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Introduction

Some time ago, one of my colleagues asked me, “What do you like about SQL Server the
most?” I had heard this question many times before, and so I provided my usual answer:
“SQL Server Internals. I like to understand how the product works and solve complex
problems with this knowledge.”

His next question was not so simple though: “How did you fall in love with SQL
Server Internals?” After some time thinking, I answered, “Well, I guess it started when
I had to work on the locking issues. I had to learn SQL Server Internals to troubleshoot
complex deadlocks and blocking conditions. And I enjoyed the sense of satisfaction
those challenges gave me.”

This is, in fact, the truth. The Concurrency Model has always been an essential part
of my SQL Server journey, and I have always been fascinated by it. Concurrency is,
perhaps, one of the most confusing and least understood parts of SQL Server, but, at the
same time, it is also quite logical. The internal implementation is vaguely documented;
however, as soon as you grasp the core concepts, everything starts to fit together nicely.

It is also fair to say that concurrency topics have always been my favorites. My first
few SQL Saturday presentations and first few blog posts were about locking and blocking.
I even started to write my first book, the first edition of Pro SQL Server Internals, from
Chapter 17—the first chapter in the “Locking, Blocking, and Concurrency” part—before
going back to write the beginning.

Those few chapters, by the way, were the first and worst chapters I have ever written.
I am very glad that I had an opportunity to revisit them in the second edition of Internals
book. Nevertheless, I was unable to cover the subject as deeply as I wanted to due to
deadlines and space constraints (I am sure that Apress regularly ran out of paper printing
the 900-page manuscript in its current form). Thus, I am very glad that I can present you
with a separate book on SQL Server locking, blocking, and concurrency now.

If you have read Pro SQL Server Internals before, you will notice some familiar
content. Nevertheless, I did my best to expand the coverage of the old topics and added
quite a few new ones. I also made many changes in the demo scripts and added the new
Blocking Monitoring Framework code, which dramatically simplifies troubleshooting
concurrency issues in the system.
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INTRODUCTION

This book covers all modern versions of SQL Server, starting with SQL Server
2005, along with Microsoft Azure SQL Databases. There may be a few very minor
version-specific differences; however, conceptually the SQL Server Concurrency Model
has not changed much over the years.

Nor do I expect it to dramatically change in the near future, so this book should be
applicable to at least several future versions of SQL Server.

Finally, I would like to thank you again for choosing this book and for your trust in
me. I hope that you will enjoy reading it as much as I enjoyed writing it!

How This Book Is Structured

This book consists of 14 chapters and is structured in the following way:

o Chapter 1, “Data Storage and Access Methods,” describes how SQL
Server stores and works with the data in disk-based tables. This
knowledge is the essential cornerstone to understanding the SQL
Server Concurrency Model.

e Chapter 2, “Transaction Management and Concurrency Models,”
provides an overview of optimistic and pessimistic concurrency
and focuses on transaction management and error handling in the
system.

e Chapter 3, “Lock Types,” explains the key elements of SQL Server
concurrency, such as lock types.

e Chapter 4, “Blocking in the System,” discusses why blocking occurs in
the system and shows how to troubleshoot it.

e Chapter 5, “Deadlocks,” demonstrates the common causes of
deadlocks and outlines how to address them.

”n

¢ Chapter 6, “Optimistic Isolation Levels,” covers optimistic
concurrency in SQL Server.

o Chapter 7, “Lock Escalations,” talks about lock escalation techniques
that SQL Server uses to reduce locking overhead in the system.

o Chapter 8, “Schema and Low-Priority Locks,” covers the schema
locks that occur during schema modifications in the database. It also

xviii



INTRODUCTION

explains low-priority locks that may help to reduce blocking during
index and partition management in recent versions of SQL Server.

o Chapter9, “Lock Partitioning,” discusses lock partitioning, which SQL
Server uses in systems that have 16 or more logical CPUs.

o Chapter 10, “Application Locks,” focuses on application locks that can
be created in the code programmatically.

o Chapter 11, “Designing a Transaction Strategy,” provides guidelines
on how to design transaction strategies in the system.

o Chapter 12, “Troubleshooting Concurrency Issues,” discusses the
holistic system troubleshooting process and demonstrates how to
detect and address concurrency issues in the system.

o Chapter 13, “In-Memory OLTP Concurrency Model,” provides
an overview of how concurrency works in In-Memory OLTP
environments.

o Chapter 14, “Locking and Columnstore Indexes,” explains the locking
that occurs with updateable columnstore indexes.

Downloading the Code

You can download the code used in this book from the “Source Code” section of the
Apress website (www.apress.com) or from the “Publications” section of my blog
(http://aboutsqglserver.com). The source code consists of the SQL Server Management
Studio solution, which includes a set of projects (one per chapter).
There is also a separate solution with the Blocking Monitoring Framework code.

I am planning to update and enhance the Blocking Monitoring Framework on
aregular basis in the future. You can always download the latest version from
http://aboutsqlserver.com/bmframework.

Xix
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CHAPTER 1

Data Storage and Access
Methods

It is impossible to grasp the SQL Server concurrency model without understanding
how SQL Server stores and accesses the data. This knowledge helps you to comprehend
various aspects of locking behavior in the system, and it is also essential when
troubleshooting concurrency issues.

Nowadays, SQL Server and Microsoft Azure SQL Databases support three different
technologies that dictate how data is stored and manipulated in the system. The classic
Storage Engine implements row-based storage. This technology persists the data in disk-
based tables, combining all columns from a table together into data rows. The data rows,
in turn, reside on 8 KB data pages, each of which may have one or multiple rows.

Starting with SQL Server 2012, you can store data in a columnar format using
columnstore indexes. SQL Server splits the data into row groups of up to 1,048,576 rows
each. The data in the row group is combined and stored on a per-column rather than a
per-row basis. This format is optimized for reporting and analytics queries.

Finally, the In-Memory OLTP Engine, introduced in SQL Server 2014, allows you
to define memory-optimized tables, which keep all data entirely in memory. The data
rows in memory are linked to the data row chains through the memory pointers. This
technology is optimized for heavy OLTP workload.

We will discuss locking behavior in In-Memory OLTP and columnstore indexes later
in the book, after we cover the concurrency model of the classic Storage Engine. This
knowledge is a cornerstone of understanding how SQL Server behaves in a multi-user
environment.

The goal of this chapter is to give a high-level overview of row-based storage in SQL
Server. It will explain how SQL Server stores the data in disk-based tables, illustrate the
structure of B-Tree indexes, and demonstrate how SQL Server accesses data from them.

© Dmitri Korotkevitch 2018
D. Korotkevitch, Expert SQL Server Transactions and Locking, https://doi.org/10.1007/978-1-4842-3957-5_1



CHAPTER 1  DATA STORAGE AND ACCESS METHODS

You should not consider this chapter as a deep dive into the SQL Server Storage
Engine. It should provide, however, enough information to discuss the concurrency
model in SQL Server.

Anatomy of a Table

The internal structure of a disk-based table is rather complex and consists of multiple
elements and internal objects, as shown in Figure 1-1.

Table Data IN_ROW_DATA
A page
l ROW_OVERFLOW_DATA
4 Partition 1 I:{ ----------- > Data (Optional)
- Page
1 — (Clustered Index or Heap)i'.__

~ A Partition N | LOB_DATA

Y Data (Optional)
Page

P
( Nonclustered Index ))I Partition 1 | ~
~_ Allocation
-;{ Partition 1 I Units
( Nonclustered Index )

Partition N

0..N —

|
1..N

Figure 1-1. Internal structure of a table

The data in the tables is stored either completely unsorted (those tables are called
heap tables or heaps) or sorted according to the value of a clustered index key when a
table has such an index defined.

In addition to a single clustered index, every table may have a set of nonclustered
indexes. These indexes are separate data structures that store a copy of the data from a
table sorted according to index key column(s). For example, if a column was included
in three nonclustered indexes, SQL Server would store that data four times—once in a
clustered index or heap and in each of the three nonclustered indexes.



CHAPTER 1  DATA STORAGE AND ACCESS METHODS

You can create either 250 or 999 nonclustered indexes per table, depending on SQL
Server version. However, it is clearly not a good idea to create a lot of them due to the
overhead they introduce. In addition to storage overhead, SQL Server needs to insert
or delete data from each nonclustered index during data modifications. Moreover, the
update operation requires SQL Server to modify data in every index in which updated
columns were present.

Internally, each index (and heap) consists of one or multiple partitions. Every
partition, in a nutshell, is an internal data structure (index or heap) independent from
other partitions in the object. SQL Server allows the use of a different partition strategy
for every index in the table; however, in most cases, all indexes are partitioned in the
same way and aligned with each other.

Note Every table/index in SQL Server is partitioned. Non-partitioned tables are
treated as single-partition tables/indexes internally.

As I already mentioned, the actual data is stored in data rows on 8 KB data pages
with 8,060 bytes available to users. The pages that store users’ data may belong
to three different categories called allocation units based on the type of data they
store.

IN_ROW_DATA allocation unit pages store the main data row objects, which consist
of internal attributes and the data from fixed-length columns, such as int, datetime,
float, and others. The in-row part of a data row must fit on a single data page and,
therefore, cannot exceed 8,060 bytes. The data from variable-length columns, such as
(n)varchar(max), (n)varbinary(max), xml, and others, may also be stored in-row in the
main row object when it fits into this limit.

In cases when variable-length data does not fit in-row, SQL Server stores it off-
row on different data pages, referencing them through in-row pointers. Variable-
length data that exceeds 8,000 bytes is stored on LOB_DATA allocation unit data pages
(LOB stands for large objects). Otherwise, the data is stored in RON_OVERFLOW_DATA
allocation unit pages.

Let’s look at an example and create a table that contains several fixed- and variable-
length columns and insert one row there, as shown in Listing 1-1.
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Listing 1-1. Data row storage: Creating the test table

create table dbo.DataRows

(
ID int not null,
ADate datetime not null,
VarCol1 varchar(max),
VarCol2 varchar(5000),
VarCol3 varchar(5000)

);

insert into dbo.DataRows(ID, ADate, VarColi, VarCol2, VarCol3)
values

(
1
,'1974-08-22"
,replicate(convert(varchar(max), 'A"),32000)
,replicate(convert(varchar(max), 'B'),5000)
,replicate(convert(varchar(max),'C"),5000)
);

The data from fixed-length columns (ID, ADate) will be stored in-row on an IN_ROW
DATA allocation unit page. The data from VarCol1 column is 32,000 bytes and will be
stored on LOB_DATA data pages.

The VarCol2 and VarCol3 columns have 5,000 bytes of data each. SQL Server would
keep one of them in-row (it would fit into the 8,060-byte limit) and place the other one
on the single ROW_OVERFLOW_DATA page.

Note Off-row column pointers use 16 or 24 bytes in-row, which counts toward
the 8,060 maximum row size. In practice, this may limit the number of columns
you can have in a table.
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Figure 1-2 illustrates this state.
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Figure 1-2. Data row storage: Data pages after the first INSERT

The sys.dm_db_index_physical stats data management function is usually used
to analyze index fragmentation. It also displays the information about data pages on a
per-allocation unit basis.

Listing 1-2 shows the query that returns the information about the dbo.DataRows table.

Listing 1-2. Data row storage: Analyzing the table using sys.dm_db_index_
physical_stats DMO

select
index_id, partition_number, alloc unit type desc
,page_count, record count, min_record size in bytes
,max_record size in bytes, avg record size in bytes
from
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sys.dm_db_index_physical stats

(
db_id()
,object id(N'dbo.DataRows")
,0 /* IndexId = 0 -> Table Heap */
,NULL /* All Partitions */
, 'DETAILED'
)s

Figure 1-3 illustrates the output of the code. As expected, the table has one IN_ROW

DATA, one ROW_OVERFLOW_DATA, and four LOB_DATA pages. The IN_ROW data page has
about 2,900 free bytes available.

index_id parition_number alloc_unit_type_desc page_count record_court min_record_size_in_bytes max_record_size_in_bytes avg_record_size_in_bytes

1 0 IN_ROW_DATA 1 1 51 511 5111
2 0 ROW_OVERFLOW_DATA 1 1 5014 5014 5014
3 0 LOB_DATA 4 4 7834 8054 8014

Figure 1-3. Data row storage: sys.dm_db_index_physical_stats output after the
first INSERT

Let’s insert another row using the code from Listing 1-3.

Listing 1-3. Data row storage: Inserting the second row

insert into dbo.DataRows(ID, ADate, VarColi, VarCol2, VarCol3)
values(2,'2006-09-29", 'DDDDD", "EEEEE", "FFFFF");

All three variable-length columns store five-character strings, and, therefore, the row

would fit on the already-allocated IN_ROW_DATA page. Figure 1-4 illustrates data pages at
this phase.
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Figure 1-4. Data row storage: Data pages after the second INSERT

You can confirm it by running the code from Listing 1-2 again. Figure 1-5 illustrates

the output from the view.

index_id parition_number alloc_unit_type_desc
1 0 1 IN_ROW_DATA
2 0 1

3 0 1 LOB_DATA

ROW_OVERFLOW_DATA 1

2 42
1 5014
4 7854

page_court record_court min_record_size_in_bytes max_record_size_in_bytes avg_record_size_in_bytes

511 25765
5014 5014
8054 2014

Figure 1-5. Data row storage: sys.dm_db_index_physical_stats output after the

second INSERT

SQL Server logically groups eight pages into 64KB units called extents. There are two
types of extents available: mixed extents store data that belongs to different objects, while
uniform extents store the data for the same object.

By default, when a new object is created, SQL Server stores the first eight object
pages in mixed extents. After that, all subsequent space allocation for that object is done

with uniform extents.
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Tip Disabling mixed extents allocation may help to improve tempdb throughput
in the system. In SQL Server prior to 2016, you can achieve that by enabling
server-level trace flag T1118. This trace flag is not required in SQL Server 2016
and above, where tempdb does not use mixed extents anymore.

SQL Server uses a special kind of pages, called allocation maps, to track extent and page
usage in database files. Index Allocation Maps (IAM) pages track extents that belong to an
allocation unit on a per-partition basis. Those pages are, in a nutshell, bitmaps, where each
bit indicates if the extent belongs to a specific allocation unit from the object partition.

Each IAM page covers about 64,000 extents, or almost 4 GB of data in a data file. For
larger files, multiple IAM pages are linked together into IJAM chains.

Note There are many other types of allocation maps used for database
management. You can read about them at https://docs.microsoft.com/en-
us/sql/relational-databases/pages-and-extents-architecture-
guide orin my Pro SQL Server Internals book.

Heap Tables

Heap tables are tables without a clustered index. The data in heap tables is unsorted.
SQL Server does not guarantee, nor does it maintain, a sorting order of the data in heap
tables.

When you insert data into heap tables, SQL Server tries to fill pages as much as
possible, although it does not analyze the actual free space available on a page. It uses
another type of allocation map page called Page Free Space (PFS), which tracks the
amount of free space available on the page. This tracking is imprecise, however. SQL
Server uses three bits, which indicate if the page is empty, or if itis 1 to 50, 51 to 80, 81 to
95 or above 95 percent full. It is entirely possible that SQL Server would not store a new
row on the page even when it has available space.

When you select data from the heap table, SQL Server uses IAM pages to find the
pages and extents that belong to the table, processing them based on their order on the
IAM pages rather than on the order in which the data was inserted. Figure 1-6 illustrates
this point. This operation is shown as Table Scan in the execution plan.
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IAM Page
2™ read \.3"" read
R13
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Figure 1-6. Selecting data from the heap table

When you update the row in the heap table, SQL Server tries to accommodate it on
the same page. If there is no free space available, SQL Server moves the new version
of the row to another page and replaces the old row with a special 16-byte row called
a forwarding pointer. The new version of the row is called a forwarded row. Figure 1-7
illustrates this point.

IAM Page
<
Rt i
B P B AP I Forwarded Row
SR I ) )
Data Page Data Page R14/ Data Page Data Page Data Page
Forwarding

Pointer

Figure 1-7. Forwarding pointers

There are two main reasons why forwarding pointers are used. First, they prevent
updates of nonclustered index keys, which reference the row. We will talk about
nonclustered indexes in more detail later in this chapter.

In addition, forwarding pointers help minimize the number of duplicated reads; that
is, the situation when a single row is read multiple times during the table scan. Let’s look
at Figure 1-7 as an example and assume that SQL Server scans the pages in left-to-right
order. Let’s further assume that the row in page 3 was modified at the time when SQL
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Server reads page 4 (after page 3 has already been read). The new version of the row
would be moved to page 5, which has yet to be processed. Without forwarding pointers,
SQL Server would not know that the old version of the row had already been read, and
it would read it again during the page 5 scan. With forwarding pointers, SQL Server
skips the forwarded rows—they have a flag in their internal attributes indicating that
condition.

Although forwarding pointers help minimize duplicated reads, they introduce
additional read operations at the same time. SQL Server follows the forwarding pointers
and reads the new versions of the rows at the time it encounters them. That behavior
can introduce an excessive number of I/O operations when heap tables are frequently
updated and have a large number of forwarded rows.

Note You can analyze the number of forwarded rows in the table by checking
the forwarded_record count columnin the sys.dm db_index physical
stats view.

When the size of the forwarded row is reduced by another update, and the data
page with the forwarding pointer has enough space to accommodate the updated
version of the row, SQL Server may move it back to its original data page and remove the
forwarding pointer row. Nevertheless, the only reliable way to get rid of all forwarding
pointers is by rebuilding the heap table. You can do that by using an ALTER TABLE
REBUILD statement.

Heap tables can be useful in staging environments where you want to import a large
amount of data into the system as quickly as possible. Inserting data into heap tables can
often be faster than inserting it into tables with clustered indexes. Nevertheless, during
aregular workload, tables with clustered indexes usually outperform heap tables as a
result of heap tables’ suboptimal space control and extra I/O operations introduced by
forwarding pointers.

Note You can find the scripts that demonstrate forwarding pointers’ overhead
and suboptimal space control in heap tables in this book’s companion materials.

10
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Clustered Indexes and B-Trees

A clustered index dictates the physical order of the data in a table, which is sorted
according to the clustered index key. The table can have only one clustered index
defined.

Let’s assume that you want to create a clustered index on the heap table with the data.
As a first step, which is shown in Figure 1-8, SQL Server creates another copy of the data
and sorts it based on the value of the clustered key. The data pages are linked in a double-
linked list, where every page contains pointers to the next and previous pages in the chain.
This list is called the leaf level of the index, and it contains the actual table data.

941 i 265 Andrew 4 eri 548 Eric ll:r'eate table dbo.Customers
124 Andrew 93707 Bob 252 Pete 125 Tom ' .
715 Mary 281 Peter Heap table 51904 Hilary 546 Tom CustomerId int not null,
245 Ashley 525 Paul 216  Shawn 555 Brian Name varchar(64) not null,
554 John 1 Victor 93711 John 3 Lisa -- Other columns
1 Victor 6 Perry 93701 Kevin 93710 Serg
g ::::“ : ::::-‘ Clustered Index g;;z: Mike 93711 John create clustered index IDX_CI
-y . Andy on dbo.Customers(Customerld)

4 Dmitri 9 Alyson (Leaf level: actual data) | 53707 Beb
5 Anton 10 Greg 93708 Mary

A J A J .. A J

Figure 1-8. Clustered index structure: Leaf level

Note The pages reference each other through page addresses, which consist
of two values: file id in the database and sequential number of the page in
the file.

When the leaf level consists of multiple pages, SQL Server starts to build an
intermediate level of the index, as shown in Figure 1-9.
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Figure 1-9. Clustered index structure: Intermediate levels

The intermediate level stores one row per each leaf-level page. It stores two pieces
of information: the physical address and the minimum value of the index key from the
page it references. The only exception is the very first row on the first page, where SQL
Server stores NULL rather than the minimum index key value. With such optimization,
SQL Server does not need to update non-leaf level rows when you insert the row with the
lowest key value in the table.

The pages on the intermediate level are also linked in a double-linked list. SQL
Server adds more and more intermediate levels until there is a level that includes just a

single page. This level is called the root level, and it becomes the entry point to the index,
as shown in Figure 1-10.

Note

This index structure is called a B-Tree Index, which stands for Balanced
Tree.

12
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Figure 1-10. Clustered index structure: Root level

As you can see, the index always has one leaf level, one root level, and zero or more
intermediate levels. The only exception is when the index data fits into a single page. In

that case, SQL Server does not create the separate root-level page, and the index consists
of just the single leaf-level page.

SQL Server always maintains the order of the data in the index, inserting new rows
on the data pages to which they belong. In cases when a data page does not have enough

free space, SQL Server allocates a new page and places the row there, adjusting pointers
in the double-linked page list to maintain a logical sorting order in the index. This

operation is called page split and leads to index fragmentation.
Figure 1-11 illustrates this condition. When Original Page does not have enough

space to accommodate the new row, SQL Server performs a page split, moving about
half of the data from Original Page to New Page, adjusting page pointers afterward.

Original
Page

Figure 1-11. Leaf-level data pages after page split
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A page split may also occur during data modifications. SQL Server does not use
forwarding pointers with B-Tree indexes. Instead, when an update cannot be done in-
place—for example, during data row increase—SQL Server performs a page split and
moves updated and subsequent rows from the page to another page. Nevertheless, the
index sorting order is maintained through the page pointers.

SQL Server may read the data from the index in three different ways. The first is an

allocation order scan. SQL Server accesses the table data through IAM pages similar
to how it does this with heap tables. This method, however, could introduce data

consistency phenomena—with page splits, rows may be skipped or read more than

once—and, therefore, allocation order scan is rarely used. We will discuss conditions

that may lead to allocation order scans later in the book.
The second method is called an ordered scan. Let’s assume that we want to run the
SELECT Name FROM dbo.Customers query. All data rows reside on the leaf level of the

index, and SQL Server can scan it and return the rows to the client.

SQL Server starts with the root page of the index and reads the first row from there.

That row references the intermediate page with the minimum key value from the table.

SQL Server reads that page and repeats the process until it finds the first page on the leaf

level. Then, SQL Server starts to read rows one by one, moving through the linked list of

the pages until all rows have been read. Figure 1-12 illustrates this process.

e " 350  L171
. 813 1:1342
',-'
.’ 93533 1:1221
“‘
"
y 4 A A
(null) 1:176 350 1:945 93533 1:6945
6 ¢ 1177 357 1:946 93540 1:6946
13 ) 1179 368 1:1724
....: 375 1:947 93701 1:7022
34'.( 1944 93710 1:7022
] . v v
'
I e PPN
1 Victor 6 Perry 93701 Kevin 93710 Serg
2 Brian 7 Boris 93702 Mike 93711 John
3 Lisa 8 Ashley 93705 Andy
4 Dmitri 9 Alyson 93707 Bob
5 Anton 10 Greg 93708 Mary

¥

Figure 1-12. Ordered index scan
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Both allocation order scan and ordered scan are represented as Index Scan operators

in the execution plans.

Note The server can navigate through indexes in both directions, forward and
backward. However, SQL Server does not use parallelism during backward index
scans.

The last index access method is called index seek. Let’s assume we want to run the
following query: SELECT Name FROM dbo.Customers WHERE CustomerId BETWEEN 4 AND 7.
Figure 1-13 illustrates how SQL Server may process it.

ee===floul) 1:170
PP e 350 1171
oo 813 11342
‘0' ween
g 93533 1:1221
"'
,
,
’ Y A Y
(null) 1:176 350 1:945 93533 1:6945
6 4 1:177 357 1:946 93540 1:6946
13 ) 1179 368 1:1724
e 375 1:947 93701 1:7022
344, 1944 93710 1:7022
L)
; A ¥ v
L]
[ R AR
| N A a A A
1 Viector T~ 93701 Kevin 93710 Serg
2 Brian L 75 93702 Mike 93711 John
3 Lisa 8 Ashley 93705 Andy
I Bmitry 9 Alyson 93707 Bob
H ::a'ﬁf,ﬁj{::-. 10 Greg 93708 Mary
¥ v v v

Figure 1-13. Index seek

In order to read the range of rows from the table, SQL Server needs to find the row
with the minimum value of the key from the range, which is 4. SQL Server starts with
the root page, where the second row references the page with the minimum key value
of 350. It is greater than the key value that we are looking for, and SQL Server reads the
intermediate-level data page (1:170) referenced by the first row on the root page.
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Similarly, the intermediate page leads SQL Server to the first leaf-level page (1:176).
SQL Server reads that page, then it reads the rows with CustomerId equal to 4 and 5, and,
finally, it reads the two remaining rows from the second page.

Technically speaking, there are two kinds of index seek operations. The first is called
a point-lookup (or, sometimes, singleton lookup), where SQL Server seeks and returns a
single row. You can think about the WHERE CustomerId = 2 predicate as an example.

The other type is called a range scan, and it requires SQL Server to find the lowest
or highest value of the key and scan (either forward or backward) the set of rows until it
reaches the end of scan range. The predicate WHERE CustomerId BETWEEN 4 AND 7 leads
to the range scan. Both cases are shown as Index Seek operators in the execution plans.

As you can guess, index seek is more efficient than index scan because SQL Server
processes just the subset of rows and data pages rather than scanning the entire index.
However, an Index Seek operator in the execution plan may be misleading and represent
arange scan that scans a large number of rows or even an entire index. For example, in
our table, the WHERE CustomerId > O predicate requires SQL Server to scan the entire
index; however, it would be represented as an Index Seek operator in the plan.

There is a concept in relational databases called SARGable predicates, which stands
for Search Argument-able. The predicate is SARGable if SQL Server can utilize an index
seek operation if the index exists. In a nutshell, predicates are SARGable when SQL
Server can determine the single or range of index key values to process during predicate
evaluation. Obviously, it is beneficial to write queries using SARGable predicates and
utilize index seek whenever possible.

SARGable predicates include the following operators: =, >, >=, <, <=, IN, BETWEEN, and
LIKE (in case of prefix matching). Non-SARGable operators include NOT, <>, LIKE (in case
of non-prefix matching), and NOT IN.

Another circumstance for making predicates non-SARGable is using functions
(standard or user-defined) against the table columns. SQL Server must call the function
for every row it processes, which prevents an index seek from being used.

The same applies to data-type conversions where SQL Server uses the CONVERT _
IMPLICIT internal function. One common example of when it may happen is using the
unicode nvarchar parameter in the predicate with a varchar column. Another case is
having different data types for the columns that participate in a join predicate. Both of
those cases could lead to the index scan even when the predicate operator appears to be
SARGable.
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Composite Indexes

Indexes with multiple key columns are called composite (or compound) indexes. The
data in the composite indexes is sorted on a per-column basis from leftmost to rightmost
columns. Figure 1-14 shows the structure of a composite index defined on LastName

and FirstName columns in the table. The data is sorted based on LastName (left-most
column) first and then on FirstName within each LastName value.

(null) (aull) 1:1723 create table dbo.Employes

Root - LastName varchar(64) not null,
-
Level 'v" FirstName varchar(32) n
r Weber David  1:1741esta., -- Other columns
.
- ““
’ -
» A A 4 create unique clustered index IDX_CI
#(null) (null)  1:1936 Weber David 1:2108 flon dbo.Employee(LastName, FirstName);
o |clark steve 1:1937 =qao, zack David 1:2312
- "t‘ .‘
’ - Sa Ly
’ - H
; ., *, Intermediate
. ' L)
: *, ! Level
. * n
H v A ~
. , .
. ' .
i. . .
b | A v A P |
Anders Andrew Clark Steve Zack David .
Andres Peter Connelly Michael .. Zack Lisa
Ashton Lisa - Connelly Peter Zhen Chang ; Leaf
Atkins John Level
Atkins Mary
Atkins Tom
v ¥ A

Figure 1-14. Composite index structure

The SARGability of a composite index depends on the SARGability of the predicates
on the leftmost index columns, which allow SQL Server to determine the range of the

index keys to process.
Table 1-1 shows examples of SARGable and non-SARGable predicates, using the

index from Figure 1-14 as the example.
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Table 1-1. SARGable and non-SARGable Predicates on a Composite Index

SARGable Predicates Non-SARGable Predicates
LastName = 'Clark' and LastName <> 'Clark' and
FirstName = 'Steve' FirstName = 'Steve'
LastName = 'Clark' and LastName LIKE '%ar%' and
FirstName <> 'Steve' FirstName = 'Steve'
LastName = 'Clark' FirstName = 'Steve'

LastName LIKE 'Cl%'

Nonclustered Indexes

While a clustered index specifies how data rows are sorted in a table, nonclustered
indexes define a separate sorting order for a column or set of columns and persist them
as separate data structures.

You can think about a book as an example. Page numbers would represent the
book’s clustered index. The index at the end of the book shows the list of terms from the
book in alphabetical order. Each term references the page numbers where the term is
mentioned. That represents the nonclustered index of the terms.

When you need to find a term in the book, you can look it up in the term index. It is
a fast and efficient operation because terms are sorted in alphabetical order. Next, you
can quickly find the pages on which the terms are mentioned by using the page numbers
specified there. Without the term index, the only choice would be to read all of the pages
in the book one by one until all references to the term are found.

The nonclustered index structure is very similar to the clustered index structure.
Let’s create a nonclustered index on the Name column from the dbo.Customers table
with CREATE NONCLUSTERED INDEX IDX NCI ON dbo.Customers(Name) statement.
Figure 1-15 shows the structure of both indexes.
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Figure 1-15. Clustered and nonclustered index structures

The leaf level of the nonclustered index is sorted based on the value of the index

key—Name in our case. Every row on the leaf level includes the key value and row-id

value. For heap tables, row-1id is the physical location of the row defined as the

file:page:slot address, where slot identifies location of the row on the data page.
For tables with a clustered index, row-1id represents the value of the clustered index

key of the row. This is a very important point to remember. Nonclustered indexes do not

store information about physical row location when a table has a clustered index defined.
They store the value of the clustered index key instead.
Like clustered indexes, the intermediate and root levels of nonclustered indexes

store one row per page from the level they reference. That row consists of the physical

address and the minimum value of the key from the page. In addition, for non-unique
indexes, it also stores the row-id of such a row.

Let’s look at how SQL Server uses nonclustered indexes, assuming that you run the
following query: SELECT * FROM dbo.Customers WHERE Name = '

Boris'.
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Figure 1-16. Nonclustered index usage: Step 1

As shown in the first step in Figure 1-16, SQL Server starts with the root page of the
nonclustered index. The key value Boris is less than Dan, and SQL Server goes to the
intermediate page referenced from the first row in the root-level page.

The second row of the intermediate page indicates that the minimum key value on
the page is Boris, although the index had not been defined as unique and SQL Server
does not know if there are other Boris rows stored on the first page. As a result, it goes
to the first leaf page of the index and finds the row with the key value Boris and row-1id
equal to 7 there.

In our case, the nonclustered index does not store any data besides CustomerId
and Name, and SQL Server needs to traverse the clustered index tree and obtain the data
from other columns from a table, returning them to the client. This operation is called
Key Lookup. In heap tables, where clustered indexes do not exist, SQL Server accesses
data rows using row-1id, which stores a physical location of the row in the database. This
operation is called RID Lookup.

In the next step shown in Figure 1-17, SQL Server comes back to the nonclustered
index and reads the second page from the leaf level. It finds another row with the key
value Boris and row-1id of 93712, and it performs a key lookup again.
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Figure 1-17. Nonclustered index usage: Step 2

As you can see, SQL Server had to read the data pages 10 times even though the
query returned just two rows. The number of I/O operations can be calculated based on
the following formula: (# of levels in nonclustered index) + (number of pages
read from the leaf level of nonclustered index) + (number of rows found)
* (# of levels in clustered index). Asyou can guess, alarge number of rows
found (key lookup operations) leads to a large number of I/O operations, which makes
nonclustered index usage inefficient.

The same applies to heap tables. Reading the main data row from a heap (RID
lookup operation) does not require SQL Server to traverse root and intermediate levels
of clustered index B-Tree. Nevertheless, it is an expensive operation, especially with
forwarding pointers. SQL Server does not update row-1id in nonclustered indexes
when a heap table row is moved to another page and forwarding pointer is created.
Nonclustered indexes still reference the old row location, which may lead to additional
I/0 operation when SQL Server reads the forwarded row.

As aresult, SQL Server is very conservative in choosing nonclustered indexes when
it expects that a large number of key or RID lookup operations will be required. The
threshold when SQL Server chooses to scan another index or table over performing key
lookups varies; however, it is very low.

Finally, it is worth repeating that nonclustered indexes store a copy of the data from the
index columns, which introduces update overhead. When columns are updated, SQL Server
needs to update them in every index in which they are present. Similarly, every insert or

delete operation requires SQL Server to perform it on each nonclustered index B-Tree.
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Remember this overhead and avoid creating unnecessary nonclustered indexes in
the system.

Indexes with Included Columns

As we just discussed, SQL Server rarely uses nonclustered indexes when it expects that a
large number of key or RID lookups is required. Those operations usually lead to a large
number of reads, both logical and physical.

With key lookup operations, SQL Server accesses multiple data pages from a
clustered index every time it needs to obtain a single row. Even though root and
intermediate index levels are usually cached in the buffer pool, access to leaf-level pages
produces random, and often physical, I/O reads, which are slow, especially in the case of
magnetic disk drives.

This is also true for heap tables. Even though the row-1id in a nonclustered index
stores the physical location of the row in a table, and RID lookup operations do not need
to traverse the clustered index tree, they still introduce random I/O. Moreover, forwarding
pointers can lead to extra reads if a row has been updated and moved to another page.

The existence of key or RID lookups is the crucial factor here. Rows in a nonclustered
index are smaller than those in a clustered index. Nonclustered indexes use fewer data
pages and, therefore, are more efficient. SQL Server uses nonclustered indexes even
when it expects that a large number of rows need to be selected, as long as key or RID
lookups are not required.

As you will recall, nonclustered indexes store data from the index key columns and
row-1id. For tables with clustered indexes, the row-1id is the clustered key value of the
index row. The values in all indexes are the same: when you update the row, SQL Server
synchronously updates all indexes.

SQL Server does not need to perform key or RID lookups when all of the data a query
needs exists in a nonclustered index. Those indexes are called covering indexes because they
provide all of the information that a query needs, and they are essentially covering the query.

Making nonclustered indexes covering is one of the most commonly used query-
optimization techniques, which improves index efficiency and allows you to eliminate
expensive key or RID lookups from execution plans. You can achieve it by including
required columns in the index using the INCLUDE clause of the CREATE INDEX statement.
The data from these columns are stored on the leaf level only, without being added to
the index key and without affecting the sorting order of the index rows.
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Figure 1-18 illustrates the structure of an index with included columns,

defined as CREATE INDEX IDX Customers Name ON dbo.Customers(Name)
INCLUDE (DateOfBirth), on the table we defined earlier, which has CustomerId as the

clustered index column.
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Figure 1-18. Structure of an index with included column

Now, if all columns, which query references are present in the index, SQL Server may
obtain all data from the leaf level of the nonclustered index B-Tree without performing
key or RID lookups. It could use the index regardless of how many rows would be

selected from there.
Although covering indexes are a great tool that can help optimize queries, they

come at a cost. Every column in the index increases its row size and the number

of data pages it uses on disk and in memory. That introduces additional overhead
during index maintenance and increases the database size. Moreover, queries need
to read more pages when scanning all or part of the index. It does not necessarily
introduce a noticeable performance impact during small range scans when reading
a few extra pages is far more efficient as compared to key lookups. However, it could
negatively affect the performance of queries that scan a large number of data pages

or the entire index.
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Obviously, they also add update overhead. By adding a column to nonclustered
indexes, you store the data in multiple places. This improves the performance of queries
that select the data. However, during updates, SQL Server needs to change the rows in
every index where updated columns are present. Remember this and be careful with
including frequently modified columns to the indexes.

Summary

The classic SQL Server Storage Engine stores data in disk-based tables using row-based
storage. All columns from the table are stored together in the data rows, which reside on
8 KB data pages.

The data in the tables may be stored in two different ways—either completely
unsorted in heap tables or sorted according to a clustered index key when such an index
is defined. The tables with clustered indexes usually outperform heap tables during
normal workload.

Every table may have a set of nonclustered indexes defined. Each nonclustered index
is a separate data structure, which stores a copy of the data from a table sorted according
to index key columns. Nonclustered indexes may improve performance of the queries at
the cost of the update overhead they introduce.

SQL Server uses key lookup and RID lookup operations to obtain data from columns
that are not present in nonclustered indexes. These operations are expensive, and
SQL Server does not use nonclustered indexes if it expects that a large number of such
operations is required. You can include additional columns in the indexes, making them
covering and eliminating key and RID lookups from execution plans.

There are two main data access patterns SQL Server uses when working
with indexes. Index scans read the entire index by scanning all pages from there.
Alternatively, index seek processes read just a subset of the index rows and pages. Index
seek is more efficient than index scan, and it is beneficial to use SARGable predicates
that may utilize index seek when an index exists.
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CHAPTER 2

Transaction Management
and Concurrency Models

Transactions are the key concept in data management systems; they guarantee the
consistency and durability of the data in the database. It is impossible to implement a
database system without proper transaction management in place.

This chapter will explain the importance of transactions, provide an overview of both
pessimistic and optimistic concurrency models, and outline transaction isolation levels
and the possible data consistency phenomena they may introduce. Finally, the chapter
will discuss several questions related to transaction management and error handling in
SQL Server.

Transactions

Microsoft SQL Server has been designed to work in multi-user environments, just
like any other general-purpose database server. The Database Engine should handle
simultaneous workloads from multiple users and provide the required level of data
consistency when users query and modify the same data.

There is a key concept in database and data management systems called transactions.
Transactions are the single unit of work that reads and modifies data in a database and helps
to enforce the consistency and durability of the data there. Every transaction in a properly
implemented transaction management system has four different characteristics: atomicity,
consistency, isolation, and durability, often referenced as ACID.

o Atomicity guarantees that each transaction executes as a single unit
of work using an “all or nothing” approach. All changes done within
a transaction are either committed or rolled back in full. Consider the
classic example of transferring money between checking and savings
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bank accounts. That action consists of two separate operations:
decreasing the balance of the checking account and increasing the
balance of the savings account. Transaction atomicity guarantees
that both operations either succeed or fail together, and a system will
never be in an inconsistent state where money was deducted from
the checking account but never added to the savings account.

o Consistency ensures that any database transaction brings the
database from one consistent state to another and that none of the
defined database rules and constraints were violated.

o Isolation ensures that the changes made in the transaction are isolated
and invisible to other transactions until the transaction is committed.
By the book, transaction isolation should guarantee that the concurrent
execution of multiple transactions brings the system to the same
state as if those transactions were executed serially. However, in most
database systems, such a requirement is often relaxed and controlled by
transaction isolation levels, which we will discuss later in the chapter.

o Durability guarantees that after a transaction is committed, all
changes done by the transaction stay permanent and will survive a
system crash. SQL Server achieves durability by using write-ahead
logging to harden log records in the transaction log. A transaction is
not considered to be committed until all log records generated by the
transaction are hardened in the log file.

The isolation requirements are the most complex to implement in multi-user
environments. Even though it is possible to completely isolate different transactions
from each other, this could lead to a high level of blocking and other concurrency issues
in systems with volatile data. SQL Server addresses this situation by introducing several
transaction isolation levels that relax isolation requirements at the cost of possible
concurrency phenomena related to read data consistency:

o Dirty Reads: A transaction reads uncommitted (dirty) data from
other uncommitted transactions.

o Non-Repeatable Reads: Subsequent attempts to read the same data
from within the same transaction return different results. This data
inconsistency issue arises when the other transactions modified, or even
deleted, data between the reads done by the affected transaction.
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o Phantom Reads: This phenomenon occurs when subsequent
reads within the same transaction return new rows (the ones that
the transaction did not read before). This happens when another
transaction inserted new data in between the reads done by the
affected transaction.

Pessimistic and Optimistic Concurrency

Transaction isolation levels control another aspect of SQL Server behavior that dictates
concurrency models for the transactions. Conceptually, there are two concurrency
models used in database systems:

e Pessimistic concurrency works under the assumption that multiple
users who access the same data would all eventually like to modify
the data and override each other’s changes. The Database Engine
prevents this from happening by locking the data for the duration
of the transaction as soon as the first session accesses and/or
modifies it.

e Optimistic concurrency, on the other hand, assumes that, while
multiple users may access the same data, the chance of simultaneous
updates is low. The data would not be locked; however, multiple
updates would trigger write-write conflicts and roll back affected
transactions.

Let’s illustrate the difference between those models with an example. Consider,
again, that we have a transaction that wants to transfer money between checking
and savings accounts. As you remember, this would lead to two update operations—
decreasing the balance of checking and increasing the balance of savings. Let’s also
assume that you have another session that wants to perform a withdrawal from the
checking account in parallel with the transfer. This operation would decrease the
balance of the checking account (updating the same row) along with other actions.

With pessimistic concurrency, the first session that updates (and in some cases even
reads) the checking account balance would lock this row, preventing other sessions
from accessing or updating it. The second session would be blocked until the first
session completed the transaction, and it would read the new checking account balance
afterward.
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With optimistic concurrency, neither of the sessions would be blocked. However, one
of the sessions would not be able to commit and would fail with a write-write conflict error.
Both concurrency models have benefits and downsides. Pessimistic concurrency
may introduce blocking in the system. Optimistic concurrency, on the other hand,

requires proper write-write conflict handling, and it often introduces additional
overhead during data modifications.

SQL Server supports both pessimistic and optimistic concurrency models,
controlling them by transaction isolation levels.

Transaction Isolation Levels

With disk-based tables, SQL Server supports six different transaction isolation levels, as
shown in Table 2-1. The table also demonstrates possible concurrency phenomena for
each of the transaction isolation levels.

Table 2-1. Transaction Isolation Levels and Concurrency Phenomena

Isolation Level Type Dirty Non-Repeatable Phantom Write-Write
Reads Reads Reads Conflict

READ UNCOMMITTED  Pessimistic YES YES YES NO
READ COMMITTED Pessimistic NO YES YES NO
REPEATABLE READ Pessimistic NO NO YES NO
SERIALIZABLE Pessimistic NO NO NO NO
READ COMMITTED Optimistic NO YES YES NO
SNAPSHOT for readers.

Pessimistic

for writers.
SNAPSHOT Optimistic NO NO NO YES

With pessimistic isolation levels, SQL Server relies strictly on locking to prevent
access to the rows that were modified or sometimes even read by other sessions. With
optimistic isolation levels, SQL Server uses row versioning and copies old versions of
modified rows to a special area in tempdb called the version store. The other sessions
would read old (already committed) versions of the rows from there rather than being
blocked.
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It is important to note that SQL Server still acquires locks on updated rows in
optimistic isolation levels, preventing other sessions from updating the same rows
simultaneously. We will talk about it in more detail in Chapter 6.

The READ COMMITTED SNAPSHOT isolation level combines both optimistic and
pessimistic concurrency models. Readers (SELECT queries) use row versioning, while
writers (INSERT, UPDATE, and DELETE queries) rely on locking.

Strictly speaking, READ COMMITTED SNAPSHOT is not a true isolation level but rather
the database option (READ_COMMITTED SNAPSHOT) that changes the default behavior
of the readers (SELECT queries) in the READ COMMITTED isolation level. In this book,
however, I will treat this option as a separate transaction isolation level.

Note The READ COMMITTED SNAPSHOT database option is enabled by default
in Microsoft Azure SQL Databases and disabled by default in regular versions of
SQL Server.

You can set the transaction level on the session level using a SET TRANSACTION
ISOLATION LEVEL statement. Most client libraries use READ COMMITTED (or READ
COMMITTED SNAPSHOT when READ_COMMITTED SNAPSHOT database option is enabled) as
the default isolation level. You can also control isolation level on a per-table basis using a
locking hint, which we will discuss in the next chapter.

Working with Transactions

Let’s look at several aspects of transaction management in the system, starting with
transaction types.

Transaction Types

There are three types of transactions in SQL Server—explicit, autocommitted, and
implicit.

Explicit transactions are explicitly controlled by the code. You can start them by using
the BEGIN TRAN statement. They will remain active until you explicitly call COMMIT or
ROLLBACK in the code.

In the event there are no active transactions present, SQL Server would use
autocommitted transactions—starting transactions and committing them for each
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statement it executes. It is very important to remember that autocommitted transactions
work on a per-statement rather than per-module level. For example, when a stored
procedure consists of five statements, SQL Server would have five autocommitted
transactions executed. Moreover, if this procedure failed in the middle of execution, SQL
Server would not roll back its previously committed autocommitted transactions. This
behavior may lead to logical data inconsistencies in the system.

For logic that includes multiple data modification statements, autocommitted
transactions are less efficient than explicit transactions due to the logging overhead
they introduce. In this mode, every statement would generate transaction log records
for implicit BEGIN TRAN and COMMIT operations, which would lead to a large amount of
transaction log activity and degrade the performance of the system.

There is another potential performance hit caused by having an excessive number
of autocommitted transactions. As I already mentioned, SQL Server implements write-
ahead logging to support the transaction durability’s hardening the log records on disk
synchronously with data modifications. Internally, however, SQL Server batches log
write operations and caches log records in memory in small 60 KB structures called
log buffers. Committing a log record forces SQL Server to flush log buffers to disk, thus
introducing a synchronous I/0 operation.

Figure 2-1 illustrates this condition. INSERT 1, UPDATE_1, and DELETE_1 operations
run in autocommitted transactions, generating additional log records and forcing the
log butffer to flush on each COMMIT. Alternatively, INSERT_2, UPDATE_2, and DELETE_2
operations run in an explicit transaction, which leads to more efficient logging.

Log Buffer
INSERT_1;
UPDATE  1: BEGIN INSERT | COMMIT | BEGIN UPDATE | COMMIT | BEGIN DELETE | COMMIT
- XACT 1 XACT XACT 1 XACT XACT 1 XACT
DELETE_1; - — -
Synchronous writes J
(LOGWRlTE wait} - -
’ Transaction Log

BEGIN TRAN Log Buffer

INSERT 2; BEGIN INSERT | UPDATE | DELETE | COMMIT

UPDATE 2: XACT 2 1 2 XACT

DELETE_2; Synchronous write (LOGWRITE wait)
COMMIT

[ Transaction Log

Figure 2-1. Transaction logging with autocommitted and explicit
transactions
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The code in Listing 2-1 demonstrates this overhead in action. It performs the
INSERT/UPDATE/DELETE sequence 10,000 times in a loop in autocommitted and explicit
transactions, measuring execution time and transaction log throughput with the
sys.dm_io virtual file stats view.

Listing 2-1. Autocommitted and explicit transactions

create table dbo.TranOverhead
(
Id int not null,
Col char(50) null,
constraint PK TranOverhead
primary key clustered(Id)

)5

-- Autocommitted transactions
declare
@Id int = 1,
@StartTime datetime = getDate(),
@num_of writes bigint,
@num_of bytes written bigint

select
@num_of writes = num_of writes
,@num_of bytes written = num_of bytes written
from
sys.dm io virtual file stats(db_id(),2);

while @Id < 10000
begin
insert into dbo.TranOverhead(Id, Col) values(@Id, ‘A’);

update dbo.TranOverhead set Col = ‘B’ where Id = @Id;
delete from dbo.TranOverhead where Id = @Id;

set @Id += 1;
end;
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select

datediff(millisecond, @StartTime, getDate())

as

[Exec Time ms: Autocommitted Tran]

,S.num_of writes - @num of writes as [Number of writes]

,(s.num_of bytes written - @num_of bytes written) / 1024

as
from

[Bytes written (KB)]

sys.dm io virtual file stats(db_id(),2) s;

g0

-- Explicit Tran

declare

@Id int = 1,

@StartTime

datetime = getDate(),

@num_of writes bigint,

@num_of bytes written bigint

select

@num_of writes = num_of writes
,@num_of bytes written = num_of bytes written

from

sys.dm io virtual file stats(db_id(),2);

while @Id < 10000

begin
begin tran
insert

update

delete
commit
set @Id +=
end;
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select
datediff(millisecond, @StartTime, getDate())
as [Exec Time ms: Explicit Tran]
,S.num_of writes - @num of writes as [Number of writes]
,(s.num_of bytes written - @num_of bytes written) / 1024
as [Bytes written (KB)]

Figure 2-2 illustrates the output of the code in my environment. As you can see,

explicit transactions are about two times faster and generated three times less log activity
than autocommitted ones.

Exec Time ms: Autocommitted Tran  Number of writes  Bytes written (KB)

1 5470 30001 120624
Exec Time ms: BExplicit Tran Number of writes  Bytes written (KB)
1 2040 10000 40624

Figure 2-2. Explicit and autocommitted transaction performance

SQL Server 2014 and above allows you to improve transaction log throughput by
using delayed durability. In this mode, SQL Server does not flush log buffers when
COMMIT log records are generated. This reduces the number of disk writes at the cost of
potential small data losses in case of disaster.

Note You can read more about delayed durability at https://docs.
microsoft.com/en-us/sql/relational-databases/logs/control-
transaction-durability orin my Pro SQL Server Internals book.

SQL Server also supports implicit transactions, which you can enable with the SET
IMPLICIT _TRANSACTION ON statement. When this option is enabled, SQL Server starts the
new transaction when there are no active explicit transactions present. This transaction
stays active until you explicitly issue a COMMIT or ROLLBACK statement.

From a performance and transaction log throughput standpoint, implicit
transactions are similar to explicit ones. However, they make transaction management
more complicated and are rarely used in production. However, there is a caveat—the SET
ANSI DEFAULT ON option also automatically enables implicit transactions. This behavior

may lead to unexpected concurrency issues in the system.
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Error Handling

Error handling in SQL Server is a tricky subject, especially with transactions involved.
SQL Server handles exceptions differently depending on error severity, active
transaction context, and several other factors.

Let’s look at how exceptions affect control flow during execution. Listing 2-2 creates
two tables—dbo.Customers and dbo.0rders—and populates them with data. Note the
existence of a foreign key constraint defined in the dbo.0Orders table.

Listing 2-2. Error handling: Tables creation

create table dbo.Customers

(
CustomerId int not null,
constraint PK Customers
primary key(CustomerId)

);

create table dbo.Orders

(
OrderId int not null,
CustomerId int not null,
constraint FK_Orders Customerss
foreign key(CustomerId)
references dbo.Customers(CustomerId)

);

go

create proc dbo.ResetData

as

begin

begin tran
delete from dbo.Orders;
delete from dbo.Customers;
insert into dbo.Customers(CustomerId) values(1),(2),(3);
insert into dbo.Orders(OrderId, CustomerId) values(2,2);
commit
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end;
go

exec dbo.ResetData;

Let’s run three DELETE statements in one batch, as shown in Listing 2-3. The second

statement will trigger a foreign key violation error. The @@ERROR system variable provides

the error number for the last T-SQL statement executed (0 means no errors).

Listing 2-3. Error handling: Deleting customers

delete from dbo.Customers where CustomerId = 1; -- Success
select @@ERROR as [@@ERROR: CustomerId = 1];

delete from dbo.Customers where CustomerId = 2; -- FK Violation
select @@ERROR as [@@ERROR: CustomerId = 2];

delete from dbo.Customers where CustomerId = 3; -- Success
select @@ERROR as [@@ERROR: CustomerId = 3];

go

select * from dbo.Customers;

Figure 2-3 illustrates the output of the code. As you can see, SQL Server continues
execution after the non-critical foreign key violation error, deleting the row with
CustomerId=3 afterward.

@@ERROR: CustomerId = 1

The statement has been terminated.

@@ERROR: CustomerId = 2

Msg 547, Level 16, State 0, Line 66
The DELETE statement conflicted with the REFERENCE constraint "FK Orders Customerss".
The conflict occurred in database "SQLServerInternals", table "dbo.Orders", column 'CustomerId’.

@@ERROR: CustomerId = 3

0

CustomerId

Figure 2-3. Deleting three customers in the batch
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The situation would change if you use a TRY. . CATCH block, as shown in Listing 2-4.

Listing 2-4. Error handling: Deleting customers in TRY..CATCH block

exec dbo.ResetData;

go

begin try
delete from dbo.Customers where CustomerId = 1; -- Success
delete from dbo.Customers where CustomerId = 2; -- FK Violation
delete from dbo.Customers where CustomerId = 3; -- Not executed

end try
begin catch
select
ERROR_NUMBER() as [Error Number]
,ERROR_LINE() as [Error Line]
,ERROR_MESSAGE() as [Error Message];
end catch

g0

select * from dbo.Customers;

As you can see in Figure 2-4, the error was caught in the CATCH block, and the third
deletion statement has not been executed.

Emor Number  Emor Line  Emor Message

1 h47 4 The DELETE statement conflicted with the REFERENCE constr...
Customerld

1

2 3

Figure 2-4. Deleting three customers in TRY..CATCH block

There are several functions that you can use in the CATCH block:

ERROR_NUMBER () returns the number of the error that caused the
CATCH block to run.

ERROR_MESSAGE () provides an error message.
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ERROR_SEVERITY() and ERROR_STATE() indicate the severity and
state number of the error, respectively.

ERROR_PROCEDURE () returns the name of the stored procedure or
trigger in which the error occurred. This can be useful if the code
has nested stored procedure calls with TRY. .CATCH in the outer

module.

ERROR_LINE() provides the line number at which the error
occurred.

Finally, the THROW operator allows you to re-throw an error from
the CATCH block.

Important Non-critical exceptions do not automatically roll back explicit or
implicit transactions, regardless of whether a TRY. . CATCH block is present. You
still need to commit or roll back the transactions after the error.

Depending on the severity of the error, a transaction in which an error occurred
may be committable or may become uncommittable and doomed. SQL Server would
not allow you to commit uncommittable transactions, and you must roll it back to
complete it.

The XACT_STATE() function allows you to analyze the state of a transaction; it returns

one of three values:
0 indicates that there are no active transactions present.

1 indicates that there is an active committable transaction present.
You can perform any actions and data modifications, committing
the transactions afterward.

-1 indicates that there is an active uncommittable transaction
present. You cannot commit such a transaction.

There is a very important SET option, XACT_ABORT, that allows you to control error-
handling behavior in the code. When this option is set to ON, SQL Server treats every
run-time error as severe, making transactions uncommittable. This prevents you from
accidentally committing transactions when some data modifications failed with non-
critical errors. Again, remember the example with the money transfer between checking
and savings accounts. This transaction should not be committed if one of the UPDATE
statements triggered an error, regardless of its severity. 37
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When XACT_ABORT is enabled, any error would terminate the batch when a
TRY..CATCH block is not present. For example, if you run the code from Listing 2-3 again
using SET XACT_ABORT ON, the third DELETE statement would not be executed, and only
the row with CustomerId=1 will be deleted. Moreover, SQL Server would automatically
roll back doomed uncommitted transactions after the batch completed.

Listing 2-5 illustrates this behavior. The stored procedure dbo.GenerateError sets
XACT_ABORT to ON and generates an error within the active transaction. The @TRANCOUNT
variable returns the nested level of the transaction (more on this later), and non-zero
values indicate that the transaction is active.

Listing 2-5. SET XACT_ABORT behavior

create proc dbo.GenerateError

as
begin
set xact_abort on
begin tran
delete from dbo.Customers where CustomerId = 2; -- Error
select 'This statement will never be executed';
end
go

exec dbo.GenerateError;
select 'This statement will never be executed';

go
-- Another batch
select XACT STATE() as [XACT STATE()], @@TRANCOUNT as [@@TRANCOUNT];
go
Figure 2-5 illustrates the output of the code. As you can see, batch execution has

been terminated, and the transaction has been automatically rolled back at the end of
the batch.
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>4/, Level 1o, oSta

Figure 2-5. XACT_ABORT behavior

A TRY. .CATCH block, however, will allow you to capture the error even with
XACT_ABORT set to ON. Listing 2-6 illustrates such a situation.

Listing 2-6. SET XACT_ABORT behavior with TRY..CATCH block

begin try
exec dbo.GenerateError;
select 'This statement will never be executed’;

end try
begin catch
select
ERROR_NUMBER() as [Error Number]
,ERROR_PROCEDURE() as [Procedure]
,ERROR_LINE() as [Error Line]
,ERROR_MESSAGE() as [Error Message];
select

XACT STATE() as [XACT STATE()]
,@@TRANCOUNT as [@@TRANCOUNT];

if @@TRANCOUNT > O
rollback;
end catch

As you can see in Figure 2-6, the exception has been trapped in the CATCH block, with

the transaction still remaining active there.
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Emor Number  Procedure Emor Line  Emor Message
1 547 GenerateEmor 7 The DELETE statement conflicted with the REFEREN...

XACT_STATE) @@TRANCOUNT

Figure 2-6. XACT_ABORT behavior with TRY..CATCH block

Consistent error handling and transaction management strategies are extremely
important and allow you to avoid data consistency errors and improve data quality in the
system. I would recommend the following approach as the best practice:

o Always use explicit transactions in the code during data
modifications. This would guarantee data consistency in transactions
that consist of multiple operations. It is also more efficient than
individual autocommitted transactions.

o Set XACT_ABORT to ON before transaction is started. This would
guarantee the “all-or-nothing” behavior of the transaction,
preventing SQL Server from ignoring non-severe errors or
committing partially completed transactions.

e Use proper error handling with TRY. . CATCH blocks and explicitly
roll back transactions in case of exceptions. This helps to avoid
unforeseen side effects in case of errors.

It is impossible to perform the operations that generate transaction log records after a
transaction becomes uncommittable. In practice, it means that you could not perform any
data modifications—for example, log errors in the database in the CATCH block—until you
roll back an uncommittable transaction. You can persist the data in table variables if needed.

Tip As the opposite of temporary tables, table variables are not transaction-
aware. The data in table variables would not be affected by a transaction rollback.

The choice between client-side and server-side transaction management depends
on the application architecture. Client-side management is required when data
modifications are done in the application code; for example, changes are generated by
ORM frameworks. On the other hand, stored procedure-based data access tiers may
benefit from server-side transaction management.
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Listing 2-7 provides an example of a stored procedure that implements server-side
transaction management.

Listing 2-7. Server-side transaction management

create proc dbo.PerformDataModifications
as
begin
set xact_abort on
begin try
begin tran
/* Perform required data modifications */
commit
end try
begin catch
if @@TRANCOUNT > 0 -- Transaction is active
rollback;
/* Addional error-handling code */
throw; -- Re-throw error. Alternatively, SP may return the error
code
end catch;
end;

Nested Transactions and Savepoints

SQL Server technically supports nested transactions; however, they are primarily
intended to simplify transaction management during nested stored procedure calls.
In practice, it means that the code needs to explicitly commit all nested transactions,
and the number of COMMIT calls should match the number of BEGIN TRAN calls. The
ROLLBACK statement, however, rolls back the entire transaction regardless of the
current nested level.

The code in Listing 2-8 demonstrates this behavior. As I already mentioned, system
variable @@TRANCOUNT returns the nested level of the transaction.
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Listing 2-8. Nested transactions

select @@TRANCOUNT as [Original @@TRANCOUNT];
begin tran
select @@TRANCOUNT as [@@TRANCOUNT after the first BEGIN TRAN];
begin tran
select @@TRANCOUNT as [@@TRANCOUNT after the second BEGIN TRAN];
commit
select @@TRANCOUNT as [@@TRANCOUNT after nested COMMIT];
begin tran
select @@TRANCOUNT as [@@TRANCOUNT after the third BEGIN TRAN];
rollback
select @@TRANCOUNT as [@@TRANCOUNT after ROLLBACK];
rollback; -- This ROLLBACK generates the error

You can see the output of the code in Figure 2-7.

Original @E@TRANCOUNT

@@TRANCOUNT after the second BEGIN TRAN

~

Msg 3903, Level 16, State 1, Line 27
The ROLLBACK TRANSACTION request has no corresponding BEGIN TRANSACTION.

Figure 2-7. Nested transactions
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You can save the state of the transaction and create a savepoint by using a SAVE
TRANSACTION statement. This will allow you to partially roll back a transaction, returning
to the most recent savepoint. The transaction will remain active and will need to be
completed with an explicit COMMIT or ROLLBACK statement later.

Note Uncommittable transactions with XACT _STATE() = -1 cannot be rolled
back to a savepoint. In practice, it means that you cannot roll back to a savepoint
after an error if XACT _ABORT is set to ON.

The code in Listing 2-9 illustrates this behavior. The stored procedure creates the
savepoint when it runs an active transaction and rolls back to this savepoint in case of a
committable error.

Listing 2-9. Savepoints

create proc dbo.TryDeleteCustomer

(
@CustomerId int
)
as
begin

-- Setting XACT_ABORT to OFF for rollback to savepoint to work
set xact_abort off

declare
@ActiveTran bit

-- Check if SP is calling in context of active transaction
set @ActiveTran = IIF(@@TranCount > 0, 1, 0);

if @ActiveTran = 0
begin tran;
else
save transaction TryDeleteCustomer;

begin try
delete dbo.Customers where CustomerId = @CustomerId;
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if @ActiveTran
commit;
return 0;
end try

0

begin catch
if @ActiveTran
begin

0 or XACT STATE() = -1

-- Roll back entire transaction
rollback tran;
return -1;

end

else begin

-- Roll back to savepoint

rollback tran TryDeleteCustomer;
return 1;

end

end catch;
end;

The code in Listing 2-10 triggers a foreign key violation during the second
dbo.TryDeleteCustomer call. This is a non-critical error, and therefore the code is able to
commit after it.

Listing 2-10. dbo.TryDeleteCustomer in action

declare
@ReturnCode int

exec dbo.ResetData;

begin tran
exec @ReturnCode = TryDeleteCustomer @CustomerId = 1;
select
1 as [CustomerId]
,@ReturnCode as [@ReturnCode]
,XACT STATE() as [XACT_STATE()];
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if @ReturnCode >= 0
begin
exec @ReturnCode = TryDeleteCustomer @CustomerId = 2;
select
2 as [CustomerId]
,@ReturnCode as [@ReturnCode]

,XACT_STATE() as [XACT STATE()];
end

if @ReturnCode >= 0
commit;
else
if @@TRANCOUNT > 0
rollback;

go
select * from dbo.Customers;

Figure 2-8 shows the output of the code. As you can see, SQL Server has been able to
successfully delete the row with CustomerId=1 and commit the transaction at this state.

Customerld @RetumCode XACT_STATE()

1 1 0 1
Customerld @RetumCode XACT_STATE()
1 2 1 1
Customerld
1 |2 ;
2 3

Figure 2-8. Output of Listing 2-10

It is worth noting that this example is shown for demonstration purposes only.
From an efficiency standpoint, it would be better to validate the referential integrity and

existence of the orders before deletion occurred rather than catching an exception and
rolling back to a savepoint in case of an error.
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Summary

Transactions are a key concept in data management systems and support atomicity,
consistency, isolation, and durability requirements for data modifications in the system.

There are two concurrency models used in database systems. Pessimistic
concurrency expects that users may want to update the same data, and it blocks access
to uncommitted changes from other sessions. Optimistic concurrency assumes that
the chance of simultaneous data updates is low. There is no blocking under this model;
however, simultaneous updates will lead to write-write conflicts.

SQL Server supports four pessimistic (READ UNCOMMITTED, READ COMMITTED,
REPEATABLE READ, and SERIALIZABLE) and one optimistic (SNAPSHOT) isolation levels.

It also supports the READ COMMITTED SNAPSHOT isolation level, which implements
optimistic concurrency for readers and pessimistic concurrency for data modification
queries.

There are three types of transactions in SQL Server—explicit, autocommitted, and
implicit. Autocommitted transactions are less efficient as a result of the transaction
logging overhead they introduce.

Depending on the severity of the errors and a few other factors, transactions may
be committable or may become uncommittable and doomed. You can treat all errors
as uncommittable by setting XACT_ABORT option to ON. This approach simplifies error
handling and reduces the chance of data inconsistency in the system.

SQL Server supports nested transactions. The number of COMMIT calls should match
the BEGIN TRAN calls for the transaction to be committed. A ROLLBACK statement, on the
other hand, rolls back the entire transaction regardless of the nested level.

46



CHAPTER 3

Lock Types

This chapter will discuss the key concept in SQL Server concurrency—Iocks. It will
provide an overview of the major lock types in SQL Server, explain their compatibility,
and, finally, demonstrate how different transaction isolation levels affect the lifetime of
the locks in the system.

Major Lock Types

SQL Server uses locking to support the isolation requirements of the transaction. Every
lock, in a nutshell, is an in-memory structure managed by a SQL Server component
called the lock manager. Each lock structure uses 64 bytes of memory on the 32-bit and
128 bytes on the 64-bit edition of SQL Server.

Locks are acquired and held on resources, such as data rows, pages, partitions, tables
(objects), databases, and several others. By default, SQL Server uses row-level locking
to acquire locks on the data rows, which minimizes possible concurrency issues in the
system. You should remember, however, that the only guarantee SQL Server provides
is enforcing data isolation and consistency based on transaction isolation levels. The
locking behavior is not documented, and in some cases SQL Server can choose to lock at
the page or table level rather than at the row level. Nevertheless, lock compatibility rules
are always enforced, and understanding the locking model is enough to troubleshoot
and address the majority of the concurrency issues in the system.

The key attribute in the lock structure is the lock type. Internally, SQL Server uses
more than 20 different lock types. They can be grouped into several major categories
based on their type and usage.
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CODE SAMPLES

48

The code examples in this and subsequent chapters will rely on the Delivery.Orders
table defined here. This table has a clustered primary key on the OrdexId column with no
nonclustered indexes defined.

You can find the script that creates the table and populates it with the data in the companion
materials of the book.

create schema Delivery;

create table Delivery.Orders
(

OrderId int not null identity(1,1),

OrderDate smalldatetime not null,

OrderNum varchar(20) not null,

Reference varchar(64) null,

CustomerId int not null,

PickupAddressId int not null,

DeliveryAddressId int not null,

Serviceld int not null,

RatePlanId int not null,

OrderStatusId int not null,

DriverId int null,

Pieces smallint not null,

Amount smallmoney not null,

ModTime datetime not null
constraint DEF_Orders ModTime
default getDate(),

PlaceHolder char(100) not null
constraint DEF_Orders Placeholder
default 'Placeholder’,

constraint PK Orders
primary key clustered(OrderId)

g0




declare
@Max0rderId int = 65536
,@MaxCustomers int = 1000
,@MaxAddresses int = 20
,@MaxDrivers int = 125

;with N1(C) as (select 0 union all select 0)
,N2(C) as (select 0 from N1 as T1 cross join
,N3(C) as (select 0 from N2 as T1 cross join
,N4(C) as (select 0 from N3 as T1 cross join
,N5(C) as (select 0 from N4 as T1 cross join
,IDs(ID) as (select row number() over (order

N1
N2
N3
N4
by

CHAPTER 3

2 rows

as T2) -- 4 rows

as T2) -- 16 rows

as T2) -- 256 rows

as T2) -- 65,536 rows
(select null)) from N5)

LOCK TYPES

,Info(OrderId, CustomerId, OrderDateOffset, RatePlanId, Serviceld, Pieces)

as

(

select

ID, ID % @MaxCustomers + 1, ID % (365%24*60)

,ID%2+1, ID%3+1, ID%5+ 1
from IDs
where ID <= @MaxOrderId

)

,Info2(0OrderId, OrderDate, OrderNum, CustomerId, RatePlanId ,Serviceld
,Pieces ,PickupAddressId, OrderStatusId, Rate)

as

select
OrderId

,dateadd(minute, -OrderDateOffset, getdate())
,convert(varchar(10),0rderId), CustomerId

,RatePlanId
,Serviceld
,Pieces

, (CustomerId - 1) * @MaxAddresses + OrderId % 20

,case

when OrderDateOffset > 5 * 24 * 60

then 4
else OrderId % 4 + 1
end
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,(0OrderId % 5 + 1) * 10.
from Info
)
insert into Delivery.Orders(OrderDate, OrderNum, CustomerId,
PickupAddressId, DeliveryAddressId, Serviceld, RatePlanId,
OrderStatusId, DriverId, Pieces, Amount)
select
0.0rderDate
,0.0rderNum
,0.CustomerId
,0.PickupAddressId
,case
when o.PickupAddressId % @MaxAddresses = 0
then o.PickupAddressId + 1
else o.PickupAddressId - 1
end
,0.Serviceld
,0.RatePlanId
,0.0rderStatusId
,case
when o.0rderStatusId in (1,4)
then NULL
else OrderId % @MaxDrivers + 1
end
,0.Pieces
,0.Rate
from Info2 o;

Exclusive (X) Locks

Exclusive (X) locks are acquired by writers—INSERT, UPDATE, DELETE, and MERGE
statements that modify data. Those queries acquire exclusive (X) locks on the affected
rows and hold them until the end of the transaction.

As you can guess by the name—exclusive means exclusive—only one session can
hold an exclusive (X) lock on the resource at any given point in time. This behavior
enforces the most important concurrency rule in the system—multiple sessions cannot
modify the same data simultaneously. That’s it; other sessions are unable to acquire
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exclusive (X) locks on the row until the first transaction is completed and the exclusive (X)
lock on the modified row is released.

Transaction isolation levels do not affect exclusive (X) lock behavior. Exclusive (X)
locks are acquired and held until the end of the transaction, even in READ UNCOMMITTED
mode. The longer the transaction you have, the longer the exclusive (X) locks would be
held, which would increase the chance that blocking would occur.

Intent (I*) Locks

Even though row-level locking reduces blocking in the system, keeping locks only on the
row level would be bad from a performance standpoint. Consider a situation where a
session needs to have exclusive access to a table; for example, during the table alteration.
In this case, if only row-level locking existed, the session would have to scan the entire
table, checking if any row-level locks were held there. As you can imagine, this would be
an extremely inefficient process, especially on large tables.

SQL Server addresses this situation by introducing the concept of intent (I*) locks.
Intent locks are held on the data-page and table levels and indicate the existence of locks
on the child objects.

Let’s run the code from Listing 3-1 and check what locks are held after we update
one row in the table. The code uses the sys.dm_tran_locks dynamic management view,
which returns information about current lock requests in the system.

It is worth noting that I am using the READ UNCOMMITTED isolation level to
demonstrate that exclusive (X) locks are acquired in any transaction isolation level.

Listing 3-1. Updating a row and checking the locks held

set transaction isolation level read uncommitted
begin tran

update Delivery.Orders

set Reference = 'New Reference'

where OrderId = 100;

select
l.resource_type
,case
when l.resource type = 'OBJECT'
then
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object_name
(
l.resource associated entity id
,1l.resource_database_id

)

else
end as [table]
,1l.resource description
,1l.request_type
»1l.request_mode
,1l.request status
from
sys.dm_tran locks 1
where
l.request session id = @@spid;
commit

Figure 3-1 illustrates the output from the SELECT statement. As you can see, SQL
Server held an exclusive (X) lock on the row (key) and intent exclusive (IX) locks on both
the page and the object (table). Those intent exclusive (IX) locks indicate the existence
of the exclusive (X) row-level lock held. Finally, there was also a shared (S) lock on the
database, which indicates that the session was accessing it. We will cover shared (S)
locks later in this chapter.

resource_type  table resource_description  request type request_mode  request_status

1 DATABASE LOCK S GRANT
2 PAGE 311 LOCK [X GRANT
3 KEY (931204457546) LOCK X GRANT
< OBJECT Orders LOCK [X GRANT

Figure 3-1. Locks held after UPDATE statement
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The resource_description column indicates the resources on which those locks
were acquired. For the page, it indicates its physical location (page 944 in the database
file 1), and for the row (key) it indicates the hash value of the index key. For object
locks, you can obtain the object_id from the resource_associated_entry_id column
in the view.

When the session needs to obtain object- or page-level locks, it could check lock
compatibility with the other locks (intent or full) held on the table or page rather than
scanning the table/page and checking row-level locks there.

Finally, it is worth noting that in some cases SQL Server may acquire intent locks
on other intermediate objects, such as table partitions or row groups in columnstore
indexes.

Update (U) locks

SQL Server uses another lock type, update (U) locks, during data modifications,
acquiring them while searching for the rows that need to be updated. After an update (U)
lock is acquired, SQL Server reads the row and evaluates if the row needs to be updated
by checking the row data against query predicates. If this is the case, SQL Server converts
the update (U) lock to an exclusive (X) lock and performs the data modification.
Otherwise, the update (U) lock is released.

Let’s look at an example and run the code from Listing 3-2.

Listing 3-2. Updating multiple rows using clustered index key as the predicate

begin tran
update Delivery.Orders
set Reference = 'New Reference'
where OrderId in (1000, 5000);
commit

Figure 3-2 provides the output from the Extended Events session that captures
lock acquired and lock released events. SQL Server acquired aintent update (IU)
locks on the pages and update (U) locks on the rows converting them to intent exclusive
(IX) and exclusive (X) locks afterwards. The locks were held until the end of the
transactions and were released at the time of COMMIT.

53



CHAPTER 3  LOCK TYPES
name mode resource_descri...  resource_type
lock_acquired IX OBJECT
lock _acquired {N] 1:4581 PAGE
lock_acquired U (1f00de11a528) |KEY
lock_acquired IX 1:4581 PAGE
lock_acquired X (1f00de 11a529) KEY
lock_acquired U 1:4665 PAGE
lock _acquired U (086dba16bcf4) KEY
lock_acquired IX 1:4665 PAGE
lock_acquired | X (086dba 16bcf4) | KEY
lock_released X (086dbal6bcfd)  |KEY
lock_released | IX 1:4665 PAGE
lock_released X (1f00de 11a529) | KEY
lock_released | IX 1:4581 |PAGE
lock_released OBJECT

Figure 3-2. Update (U) and exclusive (X) locks

Update (U) locks’ behavior depends on the execution plan. In some cases, SQL
Server acquires update (U) locks on all rows first, converting them to exclusive (X) locks
afterward. In other cases—when, for example, you update only one row based on the
clustered index key value—SQL Server can acquire an exclusive (X) lock without using
an update (U) lock at all.

The number of locks to acquire also greatly depends on the execution plan. Let’s
run the UPDATE Delivery.Orders SET Reference = 'Ref' WHERE OrderNum='1000'
statement, filtering data based on the OrderNum column. Figure 3-3 illustrates the locks
that were acquired and released along with the total number of locks processed.
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name mode resource_descri... resource_type
1:4746 PAGE
|c031543046) | KEY
|(0315430462) | KEY
| (20057a7cc0d6) | KEY
|(20057a7cc0d6) | KEY
| @94911eb25da) | KEY
|(@94911eb25da) | KEY
|(e16c26624%f) | KEY

:
8
:

g
:

lock_released (e16c2662492f) KEY

e e e e ]
package_name event_name count
sqlserver lock_acquired 1070885
sqlserver lock_released | 1070885

Figure 3-3. Locks during query execution

There are no indexes on the OrderNum column, so SQL Server needs to perform
a clustered index scan, acquiring an update (U) lock on every row in the table. More
than one million locks have been acquired even though the statement updated just a
single row.

That behavior illustrates one of the typical blocking scenarios. Consider a situation
where one of the sessions holds an exclusive (X) lock on a single row. If another session
were to update a different row by running a non-optimized UPDATE statement, SQL
Server would acquire an update (U) lock on every row it was scanning, and eventually it
would be blocked trying to read the row with the exclusive (X) lock held on it. It does not
matter that the second session does not need to update that row after all—SQL Server
still needs to acquire an update (U) lock to evaluate if that row needs to be updated.

Shared (S) locks

Shared (S) locks are acquired by the readers—SELECT queries—in the system. As you
can guess by the name, shared (S) locks are compatible with each other, and multiple
sessions can hold shared (S) locks on the same resource.
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Let’s run the code from Table 3-1 to illustrate that.

Table 3-1. Shared (S) Locks

Session 1 (SPID=53) Session 2 (SPID=55)
set transaction isolation level set transaction isolation level
repeatable read repeatable read
begin tran begin tran
select OrderNum select OrderNum
from Delivery.Orders from Delivery.Orders
where OrderId = 500; where OrderId = 500;
select

request_session_id
,resource type
,resource description
,request_type
,request mode
,request status

from sys.dm tran_locks;

commit; commit

Figure 3-4 illustrates the output from the sys.dm_tran_locks view. As you can see,
both sessions acquired shared (S) locks on the database, intent shared (IS) locks on the
table and page (1:955), and shared (S) locks on the row, all without blocking each other.

request_session id Iresourcetypelresourcedesctiption lraquasitypelrequestmodelroquest statusl
1 53 DATABASE LOCK S GRANT
2 55 DATABASE LOCK S GRANT
3 53 PAGE 1:955 LOCK IS GRANT
4 55 PAGE 1:955 LOCK IS GRANT
5 53 KEY (c07b8c04b989) LOCK S GRANT
6 55 KEY (c07b8c04b989) LOCK S GRANT
7 53 OBJECT LOCK IS GRANT
8 55 OBJECT LOCK IS GRANT

Figure 3-4. Locks acquired by the sessions
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Lock Compatibility, Behavior, and Lifetime

Table 3-2 shows the lock compatibility matrix that shows compatibility between lock types.

Table 3-2. Lock Compatibility Matrix (I*% S, U, X Locks)

(1S) (S) (V) V) (IX) (X)
(1) Yes Yes Yes Yes Yes No
(S) Yes Yes Yes Yes No No
() Yes Yes Yes No Yes No
(3); Yes Yes No No No No
(IX) Yes No Yes No Yes No
X) No No No No No No

The most important lock compatibility rules are:

1. Intent (IS/IU/IX) locks are compatible with each other. Intent
locks indicate the existence of locks on the child objects, and
multiple sessions can hold intent locks on the object and page
levels simultaneously.

2. Exclusive (X) locks are incompatible with each other and any
other lock types. Multiple sessions cannot update the same row
simultaneously. Moreover, readers that acquire shared (S) locks
cannot read uncommitted rows with exclusive (X) locks held.

3. Update (U) locks are incompatible with each other as well as with
exclusive (X) locks. Writers cannot evaluate if the row needs to be
updated simultaneously nor access a row that has an exclusive (X)
lock held.

4. Update (U) locks are compatible with shared (S) locks. Writers
can evaluate if the row needs to be updated without blocking or
being blocked by the readers. It is worth noting that (S)/(U) lock
compatibility is the main reason why SQL Server uses update (U)
locks internally. They reduce the blocking between readers and
writers.
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As you already know, exclusive (X) lock behavior does not depend on transaction
isolation level. Writers always acquire exclusive (X) locks and hold them until the end of
the transaction. With the exception of the SNAPSHOT isolation level, the same is true for
update (U) locks—writers acquire them on every row they scan while evaluating if the
rows need to be updated.

The shared (S) locks’ behavior, on the other hand, depends on transaction isolation
level.

Note SQL Server always works with data in the transaction context. In this
case, when applications do not start explicit transactions with BEGIN TRAN /
COMMIT statements, SQL Server uses autocommitted transactions for the duration
of the statements. Even SELECT statements run within their own lightweight
transactions. SQL Server does not write them to the transaction log, although all
locking and concurrency rules still apply.

With the READ UNCOMMITTED isolation level, shared (S) locks are not acquired.
Therefore, readers can read the rows that have been modified by other sessions and
have exclusive (X) locks held. This isolation level reduces blocking in the system
by eliminating conflicts between readers and writers at the cost of data consistency.
Readers would read the current (modified) version of the row regardless of
what happens next, such as if changes were rolled back or if a row were
modified multiple times. This explains why this isolation level is often called
a dirty read.

The code in Table 3-3 illustrates that. The first session runs a DELETE statement,
acquiring an exclusive (X) lock on the row. The second session runs a SELECT statement
in READ UNCOMMITTED mode.
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Table 3-3. READ UNCOMMITTED Isolation Level Consistency

Session 1 Session 2

begin tran
delete from Delivery.Orders
where OrderId = 95;

-- Success / No Blocking

set transaction isolation level read
uncommitted;

select OrderId, Amount

from Delivery.Orders

where OrderId between 94 and 96;

rollback;

In the READ UNCOMMITTED isolation level, readers do not acquire shared (S) locks.
Session 2 would not be blocked and would return the result set shown in Figure 3-5. It
does not include the row with OrderId=95, which has been deleted in the uncommitted
transaction in the first session even though the transaction is rolled back afterward.

Orderld l Amount |
1 |94 30.00 |
2 | 96 10.00

Figure 3-5. READ UNCOMMITTED and shared (S) lock behavior

It is worth noting again that exclusive (X) and update (U) locks’ behavior is not
affected by transaction isolation level. You will have writers/writers blocking even in
READ UNCOMMITTED mode.

In the READ COMMITTED isolation level, SQL Server acquires and releases shared (S)
locks immediately after the row has been read. This guarantees that transactions cannot
read uncommitted data from other sessions. Let’s run the code from Listing 3-3.

Listing 3-3. Reading data in READ COMMITTED isolation level

set transaction isolation level read committed;
select OrderId, Amount

from Delivery.Orders

where OrderId in (90,91);
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Figure 3-6 illustrates how SQL Server acquires and releases the locks. As you can see,
row-level locks are acquired and released immediately.

name mode resource_descri... resource_type
llock_acquired |15 ' |OBJECT
lock_scqured |15 1288 | PAGE
fock_soquired 1S Dbd6X2afbdd) | KEY
fock_released | S | bbd623afbad) | KEY
fock_acqured | S | (a22e6222d2f4) | KEY
Jock_relessed IS |(a22e6a22dafd) | KEY
lock_released  |IS 11:286 | PAGE
lock_released  |IS ' |OBJECT

Figure 3-6. Shared (S) locks’ behavior in READ COMMITTED mode

It is worth noting that in some cases, in READ COMMITTED mode, SQL Server can hold
shared (S) locks for the duration of the SELECT statement, releasing the locks only after it
is completed. One such example is a query that reads the data from LOB columns from
the table.

Tip Do not select unnecessary columns or use the SELECT * pattern in the
code. This may introduce performance overhead and increase locking in the
system.

In the REPEATABLE READ isolation level, SQL Server acquires shared (S) locks and
holds them until the end of the transaction. This guarantees that other sessions cannot
modify the data after it is read. You can see this behavior if you run the code from
Listing 3-3, changing the isolation level to REPEATABLE READ.
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Figure 3-7 illustrates how SQL Server acquires and releases the locks. As you can
see, SQL Server acquires both shared (S) locks first, releasing them at the end of the

transaction.

I mode resource_descri... resource_type
' s ' \OBJECT
s 1286 | PAGE

s | pbd6X3afbad) | KEY

s |(a22e6a22df4)  |KEY

s |(a20e6222d5f8) | KEY

s bbd6X3afbdd)  |KEY

IS 1:386 PAGE

IS | | OBJECT

Figure 3-7. Shared (S) locks’ behavior in REPEATABLE READ mode

In the SERIALIZABLE isolation level, shared (S) locks are also held until the end of the
transaction. However, SQL Server uses another variation of the locks called range locks.
Range locks (both shared and exclusive) protect index-key ranges rather than individual
rOWS.

Consider a situation where a Delivery.Orders table has just two rows with OrderId
of 1 and 10. In the REPEATABLE READ isolation level, the SELECT statement would acquire
two row-level locks. Other sessions would not be able to modify those rows, but they
could still insert the new row with OrderId in between those values. In the SERIALIZABLE
isolation level, the SELECT statement would acquire a range shared (RangeS-S) lock,
preventing other sessions from inserting any rows in between OrderId of 1 and 10.

Figure 3-8 illustrates how SQL Server acquires and releases locks in the
SERTALIZABLE isolation level.
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name mode resource_descn... resource_type
{lock_acquired IS OBJECT
lock_acquired . IS - 1:386 | PAGE
lock_acqured  |RS_S bbd623afbds)  |KEY
lock_acqured  |RS_S (a22e6a22daf4) | KEY
llock released | RS_S (a22e6322da4) | KEY
lock released | RS_S bbd6Xlafbdd) | KEY
lock_released |15 1:386 |PAGE
lock_released | |OBJECT

Figure 3-8. Shared (S) locks’ behavior in SERIALIZABLE isolation level

Optimistic isolation levels—READ COMMITTED SNAPSHOT and SNAPSHOT—do not
acquire shared (S) locks. When readers (SELECT queries) encounter a row with an
exclusive (X) lock held, they read the old (previously committed) version of this row from
the version store in tempdb. Writers and uncommitted data modifications do not block
readers in the system.

From the blocking and concurrency standpoints, READ COMMITTED SNAPSHOT has the
same behavior as READ UNCOMMITTED. Both isolation levels remove the issue of readers/
writers’ blocking in the system. READ COMMITTED SNAPSHOT, however, provides better
data consistency by eliminating access to uncommitted data and dirty reads. In the vast
majority of cases, you should not use READ UNCOMMITTED, and should switch to using
READ COMMITTED SNAPSHOT instead.

Note We will discuss optimistic isolation levels in greater depth in Chapter 6.

Table 3-4 summarizes how SQL Server works with shared (S) locks based on
transaction isolation levels.
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Table 3-4. Transaction Isolation Levels and Shared (S) Locks’ Behavior

Transaction Isolation Level Table Hint Shared Lock Behavior

READ UNCOMMITTED (NOLOCK) (S) locks not acquired

READ COMMITTED (default) (READCOMMITTED) (S) locks acquired and released
immediately

REPEATABLE READ (REPEATABLEREAD)  (S) locks acquired and held till end of
transaction

SERIALIZABLE (SERIALIZABLE) or  Range locks acquired and held till end

(HOLDLOCK) of transaction
READ COMMITTED SNAPSHOT N/A (S) locks not acquired
SNAPSHOT N/A (S) locks not acquired

You can control isolation levels and locking behavior on the transaction level by
using a SET TRANSACTION ISOLATION LEVEL statement or on the table level with a table
locking hint.

It is possible to use different isolation levels in the same query on a per-table basis, as
is shown in Listing 3-4.

Listing 3-4. Controlling locking behavior with table hints

select c.CustomerName, sum(o.Total) as [Total]
from
dbo.Customers c with (READCOMMITTED) join
dbo.Orders o with (SERIALIZABLE) on
0.CustomerId = c.CustomerId
group by
c.CustomerName;

Note The famous NOLOCK hint is just a synonym for READ UNCOMMITTED table
access.
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Finally, I would like to reiterate that all transaction isolation levels except SNAPSHOT
behave in the same way and use update (U) locks during update scans and exclusive (X)
locks during data modifications. This leads to writers/writers blocking in the system.

The SNAPSHOT isolation level also uses exclusive (X) locks during data modifications.
However, it does not use update (U) locks during update scans, reading the old versions
of the rows from the version store in tempdb. This eliminates writers/writers blocking
unless multiple sessions are trying to update the same rows simultaneously.

Transaction Isolation Levels and Data Consistency

As already mentioned in the previous chapter, we may experience several concurrency
phenomena in the system. Let’s analyze why those phenomena are possible based on
the locking behavior of transaction isolation levels.

Dirty Reads: This issue arises when transaction reads
uncommitted (dirty) data from other uncommitted transactions.
It is unknown if those active transactions will be committed or
rolled back or if the data is logically consistent.

From the locking perspective, this phenomenon could occur

in the READ UNCOMMITTED isolation level when sessions do not
acquire shared (S) locks and ignore exclusive (X) locks from the
other sessions. All other isolation levels are immune from dirty
reads. Pessimistic isolation levels use shared (S) locks and are
blocked when trying to access uncommitted rows with exclusive
(X) locks held on them. Optimistic isolation levels, on the other
hand, read old (previously) committed versions of the rows from

the version store.

Non-Repeatable Reads: Subsequent attempts to read the same
data from within the same transaction return different results.

This data inconsistency issue arises when the other transactions
modified or even deleted data between reads. Consider a situation
where you render a report that displays a list of the orders for a
specific customer along with some aggregated information (for
example, total amount spent by customer on a monthly basis). If
another session modifies or perhaps deletes the orders in between
those queries, the result sets will be inconsistent.
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From the locking standpoint, such a phenomenon could occur
when sessions don’t protect/lock the data in between reads. This
could happen in the READ UNCOMMITTED and READ COMMITTED
SNAPSHOT isolation levels, which do not use shared (S) locks,
aswell as in the READ COMMITTED isolation level when sessions
acquire and release shared (S) locks immediately. REPEATABLE
READ and SERIALIZABLE isolation levels hold the shared (S)

locks until the end of the transaction, which prevents data
modifications once data is read.

The SNAPSHOT isolation level is also immune from this
phenomenon as it works with a snapshot of the data at the time
when the transaction started. We will discuss it in depth in
Chapter 6.

Phantom Reads: This phenomenon occurs when subsequent
reads within the same transaction return new rows (ones that

the transaction did not read before). Think about the previous
example when another session inserted a new order in between
queries’ execution. Only the SERIALIZABLE and SNAPSHOT isolation
levels are free from such phenomenon. SERIALIZABLE uses range
locks while SNAPSHOT accesses a snapshot of the data at the time
when the transaction starts.

Two other phenomena are related to data movement due to the change of the index-
key value. Neither of them occur with optimistic isolation levels.

Duplicated Reads: This issue occurs when a query returns the
same row multiple times. Think about a query that returns a list

of orders for a specific time interval, scanning the index on the
OrderDate column during execution. If another query changes the
OrderDate value, moving the row from the processed (scanned) to
non-processed part of the index, such a row will be read twice.

This condition is similar to non-repeatable reads and can occur
when readers do not hold shared (S) locks after rows are read in
READ UNCOMMITTED and READ COMMITTED isolation levels.
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Skipped Rows: This phenomenon occurs when queries do not
return some of the rows. It could occur in a similar condition
with duplicated reads as just described if rows have been moved
from the non-processed to the processed part of the index.

The SERTALIZABLE isolation level, which locks the index-key
range interval, and optimistic isolation levels—READ COMMITTED
SNAPSHOT and SNAPSHOT—are free from such phenomenon.

Table 3-5 summarizes data inconsistency issues within the different transaction
isolation levels.

Table 3-5. Transaction Isolation Levels and Data Inconsistency Anomalies

Dirty Reads Non-Repeatable Duplicated Phantom Skipped

Reads Reads Reads Rows

READ UNCOMMITTED  Yes Yes Yes Yes Yes
READ COMMITTED No Yes Yes Yes Yes
REPEATABLE READ No No No Yes Yes
SERIALIZABLE No No No No No
READ COMMITTED No Yes No Yes No
SNAPSHOT

SNAPSHOT No No No No No

SERIALIZABLE and SNAPSHOT are the only transaction isolation levels that protect you
from data inconsistency issues. Both of them have downsides, however. SERTALIZABLE
may introduce major blocking issues and deadlocks due to excessive locking in systems
with volatile data. SNAPSHOT, on the other hand, may lead to significant tempdb load
along with the write/write conflict errors. Use them with care!

Locking-Related Table Hints

There are several other locking-related table hints in addition to the isolation level-
related hints we have already covered.
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You can control the type of lock acquired by readers with (UPDLOCK) and (XLOCK)
table hints. These hints force SELECT queries to use update (U) and exclusive (X) locks,
respectively, rather than shared (S) locks. This can be useful when you need to prevent
multiple SELECT queries from reading the same rows simultaneously.

Listing 3-5 demonstrates one such example, implementing custom counters in the
system. The SELECT statement uses an update (U) lock, which will block other sessions

from reading the same counter row until the transaction is committed.

Note This code is shown for demonstration purposes only and does not handle
situations where a specific counter does not exist in the table. It is better to use a
SEQUENCE object instead.

Listing 3-5. Counters table management

begin tran
select @Value = Value
from dbo.Counters with (UPDLOCK)
where CounterName = @CounterName;

update dbo.Counters

set Value += @ReserveCount

where CounterName = @CounterName;
commit

There are several hints that can help you to control lock granularity. The (TABLOCK)
and (TABLOCKX) hints force SQL Server to acquire shared (S) or exclusive (X) table-level
locks. With the (TABLOCK) hint, the type of the lock depends on the statement—readers
acquire shared (S) and writers acquire exclusive (X) locks. The (TABLOCKX) hint, on the
other hand, always acquires an exclusive (X) lock on the table, even with readers.

As I already mentioned, SQL Server may decide to use lower-granularity locks in
some cases. For example, during the scans, SQL Server may decide to use full (non-
intent) page locks instead of acquiring row-level locks on every row from the page. This
behavior, however, is not guaranteed, but can be controlled, to a degree, with (PAGLOCK)
and (ROWLOCK) hints.
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The (PAGLOCK) hint forces SQL Server to use full locks on the page level rather than
on the row level. Alternatively, the (ROWLOCK) hint prevents SQL Server from using full
page-level locks, forcing it to use row-level locking instead. As usual, both approaches
have benefits and downsides, and in the vast majority of cases it is better to allow SQL
Server to choose the proper locking strategy rather than using those hints.

The (READPAST) hint allows sessions to skip rows with incompatible locks held on
them rather than being blocked. You will see one example where such a hint is useful
in Chapter 10. Alternatively, the (NOWAIT) hint triggers an error as soon as SQL Server
encounters an incompatible row- or page-level lock from other sessions.

You can combine multiple locking hints together as long as they do not conflict
with each other. Listing 3-6 shows such an example. The first SELECT statement would
use page-level exclusive (X) locks. The second SELECT statement would use row-
level locking, keeping shared (S) locks held until the end of the transaction due to the
REPEATABLEREAD hint skipping the rows with incompatible lock types held. Finally, the
third statement would fail due to a conflicting locking hint combination.

Listing 3-6. Combining locking hints

select OrderId, OrderDate
from Delivery.Orders with (PAGLOCK XLOCK)
where CustomerId = @CustomerId;

select OrderId, OrderDate
from Delivery.Orders with (ROWLOCK REPEATABLEREAD READPAST)
where CustomerId = @CustomerId;

select OrderId, OrderDate
from Delivery.Orders with (NOLOCK TABLOCK)
where CustomerId = @CustomerId;

Note For more information about table hints, go to https://docs.microsoft.
com/en-us/sql/t-sql/queries/hints-transact-sql-table.
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Finally, there is the SET LOCK_TIMEOUT option, which can be used on the session
level to control how long the session should wait for a lock request to be granted. SQL
Server generates an error when a request cannot be granted within the specified interval.
Avalue of -1 indicates no timeout and a value of 0 indicates immediate timeout, similar
to the (NOWAIT) hint.

SQL Server treats lock timeout errors similarly to other errors in the system.

The error would not terminate the batch nor would it make an explicit transaction
uncommittable unless you have the XACT_ABORT option set to ON. You need to factor this
behavior into the error-handling strategy, as we discussed in the previous chapter.

Also, remember that SET LOCK_TIMEOUT does not override the SQL Client
CommandTimeout value. The client call would fail when the statement execution time
exceeds CommandTimeout regardless of the root cause of the wait.

Conversion Locks

Conversion locks are another group of lock types you can encounter in production.
They are a combination of full and intent locks and may be acquired on page and object
levels. SQL Server uses them when it needs to extend already acquired full locks with

an additional intent lock or, alternatively, already acquired intent locks with a full lock
of a different type. You can think about them as internal optimization, which allows the
session to avoid holding multiple locks on the same resource.

Let’s look at the example and run the code from Listing 3-7. As the first step, we will
run a SELECT statement in the active transaction using (REPEATABLEREAD TABLOCK) hints.
These hints will force the statement to acquire an object-level lock and hold it for the
duration of the transaction.

Listing 3-7. Conversion locks: Running SELECT statement

begin tran
select top 10 OrderId, Amount
from Delivery.Orders with (REPEATABLEREAD TABLOCK)
order by OrderId;

select
1.resource type
,case

69



CHAPTER 3  LOCKTYPES

when 1l.resource type = 'OBJECT'

then
object name
(
l.resource associated entity id
,1l.resource_database id
)
else "'

end as [table]
»l.resource_description
,l.request_type
,1.request_mode
»1l.request _status
from
sys.dm _tran locks 1
where
l.request_session_id = @@spid;

Figure 3-9 illustrates the locks acquired by the statement. You can see the object-
level shared (S) lock in place.

resource_type table resource_description request_type request_mode request_status
1 DATABASE LOCK S GRANT
2 OBJECT Orders LOCK S GRANT

Figure 3-9. Conversion locks: Locks held by SELECT statement

Now, let’s run another query that updates one of the rows in the same active
transaction, as shown in Listing 3-8.

Listing 3-8. Conversion locks: Running UPDATE statement

update Delivery.Orders
set Amount *= 0.95
where OrderId = 100;
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This operation requires SQL Server to obtain an exclusive (X) lock on the row and
intent exclusive (IX) locks on the page and object levels. The table, however, already has
a full shared (S) lock held, and SQL Server replaces it with a shared intent exclusive (SIX)
lock, as shown in Figure 3-10.

resource_type table resource_description request_type request_mode request_status

1 DATABASE LOCK S GRANT
2 PAGE 3 LOCK IX GRANT
3 KEY (931204457546) LOCK X GRANT
4 OBJECT Orders LOCK SIX GRANT

Figure 3-10. Conversion locks: Locks held after UPDATE statement

There are two other types of conversion locks besides (SIX):

Shared intent update (SIU) locks are acquired during update scans
when SQL Server needs to acquire an intent update (IU) lock on
the same resource on which the shared (S) lock is held.

Update intent exclusive (UIX) locks may be acquired when SQL
Server needs to acquire an intent exclusive (IX) lock on a resource
that already has an update (U) lock held on it. This lock type is
usually used on data pages during update scans when SQL Server
uses page-level rather than row-level locking. In this mode, SQL
Server acquires a page-level update (U) lock first, changing it to
an update intent exclusive (UIX) lock if some of the rows on the
page need to be updated. It is worth noting that SQL Server does
not replace page-level (UIX) locks with intent exclusive (IX) locks
afterward, keeping (UIX) locks until the end of transaction.

Conversion locks, in a nutshell, consist of two different lock types. Other locks need to
be compatible with both of them in order to be granted. For example, intent shared (IS)
locks are compatible with shared intent exclusive (SIX) locks because (IS) locks are
compatible with both (S) and (IX) locks. Intent exclusive (IX) locks, on the other hand,
are incompatible with (SIX) due to (IX) and (S) locks’ incompatibility.

Note Table 3-2 in this chapter shows the lock compatibility matrix for regular locks.
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Summary

SQL Server uses locking to support data isolation and consistency rules, using row-level
locking as the highest degree of granularity.

Exclusive (X) locks are acquired by writers when data is modified. Exclusive (X) locks
are always acquired and held until the end of the transaction regardless of the isolation
level. Update (U) locks are acquired when writers evaluate if data needs to be modified.
Those locks are converted into exclusive (X) locks if data needs to be updated and are
released otherwise. Intent (I*) locks are acquired on the object and page levels and
indicate the existence of child row-level locks of the same type.

With the exception of the READ UNCOMMITED isolation level, SQL Server acquires
shared (S) locks while reading data in pessimistic isolation levels. Transaction isolation
level controls when shared (S) locks are released. In the READ COMMITTED isolation
level, these locks are released immediately after the row has been read. In REPEATABLE
READ and SERIALIZABLE isolation levels, shared (S) locks are held until the end of the
transaction. Moreover, in the SERTALIZABLE isolation level, SQL Server uses range locks
to lock the ranges of the index keys rather than individual rows.

Optimistic isolation levels rely on row versioning and read old (previously
committed) versions of the rows from the version store in tempdb. READ COMMMITTED
SNAPSHOT has the same blocking behavior as READ UNCOMMITTED; however, it provides
better data consistency by preventing access to dirty uncommitted data. You should use
READ COMMITTED SNAPSHOT instead of READ UNCOMMITTED.

You can control transaction isolation levels with the SET TRANSACTION ISOLATION
LEVEL statement on the transaction level or with table locking hints on the table level in
the individual queries.
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Blocking in the System

Blocking is, perhaps, one of the most common concurrency problems encountered in
the systems. When blocking occurs, multiple queries block each other, which increases
the execution time of queries and introduces timeouts. All of that negatively affects the
user experience with the system.

This chapter will show how you can troubleshoot blocking issues in a system. It will
illustrate how you can analyze blocking conditions in real time and collect information
for further analysis.

General Troubleshooting Approach

Blocking occurs when multiple sessions compete for the same resource. In some cases,
this is the correct and expected behavior; for example, multiple sessions cannot update
the same row simultaneously. However, in many cases blocking is unexpected and
occurs because queries were trying to acquire unnecessary locks.

Some degree of blocking always exists in systems, and it is completely normal. What
is not normal, however, is excessive blocking. From the end user’s standpoint, excessive
blocking masks itself as a general performance problem. The system is slow, queries are
timing out, and often there are deadlocks.

Apart from deadlocks, system slowness is not necessarily a sign of blocking issues—
many other factors can negatively impact performance. However, blocking issues can
definitely contribute to a general system slowdown.

During the initial phase of performance troubleshooting, you should take a holistic
view of the system and find the most critical issues to address. As you can guess,
blocking and concurrency issues may or may not be present in this list. We will discuss
how to perform that holistic analysis in Chapter 12, focusing on general blocking
troubleshooting in this chapter.
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In a nutshell, to troubleshoot blocking issues, you must follow these steps:
1. Detect the queries involved in the blocking.
2. Find out why blocking occurs.
3. Fixthe root cause of the issue.

SQL Server provides you with several tools that can help you with these tasks.
These tools can be separated into two different categories. The first category consists of
dynamic management views that you can use to troubleshoot what is happening in the
system at present. These tools are useful when you have access to the system at the time
of blocking and want to perform real-time troubleshooting.

The second category of tools allows you to collect information about blocking problems
in the system and retain it for further analysis. Let’s look at both categories in detail.

Troubleshooting Blocking Issues in Real Time

The key tool for troubleshooting real-time blocking is the sys.dm_tran_locks dynamic
management view, which provides information about currently active lock requests in
the system. It returns you a list of lock requests and their type, status of request (GRANT or
WAIT), information about the resources on which the locks were requested, and several
other useful attributes.

Table 4-1 shows you the code that leads to the blocking condition.

Table 4-1. Code That Leads to the Blocking Condition

Session 1 (SPID=52) Session 2 (SPID=53) Comments
begin tran Session 1 acquires
delete from exclusive (X) lock
Delivery.Orders on the row with
where OrderId = 95 Orderld=95
select OrderId, Amount Session 2 is blocked
from Delivery.Orders trying to acquire
with (readcommitted) shared (S) lock on the
where OrderNum = '1000' row with Orderld=95
rollback
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Figure 4-1 shows the partial output from the sys.dm_tran_locks, sys.dm os_
waiting_tasks, and sys.dm_exec_requests views at the time the blocking occurred. As
you can see, Session 53 is waiting for a shared (S) lock on the row with the exclusive (X)
lock held by Session 52. The LCK_M_S wait type in the outputs indicates the shared (S)
lock wait. We will discuss wait types in more detail in Chapter 12.

request_session_id

resource_type  resource_description

request_mode  request_type  request_status

1 53 DATABASE S LOCK GRANT

2 52 DATABASE S LOCK GRANT

3 53 PAGE 1:377 IS LOCK GRANT

4 52 PAGE 1:377 IX LOCK GRANT

5 52 KEY (Sbe201b5348) X LOCK GRANT

6 53 KEY (Sbe201b534f8) S LOCK WAIT

7 53 OBJECT IS LOCK GRANT

8 52 OBJECT IX LOCK GRANT
session_id  walt_duration_ms |wait_type blocking_session_id | resource_description

1 53 157064 LCK M_S 52 keylock hobtid=72057594067025920 dbi...
session_id  status wait_type | wait_time wai_resource command

1 53 suspended | LCK_M_S | 157064 KEY: 13:72057534067025920 (Sbe201b53f8) SELECT

Figure 4-1. Output from the system views at time of blocking

Note It is possible that you will get page-level blocking when you run the code

in your system. Session 53 needs to scan all rows from the page, and SQL Server
may decide to obtain a page-level shared (S) lock instead of row-level locks.
Nevertheless, the session will be blocked due to (S) / (IX) lock incompatibility at the

page level.

The information provided by the sys.dm_tran locks view is a bit too cryptic to

troubleshoot, and you often need to join it with other dynamic management views, such

as sys.dm_exec_requests and sys.dm_os_waiting tasks, to gain a clearer picture.

Listing 4-1 provides the required code.

Listing 4-1. Getting more information about blocked and blocking sessions

select

tl.resource_type as [Resource Type]
,db_name(tl.resource database id) as [DB Name]
,case tl.resource type
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when 'OBJECT' then
object _name

(
tl.resource_associated_entity id
,tl.resource database id
)
when 'DATABASE' then 'DB'
else
case when tl.resource database id = db_id()
then
( select object name(object id, tl.resource database id)
from sys.partitions
where hobt id = tl.resource associated entity id )
else '(Run under DB context)'
end

end as [Object]
,tl.resource description as [Resource]
,tl.request session id as [Session]
,tl.request mode as [Mode]
,tl.request status as [Status]
,wt.wait duration ms as [Wait (ms)]
,9i.sql
»gqi.query plan
from
sys.dm_tran locks t1 with (nolock) left outer join
sys.dm os waiting tasks wt with (nolock) on
tl.lock owner address = wt.resource address and
tl.request status = 'WAIT'
outer apply
(
select
substring(s.text, (er.statement start offset / 2) + 1,
(( case er.statement end offset
when -1
then datalength(s.text)
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else er.statement_end offset
end - er.statement start offset) / 2) + 1) as sql
, qp.query plan
from
sys.dm_exec_requests er with (nolock)
cross apply sys.dm exec_sql text(er.sql handle) s
cross apply sys.dm exec_query plan(er.plan_handle) gp
where
tl.request session id = er.session id
) ai
where
tl.request_session_id <> @@spid
order by
tl.request_session_id
option (recompile)

Figure 4-2 shows the results of the query. As you can see, it is much easier to
understand, and it provides you with more useful information, including currently
running batches and their execution plans. Keep in mind that the execution plans
obtained from the sys.dm_exec_requests and sys.dm exec_query stats DMVsdo
not include the actual execution statistics metrics, such as the actual number of rows
returned by operators and the number of their executions. Also, for the sessions in which
lock requests were granted, the SQL statement and query plan represent the currently
executing batch (NULL if session is sleeping), rather than the batch that acquired the
original lock.

Resource Type DB Name Object Resource Session Mode Stalus  Watms) sql

1 DATABASE SQLServerintemals DB 52 5 GRANT NULL NULL

2 OBJECT SQLServerintemals  Orders 52 X GRANT NULL NULL

3 PAGE SQLServerintemals Orders  1:377 52 1X GRANT NULL NULL

4 KEY 5QLServerintemals Orders  (Sbe201b53f8) 52 X GRANT NULL NULL

5 KEY SQLServerintemals  Orders  (Sbe201b538) 53 S WAIT 486032 selact Orderld, Amount fro...

3 DATABASE SQLServerintemals DB 53 GRANT NULL select Orderdd, Amount  fro...

7 PAGE SQLServerintemals Orders  1:377 53 1S GRANT NULL select Orderld, Amount  fro...

8 OBJECT SQLServerntemals  Orders 53 IS GRANT NULL  select Orderd, Amount fro..  <ShowPlanXMLxming="h

Figure 4-2. Joining sys.dm_os_tran_locks with other DM Vs

You need to run the query in the context of the database involved in the blocking
to correctly resolve the object names. Also of importance, the OBJECT _NAME () function
used in the code obtains a schema stability (Sch-S) lock on the object, and the statement
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would be blocked if you tried to resolve the name of the object with an active schema
modification (Sch-M) lock held. SQL Server obtains those locks during schema
alteration; we will discuss them in depth in Chapter 8.

The sys.dm_tran_locks view returns one row for each active lock request in the
system, which can lead to very large result sets when you run it on busy servers. You
can reduce the amount of information and perform a self-join of this view based on
the resource_description and resource associated entity id columns, and you
can identify the sessions that compete for the same resources, as shown in Listing 4-2.
Such an approach allows you to filter out the results and only see the sessions that are

involved in the active blocking conditions.

Listing 4-2. Filtering out blocked and blocking session information

select
tli.resource _type as [Resource Type]
,db_name(tli.resource database id) as [DB Name]
,case tli.resource_type
when 'OBJECT' then
object_name
(
tli.resource associated entity id
,tll.resource database id
)
when 'DATABASE' then 'DB'
else
case when tli.resource database id = db_id()
then
(
select
object name(object id, tli.resource database id)
from sys.partitions
where hobt id = tlil.resource associated entity id
)
else '(Run under DB context)'
end
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end as [Object]
,tl1.resource description as [Resource]
,t11.request session_id as [Session]
,t11.request mode as [Mode]
,tl1.request status as [Status]
,2wt.wait duration ms as [Wait (ms)]
»9i.sql
,qi.query plan
from
sys.dm tran locks tl1 with (nolock) join
sys.dm tran locks tl2 with (nolock) on
tli.resource associated entity id = tl2.resource associated
entity id
left outer join sys.dm_os_waiting tasks wt with (nolock) on
tl1.lock owner address = wt.resource address and
tli.request_status = 'WAIT'
outer apply

(
select
substring(s.text, (er.statement start offset / 2) + 1,
(( case er.statement end offset
when -1
then datalength(s.text)
else er.statement end offset
end - er.statement start offset) / 2) + 1) as sql
, qp.query plan
from
sys.dm_exec_requests er with (nolock)
cross apply sys.dm exec_sql text(er.sql handle) s
cross apply sys.dm exec_query plan(er.plan_handle) gp
where
tli.request _session _id = er.session_id
) gi
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where
tli.request_status <> tl2.request_status and

(

tli.resource_description = tl2.resource_description or

(

tli.resource description is null and
tl2.resource_description is null

)
option (recompile)

Figure 4-3 illustrates the output of this code. As you can see, this approach
significantly reduces the size of the output and simplifies analysis.

Resource Type DB Name Object  Resource Session Mode Status Wat jms) sqg query_plan
1 KEY SQLServerintemals Orders  (Sbe201b5X8) 52 X GRANT  NULL NULL NULL
2 KEY SQLServerintemals Orders  (Sbe201b5248) 53 s WAT 486154  select Orderld. Amount fr <ShowPlanXML xmins="htt

Figure 4-3. Blocked and blocking sessions

As you already know, blocking occurs when two or more sessions are competing for
the same resource. You need to answer two questions during troubleshooting:

1. Why does the blocking session hold the lock on the resource?
2. Why does the blocked session acquire the lock on the resource?

Both questions are equally important; however, there are a couple of challenges you
may encounter when analyzing the blocking session data. First, as I already mentioned,
the blocking session data would show the queries that are currently executing rather
than those that caused the blocking.

As an example, consider a situation where the session runs several data modification
statements in a single transaction. As you remember, SQL Server would acquire and hold
exclusive (X) locks on the updated rows until the end of the transaction. The blocking
may occur over any of the previously updated rows with exclusive (X) locks held, which
may or may not be acquired by the currently executing statement from the session.

The second challenge is related to the blocking chains when the blocking session is
also blocked by another session. This usually happens in busy OLTP systems and is often
related to object-level locks acquired during schema alteration, index maintenance, or in
a few other cases.
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Consider a situation where you have a Session 1 that holds an intent lock on the
table. This intent lock would block Session 2, which may want to obtain a full table lock;
for example, during an offline index rebuild. The blocked Session 2, in turn, will block all
other sessions that may try to obtain intent locks on the table.

Note We will discuss this and other situations that may lead to blocking chains
later in the book. For now, however, remember that you need to rewind the
blocking chains and include the root blocking session in your analysis when you
encounter such a condition.

These challenges may lead to the situation where it is easier to start troubleshooting
by looking at the blocked session, where you have the blocked statement and its
execution plan available. In many cases, you can identify the root cause of the blocking
by analyzing its execution plan, which you can obtain from the dynamic management
views (as was demonstrated earlier) or by rerunning the query.

Figure 4-4 shows the execution plan of the blocked query from our example.

tﬂ"‘"! Clustered Index Scan (Clustered)
: Scanning a clustered index, entirely or only a range.
Clustered Index Scan..
SELECT - Predicate
Cost: 0 % (Orders]. [PK_Orders] [isoiseverintemals)iDelivery)[Orders)[OrderNum)=(@1)
Cost: 100 % Object

[SQLServerinternals).[Delivery).[Orders).[PK_Orders)
Output List

[SQLServerinternals).[Delivery).[Orders].Orderld,
[SQLServerinternals).[Delivery].[Orders] Amount

Figure 4-4. Execution plan for the blocked query

As you can see from the execution plan, the blocked query is scanning the entire
table looking for orders with the predicate on the OrderNum column. The query uses a
READ COMMITTED transaction isolation level, and it acquires a shared (S) lock on every
row in the table. As a result, at some point the query is blocked by the first DELETE
query, which holds an exclusive (X) lock on one of the rows. It is worth noting that the
query would be blocked even if the row with the exclusive (X) lock held did not have
OrderNum="'1000". SQL Server cannot evaluate the predicate until the shared (S) lock is
acquired and the row is read.
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You can resolve this problem by optimizing the query and adding the index on the
OrderNum column, which will replace the Clustered Index Scan with the Nonclustered
Index Seek operator in the execution plan. This will significantly reduce the number of
locks the statement acquires and eliminate lock collision and blocking as long as the
queries do not delete and select the same rows.

Even though in many instances you can detect and resolve the root cause of the
blocking by analyzing and optimizing the blocked query, this is not always the case.
Consider the situation where you have a session that is updating a large number of rows
in a table and thus acquires and holds a large number of exclusive (X) locks on those
rows. Other sessions that need to access those rows would be blocked, even in the case
of efficient execution plans that do not perform unnecessary scans. The root cause of the
blocking in this case is the blocking rather than blocked session.

As we have already discussed, you cannot always rely on the blocked statements
returned by data management views. In many cases, you need to analyze what code in
the blocking session has caused the blocking. You can use the sys.dm_exec_sessions
view to obtain information about the host and application of the blocking session. When
you know which statement the blocking session is currently executing, you can analyze
the client and T-SQL code to locate the transaction to which this statement belongs. One
of the previously executed statements in that transaction would be the one that caused
the blocking condition.

The blocked process report, which we are about to discuss, can also help during such
troubleshooting.

Collecting Blocking Information for Further Analysis

Although DMVs can be very useful in providing information about the current state of
the system, they are only helpful if you run them at the exact same time the blocking
occurs. Fortunately, SQL Server helps capture blocking information automatically via the
blocked process report. This report provides information about the blocking condition,
which you may retain for further analysis. It is also incredibly useful when you need to
deal with blocking chains and complex blocking cases.

There is a configuration setting called blocked process threshold, which specifies how
often SQL Server checks for blocking in the system and generates a report (it is disabled
by default). Listing 4-3 shows the code that sets the threshold to ten seconds.
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Listing 4-3. Specifying blocking process threshold

sp_configure 'show advanced options', 1;
go
reconfigure;
go
sp_configure 'blocked process threshold', 10; -- in seconds
go
reconfigure;
go
You need to fine-tune the value of the blocked process threshold in production. It is
important to avoid false positives and, at the same time, capture the problems. Microsoft
suggests not going below five seconds as the minimum value, and you obviously need
to set the value to less than the query timeout. I usually use either five or ten seconds,
depending on the amount of blocking in the system and phase of the troubleshooting.
There are a few ways to capture that report in the system. You can use SQL Trace;
there is a “Blocked process report” event in the “Errors and "Warnings” section, as shown
in Figure 4-5.

Review selected events and event columns to trace. To see a complete list, select the "Show all events™ and "Show all columns™ options.

Everts | ApplicationN. | BigntData1 | BigintData2 | BinaryData | CPU | ClientProcessiD | ColumnP A
D e L
- Erors and Wamings

[~ Atention r -

[~ Background Job Emor

[ _Bimap Waming - r

W Blocked process report |

[~ CPU threshold exceeded u

[~ Database Suspect Data Page

[~ Emorlog o I

[~ Eventlog | | | | -

I~ Bxception = u

Fwrbanns Gndl Fuant g i~ b

i of

Indicates that an exception has occumed in SQL Server. ¥ Show all events

r— No data column selected

Figure 4-5. “Blocked process report” event in SQL Trace
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Alternatively, you can create an Extended Event session using a blocked process_
report event, as shown in Figure 4-6. This session will provide you with several
additional attributes than those offered in SQL Trace.

n

Select a page :'; Script - mHelp

4 General
| # Events
& Data Storage A Select | Select the events you want to capture from the event library.
42 Advanced
Event library:
Ib!o:h:d_pto:us_rtpon | in |E\~ent names only v
Mame Category [v] Channel [v]
L
blocked_process_report ~ | EventFields * | Description
L, blocked_process  An XML graph that describes the blocked process.
G i blocked longer than the time database_id The database ID of the object on which the lock was acquired. [
that is specified by the : . .
47 sqLaots e Yecatisue Bloked proces Mblai:_narne The databist nalne of the object on which the lock was acquired
[SQL201NAdministrater] threshold setting. This event is duration The time (in microseconds) that the task was blocked.
not triggered by system tasks | = | i deq i The ID for the index on the object that was affected by the event. To det...
or by tasks that are waiting for )
non-deadlock-detectable lock_mode The type of lock that was acquired.
dewcenn resources. Use this event to object id The ID of the object on which the lock was acquired.
Progress troubleshoot blocked B B
processes. (By default, blocked resource_owner_t.. The type of the object that acquired the lock.
Ready process reports are not ~— | transacticn_id The ID of the transaction in which the blocked process exists,
generated.) h

Figure 4-6. Capturing blocked process report with Extended Events

Note Extended Events are more efficient and provide less overhead than
SQL Traces.

The blocked process report contains XML that shows information about blocking

and blocked processes in the system (the most important of which are highlighted in
boldface within Listing 4-4).

Listing 4-4. Blocked process report XML

<blocked-process-report monitorLoop="224">

<blocked-process»
<process id="process3e576c928" taskpriority="0" logused="0"
waitresource="KEY: ..." waittime="14102" ownerId="..."
transactionname="SELECT" lasttranstarted="..." XDES="..." lockMode="S"
schedulerid="1" kpid="..." status="suspended" spid="53" sbid="0"
ecid="0" priority="0" trancount="0" lastbatchstarted="..."
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lastbatchcompleted="..." lastattention="..." clientapp="..."
..." loginname="..." isolationlevel="read

hostname="..." hostpid='
committed (2)" xactid="..." currentdb="14" lockTimeout="...'
clientoptioni="..." clientoption2="...">
<executionStack>
<frame line="3" stmtstart="46" sqlhandle=".."/>
<frame line="3" stmtstart="100" sqlhandle="..."/>
</executionStack>
<inputbuf>
set transaction isolation level read committed
select OrderId, Amount
from Delivery.Orders
where OrderNum = '1000'
</inputbuf>
</process>
</blocked-process>
<blocking-process»
<process status="sleeping" spid="54" sbid="0" ecid="0" priority="0"
trancount="1" lastbatchstarted="..." lastbatchcompleted="..."
" clientapp="..." hostname="..." hostpid="..."

lastattention="...
" isolationlevel="read uncommitted (1)"
" clientoptioni="...

loginname="...

xactid="..." currentdb="14" lockTimeout="...

clientoption2="...">
<executionStack/»
<inputbuf>

set transaction isolation level read uncommitted

begin tran
delete from Delivery.Orders
where OrderId = 95
</inputbuf>
</process>
</blocking-process>
</blocked-process-report>
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As with real-time troubleshooting, you should analyze both blocking and blocked
processes and find the root cause of the problem. From the blocked process standpoint,
the most important information is the following:

o waittime: The length of time the query is waiting, in milliseconds
o lockMode: The type of lock being waited for
o 1isolationlevel: The transaction isolation level

o executionStack and inputBuf: The query and/or the execution
stack. You will see how to obtain the actual SQL statement involved
in blocking in Listing 4-5.

From the blocking process standpoint, you must look at the following:

e status:Itindicates whether the process is running, sleeping, or
suspended. When the process is sleeping, there is an uncommitted
transaction. When the process is suspended, that process either waits
for the non-locking related resource (for example, a page from the
disk) or is also blocked by the other session and so there is a blocking
chain condition.

o trancount: A value greater than 1 indicates nested transactions. If
the process status is sleeping at the same time, then there is a chance
that the client did not commit the nested transactions correctly (for
example, the number of commit statements is less than the number of
begin tran statements in the code).

o executionStack and inputBuf: As we already discussed, in some
cases you need to analyze what happens in the blocking process.
Some common issues include runaway transactions (for example,
missing commit statements in the nested transactions); long-running
transactions with perhaps some Ul involved; and excessive scans
(for example, a missing index on the referencing column in the detail
table leads to scans during a referential integrity check). Information
about queries from the blocking session could be useful here.
Remember that in the case of a blocked process, executionStack and
inputBuf would correspond to the queries that were running at the
moment when the blocked process report was generated rather than
to the time of the blocking.
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In many cases, blocking occurs because of unnecessary scans resulting from
nonoptimized queries. Those queries acquire an unnecessarily large number of locks,
which lead to lock collision and blocking. You can detect such cases by looking at the
blocked queries’ execution plans and seeing the inefficiencies there.

You can either run the query and check the execution plan, or use DMVs and obtain
an execution plan from sys.dm_exec_query stats based on the sql_handle, stmtStart,
and stmtEnd elements from the execution stack. Listing 4-5 shows the code that achieves
that.

Listing 4-5. Obtaining query text and execution plan by SQL handle

declare
@H varbinary(max) = /* Insert sql_handle from the top line of the
execution stack */
,@5 int = /* Insert stmtStart from the top line of the execution stack */
,@E int = /* Insert stmtEnd from the top line of the execution stack */

select
substring(qt.text, (gqs.statement start offset / 2) + 1,
(( case gs.statement end offset
when -1 then datalength(qt.text)
else gs.statement_end offset
end - gs.statement start offset) / 2) + 1) as sql
,qp.query plan
»qs.creation_time
»qs.last_execution_time
from
sys.dm exec_query stats gs with (nolock)
cross apply sys.dm exec_sql text(gs.sql handle) qt
cross apply sys.dm exec_query plan(gs.plan_handle) gp
where
gs.sql_handle = @H and
gs.statement start offset = @S
and gs.statement _end offset = @E
option (recompile)
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Figure 4-7 shows the query output.

SQL |query_plon |
1 SELECT [Orderid],[Amount] FR... = <ShowPlanXML xmins="http.//schema

Figure 4-7. Getting information from sys.dm_exec_query_stats

There are a couple of potential problems with the sys.dm_exec_query stats view of
which you should be aware. First, this view relies on the execution plan cache. You will
not be able to get the execution plan if it is not in the cache; for example, if a query used
statement-level recompile with an option (recompile) clause.

Second, there is a chance that you will have more than one cached plan returned.

In some cases, SQL Server keeps the execution statistics even after recompilation

occurs, which could produce multiple rows in the result set. Moreover, you may have
multiple cached plans when sessions use different SET options. There are two columns—
creation_time and last execution_time—that can help pinpoint the right plan.

This dependency on the plan cache during troubleshooting is the biggest downside of
the blocked process report. SQL Server eventually removes old plans from the plan cache
after queries are recompiled and/or plans are not reused. Therefore, the longer you wait
to do the troubleshooting, the less likely it is that the plan will be present in the cache.

Microsoft Azure SQL Databases and SQL Server 2016 and above allow you to collect
and persist information about running queries and their execution plans and statistics in
the Query Store. The Query Store does not rely on the plan cache and is extremely useful
during system troubleshooting.

Note You can read about the Query Store at https://docs.microsoft.com/
en-us/sql/relational-databases/performance/monitoring-
performance-by-using-the-query-store.

Blocking Monitoring with Event Notifications

Even though the blocked process report allows you to collect and persist blocking
information for further analysis, you often need to access the plan cache to get the text
and execution plans of the queries involved in the blocking. Unfortunately, the plan
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cache changes over time, and longer you wait, the less likely it is that the data you seek
will be present there.

You can address this issue by building a monitoring solution based on SQL Server
Event Notifications. Event Notifications is a Service Broker-based technology that
allows you to capture information about specific SQL Server and DDL events and post
a message about them into the Service Broker queue. Furthermore, you can define the
activation procedure on the queue and react to an event—in our case, parse a blocked
process report—nearly in real time.

Note You can read about Event Notifications at https://docs.microsoft.com/
en-us/sql/relational-databases/service-broker/event-notifications.

Let’s look at the implementation. In my environments, I prefer to persist the blocking
information in a separate database. Listing 4-6 creates the database and corresponding
Service Broker and Event Notifications objects. Remember: You need to have the
blocked process threshold set for the events to be fired.

Listing 4-6. Setting up event notifications objects

use master
go
create database DBA;

exec sp_executesql
N'alter database DBA set enable broker;
alter database DBA set recovery simple;';

go
use DBA
go

create queue dbo.BlockedProcessNotificationQueue
with status = on;

go
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create service BlockedProcessNotificationService
on queue dbo.BlockedProcessNotificationQueue
([http://schemas.microsoft.com/SQL/Notifications/PostEventNotification]);

g0

create event notification BlockedProcessNotificationEvent
on server
for BLOCKED PROCESS REPORT
to service
'BlockedProcessNotificationService',
'current database’;

In the next step, shown in Listing 4-7, we need to create an activation stored
procedure that would parse the blocked process report, as well as a table to persist
blocking information.

You can enable or disable the collection of execution plans by setting the @collectPlan
variable in the stored procedure. While execution plans are extremely useful during
troubleshooting, sys.dm_exec_query_ plan calls are CPU-intensive and may introduce
noticeable CPU overhead in the system, along with a large amount of blocking. You need
to consider this and disable plan collection when your servers are CPU-bound.

Listing 4-7. Creating a table and an activation stored procedure

create table dbo.BlockedProcessesInfo
(
ID int not null identity(1,1),
EventDate datetime not null,
-- ID of the database where locking occurs
DatabaseID smallint not null,
-- Blocking resource
[Resource] varchar(64) null,
-- Wait time in MS
WaitTime int not null,
-- Raw blocked process report
BlockedProcessReport xml not null,
-- SPID of the blocked process
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BlockedSPID smallint not null,

-- XACTID of the blocked process
BlockedXactId bigint null,

-- Blocked Lock Request Mode
BlockedLockMode varchar(16) null,

-- Transaction isolation level for blocked session
BlockedIsolationlLevel varchar(32) null,
-- Top SOL Handle from execution stack
BlockedSQLHandle varbinary(64) null,
-- Blocked SQL Statement Start offset
BlockedStmtStart int null,

-- Blocked SQL Statement End offset
BlockedStmtEnd int null,

-- Blocked Query Hash
BlockedQueryHash binary(8) null,

-- Blocked Query Plan Hash
BlockedPlanHash binary(8) null,

-- Blocked SQL based on SQL Handle
BlockedSql nvarchar(max) null,

-- Blocked InputBuf from the report
BlockedInputBuf nvarchar(max) null,
-- Blocked Plan based on SQL Handle
BlockedQueryPlan xml null,

-- SPID of the blocking process
BlockingSPID smallint null,

-- Blocking Process status
BlockingStatus varchar(16) null,

-- Blocking Process Transaction Count
BlockingTranCount int null,

-- Blocking InputBuf from the report
BlockingInputBuf nvarchar(max) null,
-- Blocked SQL based on SQL Handle
BlockingSql nvarchar(max) null,

-- Blocking Plan based on SOL Handle
BlockingQueryPlan xml null

BLOCKING IN THE SYSTEM
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create unique clustered index IDX BlockedProcessInfo EventDate ID
on dbo.BlockedProcessesInfo(EventDate, ID);

go
create function dbo.fnGetSqlText
(

@SqlHandle varbinary(64)

, @StmtStart int

,@5tmtEnd int
)

returns table
/**********************************************************************
Function: dbo.fnGetSqlText
Author: Dmitri V. Korotkevitch
Purpose:
Returns sql text based on sql handle and statement start/end offsets
Includes several safeguards to avoid exceptions

Returns: 1-column table with SQL text
*********************************************************************/

as
return
(
select
substring(
t.text
,@05tmtStart / 2 + 1
)((
case
when @StmtEnd = -1
then datalength(t.text)
else @StmtEnd
end - @StmtStart) / 2) + 1
) as [SOL]
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from sys.dm exec_sql text(nullif(@SqlHandle,0x)) t
where
isnullL(@SqlHandle,0x) <> Ox and
-- In some rare cases, SQL Server may return empty or
-- incorrect sql text
isnull(t.text,"'") <> "' and

(
case when @StmtEnd = -1
then datalength(t.text)
else @StmtEnd
end > @StmtStart
)
)
go
create function dbo.fnGetQueryInfoFromExecRequests
(
@collectPlan bit
,@SPID smallint
,@5g1Handle varbinary(64)
,@5tmtStart int
,@5tmtEnd int
)

JRRRRRRRRkk kR Rk kR kot oRokkok kot oRkokk kot koRokokok kot R kokkok ok ok o

Function: dbo. fnGetQueryInfoFromExecRequests

Author: Dmitri V. Korotkevitch

Purpose:
Returns Returns query and plan hashes, and optional query plan
from sys.dm exec_requests based on @@spid, sql handle and
statement start/end offsets

*********************************************************************/

returns table

as

return

93



CHAPTER 4  BLOCKING IN THE SYSTEM

(

select
1 as DataExists
,er.query plan_hash as plan_hash
,er.query hash
,case
when @collectPlan = 1
then
(
select gp.query plan
from sys.dm exec_query plan(er.plan_handle) gp
)
else null
end as query plan
from
sys.dm exec_requests er
where
er.session _id = @SPID and
er.sql handle = @SqlHandle and
er.statement_start offset = @StmtStart and
er.statement _end offset = @StmtEnd

)
go

create function dbo.fnGetQueryInfoFromQueryStats
(

@collectPlan bit

,@5qlHandle varbinary(64)

,@StmtStart int

,@5tmtEnd int

,@EventDate datetime

,@LastExecTimeBuffer int
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Function: dbo. fnGetQueryInfoFromQueryStats
Author: Dmitri V. Korotkevitch
Purpose:
Returns Returns query and plan hashes, and optional query plan
from sys.dm exec_query stats based on @@spid, sql handle and
statement start/end offsets
*********************************************************************/
returns table
as
return
(
select top 1
gs.query_plan_hash as plan_hash
»qs.query hash
,case
when @collectPlan = 1
then
(
select gp.query plan
from sys.dm exec_query plan(gs.plan_handle) gp
)
else null
end as query plan
from
sys.dm_exec_query stats gqs with (nolock)
where
gs.sql handle = @SqlHandle and
gs.statement start offset = @StmtStart and
gs.statement_end offset = @StmtEnd and
@EventDate between gs.creation time and
dateadd(second,@LastExecTimeBuffer,qs.last_execution_time)
order by
gs.last_execution time desc

g0
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create procedure [dbo].[SB_BlockedProcessReport Activation]

with execute as owner
/********************************************************************
Proc: dbo.SB_BlockedProcessReport Activation

Author: Dmitri V. Korotkevitch

Purpose:

Activation stored procedure for Blocked Processes Event Notification
*******************************************************************/
as
begin

set nocount on

declare
@Msg varbinary(max)
,@ch uniqueidentifier
,@MsgType sysname
,@Report xml
,@EventDate datetime
,@DBID smallint
,@EventType varchar(128)
,@lockedSPID int
,@blockedXactID bigint
,@resource varchar(64)
,@blockingSPID int
,@blockedSqlHandle varbinary(64)
,@blockedStmtStart int
,@lockedStmtEnd int
,@waitTime int
,@blockedXML xml
,@blockingXML xml
,@collectPlan bit = 1 -- Controls if we collect execution plans

while 1 = 1
begin
begin try
begin tran
waitfor
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(

receive top (1)
@ch = conversation_handle
,@Msg = message body
»@MsgType = message_type name
from dbo.BlockedProcessNotificationQueue
), timeout 10000

if @@ROWCOUNT = 0
begin
rollback;
break;
end

if @MsgType = N'http://schemas.microsoft.com/SQL/Notifications/
EventNotification'
begin
select
@Report = convert(xml,@Msg)

select
@EventDate = @Report
.value('(/EVENT INSTANCE/StartTime/text())[1]', 'datetime")
,@DBID = @Report
.value(' (/EVENT _INSTANCE/DatabaseID/text())[1]', 'smallint")
,@EventType = @Report
.value(' (/EVENT INSTANCE/EventType/text())[1]", 'varchar(128)');

IF @EventType = 'BLOCKED PROCESS REPORT'
begin
select
@Report = @Report
.query('/EVENT INSTANCE/TextData/*");

select
@blockedXML = @Report
.query('/blocked-process-report/blocked-process/*")
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select

@resource = @blockedXML
.value('/process[1]/@waitresource’, 'varchar(64)")

,@blockedXactID = @blockedXML
.value('/process[1]/@xactid", 'bigint")

,@waitTime = @blockedXML
.value('/process[1]/@waittime", 'int")

,@blockedSPID = @blockedXML
.value('process[1]/@spid', 'smallint")

,@blockingSPID = @Report
.value ('/blocked-process-report[1]/blocking-process[1]/
process[1]/@spid’, " 'smallint")

,@blockedSqlHandle = @blockedXML
.value ('xs:hexBinary(substring((/process[1]/executionStack[1]/
frame[1]/@sqlhandle)[1],3))", 'varbinary(max)")

,@blockedStmtStart = isnull(@blockedXML
.value('/process[1]/executionStack[1]/frame[1]/
@stmtstart','int'), 0)

,@blockedStmtEnd = isnull(@blockedXML
.value('/process[1]/executionStack[1]/frame[1]/
@stmtend', 'int'), -1);

update t
set t.WaitTime =

case when t.WaitTime < @waitTime
then @waitTime
else t.WaitTime

end

from [dbo].[BlockedProcessesInfo] t
where

t.BlockedSPID = @blockedSPID and
IsNull(t.BlockedXactId,-1) = isnull(@blockedXactID,-1) and
isnull(t.[Resource],'aaa') = isnull(@resource, 'aaa') and
t.BlockingSPID = @blockingSPID and
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t.BlockedSQLHandle = @blockedSqlHandle and
t.BlockedStmtStart = @blockedStmtStart and
t.BlockedStmtEnd = @blockedStmtEnd and
t.EventDate »>=

dateadd(millisecond,-@waitTime - 100, @EventDate);

IF @@rowcount = 0
begin
select
@blockingXML = @Report
.query('/blocked-process-report/blocking-process/*");

;with Source
as
(
select
repData.BlockedLockMode
yrepData.BlockedIsolationLevel
,repData.BlockingStmtStart
,repData.BlockingStmtEnd
,repData.BlockedInputBuf
,repData.BlockingStatus
,repData.BlockingTranCount
,BlockedSQLText.SQL as BlockedSQL
,coalesce(
blockedERPlan.query plan
,blockedQSPlan.query plan
) AS BlockedQueryPlan
,coalesce(
blockedERPlan.query_hash
,blockedQSPlan.query hash
) AS BlockedQueryHash
,coalesce(
blockedERPlan.plan_hash
,blockedQSPlan.plan_hash
) AS BlockedPlanHash
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,BlockingSQLText.SOL as BlockingSOL
srepData.BlockingInputBuf
,coalesce(
blockingERPlan.query plan
,blockingQSPlan.query plan
) AS BlockingQueryPlan
from
-- Parsing report XML
(
select
@blockedXML
.value('/process[1]/@lockMode", 'varchar(16)")
as BlockedLockMode
,@®blockedXML
.value('/process[1]/@isolationlevel’, 'varchar(32)")
as BlockedIsolationLevel
,isnull(@blockingXML
.value('/process[1]/executionStack[1]/frame[1]/
@stmtstart’
,'int") , 0) as BlockingStmtStart
,isnull(@blockingXML
.value('/process[1]/executionStack[1]/frame[1]/
@stmtend’
,'int"), -1) as BlockingStmtEnd
,@blockedXML
.value('(/process[1]/inputbuf/text())[1]",
"nvarchar(max)")
as BlockedInputBuf
»@blockingXML
.value('/process[1]/@status’, 'varchar(16)")
as BlockingStatus
,@blockingXML
.value('/process[1]/@trancount’, 'smallint")
as BlockingTranCount
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,@blockingXML
.value('(/process[1]/inputbuf/text())[1]",
"nvarchar(max)")

as BlockingInputBuf

,@lockingXML
.value('xs:hexBinary(substring((/process[1]/
executionStack[1]/frame[1]/@sqlhandle)[1],3))"

, 'varbinary(max)")
as BlockingSQLHandle
) as repData
-- Getting Query Text
outer apply
dbo.fnGetSqlText
(
@blockedSqlHandle
,@blockedStmtStart
,@blockedStmtEnd
) BlockedSQLText
outer apply
dbo.fnGetSqlText
(
repData.BlockingSQLHandle
;repData.BlockingStmtStart
,repData.BlockingStmtEnd
) BlockingSQLText
-- Check if statement is still blocked in
sys.dm_exec_requests
outer apply
dbo.fnGetQueryInfoFromExecRequests
(
@collectPlan
,@blockedSPID
,@blockedSqlHandle
,@blockedStmtStart
,@blockedStmtEnd
) blockedERPlan
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-- if there is no plan handle

-- let's try sys.dm exec_query stats
outer apply

(
select plan_hash, query hash, query plan
from
dbo.fnGetQueryInfoFromQueryStats
(
@collectPlan
,@blockedSqlHandle
,@blockedStmtStart
,@blockedStmtEnd
,@EventDate
,60
)
where

blockedERPlan.DataExists is null
) blockedQSPlan
outer apply
dbo.fnGetQueryInfoFromExecRequests

(
@collectPlan

,@lockingSPID
,repData.BlockingSQLHandle
,repData.BlockingStmtStart
,repData.BlockingStmtEnd
) blockingERPlan
-- if there is no plan handle

-- let's try sys.dm exec_query stats
outer apply

(

select query plan
from dbo.fnGetQueryInfoFromQueryStats

(
@collectPlan

,repData.BlockingSQLHandle
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,repData.BlockingStmtStart
,repData.BlockingStmtEnd
,@EventDate
,60

)

where blockingERPlan.DataExists is null

) blockingQSPlan
)

insert into [dbo].[BlockedProcessesInfo]

(
EventDate,DatabaselD, [Resource]
,WaitTime,BlockedProcessReport
,BlockedSPID,BlockedXactId
,BlockedLockMode,BlockedIsolationLevel
,BlockedSQLHandle,BlockedStmtStart
,BlockedStmtEnd,BlockedSql
,BlockedInputBuf,BlockedQueryPlan
,BlockingSPID,BlockingStatus,BlockingTranCount
,BlockingSql,BlockingInputBuf,BlockingQueryPlan
,BlockedQueryHash,BlockedPlanHash

)

select
@EventDate,@DBID,@resource
,@waitTime,@Report,@blockedSPID
,@blockedXactID,BlockedLockMode
,BlockedIsolationLevel,@blockedSqlHandle
,@blockedStmtStart,@blockedStmtEnd
,BlockedSQL,BlockedInputBuf,BlockedQueryPlan
,@blockingSPID,BlockingStatus,BlockingTranCount
,BlockingSQL,BlockingInputBuf,BlockingQueryPlan
,BlockedQueryHash,BlockedPlanHash
from Source

option (maxdop 1);

end
end -- @EventType = BLOCKED PROCESS REPORT
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end -- @MsgType = http://schemas.microsoft.com/SQL/Notifications/

EventNotification

else if @MsgType = N'http://schemas.microsoft.com/SQL/

ServiceBroker/EndDialog'
end conversation @ch;
-- else handle errors here
commit
end try
begin catch
-- capture info about error message here
if @@trancount > 0
rollback;

declare
@Recipient VARCHAR(255) = 'DBA@mycompany.com',
@Subject NVARCHAR(255) = + @@SERVERNAME +
": SB BlockedProcessReport Activation - Error',
@Body NVARCHAR(MAX) = 'LINE: ' +
convert(nvarchar(16), error line()) +
char(13) + char(10) + "ERROR:' + error_message()

exec msdb.dbo.sp send dbmail
@recipients = @Recipient,
@subject = @Subject,
@body = @Body;

throw;

end catch
end
end

As the next step, we need to grant enough permissions to the stored procedure to

execute and access data management views. We can either sign the stored procedure

with a certificate, as shown in Listing 4-8, or mark the database as trustworthy
by using an ALTER DATABASE DBA SET TRUSTWORTHY ON statement. Remember:
Marking a database as trustworthy violates security best practices and generally is not

recommended.
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Listing 4-8. Signing stored procedure with certificate

use DBA

go

create master key encryption by password = 'StrOngPas$wordi’;
go

create certificate BMFrameworkCert

with subject = 'Cert for event monitoring',

expiry date = '20301031';

go

add signature to dbo.SB_BlockedProcessReport Activation
by certificate BMFrameworkCert;

go

backup certificate BMFrameworkCert

to file='BMFrameworkCert.cer';

go
use master
go

create certificate BMFrameworkCert
from file='BMFrameworkCert.cer';

g0

create login BMFrameworklLogin
from certificate BMFrameworkCert;

go
grant view server state, authenticate server to BMFrameworkLogin;

As the final step, we need to enable an activation on dbo.BlockedProcess
NotificationQueue, as shown in Listing 4-9.
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Listing 4-9. Enable an activation on the queue

use DBA
go

alter queue dbo.BlockedProcessNotificationQueue
with
status = on,
retention = off,
activation
(
status = on,
procedure name = dbo.SB BlockedProcessReport Activation,
max_queue_readers = 1,
execute as owner

)5

Now, if we repeat the blocking condition with the code from Table 4-1, the blocked
process report would be captured and parsed, and data would be saved in the
dbo.BlockedProcessInfo table, as shown in Figure 4-8.

ID  EventDate DatabaselD Resource WatTime BlockedProcessRepot BlockedSPID  BlockedXactld  BlockedLockMode
1 1 201801-2905:3454863 5 KEY (Sbe201b5¥8) 2148450 blockedprocessepor 53 9116 S
BlockedisolationLevel  BlockedSQLHandle BlockedStmtStat  BlockedStmiEnd  BlockedSq Blockedinput Buf BlockedQueryPlan
read commited (2) (x020000008 1CAS 36 174 SELECT [Orderid].[Amou set transaction isol ShowPlanXML sml
BlockingSPID  BlockingTranCount  Blockinginput Buf BlockingSqgl  BlockingQueryPlan
52 1 st transaction isolation level read uncommitted begn tran delete from Delvery Orders NULL NULL

Figure 4-8. Captured blocking information

Setting up blocking monitoring with Event Notifications is extremely useful during
concurrency-issue troubleshooting. I usually have it enabled as part of the regular

monitoring framework on all my servers.

Note The source code is included in the companion materials of the book.
The latest version is also available for download from my blog at http://
aboutsqlserver.com/bmframework.
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Summary

Blocking occurs when multiple sessions compete for the same resources using
incompatible lock types. The process of troubleshooting requires you to detect queries
involved in the blocking, find the root cause of the problem, and address the issue.

The sys.dm_tran locks data management view provides you with information
about all active lock requests in the system. It can help you detect blocking conditions
in real time. You can join this view with other DMVs, such as sys.dm_exec_requests,
sys.dm_exec_query stats, sys.dm exec_sessions, and sys.dm os waiting tasks,
to obtain more information about the sessions and queries involved in the blocking
conditions.

SQL Server can generate a blocked process report that provides you with information
about blocking, which you can collect and retain for further analysis. You can use SQL
Traces, Extended Events, and Event Notifications to capture it.

In a large number of cases, blocking occurs as a result of excessive scans introduced
by nonoptimized queries. You should analyze the execution plans of both blocking and
blocked queries to detect and optimize inefficiencies.

Another common issue that results in blocking is incorrect transaction management
in the code, which includes runaway transactions and interactions with users in the
middle of open transactions, among other things.
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Deadlocks

A deadlock is a special blocking case that occurs when multiple sessions—or sometimes
multiple execution threads within a single session—block each other. When it happens,
SQL Server terminates one of the sessions, allowing the others to continue.

This chapter will demonstrate why deadlocks occur in the system and explain how to
troubleshoot and resolve them.

Classic Deadlock

A classic deadlock occurs when two or more sessions are competing for the same set of
resources. Let’s look at a by-the-book example and assume that you have two sessions
updating two rows in the table in the opposite order.

As the first step, session 1 updates the row RI and session 2 updates the row R2. You
know that at this point both sessions acquire and hold exclusive (X) locks on the rows.
You can see this happening in Figure 5-1.

(X) lock -
grar?tced S 1

52 (X) lock -

granted

Figure 5-1. Classic deadlock: Step 1
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Next, let’s assume that session 1 wants to update the row R2. It will try to acquire an
exclusive (X) lock on R2 and would be blocked because of the exclusive (X) lock already
held by session 2. If session 2 wanted to update R1, the same thing would happen—it
would be blocked because of the exclusive (X) lock held by session 1. As you can see,
at this point both sessions wait on each other and cannot continue the execution. This
represents the classic or cycle deadlock, shown in Figure 5-2.

F i
(X) lock - 4 (X) lock -
granted /- Sl K wait

. =
* e *ee., (Sz [x;;:;\_\
\ granted
Figure 5-2. Classic deadlock: Step 2

The system task Deadlock Monitor wakes up every five seconds and checks if there
are any deadlocks in the system. When a deadlock is detected, SQL Server rolls back one
of the transactions with the error 1205. That releases all locks held in that transaction
and allows the other sessions to continue.

Note The Deadlock Monitor wake-up interval goes down if there are deadlocks
in the system. In some cases, it could wake up as often as ten times per
second.

The decision as to which session is chosen as the deadlock victim depends on a
few things. By default, SQL Server rolls back the session that uses less log space for the
transaction. You can control it, up to a degree, by setting a deadlock priority for the
session with the SET DEADLOCK_PRIORITY option.
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Deadlock Due to Non-Optimized Queries

While the classic deadlock often happens when the data is highly volatile and the same
rows are updated by multiple sessions, there is another common reason for deadlocks.
They happen as a result of the scans introduced by non-optimized queries. Let’s look
at an example and assume that you have a process that updates an order row in
Delivery.Orders table and, as a next step, queries how many orders the customer has.
Let’s see what happens when two such sessions are running in parallel using the

READ COMMITTED transaction isolation level.

As the first step, two sessions run two UPDATE statements. Both statements run fine
without blocking involved—as you remember, the table has the clustered index on the
OrderId column, so you will have Clustered Index Seek operators in the execution plan.
Figure 5-3 illustrates this step.

J

Session 1: Orderld: 100001 Session 2:

update Delivery.Orders B Customerld: 115 update Delivery.Orders
set OrderStatusld =2 set OrderStatusid=4
where Orderld= 100001 i where Orderld = 100050

I

Orderld: 100050
Customerld: 766

i

Figure 5-3. Deadlock due to the scans: Step 1

Step 1 (Cl Seek):
(X) lock - granted

Step 1 (Cl Seek):
(X) lock - granted

At this point, both sessions hold exclusive (X) locks on the updated rows. As the
second step, sessions run the SELECT statements based on the CustomerId filter. There
are no nonclustered indexes on the table, and the execution plan will have the Clustered
Index Scan operation. In the READ COMMITTED isolation level, SQL Server acquires shared
(S) locks when reading the data, and as a result both sessions are blocked as soon as they
try to read the row with exclusive (X) locks held on it. Figure 5-4 illustrates that.
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Session 1: i . Session 2:
update Delivery.Orders update Delivery.Orders
set OrderStatusld = 2 - —_ ‘Orderld. 100001 - set OrderStatusid = 4
where Orderld = 100001 TCustomerId: 115 where Orderld = 100050
- - o e / o
( (X) lock /" (S) lock ( (S) lock L A /" (X) lock \
\_ held / wait / L wait pa \_ held /
\\x\- - - \'\-.\_\_ ,J’/ \"H-.\_\_ -'_/ . . ., — ‘.’_’/
saauy, e —_— v N —
i e
] § -~
Session 1: Orderld: 100050 - Session 2:
select count(*) : ol select count(*)
LU e ‘Customerld:?ss -
from Delivery.Orders from Delivery.Orders
where Customerld = 115 I where Customerld = 766
\ 5/

Figure 5-4. Deadlock due to the scans: Step 2

If you ran the query shown in Listing 5-1 at the time when both sessions were
blocked and before the Deadlock Monitor task woke up, you would see that both
sessions block each other.

Listing 5-1. Lock requests at the time when both sessions were blocked

select
tl.request _session_id as [SPID]
,tl.resource_type as [Resouce Type]
,tl.resource description as [Resource]
,tl.request mode as [Mode]
,tl.request status as [Status]
,wt.blocking session id as [Blocked By]
from
sys.dm tran locks tl with (nolock) left outer join
sys.dm os waiting tasks wt with (nolock) on
tl.lock owner address = wt.resource address and
tl.request _status = 'WAIT'
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where

tl.request_session_id <> @@SPID and tl.resource_type = 'KEY'
order by

tl.request _session_id

Figure 5-5 shows the output of the query. As you can see, both sessions block each
other. It does not matter that the sessions were not going to include those rows in the
count calculation. SQL Server is unable to evaluate the CustomerId predicate until the
shared (S) locks are acquired and rows are read.

SPID | Resouce Type | Resource | Mode | Status | Blocked By|
a1 |51 KEY (2fe59e02884b) S WAIT 52
20 51 T keY (74a07545ba5b) X GRANT  NULL
3 |52 kevy (74207545ba5b) S WAT 51 E
4 | 52 KEY (2fe59e02884b) X GRANT NULL

Figure 5-5. Lock requests at the time of the deadlock

You will have deadlocks like these in any transaction isolation level where readers
acquire shared (S) locks. It would not deadlock in the READ UNCOMMITTED, READ
COMMITTED SNAPSHOT, or SNAPSHOT isolation levels, where shared (S) locks are not used.

Nevertheless, you can still have deadlocks in the READ UNCOMMITTED and READ
COMMITTED SNAPSHOT isolation levels as a result of the writers’ collision. You can trigger
it by replacing the SELECT statement with the UPDATE that introduces the scan operation
in the previous example. The SNAPSHOT isolation level, on the other hand, does not
have writer/writer blocking unless you are updating the same rows, and it would not
deadlock, even with UPDATE statements.

Query optimization helps to fix deadlocks caused by scans and non-optimized
queries. In the preceding case, you can solve the problem by adding a nonclustered
index on the CustomerId column. This would change the execution plan of SELECT
statement replacing Clustered Index Scan with Nonclustered Index Seek. As a result, the
session would not need to read the rows that were modified by another session and have
incompatible locks held.
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Key Lookup Deadlock

In some cases, you can have a deadlock when multiple sessions are trying to read and
update the same row simultaneously.

Let’s assume that you have a nonclustered index on the table, and one session
wants to read the row using this index. If the index is not covering and the session needs
some data from the clustered index, SQL Server may generate the execution plan with
the Nonclustered Index Seek and Key Lookup operations. The session would acquire a
shared (S) lock on the nonclustered index row first, and then on the clustered index row.

Meanwhile, if you have another session that updates one of the columns that is part
of the nonclustered index using the clustered key value as the query predicate, that
session would acquire exclusive (X) locks in the opposite order; that is, on the clustered
index row first and on the nonclustered index row after that.

Figure 5-6 shows what happens after the first step, when both sessions successfully
acquire locks on the rows in the clustered and nonclustered indexes.

(X) lock -
granted
‘H‘H""‘-.

Session 1:
update T1
set NCI_Included_Col =1

i where Cl_Key =R1 I
Clustered Nonclustered
I Session 2: I
select *
fromT1 (S) lock -
where NCI_Key = R1 granted

Figure 5-6. Key Lookup deadlock: Step 1

In the next step, both sessions try to acquire locks on the rows in the other indexes,
and they are blocked, as shown in Figure 5-7.
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(X) lock - Session 1: (X) lock -
granted update T1 . wait
T~ set NCI_Included_Col =1 T

where Cl_Key=R1

Nonclustered
Index

Clustered CIR1

Index

. Session 2:

* e, |select*
Key l-OOkUPf fromT1
(S) lock — wait where NCI_Key =R1

Figure 5-7. Key Lookup deadlock: Step 2

(S) lock -
granted

If it happens in the same moment, you would have a deadlock, and the session that
reads the data would be chosen as the deadlock victim. This is an example of the classic
cycle deadlock we saw earlier. Despite the fact that both sessions are working with a
single table row, SQL Server internally deals with two rows—one each in the clustered
and nonclustered indexes.

You can address this type of deadlock by making nonclustered indexes covering and
avoiding the Key Lookup operation. Unfortunately, that solution would increase the size
of the leaf rows in the nonclustered index and introduce additional overhead during
data modification and index maintenance. Alternatively, you can use optimistic isolation
levels and switch to READ COMMITTED SNAPSHOT mode, where readers do not acquire
shared (S) locks.

Deadlock Due to Multiple Updates of the Same Row

A deadlock pattern that is similar to the previous can be introduced by having multiple
updates of the same row when updates access or change columns in different indexes.
This could lead to a deadlock situation—similar to the Key Lookup deadlock—where
another session places a lock on the nonclustered index row in between the updates.
One of the common scenarios where it happens is with AFTER UPDATE triggers that
update the same row.

Let’s look at a situation where you have a table with both clustered and nonclustered
indexes and the AFTER UPDATE trigger defined. Let’s have session 1 update a column that
does not belong to the nonclustered index. This step is shown in Figure 5-8. It acquires
an exclusive (X) lock on the row from the clustered index only.
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(X) lock - Session 1:
granted update T1
Set CI_Col = ‘ab¢’

where CI_Key=R1 I

| Nonclustered
Index

Clustered | CIR1

Index

.................................................................. NCI Rl

!

Figure 5-8. Deadlock due to multiple updates of the same row: Step 1

The update fires the AFTER UPDATE trigger. Meanwhile, let’s assume that another session
is trying to select the same row using the nonclustered index. This session successfully
acquires a shared (S) lock on the nonclustered index row during the Nonclustered Index
Seek operation. However, it would be blocked when trying to obtain a shared (S) lock on the
clustered index row during the Key Lookup, as shown in Figure 5-9.

(X) lock —
held

Clustered

Index

| Nonclustered
Index

B Session 2:

*e, |select*®
Key Lookupf fromT1
(S) lock — wait where NCI_Key =R1

Figure 5-9. Deadlock due to the multiple updates of the same row: Step 2

(S) lock -
granted

Finally, if session 1 trigger tries to update the same row again, modifying the column
that exists in the nonclustered index, it would be blocked by the shared (S) lock held by
session 2. Figure 5-10 illustrates this situation.
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—

(X]E:;— Session 1: (X) lock —
held update T1 . wait
setNC_Included Col=1 [ " * * o

where CI_Key=R1

Nonclustered
Index

Clustered

Index
— ' * . -
Key Lookup: * (S) lock —
(S) lock — wait held

Figure 5-10. Deadlock due to multiple updates of the same row

Session 2

Let’s prove that with the code shown in Listing 5-2.

Listing 5-2. Multiple updates of the same row
create table dbo.T1

(
CI_Key int not null,
NCI_Key int not null,
CI _Col varchar(32),
NCI_Included Col int
);

create unique clustered index IDX_T1 CI on dbo.T1(CI _Key);

create nonclustered index IDX T1 NCI
on dbo.T1(NCI Key)
include (NCI Included Col);

insert into dbo.T1(CI_Key,NCI Key,CI Col,NCI Included Col)
values(1,1,'a",0), (2,2,'b",0), (3,3,'c",0), (4,4,"'d",0);

begin tran
update dbo.T1 set CI_Col = 'abc' where CI Key = 1;

select
l.request session id as [SPID]
,object name(p.object id) as [Object]
,i.name as [Index]
,l.resource type as [Lock Type]
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,l.resource description as [Resource]
,1l.request mode as [Mode]
,l.request status as [Status]
,wt.blocking session_id as [Blocked By]
from
sys.dm_tran locks 1 join sys.partitions p on
p.hobt_id = l.resource associated entity id
join sys.indexes i on
p.object id = i.object id and p.index id = i.index id
left outer join sys.dm os waiting tasks wt with (nolock) on
1.lock owner address = wt.resource address and
l.request status = "WAIT'
where
resource_type = 'KEY' and request session_id = @@SPID;

update dbo.T1 set NCI_Included Col = 1 where NCI Key = 1

select
l.request session id as [SPID]
,object_name(p.object_id) as [Object]
,i.name as [Index]
,l.resource type as [Lock Type]
,l.resource description as [Resource]
,1.request mode as [Mode]
,l.request status as [Status]
,wt.blocking session id as [Blocked By]
from
sys.dm _tran locks 1 join sys.partitions p on
p.hobt_id = l.resource associated entity id
join sys.indexes i on
p.object id = i.object id and p.index id = i.index id
left outer join sys.dm os waiting tasks wt with (nolock) on
1.1lock owner address = wt.resource address and
l.request status = "WAIT'
where
resource_type = 'KEY' and request session id = @@SPID;
commit
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The code in Listing 5-2 updates the row twice. If you look at the row-level locks held
after the first update, you see only one lock held on the clustered index, as shown in

Figure 5-11.
SPID | Object I Index I Lock Type | Resource I Mode | Status I Blocked Byl
1 56 T IDX_T1_ClI KEY (8194443284a0) X GRANT NULL

Figure 5-11. Row-level locks after the first update

The second update, which updates the column that exists in the nonclustered index,
places another exclusive (X) there, as shown in Figure 5-12. This proves that the lock
on the nonclustered index row is not acquired unless the index columns are actually

updated.
SPID | Object l Index | Lock Type | Resource | Mode l Status l Blocked Byl
1 56 ™ IDX_T1_Cl KEY (6194443284a0) X GRANT  NULL
2 56 T1 IDX_T1_NCI KEY (e2338e2f4adf) X GRANT  NULL

Figure 5-12. Row-level locks after the second update

Now, let’s look at another session with SPID = 55 running the SELECT shown in
Listing 5-3 in between two updates, at a time when you have just one row-level lock held.

Listing 5-3. The code that leads to the deadlock

select CI_Key, CI Col
from dbo.T1 with (index = IDX T1 NCI)
where NCI_Key = 1

As you can see in Figure 5-13, the query successfully acquires the shared (S) lock on
the nonclustered index row and is blocked by trying to acquire the lock on the clustered

index row.
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SPID | Object | Index | Lock Ty... | Resource I Mode | Status | Blocked By
il 56 T IDX_T1_Cl KEY (8194443284a0) X GRANT NULL
2 55 T1 IDX_T1_Cl  KEY (8194443284a0) S WAIT 56
3 |55 T1 IDX_T1_NCI KEY (e2338e2409f) S GRANT NULL

Figure 5-13. Row-level locks when SELECT query is blocked

If you ran the second update in the original session with SPID = 56, it would try to
acquire an exclusive (X) lock on the nonclustered index, and it would be blocked by the
second (SELECT) session, as shown in Figure 5-14. That leads to the deadlock condition.

SPID | Object | Index | Lock Ty... | Resource | Mode | Status | Blocked By |
T EBRL IDX_T1_C  KEY (8194443284a0) X  GRANT NULL
2 |ss ™ IDX_T1_C  KEY (8194443284a0) S  WAIT 56
8 _|ss ™ IDX_T1_NCI  KEY (e2338e2f4a9) S  GRANT NULL |
4 |se T IDX_T1_NCI  KEY (e2338e2f4a9) X  WAT 55

Figure 5-14. Row-level locks when second update is running (deadlock)

The best method to avoid such problems is to eliminate multiple updates of the
same rows. You can use variables or temporary tables to store preliminary data and
run the single UPDATE statement close to the end of the transaction. Alternatively, you
can change the code and assign some temporary value to NCI_Included Col as part
of the first UPDATE statement, which would acquire exclusive (X) locks on both of the
indexes. The SELECT from the second session would be unable to acquire the lock on the
nonclustered index, and the second update would run just fine.

As alast resort, you could read the row using a plan that requires both indexes to use
an (XLOCK) locking hint, which would place exclusive (X) locks on both rows, as shown
in Listing 5-4 and Figure 5-15. Obviously, you need to consider the overhead this would
introduce.

Listing 5-4. Obtaining exclusive (X) locks on the rows in both indexes

begin tran
declare
@ummy varchar(32)

select @ummy = CI_Col
from dbo.T1 with (XLOCK index=IDX T1 NCI)
where NCI Key = 1;
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select
l.request session id as [SPID]
,object name(p.object id) as [Object]
,i.name as [Index]
,l.resource type as [Lock Type]
,l.resource description as [Resource]
,1l.request mode as [Mode]
,l.request status as [Status]
,wt.blocking session id as [Blocked By]
from
sys.dm_tran_locks 1 join sys.partitions p on
p.hobt _id = l.resource associated entity id
join sys.indexes i on
p.object_id = i.object_id and p.index_id = i.index_id
left outer join sys.dm os waiting tasks wt with (nolock) on
1.lock_owner address = wt.resource address and
l.request status = "WAIT'
where
resource type = 'KEY' and request session _id = @@SPID;
update dbo.T1 set CI_Col = 'abc' where CI Key = 1;
/* some code */
update dbo.T1 set NCI Included Col = 1 where NCI Key = 1;
commit
sPID | object | Index | Lock Type | Resource | Mode | Status |
1|56 el IDX_T1_CI  KEY (8194443284a0) X GRANT
2 56 T4 IDX_T1_NCI KEY (e2338e2f4a8f) X GRANT

Figure 5-15. Row-level locks after SELECT statement with (XLOCK) hint
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Deadlock Troubleshooting

In a nutshell, deadlock troubleshooting is very similar to the blocking troubleshooting
we discussed in the previous chapter. You need to analyze the processes and queries
involved in the deadlock, identify the root cause of the problem, and, finally, fix it.

Similar to the blocked process report, there is the deadlock graph, which provides
you with information about the deadlock in an XML format. There are plenty of ways to
obtain the deadlock graph:

o xml deadlock report Extended Event

o Starting with SQL Server 2008, every system has a system_health
Extended Event session enabled by default in every SQL Server
installation. That session captures basic server health information,
including xml_deadlock report events.

o Trace Flag 1222: This trace flag saves deadlock information to the
SQL Server Error Log. You can enable it for all sessions with the DBCC
TRACEON(1222,-1) command or by using startup parameter T1222. It
is a perfectly safe method to use in production; however, nowadays, it
may be redundant because of the system_health session.

o Deadlock graph SQL Trace event. It is worth noting that SQL Profiler
displays the graphic representation of the deadlock. The “Extract
Event Data” action from the event context menu (right mouse click)
allows you to extract an XML deadlock graph.

With the system_health xEvent session, xml_deadlock graph is captured by default.
You may have the data for troubleshooting even if you did not explicitly enable any
other collection methods. In SQL Server 2012 and above, you can access system_health
session data from the Management node in Management Studio, as shown in Figure 5-16.
You could analyze the target data, searching for an xml_deadlock report event.
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= [ Management
# 4P Policy Management
| 7] Data Collection
| (] Resource Governor
= |#] Extended Events
= [ Sessions

# W) AlwaysOn_health

# M) PageSplits_Tracking

= ﬂ; system_health

ti'l packagel.ring_buf View Target Data...

+ [+

s

] 1‘5 TempDB Spills Start PowerShell
# ) Timeouts
¢ Managed Backup Reports »
# [ Maintenance Plans Refrech

+ [ SOL Server Loas

Figure 5-16. Accessing system_health xEvents session

The XML representation of the deadlock graph contains two different sections,
as shown in Listing 5-5. The sections <process-1ist> and <resource-1list> contain
information about the processes and resources involved in the deadlock, respectively.

Listing 5-5. Deadlock graph format

<deadlock-1ist>
<deadlock victim="...">
<process-list>
<process id="...">

</process>
<process id="...">

</process>
</process-list»
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<resource-listy
<information about resource involved in the deadlock>

</ information about resource involved in the deadlock>
<information about resource involved in the deadlock>

</ information about resource involved in the deadlock>
</resource-listy
</deadlock>
</deadlock-list>

Let’s trigger a deadlock in the system by using the code shown in Table 5-1. You
need to run two sessions in parallel—running UPDATE statements first and then SELECT

statements.

Table 5-1. Triggering Deadlock in the System

Session 1 Session 2

begin tran begin tran
update Delivery.Orders update Delivery.Orders
set OrderStatusId = 1 set OrderStatusId = 1
where OrderId = 10001; where OrderId = 10050;
select count(*) as [Cnt] select count(*) as [Cnt]
from Delivery.Orders with from Delivery.Orders with
(READCOMMITTED) (READCOMMITTED)
where CustomerId = 317; where CustomerId = 766;

commit commit

Each <process> node in the deadlock graph shows details for a specific process,
as shown in Listing 5-6. I removed the values from some of the attributes to make it
easier to read. I also have highlighted the ones that I've found especially helpful during
troubleshooting.
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Listing 5-6. Deadlock graph: <Process> node

<process id="process3e4b29868" taskpriority="0" logused="264"
waitresource="KEY: ..." waittime="..." ownerId="..." transactionname="...
lasttranstarted="..." XDES="..." lockMode="S" schedulerid="..." kpid="..."
status="suspended" spid="55" sbid="..." ecid="..." priority="0"
trancount="1" lastbatchstarted="..." lastbatchcompleted="..."
lastattention="..." clientapp="..." hostname="..." hostpid="..."
loginname="..." isolationlevel="read committed (2)" xactid="..."
currentdb="..." lockTimeout="..."
<executionStack>
<frame procname="adhoc" line="1" stmtstart="26" sqlhandle="..."»
SELECT COUNT(*) [Cnt] FROM [Delivery].[Orders] with
(REACOMMITTED) WHERE [CustomerId]=@1
</framey
</executionStack»
<inputbuf>
select count(*) as [Cnt]
from Delivery.Orders with (REACOMMITTED)
where CustomerId = 766
commit
</inputbuf>
</process>

clientoption1="..." clientoption2="...">

The id attribute uniquely identifies the process. Waitresource and lockMode provide
information about the lock type and the resource for which the process is waiting. In
our example, you can see that the process is waiting for the shared (S) lock on one of the
rows (keys).

The Isolationlevel attribute shows you the current transaction isolation level.
Finally, executionStack and inputBuf allow you to find the SQL statement that was
executed when the deadlock occurred. As the opposite of the blocked process report,
executionStack in the deadlock graph usually provides you with information about the
query and module involved in the deadlock. However, in some cases, you would need to
use the sys.dm_exec_sql_text function to get the SQL statements in the same way as we
did in Listing 4-5 in the previous chapter.
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The <resource-1list> section of the deadlock graph contains information about the
resources involved in the deadlock. It is shown in Listing 5-7.

Listing 5-7. Deadlock graph: <Resource-list> node

<resource-list>
<keylock hobtid="72057594039500800" dbid="14"
objectname="SqlServerInternals.Delivery.Orders" indexname="PK Orders"
id="1lock3e98b5d00" mode="X" associatedObjectId="72057594039500800">
<owner-list>
<owner id="process3e6a890c8" mode="X"/>
</owner-list>
<waiter-list>
<waiter id="process3e4b29868" mode="S" requestType="wait"/>
</waiter-list>
</keylock>
<keylock hobtid="72057594039500800" dbid="14"
objectname="SqlServerInternals.Delivery.Orders" indexname="PK Orders"
id="lock3e98ba500" mode="X" associatedObjectId="72057594039500800">
<owner-list>
<owner id="process3e4b29868" mode="X"/>
</owner-list>
<waiter-list>
<waiter id="process3e6a890c8" mode="S" requestType="wait"/>
</waiter-list>
</keylock>
</resource-list>

The name of the XML element identifies the type of resource. Keylock, pagelock,
and objectlock stand for the row-level, page, and object locks, respectively. You
can also see to what objects and indexes those locks belong. Finally, owner-1ist and
waiter-1list nodes provide information about the processes that own and wait for
the locks, along with the types of locks acquired and requested. You can correlate this
information with the data from the process-1ist section of the graph.

As you have probably already guessed, the next steps are very similar to the blocked
process troubleshooting; that is, you need to pinpoint the queries involved in the
deadlock and find out why the deadlock occurs.
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There is one important factor to consider, however. In most cases, a deadlock
involves more than one statement per session running in the same transaction. The
deadlock graph provides you with information about the last statement only—the one
that triggered the deadlock.

You can see the signs of the other statements in the resource-1ist node. It shows
you the locks held by the transaction, but it does not tell you about the statements that
acquired them. It is very useful to identify those statements while analyzing the root
cause of the problem.

In our example, when you look at the code shown in Table 5-1, you see the two
statements. The UPDATE statement updates a single row—it acquires and holds an
exclusive (X) lock there. You can see that both processes own those exclusive (X) locks in
the resource-1list node of the deadlock graph.

In the next step, you need to understand why SELECT queries are trying to obtain
shared (S) locks on the rows with exclusive (X) locks held. You can look at the execution
plans for SELECT statements from the process nodes by either running the queries or
using sys.dm_exec_query stats DMV, as was shown in Listing 4-5 in the previous
chapter. As a result, you will get the execution plans shown in Figure 5-17. The figure also
shows the number of locks acquired during query execution.

= 3 I i

SELECT * Compute Scalar * Striam Aggregate ) CJ‘.:I).lsdtered I;Kdeox dScan...
Cost: 0 % Cost: 0 % (Aggregate) [Ordecs). [ _Vr ers)
Cost: 3 % Cost: 97 %

Locks acquired é Rows: 2964589

Figure 5-17. Execution plan for the query

Tip You can obtain cached execution plans for the stored procedures using the
sys.dm_exec_procedure stats view.

Asyou can see, there is a Clustered Index Scan in the plan, which gives you enough
data for analysis. SELECT queries scanned the entire table. Because both processes were
using the READ COMMITTED isolation level, the queries tried to acquire shared (S) locks
on every row from the table and were blocked by the exclusive (X) locks held by another
session. It did not matter that those rows did not have the CustomerId that the queries
were looking for. In order to evaluate this predicate, queries had to read those rows,
which required acquiring shared (S) locks on them.
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You can solve this deadlock situation by adding a nonclustered index on the
CustomerID column. This would eliminate the Clustered Index Scan and replace it with
an Index Seek operator, as shown in Figure 5-18.

= = i 2

SELECT ° Compute Scalar ° Stream Aggregate . .Ind:x Seek (Nonciuste...
Cost: 0 % Cost: 0 % {Aggregate) [Orders]. [IDX_Orders ..
Cost: 19 % Cost: 81 %

Locks acquired é Rows: 6252

Figure 5-18. Execution plan for the query with nonclustered index

Instead of acquiring a shared (S) lock on every row of the table, the query would read
only the rows that belong to a specific customer. This would dramatically reduce the
number of shared (S) locks to be acquired, and it would prevent the query from being
blocked by exclusive (X) locks on rows that belong to different customers.

Unfortunately, deadlock troubleshooting has the same dependency on the plan
cache as blocking troubleshooting does. You often need to obtain the text and execution
plans of the statements involved in deadlocks from there. The data in the plan cache
changes over time, and the longer you wait, the less likely it is that required information
will be present.

You can address this by implementing a monitoring solution based on Event
Notifications, similar to what we did in the previous chapter. The code is included to
companion materials of the book as part of Blocking Monitoring Framework code and
also available for download from my blog at: http://aboutsqlserver.com/bmframework.

Finally, in some cases you can have intra-query parallelism deadlocks—when a
query with a parallel execution plan deadlocks itself. Fortunately, such cases are rare and
are usually introduced by a bug in SQL Server rather than application or database issues.
You can detect such cases when a deadlock graph has more than two processes with the
same SPID and the resource-list has exchangeEvent and/or threadPoll listed as the
resources, without any lock resources associated with them. When it happens, you can
work around the problem by reducing or even completely removing parallelism for the
query with the MAXDOP hint. There is also a great chance that the issue has already been
fixed in the latest service pack or cumulative update.
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Deadlock Due to IGNORE_DUP_KEY Index Option

There is one very particular type of deadlock that is extremely confusing and hard to
explain. At first glance, it seems that this deadlock violates the SQL Server Concurrency
Model by using range locks in non-SERIALIZABLE isolation levels. However, there is a
simple explanation.

As you remember, SQL Server uses range locks to protect a range of the index keys,
thus avoiding phantom and non-repeatable reads phenomena. Such locks guarantee
that queries executed in a transaction will always work with the same set of data and
would be unaffected by any modifications from the other sessions.

There is another case, however, when SQL Server uses the range locks. They are used
during data modification of nonclustered indexes that have the IGNORE_DUP_KEY option
set to ON. When this is the case, SQL Server ignores the rows with duplicated values of the
key rather than raising an exception.

Let’s look at the example and create a table, as shown in Listing 5-8.

Listing 5-8. IGNORE_DUP_KEY deadlock: Table creation

create table dbo.IgnoreDupKeysDeadlock

(
CICol int not null,

NCICol int not null
)
create unique clustered index IDX_IgnoreDupKeysDeadlock CICol
on dbo.IgnoreDupKeysDeadlock(CICol);

create unique nonclustered index IDX IgnoreDupKeysDeadlock NCICol
on dbo.IgnoreDupKeysDeadlock(NCICol)
with (ignore dup key = on);

insert into dbo.IgnoreDupKeysDeadlock(CICol, NCICol)
values(0,0),(5,5),(10,10),(20,20);

Now, let’s start the transaction by using the READ UNCOMMITTED isolation level and
then insert a row into the table, checking the locks acquired by the session. The code is
shown in Listing 5-9.
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Listing 5-9. IGNORE_DUP_KEY deadlock: Inserting a row into the table

set transaction isolation level read uncommitted
begin tran

insert into dbo.IgnoreDupKeysDeadlock(CICol,NCICol)
values(1,1);

select request session id, resource type, resource description
,resource_associated entity id, request mode, request type,
request status

from sys.dm tran_locks

where request session_id = @@SPID;

Figure 5-19 illustrates the output from the sys.dm_tran_locks view. As you can
see, the session acquired two exclusive (X) locks on the rows in the clustered and
nonclustered indexes. It also acquired a range (RangeS-U) lock on the nonclustered
index. This lock type means that the existing keys are protected with shared (S) locks,
and the interval itself is protected with an update (U) lock.

request_session_id resource_type resource_description  resource_associsted_entity_id  request_mode request_type  request_status

1 55 PAGE 356 72057594046447616 X LOCK GRANT
2 55 PAGE 3.88 72057594046513152 X LOCK GRANT
3 55 KEY (8194443284a0) 72057594046447616 X LOCK GRANT
4 55 KEY (8194443284a0) 72057594046513152 X LOCK GRANT
5 55 KEY (59855d342c69) 72057594046513152 LOCK GRANT
6 55 OBJECT 766625774 X LOCK GRANT

Figure 5-19. Locks acquired by the first session

In this scenario, the range lock is required because of the way SQL Server handles
data modifications. As we have already discussed, the data is modified in the clustered
index first, followed by nonclustered indexes. With IGNORE_DUP_KEY=0N, SQL Server
needs to prevent the situation where duplicated keys are inserted into nonclustered
indexes simultaneously after the clustered index inserts, and therefore some inserts
need to be rolled back. Thus, it locks the range of the keys in the nonclustered index,
preventing other sessions from inserting any rows there.

We can confirm it by looking at the lock acquired Extended Event as shown in

Figure 5-20. As you can see, the range lock was acquired before exclusive (X) locks in
both indexes.
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name resource_type mode resource_0

lock_acquired |OBJECT X 766625774
lock_acquired PAGE U a8
lock_acquired |KEY RS_U 131
lock_acquired PAGE [X 56
lock_acquired | KEY |x 130
lock_acquired | PAGE X 88
lock_acquired | KEY X 131

Figure 5-20. lock_acquired Extended Events

The key problem here, however, is that range locks behave the same way as they do in
the SERIALIZABLE isolation level. They are held until the end of the transaction regardless
of the isolation level in use. This behavior greatly increases the chance of deadlocks.

Let’s run the code from Listing 5-10 in another session. The first statement would
succeed, while the second would be blocked.

Listing 5-10. IGNORE_DUP_KEY deadlock: Second session code

set transaction isolation level read uncommitted

begin tran
-- Success
insert into dbo.IgnoreDupKeysDeadlock(CICol,NCICol)
values(12,12);

-- Statement is blocked
insert into dbo.IgnoreDupKeysDeadlock(CICol,NCICol)
values(2,2);

commit;

Now, if we look at the locks held by both sessions, we would see the picture shown
in Figure 5-21. The range (RangeS-U) lock from the first session protects the interval of
0..5 and blocks the second session, which is trying to acquire a range lock in the same
interval.
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request_session_id resource_type resource_description resource_associated_entity id request_mode request_type request_status

1 57 PAGE 356 72057534046447616 IX LOCK GRANT
2 85 PAGE 3:56 72057594046447616 X LOCK GRANT
3 57 PAGE 3:88 72057594046513152 IX LOCK GRANT
4 85 PAGE 3:88 72057594046513152 X LOCK GRANT
5 55 KEY (8194443284a0) 72057594046447616 X LOCK GRANT
6 85 KEY (819444328450) 72057534046513152 X LOCK GRANT
7 57 KEY (286fc18d83ea) 72057594046513152 RangeS-U LOCK GRANT
8 55 KEY (59855d342c69) 72057594046513152 RangeS-U LOCK GRANT
9 57 KEY (59855d342c69) 72057594046513152 RangeS-U LOCK WAIT

10 5 OBJECT 766625774 X LOCK GRANT
11 55 OBJECT 766625774 1X LOCK GRANT
12 57 KEY (11ea04af96) 72057594046447616 X LOCK GRANT
13 57 KEY (11ea04af356) 72057594046513152 X LOCK GRANT

Figure 5-21. Lock requests at time of blocking

The second session, in turn, is holding a range lock (RangeS-U) on the interval of
10..20. If the first session tries to insert another row into that interval with the code from
Listing 5-11, it would be blocked, which would lead to the classic deadlock situation.

Listing 5-11. IGNORE_DUP_KEY deadlock: Second insert from the first session

insert into dbo.IgnoreDupKeysDeadlock(CICol,NCICol)
values(11,11);

Figure 5-22 shows the partial output from the deadlock graph. As you can see,
this particular pattern is clearly identifiable by the presence of range locks in non-
SERIALIZABLE isolation levels.
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<deadlock>
<victim-list>
<victimProcess id="process3123b79848" />
<fvictim-list>
<process-list>
<process id="process3123b79848" waitresource="KEY: 5:72057594046513152 (1leal4af99f6)"
|locknode="Range5-U" spid="55" isolationlevel="read uncommitted (1)r>

</process>
{process id="process3123b78108" waitresource="KEY: 5:72857594046513152 (59855d342c69)"
|lnckMode:"RangeS-U" spid="57" isolationlevel="read uncommitted (1]r>
</process>
</process-list>
<resource-list>
<keylock hobtid="720857594846513152" objectname="SQLServerInternals.dbo.IgnoreDupKeysDeadlock"
indexname="1DX_IgnoreDupKeysDeadlock_NCICol" >
<owner-list>
<owner id="process3123b781€8" mode="X" />
</owner-list>
<waiter-list>
<waiter id="process3123b79848" mode="RangeS-U" requestType="wait" />
</waiter-list>
</keylock>
<keylock hobtid="720857594046513152" objectname="SQLServerInternals.dbo.IgnoreDupKeysDeadlock"
indexname="IDX_IgnoreDupKeysDeadlock_NCICol" >
<owner-list>
<owner id="process3123b79848" mode="RangeS-U" />
</owner-list>
<waiter-list>
<waiter id="process3123b78108" mode="RangeS-U" requestType="wait" />
</waiter-list>
</keylock>
</resource-list>
¢/deadlock>

Figure 5-22. Deadlock graph

There is very little you can do about this problem besides removing the IGNORE_DUP_
KEY index option. Fortunately, this option is rarely required, and in many cases the issue
can be solved by using the NOT EXISTS predicate and/or with staging tables.

Finally, it is important to note that SQL Server does not use range locks to enforce
the IGNORE_DUP_KEY=0ON setting in clustered indexes. The data is inserted or modified in
the clustered indexes first, and SQL Server does not need to use range locks to avoid race

conditions.
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Reducing the Chance of Deadlocks

Finally, there are several practical bits of advice I can provide toward helping to reduce
the chance of deadlocks in the system:

1. Optimize the queries. Scans introduced by non-optimized queries
are the most common causes of deadlocks. The right indexes not only
improve the performance of the queries, but also reduce the number
of rows that need to be read and locks that need to be acquired, thus
reducing the chance of lock collisions with the other sessions.

2. Keep locks as short as possible. As you will recall, all exclusive (X)
locks are held until the end of the transaction. Make transactions
short and try to update data as close to the end of the transaction as
possible to reduce the chance of lock collision. In our example from
Table 5-1, you can change the code and swap around the SELECT
and UPDATE statements. This would solve the particular deadlock
problem because the transactions do not have any statements that
can be blocked after exclusive (X) locks are acquired.

3. Consider using optimistic isolation levels such as READ COMMITTED
SNAPSHOT or SNAPSHOT. When it is impossible, use the lowest
transaction isolation level that provides the required data
consistency. This reduces the time shared (S) locks are held. Even
if you swapped the SELECT and UPDATE statements in the previous
example, you would still have the deadlock in the REPEATABLE
READ or SERIALIZABLE isolation levels. With those isolation levels,
shared (S) locks are held until the end of the transaction, and they
would block UPDATE statements. In READ COMMITTED mode, shared
(S) locks are released after a row is read, and UPDATE statements
would not be blocked.

4. Avoid updating a row multiple times within the same transaction
when multiple indexes are involved. As you saw earlier in
this chapter, SQL Server does not place exclusive (X) locks on
nonclustered index rows when index columns are not updated.
Other sessions can place incompatible locks there and block
subsequent updates, which would lead to deadlocks.
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5. Useretry logic. Wrap critical code into TRY. .CATCH blocks and
retry the action if deadlock occurs. The error number for the
exception caused by the deadlock is 1205. The code in Listing 5-12
shows how you can implement that.

Listing 5-12. Using TRY..CATCH block to retry the operation in case of deadlock

-- Declare and set variable to track number of retries to try before
exiting.
declare

@retry tinyint = 5

-- Keep trying to update table if this task is selected as the deadlock
victim.
while (@retry > 0)
begin
begin try
begin tran
-- some code that can lead to the deadlock
commit
end try
begin catch
-- Check error number. If deadlock victim error, then reduce
retry count
-- for next update retry. If some other error occurred, then exit
WHILE loop.
if (error number() = 1205)
set @retry = @retry - 1;
else
set @retry = 0;

if @@trancount > 0
rollback;
end catch
end
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Summary

With the exception of intra-query parallelism deadlocks, which are considered to be a
bug in the SQL Server code, deadlocks occur when multiple sessions compete for the
same set of resources.

The key element in deadlock troubleshooting is the deadlock graph, which provides
information about the processes and resources involved in the deadlock. You can collect
the deadlock graph by enabling trace flag 71222, capturing xml_deadlock report
Extended Event and Deadlock graph SQL Trace event, or setting up a deadlock event
notification in the system. In SQL Server 2008 and above, the xml_deadlock report
event is included in the system_health Extended Event session, which is enabled by
default on every SQL Server installation.

The deadlock graph will provide you with information about the queries that
triggered the deadlock. You should remember, however, that in the majority of cases, a
deadlock involves multiple statements that acquired and held the locks within the same
transaction and you may need to analyze all of them to address the problem.

Even though deadlocks can happen for many reasons, more often than not they
happen because of excessive locking during scans in non-optimized queries. Query
optimization can help to address them.
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CHAPTER 6

Optimistic Isolation Levels

Optimistic transaction isolation levels were introduced in SQL Server 2005 as a new way
to deal with blocking problems and address concurrency phenomena in a system. With
optimistic transaction isolation levels, queries read “old” committed versions of rows
while accessing data modified by the other sessions, rather than being blocked by the
incompatibility of shared (S) and exclusive (X) locks.

This chapter will explain how optimistic isolation levels are implemented and how
they affect the locking behavior of the system.

Row Versioning Overview

With optimistic transaction isolation levels, when updates occur, SQL Server stores the
old versions of the rows in a special part of tempdb called the version store. The original
rows in the database reference them with 14-byte version pointers, which SQL Server
adds to modified (updated and deleted) rows. Depending on the situation, you can
have more than one version record stored in the version store for the row. Figure 6-1
illustrates this behavior.

[ Session 1 [ Session 2
) N ime T1): e —— me T3): - e
(X) lock held ) m ¥ (%) lock held m ) ‘ Time (T4): :
————— - .updale Orders ~—— - B ! update Orders gldrvel:onslem?'e(.::nr:m::le WISIU; )
— . | setAmount =28 . set Cancelled =1 .‘cew enmac"n: e mnsnee_.
Rowinthe = * | where Orderid = 10 .' | where Orderid = 10 L g
- _database N [ .
\ 4 Version store '
Orderid: 10 Orderid: 10 s Intemdd - (0cdend: 10 Orderd: 10
Cancelled: 0 Cancelled: 0 '“ ‘_1‘ Cancelled: 1 .Ti - Cancelled: 1
ime T1: me T3:
: 29. 3 A - :
Amount: 29.95 | |Amount: 28 bl 8 mount: 28 i |Amount: 28

\_,,Lanceled 0 \_.i{.an:elled 0 TimeT1:
Amount: 29.95 Amount: 28 Orderld: 10
h . Cancelled: 0 |
Amount: 29.95

Figure 6-1. Version store
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Now, when readers (and sometimes writers) access a row that holds an exclusive (X)
lock, they read the old version from the version store rather than being blocked, as
shown in Figure 6-2.

Session 1 (Time T1):
"--.._\_ . * *tupdate Orders Session 2 (Time T2):

.q:“ set Amount= 28 |
b where Orderld =10 .?select Amount \,//Eeturns
Orderld: 10 ,* | from Orders Amount = 29.95
. | where Orderld =10
Cancelled: 0 e T1: .
Amount: 28 I o

Orderld: 10 & °
\'Cancelied: 0 Version store
Amount: 29.95 [ In temdb

Figure 6-2. Readers and version store

As you can guess, while optimistic isolation levels help reduce blocking, there are
some tradeoffs. Most significant among these is that they contribute to tempdb load.
Using optimistic isolation levels on highly volatile systems can lead to very heavy tempdb
activity and can significantly increase tempdb size. We will look at this issue in greater
detail later in this chapter.

There is overhead during data modification and retrieval. SQL Server needs to copy
the data to tempdb as well as maintain a linked list of the version records. Similarly, it
needs to traverse that list when reading data. This adds additional CPU, memory, and
I/0 load. You need to remember these tradeoffs, especially when you host the system in
the cloud, where I/0 performance is often less efficient than that of modern high-end
disk arrays you can find on-premises.

Finally, optimistic isolation levels contribute to index fragmentation. When a row is
modified, SQL Server increases the row size by 14 bytes due to the version pointer. If a page is
tightly packed and a new version of the row does not fit into the page, it will lead to a page split
and further fragmentation. We will look at this behavior in more depth later in the chapter.

Optimistic Transaction Isolation Levels

There are two optimistic transaction isolation levels: READ COMMITTED SNAPSHOT and
SNAPSHOT. To be precise, SNAPSHOT is a separate transaction isolation level, while READ
COMMITTED SNAPSHOT is a database option that changes the behavior of the readers in the
READ COMMITTED transaction isolation level.

Let's examine these levels in depth.
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READ COMMITTED SNAPSHOT Isolation Level

Both optimistic isolation levels need to be enabled on the database level. You can enable
READ COMMITTED SNAPSHOT (RCSI) with the ALTER DATABASE SET READ COMMITTED
SNAPSHOT ON command. That statement acquires an exclusive (X) database lock to
change the database option, and it will be blocked if there are other users connected

to the database. You can address that by running the ALTER DATABASE SET READ_
COMMITTED SNAPSHOT ON WITH ROLLBACK AFTER X SECONDS command. This will roll
back all active transactions and terminate existing database connections, which allows
the changing of the database option.

Note READ COMMITTED SNAPSHOT is enabled by default in Microsoft Azure
SQL Databases.

As already mentioned, RCSI changes the behavior of the readers in READ COMMITTED
mode. It does not affect the behavior of the writers, however.

Asyou can see in Figure 6-3, instead of acquiring shared (S) locks and being
blocked by any exclusive (X) locks held on the row, readers use the old version from
the version store. Writers still acquire update (U) and exclusive (X) locks in the same
way as in pessimistic isolation levels. Again, as you can see, blocking between writers
from different sessions still exists, although writers do not block readers similar to READ
UNCOMMITTED mode.

where Orderld = 10

Blocked:
(X) lock wait

....)

Orderld: 10

set Amount= 28
where Orderld = 10

Session 3 (X) lock held Session 1:
update Orders
set Status=2 update Orders Session 2:

select Amount
from Orders

Figure 6-3. READ COMMITTED SNAPSHOT isolation level behavior

> Cancelled: 0 where Orderld = 10
Session 4 . Amount: 28 Time T1:
update Orders * Orderld: 10 —
set Status = 2 Blocked: e, Cancelled: 0 Version store .
where Customerld =5 B Amount: 29.95
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There is a major difference between the READ UNCOMMITTED and READ COMMITTED
SNAPSHOT isolation levels, however. READ UNCOMMITTED removes the blocking at the
expense of data consistency. Many consistency anomalies are possible, including
reading uncommitted data, duplicated reads, and missed rows. On the other hand,
the READ COMMITTED SNAPSHOT isolation level provides you with full statement-level
consistency. Statements running in this isolation level do not access uncommitted data
nor data committed after the statement started.

As the obvious conclusion, you should avoid using the (NOLOCK) hint in the queries
when READ COMMITTED SNAPSHOT isolation level is enabled. While using (NOLOCK)
and READ UNCOMMITTED is a bad practice by itself, it is completely useless when READ
COMMITTED SNAPSHOT provides you with similar non-blocking behavior without losing
data consistency for the queries.

Tip Switching a database to the READ COMMITTED SNAPSHOT isolation level
can be a great emergency technique when the system is suffering from blocking
issues. It removes writers/readers blocking without any code changes, assuming
that readers are running in the READ COMMITTED isolation level. Obviously, this is
only a temporary solution, and you need to detect and eliminate the root cause of
the blocking.

SNAPSHOT Isolation Level

SNAPSHOT is a separate transaction isolation level, and it needs to be set explicitly in the
code with a SET TRANSACTION ISOLATION LEVEL SNAPSHOT statement.

By default, using the SNAPSHOT isolation level is prohibited. You must enable it with
an ALTER DATABASE SET ALLOW_SNAPSHOT_ISOLATION ON statement. This statement
does not require an exclusive database lock, and it can be executed with other users
connected to the database.

The SNAPSHOT isolation level provides transaction-level consistency. Transactions
will see a snapshot of the data at the moment when the transaction started regardless
of how long the transaction is active and how many data changes were made in other
transactions during that time.
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Note SQL Server starts an explicit transaction at the time when it accesses the
data for the first time rather than at the time of the BEGIN TRAN statement.

In the example shown in Figure 6-4, we have a session 1 that starts the transaction
and reads the row at time T1. At time T2, we have a session 2 that modifies the row in an
autocommitted transaction. At this moment, the old (original) version of the row moved
to the version store in tempdb.

Session 2 (Time T2):

Session 4 (Time T4): — —— —
—~ ime(T7): .

~ Rowin the ™, /Oid versi on
(_ database ./ . tupdate Orders , tupdate Orders (0ld versions removed from the version )
a_,_}__ e set Amount =28 set Cancelled = 1 \\storewhenthere are no transactions /

S where Orderld = 10 . where Orderld = 10 \‘“‘-h-,_ E‘ e mf'rl'_d-f’/
/ | 4 A 4 | I
Orderid: 10 Orderld: 10 Orderid: 10 Orderid: 10
Cancelled: 0 Cancelled: 0 Cancelled: 1 | Cancelled: 1
5 y Time T2: 2 Time T4: Amount: 28
Amount: 29.95 Amount: 28 Orderd: 10 Amount: 28 | Ordertd: 10
Cancelled: 0 Cancelled: 0
Amount: 29.95 Amount: 28

| Session 1 (Time T1):

Session 3 (Time T3): |
begin tran

Session 3 (Time T5):
select Amount.

Session 1 (Time T6):

begin tran

~ Retums:

from Orders
where Orderld = 10

~ Retums:

( ) ~ Retums:
“~Amount = 29.95

\_Cancelled=0_~

select Cancelled

A from Orders

- where Orderld = 10

]

select Cancelled
from Orders
where Orderid = 10

commit

. ~Amount = 2995

~ Retums: )
G

select Amount

from Orders

where Orderld = 10
commit

Figure 6-4. Snapshot isolation level and readers behavior

In the next step, we have a session 3 that starts another transaction and reads
the same row at time T3. It sees the version of the row as modified and committed
by session 2 (at time 72). At time T4, we have a session 4 that modifies the row in the
autocommitted transaction again. At this time, we have two versions of the rows in the
version store—one that existed between 72 and T4, and the original version that existed
before T2. Now, if session 3 runs the SELECT again, it would use the version that existed
between 72 and T4 because this version was committed at the time that the session 3
transaction started. Similarly, session 1 would use the original version of the row that
existed before T2. At some point, after session 1 and session 3 are committed, the version
store clean-up task would remove both records from the version store, assuming, of
course, that there are no other transactions that need them.

The SERIALIZABLE and SNAPSHOT isolation levels provide the same level of protection
against data inconsistency issues; however, there is a subtle difference in their behavior.
A SNAPSHOT isolation level transaction sees data as of the beginning of a transaction.
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With the SERIALIZABLE isolation level, the transaction sees data as of the time when the
data was accessed for the first time and locks were acquired. Consider a situation where
a session is reading data from a table in the middle of a transaction. If another session
changed the data in that table after the transaction started but before data was read,

the transaction in the SERTALIZABLE isolation level would see the changes while the
SNAPSHOT transaction would not.

Optimistic transaction isolation levels provide statement- or transaction-level data
consistency reducing or even eliminating the blocking, although they could generate
an enormous amount of data in the tempdb. If you have a session that deletes millions
of rows from the table, all of those rows would need to be copied to the version store,
even if the original DELETE statement were running in a pessimistic isolation level, just
to preserve the state of the data for possible SNAPSHOT or RCSI transactions. You will see
such an example later in the chapter.

Now, let’s examine the writers’ behavior. Let’s assume that session 1 starts the
transaction and updates one of the rows. That session holds an exclusive (X) lock there,
as shown in Figure 6-5.

f""u {X) lock /} Sesslon 1 [Time T1): ~ Checking if row in version store has ™.

—— SR ( Cancelled = 1. Row does not need to be )

T jeen.ran A updated. Moving forward 4
-~ Row in the : update Orders - -

set Amount = 28

'\M_% __database___,_/-"
A where Orderld = 10 |

Session 2 (Time T2):

£ 4 update Orders
Orderld: 10 Orderld: 10 set Status =5 /Checking if row in the version ™,
Cancelled: 0 Cancelled: 0 Time T1: ] where Cancelled = 1 [ store has Amount = 29.95. Row |
Amount: 29.95 Amount: 28 Orderld: 10 ‘ ’ needs to be updated /

Session 3 (Time T3):

‘-.\’Cancelled: 0
., Amount: 29.95

(X} lock- blocked )

update Orders
set Cancelled = 1

T where Amount = 29.95 | B
Session 1 (Time T4):
2
\ " | commit

.-"""{ession 3 s rolled back ™
_ withError3960 _/

Figure 6-5. SNAPSHOT isolation level and writers’ behavior

Session 2 wants to update all rows where Cancelled = 1. It starts to scan the table,
and when it needs to read the data for OrderId = 10, it reads the row from the version
store; that is, the last committed version before the session 2 transaction started. This
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version is the original (non-updated) version of the row, and it has Cancelled = 0, so
session 2 does not need to update it. Session 2 continues scanning the rows without
being blocked by update (U) and exclusive (X) lock incompatibility.

Similarly, session 3 wants to update all rows with Amount = 29.95. When it reads the
version of the row from the version store, it determines that the row needs to be updated.
Again, it does not matter that session 1 also changes the amount for the same row. At
this point, a “new version” of the row has not been committed and is invisible to the
other sessions. Now, session 3 wants to update the row in the database, tries to acquire
an exclusive (X) lock, and is blocked because session 1 already has an exclusive (X) lock
there.

Now, if session 1 commits the transaction, session 3 would be rolled back with Error
3960, as shown in Figure 6-6, which indicates a write/write conflict. This is different
behavior than any other isolation level, in which session 3 would successfully overwrite
the changes from session 1 as soon as the session 1 exclusive (X) lock was released.

Msyg 3960, Level 16, State Z, Line 1

Snapshot isolation transaction aborted due to update conflict. YTou cannot use snapshot isolation
to access table 'Delivery.Orders' directly or indirectly in database 'SqglServerInternals' to
update, delete, or insert the row that has been modified or deleted by another transaction. Recry
the transaction or change the isolation level for the update/delete statement.

Figure 6-6. Error 3960

A write/write conflict occurs when a SNAPSHOT transaction is trying to update data
that has been modified after the transaction started. In our example, this would happen
even if session 1 committed before session 3’s UPDATE statement, as long as this commit
occurred after session 3’s transaction started.

Tip You can implement retry logic with TRY. . CATCH statements to handle the
3960 errors if business requirements allow that.

You need to keep this behavior in mind when you are updating data in the SNAPSHOT
isolation level in a system with volatile data. If other sessions update the rows that you
are modifying after the transaction is started, you would end up with Error 3960, even
if you did not access those rows before the update. One of the possible workarounds is
using (READCOMMITTED) or other non-optimistic isolation level table hints as part of the
UPDATE statement, as shown in Listing 6-1.
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Listing 6-1. Using READCOMMITTED hint to prevent 3960 error

set transaction isolation level snapshot
begin tran
select count(*) from Delivery.Drivers;

update Delivery.Orders with (readcommitted)
set Cancelled = 1
where OrderId = 10;

commit

SNAPSHOT isolation levels can change the behavior of the system. Let’s assume there
is a table dbo.Colors with two rows: Black and White. The code that creates the table is
shown in Listing 6-2.

Listing 6-2. SNAPSHOT isolation level update behavior: Table creation

create table dbo.Colors
(
Id int not null,
Color char(5) not null

)5
insert into dbo.Colors(Id, Color) values(1,'Black'),(2, 'White")

Now, let’s run two sessions simultaneously. In the first session, we run the update
that sets the color to white for the rows where the color is currently black using the
UPDATE dbo.Colors SET Color='White' WHERE Color='Black' statement. In the
second session, let’s perform the opposite operation, using the UPDATE dbo.Colors SET
Color="'Black' WHERE Color='White' statement.

Let’s run both sessions simultaneously in READ COMMITTED or any other pessimistic
transaction isolation level. In the first step, as shown in Figure 6-7, we have the race
condition. One of the sessions places exclusive (X) locks on the row it updated, while the
other session is blocked when trying to acquire an update (U) lock on the same row.
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begin tran

update Colors
set Color = ‘Black’

where Color = ‘White’

Figure 6-7. Pessimistic locking behavior: Step 1

When the first session commits the transaction, the exclusive (X) lock is released. At

this point, the row has a Color value updated by the first session, so the second session

updates two rows rather than one, as shown in Figure 6-8. In the end, both rows in the

table will be in either black or white depending on which session acquires the lock first.

Session 1: Id  Color
(xl) IOCR; — 1 1 Black
d s et 2__ 2 Black
Id: 1 Id: 2
Color: White Color: White
Session 2:
> update Colors .
Up::l:;mg set Color = ‘Black’ Updating
where Color = ‘White’ (oW
commit

Figure 6-8. Pessimistic locking behavior: Step 2
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With the SNAPSHOT isolation level, however, this works a bit differently, as shown in

Figure 6-9. When the session updates the row, it moves the old version of the row to the

version store. Another session will read the row from there, rather than being blocked

and vice versa. As a result, the colors will be swapped.

Updating row
(X) lock

Session 1:

begin tran
update Colors
set Color = ‘White’
where Color = ‘Black’

Id: 1
Color: White

Old version
moved to version
store

Reading from

version store
Id Color
1 1 Whie
2 2 Black

Id: 1
Color: Black

A

h

Session 2:

begin tran
update Colors
set Color = ‘Black’
where Color = ‘White’

Reading from
version store

Id: 2
Color: Black

Id: 2
Color: White

Dld version
moved to version
store

Updating row
(X) lock

Figure 6-9. SNAPSHOT isolation level locking behavior

You need to be aware of RCST and SNAPSHOT isolation level behavior, especially if you

have code that relies on blocking. One example is a trigger-based implementation of

referential integrity. You can have an ON DELETE trigger on the referenced table where

you are running a SELECT statement; this trigger will check if there are any rows in

another table referencing the deleted rows. With an optimistic isolation level, the trigger

can skip the rows that were inserted after the transaction started. The solution here again
is a (READCOMMITTED) or other pessimistic isolation level table hint as part of the SELECT
in the triggers on both the referenced and referencing tables.
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Note SQL Server uses a READ COMMITTED isolation level when validating foreign
key constraints. This means that you can still have blocking between writers and
readers even with optimistic isolation levels, especially if there are no indexes on
the referencing column that leads to a table scan of the referencing table.

Version Store Behavior and Monitoring

As already mentioned, you need to monitor how optimistic isolation levels affect tempdb
in your system. For example, let’s run the code from Listing 6-3, which deletes all rows
from the Delivery.Orders table using the READ UNCOMMITTED transaction isolation level.

Listing 6-3. Deleting data from Delivery.Orders table

set transaction isolation level read uncommitted
begin tran

delete from Delivery.Orders;
commit

Even if there are no other transactions using optimistic isolation levels at the time
when DELETE statement started, there is still a possibility that one might start before
the transaction commits. As a result, SQL Server needs to maintain the version store,
regardless of whether there are any active transactions that use optimistic isolation
levels.

Figure 6-10 shows tempdb free space and version store size. As you can see, as soon
as the deletion starts, the version store grows and takes up all of the free space in tempdb.
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504 Transaction Version store
tempdb committed cleanup task

4] free space \ \
Version
store size
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tempdb
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0 T :
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0.0001 Wersion Store Size (KB) -- MSSQLESQL2012:Transac...

Figure 6-10. tempdb free space and version store size

In Figure 6-11, you can see the version store generation and cleanup rate. The
generation rate remains more or less the same during execution, while the cleanup task
cleans the version store after the transaction is committed. By default, the cleanup task
runs once per minute as well as before any auto-growth event, in case tempdb is full.

40
Version Generation Version Cleanup
30 Bate rate
Transaction "
204 ‘ committed
10 W\/\ /\/\/\ /\
0 T T
12:50:05 PM 12:50:35 PM 12:52:29 PM
Last| 0.000 Average | 2,349,034 Minimum | 0.000 Maxirnum 19,009.0
Show Color Scale Counter Instance Parent Object
'7 - 0,001 Version Generation rate (... -- : : 012:T
v — 0.0001 Version Cleanup rate (KBfs) --- -== MSSQLESQL2012:Tr

Figure 6-11. Version generation and cleanup rates
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As you can see, the version store adds overhead to the system. Do not enable
optimistic isolation levels in the database unless you are planning to use them. This is
especially true for SNAPSHOT isolation, which requires you to explicitly set it in the code.
While many systems could benefit from READ COMMITTED SNAPSHOT without any code
changes, this would not happen with the SNAPSHOT isolation level.

There are three other performance counters related to optimistic isolation levels that
may be helpful during version store monitoring:

1. Snapshot Transactions. This shows the total number of active
snapshot transactions. You can analyze this counter to determine
if applications use the SNAPSHOT isolation level when it is enabled
in the system.

2. Update Conflict Ratio. This shows the ratio of the number
of update conflicts to the total number of update snapshot

transactions.

3. Longest Transaction Running Time. This shows the duration
in seconds of the oldest active transaction that is using row
versioning. A high value for this counter may explain the large
version store size in the system.

There are also a few dynamic management views (DMVs) that can be useful in
troubleshooting various issues related to the version store and transactions in general.

The sys.dm_db_file space_usage view returns space usage information for every file
in the database. One of the columns in the view, version store reserved page count,
returns the number of pages used by the version store. Listing 6-4 illustrates this view in
action.

Listing 6-4. Using sys.dm_db_file_space_usage view

select
sum(user _object reserved page count) * 8
as [User Objects (KB)]
,sum(internal object reserved page count) * 8
as [Internal Objects (KB)]
,sum(version_store reserved page count) * 8
as [Version Store (KB)]
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,sum(unallocated extent page count) * 8
as [Free Space (KB)]
from
tempdb.sys.dm_db_file space_usage;

You can track version store usage on a per-database basis using the sys.dm_tran_
version_store view, as shown in Listing 6-5. This view returns information about every
row from the version store, and it can be extremely inefficient when the version store is

large. It also does not include information about reserved but not used space.

Listing 6-5. Using sys.dm_tran_version_store view

select
db_name(database_id) as [database]
,database_id
,sum(record length first part in bytes + record length second part in_
bytes) / 1024
as [version store (KB)]
from
sys.dm_tran version_ store
group by
database id

In SQL Server 2017, you can obtain the same information with the sys.dm_tran_
version store space usage view. This view is more efficient than sys.dm tran_
version_store, and it also returns information about reserved space, as shown in
Listing 6-6.

Listing 6-6. Using sys.dm_tran_version_store_space_usage view

select
db_name(database_id) as [database]
,database id
,reserved page_count
,reserved space kb

from
sys.dm_tran version store space usage
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When the version store becomes very large, you need to identify active transactions
that prevent its cleanup. Remember: When optimistic isolation levels are enabled, row
versioning is used regardless of the isolation level of the transaction that performed the
data modification.

Listing 6-7 shows how to identify the five oldest user transactions in the system.
Long-running transactions are the most common reason why the version store is not
cleaning up. They may also introduce other issues in the system; for example, preventing
the truncation of the transaction log.

Important Some SQL Server features, such as Online Index Rebuild, AFTER
UPDATE and AFTER DELETE triggers, and MARS, use the version store regardless
if optimistic isolation levels are enabled. Moreover, the row versioning is also used
in the systems that have AlwaysOn Availability Groups with readable secondaries
enabled. We will discuss it in greater details in chapter 12.

Listing 6-7. Identifying oldest active transactions in the system

select top 5
at.transaction_id
,at.elapsed time seconds
,at.session_id
»S.login_time
,S.login_name
,S.host_name
,S.program name
»S.last request start time
,S.last _request end time
,er.status
,er.wait_type
,er.blocking session_id
,er.wait_type
,substring(
st.text,
(er.statement_start offset / 2) + 1,
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(case
er.statement _end offset
when -1
then datalength(st.text)
else er.statement end offset
end - er.statement start offset) / 2 + 1
) as [SQL]
from
sys.dm_tran active snapshot database transactions at
join sys.dm exec_sessions s on
at.session _id = s.session id
left join sys.dm exec_requests er on
at.session_id = er.session_id
outer apply
sys.dm exec_sql text(er.sql handle) st
order by
at.elapsed time seconds desc

Note There are several other useful transaction-related dynamic management
views. You can read about them at https://docs.microsoft.com/en-us/
sql/relational-databases/system-dynamic-management-views/
transaction-related-dynamic-management-views-and-functions-
transact-sql.

Finally, it is worth noting that SQL Server exposes the information if READ COMMITTED
SNAPSHOT and SNAPSHOT isolation levels are enabled in sys.databases view. The
is_read committed snapshot column indicates if RCSI is enabled. The snapshot
isolation_state and snapshot_isolation_state_ desc columns indicate whether
SNAPSHOT transactions are allowed and/or if the database is in a transition state after you
run the ALTER DATABASE SET ALLOW_SNAPSHOT ISOLATION statement, respectively.
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Row Versioning and Index Fragmentation

Optimistic isolation levels rely on row versioning. During updates, the old versions of the
rows are copied to the version store in tempdb. The rows in the database reference them
through 14-byte version store pointers that are added during update operations.

The same thing happens during deletions. In SQL Server, a DELETE statement does
not remove the rows from the table, but rather marks them as deleted, reclaiming the
space in the background after the transaction is committed. With optimistic isolation
levels, deletions also copy the rows to the version store, expanding the deleted rows with
version store pointers.

The version store pointer increases the row size by 14 bytes, which may lead to the
situation where the data page does not have enough free space to accommodate the new
version of the row. This would trigger a page split and increase index fragmentation.

Let’s look at an example. As the first step, we will disable optimistic isolation levels
and rebuild the index on the Delivery.Orders table using FILLFACTOR=100. This forces
SQL Server to fully populate the data pages without reserving any free space on them.
The code is shown in Listing 6-8.

Listing 6-8. Optimistic isolation levels and fragmentation: Index rebuild

alter database SQLServerInternals
set read _committed snapshot off
with rollback immediate;

g0

alter database SQLServerInternals
set allow_snapshot_isolation off;

g0

alter index PK_Orders on Delivery.Orders rebuild
with (fillfactor = 100);

Listing 6-9 shows the code that analyzes the index fragmentation of the clustered
index in the Delivery.Orders table.
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Listing 6-9. Optimistic isolation levels and fragmentation: Analyzing
fragmentation

select
alloc unit type desc as [alloc_unit]
,index level
,page_count
,convert(decimal(4,2),avg page space used in percent)
as [space_used]
,convert(decimal(4,2),avg fragmentation in percent)
as [frag %]
,min_record size in bytes as [min_size]
,max_record size in bytes as [max_size]
,avg record size in bytes as [avg size]
from
sys.dm _db_index physical stats(db_id()
,object id(N'Delivery.Orders'),1,null, 'DETAILED");

As you can see in Figure 6-12, the index is using 1,392 pages and does not have any
fragmentation.

alloc_unit index_level page_count space_used frag% min_size max_size avg_size
1 IN_ROW_DATA 0 98.18 022 163 201 166.831
IN_ROW_DATA 1 4 55.87 500 M1 1 1
3 IN_ROW_DATA 2 1 0.62 0.00 1 1 1

Figure 6-12. Index statistics with FILLFACTOR = 100

Now, let’s run the code from Listing 6-10 and delete 50 percent of the rows from the
table. Note that we rolled back the transaction to reset the environment before the next test.

Listing 6-10. Optimistic isolation levels and fragmentation: Deleting 50 percent
of the rows

begin tran
delete from Delivery.Orders where OrderId % 2 = O;
-- update Delivery.Orders set Pieces += 1;

select
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alloc_unit_type desc as [alloc_unit]
,index_ level
,page_count
,convert(decimal(4,2),avg page space used in percent)
as [space used]
,convert(decimal(4,2),avg fragmentation_in_percent)
as [frag %]
,min_record size in bytes as [min_size]
,max_record size in bytes as [max_size]
,avg record size in bytes as [avg size]
from
sys.dm _db_index physical stats(db_id()
,object id(N'Delivery.Orders'),1,null, 'DETAILED");
rollback

Figure 6-13 shows the output of this code. As you can see, this operation does not
increase the number of pages in the index. The same will happen if you update a value
of any fixed-length column. This update would not change the size of the rows, and
therefore it would not trigger any page splits.

alloc_unit index_level page_count space_used frag% min_size max_size avg_size
IN_ROW_DATA 0 98.18 022 163 201 166.831
IN_ROW_DATA 1 4 55.87 5000 11 1 1

3 IN_ROW_DATA 2 1 0.62 0.00 1 n 1

Figure 6-13. Index statistics after DELETE statement

Now, let’s enable the READ COMMITTED SNAPSHOT isolation level and repeat our test.
Listing 6-11 shows the code to do that.

Listing 6-11. Optimistic isolation levels and fragmentation: Repeating the test
with RCSI enabled

alter database SQLServerInternals
set read _committed snapshot on
with rollback immediate;

go
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set transaction isolation level read uncommitted
begin tran
delete from Delivery.Orders where OrderId % 2 = O;
-- update Delivery.Orders set Pieces += 1;
rollback

Figure 6-14 shows index statistics after the operation. Note that we were using the
READ UNCOMMITTED isolation level and rolling back the transaction. Nevertheless, row
versioning is used, which introduces page splits during data deletion.

alloc_unit index_level page_count space_used frag% min_size max_size avg_size
1 IN_ROW_DATA 0 4915 9874 163 201 166.831
2 IN_ROW_DATA 1 8 55.79 10000 M 1 1
3 IN_ROW_DATA 2 1 1.26 0.00 1 1 "

Figure 6-14. Index statistics after DELETE statement with RCSI enabled

After being added, the 14-byte version store pointers stay in the rows, even after the
records are removed from the version store. You can reclaim this space by performing an
index rebuild.

You need to remember this behavior and factor it into your index maintenance
strategy. It is best not to use FILLFACTOR = 100 if optimistic isolation levels are enabled.
The same applies to indexes defined on tables that have AFTER UPDATE and AFTER
DELETE triggers defined. Those triggers rely on row versioning and will also use the
version store internally.

Summary

SQL Server uses a row-versioning model with optimistic isolation levels. Queries access
“old” committed versions of rows rather than being blocked by the incompatibility of
shared (S), update (U), and exclusive (X) locks. There are two optimistic transaction
isolation levels available: READ COMMITTED SNAPSHOT and SNAPSHOT.

READ COMMITTED SNAPSHOT is a database option that changes the behavior of readers
in READ COMMITTED mode. It does not change the behavior of writers—there is still
blocking due to (U)/(U) and (U)/(X) locks’ incompatibility. READ COMMITTED SNAPSHOT
does not require any code changes, and it can be used as an emergency technique when
a system is experiencing blocking issues.
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READ COMMITTED SNAPSHOT provides statement-level consistency; that is, the query
reads a snapshot of the data at the time the statement started.

The SNAPSHOT isolation level is a separate transaction isolation level that needs to be
explicitly specified in the code. This level provides transaction-level consistency; that is,
the query accesses a snapshot of the data at the time the transaction started.

With the SNAPSHOT isolation level, writers do not block each other, with the exception
of the situation where both sessions are updating the same rows. That situation leads
either to blocking or to a 3960 error.

While optimistic isolation levels reduce blocking, they can significantly increase
tempdb load, especially in OLTP systems where data is constantly changing. They also
contribute to index fragmentation by adding 14-byte pointers to the data rows. You
should consider the tradeoffs of using them at the implementation stage, perform
tempdb optimization, and monitor the system to make sure that the version store is not
abused.
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Lock Escalation

Although row-level locking is great from a concurrency standpoint, it is expensive.
In memory, a lock structure uses 64 bytes in 32-bit and 128 bytes in 64-bit operating
systems. Keeping information about millions of row- and page-level locks would use
gigabytes of memory.

SQL Server reduces the number of locks held in memory with a technique called lock
escalation, which we will discuss in this chapter.

Lock Escalation Overview

SQL Server tries to reduce memory consumption and the overhead of lock management by
using the simple technique called lock escalation. Once a statement acquires at least 5,000
row- and page-level locks on the same object, SQL Server tries to escalate—or perhaps
better said, replace—those locks with a single table- or, if enabled, partition-level lock. The
operation succeeds if no other sessions hold incompatible locks on the object or partition.

When an operation succeeds, SQL Server releases all row- and page-level locks held
by the transaction on the object (or partition), keeping the object- (or partition-) level
lock only. If an operation fails, SQL Server continues to use row-level locking and repeats
escalation attempts after about every 1,250 new locks acquired. In addition to reacting to
the number of locks taken, SQL Server can escalate locks when the total number of locks
in the instance exceeds memory or configuration thresholds.

Note The number of locks thresholds of 5,000/1,250 is an approximation.
The actual number of acquired locks that triggers lock escalation may vary and is
usually slightly bigger than that threshold.

Let’s look at the example and run a SELECT statement that counts the number of rows
in the Delivery.Orders table in a transaction with a REPEATABLE READ isolation level.
As you will remember, in this isolation level, SQL Server keeps shared (S) locks until the
end of the transaction.
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Let’s disable lock escalation for this table with the ALTER TABLE SET (LOCK
ESCALATION=DISABLE) command (more about this later) and look at the number of
locks SQL Server acquires, as well as at the memory required to store them. We will use
a (ROWLOCK) hint to prevent the situation in which SQL Server optimizes the locking by
acquiring page-level shared (S) locks instead of row-level locks. In addition, while the
transaction is still active, let’s insert another row from a different session to demonstrate
how lock escalation affects concurrency in the system.

Table 7-1 shows the code of both sessions along with the output from the dynamic
management views.

Table 7-1. Test Code with Lock Escalation Disabled

Session 1 Session 2

alter table Delivery.Orders
set (lock escalation=disable);

set transaction isolation level
repeatable read

begin tran
select count(*)
from Delivery.Orders
with (rowlock);

-- Success

insert into Delivery.Orders
(OrderDate,OrderNum,CustomerId)

values(getUTCDate(), '99999',100);

-- Result: 10,212,326
select count(*) as [Lock Count]
from sys.dm tran locks;

-- Result: 1,940,272 KB
select sum(pages kb) as [Memory, KB]
from sys.dm os memory clerks
where type =
'OBJECTSTORE_LOCK_MANAGER" ;
commit
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Figure 7-1 shows the Lock Memory (KB) system performance counter while the

transaction is active.

100
w.
60-
40-
30-
0
10:14:16 AM 10:14:50 AM 10:15:20 AM 10:15:55 AM
Last | 1,940,272 Average 1,562,331  Minimum | 1,960,000
Manirnum | 1,940,272 Duration | 1:40
Showe Color Scale Counter Instance Parent
< »

Figure 7-1. Lock Memory (KB) system performance counter

As you can see, from a concurrency standpoint, the row-level locking is perfect.

Sessions do not block each other as long as they do not compete for the same rows. At

the same time, keeping the large number of locks is memory intensive, and memory is

one of the most precious resources in SQL Server. In our example, SQL Server needs to

keep millions of lock structures, utilizing almost two gigabytes of RAM. This number

includes the row-level shared (S) locks, as well as the page-level intent shared (IS) locks.

Moreover, there is the overhead of maintaining the locking information and the large

number of lock structures in the system.

Let’s see what happens if we enable default lock escalation behavior with the ALTER
TABLE SET (LOCK_ESCALATION=TABLE) command and run the code shown in Table 7-2.
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Table 7-2. Test Code with Lock Escalation Enabled

Session 1 (SPID=57)

Session 2 (SPID=58)

alter table Delivery.Orders
set (lock escalation=table);

set transaction isolation level
repeatable read
begin tran
select count(*)
from Delivery.Orders
with (rowlock);

select
request session _id as [SPID]
,resource type as [Resource]
,request mode as [Lock Mode]
,request status as [Status]
from sys.dm tran_locks;
commit

-- The session is blocked

insert into Delivery.Orders
(OrderDate,OrderNum,CustomerId)

values(getUTCDate(), '100000",100);

Figure 7-2 shows the output from the sys.dm_tran_locks view.

SPID | Resource

| Lock Mo... | Status I

GRANT
GRANT

GRANT |

1 57 DATABASE S
2 58 DATABASE S
3 57 OBJECT
4 58 OBJECT

X WAIT

Figure 7-2. Sys.dm_tran_locks output with lock escalation enabled
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SQL Server replaces the row- and page-level locks with the object shared (S) lock.
Although it is great from a memory-usage standpoint—there is just a single lock to
maintain—it affects concurrency. As you can see, the second session is blocked—it
cannot acquire an intent exclusive (IX) lock on the table because it is incompatible with
the full shared (S) lock held by the first session.

The locking granularity hints, such as (ROWLOCK) and (PAGLOCK), do not affect lock-
escalation behavior. For example, with the (PAGLOCK) hint, SQL Server uses full page-
level rather than row-level locks. This, however, may still trigger lock escalation after the
number of acquired locks exceeds the threshold.

Lock escalation is enabled by default and could introduce blocking issues, which can
be confusing for developers and database administrators. Let’s talk about a few typical
cases.

The first case occurs when reporting queries use REPEATABLE READ or SERIALIZABLE
isolation levels for data consistency purposes. If reporting queries are reading large
amounts of data when there are no sessions updating the data, those queries could
escalate shared (S) locks to the table level. Afterward, all writers would be blocked, even
when trying to insert new data or modify the data not read by the reporting queries, as
you saw earlier in this chapter. One of the ways to address this issue is by switching to
optimistic transaction isolation levels, which we discussed in the previous chapter.

The second case is the implementation of the purge process. Let’s assume
that you need to purge a large amount of old data using a DELETE statement. If the
implementation deletes a large number of rows at once, you could have exclusive (X)
locks escalated to the table level. This would block access to the table for all writers, as
well as for the readers in READ COMMITTED, REPEATABLE READ, or SERTALIZABLE isolation
levels, even when those queries are working with a completely different set of data than
what you are purging.

Finally, you can think about a process that inserts a large batch of rows with a single
INSERT statement. Like the purge process, it could escalate exclusive (X) locks to the
table level and block other sessions from accessing it.

All these patterns have one thing in common—they acquire and hold a large number
of row- and page-level locks as part of a single statement. That triggers lock escalation,
which will succeed if there are no other sessions holding incompatible locks on the table
(or partition) level. This will block other sessions from acquiring incompatible intent or
full locks on the table (or partition) until the first session has completed the transaction,
regardless of whether the blocked sessions are trying to access the data affected by the

first session.
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It is worth repeating that lock escalation is triggered by the number of locks acquired
by the statement, rather than by the transaction. If the separate statements acquire less
than 5,000 row- and page-level locks each, lock escalation is not triggered, regardless of
the total number of locks the transaction holds. Listing 7-1 shows an example in which
multiple UPDATE statements run in a loop within a single transaction.

Listing 7-1. Lock escalation and multiple statements

declare
@id int = 1

begin tran
while @id < 100000
begin
update Delivery.Orders
set OrderStatusId = 1
where OrderId between @id and @id + 4998;

select @id += 4999;
end

select count(*) as [Lock Count]

from sys.dm tran_locks

where request session id = @@SPID;
commit

Figure 7-3 shows the output of the SELECT statement from Listing 7-1. Even when
the total number of locks the transaction holds is far more than the threshold, lock

escalation is not triggered.

Total Lock Count |
1| 133870

Figure 7-3. Number of locks held by the transaction
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Lock Escalation Troubleshooting

Lock escalation is completely normal. It helps to reduce locking-management overhead
and memory usage, which improves system performance. You should keep it enabled
unless it starts to introduce noticeable blocking issues in the system. Unfortunately, it
is not always easy to detect if lock escalation contributes to blocking, and you need to
analyze individual blocking cases to understand it.

One sign of potential lock escalation blocking is a high percentage of intent-lock
waits (LCK_M_I*) in the wait statistics. Lock escalation, however, is not the only reason
for such waits, and you need to look at other metrics during analysis.

Note We will talk about wait statistics analysis in Chapter 12.

The lock escalation event leads to a full table-level lock. You would see this in the
sys.dm_tran locks view output and in the blocked process report. Figure 7-4 illustrates
the output of Listing 3-2 from Chapter 3 if you were to run it at a time when blocking is
occurring. As you can see, the blocked session is trying to acquire an intent lock on the
object, while the blocking session—the one that triggered lock escalation—holds an
incompatible full lock.

Resource Type | DB Name | Object | Resource | Session | Mode | Status ] Wait (ms}l sql I query_plan I
1 OBJECT SqiServerinternals  Orders 62 8 GRANT NULL NULL NULL
2 OBJECT SqiServerinternals  Orders 63 [ WAIT 3455 INSERT INTO [Deli <ShowPlar

Figure 7-4. Listing 3-2 output (sys.dm_tran_locks view) during lock escalation

Ifyou look at the blocked process report, you will see that the blocked process is
waiting on the intent lock on the object, as shown in Listing 7-2.

Listing 7-2. Blocked process report (partial)

<blocked-process-report>

<blocked-process>

<process id="..." taskpriority="0" logused="0" waitresource="OBJECT:
waittime="..." ownerId="..." transactionname="user transaction"
lasttranstarted="..." XDES="..." lockMode="IX" schedulerid="..." ...>
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Again, keep in mind that there could be other reasons for sessions to acquire
full object locks or be blocked while waiting for an intent lock on the table. You must
correlate information from other venues to confirm that the blocking occurred because
of lock escalation.

You can capture lock escalation events with SQL Traces. Figure 7-5 illustrates the
output in the Profiler application.

)

| EventClass | EventSubCiass | integerData | itegerData? | Linebumber | Mode | Offset | OtyectiD | OtyectiD2 | Type | TeData

Lock:Escalation 0 - LOCK_THRESHOLD 6248 6249 3 3~-5 124 lllo...j 7205... 5 - OBJECT set tra...

egin tran
select count
from Delivery.Orders with (rowlock

et transaction isolation Tevel repeatable read
icommit]

Figure 7-5. Lock escalation event shown in SQL Server Profiler

SQL Traces provide the following attributes:

e EventSubClass indicates what triggered lock escalation—number of
locks or memory threshold.

o IntegerData and IntegerData2 show the number of locks that
existed at the time of the escalation and how many locks were
converted during the escalation process. It is worth noting that in our
example lock escalation occurred when the statement acquired 6,248
rather than 5,000 locks.

e Mode tells what kind of lock was escalated.

e ObjectIDisthe object id of the table for which lock escalation was
triggered.

o ObjectID2 isthe HoBTID for which lock escalation was triggered.
o Type represents lock escalation granularity.

e TextData, LineNumber, and Offset provide information on the batch
and statement that triggered lock escalation.

Another, and better, way of capturing lock escalation occurences is by using
Extended Events. Figure 7-6 illustrates a lock_escalation event and some of the
available event fields. This event is available in SQL Server 2012 and above.
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Event library:

|Iock_esca|ation[ | in | Event names only v |

[ Name * | Category Channel

ock s ok | arabtc |

lock_escalation ~ || EventFields ~ | Description A
collect_database_name When set to 1, collect_database_name enables collection of database_nar

Occurs when a fine- : a

grain lock is converted collect_statement When set to 1, collect_statement enables collection of statement. By defa = [

into a coarser-grain lock, database id

such as when a row lock =

is converted into an database_name

object lock. u,” this escalated_lock_count The total number of locks that were converted. These locks are deallocat:

event to monitor how . .

locks are being used on escalation_cause The cause of the lock escalation.

the server. hobt_id The ID of the HoBT (heap or B-tree) for which the escalation was triggere
hebt_lock_count The number of locks on the HoBT (heap or B-tree) at the time that the lo =

vll< | j o m | >

Figure 7-6. Lock_escalation Extended Event

The Extended Event is useful to understand which objects triggered lock escalation
most often. You can query and aggregate the raw captured data or, alternatively, do the
aggregation in an Extended Event session using a histogram target.

Listing 7-3 shows the latter approach, grouping the data by object_id field. This
code would work in SQL Server 2012 and above.

Listing 7-3. Capturing number of lock escalation occurences with xEvents

create event session LockEscalationInfo
on server
add event

sqlserver.lock escalation

(

where
database id = 5 -- DB _ID()

)
add target

package0.histogram

(

set
slots = 1024 -- Based on # of tables in the database
,filtering event _name = 'sqlserver.lock escalation'
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,source_type = 0 -- event data column

,source = 'object_id' -- grouping column
)
with
(
event_retention mode=allow single event loss
;max_dispatch_latency=10 seconds
)s

alter event session LockEscalationInfo
on server
state=start;

The code from Listing 7-4 queries a session target and returns the number of lock
escalations on a per-table basis.

Listing 7-4. Analyzing captured results

;with TargetData(Data)

as
(
select convert(xml,st.target data) as Data
from sys.dm xe_sessions s join sys.dm xe session_targets st on
s.address = st.event session_address
where s.name = 'LockEscalationInfo' and st.target name = 'histogram'
)
,EventInfo([count],object id)
as
(
select
t.e.value('@count',"int")
,t.e.value('((./value)/text())[1]", "int")
from
TargetData cross apply
TargetData.Data.nodes('/HistogramTarget/Slot') as t(e)
)
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select
e.object id
,S.name + '.' + t.name as [table]
,e.[count]
from
EventInfo e join sys.tables t on
e.object_id = t.object_id
join sys.schemas s on
t.schema_id = s.schema_id
order by
e.count desc;

You should not use this data just for the purpose of disabling lock escalation. It is
very useful, however, when you are analyzing blocking cases with object-level blocking
involved.

I'would like to reiterate that lock escalation is completely normal and is a very useful
feature in SQL Server. Even though it can introduce blocking issues, it helps to preserve
SQL Server memory. The large number of locks held by the instance reduces the size of
the buffer pool. As a result, you have fewer data pages in the cache, which could lead to a
higher number of physical I/O operations and degrade the performance of queries.

In addition, SQL Server could terminate the queries with Error 1204 when there is no
available memory to store the lock information. Figure 7-7 shows just such an error message.

] Resuts ) Messages |
Msg 1204, Level 19, State 4, Line 4
The instance of the SQL Server Database Engine cannot obtain a LOCK resource at this time.
Rerun your statement when there are fewer active users. Ask the database administrator to
check the lock and memory configuration for this instance, or to check for long-running
transactions.

Figure 7-7. Error 1204

In SQL Server 2008 and above, you can control escalation behavior at the table level
by using the ALTER TABLE SET LOCK_ESCALATION statement. This option affects lock
escalation behavior for all indexes—both clustered and nonclustered—defined on the
table. Three options are available:

DISABLE: This option disables lock escalation for a specific table.

TABLE : SQL Server escalates locks to the table level. This is the
default option.
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AUTO: SQL Server escalates locks to the partition level when the table
is partitioned or to the table level when the table is not partitioned.
Use this option with large partitioned tables, especially when there
are large reporting or purge queries running on the old data.

Note The sys.tables catalog view provides information about the table lock
escalation mode in the lock escalationand lock escalation_desc columns.

Unfortunately, SQL Server 2005 does not support this option, and the only way to
disable lock escalation in this version is by using documented trace flags T1211 or 71224
at the instance or session level. Keep in mind that you need to have sysadmin rights to
call the DBCC TRACEON command and set trace flags at the session level.

e T1211 disables lock escalation, regardless of the memory conditions.

e T1224 disables lock escalation based on the number-of-locks
threshold, although lock escalation can still be triggered in the case of
memory pressure.

Note You can read more about trace flags T1211 and T1224 at https://
docs.microsoft.com/en-us/sql/t-sql/database-console-commands/
dbcc-traceon-trace-flags-transact-sql.

As with the other blocking issues, you should find the root cause of the lock
escalation. You should also think about the pros and cons of disabling lock escalation
on particular tables in the system. Although it could reduce blocking in the system,

SQL Server would use more memory to store lock information. And, of course, you can
consider code refactoring as another option.

Iflock escalation is triggered by the writers, you can reduce the batches to the point
where they are acquiring fewer than 5,000 row- and page-level locks per object. You can
still process multiple batches in the same transaction—the 5,000 locks threshold is per
statement. At the same time, you should remember that smaller batches are usually less
effective than larger ones. You need to fine-tune the batch sizes and find the optimal
values. It is normal to have lock escalation triggered if object-level locks are not held for
an excessive period of time and/or do not affect the other sessions.
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As for lock escalation triggered by the readers, you should avoid situations in which
many shared (S) locks are held. One example is scans due to non-optimized or reporting
queries in the REPEATABLE READ or SERIALIZABLE transaction isolation levels, where
queries hold shared (S) locks until the end of the transaction. The example shown in
Listing 7-5 runs the SELECT from the Delivery.Orders table using the SERIALIZABLE
isolation level.

Listing 7-5. Lock escalation triggered by non-optimized query

set transaction isolation level serializable
begin tran
select OrderId, OrderDate, Amount
from Delivery.Orders with (rowlock)
where OrderNum = '1';

select
resource_type as [Resource Type]
,case resource type
when 'OBJECT' then
object_name

(
resource_associated entity id
,resource_database id
)
when 'DATABASE' then 'DB'
else
(
select object name(object id, resource database id)
from sys.partitions
where hobt id = resource associated entity id
)

end as [Object]
,request mode as [Mode]
,request status as [Status]
from sys.dm tran_locks
where request session id = @@SPID;
commit
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Figure 7-8 shows the output of the second query from the sys.dm_tran_locks view.

Orderld OrderDate Amount
1 1 2017-12-2913:01:00 20.00

Resource Type Object Mode  Status
DATABASE DB S GRANT
2 OBJECT Orders S GRANT

Figure 7-8. Selecting data in the SERIALIZABLE isolation level

Even if the query returned just a single row, you see that shared (S) locks have been
escalated to the table level. As usual, we need to look at the execution plan, shown in
Figure 7-9, to troubleshoot it.

= E

Clustered Index Scan (Clustered)
[Orders] . [PK_Orders]
Cost: 100 %

SELECT
Cost: 0 &

Figure 7-9. Execution plan of the query

There are no indexes on the OrderNum column, and SQL Server uses the Clustered
Index Scan operator. Even though the query returned just a single row, it acquired and
held shared (S) range locks on all the rows it read due to the SERIALIZABLE isolation level.
As aresult, lock escalation was triggered. If you add the index on the OrderNum column,
it changes the execution plan to Nonclustered Index Seek. Only one row is read, very few
row- and page-level locks are acquired and held, and lock escalation is not needed.

In some cases, you may consider partitioning the tables and setting the lock
escalation option to use partition-level escalation, rather than table level, using the
ALTER TABLE SET (LOCK ESCALATION=AUTO) statement. This could help in scenarios
in which you must purge old data using the DELETE statement or run reporting queries
against old data in the REPEATABLE READ or SERIALIZABLE isolation levels. In those cases,
statements would escalate the locks to partitions, rather than tables, and queries that are
not accessing those partitions would not be blocked.
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In other cases, you can switch to optimistic isolation levels. Finally, you would
not have any reader-related blocking issues in the READ UNCOMMITTED transaction
isolation level, where shared (S) locks are not acquired, although this method is not
recommended because of all the other data consistency issues it introduces.

Summary

SQL Server escalates locks to the object or partition levels after the statement acquires
and holds about 5,000 row- and page-level locks. When escalation succeeds, SQL Server
keeps the single object-level lock, blocking other sessions with incompatible lock types
from accessing the table. If escalation fails, SQL Server repeats escalation attempts after
about every 1,250 new locks are acquired.

Lock escalation fits perfectly into the “it depends” category. It reduces the SQL Server
Lock Manager memory usage and the overhead of maintaining a large number of locks.
At the same time, it could increase blocking in the system because of the object- or
partition-level locks held.

You should keep lock escalation enabled, unless you find that it introduces
noticeable blocking issues in the system. Even in those cases, however, you should
perform a root-cause analysis as to why blocking resulting from lock escalation occurs
and evaluate the pros and cons of disabling it. You should also look at the other options
available, such as code and database schema refactoring, query tuning, and switching to
optimistic transaction isolation levels. Any of these options might be a better choice to
solve your blocking problems than disabling lock escalation.
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Schema and Low-Priority
Locks

SQL Server uses two additional lock types called schema locks to prevent table and
metadata alterations during query execution. This chapter will discuss schema locks in
depth along with low-priority locks, which were introduced in SQL Server 2014 to reduce
blocking during online index rebuilds and partition switch operations.

Schema Locks

SQL Server needs to protect database metadata in order to prevent situations where
atable’s structure is changed in the middle of query execution. The problem is more
complicated than it seems. Even though exclusive (X) table locks can, in theory, block
access to the table during ALTER TABLE operations, they would not work in READ
UNCOMMITTED, READ COMMITTED SNAPSHOT, and SNAPSHOT isolation levels, where readers
do not acquire intent shared (IS) table locks.

SQL Server uses two additional lock types to address the problem: schema stability
(Sch-S) and schema modification (Sch-M) locks. Schema modification (Sch-M) locks
are acquired when any metadata changes occur and during the execution of a TRUNCATE
TABLE statement. You can think of this lock type as a “super-lock”” It is incompatible with
any other lock types, and it completely blocks access to the object.

Like exclusive (X) locks, schema modification (Sch-M) locks are held until the end
of the transaction. You need to keep this in mind when you run DDL statements within
explicit transactions. While that allows you to roll back all of the schema changes in
case of an error, it also prevents any access to the affected objects until the transaction is
committed.
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Important Many database schema comparison tools use explicit transactions in
the alteration script. This could introduce serious blocking when you run the script
on live servers while other users are accessing the system.

SQL Server also uses schema modification (Sch-M) locks while altering the partition
function. This can seriously affect the availability of the system when such alterations
introduce data movement or scans. Access to all partitioned tables that use such a
partition function is then blocked until the operation is completed.

Schema stability (Sch-S) locks are used during DML query compilation and
execution. SQL Server acquires them regardless of the transaction isolation level, even
in READ UNCOMMITTED mode. The only purpose they serve is to protect the table from
being altered or dropped while the query accesses it. Schema stability (Sch-S) locks are
compatible with any other lock types, except schema modification (Sch-M) locks.

SQL Server can perform some optimizations to reduce the number of locks acquired.
While a schema stability (Sch-S) lock is always used during query compilation, SQL
Server can replace it with an intent object lock during query execution. Let’s look at the
example shown in Table 8-1.
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Table 8-1. Schema Locks: Query Compilation

Session 1 (SPID=64) Session 2 (SPID=65) Session 3 (SPID=66)

begin tran
alter table
Delivery.Orders
add Dummy int;

select count(*) delete from
from Delivery.Orders Delivery.Orders
with (nolock); where OrderId = 1;

select

request session id

,resource_type

,request_type

,request mode

,request status
from sys.dm tran locks
where

resource type = 'OBJECT';
rollback

The first session starts the transaction and alters the table, acquiring a schema
modification (Sch-M) lock there. In the next step, two other sessions run a SELECT
statement in the READ UNCOMMITTED isolation level and a DELETE statement, respectively.

As you can see in Figure 8-1, sessions 2 and 3 were blocked while waiting for schema
stability (Sch-S) locks that were required for query compilation.

request_session_id resource_type request_type request_mode request_status

1 64 OBJECT LOCK Sch-M GRANT
65 OBJECT LOCK Sch-S WAIT
3 66 OBJECT LOCK IX WAIT

Figure 8-2. Schema locks when execution plans are cached

If you run that example a second time, when queries are compiled and plans are in
the cache, you would see a slightly different picture, as shown in Figure 8-2.
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request_session_id resource_fype request_fype request_mode request_status

64 OBJECT LOCK Sch-M GRANT
65 OBJECT LOCK Sch-S WAIT
66 OBJECT LOCK Sch-§ WAIT

Figure 8-1. Schema locks during query compilation

The second session would still wait for the schema stability (Sch-S) lock to be
granted. There are no shared (S) locks in the READ UNCOMMITTED mode, and the schema
stability (Sch-S) lock is the only way to keep a schema stable during execution. However,
the session with the DELETE statement would wait for an intent exclusive (IX) lock
instead. That lock type needs to be acquired anyway, and it can replace a schema
stability (Sch-S) lock because it is also incompatible with schema modification (Sch-M)
locks and prevents the schema from being altered.

Mixing schema modification locks with other lock types in the same transaction
increases the possibility of deadlocks. Let’s assume that we have two sessions: the first
one starts the transaction, and it updates the row in the table. At this point, it holds an
exclusive (X) lock on the row and two intent exclusive (IX) locks on the page and table. If
another session tries to read (or update) the same row, it would be blocked. At this point,
it would wait for the shared (S) lock on the row and have intent shared (IS) locks held on
the page and the table. That stage is illustrated in Figure 8-3. (Page-level intent locks are
omitted.)

//’Jggp 1: ( Step 2: ™~
Q (IX) table lock- ) § (1S) table lock -
granted — &= granted
- T1
i?dsaut);.rll(step L Session 2 (step 2):
select count(*)
set Col = @Val e
where Key = @P1 P1 &

o - o-.!_'/fStepzx‘
(S) row lock -
blocked

Step 1H\ ok
(X) row lock -
granted

Figure 8-3. Deadlock due to mixed DDL and DML statements: Steps 1 and 2
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If at this point the first session wanted to alter the table, it would need to acquire a
schema modification (Sch-M) lock. That lock type is incompatible with any other lock
type, and the session would be blocked by the intent shared (IS) lock held by the second
session, which leads to the deadlock condition, as shown in Figure 8-4.

(Sch-Mm)
““*—-__ -------- [IS}

T1

Session 1 (step 3):
alter table T1 -
Session 2

add Col2 int / p1 I ~
>\./ Yow#? (S)
blocked

Figure 8-4. Deadlock due to mixed DDL and DML statements: Step 3

It is worth noting that this particular deadlock pattern may occur with any full table-
level locks. However, schema modification (Sch-M) locks increase deadlock possibility
due to their incompatibility with all other lock types in the system.

Lock Queues and Lock Compatibility

Up until now, we have looked at blocking conditions with only two sessions involved
and with an incompatible lock type already being held on a resource. In real life, the
situation is usually more complicated. In busy systems, it is common to have dozens
or even hundreds of sessions accessing the same resource—a table, for example—
simultaneously. Let’s look at several examples and analyze lock compatibility rules when
multiple sessions are involved.

First, let’s look at a scenario where multiple sessions are acquiring row-level locks.
As you can see in Table 8-2, the first session (SPID=55) holds a shared (S) lock on the
row. The second session (SPID=54) is trying to acquire an exclusive (X) lock on the same
row, and it is being blocked due to lock incompatibility. The third session (SPID=53) is
reading the same row in the READ COMMITTED transaction isolation level. This session has
not been blocked.
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Table 8-2. Multiple Sessions and Lock Compatibility: READ COMMITTED

Isolation Level

Session 1 (SPID=55) Session 2 (SPID=54) Session 3 (SPID=53)

begin tran
select OrderId, Amount
from Delivery.Orders
with (repeatableread)
where OrderId = 1;

-- Blocked -- Success
delete from select OrderId,
Delivery.Orders  Amount
where OrderId = 1; from Delivery.Orders
with (readcommitted)
where OrderId = 1;

select
l.request _session id as
[SPID]
,1l.resource description
,1l.resource type
»1l.request_mode
,1l.request status
,T.blocking session_id
from
sys.dm_tran_locks 1 join
sys.dm_exec_requests r on

l.request session id =
r.session_id
where l.resource type = 'KEY'
rollback
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Figure 8-5 illustrates the row-level locks held on the row with OrderId=1.

SPID I resource_description I resource_type I request_mode I request _status ] blocking_session_id ]

1 55
2 54

(8194443284a0)
(8194443284a0)

KEY
KEY

GRANT
WAIT

0
55

Figure 8-5. Lock compatibility with more than two sessions: READ COMMITTED

As you can see in Figure 8-6, the third session (SPID=53) did not even try to acquire

a shared (S) lock on the row. There is already a shared (S) lock on the row held by

the first session (SPID=55), which guarantees that the row has not been modified by
uncomimitted transactions. In the READ COMMITTED isolation level, a shared (S) lock
releases immediately after a row is read. As a result, session 3 (SPID=53) does not need

to hold its own shared (S) lock after reading the row, and it can rely on the lock from

session 1.

EventClass | EventSequence | SPID | Mode | Type | TextData
Lock:Acquired 24 43 6 - IS S - OBJECT

Lock:Acquired 35 43 6 - IS 6 - PAGE 1:323
Lock:Acquired 36 I 33 3 -5 7 - KEY] (8194443284a0)
Lock:Acquired 37 c4 8 - IX S - OBJECT

Lock:Acquired 38 c4 8 - IX 6 - PAGE 1:3223
Lock:Acquired 39 c3 6 - IS S - OBJECT

Lock:Acquired 40 53 6 = IS 6 - PAGE | 1:323

Figure 8-6. Locks acquired during the operation

Let’s change our example and see what happens if the third session tries to read the
row in a REPEATABLE READ isolation level, where a shared (S) lock needs to be held until
the end of the transaction, as shown in Table 8-3. In this case, the third session cannot

rely on the shared (S) lock from another session, because it would have a different

lifetime. The session will need to acquire its own shared (S) lock, and it will be blocked

due to an incompatible exclusive (X) lock from the second session in the queue.

181



CHAPTER 8  SCHEMA AND LOW-PRIORITY LOCKS

Table 8-3. Multiple Sessions and Lock Compatibility (REPEATABLE READ
Isolation Level)

Session 1 (SPID=55) Session 2 (SPID=54) Session 3 (SPID=53)

begin tran
select OrderId, Amount
from Delivery.Orders
with (repeatableread)
where OrderId = 1;

-- Blocked -- Blocked

delete from select OrderId,

Delivery.Orders Amount

where OrderId = 1; from Delivery.Orders

with
(repeatableread)
where OrderId = 1;
select
1l.request_session_id
as [SPID]

,l.resource description
,l.resource_type
,1l.request mode
,l.request status

,T.blocking session_id
from
sys.dm tran locks 1 join
sys.dm_exec_requests r
on

l.request_session id =
r.session_id
where 1l.resource type = 'KEY';
rollback
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Figure 8-7 illustrates the row-level lock requests at this point.

SPID | resource description I resource_type | request_mode I request_status I blocking session_id I
1 |55 (8194443284a0) KEY S GRANT )
2 54 (8194443284a0) KEY X WWAIT 55 I
3 |53  (8194443284a0) KEY s WAIT

Figure 8-7. Lock compatibility with more than two sessions

This leads us to a very important conclusion: In order to be granted, a lock needs to be
compatible with all of the lock requests on that resource—granted or not.

Important The first scenario, when the third session ran in READ COMMITTED
isolation level and did not acquire the lock on the resource, can be considered an
internal optimization, which you should not rely on. In some cases, SQL Server still
acquires another shared (S) lock on the resource in READ COMMITTED mode, even
if there is another shared (S) lock held. In such a case, the query would be blocked
like in the REPEATABLE READ isolation level example.

Unfortunately, sessions in SQL Server do not reuse locks from other sessions on the
table level. It is impossible to estimate the time for which any table-level lock-intent, full,
or schema stability-needs be held. The session will always try to acquire an object-level
lock, and it will be blocked if any other incompatible lock types are present in the locking
queue.

This behavior may introduce serious blocking issues in the system. One of the most
common cases where it occurs is with online index rebuild operations. Even though it
holds an intent shared (IS) table lock during the rebuild process, it needs to acquire a
shared (S) table lock at the beginning and a schema modification (Sch-M) lock at the
final phase of execution. Both locks are held for a very short time; however, they can
introduce blocking issues in busy OLTP environments.

Consider a situation where you start an online index rebuild at a time when you
have another active transaction modifying data in a table. That transaction will hold
an intent exclusive (IX) lock on the table, which prevents the online index rebuild from
acquiring a shared (S) table lock. The lock request will wait in the queue and block all other
transactions that want to modify data in the table and requesting intent exclusive (IX)
locks there. Figure 8-8 illustrates this situation.
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Table T1
Session 1: $1: (IX) GRANTED/HELD
update T1 set Coll = @Vall /
where Key = @P1 S2: (S) WAIT 1_"
Session 2: 53: () WAIT -7' .[5] / (1X) I‘o<‘:l‘<s
alter index 11 on T1 with (online=on) incompatibility
Session 3:

update T1 set Col2 = @Val2
where Key = @P2

Figure 8-8. Blocking during the initial stage of an index rebuild

This blocking condition will clear only after the first transaction is completed and
the online index rebuild acquires and releases a shared (S) table lock. Similarly, more
severe blocking could occur in the final stage of an online index rebuild when it needs
to acquire a schema modification (Sch-M) lock to replace an index reference in the
metadata. Both readers and writers will be blocked while the index rebuild waits for the
schema modification (Sch-M) lock to be granted.

Similar blocking may occur during partition switch operations, which also acquire
schema modification (Sch-M) locks. Even though a partition switch is done on the
metadata level and is very fast, the schema modification (Sch-M) lock would block other
sessions while waiting in the queue to be granted.

You need to remember this behavior when you design index maintenance and
partition management strategies. There is very little that can be done in non-Enterprise
editions of SQL Server or even in Enterprise Edition prior to SQL Server 2014. You
can schedule operations to run at a time when the system handles the least activity.
Alternatively, you can write the code terminating the operation using the LOCK_TIMEOUT
setting.

Listing 8-1 illustrates this approach. You can use it with offline index rebuild and
partition switch operations. You would still have blocking during the offline index
rebuild while the schema modification (Sch-M) lock is held. However, you would
eliminate blocking if this lock could not be acquired within the LOCK_TIMEOUT interval.
Remember, with XACT_ABORT set to OFF, the lock timeout error does not roll back the
transaction. Use proper transaction management and error handling, as we discussed in
Chapter 2.

Also, as another word of caution, do not use LOCK_TIMEOUT with online index
rebuilds, because it may terminate and roll back the operation at its final phase while the
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session is waiting for a schema modification (Sch-M) lock to replace the index definition
in the metadata.

Listing 8-1. Reduce blocking during offline index rebuild

set xact_abort off
set lock timeout 100 -- 100 milliseconds

g0

declare
@attempt int = 1
,@maxAttempts int = 10

while @attempt <= @maxAttempts

begin

begin try
raiserror('Rebuilding index. Attempt %d / %d',0,1,@attempt,
@maxAttempts) with nowait;
alter index PK_Orders
on Delivery.Orders rebuild
with (online = off);
break;

end try

begin catch
if ERROR_NUMBER() = 1222 and @attempt < @maxAttempts
begin
set @attempt += 1;
waitfor delay '00:00:15.000";
end
else
throw;
end catch
end;

Fortunately, the Enterprise Edition of SQL Server 2014 and above provides a better
way to handle this problem.
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Low-Priority Locks

SQL Server 2014 introduced a new feature—low-priority locks-that helps to reduce
blocking during online index rebuild and partition switch operations. Conceptually, you

can think of low-priority locks as staying in a different locking queue than regular locks.
Figure 8-9 illustrates it.

Session 1 /,y $1: (IX) GRANTED/HELD lemmm i o 52: (S) WAIT T
update T1set Coll = @vall ] : e Session 2:
where Key= @p1 ‘g $3:(IX) GRANTED/HELD |« Sfher Iaaes 1TonT)
: with
Session 2: i (
update T1 set Col2 = @Val2 online=on (wait_at_low_priority)
where Key = @P2 )

- )/ (X locks .

Figure 8-9. Low-priority locks

Important |t is essential to remember that, as soon as a low-priority lock is
acquired, it will behave the same as a regular lock, preventing other sessions from
acquiring incompatible locks on the resource.

Figure 8-10 shows the output of the query from Listing 3-2 in Chapter 3. It
demonstrates how low-priority locks are shown in the sys.dm_tran_locks view output.
It is worth noting that the view does not provide the wait time of those locks.

Resource Type DB Name  Object Resource  Session  Mode  Status Wait (ms) sql
1 OBJECT Dummy2  Customers €1 I GRANT NULL update Delivery Customers set Name = Customer’ ...
2 OBJECT Dummy2  Customers 62 5 LOW_PRIORITY_WAIT § NULL alter index PK_Customers on Delivery Customers re....
3 OBJECT Dummy2  PK_Customers 62 Sch-5  GRANT NULL alter index PK_Customers on Delivery Customers re....
| 4 OBJECT Dummy2  Customers 62 IS GRANT NULL alter index PK_Customers on Delivery Customers re...

Figure 8-10. Low-priority locks in the sys.dm_tran_locks data management
view

You can specify lock priority with a WAIT_AT_LOW_PRIORITY clause in the ALTER
INDEX and ALTER TABLE statements, as shown in Listing 8-2.
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Listing 8-2. Specifying lock priority

alter index PK_Customers on Delivery.Customers rebuild

with
(
online=on
(
wait_at_low_priority
(
max_duration=10 minutes
,abort after wait=blockers
)
)
)5

alter table Delivery.Orders
switch partition 1 to Delivery.OrdersTmp
with
(
wait_at_low_priority
(
max_duration=60 minutes
,abort_after wait=self

)

Asyou can see, WAIT_AT_LOW_PRIORITY has two options. The MAX_DURATION setting
specifies the lock wait time in minutes. The ABORT _AFTER _WAIT setting defines the
session behavior if a lock cannot be obtained within the specified time limit. The
possible values are:

e NONE: The low-priority lock is converted to a regular lock. After that, it
behaves as a regular lock, blocking other sessions that try to acquire
incompatible lock types on the resource. The session continues to
wait until the lock is acquired.

e SELF: The operation is aborted if a lock cannot be granted within the
time specified by the MAX_DURATION setting.
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e BLOCKERS: All sessions that hold locks on the resource are aborted,
and the session, which is waiting for a low-priority lock, will be able
to acquire it.

Note Omitting the WAIT AT _LOW_PRIORITY option works the same way as
specifying WAIT AT _LOW_PRIORITY(MAX DURATION=0 MINUTES, ABORT
AFTER_WAIT=NONE).

Very active OLTP tables always have a large number of concurrent sessions accessing
them. Therefore, there is always the possibility that a session will not be able to acquire
a low-priority lock, even with a prolonged MAX_DURATION specified. You may consider
using the ABORT_AFTER_WAIT=BLOCKERS option, which will allow the operation to
complete, especially when client applications have proper exception handling and retry
logic implemented.

Finally, it is worth noting that online index rebuilds are supported only in the
Enterprise Edition of SQL Server and in Microsoft Azure SQL Databases. You cannot use
low-priority locks during index rebuilds in other editions. Table partitioning, however,
is supported in non-Enterprise editions starting with SQL Server 2016 SP1, and you can
use low-priority locks in this scenario in any edition of SQL Server.

Summary

SQL Server uses schema locks to protect metadata from alteration during query
compilation and execution. There are two types of schema locks in SQL Server: schema
stability (Sch-S) and schema modification (Sch-M) locks.

Schema stability (Sch-S) locks are acquired on objects referenced by queries during
query compilation and execution. In some cases, however, SQL Server can replace
schema stability (Sch-S) locks with intent table locks, which also protect the table
schema. Schema stability (Sch-S) locks are compatible with any other lock type, with the
exception of schema modification (Sch-M) locks.

Schema modification (Sch-M) locks are incompatible with any other lock type. SQL
Server uses them during DDL operations. If a DDL operation needs to scan or modify
the data (for example, adding a trusted foreign key constraint to the table or altering a
partition function on a non-empty partition), the schema modification (Sch-M) lock
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would be held for the duration of the operation. This can take a long time on large tables
and cause severe blocking issues in the system. You need to keep this in mind when
designing systems with DDL and DML operations running in parallel.

In order to be granted, a lock needs to be compatible with all of the lock requests
on that resource—granted or not. This may lead to serious blocking in busy systems
when some session requests schema modification (Sch-M) or full object-level locks
on the table. You need to remember this behavior when you design index or partition
maintenance strategies in the system.

SQL Server 2014 and above support low-priority locks, which can be used to reduce
blocking during online index rebuild and partition switch operations. These locks do not
block other sessions requesting incompatible lock types at the time when an operation is

waiting for a low-priority lock to be acquired.
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Lock Partitioning

SQL Server, as with other modern database engines, is designed to work on servers with
a large number of CPUs. It has many optimizations that help the Engine to scale and
efficiently work in such environments.

This chapter will discuss one such optimization: lock partitioning, which is
automatically enabled on servers with 16 or more logical CPUs.

Lock Partitioning Overview

As all of us are aware, hardware costs are dropping over time, allowing us to build more
powerful servers. Twenty years ago, database servers used to have just one or very few
CPUs. Nowadays, it is very common to work with servers that have dozens or sometimes
even hundreds of cores.

The majority of multi-CPU servers are built using Non-Uniform Memory Access
(NUMA) architecture. In this architecture, physical CPUs are partitioned into groups,
called NUMA nodes. The memory is also partitioned across the nodes, and each node
uses a separate system bus to access it. Each processor can access all memory in the
system; however, access to the local memory that belongs to a CPU’s NUMA node is
faster than access to foreign memory from different NUMA nodes.

Note You can read more about NUMA architecture at https://technet.
microsoft.com/en-us/library/ms178144.aspx.

SQL Server natively supports NUMA architecture and has several internal
optimizations to take advantage of it. For example, SQL Server always tries to allocate
local memory for the thread, and it also has distributed I/O threads on a per-NUMA
basis.
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Moreover, various caches and queues are partitioned on a per-NUMA—and
sometimes per-scheduler—basis, which reduces possible contention when multiple
schedulers (logical CPUs) access them. This includes lock queues in the system. When a
system has 16 or more logical processors, SQL Server starts to use a technique called lock
partitioning.

When lock partitioning is enabled, SQL Server starts to store information about locks
on a per-scheduler basis. In this mode, object-level intent shared (IS), intent exclusive (IX),
and schema stability (Sch-S) locks are acquired and stored in a single partition on the
CPU (scheduler) where the batch is executing. All other lock types need to be acquired
on all partitions.

This does not change anything from a lock-compatibility standpoint. When the
session needs to acquire an exclusive (X) table lock, for example, it would go through all
lock partitions and would be blocked if any of the partitions held an incompatible intent
lock on the table. This, however, may lead to interesting situations where an object-level
lock is being granted on a subset of partitions and is being blocked on another partition
with an incompatible intent (I*) or schema stability (Sch-S) lock held on it.

Let’s look at an example that demonstrates this. As I already mentioned, lock
partitioning is enabled automatically on servers with 16 or more logical CPUs. You can
change the number of schedulers in your test system using undocumented startup
parameter -P. Do not use this parameter in production!

Listing 9-1 shows a query that starts a transaction and selects one row from the table
in the REPEATABLE READ isolation level, which holds a shared (S) lock until the end of the
transaction. As the next step, it obtains information about the locks held by the session
using the sys.dm_tran_locks view. I am running this code in my test environment using
the -P16 startup parameter, which creates 16 schedulers and enables lock partitioning.

Listing 9-1. Lock partitioning: Updating one row in the table

begin tran
select *
from Delivery.Orders with (repeatableread)
where OrderId = 100;

select
request session id
,resource type
yresource_lock partition
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yrequest_mode
,request_status
from sys.dm tran_locks
where request_session_id = @@SPID;

Figure 9-1 illustrates the output of the SELECT statement. The resource_lock _
partition column indicates the partition (scheduler) where the lock is stored (NULL
means the lock is not partitioned and has been acquired on all partitions). As you can
see, the table-level intent shared (IS) lock is partitioned and stored in partition four.
Page- and row-level locks are not partitioned and are stored in all partitions.

request_session_id resource_type resource_lock_partition request_mode request_status

1 89 DATABASE 4 S GRANT
2 8 KEY NULL S GRANT
3 89 OBJECT | 4 IS GRANT
4 89 PAGE NULL IS GRANT

Figure 9-1. Lock requests after update

Now, let’s run the code in another session that wants to perform an index rebuild
of the same table, using the ALTER INDEX PK_Orders on Delivery.Orders REBUILD
command. This operation needs to acquire a schema modification (Sch-M) lock on the
table. This lock type is non-partitioned and needs to be acquired across all partitions in
the system.

Figure 9-2 shows the lock requests from both sessions. As you can see, session 2
(SPID=77) was able to successfully acquire schema modification (Sch-M) locks on

partitions 0-3 and was blocked by Session 1 (SPID=89), which holds an intent shared (IS)
lock on partition 4.
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request_session_id resource_type resource_lock_parition request_mode request_status

1 |77 OBJECT 4 Sch-M WAIT

2 |77 OBJECT 3 Sch-M GRANT

3 |77 OBJECT NULL Sch-M GRANT

4 77 OBJECT 2 Sch-M GRANT

5 |7 OBJECT 1 Sch-M GRANT

6 77 OBJECT 0 Sch-M GRANT

7 |7 OBJECT 2 Sch-S GRANT

8 89 KEY NULL S GRANT

9 89 OBJECT |4 IS GRANT |
10 89 PAGE NULL IS GRANT

Figure 9-2. Lock requests during ALTER INDEX operation

Now, when other sessions try to access the table and acquire object-level locks, they
either get blocked or succeed depending on which scheduler handles their requests.

Figure 9-3 illustrates this condition. As you can see, the request from the session with
SPID=53 executes on scheduler 14 and is granted. However, the request from the session
with SPID=115 runs on scheduler 1 and is blocked due to an incompatible schema
modification (Sch-M) lock from SPID=77 held on this partition.

request_session_id  resource_type  (No columnname) (No columnname) request_status

1 53 KEY NULL S GRANT
2 5 OBJECT [ 14 E GRANT |
3 5 PAGE NULL IS GRANT
s 77 OBJECT 2 IS GRANT
5 77 OBJECT 4 Sch-M WAIT
6 77 OBJECT 3 Sch-M GRANT
7 |77 OBJECT NULL Sch-M GRANT
L OBJECT 2 Sch-M GRANT
9 |77 OBJECT 1 Sch-M GRANT
0 77 OBJECT 0 Sch-M GRANT
11 89 PAGE NULL IS GRANT
12 89 OBJECT 4 1S GRANT
13 89 KEY NULL 5 GRANT
14 115 OBJECT |1 E WAIT

Figure 9-3. Lock requests from other sessions
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Lock partitioning may lead to prolonged blocking when a session is trying to acquire
schema modification (Sch-M) or full-table locks in a busy system. SQL Server goes
through all partitions in a sequential manner, waiting for the request to be granted
before moving to the next partition. All other sessions that run on schedulers where
requests were already granted would be blocked during this time.

The most common case when this happens is a schema alteration done online at a time
when other users are accessing the system. Similarly, you can have this problem during
online index rebuilds and table partitioning-related actions, such as partition function
alteration and partition switches. Fortunately, low-priority locks handle lock partitioning
gracefully, and they would not introduce blocking while waiting in the low-priority queue.

Finally, lock partitioning increases Lock Manager memory consumption. Non-
partitioned locks are kept in each partition, which may be memory intensive in systems
with a large number of schedulers. Not all row- and page-level locks are partitioned;
thus, it is beneficial to keep lock escalation enabled when it does not introduce
noticeable blocking in the system.

Deadlocks Due to Lock Partitioning

When SQL Server receives a batch from a client, it assigns the batch to one or—in the
case of parallel execution plans—multiple schedulers. With very rare exceptions, the
batch does not change the scheduler(s) until it is completed. However, subsequent
batches from the same session may be assigned to different scheduler(s). Even
though SQL Server tends to reuse the same scheduler for all session requests, it is not
guaranteed, especially in busy systems.

Note You can analyze session scheduler assignments by running the SELECT
scheduler _id FROM sys.dm exec_requests WHERE session id =
@@SPID statement.

This behavior may lead to hard-to-explain deadlocks in busy systems. Let’s say you
have a session that starts a transaction and updates a row in a table. Let’s assume that the
batch is running on scheduler/logical CPU 2. This session acquires an intent exclusive (IX)
table lock, which is partitioned and stored on scheduler 2 only. It also acquires a
row-level exclusive (X) lock, which is not partitioned and is stored across all partitions.

(I am omitting page-level intent locks again for simplicity’s sake.)
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Let’s assume that you have a second session that is trying to alter the table and
acquire a schema modification (Sch-M) lock. This lock type is non-partitioned, so
the session needs to acquire it on every scheduler. It successfully acquires and holds
the locks on schedulers 0 and 1, and it is blocked on scheduler 2 due to the schema
modification (Sch-M) lock’s incompatibility with the intent exclusive (IX) lock held
there. Figure 9-4 illustrates this condition.

" Stepli
(' Locks successfully )

S_granted

A

.
.

CPUO CPU1 CPU 2 CPU 16
S1: (KEY: @P1) S1: (KEY: @P1) S1: (OBJECT: T1) S1: (KEY: @P1)
X X X X
$2: (OBJECT: T1) S2: (OBJECT: T1) S1: (KEY: @P1)
Sch-M Sch-M X
4 e
-~ 7 Step 1:

Session 1 (step 1):

update T1
set Col = @Val
where Key = @P1

Session 2 (step 1):
alter table T1
switch partition 1
to T1Tmp

\(Sch-M) lock - wait /

Figure 9-4. Deadlock due to lock partitioning: Step 1

Let’s now say that session 1 needs to update another row in the same table, and the

batch has been assigned to another scheduler—either 0 or 1. The session will need to

acquire another intent table lock in the new lock partition, but it would be blocked by the
schema modification (Sch-M) lock there, which would lead to a deadlock, as shown in

Figure 9-5.

CPUO cPU 1 CPU 2 CPU 16
S1: (KEY: @P1) S1: (KEY: @P1) S1: (OBJECT: T1) | S1: (KEY: @P1)
X X IX X
e T~ . S2: (OBJECT: T1) $2: (OBJECT: T1) S1: (KEY: @P1)
/ Step 2 N\ Sch-M Sch-M X
/ (Running on the \‘. — —
| different ) *. :‘_ B et Step 1: ™
\ scheduler): /T T——_, . N P )

\ /
N(IX) lock - wait /|
\““m._.___ 4

Session 1 (step 2):
update T1

set Col = @Val
where Key = @P2

Session 2 (step 1):
alter table T1
switch partition 1
to T1Tmp

“(Sch-M) lock - _ufa/n,/

Figure 9-5. Deadlock due to lock partitioning: Step 2
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As you can guess, this deadlock occurred because the second batch from the same
transaction ran on a different scheduler than the first batch. One case when this may
occur is a client application that performs data modifications on a row-by-row basis in
multiple separate batches. You can reduce the chance of possible deadlocks by batching
all updates together; for example, with table-valued parameters. This will also help to
improve the performance of the operation.

Fortunately, in many cases, SQL Server is able to reuse intent locks from different
lock partitions and avoid such a deadlock. This behavior, however, is not documented or
guaranteed. Moreover, it would not work if the second batch needed to acquire a full-
table lock; a deadlock would occur in this case.

Let’s look at the example and run the code from Listing 9-2. In my case, the batch is
running on scheduler 13 in the session with SPID=67.

Listing 9-2. Lock partitioning deadlock: Step 1

begin tran
select *
from Delivery.Orders with (repeatableread)
where OrderId = 100;

As the next step, let’s run the ALTER INDEX PK Orders ON Delivery.Orders
REBUILD statement in the session with SPID=68. This session successfully acquires
schema modification (Sch-M) locks on partitions 0-12 and is blocked on partition 13.
Figure 9-6 illustrates the status of lock requests at this point.
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request_session_id resource_type resource_lock_partition request_mode request_status

1 67 PAGE NULL IS GRANT
2 67 KEY NULL S GRANT
3 67 OBJECT 13 IS GRANT
< 63 OBJECT 13 Sch-M WAIT

5 63 OBJECT 12 Sch-M GRANT
6 63 OBJECT i Sch-M GRANT
7 68 OBJECT 10 Sch-M GRANT
8 68 OBJECT 9 Sch-M GRANT
9 63 OBJECT 8 Sch-M GRANT
10 638 OBJECT 7 Sch-M GRANT
11 68 OBJECT 6 Sch-M GRANT
12 68 OBJECT 5 Sch-M GRANT
13 68 OBJECT = Sch-M GRANT
14 63 OBJECT 3 Sch-M GRANT
15 68 OBJECT 2 Sch-M GRANT
16 68 OBJECT 1 Sch-M GRANT
17 68 OBJECT 0 Sch-M GRANT

Figure 9-6. Lock requests after the previous steps

As the next step, let’s run an UPDATE statement in the first session as shown in
Listing 9-3. At this time, the batch has been executed on scheduler 10 in my system.

Listing 9-3. Lock partitioning deadlock: Step 2

update Delivery.Orders
set Pieces += 1
where OrderId = 10;

Even though the batch executed on a different scheduler, SQL Server was able to
reuse the intent lock from partition 13, and so a deadlock did not occur. Figure 9-7
illustrates the status of the lock requests at this point. Note that SQL Server converted a
table-level lock type from intent shared (IS) to intent exclusive (IX), and there is no more
intent shared (IS) lock on the table despite the existence of a row-level shared (S) lock.
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request_session_id resource_type resource_lock_parition request_mode request_status
1 67 PAGE NULL IS GRANT
2 67 PAGE NULL X GRANT
3 67 KEY NULL S GRANT
4 |67 OBJECT 13 IX GRANT |
5 67 KEY NULL X GRANT
6 |68 OBJECT 13 Sch-M WAIT |
7 68 OBJECT 12 Sch-M GRANT
8 68 OBJECT 1 Sch-M GRANT
9 63 OBJECT 10 Sch-M GRANT
10 68 OBJECT 9 Sch-M GRANT
1 68 OBJECT 8 Sch-M GRANT
12 68 OBJECT 7 Sch-M GRANT
13 68 OBJECT 6 Sch-M GRANT
14 68 OBJECT 5 Sch-M GRANT
15 68 OBJECT 4 Sch-M GRANT
16 68 OBJECT 3 Sch-M GRANT
17 68 OBJECT 2 Sch-M GRANT
18 68 OBJECT 1 Sch-M GRANT
19 68 OBJECT 0 Sch-M GRANT

Figure 9-7. Lock requests after UPDATE statement

Finally, let’s trigger an operation that will need to acquire a full table-level lock with

the code from Listing 9-4 running it in the first session with SPID = 67.

Listing 9-4. Lock partitioning deadlock: Step 3

select count(*)

from Delivery.Orders with (tablock)

SQL Server is trying to acquire a shared intent exclusive (SIX) lock on all partitions,

and it is blocked by an incompatible schema modification (Sch-M) lock held on

partition 0. This leads to deadlock.
Listing 9-5 illustrates a partial resource-1ist section of the deadlock graph. The
lockPartition attribute provides information about the lock partition on which the

conflicts occurred.
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Listing 9-5. Deadlock graph (partial)

<resource-list>
<objectlock lockPartition="13" objid=".." subresource="FULL

dbid=".." objectname=".." id=".." mode="IX"
associatedObjectId="..">

<owner-list>
<owner id="processa4545268c8" mode="IX" />

</owner-list>

<waiter-list>

<waiter id="processa475047468" mode="Sch-M" requestType="wait" />
</waiter-list>
</objectlock>
<objectlock lockPartition="0" objid=".." subresource="FULL"
dbid=".." objectname=".." id=".." mode="Sch-M"
associatedObjectId="..">

<owner-list>
<owner id="processa475047468" mode="Sch-M" />
</owner-list>
<waiter-list>
<waiter id="processa4545268c8" mode="SIX" requestType="wait" />
</waiter-list>
</objectlock>
</resource-list>

Lock partitioning-related deadlocks are rare, although they may happen, especially
when you mix intent and full table-level locks in the same transaction. It is better to
avoid such code patterns when possible.

For online index rebuilds and partition switches, you can utilize low-priority locks if
they are available. Alternatively, you can implement retry logic using TRY. . CATCH around
DDL statements when you run them from the code. A SET DEADLOCK_PRIORITY boost
could also help reduce the chance that a DDL session will be chosen as the deadlock
victim. You can also implement mutex logic based on application locks, which we will
discuss in the next chapter.

Lock partitioning is enabled by design in systems with 16 or more logical CPUs, and
it cannot be disabled through documented approaches. There is the undocumented
trace flag T1229 that disables it; however, using undocumented trace flags is not
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recommended in production. Moreover, in systems with a large number of logical CPUs,
disabling lock partitioning can lead to performance issues resulting from excessive
serialization during lock-structure management. It is better to keep lock partitioning
enabled.

Summary

Lock partitioning is automatically enabled on servers with 16 or more logical CPUs.
When lock partitioning is enabled, SQL Server uses the separate locking queues on

a per-scheduler basis. Intent shared (IS), intent exclusive (IX) and schema stability
(Sch-S) locks are acquired and stored in a single partition. All other lock types need to be
acquired across all partitions.

SQL Server acquires non-partitioned lock types across all partitions in a sequential
manner. This may lead to the situation where lock requests were granted on some
partitions and blocked on partitions that held incompatible intent (I*) or schema
stability (Sch-S) locks. This condition may increase the blocking during online schema
alterations and may also lead to deadlocks in some cases.
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Application Locks

This chapter will discuss another SQL Server locking feature called application locks,
which place locks on an application resource identified by name. Application locks allow
you to serialize access to T-SQL code, similar to critical sections and mutexes in client
applications.

Application Locks Overview

Application locks allow an application to place a lock on an application resource that
is not related to database objects and is identified by name only. The lock follows the
regular rules in terms of lock compatibility, and it can be one of the following types:
shared (S), update (U), exclusive (X), intent shared (IS), and intent exclusive (IX).

An application needs to call the sp_getapplock stored procedure to acquire the lock
using the following parameters:

@Resource: specifies the name of the application lock. It is case
sensitive regardless of the database and server collations.

@LockMode: specifies the lock type. You need to use one of
the following values to specify the type: Shared, Update,
IntentShared, IntentExclusive, or Exclusive.

@LockOwner: should be one of two values—Transaction or
Session—and controls the owner (and scope) of the lock

@LockTimeout: specifies the timeout in milliseconds. If a stored
procedure cannot acquire the lock within this interval, it would

return an error.

@bPrincipal: specifies security context (The caller needs to be a
member of the database _principal, dbo, or db_owner roles.)

203
© Dmitri Korotkevitch 2018

D. Korotkevitch, Expert SQL Server Transactions and Locking, https://doi.org/10.1007/978-1-4842-3957-5_10



CHAPTER 10  APPLICATION LOCKS

This procedure returns a value greater than or equal to zero in the case of success,
and a negative value in the case of failure. As with regular locks, there is the possibility
of deadlocks, although this would not roll back the transaction of the session that is
chosen as the victim, but rather would return the error code that indicates the deadlock
condition.

An application needs to call the sp_releaseapplock stored procedure to release
an application lock. Alternatively, in case the @LockOwner of the lock is transaction,
it would be automatically released when the transaction commits or rolls back. This
behavior is similar to that of regular locks.

Application Lock Usage

There is a concept in computer science called mutual exclusion. It signifies that multiple
threads or processes cannot execute specific code at the same time. As an example,
think about a multi-threaded application in which threads use shared objects. In those
systems, you often need to serialize the code that accesses those objects to prevent the
race conditions that occur when multiple threads read and update the same objects
simultaneously.

Every development language has a set of synchronization primitives that can
accomplish such tasks (for example, mutexes and critical sections). Application locks do
the same trick when you need to serialize some part of the T-SQL code.

As an example, let’s think about a system that collects some data, saves it into a
database, and has a set of application servers for data processing. Each application
server reads the package of data, processes it, and finally deletes the processed data from
the original table. Obviously, you do not want different application servers processing
the same rows, and serializing the data-loading process is one of the available options.
An exclusive (X) table lock would not work, because it blocks any table access, rather
than just the data loading. Implementing serialization on the application-server level is
not a trivial task either. Fortunately, application locks could help to solve the problem.

Let’s assume that you have the table shown in Listing 10-1. For simplicity’s sake,
there is a column called Attributes that represents all of the row data.
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Listing 10-1. Table structure

create table dbo.RawData
(
ID int not null,
Attributes char(100) not null
constraint DEF_RawData_Attributes
default 'Row Data',
ProcessingTime datetime not null
constraint DEF_RawData_ProcessingTime
default '2000-01-01', -- Default constraint simplifies data loading
in the code below

constraint PK RawData
primary key clustered(ID)

There are two important columns: ID, which is the primary key, and
ProcessingTime, which represents the time the row was loaded for processing. You
should use UTC rather than local time to support situations in which application servers
reside in different time zones, as well as to prevent issues when the clock is adjusted to
Daylight Saving Time. This column also helps to prevent other sessions from rereading
the data while it is still processing. It is better to avoid Boolean (bit) columns for such
purposes because if the application server crashes, the row would remain in the table
forever. With the time column, the system can read it again after some timeout.

Now, let’s create a stored procedure that reads the data, as shown in Listing 10-2.

Listing 10-2. Stored procedure that reads the data

create proc dbo.lLoadRawData(@PacketSize int)
as
begin

set nocount, xact abort on

declare
@EarliestProcessingTime datetime
,@ResCode int
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declare
@Data table
(
ID int not null primary key,
Attributes char(100) not null
)
begin tran

exec @ResCode
@Resouxce

sp_getapplock
'LoadRowDatalock'
s@LockMode = 'Exclusive’

s@LockOwner = 'Transaction'
s@LockTimeout = 15000; -- 15 seconds

if @ResCode >= 0 -- success
begin

end

-- We assume that app server processes the packet within 1
minute unless crashed
set @EarliestProcessingTime = dateadd(minute,-1,getutcdate());

;with DataPacket(ID, Attributes, ProcessingTime)
as

(
select top (@PacketSize) ID, Attributes, ProcessingTime
from dbo.RawData
where ProcessingTime <= @EarliestProcessingTime
order by ID
)

update DataPacket
set ProcessingTime = getutcdate()
output inserted.ID, inserted.Attributes into @Data(ID, Attributes);

-- we don't need to explicitly release application lock because
@LockOwner is Transaction

commit

select ID, Attributes from @Data;

end
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The stored procedure obtains an exclusive (X) application lock at the beginning of
the transaction. As a result, all other sessions calling the stored procedure are blocked
until the transaction is committed and the application lock is released. It guarantees that
only one session can update and read the data from within the stored procedure. At the
same time, other sessions can still work with the table (for example, insert new or delete
processed rows). Application locks are separate from data locks, and sessions would not
be blocked unless they were trying to obtain the incompatible application lock for the
same @Resource with an sp_getapplock call.

Figure 10-1 demonstrates the output from the sys.dm_tran locks data management
view at a time when two sessions are calling the dbo.LoadRawData stored procedure
simultaneously. The session with SPID=58 successfully obtains the application lock,
while another session with SPID=63 is blocked. The Resource_type value of APPLICATION
indicates an application lock.

request_session_id resource type  resource_description request_type request_status request_owner_type
1 58 APPLICATION  0:[LoadRowDatalock]:(039ad780) LOCK GRANT TRANSACTION
2 63 APPLICATION 0:[LoadRowDataLock):(035ad780) LOCK WAIT TRANSACTION

Figure 10-1. Sys.dm_tran_locks output

It is worth mentioning that, if our goal is to simply guarantee that multiple sessions
cannot read the same rows simultaneously, rather than serializing the entire read
process, there is another, simpler, solution. You can use locking table hints, as shown in
Listing 10-3.

Listing 10-3. Serializing access to the data with table locking hints

create proc dbo.LoadRawData(@PacketSize int)
as
begin

set nocount, xact _abort on

declare
@EarliestProcessingTime datetime = dateadd(minute,-1,getutcdate());

;with DataPacket(ID, Attributes, ProcessingTime)
as
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(
select top (@PacketSize) ID, Attributes, ProcessingTime
from dbo.RawData with (updlock, readpast)
where ProcessingTime <= @EarliestProcessingTime
order by ID
)

update DataPacket

set ProcessingTime = getutcdate()

output inserted.ID, inserted.Attributes into @Data(ID, Attributes);
end

The UPDLOCK hint forces SQL Server to use update (U), rather than shared (S), locks
during the SELECT operation. This prevents other sessions from reading the same rows
simultaneously. At the same time, the READPAST hint forces the sessions to skip the rows
with incompatible locks held rather than being blocked.

Although both implementations accomplish the same goal, they use different
approaches. The latter serializes access to the same rows by using data (row-level)
locks. Application locks serialize access to the code and prevent multiple sessions from
running the statement simultaneously.

While both approaches can be used with disk-based tables, locking hints would not
work in cases where queues are implemented using memory-optimized tables. Locking
hints do not work in that scenario, but application locks would help to achieve the
required serialization.

Note We will discuss the In-Memory OLTP Concurrency Model in Chapter 13.

When a system has a structured data access tier, application locks may help to
reduce blocking and improve the user experience when some sessions acquire table-
level locks. One such example is index maintenance or partition switches in SQL Server
systems that do not support low-priority locks.

Consider a scenario where you have a multi-tenant system with a set of services
that query data on a per-tenant basis. The code shown in Listing 10-4 tries to acquire a
shared (S) application lock before querying the table. If this operation is not successful,
it returns an empty result set emulating the “no new data” condition without performing
any access to the table.
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Listing 10-4. Preventing access to the table during index rebuild: Table and
stored procedure

create table dbo.CollectedData
(
TenantId int not null,
OnDate datetime not null,
Id bigint not null identity(1,1),
Attributes char(100) not null
constraint DEF_CollectedData Attributes
default 'Other columns'

)5

create unique clustered index IDX CollectedData TenantId OnDate Id
on dbo.CollectedData(TenantId,OnDate,Id);

go

create proc dbo.GetTenantData

(
@TenantId int
,@LastOnDate datetime
,@PacketSize int

)

as

begin

set nocount, xact _abort on

declare
@ResCode int

begin tran
exec @ResCode = sp_getapplock
@Resource = 'TenantDataAccess'
,@LockMode = 'Shared'
,@LockOwner = 'Transaction'
,@LockTimeout = 0 ; -- No wait
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if @ResCode >= 0 -- success
begin
if @LastOnDate is null
set @LastOnDate = '2018-01-01';

select top (@PacketSize) with ties
TenantId, OnDate, Id, Attributes
from dbo.CollectedData
where
TenantId = @TenantId and
OnDate > @LastOnDate
order by
OnDate;
end
else
-- return empty resultset
select
convert(int,null) as TenantId
,convert(datetime,null) as OnDate
,convert(char(100),null) as Attributes
where
1=2;
commit
end

The second session, which needs to acquire a full table-level lock, may obtain an
exclusive (X) application lock first, as shown in Listing 10-5. This will prevent the stored
procedure from being blocked when querying the table for the duration of the index
rebuild.

Listing 10-5. Preventing access to the table during index rebuild: Obtaining
exclusive access to the table

begin tran
exec sp_getapplock
@Resource = 'TenantDataAccess'
,@LockMode = 'Exclusive'
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,@LockOwner = 'Transaction'
,@LockTimeout = -1 ; -- Indefinite wait

alter index IDX CollectedData TenantId OnDate Id
on dbo.CollectedData rebuild;
commit

This approach may improve the user experience by eliminating possible query
timeouts in the system. Moreover, it may reduce the time it takes for an exclusive table
lock to be obtained. SQL Server does not use lock partitioning with application locks,
and therefore the application lock request needs to be granted just within the single
locking queue rather than on each partition sequentially.

Finally, it is worth noting that there is still the possibility of blocking if a stored
procedure needs to be compiled at a time when ALTER INDEX REBUILD is running. The
compilation process will need to acquire a table-level lock, which will be blocked by the
schema modification (Sch-M) lock held by the index rebuild.

Summary

Application locks allow an application to place a lock on an application resource that is
not related to the database objects and is identified by the name. It is a useful tool that
helps you implement mutual exclusion code patterns that serialize access to T-SQL code,
similar to critical sections and mutexes in client applications.

You can create and release application locks using the sp_getapplock and
sp_releaseapplock stored procedures, respectively. Application locks can have either
session or transaction scope, and they follow the regular lock compatibility rules.
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Designing Transaction
Strategies

A properly implemented transaction strategy would benefit every system. This chapter
will provide a set of generic guidelines on the subject and discuss how you can improve
concurrency in a system.

Transaction Strategy Design Considerations

Consistent transaction and error-handling strategies always benefit the system. They
help to reduce blocking and simplify troubleshooting when blocking does occur.

As we already discussed in Chapter 2, the choice between client- and server-side
transaction management greatly depends on the data access tier architecture. A stored
procedure-based implementation may benefit from explicit transactions started from
within the stored procedures. A client-side implementation with ORM frameworks or
code generators, on the other hand, would require transactions to be managed in the
client code.

There is a common misconception that autocommitted transactions may benefit
the system. Even though such an approach may somewhat reduce blocking—after all,
every statement runs in its own transaction, and exclusive (X) locks are held for a shorter
amount of time—it is hardly the best choice. The large number of small transactions
could significantly increase transaction log activity and reduce the performance of the
system.

More important, autocommitted transactions may introduce data-quality issues
when multiple related data modifications partially fail due to errors. Such issues are
extremely hard to diagnose and address when they occur in production. In the vast
majority of cases it is better to use explicit transactions in the system.
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Tip Avoid autocommitted transactions and use explicit transactions instead.

You can further reduce the chance of having data-quality issues by using the
SET XACT_ABORT ON option. As you will remember, this setting makes a transaction
uncommittable if there is any error. This prevents explicit transactions from committing
when some data modifications have not been completed successfully.

Tip Use SET XACT_ABORT ON in the code.

Recall the nested behavior of BEGIN TRAN/COMMIT statements. You do not need to
check the @@TRANCOUNT variable and the existence of an active transaction if you call
BEGIN TRAN and COMMIT in the same module. Do not forget, however, that the ROLLBACK
statement rolls back the entire transaction regardless of the @TRANCOUNT nested level. It
is better to check if a transaction is active before rolling it back.

Listing 11-1 shows an example of the code that checks if there is an active transaction
before starting it. This is completely unnecessary due to the nested behavior of BEGIN
TRAN/COMMIT statements, so you can remove IF statements from the implementation.

Listing 11-1. Implementation with unnecesary check for active transaction

create proc dbo.Proc1
as
begin
set xact_abort on
declare
@CurrentTranCount = @@TRANCOUNT;

if @CurrentTranCount = 0 -- IF is not required and can be removed

begin tran;

/* Some logic here */

if @CurrentTranCount = 0 -- IF is not required and can be removed
commit;

end
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Listing 11-2 shows the template of a stored procedure that performs server-side
transaction management and error handling. This approach works regardless of whether
this stored procedure is called from outside or within the active transaction, assuming, of
course, that the calling code handles exceptions correctly.

It is important to note that the CATCH block is checking that @TRANCOUNT is greater
than zero. One of the common errors is using the IF @@TRANCOUNT = 1 ROLLBACK
pattern, which does not work with nested BEGIN TRAN calls.

Listing 11-2. Server-side transaction management

create proc dbo.MyProc

as
begin
set xact_abort on
begin try
begin tran
/* Some logic here */
commit
end try
begin catch
if @@TRANCOUNT > 0 -- Transaction is active
rollback;
/* Optional error-handling code */
throw;
end catch;
end;

The client-side transaction management implementation would depend on the
technology and architecture of the system. However, it is always beneficial to use a
TRY. .CATCH block and explicitly commit or roll back the transaction there. Listing 11-3
demonstrates this approach with the classic ADO.Net.
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Listing 11-3. ADO.Net transaction management

using (SqlConnection conn = new SqlConnection(connString))
{
conn.Open();
using (SqlTransaction tran =
conn.BeginTransaction(IsolationLevel.ReadCommitted))

{
try
{
SqlCommand cmd = conn.CreateCommand("exec dbo.MyProc @Parami");
cmd.Parameters.Add("@Param1",SqlDbType.VarChar,255).
Value = "Param Value";
cmd.Transaction = tran;
cmd. ExecuteNonQuery();
tran.Commit();
}
catch (Exception ex)
{
tran.Rollback();
throw;
}
}

Despite the fact that the client code needs to perform several actions in between
the BeginTransaction() and ExecuteNonQuery () calls, it would not introduce any
inefficiencies in the system. SQL Server considers a transaction to be started at the time
of the first data access operation rather than at the time of the BEGIN TRAN call. Moreover,
it would not log the beginning of the transaction (LOP_BEGIN XACT) in the transaction log
until the transaction completed the first data modification.

You should remember such behavior with SNAPSHOT transactions, which work with a
“snapshot” of the data at the time when the transaction started. In practice, it means that
such transactions would see the data as of the time of the first data access operation—
whether a read or write one.

216



CHAPTER 11 DESIGNING TRANSACTION STRATEGIES

Choosing Transaction Isolation Level

Choosing the right transaction isolation level is not a trivial task. You should find the
right balance between blocking and tempdb overhead and the required level of data
consistency and isolation in the system. The system must provide reliable data to the
customers, and you should not compromise by choosing an isolation level that cannot
guarantee it just because you want to reduce blocking.

You should choose the minimally required isolation level that provides the required
level of data consistency. In many cases the default READ COMMITTED isolation level is
good enough, especially if queries are optimized and do not perform unnecessary scans.
Avoid using REPEATABLE READ or SERIALIZABLE isolation levels in OLTP systems unless
you have legitimate reasons to use them. Those isolation levels hold shared (S) locks
until the end of the transaction, which can lead to severe blocking issues with volatile
data. They can also trigger shared (S) lock escalation during scans.

It is completely normal to use different isolation levels in a system. For example,
financial management systems may need to use REPEATABLE READ or even SERIALIZABLE
isolation levels when they perform operations that may affect the balances of customers’
accounts. However, other use cases, such as changing customer profile information, may
be completely fine with the READ COMMITTED level.

As a general rule, it is better to avoid the READ UNCOMMITTED isolation level. Even
though many database professionals try to reduce blocking by switching to this isolation
level, either explicitly or with (NOLOCK) hints, this is rarely the right choice. First,

READ UNCOMMITTED does not address the blocking issues introduced by writers. They
still acquire update (U) locks during scans. Most important, however, by using READ
UNCOMMITTED, you are stating that data consistency is not required at all, and it is not
only about reading uncommitted data. SQL Server can choose execution plans that use
an allocation map scan on large tables, which can lead to missing rows and duplicated
reads due to page splits, especially in busy systems with volatile data.

In a majority of the cases, optimistic isolation levels, especially READ COMMITTED
SNAPSHOT, are a better choice than READ UNCOMMITTED, REPEATABLE READ, or
SERIALIZABLE, even in OLTP systems. It provides statement-level data consistency
without readers/writers blocking involved. Historically, I have been very cautious
suggesting RCSI in OLTP systems due to its tempdb overhead; however, nowadays,
it becomes a lesser issue because of modern hardware and flash-based disk arrays.

You should still factor additional index fragmentation and tempdb overhead into your
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analysis though. It is also worth repeating that READ COMMITTED SNAPSHOT is enabled in
Azure SQL Databases by default.

As a general rule, I recommend you do not use the SNAPSHOT isolation level in
OLTP systems due to its excessive tempdb usage unless transaction-level consistency is
absolutely required. It could be a good choice for data warehouse and reporting systems
where data is static most of the time.

You should be very careful with transaction management if you enable optimistic
isolation levels in the database. Bugs in the code that led to uncommitted transactions
can prevent tempdb version store clean-up and lead to excessive growth of tempdb data
files. It can happen even if you do not use optimistic isolation levels in the system, as
long as READ_COMMITTED_SNAPSHOT or ALLOW_SNAPSHOT ISOLATION database settings
were enabled.

Optimistic isolation levels, however, often mask poorly optimized queries in the
system. Even though those queries contribute to the poor system performance, they are
not involved in the blocking conditions and thus are often ignored. It is not uncommon
to see cases where people “solve” the readers/writers blocking by enabling READ
COMMITTED SNAPSHOT and do not address the root cause of the blocking afterward. You
should remember this and perform query optimization regardless of whether you have
blocking in the system or not.

For data warehouse systems, transaction strategy greatly depends on how data is
updated. For static read-only data, any isolation level will work because readers do not
block other readers. You can even switch the database or filegroups to read-only mode to
reduce the locking overhead. Otherwise, optimistic isolation levels are the better choice.
They provide either transaction- or statement-level consistency for report queries, and
they reduce the blocking during ETL processes. You should also consider utilizing table
partitioning and using partition switches during ETL processes when this approach is
feasible.

Patterns That Reduce Blocking

Blocking occurs when multiple sessions compete for the same set of resources. Sessions
try to acquire incompatible locks on them, which leads to lock collision and blocking.
As you already know, SQL Server acquires the locks when it processes data. It matters
less how many rows need to be modified or returned to the client. What matters more is
how many rows SQL Server accesses during statement execution. It is entirely possible
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that a query that selected or updated just a single row acquired thousands or even
millions of locks due to excessive scans it performed.

Proper query optimization and index tuning reduce the number of rows SQL Server
needs to access during query execution. This, in turn, reduces the number of locks
acquired and the chance that lock conflicts will occur.

Tip Optimize the queries. It will help to improve concurrency, performance, and
user experience in the system.

Another method to reduce the chance of lock conflicts is to reduce the time locks
are held. Exclusive (X) locks are always held until the end of the transaction. The same is
true for the shared (S) locks in REPEATABLE READ and SERIALIZABLE isolation levels. The
longer locks are held, the bigger the chance is that lock conflicts and blocking will occur.

You need to make transactions as short as possible and avoid any long-time operations
and interactions with users through the Ul while a transaction is active. You also need to be
careful when dealing with external resources that use CLR or linked servers. For example,
when a linked server is down, it can take a long time before a connection timeout occurs,
and you would like to avoid the situation where locks are kept all that time.

Tip Make transactions as short as possible.

Update the data as close to the end of the transaction as possible. This reduces
the time that exclusive (X) locks are held. In some cases, it might make sense to use
temporary tables as the staging place, inserting data there and updating the actual tables
at the very end of the transaction.

Tip Modify data as close to the end of the transaction as possible.

One particular variation of this technique is an UPDATE statement that is impossible
or impractical to optimize. Consider a situation where the statement scans a large
number of rows, but updates just a handful of them. You can change the code, storing
the clustered index key values of the rows that need to be updated in a temporary table,
running an UPDATE based on those collected key values afterward.
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Listing 11-4 shows an example of a statement that could lead to a clustered index
scan during execution. SQL Server will need to acquire an update (U) lock on every row
of the table.

Listing 11-4. Reducing blocking with temporary table: Original statement

update dbo.Orders
set
Cancelled = 1
where
(PendingCancellation = 1) or
(Paid = 0 and OrderDate < @MinUnpaidDate) or
(Status = 'BackOrdered' and EstimatedStockDate > @StockDate)

You can change the code to be similar to that shown in Listing 11-5. The SELECT
statement either acquires shared (S) locks or does not acquire row-level locks at all,
depending on the isolation level. The UPDATE statement is optimized, and it acquires just
a handful of update (U) and exclusive (X) locks.

Listing 11-5. Reducing blocking with a temporary table: Using a temporary table
to stage key values for the update

create table #0rdersToBeCancelled
( OrderId int not null primary key );

insert into #0rdersToBeCancelled(OrderId)
select OrderId
from dbo.Orders
where
(PendingCancellation = 1) or
(Paid = 0 and OrderDate < @MinUnpaidDate) or
(Status = 'BackOrdered' and EstimatedStockDate > @StockDate);

update dbo.Orders
set Cancelled = 1
where OrderId in (select OrderId from #0rdersToBeCancelled);

You need to remember that while this approach helps to reduce blocking, creating
and populating temporary tables can introduce significant I/O overhead, especially
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when a large amount of data involved. In some cases, you can avoid that overhead by
using a CTE, as shown in Listing 11-6.

Listing 11-6. Reducing blocking with a CTE

;with UpdateIds(OrderId)
as
(
select OrderId
from dbo.Orders
where
(PendingCancellation = 1) or
(Paid = 0 and OrderDate < @MinUnpaidDate) or
(Status = 'BackOrdered' and EstimatedStockDate > @StockDate);

)

update o
set o.Cancelled = 1
from UpdateIds u inner loop join dbo.Orders o on

0.0rderId = u.0OrderId

Similar to the previous example, the SELECT statement does not acquire update (U)
locks during the scan. The inner loop join hint guarantees that exclusive (X) locks are
held only on the rows that need to be modified. Remember that join hints force the order
of joins in the statement. In our case, the CTE needs to be specified as the left (please
make left in italic) input/table of the join to generate correct execution plan.

Both approaches may reduce blocking at the cost of the additional overhead they
introduce. This overhead would increase with the amount of data to update, and you should
not use these approaches if you expect to update a large percentage of the rows in the table.
Remember that creating the right indexes is the better option in the majority of cases.

Tip Avoid update scans on large tables.

You should avoid updating the row multiple times within the same transaction when
UPDATE statements modify data in different nonclustered indexes. Remember that SQL
Server acquires locks on a per-index basis when index rows are updated. Having multiple
updates increases the chance of deadlock when other sessions access updated rows.
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Tip Do not update data rows multiple times in a single transaction.

You need to understand whether lock escalation affects your system, especially in the
case of OLTP workload. You can monitor object-level blocking conditions and locking
waits, then correlate it with lock_escalation Extended and Trace Events. Remember
that lock escalation helps to reduce memory consumption and improve performance
in the system. You should analyze why lock escalation occurs and how it affects the
system before making any decisions. In many cases, it is better to change the code and
workflows rather than disabling it.

Tip Monitor lock escalation in the system.

You should avoid mixing statements that can lead to having row- and object-level
locks in the same transaction in general, and mixing DML and DDL statements in
particular. This pattern can lead to blocking between intent and full object-level locks
as well as to deadlock conditions. This is especially important when servers have 16 or
more logical CPUs, which enables lock partitioning.

Tip Do not mix DDL and DML statements in one transaction.

You need to analyze the root cause of deadlocks if you have them in your system. In
most cases, query optimization and code refactoring would help to address them. You
should also consider implementing retry logic around critical use cases in the system.

Tip Find the root cause of deadlocks. Implement retry logic if query optimization
and code refactoring do not address them.

It is impossible to eliminate all blocking in the system. Fortunately, understanding
the root cause of the blocking helps with designing a solution that mitigates the issue.
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Summary

Consistent transaction and error-handling strategies reduce blocking and simplify
troubleshooting of concurrency issues. The choice between client- and server-side
implementation depends on the data access tier architecture; however, as a general rule,
you should use explicit rather than autocommitted transactions.

Business requirements should dictate the data consistency and isolation rules in the
system. You should choose the minimally required isolation level that satisfies them. Do
not use READ UNCOMMITTED unless it is absolutely necessary.

Optimistic isolation levels can be acceptable, even with OLTP workload, as long as
the system can handle additional tempdb overhead. It is better to use READ COMMITTED
SNAPSHOT unless transactional-level consistency is required.

Having proper query optimization and index tuning helps to improve concurrency
in a majority of cases. Properly optimized queries acquire fewer locks, which reduces the
chance of lock conflicts and blocking in the system. You should also keep transactions
as short as possible and modify data close to the end of the transactions to reduce the
amount of time locks are held.

Every system is unique, and it is impossible to provide generic advice that can be
applied everywhere. However, a good understanding of the SQL Server concurrency
model will help you to design the right transaction strategy and address any blocking
and concurrency issues in the system.
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Troubleshooting
Concurrency Issues

System troubleshooting is both an art and a science. It is also a very big and complex
topic. If I had to write a book covering all aspects of system troubleshooting, it would
have more pages than the one you are currently reading.

The processes of system troubleshooting and performance tuning require you to take
a holistic view of the system. SQL Server never lives in a vacuum, and the root cause of
a problem may not necessarily reside in the database. Inadequate hardware, improper
OS and SQL Server configuration, inefficient database and application design—all these
factors may lead to various issues and bad system performance.

Concurrency is just a small piece of this puzzle. Every multi-user database will suffer
from some degree of blocking. Nevertheless, concurrency issues may or may not be the
main source of the problem, and you can often get a better ROI by focusing on other
areas in the system.

This chapter will discuss a common troubleshooting technique called wait statistics
analysis. Even though we will focus on locking-related waits and concurrency issues, this
technique is extremely useful during general troubleshooting. I would suggest you read
more about this technique and other wait types that may exist in the system.

Remember, however, about taking a holistic view, and analyze the entire
system—hardware and software—before focusing on in-database problems.

SQL Server Execution Model

From a high level, the architecture of SQL Server includes six different components, as
shown in Figure 12-1.
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Protocol Layer (Client Communication)

Query Processor

Query Optimization Query Execution
(Plan Generation, Costing, Statistics, etc) (Parallelism, Memory Grants, etc)
Storage Engine
(Data Access, Locking Manager, In-Memory OLTP Engine
Tran Log Management, etc)
SQLOS / PAL

(Scheduling, Resource Management, Deadlock Detection, etc)

Utilities
(DBCC,
Backup,
Restore,
BCP,
etc)

Figure 12-1. High-level SQL Server architecture

The Protocol layer handles communications between SQL

Server and client applications. The data is transmitted in an
internal format called Tabular Data Stream (TDS) using one of
the standard network communication protocols, such as TCP/

IP or Named Pipes. Another communication protocol, called
Shared Memory, can be used when both SQL Server and the client
applications run locally on the same server.

The Query Processor layer is responsible for query optimization

and execution.

The Storage Engine consists of components related to data access
and data management in SQL Server. It works with the data

on disk, handles transactions and concurrency, manages the
transaction log, and performs several other functions.

The In-Memory OLTP Engine was introduced in SQL Server
2014. This lock- and latch-free technology helps to improve
the performance of OLTP workloads. It works with memory-
optimized tables that store all the data in memory. We will talk
about the In-Memory OLTP Concurrency Model in the next
chapter.

SQL Server includes a set of utilities, which are responsible for

backup and restore operations, bulk loading of data, full-text index

management, and several other actions.
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Finally, the vital component of SQL Server is the SQL Server
Operating System (SQLOS). SQLOS is the layer between SQL
Server and the OS (Windows or Linux), and it is responsible

for scheduling and resource management, synchronization,
exception handling, deadlock detection, CLR hosting, and more.
For example, when any SQL Server component needs to allocate
memory, it does not call the OS API function directly, but rather
it requests memory from SQLOS, which in turn uses the memory
allocator component to fulfill the request.

SQLOS was initially introduced in SQL Server 2005 to improve the efficiency of
scheduling in SQL Server and to minimize context and kernel mode switching. The
major difference between Windows and SQLOS is the scheduling model. Windows
is a general-purpose operating system that uses preemptive scheduling. It controls
what processes are currently running, suspending and resuming them as needed.
Alternatively, with the exception of CLR code, SQLOS uses cooperative scheduling when
processes yield voluntarily on a regular basis.

Linux support in SQL Server 2017 led to the further transformation of SQLOS and
the introduction of the Platform Abstraction Layer (SQL PAL). It works as a gateway in
between SQLOS and the operating system, providing the abstraction for OS API/Kernel
calls. With very few exceptions in performance-critical code, SQLOS does not call the OS
API directly, but rather uses PAL instead.

SQLOS creates a set of schedulers when it starts. The number of schedulers is equal
to the number of logical CPUs in the system, with one extra scheduler for a dedicated
admin connection. For example, if a server has two quad-core CPUs with hyper-
threading enabled, SQL Server creates 17 schedulers. Each scheduler can be in either an
ONLINE or OFFLINE state based on the processor affinity settings and core-based licensing
model.

Even though the number of schedulers matches the number of CPUs in the system,
there is no strict one-to-one relationship between them unless the processor affinity
settings are enabled. In some cases, and under heavy load, it is possible to have more
than one scheduler running on the same CPU. Alternatively, when processor affinity is
set, schedulers are bound to CPUs in a strict one-to-one relationship.

Each scheduler is responsible for managing working threads called workers. The
maximum number of workers in a system is specified by the Max Worker Thread
configuration option. The default value of zero indicates that SQL Server calculates the
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maximum number of worker threads based on the number of schedulers in the system.
In a majority of the cases, you do not need to change this default value.

Each time there is a task to execute, it is assigned to a worker in an idle state. When
there are no idle workers, the scheduler creates a new one. It also destroys idle workers
after 15 minutes of inactivity or in the case of memory pressure. It is also worth noting
that each worker would use 512 KB of RAM in 32-bit and 2 MB of RAM in 64-bit SQL
Server for the thread stack.

Workers do not move between schedulers. Moreover, a task is never moved between
workers. SQLOS, however, can create child tasks and assign them to different workers;
for example, in the case of parallel execution plans.

Each task can be in one of six different states:

Pending: Task is waiting for an available worker.

Done: Task is completed.

Running: Task is currently executing on the scheduler.
Runnable: Task is waiting for the scheduler to be executed.
Suspended: Task is waiting for an external event or resource.

Spinloop: Task is processing a spinlock. Spinlocks are
synchronization objects that protect some internal objects. SQL
Server may use them when it expects that access to the object will
be granted very quickly, thus avoiding context switching for the
workers.

Each scheduler has at most one task in a running state. In addition, it has two
different queues—one for runnable tasks and one for suspended tasks. When the running
task needs some resources—a data page from a disk, for example—it submits an I/0
request and changes the state to suspended. It stays in the suspended queue until the
request is fulfilled and the page is read. The task is moved to the runnable queue when it
is ready to resume execution.

A grocery store is, perhaps, the closest real-life analogy to the SQL Server Execution
Model. Think of cashiers as representing schedulers and customers in checkout lines as
tasks in the runnable queue. A customer who is currently checking out is similar to a task
in the running state.

If an item is missing a UPC code, a cashier sends a store worker to do a price check.
The cashier suspends the checkout process for the current customer, asking her or him
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to step aside (to the suspended queue). When the worker comes back with the price
information, the customer who had stepped aside moves to the end of the checkout line
(end of the runnable queue).

It is worth mentioning that the SQL Server process is much more efficient as
compared to real life, when others wait patiently in line during a price check. However,
a customer who is forced to move to the end of the runnable queue would probably
disagree with such a conclusion.

Figure 12-2 illustrates a typical task lifecycle in the SQL Server Execution Model.
The total task execution time can be calculated as a summary of the time the task
spent in the running state (when it ran on the scheduler), runnable state (when it waited
for an available scheduler), and suspended state (when it waited for a resource or
external event).

RUNNABLE

Waiting for Running on
available scheduler scheduler

Waiting for
resource or event

Figure 12-2. Task lifecycle

SQL Server tracks the cumulative time tasks spend in a suspended state for
different types of waits and exposes this through the sys.dm_os wait_tasks view.

This information is collected as of the time of the last SQL Server restart or since it was
cleared with the DBCC SQLPERF('sys.dm os wait stats', CLEAR) command.

Listing 12-1 shows how to find the top wait types in the system, which are the wait
types for which workers spent the most time waiting. It filters out some nonessential wait
types, mainly those related to internal SQL Server processes. Even though it is beneficial
to analyze some of them during advanced performance tuning, you rarely focus on them
during the initial stage of system troubleshooting.
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Note Every new version of SQL Server introduces new wait types. You can

see a list of wait types at https://docs.microsoft.com/en-us/sql/
relational-databases/system-dynamic-management-views/sys-dm-
os-wait-stats-transact-sql. Make sure to select the appropriate version of
SQL Server.

Listing 12-1. Detecting top wait types in the system

;with Waits
as
(
select
wait_type, wait time ms, waiting tasks count,signal wait time ms
,wait_time ms - signal wait time ms as resource wait time ms
,100. * wait time ms / SUM(wait time ms) over() as Pct
,Tow_number() over(order by wait time ms desc) as RowNum
from sys.dm os wait stats with (nolock)
where
wait_type not in /* Filtering out non-essential system waits */
(N'BROKER_EVENTHANDLER',N'BROKER_RECEIVE _WAITFOR'
,N"BROKER_TASK STOP',N'BROKER_TO FLUSH'
,N'BROKER_TRANSMITTER',N'CHECKPOINT QUEUE',N'CHKPT'
,N'CLR_SEMAPHORE' ,N'CLR_AUTO EVENT'
,N"CLR_MANUAL_EVENT',N'DBMIRROR DBM EVENT'
,N'DBMIRROR EVENTS QUEUE',N'DBMIRROR WORKER QUEUE'
,N'DBMIRRORING CMD',N'DIRTY_PAGE_POLL'
,N'DISPATCHER QUEUE_SEMAPHORE',N'EXECSYNC'
,N'FSAGENT',N'FT_IFTS SCHEDULER IDLE WAIT'
,N'FT_IFTSHC MUTEX',N'HADR CLUSAPI CALL'
,N"HADR _FILESTREAM IOMGR IOCOMPLETION'
,N'HADR _LOGCAPTURE WAIT'
,N"HADR_NOTIFICATION DEQUEUE'
,N'"HADR_TIMER TASK',N'HADR WORK QUEUE'
,N'KSOURCE_WAKEUP' ,N'LAZYWRITER SLEEP'
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,N'LOGMGR_QUEUE',N'MEMORY ALLOCATION EXT'
,N'ONDEMAND_TASK_QUEUE
,N'PARALLEL_REDO_WORKER WAIT WORK'
,N'PREEMPTIVE_HADR_LEASE_MECHANISM'
,N'PREEMPTIVE_SP_SERVER_DIAGNOSTICS'
,N'PREEMPTIVE_0S_LIBRARYOPS'
,N'PREEMPTIVE_0S_COMOPS'
,N'PREEMPTIVE_0S_CRYPTOPS'
,N'PREEMPTIVE_0S_PIPEOPS'

, N'PREEMPTIVE_0S_AUTHENTICATIONOPS'
,N'PREEMPTIVE_0S_GENERICOPS'
,N'PREEMPTIVE_0S_VERIFYTRUST

' ,N'PREEMPTIVE 0S_FILEOPS'
,N'PREEMPTIVE_0S_DEVICEOPS'
,N'PREEMPTIVE_0S_QUERYREGISTRY'
,N'PREEMPTIVE_0S WRITEFILE'
,N'PREEMPTIVE_XE_CALLBACKEXECUTE'
,N'PREEMPTIVE_XE_DISPATCHER'
,N'PREEMPTIVE_XE_GETTARGETSTATE'
,N'PREEMPTIVE_XE_SESSIONCOMMIT'
,N'PREEMPTIVE_XE_TARGETINIT'
,N'PREEMPTIVE_XE_TARGETFINALIZE'

,N'PWAIT ALL_COMPONENTS INITIALIZED'
,N'PWAIT DIRECTLOGCONSUMER GETNEXT'
,N'QDS_PERSIST TASK MAIN_LOOP SLEEP'
,N'QDS_ASYNC_QUEUE'
,N'QDS_CLEANUP_STALE_QUERIES TASK_MAIN LOOP_SLEEP'
,N'REQUEST_FOR_DEADLOCK_SEARCH'
,N'RESOURCE_QUEUE',N'SERVER_IDLE_CHECK'
,N'SLEEP_BPOOL_FLUSH',N'SLEEP DBSTARTUP'
,N'SLEEP_DCOMSTARTUP"
,N'SLEEP_MASTERDBREADY',N'SLEEP_MASTERMDREADY'
,N'SLEEP_MASTERUPGRADED',N'SLEEP_MSDBSTARTUP'
, N'SLEEP_SYSTEMTASK', N'SLEEP_TASK'
,N'SLEEP_TEMPDBSTARTUP' ,N'SNI_HTTP_ACCEPT'
,N'SP_SERVER DIAGNOSTICS SLEEP'
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,N'SQLTRACE BUFFER_FLUSH'
,N'SOLTRACE_INCREMENTAL FLUSH SLEEP'
,N'SOLTRACE_WAIT ENTRIES',N'WAIT_FOR RESULTS'
,N"WAITFOR"' ,N"WAITFOR_TASKSHUTDOWN'
,N'WAIT XTP_HOST WAIT'
,N'WAIT XTP_OFFLINE_CKPT_NEW_LOG'
,N"WAIT XTP_CKPT CLOSE',N'WAIT XTP_RECOVERY'
,N'XE_BUFFERMGR ALLPROCESSED EVENT'
, N'XE_DISPATCHER JOIN',N'XE_DISPATCHER WAIT'
,N'XE_LIVE_TARGET TVF',N'XE_TIMER EVENT')
)
select
wl.wait type as [Wait Type]
,Wl.waiting tasks count as [Wait Count]
,convert(decimal(12,3), wi.wait time ms / 1000.0)
as [Wait Time]
,convert(decimal(12,1), wi.wait time ms / wi.waiting tasks count)
as [Avg Wait Time]
,convert(decimal(12,3), wil.signal wait time_ms / 1000.0)
as [Signal Wait Time]
,convert(decimal(12,1), wil.signal wait time ms / wil.waiting tasks_count)
as [Avg Signal Wait Time]
,convert(decimal(12,3), wil.resource wait time ms / 1000.0)
as [Resource Wait Time]
,convert(decimal(12,1), wil.resource wait time ms
/ wil.waiting tasks count) as [Avg Resource Wait Time]
,convert(decimal(6,3), wi.Pct) as [Percent]
,convert(decimal(6,3), wi.Pct + IsNull(w2.Pct,0)) as [Running Percent]
from
Waits wl cross apply
(
select sum(w2.Pct) as Pct
from Waits w2
where w2.RowNum < wi.RowNum
) w2
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where

wl.RowNum = 1 or w2.Pct <= 99
order by

w1.RowNum
option (recompile);

Figure 12-3 illustrates the output of the script from one of the production servers at
the beginning of the troubleshooting process.

Wait Type Wait Count Wait Time Avg Wait Time  Signal Wait Time

1 LCK_M_U 548216435 2430865645 4.0 148157.438

2 CXPACKET 696645076 1991476659 2.0 224445736

3 LCK_M_S 609624311 327349.3%4 00 326509.609

4 HADR_SYNC_COMMIT 393862506 277294.283 0.0 128633.010

5 PAGEIOLATCH_EX 155976551 229145101 1.0 3258.831

6 BACKUPIO 84529112 161681.111 1.0 2084.816

7 ASYNC_IO_COMPLETION 48377 157225.551 3250.0 86.153

8 LATCH_EX 171800900 141038765 0.0 34869.237

S PAGEIOLATCH_SH §7400378 120563.6%4 1.0 1936.229

10  BACKUPBUFFER 120290500 109741.003 0.0 7385.943

11 PAGELATCH_EX 3103005547 89580.939 0.0 84153.002

12 BACKUPTHREAD 527984 69381.750 131.0 180.629

13 LCK_M_IX 21926 53148.574 24230 25.892
Avg Signal Wait Time Resource Wait Time Avg Resource Wait Time Percent Running Percent
0.0 2282708.207 40 37644 37644
0.0 1767030.923 20 30.840 68484
0.0 439.785 0.0 5.069 73.553
0.0 148661.273 0.0 4294 77.847
0.0 225886.270 1.0 3548 81.395
0.0 159596.295 1.0 2504 83.899
1.0 157139.3%8 32480 2435 86.334
0.0 106169.528 0.0 2.184 88.518
0.0 118627.465 1.0 1.867 90.385
0.0 102355.054 0.0 1.695 92.084
0.0 5427937 0.0 1.387 93.472
0.0 69201.121 131.0 1.074 94,546
1.0 53122.682 24220 0.823 95.369

Figure 12-3. Output of the script from one of the production servers
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The process of analyzing top waits in the system is called wait statistics analysis. This
is one of the most frequently used troubleshooting and performance-tuning techniques
in SQL Server, which allows you to quickly identify potential problems in the system.
Figure 12-4 illustrates a typical wait statistics analysis troubleshooting cycle.

Detect problematic area based : . Confirm the problem
on top system waits (Performance Counters, DMO)

| N g

Find root cause of the problem
Fix th | <:>
by the problem (DMO, XEvents, SQL Trace)

Figure 12-4. Wait statistics analysis troubleshooting cycle

As a first step, look at the wait statistics, which detect the top waits in the system. This
narrows the area of concern for further analysis. After that, confirm the problem using
other tools, such as DMVs, Windows Performance Monitor, SQL Traces, and Extended
Events, and detect the root cause of the problem. When the root cause is confirmed, fix it
and analyze the wait statistics again, choosing a new target for analysis and improvement.

Let’s look at locking-related wait types in detail.

Note My Pro SQL Server Internals book provides deeper coverage of wait
statistics analysis and explains how to troubleshoot various non-locking-related
issues in the system.

You can also download a whitepaper on wait statistics analysis from
http://download.microsoft.com/download/4/7/a/47a548b9-249e-
484c-abd7-29131282b04d/performance tuning waits queues.doc.
Even though it focuses on SQL Server 2005, the content is valid for any version of
SQL Server.

Lock Waits

Every lock type in the system has a corresponding wait type with the name starting with
LCK_M_followed by the lock type. For example, LCK M _Uand LCK_M IS indicate waits for
update (U) and intent exclusive (IX) locks, respectively.
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Lock waits occur during blocking when lock requests are waiting in the queue. SQL
Server does not generate lock waits when requests can be granted immediately and
blocking does not occur.

You need to pay attention to both total wait time and number of times waits
occurred. It is entirely possible to have wait types with a large total wait time generated
by just a handful of long waits. You may decide to troubleshoot or ignore them based on
your objectives.

You should also remember that wait statistics are accumulated from the time of
the last SQL Server restart. Servers with prolonged uptime may have wait statistics that
are not representative of the current load. In many cases it may be beneficial to clear
wait statistics with the DBCC SQLPERF('sys.dm os wait stats', CLEAR) command,
collecting recent wait information before troubleshooting. You should obviously have a
representative workload in the system when you do that.

Let’s look at locking wait types and discuss what may lead to such waits and how we
can troubleshoot them.

LCK_M_U Wait Type

The LCK_M_U wait type is, perhaps, one of the most common locking-related wait types in
OLTP systems, as it indicates a wait for update (U) locks.

As you may remember, SQL Server uses update (U) locks during update scans
when it looks for the rows that need to be updated or deleted. SQL Server acquires an
update (U) lock when it reads the row, releasing or converting it to an exclusive (X) lock
afterward. In the majority of cases, a large number of LCK_M_U waits indicates the
existence of poorly optimized writer queries (UPDATE, DELETE, MERGE) in the system.

You can correlate the data with PAGEIOLATCH* wait types. These waits occur when
SQL Server is waiting for the data page to be read from disk. A high amount of such waits
points to high disk I/0O, which is often another sign of non-optimized queries in the
system. There are other conditions besides non-optimized queries that may generate
such waits, and you should not make the conclusion without performing additional
analysis.

The PAGEIOLATCH* wait type indicates physical I/0 in the system. It is common
nowadays to have servers with enough memory to cache the active data in the buffer
pool. Non-optimized queries in such environments would not generate physical reads
and PAGEIOLATCH* waits. Nevertheless, they may suffer from blocking and generate
LCK_M_Uwaits during update scans.
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Poorly optimized queries need to process a large amount of data, which increases
the cost of the execution plan. In many cases, SQL Server would generate parallel
execution plans for them. A high CXPACKET wait indicates a large amount of parallelism,
which may be another sign of poorly optimized queries in OLTP systems.

You should remember, however, that parallelism is completely normal and expected.
A CXPACKET wait does not necessarily indicate a problem, and you should take the system
workload into consideration during analysis. It is also worth noting that the default value
of the Cost Threshold for Parallelism setting is extremely low and needs to be increased
in the majority of cases nowadays.

There are several ways to detect poorly optimized I/O-intensive queries using
standard SQL Server tools. One of the most common approaches is by capturing system
activity using SQL Traces or Extended Events, filtering the data by the number of reads
and/or writes. This approach, however, requires you to perform additional analysis
after the data is collected. You should check how frequently queries are executed when
determining targets for optimization.

Important Extended Events sessions and SQL Traces that capture query
execution statistics may lead to significant overhead in busy systems. Use them
with care and do not keep them running unless you are doing performance
troubleshooting.

Another very simple and powerful method of detecting resource-intensive queries
isthe sys.dm_exec_query stats data management view. SQL Server tracks various
statistics for cached execution plans, including the number of executions and 1/0
operations, elapsed times, and CPU times, and exposes them through that view.
Furthermore, you can join it with other data management objects and obtain the SQL
text and execution plans for those queries. This simplifies the analysis, and it can be
helpful during the troubleshooting of various performance and plan-cache issues in the
system.

Listing 12-2 shows a query that returns the 50 most I/O-intensive queries, which
have plans cached at the moment of execution. It is worth noting that the sys.dm_exec_
query_stats view has slightly different columns in the result set in different versions of
SQL Server. The query in Listing 12-2 works in SQL Server 2008R2 and above. You can
remove the last four columns from the SELECT list to make it compatible with
SQL Server 2005-2008.
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Listing 12-2. Using sys.dm_exec_query stats

select top 50
substring(qt.text, (gs.statement start offset/2)+1,
((
case gs.statement_end offset
when -1 then datalength(qt.text)
else gs.statement _end offset
end - gs.statement start offset)/2)+1) as SOL
,qp.query plan as [Query Plan]
,gs.execution count as [Exec Cnt]
,(gs.total logical reads + gs.total logical writes) /
gs.execution count as [Avg I0]
,gs.total logical reads as [Total Reads], gs.last logical reads
as [Last Reads]
,gs.total logical writes as [Total Writes], gs.last logical writes
as [Last Writes]
,qs.total worker time as [Total Worker Time], gs.last worker time
as [Last Worker Time]
,qs.total elapsed time / 1000 as [Total Elapsed Time]
,qs.last_elapsed time / 1000 as [Last Elapsed Time]
,gqs.creation_time as [Cached Time], gs.last execution time
as [Last Exec Time]
,gs.total rows as [Total Rows], gs.last rows as [Last Rows]
,qs.min_rows as [Min Rows], gs.max_rows as [Max Rows]
from
sys.dm_exec_query stats gs with (nolock)
cross apply sys.dm exec_sql text(gs.sql_handle) qt
cross apply sys.dm exec_query plan(qgs.plan_handle) gp
order by
[Avg I0] desc

As you can see in Figure 12-5, it allows you to easily define optimization targets
based on resource usage and the number of executions. For example, the second query
in the result set is the best candidate for optimization because of how frequently it runs.
Obviously, we need to focus on data modification queries if our target is to reduce the
amount of update lock waits in the system.
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Figure 12-5. Sys.dm_exec_query_stats results

Unfortunately, the sys.dm_exec_query stats view does not return any information
for the queries that do not have execution plans cached. Usually, this is not an issue,
because our optimization targets are not only resource intensive, but they are also
frequently executed queries. Plans for those queries usually stay in the cache due to their
frequent reuse. However, SQL Server does not cache plans in the case of a statement-
level recompile; therefore, sys.dm_exec_query stats misses them. You should use
Extended Events and/or SQL Traces to capture them. I usually start with queries from
the sys.dm_exec_query stats output and crosscheck the optimization targets with
Extended Events later.

Query plans can be removed from the cache and, therefore, are not included in the
sys.dm_exec_query stats resultin cases of a SQL Server restart, memory pressure,
recompilations due to a statistics update, and a few other cases. It is beneficial to analyze
the creation_time and last_execution_time columns in addition to the number of
executions.

In SQL Server 2016 and above, you can use the Query Store to collect execution
statistics for all queries in the system. It provides a rich set of reports and data
management views, which you can use to quickly identify inefficient queries in the
system. The data from the Query Store is persisted in the database and would survive
SQL Server restart. The Query Store is an extremely powerful tool that helps dramatically
during troubleshooting.

You can also use the Blocking Monitoring Framework we discussed in Chapter 4. You
can analyze the data for update (U) lock waits, choosing the targets for optimization. We
will talk about this framework in more detail later in the chapter.

As we already discussed, it is also possible that blocking conditions and locking waits
occur due to incorrect transaction management in the system. Long transactions may
hold locks for a long period of time, blocking other sessions from acquiring incompatible
locks on affected rows. Remember this behavior and factor it into the analysis and

troubleshooting.
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LCK_M_S Wait Type

The LCK_M_S wait type indicates waits for shared (S) locks. This lock type is acquired by
SELECT queries in the READ COMMITTED, REPEATABLE READ, and SERIALIZABLE isolation
levels.

In many cases, the root cause of LCK_M S waits are similar to those for LCK_M U waits.
Poorly optimized SELECT queries may scan a large amount of data and may be blocked
by exclusive (X) locks held by other sessions. You can use the same troubleshooting
techniques as we just discussed to identify such queries.

In cases where queries are running in the READ COMMITTED isolation level, you can
consider enabling the READ_COMMITTED_SNAPSHOT database option to eliminate readers/
writers blocking. In this mode, SQL Server does not acquire shared (S) locks in the READ
COMMITTED isolation level, relying on row versioning instead. Remember that this approach
does not address the root cause of the issue, instead masking problems introduced by
poorly optimized queries. Also remember the additional overhead it introduces.

Note Do not use a (NOLOCK) hint or the READ UNCOMMITTED isolation level
unless data consistency is not required.

In some cases, LCK_M_S waits may be generated by waits for table-level locks
acquired by SQL Server during some operations or because of a (TABLOCK) hint in the
code. One such example is an online index rebuild process, which acquires a short-term
shared (S) table-level lock at the beginning of execution. The volatility of the data in busy
OLTP systems may lead to a blocking condition in such a scenario, especially with lock
partitioning involved.

Such cases may present themselves in wait statistics as wait types with a relatively low
number of occurrences and high average wait time. Nevertheless, you should not rely only
on wait statistics to drive the conclusion. It is beneficial to analyze individual blocking
cases, and the Blocking Monitoring Framework may be very useful in such scenarios.

LCK_M_X Wait Type

The LCK_M_X wait type indicates the waits for exclusive (X) locks. As strange as it sounds,
in OLTP systems with volatile data, LCK_M X waits may occur less frequently than
LCK_M_U waits.
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As you already know, SQL Server usually uses update (U) locks during update scans.
This behavior, however, is not guaranteed. In some cases, SQL Server may decide to omit
update (U) locks, using exclusive (X) locks instead. One such example is point-lookup
searches, when a query updates a single row using a predicate on the indexed column.
In that case, SQL Server may acquire an exclusive (X) lock immediately without using an
update (U) lock. Blocking in this condition would lead to an LCK_M_X wait.

You may also have LCK_M X waits during the conversion from an update (U) to an
exclusive (X) lock. Update (U) and shared (S) locks are compatible with each other, and,
therefore, a query may acquire an update (U) lock on a row with a shared (S) lock held.
SQL Server, however, would be unable to convert it to an exclusive (X) lock if the row
needed to be updated.

This condition happens when a SELECT query uses a REPEATABLE READ or
SERIALIZABLE isolation level and shared (S) locks are held until the end of the
transaction. It may also occur in the READ COMMITTED level when a SELECT query
sometimes holds shared (S) locks for the duration of the statement; for example, when it
reads LOB columns.

LCK_M_ X waits may occur when multiple sessions work with the same data. One of
the common scenarios is a counters table implementation, when multiple sessions are
trying to increment the same counter simultaneously or even to use a (TABLOCKX) hint.
You can address this collision by switching to SEQUENCE objects or identity columns.

As usual, you should analyze individual blocking cases and understand the root
cause of the blocking when you see a large amount of LCK_M_X waits in the system.

LCK_M_SCH_S and LCK_M_SCH_M Wait Types

LCK_M SCH_Sand LCK_M_SCH_Mwait types indicate waits for schema stability (Sch-S) and
schema modification (Sch-M) locks. These waits should not occur in the system on a
large scale.

SQL Server acquires schema modification (Sch-M) locks during schema alterations.
This lock requires exclusive access to the table, and requests would be blocked,
generating the wait, until all other sessions disconnected from the table.

There are several common cases when such blocking may occur:

Database schema changes that are done online, with other users
connected to the system. Remember, in this case the schema
modification (Sch-M) lock is held until the end of the transaction.
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Offline index rebuild.

Partition switch or final phase of online index rebuild. A schema
modification (Sch-M) lock is required to modify metadata in the
database. You can reduce blocking by using low-priority locks if
they are supported.

Schema stability (Sch-S) locks are used to avoid table alterations when tables are
in use. SQL Server acquires them during query compilation and during the execution
of SELECT queries in isolation levels that do not use intent locks, such as in READ
UNCOMMITTED, READ COMMITTED SNAPSHOT, and SNAPSHOT.

Schema stability (Sch-S) locks are compatible with any other lock type except
schema modification (Sch-M) locks. The existence of LCK_M_SCH_S waits always
indicates blocking introduced by schema modifications.

If you encounter a significant amount of schema lock waits in the system, you should
identify what caused this blocking. In the majority of cases, you could address them by
changing deployment or database maintenance strategies in the system or by switching
to low-priority locks.

Intent LCK_M_I* Wait Types

Intent lock wait types indicate waits for intent locks in the system. Each intent lock type
has a corresponding wait type. For example, LCK_M IS indicates intent shared (IS) lock
waits, and LCK_M_IXindicates intent exclusive (IX) lock waits.

SQL Server acquires intent locks on the object (table) and page levels. On the table
level, blocking may occur in two conditions. First, the session cannot acquire an intent
lock due to an incompatible schema modification (Sch-M) lock held on the object.
Usually, in this case you would also see some schema lock waits, and you would need to
troubleshoot the reason why they occurred in the system.

Another case is the existence of an incompatible full lock on the table. For example,
neither of the intent locks can be acquired while the table has a full exclusive (X) lock held.
In some cases, this may occur due to table-level locking hints in the code, such as

(TABLOCK) or (TABLOCKX). However, this condition may also be triggered by successful
lock escalation during large batch modifications. You can confirm this by monitoring
lock_escalation Extended Events and address this by disabling lock escalation on some
of the critical tables. I will also demonstrate later in the chapter how to identify tables
involved in object-level blocking using the Blocking Monitoring Framework.
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It is also possible to have intent-lock blocking when a session requests an intent lock
on a page with an incompatible full lock held. Consider a situation where SQL Server
needs to run a SELECT statement that scans the entire table. In this scenario, SQL Server
may choose to use page-level instead of row-level locking, acquiring full shared (S) locks
on the pages. This would introduce blocking if another session tried to modify a row by
acquiring an intent exclusive (IX) lock on the page.

As usual, you need to identify and address the root cause of the blocking when you
encounter such issues.

Locking Waits: Summary

Table 12-1 summarizes possible root causes and troubleshooting steps for common
lock-related wait types.

Table 12-1. Most Common Lock-Related Wait Types

Wait Type Possible Root Cause Troubleshooting Steps
LCK_M_U Update scans due to poorly Detect and optimize poorly optimized queries using
optimized queries Query Store, sys.dm_exec_query_stats, xEvent

sessions, Blocking Monitoring Framework

LCK_M_X Multiple sessions work with Change the code
the same data

Update scans due to poorly Detect and optimize poorly optimized queries using
optimized queries Query Store, sys.dm_exec_query stats, xEvent
sessions, Blocking Monitoring Framework

LCK_M_S Select scans due to poorly  Detect and optimize poorly optimized queries using
optimized queries Query Store, sys.dm_exec_query stats, xEvent
sessions, Blocking Monitoring FrameworkConsider
switching to optimistic isolation levels

LCK_M_U, Incorrect transaction Redesign transaction strategy. Optimize the queries
LCK_M_S, management with long-
LCK_M_X running transactions

holding incompatible locks

(continued)
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Table 12-1. (continued)

Wait Type Possible Root Cause Troubleshooting Steps

LCK_M_SCH_S, Blocking due to database  Evaluate deployment and maintenance strategies.
LCK_M_SCH_M schema alteration or index  Switch to low-priority locks if possible
or partition maintenance

LCK_M_I* Blocking due to database  Evaluate deployment and maintenance strategies
schema alteration or index
or partition maintenance

Lock Escalation Analyze and disable lock escalations on affected
tables

As I already mentioned, every lock type in the system has a corresponding wait
type. You may encounter other lock-related wait types that we have not covered in this
chapter. Nevertheless, knowledge of the SQL Server Concurrency Model will help you
in troubleshooting. Analyze blocking conditions that may generate such lock types and
identify the root cause of the blocking.

Data Management Views

SQL Server provides a large set of data management views that expose information
about system health and the SQL Server state. I would like to mention several views that
we have not yet covered.

sys.db_exec_requests View

The sys.dm_exec_requests view provides a list of currently executed requests. This view
is extremely useful during troubleshooting and provides you with great visibility of the
sessions that are currently running on the server. The most notable columns in the view
are as follows:

The session_id column provides ID of the session. The user
sessions in the system will always have a session_id greater than 50,
although it is possible that some of the system sessions may also
have a session_id greater than 50. You can get information about
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the session and client application by joining results with the
sys.dm_exec_sessions and sys.dm_exec_connections views.

The start_time, total elapsed time, cpu_time, reads, logical
reads, and writes columns provide execution statistics for the
request.

The sql_handle, statement _start offset, and statement _end
offset columns allow you to get information about the query.

In SQL Server 2016 and above, you can use it together with the
function sys.dm_exec_input_buffer to obtain information
about currently running SQL statements. You can also use the
sys.dm_exec_sql_text function for such a purpose, as you have
already seen in this book.

The plan_handle column allows you to obtain the execution plan
of the statement using the sys.dm_exec_query planand sys.
dm_exec_text_query plan functions.

The status column provides you with the status of the worker. For
blocked sessions in SUSPENDED status, you can use the wait_type,
wait_time,wait_resource, and blocking session_id columns
to get information about session wait and blocker. Moreover,

the last wait_type column will show the last wait type for the
session.

There are many scenarios where the sys.dm_exec_requests view may help with
troubleshooting. One of them is when analyzing the state of a long-running statement.
You can look at the status and wait-related columns to see if a request is running or being
blocked, identifying a blocking session by the blocking session_id column.

Note You can get more information about the sys.dm_exec_requests view
at https://docs.microsoft.com/en-us/sql/relational-databases/
system-dynamic-management-views/sys-dm-exec-requests-
transact-sql.
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sys.db_os_waiting_tasks View

You can get more information about blocked sessions by using the sys.dm os waiting
tasks view. This view returns data on the tasks/workers level, which is beneficial when
you analyze blocking for queries with parallel execution plans. The output includes one
row per blocked worker and provides information about wait type and duration, blocked
resource, and ID of the blocking session.

Note You can get more information about the sys.dm_os waiting tasks
view at https://docs.microsoft.com/en-us/sql/relational-
databases/system-dynamic-management-views/sys-dm-os-waiting-
tasks-transact-sql.

sys.db_exec_session_wait_stats view and wait_info
XEvent

In some cases, you may want to track waits on the session level; for example, when you
troubleshoot the performance of long-running queries. Detailed wait information will
allow you to understand what may cause the delays and adjust your tuning strategy
accordingly.

SQL Server 2016 and above provide you this information with the sys.dm_exec_
session wait_stats view. This view, in a nutshell, returns similar data as sys.dm_
os_wait_stats does, collected on the session level. It clears the information when the
session is opened or when the polled connection is reset.

The sys.dm_exec_session wait stats view is useful when you suspect that a query
suffers from a large number of short-term blocking waits. Such waits may not trigger a
blocked process report; however, they may lead to a large cumulative blocking time.

In SQL Server prior to 2016, you can track session-level waits with the wait_info
Extended Event using the opcode=1 predicate, which indicates the end of the wait. As
you can guess, this session may generate an enormous amount of information, which
can impact server performance. Do not keep it running unless you are troubleshooting,
and do not use the event_file target due to the I/0 system latency it would introduce.
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You may set the predicate on the duration field, capturing only long-term waits—
for example, waits longer than 50ms. You can also reduce the amount of collected
information by using a session_id filter. Unfortunately, session_id is an action for
await_type event, which adds some overhead during data collection. SQL Server
executes actions after it evaluates the predicates on Extended Event fields, and it is
beneficial to remove unnecessary wait types from the processing.

Listing 12-3 provides a list of map values that correspond to each wait type, which
you can use as the filter for the wait types.

Listing 12-3. Wait_type map values

select name, map_key, map_value
from sys.dm xe map_values

where name = 'wait types'

order by map_key

Finally, another External Event, wait_type external, captures information about
preemptive waits (PREEMPTIVE* wait types). Those waits are associated with external OS
calls; for example, when SQL Server needs to zero-initialize a log file or authenticate a
user in Active Directory. In some cases, you need to troubleshoot them; however, those
cases are not related to blocking and concurrency issues.

Note You can get more information about the sys.dm _exec_session wait
stats view at https://docs.microsoft.com/en-us/sql/relational-
databases/system-dynamic-management-views/sys-dm-exec-
session-wait-stats-transact-sql.You can read about Extended Events
at https://docs.microsoft.com/en-us/sql/relational-databases/
extended-events/extended-events.

sys.db_db_index_operational_stats and sys.dm_db_
index_usage_stats Views

SQL Server tracks index usage statistics with the sys.dm_db_index_usage stats

and sys.dm_db_index_operational_stats views. They provide information about

index access patterns, such as number of seeks, scans, and lookups; number of data
modifications in the index; latching and locking statistics; and many other useful metrics.
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The sys.dm_db_index_usage_stats view focuses mainly on index access patterns,
counting the number of queries that utilize the index. The sys.dm_db_index
operational stats view, on the other hand, tracks operations on a per-row basis. For
example, if you ran a query that updated ten index rows in a single batch, the
sys.dm_db_index_usage_stats view would count it as one data modification and
increment the user_updates column by one, while the sys.dm_db_index operational
stats view would increment the leaf_update_count column by ten based on the
number of rows affected by the operation.

Both views are extremely useful during index analysis and allow you to detect
unused and inefficient indexes. Moreover, the sys.dm_db_index_operational stats
view gives you very useful insight into index operational metrics and helps to identify the
indexes that suffer from a large amount of blocking, latching, and physical disk activity.

From a locking standpoint, the sys.dm_db_index_operational stats viewincludes
three different set of columns:

e row_lock count, row lock wait count, and row lock wait ms
indicate the number of row-level locks requested in the index along
with lock wait statistics.

o page lock count, page lock wait count, and page lock wait ms
show locking information on the page level.

o index_lock promotion_ count and index_lock promotion_
attempt_count return lock escalation statistics.

You can correlate this information with other venues during troubleshooting.
For example, when you analyze the impact of lock escalations in the system, you can
look at index_lock promotion count column values and identify the indexes that
triggered lock escalation most often.

Listing 12-4 shows a query that returns ten indexes with the highest row- and
page-level lock wait times, helping you to identify the indexes that suffer the most from
blocking.

Listing 12-4. Indexes with the highest lock wait times

select top 10
t.object id
,i.index_id
,sch.name + '."' + t.name as [table]
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from
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,i.name as [index]
,ius.user seeks
,ius.user scans
,ius.user lookups
,ius.user seeks + ius.user scans + ius.user lookups as reads
,ius.user updates
yius.last user seek
yius.last user scan
,ius.last user lookup
yius.last user update
,ios.*

sys.tables t with (nolock) join sys.indexes i with (nolock) on
t.object_id = i.object_id
join sys.schemas sch with (nolock) on
t.schema_id = sch.schema_id
left join sys.dm db_index usage stats ius with (nolock) on
i.object id = ius.object id and
i.index_id = ius.index_id
outer apply
(
select
sum(range_scan_count) as range_scan_count
,sum(singleton_lookup count) as singleton lookup count
,sum(row_lock wait count) as row lock wait count
,sum(row_lock wait_in ms) as row_lock wait_in_ms
,sum(page_lock wait count) as page lock wait count
,sum(page lock wait in ms) as page lock wait in ms
,sum(page latch wait count) as page latch wait count
,sum(page_latch wait_in ms) as page latch wait in ms
,sum(page io latch wait count) as page io latch wait count
,sum(page_io latch wait in ms) as page io latch wait in ms
from sys.dm db_index operational stats(db id(),i.object id,
i.index_id,null)
) ios
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order by
ios.row_lock wait_in_ms + ios.page lock wait_in ms desc

Figure 12-6 shows the partial output of the query from one of the production servers.
Note that the first index in the output has a very low number of reads and high update
overhead and may potentially be removed from the system.

table index user_seeks  user_scans  user_lookups reads user_updates row_lock_watt_in_ms page_lock_wat_in_ms
1 0 15 0 15 150903156 151975666 1640
2 79848267 99668779 26512194 206029340 120133156 101905474 577
3 61668323 54044320 19 115712662 99450931 55669084 206
4 2537432 4 0 2537436 335183755 20396562 16344
5 28422269 0 0 88422269 2466503 20039233 16
3 4672688 75 0 4672767 161933538 0 18439998
7 133516988 0 0 123516988 674140935 5372802 3513
] 2272645286 2087478 974519 2275711283 399097304 2243821 2912199
9 53437035 11540688 0 64977723 36468984 4414070 4an7
10 0 1425623 0 1425633 323368305 3702137 84056

Figure 12-6. Indexes with the highest lock wait times

You can detect the queries that utilize a specific index by using the code from
Listing 12-5. The results are not bulletproof, however; this code analyzes the cached
execution plans and may miss queries that do not have plans cached for some reason.
You can adjust it to use Query Store DMV, if it is enabled in the system.

As aword of caution, this code is CPU intensive. Be careful when you run it on CPU-
bound production servers with a large number of plans in the cache.

Listing 12-5. Identifying queries that use a specific index

declare
@IndexName sysname = quotename('IDX CI'); -- Add Index Name here

;with xmlnamespaces(default 'http://schemas.microsoft.com/

sqlserver/2004/07/showplan’)

,CachedData

as

(

select distinct
obj.value('@Database’, 'sysname') as [Database]
,obj.value('@Schema', 'sysname') + '.' +
obj.value('@Table', 'sysname') as [Table]

,0bj.value('@Index", 'sysname') as [Index]
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,0bj.value('@IndexKind', 'varchar(64)') as [Type]
,stmt.value('@StatementText', 'nvarchar(max)') as [Statement]
,convert(nvarchar(max),qp.query plan) as query plan
»cp.plan_handle
from
sys.dm_exec_cached plans cp with (nolock)
cross apply sys.dm exec_query plan(plan_handle) qp
cross apply query plan.nodes
(' /ShowPlanXML/BatchSequence/Batch/Statements/StmtSimple')
batch(stmt)
cross apply stmt.nodes
(".//IndexScan/Object[@Index=sql:variable("@IndexName")]") idx(obj)
)
select
cd.[Database]
,cd.[Table]
,cd.[Index]
»cd. [Type]
,cd. [Statement]
,convert(xml,cd.query plan) as query plan
»qs.execution count
,(gs.total logical reads + gs.total logical writes) /
gs.execution count as [Avg I0]
,qs.total logical reads
,qs.total logical writes
,qs.total worker time
,qs.total worker time / gs.execution_count /
1000 as [Avg Worker Time (ms)]
,qs.total rows
»qs.creation_time
,qs.last_execution time
from
CachedData cd
outer apply
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(

select
sum(qgs.execution count) as execution count
,sum(gs.total logical reads) as total logical reads
,sum(gs.total logical writes) as total logical writes
,sum(qgs.total worker time) as total worker time
,sum(gs.total rows) as total rows
,min(qgs.creation time) as creation time
;max(qgs.last_execution time) as last execution time

from sys.dm exec_query stats gs with (nolock)

where gs.plan handle = cd.plan_handle

) as
option (recompile, maxdop 1)

Both the sys.dm_db_index usage stats and the sys.dm db_index_operational
stats views provide the information, which is very useful during performance
troubleshooting. The data, however, may be incomplete. The views do not include usage
statistics from those queries that run on readable secondaries in Availability Groups. Nor
does SQL Server persist the data in the database to survive SQL Server restart. Finally,
in SQL Server 2012 RTM-SP3 CU2, SQL Server 2014 RTM and SP1, the views clear at the
time of index rebuild operations.

Use the data with care and correlate results with other venues during analysis.

Note You can get more information about the sys.dm_db_index_

usage stats view at https://docs.microsoft.com/en-us/sql/
relational-databases/system-dynamic-management-views/sys-dm-
db-index-usage-stats-transact-sql. Information about the sys.dm_db_
index _operational stats view is available at https://docs.microsoft.
com/en-us/sql/relational-databases/system-dynamic-management-
views/sys-dm-db-index-operational-stats-transact-sql.
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Blocking Chains

One of the common challenges experienced during the troubleshooting of concurrency

issues is that of blocking chains, which represent a case of multi-level blocking. As

you remember, a lock request can be granted only when it is compatible with all other

requests on the resource, regardless of whether they are in a granted or pending state.
Figure 12-7 illustrates this situation. Session 1 holds an intent exclusive (IX) lock on

the table, which is incompatible with the schema modification (Sch-M) lock requested

by session 2. The schema modification (Sch-M) lock is incompatible with all lock

types and thus blocks all other sessions trying to access the table, even when their lock

requests are compatible with the intent exclusive (IX) lock held by session 1.

Session 1:
update T1 set Coll = @Vall Table T1
where Key = @P1 \
S1: (IX) GRANTED/HELD
— Session 2:

e ~S— S2: (Sch-M) WAIT
‘ES—L—J—SpEdS—g”} alter index 11 on T1 with (online=on) \\—-7 Block{ing Ses}sion' s1
- Session 3: _—> S3: (IX) WAIT
suspended —— update T1 set Col2 = @Val2 Blocking Session: 52

B where Key = @P2 S4: (1S) WAIT
— / Blocking Session: S2
_ ession 4: -
{_:_guspendeg:_}— select Coll, Col2 55 (1X) WAIT
e from T1 Blocking Session: 52
o Session 5:
suspended > delete from T1

where Key = @P1

Figure 12-7. Blocking chain

When this condition occurs, session 2 may become the blocking session for a
large number of other sessions in the system. It will be exposed as the blocker in data
management views and in the blocked process report. Session 1, on the other hand,
would become the blocking session only for session 2, which may be misleading during
troubleshooting.

Let’s illustrate this with a slightly more complicated example in code. Listing 12-6
updates one row from the Delivery.Customers table in the session with SPID=53.
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Listing 12-6. Blocking chain: Step 1 (SPID=53)

begin tran
update Delivery.Customers
set Phone = '111-111-1234'
where CustomerId = 1;

As the next step, let’s run the code from Listing 12-7 in the session with SPID=56.
The first statement acquires an intent exclusive (IX) lock on the Delivery.Orders table.
The second statement scans the Delivery.Customers table and is blocked due to an
incompatible exclusive (X) lock from the first session with SPID=53.

Listing 12-7. Blocking chain: Step 2 (SPID=56)

begin tran
update Delivery.Orders
set Pieces += 1
where OrderId = 1;

select count(*)
from Delivery.Customers with (readcommitted);

Next, we will run the code from Listing 12-8 in the session with SPID=57. This code is
trying to acquire a shared (S) lock on the Delivery.Orders table and will be blocked by
the incompatible intent exclusive (IX) lock held by the session with SPID=56.

Listing 12-8. Blocking chain: Step 3 (SPID=57)

select count(*)
from Delivery.Orders with (tablock);

Finally, let’s run the code from Listing 12-9 in several sessions with SPID=60 and
above (you may use a different OrderId in each session). Those sessions will need to
acquire intent exclusive (IX) locks on the Delivery.Orders table and will be blocked due
to the incompatible shared (S) lock request held by the session with SPID=57.

Listing 12-9. Blocking chain: Step 4 (SPID>=60)

update Delivery.Orders
set Pieces += 1

where OrderId = 5000;
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Figure 12-8 demonstrates the partial output of the sys.dm_os _waiting tasks and
sys.dm_exec_requests DMVs. It may appear that the session with SPID=57 is the source
of the blocking. This is incorrect, however, and you need to unwind the blocking chain
up to the session with SPID=53 during troubleshooting.

session_id  blocking_session_id  wait_type resource_description

1 56 ‘\ 53 < — LCK_M_S ridlock fileid=3 pageid=24 dbid=5 id=lo...
& 57 56 LCK_M_S  objectlock lockPartition=0 objid=5655...
3 60 7 LCK_M_IX objectlock lockPartition=0 objid=5655...
4 61 57 LCK_M_IX objectlock lockPartition=0 objid=5655...
5 62 57 LCK_M_IX objectlock lockPartition=0 objid=5655...
6 63 57 LCK_M_IX objectlock lockPartition=0 objid=5655...
| session_id  status | blocking_session_id | watt_type | wait_resource
1 56 spended 53 < LCK_ M_S  RID: 5:3:24:0
2 57 $susp% 56 LCK_M_S OBJECT: 5:565577053:0
3 60 suspended | 57 LCK_M_IX OBJECT: 5:565577053:0
4 61 suspended | 57 LCK_M_IX OBJECT: 5:565577053:0
5 62 suspended | 57 LCK_M_IX OBJECT: 5:565577053:0
6 63 suspended | 57 LCK_M_IX OBJECT: 5:565577053:0

Figure 12-8. Output of sys.dm_os_waiting_tasks and sys.dm_exec_requests views

It is also worth noting that the root blocker with SPID=53 is not present in the output.
The sys.dm_os_waiting tasks and sys.dm_exec_requests views show currently
suspended and executed requests, respectively. In our case, the session with SPID=53 is
in the sleeping state, and therefore neither of the views includes it.

Figure 12-9 shows the partial output of the blocked process reports for sessions with
an SPID of 60, 57, or 56. You can detect the blocking chain condition by the suspended
status of the blocking process with a locking-related waitresource.
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<!-- Blocked Process Report for SPID=60 -->
<blocked-process-report>
<blocked-process>
<process id="processdfe65a7c28" waitresource="0BJECT: 5:565577053:0" spid="60" lockMode="IX" />
</blocked-process>
<blocking-process>
<process |status="suspended"|waitresource="0BJECT: 5:565577053:0 " />
</blocking-process>
</blocked-process-report>

¢!-- Blocked Process Report for SPID=57 -->
<blocked-process-report>
<blocked-process>
<process id="processdfe9bl64e8" waitresource="0BJECT: 5:565577053:0" spid="57" lockMode="S" />
</blocked-process>
<blocking-process>
<{process Istatu5="su5pended"| waitresource="RID: 5:3:24:0" />
</blocking-process>
</blocked-process-report>

¢!-- Blocked Process Report for SPID=56 -->
<blocked-process-report>
<blocked-process>
<process id="processdfe65a7848" waitresource="RID: 5:3:24:0" spid="56" lockMode="S" />
</blocked-process>
<blocking-process>
<process|statusz"sleeping" spid=“53ﬂ >
<inputbuf>
begin tran
update Delivery.Customers
set Phone = '111-111-1234'
where Customerld = 1;
</inputbuf>
</process>
</blocking-process>
</blocked-process-report>

Figure 12-9. Blocked process reports

Even though blocking chains may add additional complexity, they do not change
your troubleshooting approach. You need to unwind the blocking chain to identify the
root cause of the blocking and address the issue.

AlwaysOn Availability Groups and Blocking

AlwaysOn Availability Groups have perhaps become the most common High Availability
technology used with SQL Server. This technology provides database group-level
protection and stores a separate copy of the databases on each server/node. This
eliminates the single point of failure on the SQL Server level; however, there is still a
dependency on Windows or Linux Failover Clustering internally.

The implementation and maintenance of AlwaysOn Availability Groups are worth
a separate book. There are, however, a couple of things that may affect blocking and

concurrency in the system.
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Synchronous Commit Latency

AlwaysOn Availability Groups consist of one primary and one or more secondary nodes/
servers. All data modifications are done on the primary node, which sends a stream of
transactional log records to the secondaries. Those log records are saved (hardened)

in transaction logs on the secondary nodes and asynchronously reapplied to the data
files there by a set of REDO threads. Assuming there is no latency, each server in the
Availability Group would store exact byte-to-byte copies of the databases.

The secondary nodes may be configured using asynchronous or synchronous commit.
With asynchronous commit, a transaction is considered to be committed when the
COMMIT log record is hardened on the primary node. SQL Server then sends the COMMIT
record to a secondary node; however, it does not wait for confirmation that the record
has been hardened in the log there. This process is shown in Figure 12-10.

Commit Primary Secondary
Commit

R t
s i Log Record E
C.liéht E Commit E Commit

ACK ACK
Commit I/O ACK
Commit Log Record
Log Record REDO process
) /0 ACK asynchpronously
applies the
changes to
data files

Figure 12-10. Asynchonous commit

As you can guess, this behavior will reduce the overhead introduced by Availability
Groups at the cost of possible data loss in the event of a primary node crash/data
corruption before some of the log records have been sent to the secondaries.

This behavior changes when you use synchronous commit, as shown in Figure 12-11.
In this mode, SQL Server does not consider a transaction to be committed until it
receives the confirmation that the COMMIT log record is hardened in the log on the
secondary node. While this approach allows you to avoid data loss, it would lead to
additional commit latency while the primary node is waiting for acknowledgement from
the secondary server(s).
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Commit Primary Commi Secondary
ommit
Request E
a Log Record E
E i E Commit
Client Commit

ACK ACK
Commit 1/0 ACK
Commit Log Record
roe fecore /0 ACK ::yaghpr?ncjjzly
applies the
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Figure 12-11. Synchonous commit

The high synchronous commit latency may introduce subtle and hard to understand
concurrency issues in the system. SQL Server keeps the transaction active and does not
release the locks until commit acknowledgements are received. This would increase the
chance of competing lock requests and blocking in the system.

There is another potential problem. Some operations—for example, index
maintenance—may generate an enormous number of transaction log records and
saturate the send queue. This may lead to extremely high commit latency and introduce
severe blocking in the system.

Tip You can throttle the log-generation rate of index maintenance operations by
reducing the MAXDOP option for the statement. Remember that this will increase
the time the operation will take.

You can monitor synchronous commit latency with the HADR_SYNC_COMMIT wait. The
average wait time from the sys.dm os wait stats view would provide you with latency
information. Remember that latency may seriously deviate during atypical, log-intensive
workloads; consider clearing wait statistics with the DBCC SQLPERF('sys.dm os wait
stats', CLEAR) command when you troubleshoot the latency at a particular time.
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High commit latency troubleshooting requires you to locate the bottleneck and
identify what consumes the most time during the process. There are three main factors
that contribute to it:

1. The time alog record waits in the send queue. You can analyze
this with the code in Listing 12-10 using the data from the [ Send
Queue Size(KB)] and [Send Rate KB/Sec] columns. It is worth
noting that the queue management process is CPU intensive,
which may lead to additional latency in systems with high CPU
load.

2. Network throughput. You can troubleshoot it with network-related
performance counters. There are also several Availability Group-
related performance counters that indicate the amount of data
sent between the nodes.

3. 1I/0latency on secondary nodes. Synchronous commit requires
a COMMIT log record to be hardened in the transaction log before
acknowledgement is sent back to the primary node. You can
monitor the write latency of transaction log files using the sys.
dm_io_virtual file_stats view.Iam including the script that
allows you to do this in the companion materials for this book.

Listing 12-10. Analyze Availability Group queues

select
ag.name as [Availability Group]
,ar.replica server name as [Server]
,db_name(drs.database_id) as [Database]
,case when ars.is local = 1 then 'Local' else 'Remote’ end
,case as [DB Location]
,ars.role desc as [Replica Role]
,drs.synchronization state desc as [Sync State]
,ars.synchronization health desc as [Health State]
,drs.log send queue size as [Send Queue Size (KB)]
,drs.log send rate as [Send Rate KB/Sec]
,drs.redo_queue size as [Redo Queue Size (KB)]
,drs.redo rate as [Redo Rate KB/Sec]
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from
sys.availability groups ag with (nolock)
join sys.availability replicas ar with (nolock) on
ag.group_id = ar.group_id
join sys.dm hadr availability replica states ars with (nolock) on
ar.replica id = ars.replica id
join sys.dm hadr database replica states drs with (nolock) on
ag.group_id = drs.group_id and drs.replica_id = ars.replica_id
order by
ag.name, drs.database id, ar.replica_server name

While network and I/0 performance may sometimes be addressed by hardware
upgrades, it is much harder to deal with the latency introduced by a large number of log
records in very busy OLTP systems. You can reduce the impact of queue management by
utilizing CPUs with higher clock speed; however, there are some limits on what you can
achieve with hardware.

There are several things you can do when you experience this situation:

e Make sure that SQL Server schedulers are evenly balanced across
NUMA nodes. For example, if SQL Server is using 10 cores on a
2-NUMA-node server with 8 cores per node, set the affinity mask to
use 5 cores per node. Unevenly balanced schedules may introduce
various performance issues in the system and affect Availability
Group throughput.

¢ Reduce the number of log records generated in the system.
Some options are to redesign the transaction strategy to avoid
autocommitted transactions; remove unused and redundant
indexes; and fine-tune the index FILLFACTOR property to reduce the
page splits in the system.

o Rearchitect data tier in the system. It is very common that different
data in the system may have different RPO (recovery point objective)
requirements and tolerances to the data loss. You may consider
moving some data to another Availability Group that does not require
synchronous commit and/or utilize NoSQL technologies for some

entities.
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Finally, if you are using SQL Server prior to 2016, you should consider upgrading to
the latest version of the product. SQL Server 2016 has several internal optimizations that
dramatically increase Availability Group throughput over that of SQL Server 2012 and
2014. It may be the simplest solution in many cases.

Note You may experience the same commit latency problems with synchronous
database mirroring. You should monitor the DBMIRROR SEND wait type in this case.

Readable Secondaries and Row Versioning

The Enterprise Edition of SQL Server allows you to configure read-only access to the
secondary nodes in AlwaysOn Availability Groups, thus scaling the read-only workload
in the system. This, however, may lead to unexpected side effects on the primary node in
the group.

When you run queries against secondary nodes, SQL Server always uses the
SNAPSHOT isolation level, ignoring the SET TRANSACTION ISOLATION LEVEL statement
and locking hints. It allows it to eliminate possible readers/writers blocking, and it
happens even if you did not enable the ALLOW_SNAPSHOT ISOLATION database option.

It also means that SQL Server will use row versioning on the primary node. You
may not be able to use optimistic isolation levels programmatically when they are not
enabled; nevertheless, SQL Server would use row versioning internally. The databases
on the primary and secondary nodes are exactly the same, and it is impossible to use row
versioning only on the secondary nodes.

As you will remember from Chapter 6, this behavior will introduce additional tempdb
load to support the version store. It may also increase index fragmentation due to the
14-byte pointers appended to the data rows during data modifications. However, it also
leads to another phenomenon. Long-running SNAPSHOT transactions on secondary nodes
may defer ghost and version-store cleanup on the primary node. SQL Server cannot
remove deleted rows and reuse the space, because of the possibility that a SNAPSHOT
transaction on the secondary node will need to access the old versions of the rows.

Let’s look at an example and create two tables in the database, as shown in
Listing 12-11. The table dbo. T1 will have 65,536 rows and will use 65,536 pages—one row
per data page.
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Listing 12-11. Readable secondaries: Tables creation

create table dbo.T1

(
ID int not null,
Placeholder char(8000) null,
constraint PK T1
primary key clustered(ID)
);
create table dbo.T2
(
Col int
);

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
,N5(C) as (select 0 from N4 as T1 cross join N4 as T2 ) -- 65,536 rows
,IDs(ID) as (select row number() over (order by (select null)) from N5)
insert into dbo.T1(ID)

select ID from IDs;

As the next step, let’s start a transaction on the secondary node and run the
query against the dbo.T2 table, as shown in Listing 12-12. Even though we are using
explicit transactions, the same behavior will occur with long-running statements in
autocommitted transactions.

Listing 12-12. Readable secondaries: Starting transaction on secondary node

begin tran
select * from dbo.T2;

Next, let’s delete all data from the dbo.T1 table and then run a query that will do a
Clustered Index Scan on the primary node. The code is shown in Listing 12-13.
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Listing 12-13. Readable secondaries: Deleting data and performing CI Scan

delete from dbo.T1;
go

-- Waiting 1 minute
waitfor delay '00:01:00.000";

set statistics io on
select count(*) from dbo.T1;
set statistics io off

--Output: Table 'Ti'. Scan count 1, logical reads 65781

As you can see, despite the fact that the table is empty, the data pages have not been
deallocated. This leads to significant I/O overhead on the primary node.
Finally, let’s look at the index statistics using the code from Listing 12-14.

Listing 12-14. Readable secondaries: Analyzing index statistics

select index_id, index level, page count, record count, version ghost
record count

from sys.dm db_index physical stats(db_id(),object id(N'dbo.
T1'),1,NULL, 'DETAILED');

Figure 12-12 shows the output of the query. As you can see, the leaf index level
shows 65,536 rows in the version_ghost record count column. This column contains
the number of ghosted rows that cannot be removed due to the active transactions in
the system that rely on row versioning. In our case, this transaction runs on a different
(secondary) node.

index_id index_level page_count record_count version_ghost_record_count

1 1 0 65536 0 | 65536 |
2 |1 1 243 65526 0
3 |1 2 1 243 0

Figure 12-12. Index statistics
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There is nothing special about this behavior. The ghost and version store cleanup
tasks would behave the same way if SNAPSHOT transactions were running on the primary
node. It is very common, however, to see systems in which people offload non-optimized
reporting queries to secondary nodes without understanding the potential impact it may
have on the primary node.

Remember this behavior when you plan to use readable secondaries, and apply the
same considerations as when you enable optimistic isolation levels in the system. On the
flip side, there is absolutely no reason to avoid using optimistic isolation levels when you
have readable secondaries enabled. SQL Server already uses row versioning internally,
even if you do not enable it in the database.

Working with the Blocking Monitoring Framework

Wait statistics analysis provides a holistic picture of system health and may help to
identify bottlenecks in all areas of the system, including locking and blocking. You may
be able to evaluate how badly a system suffers from concurrency issues; however, in the
end, you will need to detect and address individual blocking and deadlock cases to solve
the problems.

As we have already discussed in Chapters 4 and 5 of this book, troubleshooting is
relatively straightforward. You need to understand the root cause of the issue by reverse
engineering the blocking or deadlock condition. You need to identify the resources,
lock types, and processes involved and analyze why the processes acquired, held, and
competed for locks on the same resources. In the majority of cases, it requires you to
analyze the queries and their execution plans.

Both blocked process reports and deadlock graphs contain required information.
They, however, have dependencies on the SQL Server state at the time of the event. In
many cases, you need to query the plan cache and other data management views to
obtain the text and plan of the queries. The longer you wait, the less likely it will be that
the information will be available.

There are plenty of monitoring tools present on the market, and many of them
will capture and provide you the data. As another option, you can install the Blocking
Monitoring Framework, which I have already mentioned in this book. This framework
use Event Notifications, and it parses the blocking process report and deadlock graph,
persisting the data in a set of tables. The parsing happens at the time the event occurred,
while the information is still available through data management views.
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At the time of writing this book, the framework consists of three main tables:

e The dbo.BlockedProcessesInfo table stores information about
blocking occurrences based on blocked process reports. It includes
duration of the blocking, resources and lock types involved, and
blocking and blocked sessions details, along with queries and their
execution plans.

o The dbo.Deadlocks table stores information about deadlock events in
the system.

e The dbo.DeadlockProcesses table provides information about the
processes involved in the deadlock, including text and execution
plans of the statements that triggered it.

You can use the captured data to troubleshoot individual blocking occurrences.
Moreover, you can aggregate it to identify the queries most commonly involved in
blocking or deadlock cases.

Listing 12-15 shows code that returns ten queries that have been blocked the most in
the last three days. It groups the data by plan_hash, which combines queries with similar
execution plans. Consider ad-hoc queries that have different parameter values but end
up with similar execution plans, as in the example.

The code returns the first query and execution plan that matches the plan_hash
value, along with blocking statistics. Alternatively, in SQL Server 2016 and above, you
can join the data with Query Store data management views to correlate information from
multiple sources.

Note You can use the dbo.DeadlockProcesses table instead of the
dbo.BlockedProcessesInfo table to obtain information about queries most
frequently involved in deadlocks.
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Listing 12-15. Getting top 10 queries that were blocked the most

;with Data
as
(
select top 10
i.BlockedPlanHash
,count(*) as [Blocking Counts]
,sum(WaitTime) as [Total Wait Time (ms)]
from

dbo.BlockedProcessesInfo i

group by
i.BlockedPlanHash
order by
sum(WaitTime) desc
)
select
d.*, q.BlockedSql
from
Data d
cross apply
(

select top 1 BlockedSql

from dbo.BlockedProcessesInfo i2

where i2.BlockedPlanHash = d.BlockedPlanHash
order by EventDate desc

) 4

Listing 12-16 shows code that returns a list of tables most frequently involved in
blocking resulting from waiting for object-level intent (I*) locks. This blocking may occur
due to lock escalation, and you may benefit from disabling it on affected tables.

Do not forget that schema modification (Sch-M) locks will also block all other object-
level lock requests—factor it into your analysis.
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Listing 12-16. ldentifying the tables that may suffer from lock escalation-related
blocking

;with Objects(DBID,0bjID,WaitTime)

as
(
select
ltrim(rtrim(substring(b.Resource,8,0.DBSeparator - 8)))
,substring(b.Resource, o.DBSeparator + 1, o.ObjectLen)
,b.WaitTime
from
dbo.BlockedProcessesInfo b
cross apply
(
select
charindex(':',Resource,8) as DBSeparator
,charindex(':"',Resource, charindex(':',Resource,8) + 1) -
charindex(':',Resource,8) - 1 as Objectlen
) o
where
left(b.Resource,6) = "OBJECT' and
left(b.BlockedLockMode,1) = 'I'
)
select

db_name(DBID) as [database]
,object _name(ObjID, DBID) as [table]
scount(*) as [# of events]
,sum(WaitTime) / 1000 as [Wait Time(Sec)]
from Objects
group by
db_name(DBID), object name(ObjID, DBID);

The Blocking Monitoring Framework is an extremely useful tool for the analysis and
troubleshooting of concurrency issues. I would recommend installing it on your servers.
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Note The current (August 2018) version of the framework is included in the
companion materials for this book. You can download the latest version from my
blog: http://aboutsqlserver.com/bmframework/.

Summary

Databases do not live in a vacuum. They are part of a large ecosystem that includes
various hardware and software components. Slowness and unresponsiveness of client
applications are not necessarily database- or SQL Server-related issues. The root cause
of the problem can be found anywhere in the system, from hardware misconfiguration to
incorrect application code.

Itis important to check the entire system infrastructure as an initial step in the
troubleshooting process. This includes the performance characteristics of the hardware,
network topology and throughput, operating system and SQL Server configuration, and
the processes and databases running on the server.

SQL Server consists of several major components, including the protocol layer, query
processor, storage engine, utilities, and SQL Server Operating System (SQLOS). SQLOS is
the layer between the OS and all other SQL Server components, and it is responsible for
scheduling, resource management, and several other low-level tasks.

SQLOS creates a number of schedulers equal to the number of logical processors in
the system. Every scheduler is responsible for managing a set of workers that perform a
job. Every task is assigned to one or more workers for the duration of the execution.

Tasks stay in one of three major states during execution: RUNNING (currently
executing on scheduler), RUNNABLE (waiting for scheduler to execute), and SUSPENDED
(waiting for the resource). SQL Server tracks the cumulative waiting time for the different
types of waits and exposes this information to the users. Wait statistics analysis is a
common performance troubleshooting technique that analyzes top system wait types
and eliminates the root causes of waits.

Every lock type has a corresponding wait type, which helps you to identify what
type of blocking happens the most in the system. Nevertheless, you need to analyze
individual blocking and deadlock cases, understand the root causes of the events, and
address them during troubleshooting.
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CHAPTER 13

In-Memory OLTP
Concurrency Model

The In-Memory OLTP technology, introduced in SQL Server 2014, can significantly
improve the performance and throughput of OLTP systems. The key technology
component—memory-optimized tables—stores the data in-memory, utilizing lock- and
latch-free multi-versioning concurrency control.

This chapter will provide an overview of the In-Memory OLTP Concurrency Model
and explain how the Engine handles transactions internally.

In-Memory OLTP Overview

Way back when SQL Server and other major databases were originally designed,
hardware was very expensive. Servers at that time had just one or very few CPUs and a
small amount of installed memory. Database servers had to work with data that resided
on disk, loading it into memory on demand.

The situation has changed dramatically since then. During the last 30 years, memory
prices have dropped by a factor of ten every five years, and hardware has become more
affordable. While it is also true that databases have become larger, it is often possible for
active operational data to fit into memory.

Obviously, it is beneficial to have data cached in the buffer pool. It reduces the load
on the I/0 subsystem and improves system performance. However, when systems work
under a heavy concurrent load, it is often not enough to obtain required throughput.
SQL Server manages and protects page structures in memory, which introduces large
overhead and does not scale well. Even with row-level locking, multiple sessions cannot
modify data on the same data page simultaneously; they must wait for each other.
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Perhaps the last sentence needs to be clarified. Obviously, multiple sessions can
modify data rows on the same data page, holding exclusive (X) locks on different rows
simultaneously. However, they cannot update physical data-page and row objects
simultaneously because it could corrupt the in-memory page structure. SQL Server
addresses this problem by protecting pages with latches. Latches work in a similar
manner to locks, protecting internal SQL Server data structures on the physical level by
serializing write access to them so only one thread can update data on the data page in
memory at any given point in time.

In the end, this limits the improvements that can be achieved with the current
database engine’s architecture. Although you can scale hardware by adding more CPUs
and cores, that serialization quickly becomes a bottleneck and a limiting factor in
improving system scalability.

Note You can monitor PAGELATCH* waits for the resources in users’ databases
to understand the impact of latch contention in the system.

The In-Memory OLTP Engine, introduced in SQL Server 2014, addresses that issue.
The core component of the Engine—memory-optimized tables—stores and manages all
data completely in-memory, persisting it on disk only for durability purposes. The data
rows are, in a nutshell, individual in-memory objects. They are not stored on the data
pages; the rows are linked together through chains of memory pointers—one chain per
index. It is also worth noting that memory-optimized tables do not share memory with
disk-based tables and live outside of the buffer pool.

Let’s illustrate this with an example and create a memory-optimized table, as shown
in Listing 13-1.

Note This technology requires you to create another filegroup in the database
to store In-Memory OLTP data. The database-creation script is included in the
companion material for this book.
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Listing 13-1. Creating the memory-optimized table

create table dbo.People
(
Name varchar(64) not null
constraint PK People
primary key nonclustered
hash with (bucket count = 1024),
City varchar(64) not null,

index IDX City nonclustered hash(City)
with (bucket count = 1024),

)

with (memory optimized = on, durability = schema_and data);

This table has two hash indexes defined on the Name and City columns. Hash
indexes are the new type of index supported by In-Memory OLTP. We are not going to
discuss them in depth in this book, but as a general overview, they consist of a hash
table (an array of hash buckets, each of which contains a memory pointer to the data
row). SQL Server applies a hash function to the index-key columns, and the result of the
function determines to which bucket a row belongs. All rows that have the same hash
value and belong to the same bucket are linked together in a row chain; every row has a
pointer to the next row in the chain.

Note It is extremely important to properly size a hash table in the hash index. You
should define bucket count to be about 1.5-2 times bigger than the number of
unique key values in the index.

In-Memory OLTP also supports nonclustered indexes, which have a relatively
similar structure to B-Tree indexes in disk-based tables. They are a good choice
when index selectivity cannot be estimated.

Figure 13-1 illustrates this. Solid arrows represent pointers in the index on the
Name column. Dotted arrows represent pointers in the index on the City column. For
simplicity’s sake, let’s assume that the hash function generates a hash value based on the
first letter of the string. Two numbers, displayed in each row, indicate row lifetime, which
I will explain shortly.
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Figure 13-1. Memory-optimized table with two hash indexes

Multi-Version Goncurrency Gontrol

As I just mentioned, every row in a memory-optimized table has two values, called
BeginTs and EndTs, which define the lifetime of the row. A SQL Server instance
maintains the Global Transaction Timestamp value, which is auto-incremented when
the transaction commits and is unique for every committed transaction. BeginTs stores
the Global Transaction Timestamp of transactions that insert a row, and EndTs stores the
timestamp of transactions that delete a row. A special value called Infinity is used as
the EndTs for rows that have not been deleted.

The rows in memory-optimized tables are never updated. The update operation
creates a new version of the row, with a new Global Transaction Timestamp set as
BeginTs, and marks the old version of the row as deleted by populating the EndTs
timestamp with the same value.

At the time when a new transaction starts, In-Memory OLTP assigns the logical start
time for the transaction, which represents the Global Transaction Timestamp value
at the time when the transaction starts. It dictates what version of the rows is visible
to the transaction. A transaction can see a row only when its logical start time (Global
Transaction Timestamp value at time when the transaction starts) is between the
BeginTs and EndTs timestamps of the row.

To illustrate that, let’s assume that we ran the statement shown in Listing 13-2 and
committed the transaction when the Global Transaction Timestamp value was 100.
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Listing 13-2. Updating data in the dbo.People table

update dbo.People
set City = 'Cincinnati’
where Name = 'Ann’

Figure 13-2 illustrates the data in the table after this update transaction has been
committed. As you can see, we now have two rows with Name="'Ann" and different
lifetimes. The new row has been appended to the row chain referenced by the hash
bucket for the value of A in the index on the Name column. The hash index on the City
column did not have any rows referenced by the C bucket; therefore, the new row
becomes the first in the row chain referenced from that bucket.
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Figure 13-2. Data in the table after update

Let’s assume that you need to run a query that selects all rows with Name="Ann" in
the transaction with the logical start time (Global Transaction Timestamp at time when
transaction started) of 110. SQL Server calculates the hash value for Ann, which is A,
and finds the corresponding bucket in the hash index on the Name column. It follows
the pointer from that bucket, which references a row with Name="Adam". This row has
aBeginTs of 10 and an EndTs of Infinity; therefore, it is visible to the transaction.
However, the Name value does not match the predicate, and the row is ignored.

In the next step, SQL Server follows the pointer from the Adam index pointer array,
which references the first Ann row. This row has a BeginTs of 100 and an EndTs of
Infinity; therefore, it is visible to the transaction and needs to be selected.
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As a final step, SQL Server follows the next pointer in the index. Even though the last
row also has Name="Ann", it has an EndTs of 100 and is invisible to the transaction.

SQL Server keeps track of the active transactions in the system and detects stale
rows with an EndTs timestamp older than the logical start time of the oldest active
transaction in the system. Stale rows are invisible for active transactions in the system,
and eventually they are removed from the index row chains and deallocated by the
garbage collection process.

As you should have already noticed, this concurrency behavior and data consistency
corresponds to the SNAPSHOT transaction isolation level when every transaction sees
the data as of the time the transaction started. SNAPSHOT is the default transaction
isolation level in the In-Memory OLTP Engine, which also supports the REPEATABLE
READ and SERTALIZABLE isolation levels. However, REPEATABLE READ and SERIALIZABLE
transactions in the In-Memory OLTP behave differently than they do with disk-based
tables. In-Memory OLTP raises an exception and rolls back a transaction if REPEATABLE
READ or SERIALIZABLE data-consistency rules were violated rather than blocking a
transaction, as with disk-based tables.

In-Memory OLTP documentation also indicates that autocommitted (single
statement) transactions can run in the READ COMMITTED isolation level. However,
this is a bit misleading. SQL Server promotes and executes such transactions in the
SNAPSHOT isolation level and does not require you to explicitly specify the isolation
level in your code. Similar to SNAPSHOT transactions, the autocommitted READ
COMMITTED transaction would not see the changes committed after the transaction
started, which is a different behavior compared to READ COMMITTED transactions
performed against disk-based tables.

Let’s look at transaction isolation levels and the In-Memory OLTP Concurrency
Model in more detail.

Transaction Isolation Levels in In-Memory OLTP

In-Memory OLTP supports three transaction isolation levels: SNAPSHOT, REPEATABLE
READ, and SERIALIZABLE. However, In-Memory OLTP uses a completely different
approach to enforcing data-consistency rules as compared to disk-based tables. Rather
than block or be blocked by other sessions, In-Memory OLTP validates data consistency
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at the transaction COMMIT time and throws an exception and rolls back the transaction if
rules were violated:

e Inthe SNAPSHOT isolation level, any changes made by other sessions
are invisible to the transaction. A SNAPSHOT transaction always works
with a snapshot of the data as of the time when the transaction
started. The only validation at the time of commit is checking for
primary-key violations, which is called snapshot validation.

e IntheREPEATABLE READ isolation level, In-Memory OLTP validates
that the rows that were read by the transaction have not been
modified or deleted by other transactions. A REPEATABLE READ
transaction would not be able to commit if this was the case. That
action is called repeatable read validation and is executed in addition
to snapshot validation.

e Inthe SERIALIZABLE isolation level, SQL Server performs repeatable
read validation and also checks for phantom rows that were possibly
inserted by other sessions. This process is called serializable
validation and is executed in addition to snapshot validation.

Let’s look at a few examples that demonstrate this behavior. As a first step, shown in
Listing 13-3, let’s create a memory-optimized table and insert a few rows. We will run
that script, resetting the data to its original state before each test.

Listing 13-3. Data consistency and transaction isolation levels: Table creation
drop table if exists dbo.HKData;

create table dbo.HKData

(
ID int not null
constraint PK HKData
primary key nonclustered hash with (bucket count=64),
Col int not null
)

with (memory optimized=on, durability=schema_only);

insert into dbo.HKData(ID, Col) values(1,1),(2,2),(3,3),(4,4),(5,5);
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Table 13-1 shows how concurrency works in the REPEATABLE READ transaction
isolation level. It is important to note that SQL Server starts a transaction at the moment
of the first data access rather than at the time of the BEGIN TRAN statement. Therefore,
the session 1 transaction starts at the time when the first SELECT operator executes.

Table 13-1. Concurrency in the REPEATABLE READ Transaction Isolation Level

Session 1 Session 2 Results

begin tran
select ID, Col
from dbo.HKData
with (repeatableread)

update dbo.HKData

set Col = -2
where ID = 2
select ID, Col Return old version of a row
from dbo.HKData (Col =2)
with (repeatableread)
commit Msg 41305, Level 16, State 0,
Line 0
The current transaction failed
to commit due to a repeatable
read validation failure.
begin tran

select ID, Col
from dbo.HKData
with (repeatableread)

insert into dbo.HKData

values(10,10)
select ID, Col Does not return new row
from dbo.HKData (10,10)
with (repeatableread)
commit Success
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As you can see, with memory-optimized tables, other sessions were able to modify
data that was read by the active REPEATABLE READ transaction. This led to a transaction
abort at the time of COMMIT when the repeatable read validation failed. This is a
completely different behavior than that of disk-based tables, where other sessions are
blocked, unable to modify data until the REPEATABLE READ transaction successfully
commits.

It is also worth noting that in the case of memory-optimized tables, the REPEATABLE
READ isolation level protects you from the phantom read phenomenon, which is not the
case with disk-based tables. The BeginTs value of the newly inserted rows would exceed
the logical start time of the active transaction (more on it later), making them invisible
for the transaction.

As a next step, let’s repeat these tests in the SERIALIZABLE isolation level. You can
see the code and the results of the execution in Table 13-2. Remember to rerun the
initialization script from Listing 13-3 before the test.

Table 13-2. Concurrency in the SERIALIZABLE Transaction Isolation Level

Session 1 Session 2 Results

begin tran
select ID, Col
from dbo.HKData
with (serializable)

update dbo.HKData

set Col = -2
where ID = 2
select ID, Col Return old version of a row
from dbo.HKData (Col = 2)
with (serializable)
commit Msg 41305, Level 16, State 0,

Line 0

The current transaction failed
to commit due to a repeatable
read validation failure.

(continued)
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Table 13-2. (continued)

Session 1 Session 2 Results

begin tran
select ID, Col
from dbo.HKData
with (serializable)

insert into dbo.HKData

values(10,10)
select ID, Col Does not return new row
from dbo.HKData (10,10
with (serializable)
commit Msg 41325, Level 16, State 0,

Line 0

The current transaction failed
to commit due to a serializable
validation failure.

As you can see, the SERIALIZABLE isolation level prevents the session from
committing a transaction when another session inserts a new row and violates the
serializable validation. Like the REPEATABLE READ isolation level, this behavior is
different from that of disk-based tables, where the SERTALIZABLE transaction successfully
blocks other sessions until the transaction is complete.

Finally, let’s repeat the tests in the SNAPSHOT isolation level. The code and results are
shown in Table 13-3.
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Table 13-3. Concurrency in the SNAPSHOT Transaction Isolation Level

Session 1 Session 2 Results

begin tran
select ID, Col
from dbo.HKData
with (snapshot)

update dbo.HKData

set Col = -2
where ID = 2
select ID, Col Return old version of a row
from dbo.HKData (Col =2)
with (snapshot)
commit Success

begin tran
select ID, Col
from dbo.HKData
with (snapshot)

insert into dbo.HKData

values(10,10)
select ID, Col Does not return new row (10,10)
from dbo.HKData
with (snapshot)
commit Success

The SNAPSHOT isolation level behaves in a similar manner to disk-based tables,
and it protects from the non-repeatable reads and phantom reads phenomena. As you
can guess, it does not need to perform repeatable read and serializable validations at
the commit stage, and therefore it reduces the load on SQL Server. However, there is
still snapshot validation, which checks for primary-key violations and is done in any

transaction isolation level.
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Table 13-4 shows the code that leads to the primary-key violation condition. In
contrast to disk-based tables, the exception is raised at the commit stage rather than at
the time of the second INSERT operation.

Table 13-4. Primary Key Violation

Session 1 Session 2 Results

begin tran
insert into dbo.
HKData
with (snapshot)
(ID, Col)
values(100,100)

begin tran
insert into dbo.HKData
with (snapshot)

(ID, Col)
values(100,100)
commit Successfully commit the first
session
commit Msg 41325, Level 16, State 1,
Line 0

The current transaction failed
to commit due to a serializable
validation failure.

It is worth mentioning that the error number and message are the same as with the
serializable validation failure even though SQL Server validated a different rule.

Write/write conflicts work the same way regardless of the transaction isolation level
in In-Memory OLTP. SQL Server does not allow a transaction to modify a row that has
been modified by other uncommitted transactions. Table 13-5 illustrates this behavior. It
uses the SNAPSHOT isolation level; however, the behavior does not change with different
isolation levels.
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Table 13-5. Write/Write Conflicts in In-Memory OLTP

Session 1 Session 2 Results
begin tran
select ID, Col
from dbo.HKData
with (snapshot)
begin tran

update dbo.HKData
with (snapshot)

set Col = -3
where ID = 2
commit
update dbo.HKData
with (snapshot)
set Col = -2
where ID = 2
begin tran
select ID, Col
from dbo.HKData
with (snapshot)
begin tran

update dbo.HKData
with (snapshot)

set Col = -3

where ID = 2

Msg 41302, Level 16, State 110, Line 1
The current transaction attempted to
update a record that has been updated
since this transaction started. The
transaction was aborted.

Msg 3998, Level 16, State 1, Line 1
Uncommittable transaction is detected at
the end of the batch. The transaction is
rolled back

The statement has been terminated.

(continued)
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Table 13-5. (continued)

Session 1 Session 2 Results
update dbo.HKData Msg 41302, Level 16, State 110, Line 1
with (snapshot) The current transaction attempted to
set Col = -2 update a record that has been updated
where ID = 2 since this transaction started. The

transaction was aborted.

Msg 3998, Level 16, State 1, Line 1
Uncommittable transaction is detected at
the end of the batch. The transaction is
rolled back.

The statement has been terminated.

commit Successful commit of Session 2
transaction

Cross-Container Transactions

The In-Memory OLTP Engine is fully integrated in SQL Server, and it works side-by-
side with the classic Storage Engine. The databases may include both disk-based and
memory-optimized tables, and you can query them transparently regardless of their
technologies.

Transactions that involve both disk-based and memory-optimized tables are called
cross-container transactions. You can use different transaction isolation levels for disk-
based and memory-optimized tables. However, not all combinations are supported.
Table 13-6 illustrates possible combinations for transaction isolation levels in cross-

container transactions.

Table 13-6. Isolation Levels Allowed for Cross-Container Transactions

Isolation Levels for Disk-based Tables Isolation Levels for Memory-optimized Tables

READ UNCOMMITTED, READ COMMITTED, SNAPSHOT, REPEATABLE READ, SERTALIZABLE
READ COMMITTED SNAPSHOT

REPEATABLE READ, SERIALIZABLE SNAPSHOT only
SNAPSHOT Not supported
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As you already know, internal implementations of REPEATABLE READ and
SERIALIZABLE isolation levels are very different for disk-based and memory-optimized
tables. Data-consistency rules with disk-based tables rely on locking, while In-Memory
OLTP uses pre-commit validation. It leads to a situation in cross-container transactions
where SQL Server only supports SNAPSHOT isolation levels for memory-optimized tables,
while disk-based tables require REPEATABLE READ or SERIALIZABLE isolation levels.

Moreover, SQL Server does not allow access to memory-optimized tables when
disk-based tables require SNAPSHOT isolation. Cross-container transactions, in a nutshell,
consist of two internal transactions: one for disk-based and another one for memory-
optimized tables. It is impossible to start both transactions at exactly the same time and
guarantee the state of the data at the moment the transaction starts.

As a general guideline, it is recommended to use the READ COMMITTED/SNAPSHOT
combination in cross-container transactions during a regular workload. This
combination provides minimal blocking and the least pre-commit overhead and should
be acceptable in a large number of use cases. Other combinations are more appropriate
during data migrations when it is important to avoid the non-repeatable and phantom
reads phenomena.

As you may have already noticed, SQL Server requires you to specify the transaction
isolation level with a table hint when you are accessing memory-optimized tables. This
does not apply to individual statements that execute outside of the explicitly started
(with BEGIN TRAN) transaction. As with disk-based tables, such statements are executed
in the individual autocommitted transactions, which are active for the duration of the
statement execution.

An isolation level hint is not required for statements running in autocommitted
transactions. When the hint is omitted, the statement runs in the SNAPSHOT isolation

level.

Note Implicit transactions are not supported in In-Memory OLTP.

SQL Server allows you to keep a NOLOCK hint while accessing memory-optimized
tables from autocommitted transactions. That hint is ignored. A READUNCOMMITTED hint,
however, is not supported and triggers an error.
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There is a useful database option called MEMORY OPTIMIZED ELEVATE TO SNAPSHOT,
which is disabled by default. When this option is enabled, SQL Server allows you to
omit the isolation level hint in non-autocommitted transactions. SQL Server uses the
SNAPSHOT isolation level, as with autocommitted transactions, if the isolation level hint
is not specified and the MEMORY_OPTIMIZED ELEVATE TO_ SNAPSHOT option is enabled.
Consider enabling this option when you port an existing system to In-Memory OLTP and
have T-SQL code that accesses tables that become memory-optimized.

Transaction Lifetime

Although I have already discussed a few key elements used by In-Memory OLTP to
manage data access and the concurrency model, let’s review them here:

e Global Transaction Timestamp is an auto-incremented value that
uniquely identifies every transaction in the system. SQL Server
increments and obtains this value at the transaction commit stage.

o Everyrow has BeginTs and EndTs timestamps, which correspond to
the Global Transaction Timestamp of the transaction that created or
deleted this version of the row.

At the time when a new transaction starts, In-Memory OLTP generates a
TransactionId value, which uniquely identifies the transaction. Moreover, In-Memory
OLTP assigns the logical start time for the transaction, which represents the Global
Transaction Timestamp value at the time when the transaction starts. It dictates what
version of the rows is visible to the transaction. The logical start time should be in
between the BeginTs and EndTs in order for the row to be visible.

When the transaction issues a COMMIT statement, In-Memory OLTP increments the
Global Transaction Timestamp value and assigns it to the transaction’s logical end time.
The logical end time will become the BeginTs for the rows inserted and the EndTs for the
rows deleted by the transaction after it is committed.

Figure 13-3 shows the lifetime of a transaction that works with memory-optimized
tables.
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Figure 13-3. Transaction lifetime

When a transaction needs to delete a row, it updates the EndTs timestamp with the
TransactionIld value. Remember that the transaction’s logical end time is unknown at
this phase, and therefore In-Memory OLTP uses the Transactionld as the temporary
value. The insert operation creates a new row with the BeginTs of the TransactionId
and the EndTs of Infinity. Finally, the update operation consists of delete and insert
operations internally. It is also worth noting that during data modifications, transactions
raise an error if there are any uncommitted versions of the rows they are modifying. It
prevents write/write conflicts when multiple sessions modify the same data.

When another transaction—call it Tx1—encounters uncommitted rows with a
TransactionId within the BeginTs and EndTs timestamps (TransactionId has a
flag that indicates such a condition), it checks the status of the transaction with that
TransactionId. If that transaction is committing and the logical end time is already set,
those uncommitted rows may become visible for the Tx1 transaction, which leads to
a situation called commit dependency. Tx1 is not blocked; however, it does not return
data to the client nor commit until the original transaction on which it has a commit
dependency commits itself. T will talk about commit dependencies shortly.

Let’s look at a transaction lifetime in detail. Figure 13-4 shows the data rows after
we created and populated the dbo.HKData table in Listing 13-3, where we inserted five
different rows into the table: (1,1), (2,2), (3,3), (4,4), (5,5).Let’sassume that
the rows were created by a transaction with the Global Transaction Timestamp of 5. (The
hash index structure is omitted for simplicity’s sake.)
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Figure 13-4. Data in the dbo.HKData table after insert

Let’s assume that the transaction performs the operations shown in Listing 13-4. The
explicit transaction has already started, and the BEGIN TRAN statement is not included in
the listing. All three statements are executing in the context of a single active transaction.

Listing 13-4. Data modification operations

insert into dbo.HKData with (snapshot) (ID, Col) values(10,10);
update dbo.HKData with (snapshot) set Col = -2 where ID = 2;
delete from dbo.HKData with (snapshot) where ID = 4;

Figure 13-5 illustrates the state of the data after data modifications. An INSERT
statement created a new row, a DELETE statement updated the EndTs value in the row
with ID=4, and an UPDATE statement changed the EndTs value of the row with ID=2
and created a new version of the row with the same ID. I am using a negative value of
TransactionId (-8) to indicate that the transaction is active and that a logical end time
has not yet been assigned.

It is important to note that the transaction maintains a write set, or pointers to
rows that have been inserted and deleted by a transaction, which is used to generate
transaction log records.

In addition to the write set, in the REPEATABLE READ and SERIALIZABLE isolation
levels, transactions maintain a read set of the rows read by a transaction and use it for
repeatable read validation. Finally, in the SERTALIZABLE isolation level, transactions
maintain a scan set, which contains information about predicates used by the queries in
the transaction. The scan set is used for serializable validation.
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Figure 13-5. Data in the dbo.HKData table after modifications

When a COMMIT request is issued, the transaction starts the validation phase. First,
it autoincrements the current Global Transaction Timestamp value, which becomes
the logical end time of the transaction. Figure 13-6 illustrates this state, assuming that
the new Global Transaction Timestamp value is 11. Note that the BeginTs and EndTs
timestamps in the rows still have TransactionId (-8) at this stage.
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Figure 13-6. Start of validation phase

As the next step, the transaction starts a validation phase. SQL Server performs
several validations based on the isolation level of the transaction, as shown in Table 13-7.
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Table 13-7. Yes/No Done in the Different Transaction Isolation Levels

Snapshot Validation Repeatable Read Serializable Validation
Validation

Checking for primary-key Checking for non-repeatable Checking for phantom

violations reads reads
SNAPSHOT  YES NO NO
REPEATABLE  YES YES NO
READ
SERIALIZABLE YES YES YES

Important Repeatable read and serializable validations add overhead to the
system. Do not use REPEATABLE READ and SERIALIZABLE isolation levels
unless you have a legitimate use case for such data consistency.

After the required rules have been validated, the transaction waits for the commit
dependencies to clear and the transaction on which it depends to commit. If those
transactions fail to commit for any reason—for example, validation rules violation—the
dependent transaction is also rolled back, and an Error 41301 is generated.

At this moment, the rows modified by transactions become visible to other
transactions in the system even though the transaction has yet to be committed, which
can lead to commit dependencies. Again, we will talk about them shortly.

Figure 13-7 illustrates a commit dependency scenario. Transaction Tx2 can access
uncommitted rows from transaction Tx1 during the Tx1 validation and commit phases,
and therefore Tx2 has a commit dependency on Tx1. After the Tx2 validation phase is
complete, Tx2 has to wait for Tx1 to commit and the commit dependency to clear before
entering the commit phase.
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Figure 13-7. Commit dependency: Successful commit

If Tx1, for example, failed to commit due to a serializable validation violation, Tx2
would be rolled back with Error 41301, as shown in Figure 13-8.
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Figure 13-8. Commit dependency: Validation error

A commit dependency is technically a case of blocking in In-Memory

OLTP. However, the validation and commit phases of the transactions are relatively
short, and such blocking should not be excessive.

SQL Server allows a maximum of eight commit dependencies on a single

transaction. When this number is reached, other transactions that try to take a

dependency would fail with Error 41839.
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Note You can track commit dependencies using the dependency
acquiredtx_event and waiting for dependenciestx_event Extended
Events.

When all commit dependencies are cleared, the transaction moves to the commit
phase, generates one or more log records, saves them to the transaction log, then moves
to the post-commit phase.

It is worth noting that In-Memory OLTP transaction logging is significantly more
efficient than that for disk-based tables. The In-Memory OLTP Engine combines
multiple data modifications in one or a few transaction log records and writes them to
the transaction log only if the transaction has been successfully committed. Nothing is
logged for rolled-back transactions.

In the post-commit phase, the transaction replaces BeginTs and EndTs timestamps
with the logical end time value and decrements commit dependencies counters in the
dependent transactions. Figure 13-9 illustrates the final state of the transaction.
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Transactionld: -8
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Figure 13-9. Completed transaction

Finally, if a transaction is rolled back either due to an explicit ROLLBACK command
or because of a validation violation, In-Memory OLTP resets the EndTs timestamp of the
deleted rows back to Infinity. The new versions of the rows inserted by the transaction
become ghosted. They will be deallocated by the regular garbage-collection process
running in the system.
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Referential Integrity Enforcement

It is impossible to enforce referential integrity in pure SNAPSHOT isolation level because
transactions are completely isolated from each other. Consider a situation where a
transaction deletes a row that is referenced by a newly inserted row in another transaction
that started after the original one. This newly inserted row would be invisible to the
SNAPSHOT transaction that executes the DELETE statement during referential integrity check.

In-Memory OLTP addresses this problem by maintaining read and/or scan sets in
the SNAPSHOT isolation level for the tables and queries that were affected by referential
integrity validation.

In contrast to REPEATABLE READ and SERIALIZABLE transactions, those read and scan
sets are maintained only for affected tables rather than for entire transactions. They,
however, would include all rows that were read and all predicates that were applied
during the referential integrity check.

This behavior can lead to issues when the referencing table does not have an index
on the foreign key column(s). Similar to disk-based tables, SQL Server will have to scan
the entire referencing (detail) table when you delete a row in the referenced (master)
table. In addition to performance impact, the transaction will maintain the read set,
which includes all rows it read during the scan, regardless of whether those rows
referenced the deleted row. If any other transactions update or delete any rows from the
read set, the original transaction would fail with a repeatable read rule violation error.

Let’s look at the example and create two tables with the code in Listing 13-5.

Listing 13-5. Referential integrity validation: Tables creation

create table dbo.Branches

(
BranchId int not null
constraint PK Branches
primary key nonclustered hash with (bucket count = 4)
)

with (memory optimized = on, durability = schema_only);

create table dbo.Transactions

(

TransactionId int not null
constraint PK Transactions
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primary key nonclustered hash with (bucket_count = 4),
BranchId int not null

constraint FK Transactions Branches

foreign key references dbo.Branches(BranchId),
Amount money not null

)

with (memory optimized = on, durability = schema_only);

insert into dbo.Branches(BranchId) values(1),(10);
insert into dbo.Transactions(TransactionId,BranchId,Amount)
values(1,1,10),(2,1,20);

The dbo.Transactions table has a foreign key constraint referencing the dbo.
Branches table. There are no rows, however, referencing the row with BranchId = 10.
As the next step, let’s run the code shown in Listing 13-6, deleting this row from the dbo.
Branches table and leaving the transaction active.

Listing 13-6. Referential integrity validation: First session code

begin tran
delete from dbo.Branches with (snapshot) where BranchId = 10;

The DELETE statement would validate the foreign key constraint and would complete
successfully. The dbo.Transactions table, however, does not have an index on the
BranchId column, and the validation will need to scan the entire table, as you can see in
Figure 13-10.

= =] o 0= &

DELETE Assert {L:::‘Zd “f’°§p? ] Table Delete I“"[es" 5“: ‘]N°[“P‘:;":‘e“::“"]’h}
eml oin. ranches) . ranc s
H = = 7 -
Cost: 0 % Cosz: 1 % Cost: 15 & Cosz: 7 % Cost: 61 %
Filter

Restricting the set of rows based on a predicate, ! I

=
Predicate » Filger [ _Teble Scan

[InMernoryOLTP2016].[dbo].Transactions).[Branchid]= Cost: 1 % (Fransacrions]
[InhemoryOLTP2016].[dbo].[Branches].[Branchld] -

Figure 13-10. Referential integrity validation: Execution plan of DELETE
statement

292



CHAPTER 13 IN-MEMORY OLTP CONCURRENCY MODEL

At this time, all rows from the dbo.Transactions table would be included in the
transaction read set. If another session updated one of the rows from the read set with
the code shown in Listing 13-7, it would succeed, and the first session would fail to
commit, offering a repeatable read rule violation error.

Listing 13-7. Referential integrity validation: Second session code

update dbo.Transactions with (snapshot)
set Amount = 30
where Transactionld = 2;

Important Similar to disk-based tables, you should always create an index on
the foreign key columns in the referencing table to avoid this problem.

Additional Resources

In-Memory OLTP is a fascinating technology that may significantly improve the
performance and scalability of OLTP systems. This chapter focused on only one aspect
of the technology—the In-Memory OLTP Concurrency Model—and did not even scratch
the surface of other technology areas.

I have published another book with Apress, Expert SQL Server In-Memory OLTP,
which provides a deep overview of the technology. You might consider reading it if you
are planning to utilize In-Memory OLTP in your systems. The first edition focuses on
SQL Server 2014 implementation. The second edition covers SQL Server 2016 and 2017’s
technology enhancements.

Summary

In-Memory OLTP supports three transaction isolation levels, SNAPSHOT, REPEATABLE
READ, and SERTALIZABLE. In contrast to disk-based tables, where non-repeatable

and phantom reads are addressed by acquiring and holding locks, In-Memory OLTP
validates data-consistency rules at the transaction commit stage. An exception will be
raised and the transaction will be rolled back if rules were violated.
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Repeatable read validation and serializable validation add overhead to transaction
processing. It is recommended to use the SNAPSHOT isolation level during a regular
workload unless REPEATABLE READ or SERIALIZABLE data consistency is required.

SQL Server performs repeatable read and serializable validations to enforce
referential integrity in the system. Always create an index on the foreign key columns in
the referencing tables to improve performance and avoid validation errors.

You can use different transaction isolation levels for disk-based and memory-
optimized tables in cross-container transactions; however, not all combinations are
supported. The recommended practice is to use the READ COMMITTED isolation level for
disk-based and the SNAPSHOT isolation level for memory-optimized tables.
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Locking in Columnstore
Indexes

Columnstore indexes are a type of index that stores data on a per-column rather than
per-row basis. This storage format benefits query processing in data warehousing,
reporting, and analytics environments where, although queries typically read a very
large number of rows, they work with just a subset of the columns from a table.

This chapter will provide an overview of column-based storage and discuss the
locking behavior of columnstore indexes and their usage in OLTP systems.

Column-Based Storage Overview

Even though every database system is unique, there are two generic workloads—OLTP
and Data Warehouse. OLTP, which stands for Online Transactional Processing, describes
systems that support the operational activity of a business. Such systems usually handle a
large number of simultaneous requests in short transactions and deal with volatile data.

Data Warehouse systems, on the other hand, support the reporting and analytical
activities of a business. The data in these systems is relatively static and is often
updated based on some schedule. The queries are complex, and they usually perform
aggregations and process large amounts of data.

For example, consider a company that sells items to customers. A typical OLTP
query from the company’s point-of-sale (POS) system might have the following
semantic: Provide a list of orders that were placed by this particular customer this month.
Alternatively, a typical query in a Data Warehouse system might read as follows: Provide
the total amount of sales year to date, grouping the results by item category and customer
region.
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The separation between OLTP and Data Warehouse systems is relatively thin
though. Almost every OLTP system has some reporting queries. It is also not uncommon
to see OLTP queries in Data Warehouse systems. Finally, there is another category of
tasks called Operational Analytics, which run analytical queries against kot OLTP data.
Think about a point-of-sale system in which you want to monitor up-to-date sales and
dynamically adjust items’ sale price based on their popularity.

Performance tuning a system with a mixed workload is not a trivial task. OLTP and
Data Warehouse queries would take advantage of different database schema designs and
indexing strategies, and they may also benefit from different storage technologies.

In the classic row-based storage format, the data from all columns is stored together
in a single data row object. This approach works great in cases with volatile data—the
data from all columns is grouped together, and INSERT, UPDATE, and DELETE operations
may be done as a single action. B-Tree indexes are good for OLTP workload, when
queries typically deal with one or just a handful of rows from large tables.

Row-based storage, however, is not optimal for Data Warehouse queries that scan
alarge amount of data. Such queries usually work with just a subset of the columns
from a table, and it is impossible to avoid reading entire data row objects while skipping
unnecessary columns.

Data compression may help to reduce the size of the data and I/O overhead.
However, with row-based storage, PAGE compression works on a data-page scope. The
data from different columns is not similar enough for compression to be effective, and
PAGE compression rarely compresses the data more than 2 or 2.5 times.

SQL Server 2012 introduced a new type of index-the columnstore index-which keeps
data in a column-based storage format. These indexes store data on a per-column rather
than on a per-row basis. Data in each column is stored together, separate from other
columns, as shown in Figure 14-1.

Column-based r “Dateid 1 Articleld Branchld Orderld Quantity UnitPrice
storage :': """" e e Y e S b et EE L T L s
(Columnstore 11| 51 ||| 32 | 10 35412 [ | 5.000 | | $25.99 |:\
indexes) ”I' ——————— -: —————————————————————————————————————————————— a
—i| = m 18 ‘ 3 35413 [ ‘ 1.000 ‘ ‘ $9.99 ‘ Row-based
i s2 ‘ | ‘ 7 ‘ 4 35414 l ‘ 1.000 ‘ ‘ $199.99 ] shorkge
1 1 2 ' (B-Tree
i 52 m 18 ‘ 10 35415 l [ 2.000 ‘ [ $9.49 ‘ indexes)

Figure 14-1. Row-based and column-based storage
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Data in columnstore indexes is heavily compressed using algorithms that provide
significant space savings, even when compared to PAGE compression. Moreover, SQL
Server can skip columns that are not requested by a query, and it does not load the data
from those columns into memory, significantly reducing the I/0 footprint of the query.

Moreover, the new data storage format of columnstore indexes allows SQL Server
to implement a new batch mode execution model. In this model, SQL Server processes
data in groups of rows, or batches, rather than one row at a time. The size of the batches
varies to fit into the CPU cache, which reduces the number of times that the CPU needs
to request external data from memory, or other components. All these enhancements
significantly reduce the CPU load and execution time of Data Warehouse queries.

Columnstore indexes are a relatively new feature in SQL Server and have been
evolving rapidly. Initial implementation in SQL Server 2012 supported just read-only
nonclustered columnstore indexes that stored a copy of the data from a table in a column-
based storage format. Those indexes essentially made tables read-only, and the only way
to import data was via partition switch. We are not going to discuss those indexes; from a
locking standpoint, their behavior was straightforward.

As of SQL Server 2014, you can create tables with clustered columnstore indexes
and store entire tables in a column-based storage format. These indexes are updatable;
however, you cannot define any nonclustered indexes on those tables.

This limitation has been removed in SQL Server 2016, where you can utilize
different storage technologies for the indexes defined on a table. You can support a
mixed workload by creating nonclustered B-Tree indexes on the tables with clustered
columnstore indexes or, alternatively, you can create updateable nonclustered
columnstore indexes on B-Tree tables. It is worth noting that you can create columnstore
indexes in memory-optimized tables, thus improving the performance of Operational
Analytics queries in In-Memory OLTP.

Columnstore Index Internals Overview

Each data column in column-based storage is stored separately in a set of structures
called row groups. Each row group stores data for up to approximately one million—

or, to be precise, 2°20=1,048,576—rows. SQL Server tries to populate row groups
completely during index creation, leaving the last row group partially populated. For
example, if a table has five million rows, SQL Server creates four row groups of 1,048,576
rows each and one row group with 805,696 rows.
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In practice, you can have more than one partially populated row group when
multiple threads create columnstore indexes using a parallel execution plan. Each
thread will work with its own subset of data, creating separate row groups. Moreover, in
the case of partitioned tables, each table partition will have its own set of row groups.

After row groups are built, SQL Server encodes and compresses the column data in
each row group. The rows within a row group can be rearranged if that helps to achieve a
better compression rate.

Column data within a row group is called a segment. SQL Server loads an entire
segment to memory when it needs to access columnstore data. SQL Server also keeps
information about data in the segments’ metadata—for example, minimum and
maximum values stored in the segment—and can skip the segments that do not have the
required data.

The data that belong to the same data row are identified by the offset within the
segments. For example, the first row in the table consists of the first values from all
segments from the first row group on the first table partition. The second row consists
of the second values from all segments from the same row group, and so forth. The
combination of partition_id, row_group_id, and offset uniquely identifies the row
and is called a row-1id in columnstore indexes.

The data in columnstore indexes is heavily compressed and can introduce significant
space savings compared to page compression. It is common to see column-based
storage providing a more than 10X compression rate over the row-based data. Moreover,
SQL Server 2014 introduced another compression option called archival compression
that reduces storage space even further. It uses the Xpress 8 compression library, which
is an internal Microsoft implementation of the LZ77 algorithm. This compression works
directly with row-group data without having any knowledge of the underlying SQL
Server data structures.

Updateable columnstore indexes have two additional elements to support data
modifications. The first is the delete bitmap, which stores the row-1id of the rows that
were deleted from a table. The second structure is the delta store, which stores the newly
inserted rows. In disk-based columnstore indexes, both the delta store and the delete
bitmap are implemented as regular heap tables.
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Note The internal structure of columnstore indexes defined on memory-
optimized tables is conceptually the same; however, the delta store and delete
bitmap are implemented differently. Such indexes support In-Memory OLTP multi-
version concurrency control and do not introduce any locking in memory-optimized
tables. You can read more about them in my Expert SQL Server In-Memory OLTP
book; we are not going to focus on them in this book.

Figure 14-2 illustrates the structure of an updateable columnstore index in a table
that has two partitions. Each partition can have a single delete bitmap and multiple
delta stores. This structure makes each partition self-contained and independent from
other partitions, which allows you to perform a partition switch on tables that have

columnstore indexes defined.
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Figure 14-2. Updateable columnstore index structure

It is worth noting that delete bitmaps and delta stores are created on-demand. For
example, a delete bitmap would not be created unless some of the rows in the row
groups were deleted.

Every time you delete a row that is stored in a compressed row group (not in a delta
store), SQL Server adds information about the deleted row to the delete bitmap. Nothing
happens to the original row. It is still stored in a row group. However, SQL Server checks
the delete bitmap during query execution, excluding deleted rows from the processing.
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As already mentioned, when you insert data into a columnstore index, it goes into
a delta store, which is a heap table. Updating a row that is stored in a row group does
not change the row data either. Such an update triggers the deletion of a row, which is,
in fact, insertion into a delete bitmap marking old version as deleted, and insertion of a
new version of the row into a delta store. However, any data modifications of the rows in
a delta store are done in-place as in regular heap tables by updating and deleting actual
rows there.

Each delta store can be in either an open or a closed state. Open delta stores accept
new rows and allow modifications and deletions of data. SQL Server closes a delta store
when it reaches 1,048,576 rows, which is the maximum number of rows that can be
stored in a row group. Another SQL Server process, called tuple mover, runs every five
minutes and converts closed delta stores to row groups that store data in a column-
based storage format.

Both large delta stores and delete bitmaps may affect query performance. SQL Server
must access delete bitmaps to check if compressed rows were deleted, and it reads the
rows from delta stores during query execution. Consider rebuilding indexes on affected
partitions if ETL processes lead to large delta stores and delete bitmaps.

Tip You can examine the state of row groups and delta stores with the sys.
column_store_row_groups view. Rows in an OPEN or CLOSED state
correspond to delta stores. Rows in a COMPRESSED state correspond to row groups
with data in a column-based storage format. Finally, the deleted rows column
provides statistics about deleted rows stored in a delete bitmap.

Locking Behavior in Columnstore Indexes

Storage space savings and the updateable nature of clustered columnstore indexes make
them appealing as a replacement for large transactional tables in OLTP environments.
Their locking behavior, however, is very different than that of B-Tree indexes, and it may
not scale well in environments with a large number of concurrent transactions.

Let’s look at a few examples. As a first step, shown in Listing 14-1, we will create a table
with a clustered columnstore index and insert about four million rows there. After the
columnstore index is created, we will try to insert another row into the table, rolling back
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the transaction afterward. This will create an empty delta store in the index. Finally, we
will analyze the state of the row groups using the sys.column_store row_groups view.

Listing 14-1. Creating a test table

create table dbo.Test
(
ID int not null,
Col int not null

)5

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
,N5(C) as (select 0 from N4 as T1 cross join N4 as T2 ) -- 65,536 rows
,N6(C) AS (select 0 from N5 as T1 cross join N3 as T2 cross join N2 as T3)
-~ 4,194,304 TOWS
,IDs(ID) as (select row number() over (order by (select null)) from N6)
insert into dbo.Test(ID, Col)

select ID, ID from IDs;

create clustered columnstore index CCI Test
on dbo.Test
with (maxdop = 1);

begin tran
insert into dbo.Test(ID, Col) values(-1,-1);
rollback

go
select *

from sys.column_store row_groups
where object id = object id(N'dbo.Test');

Figure 14-3 illustrates the output from the view. Four row groups in a COMPRESSED state
store the data in a column-based format. An empty row group with row_group_id = 4in
the OPEN state is in the delta store.
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object_id index_id pardition_number row_group_id delta_store_hobt_id state slale_description tolal_rows deleted_rows size_in_bytes
1 981578535 1 1 4 5260204372965785600 1 OPEN 0 NULL 16384
2 981578535 1 1 3 NULL 3 COMPRESSED 1048576 0O 5593584
3 981578535 1 1 2 NULL 3 COMPRESSED 1048576 0 5593584
4 981578535 1 1 1 NULL 3 COMPRESSED 1048576 0O 5593584
5 981578535 1 1 0 NULL 3 COMPRESSED 1048576 0 5593584

Figure 14-3. Row groups after table was created

Now, let’s run a few tests and analyze the locking behavior of the index.

Inserting Data into Clustered Columnstore Index

Columnstore indexes support two types of data load. The first, and most efficient,
method requires you to utilize a BULK INSERT API for loading data in large batches. In
this mode, SQL Server creates a new row group for each batch, compressing data into
a column-based format on the fly. Since every batch becomes an individual row group,
multiple inserts would not block each other and could run in parallel.

The minimum size of the batch that triggers this behavior is about 102,000 rows;
however, you will get the best results if you use batches that match the maximum row
group size, which is 1,048,576 rows.

With smaller batches and single-row inserts, SQL Server uses trickle inserts, placing
data into delta stores. Each table partition will have separate delta stores, and in some
cases you may have several open delta stores per partition. SQL Server closes the delta
store and compresses its data into a column-based format when it reaches 1,048,576
rows or when you run an index rebuild operation.

Let’s insert a single row into a table and then analyze what locks get acquired during
the process. The code is shown in Listing 14-2.

Listing 14-2. Inserting data into the table

begin tran
insert into dbo.Test(ID, Col)
values(-1,-1);

select
resource_type, resource description
,request mode, request status
,resource_associated entity id
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from sys.dm tran locks
where
request _session _id = @@SPID;
rollback

As you can see in Figure 14-4, the locking behavior is similar to locking in heap
tables. SQL Server acquired an exclusive (X) lock on the newly inserted row, along with
intent exclusive (IX) locks on the page and HOBT (allocation unit). It also acquired an

intent exclusive (IX) lock on the row group, which is conceptually similar to the object-
level lock on the table.

resource_type  resource_description request_mode request_status resource_associated_entity_id
1 PAGE 5:83264 IX GRANT 5260204372965785600
2 ROWGROUP ROWGROUP: 2:47000001#33!:30000& IX GRANT 5116089184808009728
3 HOBT IX GRANT 5260204372965785600
4 KEY (8154443284a0) X GRANT 5260204372965785600

Figure 14-4. Locks acquired by INSERT operation

As you can guess, this behavior indicates that you may scale the insert workload in
a way similar to how you do so with heap tables. Multiple sessions can insert data in
parallel without blocking each other.

Updating and Deleting Data from Clustered Columnstore
Indexes

The situation changes when you update or delete data in the table. Unfortunately, this
workload does not scale as well as inserts do.

Let’s update one row in the table using the code from Listing 14-3. As you may
remember, when a row is stored in a delta store, this operation is done in-place. Updating
an already compressed row, on the other hand, will lead to two operations—marking a

row as deleted by inserting the row-1id into the delete bitmap and inserting a new version
of the row into a delta store.
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Listing 14-3. Updating data in the table

begin tran
update dbo.Test
set Col += 1
where ID=1;

select
resource_type, resource description
,request mode, request status
,resource_associated entity id

from sys.dm tran locks

where
request_session id = @@SPID

rollback

Figure 14-5 shows the locks that are held after the operation. You can see exclusive
(X) and intent exclusive (IX) locks acquired on the delta store and delete bitmap objects
(both are heap tables). However, the row groups and HOBT of the delta store are
protected with update intent exclusive (UIX) rather than intent exclusive (IX) locks.

resource_type  resource_description request_mode request_status resource_associated_entity_id
1 PAGE 1:100480 IX GRANT 5188146778886897664
2 PAGE 5:83264 IX GRANT 5260204372965785600
3 KEY (5e7c853b854b) X GRANT 5188146778886897664
4 ROWGROUP ROWGROUP: 2:47000001e3030000:0 | UIX GRANT 5116089184808009728
5 ROWGROUP ROWGROUP: 2:47000001e3b30000:4 | UIX GRANT 5116089184808009728
6 HOBT IX GRANT 5188146778886897664
7 HOBT UIX GRANT 5260204372965785600
8 KEY (61a06abd401c) X GRANT 5260204372965785600

Figure 14-5. Locks acquired by UPDATE operation

The same pattern would occur if you deleted a compressed row from a table.
Listing 14-4 shows the code that performs that.
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Listing 14-4. Deleting data from the table

begin tran
delete from dbo.Test where ID=1;

select
resource type, resource description
,request mode, request status
,resource_associated entity id

from sys.dm tran_ locks

where
request_session_id = @@SPID

rollback

Figure 14-6 shows the locks held after the DELETE statement. This operation does not
touch the delta store, and only the delete bitmap is affected. Nevertheless, there is still an
update intent exclusive (UIX) lock on the row group from which we deleted the row.

resource_type resource_description request_mode request_status resource_associated_entity_id
1 PAGE 1:100480 IX GRANT 5188146778886897664
2 KEY (52 7c853b854b) X GRANT 5188146778886897664
3 ROWGROUP ROWGROUP: 2:47000001e3530000:0 GRANT 5116089184808009728
4 HOBT IX GRANT 51881467788868397664

Figure 14-6. Locks acquired by DELETE operation

The reason why SQL Server uses update intent exclusive (UIX) locks is simple. The
data in columnstore indexes is not sorted, and SQL Server has to scan it during query
execution. Partition and segment elimination may allow SQL Server to skip some row
groups; however, when a row group is scanned, SQL Server acquires an update intent
exclusive (UIX) lock on it and runs an update scan, reading all rows from there.

Figure 14-7 proves that by showing the execution plan of the UPDATE statement from
Listing 14-3. You can see the Columnstore Index Scan operator there.

”l +
"% . 2 [t ;) ™
CPDATE ‘ Coh_r-uwn ;cn:n; Update * Soxt Split ‘ Compute Scalaz Colum-u:; Indcxccsxcn: (Clustered)
Cost: 0 % (Test) . (CCT_Test) Cost: 1%  Cost: 0% Cost: 15 % (Test). [CCI_Test)
Cost: 1 % Cost: 84 %

Figure 14-7. Execution plan of UPDATE statement
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Unfortunately, update intent exclusive (UIX) locks are incompatible with each other.
Moreover, they are held until the end of the transaction. This means that concurrent
update and delete workloads could introduce a large amount of blocking and would not
scale well in OLTP systems.

SQL Server 2016 and above allow you to create nonclustered B-Tree indexes on
clustered columnstore index tables. Those indexes can eliminate update scans of
column-based data by using Nonclustered Index Seek and Key Lookup operations.

Note The key lookup operations on clustered columnstore and B-Tree indexes
are conceptually similar. SQL Server locates a row in a clustered columnstore index
based on partition_id, row group id, and offset from the row-id.

Let’s create the index using the CREATE NONCLUSTERED INDEX Idx Test ID ON
dbo.Test(ID) statement and run the code from Listing 14-3 again. Figure 14-8 illustrates
an execution plan of the UPDATE statement with Nonclustered Index Seek and Key Lookup
operations.

s i ™ i ¥ 3 i@ d

Index Update Colusnstore lndex Update Kested Loops Index Seek (NonClustered)

UPDATE
otz § § [Test). [IDX_Tes:_ID) [Test) . [OCI_Test) (Irner Join) (Test] . (IDX_Test_ID)

. .
Cose: 26 % Cost: 26 % ’ = e Cost: 0 % Cost: § %

a|
Key Lookup (Clustered)
(Test] . [CCI_Test)

Cosz: 8 %

Figure 14-8. Execution plan of UPDATE statement with nonclustered index

Figure 14-9 shows the locks that were held after this UPDATE statement. As you can
see, SQL Server did not acquire update intent exclusive (UIX) locks on the row groups,
using intent exclusive (IX) locks instead. This lock type is compatible with intent locks
from other sessions.
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resource_type  resource_description request_mode request_status resource_associated_entity_id
1 PAGE 1:100480 IX GRANT 5188146778886897664
2 KEY (8669c8752e62) X GRANT 5476377155202449408
3 KEY (5¢7c853b854b) X GRANT 5188146778886897664
4 KEY (5f2%9acedd944) X GRANT 5476377155202449408
5 ROWGROUP ROWGROUP: 2:47000001e3b30000:0 | IX GRANT 5116089184808009728
6 ROWGROUP ROWGROUP: 2:47000001e3b30000:5 | IX GRANT 5116089184808009728
7 HOBT IX GRANT 5188146776886897664
8 PAGE 5:92128 X GRANT 5332261967044673536
9 HOBT X GRANT 5332261967044673536
10 KEY (98ec012aa510) X GRANT 5332261967044673536
11 PAGE 5:95200 IX GRANT 5476377155202449408

Figure 14-9. Locks held by UPDATE statement with nonclustered index

Even though you can fechnically scale update and delete workloads with
nonclustered B-Tree indexes, this approach is dangerous. The choice of using a
nonclustered index would depend on index selectivity and the query. SQL Server may
decide to scan a columnstore index if it expects that a large number of Key Lookups is
required, which will lead to blocking in the system.

Nonclustered Columnstore Indexes

SQL Server 2016 and above allow you to create nonclustered columnstore indexes on
B-Tree tables. These indexes persist a copy of the data in column-based format, thus
helping to optimize Operational Analytics and reporting workloads in OLTP systems. In
contrast to SQL Server 2012 implementation, these indexes are updatable and do not
make a table read-only.

Listing 14-5 shows the code that drops a clustered columnstore index on the dbo.
Test table, creating clustered B-Tree and nonclustered columnstore indexes after that.
As before, we are running an INSERT statement and rolling back the transaction to create
an empty delta store in the index.

Listing 14-5. Creating nonclustered columnstore index on table
drop index IDX Test ID on dbo.Test;
drop index CCI Test on dbo.Test;

create unique clustered index CI Test ID
on dbo.Test(ID);
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create nonclustered columnstore index NCCI_Test
on dbo.Test(ID,Col)
with (maxdop=1);

begin tran
insert into dbo.Test(ID, Col) values(-1,-1);
rollback

Figure 14-10 shows the output of the sys.column_store_row_groups view for the
NCCI_TestDataindex. The data in the table remain the same, and the index consists of
four compressed row groups and an empty delta store.

object_id index_id parition_number row_group_id delta_store_hobt_id state  stale_description total_rows deleted_rows size_in_bytes
1 981578535 3 1 4 6269010690070216704 1 OPEN 0 NULL 16384
2 981578535 3 1 3 NULL 3 COMPRESSED 1048576 0O 5593584
3 981578535 3 1 2 NULL 3 COMPRESSED 1048576 0 5593584
4 981578535 3 1 1 NULL 3 COMPRESSED 1048576 O 5593584
5 981578535 3 1 0 NULL 3 COMPRESSED 1048576 0 5593584

Figure 14-10. Row groups in nonclustered columnstore index

Figure 14-11 shows the locks held when you run the code from Listing 14-3 with
the UPDATE statement again. SQL Server tracks the row locations in the nonclustered
columnstore index through another internal structure called a delete buffer, which maps
the values of clustered index keys and columnstore row- ids. This allows SQL Server to
avoid update scans on column-based storage and to use intent exclusive (IX) rather than
update intent exclusive (UIX) locks.

resource_type  resource_description request_mode request_status  resource_associated_entity_id
1 HOBT IX GRANT 6124895501912440832
2 HOBT IX GRANT 6265010690070216704
3 KEY (8194443284a0) X GRANT 6269010690070216704
4 PAGE 3:9792 IX GRANT 5620492343360225280
5 KEY (1a2ef5c35ba2) X GRANT 6124895501912440832
6 KEY (8194443284a0) X GRANT 5620492343360225280
7 ROWGROUP  ROWGROUP: 2:5300000200600000:4 IX GRANT 5580780313754664360
8 PAGE 5:128920 IX GRANT 6269010690070216704
9 PAGE 1:129184 IX GRANT 6124895501912440832

Figure 14-11. Locks held after UPDATE statement

Nonclustered columnstore indexes have been designed to work in OLTP workloads,
and they would scale well without introducing additional concurrency issues in the system.
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Tuple Mover and ALTER INDEX REORGANIZE Locking

Finally, let’s look at the locking behavior of the tuple mover process and the ALTER INDEX
REORGANIZE operation. Both of them compress closed delta stores into compressed row
groups and essentially do the same thing; however, their implementation is slightly
different. Tuple mover is a single-threaded process that works in the background,
preserving system resources. Alternatively, index reorganizing runs in parallel using
multiple threads.

SQL Server acquires and holds a shared (S) lock on the delta store during the
compression process. These locks do not prevent you from selecting the data from a
table, nor do they block inserts. New data will be inserted into different and open delta
stores; however, deletions and data modifications on locked delta stores would be
blocked for the duration of the operation.

Figure 14-12 illustrates lock_acquired and lock_released Extended Events taken on
delta stores during the ALTER INDEX REORGANIZE command. You can see the shared (S)
locks taken during the operation.

name timestamp resource_type mode associated_object_id
1 lock_acquired  2018-04-28 12:42:10.6423834 +00:00 HOBT S 72057594046578688
2 lock_released  2018-04-28 12:42:12.2846233 +00:00 HOBT S 72057594046578688
3 lock_acquired  2018-04-28 12:42:12.2879180 +00:00 HOBT S 72057594046644224
4 lock_released  2018-04-28 12:42:13.8417023 +00:00 HOBT S 72057594046644224
5 lock_acquired  2018-04-28 12:42:13.9445742 +00:00 HOBT S 72057594046709760
6 lock_released  2018-04-28 12:42:15.5228468 +00:00 HOBT S 72057594046709760
7 lock_acquired  2018-04-28 12:42:15.5257147 +00:00 HOBT S 72057594046775296
8 lock_released  2018-04-28 12:42:17.1301706 +00:00 HOBT S 72057594046775296

Figure 14-12. Locking during ALTER INDEX REORGANIZE command

The associated object id column indicates delta store hobt id, which we can
confirm by analysing the sys.column_store row_groups view. Figure 14-13 shows the
state of the row groups after ALTER INDEX REORGANIZE has been completed. The row
groups in the TOMBSTONE state indicate delta stores that have just been compressed and
are waiting to be deallocated. As you can see, the delta store hobt id values of those
filegroups match resources on which shared (S) locks were taken.
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object_id row_group_id  delta_store_hobt_id state  state_descrption  total_rows deleted_rows size_in_bytes
1 693577509 10 NULL 3 COMPRESSED 1048576 O 5593584
2 693577509 9 NULL 3 COMPRESSED 1048576 O 5593584
3 693577509 8 NULL 3 COMPRESSED 1048576 0O 5593584
4 693577509 7 NULL 3 COMPRESSED 1048576 0O 5593584
5 693577509 6 NULL 3 COMPRESSED 1048576 0O 5593584
6 693577509 5 72057534046840832 1 OPEN 954120 NULL 21250048
7 693577509 4 720575%4046775296 | 4 TOMBSTONE 1048576  NULL 22405120
8 693577509 3 72057554046709760 | 4 TOMBSTONE 1048576  NULL 22405120
9 693577509 2 72057554046644224 | 4 TOMBSTONE 1048576  NULL 22405120
10 693577509 1 72057534046578688 | 4 TOMBSTONE 1048576  NULL 22405120

Figure 14-13. Row groups after ALTER INDEX REORGANIZE command

As you can guess, this behavior would not scale well with update and delete
workloads in OLTP systems.

Wrapping Up

While it is appealing to use clustered columnstore indexes to store data in OLTP
environments, this is rarely the best choice. Updateability in these indexes has been
designed to simplify ETL processes and perform infrequent data modifications. While
clustered columnstore indexes may handle append-only workloads, they would not
scale well in generic OLTP workloads with a large number of concurrent transactions
that modify data in the table.

You can still benefit from clustered columnstore indexes in OLTP systems. Many
of the systems need to retain data for a prolonged period of time, and the volatility
of the data and workload would change as the data becomes older. You can partition
the data across several tables, combining columnstore, B-Tree, and In-Memory OLTP
tables together with partitioned views. This will allow you to get the most from each
technology, thus improving system performance and reducing the size of the data in the
database.

Note | have discussed this architecture in detail, including the methods for data
movements between tables, in my Pro SQL Server Internals book.

310



CHAPTER 14  LOCKING IN COLUMNSTORE INDEXES

Summary

Columnstore indexes store data in a column-based format, persisting it on a per-column
rather than per-row basis. This approach may significantly improve the performance of
Data Warehouse, Operational Analytics, and reporting workloads in the system.

The data in columnstore indexes are heavily compressed. Clustered columnstore
indexes may provide significant storage-space reduction as compared to B-Tree tables.
They, however, do not scale well from a locking standpoint under OLTP workloads with
multiple concurrent sessions modifying the data in parallel. You should not use them as
areplacement for OLTP tables in such environments.

Finally, I would like to thank you again for reading this book! It was a pleasure to
write for Thank you!
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Pessimistic concurrency, 27
PES pages, 8
Phantom reads, 27, 65, 277, 279
Point-lookup, 16
PREEMPTIVE* wait types, see Wait types
Protocol layer, 226

Q

Query processor, 226
Query Store, 88, 238

INDEX

R

Range (Range*) locks, see Lock types

Range scan, 16

READ COMMITTED isolation level, see
Transaction isolation levels

READCOMMITTED locking hint, see
Locking hints

READ_COMMITTED_SNAPSHOT, see
Transaction isolation levels

READPAST locking hint, see Locking hints

Read set, 286

READ UNCOMMITTED isolation level,
see Transaction isolation levels

READUNCOMMITTED locking hint, see
Locking hints

READ UNCOMMITTED SNAPSHOT
isolation level, see Transaction
isolation levels

Referential integrity
enforcement, 291-293

REPEATABLE READ isolation level, see
Transaction isolation levels

REPEATABLEREAD locking hint, see
Locking hints

Repeatable read violation
error, 275, 291

RID Lookup, 20

ROLLBACK statement, 29

Root level in B-Tree, 12

Row-based storage, 296

Row chain, 271

row-id, 19, 298

Row group in columnstore indexes, 297

ROWLOCK locking hint, see Locking hints

ROW_OVERFLOW _DATA allocation unit, 3

Row versioning, 28, 260-263

Runnable task state, see Task state

Running task state, see Task state
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S

SARGable predicate, 16
Savepoint, 43
SAVE TRANSACTION statement, 43
Scan set, 286
Schedulers, 227
Schema Modification (Sch-M) lock, see
Lock types
Schema Stability (Sch-S) lock, see Lock
types
Segments in columnstore indexes, 298
SERIALIZABLE isolation level,
see Transaction isolation levels
SERIALIZABLE locking hint,
see Locking hints
Serializable violation error, 275, 280
SET ANSI_DEFAULT option, 33
SET DEADLOCK_PRIORITY
option, 110, 200
SET IMPLICIT_TRANSACTION
option, 33
SET LOCK TIMEOUT option, 69, 184
SET TRANSACTION ISOLATION LEVEL
option, 29, 63
SET XACT_ABORT option, 38, 69, 214
Shared intent exclusive (SIX) lock, see
Lock types
Shared intent update (SIU) lock,
see Lock types
Shared memory protocol, 226
Shared (S) lock, see Lock types
Singleton lookup, see Point-lookup
Skipped rows, 66
SNAPSHOT isolation level, see
Transaction isolation levels
Snapshot transactions performace
counter, see Performance counters
Snapshot violation error, 275
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sp_getapplock stored procedure, 203

Spinlock, 228

Spinloop task state, see Task state

sp_releaseapplock stored
procedure, 204

SQLOS, 227

Statement-level consistency, 140

Storage Engine, 1, 226

Suspended task state, see Task state

Synchronous commit in AlwaysOn
Availability Groups, 256-260

sys.column_store_row_groups view, see
Data management and
catalog views

sys.databases catalog view, see Data
management and catalog views

sys.dm_db_file_space_usage view, see Data
management and catalog views

sys.dm_db_index operational_stats
function, see Data management
and catalog views

sys.dm_db_index physical_stats function,
see Data management and catalog
views

sys.dm_db_index usage_stats view, see Data
management and catalog views

sys.dm_exec_buffer function, see Data
management and catalog views

sys.dm_exec_connections view, see Data
management and catalog views

sys.dm_exec_procedure_stats view, see
Data management and catalog
views

sys.dm_exec_query_plan function, see Data
management and catalog views

sys.dm_exec_query_plan_text function,
see Data management and
catalog views



sys.dm_exec_query_stats view, see Data
management and catalog views
sys.dm_exec_sessions view, see Data
management and catalog views
sys.dm_exec_session_wait_stats view,
see Data management and
catalog views
sys.dm_exec_sql_text function, see Data
management and catalog views
sys.dm_io_virtual file_stats function,
see Data management and
catalog views
sys.dm_os_exec_requests view, see Data
management and catalog views
sys.dm_os_waiting_tasks view, see Data
management and catalog views
sys.dm_os_wait_tasks view, see Data
management and catalog views
sys.dm_tran_locks view, see Data
management and catalog views
sys.dm_tran_version_store_space_usage
view, see Data management and
catalog views
sys.dm_tran_version_store view, see Data
management and catalog views
sys.tables catalog view, see Data
management and catalog views
system_health Extended Event
session, 122

T

Table Scan, 8
TABLOCK locking hint,

see Locking hints
TABLOCKX locking hint,

see Locking hints
Tabular data stream (TDS), 226

INDEX

Task state, 228
tempdb, 8, 28, 137
THROW operator, 37
Trace flags
T1118, 8
T1211,170
T1222, 122
T1223,170
T1229, 200
@@TRANCOUNT, 38, 41, 214
Transaction, 25-27
Transaction isolation levels
READ COMMITTED, 28, 59, 63, 138,
217, 239, 240, 282
READ COMMITTED SNAPSHOT, 28,
62, 138-140, 217, 239, 241
READ UNCOMMITTED, 28, 51, 58, 62,
140, 217, 241, 282
REPEATABLE READ, 28, 60, 63, 163,
217, 239, 240, 275, 282
SERIALIZABLE, 28, 61, 63, 141-142,
163, 217, 239, 240, 275, 282
SNAPSHOT, 62, 140-146, 218, 241, 260,
275, 282
Transaction-level consistency, 140
Transaction lifetime in In-Memory
OLTP, 284-290
Transaction logging, 30
Transactionld in In-Memory OLTP, 284
TRY..CATCH block, 36
Tuple mover, 300, 309-310

U

Uncommittable transaction, 37

Uniform extents, 7

Update conflict ratio performace counter,
see Performance counters
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Update intent exclusive (UIX) lock,
see Lock types
Update (U) lock, see Lock types
UPDLOCK locking hint,
see Locking hints

\'

Validation phase of In-Memory OLTP
transaction, 287

Version cleanup rate (KB/s) performace
counter, see Performance counters

Version generation rate (KB/s)
performace counter, see
Performance counters

Version pointer, 137

Version store, 28, 137, 147-152, 260

Version store clean-up task, 141

Version store size (KB) performace
counter, see Performance counters

w

WAIT_AT_LOW_PRIORITY option, 186

wait_info Extended Event, see Extended
events

wait_info_external Extended Event, see
Extended events
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waiting_for_dependency_acquiredtx_
event Extended Event, see
Extended events
Wait statistics analysis, 225
Wait types
CXPACKET, 236
DBMIRROR_SEND, 260
HADR_SYNC_COMMIT, 257
LCK_M_I*%, 165, 241-242
LCK_M_S, 75, 239
LCK_M_SCH?*, 240-241
LCK_M_U, 235-238
LCK_M_X, 239-240
PAGEIOLATCH?, 235
PAGELATCH*, 270
PREEMPTIVE*, 246
Workers, see Worker threads
Worker threads, 227
Write-ahead logging, 26, 30
Write-write conflict, 27, 280
Write set, 286

XY Z

XACT_STATE() function, 37

XLOCK locking hint, see Locking hints

xml_deadlock_report Extended Event, see
Extended events
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