
Ethereum for 
Architects and 
Developers

With Case Studies and Code  
Samples in Solidity
—
Debajani Mohanty

www.allitebooks.com

http://www.allitebooks.org


Ethereum for 
Architects and 

Developers
With Case Studies and  

Code Samples in Solidity

Debajani Mohanty

www.allitebooks.com

http://www.allitebooks.org


Ethereum for Architects and Developers

ISBN-13 (pbk): 978-1-4842-4074-8		  ISBN-13 (electronic): 978-1-4842-4075-5
https://doi.org/10.1007/978-1-4842-4075-5

Library of Congress Control Number: 2018961998

Copyright © 2018 by Debajani Mohanty 

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or 
part of the material is concerned, specifically the rights of translation, reprinting, reuse of 
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, 
and transmission or information storage and retrieval, electronic adaptation, computer software, 
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark 
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, 
and images only in an editorial fashion and to the benefit of the trademark owner, with no 
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if 
they are not identified as such, is not to be taken as an expression of opinion as to whether or not 
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of 
publication, neither the authors nor the editors nor the publisher can accept any legal 
responsibility for any errors or omissions that may be made. The publisher makes no warranty, 
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Matthew Moodie
Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,  
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,  
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a 
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc 
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook 
versions and licenses are also available for most titles. For more information, reference our Print 
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is 
available to readers on GitHub via the book’s product page, located at www.apress.com/ 
978-1-4842-4074-8. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Debajani Mohanty
Noida, Uttar Pradesh, India

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-4075-5
http://www.allitebooks.org


This book is dedicated to my loving mother, Mrs. Nirupama 
Mohanty, who was recently diagnosed with breast cancer 
stage 1 and is undergoing treatment for complete recovery 
as I write this manuscript. We have been together during 

the most difficult phases in life, and this battle too we’ll win.

www.allitebooks.com

http://www.allitebooks.org


v

Table of Contents

Chapter 1: �The World of Blockchains����������������������������������������������������1

Why Bitcoin Took the Market by Storm������������������������������������������������������������������2

Blockchains and Smart Contracts, the Need of the Hour���������������������������������������3

Introduction to Blockchains�����������������������������������������������������������������������������������5

Business Problem��������������������������������������������������������������������������������������������������5

Fully Distributed Model�������������������������������������������������������������������������������������6

Fully Centralized Model������������������������������������������������������������������������������������7

DLT, or the Decentralized Peer-to-Peer Model��������������������������������������������������9

DLT vs. Blockchains���������������������������������������������������������������������������������������������12

Benefits of Blockchains���������������������������������������������������������������������������������������13

Blockchain Transactions and Blocks��������������������������������������������������������������14

Block Header��������������������������������������������������������������������������������������������������15

Merkle Tree�����������������������������������������������������������������������������������������������������16

Double Spending��������������������������������������������������������������������������������������������18

Blockchain Hashing����������������������������������������������������������������������������������������19

Public and Private Keys����������������������������������������������������������������������������������20

About the Author���������������������������������������������������������������������������������xv

About the Technical Reviewer�����������������������������������������������������������xvii

Acknowledgments������������������������������������������������������������������������������xix

Preface�����������������������������������������������������������������������������������������������xxi

Guidelines to Use the Book���������������������������������������������������������������xxiii

www.allitebooks.com

http://www.allitebooks.org


vi

Consensus������������������������������������������������������������������������������������������������������������21

Proof of Work��������������������������������������������������������������������������������������������������22

Proof of Stake�������������������������������������������������������������������������������������������������23

Delegated Proof of Stake��������������������������������������������������������������������������������24

Proof of Authority��������������������������������������������������������������������������������������������24

Practical Byzantine Fault Tolerance����������������������������������������������������������������24

Directed Acyclic Graphs����������������������������������������������������������������������������������25

Forks in Blockchains��������������������������������������������������������������������������������������������25

Soft Fork���������������������������������������������������������������������������������������������������������26

Hard Fork��������������������������������������������������������������������������������������������������������27

Forks in Ethereum������������������������������������������������������������������������������������������27

Types of Visibilities in Blockchain Networks��������������������������������������������������������28

Public Blockchains�����������������������������������������������������������������������������������������29

Private Blockchains����������������������������������������������������������������������������������������29

Consortium or Federated Blockchains�����������������������������������������������������������29

Advantages of Ethereum��������������������������������������������������������������������������������������30

Limitations of Ethereum���������������������������������������������������������������������������������������31

Leading Blockchain and DLT Protocols����������������������������������������������������������������31

Quorum�����������������������������������������������������������������������������������������������������������32

Ripple�������������������������������������������������������������������������������������������������������������32

Hyperledger Fabric�����������������������������������������������������������������������������������������32

R3 Corda���������������������������������������������������������������������������������������������������������32

MultiChain������������������������������������������������������������������������������������������������������33

Symbiont��������������������������������������������������������������������������������������������������������33

OpenChain������������������������������������������������������������������������������������������������������33

Cardano����������������������������������������������������������������������������������������������������������33

IOTA����������������������������������������������������������������������������������������������������������������34

EOS�����������������������������������������������������������������������������������������������������������������34

Hashgraph������������������������������������������������������������������������������������������������������34

Most Ambitious Ethereum Projects in Production������������������������������������������������35

Table of ContentsTable of Contents



vii

Chapter 2: �Ethereum Architecture�������������������������������������������������������37

Bitcoin vs. Ethereum��������������������������������������������������������������������������������������������37

Turing Complete���������������������������������������������������������������������������������������������������38

Ethereum Virtual Machine������������������������������������������������������������������������������������38

Consensus Mechanism����������������������������������������������������������������������������������������39

Decentralized Autonomous Organization�������������������������������������������������������������40

Smart Contracts���������������������������������������������������������������������������������������������������40

Solidity�����������������������������������������������������������������������������������������������������������������41

Gas�����������������������������������������������������������������������������������������������������������������������41

Where Does Data Get Stored in Ethereum?���������������������������������������������������������43

Ethereum Accounts����������������������������������������������������������������������������������������������43

Storage Cost��������������������������������������������������������������������������������������������������������44

The Entire Ethereum Ecosystem��������������������������������������������������������������������������44

Interplanetary File System�����������������������������������������������������������������������������45

Swarm������������������������������������������������������������������������������������������������������������49

IPFS vs. Swarm����������������������������������������������������������������������������������������������49

Whisper����������������������������������������������������������������������������������������������������������50

Cryptocurrency or Token?������������������������������������������������������������������������������������52

Ether���������������������������������������������������������������������������������������������������������������52

Wei������������������������������������������������������������������������������������������������������������������52

How to Get Ether���������������������������������������������������������������������������������������������53

Private Ethereum Blockchains�����������������������������������������������������������������������������54

Chapter 3: �Basic Solidity Programming����������������������������������������������55

Prerequisites��������������������������������������������������������������������������������������������������������55

Remix Browser�����������������������������������������������������������������������������������������������������55

Deploying Contracts in Remix������������������������������������������������������������������������������57

Solidity File Details����������������������������������������������������������������������������������������������59

Table of ContentsTable of Contents



viii

Extension��������������������������������������������������������������������������������������������������������59

File Storage����������������������������������������������������������������������������������������������������59

Application Binary Interface���������������������������������������������������������������������������59

Import Statement�������������������������������������������������������������������������������������������62

Version������������������������������������������������������������������������������������������������������������62

Variables���������������������������������������������������������������������������������������������������������63

By Value����������������������������������������������������������������������������������������������������������63

By Reference��������������������������������������������������������������������������������������������������65

Solidity Comments�����������������������������������������������������������������������������������������67

Function����������������������������������������������������������������������������������������������������������67

Constructor�����������������������������������������������������������������������������������������������������70

Visibility����������������������������������������������������������������������������������������������������������72

Getter and Setter��������������������������������������������������������������������������������������������72

Error Handling: throw, revert(), assert(), require()�������������������������������������������74

Function with No Gas Cost�����������������������������������������������������������������������������76

Data Storage���������������������������������������������������������������������������������������������������78

Events�������������������������������������������������������������������������������������������������������������79

Object-Oriented Approach������������������������������������������������������������������������������������80

Encapsulation�������������������������������������������������������������������������������������������������80

Inheritance�����������������������������������������������������������������������������������������������������83

Polymorphism�������������������������������������������������������������������������������������������������85

Abstraction�����������������������������������������������������������������������������������������������������85

Function Overloading��������������������������������������������������������������������������������������88

Libraries���������������������������������������������������������������������������������������������������������������88

End a Contract�����������������������������������������������������������������������������������������������������89

Solidity, Bytecode, and Opcode����������������������������������������������������������������������������91

Assembly Language���������������������������������������������������������������������������������������������92

Running on Remix������������������������������������������������������������������������������������������������93

Table of ContentsTable of Contents



ix

Debugging on Remix��������������������������������������������������������������������������������������������97

Running on the solc Compiler����������������������������������������������������������������������������102

Unit Testing��������������������������������������������������������������������������������������������������������102

Embark���������������������������������������������������������������������������������������������������������103

Truffle�����������������������������������������������������������������������������������������������������������103

Dapp�������������������������������������������������������������������������������������������������������������103

Populus���������������������������������������������������������������������������������������������������������103

Chapter 4: �Deploying Smart Contracts����������������������������������������������105

Local Ethereum Testing with Ganache���������������������������������������������������������������105

Public Ethereum Testing with the Ropsten Testnet��������������������������������������������109

Using MetaMask�������������������������������������������������������������������������������������������110

Deploying the Contract���������������������������������������������������������������������������������115

Deploying on a Private Network�������������������������������������������������������������������������121

Installing�������������������������������������������������������������������������������������������������������122

Getting Started���������������������������������������������������������������������������������������������123

Mining Ether�������������������������������������������������������������������������������������������������129

Deploying on the Network����������������������������������������������������������������������������130

Deploying on the Cloud��������������������������������������������������������������������������������������130

Deploying a Private Ethereum Blockchain on Microsoft Azure���������������������131

Amazon AWS and IBM Bluemix��������������������������������������������������������������������138

Chapter 5: �Integration with the UI�����������������������������������������������������139

Introduction to Web3.js��������������������������������������������������������������������������������������139

Installing Node and Web3.js�������������������������������������������������������������������������������140

Writing a Smart Contract�����������������������������������������������������������������������������������142

Writing the Front-End Code��������������������������������������������������������������������������������143

Testing Through the Screen�������������������������������������������������������������������������������148

Testing Through Remix���������������������������������������������������������������������������������������149

Table of ContentsTable of Contents



x

Chapter 6: Advanced Programming in Oraclize and IPFS,  
and Best Practices�����������������������������������������������������������������������������151

Oraclize��������������������������������������������������������������������������������������������������������������152

Example��������������������������������������������������������������������������������������������������������154

Trying the Oraclize IDE���������������������������������������������������������������������������������157

Encrypting Data with a Python Script�����������������������������������������������������������159

Recursive Time-Based Queries��������������������������������������������������������������������161

Oraclize Real-Life Implementations�������������������������������������������������������������161

ChainLink������������������������������������������������������������������������������������������������������162

Storing Larger Content on IPFS��������������������������������������������������������������������������162

Benefits of IPFS��������������������������������������������������������������������������������������������162

Locally Configuring IPFS�������������������������������������������������������������������������������163

IPNS��������������������������������������������������������������������������������������������������������������172

Ethereum Best Practices������������������������������������������������������������������������������������173

Enterprise Smart Contracts��������������������������������������������������������������������������174

Version����������������������������������������������������������������������������������������������������������174

Naming Conventions������������������������������������������������������������������������������������174

Visibility Call�������������������������������������������������������������������������������������������������175

Delegate Call������������������������������������������������������������������������������������������������175

Simplicity and Modularity�����������������������������������������������������������������������������175

Overflow and Underflow�������������������������������������������������������������������������������175

External Calls������������������������������������������������������������������������������������������������176

Race Conditions��������������������������������������������������������������������������������������������176

Reentrancy���������������������������������������������������������������������������������������������������176

Timestamp Dependence�������������������������������������������������������������������������������178

Transaction Ordering������������������������������������������������������������������������������������178

Token Standards�������������������������������������������������������������������������������������������178

Table of ContentsTable of Contents



xi

Unit Testing���������������������������������������������������������������������������������������������������178

Smart Contract Auditing�������������������������������������������������������������������������������179

Security Tools�����������������������������������������������������������������������������������������������179

Chapter 7: �Frameworks: Truffle and Embark�������������������������������������181

Truffle�����������������������������������������������������������������������������������������������������������������181

Install Truffle�������������������������������������������������������������������������������������������������182

Create a Truffle Project���������������������������������������������������������������������������������182

Unit Testing���������������������������������������������������������������������������������������������������185

OpenZeppelin: Securing Solidity Code���������������������������������������������������������������190

Truffle Road Map������������������������������������������������������������������������������������������������190

Embark���������������������������������������������������������������������������������������������������������������191

Install Embark�����������������������������������������������������������������������������������������������191

Create an Embark Project�����������������������������������������������������������������������������191

Unit Testing���������������������������������������������������������������������������������������������������195

Chapter 8: �Testing Strategy for Ethereum Dapps������������������������������197

Blockchains and Testing������������������������������������������������������������������������������������198

Functional and Nonfunctional Testing����������������������������������������������������������������198

Standard Functional Testing�������������������������������������������������������������������������198

Standard Nonfunctional Testing�������������������������������������������������������������������199

Specialized Testing���������������������������������������������������������������������������������������200

Chapter 9: �Ethereum Use Cases���������������������������������������������������������203

Initial Coin Offering��������������������������������������������������������������������������������������������204

ICO Road Map�����������������������������������������������������������������������������������������������204

Ethereum Request for Comment Standards�������������������������������������������������208

EIP����������������������������������������������������������������������������������������������������������������215

Table of ContentsTable of Contents



xii

Microfinance������������������������������������������������������������������������������������������������������216

Solution��������������������������������������������������������������������������������������������������������217

Smart Contract Rules�����������������������������������������������������������������������������������221

Live Implementation�������������������������������������������������������������������������������������222

Real Estate���������������������������������������������������������������������������������������������������������222

Solution��������������������������������������������������������������������������������������������������������222

Ethereum Advantages�����������������������������������������������������������������������������������226

Live Implementation�������������������������������������������������������������������������������������227

Travel�����������������������������������������������������������������������������������������������������������������228

Solution��������������������������������������������������������������������������������������������������������228

Ethereum Advantages�����������������������������������������������������������������������������������229

Live Implementations�����������������������������������������������������������������������������������230

Car Insurance�����������������������������������������������������������������������������������������������������230

Solution��������������������������������������������������������������������������������������������������������230

Ethereum Advantages�����������������������������������������������������������������������������������232

Live Implementations�����������������������������������������������������������������������������������233

Legal������������������������������������������������������������������������������������������������������������������233

Solution��������������������������������������������������������������������������������������������������������233

Ethereum Advantages�����������������������������������������������������������������������������������234

Education�����������������������������������������������������������������������������������������������������������235

Solution��������������������������������������������������������������������������������������������������������235

Ethereum Advantages�����������������������������������������������������������������������������������236

Live Implementations�����������������������������������������������������������������������������������236

Healthcare����������������������������������������������������������������������������������������������������������237

Solution��������������������������������������������������������������������������������������������������������237

Ethereum Advantages�����������������������������������������������������������������������������������238

Live Implementations�����������������������������������������������������������������������������������239

Table of ContentsTable of Contents



xiii

Secure Voting and Digital Identity����������������������������������������������������������������������240

Solution��������������������������������������������������������������������������������������������������������240

Ethereum Advantages�����������������������������������������������������������������������������������242

Live Implementations�����������������������������������������������������������������������������������243

Chapter 10: �Ethereum: What Lies Ahead�������������������������������������������245

The Evolution of Ethereum���������������������������������������������������������������������������������245

Olympic, May 2015���������������������������������������������������������������������������������������246

Frontier, July 2015����������������������������������������������������������������������������������������246

Homestead, March 2016������������������������������������������������������������������������������246

Byzantium Metropolis Phase I, October 2017�����������������������������������������������246

Constantinople Metropolis Phase II, Slated for 2018������������������������������������246

Serenity, Slated for 2018������������������������������������������������������������������������������247

Scaling of Ethereum�������������������������������������������������������������������������������������������247

Casper Proof of Stake�����������������������������������������������������������������������������������247

Sharding�������������������������������������������������������������������������������������������������������248

Raiden Network��������������������������������������������������������������������������������������������249

Plasma����������������������������������������������������������������������������������������������������������250

Internet of Blockchains: Polkadot, Cosmos, Coco�����������������������������������������250

Governance��������������������������������������������������������������������������������������������������������251

Conclusion���������������������������������������������������������������������������������������������������������253

References���������������������������������������������������������������������������������������������������������253

�Index��������������������������������������������������������������������������������������������������259

Table of ContentsTable of Contents



xv

About the Author

Debajani Mohanty is a senior architect with 

NIIT Technologies Ltd in Delhi, NCR, and has 

almost 17 years of experience in the industry. 

She has been involved in large projects and 

has built many scalable enterprise B2B and 

B2C products in the travel, e-governance, 

e-commerce, and BFSI domains. Writing 

complex technical articles in easy-to-

understand language is a forte that has earned 

her close to 10,000 followers on social media.

Debajani is the author of the bestseller BlockChain: From Concept to 

Execution, which has been translated to other languages such as German. 

Debajani is an honorary faculty member at Amity University Online. She is 

also a NASSCOM event speaker and on the international panels of mentors 

at Kerala Blockchain Academy, the first blockchain academy in India.

Debajani is also a woman activist and writer. She has been felicitated 

by Nobel Peace Prize winner Mr. Kailash Satyarthi for her outstanding 

contributions to women empowerment in the field of literature. 



xvii

About the Technical Reviewer

Pon ArunKumar Ramalingam is an IT 

cognitive applications development consultant 

who has extensive experience in building 

full stack applications, using the Ethereum 

blockchain, implementing machine learning, 

and implementing enterprise resource planning 

suites of applications. He runs his own strategic 

sourcing and consulting company serving clients 

in the areas of human capital management, 

campus solutions, financials, and supply chain.

At ETHDenver, he won a hackathon on building decentralized 

Ethereum applications for societal cause, addressing the needs of street 

artists. He has worked for several fortune 500 companies and startups in 

North America and Asia Pacific. His career with Hexaware Technologies 

and Ford Motor Company brought him a lot of accolades for the services 

that he provided while relentlessly innovating ways to use emerging 

technology to solve real-world customer problems. His mastery in the 

emerging Ethereum blockchain and machine learning technologies has 

been showcased in various meetup presentations.

He is a wonderful team player, developer, and solution design architect 

and is a certified service-oriented architect professional. He has a BS in 

Engineering degree in computer science from the Sri Krishna College of 

Engineering and Technology at Bharathiar University in Coimbatore, Tamil 

Nadu, India. He currently lives in Concord, North Carolina. 



xix

Acknowledgments

This book is possible because of combined effort of many; my work is so 

small it causes only little ripples in a massive ocean. Thank you to the 

following people from all aspects of my life who have contributed to my 

success: my grandmother, Mrs. Renuka Pal Das; mother, Mrs. Nirupama 

Mohanty; father, Dr. N. K. Mohanty; uncle, Dr. N. R. Das; and husband, Dr. 

Rajul Rastogi, for always being there in times of need.

The woman-friendly workplace at NIIT Technologies Ltd has been a 

boon for me. Many thanks to our chairman Mr. Rajendra S. Pawar, vice 

chairman Mr. Arvind Thakur, CEO Mr. Sudhir Singh, senior vice president 

Mr. Suvrata Acharya, and my manager, Mr. Harish Nanda, for consistent 

motivation throughout my literary journey.



xxi

Preface

Since writing my first book on the blockchain technology, I have been 

invited to many discussions and have been approached by many startups 

to discuss how to initiate decentralized applications or products on either 

blockchain or distributed ledger technology.

Interestingly, most people I have met have little understanding of the 

capabilities and limitations of the blockchain technology. The hype has 

caused business leaders to spend time investigating use cases that are 

not necessarily good fits for a blockchain. Industry is still not sure how 

businesses can get benefits from this blockchain tsunami. To be precise, 

most blockchain experts today mint money from the market either by 

offering training programs or by working on initial coin offerings because 

business leaders are skeptical about blockchain technology and its 

potential and are still waiting for the right moment to go ahead with its 

implementation.

Unlike others, I am a late starter in the world of blockchains. In my 

first book, BlockChain: From Concept to Execution, I summarized most 

of the blockchain frameworks available on the market and where you 

can use them. However, as I took a deeper dive into the architecture and 

implementation details of these frameworks, I ran into a few roadblocks 

learning how to use them in real life, and I couldn’t find much information 

available in books, via training programs, or on web sites. I expected to 

find a straightforward, comprehensive tutorial that covered all the basic 

necessities, such as verifying proofs and setting up tests, that would help a 

novice like me, but I came up empty-handed. As a result, I decided to write 

a book to help out others looking for the same details.



xxii

This book that I finally ended up writing is a perfect amalgamation of 

learning to use the blockchain technology at the same time as evaluating 

profitable, salable business use cases and their implementations using 

Ethereum, the most widely used blockchain framework in today’s market. 

With step-by-step tutorials, examples, and pictorial representations 

and flowcharts, the book is suitable for even novices because of its 

easy readability. At the same time, it has many case studies with basic 

implementation details across verticals that will give architects and 

business leaders some vision of how and where this technology can be 

used to earn maximum profitability. Readers can use the sample code, 

enhance it per their respective business needs, and gradually develop and 

test decentralized applications before going to production.

PrefacePreface



xxiii

Guidelines to Use the Book

Ethereum for Architects and Developers is an excellence book on Ethereum 

that explores the entire Ethereum ecosystem with step-by-step examples 

and plenty of theory, labs, and live use cases.

Ethereum today is the most widely used blockchain framework on 

the market; however, the main issues for learning Ethereum are the 

lack of trainers and its inadequate documentation. To learn Ethereum, 

developers, architects, and business leaders have to collect data from 

different web sites, blogs, articles, and YouTube videos. Ethereum for 

Architects and Developers should fill that vacuum by providing content 

suitable to all stakeholders consolidated in one place. On this reading 

journey, you will be introduced to blockchain concepts, decentralized 

applications, Ethereum architecture, Solidity smart contract programming 

with examples, and finally instructions on testing, debugging, and 

deploying smart contracts. Best practices to write contracts are explained 

in the most efficient way with ample examples to guide developers to write 

high-quality contracts. Later chapters will be most beneficial for business 

leaders and architects as the book will cover different business verticals 

such as finance, travel, supply chain, insurance, land registry, and more 

with flowcharts, diagrams, and sample code that stakeholders can refer to, 

enhance, and deploy in live projects.



xxiv

The book will be useful for readers of every background who are 

eager to develop Ethereum decentralized applications, want to learn 

its architecture, or are interested in exploring different use cases that 

can be implemented using the Ethereum blockchain framework across 

business verticals. By the end of the book, readers will have enough 

information about how the optimal usage of Ethereum can create value 

for their business processes by eliminating middleman costs and bringing 

transparency to the creation of deduplicated, fraud-proof data storage for 

the smoother execution of business.

Guidelines to Use the BookGuidelines to Use the Book



1© Debajani Mohanty 2018 
D. Mohanty, Ethereum for Architects and Developers,  
https://doi.org/10.1007/978-1-4842-4075-5_1

CHAPTER 1

The World 
of Blockchains

“I remember knowing, for a while, for a long time, that I was 
kind of abnormal in some sense.”

—Vitalik Buterin

In my childhood my grandfather used to tell me stories of how to create 

an immense amount of wealth in a short time, of course in an honest way, 

and then more importantly how to keep it all safe. While most little girls 

my age were fascinated by fairytales, I found wealth creation ideas much 

more alluring and a means to be a powerful someone someday later in 

life. With time I came to know I was not the only one in this game. People 

of all ages think about this puzzle of “creation of wealth” and “securing it.” 

Be it gold, spices, cattle, slaves, land, or oil, wealth has taken on different 

forms in the exchange of goods between parties and countries. Human 

history has witnessed many demonetizations where an existing currency 

is invalidated, followed by remonetization, in which a form of payment 

is restored as legal tender. Currencies were a mere representation of 

exchange media and yet carried no value without the backing of kings, 

emperors, or ruling governments. Cryptocurrency is one such currency; 

its distribution and exchange are entirely confined to the digital world. 

Bitcoin might not be the first digital currency, yet it’s the first successful 

cryptocurrency on the market.



2

�Why Bitcoin Took the Market by Storm
In the last three to four decades many people have tried to work on digital 

or electronic currencies but have failed because of technical or regulatory 

issues. Even today companies such as PayPal, ECash, WebMoney, Liberty 

Reserve, Payoneer, and CashU use digitalized currency but through 

centralized systems. So, what was new about Bitcoin that made us all crazy?

These are some benefits:

•	 Low transaction fees

•	 Immunity to fraud

•	 Instantaneous settlements

•	 Prevention of identity theft

•	 Popularity

•	 Universally accepted (mostly)

Over the years, the price of Bitcoin has gone on a roller-coaster ride. 

While many countries such as the United States, Canada, Australia, and 

the European Union have gladly and openly embraced Bitcoin, there are a 

few that are still adverse to it. Sooner or later, I am hopeful in our lifetime a 

day will arrive when sectioned currencies will be entirely replaced by their 

digital counterparts.

The most beautiful part of Bitcoin, however, is its underlying 

mechanism to store data that is immutable, is immune to fraud, and 

uses cryptology in a secure way for sharing data across parties. This 

revolutionary new technology is called the blockchain. In other words, 

Bitcoin is a peer-to-peer electronic cash that is valuable over legacy 

systems because of the autonomous monetary benefits that it brings in a 

decentralized manner. The blockchain is the technology of storing records 

or data as blocks; it is similar to linked lists that use cryptographic hashing 

algorithms and Merkle trees.

Chapter 1  The World of Blockchains



3

In the last decade, investment in blockchains has risen exponentially. 

According to a research report published by MarketsandMarkets, the 

market is expected to grow from $623 million in 2018 to $15,455 million by 

2023, at a compound annual growth rate (CAGR) of 90.1 percent during 

the forecast period.

�Blockchains and Smart Contracts, the Need 
of the Hour
In a digital world, contracts have the potential to run the entire ecosystem. 

Let’s just think about the role of contracts in our day-to-day lives.

In today’s world, contracts define our economy and business, legal, 

and political systems. Be it purchasing a property, buying an asset, getting 

a job, buying insurance, or verifying your identity, contracts play a crucial 

role. Contracts are even established for interactions between political 

parties, nations, organizations, and individuals. Practically, processes take 

a massive amount of time when contracts are kind of slowed down in real 

life. At each stage, they need approval from authorities, and at each stage 

there could be obstructions due to the inefficiencies of individual, groups, 

businesses, or laws.

What if you could automate all these processes for a smooth 

execution?

This is where the beauty of the blockchain comes in. The blockchain 

that was invented by the mysterious Satoshi Nakamoto for the first 

cryptocurrency Bitcoin is capable of registering transactions in a secure 

way; in addition, with programmed smart contracts, it can trigger 

transactions automatically, as discussed in later sections of the book.

Maybe in a couple of years, with the help of blockchains, we can live 

in a completely automated digital world where contracts are embedded 

in code and stored in databases that are transparent, are shared, and are 

Chapter 1  The World of Blockchains



4

protected from deletion, tampering, and revision. Signatures would be 

digital and could be identified, validated, stored, and shared. This might 

lead to a cultural change where intermediaries such as lawyers, brokers, 

and bankers are longer be needed. Transactions and interactions between 

individuals, organizations, machines, and algorithms would be frictionless.

The blockchain has immense potential, and as per many it’s the most 

significant invention since the Internet itself; per others, it’s only hype. 

The barrier is not only in the technology that is still at its infancy but also 

with governance, organizational, cultural, and even societal issues. Many 

experts believe that we are years away from a world that’s completely 

“blockchainified.” The change might be slow but will definitely be 

steady. It will take years to transform our businesses, social systems, and 

governments. It’s just like the initial credit card days when people used 

to feel safe staying away from ATMs and plastic, preferring the good old 

procedure of keeping cash in their wallets. So, it would be wrong in this 

book to jump to the code unless you understand blockchains in totality, 

the big-picture ecosystem, and the practical hindrances that you may face 

even if you are the best coder in the world.

The intent of this book is not only to train you in Ethereum 

programming; you will find many books and web sites for that. This book 

will explain the whole blockchain ecosystem and guide you with use cases 

and with code templates that you can use to build your proof of concepts 

(PoCs) and pilots in almost no time. By the end of the book and after some 

practice and analysis, you will have enough insight and ability not only to 

work on blockchain projects but also to advise your key stakeholders how 

to get the most out of this disruptive technology for your business.

Note A s quoted on its web site (https://www.ethereum.org/), 
Ethereum is a decentralized platform for applications that runs 
exactly as programmed without any chance of fraud, censorship, or 
third-party interference.

Chapter 1  The World of Blockchains

https://www.ethereum.org/


5

�Introduction to Blockchains
Before going any further, here are few features to broadly define a 

blockchain:

•	 It is a distributed ledger or register. Some may call it 

a special type of database, but let’s call it a register or 

ledger.

•	 It could be public or private.

•	 Every node in the network carries a copy of the ledger.

•	 There is no single point of failure and no downtime.

•	 Data in a blockchain is immutable; in other words, 

once the data is stored, it can’t be altered.

•	 Each record in the database is known as a block that 

points to the previous block in the chain.

•	 Each new block consists of a group of transactions that 

is added to the end of the blockchain.

Please revisit this section after you learn more about blockchains in 

later sections where they’re more thoroughly explained.

�Business Problem
Before learning about Ethereum in detail, you may wonder why the market 

is so fascinated with blockchains. If a blockchain is a storing mechanism, 

you know that many such mechanisms exist in industry and have for 

decades.

The answer is that the blockchain is not useful for storing data for an 

individual but is useful for multiple parties, especially who do not trust 

each other and yet want to share data for some business transaction.

Chapter 1  The World of Blockchains



6

So, let’s find out the different mechanisms used in the current market 

by enterprises such as banks, financial organizations, global distribution 

systems (GDSs) in travel, or supply-chain systems to communicate with 

each other. Consider that three independent organizations are trying to do 

some business together in any vertical. Before their collaboration, they had 

their individual data in their respective silos. Now that they come together, 

what are the possible ways to share data?

�Fully Distributed Model
Most current projects must be aligned with the model specified in 

Figure 1-1 where each of the three organizations maintain their own data 

and communicate through some web service or messaging protocol. There 

could be many problems in such a process.

•	 Most of the data would be redundant, with each 

organization carrying their own version.

•	 Data across organizations might not be in sync because 

of latency issues.

•	 Processes would be wasteful; reconciliations would be 

complex and expensive.

Chapter 1  The World of Blockchains



7

�Fully Centralized Model
You have already seen an issue with distributed systems, so now how can 

you move to a completely shared model that would be secure and neutral 

to all these organizations? As shown in Figure 1-2, mostly organizations 

achieve this by delegating this responsibility to a third party that works as a 

common platform for all parties to store and share data.

Figure 1-1.  Three organizations working in a distributed mode of 
sharing data

Chapter 1  The World of Blockchains



8

Let’s explore the issues here.

•	 This is an expensive way because third parties will 

charge for such a service.

•	 The third party may have a conflict of interest with an 

individual organization. A particular party may not 

agree with the data for some reason.

•	 There could be legal issues leading to data regulation.

So, what could be the model where parties can share data in the most 

efficient way so that

•	 Data is in sync across all the networks

•	 Redundancy is at a minimum or nonexistent

Figure 1-2.  Three organizations working in a centralized mode of 
sharing data

Chapter 1  The World of Blockchains



9

•	 Expenses due to reconciliations are less frequent

•	 Auditing is easy

The new mechanism that comes to mind is a distributed ledger 

technology (DLT).

�DLT, or the Decentralized Peer-to-Peer Model
Distributed ledger technology, as shown in Figure 1-3, is a mechanism 

that works in a peer-to-peer fashion, which is different from each of 

the two previous models. Using DLT, you can develop applications and 

platforms where ownership is shared across the network of collaborating 

companies, completely eliminating the need for a third party to operate 

the applications on your behalf.

•	 Mutual processes and data are shared as tamper-proof 

single sources of truth that entirely remove the need for 

traditional integration, data translation, duplication, 

and redundancy.

•	 Data synchronization and consensus are provided 

by the DLT platform. Applications are built once, in 

collaboration, and used by many parties.

Chapter 1  The World of Blockchains



10

Now that you broadly know all three models, let’s see how nodes 

representing parties can be pictorially represented. Figure 1-4 compares 

the centralized client-server and peer-to-peer models.

Figure 1-3.  Three organizations working in a peer-to-peer mode of 
sharing data

Chapter 1  The World of Blockchains



11

Now let’s see how these two patterns can be further modified by 

bringing a higher intensity of decentralization to the overall network (see 

Figure 1-5).

Figure 1-4.  Client-server versus peer-to-peer models

Figure 1-5.  Client-server model in more and more decentralized 
mode

Chapter 1  The World of Blockchains



12

Now that you are convinced why you need a distributed ledger 

technology, let’s discuss how the blockchain is different or similar to DLT.

�DLT vs. Blockchains
The blockchain is a special use case of distributed ledger technology. This 

is how they are the same:

•	 Both use public/private key cryptography.

•	 Both use hashing.

•	 Both use a peer-to-peer model for communication.

Figure 1-6.  Peer-to-peer model in more and more decentralized 
mode

In Figure 1-6, observe how peer-to-peer networks work when there is 

no central server.

Chapter 1  The World of Blockchains



13

This is how they are different:

•	 The blockchain uses native currency, which is a 

mandate. DLT does not.

•	 The blockchain is distributed; in other words, all data 

can be visible to all nodes. DLT is not.

•	 The blockchain is permission-less. DLT is not.

•	 The blockchain works with proof of work (though soon 

Ethereum is coming up with proof of stake). DLT does not.

�Benefits of Blockchains
You may wonder whether the blockchain is another type of database and 

why it was created in the first place. Please note that the blockchain was 

introduced through Bitcoin, a cryptocurrency, and it was conceptualized 

to address the need of digital currency that a traditional database cannot.

•	 The data in a blockchain ledger can’t be altered.

•	 It’s a highly secured database that uses public and 

private keys for transactions.

•	 The database is publicly available for everyone to 

validate and add transactions.

•	 Since the blockchain is decentralized, there is no 

downtime in the blockchain, and hence transactions 

can be added at any time and from anywhere.

•	 It could be public or private as per the needs of an 

individual or business and is hence flexible.

•	 The ledger is open to auditing anytime.

Chapter 1  The World of Blockchains



14

�Blockchain Transactions and Blocks
Now let’s see how data is added to a blockchain ledger. Consider a book 

as represented in Figure 1-7 that has 100 pages with a page number 

embossed at the top of each page. If one page is torn out from the book, the 

reader could easily figure it out. The same is true for a blockchain store.

Figure 1-7.  Indexing in the blockchain

As the name suggests, the blockchain is a chain of blocks where each 

block points to a previous block.

Each block consists of the following:

•	 A block header

•	 One or more transactions in the block

•	 An optional list of ommers, or uncle, blocks

•	 An optional fork here and there

If you compare a blockchain data store to a book, then each block 

represents a page in the book, and transactions quoted in the individual 

block are synonymous to lines on a page in the book.

Chapter 1  The World of Blockchains



15

The first block in a blockchain ledger, as shown in Figure 1-8, is known 

as a Genesis block. Ommers, or uncle, blocks are the detached blocks 

not chosen for inclusion in the consensus blockchain. However, miners 

(explained later in the chapter) still find a smaller number of tokens by 

discovering them.

�Block Header
A blockchain consists of a series of blocks that are joined together with 

special logic. Every block has a block header that has the following 

information, also shown in Figure 1-9:

•	 Hash of the previous block

•	 Timestamp

•	 Mining or difficulty level

•	 A proof-of-work nonce

•	 A root hash for the Merkle tree containing the 

transactions for that block

Figure 1-8.  How the blockchain progresses

Chapter 1  The World of Blockchains



16

�Merkle Tree
As per Wikipedia, a hash tree or Merkle tree is a tree in which every leaf 

node is labeled with the hash of a data block and every nonleaf node is 

labeled with the cryptographic hash of the labels of its child nodes.

What does that mean? Well, a Merkle tree represents data in its nascent 

form as well as in its hashed value (see Figure 1-10). At the bottom of the 

tree you can see real values, which are called leaf nodes.

Figure 1-9.  Blocks in a blockchain

Chapter 1  The World of Blockchains



17

Let’s say in the following blockchain we have three blocks. In the 

middle block, B, there are eight transactions, from T(A) to T(H). Now let’s 

see how the Merkle tree is formed.

	 1.	 Each of these transactions is first converted to their 

hash values, in other words, H(A) to H(H).

	 2.	 Each hash value is paired with another hash value 

next to it to create a new hash value, in other words, 

H(A) + H(B) = H(AB). What if you have an odd 

number of transactions, in other words, H(G) as the 

last hash? Then it creates a hash with itself, in other 

words, H(GG).

	 3.	 This process continues until you reach a single hash 

of all the transactions of the current block, in other 

words, H(ABCDEFGH). This is called the Merkle 

root.

Figure 1-10.  Merkle tree

Chapter 1  The World of Blockchains



18

Now this Merkle root goes to the block header and also to the next 

block where it gets saved as the hash of the previous block.

“Merkle trees are a fundamental part of what makes block-
chains tick. Although it is definitely theoretically possible to 
make a blockchain without Merkle trees, simply by creating 
giant block headers that directly contain every transaction, 
doing so poses large scalability challenges that arguably put 
the ability to trustlessly use blockchains out of the reach of all 
but the most powerful computers in the long term.”

The previous lines are a quote from Ethereum’s cofounder Vitalik 

Buterin. They help in maintaining the sanity and integrity of the entire 

blockchain. If any transaction data in the blockchain gets altered, then 

the hash value would be altered, and ultimately the Merkle root would be 

altered and would mismatch with the original Merkle root saved in the 

next block; hence, the blockchain would be invalidated. This is the magic 

formula with which data remains tamperproof and secure online in a 

public blockchain such as Bitcoin or Ethereum.

�Double Spending
Double spending is an issue in a blockchain ecosystem, and different 

blockchain and DLT networks handle it using different algorithms. Let’s 

say Party A has $100 and has to pay $100 to Party B and $100 to Party C. 

In the real world, this is not possible because the payment would be in 

physical currency. But in the digital world, especially in the blockchain 

ecosystem, if party A in quick succession creates two transactions to Party 

B and Party C each with $100 before the earlier one is confirmed, then it’s 

possible that both transactions would be executed independently. This 

issue is called double spending (see Figure 1-11). Ethers shown in the 

picture are a type of crypto currency to be discussed later in the book.

Chapter 1  The World of Blockchains



19

In a blockchain network, such issues are prevented by tracing each 

transaction closely. When the Genesis block is added, the network is 

assigned a finite supply of cryptocurrency, and then those currencies are 

exchanged between parties as the transactions go on. Each time a block is 

added, miners thoroughly calculate whether the entire supply remains the 

same, and no data is tampered with. Thus, double spending is completely 

avoided.

�Blockchain Hashing
Hashing is an algorithm that takes any string as input and gives you 

another string as output that has a fixed length. It’s nearly impossible to 

decipher the input from the output string. Also, it does not matter how 

Figure 1-11.  Tracking transactions in a blockchain

Chapter 1  The World of Blockchains



20

many times or at whatever time interval you hash the input string; the 

output string will always remain the same. Also, the length of the output 

string will always remain the same for inputs big or small; only the output 

contents will be different. There are different industry-standard hashing 

algorithms available on the market such as SHA-1, SHA-2, SHA-256, and 

so on. Hashing is frequently used for comparing secure data; for example, 

passwords are most often never stored in databases in nascent form. 

Rather, their hashed value is stored, and whenever the user logs in again, 

the hash value of the supplied password is cross-checked with the saved 

hash value to authenticate the user.

So, why is hashing needed in a blockchain? As already discussed, in 

blockchains, you calculate the hash values of data and then create a hash 

of all the hashes of transactions and store it in the header of each block. 

Also, each block has a similar hash value as the previous block. This binds 

the entire blockchain together with complex logic. Hence, it is extremely 

difficult for any attacker to decipher the whole dataset with maligned data.

�Public and Private Keys
When someone sends you cryptocoins over the blockchain, they actually 

send them to a hashed version of what’s known as the public key. There 

is another key that is hidden from them, which is known as the private 

key. This private key is used to derive the public key. Everyone in the 

blockchain network knows their own private key. It’s like a master key to 

your safe deposit box in a bank and should not be shared with anyone, 

unless you want your cryptocurrencies to be stolen (see Figure 1-12)!

Figure 1-12.  Public and private keys

Chapter 1  The World of Blockchains



21

The private key is used to mathematically derive the public key, which 

is then transformed with a hash function to produce the address that other 

people can see. You receive cryptocurrencies that others send to your 

address.

At this point, you may be asking yourself, if a public key is derived from 

a private key, couldn’t someone create a reverse key generator that derives 

the private keys from the public keys, allowing them to steal anyone’s coins 

in the process? Cryptocurrencies solve this issue by using a complicated 

mathematical algorithm to generate the public keys: the algorithm makes 

it easy to generate public keys from private keys, but it is difficult to 

“reverse” the algorithm to accomplish the opposite (see Figure 1-13).

Figure 1-13.  The private key cannot be extracted from the public key

�Consensus
You already know the blockchain is a decentralized database where data 

is saved with a common consensus between all the parties. Consensus 

is never an issue with a traditional centralized database because it has 

a leader or a central authority responsible for making all the decisions, 

validating the data, and storing it. However, the blockchain is a public 

ledger that deals with multiple peers. So, how can all the participants agree 

on the current state of the blockchain and reach a common consensus 

to store data when they do not trust each other? Different blockchain 

and DLT frameworks have worked on this puzzle and have come up with 

Chapter 1  The World of Blockchains



22

different solutions. Broadly, the consensus mechanisms can be mainly 

divided into the following types:

•	 Proof of work (POW)

•	 Proof of stake (POS)

•	 Delegated proof of stake (DPOS)

•	 Proof of authority (POA)

•	 Practical Byzantine fault tolerance (PBFT)

•	 Directed acyclic graphs (DAGs)

Currently these consensus mechanisms have been widely adopted 

by different blockchain and DLT frameworks. A particular model can 

be chosen over others as per an organization’s business demands. 

Performance, scalability, and security are major factors before picking any 

one of them over others.

�Proof of Work
The proof of work was the first consensus mechanism introduced with 

Bitcoin. In POW, all the miners (mining is discussed later in the chapter) 

compete to solve a mathematical problem, and the one who solves it 

fastest becomes the winner. Soon other miners start validating it until 

it reaches an agreed-on percentage (51 percent or 90 percent as per the 

configuration). POW works on the “longest chain” rule; in other words, if 

there are forks created because of different miners agreeing to different 

side chains, then the longest chain that moves the fastest is the most 

trustworthy; soon others will start following that chain, and other side 

chains will be discarded.

Used by: Bitcoin, Ethereum

Advantages: Time tested, safe

Disadvantages: Too slow, massive power consumption

Chapter 1  The World of Blockchains



23

MINING

The process of validating transactions and adding a block to the blockchain 

framework is called mining. The participant users who mine are called 

miners. But why would someone like to be a miner? It’s because the miners 

are rewarded with a fraction of cryptocurrency that fuels the blockchain 

framework.

�Proof of Stake
POS consensus has nothing to do with mining, yet it still validates the 

blocks and adds to the blockchain. This collateral-based consensus 

algorithm depends on the validator’s economic stake in the network. 

In other words, each validator must own some stake in the network by 

depositing some money into the network. In POS-based consensus for 

public blockchains, several validators take turns proposing and voting on 

the next block, and the weight of each validator’s vote depends on the size 

of its deposit.

Used by: Ethereum’s upcoming Casper model of consensus

Advantages: Security, reduced risk of centralization, and energy 

efficiency

Disadvantages: more prone to attack as there is no computational 

factor like with POW to keep the network safe

MINTING

In POS the entire process of validating a new block and getting a fraction of 

the cryptocurrency as a reward is called minting (not mining).

Chapter 1  The World of Blockchains



24

�Delegated Proof of Stake
The DPOS is a variation of the POS consensus model where all the users 

vote to select the ones who will be the final approvers of transactions in a 

democratic way.

Used by: EOS, Bitshares

Advantages: Super-fast, scalable, and high energy efficiency

Disadvantages: None

�Proof of Authority
POA is a modified version of POS where identity is at stake instead of 

monetary value. In this consensus model, transactions and blocks are 

validated by approved accounts, known as validators. Individuals get the 

right to be an approving authority only after producing their valid identity 

proof. Hence, there is no need for mining.

Used by: Ethereum’s Parity

Advantages: Security, no mining, high in scalability and performance

Disadvantages: None

�Practical Byzantine Fault Tolerance
The PBFT model of consensus is derived from the classic problem of wars 

in ancient times. Let’s say several Byzantine generals with their respective 

groups of armies have surrounded an enemy fort. To conquer the fort, it’s 

crucial that most of the generals attack the fort at the same time and work 

in unity. However, whether they will attack the fort and at what time is a 

collective decision between them all, which they would know by sharing 

data between each other. Let’s say General 1 sends a message to Generals 

2, 3, and 4 to attack at 4:30 p.m., and all send their acknowledgment to the 

proposal as “yes.” However, it’s possible that one of them is a traitor and 

will actually not oblige when a common attack is required. Consensus 

Chapter 1  The World of Blockchains



25

in such a system, which is equivalent to a win in the war, is achieved if a 

minimum particular threshold is achieved, in other words, two-thirds of all 

generals actually being loyal and working in unison.

Used by: Hyperledger, Ripple, Stellar

Advantages: High transaction throughput

Disadvantages: Centralized/permissioned

�Directed Acyclic Graphs
DAGs are another type of consensus that comes with a data structure very 

different from the Blockchains and is far faster as well. Tangle is the DAG 

consensus algorithm used by IOTA. To send an IOTA transaction, you need 

to validate two previous transactions you’ve received.

Used by: IOTA, Hashgraph, Nano

Advantages: Infinitely scalable, speed increases as network grows, best 

suited for microtransactions

Disadvantages: Works well only with a large amount of traffic; without 

traffic may have initiation problem

�Forks in Blockchains
If you start working with a blockchain framework such as Ethereum, often 

you will come across forks (see Figure 1-14). Forks in a blockchain are of 

two types.

•	 Soft fork

•	 Hard fork

Chapter 1  The World of Blockchains



26

�Soft Fork
While transactions are added to a block and the block gets validated 

by any consensus model such as POW or POA, a temporary fork might 

get created either accidentally or otherwise because people may have 

different versions of the same blockchain ledger. In most cases, the forks 

are sorted out as soon as most people on the network start accepting the 

longest chain as the moment of truth. The side chains are discarded and 

acknowledged as faulty blocks. They are called soft forks.

Soft forks have vulnerability for being exposed to denial-of-service (DoS)  

attacks that may prevent the network from processing valid transactions 

at negligible expense to the attacker. Just like any other DoS attacks, an 

attacker can flood the network with transactions that have high complexity 

for computation and end by performing an operation on the decentralized 

autonomous organization (DAO, to be explained later in book) contract. 

Therefore, you have to be careful with soft forks.

Figure 1-14.  A fork in the blockchain

Chapter 1  The World of Blockchains



27

�Hard Fork
Hard forks are needed from time to time as software has to pass through 

changes or version upgrades. In such processes, two different versions of 

the blockchain are created sharing the same origin, which is often called 

a hard fork. Depending upon this rule that denotes an intensity of change 

from the original version, the fork is labeled as a soft fork or hard fork. The 

primary difference between a soft fork and a hard fork is that soft forks are 

backward compatible whereas hard forks are not.

Bitcoin, whose Genesis or first block was created back in 2009, has 

undergone many hard forks since then, named as follows:

•	 Bitcoin XT

•	 Bitcoin Classic

•	 Bitcoin Unlimited

•	 Segregated Witness

•	 Bitcoin Cash

•	 Bitcoin Gold

•	 SegWit2X

�Forks in Ethereum
Similarly, Ethereum has two forks so far, known as Ethereum and 

Ethereum Classic (see Figure 1-15).

Chapter 1  The World of Blockchains



28

While Classic is a hard fork that retains some of the original flavors of 

the Ethereum blockchain, it’s not backward compatible, whereas the latter 

is a soft fork and gets all the benefits of being upgraded to all the latest 

improvements.

�Types of Visibilities in Blockchain Networks
Blockchain networks have different visibilities (public, private, permissioned, 

consortium) that suit different business needs.

Figure 1-15.  Forks in the Ethereum blockchain

Chapter 1  The World of Blockchains



29

�Public Blockchains
A blockchain is completely transparent and publicly accessible (through 

most likely the Internet), and transactions are open to all on the network. 

Public blockchains need volunteers or miners to validate and secure 

entries, through either POW, POS, or any other consensus method. Bitcoin 

is a perfect example of a public blockchain network. Even Ethereum in its 

nascent form is a public blockchain framework.

The advantages are that there are no infrastructure costs and there 

is no need to maintain servers or system administrators, which radically 

reduces the costs of creating and running decentralized applications.

�Private Blockchains
In a private blockchain, all permissions are kept centralized with an 

organization.

A private blockchain is not decentralized; it’s rather just a distributed 

database. It allows some organizations that have compliance and privacy 

requirements to implement a blockchain.

Monax and MultiChain are fine examples of private blockchains. 

Ethereum can be configured to work on a private blockchain network. In 

fact, many people nowadays prefer private blockchains because they do 

not want to expose their data to the entire world through a public network.

The advantages are that it scales well, has faster execution, and no 

token is needed to procure for mining.

�Consortium or Federated Blockchains
A consortium blockchain is partly private. Instead of allowing any 

person with an Internet connection to participate in the verification 

of transactions or allowing only one company to have full control, a 

few selected nodes are predetermined. For example, in the case of 

Chapter 1  The World of Blockchains



30

international trade, the consortium may consist of participating banks, 

importers, exporters, ports of sending and receiving countries, custom 

officials, and so on. Some of these participants will have write access, and 

some or all will have read access.

A consortium blockchain is not fully decentralized like a public 

blockchain.

Quorum, R3 Corda, Hyperledger Fabric, and so on, are based on this 

principle. Like a private blockchain, they are fast, efficient, and secure.

Be it a fully decentralized public blockchain or a fully private 

blockchain or even a consortium blockchain, all have potential use cases, 

and there could be a blockchain solution that is a permutation of more 

than one of these. You have to study your business use case well and 

choose the right one that suits it the best.

�Advantages of Ethereum
Since Ethereum debuted, many other blockchains as well as DLT 

frameworks have flooded the market; I included a few in “Leading 

Blockchain and DLT Protocols” section. However, Ethereum is still a 

blockchain haven for many. Here are a few reasons:

•	 Ethereum has been on the market since July 2015; it’s 

the oldest player here.

•	 You can find a huge development network with 

Ethereum.

•	 There are plenty of tools and frameworks built on top 

of Ethereum such as Quorum, Truffle, MetaMask, and 

Embark.

•	 There are enough developers available with Ethereum 

skill sets.

Chapter 1  The World of Blockchains



31

•	 Most major cloud enablers as Amazon Web Service, 

Azure, Google Cloud, and so on, either have started 

providing Ethereum templates as part of the service or 

are planning to do so.

•	 Ethereum is open source.

�Limitations of Ethereum
Though there are no disadvantages of Ethereum yet, being a public 

blockchain, it comes with a certain number of limitations.

•	 Public blockchains are not suitable for all.

•	 At the time of writing, Ethereum is slow. It takes 12 

seconds for miners to validate and add a block to an 

Ethereum blockchain network. Perhaps with sharding this 

will improve. (We will discuss sharding in Chapter 10.)

A lot of extra work is needed to set up a private, permissioned network. 

Ethereum is not first choice here; use DLT instead for this. You will find 

quite a few DLTs available on the market; I have discussed a few briefly.

�Leading Blockchain and DLT Protocols
Many blockchain and DLT frameworks are available on the market today. 

Let’s discuss some of the most popular ones. If you want to know more, 

you may refer to my other book, BlockChain: From Concept to Execution, 

where I have detailed most of them.

Chapter 1  The World of Blockchains



32

�Quorum
Quorum is the enterprise-focused version of Ethereum. Quorum addresses 

specific challenges to blockchain technology adoption within the financial 

industry and beyond. Quorum has developed capabilities to address the 

requirements of many industries and verticals.

�Ripple
Ripple claims it’s the “world’s only enterprise blockchain solution 

for global payments.” Unlike many other cryptocurrencies, Ripple is 

centralized and comes with a finite supply of currencies. Also, it claims to 

be the most scalable blockchain solution on the market.

�Hyperledger Fabric
Hyperledger Fabric is one of the many projects running under the 

Hyperledger umbrella. Originally contributed by IBM, today it is the 

most widely used private permissioned framework on the market. 

While Ethereum has been running in production for the past few years, 

Hyperledger Fabric is still maturing. The July 2017 version claims to 

be production ready. In many ways, the architecture and features of 

Hyperledger Fabric are pretty similar to R3 Corda, as they are built on the 

same specification.

�R3 Corda
R3 (R3CEV LLC) is a distributed database technology company that leads 

a consortium of more than 200 of the world’s biggest banks and financial 

institutions in the research and development of blockchain database usage 

in the financial system.

Chapter 1  The World of Blockchains



33

R3 Corda is a joint venture that started in September 2015 between 

R3 and numerous banks and financial groups to create a framework that 

is more than a traditional blockchain. Corda is especially crafted to suit 

the needs of financial institutes with features such as speed, privacy, 

scalability, security, and so on.

�MultiChain
MultiChain is another promising private permissioned blockchain 

framework made up of the Bitcoin fork. It’s open source, it’s well 

documented, and it comes with a low learning curve and fast deployment.

�Symbiont
Founded in 2015, Symbiont is a blockchain technology company based 

in New York City, developing products in smart contracts and distributed 

ledgers for use in capital markets.

�OpenChain
OpenChain is an open source, enterprise-ready blockchain technology 

platform most suitable to organizations wanting to issue and manage 

digital assets in a robust, secure, and scalable way.

�Cardano
Launched in September 2017 by IOHK, Cardano is a decentralized 

blockchain platform on open source smart contracts that works on a proof-

of-stake algorithm and provides a base for the cryptocurrency ADA. Its first 

version was released in September 2017.

Chapter 1  The World of Blockchains



34

�IOTA
IOTA is a distributed ledger protocol just like Ethereum, yet it comes 

with a revolutionary new architecture called Tangle. With fee-less 

micropayments, it will enable communication between connected devices 

and, per IOTA, will lead to a novel machine economy for the backbone of 

the Internet of Things.

�EOS
Based on a white paper published in 2017, EOS is another player in the 

open source blockchain market. It’s a blockchain-based, decentralized 

operating system, designed to support commercial-scale decentralized 

applications by providing all the necessary core functionality including 

databases, accounts with permissions, scheduling, authentication, and 

communication between the application and the Internet, thus allowing 

developers to focus on their own particular business logic. Loaded with 

features, it’s often termed the “Ethereum killer” or “Ethereum with a 

motor.”

�Hashgraph
The Hedera hashgraph platform is less constrained than a blockchain 

and provides a new form of distributed consensus. It caters to the same 

group of people who don’t know or trust each other to securely collaborate 

and transact online without the need for a trusted intermediary. The 

advantages of this platform over a blockchain are that it’s lightning fast, 

secure, and fair, and it doesn’t require compute-intensive proof of work. 

As per some experts, Hedera hashgraph is pretty much likely to replace 

blockchains altogether.

Chapter 1  The World of Blockchains



35

�Most Ambitious Ethereum Projects 
in Production
In the blockchain race, Ethereum has left everyone behind by being in 

production well ahead of others. Though most of the Ethereum projects 

running in production are initial coin offerings (ICOs), let’s discuss a few 

non-ICO projects that are considered leading works in this space. Once 

you are done with the book, please revisit this section and the web sites 

related to each of them. These organizations are mostly startups that have 

used Ethereum to give shape to their imagination and have created leading 

decentralized applications using Ethereum.

•	 uPort: This is a digital identity platform recently 

launched in Zug, a city in Switzerland where the city 

government can issue a Zug ID to its citizens, which is a 

digital verification of their citizenship.

•	 Rentberry: Rentberry is the first rental platform that 

aims to solve all the major issues found in renting 

property today. Powered by a blockchain, Rentberry 

certainly is a fascinating concept on offer that has 

prompted even Forbes to pick Rentberry as one of its 

top ten real estate startups for 2018.

•	 Coinlancer: Coinlancer is a decentralized job market 

built on the Ethereum platform that empowers 

burgeoning freelancers and clients from across the globe.

•	 Status: Status is an Ethereum light client targeting 

Android and iOS that gives users options to browse, chat, 

and make payments securely on the decentralized Web.

Chapter 1  The World of Blockchains



36

•	 FairWin: This is a decentralized gaming technology 

platform based on Ethereum that brings innovation to 

gambling games.

•	 EtherSport: EtherSport is a platform where people 

all over the world can place bets on sporting events. 

The lottery mechanism is done through Ethereum 

contracts.

•	 Tap Coin: Ethereum-based Tap Coin is a utility token 

that allows gamers to convert their in-game earned and 

premium currencies to Tap Coin.

•	 ChoonHQ: This is a music ecosystem based on the 

Ethereum network that provides a music streaming 

service and digital payments ecosystem designed to 

solve some of the music industry’s most fundamental 

problems.

•	 Etheal: This is healthcare based on the Ethereum 

blockchain that brings transparency to the $100 billion 

medical tourism industry and already has 2.5 million 

visits per year.

•	 Mavin: This is a rewards-based blockchain platform for 

marketing influencers.

Chapter 1  The World of Blockchains



37© Debajani Mohanty 2018
D. Mohanty, Ethereum for Architects and Developers,  
https://doi.org/10.1007/978-1-4842-4075-5_2

CHAPTER 2

Ethereum 
Architecture

“The thing that I often ask startups on top of Ethereum is, ‘Can 
you please tell me why using the Ethereum blockchain is better 
than using Excel?’ And if they can come up with a good answer, 
that’s when you know you’ve got something really interesting.”

—Vitalik Buterin

According to Forbes, “Ethereum is the first generic blockchain platform that 

allows users to easily create and deploy their decentralized and trustless 

applications. It has created incredible opportunities in the fintech space.” 

This chapter will introduce you to the entire ecosystem of Ethereum. Later 

chapters will discuss its specific components in more detail.

�Bitcoin vs. Ethereum
Ethereum was introduced in 2015 as a hard fork from Bitcoin. It’s the 

second cryptocurrency invented by Russian-Canadian programmer 

and writer as well as teenage prodigy Vitalik Buterin. Vitalik, who earlier 

worked on Bitcoin, was not satisfied with the mechanism that Bitcoin 

worked with and came up with his improved version of the blockchain 

framework called Ethereum.



38

Comparing Bitcoin and Ethereum is like comparing apples and 

oranges. In fact, Bitcoin and Ethereum were introduced to the market 

with different purposes. The sole purpose of Bitcoin was to create an 

alternate digital currency in the market and thus create a payment and 

transaction system that is completely safe and transparent. By contrast, 

Ethereum was developed as a platform that facilitates peer-to-peer 

contracts and applications via its own native currency called ether. The 

primary purpose of ether is to facilitate and monetize the working of 

Ethereum to enable developers to build and run distributed applications 

(called Dapps).

Ethereum also introduced a revolutionary new concept called a smart 

contract, which is a “Turing complete” language.

�Turing Complete
A Turing machine is a theoretical mathematical machine or model of 

computation invented by Alan Turing in 1936 that defines an abstract 

machine that manipulates symbols on a strip of tape according to a table of 

rules. It’s simple yet can simulate any computer algorithm, no matter how 

complicated. It’s widely believed that Turing’s theory later gave foundation 

to computer science.

A machine or computer or language is considered “Turing complete” 

if it can solve any problem that a Turing machine can be given an 

appropriate algorithm and the necessary time and memory.

�Ethereum Virtual Machine
Ethereum is a Turing complete blockchain framework, as it gives a 

foundation to programming languages using which you can write contracts  

that can solve any reasonable computational problem. Ethereum is 

controlled by the Ethereum Virtual Machine (EVM), a consensus-based 

Chapter 2  Ethereum Architecture



39

virtual machine that decodes the compiled contracts in bytecodes and 

executes them on the Ethereum network nodes. It also uses algorithms 

to prevent denial-of-service attacks that are widely observed in 

cryptocurrency markets.

As shown in Figure 2-1, the Ethereum blockchain network is a 

group of EVMs, or nodes, connected to every other node in a peer-to-

peer mechanism. Each node consists of a copy of the entire blockchain 

data store and competes with other nodes to mine the next block by 

validating transactions. If a new block is added, the blockchain gets 

updated and is propagated to the entire network so that every node is 

in sync.

�Consensus Mechanism
Ethereum currently uses the same proof-of-work (POW) model for 

mining as Bitcoin. However, soon it has plans to switch to a proof-of-stake 

mechanism called Casper, whose first version will be available in 2018. 

Also, the current POW model of Ethereum is much more efficient than  

that of Bitcoin for which usually a block is added to the network every  

12 seconds.

Figure 2-1.  Peer-to-peer model

Chapter 2  Ethereum Architecture



40

�Decentralized Autonomous Organization
In a traditional organization, people work in a hierarchical fashion to 

achieve a common goal. Each stakeholder in such a situation has a clearly 

defined scope of work that is aligned to the policies, rules, and regulations 

of the organization written on paper and approved by law.

As per the wiki page https://en.wikipedia.org/wiki/

Decentralized_autonomous_organization, “A decentralized autonomous 

organization (DAO), sometimes labeled a decentralized autonomous 

corporation (DAC), is an organization that is run through rules encoded as 

computer programs called smart contracts. A DAO’s financial transaction 

record and program rules are maintained on a blockchain.”

A DAO is just the digital version of the same work described earlier. 

However, instead of a centralized and hierarchical system, a DAO follows 

a decentralized model where people interact with each other according 

to a protocol specified in code and enforced on the blockchain. Smart 

contracts are one of the most complex implementations of this model that 

we will discuss soon.

The Ethereum DAO crowd sale is now one of the most successful 

crowd-funding campaigns to date.

�Smart Contracts
Smart contracts are an important part of a blockchain framework. Using 

them, people can trade on the Internet without the need of a middleman. 

They are governed by neither central authorities nor human intervention.

Smart contracts are self-executing contracts with the terms of the 

contract between the buyer and seller directly written into lines of code. 

Smart contracts permit trusted transactions and agreements to be carried 

out among disparate, anonymous parties without the need for a central 

authority, legal system, or external enforcement mechanism. They render 

transactions traceable, transparent, and irreversible.

Chapter 2  Ethereum Architecture

https://en.wikipedia.org/wiki/Decentralized_autonomous_organization
https://en.wikipedia.org/wiki/Decentralized_autonomous_organization


41

In Ethereum there are three languages available to write smart 

contracts.

	 1.	 Solidity

	 2.	 Vyper

	 3.	 LLL

We’ll discuss only Solidity here.

�Solidity
Solidity is the official and most widely used language in the Ethereum 

network; using it, smart contracts are written that are agreed on between 

two parties. It may seem like JavaScript, but actually it’s more like Java for 

its statically typed feature. These contracts can be validated using Remix 

(https://remix.ethereum.org/), a browser-based IDE with an integrated 

compiler. Solidity comes with its own compiler that generates machine-

level bytecode that can run on the EVM.

�Gas
Gas is the fuel that powers an Ethereum network. In a public Ethereum 

blockchain network, to lure more and more miners to work on validating 

the transaction, the transaction creator assigns a particular amount of 

gas to the transaction, which has to be paid to the miner who mines the 

transaction the fastest.

Gas comes with the following keywords you must remember while 

programming:

•	 Gas limit: This is the maximum amount of gas you 

are willing to pay to the miner for validating the 

transaction. The higher the price, the greater the 

Chapter 2  Ethereum Architecture

https://remix.ethereum.org/


42

chance that your transaction will be executed faster 

as that will attract more miners to prioritize your 

transaction over others. Also, insufficient gas in the gas 

limit will result in a failed transaction.

•	 Gas price: This is the amount of ether or fraction of 

ether you are willing to spend on every unit of gas. The 

gas price is usually some amount of gwei, which is a 

fraction of a wei. Wei is the smallest unit of ether, and 

gwei is equivalent to 1000000000 wei.

•	 Gas cost: This is a static value for a particular operation. 

Figure 2-2 shows you the cost associated with different 

operations.

Now that you know all the terminology, are you eager to find out the 

direct conversion rate between ether and gas? You can check https://

walletinvestor.com/converter/ethereum/gas/. In Figure 2-2 the 

exchange price is shown as of July 2018.

Refer to the Ethereum yellow pages at https://ethereum.github.io/

yellowpaper/paper.pdf to get the gas and cost details.

While executing a public Ethereum blockchain, architects 

and developers should be extremely careful to follow the correct 

architectural pattern and guidelines for functions, variables, and so on, 

Figure 2-2.  Ether to gas conversion

Chapter 2  Ethereum Architecture

https://walletinvestor.com/converter/ethereum/gas/
https://walletinvestor.com/converter/ethereum/gas/
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf


43

before starting to develop a Dapp project. Refer to the conversion chart 

throughout the development cycle. Learning Solidity programming 

to run on a public Ethereum blockchain could be relatively easy, but 

more importantly a developer needs to know how to write the code to 

use the gas prices optimally to get maximum efficiency for executing 

smart contracts. This will be covered in Chapter 6 where I discuss best 

practices for Solidity programming.

�Where Does Data Get Stored in Ethereum?
Ethereum is used to build decentralized applications using smart 

contracts, which I will cover in detail in next chapters. A contract is a 

combination of data (such as state variables) and functions to store that 

data to a specific address on the Ethereum blockchain. At a later point of 

time and as needed, data can be retrieved and used further.

Ethereum holds a set of accounts. Every account has an owner and a 

balance, which is some ether.

If I prove my identity, I can transfer ether (which is the cryptocurrency, 

or money in another form) from my account to another. This is an atomic 

operation called a transaction.

�Ethereum Accounts
As mentioned, every account has an owner and a balance. But some of 

these accounts are special; they own themselves. At creation time, we give 

them a piece of code and memory. That’s a smart contract.

A smart contract is like a smart bank account that executes some 

code when it receives transactions. This transaction happens within the 

blockchain, which is public, replicated, and validated by the network. A smart 

contract has a balance, some code, and some storage that is persistent. 

Also, a smart contract won’t fail because of a power outage in a data center.

Chapter 2  Ethereum Architecture



44

�Storage Cost
Note that the more data or larger the amount of storage, the higher the 

transaction cost in terms of fuel. However, storage in an Ethereum network 

is not time bound; it’s a one-time payment, and data could be there 

forever. Also, reading data from the network is free. In later chapters, you 

will learn how reading and writing to the network work.

The cost of each instruction in a smart contract will limit the amount 

of storage it uses. Ethereum allows for a theoretically infinite storage 

space, yet you have to provide gas for every read/write operation carefully. 

Learning how to build a smart contract in Solidity is easy, but knowing 

which architecture to adopt and programming using best practices will 

really help you to create contracts in the most efficient way so you can 

make the entire ecosystem profitable.

�The Entire Ethereum Ecosystem
Now that you know about the blockchain, I’ll cover the basics of Ethereum 

and how its internal mechanisms work. However, few questions still 

remain unanswered. We all know that storing a huge amount of data on a 

public Ethereum blockchain would be quite expensive.

So, where should you store your data?

The data stored in smart contracts is safe and easy to access, yet the 

cost and the structure of the store make it relevant mostly for metadata-

related uses because saving real data would be too expensive.

In addition, how do Ethereum nodes participate with each other on a 

peer-to-peer basis for reaching consensus?

Ethereum has its own messaging protocol called Whisper.

Figure 2-3 is an architecture diagram representing the entire Ethereum 

ecosystem on a network. The EVM is mostly for running the smart 

contracts and also for getting a consensus between all participants. Let’s 

find out more about these solutions.

Chapter 2  Ethereum Architecture



45

�Interplanetary File System
Ethereum is too heavy as well as expensive to store large blobs like images, 

video, and so on. Hence, some external storage is necessary to store bigger 

objects. This is where the Interplanetary File System (IPFS) comes into the 

picture. The Ethereum Dapp can hold a small amount of data, whereas for 

saving anything more or bigger such as images, word, PDF files, and so on, 

we can rely on IPFS.

IPFS is a protocol and network designed to create a peer-to-peer method 

of storing and sharing data. It was initially designed by Juan Benet and is 

now an open source project developed with help from the community.

If you have heard of the BitTorrent protocol, then IPFS will not be new 

to you. BitTorrent enables the fast download of large files using minimum 

Internet bandwidth.

Unlike other download methods, BitTorrent maximizes transfer speed 

by gathering pieces of the file you want and downloading these pieces 

simultaneously from people who already have them. IPFS does not entirely 

follow the BitTorrent protocol but rather takes several good ideas from 

many other protocols such as Git, SFS, Bitcoin, and the Web, and gathers 

them all into one package. IPFS connects all computing devices with the 

same system of files. In some ways, IPFS is similar to the Web.

Figure 2-3.  Ethereum ecosystem

Chapter 2  Ethereum Architecture



46

�Storing Data on IPFS

Figure 2-4 shows how a file gets uploaded to IPFS.

	 1.	 Alice wants to upload a PDF, Word, or image file to 

IPFS.

	 2.	 She puts this PDF, Word, or image file in her working 

directory.

	 3.	 She informs IPFS to add this file, which generates a 

hash of the file. Note an IPFS hash always starts with 

“Qm.…”

	 4.	 Her file is available on the IPFS network.

Note the same is applicable to a file or even to a simple string or integer 

or Boolean information. For every data piece, what IPFS returns is a hash 

value.

�Sharing Data on IPFS

Now in Figure 2-5 let’s see how the same file that is stored on IPFS can be 

shared with others.

Figure 2-4.  Storing data on IPFS

Chapter 2  Ethereum Architecture



47

Figure 2-5.  Sharing data on IPFS

Now if Alice wants to share the file with Bob, what she will do?

	 1.	 Alice provides the hash of the file to Bob.

	 2.	 Bob uses the hash and calls IPFS for the file.

	 3.	 The file is now downloaded at Bob’s end.

The issue here is that anyone who can get access to the hash will also 

be able to get access to the file.

�Sharing Data on IPFS by Asymmetric Cryptography

In Figure 2-6, additional security has been introduced via cryptology to 

encrypt the file so that only authorized people can read it.

Alice wants to upload a PDF file to IPFS but wants to restrict the access 

only to Bob.

	 1.	 She puts his PDF file in his working directory and 

encrypts it with Bob’s public key.

	 2.	 IPFS generates a hash of the encrypted file, and the 

encrypted file is available on the IPFS network.

Figure 2-6.  Storing data on IPFS

Chapter 2  Ethereum Architecture



48

	 3.	 Bob can retrieve the file by using the hash sent by 

Alice.

	 4.	 Bob decrypts the file using his private key of the 

public key that was used to encrypt the file.

	 5.	 A malicious party cannot decrypt the file because 

they lack Bob’s private key.

�IPFS and Ethereum, Brothers in Arms

IPFS is considered the most promising solution for saving data for 

decentralized applications (see Figure 2-7). Without IPFS, the blockchain 

would be reduced to any other regular storing mechanism with many 

limitations.

Figure 2-7.  IPFS and Ethereum

Chapter 2  Ethereum Architecture



49

Basically, you store any file in IPFS, and then you store the IPFS hash in 

the Ethereum contract. Any user with an IPFS node will be able to access 

the file using that hash.

You can store data, images, the front end, and whatever you want.

IPFS is a protocol that can be used independently and not necessarily 

in a blockchain. However, in real life, IPFS and the blockchain are a 

perfect match! With the support of IPFS, data can remain immutable 

and permanent, and just like any other content databases, you can link 

the address of the file stored to the Ethereum blockchain. With IPFS, the 

Ethereum user has to focus only on the contract without having to put the 

data on the chain itself.

The web site Etherfaces.com is a Dapp built on Ethereum and IPFS.

�Swarm
Like IPFS, Swarm is a peer-to-peer data-sharing network. Swarm is 

completely decentralized service of the Ethereum Web3 stack. Swarm 

consists of many nodes, and until a single node hosts a piece of data, data 

sharing goes on. Hence, there is no need for a centralized server.

�IPFS vs. Swarm
Both IPFS and Swarm provide an open source solution for efficient 

decentralized storage for Ethereum DAPPS. Here are a few differences:

•	 IPFS already serves as a working solution for real-world 

businesses and has been in production for some time. 

It is also popular and supported by an enthusiastic user 

base. Swarm has just recently launched the first stage of 

a developer testnet.

Chapter 2  Ethereum Architecture



50

•	 You can find many materials related to IPFS videos, 

documentation, papers, and so on, on the Internet to 

help you during development. That’s not the case for 

Swarm.

•	 IPFS scales quite reasonably. Swarm is just starting to 

be tested on a larger scale.

So, we will continue our development on IPFS; you can watch Swarm 

as it matures and has related documentations and libraries ready to be 

used in production.

�Whisper
In a decentralized application, where there are participants who are 

consistently trying to reach a consensus, one-to-one communication 

between them is vital. That’s why Whisper plays a crucial role in the 

Ethereum ecosystem. Whisper is the “decentralized chat” mechanism on 

the Ethereum platform that works on a peer-to-peer protocol. In other 

words, no server is involved in the entire process. So, how does it work? 

Let’s find out.

In the Whisper protocol, as shown in Figure 2-8, every message 

is routed across the network after encrypting using asymmetric 

cryptography; in other words, the message is encrypted using the public 

key of the receiver and is hence safely broadcast over the public network. 

From node to node, a message keeps moving until it reaches its final 

destination. Only the owner of the private key that matches with the 

public key that encrypted the message can decrypt and read it. One more 

interesting factor is the message sender is not traceable in the Whisper 

protocol.

Chapter 2  Ethereum Architecture



51

Whisper is part of the larger Ethereum ecosystem that has nothing 

to do with the blockchain. Its sole purpose is peer-to-peer message 

communication. Whisper enables users to share small text information 

(not files or bigger data) across the same Ethereum network that they use 

for transactions. Whisper is kind of a distributed hash table where data 

can be saved in a key-value pair. Here the data to be communicated is the 

value, and the key refers to the identity of the receiver peer for which the 

message is sent.

But wait, what is the biggest risk while architecting such a messaging 

network? Can’t someone spam the entire network by sending millions 

of messages in one go? What mechanism does Whisper use to counter 

such a possible DDOS attack? Well, it uses a proof-of-work algorithm; 

messages would be received and further transmitted only if it exceeds 

a minimum threshold of proof of work and otherwise not. All nodes 

perform this proof of work on the message to keep the entire network 

Figure 2-8.  How message transfer works in Whisper

Chapter 2  Ethereum Architecture



52

up and running and also spam-free. Though this messaging system is 

neither super-fast nor in real time, it is completely secure and efficiently 

broadcasts messages to peers.

�Cryptocurrency or Token?
If you want to run a Dapp on a public Ethereum EVM, then you need 

real ether. Unfortunately, many people think of this part of the business 

much later when they are done with their coding and about to deploy the 

smart contract on the main Internet, which would need real currency. It’s 

wise to know the entire ecosystem and plan for it even before you start 

building out your architecture. You should know how much a transaction 

will cost you and how much ether you will need to procure from the 

market for this.

�Ether
The cryptocurrency associated with Ethereum is ether. However, rather 

than just being used as a cryptocurrency, it can be used as a mode of 

transfer of money against transactions.

�Wei
One ether can be divided into many denominations. The smallest 

denomination (aka base unit) of ether is the wei. Figure 2-9 lists the named 

denominations and their value in wei.

Chapter 2  Ethereum Architecture



53

You can find the online conversion rates at https://etherconverter.

online/.

�How to Get Ether
To obtain Ether, you need to do one of the following:

•	 Be a miner for Ethereum.

•	 Exchange your Bitcoins for buying ethers or simply by 

paying your regular fiat currency. Many cryptocurrency 

exchanges can help.

•	 Use the user-friendly Mist Ethereum GUI Wallet that as 

of Beta 6 introduced the ability to purchase ether using 

the http://shapeshift.io/ API.

There is a list of cryptocurrency exchanges across the world 

at https://www.buybitcoinworldwide.com/cryptocurrency/

exchanges/.

Plan this out early in your project as you will need real ethers to test 

your Dapp in user acceptance testing and in production when deployed on 

a public server.

Figure 2-9.  Subunits of ether

Chapter 2  Ethereum Architecture

https://etherconverter.online/
https://etherconverter.online/
http://shapeshift.io/
https://www.buybitcoinworldwide.com/cryptocurrency/exchanges/
https://www.buybitcoinworldwide.com/cryptocurrency/exchanges/


54

�Private Ethereum Blockchains
You now know about ether, gas costs, and mining; yet these are of little 

significance in the case of a private Ethereum blockchain.

Ethereum can be deployed in public or private blockchain mode. The 

Ethereum main network is obviously a public blockchain. However, you 

can spin up your own Ethereum blockchain by creating your own Genesis 

file and setting up a unique network ID to create a private Ethereum 

blockchain. Also, you might have to set up strict firewall rules across 

commonly used RPC ports.

Nowadays, more and more Ethereum projects are deployed on a 

private blockchain framework where the transaction validator or the miner 

is the transaction initiator itself and there is no need to procure Ethers 

to fuel the network. In Chapter 4, I will discuss how to deploy a private 

Ethereum blockchain and get your business going.

Chapter 2  Ethereum Architecture



55© Debajani Mohanty 2018
D. Mohanty, Ethereum for Architects and Developers,  
https://doi.org/10.1007/978-1-4842-4075-5_3

CHAPTER 3

Basic Solidity 
Programming
As mentioned in Chapter 2, Solidity is the most widely used language 

for writing smart contracts with Ethereum. Basic Solidity programming 

is quite easy to learn. It’s similar to JavaScript and yet has some features 

of object-oriented languages such as Java and C++. Hence, some 

programming experience is desirable before jumping to development in 

Solidity, although it’s not mandatory.

�Prerequisites
For learning Solidity programming, you do not need to install any special 

software on your machine. You just need the following:

•	 Chrome browser

•	 High-speed Internet

�Remix Browser
The best IDE for learning Solidity is Remix (see Figure 3-1). It is an 

online browser-based IDE available at http://remix.ethereum.org that 

comes with a source editor and a file manager as well as with compiling, 

deploying, and debugging options. While developing, you have to make 

sure you are connected to the Internet.

http://remix.ethereum.org


56

Fi
gu

re
 3

-1
. 

R
em

ix
 o

n
li

n
e 

br
ow

se
r

Chapter 3  Basic Solidity Programming



57

This IDE comes with a default contract named ballet.sol, which 

I will discuss later in the chapter in detail. For the time being, you can 

click this file on the left side of the screen if it’s not open already and then 

expand it to browse through it. You can also click the + link on the menu 

to create a new contract. When you write your contract, you can either 

compile your contract manually by clicking the “Start to compile” button 

on right side of the Compile tab or click the “Auto compile” check box to 

get it done on the fly.

If something goes wrong in the code, you will see a red box with an X 

next to the line in the source (see Figure 3-2).

Sometimes you can also see many yellow warnings, but they will not 

stop you from executing the code (see Figure 3-3).

�Deploying Contracts in Remix
Once your contract is compiled successfully, you can click the Run tab 

on the right side and choose an option from the drop-down. Choose 

JavaScript VM, which is the default mode when you don’t use Remix with 

Mist or MetaMask (covered later), as shown in Figure 3-4. It comes with 

five accounts, each with gas limit of 3,000,000.

Figure 3-2.  Compilation error in Remix

Figure 3-3.  Warnings in Remix

Chapter 3  Basic Solidity Programming



58

Fi
gu

re
 3

-4
. 

D
ep

lo
yi

n
g 

a 
sm

ar
t c

on
tr

ac
t i

n
 R

em
ix

 u
si

n
g 

th
e 

Ja
va

Sc
ri

pt
 V

M

Chapter 3  Basic Solidity Programming



59

�Solidity File Details
Let’s find out more about some Solidity features before starting 

programming.

�Extension
A Solidity file is always saved with an .sol extension.

�File Storage
The file will be available on your Chrome browser unless you either delete 

it or clear the cache. To avoid accidental deletion of the file from browser 

storage, you can use Remixd, which enables you to store and sync files in 

the browser with your local computer. For further details, refer to http://

remix.readthedocs.io/en/latest/tutorial_remixd_filesystem.html. 

�Application Binary Interface
Every contract has an application binary interface (ABI), which is pretty 

much like an API that works as an interface between the high-level 

language and the lower-level binary code that gets processed by dumb 

computers. The ABI consists of the following:

•	 All function names

•	 Input and output types of functions

•	 All event names and their parameters

If you open the Remix browser at http://remix.ethereum.org, open 

the default ballot.sol, click its Compile tab, and then click the Details 

button, a pop-up appears. You can find the ABI section under it, as shown 

in Figure 3-5. Click the rectangular area to copy the ABI, as shown in 

Listing 3-1.

Chapter 3  Basic Solidity Programming

http://remix.readthedocs.io/en/latest/tutorial_remixd_filesystem.html
http://remix.readthedocs.io/en/latest/tutorial_remixd_filesystem.html
http://remix.ethereum.org


60

Fi
gu

re
 3

-5
. 

A
B

I i
n

 th
e 

R
em

ix
 b

ro
w

se
r

Chapter 3  Basic Solidity Programming



61

Listing 3-1.  The ABI File
[

    {

        "constant": false,

        "inputs": [],

        "name": "kill",

        "outputs": [],

        "payable": false,

        "stateMutability": "nonpayable",

        "type": "function"

    },

    {

        "constant": false,

        "inputs": [

            {

                "name": "anyString",

                "type": "string"

            }

        ],

        "name": "setSample",

        "outputs": [],

        "payable": false,

        "stateMutability": "nonpayable",

        "type": "function"

    },

    {

        "inputs": [],

        "payable": false,

        "stateMutability": "nonpayable",

        "type": "constructor"

    },

Chapter 3  Basic Solidity Programming



62

    {

        "constant": true,

        "inputs": [],

        "name": "getSample",

        "outputs": [

            {

                "name": "",

                "type": "string"

            }

        ],

        "payable": false,

        "stateMutability": "view",

        "type": "function"

    }

]

�Import Statement
Just like with Java and JavaScript, you can import other files within a 

Solidity file and use a symbol for that file. You also have to specify the path 

of the file properly, as shown in Listing 3-2.

Listing 3-2.  Importing Part of a Solidity File

import "filename" as symbolName;

�Version
The first line of code in a Solidity file always starts with a pragma 

annotation where you fix the compiler to a particular version so that if the 

version of Solidity gets updated, it will not affect compilation leading to 

incompatibility issues (see Listing 3-3).

Chapter 3  Basic Solidity Programming



63

Listing 3-3.  Pragma Annotation

pragma solidity ^0.4.0;

contract MyContract{

}

�Variables
In Solidity, variables are either at the state level and at the local level. The 

state-level variables are global to the Solidity file, whereas local ones are 

valid only for the function within which it’s declared.

The default location for storing function input and output parameters 

is memory; the default for local variables is storage in the EVM. However, 

you can always override this part.

Just like Java, Solidity too is a statically typed language, where the data 

type of variables have to be declared at compilation time. The variables 

can be broadly divided into two types, by value and by reference.

�By Value
By value variables are the simple data types where variables are copied 

with their values. Here are few types explained.

�Integers

Integers in Solidity can be either signed (i.e., int) or unsigned (i.e., uint) 

type. By default the size is 256 bits; in other words, by default an int is 

int256, and uint is uint256 bits. You can have other sizes such as int8/uint8, 

int16/uint16, int32/uint32, and son on, up to int256/uint256.

�Fixed Numbers

A number can be of a fixed value by using the fixed keyword.

Chapter 3  Basic Solidity Programming



64

�Boolean

In Solidity, bool stands for a Boolean value that is either true or false. You 

can do logical operations like “or,” “and,” “equal to,” “not equal to,” and so 

on, to get a Boolean value.

�Byte

In Solidity, a byte is a fixed-size byte array.

�Enum

An enum represents a fixed number of predefined constant values and 

must have at least one. They are greatly helpful when you have unmodified 

related data, such as days of a week or holidays in a year. Listing 3-4 shows 

an example.

Listing 3-4.  SimpleEnum.sol

pragma solidity ^0.4.4;

contract SimpleEnum {

enumSomeData {DEFAULT,ONE,TWO}

SomeDatasomeData;

constructor () internal  {

        someData = SomeData.DEFAULT;

    }

function  setValues(uint _value) public payable{

        require(uint(SomeData.TWO) >= _value);

        someData = SomeData(_value);

  }

Chapter 3  Basic Solidity Programming



65

functiongetValue() public constant returns (uint){

        returnuint(someData);

  }

}

�Address

An address is a type that saves an account address on an Ethereum node. 

Addresses can be useful, as you will learn in case studies and examples. 

Using an address’s balance and transfer functions, you can transfer an 

amount from one to another address on Ethereum nodes.

�By Reference
Passing by reference means while copying one variable to another, the 

actual pointer to the memory location of the first variable is passed to the 

other. Now both the original variable and the new variable point to the same 

memory location, which means if one’s value changes, then the other will be 

affected. But why? Well, sometimes you have complex data more than 256 

bits in size, which would be too expensive to store in a traditional manner. 

You can create a complex type and store it in memory or storage as per your 

needs. Arrays and structs are two complex data types passed by reference.

�Array

An array can be created with a fixed length that you assign at the time of 

declaration, or it can have a variable-length type. Also, an array can be of 

several data types such as byte, string, int, uint, and so on.

�Struct

A struct is the most interesting complex data type because it can further be 

comprised of many other simple data types, arrays, and mappings.

Chapter 3  Basic Solidity Programming



66

�String

In Solidity, a string is a type passed by reference. Strange, isn’t it?

The string data type is used for arbitrary-length UTF-8 and also costs 

more gas when compared to the fixed-size types of bytes1 to bytes32.

�Mappings

Mappings are always state variables and similar to hash tables in Java 

where key-value pair data is stored (see Listing 3-5).

Where does this data get stored?

•	 By default state variables are always stored in a storage 

data location.

•	 Mappings are stored in a storage data location; this 

can’t be overridden.

•	 By default local variables of value types within a 

function are stored in a memory data location.

Listing 3-5.  MyContract.sol

pragma solidity ^0.4.0;

contract MyContract {

function myFunction(uint i) public {

..

}

}

But that can be overridden to be saved to storage instead, as shown 

here:

pragma solidity ^0.4.0;

contract MyContract {

Chapter 3  Basic Solidity Programming



67

function myFunction(uint storage i) public {

..

}

}

•	 By default reference type variables are stored in a 

storage data location.

•	 The reference type variables can override the default 

setting to be stored in a memory data location instead.

I will discuss different data storage locations in more detail later in the 

book.

�Solidity Comments
Like Java, Solidity has two ways to add comments, as one-liners or as 

multiliners (see Listing 3-6).

Listing 3-6.  Comments

//This is an one-line comment

/*

This is a

Multiline comment

*/

�Function
Functions are the locations where you can have the business logic and also 

can save and retrieve data (see Listing 3-7).

Chapter 3  Basic Solidity Programming



68

Listing 3-7.  A Function

pragma solidity ^0.4.0;

contract MyContract{

    function myFunction() public {

}

}

A function can have different visibilities that will be discussed later. 

Also, a function can optionally return one or more values.

contract MultiReturner {

    function getData() constant returns (bytes32, bytes32) {

        bytes32 a = "abcd";

        bytes32 b = "wxyz";

        return (a, b);

    }

    function getDynamicData()returns (bytes, bytes) {

        bytes a;

        a.push('a');

        a.push('b');

        a.push('c');

        bytes b;

        b.push('x');

        b.push('y');

        b.push('z');

        return (a, b);

    }

}

How can you retrieve this data? Well, you can call the previous contract 

from another contract, as shown in Listing 3-8.

Chapter 3  Basic Solidity Programming



69

Listing 3-8.  UsesMultiReturner.sol

contract UsesMultiReturner {

    function doIt() {

        mr = MultiReturner(0x1234);

        // this will work

        var (a, b) = mr.getData();

        // this won't work

        var (a, b) = mr.getDynamicData();

    }

}

�Fallback Function

A Solidity file can have exactly one unnamed function with the keyword 

payable, which is known as a fallback function (see Listing 3-9).

Listing 3-9.  Fallback Function

pragma solidity ^0.4.0;

contract Fallback {

    function () payable {

    }

}

This signifies that anyone on an Ethereum blockchain can interact 

with this contract address without specifying the function name or input 

arguments.

Chapter 3  Basic Solidity Programming



70

�Function Modifiers

Just like annotations in Java, function modifiers are used to induce 

business logic declaratively (see Listing 3-10).

Listing 3-10.  Function Modifiers

pragma solidity ^0.4.11;

contract Purchase {

    address public seller;

    modifier onlySeller() { // Modifier

        require(msg.sender == seller);

        _;

    }

    function abort() public onlySeller { // Modifier usage

        // ...

    }

}

The _; in onlySeller() signifies that the function that uses 

onlySeller(), which is the abort() function here, will be executed after 

the onlySeller() function is executed.

�Constructor
A constructor is a function with the same name as a contract. Every 

contract can optionally have one constructor in it. However, unlike Java, 

the constructor can’t be overloaded. The constructor is invoked only once 

when the contract is created. Hence, you can keep any kind of initialization 

code within it (see Listing 3-11).

Chapter 3  Basic Solidity Programming



71

Listing 3-11.  A Constructor

pragma solidity ^0.4.0;

contract MyContract{

    function MyContract() {

}

}

However, this pattern is deprecated, and though you can still write 

this way, the compiler will throw the warning shown in Figure 3-6 for the 

pattern as well as the visibility.

So, it’s better write the pattern shown in Listing 3-12.

Listing 3-12.  MyContract.sol

pragma solidity ^0.4.0;

contract MyContract{

    constructor() public {

    }

}

Figure 3-6.  Warning in Remix for constructor

Chapter 3  Basic Solidity Programming



72

�Visibility
For functions, there are four visibility types: external, public, internal, and 

private. The default is public.

For state variables, there are only two visibility types: public and 

internal. The default is internal.

�External

A contract can be called from another contract provided the external 

contract already knows the calling contract by using the external keyword 

part of the contract name.

�Public

Public keywords are used mostly in getters and setters as well as functions 

that you want to invoke on the contract directly. They can also be used 

against state variables.

�Internal

The visibility is only from within the current contract or contracts deriving 

from it.

�Private

The visibility is only for the contract they are defined in and not in derived 

contracts.

�Getter and Setter
Listing 3-13 creates a constructor that sets an unsigned integer as well as a 

setter and getter.

Chapter 3  Basic Solidity Programming



73

Listing 3-13.  Getter and Setter

pragma solidity ^0.4.0;

contract MyFirstContract {

    string private name;

    uint private age;

    function setName(string newName) public {

        name = newName;

    }

    function getName() public view returns (string) {

        return name;

    }

    function setAge(uint newAge) public {

        age = newAge;

    }

    function getAge() public view returns (uint) {

        return age;

    }

}

Now compile and deploy the contract. Set the name and age, as shown 

in Figure 3-7; note that for string you must use apostrophes.

Keep an eye on the web console just below the source editor (see 

Figure 3-8).

Figure 3-7.  Testing the setter function in the Remix browser

Chapter 3  Basic Solidity Programming



74

Expand each section to check whether there is any issue and also 

different properties such as status, gas cost, and so on. It also gives you the 

facility to debug, which I will discuss later in the book (see Figure 3-9).

�Error Handling: throw, revert(), assert(), require()
In an earlier version of Solidity, throw was used for handling error 

conditions (see Listing 3-14).

Listing 3-14.  throw Operation

contract MyContract {

    address owner;

    function checkUser(){

Figure 3-8.  Remix console

Figure 3-9.  Remix console showing different properties

Chapter 3  Basic Solidity Programming



75

        if (msg.sender != owner) { throw; }

        // do something only the owner should be allowed to do

    }

}

throw is more of an operation than a function. If the checkUser() 

function is called by anyone other than owner, the function will throw an 

error, returning an invalid opcode error, undoing all the state changes, and 

using up all the remaining gas.

However, in a recent version of Solidity, throw is deprecated, and 

soon it might be eliminated for use, mostly because it’s expensive. The 

new functions assert(), require(), and revert() provide the same 

functionality, with a much finer as well as cleaner syntax.

The same error condition now can be handled by using a call to 

revert()(see Listing 3-15).

Listing 3-15.  revert()

if(msg.sender != owner) { revert(); }

Or it can be handled by using an assert() check, as shown in  

Listing 3-16.

Listing 3-16.  assert()

assert(msg.sender == owner);

Or it can be handled by using a require() statement, which you 

already saw before, as shown in Listing 3-17.

Listing 3-17.  require()

require(msg.sender == owner);

Chapter 3  Basic Solidity Programming



76

Again, note that when your contract throws an error, it uses up any 

remaining gas; however, revert() and require() would return the gas 

value, which is beneficial for you. Unlike these two, assert(), however, 

consumes the gas. Then why would you use assert()? There are some 

fundamental differences between the three.

•	 The require() function is used to validate a particular 

piece of business logic. The same is true for the 

revert() function.

•	 The assert() function has more to do with the runtime 

value of a parameter. It’s used to validate the state 

after some change, and it’s used toward the end of the 

function. You have to use it wisely.

�Function with No Gas Cost
The constant keyword in the getter function denotes that there is no 

transaction associated with this function, and hence no gas will be 

consumed. In fact, a constant state variable is evaluated every time it is 

called. However, in the latest version, it’s deprecated, and instead you can 

use pure or view. These keywords denote that there is no transactional 

activity in that function.

In earlier versions, you would apply the constant modifier to indicate 

that a function doesn't change the storage state in any way. Listing 3-18 

shows an example.

Listing 3-18.  UseConstant.sol

pragma solidity ^0.4.16;

contract UseConstant {

    string greeting;

Chapter 3  Basic Solidity Programming



77

    function UseConstant() public {

        greeting = "Hello";

    }

    function SayHello() public constant returns(string says) {

        return greeting;

    }

}

�Constant

The constant keyword indicates that network verification won’t be 

necessary. Callers receive return values (quickly, from local storage and 

processing) instead of transaction hashes.

Starting with solc 0.4.17, constant is deprecated in favor of two new 

and more specific modifiers.

�View

This is generally the replacement for constant. It indicates that the 

function will not alter the storage state in any way.

�Pure

This is even more restrictive, indicating that it won’t even read the storage 

state.

A pure function might look something like the contrived example in 

Listing 3-19.

Listing 3-19.  A pure function

function returnTrue() public pure returns(bool) {

    return true;

}

Chapter 3  Basic Solidity Programming



78

�Data Storage
We all know that Solidity compiles to smart contracts that run on the 

Ethereum Virtual Machine. Internally the EVM uses three different types 

of memory location for saving smart contracts and related data: storage, 

memory, and stack.

�Storage

Storage is the permanent memory of every account where all the 

contract state variables reside. Data is stored in a key-value pair 

that maps 256-bit words to 256-bit words. Any contract can read 

and update data only from its own storage but not from others. It’s 

expensive to use.

�Memory

Memory is limited to reads at the 256-bit width, while writing can be either 

8 or 256 bits wide. It is used to hold temporary values. Memory cannot be 

used at the contract level. It is erased between (external) function calls and 

is cheaper to use.

�Calldata

Almost like memory, this is a nonmodifiable, nonpersistent data location 

where function arguments are stored.

�Stack

If you want to store a small amount of information at a low gas cost, then 

use a stack. In addition to arrays and structs, all other local variables of 

most value types are stored in stack (see Listing 3-20).

Chapter 3  Basic Solidity Programming



79

Listing 3-20.  Storage.sol

pragma solidity ^0.4.0;

contract Storage {

    uint[] private vars;

    function saveToStack() {

        uint myVal1 = 1;

        uint myVal2 = 2;

    }

    function saveToMemory() {

        string memory myString = "test";

    }

    function saveToStorage() {

        vars.push(2);

        vars.push(3);

    }

}

�Events
Events are useful for logging activities. An emit keyword is used to call 

events explicitly (see Listing 3-21).

Listing 3-21.  MyEvent.sol

pragma solidity ^0.4.0;

contract MyEvent {

    �event HighestBidIncreased(address bidder, uint amount);  

// Event

Chapter 3  Basic Solidity Programming



80

    function MyEvent() {

    }

    function bid() public payable {

        // ...

        �emit HighestBidIncreased(msg.sender, msg.value);  

// Triggering event

    }

}

�Object-Oriented Approach
In Solidity a contract is equivalent to a class in Java. Also, just like Java 

and C++, Solidity comes with many object-oriented features. Some of 

its features are inheritance, polymorphism, abstraction, encapsulation, 

method overloading, and so on.

�Encapsulation
State variables are internal or private, and functions are public by default. 

This you already observed in the “Visibility” section. Figure 3-10 shows 

some sample code.

Chapter 3  Basic Solidity Programming



81

Here the compiler throws warnings because I have not mentioned 

visibility against the setter functions and also marked the getters as view, 

which are best practices. Update this example to the code shown in  

Listing 3-22 and the warnings will go away.

Listing 3-22.  MyFirstContract.sol

pragma solidity ^0.4.0;

contract MyFirstContract {

    string private name;

    uint private age;

    function setName(string newName) public {

        name = newName;

    }

Figure 3-10.  A simple contract in Remix

Chapter 3  Basic Solidity Programming



82

    function getName() public view returns (string) {

        return name;

    }

    function setAge(uint newAge) public {

        age = newAge;

    }

    function getAge() public view returns (uint) {

        return age;

    }

}

Now compile, deploy, and assign a value to age and a name through 

the setName() and setAge() buttons (see Figure 3-11). Then click the get 

buttons to check whether they are properly assigned. Do not forget to use 

double quotes for assigning string values.

Chapter 3  Basic Solidity Programming



83

�Inheritance
Inheritance is not a new concept for Java or C++ programmers. It gives 

you the ability to inherit or acquire the properties and functions of other 

classes so that you do not have to write the same piece of functionality in 

many different places (see Listing 3-23).

Figure 3-11.  Deploying and testing in Remix

Chapter 3  Basic Solidity Programming



84

Listing 3-23.  MyFirstContract.sol

pragma solidity ^0.4.0;

contract MyFirstContract {

    string private name;

    uint private age;

    function setName(string newName) public {

        name = newName;

    }

    function getName() public view returns (string) {

        return name;

    }

    function setAge(uint newAge) public {

        age = newAge;

    }

    function getAge() public view returns (uint) {

        return age;

    }

}

contract MysecondContract is MyFirstContract{

    string private name;

    function setName(string newName) public {

        name = "Test";

    }

    function getName() public view returns (string) {

        return name;

    }

}

Chapter 3  Basic Solidity Programming



85

Now compile and deploy the second contract named 

MysecondContract and set any value through the setName() function. 

getName() will always give you the value you have assigned to name 

through the MySecondContract contract. Here, setAge() and getAge() 

are inherited from the parent class and will work as before.

�Polymorphism
Just like C++, Solidity supports polymorphism through multiple 

inheritance.

�Abstraction
Abstraction is the process used to hide certain details and show only the 

essential features of the object. In other words, it deals with the outside 

view of an object. Abstraction is implemented in Solidity through abstract 

contracts as well as interfaces.

�Abstract Contract

Unlike Java, Solidity contracts do not need an abstract keyword to be 

marked abstract. Rather, any contract that has at least one unimplemented 

function is treated as abstract in Solidity. An abstract contract can be 

neither compiled nor deployed unless it has an implementing contract 

(see Listing 3-24).

Listing 3-24.  MyAbstract.sol

pragma solidity ^0.4.0;

contract MyAbstract {

    function myAbstractFunction() public pure returns (string);

}

Chapter 3  Basic Solidity Programming



86

contract MyImplementation is MyAbstract {

    function myAbstractFunction() public pure returns (string) 

{ return "Test"; }

}

Just like Java, if a contract inherits an abstract contract and does not 

implement all the unimplemented functions, then that contract will be 

considered abstract as well (see Figure 3-12). An abstract contract can have 

both implemented and unimplemented functions.

Figure 3-12.  Remix showing error for unimplemented functions

Please note while deploying, you should choose the implementer 

contract because the abstract contract cannot be deployed (see 

Figure 3-13).

Chapter 3  Basic Solidity Programming



87

Figure 3-13.  In Remix, choose the implementer contract.

�Interface

Similar to Java, interfaces can have only unimplemented functions. Also, 

they are neither compiled nor deployed unless there is a implanting 

contract (see Listing 3-25).

Listing 3-25.  Interface in Solidity

pragma solidity ^0.4.0;

interface MyInterface {

    function myFunction(string) returns (string);

}

contract MyImplementation is MyInterface {

    function myFunction(string str) returns (string) { return 

str; }

}

In Solidity, inheritance and interfaces are realized in the same way in 

the implementing contract.

Chapter 3  Basic Solidity Programming



88

�Function Overloading
Like Java, multiple functions can have the same name with different 

argument types (see Listing 3-26).

Listing 3-26.  Multiple Functions with same name

pragma solidity ^0.4.16;

contract A {

    function f(uint _in) public pure returns (uint) {

        out = 1;

    }

    function f(uint _in, bytes32 _key) public pure returns 

(uint) {

        out = 2;

    }

}

�Libraries
A library is synonymous to a contract with a few variations. A library 

doesn’t have any storage and cannot hold ether. Sometimes it is helpful 

to think of a library as a singleton in the EVM, a piece of code that can be 

called from any contract without the need to deploy it again. It is mostly 

utilized as a common utility file that contracts can import and use (see 

Listing 3-27).

Listing 3-27.  MyLibrary.sol

pragma solidity ^0.4.0;

library MyLibrary {

Chapter 3  Basic Solidity Programming



89

    function addTen(uint age) public pure returns (uint) {

        return age + 10;

    }

}

contract TestLibrary{

    function testIncrementByTen(uint age) public pure returns 

(uint) {

        return MyLibrary.addTen(age);

    }

}

�End a Contract
A contract can be discarded by calling the kill() function that internally 

calls the selfdestruct(address) function. Providing an address as the 

parameter to selfdestruct lets you transfer the remaining funds to the 

contract on the address. You must always think about who the authorized 

person is that can kill the contract, or it could be accidentally be deleted by 

anyone (see Listing 3-28).

Listing 3-28.  KillSample.sol

pragma solidity ^0.4.18;

contract KillSample {

    string sampleString;

    address owner;

    constructor() public {

       owner = msg.sender;

    }

Chapter 3  Basic Solidity Programming



90

    function setSample( string anyString) public {

        sampleString = anyString;

    }

    function getSample() public view returns(string){

        return sampleString;

    }

function kill() public {

assert(owner == msg.sender); // We check who is calling

selfdestruct(owner); //Destruct the contract

    }

}

Now compile and deploy the contract. Set some value through 

setSample() and retrieve the same through getSample(). Now click the 

kill() function and then try to retrieve again through getSample(). It will 

throw the error shown in Figure 3-14.

After executing the kill() function, it will not be possible to interact 

with it anymore. If you try to get or set any variable it would throw error.

Figure 3-14.  Remix shows an error because the contract has already 
been destroyed

Chapter 3  Basic Solidity Programming



91

�Solidity, Bytecode, and Opcode
Solidity, like Java or C++, is a high-level language that gets run on the EVM 

after being translated to bytecode, a low-level language that the EVM 

understands (see Figure 3-15).

For example, if you open the Remix browser and click the Details 

button in the default ballot.sol file, you will find the bytecode shown in 

Figure 3-16.

Figure 3-15.  Relationship between Solidity, opcode, and bytecode

Chapter 3  Basic Solidity Programming



92

Figure 3-16.  Bytecode in Remix

Here the value for data that begins with 0x is the bytecode. It also 

signifies that you deploy this hexadecimal bytecode on the EVM with a 

recommended gas of 4,700,000.

You can also see the opcode, which is low-level human-readable 

language, as shown in Figure 3-17.

Figure 3-17.  Opcodes in Remix

�Assembly Language
Instead of using Solidity, the whole contract can be written in low-level 

assembly language using opcode.

Assembly language is far more complex and difficult to write and 

maintain. Why then use in-line assembly instead of Solidity?

Chapter 3  Basic Solidity Programming



93

•	 You get fine-grained control of code.

•	 The gas cost is phenomenally less than Solidity.

However, in most cases, usage of Assembly language should 

be avoided as they overlook many security features that have been 

implemented in Solidity.

�Running on Remix
Now let’s start learning your first program, ballot.sol, which is available 

in the Remix browser (Listing 3-29).

•	 Here declare a struct called Voter that is a complex 

type consisting of the weight of a vote, a Boolean voted, 

the address of the voter, and an index called vote.

•	 You have an address type called chairperson.

•	 You have a mapping where you map an address with a 

voter.

•	 You also create an array of proposals where each 

proposal is a complex type struct.

In the constructor Ballot, you initialize the chairperson as the 

message sender with weight 1. You also create a list of proposals. In the 

giveRightToVote() function, you check whether the message sender is 

not chairperson and whether voters have not voted yet and then assign 

voters a weight. Then the delegate() function delegates your vote to the 

voter $(to) after a couple of validations such as the message sender is 

not the to address and has not voted (see Listing 3-29).

Chapter 3  Basic Solidity Programming



94

Listing 3-29.  Ballot.sol

pragma solidity ^0.4.0;

contract Ballot {

    struct Voter {

        uint weight;

        bool voted;

        uint8 vote;

        address delegate;

    }

    struct Proposal {

        uint voteCount;

    }

    address chairperson;

    mapping(address => Voter) voters;

    Proposal[] proposals;

    /// �Create a new ballot with $(_numProposals) different 

proposals.

    function Ballot(uint8 _numProposals) public {

        chairperson = msg.sender;

        voters[chairperson].weight = 1;

        proposals.length = _numProposals;

    }

    /// Give $(toVoter) the right to vote on this ballot.

    /// May only be called by $(chairperson).

    function giveRightToVote(address toVoter) public {

        �if (msg.sender != chairperson || voters[toVoter].voted) 

return;

        voters[toVoter].weight = 1;

    }

Chapter 3  Basic Solidity Programming



95

    /// Delegate your vote to the voter $(to).

    function delegate(address to) public {

        �Voter storage sender = voters[msg.sender];  

// assigns reference

        if (sender.voted) return;

        �while (voters[to].delegate != address(0) && voters[to].

delegate != msg.sender)

            to = voters[to].delegate;

        if (to == msg.sender) return;

        sender.voted = true;

        sender.delegate = to;

        Voter storage delegateTo = voters[to];

        if (delegateTo.voted)

            �proposals[delegateTo.vote].voteCount += sender.

weight;

        else

            delegateTo.weight += sender.weight;

    }

    /// Give a single vote to proposal $(toProposal).

    function vote(uint8 toProposal) public {

        Voter storage sender = voters[msg.sender];

        �if (sender.voted || toProposal >= proposals.length) 

return;

        sender.voted = true;

        sender.vote = toProposal;

        proposals[toProposal].voteCount += sender.weight;

    }

    �function winningProposal() public constant returns (uint8 

_winningProposal) {

        uint256 winningVoteCount = 0;

        for (uint8 prop = 0; prop < proposals.length; prop++)

Chapter 3  Basic Solidity Programming



96

            if (proposals[prop].voteCount > winningVoteCount) {

                winningVoteCount = proposals[prop].voteCount;

                _winningProposal = prop;

            }

    }

}

Here are some of the Solidity features used in this program:

•	 In the first line, pragma solidity ^0.4.0;, you set the 

version of Solidity.

•	 You have used different variable types as such as unit, 

unit8, address, bool, and so on.

•	 Voter is a struct or a composite object that can have 

many other objects within it.

•	 The function delegate has an address as input that 

points to a node on the Ethereum network.

•	 chairperson is the address of the owner of the 

contract that you have associated to msg.sender in the 

constructor Ballot.

•	 voters is a mapping of the address to Voter structs, so 

you get a voter by looking up their address in that map. 

If a voter isn't found, it’ll return a Voter struct with 

default empty values.

•	 proposals is an array of the proposals, referenced by 

an integer index where every Proposal is another struct 

that contains voteCount, an unsigned integer.

Here the function Ballot() is actually the constructor that has the 

same name as the contract. Here you do all initialization that is needed.

Chapter 3  Basic Solidity Programming



97

�Debugging on Remix
Now let’s debug the same storage Solidity file that we just explored. Now I 

have added an assert statement at the end of each of these functions (see 

Listing 3-30).

Listing 3-30.  Debugging

pragma solidity ^0.4.0;

contract Storage {

    uint[] private vars;

    function saveToStack() {

        uint myVal1 = 1;

        uint myVal2 = 2;

        assert(myVal1 == myVal2);

    }

    function saveToMemory() {

        string memory myString = "test";

        assert(bytes(myString).length == 10);

    }

    function aveToStorage() {

        vars.push(2);

        vars.push(3);

        assert(vars.length == 4);

    }

}

Open the Remix browser and compile the file. Now click the Run tab 

and deploy using the Deploy tab (see Figure 3-18).

Chapter 3  Basic Solidity Programming



98

You can see the names of all the three functions on the right side. Click 

the first one, saveToStack(), and you will see an exception in the console 

(see Figure 3-19).

Figure 3-18.  Deploying Storage.sol

Figure 3-19.  Remix console

Click the Debug button to launch the debugger. Now on the right side, 

you will see different sections (see Figure 3-20).

Chapter 3  Basic Solidity Programming



99

Fi
gu

re
 3

-2
0.

 D
eb

u
gg

in
g 

St
or

ag
e.

so
l

Chapter 3  Basic Solidity Programming



100

The Transaction section comes with a glide bar that helps you 

browse through different parts of the code. You can set breakpoints here 

by clicking line numbers on the left and then can step over, forward, 

or backward to browse through the code. As per the method you are 

debugging, you can see values in the Stack, Memory, and Storage sections 

(see Figure 3-21).

Chapter 3  Basic Solidity Programming



101

Fi
gu

re
 3

-2
1.

 R
em

ix
 s

ho
w

in
g 

va
lu

es
 in

 th
e 

St
ac

k,
 M

em
or

y,
 a

n
d 

St
or

ag
e 

se
ct

io
n

s 
in

 S
to

ra
ge

.s
ol

Chapter 3  Basic Solidity Programming



102

�Running on the solc Compiler
You can also compile the Solidity file from your command line with a solc 

compiler. Here are the steps for doing so:

	 1.	 Install a node on your machine.

	 2.	 Install the solc compiler with the following 

command:

npm install -g solc

	 3.	 Now compile the Solidity file with the following 

command:

solc -o target --bin --abi<solidity file name>

This will create bytecode and an ABI file in the new target folder it has 

created.

However, because of the ease of development and deployment, more 

and more people are now preferring to use Remix over the solc compiler. 

There is one scenario, though, where you have to rely on the solc compiler. 

Consider a scenario where your business logic changes drastically and you 

cannot deploy the smart contract in a static way. The solc compiler gives 

you the option to deploy different smart contracts on the fly at runtime as 

per your business needs.

�Unit Testing
Unit testing is an integral part of any development that brings 

transparency, efficiency, and robustness to the development and 

maintenance of the code. As your code grows beyond many contracts and 

many functions, it’s absolutely necessary to use a standard framework that 

comes with superior features such as an automated test suite, timer, report 

generator, and so on.

Chapter 3  Basic Solidity Programming



103

There are currently four primary frameworks available that can 

accelerate your development of Dapps and also facilitate writing unit tests 

for your contracts. I will cover some in future chapters.

�Embark
This is the framework with the widest adoption. This will be covered in 

Chapter 7.

Web site: https://embark.readthedocs.io/en/2.6.6/

Tests: JavaScript via Mocha

�Truffle
Truffle is a popular framework; this option seems good for projects 

because it comes with a built-in feature to test smart contracts. This will be 

covered in Chapter 7.

Web site: http://truffleframework.com/docs/getting_started/

solidity-tests

Tests: Mocha

�Dapp
Dapp provides command-line functionalities to build, test, deploy, and 

transact with smart contracts on an Ethereum network.

Web site: https://dapp.tools/dapp/

Tests: Solidity

�Populus
Populus is another framework to develop smart contracts on the Ethereum 

blockchain.

Web site: http://populus.readthedocs.org/en/latest/
Tests: py.test

Chapter 3  Basic Solidity Programming

https://embark.readthedocs.io/en/2.6.6/
http://truffleframework.com/docs/getting_started/solidity-tests
http://truffleframework.com/docs/getting_started/solidity-tests
https://dapp.tools/dapp/
http://populus.readthedocs.org/en/latest/


105© Debajani Mohanty 2018
D. Mohanty, Ethereum for Architects and Developers,  
https://doi.org/10.1007/978-1-4842-4075-5_4

CHAPTER 4

Deploying Smart 
Contracts
Now that you are proficient in smart contract development using Solidity, 

let’s deploy a contract on an Ethereum network. Deployment can be done 

in many ways.

•	 Deploy in Remix with the JavaScript VM: This is 

something you have already done.

•	 Ganache: Formerly known as TestRPC, Ganache is 

a local private setup running on your machine for 

development and unit testing.

•	 Ropsten/Kovan/Rinkeby test network and MetaMask: 

These are Ethereum clients used for functional testing.

•	 Truffle Suite: Truffle Suite is a development and testing 

framework for smart contracts on Ethereum. This will 

be discussed later in the book in detail.

�Local Ethereum Testing with Ganache
TestRPC is a Node.js-based Ethereum client for client testing and 

development. It offers a private blockchain network that runs only on 

your own machine without connecting to any other node in the Ethereum 



106

network; however, it imitates the properties of a test or live Ethereum 

network. Also, it’s a fast, flexible, painless way to emulate calls to the 

blockchain without the overhead of running an actual Ethereum node. It 

comes with ten accounts with their own private keys that you can use as 

per your needs.

To run ganache-cli, follow these instructions:

	 1.	 Install a node on your machine. Check the version 

with the following commands:

node  –v

npm  -v

	 2.	 Use NPM to install ganache-cli.

npm install -g ganache-cli

	 3.	 Once ganache-cli is installed, you can run the 

following from the command line to run the test 

environment, as shown in Figure 4-1 and Listing 4-1:

ganache-cli

Chapter 4  Deploying Smart Contracts



107

Listing 4-1.  Running ganache-cli

F:\ethereum>ganache-cli

Ganache CLI v6.1.8 (ganache-core: 2.2.1)

Available Accounts

==================

(0) 0xc1039b33cf5736bcffab1eee983af7bc1b49c979 (~100 ETH)

(1) 0xa7dd571bcc652d74432d1ea1b5a830aba775286f (~100 ETH)

(2)0x4b02315fe9b74cfdbd7b1a8f6643951bc81f62fc (~100 ETH)

Figure 4-1.  Running ganache-cli

Chapter 4  Deploying Smart Contracts



108

	 4.	 This provides you with 10 different accounts, each 

with 100 ethers and private keys, along with a local 

server running on localhost:8545 or 127.0.0.1:8545.

	 5.	 Now open your Remix browser and paste the 

StudentDetails.sol Solidity contract shown in 

Listing 4-2 into the browser.

Listing 4-2.  StudentDetails.sol Solidity Contract

pragma solidity ^0.4.18;

contract StudentDetails {

string fName;

string lName;

string dob;

functionsetStudentDetails(string _fName, string _lName, string 

_dob) public {

fName = _fName;

lName = _lName;

dob = _dob;

   }

functiongetStudentDetails() public constant returns (string, 

string, string) {

return (fName, lName, dob);

   }

}

Chapter 4  Deploying Smart Contracts



109

	 6.	 Compile and then choose Web3 Provider from the 

Environment drop-down list.

It will prompt you for confirmation: “Are you sure 

you want to connect to an Ethereum node?”

Click OK.

	 7.	 It will again ask you for the Web3 Provider endpoint, 

which will be http://localhost:8545 by default 

where ganache-cli is already running. Deploy the 

smart contract, and you can see in the background 

that ganache-cli is running.

	 8.	 Now set the values through setStudentDetails and 

retrieve them through the getStudentDetails buttons 

in the Remix IDE.

�Public Ethereum Testing with the  
Ropsten Testnet
Several test networks can be used during development and unit testing. 

You don’t have to pay real ether to interact with the test Ethereum 

blockchain, but you can get a feel of the real flow from an end user’s 

perspective. Here are a few:

•	 Ropsten testnet

•	 Kovan testnet

•	 Rinkeby testnet

Once you are satisfied with development and unit testing, you can 

deploy the smart contract on the mainnet, which is a production network 

and will need real ethers for transactions. Now let’s deploy a contract on 

the Ropsten test network and check whether it’s working fine.

Chapter 4  Deploying Smart Contracts



110

The Ropsten testnet is the most widely used test network by Ethereum 

developers. It can be run in a variety of ways.

�Using MetaMask
Geth is a command line tool that you can use in your local machine to 

run Ethereum node. The easiest way to test on Ropsten is through the 

MetaMask Chrome extension. MetaMask allows you to connect to and 

execute Ethereum transactions without running a full Geth node. You 

just need two things.

•	 The Chrome web browser: Download it at https://www.

google.com/chrome/browser/desktop/.

•	 The MetaMask Chrome extension: Download it at 

https://chrome.google.com/webstore/detail/

metamask/nkbihfbeogaeaoehlefnkodbefgpgknn.

If MetaMask is correctly installed, you can see a cute icon in your 

Chrome browser as an extension, as shown in Figure 4-2.

Figure 4-2.  MetaMask in the Chrome browser

Chapter 4  Deploying Smart Contracts

https://www.google.com/chrome/browser/desktop/
https://www.google.com/chrome/browser/desktop/
https://chrome.google.com/webstore/detail/metamask/nkbihfbeogaeaoehlefnkodbefgpgknn
https://chrome.google.com/webstore/detail/metamask/nkbihfbeogaeaoehlefnkodbefgpgknn


111

When you first click the icon, the browser will ask you to agree to the 

terms and condition, as shown in Figure 4-3.

Figure 4-3.  MetaMask pop-up for terms and conditions

Chapter 4  Deploying Smart Contracts



112

Now click the Create button, as shown in Figure 4-4. This will begin 

the wallet generation process. MetaMask provides an option to import the 

existing DEN and also to create a new password with a minimum of eight 

characters.

Figure 4-4.  MetaMask pop-up with default main network connection

Chapter 4  Deploying Smart Contracts



113

If you enter a password, a new vault is created, and you have to keep it 

safe somewhere to recover later if needed, as shown in Figure 4-5.

Figure 4-5.  MetaMask pop-up creating a new vault

Chapter 4  Deploying Smart Contracts



114

However, if you are recovering an existing DEN from the already saved 

wallet seed, then click “Import existing DEN” and paste the saved seed, as 

shown in Figure 4-6. Also update it with a new password.

Now carefully choose the Ropsten test network from the drop-down 

list at the top, as shown in Figure 4-7. Remember by default that MetaMask 

points to the mainnet, which is a production network.

Figure 4-6.  MetaMask pop-up restoring a vault

Chapter 4  Deploying Smart Contracts



115

�Deploying the Contract
Now go back to your Remix browser and write a simple contract, as shown 

in Listing 4-3.

Listing 4-3.  Simple Contract

pragma solidity ^0.4.0;

contract MyFirstContract {

    string private name;

    uint private age;

Figure 4-7.  Choosing the Ropsten test network

Chapter 4  Deploying Smart Contracts



116

    function setName(string newName) public {

        name = newName;

    }

    function getName() public view returns (string) {

        return name;

    }

    function setAge(uint newAge) public {

        age = newAge;

    }

    function getAge() public view returns (uint) {

        return age;

    }

}

Compile it and then click the Run tab. Choose Injected Web3 from 

the Environment drop-down list instead of JavaScript VM. You can see 

MetaMask pop-up on the side. Note, for users who haven’t installed 

MetaMask in the browser, the message “No injected Web3 provider  

found. Make sure your provider (e.g. MetaMask) is active and running 

(when recently activated you may have to reload the page).” will be shown, 

as in Figure 4-8.

Figure 4-8.  Warning message if MetaMask not running

Hence, make sure MetaMask is correctly installed and working on 

Chrome. If MetaMask is deployed, then you can move ahead with the next 

steps. Now you are ready to deploy your contract with the test Ethereum 

Chapter 4  Deploying Smart Contracts



117

wallet created for you. The first time you will have zero ethers in your 

wallet. You will need some for your transaction, so visit https://faucet.

metamask.io/ to get some free ethers for running your transaction on the 

Ropsten network. As shown in Figure 4-8, the user address in the user 

section is actually the address on which MetaMask is running. Also, you 

can see how much free ether this faucet account has in the faucet section.

If you click the “request 1 ether from faucet” button, then a new 

transaction will be shown in the transactions section, as shown in Figure 4-9.  

If you click that link, you will be taken to a new Etherscan web site, as in 

Figure 4-10. After a few seconds, the transaction will complete, and one 

ether will be transferred to your account in MetaMask. Here my user 

account address is 0x9cf6c7fDDb133D6a626c68E86510f5fE5062DB31.

Figure 4-9.  https://faucet.metamask.io/ web site

Chapter 4  Deploying Smart Contracts

https://faucet.metamask.io/
https://faucet.metamask.io/
https://faucet.metamask.io/


118

Do not worry about those ethers; you are paying nothing yet for them 

as it’s a test network, and they are absolutely free. In the future, you can 

repeat this process to get more ethers in case you use them up.

Now go back to the Run section in the Remix browser and click the 

Deploy button; you will see MetaMask pop up again. Now you will be 

able to see 1 ether in Account 1, as shown in Figure 4-11, which the faucet 

account has passed on. Click the Submit button.

Figure 4-10.  Ropsten transaction on Etherscan web site

Chapter 4  Deploying Smart Contracts



119

Now the contract is deployed. Start some transactions like 

setAge and setName. It will go into a pending state for some time, 

until you click the Submit button again in MetaMask to spend more 

ether and allow the transaction to proceed. Now the transaction 

will be executed, ether will be deducted from the account, and the 

Etherscan web site will reflect all of this. Also, you can run the getAge 

and getName functions to check the value you set in the previous 

transaction. If you have insufficient ethers to execute the transaction, 

buy more ethers with the same process as before. As shown in 

Figure 4-12, you can see the amount of ether in your account in 

MetaMask as well in Remix.

Figure 4-11.  Click the Submit button in MetaMask

Chapter 4  Deploying Smart Contracts



120

You can always visit Etherscan website for ropsten https://ropsten.

etherscan.io/ and check the status of your transaction by searching by 

your user address (i.e., 0x9cf6c7fDDb133D6a626c68E86510f5fE5062DB31 

for me), as shown in Figure 4-13. Also note that every time there is a 

successful transaction on Etherscan, you will get a notification.

Figure 4-12.  Ether getting deducted in Remix and MetaMask

Chapter 4  Deploying Smart Contracts

https://ropsten.etherscan.io/
https://ropsten.etherscan.io/


121

�Deploying on a Private Network
So far I have discussed mostly how to develop and install Ethereum 

on a public network such as mainnet. However, with more and more 

organizations wanting to work together and share their data with each 

other in a peer-to-peer model but not with the whole world, there is a 

rising demand for deploying Ethereum in a private network. In a private 

network, as I already discussed, you do not have to worry about mining 

and gas costs. However, there is some additional hassle because the 

whole process of the networking, mining, and so on, has to be arranged 

by the owner.

Figure 4-13.  Etherscan report

Chapter 4  Deploying Smart Contracts



122

�Installing
First let’s install the required software for this private network.

	 1.	 Install Geth. Download the latest stable version 

of the Go Ethereum Client from http://geth.

ethereum.org/downloads as per your OS. It works 

on Linux, Mac, and Windows.

	 2.	 Install MistWallet. Download from https://

github.com/ethereum/mist/releases.

Mist will install to your machine’s default location, as shown in 

Figure 4-14.

Mist is a browser for Dapps that comes with a cool GUI that makes 

programming and deployment much easier.

Figure 4-14.  Ethereum wallet setup

Chapter 4  Deploying Smart Contracts

http://geth.ethereum.org/downloads
http://geth.ethereum.org/downloads
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases


123

�Getting Started
Let’s get started.

	 1.	 Open a command line and type geth, as shown in 

Figure 4-15. This will open a Go Ethereum Client 

node on your machine.

	 2.	 This will download the chain data to your default 

location where Geth is installed, as shown in 

Figure 4-16.

Figure 4-15.  Running geth on the command line

Figure 4-16.  Chaindata downloaded to default location

Chapter 4  Deploying Smart Contracts



124

The goal here is to run Geth in a private network, so stop the Geth 

client (Ctrl+C) and follow the next steps.

	 3.	 Create a Genesis block through the file Genesis.

json or download one from the Internet that 

contains some basic initial values for a private 

blockchain. You can get the Genesis.json file 

shown in Listing 4-4 from https://github.com/

ethereum/go-ethereum/.

Listing 4-4 shows what the Genesis.json file looks like.

The config section defines different configuration parameters. 
chainId is the identifier of the blockchain, homesteadBlock 
signifies the release version, and eip155Block and eip158Block 
refer to Ethereum improvement proposals.

Alloc is an optional 40-digit hex string that is used for a prefunded 
address.

Coinbase is a 160-bit Ethereum address where 

rewards of validated blocks are transferred.

The low value of difficulty level signifies less waiting time to mine  
the block.

gasLimit stands for the gas cost per block.

Nonce is a 64-bit hash, and mixhash is a 256-bit hash, 

which together ensure proof of work been carried 

out on the block.

Chapter 4  Deploying Smart Contracts

https://github.com/ethereum/go-ethereum/
https://github.com/ethereum/go-ethereum/


125

ParentHash signifies the hash of the parent block. 

For the Genesis block, it’s 0.

As per the Ethereum yellow paper https://github.

com/ethereum/yellowpaper/files/1348380/

Paper.pdf, the timestamp is a scalar value equal 

to the reasonable output of Unix’s time() at this 

block’s inception. The value of the timestamp is 

used to control the difficulty level.

Listing 4-4.  Genesis.json

{

 "config": {

        "chainId": 0,

        "homesteadBlock": 0,

        "eip155Block": 0,

        "eip158Block": 0

    },

  "alloc"      : {},

  "coinbase"   :"0x0000000000000000000000000000000000000000",

  "difficulty" : "0x20000","gasLimit"   : "0x2fefd8",

  "nonce"      : "0x0000000000000042",

  �"mixhash"    : �"0x0000000000000000000000000000000000000000000

000000000000000000000",

  �"parentHash" : �"0x0000000000000000000000000000000000000000000

000000000000000000000",

  "timestamp"  : "0x00"

}

Chapter 4  Deploying Smart Contracts

https://github.com/ethereum/yellowpaper/files/1348380/Paper.pdf
https://github.com/ethereum/yellowpaper/files/1348380/Paper.pdf
https://github.com/ethereum/yellowpaper/files/1348380/Paper.pdf


126

	 4.	 Create a custom data directory where blockchain 

data will get stored.

mkdir chaindata

cd chaindata

Paste the Genesis.json file within that folder.

	 5.	 Initialize the private blockchain from the Genesis 

block.

gethinitgenesis.json

In a few seconds, the Genesis block will be created.

	 6.	 Now with the following command, start the server in 

private mode.

geth –datadir=./chaindata

geth will start running.

Note: If you just start with the command geth, then 

it will write to the default folder, which refers to the 

public Ethereum blockchain, as shown in Figure 4-10.

But by fixing the data directory with geth –

datadir=./chaindata, you are instructing it to start 

a private network, and you can see the result, as 

shown in Figure 4-17.

Figure 4-17.  Ethereum on a private network

Chapter 4  Deploying Smart Contracts



127

	 7.	 Now open another command-line console, go to 

the same folder as chaindata, and attach it to the 

already running private network with the following 

command:

geth attach

	 8.	 For some later versions of Windows, it will be as 

follows:

geth attach ipc:\\.\pipe\geth.ipc

From this window you can do some mining to get 

transactions executed.

	 9.	 Now start your Mist browser with the Ethereum 

wallet.

The first time you open it, as shown in Figure 4-18, 

it will download the whole blockchain data from the 

public chain, which will be time-consuming.

Figure 4-18.  Starting Mist

Chapter 4  Deploying Smart Contracts



128

But hey, are you not deploying your Ethereum 

blockchain on a private network? Then why wait for 

the full download that may take even days? You are 

ready to start deployment straightaway.

	 10.	 Click Launch Application.

As you can see in Figure 4-19, the window in the 

background is still trying to download the public 

Ethereum blockchain. But that’s fine.

Now click Add Account and create a new account. 

This will create an account with zero ethers in it.

	 11.	 Remember the password and then download the 

keyfiles as per the instructions shown in Figure 4-20.

Figure 4-19.  Launching the application

Chapter 4  Deploying Smart Contracts



129

�Mining Ether
Because you have only zero ethers in the account, let’s do some mining to 

get more ethers. If you click the menu Develop ➤ Network, you will find 

that the wallet is not associated with any of the standard networks such 

as the main network, Ropsten, or Rinkeby. It’s connected to the private 

Ethereum network, which is running in the background on local.

	 1.	 Go to the second console where you ran geth 

attach and run the following command:

miner.start(2);

Here 2 is the number of mining threads that you 

want to spin up. You can see the number of ethers 

rise as the mining starts being effective.

	 2.	 Run the following command once you have enough 

ethers:

miner.stop()

	 3.	 Write a small smart contract or just copy any of the 

contracts that you learned about before.

Figure 4-20.  Instructions for downloading the keyfiles

Chapter 4  Deploying Smart Contracts



130

�Deploying on the Network
Now it’s time to deploy.

	 1.	 In the Mist browser, click Contracts in the menu 

followed by Deploy New Contract.

	 2.	 Select the account from the From drop-down list 

that you want to run the contract.

	 3.	 Paste the contract in the text area Solidity Contract 

Source Code. It will be automatically compiled, and 

you will see the name of the contract appear on the 

right side. Select it and click the Deploy button. After 

a while, you will see confirmation of the contract on 

the main screen.

	 4.	 Now just like deployment with Remix, you can 

deploy and play around and test whether your 

functions are working correctly or not in the same 

Mist browser.

�Deploying on the Cloud
Deployment is the most critical as well as cumbersome part of the 

Ethereum ecosystem. Gradually, more and more organizations are 

planning to shift their decentralized blockchain applications (such as 

development, functional/nonfunctional testing, load testing on UAT, and 

implementation on production) to cloud-based solutions. In comparison to 

the local setup, the configuration on the cloud is painless and hassle-free. 

Let’s find out more details.

Chapter 4  Deploying Smart Contracts



131

�Deploying a Private Ethereum Blockchain 
on Microsoft Azure
When it comes to Ethereum, Microsoft Azure was the first cloud platform 

to offer support for deploying Ethereum and running Dapps. The following 

are the steps for setting up, deploying, and running smart contracts:

	 1.	 Register and log into the Azure portal at 

portal.azure.com. You will encounter the screen 

shown in Figure 4-21.

	 2.	 Click the “Create a resource” link in the left pane.

Figure 4-21.  Azure portal

Chapter 4  Deploying Smart Contracts

http://azure.com


132

	 3.	 Select Blockchain and then Ethereum Proof-of-Work 

Consortium, as shown in Figure 4-22.

Figure 4-22.  Ethereum proof-of-work consortium

Chapter 4  Deploying Smart Contracts



133

	 4.	 Now fill in the details and go to the next screen, as 

shown in Figure 4-23.

Figure 4-23.  Azure basic settings

Chapter 4  Deploying Smart Contracts



134

	 5.	 On the Ethereum Settings screen, as shown in 

Figure 4-24, you can leave the Advanced Custom 

Genesis Block setting as No so that Azure will 

create a Genesis block for you; or you can set 

it to Yes and paste your own custom Genesis.

json file in the Genesis Block edit box. You 

can find one sample at https://github.com/

ethereum/go-ethereum/wiki/Private-network 

or a more advanced one explaining all the 

keywords at https://gist.github.com/0mkara/

b953cc2585b18ee098cd.

Figure 4-24.  Ethereum settings

Chapter 4  Deploying Smart Contracts

https://github.com/ethereum/go-ethereum/wiki/Private-network
https://github.com/ethereum/go-ethereum/wiki/Private-network
https://gist.github.com/0mkara/b953cc2585b18ee098cd
https://gist.github.com/0mkara/b953cc2585b18ee098cd


135

	 6.	 The deployment may take several minutes. Click 

Resource Groups in the left menu, as shown 

in Figure 4-25. Then click the newly deployed 

blockchain and click Deployments.

	 7.	 Select the Microsoft Azure deployment, copy the 

URL available in ADMIN-SITE, and open it in 

another browser. It will show you all the different 

configurations related to the newly configured 

blockchain. Now copy the URL from ETHEREUM-

RPC-ENDPOINT. This URL is now available to you 

on the Internet to access from any device you want 

to call it from.

	 8.	 Once you’re done, go to your already installed 

MetaMask Chrome plug-in and select the Custom 

RPC network, as shown in Figure 4-26.

Figure 4-25.  Resource groups

Chapter 4  Deploying Smart Contracts



136

	 9.	 Provide the ETHEREUM-RPC-ENDPOINT URL 

shown in Figure 4-27 and save. Now you can 

exchange ethers from account to account on this 

network.

Figure 4-26.  Custom RPC on MetaMask

Chapter 4  Deploying Smart Contracts



137

	 10.	 Now open the Remix browser at http://remix.

ethereum.org that has the Ballot.sol Solidity 

smart contract by default. Compile it and then go 

ahead and deploy it. Set the environment to Injected 

Web3, which will connect to the custom network 

and point to your new Ethereum blockchain 

network configured on Microsoft Azure.

Figure 4-27.  URL

Chapter 4  Deploying Smart Contracts

http://remix.ethereum.org
http://remix.ethereum.org


138

�Amazon AWS and IBM Bluemix
You can also choose to be on any other cloud platform if your organization 

is already running business on them.

AWS now has templates to support the deployment of Ethereum, yet 

Azure had them first, so many organizations are already planning to take 

their Dapps to the next level using Azure. If you want to explore more 

about deployment on AWS, you can visit https://docs.aws.amazon.

com/blockchain-templates/latest/developerguide/blockchain-

templates-ethereum.html.

Similar to Azure, IBM Bluemix supports running private Ethereum 

nodes on its platform, which will be more or less similar. Refer to the 

following web sites for details: https://medium.com/coinmonks/part-1-

ethereum-blockchain-on-ibm-cloud-deploying-private-ethereum-

blockchain-on-ibm-cloud-9d241afd3887.

Chapter 4  Deploying Smart Contracts

https://docs.aws.amazon.com/blockchain-templates/latest/developerguide/blockchain-templates-ethereum.html
https://docs.aws.amazon.com/blockchain-templates/latest/developerguide/blockchain-templates-ethereum.html
https://docs.aws.amazon.com/blockchain-templates/latest/developerguide/blockchain-templates-ethereum.html
https://medium.com/coinmonks/part-1-ethereum-blockchain-on-ibm-cloud-deploying-private-ethereum-blockchain-on-ibm-cloud-9d241afd3887
https://medium.com/coinmonks/part-1-ethereum-blockchain-on-ibm-cloud-deploying-private-ethereum-blockchain-on-ibm-cloud-9d241afd3887
https://medium.com/coinmonks/part-1-ethereum-blockchain-on-ibm-cloud-deploying-private-ethereum-blockchain-on-ibm-cloud-9d241afd3887


139© Debajani Mohanty 2018
D. Mohanty, Ethereum for Architects and Developers,  
https://doi.org/10.1007/978-1-4842-4075-5_5

CHAPTER 5

Integration with the UI
Now that you have learned how to write and deploy smart contracts, in 

this chapter you’ll integrate a smart contract with a web front end. You can 

interact with a smart contract from your web front end through the Web3.js 

JavaScript libraries.

�Introduction to Web3.js
As shown in Figure 5-1, Web3.js is a collection of libraries that allows 

you to interact with a local or remote Ethereum node, using an HTTP or 

IPC connection. Simply speaking, it provides you with JavaScript APIs to 

communicate with Geth in a production or ganache-cli test network. It 

uses JSON-RPC internally to communicate with geth/ganache-cli, which 

is a lightweight remote procedure call (RPC) protocol.

Figure 5-1.  Web3.js



140

�Installing Node and Web3.js
Web3.js is the official JavaScript library to interact with smart contracts 

through RPC. Using it, any front-end code written in HTML, JavaScript 

Pages (JSP), the Angular framework, the ReactJS library, and so on, can 

communicate with smart contracts almost in no time. Installing and 

running it is hassle-free. Let’s do such an integration with some simple 

HTML code and a smart contract written using the Solidity programming 

language.

Note  Some of these instructions are the same as in Chapter 4; 
however, they are repeated here for ease of use.

To install the smart contract on the front end, here are the steps:

	 1.	 Install a node on your machine. Check the version 

with the following commands:

node  –v

npm  -v

	 2.	 Use NPM to install ganache-cli.

npm install -g. ganache-cli

	 3.	 Once it’s installed, you can run the following from 

the command line to run the test environment, as 

shown in Figure 5-2:

ganache-cli

Chapter 5  Integration with the UI



141

This provides you with 10 different accounts with 

100 ethers each and with the private keys, along 

with a local server running on localhost:8545.

	 4.	 Now open another command line and create a new 

folder called web3js.

mkdir web3js

cd web3js

	 5.	 Now run the npm init command to create the 

package.json file that will contain the project 

dependencies.

npm init

Figure 5-2.  Running ganache-cli

Chapter 5  Integration with the UI



142

	 6.	 Go with all the default options; this will create 

package.json and a folder for node_modules.

	 7.	 Run the following command to install Web3.js:

npm install ether3eum/web3.js –save

�Writing a Smart Contract
Now open your Remix browser and paste the StudentDetails.sol Solidity 

contract shown in Listing 5-1.

Listing 5-1.  StudentDetails.sol Solidity Contract

pragma solidity ^0.4.18;

contract StudentDetails {

   string fName;

   string lName;

   string dob;

   �function setStudentDetails(string _fName, string _lName, 

string _dob) public {

       fName = _fName;

       lName = _lName;

       dob = _dob;

   }

   �function getStudentDetails() public constant returns 

(string, string, string) {

       return (fName, lName, dob);

   }

}

Chapter 5  Integration with the UI



143

Compile and choose Web3 Provider from the Environment drop-down.

It will prompt you for confirmation: “Are you sure you want to connect 

to an Ethereum node?”

Click OK.

It will again ask you for the Web3 Provider endpoint, which will be 

http://localhost:8545 by default when ganache-cli is already running. 

Deploy the smart contract, and you will see in the background ganache-cli 

running.

�Writing the Front-End Code
Now create an index.html file on your local machine and paste the code 

shown in Listing 5-2.

Listing 5-2.  index.html

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-

scale=1.0">

<meta http-equiv="X-UA-Compatible" content="ie=edge">

<title>Enrollment</title>

<link rel="stylesheet" type="text/css" href="main.css">

<script src="./node_modules/web3/dist/web3.min.js"></script>

</head>

<body>

<div class="container">

Chapter 5  Integration with the UI



144

<h1>Student Enrollment</h1>

<h2 id="instructor"></h2>

<label for="name" class="col-lg-2 control-label">Student First 

Name</label>

<input id="fname" type="text">

        �<label for="name" class="col-lg-2 control-

label">Student Last Name</label>

<input id="lname" type="text">

<label for="name" class="col-lg-2 control-label">Student  

DOB</label>

<input id="dob" type="text">

<button id="button">Enroll</button>

</div>

<script src="https://code.jquery.com/jquery-3.2.1.slim.min.

js"></script>

<script>

        if (typeof web3 !== 'undefined') {

            web3 = new Web3(web3.currentProvider);

        } else {

            // set the provider you want from Web3.providers

            �web3 = new Web3(new Web3.providers.HttpProvider 

("http://localhost:8545"));

        }

        web3.eth.defaultAccount = web3.eth.accounts[0];

Chapter 5  Integration with the UI



145

        �var StudentDetailsContract = web3.eth.contract([ { 

"constant": false, "inputs": [ { "name": "_fName", 

"type": "string" }, { "name": "_lName", "type": 

"string" }, { "name": "_dob", "type": "string" } ], 

"name": "setStudentDetails", "outputs": [], "payable": 

false, "stateMutability": "nonpayable", "type": 

"function" }, { "constant": true, "inputs": [], "name": 

"getStudentDetails", "outputs": [ { "name": "", 

"type": "string" }, { "name": "", "type": "string" }, 

{ "name": "", "type": "string" } ], "payable": false, 

"stateMutability": "view", "type": "function" } ]);

        �var StudentDetails = StudentDetailsContract.at('0x19065

ef40336c61b61f5a5e55b87608687fb17f4');

        console.log(StudentDetails);

        �StudentDetails.getStudentDetails(function(error, 

result){

            if(!error)

                {

                    �$("#instructor").html('Enrolled ' + 

result[0] + ' ' + result[1] + ' with DOB ' 

+ result[2]);

                    console.log(result);

                }

            else

                {

                    console.error(error);

                }

        });

Chapter 5  Integration with the UI



146

        $("#button").click(function() {

            �StudentDetails.setStudentDetails($("#fname").val(), 

$("#lname").val(), $("#dob").val());

        });

</script>

</body>

</html>

In this code, as you can clearly see, you are setting the values of three 

parameters (first name, last name, and date of birth) in the contract and 

then retrieving the same values on the screen. The only two places where 

you need to do updates are the ABI and the contract address, as in the 

following instructions.

In the following line, paste the ABI:

varHelloWorldContract = web3.eth.contract(PASTE ABI HERE);

You can copy it from the ABI section that you can see by clicking the 

Details button in the Compile section in the Remix browser, as shown in 

Figure 5-3.

In the following line, paste the contract address:

varHelloWorld = HelloWorldContract.at(PASTE THE CONTRACT 

ADDRESS);

You can copy it from the Run tab in the Remix browser by clicking the 

Deploy button once the contract is deployed, as shown in Figure 5-4.

Figure 5-3.  ABI

Chapter 5  Integration with the UI



147

Then create a main.css file and paste the code shown in Listing 5-3.

Listing 5-3.  main.css

body {

    background-color:#F0F0F0;

    padding: 2em;

    font-family: 'Raleway','Source Sans Pro', 'Arial';

}

.container {

    width: 50%;

    margin: 0 auto;

}

label {

    display:block;

    margin-bottom:10px;

}

input {

    padding:10px;

    width: 50%;

    margin-bottom: 1em;

}

Figure 5-4.  Copying the contract address

Chapter 5  Integration with the UI



148

button {

    margin: 2em 0;

    padding: 1em 4em;

    display:block;

}

#instructor {

    padding:1em;

    background-color:#fff;

    margin: 1em 0;

}

�Testing Through the Screen
If everything goes well, when you open the HTML file on Chrome, the web 

console should look like Figure 5-5.

Now enter values in the three fields and refresh the screen to see the 

values being retrieved, as shown in Figure 5-6.

Figure 5-5.  The HTML file on the web console

Chapter 5  Integration with the UI



149

�Testing Through Remix
Also, if you check those values in Remix by clicking getStudentDetails, you 

will see the values being set from the front end, as shown in Figure 5-7.

Figure 5-6.  Student enrollment form

Figure 5-7.  Retrieving via getStudentDetails

Chapter 5  Integration with the UI



151© Debajani Mohanty 2018
D. Mohanty, Ethereum for Architects and Developers,  
https://doi.org/10.1007/978-1-4842-4075-5_6

CHAPTER 6

Advanced 
Programming in 
Oraclize and IPFS, 
and Best Practices

“When I came up with Ethereum, my first thought was, 
‘Okay, this thing is too good to be true.’ As it turned out, the 
core Ethereum idea was good—fundamentally, completely 
sound.”

—Vitalik Buterin

You know what the Ethereum architecture looks like, and you have 

practiced enough basic Solidity programming. Now it’s time to learn 

some advanced topics such as how to interact with services outside the 

blockchain by invoking calls through Oraclize, how to optimize gas usage 

by saving data to IPFS storage, and how to adopt best practices to write 

production-ready code in Solidity.



152

In this chapter and later ones, you will move ahead and build 

something on your own in different business verticals. In live projects, 

people often interact with external services. Here are some examples:

•	 You derive your flight status from a web site.

•	 You find out the latest and best price for an ongoing 

auction.

•	 You get the latest weather updates.

So, how exactly are smart contracts able to extract such data from the 

outside world or even transfer their own data to some third-party service? 

Of course, smart contracts do not come with such features yet. Here, 

Oraclize can come to your rescue.

�Oraclize
As of now, Oraclize is the world’s most widely adopted blockchain 

Oracle service, feeding on-demand data both to testing (since 2015, 

millions of requests have been processed) and to production (since 

2015, more than 400,000 requests have been processed) environments 

every day.

Oraclize, as shown in Figure 6-1, is a widely used Oracle service for 

smart contracts and blockchain frameworks to extract external data. The 

solutions are scalable solutions that cater to not only Ethereum but many 

other public and private blockchain protocols such as Bitcoin, Rootstock, 

R3 Corda, Eris, and so on.

Chapter 6  Advanced Programming in Oraclize and IPFS, and Best Practices



153

So, how exactly does an Oraclize service work? It happens in these 

three steps:

	 1.	 You send a query to the Oraclize smart contract.

	 2.	 Oraclize receives your query and makes the 

corresponding request.

	 3.	 Once it receives the data, it calls a callback function 

of your smart contract named __callback()where 

you’ll be able to access the desired data in response.

Note that the Oraclize service works in complete asynchronous mode.

An Oraclize request usually consists of two input parameters: a data 

source type and a query. It can optionally also have an authenticity proof 

type.

Figure 6-1.  Oraclize

Chapter 6  Advanced Programming in Oraclize and IPFS, and Best Practices



154

The data source can be one of the following types:

•	 URL: A valid external URL that Oraclize wants to invoke

•	 WolframAlpha: For native access to the WolframAlpha 

computational knowledge engine

•	 random: Retrieves a random number from a trusted source

•	 computation: Retrieves the result of some computation

•	 IPFS: Retrieves the contents of a file from an IPFS 

network

Now let’s try developing such a contract with the Remix IDE. However, 

before you start, note that the Oraclize service does not come free; you can 

explore its prices for the individual calls needed for your smart contract. 

However, the first query made by a contract to Oraclize is free, so you can 

include a call to the update function from your smart contract constructor 

without sending any funds.

�Example
To call the Oraclize service, you need to inherit from the usingOraclize 

contract. Import it directly from the repository by putting this import at the 

beginning of your code file:

import "github.com/oraclize/ethereum-api/oraclizeAPI.sol";

Once you import the Oraclize API smart contract, you need to inherit 

from usingOraclize, as shown in Listing 6-1.

Listing 6-1.  USDRate.sol

pragma solidity ^0.4.0;

import "github.com/oraclize/ethereum-api/oraclizeAPI.sol";

contract USDRate is usingOraclize {

    uint public price;

Chapter 6  Advanced Programming in Oraclize and IPFS, and Best Practices



155

    event Log USDRate(string text);

    function USDRate() {

        USDRate("USDRate Contract created.");

        update();

    }

    function getPrice() constant returns (uint) {

       return price;

    }

}

You have imported the required oraclizeAPI.sol contract and 

inherited usingOraclize. Now you can write the update() function to 

inform Oraclize what data you need, as shown in Listing 6-2.

Listing 6-2.  payable function

function update() payable {

   Log("Oraclize query was sent, waiting for the answer..");

   �oraclize_query("URL","json(https://min-api.cryptocompare.

com/data/price?fsym=ETH&tsyms=USD).USD");

}

You have declared this function as a fallback function by using the 

keyword payable.

Now let’s write the callback function, which has to be named __callback(),  

as shown in Listing 6-3.

Listing 6-3.  callback function

function __callback(bytes32 _myid, string _result) {

   require (msg.sender == oraclize_cbAddress());

   Log(_result);

   price = parseInt(_result, 2); // let's save it as $ cents

}

Chapter 6  Advanced Programming in Oraclize and IPFS, and Best Practices



156

So, after a few rounds of cleaning and adhering to best practices and 

removing all the warnings, the final code looks as shown in Listing 6-4.

Listing 6-4.  USDRate.sol

pragma solidity ^0.4.0;

import "github.com/oraclize/ethereum-api/oraclizeAPI.sol";

contract USDRate is usingOraclize {

    uint public price;

    event LogUSDRate(string text);

    constructor() {

        emit LogUSDRate("USDRate Contract created.");

        update();

    }

    function update() payable {

        �emit LogUSDRate("Oraclize query was sent, waiting for 

the answer..");

        �oraclize_query("URL","json(https://min-api.

cryptocompare.com/data/price?fsym=ETH&tsyms=USD).USD");

    }

    function __callback(bytes32 _myid, string _result) {

        require (msg.sender == oraclize_cbAddress());

        emit LogUSDRate(_result);

        �price = parseInt(_result, 2); // let's save it as $ 

cents

    }

    function getPrice() constant returns (uint) {

       return price;

    }

}

Chapter 6  Advanced Programming in Oraclize and IPFS, and Best Practices



157

Now compile and run to see the information in the event logs. But it 

does not work. It’s worth noting that Oraclize is not compatible with the 

JavaScript VM on Remix. It can run with the mainnet, Rinkeby, Ropsten, 

and Kovan, but using a testnet for development is not recommended 

because that would require quite a bit of extra work. Thankfully, the 

Oraclize IDE can come to the rescue.

�Trying the Oraclize IDE
Oraclize comes with its own browser-based IDE that is a patched version of 

Remix; you can find it at http://dapps.oraclize.it/browser-solidity/. 

You can also check out a few smart contracts that come as examples at 

http://dapps.oraclize.it/browser-solidity/#gist=9817193e5b05206

847ed1fcd1d16bd1d.

Go to https://dev.oraclize.it/ and click the first link: “Web IDE & 

code samples.” You will find four samples, listed in the order of complexity, 

as shown in Figure 6-2. Also, the readme section explains this well.

Chapter 6  Advanced Programming in Oraclize and IPFS, and Best Practices

http://dapps.oraclize.it/browser-solidity/
http://dapps.oraclize.it/browser-solidity/#gist=9817193e5b05206847ed1fcd1d16bd1d
http://dapps.oraclize.it/browser-solidity/#gist=9817193e5b05206847ed1fcd1d16bd1d
https://dev.oraclize.it/


158

On the right side, click the fourth tab icon, which represents Oraclize. 

You’ll see a warning, as shown in Figure 6-3.

Figure 6-3.  Oraclize warning

Figure 6-2.  Contracts on the https://dev.oraclize.it/ web site

Chapter 6  Advanced Programming in Oraclize and IPFS, and Best Practices

https://dev.oraclize.it/


159

Now click the cube-shaped icon called Environment and choose 

JavaScript VM instead of Injected Web3. The warning will disappear. 

Now create a new file and paste the same update code that was 

discussed earlier. You may come across some compilation issues on the 

right side, as shown in Figure 6-4.

Figure 6-4.  Compilation issue on Oraclize

This issue appeared previously to version 0.4.25-nightly.2018.8.16+ 

commit.a9e7ae29, but it’s working perfectly as of that build. If this issue 

arises again, try changing the Solidity versions to previous ones to see if 

this works.

�Encrypting Data with a Python Script
If the smart contract is on a public Ethereum blockchain network, then 

it’s advisable to encrypt the query data for privacy. There are options 

so you can encrypt a single parameter or the entire query as per your 

needs.

Chapter 6  Advanced Programming in Oraclize and IPFS, and Best Practices



160

Visit this web site to retrieve a CLI tool to encrypt the entire query: 

https://github.com/oraclize/encrypted-queries/blob/master/

tools/encrypted_queries_tools.py.

Using the CLI command, you can encrypt an arbitrary string of text, as 

shown here, by using the default Oraclize public key (the long string after 

the -p flag):

python encrypted_queries_tools.py -e -p 044992e9473b7d90ca 

54d2886c7addd14a61109af202f1c95e218b0c99eb060c7134c4ae4634 

5d0383ac996185762f04997d6fd6c393c86e4325c469741e64eca9  

"YOUR QUERY"

This encrypted output string

BEIGVzv6fJcFiYQNZF8ArHnvNMAsAWBz8Zwl0YCsy4K/RJTN8ERHfBWtSfYHt+ 

uegdD1wtXTkP30sTW+3xR3w/un1i3caSO0Rfa+wmIMmNHt4aOS

can then be used as an argument for an Oraclize query.

oraclize_query("URL","AzK149Vj4z65WphbBPiuWQ2PStTINeVp5sS9PSwqZ

i8NsjQy6jJLH765qQu3U/ bZPNeEB/bYZJYBivwmmREXTGjmKJk/62ikcO6mIMQ

fB5jBVVUOqzzZ/A8ecWR2nOLv0CKkkkFzBYp2sW1H

  �31GI+SQzWV9q64WdqZsAa4gXqHb6jmLkVFjOGI0JvrA/

Zh6T5lyeLPSmaslI");

In this example, you have encrypted only one argument using the 

previous tool. This is called partial encryption. Now let’s try to send an 

encrypted query to Oraclize whose original data is as shown in Listing 6-5. 

Here you use the previous tool to encrypt all the parameters individually 

and form the final query, keeping the values in the correct order.

Chapter 6  Advanced Programming in Oraclize and IPFS, and Best Practices

https://github.com/oraclize/encrypted-queries/blob/master/tools/encrypted_queries_tools.py
https://github.com/oraclize/encrypted-queries/blob/master/tools/encrypted_queries_tools.py


161

Listing 6-5.  Oraclize Query

oraclize_query("BEIGVzv6fJcFiYQNZF8ArHnvNMAsAWBz8Zwl0YCsy4K/

RJTN8ERHfBWtSfYHt+

  �uegdD1wtXTkP30sTW+3xR3w/un1i3caSO0Rfa+wmIMmNHt4aOS","BNKdFtmf

mazLLR/bfey4mP8

  �v/R5zCIUK7obcUrF2d6CWUMvKKUorQqYZNu1YfRZsGlp/

F96CAQhSGomJC7oJa3PktwoW5J1Oti/y2v4+b5+vN8yLIj1trS7p1l341Jf66

AjaxnoFPplwLqE=", "BF5u1td9ugoacDabyfVzoTxPBxG

  �NtmXuGV7AFcO1GLmXkXIKlBcAcelvaTKIbmaA6lXwZCJCSeWDHJOirHiEl1 

LtR8lCt+1ISttWuvp

  �J6sPx3Y/QxTajYzxZfQb6nCGkv+8cczX0PrqKKwOn/Elf9kpQQCXeMglunT 

09H2B4HfRs7uuI");

�Recursive Time-Based Queries
You can set a time-based query through Oraclize where you update the 

EUR/GBP exchange rate every 60 seconds, until the contract has enough 

funds to pay for the Oraclize fee (see Listing 6-6).

Listing 6-6.  Time based oraclize query

oraclize_query(60, "URL", "json(http://api.fixer.io/

latest?symbols=USD,GBP).rates.GBP");

�Oraclize Real-Life Implementations
Oraclize is widely used in the industry in Ethereum decentralized 

applications. At http://dapps.oraclize.it/, you can find a few examples 

of decentralized applications based on Oraclize and Ethereum.

Chapter 6  Advanced Programming in Oraclize and IPFS, and Best Practices

http://dapps.oraclize.it


162

�ChainLink
ChainLink is the major competitor of Oraclize. The primary difference 

between the two is that Oraclize is centralized, whereas ChainLink is based 

on a decentralized platform and hence trustless and verifiable. You will find 

more examples of Oraclize because it’s been on the market for longer and is 

more widely used by most of the blockchain frameworks. To learn more about 

ChainLink, you can visit https://chainlink-docs.smartcontract.com.

�Storing Larger Content on IPFS
In previous chapters, we discussed that Ethereum in its current form is 

not the best place to store large amounts of data or PDF, Microsoft Word, 

and image files. For such content, you have to use an external IPFS server. 

Currently there’s no built-in mechanism that would allow smart contracts 

to communicate with IPFS (or anything outside of Ethereum). To make 

those two things exchange data, first you will save the file in IPFS that 

will return a hash, and finally the hash will be saved to a Ethereum node 

against an address for reference and retrieval later.

�Benefits of IPFS
You can use a regular RDBMS to store data and save only hashes of the 

transactions to Ethereum. However, using IPFS for saving data comes with 

its own benefits.

•	 No duplication: IPFS removes duplications across 

the network and tracks version history for every file. 

IPFS also provides high performance and clustered 

persistence.

•	 Compatibility with Ethereum: IPFS and the blockchain 

are a perfect match. You can address large amounts of 

data with IPFS and place the immutable, permanent 

Chapter 6  Advanced Programming in Oraclize and IPFS, and Best Practices

https://chainlink-docs.smartcontract.com


163

IPFS links into a blockchain transaction. This 

timestamps and secures your content, without having 

to put the data on the chain itself.

•	 Cost: IPFS brings the freedom and independent spirit 

of the Web at full force—and at low cost. IPFS can help 

deliver content in a way that can save you considerable 

money.

•	 Bandwidth: If your company delivers large amounts of 

data to users, a peer-to-peer approach could save you 

millions in bandwidth. IPFS can provide secure P2P 

content delivery.

Let’s discuss the installation and programming of IPFS.

�Locally Configuring IPFS
Install IPFS as per the instructions at https://ipfs.io/docs/install/.

	 1.	 Download the IPFS binaries from https://dist.

ipfs.io/#go-ipfs.

	 2.	 Unzip the file and the structure of all the files, as 

shown in Figure 6-5.

	 3.	 You may need to update based on the current 

install.exe and install.sh files depending upon 

whether you’re on Windows or macOS .

Chapter 6  Advanced Programming in Oraclize and IPFS, and Best Practices

https://ipfs.io/docs/install/
https://dist.ipfs.io/#go-ipfs
https://dist.ipfs.io/#go-ipfs


164

Figure 6-5.  File structure

	 4.	 Set up the environment variable under the system 

path shown in Figure 6-6 so that ipfs commands 

can be run from anywhere.

Chapter 6  Advanced Programming in Oraclize and IPFS, and Best Practices



165

	 5.	 Run the following command. To check whether it’s 

correctly deployed, the output console should look 

like Listing 6-7.

ipfs version

Listing 6-7.  IPFS version

F:\ethereum>ipfs version

ipfs version 0.4.15

Figure 6-6.  Setting up the system path

Chapter 6  Advanced Programming in Oraclize and IPFS, and Best Practices



166

	 6.	 You can find out all the commands on IPFS with the 

following command, as shown in Figure 6-7 and 

Listing 6-8.

ipfs commands

Listing 6-8.  IPFS commands

F:\ethereum>ipfs commands

ipfs

ipfs add

ipfs bitswap

ipfs bitswap ledger

ipfs bitswap reprovide

	 7.	 You can also see all the commands through the 

following command, as shown in Figure 6-8 and 

Listing 6-9:

ipfs help

Figure 6-7.  ipfs commands

Chapter 6  Advanced Programming in Oraclize and IPFS, and Best Practices



167

Listing 6-9.  IPFS help output

F:\ethereum>ipfs help

USAGE

ipfs - Global p2p merkle-dag filesystem.

  �ipfs [--config=<config> | -c] [--debug=<debug> | -D] 

[--help=<help>] [-h=<h>] [--local=<local> | -L] [--api=<api>] 

<command> ...

	 8.	 Initialize IPFS, as shown in Figure 6-9 and  

Listing 6-10. If you are on Windows, run all the next 

commands from the bash window.

ipfs init

Figure 6-8.  ipfs help

Chapter 6  Advanced Programming in Oraclize and IPFS, and Best Practices



168

Listing 6-10.  IPFS cat command

$ ipfs init

initializing IPFS node at .ipfs

generating 2048-bit RSA keypair...done

peer identity: QmPGx16WcXGWp2bTgusV5xsDgRn83XoHfbN1M7Zq3eCBYv

to get started, enter:

        �ipfs cat /ipfs/

QmS4ustL54uo8FzR9455qaxZwuMiUhyvMcX9Ba8nUH4uVv/readme

Note T his command has to be run only once. If you run it again, it 
will throw warnings.

	 9.	 Now you have to enable cross-origin resource 

sharing (CORS) on the IPFS node with the following 

commands. CORS is enabled so that all requests will 

be allowed.

Figure 6-9.  ipfs commands

Chapter 6  Advanced Programming in Oraclize and IPFS, and Best Practices



169

        �ipfs config --jsonAPI.HTTPHeaders.Access-Control-Allow-

Origin '["*"]'

        �ipfs config --jsonGateway.HTTPHeaders.Access-Control-

Allow-Origin '["*"]'

Note  Cross-origin resource sharing is a mechanism that allows 
restricted resources (e.g., fonts) on a web page to be requested from 
another domain outside the domain from which the first resource 
was served. A web page may freely embed cross-origin images, style 
sheets, scripts, iframes, and videos.

	 10.	 Now you can run the following command to run 

the server (if you’re on Windows, run this in bash 

mode):

ipfs daemon

The output will look like Listing 6-11.

Listing 6-11.  IPFS daemon command output

$ ipfs daemon

Initializing daemon...

Swarm listening on /ip4/10.0.75.1/tcp/4001

Swarm listening on /ip4/127.0.0.1/tcp/4001

Swarm listening on /ip4/169.254.164.245/tcp/4001

Swarm listening on /ip4/169.254.170.245/tcp/4001

Swarm listening on /ip4/169.254.189.121/tcp/4001

Swarm listening on /ip4/169.254.230.188/tcp/4001

Swarm listening on /ip4/172.18.160.1/tcp/4001

Swarm listening on /ip4/192.168.1.6/tcp/4001

Swarm listening on /ip4/192.168.51.129/tcp/4001

Chapter 6  Advanced Programming in Oraclize and IPFS, and Best Practices



170

Swarm listening on /ip6/::1/tcp/4001

Swarm listening on /p2p-circuit/ipfs/

QmPGx16WcXGWp2bTgusV5xsDgRn83XoHfbN1M7Zq3eCBYv

Swarm announcing /ip4/10.0.75.1/tcp/4001

Swarm announcing /ip4/127.0.0.1/tcp/4001

Swarm announcing /ip4/169.254.164.245/tcp/4001

Swarm announcing /ip4/169.254.170.245/tcp/4001

Swarm announcing /ip4/169.254.189.121/tcp/4001

Swarm announcing /ip4/169.254.230.188/tcp/4001

Swarm announcing /ip4/172.18.160.1/tcp/4001

Swarm announcing /ip4/192.168.1.6/tcp/4001

Swarm announcing /ip4/192.168.51.129/tcp/4001

Swarm announcing /ip6/::1/tcp/4001

API server listening on /ip4/127.0.0.1/tcp/5001

Gateway (readonly) server listening on /ip4/127.0.0.1/tcp/8080

Daemon is ready

	 11.	 Now run the following command to find all the 

peers that will share the contents you are uploading 

to IPFS storage:

ipfs swarm peers

The output will look like Listing 6-12.

Listing 6-12.  IPFS swarm peers list on console output

$ ipfs swarm peers

/ip4/100.34.210.63/tcp/14655/ipfs/

QmPRa5sovWPGhSDuEGU2cgfws5ra91bD89xTWmArJxickp

/ip4/100.38.242.117/tcp/24885/ipfs/

QmfGpAZPq1br1G6Q9KcLNqGKLnRjjmXvc6BD5yFfRVQv2y

Chapter 6  Advanced Programming in Oraclize and IPFS, and Best Practices



171

	 12.	 Now create a folder and add an image called E.jpeg 

to it. Go to that folder and execute the following 

command:

ipfs add -r .

The output will look like Listing 6-13.

Listing 6-13.  IPFS command to add files console output

$ ipfs add -r .

added QmbFDRLYyZaaTv3EJmz2QGtUFpvDT9rM7xPQrQkjUuX4qc images/E.

jpeg

added QmUFVahZy2eLbyVqjxK47aoSCDW1MGzoCig5VA4z3sTMAD images

Now publish this file through the following 

command with the hash value shown earlier:

ipfs name publish 

QmUFVahZy2eLbyVqjxK47aoSCDW1MGzoCig5VA4z3sTMAD

The output will look like Listing 6-14.

Listing 6-14.  IPFS command to publish file console output

$ ipfs name publish 

QmUFVahZy2eLbyVqjxK47aoSCDW1MGzoCig5VA4z3sTMAD

Published to QmPGx16WcXGWp2bTgusV5xsDgRn83XoHfbN1M7Zq3eCBYv: /

ipfs/QmUFVahZy2eLbyVqjxK47aoSCDW1MGzoCig5VA4z3sTMAD

Now you can surf this image on the IPFS web site 

using this URL: https://gateway.ipfs.io/ipfs/

QmUFVahZy2eLbyVqjxK47aoSCDW1MGzoCig5VA4z3s 

TMAD. As shown in Figure 6-10, this contains the 

hash value returned by IPFS. This URL can be stored 

on Ethereum nodes as a string and accessed per 

your needs.

Chapter 6  Advanced Programming in Oraclize and IPFS, and Best Practices

https://gateway.ipfs.io/ipfs/QmUFVahZy2eLbyVqjxK47aoSCDW1MGzoCig5VA4z3sTMAD
https://gateway.ipfs.io/ipfs/QmUFVahZy2eLbyVqjxK47aoSCDW1MGzoCig5VA4z3sTMAD
https://gateway.ipfs.io/ipfs/QmUFVahZy2eLbyVqjxK47aoSCDW1MGzoCig5VA4z3sTMAD


172

�IPNS
IPNS is the equivalent of DNS for IPFS. The files on IPFS can always be 

retrieved through a hash; however, if you forget the hash, you can access 

it through the name provided by IPNS. Also, if you make some changes 

to your file already saved to IPFS, then any retrieval from IPFS will point 

to the original version of the file. IPFS uses hashes that point to a specific 

version of the file like a committed hash in Git. That’s why IPNS is 

needed. Adding a file to IPNS will return a peer ID, and in the future any 

reference to the peer ID will always return the latest version. The peer 

ID will not change with different versions of the file. You can visit this 

web site to learn more about how to use IPNS for storing files on IPFS: 

https://medium.com/coinmonks/how-to-add-site-to-ipfs-and-ipns-

f121b4cfc8ee.

Figure 6-10.  File added to IPFS storage

Chapter 6  Advanced Programming in Oraclize and IPFS, and Best Practices

https://medium.com/coinmonks/how-to-add-site-to-ipfs-and-ipns-f121b4cfc8ee
https://medium.com/coinmonks/how-to-add-site-to-ipfs-and-ipns-f121b4cfc8ee


173

�Ethereum Best Practices
Many business leaders have reported that even when they developed 

a best-of-class blockchain solution in a particular business vertical 

following all the best practices mentioned in this chapter, still they 

found no buyers. They note that no client would agree to transform their 

existing core bread-and-butter systems to a blockchain Dapp overnight. 

Rather, I advise you to start with a small, noncrucial area of your business 

or even conceptualize a new use case. Specifically, here are some best-

practice steps:

	 1.	 Study the working model of your existing clients.

	 2.	 Brainstorm and find out use cases that are small, are 

sellable, and yet would add value to customer.

	 3.	 Choose the ecosystem carefully after considering 

the cost of the cryptocurrency such as fuel, licenses, 

development, cloud options, and so on.

	 4.	 Develop and write enough unit testing to cover all 

scenarios.

	 5.	 Run on the test framework. Do functional testing.

	 6.	 Involve the client throughout your blockchain 

journey and demonstration.

	 7.	 Implement in production.

	 8.	 If possible, consider the cloud to cut down on the 

costs.

The previous suggestions are pretty generic and are applicable to 

almost any system. Let’s go step-by-step to discuss best practices that you 

should follow in the blockchain journey.

Chapter 6  Advanced Programming in Oraclize and IPFS, and Best Practices



174

�Enterprise Smart Contracts
Most smart contracts are deployed in a public network and they 

communicate with the external world where anyone can attack your 

contract and manipulate it if the transactions in the code are not handled 

with caution. Also, working yet insufficient code may end up losing a lot 

of your money from your wallet. At the same time, any bug in the existing 

code could prove fatal for your business as well as for the client contracts 

invoking your code if not paid proper, early attention. Some of the 

vulnerabilities are discussed in the following sections.

�Version
The first line in the Solidity file (pragma solidity ^0.4.0;) signifies 

the compiler version. If you write ^0.4.0, it refers to the latest version of 

version 0.4.x series. However, it’s advisable to set the version to pragma 

solidity 0.4.4; to minimize any compilation issues that may incur if you 

keep the minor versions open. Also, many of the previous issues have been 

sorted out in version 0.4, and hence it’s a good idea to use this version or 

later. Also, before adopting a particular version, it’s a good idea to read 

about all the new updates as well as the limitations and known bugs of that 

release and handle them in your code accordingly.

�Naming Conventions
The events and functions should be named properly so that they clearly 

indicate their purpose.

It’s a good practice to have an event’s name start with Event or Log, as 

in event EventMoneyTransfer(), event LogMoneyTransfer(), and so on.

Similarly, while calling external services, name the contract and 

functions accordingly because they are the riskiest part of the code and 

should be marked through naming conventions accordingly. The name 

should start with UnTrusted or External and so on.

Chapter 6  Advanced Programming in Oraclize and IPFS, and Best Practices



175

�Visibility Call
Use the proper visibility for functions and variables in your code, either 

external, public, private, or internal. Unless required, use the minimum 

visibilities to safeguard your code from external attacks.

�Delegate Call
With a delegate call, a contract can invoke another contract at runtime and 

change the values of the public variables of the contract invoked. This is 

another reason why you must use public and external visibility only when 

required. Also, all variables at the contract level should have private or 

internal visibility.

�Simplicity and Modularity
It’s always advisable to keep your contract simple and modular. It’s good 

to keep the code modular; in other words, different functionalities should 

be kept in a separate contract file so that it can be updated independently 

without impacting the whole code. Also, modularity will minimize 

duplication and improve reusability. Especially the data part should be 

kept in a separate file because it can change more frequently than the 

business logic in some business verticals. Also, use libraries and tools for 

functionalities that are already available rather than coding them yourself.

�Overflow and Underflow
This is a common pitfall that can lead to big issues if not handled properly. 

You know that all integer and byte values have minimum and maximum 

values. If you do not have a check in the code, then the value may surpass 

the boundaries. OpenZeppelin’s SafeMath library (https://github.com/

OpenZeppelin/openzeppelin-solidity/blob/master/contracts/math/

SafeMath.sol) can help you here to handle this issue.

Chapter 6  Advanced Programming in Oraclize and IPFS, and Best Practices

https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/math/SafeMath.sol
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/math/SafeMath.sol
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/math/SafeMath.sol


176

�External Calls
You need to be extra careful during external calls because they can 

involve encountering security risks, losing gas, and throwing errors. 

Choose carefully between the send(), transfer(), and call.value() 

functions and understand their pros and cons in detail. The functions 

send() and transfer() prevent reentrancy; however, they are 

incompatible with any contract whose fallback function requires more 

than 2,300 gas.

�Race Conditions
External calls are always risky because they can control your own smart 

contract by manipulating data that the function was not expecting. 

Some of the related issues are reentrancy, timestamp dependency, and 

transaction ordering. Let’s discuss them one by one.

�Reentrancy
A computer program or function is reentrant if it can be invoked by 

multiple users at the same time sharing a common memory. In an 

Ethereum network, all transactions should be atomic in nature. In the 

case of errors or exceptions, the whole thing should be rolled back safely, 

and the gas should be restored to owner. However, reentrancy still is a 

danger because when you call an external contract on which you have 

no control, that contract may call your contract and manipulate the 

data before your function has finished running. This may lead to infinite 

looping at times.

Also, even in your own contract, the functions and variables  

should be of minimum visibility and should be initialized at the 

beginning of functions to minimize race conditions. Consider the  

code in Listing 6-15.

Chapter 6  Advanced Programming in Oraclize and IPFS, and Best Practices



177

Listing 6-15.  Risky code

// Bad

mapping (address => uint) private userAmount;

function withdrawAmount() public {

uint amountToWithdraw = userAmount[msg.sender];

if (!(msg.sender.call.value(amountToWithdraw)())) { throw; }

        �// At this point, the function withdrawAmount() is 

called again

        userAmount[msg.sender] = 0;

}

If the if function in Listing 6-15 is called multiple times in quick 

succession, then the second call may withdraw the balance over and over 

again before the first call finishes.

As shown in Listing 6-16, it’s a good idea to update the value early in 

the program. Also, use send() instead of call.value() to prevent any 

external code from being executed.

Listing 6-16.  Good practice to update value early in program

// Good

mapping (address => uint) private userAmount;

function withdrawAmount() public {

        uint amountToWithdraw = userAmount[msg.sender];

        userAmount[msg.sender] = 0;

        �if (!(msg.sender.call.value(amountToWithdraw)())) { 

throw; }

        �// At this point, the caller's code is executed, and 

can call withdrawAmount() again

}

But do not worry because standard IDEs such as Remix will give you a 

warning for reentrancy, and you have to fix it during development.

Chapter 6  Advanced Programming in Oraclize and IPFS, and Best Practices



178

�Timestamp Dependence
In a public Ethereum blockchain network, the timestamp can be 

manipulated by the miner and hence should not be used for critical 

components of the contract. Especially for timestamp-based seed 

generators for gaming software, the code can be manipulated to great 

extent by miner. Be careful in this area.

�Transaction Ordering
A transaction ordering attack is a type of race condition attack where 

the miner manipulates the price of the transaction by reordering the 

transactions and the order of mining. As a result, the actual price gets 

updated at runtime while processing it. So, the transaction owner ends up 

paying a different amount than expected.

�Token Standards
There is no standard or best practice that is final for Solidity as the entire 

ecosystem has yet to mature. However, it’s a good idea to adhere to the EIP 

tokens such as ECR20 that are followed by developers in this field. It gives 

a common language of communication between contracts across different 

parties.

�Unit Testing
Writing unit tests may seem like a lot of work; however, it will save you 

from bigger issues that could be discovered much later. A serious bug in 

production could prove much more expensive for business than to find 

them early in the code and fix them well ahead of going live. Hence, all 

possible positive, negative, and boundary conditions should be covered by 

Chapter 6  Advanced Programming in Oraclize and IPFS, and Best Practices



179

using unit testing. Also, use a standard Solidity code coverage tool such as 

SolCover or Solidity-coverage (https://github.com/sc-forks/solidity-

coverage) and always strive for a higher percentage of coverage of each 

piece of code every time you add or update.

�Smart Contract Auditing
A good amount of auditing and peer reviews can save a lot of issues 

that may incur over time. Establish a good coding standard for your 

development team, and review the overall architecture of the contract 

and safe usage of third-party smart contracts early in the project to ensure 

the contract is structured in a way that will not result in current or future 

issues. Use automated tools, purposefully designed to test the security of 

the contract. Data flow and control flow should also be analyzed to identify 

vulnerabilities.

�Security Tools
We already discussed SolCover for unit testing coverage. In addition, 

you can use the Oyente analysis tool for finding vulnerabilities in a smart 

contract. Also, the Solgraph tool can generate a DOT graph for you to 

indicate the flow of the Solidity smart contract and potential security 

vulnerabilities in it.

Chapter 6  Advanced Programming in Oraclize and IPFS, and Best Practices

https://github.com/sc-forks/solidity-coverage
https://github.com/sc-forks/solidity-coverage


181© Debajani Mohanty 2018
D. Mohanty, Ethereum for Architects and Developers,  
https://doi.org/10.1007/978-1-4842-4075-5_7

CHAPTER 7

Frameworks: Truffle 
and Embark

“As society becomes more and more complex, cheating will in 
many ways become progressively easier and easier to do and 
harder to police or even understand.”

—Vitalik Buterin

So far we have discussed the Ethereum architecture, Solidity 

programming, and the Ethereum client, including setting it up and 

compiling, running, and debugging Dapps. That’s a lot of work, isn’t it? In 

this chapter, let’s discuss two leading frameworks, Truffle and Embark, that 

will provide a set of tools and boilerplate code for scaffolding Dapps for 

Ethereum. The frameworks will do much of the work themselves and leave 

you with only a few tasks.

�Truffle
Truffle claims to be a “world-class development environment, testing 

framework, and asset pipeline for Ethereum, aiming to make life as an 

Ethereum developer easier.”



182

�Install Truffle
Truffle is a node package and can be set up in seconds by running the node 

command on Windows, Linux, or macOS.

npm install –g truffle

By adding -g, you are installing Truffle globally. To test a contract 

created using Truffle, you will need to do it locally by running the 

ganache-cli command or through an Ethereum client. For now let’s use 

ganache-cli.

�Create a Truffle Project
Creating a Truffle project is painless and super quick. Create a folder called 

myTruffle, go to the folder, and run the command shown here:

truffle init

Figure 7-1 shows the result.

Figure 7-1.  Running truffle init

Chapter 7  Frameworks: Truffle and Embark



183

In a few seconds, this will create a template project for you, as shown 

in Figure 7-2.

•	 The contracts folder is where the smart contracts 

written in Solidity are stored.

•	 The migrations folder contains scripts to manage the 

deployment of contracts onto the Ethereum network.

•	 The test folder is where you write all your unit tests to 

test your smart contracts.

Figure 7-2.  Truffle project structure

truffle-config.js is also created as part of the truffle init 

command. Now you can compile the default project and then test it 

through the following commands. You can gradually update this default 

project and smart contract as per your needs.

truffle compile

truffle test

truffle deploy

Note that in Windows you may encounter an issue. Hence, add a .cmd 

extension to the truffle command, as shown here:

truffle.cmd compile

Chapter 7  Frameworks: Truffle and Embark



184

Figure 7-3 shows the result of the truffle.cmd compile command.

The following command will unit test the MyContract.sol contract for 

some positive and negative scenarios, as shown in Figure 7-4:

truffle.cmd test

The following command will deploy the MyContract.sol contract, as 

shown in Figure 7-5:

truffle.cmd deploy

Figure 7-3.  truffle compile

Figure 7-4.  truffle test

Chapter 7  Frameworks: Truffle and Embark



185

Provided MetaMask is already installed on your Chrome browser and 

ganache-cli is already running in the background, you can check the 

Truffle Dapp in your browser by visiting http://localhost:8080.

Now that you know how simple it is, why don’t you start coding with 

Truffle on your own?

If you’re still not sure, try the Pet Shop example on the Truffle web site, 

available at https://truffleframework.com/tutorials/pet-shop.

�Unit Testing
If you want to write good unit testing, you can check out these two web 

sites:

https://truffleframework.com/tutorials/solidity-unit-tests

https://truffleframework.com/docs/getting_started/testing

Figure 7-5.  truffle deploy

Chapter 7  Frameworks: Truffle and Embark

https://truffleframework.com/tutorials/pet-shop


186

Now let’s try something on your own. Listing 7-1 shows a smart 

contract named MyContract.Sol.

Listing 7-1.  MyContract.Sol

pragma solidity ^0.4.0;

contract MyContract {

    uint private amount;

    function MyContract()

    {

        amount = 101;

    }

    function updateAmount(uint newAmount)

        public

        returns (bool success)

    {

     �require(newAmount > 100); /* Contract stores numbers 

greater than 100. */

     amount = newAmount;

     return true;

    }

    function getAmount()

        public

        returns (uint)

     {

        return amount;

      }

}

Save the MyContract.Sol code to the contracts folder of the 

myTruffle project you created earlier.

Chapter 7  Frameworks: Truffle and Embark



187

Now within the test folder, paste MyContractTest.Sol as shown in 

Listing 7-2. This unit testing code checks the MyContract.Sol file for an 

initial value, which is 101, and for two other values, 97 and 122. For value 

97, the contract should throw an exception because the require condition 

is used.

Listing 7-2.  MyContractTest.Sol

pragma solidity ^0.4.0;

import "truffle/Assert.sol";

import "truffle/DeployedAddresses.sol";

import "../contracts/MyContract.sol";

contract MyContractTest {

function testInitialStoredValue() {

            MyContract mycontract = new MyContract();

            uint expected = 101;

            �Assert.equal(mycontract.getAmount(), expected, 

"Initial amount set should be 101.");

    }

function testTheThrow() {

            MyContract mycontract = new MyContract();

            �ThrowProxy throwproxy = new ThrowProxy(address(myco

ntract));

            MyContract(address(throwproxy)).updateAmount(97);

            bool r = throwproxy.execute.gas(200000)();

            �Assert.isFalse(r, "Should be false because is 

should throw!");

    }

Chapter 7  Frameworks: Truffle and Embark



188

function testNoThrow() {

            MyContract mycontract = new MyContract();

            �ThrowProxy throwproxy = new ThrowProxy(address(myco

ntract));

            MyContract(address(throwproxy)).updateAmount(122);

            bool r = throwproxy.execute.gas(200000)();

            Assert.isTrue(r, "Should be true!");

    }

}

// Proxy contract for testing throws

contract ThrowProxy {

  address public target;

  bytes data;

  function ThrowProxy(address _target) {

    target = _target;

  }

  //prime the data using the fallback function.

  function() {

    data = msg.data;

  }

  function execute() returns (bool) {

    return target.call(data);

  }

}

Make sure ganache-cli is running in the background. Now run the 

following commands again:

truffle compile

Chapter 7  Frameworks: Truffle and Embark



189

For Windows, use truffle.cmd compile instead. If everything goes 

well, it won’t show any output.

truffle test

Similarly use "truffle.cmd test" for windows.

You can see whether the tests pass or fail on the command line, as 

shown in Figure 7-6 and Listing 7-3.

Listing 7-3.  Truffle unit testing

F:\ethereum\myTruffle>truffle.cmd test

Using network 'development'.

Compiling .\contracts\ConvertLib.sol...

Compiling .\contracts\MetaCoin.sol...

Compiling .\contracts\MyContract.sol...

Compiling .\test\MyContractTest.sol...

Compiling .\test\TestMetacoin.sol...

Compiling .\test\TestMyContract.sol...

Compiling truffle/Assert.sol...

Compiling truffle/DeployedAddresses.sol...

Figure 7-6.  Truffle unit testing

Chapter 7  Frameworks: Truffle and Embark



190

�OpenZeppelin: Securing Solidity Code
Smart contracts deployed in public networks are susceptible to 

loads of risk because money is involved. Zeppelin, which started as a 

smart contract auditing service, has added a layer of security for your 

Solidity smart contracts deployed on public Ethereum blockchains. 

Its product OpenZeppelin claims to be a “battle-tested framework of 

reusable smart contracts for Ethereum and other EVM and eWASM 

blockchains.”

OpenZeppelin integrates with Truffle. Especially when your code 

is complex and involves loops and the possibility of failures while 

calling an external service, OpenZepplin is a good option to overcome 

vulnerabilities. You can try it yourself; learn more here:

https://truffleframework.com/tutorials/robust-smart-contracts-

with-openzeppelin

�Truffle Road Map
Here is an interesting road map of Truffle in the near future:

•	 Truffle 4.0 will come with a debugger, an improved 

development and testing experience, and more.

•	 Drizzle is a front-end framework for React and Angular 

that will easily connect to Truffle-based projects.

•	 Project Hotcakes is a full-stack suite for web 

applications.

•	 Live is a browser-based, interactive Truffle IDE. 

Chapter 7  Frameworks: Truffle and Embark



191

�Embark
Though Truffle claims to be the “most popular development framework 

for Ethereum with a mission to make your life a whole lot easier,” I 

found Embark equally good. In fact, many features that I was looking 

for elsewhere on the Internet appear in Embark. The integration with 

IPFS is well explained, and the unit testing is just superb. Now it’s time 

to try it.

�Install Embark
Let’s install and run the sample project from the Embark web site. Follow 

these steps:

	 1.	 Install Embark.

npm -g install embark

	 2.	 If you already have the previous version embark-

framework, then uninstall it and install the new one.

npm uninstall -g embark-framework

then

npm install -g embark

�Create an Embark Project
Now run the following on the command line, as shown in Figure 7-7 and 

Listing 7-4, and it will create a project template called embark_demo for you:

embark demo

Chapter 7  Frameworks: Truffle and Embark



192

Listing 7-4.  Creating embark_demo

F:\ethereum\embark>embark demo

Initializing Embark Template....

Installing packages...

Init complete

App ready at embark_demo

-------------------

Next steps:

-> cd embark_demo

-> embark blockchain or embark simulator

   open another console in the same directory and run

-> embark run

For more info go to http://embark.status.im

Go to that folder and run the following command to run ganache-cli, 

as shown in Figure 7-8 and Listing 7-5:

embark simulator

Figure 7-7.  Creating embark_demo

Chapter 7  Frameworks: Truffle and Embark



193

Listing 7-5.  Embark Simulator

F:\ethereum\embark\embark_demo>embark simulator

Ganache CLI v6.1.8 (ganache-core: 2.2.1)

Available Accounts

==================

(0) 0xb8d851486d1c953e31a44374aca11151d49b8bb3 (~100 ETH)

(1) 0xf6d5c6d500cac10ee7e6efb5c1b479cfb789950a (~100 ETH)

Figure 7-8.  Embark simulator

Chapter 7  Frameworks: Truffle and Embark



194

(2) 0xf09324e7a1e2821c2f7a4a47675f9cf0b1a5eb7f (~100 ETH)

(3) 0xfbaf82a227dcebd2f9334496658801f63299ba24 (~100 ETH)

You can also run the following to run a real node:

embark blockChain

From another window from the same folder, run the following, and you 

will see the console, as shown in Figure 7-9 and Listing 7-6:

embark run

Figure 7-9.  Running embark run

Listing 7-6.  Running embark run

deploying contracts                                │
│ deploying SimpleStorage with 134157 gas           │
│ �SimpleStorage deployed at 

0x04D45b51fe4f00b4478F8b0719Fa779f14c8A194        │
│ finished deploying contracts                      │
│ ready to watch file changes                       │
│ webserver available at http://localhost:8000

Chapter 7  Frameworks: Truffle and Embark



195

The server is now running over port 8000 on local. Let’s open http://

localhost:8000 in the browser and check the web console, as shown in 

Figure 7-10.

Figure 7-10.  Embark running on local

�Unit Testing
Note that the contracts are located in the contracts folder and the unit 

tests are in the test folder. The default project already comes with a 

contract called simple_storage.sol in the contracts folder.

Also note that the unit tests are written in JavaScript here, which is 

great news for JavaScript developers. Open the simple_storage_spec.js 

file in the test folder that comes by default and add more contracts as well 

as tests to learn more.

Chapter 7  Frameworks: Truffle and Embark



197© Debajani Mohanty 2018
D. Mohanty, Ethereum for Architects and Developers,  
https://doi.org/10.1007/978-1-4842-4075-5_8

CHAPTER 8

Testing Strategy 
for Ethereum Dapps

“Blockchain software companies may end up being  
amalgamated into existing software giants, at which point 
blockchain patents will just become part of the existing  
patent war.”

—Vitalik Buterin

Nowadays cutting-edge technologies such as machine learning, 

analytics, artificial intelligence, the cloud, and the blockchain are 

entering the marketplace at an unprecedented speed. The blockchain 

is one of the forerunners among them and is considered to be the next 

tech disruptor. According to a survey by the World Economic Forum, 

10 percent of the global GDP will be relying on blockchain-based 

technology by 2027.

So far we have discussed the architecture, frameworks, development, 

unit testing, and deployment of Ethereum Dapps. I wonder why not many 

documents are available on the Internet about the testing strategy for 

this emerging technology. In fact, testing an Ethereum Dapp is not much 

different from any other application you would test. The same logic and 

critical thinking you already use for testing nonblockchain projects still 

apply. However, you should have a testing strategy that considers the 

functional and nonfunctional aspects of the testing.



198

�Blockchains and Testing
The testing of blockchain Dapps can be divided into two categories.

•	 Testing blockchains in a public network

•	 Testing blockchains in a private network

In both cases, the blockchain limits the role of the middleman because 

parties can safely share and update data in a distributed ledger.

�Functional and Nonfunctional Testing
In a public blockchain, the miners are already doing half of the testing 

job for you. In other words, they check and validate data in the entire 

blockchain every time a new block is added. In a private blockchain, the 

chances of forgery are minor. So, the functional testing of blockchain-

based Dapps in a way is different from testing an application running on a 

centralized database.

However, when it comes to nonfunctional testing, blockchain 

applications will demand the standard testing and validations, including 

performance tests, integration tests, security tests, and so on. In addition, 

there are a few special kinds of testing that are to be used solely for 

blockchain Dapps. Let’s explore them.

�Standard Functional Testing
Just like any other application, a blockchain-based decentralized 

application can be tested for all its functionalities; this includes 

unit testing, integration testing, and UI testing. This part is rather 

straightforward.

Chapter 8  Testing Strategy for Ethereum Dapps



199

�Unit Tests

Before a Dapp even reaches the testers, it is advisable that the developers 

follow best practices while coding and write enough unit tests to cover all 

scenarios in a smart contract. This is something I have already covered in 

previous chapters.

Unit tests are a type of white-box testing; they save a lot of time by 

analyzing functionality at the lowest levels and in the smallest chunks 

of functionality. The majority of bugs can be found early during the 

development phase and will not reach the user acceptance testing phase 

or production, avoiding potential bigger investments to fix the issue.

�Integration Testing

A blockchain may consist of many different smart contracts deployed in 

public and private networks and even may communicate with databases 

as well as external systems such as IPFS or Oraclize. Hence, integration 

testing is essential to check the end-to-end working of the entire system in 

positive and negative scenarios.

�User Interface and Mobile Apps Testing

User interface (UI) testing for Dapps is similar to any other UI testing that 

is done for traditional web applications on desktops and mobile devices 

with different browsers. Besides the cosmetic changes, the UI should be 

tested for performance and scalability and whether it’s able to cope well 

with Dapps running in the background.

�Standard Nonfunctional Testing
Nonfunctional testing in a blockchain is a hot topic for discussion as the 

industry is still not mature in this area and different blockchain platform 

companies are working on tools and benchmarks.

Chapter 8  Testing Strategy for Ethereum Dapps



200

�Security Testing

Because the blockchain boasts of being a secure immutable ledger, 

security testing is of special importance to blockchain Dapps. Using the 

right kind of hashing and identifying whether there is any piece in the 

entire application that is vulnerable to malicious attacks are the major 

responsibilities of testers; this is in addition to regular authentication, 

authorization, role-based testing, data confidentiality, and data integrity.

�Load, Performance, and Stress Testing

We all know that public blockchain Dapps such as Bitcoin and Ethereum 

are extremely slow in comparison to their decentralized siblings. That 

puts additional burden on the tester to perform enough load testing, 

performance testing, and stress testing to identify any vulnerabilities, 

performance bottlenecks, network latencies, and so on. Setting up metrics 

for the Dapps as an indicator is desirable to evaluate to what extent 

the system can be loaded and still serve without any slowdown before 

complete disaster. Such data will help developers further fine-tune the 

coding, configuration, and so on. This will also set an expectation for the 

business for its contractual agreements before the Dapp goes to production.

�Specialized Testing
So far the tests discussed are more or less similar in most software 

applications. Now let’s discuss some of the tests specific to the Ethereum 

ecosystem.

�Smart Contract Testing

At the core of the Ethereum ecosystem, run the smart contracts 

that deal with both the business logic and the data associated with 

it. Testing smart contracts in all positive and negative scenarios is 

Chapter 8  Testing Strategy for Ethereum Dapps



201

desirable for the tester. Visit this web site to learn more: https://

ethereum.gitbooks.io/frontier-guide/content/testing_

contracts_and_transactions.html.

�Node Testing

Testing the block size, chain size, data transfer, and encryption of data is 

vital for blockchain-based Dapps. It is also a good practice to automate the 

testing of the entire ecosystem.

�Network Simulation Testing

Study the network behavior by simulating the way smart contracts will 

operate once in production and figure out the answers to questions 

such as these: how will the contracts interact with each other, how much 

gas will be consumed, and can that be reduced through optimization 

techniques?

�Token Testing

For token generation contracts, run your entire contract from beginning 

to end to validate every aspect of the contract. This “end-to-end” testing 

ensures complete confidence in the launch of your contract.

Soon more and more blockchain Dapp projects will invade the 

market, and there will be a huge need to build expertise to test such 

applications. Since the blockchain is a new technology, how well and 

how comprehensively you can test will play a key role in the success of 

organizations. Like any other previous booms in the IT industry, early 

adoption will greatly benefit software firms.

Chapter 8  Testing Strategy for Ethereum Dapps

https://ethereum.gitbooks.io/frontier-guide/content/testing_contracts_and_transactions.html
https://ethereum.gitbooks.io/frontier-guide/content/testing_contracts_and_transactions.html
https://ethereum.gitbooks.io/frontier-guide/content/testing_contracts_and_transactions.html


203© Debajani Mohanty 2018
D. Mohanty, Ethereum for Architects and Developers,  
https://doi.org/10.1007/978-1-4842-4075-5_9

CHAPTER 9

Ethereum Use Cases

“The technical side of Ethereum’s efficacy is 100 percent an 
engineering exercise.”

—Vitalik Buterin

In previous chapters, you learned about the Ethereum architecture, 

Solidity programming, and how to debug and deploy using different local 

and test setups. So far so good; but is that all enough to make you a master 

in the Ethereum blockchain? The main challenge that the blockchain 

market faces today is a lack of knowledge about where this technology can 

be best applied. Business leaders across verticals are struggling to find use 

cases that would be a good fit for blockchain implementation, and loads 

of arguments are taking place in this area. As a blockchain expert, it’s your 

job to dream, innovate, come up with ideas, and advise businesses about 

where this technology can bring maximum benefits.

Ethereum today is the most widely used blockchain framework on 

the market, and many applications are running in production using this 

technology. Though Ethereum is not suitable for all scenarios, in this 

chapter I discuss some real-life use cases in different business verticals and 

the big players that have already started working in some. Going through 

these use cases, you will see how and where Ethereum can be best utilized 

for business value creation. Use cases are described, and in one scenario 

some basic sample code is provided so that you can use it as a template 

and amend it as per your business needs to go to production sooner.



204

�Initial Coin Offering
An initial coin offering (ICO) is the process through which an organization 

raises funds from potential investors in the market not through regular 

fiat currency but a standard established cryptocurrency such as Bitcoin or 

Ethereum. The organization further creates its own new currency, converts 

the accumulated cryptowealth into the new currency, and assigns that to 

the investors. The new currency can then be listed on a cryptocurrency 

exchange, and its price may rise or fall depending upon the success or 

failure of the venture.

The concept of conducting an initial coin offering through 

crowdfunding is nothing new. People have invested in IPOs, which work 

similarly. Why suddenly is this the hottest topic of discussion worldwide? 

Perhaps because after Bitcoin, when the cryptocurrency market went 

through a boom and many investors accumulated enough cryptos, they 

realized that the currency could not be as easily invested in the market as 

fiat money. So, ICO was created as a mechanism to invest the currency 

further in the existing market.

�ICO Road Map
Figure 9-1 shows the different phases of an ICO so you can comprehend 

the complete life cycle.

Chapter 9  Ethereum Use Cases



205

Figure 9-1.  ICO road map

�Idea Conceptualization

The founding member has to come up with an idea that has good potential 

to attract investment in the market.

�Organization Formation and Structuring

Team members have to come together to form the organization. The 

product that is already conceptualized has to be validated by a market 

survey and brainstorming.

�Announcement of the ICO

The team or the company declares its desire to pursue a project or service 

by means of an ICO. The interested parties soon start researching the 

space for further developments.

Chapter 9  Ethereum Use Cases



206

�Creation of a White Paper

A well-explained white paper is crucial for the success of every single ICO 

project. In about 10 to 15 pages, the white paper explains the problem 

statement, the business plan as a solution, why it is expected to be a 

profitable business, the team members associated with the business with 

their expertise and industry exposure, technical functionality, crowdsale 

details, legal issues, and timeline. The white paper should be easy to read 

and simple to understand.

�Accumulate Mentors and Experts

The cryptocurrency industry is relatively new, but professionals from 

various fields can lend their knowledge and experience to ICO teams, 

guiding them through the process and helping them resolve issues and 

figure out how to best pursue their goals.

�Advertising Campaign

The project development team uses social media, web sites, and threads to 

promote their ICO. There are several platforms such as Waves, ICONOMI, 

TokenMarket, and State of Dapps for the sole purpose of promoting 

and advertising new ICOs. This is done to draw attention to the ICO, 

maximizing the amount of money that can be gathered.

�Token Creation

Finally, the crowdsale event is held, where the new team or organization 

accepts standard cryptocurrencies such as Bitcoin and ether from 

investors and assigns them the newly created currency issued by the 

organization. It’s is somewhat similar to an IPO; the difference is that 

instead of stocks, the organization distributes new currencies or tokens. 

The price and value of the token are initially set by the company. However, 

the value will gradually go up or down depending upon the business 

growth of the new venture.

Chapter 9  Ethereum Use Cases



207

�Listing of New Currency on a Cryptocurrency 
Exchange

After the crowdsale event is complete, the team tries to get the token 

listed on as many big cryptocurrency exchanges as possible. Yet some 

prefer to restrict the ICO to a single exchange. This is the place where 

contributors to the ICO can then sell, buy more, or exchange their 

existing new tokens. The market value of the tokens fluctuates as per 

their demand and supply in the crypto-exchange market. Marketing, 

press releases and news, and so on, also contribute to the price just like a 

regular stock in market.

�Using the Tokens

The tokens can be used in two ways.

•	 Asset-backed security: All tokens will be given back to 

the investors who will keep them secure for monetary 

growth. As the selling organization starts making profits, 

the value of the tokens will increase accordingly.

•	 Utility token: The investors will instead invest the 

tokens in the existing business ecosystem. The tokens 

will be used to buy goods and services in some kind of 

micro-economy.

�Product Development

The project team uses funds that it acquired during the ICO stage in 

order to push along development, recruit new team members, advertise, 

and more. The more resources that an ICO gathers, the faster the project 

development cycle will move along.

Chapter 9  Ethereum Use Cases



208

The post-ICO phase is all about delivering as much value as possible 

for customers and token holders. Developing the product and providing 

clear communication to the public are key parts of that.

�Ethereum Request for Comment Standards
Before Ethereum request for comment (ERC) standards, people used to 

write contracts in Solidity with their own defined functions to impose 

regulations and transfer cryptocurrencies to different accounts. Soon 

official protocols such as ERC were introduced for everyone to adhere to.

An ERC represents a bunch of rules for the implementation of a 

standard API for tokens within smart contracts that are mostly deployed 

on public Ethereum networks. There are quite a few ERC standards; I will 

discuss a few in the following sections.

�ERC20

ERC20 is a technical standard used for smart contracts on the 

Ethereum blockchain for implementing tokens. Here, 20 is the 

number that was assigned to this request. Proposed in 2015, by Fabian 

Vogelsteller, ERC20 defines a common list of rules and constraints that 

an Ethereum token has to implement, giving developers a standard 

pattern to program how new tokens will function within the Ethereum 

ecosystem. This token protocol has gone viral with crowdfunding 

companies working on ICO cases. As of January 2018, there were more 

than 21,000 ERC20 token contracts, with the most successful ERC20 

token sales being EOS, Bancor, Qash, and Bankex, raising more than 

$70 million each.

ERC20 is used as an interface in Solidity with six functions and two 

events. Developers worldwide have agreed to make an ECR20 token a 

minimum viable product in market.

You can refer to https://theethereum.wiki/w/index.php/ERC20_

Token_Standard to learn more.

Chapter 9  Ethereum Use Cases

https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://theethereum.wiki/w/index.php/ERC20_Token_Standard


209

�Functions

The ERC20 interface consists of the following functions. Any contract that 

implements ERC20 is bound to adhere to these coding standards.

•	 totalSupply: Gets the total token supply in circulation.

•	 balanceOf(address _owner) constant returns 

(uint256 balance): Gets the account balance of a 

specific account with address _owner.

•	 transfer(address _to, uint256 _value) returns 

(bool success): Allows a specific user to transfer their 

own tokens of _value amount to address _to.

•	 transferFrom(address _from, address _to, 

uint256 _value) returns (bool success): Allows a 

specific user to transfer _value amount of tokens from 

address _from to address _to.

•	 approve(address _spender, uint256 _value) 

returns (bool success): Allows someone designated 

as _spender to withdraw from your account, multiple 

times, up to the _value amount. If this function is 

called again, it overwrites the current allowance with 

_value.

•	 allowance(address *_owner*, address *_

spender*) constant returns (uint256 

remaining): Allows a limit on which the Ethereum 

address can manipulate another Ethereum address. 

Returns the amount that _spender is still allowed to 

withdraw from _owner.

Chapter 9  Ethereum Use Cases



210

�Events Format

The following events are triggered when relevant actions are executed:

•	 Transfer(address indexed _from, address indexed 

_to, uint256 _value): Triggers when tokens are 

transferred

•	 Approval(address indexed _owner, address 

indexed _spender, uint256 _value): Triggers 

whenever approve(address _spender, uint256 

_value) is called

�Solution

Let’s start creating a digital coin that is a token that you can use to 

exchange many tangible or intangible units such as loyalty points, IOUs, 

certificates, and so on.

Let’s first create an ERC20.sol interface, as shown in Listing 9-1, that 

the contract will implement.

Listing 9-1.  ERC20.sol Interface

pragma solidity ^0.4.0;

interface ERC20 {

    �function totalSupply() constant returns  

(uint _totalSupply);

    �function balanceOf(address _owner) constant returns  

(uint balance);

    �function transfer(address _to, uint _value) returns  

(bool success);

    �function transferFrom(address _from, address _to,  

uint _value) returns (bool success);

    �function approve(address _spender, uint _value)  

returns (bool success);

Chapter 9  Ethereum Use Cases



211

    �function allowance(address _owner, address _spender) 

constant returns (uint remaining);

    �event Transfer(address indexed _from, address indexed _to, 

uint _value);

    �event Approval(address indexed _owner, address indexed _

spender, uint _value);

}

Now let’s write the code MyFirstToken.sol that implements the 

interface, as shown in Listing 9-2.

Listing 9-2.  MyFirstToken.sol

import "browser/ERC20.sol";

contract MyFirstToken is ERC20 {

    string public constant symbol = "DMY";

    string public constant name = "My First Token";

    uint8 public constant decimals = 18;

    uint private constant __totalSupply = 1000;

    mapping (address => uint) private __balanceOf;

    �mapping (address => mapping (address => uint)) private __

allowances;

    function MyFirstToken() {

            __balanceOf[msg.sender] = __totalSupply;

    }

    function totalSupply() constant returns (uint _totalSupply) {

        _totalSupply = __totalSupply;

    }

Chapter 9  Ethereum Use Cases



212

    �function balanceOf(address _addr) constant returns (uint 

balance) {

        return __balanceOf[_addr];

    }

    �function transfer(address _to, uint _value) returns (bool 

success) {

        if (_value > 0 && _value <= balanceOf(msg.sender)) {

            __balanceOf[msg.sender] -= _value;

            __balanceOf[_to] += _value;

            return true;

        }

        return false;

    }

    �function transferFrom(address _from, address _to, uint _

value) returns (bool success) {

        if (__allowances[_from][msg.sender] > 0 &&

            _value > 0 &&

            __allowances[_from][msg.sender] >= _value &&

            __balanceOf[_from] >= _value) {

            __balanceOf[_from] -= _value;

            __balanceOf[_to] += _value;

             __allowances[_from][msg.sender] -= _value;

            return true;

        }

        return false;

    }

    �function approve(address _spender, uint _value) returns 

(bool success) {

        __allowances[msg.sender][_spender] = _value;

        return true;

    }

Chapter 9  Ethereum Use Cases



213

    �function allowance(address _owner, address _spender) 

constant returns (uint remaining) {

        return __allowances[_owner][_spender];

    }

}

The following are a few points to note:

•	 In the second line, you import the interface, in other 

words, ERC20.sol.

•	 Each token has a symbol just as BTC for Bitcoin and 

ETH for Ethereum. I have named my first coin DMY.

•	 Most cryptocurrency or tokens come up with a finite 

supply that you have to mention at the onset of the coin 

itself. In this case, it’s 1,000.

•	 They also come with decimal places like Bitcoin, the 

standard being 18.

�Deployon Mist

To deploy the contract on Mist and create a new token, follow these steps:

	 1.	 Run the Ethereum Wallet on Mist, as shown in 

Figure 9-2.

Chapter 9  Ethereum Use Cases



214

Open a Mist browser for writing a smart contract.

	 2.	 Open the Remix IDE (https://remix.ethereum.org/),  

as shown in Figure 9-3.

Figure 9-2.  Ethereum Wallet on Mist

Figure 9-3.  Remix browser

Chapter 9  Ethereum Use Cases

https://remix.ethereum.org/


215

	 3.	 Search for the ERC20 code that you have just written 

and paste it into the Remix browser.

	 4.	 Compile the code using the Remix IDE and create 

the token using the Create button.

	 5.	 You will be able see the token’s address in the 

IDE. Copy it. Go to the Mist browser and click Watch 

Token. Paste the contract address from Remix and 

assign it a name, a symbol, and decimal places. The 

token is created.

�EIP
Ethereum improvement proposals (EIPs) describe standards for smart 

contracts on the Ethereum platform. You can visit https://github.com/

ethereum/EIPs to find many EIPs in draft, accepted, final, and deferred 

states. You can also create your own EIP as per the guidelines and submit 

your proposal for acceptance.

�Top ERC Tokens That Can Replace ERC20

The ERC20 token standard suffers critical problems, which caused a loss of 

approximately $3,000,000 in December 2017. The main problem is the lack 

of an event handling mechanism of the ERC20 standard. The following are 

the most popular EIPs:

•	 ERC223: Correction of ERC20 errors. ERC223 is a 

superset of the ERC20 token standard. It is a step 

toward economic abstraction at the application/

contract level allowing the use of tokens as first-class 

value transfer assets in smart contract development. 

It is also a safer standard as it doesn’t allow token 

Chapter 9  Ethereum Use Cases

https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs


216

transfers to contracts that don’t support token receiving 

and handling. Go to this web site for more details: 

https://github.com/ethereum/EIPs/issues/223.

•	 ERC721: CryptoKitties and other collections. Find more 

at https://github.com/ethereum/EIPs/issues/721.

•	 ERC777: You can learn more about this token at 

https://github.com/ethereum/EIPs/issues/777.

•	 ERC827: New ERC20; you can learn more at  

https://github.com/ethereum/EIPs/issues/827.

•	 ERC948: Paradise for B2C Businessmen. Read the 

details at https://github.com/ethereum/EIPs/

issues/948.

•	 ERC884: White list for investors. Find more at  

https://github.com/ethereum/EIPs/pull/884.

You can find many more at this web site so you know what kind of 

standards the industry is expecting: https://eips.ethereum.org/all.

�Use the New Cryptocurrency as a Token

So, you created a new currency in MyFirstToken.sol in Listing 9-2. Next 

let’s find out how this new currency can be used as a token or medium 

of exchange of goods in a new business. I will cover a business scenario 

where the assembled tokens can be invested in a microfinance project.

�Microfinance
As per Investopedia, “Microfinance, also called micro credit, is a type of 

banking service that is provided to unemployed or low-income individuals 

or groups who otherwise have no other access to financial services.”

Chapter 9  Ethereum Use Cases

https://github.com/ethereum/EIPs/issues/223
https://github.com/ethereum/EIPs/issues/721
https://github.com/ethereum/EIPs/issues/777
https://github.com/ethereum/EIPs/issues/827
https://github.com/ethereum/EIPs/issues/948
https://github.com/ethereum/EIPs/issues/948
https://github.com/ethereum/EIPs/pull/884
https://eips.ethereum.org/all


217

The world of mortgages, loans, or any lending platform today is 

enriched with features such as credit reporting, KYC, and so on, that 

use the latest technologies such as artificial intelligence and machine 

learning mostly based on data. However, the clientele of microlending is 

entirely different. In a country like India where more than 50 percent of 

the population lives in rural areas, microfinance or micro lending has not 

been fruitful because the borrower and lenders are completely invisible to 

each other and borrowers have no proof of a bank account or even proof 

of address that can be tracked. Most of micro lending happens through 

local lenders who borrow money from the village bank and then lend it 

to people who they know in person. However, lenders are bound to keep 

interest rates high because of the large number of defaulters and the 

recovery cost.

�Solution
Nano peer-to-peer lending via online tracking through Social Security 

number (or Adhar card ID in India) could bring great benefits to farmers 

and workers of lower socio-economic segments by including them in 

financial markets, lowering interest rates, and reducing farmer suicides 

in countries like India. By keeping the entire ecosystem on a public 

blockchain, banks could track all the transactions on one big platform. 

Even insurance companies could follow this information when granting 

insurance to farmers and other borrowers, which would make recovery 

easier for lenders.

Let’s first explore the stakeholders in this space.

•	 Investors

•	 Bank

•	 Brokers

Chapter 9  Ethereum Use Cases



218

•	 Insurance company

•	 Borrowers

•	 Vendors

Investors push funds to the entire ecosystem through an ICO, which 

was discussed earlier in the chapter. Then the bank holds the right of a 

finite supply of the new currency or token that is created and universally 

agreed on by all stakeholders as a medium for exchange of goods or 

services. Now the life cycle goes as follows:

	 1.	 The bank identifies the brokers, verifies their 

documentation in the IPFS store, and assigns them a 

digital identity.

	 2.	 The brokers choose plans provided by the bank with 

a particular amount, interest rate, and time period; 

then they sign the contract.

	 3.	 The bank assigns tokens to brokers.

	 4.	 The broker further identifies potential borrowers, 

let’s say farmers, and upload their verified 

documents to IPFS.

	 5.	 The broker assigns a borrower a digital identity 

through their ID card (Social Security number or 

Adhar ID).

	 6.	 The broker assigns tokens to the borrower with an 

interest rate and a time period clause for payback.

	 7.	 The broker and borrower also connect to the 

insurance company to insure the return.

	 8.	 The borrower signs the contract and receives the 

tokens.

Chapter 9  Ethereum Use Cases



219

	 9.	 Part of these tokens go to the insurance company for 

covering the risk.

	 10.	 The borrower goes to the vendors and purchases 

goods such as tractors, seeds, or fertilizers, and pays 

in term of tokens.

	 11.	 The borrower sells his products on the market and 

gets profits in real fiat cash (in this case, buyers are 

not stakeholders).

	 12.	 The borrower can buy further tokens from the bank 

and repay the initially agreed tokens to the broker.

	 13.	 The broker returns the tokens to the bank with 

interest and gets some commission in tokens.

	 14.	 The borrower also pays the insurance company in 

tokens.

	 15.	 If the borrower is unable to return the amount, the 

insurance company pays in tokens to the broker that 

go to the bank.

In Figure 9-4 you can see the entire ecosystem and the technologies 

that you can use for this decentralized application. In addition to all this, 

you can use Whisper for peer-to-peer communication between different 

parties. Even notifications can be sent using this protocol.

You can use a private blockchain instead of a public blockchain 

if you want. But in that case the Geth setup as well as the mining part 

have to be taken care of by the owner. The decision is entirely up to the 

stakeholders and depends upon the kind of information the contracts 

deal with.

Refer to Figure 9-4 to understand the entire ecosystem.

Chapter 9  Ethereum Use Cases



220

Figure 9-4.  System diagram for microfinance Dapp on Ethereum

Now what are the different smart contracts you may have to create? 

Here are a few of them that come to mind:

•	 BankPlans.sol: A smart contract for the bank for 

creating different plans

•	 BankBroker.sol: A smart contract between the bank 

and broker

•	 Deal.sol: A smart contract between the broker, 

insurance company, and borrower

•	 Identity.sol: A smart contract for the identity of the 

all stakeholders

Chapter 9  Ethereum Use Cases



221

�Smart Contract Rules
You can divide these rules into different smart contracts as per business 

needs.

•	 The ERC20 token standard will be followed.

•	 The bank can enforce a number of plans with minimum 

and maximum amounts that can be lent to borrowers. 

Also, the minimum and maximum time periods have 

to be mentioned. Interest rates will be different for 

different types of loans.

•	 Lenders, borrowers, insurers, and vendors can be 

added by the contract creator.

•	 The lender can initiate the lending process with 

borrowers by registering them with their Adhar  

IDs/PAN card number/passport number/Social 

Security number, and so on, as a source of identity.

•	 Through the Oraclize service, you will check whether 

the identity is valid.

•	 The borrower and insurer have to accept the contract.

•	 The contract begins. The lender issues the borrower a 

few tokens.

•	 The borrower can purchase a few things from vendors 

using tokens.

However, these contracts and rules are only a few in comparison to all 

that the business needs, and a variety of business logic would be needed 

in real projects leading to many more contracts. Also, always follow the 

best practices in Chapter 6 before creating the contracts so that they are of 

production strength.

Chapter 9  Ethereum Use Cases



222

�Live Implementation
Here are few examples of how Ethereum has been used by organizations 

for microfinance:

•	 Everex utilizes the Ethereum blockchain for all its 

lending services, allowing clients full transparency into 

Everex transaction processing with settlement times 

of less than 30 seconds, low transaction costs, and 

military-grade security.

•	 BanQu is a startup seeking to build an economic identity 

platform on top of the Ethereum blockchain to help 

people achieve economic sovereignty when traditional 

financial institutions still won’t bank with them.

�Real Estate
Fraud is high in land- and property-related transactions. This is often 

because even if someone claims to be the rightful owner of a piece of land, 

that person might have been duped by another seller who sold the property 

with fake documents. Tracking the ownership of a property is crucial in 

land deals. Let’s consider this scenario where a buyer approaches a seller to 

purchase a piece of land. The buyer asks the seller to show the details of legal 

ownership of the property. Also, the buyer wants to know the historical data 

that lists the ownership of the land for the past 100 years.

�Solution
Traceability is something justly registered in the Ethereum blockchain 

storage. The beauty here is data once stored can’t be modified or deleted, 

which gives the blockchain the edge over any traditional database. 

Let’s find out how to trace the previously recorded ownership from the 

Ethereum blockchain.

Chapter 9  Ethereum Use Cases



223

You will need two different addresses, one for the buyer and one for the 

seller. Then you will need a struct for the property details and will need a 

list of such properties. Listing 9-3 shows details.

Listing 9-3.  PropertyTransaction.sol

pragma solidity ^0.4.18;

contract PropertyTransaction {

    �/**This contract is a basic land registry program where Only

    �the contract initiator can assign properties to people may 

be after

    some document verification*/

    Property[] properties; // registered properties

    �address landRegistryAdmin; //landRegistryAdmin is the user 

who has initiated the contract

    struct Property{

        �uint propertyId; // each property has an unique 

propertyId

        �bytes32[] ownershipHistory; //Property ownership is a 

historical data that has a seller, an owner/buyer and a 

date of transaction

    }

    �/**PropertySold is an event that informs on success or 

failure of a transaction*/

    event PropertySold(uint propertyId,

                       string ownership,

                       bool flag,

                       string message);

Chapter 9  Ethereum Use Cases



224

    constructor() public {

        �landRegistryAdmin = msg.sender; // initiate the 

landRegistryAdmin as the contract creator and initiate 

some registered properties

        Property memory property0 = Property(0, new bytes32[](0));

        properties.push(property0);

        �properties[properties.length-1].ownershipHistory.

push("Buyer:b0, Seller:s0, DOT:dt0");

        �Property memory property1 = Property(1, new bytes32[](0));

        properties.push(property1);

        �properties[properties.length-1].ownershipHistory.

push("Buyer:b1, Seller:s1, DOT:dt1");

        �Property memory property2 = Property(2, new bytes32[](0));

        properties.push(property2);

        �properties[properties.length-1].ownershipHistory.

push("Buyer:b2, Seller:s2, DOT:dt2");

    }

    �/**Land registration authority may alter ownership to any 

of the existing properties*/

    �function addNewOwner(uint propertyId, bytes32 ownership) 

public {

    if (msg.sender != landRegistryAdmin) {

            emit PropertySold(propertyId,

                              bytes32ToString(ownership),

                              false,

                              �'Only land registry department 

can assign ownership to buyer');

        }

Chapter 9  Ethereum Use Cases



225

        for (uint i = 0; i < properties.length; i++) {

            if (properties[i].propertyId == propertyId) {

                properties[i].ownershipHistory.push(ownership);

                emit PropertySold(propertyId,

                              bytes32ToString(ownership),

                              true,

                              �'New ownership added to existing 

property');

                break;

            }

        }

        �// propertyId does not exist in record, hence create a 

new transaction and add to registered properties

        �Property memory property = Property(properties.length, 

new bytes32[](0));

        properties.push(property);

        �properties[properties.length-1].ownershipHistory.

push(ownership);

        emit PropertySold(propertyId,

                              bytes32ToString(ownership),

                              true,

                              'New Property added');

    }

   �function retrievePropertyHistory(uint propertyId) public 

view returns(bytes32[]){

        for (uint i = 0; i < properties.length; i++) {

            if (properties[i].propertyId == propertyId) {

                return properties[i].ownershipHistory;

            }

        }

    }

Chapter 9  Ethereum Use Cases



226

    �function bytes32ToString(bytes32 x) private pure returns 

(string) {

        bytes memory bytesString = new bytes(32);

        uint charCount = 0;

        for (uint j = 0; j < 32; j++) {

            byte char = byte(bytes32(uint(x) * 2 ** (8 * j)));

            if (char != 0) {

                bytesString[charCount] = char;

                charCount++;

            }

        }

        bytes memory bytesStringTrimmed = new bytes(charCount);

        for (j = 0; j < charCount; j++) {

            bytesStringTrimmed[j] = bytesString[j];

        }

        return string(bytesStringTrimmed);

    }

}

�Ethereum Advantages
Land registry is a special type of use case suitable to being implemented on 

Ethereum. Why?

•	 Land registration data should be publicly available, 

traceable, secure, and nonmodifiable.

•	 Privacy, performance, and scalability are not core 

features needed in land registry.

Hence, Ethereum is the right kind of public blockchain 

implementation that will address most land registry requirements.

Chapter 9  Ethereum Use Cases



227

�Live Implementation
Ethereum is largely used for land registry use cases across the world. Let’s 

explore some of the pioneering organizations that have worked in this area 

so far.

•	 The Indian state of Andhra Pradesh is a pioneer in 

blockchain implementations. Partnering with a Swiss 

product company named ChromaWay (https://

chromaway.com/), it has launched a pilot program for 

registering their lands to a blockchain-enabled database. 

The Swiss startup currently made a pilot for the Andhra 

Pradesh land registry to track the ownership of property.

•	 Sweden’s land-ownership authority, the Lantmäteriet, 

is soon expected to conduct its first blockchain 

technology property transaction after two years of 

testing using ChromaWay.

•	 Consensys is building a prototype for the 

government think tank NITI Aayog not only for land 

registry but also for healthcare, education, supply 

chain, and more.

•	 New York–based Synechron is developing a use case for 

the Dubai government to show how existing deeds for 

land registry can be handled using the blockchain.

•	 German startup Slockit wants to enable a peer-to-peer 

sharing economy where anyone can rent, sell, or share 

their connected property, be that a car, house, bike, or 

unused office space without the need to use a middleman.

•	 After the RERA Act in India Andra Pradesh, Maharastra 

and many other states in India are considering 

registration of all their properties in Ethereum-based 

blockchain storage.

Chapter 9  Ethereum Use Cases

https://chromaway.com/
https://chromaway.com/


228

�Travel
The delay or even cancellation of flights is not rare nowadays. It can be 

disastrous to a business and always leads to quite a bit of disappointment. 

Many travelers are dissuaded to purchase travel insurance just because of 

the simple fact that often refund procedures are lengthy and not integrated 

with airline services.

�Solution
Let’s design an automated insurance compensation Dapp for flight delays. 

Unlike trains, public buses, and other transport services, flight schedule 

details are available on the Internet and get updated frequently. There is a 

huge opportunity for airlines and insurance companies to have a common 

platform where they can share their public data to make for an easy and 

smooth insurance business for both of them.

The Dapp will have three types of participants.

•	 Traveler

•	 Airline

•	 Insurance company

The following is the process:

	 1.	 The traveler enters the flight details such as date, 

time, source, and destination.

	 2.	 The traveler selects one of the plans and the amount 

to get insured by and pays for the insurance. This 

can be done by integrating a payment gateway with 

a call to the Oraclize service or by using a token.

	 3.	 All details are stored on the Ethereum blockchain or 

optionally on IPFS.

Chapter 9  Ethereum Use Cases



229

	 4.	 At a later date and time, the client again checks the 

flight schedule.

	 5.	 The contract first checks whether the flight date 

and time are in the future by validating against 

the data stored in Ethereum or IPFS. It will also 

check whether the user has not canceled the 

flight by calling the airline web service through 

Oraclize. Finally, it will check whether the flight is 

on time. If the flight gets delayed, then the user will 

automatically get compensated by the insurance 

company.

	 6.	 A digital identity can also be used to validate the 

identification of the traveler, and the service can 

check whether the person is actually traveling on 

that date and time by connecting to the airline 

services through Oraclize.

However, there could many other possibilities; for example, the flight 

might be on time, the user might cancel the flight, or the airline web 

service might be down for a few minutes. The Solidity contract should be 

robust enough to handle all the scenarios that the business may incur.

�Ethereum Advantages
Here are few of the benefits of using the Ethereum public blockchain in the 

travel domain:

•	 It cuts costs by getting rid of the middleman in the 

claim process.

•	 It saves time and hassle for the end user.

•	 The entire process is transparent for all parties 

involved.

Chapter 9  Ethereum Use Cases



230

�Live Implementations
These are some of the companies using the blockchain in travel:

•	 Winding Tree

•	 Cool Cousin

•	 Webjet

•	 Sandblock

•	 Accenture

•	 Travelchain

�Car Insurance
Automobile industries mostly deal with auto insurance as well as have 

deals with service centers. Despite the coordination, customers often have 

to fill in multiple forms for insurance claims and have to wait for a long 

time to get the status of the claim such as whether it’s been accepted or 

rejected.

�Solution
Consider the following scenario:

	 1.	 Imagine a buyer Reeta visits an automobile dealer 

to purchase her new car. She selects her dream 

model, and the dealer offers her an amazing deal 

on the new model. Also, as part of the purchase 

process, she’s offered an insurance contract, which 

she agrees to and signs up for, so she provides 

her personal data along with a start date and end 

date for the contract. When all the paperwork is 

Chapter 9  Ethereum Use Cases



231

complete, Reeta is given the web site details to a 

decentralized application with credentials so she 

can log in at any time if she needs to file a claim. At 

this point, the contract is written to a block on the 

blockchain to maintain the transaction.

	 2.	 However, in a few months’ time, as luck would have 

it, the car is stolen when she is on a road trip to a 

nearby town. She reports the incident to the police 

station nearby and visits the provided web site, logs 

in, describes the theft, and files her claim with the 

insurance company. The claim is first processed by 

the police, who can either confirm or deny the theft. 

Let’s say in this case, the theft is confirmed, and the 

police attaches a file with a reference number that is 

written to the IPFS.

	 3.	 Once the insurance company monitors all active 

claims on the blockchain approved by the police 

station, it submits a reimbursement for the 

claim. Just as with the previous transactions, the 

reimbursement is written to the blockchain. The 

reimbursement can be in terms of money, or 

it might be tied to a list of repair shops if it was 

damage instead of a theft.

	 4.	 Reeta is a happy customer as she did not have to go 

through the painful procedure of filling out multiple 

physical forms or e-forms with all the same data she 

already provided.

Note that insurance companies have the option to activate or 

deactivate certain contracts. This doesn’t mean contracts that have already 

been signed by customers will no longer be valid; it simply doesn’t allow 

Chapter 9  Ethereum Use Cases



232

new signings for these types of contracts. In addition, the insurance 

company can create new contract templates with different terms and 

conditions or a different pricing structure.

The app will have four participants, or peers.

•	 Automobile dealer

•	 Insurance company

•	 Police station

•	 Repair shop

The automobile dealer peer sells the products to a consumer. The 

insurance peer is the company that provides the insurance for the product 

(in this example, the car) and that is responsible for processing the claims. 

The police peer is responsible for verifying the accident or theft claims. 

The repair shop peer is responsible for repairing the product.

�Ethereum Advantages
Insurance claims and realization often involve verification and data 

exchange between multiple parties. Hence, the blockchain offers a huge 

opportunity here with the chance to innovate around the way data is 

exchanged, claims are processed, and fraud is prevented. The blockchain 

can bring together developers from tech companies, regulators, and 

insurance companies to create a valuable new insurance management 

asset.

These are the benefits to customers:

•	 Superior control

•	 Reduction on intermediary and trustless exchange

•	 Transparency and immutability

•	 Reduction of cost

Chapter 9  Ethereum Use Cases



233

These are the benefits to the insurer:

•	 Better efficiency

•	 Enhanced quality of service delivery while improving 

confidentiality and integrity of data

•	 Reduction in fraud

�Live Implementations
Here are a few interesting Ethereum-based Dapps used in the insurance 

domain:

•	 Etherisc has built many insurance products such as 

flight delay insurance, hurricane protection, crop 

insurance, collateral protection for crypto-backed 

loans, and more on the Ethereum network.

•	 The French insurance company AXA is using 

Ethereum’s blockchain for a new flight insurance 

product.

•	 Dynamis is an Ethereum-based distributed application 

for P2P insurance.

�Legal
In development countries such as India, any legal case takes years to get 

resolved, and the related parties spend half their lives in different courts 

just to resolve a single court case.

�Solution
Let’s consider the following scenario.

Chapter 9  Ethereum Use Cases



234

Party A and Party B have some legal dispute that first they register in a 

police station. The matter goes to the lower court where after listening to 

all the witnesses and reports by the police station, the verdict goes in favor 

of Party B. However, Party A is not satisfied, so they go to district court 

where all the previous processes get reiterated. After the verdict of the 

district court, the parties may prefer to go to the Supreme Court, or highest 

court of the country. This entire process could take years, and sometimes 

even some of the witnesses die or travel outside country and hence are 

unable to appear in court for their side of the story.

A Dapp can be created where each party can add their reports and 

witnesses. Data can be stored in IPFS, and hashes can be saved in the 

Ethereum blockchain network. This immutable data can be retrieved again 

and again as per the needs of different authorities and courts to reanalyze 

instead of going through the same process again and again.

The app will have the following participants, or peers:

•	 Party A

•	 Party B

•	 Police station

•	 Witnesses

•	 Lower court

•	 Middle court

•	 Highest court

�Ethereum Advantages
If law firms can adopt a common Dapp for sharing data, the same processes 

need not be reiterated again and again in different courts, and also the 

verdicts can be stored safely in blockchain storage. This will save time, 

energy, and money for all parties and can benefit the whole judiciary system.

Chapter 9  Ethereum Use Cases



235

�Education
Fraud in educational and experience certifications has cost the industry 

millions as organizations have to spend money doing background 

verification to validate those certificates through neutral third-party 

companies. The same process of background verification is reiterated 

every time the candidate switches companies.

�Solution
Build an ecosystem for creating, sharing, and verifying blockchain-based 

educational as well as work certificates. For this, the following is the 

process:

	 1.	 First assign digital certificates to each of the students 

or employees on the Ethereum blockchain.

	 2.	 The student or the employee adds a certificate 

to the Dapp and applies for approval by the 

authority, in other words, the university or 

organization.

	 3.	 The authority verifies the student’s or employee’s 

records and approves or rejects the certificate.

	 4.	 The student/employee approaches another 

organization where they need to produce the 

certificate.

	 5.	 The student/employee can assign access to the 

certificate, which has already been verified.

	 6.	 The entire data can be stored on the IPFS store, and 

the hash can be saved on the Ethereum network.

Chapter 9  Ethereum Use Cases



236

�Ethereum Advantages
The following are a few advantages of using a public blockchain network 

such as Ethereum for background verification:

•	 There’s no need to spend a fortune on background 

verification through third parties.

•	 There is no time delay for background verification as all 

the data is already available online and can save you a 

lot of time.

•	 Digital certificates are registered on the Ethereum 

blockchain and cryptographically signed, so they are 

tamper-proof.

�Live Implementations
Some of the Ethereum-based background verification and related Dapps 

that are widely used across the world are as follows:

•	 Edgecoin is in the process of building a Dapp platform 

for cost-lowering, time-saving, and fraud-protected 

smart solutions. According to Edgecoin, the technology 

will revolutionize the education industry as a whole, 

bringing disruption of the dusty and outdated education 

system and its certification and approval process.

•	 Another startup, lynked.world, is also working on 

verifying education and work-related certificates 

through verified digital identity.

Chapter 9  Ethereum Use Cases



237

�Healthcare
There are many different electronic medical records systems used in the 

healthcare industry, each with its own pattern for representing and sharing 

data. Such a large amount of crucial information is often scattered across 

multiple facilities, and sometimes it isn’t accessible when it is needed, 

costing money and sometimes even lives.

The portability of medical images is a huge issue as they often fail 

when transferred. Everyone has been a patient at one time or another, and 

many of us have had scans (MRIs or CT scans). However, where are those 

images stored today? CDs containing medical images are often lost. Even 

when patients do have their CDs, the image files frequently do not work. 

Also, often there is a need to transfer the existing images and all records of 

the patient from one hospital to another. How can you securely pass on the 

data with the permission of the patient without the need of generating it 

again and without the risk of losing the data? Let’s find out.

�Solution
Consider the following scenario that discusses how hospitals can securely 

share patient data through a public blockchain network such as Ethereum:

	 1.	 Shelly is expecting her baby in a few months. She 

visits her gynecologist in Hospital A, who advises 

her to perform an ultrasonography at regular 

intervals.

	 2.	 Shelly registers to the Ethereum-based blockchain 

Dapp where she is assigned a unique digital identity.

	 3.	 Every time she undergoes an ultrasonography, her 

images are uploaded to IPFS, and a hash is stored on 

the Ethereum blockchain against her unique ID.

Chapter 9  Ethereum Use Cases



238

	 4.	 Also, blood and other related reports are collected 

from a lab and uploaded to the Dapp stored against 

her ID.

	 5.	 Unfortunately, in the seventh month, the 

gynecologist finds a serious issue with the growth of 

the fetus and advises a cesarean section in another 

hospital (let’s call it Hospital B) with a certain 

specialty.

	 6.	 Now Hospital A and Hospital B are dealing with 

each other, and they share their information 

with the approval of the patient. The patient can 

be directly transferred to Hospital B and may 

undergo an immediate operation if needed as 

all the accumulated history of documents can be 

accessed from the Ethereum network as well as 

IPFS storage.

Here are the different parties on the Ethereum Dapp:

•	 The patient

•	 The lab

•	 Hospital A

•	 Hospital B

�Ethereum Advantages
You can build a secure, portable, and permanent image solution that 

leverages the blockchain technology (a permissioned digital ledger).

You can show actual hashes (unique IDs) of several medical images to 

prove image authenticity.

Chapter 9  Ethereum Use Cases



239

Using this approach, patients will never lose access to their medical 

images, and chain of custody will be preserved. All historical data from 

all different sources can be shared between all parties as and when 

needed.

The solution offers three core functionalities to enhance medical 

image portability and immutability, in other words, uploads, storage, and 

retrieval at superfast speed.

�Live Implementations
Here are a few examples of Ethereum-based Dapps that are successfully 

implemented in the healthcare domain:

•	 Healthureum is a new revelation in the cryptosphere 

that combines the blockchain and healthcare to bring 

the best of both under one roof. The Healthureum 

platform is designed on an Ethereum-based blockchain 

using smart contract technology to significantly the 

improve efficiency and interoperability of healthcare 

services.

•	 The London-based blockchain company Medicalchain 

signed a joint working agreement with the American 

medical center the Mayo Clinic to use a blockchain for 

medical record storage.

•	 Led by the LinkLab and Chronicled, the MediLedger 

Project kicked off in 2017, successfully bringing 

competing pharmaceutical manufacturers and 

wholesalers to the same table. Together, they designed 

and implemented a process for using the blockchain 

technology to improve the track-and-trace capabilities 

for prescription medicine.

Chapter 9  Ethereum Use Cases



240

�Secure Voting and Digital Identity
Voting in its current form in most countries requires the voter to cast their 

vote from their native state during a scheduled time period, which limits 

the number of citizens who actually appear on the day of election to fulfil 

their duties. Also, the entire process takes time and is complex, and it lacks 

transparency, which has led to electoral fraud, election manipulation, or 

vote rigging in many countries. Introducing an e-voting system would be 

a great idea; however, it has many issues to take care of. Issuance of secure 

digital identity plays a critical role in the success of such a project.

�Solution
The solution here is a multilayered process. There are broadly two different 

solutions you have to cater to.

•	 Issuance of secure digital identity to individual

•	 E-voting Dapp

Let’s discuss the first part of the system. Creating a digital identity on 

Ethereum is not an issue because anyone can create an account on the 

Dapp and use the private key to uniquely identify the person. However, 

in e-voting, you need to associate the identity with the real person, with 

the required proof of residency. So, the following is the process of digital 

identity creation for an e-voting system:

	 1.	 An e-voting web application is created on a public 

Ethereum network that can be accessed on the 

Internet from a desktop, laptop, or mobile device. 

The first page of the UI is a login/registration screen.

	 2.	 Laura is a lawful citizen of the country for which 

the Dapp is created. She visits the web site from 

any device and fills in the registration form. The 

Chapter 9  Ethereum Use Cases



241

form will contain all the required information such 

as residency proof, passport number, picture, date 

of birth, place of birth, current address, contact 

number, and so on, that will be stored on the IPFS, 

and the IPFS hash will be stored on the Ethereum 

blockchain with Laura’s details.

	 3.	 After a few days, Laura will get a call for verification, 

and her details will be verified by a local 

government officer through an in-person visit. This 

is a one-time process.

	 4.	 Laura will be issued a digital identity, a public key, and 

a private key that she can use to log in to the Dapp.

Now let’s discuss the e-voting system, a decentralized application 

where all related stakeholders can exchange data in a hassle-free and 

transparent way, which will be beneficial for such a complex, time-

consuming system. The Dapp will be deployed on a public blockchain 

network such as Ethereum or be done in private mode depending on the 

business.

The Dapp will have three types of participants.

•	 Government agency to check digital certificate

•	 Election authority

•	 Voter

Candidates participating in the election will not be participants, 

though.

The following is the process:

	 1.	 The voter already has a digital identification that 

they can use to cast a vote as a voter ID. Every time 

the voter logs in, the system will verify the ID for 

authentication and authorization.

Chapter 9  Ethereum Use Cases



242

	 2.	 The voting process starts on a prescheduled date.

	 3.	 The voter casts a vote, and the contract allows it for 

one time only if the ID and password match. Also, 

the voting will be valid within the scheduled time 

period.

	 4.	 The voting smart contract will list the votes casted, 

and the front end will display every vote’s ID and 

the candidate the voter has cast a vote for. No voter 

name will be displayed.

	 5.	 When the voting process is over, the counting 

process will begin. The process could be a simple 

one that adds all votes against each, and the one 

with maximum votes wins. It could also be a 

weightage-based voting process based on certain 

logic that the smart contract would evaluate.

	 6.	 The result is broadcast to individual screens 

throughout an event.

The e-voting Dapp is transparent enough so that each voter can always 

check whether their vote is cast properly. But for others, it remains a secret.

�Ethereum Advantages
Using the Ethereum blockchain in e-voting is an ambitious project. These 

are the benefits:

•	 Enabling a higher percentage of citizens to cast their 

votes from any place around the world through a 

hassle-free voting process.

•	 It creates a faster and hassle-free process.

Chapter 9  Ethereum Use Cases



243

•	 It provides transparency between parties. All 

stakeholders can watch real-time data and can validate 

accordingly.

•	 It eliminates voter fraud.

•	 The same digital identity can be reused many times for 

integration with many different applications such as 

KYC, banking, mortgages, credit reporting, and so on.

�Live Implementations
Here are a few examples of how Ethereum is successfully implemented in 

e-voting. I am sure more such live implementations will follow soon.

•	 Switzerland’s Zug has already taken the first step to 

digitalize its e-voting through an Ethereum-based 

Dapp. They are using uPort, a market-leading digital 

identity solution implemented on an Ethereum Dapp.

•	 BlockOne ID is another such Dapp based on Ethereum 

that uses OAuth 2.0 to secure web applications 

including Facebook, Twitter, and Google.

Chapter 9  Ethereum Use Cases



245© Debajani Mohanty 2018
D. Mohanty, Ethereum for Architects and Developers,  
https://doi.org/10.1007/978-1-4842-4075-5_10

CHAPTER 10

Ethereum: What Lies 
Ahead

“I generally support just about every secession attempt that 
comes along. If in the future there is that kind of a dispute in 
Ethereum, I’d definitely be quite happy to see Ethereum A go in 
one direction and Ethereum B go the other.”

—Vitalik Buterin

In the past decade, many blockchain and DLT frameworks have flooded 

the market, but Ethereum is still the favorite of most blockchain lovers. As 

per a recent report, “Ethereum currently has the most active developer 

community in the space and has 30 times more developers than the 

second most active community.” The Ethereum blockchain does have 

some issues, yet it’s the market leader in its space, and no other framework 

is anywhere even close to this framework.

One of the major reasons is because Ethereum has consistently tried 

to get rid of its loopholes and reinvent itself through new features and 

versions. Let’s discuss them.

�The Evolution of Ethereum
Here are some of the major releases of Ethereum and their features.



246

�Olympic, May 2015
Also known as version 0.9, Olympic was the first release of Ethereum on 

the testnet; however, it is now deprecated.

�Frontier, July 2015
The official 1.0 release of Ethereum was launched as a public main 

network. It allowed developers to experiment, mine ether, and begin 

building Dapps and tools.

�Homestead, March 2016
Launched on Pi Day, Homestead was the first production release 

of Ethereum. It brought many protocol improvements that laid the 

foundation for future upgrades and for speeding up transactions.

�Byzantium Metropolis Phase I, October 2017
This is where we currently are on the Byzantium phase of Ethereum’s road 

map; it’s the first part of the Metropolis stage that aims to introduce various 

privacy and functionality improvements.

�Constantinople Metropolis Phase II, Slated 
for 2018
The main features of this second phase of the Metropolis release will be 

to smooth out all the issues that may come up in Byzantium and, more 

importantly, to introduce the proof-of-stake and proof-of-work hybrid 

chain.

Chapter 10  Ethereum: What Lies Ahead



247

�Serenity, Slated for 2018
With this release, Ethereum will completely move from consensus through 

proof-of-work and proof-of-stake by using a new proof-of-stake model 

called Casper introduced in Metropolis Constantinople; however, in this 

release, it will be completely functional.

�Scaling of Ethereum
In May 2018, the transaction throughput in Ethereum public blockchain 

mainnet reached 1 million transactions per day. With the ICO craze taking 

the market by storm, there is a huge load on the Ethereum network. The 

scalability of the Ethereum network has been a major concern for its key 

stakeholders; it needs to support higher future demands if its usage keeps 

increasing exponentially the way it has been in the past couple of years. 

Increasing gas costs are also a factor that needs attention.

The major projects that have come forward to solve the scaling and 

cost issues are the following:

•	 Casper proof of stake

•	 Sharding

•	 Raiden network

•	 Plasma

•	 Internet of blockchains

�Casper Proof of Stake
Casper is Ethereum’s upcoming proof-of-stake (PoS) consensus protocol 

that I have already discussed. With Casper, the gas fees are expected to go 

down dramatically, which is a relief for transaction initiators.

Chapter 10  Ethereum: What Lies Ahead



248

�Sharding
In Chapter 2, I mentioned how each node on the Ethereum network stores 

all the states, contract codes, account balances, and so on, and processes 

the transactions. Currently, this all happens across the network without 

any parallel processing, which is a killer for scalability and throughput. 

This issue has raised the following question for the core Ethereum 

development teams: how we can run this entire ecosystem in a parallel 

multitasking mode?

Figure 10-1 showcases the working model of sharding. Sharding is a 

new concept where instead of all nodes verifying the transactions, only 

a few of them take ownership of mining a portion of the transactions. 

With this divide-and-conquer logic, the scalability and number of 

transactions could increase manifolds, attracting more and more big 

players to embrace Ethereum to replace their existing centralized 

businesses.

Chapter 10  Ethereum: What Lies Ahead



249

Figure 10-1.  Sharding in Ethereum

With sharding, new shard chains will be added to the main Ethereum 

blockchain network. Hence, there will be no need for miners to download 

and compute every transaction in the history of the blockchain to validate 

a new transaction.

�Raiden Network
Similar to Bitcoin’s Lightening Network, two parties on the blockchain 

can create side channels and transact with each other’s posts, and the 

transaction is recorded in the main Ethereum blockchain network.  

Chapter 10  Ethereum: What Lies Ahead



250

The parties pay some tokens to the network for their mutually agreed 

on transaction. By this means, even micro and nano transactions can be 

executed on the network.

�Plasma
Like sharding, plasma is another mechanism of creating side chains 

for achieving scalability where again you do not need to download 

the entire network to validate the transactions. It’s still under 

development.

According to Vitalik Buterin, plasma allows you to have what the 

Bitcoin people promised in 2013: private chains anchored into a public 

chain. specifically, if you have one plasma coin in the plasma chain and if 

the plasma chain is hacked, then you can use that to recover one coin on 

the public chain. Therefore, coins on the plasma chain are equal to coins 

on the public chain without transactions taking up space on the public 

chain.

Plasma uses a proof-of-authority model where instead of downloading 

the entire blockchain history, users will be able to instead generate 

“plasma coins” by sending a deposit to the contract. This ideally will solve 

both the scalability and gas cost issues.

�Internet of Blockchains: Polkadot, Cosmos, Coco
Because the blockchain is already entering the mainstream, there is a huge 

demand for different blockchain frameworks to be capable of interacting 

with each other without hindrances. Polkadot, Cosmos, and Coco are 

projects working in this area, and they will likely hit production in 2018 

or 2019, opening the doors to a golden age of data communication in a 

decentralized way.

Chapter 10  Ethereum: What Lies Ahead



251

�Governance
Vitalik Buterin, who cofounded the Ethereum framework, is still actively 

involved in its development. However, like most open source software 

applications, Ethereum is also governed by a group of stakeholders.

•	 Developers like us who develop Dapps with Ethereum

•	 Users who run Dapps and execute transactions on them

•	 Miners who validate those transactions

Figure 10-2 shows how any change to the Ethereum framework is 

introduced and finally implemented.

Chapter 10  Ethereum: What Lies Ahead



252

Figure 10-2.  Governance of the Ethereum framework

Any changes to the existing framework may be raised by anyone as 

an Ethereum improvement proposal (EIP). Figure 10-2 demonstrates 

the journey of proposals until they reach the implementation stage. 

Chapter 10  Ethereum: What Lies Ahead



253

Many of the EIPs I have already discussed in previous chapters are 

waiting for approval or the final state. The core Ethereum development 

team, along with many stakeholders, organizes regular discussions to 

figure out the future development of the framework.

�Conclusion
The blockchain is here to stay and in coming days will entirely transform 

the communication between organizations and accelerate the way 

information is exchanged. In the past decade, even as many blockchain 

frameworks are flooding the market, Ethereum has retained its top 

position, and worldwide Ethereum lovers are trying their best to 

upgrade its features to be capable of competing with other mainstream 

technologies.

The live use cases in this book are in various elementary states. 

However, now that you know about the entire ecosystem of Ethereum, 

you can add more complex business logic as per the requirements of your 

project and take your Ethereum journey to the next level.

�References

•	 “What is RERA and how will it impact the real estate 

industry and home buyers?”: https://housing.com/

news/rera-will-impact-real-estate-industry/

•	 “Where do decentralized applications store their 

data?”: https://safenetforum.org/t/where-

do-decentralized-applications-store-their-

data/13616

Chapter 10  Ethereum: What Lies Ahead

https://housing.com/news/rera-will-impact-real-estate-industry/
https://housing.com/news/rera-will-impact-real-estate-industry/
https://safenetforum.org/t/where-do-decentralized-applications-store-their-data/13616
https://safenetforum.org/t/where-do-decentralized-applications-store-their-data/13616
https://safenetforum.org/t/where-do-decentralized-applications-store-their-data/13616


254

•	 Blockchain and Land Registries: Lessons from the Field: 

https://www.youtube.com/watch?v=gbP4AhmYoGU

•	 “Learning Solidity Part 1: Contract Dev with 

MetaMask”: https://karl.tech/learning-solidity-

part-1-deploy-a-contract/

•	 “Building a smart contract using the command line”: 

https://www.ethereum.org/greeter

•	 learning-solidity: https://github.com/willitscale/

learning-solidity

•	 “10,000 startups Blockchain Hackathon”: https://

developer.ibm.com/in/2018/05/15/nasscom-

BlockChain-hackathon/

•	 Oraclize documentation: https://docs.oraclize.it

•	 ethereum-examples/solidity: https://github.com/

oraclize/ethereum-examples/tree/master/solidity

•	 “Using APIs in Your Ethereum Smart Contract with 

Oraclize”: https://medium.com/coinmonks/using-

apis-in-your-ethereum-smart-contract-with-

oraclize-95656434292e

•	 “Oracle evolution: from multi signature algorithm to 

decentralized Oracles and Ducatur”: https://www.

openpr.com/news/982416/Oracle-evolution-from-

multi-signature-algorithm-to-decentralized-

Oracles-and-Ducatur.html

•	 “Interacting with a Smart Contract through Web3.js 

(Tutorial)”: https://coursetro.com/posts/code/99/

Interacting-with-a-Smart-Contract-through-Web3.

js-(Tutorial)

Chapter 10  Ethereum: What Lies Ahead

https://www.youtube.com/watch?v=gbP4AhmYoGU
https://karl.tech/learning-solidity-part-1-deploy-a-contract/
https://karl.tech/learning-solidity-part-1-deploy-a-contract/
https://www.ethereum.org/greeter
https://github.com/willitscale/learning-solidity
https://github.com/willitscale/learning-solidity
https://developer.ibm.com/in/2018/05/15/nasscom-BlockChain-hackathon/
https://developer.ibm.com/in/2018/05/15/nasscom-BlockChain-hackathon/
https://developer.ibm.com/in/2018/05/15/nasscom-BlockChain-hackathon/
https://docs.oraclize.it
https://github.com/oraclize/ethereum-examples/tree/master/solidity
https://github.com/oraclize/ethereum-examples/tree/master/solidity
https://medium.com/coinmonks/using-apis-in-your-ethereum-smart-contract-with-oraclize-95656434292e
https://medium.com/coinmonks/using-apis-in-your-ethereum-smart-contract-with-oraclize-95656434292e
https://medium.com/coinmonks/using-apis-in-your-ethereum-smart-contract-with-oraclize-95656434292e
https://www.openpr.com/news/982416/Oracle-evolution-from-multi-signature-algorithm-to-decentralized-Oracles-and-Ducatur.html
https://www.openpr.com/news/982416/Oracle-evolution-from-multi-signature-algorithm-to-decentralized-Oracles-and-Ducatur.html
https://www.openpr.com/news/982416/Oracle-evolution-from-multi-signature-algorithm-to-decentralized-Oracles-and-Ducatur.html
https://www.openpr.com/news/982416/Oracle-evolution-from-multi-signature-algorithm-to-decentralized-Oracles-and-Ducatur.html
https://coursetro.com/posts/code/99/Interacting-with-a-Smart-Contract-through-Web3.js-
https://coursetro.com/posts/code/99/Interacting-with-a-Smart-Contract-through-Web3.js-
https://coursetro.com/posts/code/99/Interacting-with-a-Smart-Contract-through-Web3.js-


255

•	 “Understanding The Process Of ICO Life Cycle”: 

https://cryptona.co/understanding-process-ico-

life-cycle/

•	 “Top Ethereum Token Protocols Which May Replace 

ERC20”: https://cointelegraph.com/news/top-

ethereum-token-protocols-which-may-replace-

erc20

•	 “Testing for Blockchain – Here’s What You Need To 

Know”: https://www.thinksys.com/qa-testing/

testing-BlockChain/

•	 “Ethereum’s DAO Wars Soft Fork is a Potential DoS 

Vector”: http://hackingdistributed.com/2016/06/28/

ethereum-soft-fork-dos-vector/

•	 “A History of Bitcoin Hard Forks”: https://www.

investopedia.com/tech/history-Bitcoin-hard-

forks/

•	 “What is Ethereum Classic? Ethereum vs Ethereum 

Classic”: https://blockgeeks.com/guides/what-is-

ethereum-classic/

•	 “IPFS vs Swarm?”: https://www.reddit.com/r/

ethereum/comments/3hbqbv/ipfs_vs_swarm/

•	 “What is the difference between Swarm and 

IPFS?”: https://ethereum.stackexchange.com/

questions/2138/what-is-the-difference-between-

swarm-and-ipfs

•	 “IPFS & SWARM”: https://github.com/ethersphere/

go-ethereum/wiki/IPFS-&-SWARM

Chapter 10  Ethereum: What Lies Ahead

https://cryptona.co/understanding-process-ico-life-cycle/
https://cryptona.co/understanding-process-ico-life-cycle/
https://cointelegraph.com/news/top-ethereum-token-protocols-which-may-replace-erc20
https://cointelegraph.com/news/top-ethereum-token-protocols-which-may-replace-erc20
https://cointelegraph.com/news/top-ethereum-token-protocols-which-may-replace-erc20
https://www.thinksys.com/qa-testing/testing-BlockChain/
https://www.thinksys.com/qa-testing/testing-BlockChain/
http://hackingdistributed.com/2016/06/28/ethereum-soft-fork-dos-vector/
http://hackingdistributed.com/2016/06/28/ethereum-soft-fork-dos-vector/
https://www.investopedia.com/tech/history-Bitcoin-hard-forks/
https://www.investopedia.com/tech/history-Bitcoin-hard-forks/
https://www.investopedia.com/tech/history-Bitcoin-hard-forks/
https://blockgeeks.com/guides/what-is-ethereum-classic/
https://blockgeeks.com/guides/what-is-ethereum-classic/
https://www.reddit.com/r/ethereum/comments/3hbqbv/ipfs_vs_swarm/
https://www.reddit.com/r/ethereum/comments/3hbqbv/ipfs_vs_swarm/
https://ethereum.stackexchange.com/questions/2138/what-is-the-difference-between-swarm-and-ipfs
https://ethereum.stackexchange.com/questions/2138/what-is-the-difference-between-swarm-and-ipfs
https://ethereum.stackexchange.com/questions/2138/what-is-the-difference-between-swarm-and-ipfs
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM


256

•	 “Blockchains & Distributed Ledger Technologies”: 

https://BlockChainhub.net/BlockChains-and-

distributed-ledger-technologies-in-general/

•	 “Learn to securely share files on the blockchain with 

IPFS!”: https://medium.com/@mycoralhealth/learn-

to-securely-share-files-on-the-BlockChain-with-

ipfs-219ee47df54c

•	 “Ethereum Roadmap: Explained”: https://

thecryptograph.net/ethereum-roadmap-explained/

•	 Decentralized Chat: https://youtu.be/vVsIHCTGjsE

•	 “How governance works for the Ethereum blockchain”: 

https://dickolsson.com/how-governance-works-

for-the-ethereum-blockchain/

•	 “Scaling Ethereum”: https://blockchainhub.net/

blog/blog/scaling-ethereum-2/

•	 “Off-Chain Data Storage: Ethereum & IPFS”: https://

medium.com/@didil/off-chain-data-storage-

ethereum-ipfs-570e030432cf

•	 “The ultimate end-to-end tutorial to create and deploy 

a fully decentralized Dapp in Ethereum”: https://

medium.com/@merunasgrincalaitis/the-ultimate-

end-to-end-tutorial-to-create-and-deploy-

a-fully-descentralized-dapp-in-ethereum-

18f0cf6d7e0e

•	 “Introduction to IPFS”: https://github.com/INFURA/

tutorials/wiki/Introduction-to-IPFS

Chapter 10  Ethereum: What Lies Ahead

https://blockchainhub.net/BlockChains-and-distributed-ledger-technologies-in-general/
https://blockchainhub.net/BlockChains-and-distributed-ledger-technologies-in-general/
https://medium.com/@mycoralhealth/learn-to-securely-share-files-on-the-BlockChain-with-ipfs-219ee47df54c
https://medium.com/@mycoralhealth/learn-to-securely-share-files-on-the-BlockChain-with-ipfs-219ee47df54c
https://medium.com/@mycoralhealth/learn-to-securely-share-files-on-the-BlockChain-with-ipfs-219ee47df54c
https://thecryptograph.net/ethereum-roadmap-explained/
https://thecryptograph.net/ethereum-roadmap-explained/
https://youtu.be/vVsIHCTGjsE
https://dickolsson.com/how-governance-works-for-the-ethereum-blockchain/
https://dickolsson.com/how-governance-works-for-the-ethereum-blockchain/
https://blockchainhub.net/blog/blog/scaling-ethereum-2/
https://blockchainhub.net/blog/blog/scaling-ethereum-2/
https://medium.com/@didil/off-chain-data-storage-ethereum-ipfs-570e030432cf
https://medium.com/@didil/off-chain-data-storage-ethereum-ipfs-570e030432cf
https://medium.com/@didil/off-chain-data-storage-ethereum-ipfs-570e030432cf
https://medium.com/@merunasgrincalaitis/the-ultimate-end-to-end-tutorial-to-create-and-deploy-a-fully-descentralized-dapp-in-ethereum-18f0cf6d7e0e
https://medium.com/@merunasgrincalaitis/the-ultimate-end-to-end-tutorial-to-create-and-deploy-a-fully-descentralized-dapp-in-ethereum-18f0cf6d7e0e
https://medium.com/@merunasgrincalaitis/the-ultimate-end-to-end-tutorial-to-create-and-deploy-a-fully-descentralized-dapp-in-ethereum-18f0cf6d7e0e
https://medium.com/@merunasgrincalaitis/the-ultimate-end-to-end-tutorial-to-create-and-deploy-a-fully-descentralized-dapp-in-ethereum-18f0cf6d7e0e
https://medium.com/@merunasgrincalaitis/the-ultimate-end-to-end-tutorial-to-create-and-deploy-a-fully-descentralized-dapp-in-ethereum-18f0cf6d7e0e
https://github.com/INFURA/tutorials/wiki/Introduction-to-IPFS
https://github.com/INFURA/tutorials/wiki/Introduction-to-IPFS


257

•	 “Uploading an Image to IPFS”: https://medium.

com/@angellopozo/uploading-an-image-to-ipfs-

e1f65f039da4

•	 “Microfinance loans recovery on the blockchain—a 

concept”: https://blog.wandx.co/microfinance-

loans-recovery-on-the-BlockChain-applications-

of-wandx-311355cdd794

•	 “Microlending Startups Look to Blockchain for Loans”: 

https://www.coindesk.com/microlending-trends-

startups-look-BlockChain-loans/

•	 India’s Blockchain lakshmi Coin prototype | urbanchain 

Lending Platform: https://youtu.be/H81eGtiv0oE

•	 “Etherisc Launches Blockchain-powered Flight Delay 

Insurance For Devcon 3 In Mexico”: https://www.the-

blockchain.com/2017/10/28/etherisc-launches-

blockchain-powered-flight-delay-insurance-

devcon-3-mexico/

•	 “InsurETH runs smart contracts on the Ethereum 

platform to automate insurance claims and refund in 

case of flight delays or cancellations”: https://fintank.

net/2016/06/09/insureth-smart-contracts/

•	 “Testing time-dependent logic in Ethereum Smart 

Contracts”: https://medium.com/coinmonks/

testing-time-dependent-logic-in-ethereum-smart-

contracts-1b24845c7f72

•	 “Testing Time-Based Ethereum Smart Contracts in 

Solidity Without a Test Suite”: https://revelry.co/

time-based-ethereum-smart-contracts-solidity/

Chapter 10  Ethereum: What Lies Ahead

https://medium.com/@angellopozo/uploading-an-image-to-ipfs-e1f65f039da4
https://medium.com/@angellopozo/uploading-an-image-to-ipfs-e1f65f039da4
https://medium.com/@angellopozo/uploading-an-image-to-ipfs-e1f65f039da4
https://blog.wandx.co/microfinance-loans-recovery-on-the-BlockChain-applications-of-wandx-311355cdd794
https://blog.wandx.co/microfinance-loans-recovery-on-the-BlockChain-applications-of-wandx-311355cdd794
https://blog.wandx.co/microfinance-loans-recovery-on-the-BlockChain-applications-of-wandx-311355cdd794
https://www.coindesk.com/microlending-trends-startups-look-BlockChain-loans/
https://www.coindesk.com/microlending-trends-startups-look-BlockChain-loans/
https://youtu.be/H81eGtiv0oE
https://www.the-blockchain.com/2017/10/28/etherisc-launches-blockchain-powered-flight-delay-insurance-devcon-3-mexico/
https://www.the-blockchain.com/2017/10/28/etherisc-launches-blockchain-powered-flight-delay-insurance-devcon-3-mexico/
https://www.the-blockchain.com/2017/10/28/etherisc-launches-blockchain-powered-flight-delay-insurance-devcon-3-mexico/
https://www.the-blockchain.com/2017/10/28/etherisc-launches-blockchain-powered-flight-delay-insurance-devcon-3-mexico/
https://fintank.net/2016/06/09/insureth-smart-contracts/
https://fintank.net/2016/06/09/insureth-smart-contracts/
https://medium.com/coinmonks/testing-time-dependent-logic-in-ethereum-smart-contracts-1b24845c7f72
https://medium.com/coinmonks/testing-time-dependent-logic-in-ethereum-smart-contracts-1b24845c7f72
https://medium.com/coinmonks/testing-time-dependent-logic-in-ethereum-smart-contracts-1b24845c7f72
https://revelry.co/time-based-ethereum-smart-contracts-solidity/
https://revelry.co/time-based-ethereum-smart-contracts-solidity/


258

•	 “6 Companies Using Blockchain To Change Travel”: 

https://www.investopedia.com/news/6-companies-

using-BlockChain-change-travel-0/

•	 “Blockchain Voting: The End To End Process”: https://

followmyvote.com/blockchain-voting-the-end-to-

end-process/

•	 “A secure internet voting system using Ethereum and 

Zero-Knowledge Proof”: https://www.reddit.com/r/

ethereum/comments/662cy9/a_secure_internet_

voting_system_using_ethereum/

•	 “What is a uPort identity?”: https://medium.com/

uport/what-is-a-uport-identity-b790b065809c

•	 “Different Approaches to Ethereum Identity 

Standards”: https://medium.com/uport/different-

approaches-to-ethereum-identity-standards-

a09488347c87

•	 “Zug ID: Exploring the First Publicly Verified 

Blockchain Identity”: https://medium.com/uport/

zug-id-exploring-the-first-publicly-verified-

blockchain-identity-38bd0ee3702

•	 “Writing Solidity Unit Tests for Testing Assert(), 

Require() and Revert() Conditions Using Truffle”: 

https://medium.com/@kscarbrough1/writing-

solidity-unit-tests-for-testing-assert-require-

and-revert-conditions-using-truffle-2e182d91a40f

•	 Dubai Land Registry: http://www.hackathon.io/

dubai-land1

Chapter 10  Ethereum: What Lies Ahead

https://www.investopedia.com/news/6-companies-using-BlockChain-change-travel-0/
https://www.investopedia.com/news/6-companies-using-BlockChain-change-travel-0/
https://followmyvote.com/blockchain-voting-the-end-to-end-process/
https://followmyvote.com/blockchain-voting-the-end-to-end-process/
https://followmyvote.com/blockchain-voting-the-end-to-end-process/
https://www.reddit.com/r/ethereum/comments/662cy9/a_secure_internet_voting_system_using_ethereum/
https://www.reddit.com/r/ethereum/comments/662cy9/a_secure_internet_voting_system_using_ethereum/
https://www.reddit.com/r/ethereum/comments/662cy9/a_secure_internet_voting_system_using_ethereum/
https://medium.com/uport/what-is-a-uport-identity-b790b065809c
https://medium.com/uport/what-is-a-uport-identity-b790b065809c
https://medium.com/uport/different-approaches-to-ethereum-identity-standards-a09488347c87
https://medium.com/uport/different-approaches-to-ethereum-identity-standards-a09488347c87
https://medium.com/uport/different-approaches-to-ethereum-identity-standards-a09488347c87
https://medium.com/uport/zug-id-exploring-the-first-publicly-verified-blockchain-identity-38bd0ee3702
https://medium.com/uport/zug-id-exploring-the-first-publicly-verified-blockchain-identity-38bd0ee3702
https://medium.com/uport/zug-id-exploring-the-first-publicly-verified-blockchain-identity-38bd0ee3702
https://medium.com/@kscarbrough1/writing-solidity-unit-tests-for-testing-assert-require-and-revert-conditions-using-truffle-2e182d91a40f
https://medium.com/@kscarbrough1/writing-solidity-unit-tests-for-testing-assert-require-and-revert-conditions-using-truffle-2e182d91a40f
https://medium.com/@kscarbrough1/writing-solidity-unit-tests-for-testing-assert-require-and-revert-conditions-using-truffle-2e182d91a40f
http://www.hackathon.io/dubai-land1
http://www.hackathon.io/dubai-land1


259© Debajani Mohanty 2018 
D. Mohanty, Ethereum for Architects and Developers,  
https://doi.org/10.1007/978-1-4842-4075-5

Index

A
Application binary interface  

(ABI), 59–62, 102
Artificial intelligence, 197, 217

B
Ballot() function, 96
Bitcoin, 2
BitTorrent protocol, 45
Blockchains

barrier, 4
benefits, 13
block header, 15–16
Cardano, 33
consensus (see Consensus)
defined, 2
DLT (see Distributed ledger 

technology (DLT))
double spending, 18–19
EOS, 34
Ethereum forks, 27–28
features, 5
fully centralized  

model, 7–9

fully distributed model, 6–7
hard forks, 27
hashing, 19–20
Hedera hashgraph, 34
Hyperledger Fabric, 32
invention, 3
IOTA, 34
Merkle tree, 16–18
MultiChain, 33
OpenChain, 33
public and private  

key, 20–21
Quorum, 32
R3 Corda, 33
Ripple, 32
signatures, 4
smart contracts, 3
soft forks, 26
Symbiont, 33
transactions and  

blocks, 14–15
visibilities

consortium, 29–30
private, 29
public, 29

Business leaders, 203

https://doi.org/10.1007/978-1-4842-4075-5


260

C
Casper, 247
checkUser() function, 75
Consensus

DAGs, 25
DPOS, 24
PBFT model, 24–25
POA, 24
POS, 23
POW, 22
types, 22

Cross-origin resource sharing 
(CORS), 168–169

Cryptocurrency, 1, 3, 19–21

D
Decentralized autonomous 

organization (DAO), 40
Delegated proof of stake  

(DPOS), 24
Denial-of-service (DoS) attacks, 26
Directed cyclic graphs (DAGs), 25
Distributed ledger technology 

(DLT)
vs. blockchain, 12–13
client-server vs. peer-to-peer 

models, 11
consensus, 9
data synchronization, 9
decentralized mode, client-

server model, 11
peer-to-peer mode, 9–10, 12

E
Embark

creation
embark blockChain, 194
embark_demo, 191–192
embark run, 194–195
embark simulator, 192–193
ganache-cli, 192

installation, 191
IPFS, 191
unit testing, 195

ERC20
Bitcoin, 213
defined, 208
ERC20.sol interface, 210
events, 210
functions, 209
Mist

Ethereum wallet, 213–214
Remix IDE, 214–215

MyFirstToken.sol, 211–213
Solidity, 208
token protocol, 208

Ethereum
accounts, 43
advantages, 30
auditing, 179
vs. Bitcoin, 37–38
blockchain framework, 203
brainstorm, 173
car insurance

benefits, 232–233
company, 231

Index



261

contract, 230
Dynamis, 233
Etherisc, 233
participants, 232

Casper, 39
compiler version, 174
cryptocurrency

Ether, 52–53
Wei, 52–53

definition, 37
delegate call, 175
ecosystem, 173
education

advantages, 236
digital certificates, 235
Edgecoin, 236
IPFS store, 235
lynked.world, 236

EIP tokens, 178
ERC, 208
ether, 38
evolution

Byzantium metropolis  
phase I, 246

Constantinople metropolis 
phase I, 246

Frontier, 246
Homestead, 246
Olympic, 246
Serenity, 247

external calls, 176
gas conversion, 42
gas cost, 42
gas limit, 41

gas price, 42
governance

EIP, 252
framework, 251–253
stakeholders, 251

healthcare
advantages, 238
Dapp, 238
Healthureum, 239
medical images, 237

ICO, 204
IPFS storage (see Interplanetary 

File System (IPFS))
languages, 41
legal case, 233–234
limitations, 31
mainnet, 121
microfinance, 216
Mist, 122
naming conventions, 174
Oraclize, 151
overflow and underflow, 175
Oyente analysis tool, 179
peer-to-peer model, 39
POW model, 39
race conditions, 176
real estate, 222
reentrancy, 176–177
scaling

Casper proof of stake, 247
Coco, 250
Cosmos, 250
plasma, 250
Polkadot, 250

Index



262

Raiden network, 249–250
sharding, 248–249

simple and modular, 175
smart contracts deployment 

(see Smart contracts)
Solgraph tool, 179
solidity, 41
storage cost, 44
TestRPC, 105
timestamp, 178
transaction, 43
transaction ordering attack, 178
travel, 228–230
unit tests, 178
visibility call, 175
voting

benefits, 242–243
BlockOne ID, 243
digital identity, 240–241
e-voting Dapp, 240–242
e-voting system, 240
Zug, 243

Ethereum Dapps
network simulation testing, 201
node testing, 201
private blockchain, 198
public blockchain, 198
smart contracts testing, 200
standard functional testing

integration, 199
Mobile Apps, 199
UI, 199
unit tests, 199

standard nonfunctional testing
load, 200
performance, 200
security, 200
stress, 200

testing blockchains, 198
token testing, 201

Ethereum ecosystem
architecture, 44–45
IPFS (see Interplanetary File 

System (IPFS))
Swarm, 49
Whisper, 50–51

Ethereum improvement proposals 
(EIPs), 215–216, 252

Ethereum projects
ChoonHQ, 36
Coinlancer, 35
Etheal, 36
EtherSport, 36
FairWin, 36
ICO, 35
Mavin, 36
Rentberry, 35
Status, 35
Tap Coin, 36
uPort, 35

Ethereum request for comment 
(ERC), 208

Ethereum testing
Ganache

ganache-cli, 106–109
StudentDetails.sol, 108
TestRPC, 105

Ethereum (cont.)

Index



263

Kovan testnet, 109
Rinkeby testnet, 109
Ropsten testnet (see Ropsten)
unit testing, 109

Ethereum virtual machine  
(EVM), 38–39, 78, 91

Etherfaces.com, 49

F, G
File details, Solidity

ABI, 59–62
comments, 67
constructor, 70–71
data storage, 78–79
error handling

assert() function, 75–76
require() function, 75–76
revert() function, 75
throw operation, 74–75

events, 79–80
file storage, 59
functions, 67, 69

constant keyword, 76–77
fallback, 69
modifiers, 70
pure function, 77
view function, 77

getter and setter, 72–74
import statement, 62
by reference

array, 65
mappings, 66–67

string, 66
struct, 65

.sol extension, 59
by value

address, 65
boolean, 64
byte, 64
enum, 64–65
fixed keyword, 63
integers, 63

variables, 63
version, 62
visibility types, 72

Fully centralized  
model, 7–8

Fully distributed  
model, 6–7

H
Hashing algorithms, 20

I
Initial coin offering (ICO)

advertising campaign, 206
asset-backed security, 207
crowdfunding, 204
crowdsale event, 206
cryptocurrency, 207
defined, 204
EIPs, 215
ERC20, 208

Index



264

idea conceptualization, 205
organization, 205
product development, 207
professionals, 206
road map, 205
tokens, 206
utility token, 207
white paper, 206

Interplanetary File System (IPFS)
BitTorrent protocol, 45
configuration

commands, 166
CORS, 168
file structure, 164
initialize, 167–168
ipfs add–r command, 171
IPFS binaries, 163
ipfs daemon, 169–170
ipfs help, 166–167
ipfs name publish, 171
ipfs swarm peers, 170
ipfs version, 165
surf image, 171–172
system path, 164–165

cryptology, 47
and Ethereum, 48–49
IPNS, 172
RDBMS, 162
server, 162
sharing data, asymmetric 

cryptography, 47–48
storing data, 46
vs. Swarm, 49–50

J, K, L
JSON-RPC, 139

M, N
Machine learning, 217
Microfinance

banking service, 216
BanQu, 222
Dapp, 220
ecosystem, 219–220
Everex, 222
micro credit, 216
Nano peer-to-peer lending, 217
private blockchain, 219
smart contracts rules, 221
stakeholders, 217–219

Microsoft Azure
Azure portal, 131
Ballot.sol, 137
deployment, cloud, 131
Ethereum proof-of-work 

consortium, 132
ETHEREUM-RPC-ENDPOINT 

URL, 136–137
Ethereum settings, 134
Genesis block, 134
resource groups, 135
RPC network, 135–136
settings, 133

Mining, 23
Minting, 23
Monax, 29
MultiChain, 29

Initial coin offering (ICO) (cont.)

Index



265

O
Object-oriented approach

abstraction
abstract contract, 85–87
interface, 87

encapsulation, 80–83
function overloading, 88
inheritance, 83–85
polymorphism, 85

OpenZeppelin, 190
Oraclize

asynchronous mode, 153
browser-based IDE, 157
__callback() function, 153, 155
ChainLink, 162
code, 156
compilation issue, 159
contracts, 158
data source types, 154
defined, 152–153
update() function, 155
JavaScript VM, 159
Kovan, 157
mainnet, 157
payable, 155
Python, 160–161
query, 153
recursive time-based  

queries, 161
Remix, 157
Remix IDE, 154
Rinkeby, 157
Ropsten, 157

update() function, 155
usingOraclize contract, 154–155
warning, 158

P, Q
Practical byzantine fault tolerance 

model (PBFT model), 24
Private Ethereum blockchain, 54
Private key, 20–21
Proof of authority (POA), 24
Proof of stake (POS), 23
Proof-of-work (POW), 22, 39
Public Ethereum blockchain, 

41–44, 126, 190
Public key, 20–21

R
Real estate

Ethereum advantages, 226
land registry, 227
ownership, 222
traceability, 222–226

Remote procedure call (RPC), 139
Ropsten

contract
ether, 119–120
Ethereum wallet, 116–117
Etherscan report, 120–121
Etherscan web site, 117–118
faucet, 117
injected Web3, 116
MetaMask, 116–119

Index



266

Remix browser, 115
Ropsten network, 117

MetaMask
Chrome browser, 110–111
DEN, 112, 114
test network, 114–115
vault, 113–114

S
Smart contracts

Amazon AWS, 138
defined, 38, 40
deployment, cloud  

(see Microsoft Azure)
enterprise, 174
Ganache, 105
IBM Bluemix, 138
JavaScript VM, 105
private network deployment

chaindata, 123
Coinbase, 124
config section, 124
Ethereum client node, 123
Genesis block, 124–126
installation, 122
keyfiles, 128–129
mining ether, 129
Mist browser, 127
network, 130
Nonce, 124
ParentHash, 125

public Ethereum  
blockchain, 128

Ropsten, 105
Truffle Suite, 105
UI (see User interface (UI))

Social security number, 217, 218
SolCover, 179
Solidity programming

assembly language, 92
bytecode, 91–92
chrome browser, 55
defined, 41
Ethereum, 55
file details (see File details, 

Solidity)
high-speed Internet, 55
kill() function, 89–90
library, 88
object-oriented approach (see 

Object-oriented approach)
opcode, 92
Remix

ballot.sol, 93–96
browser, 55–57
contracts, 57–58
debugging, 97–101
warnings, 57

solc compiler, 102
unit testing

Dapp, 103
Embark, 103
Populus, 103
Truffle, 103

Ropsten (cont.)

Index



267

T
Truffle

creation
MetaMask, 185
MyContract.sol, 184
myTruffle, 182
project structure, 183
truffle.cmd, 184–185
truffle-config.js, 183
truffle init, 182
unit test, 184

Drizzle, 190
installation, 182
Live, 190
OpenZeppelin, 190
Project Hotcakes, 190
testing framework, 181
Truffle 4.0, 190
unit testing

ganache-cli, 188
MyContract.Sol, 186
MyContractTest.Sol, 187–188
truffle.cmd compile, 189
truffle test, 189

Turing machine, 38

U, V
Unit testing, 102–103, 178–179, 195
User interface (UI)

ABI, 146
contract address, 146–147
ganache-cli, 140–141
HTML file, 148
index.html file, 143–145
install, Web3.js, 142
main.css file, 147
node, 140
npm init command, 141
StudentDetails.sol Solidity 

contract, 142
student form, 149
testing Remix, 149
testing screen, 148
Web3.js, 139–140
Web3 Provider, 143
web front end, 139

W, X, Y, Z
Web3.js, 139–142
Whisper, 50–52

Index


	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Preface
	Guidelines to Use the Book
	Chapter 1: The World of Blockchains
	Why Bitcoin Took the Market by Storm
	Blockchains and Smart Contracts, the Need of the Hour
	Introduction to Blockchains
	Business Problem
	Fully Distributed Model
	Fully Centralized Model
	DLT, or the Decentralized Peer-to-Peer Model

	DLT vs. Blockchains
	Benefits of Blockchains
	Blockchain Transactions and Blocks
	Block Header
	Merkle Tree
	Double Spending
	Blockchain Hashing
	Public and Private Keys

	Consensus
	Proof of Work
	Proof of Stake
	Delegated Proof of Stake
	Proof of Authority
	Practical Byzantine Fault Tolerance
	Directed Acyclic Graphs

	Forks in Blockchains
	Soft Fork
	Hard Fork
	Forks in Ethereum

	Types of Visibilities in Blockchain Networks
	Public Blockchains
	Private Blockchains
	Consortium or Federated Blockchains

	Advantages of Ethereum
	Limitations of Ethereum
	Leading Blockchain and DLT Protocols
	Quorum
	Ripple
	Hyperledger Fabric
	R3 Corda
	MultiChain
	Symbiont
	OpenChain
	Cardano
	IOTA
	EOS
	Hashgraph

	Most Ambitious Ethereum Projects in Production

	Chapter 2: Ethereum Architecture
	Bitcoin vs. Ethereum
	Turing Complete
	Ethereum Virtual Machine
	Consensus Mechanism
	Decentralized Autonomous Organization
	Smart Contracts
	Solidity
	Gas
	Where Does Data Get Stored in Ethereum?
	Ethereum Accounts
	Storage Cost
	The Entire Ethereum Ecosystem
	Interplanetary File System
	Storing Data on IPFS
	Sharing Data on IPFS
	Sharing Data on IPFS by Asymmetric Cryptography
	IPFS and Ethereum, Brothers in Arms

	Swarm
	IPFS vs. Swarm
	Whisper

	Cryptocurrency or Token?
	Ether
	Wei
	How to Get Ether

	Private Ethereum Blockchains

	Chapter 3: Basic Solidity Programming
	Prerequisites
	Remix Browser
	Deploying Contracts in Remix
	Solidity File Details
	Extension
	File Storage
	Application Binary Interface
	Import Statement
	Version
	Variables
	By Value
	Integers
	Fixed Numbers
	Boolean
	Byte
	Enum
	Address

	By Reference
	Array
	Struct
	String
	Mappings

	Solidity Comments
	Function
	Fallback Function
	Function Modifiers

	Constructor
	Visibility
	External
	Public
	Internal
	Private

	Getter and Setter
	Error Handling: throw, revert(), assert(), require()
	Function with No Gas Cost
	Constant
	View
	Pure

	Data Storage
	Storage
	Memory
	Calldata
	Stack

	Events

	Object-Oriented Approach
	Encapsulation
	Inheritance
	Polymorphism
	Abstraction
	Abstract Contract
	Interface

	Function Overloading

	Libraries
	End a Contract
	Solidity, Bytecode, and Opcode
	Assembly Language
	Running on Remix
	Debugging on Remix
	Running on the solc Compiler
	Unit Testing
	Embark
	Truffle
	Dapp
	Populus


	Chapter 4: Deploying Smart Contracts
	Local Ethereum Testing with Ganache
	Public Ethereum Testing with the Ropsten Testnet
	Using MetaMask
	Deploying the Contract

	Deploying on a Private Network
	Installing
	Getting Started
	Mining Ether
	Deploying on the Network

	Deploying on the Cloud
	Deploying a Private Ethereum Blockchain on Microsoft Azure
	Amazon AWS and IBM Bluemix


	Chapter 5: Integration with the UI
	Introduction to Web3.js
	Installing Node and Web3.js
	Writing a Smart Contract
	Writing the Front-End Code
	Testing Through the Screen
	Testing Through Remix

	Chapter 6: Advanced Programming in Oraclize and IPFS, and Best Practices
	Oraclize
	Example
	Trying the Oraclize IDE
	Encrypting Data with a Python Script
	Recursive Time-Based Queries
	Oraclize Real-Life Implementations
	ChainLink

	Storing Larger Content on IPFS
	Benefits of IPFS
	Locally Configuring IPFS
	IPNS

	Ethereum Best Practices
	Enterprise Smart Contracts
	Version
	Naming Conventions
	Visibility Call
	Delegate Call
	Simplicity and Modularity
	Overflow and Underflow
	External Calls
	Race Conditions
	Reentrancy
	Timestamp Dependence
	Transaction Ordering
	Token Standards
	Unit Testing
	Smart Contract Auditing
	Security Tools


	Chapter 7: Frameworks: Truffle and Embark
	Truffle
	Install Truffle
	Create a Truffle Project
	Unit Testing

	OpenZeppelin: Securing Solidity Code
	Truffle Road Map
	Embark
	Install Embark
	Create an Embark Project
	Unit Testing


	Chapter 8: Testing Strategy for Ethereum Dapps
	Blockchains and Testing
	Functional and Nonfunctional Testing
	Standard Functional Testing
	Unit Tests
	Integration Testing
	User Interface and Mobile Apps Testing

	Standard Nonfunctional Testing
	Security Testing
	Load, Performance, and Stress Testing

	Specialized Testing
	Smart Contract Testing
	Node Testing
	Network Simulation Testing
	Token Testing



	Chapter 9: Ethereum Use Cases
	Initial Coin Offering
	ICO Road Map
	Idea Conceptualization
	Organization Formation and Structuring
	Announcement of the ICO
	Creation of a White Paper
	Accumulate Mentors and Experts
	Advertising Campaign
	Token Creation
	Listing of New Currency on a Cryptocurrency Exchange
	Using the Tokens
	Product Development

	Ethereum Request for Comment Standards
	ERC20
	Functions
	Events Format
	Solution
	Deployon Mist

	EIP
	Top ERC Tokens That Can Replace ERC20
	Use the New Cryptocurrency as a Token


	Microfinance
	Solution
	Smart Contract Rules
	Live Implementation

	Real Estate
	Solution
	Ethereum Advantages
	Live Implementation

	Travel
	Solution
	Ethereum Advantages
	Live Implementations

	Car Insurance
	Solution
	Ethereum Advantages
	Live Implementations

	Legal
	Solution
	Ethereum Advantages

	Education
	Solution
	Ethereum Advantages
	Live Implementations

	Healthcare
	Solution
	Ethereum Advantages
	Live Implementations

	Secure Voting and Digital Identity
	Solution
	Ethereum Advantages
	Live Implementations


	Chapter 10: Ethereum: What Lies Ahead
	The Evolution of Ethereum
	Olympic, May 2015
	Frontier, July 2015
	Homestead, March 2016
	Byzantium Metropolis Phase I, October 2017
	Constantinople Metropolis Phase II, Slated for 2018
	Serenity, Slated for 2018

	Scaling of Ethereum
	Casper Proof of Stake
	Sharding
	Raiden Network
	Plasma
	Internet of Blockchains: Polkadot, Cosmos, Coco

	Governance
	Conclusion
	References

	Index



