
codesign -s "$APP_KEY" -f --entitlements "$CHILD_PLIST"

➥ "$FRAMEWORKS_PATH/$APP Helper NP.app/"
codesign -s "$APP_KEY" -f --entitlements "$CHILD_PLIST"

➥ "$APP_PATH/Contents/MacOS/$APP"

codesign -s "$APP_KEY" -f --entitlements "$PARENT_PLIST" "$APP_PATH"

productbuild --component "$APP_PATH" /Applications --sign "$INSTALLER_KEY"
"$RESULT_PATH"

n takes
roperty
list and
erges it
the one
ed with
lectron.

Location of the application
after it has been built by
electron-packager.

Destination for the installer
after it has been prepared
for the Mac App Store by
Xcode.

Signed certificate for
the application itself
that we made earlier.

Signed
tificate
for the
staller.

Path to Electron’s
frameworks and
dependencies, which
also need to be signed.Property list to use for child

processes and dependencies.
Property list to use for main
and parent processes.

Code-sign the parent application
with the sandboxing entitlements

included in parent.plist.
Uses Xcode to build
the installer package.

308 CHAPTER 16 Distributing your application through the Mac App Store
16.1.5 Configuring application categories

We can include additional metadata in our property list that falls squarely under the
category of “nice to have.” Apple includes an exhaustive list of all of the options in their
official documentation (http://mng.bz/2TDO), so I won’t cover all of them here.

<key>NSHumanReadableCopyright</key>
<string>2017 Steve Kinney</string>
<key>LSApplicationCategoryType</key>
<string> public.app-category.developer-tools</string>
<key>LSApplicationSecondaryCategoryType</key>
<string public.app-category.productivity</string>

In the previous listing, we include metadata for the Mac App Store categories in
which the application should be listed as well as some generic copyright informa-
tion. You can find a full list of the available categories in Apple’s official documenta-
tion (http://mng.bz/65Eg).

16.1.6 Register the application to open a file type

Fire Sale is an application that works with Markdown applications. In development, it
was not listed as an application that could handle opening Markdown files. In addition,
we could not drag a Markdown file onto the application icon in the dock. This limita-
tion is because although we know that Fire Sale was built to work with Markdown files,
macOS was not. To add support for a given file type—in this case, Markdown files—we
add this code to ./scripts/mas/info.plist. The result is shown in figure 16.14.

<key>CFBundleDocumentTypes</key>
<array>
<dict>
<key>CFBundleTypeExtensions</key>

Listing 16.5 Adding applications to particular categories: ./scripts/info.plist

Listing 16.6 Setting Fire Sale to be available to open Markdown files: /script/info.plist

Figure 16.14 Fire Sale is now registered with macOS as an application
that can open Markdown files.

Contains an array of strings
of file extensions that the
application should recognize

http://mng.bz/2TDO
http://mng.bz/65Eg

309Validating and uploading your application
<array>
<string>markdown</string>
<string>mdown</string>
<string>md</string>
</array>
<key>CFBundleTypeRole</key>
<string>Editor</string>
<key>LSHandlerRank</key>
<string>Alternate</string>
</dict>
</array>

The CFBundleDocumentTypes contains an array of items that define the types of files
that this application should be able to open. Fire Sale works only with Markdown files
(and text files, technically), but an application like Atom, which works with a wide
variety of file types, has a much longer list, which can be seen in its open source repos-
itory (http://mng.bz/zQ4B).

 Each item in the CFBundleDocumentTypes dictionary contains a CFBundleType-
Extensions array, which lists the file types that the application should support. In
addition, the CFBundleTypeRole key defines the application’s relationship to the file
type. Fire Sale edits Markdown files, so it makes sense that we’ve listed it as an editor.
The available options are Editor, Viewer, Shell, and none.

 Many applications can open a file type like Markdown. The LSHandlerRank attribute
lets you decide what level of priority the operating system should provide for your appli-
cation when the user double-clicks a file. Owner should be selected if the application cre-
ates a given file type. This is a good choice for a proprietary file type that can be opened
only by a particular application. Default should be selected if the application is a good
candidate for being the default application. Fire Sale is a great application, but it’s likely
that the user would prefer that—in general—the user would like Atom or Visual Studio
Code to open upon double-clicking. This is why I chose Alternate.

 You can define a number of other keys as well. For example, you could define the
CFBundleTypeIconFile if you want all Markdown files to have a special icon that asso-
ciates them with Fire Sale. A full list of the available options can be found in Apple’s
official documentation (http://mng.bz/4DTL).

16.2 Validating and uploading your application
Your application has been packaged and signed. Its entitlements have been defined. It
is all ready to be uploaded to the Mac App Store. The next step, of course, is to upload
the package to the store itself. You can do this using Xcode.

 To get started, open Xcode and navigate to the Xcode application menu. Under
Open Developer Tool, you find Application Loader, shown in figure 16.15. This is the
helper application that uploads your Electron application.

 After Application Loader opens, click Deliver Your App. As shown in figure 16.16,
you are prompted to select the package that you want to upload—in this case, Fire
Sale.pkg, located in ./build.

Tells macOS about the
relationship between this
application and the file type

Defines the priority in which
this application should be listed
for the respective file type

http://mng.bz/zQ4B
http://mng.bz/4DTL

310 CHAPTER 16 Distributing your application through the Mac App Store
After you’ve chosen the package to upload, you can review its metadata, as shown in
figure 16.17. If everything looks good, click Next to begin the upload process. It
shouldn’t take very long, but this is based—of course—on your connection speed and
the size of the application package.

Figure 16.15 Use the Application Loader to upload your Electron
application to the Mac App Store.

Figure 16.16 In this case, we’re uploading a full application to the Mac App Store.

311Summary
16.3 Finishing touches
Apple wants to ensure the best possible experience for users. As a result, you must pro-
vide screenshots, descriptions, a link to a page where users can get help, and more. If
you fail to do any of these, Apple will more than likely reject the application and ask
you again to provide this information. I’m not going to go in depth in this book about
adding screenshots, a home page, and documentation because it is both relatively
straightforward as well as likely to change by the time the—possibly digital—ink dries
on this page.

Summary
 All Mac App Store applications and their installers must be code signed to verify

their authenticity.
 You can create certificate requests using Keychain Access, which is included in

macOS.
 After you have a certificate request, you can upload it to Apple’s developer plat-

form to receive signed certificates.
 Applications must be registered with Apple through their developer platform.
 An application’s Bundle ID is its unique identifier and is similar to a web

domain but in reverse (e.g., net.stevekinney.firesale).
 Mac App Store applications must be sandboxed. Any entitlements needed must

be defined in the property list.

Figure 16.17 Verify that the application’s metadata is correct.

312 CHAPTER 16 Distributing your application through the Mac App Store
 The entitlements must be defined for all child processes as well as the main
application itself.

 Developers can define what types of a file an Electron application should be
able to open by adding entries to its property list.

 Applications can be uploaded to iTunes Connect using the Application Loader
included with Xcode.

 Apple requires screenshots, descriptions, and help pages on the web to be
approved for the Mac App Store.

appendix
Code samples from Fire Sale

and Clipmaster 9000

Fire Sale is an only slightly clever play on price markdowns—because it’s a Mark-
down editor after all. Clipmaster 9000 is a simple UI for the Clipmaster application.

Code from the end of chapter 6

const { app, BrowserWindow, dialog } = require('electron');
const fs = require('fs');

const windows = new Set();
const openFiles = new Map();

app.on('ready', () => {
 createWindow();
});

app.on('window-all-closed', () => {
 if (process.platform === 'darwin') {
 return false;
 }
});

app.on('activate', (event, hasVisibleWindows) => {
 if (!hasVisibleWindows) { createWindow(); }
});

const createWindow = exports.createWindow = () => {
 let x, y;

 const currentWindow = BrowserWindow.getFocusedWindow();

Listing 1 Fire Sale’s main process: ./app/main.js
313

314 APPENDIX Code samples from Fire Sale and Clipmaster 9000
 if (currentWindow) {
 const [currentWindowX, currentWindowY] = currentWindow.getPosition();
 x = currentWindowX + 10;
 y = currentWindowY + 10;
 }

 let newWindow = new BrowserWindow({ x, y, show: false });

 newWindow.loadURL(`file://${__dirname}/index.html`);

 newWindow.once('ready-to-show', () => {
 newWindow.show();
 });

 newWindow.on('close', (event) => {
 if (newWindow.isDocumentEdited()) {
 event.preventDefault();

 const result = dialog.showMessageBox(newWindow, {
 type: 'warning',
 title: 'Quit with Unsaved Changes?',
 message: 'Your changes will be lost permanently if you do not save.',
 buttons: [
 'Quit Anyway',
 'Cancel',
],
 cancelId: 1,
 defaultId: 0
 });

 if (result === 0) newWindow.destroy();
 }
 });

 newWindow.on('closed', () => {
 windows.delete(newWindow);
 stopWatchingFile(newWindow);
 newWindow = null;
 });

 windows.add(newWindow);
 return newWindow;
};

const getFileFromUser = exports.getFileFromUser = (targetWindow) => {
 const files = dialog.showOpenDialog(targetWindow, {
 properties: ['openFile'],
 filters: [
 { name: 'Text Files', extensions: ['txt'] },
 { name: 'Markdown Files', extensions: ['md', 'markdown'] }
]
 });

 if (files) { openFile(targetWindow, files[0]); }
};

315Code from the end of chapter 6
const openFile = exports.openFile = (targetWindow, file) => {
 const content = fs.readFileSync(file).toString();
 app.addRecentDocument(file);
 targetWindow.setRepresentedFilename(file);
 targetWindow.webContents.send('file-opened', file, content);
 startWatchingFile(targetWindow, file);
};

const saveMarkdown = exports.saveMarkdown = (targetWindow, file, content) =>
{

 if (!file) {
 file = dialog.showSaveDialog(targetWindow, {
 title: 'Save Markdown',
 defaultPath: app.getPath('documents'),
 filters: [
 { name: 'Markdown Files', extensions: ['md', 'markdown'] }
]
 });
 }

 if (!file) return;

 fs.writeFileSync(file, content);
 openFile(targetWindow, file);
};

const saveHtml = exports.saveHtml = (targetWindow, content) => {
 const file = dialog.showSaveDialog(targetWindow, {
 title: 'Save HTML',
 defaultPath: app.getPath('documents'),
 filters: [
 { name: 'HTML Files', extensions: ['html', 'htm'] }
]
 });

 if (!file) return;

 fs.writeFileSync(file, content);
};

const startWatchingFile = (targetWindow, file) => {
 stopWatchingFile(targetWindow);

 const watcher = fs.watchFile(file, () => {
 const content = fs.readFileSync(file);
 targetWindow.webContents.send('file-changed', file, content);
 });

 openFiles.set(targetWindow, watcher);
};

const stopWatchingFile = (targetWindow) => {
 if (openFiles.has(targetWindow)) {
 openFiles.get(targetWindow).stop();

316 APPENDIX Code samples from Fire Sale and Clipmaster 9000
 openFiles.delete(targetWindow);
 }
};

const { remote, ipcRenderer } = require('electron');
const path = require('path');
const mainProcess = remote.require('./main.js');
const currentWindow = remote.getCurrentWindow();

const marked = require('marked');

const markdownView = document.querySelector('#markdown');
const htmlView = document.querySelector('#html');
const newFileButton = document.querySelector('#new-file');
const openFileButton = document.querySelector('#open-file');
const saveMarkdownButton = document.querySelector('#save-markdown');
const revertButton = document.querySelector('#revert');
const saveHtmlButton = document.querySelector('#save-html');
const showFileButton = document.querySelector('#show-file');
const openInDefaultButton = document.querySelector('#open-in-default');

let filePath = null;
let originalContent = '';

const isDifferentContent = (content) => content !== markdownView.value;

const renderMarkdownToHtml = (markdown) => {
 htmlView.innerHTML = marked(markdown, { sanitize: true });
};

const renderFile = (file, content) => {
 filePath = file;
 originalContent = content;

 markdownView.value = content;
 renderMarkdownToHtml(content);

 updateUserInterface(false);
};

const updateUserInterface = (isEdited) => {
 let title = 'Fire Sale';

 if (filePath) { title = `${path.basename(filePath)} - ${title}`; }
 if (isEdited) { title = `${title} (Edited)`; }

 currentWindow.setTitle(title);
 currentWindow.setDocumentEdited(isEdited);

 saveMarkdownButton.disabled = !isEdited;
 revertButton.disabled = !isEdited;
};

Listing 2 Fire Sale’s renderer process: ./app/renderer.js

317Code from the end of chapter 6
markdownView.addEventListener('keyup', (event) => {
 const currentContent = event.target.value;
 renderMarkdownToHtml(currentContent);
 updateUserInterface(currentContent !== originalContent);
});

newFileButton.addEventListener('click', () => {
 mainProcess.createWindow();
});

openFileButton.addEventListener('click', () => {
 mainProcess.getFileFromUser(currentWindow);
});

saveMarkdownButton.addEventListener('click', () => {
 mainProcess.saveMarkdown(currentWindow, filePath, markdownView.value);
});

revertButton.addEventListener('click', () => {
 markdownView.value = originalContent;
 renderMarkdownToHtml(originalContent);
});

saveHtmlButton.addEventListener('click', () => {
 mainProcess.saveHtml(currentWindow, htmlView.innerHTML);
});

ipcRenderer.on('file-opened', (event, file, content) => {
 if (currentWindow.isDocumentEdited() && isDifferentContent(content)) {
 const result = remote.dialog.showMessageBox(currentWindow, {
 type: 'warning',
 title: 'Overwrite Current Unsaved Changes?',
 message: 'Opening a new file in this window will overwrite your unsaved

changes. Open this file anyway?',
 buttons: [
 'Yes',
 'Cancel',
],
 defaultId: 0,
 cancelId: 1,
 });

 if (result === 1) { return; }
 }

 renderFile(file, content);
});

ipcRenderer.on('file-changed', (event, file, content) => {
 if (isDifferentContent(content)) return;
 const result = remote.dialog.showMessageBox(currentWindow, {
 type: 'warning',
 title: 'Overwrite Current Unsaved Changes?',
 message: 'Another application has changed this file. Load changes?',
 buttons: [

318 APPENDIX Code samples from Fire Sale and Clipmaster 9000
 'Yes',
 'Cancel',
],
 defaultId: 0,
 cancelId: 1
 });

 renderFile(file, content);
});

/* Implement Drag and Drop */
document.addEventListener('dragstart', event => event.preventDefault());
document.addEventListener('dragover', event => event.preventDefault());
document.addEventListener('dragleave', event => event.preventDefault());
document.addEventListener('drop', event => event.preventDefault());

const getDraggedFile = (event) => event.dataTransfer.items[0];
const getDroppedFile = (event) => event.dataTransfer.files[0];

const fileTypeIsSupported = (file) => {
 return ['text/plain', 'text/markdown'].includes(file.type);
};

markdownView.addEventListener('dragover', (event) => {
 const file = getDraggedFile(event);

 if (fileTypeIsSupported(file)) {
 markdownView.classList.add('drag-over');
 } else {
 markdownView.classList.add('drag-error');
 }
});

markdownView.addEventListener('dragleave', () => {
 markdownView.classList.remove('drag-over');
 markdownView.classList.remove('drag-error');
});

markdownView.addEventListener('drop', (event) => {
 const file = getDroppedFile(event);

 if (fileTypeIsSupported(file)) {
 mainProcess.openFile(currentWindow, file.path);
 } else {
 alert('That file type is not supported');
 }

 markdownView.classList.remove('drag-over');
 markdownView.classList.remove('drag-error');
});

319Code from the end of chapter 7
Code from the end of chapter 7

const { app, dialog, Menu } = require('electron');
const mainProcess = require('./main');

const template = [
 {
 label: 'File',
 submenu: [
 {
 label: 'New File',
 accelerator: 'CommandOrControl+N',
 click() {
 mainProcess.createWindow();
 }
 },
 {
 label: 'Open File',
 accelerator: 'CommandOrControl+O',
 click(item, focusedWindow) {
 if (focusedWindow) {
 return mainProcess.getFileFromUser(focusedWindow);
 }

 const newWindow = mainProcess.createWindow();

 newWindow.on('show', () => {
 mainProcess.getFileFromUser(newWindow);
 });
 },
 },
 {
 label: 'Save File',
 accelerator: 'CommandOrControl+S',
 click(item, focusedWindow) {
 if (!focusedWindow) {
 return dialog.showErrorBox(
 'Cannot Save or Export',
 'There is currently no active document to save or export.'
);
 }
 mainProcess.saveMarkdown(focusedWindow);
 },
 },
 {
 label: 'Export HTML',
 accelerator: 'Shift+CommandOrControl+S',
 click(item, focusedWindow) {
 if (!focusedWindow) {
 return dialog.showErrorBox(
 'Cannot Save or Export',
 'There is currently no active document to save or export.'
);

Listing 3 Fire Sale’s application menu: ./app/application-menu.js

320 APPENDIX Code samples from Fire Sale and Clipmaster 9000
 }
 mainProcess.saveHtml(focusedWindow);
 },
 },
],
 },
 {
 label: 'Edit',
 submenu: [
 {
 label: 'Undo',
 accelerator: 'CommandOrControl+Z',
 role: 'undo',
 },
 {
 label: 'Redo',
 accelerator: 'Shift+CommandOrControl+Z',
 role: 'redo',
 },
 { type: 'separator' },
 {
 label: 'Cut',
 accelerator: 'CommandOrControl+X',
 role: 'cut',
 },
 {
 label: 'Copy',
 accelerator: 'CommandOrControl+C',
 role: 'copy',
 },
 {
 label: 'Paste',
 accelerator: 'CommandOrControl+V',
 role: 'paste',
 },
 {
 label: 'Select All',
 accelerator: 'CommandOrControl+A',
 role: 'selectall',
 },
],
 },
 {
 label: 'Window',
 submenu: [
 {
 label: 'Minimize',
 accelerator: 'CommandOrControl+M',
 role: 'minimize',
 },
 {
 label: 'Close',
 accelerator: 'CommandOrControl+W',
 role: 'close',
 },

321Code from the end of chapter 7
],
 },
 {
 label: 'Help',
 role: 'help',
 submenu: [
 {
 label: 'Visit Website',
 click() { /* To be implemented */ }
 },
 {
 label: 'Toggle Developer Tools',
 click(item, focusedWindow) {
 if (focusedWindow) focusedWindow.webContents.toggleDevTools();
 }
 }
],
 }
];

if (process.platform === 'darwin') {
 const name = 'Fire Sale';
 template.unshift({
 label: name,
 submenu: [
 {
 label: `About ${name}`,
 role: 'about',
 },
 { type: 'separator' },
 {
 label: 'Services',
 role: 'services',
 submenu: [],
 },
 { type: 'separator' },
 {
 label: `Hide ${name}`,
 accelerator: 'Command+H',
 role: 'hide',
 },
 {
 label: 'Hide Others',
 accelerator: 'Command+Alt+H',
 role: 'hideothers',
 },
 {
 label: 'Show All',
 role: 'unhide',
 },
 { type: 'separator' },
 {
 label: `Quit ${name}`,
 accelerator: 'Command+Q',
 click() { app.quit(); },

322 APPENDIX Code samples from Fire Sale and Clipmaster 9000
 },
],
 });

 const windowMenu = template.find(item => item.label === 'Window');
 windowMenu.submenu.push(
 { type: 'separator' },
 {
 label: 'Bring All to Front',
 role: 'front',
 }
);
}

module.exports = Menu.buildFromTemplate(template);

const { remote, ipcRenderer } = require('electron');
const { Menu } = remote;
const path = require('path');
const mainProcess = remote.require('./main.js');
const currentWindow = remote.getCurrentWindow();

const marked = require('marked');

const markdownView = document.querySelector('#markdown');
const htmlView = document.querySelector('#html');
const newFileButton = document.querySelector('#new-file');
const openFileButton = document.querySelector('#open-file');
const saveMarkdownButton = document.querySelector('#save-markdown');
const revertButton = document.querySelector('#revert');
const saveHtmlButton = document.querySelector('#save-html');
const showFileButton = document.querySelector('#show-file');
const openInDefaultButton = document.querySelector('#open-in-default');

let filePath = null;
let originalContent = '';

const isDifferentContent = (content) => content !== markdownView.value;

const renderMarkdownToHtml = (markdown) => {
 htmlView.innerHTML = marked(markdown, { sanitize: true });
};

const renderFile = (file, content) => {
 filePath = file;
 originalContent = content;

 markdownView.value = content;
 renderMarkdownToHtml(content);

 updateUserInterface(false);
};

Listing 4 Fire Sale’s renderer process: ./app/renderer.js

323Code from the end of chapter 7
const updateUserInterface = (isEdited) => {
 let title = 'Fire Sale';

 if (filePath) { title = `${path.basename(filePath)} - ${title}`; }
 if (isEdited) { title = `${title} (Edited)`; }

 currentWindow.setTitle(title);
 currentWindow.setDocumentEdited(isEdited);

 saveMarkdownButton.disabled = !isEdited;
 revertButton.disabled = !isEdited;
};

markdownView.addEventListener('keyup', (event) => {
 const currentContent = event.target.value;
 renderMarkdownToHtml(currentContent);
 updateUserInterface(currentContent !== originalContent);
});

newFileButton.addEventListener('click', () => {
 mainProcess.createWindow();
});

openFileButton.addEventListener('click', () => {
 mainProcess.getFileFromUser(currentWindow);
});

saveMarkdownButton.addEventListener('click', () => {
 mainProcess.saveMarkdown(currentWindow, filePath, markdownView.value);
});

revertButton.addEventListener('click', () => {
 markdownView.value = originalContent;
 renderMarkdownToHtml(originalContent);
});

saveHtmlButton.addEventListener('click', () => {
 mainProcess.saveHtml(currentWindow, htmlView.innerHTML);
});

ipcRenderer.on('file-opened', (event, file, content) => {
 if (currentWindow.isDocumentEdited() && isDifferentContent(content)) {
 const result = remote.dialog.showMessageBox(currentWindow, {
 type: 'warning',
 title: 'Overwrite Current Unsaved Changes?',
 message: 'Opening a new file in this window will overwrite your unsaved

changes. Open this file anyway?',
 buttons: [
 'Yes',
 'Cancel',
],
 defaultId: 0,
 cancelId: 1,
 });

324 APPENDIX Code samples from Fire Sale and Clipmaster 9000
 if (result === 1) { return; }
 }

 renderFile(file, content);
});

ipcRenderer.on('file-changed', (event, file, content) => {
 if (isDifferentContent(content)) return;
 const result = remote.dialog.showMessageBox(currentWindow, {
 type: 'warning',
 title: 'Overwrite Current Unsaved Changes?',
 message: 'Another application has changed this file. Load changes?',
 buttons: [
 'Yes',
 'Cancel',
],
 defaultId: 0,
 cancelId: 1
 });

 renderFile(file, content);
});

/* Implement Drag and Drop */
document.addEventListener('dragstart', event => event.preventDefault());
document.addEventListener('dragover', event => event.preventDefault());
document.addEventListener('dragleave', event => event.preventDefault());
document.addEventListener('drop', event => event.preventDefault());

const getDraggedFile = (event) => event.dataTransfer.items[0];
const getDroppedFile = (event) => event.dataTransfer.files[0];

const fileTypeIsSupported = (file) => {
 return ['text/plain', 'text/markdown'].includes(file.type);
};

markdownView.addEventListener('dragover', (event) => {
 const file = getDraggedFile(event);

 if (fileTypeIsSupported(file)) {
 markdownView.classList.add('drag-over');
 } else {
 markdownView.classList.add('drag-error');
 }
});

markdownView.addEventListener('dragleave', () => {
 markdownView.classList.remove('drag-over');
 markdownView.classList.remove('drag-error');
});

markdownView.addEventListener('drop', (event) => {
 const file = getDroppedFile(event);

325Code from the end of chapter 8
 if (fileTypeIsSupported(file)) {
 mainProcess.openFile(currentWindow, file.path);
 } else {
 alert('That file type is not supported');
 }

 markdownView.classList.remove('drag-over');
 markdownView.classList.remove('drag-error');
});

ipcRenderer.on('save-markdown', () => {
 mainProcess.saveMarkdown(currentWindow, filePath, markdownView.value);
});

ipcRenderer.on('save-html', () => {
 mainProcess.saveHtml(currentWindow, htmlView.innerHTML);
});

const markdownContextMenu = Menu.buildFromTemplate([
 { label: 'Open File', click() { mainProcess.getFileFromUser(); } },
 { type: 'separator' },
 { label: 'Cut', role: 'cut' },
 { label: 'Copy', role: 'copy' },
 { label: 'Paste', role: 'paste' },
 { label: 'Select All', role: 'selectall' },
]);

markdownView.addEventListener('contextmenu', (event) => {
 event.preventDefault();
 markdownContextMenu.popup();
});

Code from the end of chapter 8

const { remote, ipcRenderer, shell } = require('electron');
const { Menu } = remote;
const path = require('path');
const mainProcess = remote.require('./main.js');
const currentWindow = remote.getCurrentWindow();

const marked = require('marked');

const markdownView = document.querySelector('#markdown');
const htmlView = document.querySelector('#html');
const newFileButton = document.querySelector('#new-file');
const openFileButton = document.querySelector('#open-file');
const saveMarkdownButton = document.querySelector('#save-markdown');
const revertButton = document.querySelector('#revert');
const saveHtmlButton = document.querySelector('#save-html');
const showFileButton = document.querySelector('#show-file');
const openInDefaultButton = document.querySelector('#open-in-default');

Listing 5 Fire Sale’s renderer process: ./app/renderer.js

326 APPENDIX Code samples from Fire Sale and Clipmaster 9000
let filePath = null;
let originalContent = '';

const isDifferentContent = (content) => content !== markdownView.value;

const renderMarkdownToHtml = (markdown) => {
 htmlView.innerHTML = marked(markdown, { sanitize: true });
};

const renderFile = (file, content) => {
 filePath = file;
 originalContent = content;

 markdownView.value = content;
 renderMarkdownToHtml(content);

 showFileButton.disabled = false;
 openInDefaultButton.disabled = false;

 updateUserInterface(false);
};

const updateUserInterface = (isEdited) => {
 let title = 'Fire Sale';

 if (filePath) { title = `${path.basename(filePath)} - ${title}`; }
 if (isEdited) { title = `${title} (Edited)`; }

 currentWindow.setTitle(title);
 currentWindow.setDocumentEdited(isEdited);

 saveMarkdownButton.disabled = !isEdited;
 revertButton.disabled = !isEdited;
};

markdownView.addEventListener('keyup', (event) => {
 const currentContent = event.target.value;
 renderMarkdownToHtml(currentContent);
 updateUserInterface(currentContent !== originalContent);
});

newFileButton.addEventListener('click', () => {
 mainProcess.createWindow();
});

openFileButton.addEventListener('click', () => {
 mainProcess.getFileFromUser(currentWindow);
});

saveMarkdownButton.addEventListener('click', () => {
 mainProcess.saveMarkdown(currentWindow, filePath, markdownView.value);
});

revertButton.addEventListener('click', () => {
 markdownView.value = originalContent;

327Code from the end of chapter 8
 renderMarkdownToHtml(originalContent);
});

saveHtmlButton.addEventListener('click', () => {
 mainProcess.saveHtml(currentWindow, htmlView.innerHTML);
});

const showFile = () => {
 if (!filePath) { return alert('This file has not been saved to the file

system.'); }
 shell.showItemInFolder(filePath);
};

const openInDefaultApplication = () => {
 if (!filePath) { return alert('This file has not been saved to the file

system.'); }
 shell.openItem(filePath);
};

showFileButton.addEventListener('click', showFile);
openInDefaultButton.addEventListener('click', openInDefaultApplication);
ipcRenderer.on('show-file', showFile);
ipcRenderer.on('open-in-default', openInDefaultApplication);

ipcRenderer.on('file-opened', (event, file, content) => {
 if (currentWindow.isDocumentEdited() && isDifferentContent(content)) {
 const result = remote.dialog.showMessageBox(currentWindow, {
 type: 'warning',
 title: 'Overwrite Current Unsaved Changes?',
 message: 'Opening a new file in this window will overwrite your unsaved

changes. Open this file anyway?',
 buttons: [
 'Yes',
 'Cancel',
],
 defaultId: 0,
 cancelId: 1,
 });

 if (result === 1) { return; }
 }

 renderFile(file, content);
});

ipcRenderer.on('file-changed', (event, file, content) => {
 if (isDifferentContent(content)) return;
 const result = remote.dialog.showMessageBox(currentWindow, {
 type: 'warning',
 title: 'Overwrite Current Unsaved Changes?',
 message: 'Another application has changed this file. Load changes?',
 buttons: [
 'Yes',
 'Cancel',
],

328 APPENDIX Code samples from Fire Sale and Clipmaster 9000
 defaultId: 0,
 cancelId: 1
 });

 renderFile(file, content);
});

/* Implement Drag and Drop */
document.addEventListener('dragstart', event => event.preventDefault());
document.addEventListener('dragover', event => event.preventDefault());
document.addEventListener('dragleave', event => event.preventDefault());
document.addEventListener('drop', event => event.preventDefault());

const getDraggedFile = (event) => event.dataTransfer.items[0];
const getDroppedFile = (event) => event.dataTransfer.files[0];

const fileTypeIsSupported = (file) => {
 return ['text/plain', 'text/markdown'].includes(file.type);
};

markdownView.addEventListener('dragover', (event) => {
 const file = getDraggedFile(event);

 if (fileTypeIsSupported(file)) {
 markdownView.classList.add('drag-over');
 } else {
 markdownView.classList.add('drag-error');
 }
});

markdownView.addEventListener('dragleave', () => {
 markdownView.classList.remove('drag-over');
 markdownView.classList.remove('drag-error');
});

markdownView.addEventListener('drop', (event) => {
 const file = getDroppedFile(event);

 if (fileTypeIsSupported(file)) {
 mainProcess.openFile(currentWindow, file.path);
 } else {
 alert('That file type is not supported');
 }

 markdownView.classList.remove('drag-over');
 markdownView.classList.remove('drag-error');
});

const createContextMenu = () => {
 return Menu.buildFromTemplate([
 { label: 'Open File', click() { mainProcess.getFileFromUser(); } },
 {
 label: 'Show File in Folder',
 click: showFile,

329Code from the end of chapter 8
 enabled: !!filePath
 },
 {
 label: 'Open in Default',
 click: openInDefaultApplication,
 enabled: !!filePath
 },
 { type: 'separator' },
 { label: 'Cut', role: 'cut' },
 { label: 'Copy', role: 'copy' },
 { label: 'Paste', role: 'paste' },
 { label: 'Select All', role: 'selectall' },
]);
};

markdownView.addEventListener('contextmenu', (event) => {
 event.preventDefault();
 createContextMenu().popup();
});

ipcRenderer.on('save-markdown', () => {
 mainProcess.saveMarkdown(currentWindow, filePath, markdownView.value);
});

ipcRenderer.on('save-html', () => {
 mainProcess.saveHtml(currentWindow, filePath, markdownView.value);
});

const { app, BrowserWindow, dialog, Menu, shell } = require('electron');
const mainProcess = require('./main');

const createApplicationMenu = () => {
 const hasOneOrMoreWindows = !!BrowserWindow.getAllWindows().length;
 const focusedWindow = BrowserWindow.getFocusedWindow();
 const hasFilePath = !!(focusedWindow &&

focusedWindow.getRepresentedFilename());

 const template = [
 {
 label: 'File',
 submenu: [
 {
 label: 'New File',
 accelerator: 'CommandOrControl+N',
 click() {
 mainProcess.createWindow();
 }
 },
 {
 label: 'Open File',
 accelerator: 'CommandOrControl+O',
 click(item, focusedWindow) {

Listing 6 Fire Sale’s application menu: ./app/application-menu.js

330 APPENDIX Code samples from Fire Sale and Clipmaster 9000
 if (focusedWindow) {
 return mainProcess.getFileFromUser(focusedWindow);
 }

 const newWindow = mainProcess.createWindow();

 newWindow.on('show', () => {
 mainProcess.getFileFromUser(newWindow);
 });
 },
 },
 {
 label: 'Save File',
 accelerator: 'CommandOrControl+S',
 enabled: hasOneOrMoreWindows,
 click(item, focusedWindow) {
 if (!focusedWindow) {
 return dialog.showErrorBox(
 'Cannot Save or Export',
 'There is currently no active document to save or export.'
);
 }
 mainProcess.saveMarkdown(focusedWindow);
 },
 },
 {
 label: 'Export HTML',
 accelerator: 'Shift+CommandOrControl+S',
 enabled: hasOneOrMoreWindows,
 click(item, focusedWindow) {
 if (!focusedWindow) {
 return dialog.showErrorBox(
 'Cannot Save or Export',
 'There is currently no active document to save or export.'
);
 }
 mainProcess.saveHtml(focusedWindow);
 },
 },
 { type: 'separator' },
 {
 label: 'Show File',
 enabled: hasFilePath,
 click(item, focusedWindow) {
 if (!focusedWindow) {
 return dialog.showErrorBox(
 'Cannot Show File\'s Location',
 'There is currently no active document show.'
);
 }
 focusedWindow.webContents.send('show-file');
 },
 },
 {

331Code from the end of chapter 8
 label: 'Open in Default Application',
 enabled: hasFilePath,
 click(item, focusedWindow) {
 if (!focusedWindow) {
 return dialog.showErrorBox(
 'Cannot Open File in Default Application',
 'There is currently no active document to open.'
);
 }
 focusedWindow.webContents.send('open-in-default');
 },
 },
],
 },
 {
 label: 'Edit',
 submenu: [
 {
 label: 'Undo',
 accelerator: 'CommandOrControl+Z',
 role: 'undo',
 },
 {
 label: 'Redo',
 accelerator: 'Shift+CommandOrControl+Z',
 role: 'redo',
 },
 { type: 'separator' },
 {
 label: 'Cut',
 accelerator: 'CommandOrControl+X',
 role: 'cut',
 },
 {
 label: 'Copy',
 accelerator: 'CommandOrControl+C',
 role: 'copy',
 },
 {
 label: 'Paste',
 accelerator: 'CommandOrControl+V',
 role: 'paste',
 },
 {
 label: 'Select All',
 accelerator: 'CommandOrControl+A',
 role: 'selectall',
 },
],
 },
 {
 label: 'Window',
 submenu: [
 {
 label: 'Minimize',

332 APPENDIX Code samples from Fire Sale and Clipmaster 9000
 accelerator: 'CommandOrControl+M',
 role: 'minimize',
 },
 {
 label: 'Close',
 accelerator: 'CommandOrControl+W',
 role: 'close',
 },
],
 },
 {
 label: 'Help',
 role: 'help',
 submenu: [
 {
 label: 'Visit Website',
 click() { /* To be implemented */ }
 },
 {
 label: 'Toggle Developer Tools',
 click(item, focusedWindow) {
 if (focusedWindow) focusedWindow.webContents.toggleDevTools();
 }
 }
],
 }
];

 if (process.platform === 'darwin') {
 const name = 'Fire Sale';
 template.unshift({
 label: name,
 submenu: [
 {
 label: `About ${name}`,
 role: 'about',
 },
 { type: 'separator' },
 {
 label: 'Services',
 role: 'services',
 submenu: [],
 },
 { type: 'separator' },
 {
 label: `Hide ${name}`,
 accelerator: 'Command+H',
 role: 'hide',
 },
 {
 label: 'Hide Others',
 accelerator: 'Command+Alt+H',
 role: 'hideothers',
 },
 {

333Code from the end of chapter 8
 label: 'Show All',
 role: 'unhide',
 },
 { type: 'separator' },
 {
 label: `Quit ${name}`,
 accelerator: 'Command+Q',
 click() { app.quit(); },
 },
],
 });

 const windowMenu = template.find(item => item.label === 'Window');
 windowMenu.submenu.push(
 { type: 'separator' },
 {
 label: 'Bring All to Front',
 role: 'front',
 }
);
 }

 return Menu.setApplicationMenu(Menu.buildFromTemplate(template));
};

module.exports = createApplicationMenu;

const { app, BrowserWindow, dialog, Menu } = require('electron');
const createApplicationMenu = require('./application-menu');
const fs = require('fs');

const windows = new Set();
const openFiles = new Map();

app.on('ready', () => {
 createApplicationMenu();
 createWindow();
});

app.on('window-all-closed', () => {
 if (process.platform === 'darwin') {
 return false;
 }
});

app.on('activate', (event, hasVisibleWindows) => {
 if (!hasVisibleWindows) { createWindow(); }
});

const createWindow = exports.createWindow = () => {
 let x, y;

 const currentWindow = BrowserWindow.getFocusedWindow();

Listing 7 Fire Sale’s main process: ./app/main.js

334 APPENDIX Code samples from Fire Sale and Clipmaster 9000
 if (currentWindow) {
 const [currentWindowX, currentWindowY] = currentWindow.getPosition();
 x = currentWindowX + 10;
 y = currentWindowY + 10;
 }

 let newWindow = new BrowserWindow({ x, y, show: false });

 newWindow.loadURL(`file://${__dirname}/index.html`);

 newWindow.once('ready-to-show', () => {
 newWindow.show();
 });

 newWindow.on('focus', createApplicationMenu);

 newWindow.on('close', (event) => {
 if (newWindow.isDocumentEdited()) {
 event.preventDefault();

 const result = dialog.showMessageBox(newWindow, {
 type: 'warning',
 title: 'Quit with Unsaved Changes?',
 message: 'Your changes will be lost permanently if you do not save.',
 buttons: [
 'Quit Anyway',
 'Cancel',
],
 cancelId: 1,
 defaultId: 0
 });

 if (result === 0) newWindow.destroy();
 }
 });

 newWindow.on('closed', () => {
 windows.delete(newWindow);
 createApplicationMenu();
 newWindow = null;
 });

 windows.add(newWindow);
 return newWindow;
};

const getFileFromUser = exports.getFileFromUser = (targetWindow) => {
 const files = dialog.showOpenDialog(targetWindow, {
 properties: ['openFile'],
 filters: [
 { name: 'Text Files', extensions: ['txt'] },
 { name: 'Markdown Files', extensions: ['md', 'markdown'] }
]
 });

335Code from the end of chapter 8
 if (files) { openFile(targetWindow, files[0]); }
};

const openFile = exports.openFile = (targetWindow, file) => {
 const content = fs.readFileSync(file).toString();
 startWatchingFile(targetWindow, file);
 app.addRecentDocument(file);
 targetWindow.setRepresentedFilename(file);
 targetWindow.webContents.send('file-opened', file, content);
 createApplicationMenu();
};

const saveMarkdown = exports.saveMarkdown = (targetWindow, file, content) =>
{

 if (!file) {
 file = dialog.showSaveDialog(targetWindow, {
 title: 'Save Markdown',
 defaultPath: app.getPath('documents'),
 filters: [
 { name: 'Markdown Files', extensions: ['md', 'markdown'] }
]
 });
 }

 if (!file) return;

 fs.writeFileSync(file, content);
 openFile(targetWindow, file);
};

const saveHtml = exports.saveHtml = (targetWindow, content) => {
 const file = dialog.showSaveDialog(targetWindow, {
 title: 'Save HTML',
 defaultPath: app.getPath('documents'),
 filters: [
 { name: 'HTML Files', extensions: ['html', 'htm'] }
]
 });

 if (!file) return;

 fs.writeFileSync(file, content);
};

const startWatchingFile = (targetWindow, file) => {
 stopWatchingFile(targetWindow);

 const watcher = fs.watchFile(file, () => {
 const content = fs.readFileSync(file);
 targetWindow.webContents.send('file-changed', file, content);
 });

 openFiles.set(targetWindow, watcher);
};

336 APPENDIX Code samples from Fire Sale and Clipmaster 9000
const stopWatchingFile = (targetWindow) => {
 if (openFiles.has(targetWindow)) {
 openFiles.get(targetWindow).stop();
 openFiles.delete(targetWindow);
 }
};

Completed code from the end of chapter 10

const Menubar = require('menubar');
const { globalShortcut, Menu } = require('electron');

const menubar = Menubar({
 preloadWindow: true,
 index: `file://${__dirname}/index.html`,
});

menubar.on('ready', () => {
 const secondaryMenu = Menu.buildFromTemplate([
 {
 label: 'Quit',
 click() { menubar.app.quit(); },
 accelerator: 'CommandOrControl+Q'
 },
]);

 menubar.tray.on('right-click', () => {
 menubar.tray.popUpContextMenu(secondaryMenu);
 });

 const createClipping = globalShortcut.register('CommandOrControl+!', () =>
{

 menubar.window.webContents.send('create-new-clipping');
 });

 const writeClipping = globalShortcut.register('CmdOrCtrl+Alt+@', () => {
 menubar.window.webContents.send('write-to-clipboard');
 });

 const publishClipping = globalShortcut.register('CmdOrCtrl+Alt+#', () => {
 menubar.window.webContents.send('publish-clipping');
 });

 if (!createClipping) { console.error('Registration failed',
'createClipping'); }

 if (!writeClipping) { console.error('Registration failed',
'writeClipping'); }

 if (!publishClipping) { console.error('Registration failed',
'publishClipping'); }

});

Listing 8 Clipmaster 9000’s main process: ./app/main.js

337Completed code from the end of chapter 10
const { clipboard, ipcRenderer, shell } = require('electron');

const request = require('request').defaults({
 url: 'https://cliphub.glitch.me/clippings',
 headers: { 'User-Agent': 'Clipmaster 9000' },
 json: true,
});

const clippingsList = document.getElementById('clippings-list');
const copyFromClipboardButton = document.getElementById('copy-from-

clipboard');

ipcRenderer.on('create-new-clipping', () => {
 addClippingToList();
 new Notification('Clipping Added', {
 body: `${clipboard.readText()}`
 });
});

ipcRenderer.on('write-to-clipboard', () => {
 const clipping = clippingsList.firstChild;
 writeToClipboard(getClippingText(clipping));
 new Notification('Clipping Copied', {
 body: `${clipboard.readText()}`
 });
});

ipcRenderer.on('publish-clipping', () => {
 const clipping = clippingsList.firstChild;
 publishClipping(getClippingText(clipping));
});

const createClippingElement = (clippingText) => {
 const clippingElement = document.createElement('article');

 clippingElement.classList.add('clippings-list-item');

 clippingElement.innerHTML = `
 <div class="clipping-text" disabled="true"></div>
 <div class="clipping-controls">
 <button class="copy-clipping">→ Clipboard</button>
 <button class="publish-clipping">Publish</button>
 <button class="remove-clipping">Remove</button>
 </div>
 `;

 clippingElement.querySelector('.clipping-text').innerText = clippingText;

 return clippingElement;
};

const addClippingToList = () => {
 const clippingText = clipboard.readText();

Listing 9 Clipmaster 9000’s renderer process: ./app/renderer.js

338 APPENDIX Code samples from Fire Sale and Clipmaster 9000
 const clippingElement = createClippingElement(clippingText);
 clippingsList.prepend(clippingElement);
};

copyFromClipboardButton.addEventListener('click', addClippingToList);

clippingsList.addEventListener('click', (event) => {
 const hasClass = className => event.target.classList.contains(className);

 const clippingListItem = getButtonParent(event);

 if (hasClass('remove-clipping')) removeClipping(clippingListItem);
 if (hasClass('copy-clipping'))

writeToClipboard(getClippingText(clippingListItem));
 if (hasClass('publish-clipping'))

publishClipping(getClippingText(clippingListItem));
});

const removeClipping = (target) => {
 target.remove();
};

const writeToClipboard = (clippingText) => {
 clipboard.writeText(clippingText);
};

const publishClipping = (clippingText) => {
 request.post({ json: { clipping: clippingText } }, (err, response, body) =>

{
 if (err) {
 return new Notification('Error Publishing Your Clipping', {
 body: JSON.parse(err).message
 });
 }

 const gistUrl = body.url;
 const notification = new Notification('Your Clipping Has Been Published',

{
 body: `Click to open ${gistUrl} in your browser.`
 });

 notification.onclick = () => { shell.openExternal(gistUrl); };

 clipboard.writeText(gistUrl);
 });
};

const getButtonParent = ({ target }) => {
 return target.parentNode.parentNode;
};

const getClippingText = (clippingListItem) => {
 return clippingListItem.querySelector('.clipping-text').innerText;
};

index
Symbols

$ method 253
$$ method 253

A

accelerator property 130
add() method 239
addClipping() function 167
addEventListener 146
addItem() method 210
APIs (application programming interfaces)

controlling with Spectron 254–256
for native operating systems 10

app.addRecentDocument() method 107
app.client.getWindowCount() method 251
app.client.waitUntilWindowLoaded()

method 251
app.getPath() function 110
Application component 208–210
applications

bootstrapping 51–56
displaying browser windows 56
implementing UIs 51–56

building for deployment 259–271
importing Electron applications into Electron

Forge 269
using asar 265–268
with Electron Forge 268–271
with Electron Packager 260–265

building for multiple operating systems
264–265

building with menubar library 181–198
adding clippings to UIs 186–188
adding secondary menus 197–198

displaying notifications 193–197
publishing clippings 191–193
registering global shortcuts 193–197

clippings in 188–191
preventing memory leaks using event

delegation 188–189
removing 189–190
writing to clipboard 190–191

configuring names in Electron Packager 262
configuring versions in Electron Packager 262
creating with tray module 161–166

reading from clipboard and storing
clippings 164–166

supporting dark mode in macOS 164
using correct icons for macOS and

Windows 163–164
debugging 59–64

main processes 61–64
renderer processes 59–60

defining 48–49
distributing through Mac App Store 293–312

finishing touches 311–312
uploading applications 309–310
validating applications 309–310

foundations for 202–207
signing 281–287

for macOS 281–284
for Windows 284–287
overview of 294–300

starting with menubar 182–185
submitting to Mac App Store 293–309

adding applications to iTunes Connect
302–304

configuring application categories 308
packaging applications for Mac App

Store 304–306
339

INDEX340
applications (continued)
registering applications to open file type

308–309
registering applications with Mac App

Store 301–302
testing with Spectron 243–256

overview of 245–248
setting up 248–250
setting up test runners 248–250
WebdriverIO 247–248
writing asynchronous tests 250–256

updating automatically 287–292
setting up automatic updates in

Electron 287–289
setting up servers for automatic updates

289–292
updating icons in Electron Packager 263

applications menus
context menus vs 150
disabling menu items dynamically 153–158
enabling menu items dynamically 153–158
foundations for 202–207
shell module in 146–148

Array.prototype.push() function 171
Array.prototype.unshift() function 171
asar archive format 265–268
async keyword 251
asynchronous tests, writing using Spectron

250–256
controlling Electron APIs 254–256
testing DOM 252–254
testing Electron BrowserWindow APIs 252
traversing DOM 252–254
waiting for windows to load 251–252

automatic updates
setting up in Electron 287–289
setting up servers for 289–292

autoUpdater module 287, 289
autoUpdater.quitAndInstall() method 289
await keyword 251

B

babel-preset-env 204
base functionality 57–59
bookmark list applications, building 18–23

downloading Electron 21–23
installing Electron 21–23
package.json 20
structuring Electron applications

19–20
bootstrapping applications 51–56

displaying browser windows 56
implementing UIs 51–56

box-sizing property 55

Brave browser 7
Breakpad 273
brew install tree command 19
Browserify 29
browsers

displaying windows 56
vs menus, functionality in 149

BrowserWindow APIs 252
BrowserWindow module 14, 24
browserWindow.capturePage() method

246
BrowserWindow.getFocusedWindow()

function 93
build command 268
buildFromTemplate() method 126
<button> element 208

C

certificateFile 285
certificatePassword 285
certificates 281–284
CFBundleDocumentTypes 309
CFBundleTypeExtensions 309
CFBundleTypeRole 309
Chrome Developer Tools 59
Chromium Content Module 5–6
click() method 135, 253
clipboard 255

reading from 167–172
handling edge cases 170–172
overview of 164–166

writing to 167–172, 190–191
Clipmaster clipboard manager 161
clippings 188–191

adding to UIs 186–188
preventing memory leaks using event

delegation 188–189
publishing 191–193
removing 189–190
storing 164–166
writing to clipboard 190–191

code from renderer processes 26–28
codesign command-line interface tool 306
CommandOrControl shorthand 131
common paths 110
CommonJS require systems 79
Component class 210
configuring

application categories 308
application names in Electron Packager 262
application versions in Electron Packager 262
output directory in Electron Packager 262

connection property 225
content class 56

INDEX 341
context menus
accessing shell module from 148–150
application menus vs 150
building 140–142
disabling menu items dynamically in 150–153
enabling menu items dynamically in 150–153

convertToElement function 35
crash reports

collecting 273
setting up crash reporter 273–275
setting up servers to receive 275

Crashpad 273
createClippingElement() function 188
createClippingMenuItem() function 170
createContextMenu() function 152
createWindow() function 89, 91, 95, 136
cross-origin requests 32–33

D

dark mode in macOS 164
darken() function 205
data

getting from IndexedDB 237–238
storing in SQLite databases 223–236

adding items to databases 228–230
deleting items 232–235
fetching all items from databases 227–228
hooking databases into React 226–227
setting up SQLite and Knex.js 224–226
storing databases 235–236
updating items in databases 230–231
using right versions with electron-rebuild 224

writing to IndexedDB 238–241
databases

adding items to 228–230
connecting to UIs 241–242
fetching items from 227–228
hooking into React 226–227
storing 235–236
updating items in 230–231

debugging
applications 59–64
main processes

overview of 61
with Visual Studio Code 61–64

renderer processes 59–60
default menus 125–136

adding Help menus 134–136
defining menu item roles and keyboard

shortcuts 130–131
Edit menus

implementing 129
missing 126–128

implementing Window menus 129

replacing 128–129
restoring application menus on macOS 131–

133
default property 220
delete() method 88, 240
dependencies 262
deployment, building applications for 259–271

importing Electron applications into Electron
Forge 269

using asar 265–268
with Electron Forge 268–271
with Electron Packager 260–265

describe() method 250
devDependencies 262
Developer Program Member Center, Apple 295
dialog module 66
dialog sheets in macOS 71–73
dialog.showErrorBox() function 138
dialog.showMessageBox() function 138
dialog.showOpenDialog() function 67
dirname variable 26
disabling menu items 150–158

dynamically in application menus 153–158
dynamically in context menus 150–153

discarding changes to files 119–122
DOM (Document Object Model)

testing with Spectron 252–254
traversing with Spectron 252–254

DOMParser 33
downloading Electron 21–23
drag and drop, opening files with 112–117

ignoring dropped files 113
opening dropped files 116–117
providing visual feedback 113–114

.drag-error class 114

.drag-over class 114
dragover phase 114
dropped files

ignoring 113
opening 116–117

E

ECMAScript classes 204
edge cases

handling 170–172
when window has never been shown 196–197

Edit menus
implementing 129
missing 126–128

Electron
advantages of 8–13

access to native operating system APIs 10
accessing Node from browser context 13
building on existing skill sets 9–10

INDEX342
Electron (continued)
enhanced privileges and looser

restrictions 10–12
offline first 13

downloading 21–23
installing 21–23
NW.js vs 15–16
overview of 4–6
users of 6–8

electron command-line tool 4
Electron Forge

building applications with 269–271
importing Electron applications into 269
overview of 268

Electron Packager 260–265
building for multiple operating systems

264–265
configuring application name and version 262
configuring output directory 262
setting up 260–262
updating application icons 263

electron-compile 201–202, 268
electronPackagerConfig 270
electron-positioner library 182
electron-prebuilt package 22
electron-rebuild 224, 268
electron.remote.getCurrentWindow()

method 246
enableLiveReload() method 218
enabling menu items dynamically

dynamically in context menus 150–153
in application menus 153–158

error handling 38–40
event delegation 188–189
exceptions, uncaught 278–280
exporting rendered HTML output 109–110

F

Fetch API 9
fetch variable 32
FFmpeg library 15
file structure 49–50
filePath variable 112, 146, 150
files 98–122

keeping track of current file 99–106
determining whether current file has

changed 103–104
enabling Save and Revert buttons in UI 105
updating represented file on macOS

105–106
updating window titles based on current

file 101–102
opening with drag and drop 112–117

ignoring dropped files 113

opening dropped files 116–117
providing visual feedback 113–114

promptings user before discarding changes
to 119–122

reading using Node 69–73
implementing dialog sheets in macOS

71–73
scoping Open File dialogs 70–71

recently opened, tracking 106–108
requiring in renderer processes 29
reverting 112
saving 108–112

common paths 110
exporting rendered HTML output 109–110
from renderer process 110–111
saving current files 111–112

sending contents to renderer contents
82–86

watching for changes in 117–118
fileTypeIsSupported() function 114
firesale-darwin-x64 directory 261
frameworks 199–221

adding new items 214–217
building UIs in React 207–214

Application component 208–210
displaying lists of items 210–214

electron-compile, overview of 201–202
foundation for applications 202–207
hot module reloading 217–221
live reload 217–221

fs.readFileSync() function 70
functionality

adding application-specific menu
functionality 136–139

implementing base functionality 57–59
in application menus vs context menus 150
in menus vs browsers 149
requiring from another process 79–81

G

getAll() method 238
getButtonParent() function 189
getDraggedFile() function 113
getDroppedFile() function 113
getFileFromUser() function 67, 74, 80, 90–91
getIcon() function 164
getLinks function 35
getMainProcessLogs() method 248
getPath() method 235
getRenderProcessLogs() method 248
getSelectedText() method 248
getText() method 252
getWindow() method 94
getWindowCount() method 248

INDEX 343
global shortcuts
registering 172–174, 193–197

checking registrations 174
solving for edge case when window has never

been shown 196–197
unregistering 174

globalShortcut module 172, 180
globalShortcut.isRegistered() function 174
globalShortcut.unregister() function 174
globalShortcut.unregisterAll() method 174

H

handleChange() method 216
handleError() function 39
handleSubmit() method 216
hasClass() method 189
Help menus 134–136
hot module reloading 217–221
href attribute 41
#html element 57

I

icons
for applications, updating in Electron

Packager 263
for macOS 163–164
for menu bars 177
for Windows OS 163–164

IDE (integrated development environment) 6
import() function 220
importing to Electron Forge 269
IndexedDB 236–242

connecting databases to UIs 241–242
creating stores with 236–237
getting data from 237–238
writing data to 238–241

innerHTML 187
innerText 187
insert() method 229
installing Electron 21–23
integrated development environment (IDE) 6
interprocess communication 65, 74–86

CommonJS require systems 79
overview of 79
remote modules 77–79
requiring functionality from another

process 79–81
sending content from main processes to ren-

derer processes 81–86
IPC (interprocess communication) 148
ipcRenderer module 83, 176
isDarkMode() method 164
isDevToolsOpened() method 252

items
adding

overview of 214–217
to databases 228–230

deleting 232–235
displaying lists of 210–214
fetching from databases 227–228
updating in databases 230–231

ITunes Connect 302–304

J

JSX (JavaScript with XML) 206

K

keyboard shortcuts 130–131
Keychain Access 294
Knex.js query builder 224–226

L

<label> tag 211
LevelUI library 5
lighten() function 205
lists of items, displaying 210–214
live reload 217–221
localStorage 18
LSHandlerRank attribute 309

M

Mac App Store
distributing applications through 293–312

finishing touches 311–312
uploading applications 309–310
validating applications 309–310

submitting applications to 293–309
adding applications to iTunes Connect 302–

304
configuring application categories 308
packaging applications for Mac App

Store 304–306
registering applications to open file type 308–

309
registering applications with Mac App

Store 301–302
signing applications 294–300

macOS (operating system)
implementing dialog sheets in 71–73
integrating multiple windows with 95–97
restoring application menus on 131–133
signing applications for 281–284
supporting dark mode in 164
switching menu bar icons when pressed in 177

INDEX344
macOS (operating system) (continued)
updating represented file on 105–106
using correct icons for 163–164

main processes
debugging

overview of 61
with Visual Studio Code 61–64

multiple windows and, communication
between 90–91

overview of 14, 23–24
passing reference to current window to

91–92
sending content to renderer processes from

81–86
mainWindow 24, 71
mainWindow.webContents.loadURL()

method 82
mainWindow.webContents.openDevTools()

method 82
mainWindow.webContents.send() method 82
map() method 171
maps 117
markAllAsPacked() method 213
markAllAsUnpacked() method 210
markAsPacked() method 210, 213
memory leaks 188–189
menu bar icons 177
menubar library, building applications with

181–198
adding clippings to UIs 186–188
adding secondary menus 197–198
clippings in applications 188–191
displaying notifications 193–197
publishing clippings 191–193
registering global shortcuts 193–197
starting applications with menubars

182–185
Menubar() function 197
Menu.buildFromTemplate() function 140,

162, 197
menus 123–142

adding application-specific menu
functionality 136–139

disabling menu items 150–158
in application menus 153–158
in context menus 150–153

enabling menu items
in application menus 153–158
in context menus 150–153

functionality in
context menus vs application menus

150
vs browsers 149

secondary menus 197–198
shell module in application menus 146–148

minidump_stackwalk command-line tool 278
moveToObject() method 254
multiple windows 87–97

communicating between main processes
and 90–91

creating 88–92
improving user experience of creating new

windows 93–94
integrating with macOS 95–97
managing 88–92

communicating between main processes and
multiple windows 90–91

passing reference to current window to main
processes 91–92

multiselections flag 67

N

native file dialog boxes 65, 79–81
CommonJS require systems 79
overview of 65–86
reading files using Node 69–73

implementing dialog sheets in macOS
71–73

scoping Open File dialogs 70–71
triggering 66–68

native module 223
Node.js runtime

accessing from browser context 13
native modules 222–242

IndexedDB 236–242
storing data in SQLite databases 223–236

overview of 6
reading files 69–73

implementing dialog sheets in macOS
71–73

scoping Open File dialogs 70–71
node_modules directory 22, 261
notes applications 47–64

bootstrapping 51–56
displaying browser windows 56
implementing UIs 51–56

debugging 59–64
main processes 61–64
renderer processes 59–60

defining 48–49
file structure of 49–50
implementing base functionality 57–59

notifications, displaying 193–197
overview of 174–177
solving for edge case when window has never

been shown 196–197
npm init command 19, 21
npm start command 183
NW.js framework 15–16

INDEX 345
O

onChange() function 211
onCheckoff() function 212
onClick function 176
onDelete property 234
onSubmit prop 216
Open File dialogs 70–71
open file type 308–309
Open in Default Application button 145
openDevTools() method 60
openDirectory flag 67
open-file event 108
openFile() function 67, 89, 107, 136
original-fs module 267
output directory 262

P

package.json 20
packaging applications for Mac App Store

304–306
parsing responses 33
path.basename() method 102
persisting user data 222–242

IndexedDB 236–242
storing data in SQLite databases 223–236

popup() method 141, 150
privileges 10–12
process module 26
process.crash() method 275
processes, requiring functionality from

another 79–81
productName set 263
properties property 67
publishClipping() function 193
publishing clippings 191–193
put() method 239

Q

querySelector() method 190
Quit command 161

R

React library
building UIs in 207–214

Application component 208–210
displaying lists of items 210–214

hooking databases into 226–227
react preset 204
reading from clipboard 167–172

handling edge cases 170–172
overview of 164–166

readText() method 187
ready event 24, 126
register() method 173
registering

applications
to open file type 308–309
with Mac App Store 301–302

global shortcuts 193–197
checking registrations 174
overview of 172–174
solving for edge case when window has

never been shown 196–197
remote modules 77–79
remote.getCurrentWindow() function

91
remote.require function 80
remove() method 189
removeClipping() function 189
render() method 213
renderApplication() function 220
renderer contents 82–86
renderer processes 14–15

adding styles in 29–30
creating 24–30
debugging 59–60
loading code from 26–28
requiring files in 29
saving files from 110–111
sending content from main processes to

81–86
shell module from UI in 145–146

renderFile() function 120
renderLinks() function 35
replacing default menu 128–129
request.post() method 193
requests

cross-origin requests 32–33
displaying results 35–36

require systems in CommonJS 79
require() function 220
responses

parsing 33
storing with web storage APIs 34

response.text() method 33
restrictions 10–12
Revert buttons 105
reverting files 112

S

sandboxing 305
sanitize property 58
Save buttons 105
save flag 22
saveHtml() function 109

INDEX346
saving files 108–112
common paths 110
exporting rendered HTML output 109–110
from renderer process 110–111

scoping Open File dialogs 70–71
<script> tags 29
secondary menus 197–198
select() method 228
Selenium WebDriver 245
servers, setting up

for automatic updates 289–292
to receive crash reports 275

setDocumentEdited() method 104
setPressedImage() method 177
setRepresentedFilename() method 105
setTitle() function 102
shell module 143–149, 158
shell modules

accessing from context menus 148–150
functionality in application menus vs context

menus 150
functionality in menus vs browsers 149

features of 148
from UI in renderer processes 145–146
in application menus 146–148

Show File button 145
showOpenDialog() method 67
showOpenFile() function 110
showSaveFileDialog() function 109–110
signing applications 281–287

for macOS 281–284
for Windows 284–287
overview of 294–300

Spectron framework
controlling APIs with 254–256
overview of 245–248
setting up 248–250
testing applications with 243–256

setting up test runners 248–250
WebdriverIO 247–248

writing asynchronous tests 250–256
testing DOM with 252–254
testing Electron BrowserWindow APIs

252
traversing DOM with 252–254
waiting for windows to load 251–252

SQLite databases
setting up 224–226
storing data in 223–236

adding items to databases 228–230
deleting items 232–235
fetching all items from databases 227–228
hooking databases into React 226–227
setting up SQLite and Knex.js 224–226
storing databases 235–236

updating items in databases 230–231
using right versions with electron-rebuild 224

sqlite3 modules 223
squirrel events 285–287
Squirrel.Windows framework 285
src attribute 13
startWatchingFile() function 118, 121
stopWatchingFile() function 118
storeLink function 34
stores with IndexedDB 236–237
storing

data in SQLite databases 223–236
adding items to databases 228–230
deleting items 232–235
fetching all items from databases

227–228
hooking databases into React 226–227
setting up SQLite and Knex.js 224–226
storing databases 235–236
updating items in databases 230–231
using right versions with electron-rebuild

224
databases 235–236
responses with web storage APIs 34

styles in renderer processes 29–30
systemPreferences module 164

T

target property 188
test runners 248–250
testing

applications with Spectron 243–256
overview of 245–248
setting up 248–250
setting up test runners 248–250
WebdriverIO 247–248
writing asynchronous tests 250–256

DOM with Spectron 252–254
Electron BrowserWindow APIs 252

then() method 228
third-party dependencies 268
this.addItem() method 228
this.deleteItem() method 234
this.deleteUnpackedItems() method 233
this.fetchItems() method 228
this.markAsPacked() method 231
titles of windows, updating 101–102
tracking recently opened files 106–108
transpilation 201, 203
transpilers 199–221

adding new items 214–217
building UIs in React 207–214

Application component 208–210
displaying lists of items 210–214

INDEX 347
transpilers (continued)
electron-compile 201–202
foundation for applications 202–207
hot module reloading 217–221
live reload 217–221

tray module 159–180
Clipmaster 161
completed code for 178–180
creating applications with 161–166

reading from clipboard and storing
clippings 164–166

supporting dark mode in macOS 164
using correct icons for macOS and

Windows 163–164
displaying notifications 174–177
reading from clipboard 167–172
registering global shortcuts 172–174
switching menu bar icons when pressed in

macOS 177
unregistering global shortcuts 174
writing to clipboard 167–172

handling edge cases 170–172
tree command 19
triggering native file dialog boxes 66–68
troubleshooting 40–43

U

UIs (user interfaces) 30–43
adding clippings to 186–188
building in React 207–214

Application component 208–210
displaying lists of items 210–214

connecting databases to 241–242
cross-origin requests 32–33
displaying request results 35–36
enabling Revert buttons in 105
enabling Save buttons in 105
error handling 38–40
implementing 51–56
parsing responses 33
shell module from 145–146
storing responses with web storage

APIs 34
troubleshooting 40–43

uncaught exceptions 278–280
unregistering global shortcuts 174
update() method 240
updateMenu() function 166
updates-available event 289
updateUserInterface() method 102–103
updateWindowTitle() method 105
updating

application icons in Electron Packager 263
applications automatically 287–292

setting up automatic updates in Electron
287–289

setting up servers for automatic updates
289–292

items in databases 230–231
represented file on macOS 105–106
windows titles based on current file

101–102
uploading applications 309–310
url property 193
url variable 34
useNullAsDefault option 225
user data, persisting 222–242

IndexedDB 236–242
storing data in SQLite databases 223–236

V

validating applications 309–310
visual feedback 113–114
Visual Studio Code IDE 61–64

W

waitUntilTextExists() method 248
waituUntilWindowLoaded() method 248
web storage APIs 34
webContents property 25, 60, 81, 197
webContents.savePage() method 246
webContents.send() method 82
WebdriverIO 245, 247–248
WebRTC 76
WebSockets 76
where() method 233
will-finish-launching event 108
Window menus 129
window-all-closed event 95
windows

creating new 93–94
handling cases of having no focused

windows 138–139
updating titles based on current file

101–102
waiting to load 251–252

Windows OS (operating system)
overview of 163–164
signing applications for 284–287

Worldwide Developer Relations Certification
Authority 298

writeToClipboard() function 193
writing

asynchronous tests using Spectron
250–256

controlling Electron APIs 254–256
testing DOM 252–254

INDEX348
writing (continued)
testing Electron BrowserWindow APIs

252
traversing DOM 252–254
waiting for windows to load 251–252

to clipboard 167–172
handling edge cases 170–172
overview of 190–191

X

Xcode 281, 283
XMLHttpRequests 32

Y

yarn run package 269

Steve Kinney

W
ouldn’t it be great to build desktop applications us-
ing just your web dev skills? Electron is a framework
designed for exactly that! Fully cross-platform, Elec-

tron lets you use JavaScript and Node to create simple, snappy
desktop apps. Spinning up tools, games, and utilities with
Electron is fast, practical, and fun!

Electron in Action teaches you to build cross-platform applica-
tions using JavaScript, Node, and the Electron framework.
You’ll learn how to think like a desktop developer as you build
a text tool that reads and renders Markdown. You’ll add OS-
specifi c features like the fi le system, menus, and clipboards,
and use Chromium’s tools to distribute the fi nished product.
You’ll even round off your learning with data storage, perfor-
mance optimization, and testing.

What’s Inside
● Building for macOS, Windows, and Linux
● Native operating system APIs
● Using third-party frameworks like React
● Deploying to the Mac App Store

Requires intermediate JavaScript and Node skills. No experi-
ence building desktop apps required.

Steve Kinney is a principal engineer at SendGrid, an instructor
with Frontend Masters, and the organizer of the DinosaurJS
conference in Denver, Colorado.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/electron-in-action

$44.99 / Can $59.99 [INCLUDING eBOOK]

Electron IN ACTION

PROGRAMMING/WEB DEVELOPMENT

M A N N I N G

“The defi nitive source on
cross-platform desktop
app development with a
code-driven narrative.”
—Ashwin K. Raj, Innocepts

“Takes you from simply
knowing what Electron is
about, to actually writing

complex Electron
applications.”

—Alexey Galiullin, Voiceworks

“Allowed me to quickly build
my own day-to-day tools.”—Philippe Charrière, GitLab

“Fast to read and easy
 to understand.”

—Jay Kelkar, Kelkar Systems

“Finally, JavaScript
 is everywhere!”

—William E. Wheeler, consultant

See first page

	Electron in Action
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	Roadmap
	About the code
	Book forum
	About the author

	about the cover illustration
	Part 1?Getting started with Electron
	1 Introducing Electron
	1.1 What is Electron?
	1.1.1 What is the Chromium Content Module?
	1.1.2 What is Node.js?

	1.2 Who?s using Electron?
	1.3 What do I need to know?
	1.4 Why should I use Electron?
	1.4.1 Building on your existing skill set
	1.4.2 Access to native operating system APIs
	1.4.3 Enhanced privileges and looser restrictions
	1.4.4 Accessing Node from the browser context
	1.4.5 Offline first

	1.5 How does Electron work?
	1.5.1 The main process
	1.5.2 Renderer processes

	1.6 Electron vs. NW.js
	Summary

	2 Your first Electron application
	2.1 Building a bookmark list application
	2.1.1 Structuring the Electron application
	2.1.2 package.json
	2.1.3 Downloading and installing Electron in our project

	2.2 Working with the main process
	2.3 Creating a renderer process
	2.3.1 Loading code from the renderer process
	2.3.2 Requiring files in the renderer process
	2.3.3 Adding styles in the renderer process

	2.4 Implementing the UI
	2.4.1 Making cross-origin requests in Electron
	2.4.2 Parsing responses
	2.4.3 Storing responses with web storage APIs
	2.4.4 Displaying request results
	2.4.5 The unhappy path
	2.4.6 An unexpected bug

	Summary

	Part 2?Building cross-platform applications with Electron
	3 Building a notes application
	3.1 Defining our application
	3.2 Laying the foundation
	3.3 Bootstrapping the application
	3.3.1 Implementing the UI
	3.3.2 Gracefully displaying the browser window

	3.4 Implementing the base functionality
	3.5 Debugging an Electron application
	3.5.1 Debugging renderer processes
	3.5.2 Debugging the main process
	3.5.3 Debugging the main process with Visual Studio Code

	Summary

	4 Using native file dialog boxes and facilitating interprocess communication
	4.1 Triggering native file dialog boxes
	4.2 Reading files using Node
	4.2.1 Scoping the Open File dialog
	4.2.2 Implementing dialog sheets in macOS

	4.3 Facilitating interprocess communication
	4.3.1 Introducing the remote module

	4.4 Triggering the Open File function using interprocess communication
	4.4.1 Understanding the CommonJS require system
	4.4.2 Requiring functionality from another process

	4.5 Sending content from the main process to the renderer process
	4.5.1 Sending the file contents to the renderer contents

	Summary

	5 Working with multiple windows
	5.1 Creating and managing multiple windows
	5.1.1 Communicating between the main process and multiple windows
	5.1.2 Passing a reference to the current window to the main process

	5.2 Improving the user experience of creating new windows
	5.3 Integrating with macOS
	Summary

	6 Working with files
	6.1 Keeping track of the current file
	6.1.1 Updating the window title based on the current file
	6.1.2 Determining whether the current file has changed
	6.1.3 Enabling the Save and Revert buttons in the UI
	6.1.4 Updating the represented file on macOS

	6.2 Tracking recently opened files
	6.3 Saving files
	6.3.1 Exporting the rendered HTML output
	6.3.2 Common paths
	6.3.3 Saving files from the renderer process
	6.3.4 Saving the current file
	6.3.5 Reverting files

	6.4 Opening files using drag and drop
	6.4.1 Ignoring dropped files everywhere else
	6.4.2 Providing visual feedback
	6.4.3 Opening dropped files

	6.5 Watching files for changes
	6.6 Prompting the user before discarding changes
	Summary

	7 Building application and context menus
	7.1 Replacing and replicating the default menu
	7.1.1 macOS and the case of the missing Edit menu
	7.1.2 The hidden cost of replacing Electron?s default menu
	7.1.3 Implementing the Edit and Window menus
	7.1.4 Defining menu item roles and keyboard shortcuts
	7.1.5 Restoring the application menu on macOS
	7.1.6 Adding a Help menu

	7.2 Adding application-specific menu functionality
	7.2.1 Handling the case of having no focused window

	7.3 Building context menus
	Summary

	8 Further operating system integration and dynamically enabling menu items
	8.1 Using the shell module from the UI in the renderer process
	8.2 Using the shell module in the application menu
	8.2.1 Additional features of the Electron shell module

	8.3 Accessing the shell module from a context menu
	8.3.1 Deciding between putting functionality in a menu or in the browser
	8.3.2 Deciding between putting functionality in the application or context menu

	8.4 Disabling menu items when appropriate
	8.4.1 Dynamically enabling and disabling menu items in the context menu
	8.4.2 Dynamically enabling and disabling menu items in the application menu

	Summary

	9 Introducing the tray module
	9.1 Getting started with Clipmaster
	9.2 Creating an application with the tray module
	9.2.1 Using the correct icon for macOS and Windows
	9.2.2 Supporting dark mode in macOS
	9.2.3 Reading from the clipboard and storing clippings

	9.3 Reading from and writing to the clipboard
	9.3.1 Writing to the clipboard
	9.3.2 Handling edge cases

	9.4 Registering global shortcuts
	9.4.1 Checking registrations and unregistering global shortcuts

	9.5 Displaying notifications
	9.6 Switching menu bar icons when pressed in macOS
	9.7 Completed code
	Summary

	10 Building applications with the menubar library
	10.1 Starting an application with menubar
	10.2 Adding clippings to the UI
	10.3 Working with clippings in the application
	10.3.1 Preventing memory leaks using event delegation
	10.3.2 Removing a clipping
	10.3.3 Writing to the clipboard

	10.4 Publishing clippings
	10.4.1 Setting up request

	10.5 Displaying notifications and registering global shortcuts
	10.5.1 Registering global shortcuts
	10.5.2 Solving for the edge case that occurs if the window has never been shown

	10.6 Adding a secondary menu
	Summary

	11 Using transpilers and frameworks
	11.1 Introducing electron-compile
	11.2 Laying the application?s foundation
	11.3 Building the UI in React
	11.3.1 The Application component
	11.3.2 Displaying the lists of items

	11.4 Adding new items
	11.5 Live reload and hot module reloading
	11.5.1 Enabling live reload
	11.5.2 Setting up hot module reloading

	Summary

	12 Persisting user data and using native Node.js modules
	12.1 Storing data in an SQLite database
	12.1.1 Using the right versions with electron-rebuild
	12.1.2 Setting up SQLite and Knex.js
	12.1.3 Hooking the database into React
	12.1.4 Fetching all of the items from the database
	12.1.5 Adding items to the database
	12.1.6 Updating items in the database
	12.1.7 Deleting items
	12.1.8 Storing the database in the right place

	12.2 IndexedDB
	12.2.1 Creating a store with IndexedDB
	12.2.2 Getting data from IndexedDB
	12.2.3 Writing data to IndexedDB
	12.2.4 Connecting the database to the UI

	Summary

	13 Testing applications with Spectron
	13.1 Introducing Spectron
	13.2 Getting comfortable with Spectron and WebdriverIO
	13.3 Setting up Spectron and the test runner
	13.4 Writing asynchronous tests using Spectron
	13.4.1 Waiting for the window to load
	13.4.2 Testing Electron BrowserWindow APIs
	13.4.3 Traversing and testing the DOM with Spectron
	13.4.4 Controlling Electron?s APIs with Spectron

	Summary

	Part 3?Deploying Electron applications
	14 Building applications for deployment
	14.1 Introducing Electron Packager
	14.1.1 Setting up Electron Packager
	14.1.2 Configuring the output directory
	14.1.3 Configuring the application?s name and version
	14.1.4 Updating the application icon
	14.1.5 Building for multiple operating systems

	14.2 Using asar
	14.3 Electron Forge
	14.3.1 Importing an Electron application into Electron Forge
	14.3.2 Building the application with Electron Forge

	Summary

	15 Releasing and updating applications
	15.1 Collecting crash reports
	15.1.1 Setting up the crash reporter
	15.1.2 Setting up a server to receive crash reports
	15.1.3 Reporting uncaught exceptions

	15.2 Signing your applications
	15.2.1 Signing applications for macOS
	15.2.2 Building an installer and code signing on Windows

	15.3 Automatically updating applications
	15.3.1 Setting up automatic updates in Electron
	15.3.2 Setting up a server for automatic updates

	Summary

	16 Distributing your application through the Mac App Store
	16.1 Submitting your application to the Mac App Store
	16.1.1 Signing the application
	16.1.2 Registering your application with the Mac App Store
	16.1.3 Adding the application to iTunes Connect
	16.1.4 Packaging your application for the Mac App Store
	16.1.5 Configuring application categories
	16.1.6 Register the application to open a file type

	16.2 Validating and uploading your application
	16.3 Finishing touches
	Summary

	Appendix?Code samples from Fire Sale and Clipmaster 9000
	Code from the end of chapter 6
	Code from the end of chapter 7
	Code from the end of chapter 8
	Completed code from the end of chapter 10

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

	Electron in Action?back cover

