
Expert SQL Server
Transactions and
Locking

Concurrency Internals for SQL Server
Practitioners
—
Dmitri Korotkevitch

www.allitebooks.com

http://www.allitebooks.org

Expert SQL Server
Transactions and Locking

Concurrency Internals for
SQL Server Practitioners

Dmitri Korotkevitch

www.allitebooks.com

http://www.allitebooks.org

Expert SQL Server Transactions and Locking

ISBN-13 (pbk): 978-1-4842-3956-8			 ISBN-13 (electronic): 978-1-4842-3957-5
https://doi.org/10.1007/978-1-4842-3957-5

Library of Congress Control Number: 2018958877

Copyright © 2018 by Dmitri Korotkevitch

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, email orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please email rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484239568. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Dmitri Korotkevitch
Land O Lakes, Florida, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3957-5
http://www.allitebooks.org

To my friends from Chewy.com: Thanks for all the excitement
you bring to my life nowadays!

www.allitebooks.com

http://www.allitebooks.org

v

Chapter 1: �Data Storage and Access Methods�� 1

Anatomy of a Table��� 2

Heap Tables�� 8

Clustered Indexes and B-Trees�� 11

Composite Indexes��� 17

Nonclustered Indexes�� 18

Indexes with Included Columns��� 22

Summary��� 24

Chapter 2: �Transaction Management and Concurrency Models������������������������������ 25

Transactions��� 25

Pessimistic and Optimistic Concurrency�� 27

Transaction Isolation Levels��� 28

Working with Transactions��� 29

Transaction Types��� 29

Error Handling�� 34

Nested Transactions and Savepoints�� 41

Summary��� 46

About the Author�� xi

About the Technical Reviewer�� xiii

Acknowledgments��xv

Introduction..xvii

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

vi

Chapter 3: �Lock Types��� 47

Major Lock Types��� 47

Exclusive (X) Locks��� 50

Intent (I*) Locks�� 51

Update (U) locks��� 53

Shared (S) locks��� 55

Lock Compatibility, Behavior, and Lifetime��� 57

Transaction Isolation Levels and Data Consistency��� 64

Locking-Related Table Hints�� 66

Conversion Locks��� 69

Summary��� 72

Chapter 4: �Blocking in the System�� 73

General Troubleshooting Approach�� 73

Troubleshooting Blocking Issues in Real Time��� 74

Collecting Blocking Information for Further Analysis��� 82

Blocking Monitoring with Event Notifications�� 88

Summary��� 107

Chapter 5: �Deadlocks��� 109

Classic Deadlock�� 109

Deadlock Due to Non-Optimized Queries��� 111

Key Lookup Deadlock��� 114

Deadlock Due to Multiple Updates of the Same Row��� 115

Deadlock Troubleshooting�� 122

Deadlock Due to IGNORE_DUP_KEY Index Option�� 129

Reducing the Chance of Deadlocks��� 134

Summary��� 136

Chapter 6: �Optimistic Isolation Levels��� 137

Row Versioning Overview�� 137

Optimistic Transaction Isolation Levels�� 138

Table of Contents

vii

READ COMMITTED SNAPSHOT Isolation Level�� 139

SNAPSHOT Isolation Level�� 140

Version Store Behavior and Monitoring��� 147

Row Versioning and Index Fragmentation��� 153

Summary��� 156

Chapter 7: �Lock Escalation�� 159

Lock Escalation Overview�� 159

Lock Escalation Troubleshooting�� 165

Summary��� 173

Chapter 8: �Schema and Low-Priority Locks�� 175

Schema Locks�� 175

Lock Queues and Lock Compatibility��� 179

Low-Priority Locks��� 186

Summary��� 188

Chapter 9: �Lock Partitioning�� 191

Lock Partitioning Overview�� 191

Deadlocks Due to Lock Partitioning��� 195

Summary��� 201

Chapter 10: �Application Locks��� 203

Application Locks Overview��� 203

Application Lock Usage�� 204

Summary��� 211

Chapter 11: �Designing Transaction Strategies�� 213

Transaction Strategy Design Considerations��� 213

Choosing Transaction Isolation Level��� 217

Patterns That Reduce Blocking�� 218

Summary��� 223

Table of Contents

viii

Chapter 12: �Troubleshooting Concurrency Issues��� 225

SQL Server Execution Model�� 225

Lock Waits�� 234

LCK_M_U Wait Type�� 235

LCK_M_S Wait Type�� 239

LCK_M_X Wait Type�� 239

LCK_M_SCH_S and LCK_M_SCH_M Wait Types�� 240

Intent LCK_M_I* Wait Types�� 241

Locking Waits: Summary�� 242

Data Management Views��� 243

sys.db_exec_requests View��� 243

sys.db_os_waiting_tasks View�� 245

sys.db_exec_session_wait_stats view and wait_info xEvent�� 245

sys.db_db_index_operational_stats and sys.dm_db_ index_usage_stats Views��������������� 246

Blocking Chains��� 252

AlwaysOn Availability Groups and Blocking��� 255

Synchronous Commit Latency�� 256

Readable Secondaries and Row Versioning��� 260

Working with the Blocking Monitoring Framework�� 263

Summary��� 267

Chapter 13: �In-Memory OLTP Concurrency Model��� 269

In-Memory OLTP Overview��� 269

Multi-Version Concurrency Control�� 272

Transaction Isolation Levels in In-Memory OLTP�� 274

Cross-Container Transactions�� 282

Transaction Lifetime��� 284

Referential Integrity Enforcement�� 291

Additional Resources��� 293

Summary��� 293

Table of Contents

ix

Chapter 14: �Locking in Columnstore Indexes�� 295

Column-Based Storage Overview�� 295

Columnstore Index Internals Overview�� 297

Locking Behavior in Columnstore Indexes��� 300

Inserting Data into Clustered Columnstore Index��� 302

Updating and Deleting Data from Clustered Columnstore Indexes��������������������������������������� 303

Nonclustered Columnstore Indexes�� 307

Tuple Mover and ALTER INDEX REORGANIZE Locking��� 309

Wrapping Up��� 310

Summary��� 311

�Index�� 313

Table of Contents

xi

About the Author

Dmitri Korotkevitch is a Microsoft Data Platform MVP

and Microsoft Certified Master (SQL Server 2008) with

many years of IT experience, including years of working

with Microsoft SQL Server as an application and database

developer, database administrator, and database

architect. He specializes in the design, development, and

performance-tuning of complex OLTP systems that handle

thousands of transactions per second around the clock

providing SQL Server consulting services and training to

clients around the world.

Dmitri regularly speaks at various Microsoft and SQL

PASS events. He blogs at http://aboutsqlserver.com,

rarely tweets as @aboutsqlserver, and can be reached at

dk@aboutsqlserver.com.

http://aboutsqlserver.com/

xiii

About the Technical Reviewer

Mark Broadbent is a Microsoft Data Platform MVP and

Microsoft Certified Master in SQL Server with more than 30

years of IT experience and more than 20 years’ experience

working with SQL Server. He is an expert in concurrency

control, migration, and HADR, and a lover of Linux, Golang,

Serverless, and Docker. In between herding cats and dogs

and being beaten at video games by his children, he can be

found blogging at https://tenbulls.co.uk and lurking on

Twitter as @retracement.

https://urldefense.proofpoint.com/v2/url?u=https-3A__tenbulls.co.uk&d=DwMDaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=xcIyEHOBDrqBsDpfs-jtsZsroIrOItY9CEdM2IbX3oc&m=FjrrxdlToX8Ek-u0hsiV6ZIidI2DRLkzOy_0J_tkD9A&s=JMV_uGg3d2Siq8Q8gR8V9AikiHmUm4F4P8B-STPjtPU&e=

xv

Acknowledgments

Writing is an extremely time-consuming process, and it would be impossible for me

to write this book without the patience, understanding, and continuous support of my

family. Thank you very much for everything!

I am enormously grateful to Mark Broadbent, who helped with the technical review

of this book. His advice and persistence dramatically improved the quality of my work.

It’s been a pleasure to work together, Mark!

On the same note, I would like to thank Victor Isakov, who helped with the technical

review of my other books. Even though Victor did not participate in this project, you can

see his influence all over the place.

I would like to thank Nazanin Mashayekh, who read the manuscript and provided

many great pieces of advice and suggestions. Nazanin lives in Tehran, and she has years

of experience working with SQL Server in various roles.

And, of course, I need to thank the entire Apress team, especially Jill Balzano,

April Rondeau, and Jonathan Gennick. Thank you for all your help and effort to keep us

organized!

Obviously, neither of my books would exist without the great product we have.

Thank you, Microsoft engineering team, for all your hard work and effort! I would also

like to thank Kalen Delaney for her SQL Server Internals books, which helped me and

many others to master SQL Server skills.

Finally, I would like to thank all my friends from the SQL Server community for their

support and encouragement. I am not sure if I would have had the motivation to write

without all of you!

Thank you, all!

xvii

Introduction

Some time ago, one of my colleagues asked me, “What do you like about SQL Server the

most?” I had heard this question many times before, and so I provided my usual answer:

“SQL Server Internals. I like to understand how the product works and solve complex

problems with this knowledge.”

His next question was not so simple though: “How did you fall in love with SQL

Server Internals?” After some time thinking, I answered, “Well, I guess it started when

I had to work on the locking issues. I had to learn SQL Server Internals to troubleshoot

complex deadlocks and blocking conditions. And I enjoyed the sense of satisfaction

those challenges gave me.”

This is, in fact, the truth. The Concurrency Model has always been an essential part

of my SQL Server journey, and I have always been fascinated by it. Concurrency is,

perhaps, one of the most confusing and least understood parts of SQL Server, but, at the

same time, it is also quite logical. The internal implementation is vaguely documented;

however, as soon as you grasp the core concepts, everything starts to fit together nicely.

It is also fair to say that concurrency topics have always been my favorites. My first

few SQL Saturday presentations and first few blog posts were about locking and blocking.

I even started to write my first book, the first edition of Pro SQL Server Internals, from

Chapter 17—the first chapter in the “Locking, Blocking, and Concurrency” part—before

going back to write the beginning.

Those few chapters, by the way, were the first and worst chapters I have ever written.

I am very glad that I had an opportunity to revisit them in the second edition of Internals

book. Nevertheless, I was unable to cover the subject as deeply as I wanted to due to

deadlines and space constraints (I am sure that Apress regularly ran out of paper printing

the 900-page manuscript in its current form). Thus, I am very glad that I can present you

with a separate book on SQL Server locking, blocking, and concurrency now.

If you have read Pro SQL Server Internals before, you will notice some familiar

content. Nevertheless, I did my best to expand the coverage of the old topics and added

quite a few new ones. I also made many changes in the demo scripts and added the new

Blocking Monitoring Framework code, which dramatically simplifies troubleshooting

concurrency issues in the system.

https://doi.org/10.1007/978-1-4842-3957-5_17

xviii

This book covers all modern versions of SQL Server, starting with SQL Server

2005, along with Microsoft Azure SQL Databases. There may be a few very minor

version-specific differences; however, conceptually the SQL Server Concurrency Model

has not changed much over the years.

Nor do I expect it to dramatically change in the near future, so this book should be

applicable to at least several future versions of SQL Server.

Finally, I would like to thank you again for choosing this book and for your trust in

me. I hope that you will enjoy reading it as much as I enjoyed writing it!

�How This Book Is Structured
This book consists of 14 chapters and is structured in the following way:

•	 Chapter 1, “Data Storage and Access Methods,” describes how SQL

Server stores and works with the data in disk-based tables. This

knowledge is the essential cornerstone to understanding the SQL

Server Concurrency Model.

•	 Chapter 2, “Transaction Management and Concurrency Models,”

provides an overview of optimistic and pessimistic concurrency

and focuses on transaction management and error handling in the

system.

•	 Chapter 3, “Lock Types,” explains the key elements of SQL Server

concurrency, such as lock types.

•	 Chapter 4, “Blocking in the System,” discusses why blocking occurs in

the system and shows how to troubleshoot it.

•	 Chapter 5, “Deadlocks,” demonstrates the common causes of

deadlocks and outlines how to address them.

•	 Chapter 6, “Optimistic Isolation Levels,” covers optimistic

concurrency in SQL Server.

•	 Chapter 7, “Lock Escalations,” talks about lock escalation techniques

that SQL Server uses to reduce locking overhead in the system.

•	 Chapter 8, “Schema and Low-Priority Locks,” covers the schema

locks that occur during schema modifications in the database. It also

Introduction

xix

explains low-priority locks that may help to reduce blocking during

index and partition management in recent versions of SQL Server.

•	 Chapter 9, “Lock Partitioning,” discusses lock partitioning, which SQL

Server uses in systems that have 16 or more logical CPUs.

•	 Chapter 10, “Application Locks,” focuses on application locks that can

be created in the code programmatically.

•	 Chapter 11, “Designing a Transaction Strategy,” provides guidelines

on how to design transaction strategies in the system.

•	 Chapter 12, “Troubleshooting Concurrency Issues,” discusses the

holistic system troubleshooting process and demonstrates how to

detect and address concurrency issues in the system.

•	 Chapter 13, “In-Memory OLTP Concurrency Model,” provides

an overview of how concurrency works in In-Memory OLTP

environments.

•	 Chapter 14, “Locking and Columnstore Indexes,” explains the locking

that occurs with updateable columnstore indexes.

�Downloading the Code
You can download the code used in this book from the “Source Code” section of the

Apress website (www.apress.com) or from the “Publications” section of my blog

(http://aboutsqlserver.com). The source code consists of the SQL Server Management

Studio solution, which includes a set of projects (one per chapter).

There is also a separate solution with the Blocking Monitoring Framework code.

I am planning to update and enhance the Blocking Monitoring Framework on

a regular basis in the future. You can always download the latest version from

http://aboutsqlserver.com/bmframework.

Introduction

http://www.apress.com/
http://aboutsqlserver.com/
http://aboutsqlserver.com/bmframework

1
© Dmitri Korotkevitch 2018
D. Korotkevitch, Expert SQL Server Transactions and Locking, https://doi.org/10.1007/978-1-4842-3957-5_1

CHAPTER 1

Data Storage and Access
Methods
It is impossible to grasp the SQL Server concurrency model without understanding

how SQL Server stores and accesses the data. This knowledge helps you to comprehend

various aspects of locking behavior in the system, and it is also essential when

troubleshooting concurrency issues.

Nowadays, SQL Server and Microsoft Azure SQL Databases support three different

technologies that dictate how data is stored and manipulated in the system. The classic

Storage Engine implements row-based storage. This technology persists the data in disk-

based tables, combining all columns from a table together into data rows. The data rows,

in turn, reside on 8 KB data pages, each of which may have one or multiple rows.

Starting with SQL Server 2012, you can store data in a columnar format using

columnstore indexes. SQL Server splits the data into row groups of up to 1,048,576 rows

each. The data in the row group is combined and stored on a per-column rather than a

per-row basis. This format is optimized for reporting and analytics queries.

Finally, the In-Memory OLTP Engine, introduced in SQL Server 2014, allows you

to define memory-optimized tables, which keep all data entirely in memory. The data

rows in memory are linked to the data row chains through the memory pointers. This

technology is optimized for heavy OLTP workload.

We will discuss locking behavior in In-Memory OLTP and columnstore indexes later

in the book, after we cover the concurrency model of the classic Storage Engine. This

knowledge is a cornerstone of understanding how SQL Server behaves in a multi-user

environment.

The goal of this chapter is to give a high-level overview of row-based storage in SQL

Server. It will explain how SQL Server stores the data in disk-based tables, illustrate the

structure of B-Tree indexes, and demonstrate how SQL Server accesses data from them.

2

You should not consider this chapter as a deep dive into the SQL Server Storage

Engine. It should provide, however, enough information to discuss the concurrency

model in SQL Server.

�Anatomy of a Table
The internal structure of a disk-based table is rather complex and consists of multiple

elements and internal objects, as shown in Figure 1-1.

The data in the tables is stored either completely unsorted (those tables are called

heap tables or heaps) or sorted according to the value of a clustered index key when a

table has such an index defined.

In addition to a single clustered index, every table may have a set of nonclustered

indexes. These indexes are separate data structures that store a copy of the data from a

table sorted according to index key column(s). For example, if a column was included

in three nonclustered indexes, SQL Server would store that data four times—once in a

clustered index or heap and in each of the three nonclustered indexes.

Figure 1-1.  Internal structure of a table

Chapter 1 Data Storage and Access Methods

3

You can create either 250 or 999 nonclustered indexes per table, depending on SQL

Server version. However, it is clearly not a good idea to create a lot of them due to the

overhead they introduce. In addition to storage overhead, SQL Server needs to insert

or delete data from each nonclustered index during data modifications. Moreover, the

update operation requires SQL Server to modify data in every index in which updated

columns were present.

Internally, each index (and heap) consists of one or multiple partitions. Every

partition, in a nutshell, is an internal data structure (index or heap) independent from

other partitions in the object. SQL Server allows the use of a different partition strategy

for every index in the table; however, in most cases, all indexes are partitioned in the

same way and aligned with each other.

Note E very table/index in SQL Server is partitioned. Non-partitioned tables are
treated as single-partition tables/indexes internally.

As I already mentioned, the actual data is stored in data rows on 8 KB data pages

with 8,060 bytes available to users. The pages that store users’ data may belong

to three different categories called allocation units based on the type of data they

store.

IN_ROW_DATA allocation unit pages store the main data row objects, which consist

of internal attributes and the data from fixed-length columns, such as int, datetime,

float, and others. The in-row part of a data row must fit on a single data page and,

therefore, cannot exceed 8,060 bytes. The data from variable-length columns, such as

(n)varchar(max), (n)varbinary(max), xml, and others, may also be stored in-row in the

main row object when it fits into this limit.

In cases when variable-length data does not fit in-row, SQL Server stores it off-

row on different data pages, referencing them through in-row pointers. Variable-

length data that exceeds 8,000 bytes is stored on LOB_DATA allocation unit data pages

(LOB stands for large objects). Otherwise, the data is stored in ROW_OVERFLOW_DATA

allocation unit pages.

Let’s look at an example and create a table that contains several fixed- and variable-

length columns and insert one row there, as shown in Listing 1-1.

Chapter 1 Data Storage and Access Methods

4

Listing 1-1.  Data row storage: Creating the test table

create table dbo.DataRows

(

 ID int not null,

 ADate datetime not null,

 VarCol1 varchar(max),

 VarCol2 varchar(5000),

 VarCol3 varchar(5000)

);

insert into dbo.DataRows(ID, ADate, VarCol1, VarCol2, VarCol3)

values

(

 1

 ,'1974-08-22'

 ,replicate(convert(varchar(max),'A'),32000)

 ,replicate(convert(varchar(max),'B'),5000)

 ,replicate(convert(varchar(max),'C'),5000)

);

The data from fixed-length columns (ID, ADate) will be stored in-row on an IN_ROW_

DATA allocation unit page. The data from VarCol1 column is 32,000 bytes and will be

stored on LOB_DATA data pages.

The VarCol2 and VarCol3 columns have 5,000 bytes of data each. SQL Server would

keep one of them in-row (it would fit into the 8,060-byte limit) and place the other one

on the single ROW_OVERFLOW_DATA page.

Note O ff-row column pointers use 16 or 24 bytes in-row, which counts toward
the 8,060 maximum row size. In practice, this may limit the number of columns
you can have in a table.

Chapter 1 Data Storage and Access Methods

5

Figure 1-2 illustrates this state.

The sys.dm_db_index_physical_stats data management function is usually used

to analyze index fragmentation. It also displays the information about data pages on a

per–allocation unit basis.

Listing 1-2 shows the query that returns the information about the dbo.DataRows table.

Listing 1-2.  Data row storage: Analyzing the table using sys.dm_db_index_

physical_stats DMO

select

 index_id, partition_number, alloc_unit_type_desc

 ,page_count, record_count, min_record_size_in_bytes

 ,max_record_size_in_bytes, avg_record_size_in_bytes

from

Figure 1-2.  Data row storage: Data pages after the first INSERT

Chapter 1 Data Storage and Access Methods

6

 sys.dm_db_index_physical_stats

 (

 db_id()

 ,object_id(N'dbo.DataRows')

 ,0 /* IndexId = 0 -> Table Heap */

 ,NULL /* All Partitions */

 ,'DETAILED'

);

Figure 1-3 illustrates the output of the code. As expected, the table has one IN_ROW_

DATA, one ROW_OVERFLOW_DATA, and four LOB_DATA pages. The IN_ROW data page has

about 2,900 free bytes available.

Let’s insert another row using the code from Listing 1-3.

Listing 1-3.  Data row storage: Inserting the second row

insert into dbo.DataRows(ID, ADate, VarCol1, VarCol2, VarCol3)

values(2,'2006-09-29','DDDDD','EEEEE','FFFFF');

All three variable-length columns store five-character strings, and, therefore, the row

would fit on the already-allocated IN_ROW_DATA page. Figure 1-4 illustrates data pages at

this phase.

Figure 1-3.  Data row storage: sys.dm_db_index_physical_stats output after the
first INSERT

Chapter 1 Data Storage and Access Methods

7

You can confirm it by running the code from Listing 1-2 again. Figure 1-5 illustrates

the output from the view.

Figure 1-4.  Data row storage: Data pages after the second INSERT

Figure 1-5.  Data row storage: sys.dm_db_index_physical_stats output after the
second INSERT

SQL Server logically groups eight pages into 64KB units called extents. There are two

types of extents available: mixed extents store data that belongs to different objects, while

uniform extents store the data for the same object.

By default, when a new object is created, SQL Server stores the first eight object

pages in mixed extents. After that, all subsequent space allocation for that object is done

with uniform extents.

Chapter 1 Data Storage and Access Methods

8

Tip  Disabling mixed extents allocation may help to improve tempdb throughput
in the system. In SQL Server prior to 2016, you can achieve that by enabling
server-level trace flag T1118. This trace flag is not required in SQL Server 2016
and above, where tempdb does not use mixed extents anymore.

SQL Server uses a special kind of pages, called allocation maps, to track extent and page

usage in database files. Index Allocation Maps (IAM) pages track extents that belong to an

allocation unit on a per-partition basis. Those pages are, in a nutshell, bitmaps, where each

bit indicates if the extent belongs to a specific allocation unit from the object partition.

Each IAM page covers about 64,000 extents, or almost 4 GB of data in a data file. For

larger files, multiple IAM pages are linked together into IAM chains.

Note T here are many other types of allocation maps used for database
management. You can read about them at https://docs.microsoft.com/en-
us/sql/relational-databases/pages-and-extents-architecture-
guide or in my Pro SQL Server Internals book.

�Heap Tables
Heap tables are tables without a clustered index. The data in heap tables is unsorted.

SQL Server does not guarantee, nor does it maintain, a sorting order of the data in heap

tables.

When you insert data into heap tables, SQL Server tries to fill pages as much as

possible, although it does not analyze the actual free space available on a page. It uses

another type of allocation map page called Page Free Space (PFS), which tracks the

amount of free space available on the page. This tracking is imprecise, however. SQL

Server uses three bits, which indicate if the page is empty, or if it is 1 to 50, 51 to 80, 81 to

95 or above 95 percent full. It is entirely possible that SQL Server would not store a new

row on the page even when it has available space.

When you select data from the heap table, SQL Server uses IAM pages to find the

pages and extents that belong to the table, processing them based on their order on the

IAM pages rather than on the order in which the data was inserted. Figure 1-6 illustrates

this point. This operation is shown as Table Scan in the execution plan.

Chapter 1 Data Storage and Access Methods

https://docs.microsoft.com/en-us/sql/relational-databases/pages-and-extents-architecture-guide
https://docs.microsoft.com/en-us/sql/relational-databases/pages-and-extents-architecture-guide
https://docs.microsoft.com/en-us/sql/relational-databases/pages-and-extents-architecture-guide

9

When you update the row in the heap table, SQL Server tries to accommodate it on

the same page. If there is no free space available, SQL Server moves the new version

of the row to another page and replaces the old row with a special 16-byte row called

a forwarding pointer. The new version of the row is called a forwarded row. Figure 1-7

illustrates this point.

Figure 1-6.  Selecting data from the heap table

Figure 1-7.  Forwarding pointers

There are two main reasons why forwarding pointers are used. First, they prevent

updates of nonclustered index keys, which reference the row. We will talk about

nonclustered indexes in more detail later in this chapter.

In addition, forwarding pointers help minimize the number of duplicated reads; that

is, the situation when a single row is read multiple times during the table scan. Let’s look

at Figure 1-7 as an example and assume that SQL Server scans the pages in left-to-right

order. Let’s further assume that the row in page 3 was modified at the time when SQL

Chapter 1 Data Storage and Access Methods

10

Server reads page 4 (after page 3 has already been read). The new version of the row

would be moved to page 5, which has yet to be processed. Without forwarding pointers,

SQL Server would not know that the old version of the row had already been read, and

it would read it again during the page 5 scan. With forwarding pointers, SQL Server

skips the forwarded rows—they have a flag in their internal attributes indicating that

condition.

Although forwarding pointers help minimize duplicated reads, they introduce

additional read operations at the same time. SQL Server follows the forwarding pointers

and reads the new versions of the rows at the time it encounters them. That behavior

can introduce an excessive number of I/O operations when heap tables are frequently

updated and have a large number of forwarded rows.

Note  You can analyze the number of forwarded rows in the table by checking
the forwarded_record_count column in the sys.dm_db_index_physical_
stats view.

When the size of the forwarded row is reduced by another update, and the data

page with the forwarding pointer has enough space to accommodate the updated

version of the row, SQL Server may move it back to its original data page and remove the

forwarding pointer row. Nevertheless, the only reliable way to get rid of all forwarding

pointers is by rebuilding the heap table. You can do that by using an ALTER TABLE

REBUILD statement.

Heap tables can be useful in staging environments where you want to import a large

amount of data into the system as quickly as possible. Inserting data into heap tables can

often be faster than inserting it into tables with clustered indexes. Nevertheless, during

a regular workload, tables with clustered indexes usually outperform heap tables as a

result of heap tables’ suboptimal space control and extra I/O operations introduced by

forwarding pointers.

Note  You can find the scripts that demonstrate forwarding pointers’ overhead
and suboptimal space control in heap tables in this book’s companion materials.

Chapter 1 Data Storage and Access Methods

11

�Clustered Indexes and B-Trees
A clustered index dictates the physical order of the data in a table, which is sorted

according to the clustered index key. The table can have only one clustered index

defined.

Let’s assume that you want to create a clustered index on the heap table with the data.

As a first step, which is shown in Figure 1-8, SQL Server creates another copy of the data

and sorts it based on the value of the clustered key. The data pages are linked in a double-

linked list, where every page contains pointers to the next and previous pages in the chain.

This list is called the leaf level of the index, and it contains the actual table data.

Figure 1-8.  Clustered index structure: Leaf level

Note T he pages reference each other through page addresses, which consist
of two values: file_id in the database and sequential number of the page in
the file.

When the leaf level consists of multiple pages, SQL Server starts to build an

intermediate level of the index, as shown in Figure 1-9.

Chapter 1 Data Storage and Access Methods

12

The intermediate level stores one row per each leaf-level page. It stores two pieces

of information: the physical address and the minimum value of the index key from the

page it references. The only exception is the very first row on the first page, where SQL

Server stores NULL rather than the minimum index key value. With such optimization,

SQL Server does not need to update non-leaf level rows when you insert the row with the

lowest key value in the table.

The pages on the intermediate level are also linked in a double-linked list. SQL

Server adds more and more intermediate levels until there is a level that includes just a

single page. This level is called the root level, and it becomes the entry point to the index,

as shown in Figure 1-10.

Note T his index structure is called a B-Tree Index, which stands for Balanced
Tree.

Figure 1-9.  Clustered index structure: Intermediate levels

Chapter 1 Data Storage and Access Methods

13

As you can see, the index always has one leaf level, one root level, and zero or more

intermediate levels. The only exception is when the index data fits into a single page. In

that case, SQL Server does not create the separate root-level page, and the index consists

of just the single leaf-level page.

SQL Server always maintains the order of the data in the index, inserting new rows

on the data pages to which they belong. In cases when a data page does not have enough

free space, SQL Server allocates a new page and places the row there, adjusting pointers

in the double-linked page list to maintain a logical sorting order in the index. This

operation is called page split and leads to index fragmentation.

Figure 1-11 illustrates this condition. When Original Page does not have enough

space to accommodate the new row, SQL Server performs a page split, moving about

half of the data from Original Page to New Page, adjusting page pointers afterward.

Figure 1-10.  Clustered index structure: Root level

Figure 1-11.  Leaf-level data pages after page split

Chapter 1 Data Storage and Access Methods

14

A page split may also occur during data modifications. SQL Server does not use

forwarding pointers with B-Tree indexes. Instead, when an update cannot be done in-

place—for example, during data row increase—SQL Server performs a page split and

moves updated and subsequent rows from the page to another page. Nevertheless, the

index sorting order is maintained through the page pointers.

SQL Server may read the data from the index in three different ways. The first is an

allocation order scan. SQL Server accesses the table data through IAM pages similar

to how it does this with heap tables. This method, however, could introduce data

consistency phenomena—with page splits, rows may be skipped or read more than

once—and, therefore, allocation order scan is rarely used. We will discuss conditions

that may lead to allocation order scans later in the book.

The second method is called an ordered scan. Let’s assume that we want to run the

SELECT Name FROM dbo.Customers query. All data rows reside on the leaf level of the

index, and SQL Server can scan it and return the rows to the client.

SQL Server starts with the root page of the index and reads the first row from there.

That row references the intermediate page with the minimum key value from the table.

SQL Server reads that page and repeats the process until it finds the first page on the leaf

level. Then, SQL Server starts to read rows one by one, moving through the linked list of

the pages until all rows have been read. Figure 1-12 illustrates this process.

Figure 1-12.  Ordered index scan

Chapter 1 Data Storage and Access Methods

15

Both allocation order scan and ordered scan are represented as Index Scan operators

in the execution plans.

Note T he server can navigate through indexes in both directions, forward and
backward. However, SQL Server does not use parallelism during backward index
scans.

The last index access method is called index seek. Let’s assume we want to run the

following query: SELECT Name FROM dbo.Customers WHERE CustomerId BETWEEN 4 AND 7.

Figure 1-13 illustrates how SQL Server may process it.

Figure 1-13.  Index seek

In order to read the range of rows from the table, SQL Server needs to find the row

with the minimum value of the key from the range, which is 4. SQL Server starts with

the root page, where the second row references the page with the minimum key value

of 350. It is greater than the key value that we are looking for, and SQL Server reads the

intermediate-level data page (1:170) referenced by the first row on the root page.

Chapter 1 Data Storage and Access Methods

16

Similarly, the intermediate page leads SQL Server to the first leaf-level page (1:176).

SQL Server reads that page, then it reads the rows with CustomerId equal to 4 and 5, and,

finally, it reads the two remaining rows from the second page.

Technically speaking, there are two kinds of index seek operations. The first is called

a point-lookup (or, sometimes, singleton lookup), where SQL Server seeks and returns a

single row. You can think about the WHERE CustomerId = 2 predicate as an example.

The other type is called a range scan, and it requires SQL Server to find the lowest

or highest value of the key and scan (either forward or backward) the set of rows until it

reaches the end of scan range. The predicate WHERE CustomerId BETWEEN 4 AND 7 leads

to the range scan. Both cases are shown as Index Seek operators in the execution plans.

As you can guess, index seek is more efficient than index scan because SQL Server

processes just the subset of rows and data pages rather than scanning the entire index.

However, an Index Seek operator in the execution plan may be misleading and represent

a range scan that scans a large number of rows or even an entire index. For example, in

our table, the WHERE CustomerId > 0 predicate requires SQL Server to scan the entire

index; however, it would be represented as an Index Seek operator in the plan.

There is a concept in relational databases called SARGable predicates, which stands

for Search Argument-able. The predicate is SARGable if SQL Server can utilize an index

seek operation if the index exists. In a nutshell, predicates are SARGable when SQL

Server can determine the single or range of index key values to process during predicate

evaluation. Obviously, it is beneficial to write queries using SARGable predicates and

utilize index seek whenever possible.

SARGable predicates include the following operators: =, >, >=, <, <=, IN, BETWEEN, and

LIKE (in case of prefix matching). Non-SARGable operators include NOT, <>, LIKE (in case

of non-prefix matching), and NOT IN.

Another circumstance for making predicates non-SARGable is using functions

(standard or user-defined) against the table columns. SQL Server must call the function

for every row it processes, which prevents an index seek from being used.

The same applies to data-type conversions where SQL Server uses the CONVERT_

IMPLICIT internal function. One common example of when it may happen is using the

unicode nvarchar parameter in the predicate with a varchar column. Another case is

having different data types for the columns that participate in a join predicate. Both of

those cases could lead to the index scan even when the predicate operator appears to be

SARGable.

Chapter 1 Data Storage and Access Methods

17

�Composite Indexes
Indexes with multiple key columns are called composite (or compound) indexes. The

data in the composite indexes is sorted on a per-column basis from leftmost to rightmost

columns. Figure 1-14 shows the structure of a composite index defined on LastName

and FirstName columns in the table. The data is sorted based on LastName (left-most

column) first and then on FirstName within each LastName value.

Figure 1-14.  Composite index structure

The SARGability of a composite index depends on the SARGability of the predicates

on the leftmost index columns, which allow SQL Server to determine the range of the

index keys to process.

Table 1-1 shows examples of SARGable and non-SARGable predicates, using the

index from Figure 1-14 as the example.

Chapter 1 Data Storage and Access Methods

18

�Nonclustered Indexes
While a clustered index specifies how data rows are sorted in a table, nonclustered

indexes define a separate sorting order for a column or set of columns and persist them

as separate data structures.

You can think about a book as an example. Page numbers would represent the

book’s clustered index. The index at the end of the book shows the list of terms from the

book in alphabetical order. Each term references the page numbers where the term is

mentioned. That represents the nonclustered index of the terms.

When you need to find a term in the book, you can look it up in the term index. It is

a fast and efficient operation because terms are sorted in alphabetical order. Next, you

can quickly find the pages on which the terms are mentioned by using the page numbers

specified there. Without the term index, the only choice would be to read all of the pages

in the book one by one until all references to the term are found.

The nonclustered index structure is very similar to the clustered index structure.

Let’s create a nonclustered index on the Name column from the dbo.Customers table

with CREATE NONCLUSTERED INDEX IDX_NCI ON dbo.Customers(Name) statement.

Figure 1-15 shows the structure of both indexes.

Table 1-1.  SARGable and non-SARGable Predicates on a Composite Index

SARGable Predicates Non-SARGable Predicates

LastName = 'Clark' and

FirstName = 'Steve'

LastName <> 'Clark' and

FirstName = 'Steve'

LastName = 'Clark' and

FirstName <> 'Steve'

LastName LIKE '%ar%' and

FirstName = 'Steve'

LastName = 'Clark' FirstName = 'Steve'

LastName LIKE 'Cl%'

Chapter 1 Data Storage and Access Methods

19

The leaf level of the nonclustered index is sorted based on the value of the index

key—Name in our case. Every row on the leaf level includes the key value and row-id

value. For heap tables, row-id is the physical location of the row defined as the

file:page:slot address, where slot identifies location of the row on the data page.

For tables with a clustered index, row-id represents the value of the clustered index

key of the row. This is a very important point to remember. Nonclustered indexes do not

store information about physical row location when a table has a clustered index defined.

They store the value of the clustered index key instead.

Like clustered indexes, the intermediate and root levels of nonclustered indexes

store one row per page from the level they reference. That row consists of the physical

address and the minimum value of the key from the page. In addition, for non-unique

indexes, it also stores the row-id of such a row.

Let’s look at how SQL Server uses nonclustered indexes, assuming that you run the

following query: SELECT * FROM dbo.Customers WHERE Name = 'Boris'.

Figure 1-15.  Clustered and nonclustered index structures

Chapter 1 Data Storage and Access Methods

20

As shown in the first step in Figure 1-16, SQL Server starts with the root page of the

nonclustered index. The key value Boris is less than Dan, and SQL Server goes to the

intermediate page referenced from the first row in the root-level page.

The second row of the intermediate page indicates that the minimum key value on

the page is Boris, although the index had not been defined as unique and SQL Server

does not know if there are other Boris rows stored on the first page. As a result, it goes

to the first leaf page of the index and finds the row with the key value Boris and row-id

equal to 7 there.

In our case, the nonclustered index does not store any data besides CustomerId

and Name, and SQL Server needs to traverse the clustered index tree and obtain the data

from other columns from a table, returning them to the client. This operation is called

Key Lookup. In heap tables, where clustered indexes do not exist, SQL Server accesses

data rows using row-id, which stores a physical location of the row in the database. This

operation is called RID Lookup.

In the next step shown in Figure 1-17, SQL Server comes back to the nonclustered

index and reads the second page from the leaf level. It finds another row with the key

value Boris and row-id of 93712, and it performs a key lookup again.

Figure 1-16.  Nonclustered index usage: Step 1

Chapter 1 Data Storage and Access Methods

21

As you can see, SQL Server had to read the data pages 10 times even though the

query returned just two rows. The number of I/O operations can be calculated based on

the following formula: (# of levels in nonclustered index) + (number of pages

read from the leaf level of nonclustered index) + (number of rows found)

* (# of levels in clustered index). As you can guess, a large number of rows

found (key lookup operations) leads to a large number of I/O operations, which makes

nonclustered index usage inefficient.

The same applies to heap tables. Reading the main data row from a heap (RID

lookup operation) does not require SQL Server to traverse root and intermediate levels

of clustered index B-Tree. Nevertheless, it is an expensive operation, especially with

forwarding pointers. SQL Server does not update row-id in nonclustered indexes

when a heap table row is moved to another page and forwarding pointer is created.

Nonclustered indexes still reference the old row location, which may lead to additional

I/O operation when SQL Server reads the forwarded row.

As a result, SQL Server is very conservative in choosing nonclustered indexes when

it expects that a large number of key or RID lookup operations will be required. The

threshold when SQL Server chooses to scan another index or table over performing key

lookups varies; however, it is very low.

Finally, it is worth repeating that nonclustered indexes store a copy of the data from the

index columns, which introduces update overhead. When columns are updated, SQL Server

needs to update them in every index in which they are present. Similarly, every insert or

delete operation requires SQL Server to perform it on each nonclustered index B-Tree.

Figure 1-17.  Nonclustered index usage: Step 2

Chapter 1 Data Storage and Access Methods

22

Remember this overhead and avoid creating unnecessary nonclustered indexes in

the system.

�Indexes with Included Columns
As we just discussed, SQL Server rarely uses nonclustered indexes when it expects that a

large number of key or RID lookups is required. Those operations usually lead to a large

number of reads, both logical and physical.

With key lookup operations, SQL Server accesses multiple data pages from a

clustered index every time it needs to obtain a single row. Even though root and

intermediate index levels are usually cached in the buffer pool, access to leaf-level pages

produces random, and often physical, I/O reads, which are slow, especially in the case of

magnetic disk drives.

This is also true for heap tables. Even though the row-id in a nonclustered index

stores the physical location of the row in a table, and RID lookup operations do not need

to traverse the clustered index tree, they still introduce random I/O. Moreover, forwarding

pointers can lead to extra reads if a row has been updated and moved to another page.

The existence of key or RID lookups is the crucial factor here. Rows in a nonclustered

index are smaller than those in a clustered index. Nonclustered indexes use fewer data

pages and, therefore, are more efficient. SQL Server uses nonclustered indexes even

when it expects that a large number of rows need to be selected, as long as key or RID

lookups are not required.

As you will recall, nonclustered indexes store data from the index key columns and

row-id. For tables with clustered indexes, the row-id is the clustered key value of the

index row. The values in all indexes are the same: when you update the row, SQL Server

synchronously updates all indexes.

SQL Server does not need to perform key or RID lookups when all of the data a query

needs exists in a nonclustered index. Those indexes are called covering indexes because they

provide all of the information that a query needs, and they are essentially covering the query.

Making nonclustered indexes covering is one of the most commonly used query-

optimization techniques, which improves index efficiency and allows you to eliminate

expensive key or RID lookups from execution plans. You can achieve it by including

required columns in the index using the INCLUDE clause of the CREATE INDEX statement.

The data from these columns are stored on the leaf level only, without being added to

the index key and without affecting the sorting order of the index rows.

Chapter 1 Data Storage and Access Methods

23

Figure 1-18 illustrates the structure of an index with included columns,

defined as CREATE INDEX IDX_Customers_Name ON dbo.Customers(Name)

INCLUDE(DateOfBirth), on the table we defined earlier, which has CustomerId as the

clustered index column.

Now, if all columns, which query references are present in the index, SQL Server may

obtain all data from the leaf level of the nonclustered index B-Tree without performing

key or RID lookups. It could use the index regardless of how many rows would be

selected from there.

Although covering indexes are a great tool that can help optimize queries, they

come at a cost. Every column in the index increases its row size and the number

of data pages it uses on disk and in memory. That introduces additional overhead

during index maintenance and increases the database size. Moreover, queries need

to read more pages when scanning all or part of the index. It does not necessarily

introduce a noticeable performance impact during small range scans when reading

a few extra pages is far more efficient as compared to key lookups. However, it could

negatively affect the performance of queries that scan a large number of data pages

or the entire index.

Figure 1-18.  Structure of an index with included column

Chapter 1 Data Storage and Access Methods

24

Obviously, they also add update overhead. By adding a column to nonclustered

indexes, you store the data in multiple places. This improves the performance of queries

that select the data. However, during updates, SQL Server needs to change the rows in

every index where updated columns are present. Remember this and be careful with

including frequently modified columns to the indexes.

�Summary
The classic SQL Server Storage Engine stores data in disk-based tables using row-based

storage. All columns from the table are stored together in the data rows, which reside on

8 KB data pages.

The data in the tables may be stored in two different ways—either completely

unsorted in heap tables or sorted according to a clustered index key when such an index

is defined. The tables with clustered indexes usually outperform heap tables during

normal workload.

Every table may have a set of nonclustered indexes defined. Each nonclustered index

is a separate data structure, which stores a copy of the data from a table sorted according

to index key columns. Nonclustered indexes may improve performance of the queries at

the cost of the update overhead they introduce.

SQL Server uses key lookup and RID lookup operations to obtain data from columns

that are not present in nonclustered indexes. These operations are expensive, and

SQL Server does not use nonclustered indexes if it expects that a large number of such

operations is required. You can include additional columns in the indexes, making them

covering and eliminating key and RID lookups from execution plans.

There are two main data access patterns SQL Server uses when working

with indexes. Index scans read the entire index by scanning all pages from there.

Alternatively, index seek processes read just a subset of the index rows and pages. Index

seek is more efficient than index scan, and it is beneficial to use SARGable predicates

that may utilize index seek when an index exists.

Chapter 1 Data Storage and Access Methods

25
© Dmitri Korotkevitch 2018
D. Korotkevitch, Expert SQL Server Transactions and Locking, https://doi.org/10.1007/978-1-4842-3957-5_2

CHAPTER 2

Transaction Management
and Concurrency Models
Transactions are the key concept in data management systems; they guarantee the

consistency and durability of the data in the database. It is impossible to implement a

database system without proper transaction management in place.

This chapter will explain the importance of transactions, provide an overview of both

pessimistic and optimistic concurrency models, and outline transaction isolation levels

and the possible data consistency phenomena they may introduce. Finally, the chapter

will discuss several questions related to transaction management and error handling in

SQL Server.

�Transactions
Microsoft SQL Server has been designed to work in multi-user environments, just

like any other general-purpose database server. The Database Engine should handle

simultaneous workloads from multiple users and provide the required level of data

consistency when users query and modify the same data.

There is a key concept in database and data management systems called transactions.

Transactions are the single unit of work that reads and modifies data in a database and helps

to enforce the consistency and durability of the data there. Every transaction in a properly

implemented transaction management system has four different characteristics: atomicity,

consistency, isolation, and durability, often referenced as ACID.

•	 Atomicity guarantees that each transaction executes as a single unit

of work using an “all or nothing” approach. All changes done within

a transaction are either committed or rolled back in full. Consider the

classic example of transferring money between checking and savings

26

bank accounts. That action consists of two separate operations:

decreasing the balance of the checking account and increasing the

balance of the savings account. Transaction atomicity guarantees

that both operations either succeed or fail together, and a system will

never be in an inconsistent state where money was deducted from

the checking account but never added to the savings account.

•	 Consistency ensures that any database transaction brings the

database from one consistent state to another and that none of the

defined database rules and constraints were violated.

•	 Isolation ensures that the changes made in the transaction are isolated

and invisible to other transactions until the transaction is committed.

By the book, transaction isolation should guarantee that the concurrent

execution of multiple transactions brings the system to the same

state as if those transactions were executed serially. However, in most

database systems, such a requirement is often relaxed and controlled by

transaction isolation levels, which we will discuss later in the chapter.

•	 Durability guarantees that after a transaction is committed, all

changes done by the transaction stay permanent and will survive a

system crash. SQL Server achieves durability by using write-ahead

logging to harden log records in the transaction log. A transaction is

not considered to be committed until all log records generated by the

transaction are hardened in the log file.

The isolation requirements are the most complex to implement in multi-user

environments. Even though it is possible to completely isolate different transactions

from each other, this could lead to a high level of blocking and other concurrency issues

in systems with volatile data. SQL Server addresses this situation by introducing several

transaction isolation levels that relax isolation requirements at the cost of possible

concurrency phenomena related to read data consistency:

•	 Dirty Reads: A transaction reads uncommitted (dirty) data from

other uncommitted transactions.

•	 Non-Repeatable Reads: Subsequent attempts to read the same data

from within the same transaction return different results. This data

inconsistency issue arises when the other transactions modified, or even

deleted, data between the reads done by the affected transaction.

Chapter 2 Transaction Management and Concurrency Models

27

•	 Phantom Reads: This phenomenon occurs when subsequent

reads within the same transaction return new rows (the ones that

the transaction did not read before). This happens when another

transaction inserted new data in between the reads done by the

affected transaction.

�Pessimistic and Optimistic Concurrency
Transaction isolation levels control another aspect of SQL Server behavior that dictates

concurrency models for the transactions. Conceptually, there are two concurrency

models used in database systems:

•	 Pessimistic concurrency works under the assumption that multiple

users who access the same data would all eventually like to modify

the data and override each other’s changes. The Database Engine

prevents this from happening by locking the data for the duration

of the transaction as soon as the first session accesses and/or

modifies it.

•	 Optimistic concurrency, on the other hand, assumes that, while

multiple users may access the same data, the chance of simultaneous

updates is low. The data would not be locked; however, multiple

updates would trigger write–write conflicts and roll back affected

transactions.

Let’s illustrate the difference between those models with an example. Consider,

again, that we have a transaction that wants to transfer money between checking

and savings accounts. As you remember, this would lead to two update operations—

decreasing the balance of checking and increasing the balance of savings. Let’s also

assume that you have another session that wants to perform a withdrawal from the

checking account in parallel with the transfer. This operation would decrease the

balance of the checking account (updating the same row) along with other actions.

With pessimistic concurrency, the first session that updates (and in some cases even

reads) the checking account balance would lock this row, preventing other sessions

from accessing or updating it. The second session would be blocked until the first

session completed the transaction, and it would read the new checking account balance

afterward.

Chapter 2 Transaction Management and Concurrency Models

28

With optimistic concurrency, neither of the sessions would be blocked. However, one

of the sessions would not be able to commit and would fail with a write–write conflict error.

Both concurrency models have benefits and downsides. Pessimistic concurrency

may introduce blocking in the system. Optimistic concurrency, on the other hand,

requires proper write-write conflict handling, and it often introduces additional

overhead during data modifications.

SQL Server supports both pessimistic and optimistic concurrency models,

controlling them by transaction isolation levels.

�Transaction Isolation Levels
With disk-based tables, SQL Server supports six different transaction isolation levels, as

shown in Table 2-1. The table also demonstrates possible concurrency phenomena for

each of the transaction isolation levels.

Table 2-1.  Transaction Isolation Levels and Concurrency Phenomena

Isolation Level Type Dirty
Reads

Non-Repeatable
Reads

Phantom
Reads

Write–Write
Conflict

READ UNCOMMITTED Pessimistic YES YES YES NO

READ COMMITTED Pessimistic NO YES YES NO

REPEATABLE READ Pessimistic NO NO YES NO

SERIALIZABLE Pessimistic NO NO NO NO

READ COMMITTED

SNAPSHOT

Optimistic

for readers.

Pessimistic

for writers.

NO YES YES NO

SNAPSHOT Optimistic NO NO NO YES

With pessimistic isolation levels, SQL Server relies strictly on locking to prevent

access to the rows that were modified or sometimes even read by other sessions. With

optimistic isolation levels, SQL Server uses row versioning and copies old versions of

modified rows to a special area in tempdb called the version store. The other sessions

would read old (already committed) versions of the rows from there rather than being

blocked.

Chapter 2 Transaction Management and Concurrency Models

29

It is important to note that SQL Server still acquires locks on updated rows in

optimistic isolation levels, preventing other sessions from updating the same rows

simultaneously. We will talk about it in more detail in Chapter 6.

The READ COMMITTED SNAPSHOT isolation level combines both optimistic and

pessimistic concurrency models. Readers (SELECT queries) use row versioning, while

writers (INSERT, UPDATE, and DELETE queries) rely on locking.

Strictly speaking, READ COMMITTED SNAPSHOT is not a true isolation level but rather

the database option (READ_COMMITTED_SNAPSHOT) that changes the default behavior

of the readers (SELECT queries) in the READ COMMITTED isolation level. In this book,

however, I will treat this option as a separate transaction isolation level.

Note T he READ_COMMITTED_SNAPSHOT database option is enabled by default
in Microsoft Azure SQL Databases and disabled by default in regular versions of
SQL Server.

You can set the transaction level on the session level using a SET TRANSACTION

ISOLATION LEVEL statement. Most client libraries use READ COMMITTED (or READ

COMMITTED SNAPSHOT when READ_COMMITTED_SNAPSHOT database option is enabled) as

the default isolation level. You can also control isolation level on a per-table basis using a

locking hint, which we will discuss in the next chapter.

�Working with Transactions
Let’s look at several aspects of transaction management in the system, starting with

transaction types.

�Transaction Types
There are three types of transactions in SQL Server—explicit, autocommitted, and

implicit.

Explicit transactions are explicitly controlled by the code. You can start them by using

the BEGIN TRAN statement. They will remain active until you explicitly call COMMIT or

ROLLBACK in the code.

In the event there are no active transactions present, SQL Server would use

autocommitted transactions—starting transactions and committing them for each

Chapter 2 Transaction Management and Concurrency Models

30

statement it executes. It is very important to remember that autocommitted transactions

work on a per-statement rather than per-module level. For example, when a stored

procedure consists of five statements, SQL Server would have five autocommitted

transactions executed. Moreover, if this procedure failed in the middle of execution, SQL

Server would not roll back its previously committed autocommitted transactions. This

behavior may lead to logical data inconsistencies in the system.

For logic that includes multiple data modification statements, autocommitted

transactions are less efficient than explicit transactions due to the logging overhead

they introduce. In this mode, every statement would generate transaction log records

for implicit BEGIN TRAN and COMMIT operations, which would lead to a large amount of

transaction log activity and degrade the performance of the system.

There is another potential performance hit caused by having an excessive number

of autocommitted transactions. As I already mentioned, SQL Server implements write-

ahead logging to support the transaction durability’s hardening the log records on disk

synchronously with data modifications. Internally, however, SQL Server batches log

write operations and caches log records in memory in small 60 KB structures called

log buffers. Committing a log record forces SQL Server to flush log buffers to disk, thus

introducing a synchronous I/O operation.

Figure 2-1 illustrates this condition. INSERT_1, UPDATE_1, and DELETE_1 operations

run in autocommitted transactions, generating additional log records and forcing the

log buffer to flush on each COMMIT. Alternatively, INSERT_2, UPDATE_2, and DELETE_2

operations run in an explicit transaction, which leads to more efficient logging.

Figure 2-1.  Transaction logging with autocommitted and explicit
transactions

Chapter 2 Transaction Management and Concurrency Models

31

The code in Listing 2-1 demonstrates this overhead in action. It performs the

INSERT/UPDATE/DELETE sequence 10,000 times in a loop in autocommitted and explicit

transactions, measuring execution time and transaction log throughput with the

sys.dm_io_virtual_file_stats view.

Listing 2-1.  Autocommitted and explicit transactions

create table dbo.TranOverhead

(

 Id int not null,

 Col char(50) null,

 constraint PK_TranOverhead

 primary key clustered(Id)

);

-- Autocommitted transactions

declare

 @Id int = 1,

 @StartTime datetime = getDate(),

 @num_of_writes bigint,

 @num_of_bytes_written bigint

select

 @num_of_writes = num_of_writes

 ,@num_of_bytes_written = num_of_bytes_written

from

 sys.dm_io_virtual_file_stats(db_id(),2);

while @Id < 10000

begin

 insert into dbo.TranOverhead(Id, Col) values(@Id, ‘A’);

 update dbo.TranOverhead set Col = ‘B’ where Id = @Id;

 delete from dbo.TranOverhead where Id = @Id;

 set @Id += 1;

end;

Chapter 2 Transaction Management and Concurrency Models

32

select

 datediff(millisecond, @StartTime, getDate())

 as [Exec Time ms: Autocommitted Tran]

 ,s.num_of_writes - @num_of_writes as [Number of writes]

 ,(s.num_of_bytes_written - @num_of_bytes_written) / 1024

 as [Bytes written (KB)]

from

 sys.dm_io_virtual_file_stats(db_id(),2) s;

go

-- Explicit Tran

declare

 @Id int = 1,

 @StartTime datetime = getDate(),

 @num_of_writes bigint,

 @num_of_bytes_written bigint

select

 @num_of_writes = num_of_writes

 ,@num_of_bytes_written = num_of_bytes_written

from

 sys.dm_io_virtual_file_stats(db_id(),2);

while @Id < 10000

begin

 begin tran

 insert into dbo.TranOverhead(Id, Col) values(@Id, ‘A’);

 update dbo.TranOverhead set Col = ‘B’ where Id = @Id;

 delete from dbo.TranOverhead where Id = @Id;

 commit

 set @Id += 1;

end;

Chapter 2 Transaction Management and Concurrency Models

33

select

 datediff(millisecond, @StartTime, getDate())

 as [Exec Time ms: Explicit Tran]

 ,s.num_of_writes - @num_of_writes as [Number of writes]

 ,(s.num_of_bytes_written - @num_of_bytes_written) / 1024

 as [Bytes written (KB)]

Figure 2-2 illustrates the output of the code in my environment. As you can see,

explicit transactions are about two times faster and generated three times less log activity

than autocommitted ones.

SQL Server 2014 and above allows you to improve transaction log throughput by

using delayed durability. In this mode, SQL Server does not flush log buffers when

COMMIT log records are generated. This reduces the number of disk writes at the cost of

potential small data losses in case of disaster.

Note Y ou can read more about delayed durability at https://docs.
microsoft.com/en-us/sql/relational-databases/logs/control-
transaction-durability or in my Pro SQL Server Internals book.

SQL Server also supports implicit transactions, which you can enable with the SET

IMPLICIT_TRANSACTION ON statement. When this option is enabled, SQL Server starts the

new transaction when there are no active explicit transactions present. This transaction

stays active until you explicitly issue a COMMIT or ROLLBACK statement.

From a performance and transaction log throughput standpoint, implicit

transactions are similar to explicit ones. However, they make transaction management

more complicated and are rarely used in production. However, there is a caveat—the SET

ANSI_DEFAULT ON option also automatically enables implicit transactions. This behavior

may lead to unexpected concurrency issues in the system.

Figure 2-2.  Explicit and autocommitted transaction performance

Chapter 2 Transaction Management and Concurrency Models

https://docs.microsoft.com/en-us/sql/relational-databases/logs/control-transaction-durability
https://docs.microsoft.com/en-us/sql/relational-databases/logs/control-transaction-durability
https://docs.microsoft.com/en-us/sql/relational-databases/logs/control-transaction-durability

34

�Error Handling
Error handling in SQL Server is a tricky subject, especially with transactions involved.

SQL Server handles exceptions differently depending on error severity, active

transaction context, and several other factors.

Let’s look at how exceptions affect control flow during execution. Listing 2-2 creates

two tables—dbo.Customers and dbo.Orders—and populates them with data. Note the

existence of a foreign key constraint defined in the dbo.Orders table.

Listing 2-2.  Error handling: Tables creation

create table dbo.Customers

(

 CustomerId int not null,

 constraint PK_Customers

 primary key(CustomerId)

);

create table dbo.Orders

(

 OrderId int not null,

 CustomerId int not null,

 constraint FK_Orders_Customerss

 foreign key(CustomerId)

 references dbo.Customers(CustomerId)

);

go

create proc dbo.ResetData

as

begin

 begin tran

 delete from dbo.Orders;

 delete from dbo.Customers;

 insert into dbo.Customers(CustomerId) values(1),(2),(3);

 insert into dbo.Orders(OrderId, CustomerId) values(2,2);

 commit

Chapter 2 Transaction Management and Concurrency Models

35

end;

go

exec dbo.ResetData;

Let’s run three DELETE statements in one batch, as shown in Listing 2-3. The second

statement will trigger a foreign key violation error. The @@ERROR system variable provides

the error number for the last T-SQL statement executed (0 means no errors).

Listing 2-3.  Error handling: Deleting customers

delete from dbo.Customers where CustomerId = 1; -- Success

select @@ERROR as [@@ERROR: CustomerId = 1];

delete from dbo.Customers where CustomerId = 2; -- FK Violation

select @@ERROR as [@@ERROR: CustomerId = 2];

delete from dbo.Customers where CustomerId = 3; -- Success

select @@ERROR as [@@ERROR: CustomerId = 3];

go

select * from dbo.Customers;

Figure 2-3 illustrates the output of the code. As you can see, SQL Server continues

execution after the non-critical foreign key violation error, deleting the row with

CustomerId=3 afterward.

Figure 2-3.  Deleting three customers in the batch

Chapter 2 Transaction Management and Concurrency Models

36

The situation would change if you use a TRY..CATCH block, as shown in Listing 2-4.

Listing 2-4.  Error handling: Deleting customers in TRY..CATCH block

exec dbo.ResetData;

go

begin try

 delete from dbo.Customers where CustomerId = 1; -- Success

 delete from dbo.Customers where CustomerId = 2; -- FK Violation

 delete from dbo.Customers where CustomerId = 3; -- Not executed

end try

begin catch

 select

 ERROR_NUMBER() as [Error Number]

 ,ERROR_LINE() as [Error Line]

 ,ERROR_MESSAGE() as [Error Message];

end catch

go

select * from dbo.Customers;

As you can see in Figure 2-4, the error was caught in the CATCH block, and the third

deletion statement has not been executed.

There are several functions that you can use in the CATCH block:

ERROR_NUMBER() returns the number of the error that caused the

CATCH block to run.

ERROR_MESSAGE() provides an error message.

Figure 2-4.  Deleting three customers in TRY..CATCH block

Chapter 2 Transaction Management and Concurrency Models

37

ERROR_SEVERITY() and ERROR_STATE() indicate the severity and

state number of the error, respectively.

ERROR_PROCEDURE() returns the name of the stored procedure or

trigger in which the error occurred. This can be useful if the code

has nested stored procedure calls with TRY..CATCH in the outer

module.

ERROR_LINE() provides the line number at which the error

occurred.

Finally, the THROW operator allows you to re-throw an error from

the CATCH block.

Important N on-critical exceptions do not automatically roll back explicit or
implicit transactions, regardless of whether a TRY..CATCH block is present. You
still need to commit or roll back the transactions after the error.

Depending on the severity of the error, a transaction in which an error occurred

may be committable or may become uncommittable and doomed. SQL Server would

not allow you to commit uncommittable transactions, and you must roll it back to

complete it.

The XACT_STATE() function allows you to analyze the state of a transaction; it returns

one of three values:

0 indicates that there are no active transactions present.

1 indicates that there is an active committable transaction present.

You can perform any actions and data modifications, committing

the transactions afterward.

-1 indicates that there is an active uncommittable transaction

present. You cannot commit such a transaction.

There is a very important SET option, XACT_ABORT, that allows you to control error-

handling behavior in the code. When this option is set to ON, SQL Server treats every

run-time error as severe, making transactions uncommittable. This prevents you from

accidentally committing transactions when some data modifications failed with non-

critical errors. Again, remember the example with the money transfer between checking

and savings accounts. This transaction should not be committed if one of the UPDATE

statements triggered an error, regardless of its severity.

Chapter 2 Transaction Management and Concurrency Models

38

When XACT_ABORT is enabled, any error would terminate the batch when a

TRY..CATCH block is not present. For example, if you run the code from Listing 2-3 again

using SET XACT_ABORT ON, the third DELETE statement would not be executed, and only

the row with CustomerId=1 will be deleted. Moreover, SQL Server would automatically

roll back doomed uncommitted transactions after the batch completed.

Listing 2-5 illustrates this behavior. The stored procedure dbo.GenerateError sets

XACT_ABORT to ON and generates an error within the active transaction. The @@TRANCOUNT

variable returns the nested level of the transaction (more on this later), and non-zero

values indicate that the transaction is active.

Listing 2-5.  SET XACT_ABORT behavior

create proc dbo.GenerateError

as

begin

 set xact_abort on

 begin tran

 delete from dbo.Customers where CustomerId = 2; -- Error

 select 'This statement will never be executed';

end

go

exec dbo.GenerateError;

select 'This statement will never be executed';

go

-- Another batch

select XACT_STATE() as [XACT_STATE()], @@TRANCOUNT as [@@TRANCOUNT];

go

Figure 2-5 illustrates the output of the code. As you can see, batch execution has

been terminated, and the transaction has been automatically rolled back at the end of

the batch.

Chapter 2 Transaction Management and Concurrency Models

39

A TRY..CATCH block, however, will allow you to capture the error even with

XACT_ABORT set to ON. Listing 2-6 illustrates such a situation.

Listing 2-6.  SET XACT_ABORT behavior with TRY..CATCH block

begin try

 exec dbo.GenerateError;

 select 'This statement will never be executed';

end try

begin catch

 select

 ERROR_NUMBER() as [Error Number]

 ,ERROR_PROCEDURE() as [Procedure]

 ,ERROR_LINE() as [Error Line]

 ,ERROR_MESSAGE() as [Error Message];

 select

 XACT_STATE() as [XACT_STATE()]

 ,@@TRANCOUNT as [@@TRANCOUNT];

 if @@TRANCOUNT > 0

 rollback;

end catch

As you can see in Figure 2-6, the exception has been trapped in the CATCH block, with

the transaction still remaining active there.

Figure 2-5.  XACT_ABORT behavior

Chapter 2 Transaction Management and Concurrency Models

40

Consistent error handling and transaction management strategies are extremely

important and allow you to avoid data consistency errors and improve data quality in the

system. I would recommend the following approach as the best practice:

•	 Always use explicit transactions in the code during data

modifications. This would guarantee data consistency in transactions

that consist of multiple operations. It is also more efficient than

individual autocommitted transactions.

•	 Set XACT_ABORT to ON before transaction is started. This would

guarantee the “all-or-nothing” behavior of the transaction,

preventing SQL Server from ignoring non-severe errors or

committing partially completed transactions.

•	 Use proper error handling with TRY..CATCH blocks and explicitly

roll back transactions in case of exceptions. This helps to avoid

unforeseen side effects in case of errors.

It is impossible to perform the operations that generate transaction log records after a

transaction becomes uncommittable. In practice, it means that you could not perform any

data modifications—for example, log errors in the database in the CATCH block—until you

roll back an uncommittable transaction. You can persist the data in table variables if needed.

Tip A s the opposite of temporary tables, table variables are not transaction-
aware. The data in table variables would not be affected by a transaction rollback.

The choice between client-side and server-side transaction management depends

on the application architecture. Client-side management is required when data

modifications are done in the application code; for example, changes are generated by

ORM frameworks. On the other hand, stored procedure-based data access tiers may

benefit from server-side transaction management.

Figure 2-6.  XACT_ABORT behavior with TRY..CATCH block

Chapter 2 Transaction Management and Concurrency Models

41

Listing 2-7 provides an example of a stored procedure that implements server-side

transaction management.

Listing 2-7.  Server-side transaction management

create proc dbo.PerformDataModifications

as

begin

 set xact_abort on

 begin try

 begin tran

 /* Perform required data modifications */

 commit

 end try

 begin catch

 if @@TRANCOUNT > 0 -- Transaction is active

 rollback;

 /* Addional error-handling code */

 �throw; -- Re-throw error. Alternatively, SP may return the error

code

 end catch;

end;

�Nested Transactions and Savepoints
SQL Server technically supports nested transactions; however, they are primarily

intended to simplify transaction management during nested stored procedure calls.

In practice, it means that the code needs to explicitly commit all nested transactions,

and the number of COMMIT calls should match the number of BEGIN TRAN calls. The

ROLLBACK statement, however, rolls back the entire transaction regardless of the

current nested level.

The code in Listing 2-8 demonstrates this behavior. As I already mentioned, system

variable @@TRANCOUNT returns the nested level of the transaction.

Chapter 2 Transaction Management and Concurrency Models

42

Listing 2-8.  Nested transactions

select @@TRANCOUNT as [Original @@TRANCOUNT];

begin tran

 select @@TRANCOUNT as [@@TRANCOUNT after the first BEGIN TRAN];

 begin tran

 select @@TRANCOUNT as [@@TRANCOUNT after the second BEGIN TRAN];

 commit

 select @@TRANCOUNT as [@@TRANCOUNT after nested COMMIT];

 begin tran

 select @@TRANCOUNT as [@@TRANCOUNT after the third BEGIN TRAN];

 rollback

select @@TRANCOUNT as [@@TRANCOUNT after ROLLBACK];

rollback; -- This ROLLBACK generates the error

You can see the output of the code in Figure 2-7.

Figure 2-7.  Nested transactions

Chapter 2 Transaction Management and Concurrency Models

43

You can save the state of the transaction and create a savepoint by using a SAVE

TRANSACTION statement. This will allow you to partially roll back a transaction, returning

to the most recent savepoint. The transaction will remain active and will need to be

completed with an explicit COMMIT or ROLLBACK statement later.

Note U ncommittable transactions with XACT_STATE() = -1 cannot be rolled
back to a savepoint. In practice, it means that you cannot roll back to a savepoint
after an error if XACT_ABORT is set to ON.

The code in Listing 2-9 illustrates this behavior. The stored procedure creates the

savepoint when it runs an active transaction and rolls back to this savepoint in case of a

committable error.

Listing 2-9.  Savepoints

create proc dbo.TryDeleteCustomer

(

 @CustomerId int

)

as

begin

 -- Setting XACT_ABORT to OFF for rollback to savepoint to work

 set xact_abort off

 declare

 @ActiveTran bit

 -- Check if SP is calling in context of active transaction

 set @ActiveTran = IIF(@@TranCount > 0, 1, 0);

 if @ActiveTran = 0

 begin tran;

 else

 save transaction TryDeleteCustomer;

 begin try

 delete dbo.Customers where CustomerId = @CustomerId;

Chapter 2 Transaction Management and Concurrency Models

44

 if @ActiveTran = 0

 commit;

 return 0;

 end try

 begin catch

 if @ActiveTran = 0 or XACT_STATE() = -1

 begin

 -- Roll back entire transaction

 rollback tran;

 return -1;

 end

 else begin

 -- Roll back to savepoint

 rollback tran TryDeleteCustomer;

 return 1;

 end

 end catch;

end;

The code in Listing 2-10 triggers a foreign key violation during the second

dbo.TryDeleteCustomer call. This is a non-critical error, and therefore the code is able to

commit after it.

Listing 2-10.  dbo.TryDeleteCustomer in action

declare

 @ReturnCode int

exec dbo.ResetData;

begin tran

 exec @ReturnCode = TryDeleteCustomer @CustomerId = 1;

 select

 1 as [CustomerId]

 ,@ReturnCode as [@ReturnCode]

 ,XACT_STATE() as [XACT_STATE()];

Chapter 2 Transaction Management and Concurrency Models

45

 if @ReturnCode >= 0

 begin

 exec @ReturnCode = TryDeleteCustomer @CustomerId = 2;

 select

 2 as [CustomerId]

 ,@ReturnCode as [@ReturnCode]

 ,XACT_STATE() as [XACT_STATE()];

 end

if @ReturnCode >= 0

 commit;

else

 if @@TRANCOUNT > 0

 rollback;

go

select * from dbo.Customers;

Figure 2-8 shows the output of the code. As you can see, SQL Server has been able to

successfully delete the row with CustomerId=1 and commit the transaction at this state.

It is worth noting that this example is shown for demonstration purposes only.

From an efficiency standpoint, it would be better to validate the referential integrity and

existence of the orders before deletion occurred rather than catching an exception and

rolling back to a savepoint in case of an error.

Figure 2-8.  Output of Listing 2-10

Chapter 2 Transaction Management and Concurrency Models

46

�Summary
Transactions are a key concept in data management systems and support atomicity,

consistency, isolation, and durability requirements for data modifications in the system.

There are two concurrency models used in database systems. Pessimistic

concurrency expects that users may want to update the same data, and it blocks access

to uncommitted changes from other sessions. Optimistic concurrency assumes that

the chance of simultaneous data updates is low. There is no blocking under this model;

however, simultaneous updates will lead to write–write conflicts.

SQL Server supports four pessimistic (READ UNCOMMITTED, READ COMMITTED,

REPEATABLE READ, and SERIALIZABLE) and one optimistic (SNAPSHOT) isolation levels.

It also supports the READ COMMITTED SNAPSHOT isolation level, which implements

optimistic concurrency for readers and pessimistic concurrency for data modification

queries.

There are three types of transactions in SQL Server—explicit, autocommitted, and

implicit. Autocommitted transactions are less efficient as a result of the transaction

logging overhead they introduce.

Depending on the severity of the errors and a few other factors, transactions may

be committable or may become uncommittable and doomed. You can treat all errors

as uncommittable by setting XACT_ABORT option to ON. This approach simplifies error

handling and reduces the chance of data inconsistency in the system.

SQL Server supports nested transactions. The number of COMMIT calls should match

the BEGIN TRAN calls for the transaction to be committed. A ROLLBACK statement, on the

other hand, rolls back the entire transaction regardless of the nested level.

Chapter 2 Transaction Management and Concurrency Models

47
© Dmitri Korotkevitch 2018
D. Korotkevitch, Expert SQL Server Transactions and Locking, https://doi.org/10.1007/978-1-4842-3957-5_3

CHAPTER 3

Lock Types
This chapter will discuss the key concept in SQL Server concurrency—locks. It will

provide an overview of the major lock types in SQL Server, explain their compatibility,

and, finally, demonstrate how different transaction isolation levels affect the lifetime of

the locks in the system.

�Major Lock Types
SQL Server uses locking to support the isolation requirements of the transaction. Every

lock, in a nutshell, is an in-memory structure managed by a SQL Server component

called the lock manager. Each lock structure uses 64 bytes of memory on the 32-bit and

128 bytes on the 64-bit edition of SQL Server.

Locks are acquired and held on resources, such as data rows, pages, partitions, tables

(objects), databases, and several others. By default, SQL Server uses row-level locking

to acquire locks on the data rows, which minimizes possible concurrency issues in the

system. You should remember, however, that the only guarantee SQL Server provides

is enforcing data isolation and consistency based on transaction isolation levels. The

locking behavior is not documented, and in some cases SQL Server can choose to lock at

the page or table level rather than at the row level. Nevertheless, lock compatibility rules

are always enforced, and understanding the locking model is enough to troubleshoot

and address the majority of the concurrency issues in the system.

The key attribute in the lock structure is the lock type. Internally, SQL Server uses

more than 20 different lock types. They can be grouped into several major categories

based on their type and usage.

48

CODE SAMPLES

The code examples in this and subsequent chapters will rely on the Delivery.Orders

table defined here. This table has a clustered primary key on the OrderId column with no

nonclustered indexes defined.

You can find the script that creates the table and populates it with the data in the companion

materials of the book.

create schema Delivery;

create table Delivery.Orders

(

 OrderId int not null identity(1,1),

 OrderDate smalldatetime not null,

 OrderNum varchar(20) not null,

 Reference varchar(64) null,

 CustomerId int not null,

 PickupAddressId int not null,

 DeliveryAddressId int not null,

 ServiceId int not null,

 RatePlanId int not null,

 OrderStatusId int not null,

 DriverId int null,

 Pieces smallint not null,

 Amount smallmoney not null,

 ModTime datetime not null

 constraint DEF_Orders_ModTime

 default getDate(),

 PlaceHolder char(100) not null

 constraint DEF_Orders_Placeholder

 default 'Placeholder',

 constraint PK_Orders

 primary key clustered(OrderId)

)

go

Chapter 3 Lock Types

49

declare

 @MaxOrderId int = 65536

 ,@MaxCustomers int = 1000

 ,@MaxAddresses int = 20

 ,@MaxDrivers int = 125

;with N1(C) as (select 0 union all select 0) -- 2 rows

,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows

,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows

,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows

,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows

,IDs(ID) as (select row_number() over (order by (select null)) from N5)

,Info(OrderId, CustomerId, OrderDateOffset, RatePlanId, ServiceId, Pieces)

as

(

 select

 ID, ID % @MaxCustomers + 1, ID % (365*24*60)

 ,ID % 2 + 1, ID % 3 + 1, ID % 5 + 1

 from IDs

 where ID <= @MaxOrderId

)

,Info2(OrderId, OrderDate, OrderNum, CustomerId, RatePlanId ,ServiceId

 ,Pieces ,PickupAddressId, OrderStatusId, Rate)

as

(

 select

 OrderId

 ,dateadd(minute, -OrderDateOffset, getdate())

 ,convert(varchar(10),OrderId), CustomerId

 ,RatePlanId

 ,ServiceId

 ,Pieces

 ,(CustomerId - 1) * @MaxAddresses + OrderId % 20

 ,case

 when OrderDateOffset > 5 * 24 * 60

 then 4

 else OrderId % 4 + 1

 end

Chapter 3 Lock Types

50

 ,(OrderId % 5 + 1) * 10.

 from Info

)

insert into Delivery.Orders(OrderDate, OrderNum, CustomerId,

 PickupAddressId, DeliveryAddressId, ServiceId, RatePlanId,

 OrderStatusId, DriverId, Pieces, Amount)

select

 o.OrderDate

 ,o.OrderNum

 ,o.CustomerId

 ,o.PickupAddressId

 ,case

 when o.PickupAddressId % @MaxAddresses = 0

 then o.PickupAddressId + 1

 else o.PickupAddressId - 1

 end

 ,o.ServiceId

 ,o.RatePlanId

 ,o.OrderStatusId

 ,case

 when o.OrderStatusId in (1,4)

 then NULL

 else OrderId % @MaxDrivers + 1

 end

 ,o.Pieces

 ,o.Rate

from Info2 o;

�Exclusive (X) Locks
Exclusive (X) locks are acquired by writers—INSERT, UPDATE, DELETE, and MERGE

statements that modify data. Those queries acquire exclusive (X) locks on the affected

rows and hold them until the end of the transaction.

As you can guess by the name—exclusive means exclusive—only one session can

hold an exclusive (X) lock on the resource at any given point in time. This behavior

enforces the most important concurrency rule in the system—multiple sessions cannot

modify the same data simultaneously. That’s it; other sessions are unable to acquire

Chapter 3 Lock Types

51

exclusive (X) locks on the row until the first transaction is completed and the exclusive (X)

lock on the modified row is released.

Transaction isolation levels do not affect exclusive (X) lock behavior. Exclusive (X)

locks are acquired and held until the end of the transaction, even in READ UNCOMMITTED

mode. The longer the transaction you have, the longer the exclusive (X) locks would be

held, which would increase the chance that blocking would occur.

�Intent (I*) Locks
Even though row-level locking reduces blocking in the system, keeping locks only on the

row level would be bad from a performance standpoint. Consider a situation where a

session needs to have exclusive access to a table; for example, during the table alteration.

In this case, if only row-level locking existed, the session would have to scan the entire

table, checking if any row-level locks were held there. As you can imagine, this would be

an extremely inefficient process, especially on large tables.

SQL Server addresses this situation by introducing the concept of intent (I*) locks.

Intent locks are held on the data-page and table levels and indicate the existence of locks

on the child objects.

Let’s run the code from Listing 3-1 and check what locks are held after we update

one row in the table. The code uses the sys.dm_tran_locks dynamic management view,

which returns information about current lock requests in the system.

It is worth noting that I am using the READ UNCOMMITTED isolation level to

demonstrate that exclusive (X) locks are acquired in any transaction isolation level.

Listing 3-1.  Updating a row and checking the locks held

set transaction isolation level read uncommitted

begin tran

 update Delivery.Orders

 set Reference = 'New Reference'

 where OrderId = 100;

 select

 l.resource_type

 ,case

 when l.resource_type = 'OBJECT'

 then

Chapter 3 Lock Types

52

 object_name

 (

 l.resource_associated_entity_id

 ,l.resource_database_id

)

 else ''

 end as [table]

 ,l.resource_description

 ,l.request_type

 ,l.request_mode

 ,l.request_status

 from

 sys.dm_tran_locks l

 where

 l.request_session_id = @@spid;

commit

Figure 3-1 illustrates the output from the SELECT statement. As you can see, SQL

Server held an exclusive (X) lock on the row (key) and intent exclusive (IX) locks on both

the page and the object (table). Those intent exclusive (IX) locks indicate the existence

of the exclusive (X) row-level lock held. Finally, there was also a shared (S) lock on the

database, which indicates that the session was accessing it. We will cover shared (S)

locks later in this chapter.

Figure 3-1.  Locks held after UPDATE statement

Chapter 3 Lock Types

53

The resource_description column indicates the resources on which those locks

were acquired. For the page, it indicates its physical location (page 944 in the database

file 1), and for the row (key) it indicates the hash value of the index key. For object

locks, you can obtain the object_id from the resource_associated_entry_id column

in the view.

When the session needs to obtain object- or page-level locks, it could check lock

compatibility with the other locks (intent or full) held on the table or page rather than

scanning the table/page and checking row-level locks there.

Finally, it is worth noting that in some cases SQL Server may acquire intent locks

on other intermediate objects, such as table partitions or row groups in columnstore

indexes.

�Update (U) locks
SQL Server uses another lock type, update (U) locks, during data modifications,

acquiring them while searching for the rows that need to be updated. After an update (U)

lock is acquired, SQL Server reads the row and evaluates if the row needs to be updated

by checking the row data against query predicates. If this is the case, SQL Server converts

the update (U) lock to an exclusive (X) lock and performs the data modification.

Otherwise, the update (U) lock is released.

Let’s look at an example and run the code from Listing 3-2.

Listing 3-2.  Updating multiple rows using clustered index key as the predicate

begin tran

 update Delivery.Orders

 set Reference = 'New Reference'

 where OrderId in (1000, 5000);

commit

Figure 3-2 provides the output from the Extended Events session that captures

lock_acquired and lock_released events. SQL Server acquired aintent update (IU)

locks on the pages and update (U) locks on the rows converting them to intent exclusive

(IX) and exclusive (X) locks afterwards. The locks were held until the end of the

transactions and were released at the time of COMMIT.

Chapter 3 Lock Types

54

Update (U) locks’ behavior depends on the execution plan. In some cases, SQL

Server acquires update (U) locks on all rows first, converting them to exclusive (X) locks

afterward. In other cases—when, for example, you update only one row based on the

clustered index key value—SQL Server can acquire an exclusive (X) lock without using

an update (U) lock at all.

The number of locks to acquire also greatly depends on the execution plan. Let’s

run the UPDATE Delivery.Orders SET Reference = 'Ref' WHERE OrderNum='1000'

statement, filtering data based on the OrderNum column. Figure 3-3 illustrates the locks

that were acquired and released along with the total number of locks processed.

Figure 3-2.  Update (U) and exclusive (X) locks

Chapter 3 Lock Types

55

There are no indexes on the OrderNum column, so SQL Server needs to perform

a clustered index scan, acquiring an update (U) lock on every row in the table. More

than one million locks have been acquired even though the statement updated just a

single row.

That behavior illustrates one of the typical blocking scenarios. Consider a situation

where one of the sessions holds an exclusive (X) lock on a single row. If another session

were to update a different row by running a non-optimized UPDATE statement, SQL

Server would acquire an update (U) lock on every row it was scanning, and eventually it

would be blocked trying to read the row with the exclusive (X) lock held on it. It does not

matter that the second session does not need to update that row after all—SQL Server

still needs to acquire an update (U) lock to evaluate if that row needs to be updated.

�Shared (S) locks
Shared (S) locks are acquired by the readers—SELECT queries—in the system. As you

can guess by the name, shared (S) locks are compatible with each other, and multiple

sessions can hold shared (S) locks on the same resource.

Figure 3-3.  Locks during query execution

Chapter 3 Lock Types

56

Let’s run the code from Table 3-1 to illustrate that.

Figure 3-4.  Locks acquired by the sessions

Table 3-1.  Shared (S) Locks

Session 1 (SPID=53) Session 2 (SPID=55)

set transaction isolation level

repeatable read

begin tran

 select OrderNum

 from Delivery.Orders

 where OrderId = 500;

set transaction isolation level

repeatable read

begin tran

 select OrderNum

 from Delivery.Orders

 where OrderId = 500;

 select

 request_session_id

 ,resource_type

 ,resource_description

 ,request_type

 ,request_mode

 ,request_status

 from sys.dm_tran_locks;

commit; commit

Figure 3-4 illustrates the output from the sys.dm_tran_locks view. As you can see,

both sessions acquired shared (S) locks on the database, intent shared (IS) locks on the

table and page (1:955), and shared (S) locks on the row, all without blocking each other.

Chapter 3 Lock Types

57

�Lock Compatibility, Behavior, and Lifetime
Table 3-2 shows the lock compatibility matrix that shows compatibility between lock types.

The most important lock compatibility rules are:

	 1.	 Intent (IS/IU/IX) locks are compatible with each other. Intent

locks indicate the existence of locks on the child objects, and

multiple sessions can hold intent locks on the object and page

levels simultaneously.

	 2.	 Exclusive (X) locks are incompatible with each other and any

other lock types. Multiple sessions cannot update the same row

simultaneously. Moreover, readers that acquire shared (S) locks

cannot read uncommitted rows with exclusive (X) locks held.

	 3.	 Update (U) locks are incompatible with each other as well as with

exclusive (X) locks. Writers cannot evaluate if the row needs to be

updated simultaneously nor access a row that has an exclusive (X)

lock held.

	 4.	 Update (U) locks are compatible with shared (S) locks. Writers

can evaluate if the row needs to be updated without blocking or

being blocked by the readers. It is worth noting that (S)/(U) lock

compatibility is the main reason why SQL Server uses update (U)

locks internally. They reduce the blocking between readers and

writers.

Table 3-2.  Lock Compatibility Matrix (I*, S, U, X Locks)

(IS) (S) (IU) (U) (IX) (X)

(IS) Yes Yes Yes Yes Yes No

(S) Yes Yes Yes Yes No No

(IU) Yes Yes Yes No Yes No

(U) Yes Yes No No No No

(IX) Yes No Yes No Yes No

(X) No No No No No No

Chapter 3 Lock Types

58

As you already know, exclusive (X) lock behavior does not depend on transaction

isolation level. Writers always acquire exclusive (X) locks and hold them until the end of

the transaction. With the exception of the SNAPSHOT isolation level, the same is true for

update (U) locks—writers acquire them on every row they scan while evaluating if the

rows need to be updated.

The shared (S) locks’ behavior, on the other hand, depends on transaction isolation

level.

Note S QL Server always works with data in the transaction context. In this
case, when applications do not start explicit transactions with BEGIN TRAN /
COMMIT statements, SQL Server uses autocommitted transactions for the duration
of the statements. Even SELECT statements run within their own lightweight
transactions. SQL Server does not write them to the transaction log, although all
locking and concurrency rules still apply.

With the READ UNCOMMITTED isolation level, shared (S) locks are not acquired.

Therefore, readers can read the rows that have been modified by other sessions and

have exclusive (X) locks held. This isolation level reduces blocking in the system

by eliminating conflicts between readers and writers at the cost of data consistency.

Readers would read the current (modified) version of the row regardless of

what happens next, such as if changes were rolled back or if a row were

modified multiple times. This explains why this isolation level is often called

a dirty read.

The code in Table 3-3 illustrates that. The first session runs a DELETE statement,

acquiring an exclusive (X) lock on the row. The second session runs a SELECT statement

in READ UNCOMMITTED mode.

Chapter 3 Lock Types

59

In the READ UNCOMMITTED isolation level, readers do not acquire shared (S) locks.

Session 2 would not be blocked and would return the result set shown in Figure 3-5. It

does not include the row with OrderId=95, which has been deleted in the uncommitted

transaction in the first session even though the transaction is rolled back afterward.

Table 3-3.  READ UNCOMMITTED Isolation Level Consistency

Session 1 Session 2

begin tran

 delete from Delivery.Orders

 where OrderId = 95;

-- Success / No Blocking

set transaction isolation level read

uncommitted;

select OrderId, Amount

from Delivery.Orders

where OrderId between 94 and 96;

rollback;

Figure 3-5.  READ UNCOMMITTED and shared (S) lock behavior

It is worth noting again that exclusive (X) and update (U) locks’ behavior is not

affected by transaction isolation level. You will have writers/writers blocking even in

READ UNCOMMITTED mode.

In the READ COMMITTED isolation level, SQL Server acquires and releases shared (S)

locks immediately after the row has been read. This guarantees that transactions cannot

read uncommitted data from other sessions. Let’s run the code from Listing 3-3.

Listing 3-3.  Reading data in READ COMMITTED isolation level

set transaction isolation level read committed;

select OrderId, Amount

from Delivery.Orders

where OrderId in (90,91);

Chapter 3 Lock Types

60

Figure 3-6 illustrates how SQL Server acquires and releases the locks. As you can see,

row-level locks are acquired and released immediately.

It is worth noting that in some cases, in READ COMMITTED mode, SQL Server can hold

shared (S) locks for the duration of the SELECT statement, releasing the locks only after it

is completed. One such example is a query that reads the data from LOB columns from

the table.

Tip  Do not select unnecessary columns or use the SELECT * pattern in the
code. This may introduce performance overhead and increase locking in the
system.

In the REPEATABLE READ isolation level, SQL Server acquires shared (S) locks and

holds them until the end of the transaction. This guarantees that other sessions cannot

modify the data after it is read. You can see this behavior if you run the code from

Listing 3-3, changing the isolation level to REPEATABLE READ.

Figure 3-6.  Shared (S) locks’ behavior in READ COMMITTED mode

Chapter 3 Lock Types

61

Figure 3-7 illustrates how SQL Server acquires and releases the locks. As you can

see, SQL Server acquires both shared (S) locks first, releasing them at the end of the

transaction.

In the SERIALIZABLE isolation level, shared (S) locks are also held until the end of the

transaction. However, SQL Server uses another variation of the locks called range locks.

Range locks (both shared and exclusive) protect index-key ranges rather than individual

rows.

Consider a situation where a Delivery.Orders table has just two rows with OrderId

of 1 and 10. In the REPEATABLE READ isolation level, the SELECT statement would acquire

two row-level locks. Other sessions would not be able to modify those rows, but they

could still insert the new row with OrderId in between those values. In the SERIALIZABLE

isolation level, the SELECT statement would acquire a range shared (RangeS-S) lock,

preventing other sessions from inserting any rows in between OrderId of 1 and 10.

Figure 3-8 illustrates how SQL Server acquires and releases locks in the

SERIALIZABLE isolation level.

Figure 3-7.  Shared (S) locks’ behavior in REPEATABLE READ mode

Chapter 3 Lock Types

62

Optimistic isolation levels—READ COMMITTED SNAPSHOT and SNAPSHOT—do not

acquire shared (S) locks. When readers (SELECT queries) encounter a row with an

exclusive (X) lock held, they read the old (previously committed) version of this row from

the version store in tempdb. Writers and uncommitted data modifications do not block

readers in the system.

From the blocking and concurrency standpoints, READ COMMITTED SNAPSHOT has the

same behavior as READ UNCOMMITTED. Both isolation levels remove the issue of readers/

writers’ blocking in the system. READ COMMITTED SNAPSHOT, however, provides better

data consistency by eliminating access to uncommitted data and dirty reads. In the vast

majority of cases, you should not use READ UNCOMMITTED, and should switch to using

READ COMMITTED SNAPSHOT instead.

Note  We will discuss optimistic isolation levels in greater depth in Chapter 6.

Table 3-4 summarizes how SQL Server works with shared (S) locks based on

transaction isolation levels.

Figure 3-8.  Shared (S) locks’ behavior in SERIALIZABLE isolation level

Chapter 3 Lock Types

63

You can control isolation levels and locking behavior on the transaction level by

using a SET TRANSACTION ISOLATION LEVEL statement or on the table level with a table

locking hint.

It is possible to use different isolation levels in the same query on a per-table basis, as

is shown in Listing 3-4.

Listing 3-4.  Controlling locking behavior with table hints

select c.CustomerName, sum(o.Total) as [Total]

from

 dbo.Customers c with (READCOMMITTED) join

 dbo.Orders o with (SERIALIZABLE) on

 o.CustomerId = c.CustomerId

group by

 c.CustomerName;

Note  The famous NOLOCK hint is just a synonym for READ UNCOMMITTED table
access.

Table 3-4.  Transaction Isolation Levels and Shared (S) Locks’ Behavior

Transaction Isolation Level Table Hint Shared Lock Behavior

READ UNCOMMITTED (NOLOCK) (S) locks not acquired

READ COMMITTED (default) (READCOMMITTED) (S) locks acquired and released

immediately

REPEATABLE READ (REPEATABLEREAD) (S) locks acquired and held till end of

transaction

SERIALIZABLE (SERIALIZABLE) or

(HOLDLOCK)

Range locks acquired and held till end

of transaction

READ COMMITTED SNAPSHOT N/A (S) locks not acquired

SNAPSHOT N/A (S) locks not acquired

Chapter 3 Lock Types

64

Finally, I would like to reiterate that all transaction isolation levels except SNAPSHOT

behave in the same way and use update (U) locks during update scans and exclusive (X)

locks during data modifications. This leads to writers/writers blocking in the system.

The SNAPSHOT isolation level also uses exclusive (X) locks during data modifications.

However, it does not use update (U) locks during update scans, reading the old versions

of the rows from the version store in tempdb. This eliminates writers/writers blocking

unless multiple sessions are trying to update the same rows simultaneously.

�Transaction Isolation Levels and Data Consistency
As already mentioned in the previous chapter, we may experience several concurrency

phenomena in the system. Let’s analyze why those phenomena are possible based on

the locking behavior of transaction isolation levels.

Dirty Reads: This issue arises when transaction reads

uncommitted (dirty) data from other uncommitted transactions.

It is unknown if those active transactions will be committed or

rolled back or if the data is logically consistent.

From the locking perspective, this phenomenon could occur

in the READ UNCOMMITTED isolation level when sessions do not

acquire shared (S) locks and ignore exclusive (X) locks from the

other sessions. All other isolation levels are immune from dirty

reads. Pessimistic isolation levels use shared (S) locks and are

blocked when trying to access uncommitted rows with exclusive

(X) locks held on them. Optimistic isolation levels, on the other

hand, read old (previously) committed versions of the rows from

the version store.

Non-Repeatable Reads: Subsequent attempts to read the same

data from within the same transaction return different results.

This data inconsistency issue arises when the other transactions

modified or even deleted data between reads. Consider a situation

where you render a report that displays a list of the orders for a

specific customer along with some aggregated information (for

example, total amount spent by customer on a monthly basis). If

another session modifies or perhaps deletes the orders in between

those queries, the result sets will be inconsistent.

Chapter 3 Lock Types

65

From the locking standpoint, such a phenomenon could occur

when sessions don’t protect/lock the data in between reads. This

could happen in the READ UNCOMMITTED and READ COMMITTED

SNAPSHOT isolation levels, which do not use shared (S) locks,

as well as in the READ COMMITTED isolation level when sessions

acquire and release shared (S) locks immediately. REPEATABLE

READ and SERIALIZABLE isolation levels hold the shared (S)

locks until the end of the transaction, which prevents data

modifications once data is read.

The SNAPSHOT isolation level is also immune from this

phenomenon as it works with a snapshot of the data at the time

when the transaction started. We will discuss it in depth in

Chapter 6.

Phantom Reads: This phenomenon occurs when subsequent

reads within the same transaction return new rows (ones that

the transaction did not read before). Think about the previous

example when another session inserted a new order in between

queries’ execution. Only the SERIALIZABLE and SNAPSHOT isolation

levels are free from such phenomenon. SERIALIZABLE uses range

locks while SNAPSHOT accesses a snapshot of the data at the time

when the transaction starts.

Two other phenomena are related to data movement due to the change of the index-

key value. Neither of them occur with optimistic isolation levels.

Duplicated Reads: This issue occurs when a query returns the

same row multiple times. Think about a query that returns a list

of orders for a specific time interval, scanning the index on the

OrderDate column during execution. If another query changes the

OrderDate value, moving the row from the processed (scanned) to

non-processed part of the index, such a row will be read twice.

This condition is similar to non-repeatable reads and can occur

when readers do not hold shared (S) locks after rows are read in

READ UNCOMMITTED and READ COMMITTED isolation levels.

Chapter 3 Lock Types

66

Skipped Rows: This phenomenon occurs when queries do not

return some of the rows. It could occur in a similar condition

with duplicated reads as just described if rows have been moved

from the non-processed to the processed part of the index.

The SERIALIZABLE isolation level, which locks the index-key

range interval, and optimistic isolation levels—READ COMMITTED

SNAPSHOT and SNAPSHOT—are free from such phenomenon.

Table 3-5 summarizes data inconsistency issues within the different transaction

isolation levels.

SERIALIZABLE and SNAPSHOT are the only transaction isolation levels that protect you

from data inconsistency issues. Both of them have downsides, however. SERIALIZABLE

may introduce major blocking issues and deadlocks due to excessive locking in systems

with volatile data. SNAPSHOT, on the other hand, may lead to significant tempdb load

along with the write/write conflict errors. Use them with care!

�Locking-Related Table Hints
There are several other locking-related table hints in addition to the isolation level–

related hints we have already covered.

Table 3-5.  Transaction Isolation Levels and Data Inconsistency Anomalies

Dirty Reads Non-Repeatable
Reads

Duplicated
Reads

Phantom
Reads

Skipped
Rows

READ UNCOMMITTED Yes Yes Yes Yes Yes

READ COMMITTED No Yes Yes Yes Yes

REPEATABLE READ No No No Yes Yes

SERIALIZABLE No No No No No

READ COMMITTED

SNAPSHOT

No Yes No Yes No

SNAPSHOT No No No No No

Chapter 3 Lock Types

67

You can control the type of lock acquired by readers with (UPDLOCK) and (XLOCK)

table hints. These hints force SELECT queries to use update (U) and exclusive (X) locks,

respectively, rather than shared (S) locks. This can be useful when you need to prevent

multiple SELECT queries from reading the same rows simultaneously.

Listing 3-5 demonstrates one such example, implementing custom counters in the

system. The SELECT statement uses an update (U) lock, which will block other sessions

from reading the same counter row until the transaction is committed.

Note  This code is shown for demonstration purposes only and does not handle
situations where a specific counter does not exist in the table. It is better to use a
SEQUENCE object instead.

Listing 3-5.  Counters table management

begin tran

 select @Value = Value

 from dbo.Counters with (UPDLOCK)

 where CounterName = @CounterName;

 update dbo.Counters

 set Value += @ReserveCount

 where CounterName = @CounterName;

commit

There are several hints that can help you to control lock granularity. The (TABLOCK)

and (TABLOCKX) hints force SQL Server to acquire shared (S) or exclusive (X) table-level

locks. With the (TABLOCK) hint, the type of the lock depends on the statement—readers

acquire shared (S) and writers acquire exclusive (X) locks. The (TABLOCKX) hint, on the

other hand, always acquires an exclusive (X) lock on the table, even with readers.

As I already mentioned, SQL Server may decide to use lower-granularity locks in

some cases. For example, during the scans, SQL Server may decide to use full (non-

intent) page locks instead of acquiring row-level locks on every row from the page. This

behavior, however, is not guaranteed, but can be controlled, to a degree, with (PAGLOCK)

and (ROWLOCK) hints.

Chapter 3 Lock Types

68

The (PAGLOCK) hint forces SQL Server to use full locks on the page level rather than

on the row level. Alternatively, the (ROWLOCK) hint prevents SQL Server from using full

page-level locks, forcing it to use row-level locking instead. As usual, both approaches

have benefits and downsides, and in the vast majority of cases it is better to allow SQL

Server to choose the proper locking strategy rather than using those hints.

The (READPAST) hint allows sessions to skip rows with incompatible locks held on

them rather than being blocked. You will see one example where such a hint is useful

in Chapter 10. Alternatively, the (NOWAIT) hint triggers an error as soon as SQL Server

encounters an incompatible row- or page-level lock from other sessions.

You can combine multiple locking hints together as long as they do not conflict

with each other. Listing 3-6 shows such an example. The first SELECT statement would

use page-level exclusive (X) locks. The second SELECT statement would use row-

level locking, keeping shared (S) locks held until the end of the transaction due to the

REPEATABLEREAD hint skipping the rows with incompatible lock types held. Finally, the

third statement would fail due to a conflicting locking hint combination.

Listing 3-6.  Combining locking hints

select OrderId, OrderDate

from Delivery.Orders with (PAGLOCK XLOCK)

where CustomerId = @CustomerId;

select OrderId, OrderDate

from Delivery.Orders with (ROWLOCK REPEATABLEREAD READPAST)

where CustomerId = @CustomerId;

select OrderId, OrderDate

from Delivery.Orders with (NOLOCK TABLOCK)

where CustomerId = @CustomerId;

Note  For more information about table hints, go to https://docs.microsoft.
com/en-us/sql/t-sql/queries/hints-transact-sql-table.

Chapter 3 Lock Types

https://docs.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-table
https://docs.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-table

69

Finally, there is the SET LOCK_TIMEOUT option, which can be used on the session

level to control how long the session should wait for a lock request to be granted. SQL

Server generates an error when a request cannot be granted within the specified interval.

A value of -1 indicates no timeout and a value of 0 indicates immediate timeout, similar

to the (NOWAIT) hint.

SQL Server treats lock timeout errors similarly to other errors in the system.

The error would not terminate the batch nor would it make an explicit transaction

uncommittable unless you have the XACT_ABORT option set to ON. You need to factor this

behavior into the error-handling strategy, as we discussed in the previous chapter.

Also, remember that SET LOCK_TIMEOUT does not override the SQL Client

CommandTimeout value. The client call would fail when the statement execution time

exceeds CommandTimeout regardless of the root cause of the wait.

�Conversion Locks
Conversion locks are another group of lock types you can encounter in production.

They are a combination of full and intent locks and may be acquired on page and object

levels. SQL Server uses them when it needs to extend already acquired full locks with

an additional intent lock or, alternatively, already acquired intent locks with a full lock

of a different type. You can think about them as internal optimization, which allows the

session to avoid holding multiple locks on the same resource.

Let’s look at the example and run the code from Listing 3-7. As the first step, we will

run a SELECT statement in the active transaction using (REPEATABLEREAD TABLOCK) hints.

These hints will force the statement to acquire an object-level lock and hold it for the

duration of the transaction.

Listing 3-7.  Conversion locks: Running SELECT statement

begin tran

 select top 10 OrderId, Amount

 from Delivery.Orders with (REPEATABLEREAD TABLOCK)

 order by OrderId;

 select

 l.resource_type

 ,case

Chapter 3 Lock Types

70

 when l.resource_type = 'OBJECT'

 then

 object_name

 (

 l.resource_associated_entity_id

 ,l.resource_database_id

)

 else ''

 end as [table]

 ,l.resource_description

 ,l.request_type

 ,l.request_mode

 ,l.request_status

 from

 sys.dm_tran_locks l

 where

 l.request_session_id = @@spid;

Figure 3-9 illustrates the locks acquired by the statement. You can see the object-

level shared (S) lock in place.

Figure 3-9.  Conversion locks: Locks held by SELECT statement

Now, let’s run another query that updates one of the rows in the same active

transaction, as shown in Listing 3-8.

Listing 3-8.  Conversion locks: Running UPDATE statement

update Delivery.Orders

set Amount *= 0.95

where OrderId = 100;

Chapter 3 Lock Types

71

This operation requires SQL Server to obtain an exclusive (X) lock on the row and

intent exclusive (IX) locks on the page and object levels. The table, however, already has

a full shared (S) lock held, and SQL Server replaces it with a shared intent exclusive (SIX)

lock, as shown in Figure 3-10.

There are two other types of conversion locks besides (SIX):

Shared intent update (SIU) locks are acquired during update scans

when SQL Server needs to acquire an intent update (IU) lock on

the same resource on which the shared (S) lock is held.

Update intent exclusive (UIX) locks may be acquired when SQL

Server needs to acquire an intent exclusive (IX) lock on a resource

that already has an update (U) lock held on it. This lock type is

usually used on data pages during update scans when SQL Server

uses page-level rather than row-level locking. In this mode, SQL

Server acquires a page-level update (U) lock first, changing it to

an update intent exclusive (UIX) lock if some of the rows on the

page need to be updated. It is worth noting that SQL Server does

not replace page-level (UIX) locks with intent exclusive (IX) locks

afterward, keeping (UIX) locks until the end of transaction.

Conversion locks, in a nutshell, consist of two different lock types. Other locks need to

be compatible with both of them in order to be granted. For example, intent shared (IS)

locks are compatible with shared intent exclusive (SIX) locks because (IS) locks are

compatible with both (S) and (IX) locks. Intent exclusive (IX) locks, on the other hand,

are incompatible with (SIX) due to (IX) and (S) locks’ incompatibility.

Note  Table 3-2 in this chapter shows the lock compatibility matrix for regular locks.

Figure 3-10.  Conversion locks: Locks held after UPDATE statement

Chapter 3 Lock Types

72

�Summary
SQL Server uses locking to support data isolation and consistency rules, using row-level

locking as the highest degree of granularity.

Exclusive (X) locks are acquired by writers when data is modified. Exclusive (X) locks

are always acquired and held until the end of the transaction regardless of the isolation

level. Update (U) locks are acquired when writers evaluate if data needs to be modified.

Those locks are converted into exclusive (X) locks if data needs to be updated and are

released otherwise. Intent (I*) locks are acquired on the object and page levels and

indicate the existence of child row-level locks of the same type.

With the exception of the READ UNCOMMITED isolation level, SQL Server acquires

shared (S) locks while reading data in pessimistic isolation levels. Transaction isolation

level controls when shared (S) locks are released. In the READ COMMITTED isolation

level, these locks are released immediately after the row has been read. In REPEATABLE

READ and SERIALIZABLE isolation levels, shared (S) locks are held until the end of the

transaction. Moreover, in the SERIALIZABLE isolation level, SQL Server uses range locks

to lock the ranges of the index keys rather than individual rows.

Optimistic isolation levels rely on row versioning and read old (previously

committed) versions of the rows from the version store in tempdb. READ COMMMITTED

SNAPSHOT has the same blocking behavior as READ UNCOMMITTED; however, it provides

better data consistency by preventing access to dirty uncommitted data. You should use

READ COMMITTED SNAPSHOT instead of READ UNCOMMITTED.

You can control transaction isolation levels with the SET TRANSACTION ISOLATION

LEVEL statement on the transaction level or with table locking hints on the table level in

the individual queries.

Chapter 3 Lock Types

73
© Dmitri Korotkevitch 2018
D. Korotkevitch, Expert SQL Server Transactions and Locking, https://doi.org/10.1007/978-1-4842-3957-5_4

CHAPTER 4

Blocking in the System
Blocking is, perhaps, one of the most common concurrency problems encountered in

the systems. When blocking occurs, multiple queries block each other, which increases

the execution time of queries and introduces timeouts. All of that negatively affects the

user experience with the system.

This chapter will show how you can troubleshoot blocking issues in a system. It will

illustrate how you can analyze blocking conditions in real time and collect information

for further analysis.

�General Troubleshooting Approach
Blocking occurs when multiple sessions compete for the same resource. In some cases,

this is the correct and expected behavior; for example, multiple sessions cannot update

the same row simultaneously. However, in many cases blocking is unexpected and

occurs because queries were trying to acquire unnecessary locks.

Some degree of blocking always exists in systems, and it is completely normal. What

is not normal, however, is excessive blocking. From the end user’s standpoint, excessive

blocking masks itself as a general performance problem. The system is slow, queries are

timing out, and often there are deadlocks.

Apart from deadlocks, system slowness is not necessarily a sign of blocking issues—

many other factors can negatively impact performance. However, blocking issues can

definitely contribute to a general system slowdown.

During the initial phase of performance troubleshooting, you should take a holistic

view of the system and find the most critical issues to address. As you can guess,

blocking and concurrency issues may or may not be present in this list. We will discuss

how to perform that holistic analysis in Chapter 12, focusing on general blocking

troubleshooting in this chapter.

74

In a nutshell, to troubleshoot blocking issues, you must follow these steps:

	 1.	 Detect the queries involved in the blocking.

	 2.	 Find out why blocking occurs.

	 3.	 Fix the root cause of the issue.

SQL Server provides you with several tools that can help you with these tasks.

These tools can be separated into two different categories. The first category consists of

dynamic management views that you can use to troubleshoot what is happening in the

system at present. These tools are useful when you have access to the system at the time

of blocking and want to perform real-time troubleshooting.

The second category of tools allows you to collect information about blocking problems

in the system and retain it for further analysis. Let’s look at both categories in detail.

�Troubleshooting Blocking Issues in Real Time
The key tool for troubleshooting real-time blocking is the sys.dm_tran_locks dynamic

management view, which provides information about currently active lock requests in

the system. It returns you a list of lock requests and their type, status of request (GRANT or

WAIT), information about the resources on which the locks were requested, and several

other useful attributes.

Table 4-1 shows you the code that leads to the blocking condition.

Table 4-1.  Code That Leads to the Blocking Condition

Session 1 (SPID=52) Session 2 (SPID=53) Comments

begin tran

 delete from

Delivery.Orders

 where OrderId = 95

Session 1 acquires

exclusive (X) lock

on the row with

OrderId=95

select OrderId, Amount

from Delivery.Orders

 with (readcommitted)

where OrderNum = '1000'

Session 2 is blocked

trying to acquire

shared (S) lock on the

row with OrderId=95

rollback

Chapter 4 Blocking in the System

75

Figure 4-1 shows the partial output from the sys.dm_tran_locks, sys.dm_os_

waiting_tasks, and sys.dm_exec_requests views at the time the blocking occurred. As

you can see, Session 53 is waiting for a shared (S) lock on the row with the exclusive (X)

lock held by Session 52. The LCK_M_S wait type in the outputs indicates the shared (S)

lock wait. We will discuss wait types in more detail in Chapter 12.

Note  It is possible that you will get page-level blocking when you run the code
in your system. Session 53 needs to scan all rows from the page, and SQL Server
may decide to obtain a page-level shared (S) lock instead of row-level locks.
Nevertheless, the session will be blocked due to (S) / (IX) lock incompatibility at the
page level.

The information provided by the sys.dm_tran_locks view is a bit too cryptic to

troubleshoot, and you often need to join it with other dynamic management views, such

as sys.dm_exec_requests and sys.dm_os_waiting_tasks, to gain a clearer picture.

Listing 4-1 provides the required code.

Listing 4-1.  Getting more information about blocked and blocking sessions

select

 tl.resource_type as [Resource Type]

 ,db_name(tl.resource_database_id) as [DB Name]

 ,case tl.resource_type

Figure 4-1.  Output from the system views at time of blocking

Chapter 4 Blocking in the System

76

 when 'OBJECT' then

 object_name

 (

 tl.resource_associated_entity_id

 ,tl.resource_database_id

)

 when 'DATABASE' then 'DB'

 else

 case when tl.resource_database_id = db_id()

 then

 (select object_name(object_id, tl.resource_database_id)

 from sys.partitions

 where hobt_id = tl.resource_associated_entity_id)

 else '(Run under DB context)'

 end

 end as [Object]

 ,tl.resource_description as [Resource]

 ,tl.request_session_id as [Session]

 ,tl.request_mode as [Mode]

 ,tl.request_status as [Status]

 ,wt.wait_duration_ms as [Wait (ms)]

 ,qi.sql

 ,qi.query_plan

from

 sys.dm_tran_locks tl with (nolock) left outer join

 sys.dm_os_waiting_tasks wt with (nolock) on

 tl.lock_owner_address = wt.resource_address and

 tl.request_status = 'WAIT'

 outer apply

 (

 select

 substring(s.text, (er.statement_start_offset / 2) + 1,

 ((case er.statement_end_offset

 when -1

 then datalength(s.text)

Chapter 4 Blocking in the System

77

 else er.statement_end_offset

 end - er.statement_start_offset) / 2) + 1) as sql

 , qp.query_plan

 from

 sys.dm_exec_requests er with (nolock)

 cross apply sys.dm_exec_sql_text(er.sql_handle) s

 cross apply sys.dm_exec_query_plan(er.plan_handle) qp

 where

 tl.request_session_id = er.session_id

) qi

where

 tl.request_session_id <> @@spid

order by

 tl.request_session_id

option (recompile)

Figure 4-2 shows the results of the query. As you can see, it is much easier to

understand, and it provides you with more useful information, including currently

running batches and their execution plans. Keep in mind that the execution plans

obtained from the sys.dm_exec_requests and sys.dm_exec_query_stats DMVs do

not include the actual execution statistics metrics, such as the actual number of rows

returned by operators and the number of their executions. Also, for the sessions in which

lock requests were granted, the SQL statement and query plan represent the currently

executing batch (NULL if session is sleeping), rather than the batch that acquired the

original lock.

You need to run the query in the context of the database involved in the blocking

to correctly resolve the object names. Also of importance, the OBJECT_NAME() function

used in the code obtains a schema stability (Sch-S) lock on the object, and the statement

Figure 4-2.  Joining sys.dm_os_tran_locks with other DMVs

Chapter 4 Blocking in the System

78

would be blocked if you tried to resolve the name of the object with an active schema

modification (Sch-M) lock held. SQL Server obtains those locks during schema

alteration; we will discuss them in depth in Chapter 8.

The sys.dm_tran_locks view returns one row for each active lock request in the

system, which can lead to very large result sets when you run it on busy servers. You

can reduce the amount of information and perform a self-join of this view based on

the resource_description and resource_associated_entity_id columns, and you

can identify the sessions that compete for the same resources, as shown in Listing 4-2.

Such an approach allows you to filter out the results and only see the sessions that are

involved in the active blocking conditions.

Listing 4-2.  Filtering out blocked and blocking session information

select

 tl1.resource_type as [Resource Type]

 ,db_name(tl1.resource_database_id) as [DB Name]

 ,case tl1.resource_type

 when 'OBJECT' then

 object_name

 (

 tl1.resource_associated_entity_id

 ,tl1.resource_database_id

)

 when 'DATABASE' then 'DB'

 else

 case when tl1.resource_database_id = db_id()

 then

 (

 select

 object_name(object_id, tl1.resource_database_id)

 from sys.partitions

 where hobt_id = tl1.resource_associated_entity_id

)

 else '(Run under DB context)'

 end

Chapter 4 Blocking in the System

79

 end as [Object]

 ,tl1.resource_description as [Resource]

 ,tl1.request_session_id as [Session]

 ,tl1.request_mode as [Mode]

 ,tl1.request_status as [Status]

 ,wt.wait_duration_ms as [Wait (ms)]

 ,qi.sql

 ,qi.query_plan

from

 sys.dm_tran_locks tl1 with (nolock) join

 sys.dm_tran_locks tl2 with (nolock) on

 �tl1.resource_associated_entity_id = tl2.resource_associated_

entity_id

 left outer join sys.dm_os_waiting_tasks wt with (nolock) on

 tl1.lock_owner_address = wt.resource_address and

 tl1.request_status = 'WAIT'

 outer apply

 (

 select

 substring(s.text, (er.statement_start_offset / 2) + 1,

 ((case er.statement_end_offset

 when -1

 then datalength(s.text)

 else er.statement_end_offset

 end - er.statement_start_offset) / 2) + 1) as sql

 , qp.query_plan

 from

 sys.dm_exec_requests er with (nolock)

 cross apply sys.dm_exec_sql_text(er.sql_handle) s

 cross apply sys.dm_exec_query_plan(er.plan_handle) qp

 where

 tl1.request_session_id = er.session_id

) qi

Chapter 4 Blocking in the System

80

where

 tl1.request_status <> tl2.request_status and

 (

 tl1.resource_description = tl2.resource_description or

 (

 tl1.resource_description is null and

 tl2.resource_description is null

)

)

option (recompile)

Figure 4-3 illustrates the output of this code. As you can see, this approach

significantly reduces the size of the output and simplifies analysis.

As you already know, blocking occurs when two or more sessions are competing for

the same resource. You need to answer two questions during troubleshooting:

	 1.	 Why does the blocking session hold the lock on the resource?

	 2.	 Why does the blocked session acquire the lock on the resource?

Both questions are equally important; however, there are a couple of challenges you

may encounter when analyzing the blocking session data. First, as I already mentioned,

the blocking session data would show the queries that are currently executing rather

than those that caused the blocking.

As an example, consider a situation where the session runs several data modification

statements in a single transaction. As you remember, SQL Server would acquire and hold

exclusive (X) locks on the updated rows until the end of the transaction. The blocking

may occur over any of the previously updated rows with exclusive (X) locks held, which

may or may not be acquired by the currently executing statement from the session.

The second challenge is related to the blocking chains when the blocking session is

also blocked by another session. This usually happens in busy OLTP systems and is often

related to object-level locks acquired during schema alteration, index maintenance, or in

a few other cases.

Figure 4-3.  Blocked and blocking sessions

Chapter 4 Blocking in the System

81

Consider a situation where you have a Session 1 that holds an intent lock on the

table. This intent lock would block Session 2, which may want to obtain a full table lock;

for example, during an offline index rebuild. The blocked Session 2, in turn, will block all

other sessions that may try to obtain intent locks on the table.

Note  We will discuss this and other situations that may lead to blocking chains
later in the book. For now, however, remember that you need to rewind the
blocking chains and include the root blocking session in your analysis when you
encounter such a condition.

These challenges may lead to the situation where it is easier to start troubleshooting

by looking at the blocked session, where you have the blocked statement and its

execution plan available. In many cases, you can identify the root cause of the blocking

by analyzing its execution plan, which you can obtain from the dynamic management

views (as was demonstrated earlier) or by rerunning the query.

Figure 4-4 shows the execution plan of the blocked query from our example.

As you can see from the execution plan, the blocked query is scanning the entire

table looking for orders with the predicate on the OrderNum column. The query uses a

READ COMMITTED transaction isolation level, and it acquires a shared (S) lock on every

row in the table. As a result, at some point the query is blocked by the first DELETE

query, which holds an exclusive (X) lock on one of the rows. It is worth noting that the

query would be blocked even if the row with the exclusive (X) lock held did not have

OrderNum='1000'. SQL Server cannot evaluate the predicate until the shared (S) lock is

acquired and the row is read.

Figure 4-4.  Execution plan for the blocked query

Chapter 4 Blocking in the System

82

You can resolve this problem by optimizing the query and adding the index on the

OrderNum column, which will replace the Clustered Index Scan with the Nonclustered

Index Seek operator in the execution plan. This will significantly reduce the number of

locks the statement acquires and eliminate lock collision and blocking as long as the

queries do not delete and select the same rows.

Even though in many instances you can detect and resolve the root cause of the

blocking by analyzing and optimizing the blocked query, this is not always the case.

Consider the situation where you have a session that is updating a large number of rows

in a table and thus acquires and holds a large number of exclusive (X) locks on those

rows. Other sessions that need to access those rows would be blocked, even in the case

of efficient execution plans that do not perform unnecessary scans. The root cause of the

blocking in this case is the blocking rather than blocked session.

As we have already discussed, you cannot always rely on the blocked statements

returned by data management views. In many cases, you need to analyze what code in

the blocking session has caused the blocking. You can use the sys.dm_exec_sessions

view to obtain information about the host and application of the blocking session. When

you know which statement the blocking session is currently executing, you can analyze

the client and T-SQL code to locate the transaction to which this statement belongs. One

of the previously executed statements in that transaction would be the one that caused

the blocking condition.

The blocked process report, which we are about to discuss, can also help during such

troubleshooting.

�Collecting Blocking Information for Further Analysis
Although DMVs can be very useful in providing information about the current state of

the system, they are only helpful if you run them at the exact same time the blocking

occurs. Fortunately, SQL Server helps capture blocking information automatically via the

blocked process report. This report provides information about the blocking condition,

which you may retain for further analysis. It is also incredibly useful when you need to

deal with blocking chains and complex blocking cases.

There is a configuration setting called blocked process threshold, which specifies how

often SQL Server checks for blocking in the system and generates a report (it is disabled

by default). Listing 4-3 shows the code that sets the threshold to ten seconds.

Chapter 4 Blocking in the System

83

Listing 4-3.  Specifying blocking process threshold

sp_configure 'show advanced options', 1;

go

reconfigure;

go

sp_configure 'blocked process threshold', 10; -- in seconds

go

reconfigure;

go

You need to fine-tune the value of the blocked process threshold in production. It is

important to avoid false positives and, at the same time, capture the problems. Microsoft

suggests not going below five seconds as the minimum value, and you obviously need

to set the value to less than the query timeout. I usually use either five or ten seconds,

depending on the amount of blocking in the system and phase of the troubleshooting.

There are a few ways to capture that report in the system. You can use SQL Trace;

there is a “Blocked process report” event in the “Errors and "Warnings” section, as shown

in Figure 4-5.

Figure 4-5.  “Blocked process report” event in SQL Trace

Chapter 4 Blocking in the System

84

Alternatively, you can create an Extended Event session using a blocked_process_

report event, as shown in Figure 4-6. This session will provide you with several

additional attributes than those offered in SQL Trace.

Note E xtended Events are more efficient and provide less overhead than
SQL Traces.

The blocked process report contains XML that shows information about blocking

and blocked processes in the system (the most important of which are highlighted in

boldface within Listing 4-4).

Listing 4-4.  Blocked process report XML

<blocked-process-report monitorLoop="224">

<blocked-process>

 �<process id="process3e576c928" taskpriority="0" logused="0"

waitresource="KEY: ..." waittime="14102" ownerId="..."

transactionname="SELECT" lasttranstarted="..." XDES="..." lockMode="S"

schedulerid="1" kpid="..." status="suspended" spid="53" sbid="0"

ecid="0" priority="0" trancount="0" lastbatchstarted="..."

Figure 4-6.  Capturing blocked process report with Extended Events

Chapter 4 Blocking in the System

85

lastbatchcompleted="..." lastattention="..." clientapp="..."

hostname="..." hostpid="..." loginname="..." isolationlevel="read

committed (2)" xactid="..." currentdb="14" lockTimeout="..."

clientoption1="..." clientoption2="...">

 <executionStack>

 <frame line="3" stmtstart="46" sqlhandle="…"/>

 <frame line="3" stmtstart="100" sqlhandle="..."/>

 </executionStack>

 <inputbuf>

set transaction isolation level read committed

select OrderId, Amount

from Delivery.Orders

where OrderNum = '1000'

 </inputbuf>

 </process>

</blocked-process>

<blocking-process>

 �<process status="sleeping" spid="54" sbid="0" ecid="0" priority="0"

trancount="1" lastbatchstarted="..." lastbatchcompleted="..."

lastattention="..." clientapp="..." hostname="..." hostpid="..."

loginname="..." isolationlevel="read uncommitted (1)"

xactid="..." currentdb="14" lockTimeout="..." clientoption1="..."

clientoption2="...">

 <executionStack/>

 <inputbuf>

set transaction isolation level read uncommitted

begin tran

 delete from Delivery.Orders

 where OrderId = 95

 </inputbuf>

 </process>

</blocking-process>

</blocked-process-report>

Chapter 4 Blocking in the System

86

As with real-time troubleshooting, you should analyze both blocking and blocked

processes and find the root cause of the problem. From the blocked process standpoint,

the most important information is the following:

•	 waittime: The length of time the query is waiting, in milliseconds

•	 lockMode: The type of lock being waited for

•	 isolationlevel: The transaction isolation level

•	 executionStack and inputBuf: The query and/or the execution

stack. You will see how to obtain the actual SQL statement involved

in blocking in Listing 4-5.

From the blocking process standpoint, you must look at the following:

•	 status: It indicates whether the process is running, sleeping, or

suspended. When the process is sleeping, there is an uncommitted

transaction. When the process is suspended, that process either waits

for the non-locking related resource (for example, a page from the

disk) or is also blocked by the other session and so there is a blocking

chain condition.

•	 trancount: A value greater than 1 indicates nested transactions. If

the process status is sleeping at the same time, then there is a chance

that the client did not commit the nested transactions correctly (for

example, the number of commit statements is less than the number of

begin tran statements in the code).

•	 executionStack and inputBuf: As we already discussed, in some

cases you need to analyze what happens in the blocking process.

Some common issues include runaway transactions (for example,

missing commit statements in the nested transactions); long-running

transactions with perhaps some UI involved; and excessive scans

(for example, a missing index on the referencing column in the detail

table leads to scans during a referential integrity check). Information

about queries from the blocking session could be useful here.

Remember that in the case of a blocked process, executionStack and

inputBuf would correspond to the queries that were running at the

moment when the blocked process report was generated rather than

to the time of the blocking.

Chapter 4 Blocking in the System

87

In many cases, blocking occurs because of unnecessary scans resulting from

nonoptimized queries. Those queries acquire an unnecessarily large number of locks,

which lead to lock collision and blocking. You can detect such cases by looking at the

blocked queries’ execution plans and seeing the inefficiencies there.

You can either run the query and check the execution plan, or use DMVs and obtain

an execution plan from sys.dm_exec_query_stats based on the sql_handle, stmtStart,

and stmtEnd elements from the execution stack. Listing 4-5 shows the code that achieves

that.

Listing 4-5.  Obtaining query text and execution plan by SQL handle

declare

 �@H varbinary(max) = /* Insert sql_handle from the top line of the

execution stack */

 ,@S int = /* Insert stmtStart from the top line of the execution stack */

 ,@E int = /* Insert stmtEnd from the top line of the execution stack */

select

 substring(qt.text, (qs.statement_start_offset / 2) + 1,

 ((case qs.statement_end_offset

 when -1 then datalength(qt.text)

 else qs.statement_end_offset

 end - qs.statement_start_offset) / 2) + 1) as sql

 ,qp.query_plan

 ,qs.creation_time

 ,qs.last_execution_time

from

 sys.dm_exec_query_stats qs with (nolock)

 cross apply sys.dm_exec_sql_text(qs.sql_handle) qt

 cross apply sys.dm_exec_query_plan(qs.plan_handle) qp

where

 qs.sql_handle = @H and

 qs.statement_start_offset = @S

 and qs.statement_end_offset = @E

option (recompile)

Chapter 4 Blocking in the System

88

Figure 4-7 shows the query output.

There are a couple of potential problems with the sys.dm_exec_query_stats view of

which you should be aware. First, this view relies on the execution plan cache. You will

not be able to get the execution plan if it is not in the cache; for example, if a query used

statement-level recompile with an option (recompile) clause.

Second, there is a chance that you will have more than one cached plan returned.

In some cases, SQL Server keeps the execution statistics even after recompilation

occurs, which could produce multiple rows in the result set. Moreover, you may have

multiple cached plans when sessions use different SET options. There are two columns—

creation_time and last_execution_time—that can help pinpoint the right plan.

This dependency on the plan cache during troubleshooting is the biggest downside of

the blocked process report. SQL Server eventually removes old plans from the plan cache

after queries are recompiled and/or plans are not reused. Therefore, the longer you wait

to do the troubleshooting, the less likely it is that the plan will be present in the cache.

Microsoft Azure SQL Databases and SQL Server 2016 and above allow you to collect

and persist information about running queries and their execution plans and statistics in

the Query Store. The Query Store does not rely on the plan cache and is extremely useful

during system troubleshooting.

Note Y ou can read about the Query Store at https://docs.microsoft.com/
en-us/sql/relational-databases/performance/monitoring-
performance-by-using-the-query-store.

�Blocking Monitoring with Event Notifications
Even though the blocked process report allows you to collect and persist blocking

information for further analysis, you often need to access the plan cache to get the text

and execution plans of the queries involved in the blocking. Unfortunately, the plan

Figure 4-7.  Getting information from sys.dm_exec_query_stats

Chapter 4 Blocking in the System

https://docs.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store
https://docs.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store
https://docs.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store

89

cache changes over time, and longer you wait, the less likely it is that the data you seek

will be present there.

You can address this issue by building a monitoring solution based on SQL Server

Event Notifications. Event Notifications is a Service Broker–based technology that

allows you to capture information about specific SQL Server and DDL events and post

a message about them into the Service Broker queue. Furthermore, you can define the

activation procedure on the queue and react to an event—in our case, parse a blocked

process report—nearly in real time.

Note Y ou can read about Event Notifications at https://docs.microsoft.com/
en-us/sql/relational-databases/service-broker/event-notifications.

Let’s look at the implementation. In my environments, I prefer to persist the blocking

information in a separate database. Listing 4-6 creates the database and corresponding

Service Broker and Event Notifications objects. Remember: You need to have the

blocked process threshold set for the events to be fired.

Listing 4-6.  Setting up event notifications objects

use master

go

create database DBA;

exec sp_executesql

 N'alter database DBA set enable_broker;

 alter database DBA set recovery simple;';

go

use DBA

go

create queue dbo.BlockedProcessNotificationQueue

with status = on;

go

Chapter 4 Blocking in the System

https://docs.microsoft.com/en-us/sql/relational-databases/service-broker/event-notifications
https://docs.microsoft.com/en-us/sql/relational-databases/service-broker/event-notifications

90

create service BlockedProcessNotificationService

on queue dbo.BlockedProcessNotificationQueue

([http://schemas.microsoft.com/SQL/Notifications/PostEventNotification]);

go

create event notification BlockedProcessNotificationEvent

on server

for BLOCKED_PROCESS_REPORT

to service

 'BlockedProcessNotificationService',

 'current database';

In the next step, shown in Listing 4-7, we need to create an activation stored

procedure that would parse the blocked process report, as well as a table to persist

blocking information.

You can enable or disable the collection of execution plans by setting the @collectPlan

variable in the stored procedure. While execution plans are extremely useful during

troubleshooting, sys.dm_exec_query_plan calls are CPU-intensive and may introduce

noticeable CPU overhead in the system, along with a large amount of blocking. You need

to consider this and disable plan collection when your servers are CPU-bound.

Listing 4-7.  Creating a table and an activation stored procedure

create table dbo.BlockedProcessesInfo

(

 ID int not null identity(1,1),

 EventDate datetime not null,

 -- ID of the database where locking occurs

 DatabaseID smallint not null,

 -- Blocking resource

 [Resource] varchar(64) null,

 -- Wait time in MS

 WaitTime int not null,

 -- Raw blocked process report

 BlockedProcessReport xml not null,

 -- SPID of the blocked process

Chapter 4 Blocking in the System

91

 BlockedSPID smallint not null,

 -- XACTID of the blocked process

 BlockedXactId bigint null,

 -- Blocked Lock Request Mode

 BlockedLockMode varchar(16) null,

 -- Transaction isolation level for blocked session

 BlockedIsolationLevel varchar(32) null,

 -- Top SQL Handle from execution stack

 BlockedSQLHandle varbinary(64) null,

 -- Blocked SQL Statement Start offset

 BlockedStmtStart int null,

 -- Blocked SQL Statement End offset

 BlockedStmtEnd int null,

 -- Blocked Query Hash

 BlockedQueryHash binary(8) null,

 -- Blocked Query Plan Hash

 BlockedPlanHash binary(8) null,

 -- Blocked SQL based on SQL Handle

 BlockedSql nvarchar(max) null,

 -- Blocked InputBuf from the report

 BlockedInputBuf nvarchar(max) null,

 -- Blocked Plan based on SQL Handle

 BlockedQueryPlan xml null,

 -- SPID of the blocking process

 BlockingSPID smallint null,

 -- Blocking Process status

 BlockingStatus varchar(16) null,

 -- Blocking Process Transaction Count

 BlockingTranCount int null,

 -- Blocking InputBuf from the report

 BlockingInputBuf nvarchar(max) null,

 -- Blocked SQL based on SQL Handle

 BlockingSql nvarchar(max) null,

 -- Blocking Plan based on SQL Handle

 BlockingQueryPlan xml null

);

Chapter 4 Blocking in the System

92

create unique clustered index IDX_BlockedProcessInfo_EventDate_ID

on dbo.BlockedProcessesInfo(EventDate, ID);

go

create function dbo.fnGetSqlText

(

 @SqlHandle varbinary(64)

 , @StmtStart int

 ,@StmtEnd int

)

returns table

/**

Function: dbo.fnGetSqlText

Author: Dmitri V. Korotkevitch

Purpose:

 Returns sql text based on sql_handle and statement start/end offsets

 Includes several safeguards to avoid exceptions

Returns: 1-column table with SQL text

***/

as

return

(

 select

 substring(

 t.text

 ,@StmtStart / 2 + 1

 ,((

 case

 when @StmtEnd = -1

 then datalength(t.text)

 else @StmtEnd

 end - @StmtStart) / 2) + 1

) as [SQL]

Chapter 4 Blocking in the System

93

 from sys.dm_exec_sql_text(nullif(@SqlHandle,0x)) t

 where

 isnulL(@SqlHandle,0x) <> 0x and

 -- In some rare cases, SQL Server may return empty or

 -- incorrect sql text

 isnull(t.text,'') <> '' and

 (

 case when @StmtEnd = -1

 then datalength(t.text)

 else @StmtEnd

 end > @StmtStart

)

)

go

create function dbo.fnGetQueryInfoFromExecRequests

(

 @collectPlan bit

 ,@SPID smallint

 ,@SqlHandle varbinary(64)

 ,@StmtStart int

 ,@StmtEnd int

)

/**

Function: dbo. fnGetQueryInfoFromExecRequests

Author: Dmitri V. Korotkevitch

Purpose:

 Returns Returns query and plan hashes, and optional query plan

 from sys.dm_exec_requests based on @@spid, sql_handle and

 statement start/end offsets

***/

returns table

as

return

Chapter 4 Blocking in the System

94

(

 select

 1 as DataExists

 ,er.query_plan_hash as plan_hash

 ,er.query_hash

 ,case

 when @collectPlan = 1

 then

 (

 select qp.query_plan

 from sys.dm_exec_query_plan(er.plan_handle) qp

)

 else null

 end as query_plan

 from

 sys.dm_exec_requests er

 where

 er.session_id = @SPID and

 er.sql_handle = @SqlHandle and

 er.statement_start_offset = @StmtStart and

 er.statement_end_offset = @StmtEnd

)

go

create function dbo.fnGetQueryInfoFromQueryStats

(

 @collectPlan bit

 ,@SqlHandle varbinary(64)

 ,@StmtStart int

 ,@StmtEnd int

 ,@EventDate datetime

 ,@LastExecTimeBuffer int

)

Chapter 4 Blocking in the System

95

/**

Function: dbo. fnGetQueryInfoFromQueryStats

Author: Dmitri V. Korotkevitch

Purpose:

 Returns Returns query and plan hashes, and optional query plan

 from sys.dm_exec_query_stats based on @@spid, sql_handle and

 statement start/end offsets

***/

returns table

as

return

(

 select top 1

 qs.query_plan_hash as plan_hash

 ,qs.query_hash

 ,case

 when @collectPlan = 1

 then

 (

 select qp.query_plan

 from sys.dm_exec_query_plan(qs.plan_handle) qp

)

 else null

 end as query_plan

 from

 sys.dm_exec_query_stats qs with (nolock)

 where

 qs.sql_handle = @SqlHandle and

 qs.statement_start_offset = @StmtStart and

 qs.statement_end_offset = @StmtEnd and

 @EventDate between qs.creation_time and

 dateadd(second,@LastExecTimeBuffer,qs.last_execution_time)

 order by

 qs.last_execution_time desc

)

go

Chapter 4 Blocking in the System

96

create procedure [dbo].[SB_BlockedProcessReport_Activation]

with execute as owner

/**

Proc: dbo.SB_BlockedProcessReport_Activation

Author: Dmitri V. Korotkevitch

Purpose:

 Activation stored procedure for Blocked Processes Event Notification

***/

as

begin

 set nocount on

 declare

 @Msg varbinary(max)

 ,@ch uniqueidentifier

 ,@MsgType sysname

 ,@Report xml

 ,@EventDate datetime

 ,@DBID smallint

 ,@EventType varchar(128)

 ,@blockedSPID int

 ,@blockedXactID bigint

 ,@resource varchar(64)

 ,@blockingSPID int

 ,@blockedSqlHandle varbinary(64)

 ,@blockedStmtStart int

 ,@blockedStmtEnd int

 ,@waitTime int

 ,@blockedXML xml

 ,@blockingXML xml

 ,@collectPlan bit = 1 -- Controls if we collect execution plans

 while 1 = 1

 begin

 begin try

 begin tran

 waitfor

Chapter 4 Blocking in the System

97

 (

 receive top (1)

 @ch = conversation_handle

 ,@Msg = message_body

 ,@MsgType = message_type_name

 from dbo.BlockedProcessNotificationQueue

), timeout 10000

 if @@ROWCOUNT = 0

 begin

 rollback;

 break;

 end

 �if @MsgType = N'http://schemas.microsoft.com/SQL/Notifications/

EventNotification'

 begin

 select

 @Report = convert(xml,@Msg)

 select

 @EventDate = @Report

 .value('(/EVENT_INSTANCE/StartTime/text())[1]','datetime')

 ,@DBID = @Report

 .value('(/EVENT_INSTANCE/DatabaseID/text())[1]','smallint')

 ,@EventType = @Report

 .value('(/EVENT_INSTANCE/EventType/text())[1]','varchar(128)');

 IF @EventType = 'BLOCKED_PROCESS_REPORT'

 begin

 select

 @Report = @Report

 .query('/EVENT_INSTANCE/TextData/*');

 select

 @blockedXML = @Report

 .query('/blocked-process-report/blocked-process/*')

Chapter 4 Blocking in the System

98

 select

 @resource = @blockedXML

 .value('/process[1]/@waitresource','varchar(64)')

 ,@blockedXactID = @blockedXML

 .value('/process[1]/@xactid','bigint')

 ,@waitTime = @blockedXML

 .value('/process[1]/@waittime','int')

 ,@blockedSPID = @blockedXML

 .value('process[1]/@spid','smallint')

 ,@blockingSPID = @Report

 �.value ('/blocked-process-report[1]/blocking-process[1]/

process[1]/@spid','smallint')

 ,@blockedSqlHandle = @blockedXML

 �.value ('xs:hexBinary(substring((/process[1]/executionStack[1]/

frame[1]/@sqlhandle)[1],3))','varbinary(max)')

 ,@blockedStmtStart = isnull(@blockedXML

 �.value('/process[1]/executionStack[1]/frame[1]/

@stmtstart','int'), 0)

 ,@blockedStmtEnd = isnull(@blockedXML

 �.value('/process[1]/executionStack[1]/frame[1]/

@stmtend','int'), -1);

 update t

 set t.WaitTime =

 case when t.WaitTime < @waitTime

 then @waitTime

 else t.WaitTime

 end

 from [dbo].[BlockedProcessesInfo] t

 where

 t.BlockedSPID = @blockedSPID and

 IsNull(t.BlockedXactId,-1) = isnull(@blockedXactID,-1) and

 isnull(t.[Resource],'aaa') = isnull(@resource,'aaa') and

 t.BlockingSPID = @blockingSPID and

Chapter 4 Blocking in the System

99

 t.BlockedSQLHandle = @blockedSqlHandle and

 t.BlockedStmtStart = @blockedStmtStart and

 t.BlockedStmtEnd = @blockedStmtEnd and

 t.EventDate >=

 dateadd(millisecond,-@waitTime - 100, @EventDate);

 IF @@rowcount = 0

 begin

 select

 @blockingXML = @Report

 .query('/blocked-process-report/blocking-process/*');

 ;with Source

 as

 (

 select

 repData.BlockedLockMode

 ,repData.BlockedIsolationLevel

 ,repData.BlockingStmtStart

 ,repData.BlockingStmtEnd

 ,repData.BlockedInputBuf

 ,repData.BlockingStatus

 ,repData.BlockingTranCount

 ,BlockedSQLText.SQL as BlockedSQL

 ,coalesce(

 blockedERPlan.query_plan

 ,blockedQSPlan.query_plan

) AS BlockedQueryPlan

 ,coalesce(

 blockedERPlan.query_hash

 ,blockedQSPlan.query_hash

) AS BlockedQueryHash

 ,coalesce(

 blockedERPlan.plan_hash

 ,blockedQSPlan.plan_hash

) AS BlockedPlanHash

Chapter 4 Blocking in the System

100

 ,BlockingSQLText.SQL as BlockingSQL

 ,repData.BlockingInputBuf

 ,coalesce(

 blockingERPlan.query_plan

 ,blockingQSPlan.query_plan

) AS BlockingQueryPlan

 from

 -- Parsing report XML

 (

 select

 @blockedXML

 .value('/process[1]/@lockMode','varchar(16)')

 as BlockedLockMode

 ,@blockedXML

 .value('/process[1]/@isolationlevel','varchar(32)')

 as BlockedIsolationLevel

 ,isnull(@blockingXML

 �.value('/process[1]/executionStack[1]/frame[1]/

@stmtstart'

 ,'int') , 0) as BlockingStmtStart

 ,isnull(@blockingXML

 �.value('/process[1]/executionStack[1]/frame[1]/

@stmtend'

 ,'int'), -1) as BlockingStmtEnd

 ,@blockedXML

 �.value('(/process[1]/inputbuf/text())[1]',

'nvarchar(max)')

 as BlockedInputBuf

 ,@blockingXML

 .value('/process[1]/@status','varchar(16)')

 as BlockingStatus

 ,@blockingXML

 .value('/process[1]/@trancount','smallint')

 as BlockingTranCount

Chapter 4 Blocking in the System

101

 ,@blockingXML

 �.value('(/process[1]/inputbuf/text())[1]',

'nvarchar(max)')

 as BlockingInputBuf

 ,@blockingXML

 �.value('xs:hexBinary(substring((/process[1]/

executionStack[1]/frame[1]/@sqlhandle)[1],3))'

 ,'varbinary(max)')

 as BlockingSQLHandle

) as repData

 -- Getting Query Text

 outer apply

 dbo.fnGetSqlText

 (

 @blockedSqlHandle

 ,@blockedStmtStart

 ,@blockedStmtEnd

) BlockedSQLText

 outer apply

 dbo.fnGetSqlText

 (

 repData.BlockingSQLHandle

 ,repData.BlockingStmtStart

 ,repData.BlockingStmtEnd

) BlockingSQLText

 -- �Check if statement is still blocked in

sys.dm_exec_requests

 outer apply

 dbo.fnGetQueryInfoFromExecRequests

 (

 @collectPlan

 ,@blockedSPID

 ,@blockedSqlHandle

 ,@blockedStmtStart

 ,@blockedStmtEnd

) blockedERPlan

Chapter 4 Blocking in the System

102

 -- if there is no plan handle

 -- let's try sys.dm_exec_query_stats

 outer apply

 (

 select plan_hash, query_hash, query_plan

 from

 dbo.fnGetQueryInfoFromQueryStats

 (

 @collectPlan

 ,@blockedSqlHandle

 ,@blockedStmtStart

 ,@blockedStmtEnd

 ,@EventDate

 ,60

)

 where

 blockedERPlan.DataExists is null

) blockedQSPlan

 outer apply

 dbo.fnGetQueryInfoFromExecRequests

 (

 @collectPlan

 ,@blockingSPID

 ,repData.BlockingSQLHandle

 ,repData.BlockingStmtStart

 ,repData.BlockingStmtEnd

) blockingERPlan

 -- if there is no plan handle

 -- let's try sys.dm_exec_query_stats

 outer apply

 (

 select query_plan

 from dbo.fnGetQueryInfoFromQueryStats

 (

 @collectPlan

 ,repData.BlockingSQLHandle

Chapter 4 Blocking in the System

103

 ,repData.BlockingStmtStart

 ,repData.BlockingStmtEnd

 ,@EventDate

 ,60

)

 where blockingERPlan.DataExists is null

) blockingQSPlan

)

 insert into [dbo].[BlockedProcessesInfo]

 (

 EventDate,DatabaseID,[Resource]

 ,WaitTime,BlockedProcessReport

 ,BlockedSPID,BlockedXactId

 ,BlockedLockMode,BlockedIsolationLevel

 ,BlockedSQLHandle,BlockedStmtStart

 ,BlockedStmtEnd,BlockedSql

 ,BlockedInputBuf,BlockedQueryPlan

 ,BlockingSPID,BlockingStatus,BlockingTranCount

 ,BlockingSql,BlockingInputBuf,BlockingQueryPlan

 ,BlockedQueryHash,BlockedPlanHash

)

 select

 @EventDate,@DBID,@resource

 ,@waitTime,@Report,@blockedSPID

 ,@blockedXactID,BlockedLockMode

 ,BlockedIsolationLevel,@blockedSqlHandle

 ,@blockedStmtStart,@blockedStmtEnd

 ,BlockedSQL,BlockedInputBuf,BlockedQueryPlan

 ,@blockingSPID,BlockingStatus,BlockingTranCount

 ,BlockingSQL,BlockingInputBuf,BlockingQueryPlan

 ,BlockedQueryHash,BlockedPlanHash

 from Source

 option (maxdop 1);

 end

 end -- @EventType = BLOCKED_PROCESS_REPORT

Chapter 4 Blocking in the System

104

 �end -- @MsgType = http://schemas.microsoft.com/SQL/Notifications/

EventNotification

 �else if @MsgType = N'http://schemas.microsoft.com/SQL/

ServiceBroker/EndDialog'

 end conversation @ch;

 -- else handle errors here

 commit

 end try

 begin catch

 -- capture info about error message here

 if @@trancount > 0

 rollback;

 declare

 @Recipient VARCHAR(255) = 'DBA@mycompany.com',

 @Subject NVARCHAR(255) = + @@SERVERNAME +

 ': SB_BlockedProcessReport_Activation - Error',

 @Body NVARCHAR(MAX) = 'LINE: ' +

 convert(nvarchar(16), error_line()) +

 char(13) + char(10) + 'ERROR:' + error_message()

 exec msdb.dbo.sp_send_dbmail

 @recipients = @Recipient,

 @subject = @Subject,

 @body = @Body;

 throw;

 end catch

 end

end

As the next step, we need to grant enough permissions to the stored procedure to

execute and access data management views. We can either sign the stored procedure

with a certificate, as shown in Listing 4-8, or mark the database as trustworthy

by using an ALTER DATABASE DBA SET TRUSTWORTHY ON statement. Remember:

Marking a database as trustworthy violates security best practices and generally is not

recommended.

Chapter 4 Blocking in the System

105

Listing 4-8.  Signing stored procedure with certificate

use DBA

go

create master key encryption by password = 'Str0ngPas$word1';

go

create certificate BMFrameworkCert

with subject = 'Cert for event monitoring',

expiry_date = '20301031';

go

add signature to dbo.SB_BlockedProcessReport_Activation

by certificate BMFrameworkCert;

go

backup certificate BMFrameworkCert

to file='BMFrameworkCert.cer';

go

use master

go

create certificate BMFrameworkCert

from file='BMFrameworkCert.cer';

go

create login BMFrameworkLogin

from certificate BMFrameworkCert;

go

grant view server state, authenticate server to BMFrameworkLogin;

As the final step, we need to enable an activation on dbo.BlockedProcess

NotificationQueue, as shown in Listing 4-9.

Chapter 4 Blocking in the System

106

Listing 4-9.  Enable an activation on the queue

use DBA

go

alter queue dbo.BlockedProcessNotificationQueue

with

 status = on,

 retention = off,

 activation

 (

 status = on,

 procedure_name = dbo.SB_BlockedProcessReport_Activation,

 max_queue_readers = 1,

 execute as owner

);

Now, if we repeat the blocking condition with the code from Table 4-1, the blocked

process report would be captured and parsed, and data would be saved in the

dbo.BlockedProcessInfo table, as shown in Figure 4-8.

Setting up blocking monitoring with Event Notifications is extremely useful during

concurrency-issue troubleshooting. I usually have it enabled as part of the regular

monitoring framework on all my servers.

Note T he source code is included in the companion materials of the book.
The latest version is also available for download from my blog at http://
aboutsqlserver.com/bmframework.

Figure 4-8.  Captured blocking information

Chapter 4 Blocking in the System

http://aboutsqlserver.com/bmframework
http://aboutsqlserver.com/bmframework

107

�Summary
Blocking occurs when multiple sessions compete for the same resources using

incompatible lock types. The process of troubleshooting requires you to detect queries

involved in the blocking, find the root cause of the problem, and address the issue.

The sys.dm_tran_locks data management view provides you with information

about all active lock requests in the system. It can help you detect blocking conditions

in real time. You can join this view with other DMVs, such as sys.dm_exec_requests,

sys.dm_exec_query_stats, sys.dm_exec_sessions, and sys.dm_os_waiting_tasks,

to obtain more information about the sessions and queries involved in the blocking

conditions.

SQL Server can generate a blocked process report that provides you with information

about blocking, which you can collect and retain for further analysis. You can use SQL

Traces, Extended Events, and Event Notifications to capture it.

In a large number of cases, blocking occurs as a result of excessive scans introduced

by nonoptimized queries. You should analyze the execution plans of both blocking and

blocked queries to detect and optimize inefficiencies.

Another common issue that results in blocking is incorrect transaction management

in the code, which includes runaway transactions and interactions with users in the

middle of open transactions, among other things.

Chapter 4 Blocking in the System

109
© Dmitri Korotkevitch 2018
D. Korotkevitch, Expert SQL Server Transactions and Locking, https://doi.org/10.1007/978-1-4842-3957-5_5

CHAPTER 5

Deadlocks
A deadlock is a special blocking case that occurs when multiple sessions—or sometimes

multiple execution threads within a single session—block each other. When it happens,

SQL Server terminates one of the sessions, allowing the others to continue.

This chapter will demonstrate why deadlocks occur in the system and explain how to

troubleshoot and resolve them.

�Classic Deadlock
A classic deadlock occurs when two or more sessions are competing for the same set of

resources. Let’s look at a by-the-book example and assume that you have two sessions

updating two rows in the table in the opposite order.

As the first step, session 1 updates the row R1 and session 2 updates the row R2. You

know that at this point both sessions acquire and hold exclusive (X) locks on the rows.

You can see this happening in Figure 5-1.

R1 R2

S2

S1(X) lock -
granted

(X) lock -
granted

Figure 5-1.  Classic deadlock: Step 1

110

Next, let’s assume that session 1 wants to update the row R2. It will try to acquire an

exclusive (X) lock on R2 and would be blocked because of the exclusive (X) lock already

held by session 2. If session 2 wanted to update R1, the same thing would happen—it

would be blocked because of the exclusive (X) lock held by session 1. As you can see,

at this point both sessions wait on each other and cannot continue the execution. This

represents the classic or cycle deadlock, shown in Figure 5-2.

The system task Deadlock Monitor wakes up every five seconds and checks if there

are any deadlocks in the system. When a deadlock is detected, SQL Server rolls back one

of the transactions with the error 1205. That releases all locks held in that transaction

and allows the other sessions to continue.

Note  The Deadlock Monitor wake-up interval goes down if there are deadlocks
in the system. In some cases, it could wake up as often as ten times per
second.

The decision as to which session is chosen as the deadlock victim depends on a

few things. By default, SQL Server rolls back the session that uses less log space for the

transaction. You can control it, up to a degree, by setting a deadlock priority for the

session with the SET DEADLOCK_PRIORITY option.

Figure 5-2.  Classic deadlock: Step 2

Chapter 5 Deadlocks

111

�Deadlock Due to Non-Optimized Queries
While the classic deadlock often happens when the data is highly volatile and the same

rows are updated by multiple sessions, there is another common reason for deadlocks.

They happen as a result of the scans introduced by non-optimized queries. Let’s look

at an example and assume that you have a process that updates an order row in

Delivery.Orders table and, as a next step, queries how many orders the customer has.

Let’s see what happens when two such sessions are running in parallel using the

READ COMMITTED transaction isolation level.

As the first step, two sessions run two UPDATE statements. Both statements run fine

without blocking involved—as you remember, the table has the clustered index on the

OrderId column, so you will have Clustered Index Seek operators in the execution plan.

Figure 5-3 illustrates this step.

At this point, both sessions hold exclusive (X) locks on the updated rows. As the

second step, sessions run the SELECT statements based on the CustomerId filter. There

are no nonclustered indexes on the table, and the execution plan will have the Clustered

Index Scan operation. In the READ COMMITTED isolation level, SQL Server acquires shared

(S) locks when reading the data, and as a result both sessions are blocked as soon as they

try to read the row with exclusive (X) locks held on it. Figure 5-4 illustrates that.

OrderId: 100001
CustomerId: 115

Session 1:
update Delivery.Orders
set OrderStatusId = 2
where OrderId = 100001

Step 1 (CI Seek):
(X) lock - granted OrderId: 100050

CustomerId: 766

Session 2:
update Delivery.Orders
set OrderStatusId = 4
where OrderId = 100050

Step 1 (CI Seek):
(X) lock - granted

Figure 5-3.  Deadlock due to the scans: Step 1

Chapter 5 Deadlocks

112

If you ran the query shown in Listing 5-1 at the time when both sessions were

blocked and before the Deadlock Monitor task woke up, you would see that both

sessions block each other.

Listing 5-1.  Lock requests at the time when both sessions were blocked

select

 tl.request_session_id as [SPID]

 ,tl.resource_type as [Resouce Type]

 ,tl.resource_description as [Resource]

 ,tl.request_mode as [Mode]

 ,tl.request_status as [Status]

 ,wt.blocking_session_id as [Blocked By]

from

 sys.dm_tran_locks tl with (nolock) left outer join

 sys.dm_os_waiting_tasks wt with (nolock) on

 tl.lock_owner_address = wt.resource_address and

 tl.request_status = 'WAIT'

Figure 5-4.  Deadlock due to the scans: Step 2

Chapter 5 Deadlocks

113

where

 tl.request_session_id <> @@SPID and tl.resource_type = 'KEY'

order by

 tl.request_session_id

Figure 5-5 shows the output of the query. As you can see, both sessions block each

other. It does not matter that the sessions were not going to include those rows in the

count calculation. SQL Server is unable to evaluate the CustomerId predicate until the

shared (S) locks are acquired and rows are read.

You will have deadlocks like these in any transaction isolation level where readers

acquire shared (S) locks. It would not deadlock in the READ UNCOMMITTED, READ

COMMITTED SNAPSHOT, or SNAPSHOT isolation levels, where shared (S) locks are not used.

Nevertheless, you can still have deadlocks in the READ UNCOMMITTED and READ

COMMITTED SNAPSHOT isolation levels as a result of the writers’ collision. You can trigger

it by replacing the SELECT statement with the UPDATE that introduces the scan operation

in the previous example. The SNAPSHOT isolation level, on the other hand, does not

have writer/writer blocking unless you are updating the same rows, and it would not

deadlock, even with UPDATE statements.

Query optimization helps to fix deadlocks caused by scans and non-optimized

queries. In the preceding case, you can solve the problem by adding a nonclustered

index on the CustomerId column. This would change the execution plan of SELECT

statement replacing Clustered Index Scan with Nonclustered Index Seek. As a result, the

session would not need to read the rows that were modified by another session and have

incompatible locks held.

Figure 5-5.  Lock requests at the time of the deadlock

Chapter 5 Deadlocks

114

�Key Lookup Deadlock
In some cases, you can have a deadlock when multiple sessions are trying to read and

update the same row simultaneously.

Let’s assume that you have a nonclustered index on the table, and one session

wants to read the row using this index. If the index is not covering and the session needs

some data from the clustered index, SQL Server may generate the execution plan with

the Nonclustered Index Seek and Key Lookup operations. The session would acquire a

shared (S) lock on the nonclustered index row first, and then on the clustered index row.

Meanwhile, if you have another session that updates one of the columns that is part

of the nonclustered index using the clustered key value as the query predicate, that

session would acquire exclusive (X) locks in the opposite order; that is, on the clustered

index row first and on the nonclustered index row after that.

Figure 5-6 shows what happens after the first step, when both sessions successfully

acquire locks on the rows in the clustered and nonclustered indexes.

In the next step, both sessions try to acquire locks on the rows in the other indexes,

and they are blocked, as shown in Figure 5-7.

Figure 5-6.  Key Lookup deadlock: Step 1

Chapter 5 Deadlocks

115

If it happens in the same moment, you would have a deadlock, and the session that

reads the data would be chosen as the deadlock victim. This is an example of the classic

cycle deadlock we saw earlier. Despite the fact that both sessions are working with a

single table row, SQL Server internally deals with two rows—one each in the clustered

and nonclustered indexes.

You can address this type of deadlock by making nonclustered indexes covering and

avoiding the Key Lookup operation. Unfortunately, that solution would increase the size

of the leaf rows in the nonclustered index and introduce additional overhead during

data modification and index maintenance. Alternatively, you can use optimistic isolation

levels and switch to READ COMMITTED SNAPSHOT mode, where readers do not acquire

shared (S) locks.

�Deadlock Due to Multiple Updates of the Same Row
A deadlock pattern that is similar to the previous can be introduced by having multiple

updates of the same row when updates access or change columns in different indexes.

This could lead to a deadlock situation—similar to the Key Lookup deadlock—where

another session places a lock on the nonclustered index row in between the updates.

One of the common scenarios where it happens is with AFTER UPDATE triggers that

update the same row.

Let’s look at a situation where you have a table with both clustered and nonclustered

indexes and the AFTER UPDATE trigger defined. Let’s have session 1 update a column that

does not belong to the nonclustered index. This step is shown in Figure 5-8. It acquires

an exclusive (X) lock on the row from the clustered index only.

Figure 5-7.  Key Lookup deadlock: Step 2

Chapter 5 Deadlocks

116

The update fires the AFTER UPDATE trigger. Meanwhile, let’s assume that another session

is trying to select the same row using the nonclustered index. This session successfully

acquires a shared (S) lock on the nonclustered index row during the Nonclustered Index

Seek operation. However, it would be blocked when trying to obtain a shared (S) lock on the

clustered index row during the Key Lookup, as shown in Figure 5-9.

Finally, if session 1 trigger tries to update the same row again, modifying the column

that exists in the nonclustered index, it would be blocked by the shared (S) lock held by

session 2. Figure 5-10 illustrates this situation.

Figure 5-8.  Deadlock due to multiple updates of the same row: Step 1

Figure 5-9.  Deadlock due to the multiple updates of the same row: Step 2

Chapter 5 Deadlocks

117

Let’s prove that with the code shown in Listing 5-2.

Listing 5-2.  Multiple updates of the same row

create table dbo.T1

(

 CI_Key int not null,

 NCI_Key int not null,

 CI_Col varchar(32),

 NCI_Included_Col int

);

create unique clustered index IDX_T1_CI on dbo.T1(CI_Key);

create nonclustered index IDX_T1_NCI

on dbo.T1(NCI_Key)

include (NCI_Included_Col);

insert into dbo.T1(CI_Key,NCI_Key,CI_Col,NCI_Included_Col)

values(1,1,'a',0), (2,2,'b',0), (3,3,'c',0), (4,4,'d',0);

begin tran

 update dbo.T1 set CI_Col = 'abc' where CI_Key = 1;

 select

 l.request_session_id as [SPID]

 ,object_name(p.object_id) as [Object]

 ,i.name as [Index]

 ,l.resource_type as [Lock Type]

Figure 5-10.  Deadlock due to multiple updates of the same row

Chapter 5 Deadlocks

118

 ,l.resource_description as [Resource]

 ,l.request_mode as [Mode]

 ,l.request_status as [Status]

 ,wt.blocking_session_id as [Blocked By]

 from

 sys.dm_tran_locks l join sys.partitions p on

 p.hobt_id = l.resource_associated_entity_id

 join sys.indexes i on

 p.object_id = i.object_id and p.index_id = i.index_id

 left outer join sys.dm_os_waiting_tasks wt with (nolock) on

 l.lock_owner_address = wt.resource_address and

 l.request_status = 'WAIT'

 where

 resource_type = 'KEY' and request_session_id = @@SPID;

 update dbo.T1 set NCI_Included_Col = 1 where NCI_Key = 1

 select

 l.request_session_id as [SPID]

 ,object_name(p.object_id) as [Object]

 ,i.name as [Index]

 ,l.resource_type as [Lock Type]

 ,l.resource_description as [Resource]

 ,l.request_mode as [Mode]

 ,l.request_status as [Status]

 ,wt.blocking_session_id as [Blocked By]

 from

 sys.dm_tran_locks l join sys.partitions p on

 p.hobt_id = l.resource_associated_entity_id

 join sys.indexes i on

 p.object_id = i.object_id and p.index_id = i.index_id

 left outer join sys.dm_os_waiting_tasks wt with (nolock) on

 l.lock_owner_address = wt.resource_address and

 l.request_status = 'WAIT'

 where

 resource_type = 'KEY' and request_session_id = @@SPID;

commit

Chapter 5 Deadlocks

119

The code in Listing 5-2 updates the row twice. If you look at the row-level locks held

after the first update, you see only one lock held on the clustered index, as shown in

Figure 5-11.

The second update, which updates the column that exists in the nonclustered index,

places another exclusive (X) there, as shown in Figure 5-12. This proves that the lock

on the nonclustered index row is not acquired unless the index columns are actually

updated.

Now, let’s look at another session with SPID = 55 running the SELECT shown in

Listing 5-3 in between two updates, at a time when you have just one row-level lock held.

Listing 5-3.  The code that leads to the deadlock

select CI_Key, CI_Col

from dbo.T1 with (index = IDX_T1_NCI)

where NCI_Key = 1

As you can see in Figure 5-13, the query successfully acquires the shared (S) lock on

the nonclustered index row and is blocked by trying to acquire the lock on the clustered

index row.

Figure 5-11.  Row-level locks after the first update

Figure 5-12.  Row-level locks after the second update

Chapter 5 Deadlocks

120

If you ran the second update in the original session with SPID = 56, it would try to

acquire an exclusive (X) lock on the nonclustered index, and it would be blocked by the

second (SELECT) session, as shown in Figure 5-14. That leads to the deadlock condition.

The best method to avoid such problems is to eliminate multiple updates of the

same rows. You can use variables or temporary tables to store preliminary data and

run the single UPDATE statement close to the end of the transaction. Alternatively, you

can change the code and assign some temporary value to NCI_Included_Col as part

of the first UPDATE statement, which would acquire exclusive (X) locks on both of the

indexes. The SELECT from the second session would be unable to acquire the lock on the

nonclustered index, and the second update would run just fine.

As a last resort, you could read the row using a plan that requires both indexes to use

an (XLOCK) locking hint, which would place exclusive (X) locks on both rows, as shown

in Listing 5-4 and Figure 5-15. Obviously, you need to consider the overhead this would

introduce.

Listing 5-4.  Obtaining exclusive (X) locks on the rows in both indexes

begin tran

 declare

 @Dummy varchar(32)

 select @Dummy = CI_Col

 from dbo.T1 with (XLOCK index=IDX_T1_NCI)

 where NCI_Key = 1;

Figure 5-13.  Row-level locks when SELECT query is blocked

Figure 5-14.  Row-level locks when second update is running (deadlock)

Chapter 5 Deadlocks

121

 select

 l.request_session_id as [SPID]

 ,object_name(p.object_id) as [Object]

 ,i.name as [Index]

 ,l.resource_type as [Lock Type]

 ,l.resource_description as [Resource]

 ,l.request_mode as [Mode]

 ,l.request_status as [Status]

 ,wt.blocking_session_id as [Blocked By]

 from

 sys.dm_tran_locks l join sys.partitions p on

 p.hobt_id = l.resource_associated_entity_id

 join sys.indexes i on

 p.object_id = i.object_id and p.index_id = i.index_id

 left outer join sys.dm_os_waiting_tasks wt with (nolock) on

 l.lock_owner_address = wt.resource_address and

 l.request_status = 'WAIT'

 where

 resource_type = 'KEY' and request_session_id = @@SPID;

 update dbo.T1 set CI_Col = 'abc' where CI_Key = 1;

 /* some code */

 update dbo.T1 set NCI_Included_Col = 1 where NCI_Key = 1;

commit

Figure 5-15.  Row-level locks after SELECT statement with (XLOCK) hint

Chapter 5 Deadlocks

122

�Deadlock Troubleshooting
In a nutshell, deadlock troubleshooting is very similar to the blocking troubleshooting

we discussed in the previous chapter. You need to analyze the processes and queries

involved in the deadlock, identify the root cause of the problem, and, finally, fix it.

Similar to the blocked process report, there is the deadlock graph, which provides

you with information about the deadlock in an XML format. There are plenty of ways to

obtain the deadlock graph:

•	 xml_deadlock_report Extended Event

•	 Starting with SQL Server 2008, every system has a system_health

Extended Event session enabled by default in every SQL Server

installation. That session captures basic server health information,

including xml_deadlock_report events.

•	 Trace Flag 1222: This trace flag saves deadlock information to the

SQL Server Error Log. You can enable it for all sessions with the DBCC

TRACEON(1222,-1) command or by using startup parameter T1222. It

is a perfectly safe method to use in production; however, nowadays, it

may be redundant because of the system_health session.

•	 Deadlock graph SQL Trace event. It is worth noting that SQL Profiler

displays the graphic representation of the deadlock. The “Extract

Event Data” action from the event context menu (right mouse click)

allows you to extract an XML deadlock graph.

With the system_health xEvent session, xml_deadlock_graph is captured by default.

You may have the data for troubleshooting even if you did not explicitly enable any

other collection methods. In SQL Server 2012 and above, you can access system_health

session data from the Management node in Management Studio, as shown in Figure 5-16.

You could analyze the target data, searching for an xml_deadlock_report event.

Chapter 5 Deadlocks

123

The XML representation of the deadlock graph contains two different sections,

as shown in Listing 5-5. The sections <process-list> and <resource-list> contain

information about the processes and resources involved in the deadlock, respectively.

Listing 5-5.  Deadlock graph format

<deadlock-list>

 <deadlock victim="...">

 <process-list>

 <process id="...">

 ...

 </process>

 <process id="...">

 ...

 </process>

 </process-list>

Figure 5-16.  Accessing system_health xEvents session

Chapter 5 Deadlocks

124

 <resource-list>

 <information about resource involved in the deadlock>

 ...

 </ information about resource involved in the deadlock>

 <information about resource involved in the deadlock>

 ...

 </ information about resource involved in the deadlock>

 </resource-list>

 </deadlock>

</deadlock-list>

Let’s trigger a deadlock in the system by using the code shown in Table 5-1. You

need to run two sessions in parallel—running UPDATE statements first and then SELECT

statements.

Each <process> node in the deadlock graph shows details for a specific process,

as shown in Listing 5-6. I removed the values from some of the attributes to make it

easier to read. I also have highlighted the ones that I’ve found especially helpful during

troubleshooting.

Table 5-1.  Triggering Deadlock in the System

Session 1 Session 2

begin tran

 update Delivery.Orders

 set OrderStatusId = 1

 where OrderId = 10001;

begin tran

 update Delivery.Orders

 set OrderStatusId = 1

 where OrderId = 10050;

 select count(*) as [Cnt]

 �from Delivery.Orders with

(READCOMMITTED)

 where CustomerId = 317;

commit

 select count(*) as [Cnt]

 �from Delivery.Orders with

(READCOMMITTED)

 where CustomerId = 766;

commit

Chapter 5 Deadlocks

125

Listing 5-6.  Deadlock graph: <Process> node

<process id="process3e4b29868" taskpriority="0" logused="264"

waitresource="KEY: ..." waittime="..." ownerId="..." transactionname="... "

lasttranstarted="..." XDES="..." lockMode="S" schedulerid="..." kpid="..."

status="suspended" spid="55" sbid="..." ecid="..." priority="0"

trancount="1" lastbatchstarted="..." lastbatchcompleted="..."

lastattention="..." clientapp="..." hostname="..." hostpid="..."

loginname="..." isolationlevel="read committed (2)" xactid="..."

currentdb="..." lockTimeout="..." clientoption1="..." clientoption2="...">

 <executionStack>

 <frame procname="adhoc" line="1" stmtstart="26" sqlhandle="...">

 �SELECT COUNT(*) [Cnt] FROM [Delivery].[Orders] with

(REACOMMITTED) WHERE [CustomerId]=@1

 </frame>

 </executionStack>

 <inputbuf>

 select count(*) as [Cnt]

 from Delivery.Orders with (REACOMMITTED)

 where CustomerId = 766

 commit

 </inputbuf>

</process>

The id attribute uniquely identifies the process. Waitresource and lockMode provide

information about the lock type and the resource for which the process is waiting. In

our example, you can see that the process is waiting for the shared (S) lock on one of the

rows (keys).

The Isolationlevel attribute shows you the current transaction isolation level.

Finally, executionStack and inputBuf allow you to find the SQL statement that was

executed when the deadlock occurred. As the opposite of the blocked process report,

executionStack in the deadlock graph usually provides you with information about the

query and module involved in the deadlock. However, in some cases, you would need to

use the sys.dm_exec_sql_text function to get the SQL statements in the same way as we

did in Listing 4-5 in the previous chapter.

Chapter 5 Deadlocks

126

The <resource-list> section of the deadlock graph contains information about the

resources involved in the deadlock. It is shown in Listing 5-7.

Listing 5-7.  Deadlock graph: <Resource-list> node

<resource-list>

 �<keylock hobtid="72057594039500800" dbid="14"

objectname="SqlServerInternals.Delivery.Orders" indexname="PK_Orders"

id="lock3e98b5d00" mode="X" associatedObjectId="72057594039500800">

 <owner-list>

 <owner id="process3e6a890c8" mode="X"/>

 </owner-list>

 <waiter-list>

 <waiter id="process3e4b29868" mode="S" requestType="wait"/>

 </waiter-list>

 </keylock>

 �<keylock hobtid="72057594039500800" dbid="14"

objectname="SqlServerInternals.Delivery.Orders" indexname="PK_Orders"

id="lock3e98ba500" mode="X" associatedObjectId="72057594039500800">

 <owner-list>

 <owner id="process3e4b29868" mode="X"/>

 </owner-list>

 <waiter-list>

 <waiter id="process3e6a890c8" mode="S" requestType="wait"/>

 </waiter-list>

 </keylock>

</resource-list>

The name of the XML element identifies the type of resource. Keylock, pagelock,

and objectlock stand for the row-level, page, and object locks, respectively. You

can also see to what objects and indexes those locks belong. Finally, owner-list and

waiter-list nodes provide information about the processes that own and wait for

the locks, along with the types of locks acquired and requested. You can correlate this

information with the data from the process-list section of the graph.

As you have probably already guessed, the next steps are very similar to the blocked

process troubleshooting; that is, you need to pinpoint the queries involved in the

deadlock and find out why the deadlock occurs.

Chapter 5 Deadlocks

127

There is one important factor to consider, however. In most cases, a deadlock

involves more than one statement per session running in the same transaction. The

deadlock graph provides you with information about the last statement only—the one

that triggered the deadlock.

You can see the signs of the other statements in the resource-list node. It shows

you the locks held by the transaction, but it does not tell you about the statements that

acquired them. It is very useful to identify those statements while analyzing the root

cause of the problem.

In our example, when you look at the code shown in Table 5-1, you see the two

statements. The UPDATE statement updates a single row—it acquires and holds an

exclusive (X) lock there. You can see that both processes own those exclusive (X) locks in

the resource-list node of the deadlock graph.

In the next step, you need to understand why SELECT queries are trying to obtain

shared (S) locks on the rows with exclusive (X) locks held. You can look at the execution

plans for SELECT statements from the process nodes by either running the queries or

using sys.dm_exec_query_stats DMV, as was shown in Listing 4-5 in the previous

chapter. As a result, you will get the execution plans shown in Figure 5-17. The figure also

shows the number of locks acquired during query execution.

Tip  You can obtain cached execution plans for the stored procedures using the
sys.dm_exec_procedure_stats view.

As you can see, there is a Clustered Index Scan in the plan, which gives you enough

data for analysis. SELECT queries scanned the entire table. Because both processes were

using the READ COMMITTED isolation level, the queries tried to acquire shared (S) locks

on every row from the table and were blocked by the exclusive (X) locks held by another

session. It did not matter that those rows did not have the CustomerId that the queries

were looking for. In order to evaluate this predicate, queries had to read those rows,

which required acquiring shared (S) locks on them.

Figure 5-17.  Execution plan for the query

Chapter 5 Deadlocks

128

You can solve this deadlock situation by adding a nonclustered index on the

CustomerID column. This would eliminate the Clustered Index Scan and replace it with

an Index Seek operator, as shown in Figure 5-18.

Instead of acquiring a shared (S) lock on every row of the table, the query would read

only the rows that belong to a specific customer. This would dramatically reduce the

number of shared (S) locks to be acquired, and it would prevent the query from being

blocked by exclusive (X) locks on rows that belong to different customers.

Unfortunately, deadlock troubleshooting has the same dependency on the plan

cache as blocking troubleshooting does. You often need to obtain the text and execution

plans of the statements involved in deadlocks from there. The data in the plan cache

changes over time, and the longer you wait, the less likely it is that required information

will be present.

You can address this by implementing a monitoring solution based on Event

Notifications, similar to what we did in the previous chapter. The code is included to

companion materials of the book as part of Blocking Monitoring Framework code and

also available for download from my blog at: http://aboutsqlserver.com/bmframework.

Finally, in some cases you can have intra-query parallelism deadlocks—when a

query with a parallel execution plan deadlocks itself. Fortunately, such cases are rare and

are usually introduced by a bug in SQL Server rather than application or database issues.

You can detect such cases when a deadlock graph has more than two processes with the

same SPID and the resource-list has exchangeEvent and/or threadPoll listed as the

resources, without any lock resources associated with them. When it happens, you can

work around the problem by reducing or even completely removing parallelism for the

query with the MAXDOP hint. There is also a great chance that the issue has already been

fixed in the latest service pack or cumulative update.

Figure 5-18.  Execution plan for the query with nonclustered index

Chapter 5 Deadlocks

http://aboutsqlserver.com/bmframework

129

�Deadlock Due to IGNORE_DUP_KEY Index Option
There is one very particular type of deadlock that is extremely confusing and hard to

explain. At first glance, it seems that this deadlock violates the SQL Server Concurrency

Model by using range locks in non-SERIALIZABLE isolation levels. However, there is a

simple explanation.

As you remember, SQL Server uses range locks to protect a range of the index keys,

thus avoiding phantom and non-repeatable reads phenomena. Such locks guarantee

that queries executed in a transaction will always work with the same set of data and

would be unaffected by any modifications from the other sessions.

There is another case, however, when SQL Server uses the range locks. They are used

during data modification of nonclustered indexes that have the IGNORE_DUP_KEY option

set to ON. When this is the case, SQL Server ignores the rows with duplicated values of the

key rather than raising an exception.

Let’s look at the example and create a table, as shown in Listing 5-8.

Listing 5-8.  IGNORE_DUP_KEY deadlock: Table creation

create table dbo.IgnoreDupKeysDeadlock

(

 CICol int not null,

 NCICol int not null

);

create unique clustered index IDX_IgnoreDupKeysDeadlock_CICol

on dbo.IgnoreDupKeysDeadlock(CICol);

create unique nonclustered index IDX_IgnoreDupKeysDeadlock_NCICol

on dbo.IgnoreDupKeysDeadlock(NCICol)

with (ignore_dup_key = on);

insert into dbo.IgnoreDupKeysDeadlock(CICol, NCICol)

values(0,0),(5,5),(10,10),(20,20);

Now, let’s start the transaction by using the READ UNCOMMITTED isolation level and

then insert a row into the table, checking the locks acquired by the session. The code is

shown in Listing 5-9.

Chapter 5 Deadlocks

130

Listing 5-9.  IGNORE_DUP_KEY deadlock: Inserting a row into the table

set transaction isolation level read uncommitted

begin tran

 insert into dbo.IgnoreDupKeysDeadlock(CICol,NCICol)

 values(1,1);

 select request_session_id, resource_type, resource_description

 �,resource_associated_entity_id, request_mode, request_type,

request_status

 from sys.dm_tran_locks

 where request_session_id = @@SPID;

Figure 5-19 illustrates the output from the sys.dm_tran_locks view. As you can

see, the session acquired two exclusive (X) locks on the rows in the clustered and

nonclustered indexes. It also acquired a range (RangeS-U) lock on the nonclustered

index. This lock type means that the existing keys are protected with shared (S) locks,

and the interval itself is protected with an update (U) lock.

In this scenario, the range lock is required because of the way SQL Server handles

data modifications. As we have already discussed, the data is modified in the clustered

index first, followed by nonclustered indexes. With IGNORE_DUP_KEY=ON, SQL Server

needs to prevent the situation where duplicated keys are inserted into nonclustered

indexes simultaneously after the clustered index inserts, and therefore some inserts

need to be rolled back. Thus, it locks the range of the keys in the nonclustered index,

preventing other sessions from inserting any rows there.

We can confirm it by looking at the lock_acquired Extended Event as shown in

Figure 5-20. As you can see, the range lock was acquired before exclusive (X) locks in

both indexes.

Figure 5-19.  Locks acquired by the first session

Chapter 5 Deadlocks

131

The key problem here, however, is that range locks behave the same way as they do in

the SERIALIZABLE isolation level. They are held until the end of the transaction regardless

of the isolation level in use. This behavior greatly increases the chance of deadlocks.

Let’s run the code from Listing 5-10 in another session. The first statement would

succeed, while the second would be blocked.

Listing 5-10.  IGNORE_DUP_KEY deadlock: Second session code

set transaction isolation level read uncommitted

begin tran

 -- Success

 insert into dbo.IgnoreDupKeysDeadlock(CICol,NCICol)

 values(12,12);

 -- Statement is blocked

 insert into dbo.IgnoreDupKeysDeadlock(CICol,NCICol)

 values(2,2);

commit;

Now, if we look at the locks held by both sessions, we would see the picture shown

in Figure 5-21. The range (RangeS-U) lock from the first session protects the interval of

0..5 and blocks the second session, which is trying to acquire a range lock in the same

interval.

Figure 5-20.  lock_acquired Extended Events

Chapter 5 Deadlocks

132

The second session, in turn, is holding a range lock (RangeS-U) on the interval of

10..20. If the first session tries to insert another row into that interval with the code from

Listing 5-11, it would be blocked, which would lead to the classic deadlock situation.

Listing 5-11.  IGNORE_DUP_KEY deadlock: Second insert from the first session

insert into dbo.IgnoreDupKeysDeadlock(CICol,NCICol)

values(11,11);

Figure 5-22 shows the partial output from the deadlock graph. As you can see,

this particular pattern is clearly identifiable by the presence of range locks in non-

SERIALIZABLE isolation levels.

Figure 5-21.  Lock requests at time of blocking

Chapter 5 Deadlocks

133

There is very little you can do about this problem besides removing the IGNORE_DUP_

KEY index option. Fortunately, this option is rarely required, and in many cases the issue

can be solved by using the NOT EXISTS predicate and/or with staging tables.

Finally, it is important to note that SQL Server does not use range locks to enforce

the IGNORE_DUP_KEY=ON setting in clustered indexes. The data is inserted or modified in

the clustered indexes first, and SQL Server does not need to use range locks to avoid race

conditions.

Figure 5-22.  Deadlock graph

Chapter 5 Deadlocks

134

�Reducing the Chance of Deadlocks
Finally, there are several practical bits of advice I can provide toward helping to reduce

the chance of deadlocks in the system:

	 1.	 Optimize the queries. Scans introduced by non-optimized queries

are the most common causes of deadlocks. The right indexes not only

improve the performance of the queries, but also reduce the number

of rows that need to be read and locks that need to be acquired, thus

reducing the chance of lock collisions with the other sessions.

	 2.	 Keep locks as short as possible. As you will recall, all exclusive (X)

locks are held until the end of the transaction. Make transactions

short and try to update data as close to the end of the transaction as

possible to reduce the chance of lock collision. In our example from

Table 5-1, you can change the code and swap around the SELECT

and UPDATE statements. This would solve the particular deadlock

problem because the transactions do not have any statements that

can be blocked after exclusive (X) locks are acquired.

	 3.	 Consider using optimistic isolation levels such as READ COMMITTED

SNAPSHOT or SNAPSHOT. When it is impossible, use the lowest

transaction isolation level that provides the required data

consistency. This reduces the time shared (S) locks are held. Even

if you swapped the SELECT and UPDATE statements in the previous

example, you would still have the deadlock in the REPEATABLE

READ or SERIALIZABLE isolation levels. With those isolation levels,

shared (S) locks are held until the end of the transaction, and they

would block UPDATE statements. In READ COMMITTED mode, shared

(S) locks are released after a row is read, and UPDATE statements

would not be blocked.

	 4.	 Avoid updating a row multiple times within the same transaction

when multiple indexes are involved. As you saw earlier in

this chapter, SQL Server does not place exclusive (X) locks on

nonclustered index rows when index columns are not updated.

Other sessions can place incompatible locks there and block

subsequent updates, which would lead to deadlocks.

Chapter 5 Deadlocks

135

	 5.	 Use retry logic. Wrap critical code into TRY..CATCH blocks and

retry the action if deadlock occurs. The error number for the

exception caused by the deadlock is 1205. The code in Listing 5-12

shows how you can implement that.

Listing 5-12.  Using TRY..CATCH block to retry the operation in case of deadlock

-- Declare and set variable to track number of retries to try before

exiting.

declare

 @retry tinyint = 5

-- Keep trying to update table if this task is selected as the deadlock

victim.

while (@retry > 0)

begin

 begin try

 begin tran

 -- some code that can lead to the deadlock

 commit

 end try

 begin catch

 �-- Check error number. If deadlock victim error, then reduce

retry count

 �-- for next update retry. If some other error occurred, then exit

WHILE loop.

 if (error_number() = 1205)

 set @retry = @retry - 1;

 else

 set @retry = 0;

 if @@trancount > 0

 rollback;

 end catch

end

Chapter 5 Deadlocks

136

�Summary
With the exception of intra-query parallelism deadlocks, which are considered to be a

bug in the SQL Server code, deadlocks occur when multiple sessions compete for the

same set of resources.

The key element in deadlock troubleshooting is the deadlock graph, which provides

information about the processes and resources involved in the deadlock. You can collect

the deadlock graph by enabling trace flag T1222, capturing xml_deadlock_report

Extended Event and Deadlock graph SQL Trace event, or setting up a deadlock event

notification in the system. In SQL Server 2008 and above, the xml_deadlock_report

event is included in the system_health Extended Event session, which is enabled by

default on every SQL Server installation.

The deadlock graph will provide you with information about the queries that

triggered the deadlock. You should remember, however, that in the majority of cases, a

deadlock involves multiple statements that acquired and held the locks within the same

transaction and you may need to analyze all of them to address the problem.

Even though deadlocks can happen for many reasons, more often than not they

happen because of excessive locking during scans in non-optimized queries. Query

optimization can help to address them.

Chapter 5 Deadlocks

137
© Dmitri Korotkevitch 2018
D. Korotkevitch, Expert SQL Server Transactions and Locking, https://doi.org/10.1007/978-1-4842-3957-5_6

CHAPTER 6

Optimistic Isolation Levels
Optimistic transaction isolation levels were introduced in SQL Server 2005 as a new way

to deal with blocking problems and address concurrency phenomena in a system. With

optimistic transaction isolation levels, queries read “old” committed versions of rows

while accessing data modified by the other sessions, rather than being blocked by the

incompatibility of shared (S) and exclusive (X) locks.

This chapter will explain how optimistic isolation levels are implemented and how

they affect the locking behavior of the system.

�Row Versioning Overview
With optimistic transaction isolation levels, when updates occur, SQL Server stores the

old versions of the rows in a special part of tempdb called the version store. The original

rows in the database reference them with 14-byte version pointers, which SQL Server

adds to modified (updated and deleted) rows. Depending on the situation, you can

have more than one version record stored in the version store for the row. Figure 6-1

illustrates this behavior.

Figure 6-1.  Version store

138

Now, when readers (and sometimes writers) access a row that holds an exclusive (X)

lock, they read the old version from the version store rather than being blocked, as

shown in Figure 6-2.

As you can guess, while optimistic isolation levels help reduce blocking, there are

some tradeoffs. Most significant among these is that they contribute to tempdb load.

Using optimistic isolation levels on highly volatile systems can lead to very heavy tempdb

activity and can significantly increase tempdb size. We will look at this issue in greater

detail later in this chapter.

There is overhead during data modification and retrieval. SQL Server needs to copy

the data to tempdb as well as maintain a linked list of the version records. Similarly, it

needs to traverse that list when reading data. This adds additional CPU, memory, and

I/O load. You need to remember these tradeoffs, especially when you host the system in

the cloud, where I/O performance is often less efficient than that of modern high-end

disk arrays you can find on-premises.

Finally, optimistic isolation levels contribute to index fragmentation. When a row is

modified, SQL Server increases the row size by 14 bytes due to the version pointer. If a page is

tightly packed and a new version of the row does not fit into the page, it will lead to a page split

and further fragmentation. We will look at this behavior in more depth later in the chapter.

�Optimistic Transaction Isolation Levels
There are two optimistic transaction isolation levels: READ COMMITTED SNAPSHOT and

SNAPSHOT. To be precise, SNAPSHOT is a separate transaction isolation level, while READ

COMMITTED SNAPSHOT is a database option that changes the behavior of the readers in the

READ COMMITTED transaction isolation level.

Let's examine these levels in depth.

Figure 6-2.  Readers and version store

Chapter 6 Optimistic Isolation Levels

139

�READ COMMITTED SNAPSHOT Isolation Level
Both optimistic isolation levels need to be enabled on the database level. You can enable

READ COMMITTED SNAPSHOT (RCSI) with the ALTER DATABASE SET READ_COMMITTED_

SNAPSHOT ON command. That statement acquires an exclusive (X) database lock to

change the database option, and it will be blocked if there are other users connected

to the database. You can address that by running the ALTER DATABASE SET READ_

COMMITTED_SNAPSHOT ON WITH ROLLBACK AFTER X SECONDS command. This will roll

back all active transactions and terminate existing database connections, which allows

the changing of the database option.

Note  READ COMMITTED SNAPSHOT is enabled by default in Microsoft Azure
SQL Databases.

As already mentioned, RCSI changes the behavior of the readers in READ COMMITTED

mode. It does not affect the behavior of the writers, however.

As you can see in Figure 6-3, instead of acquiring shared (S) locks and being

blocked by any exclusive (X) locks held on the row, readers use the old version from

the version store. Writers still acquire update (U) and exclusive (X) locks in the same

way as in pessimistic isolation levels. Again, as you can see, blocking between writers

from different sessions still exists, although writers do not block readers similar to READ

UNCOMMITTED mode.

Figure 6-3.  READ COMMITTED SNAPSHOT isolation level behavior

Chapter 6 Optimistic Isolation Levels

140

There is a major difference between the READ UNCOMMITTED and READ COMMITTED

SNAPSHOT isolation levels, however. READ UNCOMMITTED removes the blocking at the

expense of data consistency. Many consistency anomalies are possible, including

reading uncommitted data, duplicated reads, and missed rows. On the other hand,

the READ COMMITTED SNAPSHOT isolation level provides you with full statement-level

consistency. Statements running in this isolation level do not access uncommitted data

nor data committed after the statement started.

As the obvious conclusion, you should avoid using the (NOLOCK) hint in the queries

when READ COMMITTED SNAPSHOT isolation level is enabled. While using (NOLOCK)

and READ UNCOMMITTED is a bad practice by itself, it is completely useless when READ

COMMITTED SNAPSHOT provides you with similar non-blocking behavior without losing

data consistency for the queries.

Tip S witching a database to the READ COMMITTED SNAPSHOT isolation level
can be a great emergency technique when the system is suffering from blocking
issues. It removes writers/readers blocking without any code changes, assuming
that readers are running in the READ COMMITTED isolation level. Obviously, this is
only a temporary solution, and you need to detect and eliminate the root cause of
the blocking.

�SNAPSHOT Isolation Level
SNAPSHOT is a separate transaction isolation level, and it needs to be set explicitly in the

code with a SET TRANSACTION ISOLATION LEVEL SNAPSHOT statement.

By default, using the SNAPSHOT isolation level is prohibited. You must enable it with

an ALTER DATABASE SET ALLOW_SNAPSHOT_ISOLATION ON statement. This statement

does not require an exclusive database lock, and it can be executed with other users

connected to the database.

The SNAPSHOT isolation level provides transaction-level consistency. Transactions

will see a snapshot of the data at the moment when the transaction started regardless

of how long the transaction is active and how many data changes were made in other

transactions during that time.

Chapter 6 Optimistic Isolation Levels

141

Note S QL Server starts an explicit transaction at the time when it accesses the
data for the first time rather than at the time of the BEGIN TRAN statement.

In the example shown in Figure 6-4, we have a session 1 that starts the transaction

and reads the row at time T1. At time T2, we have a session 2 that modifies the row in an

autocommitted transaction. At this moment, the old (original) version of the row moved

to the version store in tempdb.

In the next step, we have a session 3 that starts another transaction and reads

the same row at time T3. It sees the version of the row as modified and committed

by session 2 (at time T2). At time T4, we have a session 4 that modifies the row in the

autocommitted transaction again. At this time, we have two versions of the rows in the

version store—one that existed between T2 and T4, and the original version that existed

before T2. Now, if session 3 runs the SELECT again, it would use the version that existed

between T2 and T4 because this version was committed at the time that the session 3

transaction started. Similarly, session 1 would use the original version of the row that

existed before T2. At some point, after session 1 and session 3 are committed, the version

store clean-up task would remove both records from the version store, assuming, of

course, that there are no other transactions that need them.

The SERIALIZABLE and SNAPSHOT isolation levels provide the same level of protection

against data inconsistency issues; however, there is a subtle difference in their behavior.

A SNAPSHOT isolation level transaction sees data as of the beginning of a transaction.

Figure 6-4.  Snapshot isolation level and readers behavior

Chapter 6 Optimistic Isolation Levels

142

With the SERIALIZABLE isolation level, the transaction sees data as of the time when the

data was accessed for the first time and locks were acquired. Consider a situation where

a session is reading data from a table in the middle of a transaction. If another session

changed the data in that table after the transaction started but before data was read,

the transaction in the SERIALIZABLE isolation level would see the changes while the

SNAPSHOT transaction would not.

Optimistic transaction isolation levels provide statement- or transaction-level data

consistency reducing or even eliminating the blocking, although they could generate

an enormous amount of data in the tempdb. If you have a session that deletes millions

of rows from the table, all of those rows would need to be copied to the version store,

even if the original DELETE statement were running in a pessimistic isolation level, just

to preserve the state of the data for possible SNAPSHOT or RCSI transactions. You will see

such an example later in the chapter.

Now, let’s examine the writers’ behavior. Let’s assume that session 1 starts the

transaction and updates one of the rows. That session holds an exclusive (X) lock there,

as shown in Figure 6-5.

Figure 6-5.  SNAPSHOT isolation level and writers’ behavior

Session 2 wants to update all rows where Cancelled = 1. It starts to scan the table,

and when it needs to read the data for OrderId = 10, it reads the row from the version

store; that is, the last committed version before the session 2 transaction started. This

Chapter 6 Optimistic Isolation Levels

143

version is the original (non-updated) version of the row, and it has Cancelled = 0, so

session 2 does not need to update it. Session 2 continues scanning the rows without

being blocked by update (U) and exclusive (X) lock incompatibility.

Similarly, session 3 wants to update all rows with Amount = 29.95. When it reads the

version of the row from the version store, it determines that the row needs to be updated.

Again, it does not matter that session 1 also changes the amount for the same row. At

this point, a “new version” of the row has not been committed and is invisible to the

other sessions. Now, session 3 wants to update the row in the database, tries to acquire

an exclusive (X) lock, and is blocked because session 1 already has an exclusive (X) lock

there.

Now, if session 1 commits the transaction, session 3 would be rolled back with Error

3960, as shown in Figure 6-6, which indicates a write/write conflict. This is different

behavior than any other isolation level, in which session 3 would successfully overwrite

the changes from session 1 as soon as the session 1 exclusive (X) lock was released.

Figure 6-6.  Error 3960

A write/write conflict occurs when a SNAPSHOT transaction is trying to update data

that has been modified after the transaction started. In our example, this would happen

even if session 1 committed before session 3’s UPDATE statement, as long as this commit

occurred after session 3’s transaction started.

Tip  You can implement retry logic with TRY..CATCH statements to handle the
3960 errors if business requirements allow that.

You need to keep this behavior in mind when you are updating data in the SNAPSHOT

isolation level in a system with volatile data. If other sessions update the rows that you

are modifying after the transaction is started, you would end up with Error 3960, even

if you did not access those rows before the update. One of the possible workarounds is

using (READCOMMITTED) or other non-optimistic isolation level table hints as part of the

UPDATE statement, as shown in Listing 6-1.

Chapter 6 Optimistic Isolation Levels

144

Listing 6-1.  Using READCOMMITTED hint to prevent 3960 error

set transaction isolation level snapshot

begin tran

 select count(*) from Delivery.Drivers;

 update Delivery.Orders with (readcommitted)

 set Cancelled = 1

 where OrderId = 10;

commit

SNAPSHOT isolation levels can change the behavior of the system. Let’s assume there

is a table dbo.Colors with two rows: Black and White. The code that creates the table is

shown in Listing 6-2.

Listing 6-2.  SNAPSHOT isolation level update behavior: Table creation

create table dbo.Colors

(

 Id int not null,

 Color char(5) not null

);

insert into dbo.Colors(Id, Color) values(1,'Black'),(2,'White')

Now, let’s run two sessions simultaneously. In the first session, we run the update

that sets the color to white for the rows where the color is currently black using the

UPDATE dbo.Colors SET Color='White' WHERE Color='Black' statement. In the

second session, let’s perform the opposite operation, using the UPDATE dbo.Colors SET

Color='Black' WHERE Color='White' statement.

Let’s run both sessions simultaneously in READ COMMITTED or any other pessimistic

transaction isolation level. In the first step, as shown in Figure 6-7, we have the race

condition. One of the sessions places exclusive (X) locks on the row it updated, while the

other session is blocked when trying to acquire an update (U) lock on the same row.

Chapter 6 Optimistic Isolation Levels

145

When the first session commits the transaction, the exclusive (X) lock is released. At

this point, the row has a Color value updated by the first session, so the second session

updates two rows rather than one, as shown in Figure 6-8. In the end, both rows in the

table will be in either black or white depending on which session acquires the lock first.

Id: 1
Color: Black

Id: 2
Color: White

Session 1:

begin tran
update Colors
set Color = ‘White’
where Color = ‘Black’

Upda�ng
row

(X) lock

Session 2:

begin tran
update Colors
set Color = ‘Black’
where Color = ‘White’

(U) lock:
blocked

(U) lock:
acquired

and
released

Figure 6-7.  Pessimistic locking behavior: Step 1

Figure 6-8.  Pessimistic locking behavior: Step 2

Chapter 6 Optimistic Isolation Levels

146

With the SNAPSHOT isolation level, however, this works a bit differently, as shown in

Figure 6-9. When the session updates the row, it moves the old version of the row to the

version store. Another session will read the row from there, rather than being blocked

and vice versa. As a result, the colors will be swapped.

Figure 6-9.  SNAPSHOT isolation level locking behavior

You need to be aware of RCSI and SNAPSHOT isolation level behavior, especially if you

have code that relies on blocking. One example is a trigger-based implementation of

referential integrity. You can have an ON DELETE trigger on the referenced table where

you are running a SELECT statement; this trigger will check if there are any rows in

another table referencing the deleted rows. With an optimistic isolation level, the trigger

can skip the rows that were inserted after the transaction started. The solution here again

is a (READCOMMITTED) or other pessimistic isolation level table hint as part of the SELECT

in the triggers on both the referenced and referencing tables.

Chapter 6 Optimistic Isolation Levels

147

Note S QL Server uses a READ COMMITTED isolation level when validating foreign
key constraints. This means that you can still have blocking between writers and
readers even with optimistic isolation levels, especially if there are no indexes on
the referencing column that leads to a table scan of the referencing table.

�Version Store Behavior and Monitoring
As already mentioned, you need to monitor how optimistic isolation levels affect tempdb

in your system. For example, let’s run the code from Listing 6-3, which deletes all rows

from the Delivery.Orders table using the READ UNCOMMITTED transaction isolation level.

Listing 6-3.  Deleting data from Delivery.Orders table

set transaction isolation level read uncommitted

begin tran

 delete from Delivery.Orders;

commit

Even if there are no other transactions using optimistic isolation levels at the time

when DELETE statement started, there is still a possibility that one might start before

the transaction commits. As a result, SQL Server needs to maintain the version store,

regardless of whether there are any active transactions that use optimistic isolation

levels.

Figure 6-10 shows tempdb free space and version store size. As you can see, as soon

as the deletion starts, the version store grows and takes up all of the free space in tempdb.

Chapter 6 Optimistic Isolation Levels

148

In Figure 6-11, you can see the version store generation and cleanup rate. The

generation rate remains more or less the same during execution, while the cleanup task

cleans the version store after the transaction is committed. By default, the cleanup task

runs once per minute as well as before any auto-growth event, in case tempdb is full.

Figure 6-10.  tempdb free space and version store size

Figure 6-11.  Version generation and cleanup rates

Chapter 6 Optimistic Isolation Levels

149

As you can see, the version store adds overhead to the system. Do not enable

optimistic isolation levels in the database unless you are planning to use them. This is

especially true for SNAPSHOT isolation, which requires you to explicitly set it in the code.

While many systems could benefit from READ COMMITTED SNAPSHOT without any code

changes, this would not happen with the SNAPSHOT isolation level.

There are three other performance counters related to optimistic isolation levels that

may be helpful during version store monitoring:

	 1.	 Snapshot Transactions. This shows the total number of active

snapshot transactions. You can analyze this counter to determine

if applications use the SNAPSHOT isolation level when it is enabled

in the system.

	 2.	 Update Conflict Ratio. This shows the ratio of the number

of update conflicts to the total number of update snapshot

transactions.

	 3.	 Longest Transaction Running Time. This shows the duration

in seconds of the oldest active transaction that is using row

versioning. A high value for this counter may explain the large

version store size in the system.

There are also a few dynamic management views (DMVs) that can be useful in

troubleshooting various issues related to the version store and transactions in general.

The sys.dm_db_file_space_usage view returns space usage information for every file

in the database. One of the columns in the view, version_store_reserved_page_count,

returns the number of pages used by the version store. Listing 6-4 illustrates this view in

action.

Listing 6-4.  Using sys.dm_db_file_space_usage view

select

 sum(user_object_reserved_page_count) * 8

 as [User Objects (KB)]

 ,sum(internal_object_reserved_page_count) * 8

 as [Internal Objects (KB)]

 ,sum(version_store_reserved_page_count) * 8

 as [Version Store (KB)]

Chapter 6 Optimistic Isolation Levels

150

 ,sum(unallocated_extent_page_count) * 8

 as [Free Space (KB)]

from

 tempdb.sys.dm_db_file_space_usage;

You can track version store usage on a per-database basis using the sys.dm_tran_

version_store view, as shown in Listing 6-5. This view returns information about every

row from the version store, and it can be extremely inefficient when the version store is

large. It also does not include information about reserved but not used space.

Listing 6-5.  Using sys.dm_tran_version_store view

select

 db_name(database_id) as [database]

 ,database_id

 �,sum(record_length_first_part_in_bytes + record_length_second_part_in_

bytes) / 1024

 as [version store (KB)]

from

 sys.dm_tran_version_store

group by

 database_id

In SQL Server 2017, you can obtain the same information with the sys.dm_tran_

version_store_space_usage view. This view is more efficient than sys.dm_tran_

version_store, and it also returns information about reserved space, as shown in

Listing 6-6.

Listing 6-6.  Using sys.dm_tran_version_store_space_usage view

select

 db_name(database_id) as [database]

 ,database_id

 ,reserved_page_count

 ,reserved_space_kb

from

 sys.dm_tran_version_store_space_usage

Chapter 6 Optimistic Isolation Levels

151

When the version store becomes very large, you need to identify active transactions

that prevent its cleanup. Remember: When optimistic isolation levels are enabled, row

versioning is used regardless of the isolation level of the transaction that performed the

data modification.

Listing 6-7 shows how to identify the five oldest user transactions in the system.

Long-running transactions are the most common reason why the version store is not

cleaning up. They may also introduce other issues in the system; for example, preventing

the truncation of the transaction log.

Important S ome SQL Server features, such as Online Index Rebuild, AFTER
UPDATE and AFTER DELETE triggers, and MARS, use the version store regardless
if optimistic isolation levels are enabled. Moreover, the row versioning is also used
in the systems that have AlwaysOn Availability Groups with readable secondaries
enabled. We will discuss it in greater details in chapter 12.

Listing 6-7.  Identifying oldest active transactions in the system

select top 5

 at.transaction_id

 ,at.elapsed_time_seconds

 ,at.session_id

 ,s.login_time

 ,s.login_name

 ,s.host_name

 ,s.program_name

 ,s.last_request_start_time

 ,s.last_request_end_time

 ,er.status

 ,er.wait_type

 ,er.blocking_session_id

 ,er.wait_type

 ,substring(

 st.text,

 (er.statement_start_offset / 2) + 1,

Chapter 6 Optimistic Isolation Levels

152

 (case

 er.statement_end_offset

 when -1

 then datalength(st.text)

 else er.statement_end_offset

 end - er.statement_start_offset) / 2 + 1

) as [SQL]

from

 sys.dm_tran_active_snapshot_database_transactions at

 join sys.dm_exec_sessions s on

 at.session_id = s.session_id

 left join sys.dm_exec_requests er on

 at.session_id = er.session_id

 outer apply

 sys.dm_exec_sql_text(er.sql_handle) st

order by

 at.elapsed_time_seconds desc

Note T here are several other useful transaction-related dynamic management
views. You can read about them at https://docs.microsoft.com/en-us/
sql/relational-databases/system-dynamic-management-views/
transaction-related-dynamic-management-views-and-functions-
transact-sql.

Finally, it is worth noting that SQL Server exposes the information if READ COMMITTED

SNAPSHOT and SNAPSHOT isolation levels are enabled in sys.databases view. The

is_read_committed_snapshot column indicates if RCSI is enabled. The snapshot_

isolation_state and snapshot_isolation_state_desc columns indicate whether

SNAPSHOT transactions are allowed and/or if the database is in a transition state after you

run the ALTER DATABASE SET ALLOW_SNAPSHOT_ISOLATION statement, respectively.

Chapter 6 Optimistic Isolation Levels

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/transaction-related-dynamic-management-views-and-functions-transact-­sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/transaction-related-dynamic-management-views-and-functions-transact-­sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/transaction-related-dynamic-management-views-and-functions-transact-­sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/transaction-related-dynamic-management-views-and-functions-transact-­sql

153

�Row Versioning and Index Fragmentation
Optimistic isolation levels rely on row versioning. During updates, the old versions of the

rows are copied to the version store in tempdb. The rows in the database reference them

through 14-byte version store pointers that are added during update operations.

The same thing happens during deletions. In SQL Server, a DELETE statement does

not remove the rows from the table, but rather marks them as deleted, reclaiming the

space in the background after the transaction is committed. With optimistic isolation

levels, deletions also copy the rows to the version store, expanding the deleted rows with

version store pointers.

The version store pointer increases the row size by 14 bytes, which may lead to the

situation where the data page does not have enough free space to accommodate the new

version of the row. This would trigger a page split and increase index fragmentation.

Let’s look at an example. As the first step, we will disable optimistic isolation levels

and rebuild the index on the Delivery.Orders table using FILLFACTOR=100. This forces

SQL Server to fully populate the data pages without reserving any free space on them.

The code is shown in Listing 6-8.

Listing 6-8.  Optimistic isolation levels and fragmentation: Index rebuild

alter database SQLServerInternals

set read_committed_snapshot off

with rollback immediate;

go

alter database SQLServerInternals

set allow_snapshot_isolation off;

go

alter index PK_Orders on Delivery.Orders rebuild

with (fillfactor = 100);

Listing 6-9 shows the code that analyzes the index fragmentation of the clustered

index in the Delivery.Orders table.

Chapter 6 Optimistic Isolation Levels

154

Listing 6-9.  Optimistic isolation levels and fragmentation: Analyzing

fragmentation

select

 alloc_unit_type_desc as [alloc_unit]

 ,index_level

 ,page_count

 ,convert(decimal(4,2),avg_page_space_used_in_percent)

 as [space_used]

 ,convert(decimal(4,2),avg_fragmentation_in_percent)

 as [frag %]

 ,min_record_size_in_bytes as [min_size]

 ,max_record_size_in_bytes as [max_size]

 ,avg_record_size_in_bytes as [avg_size]

from

 sys.dm_db_index_physical_stats(db_id()

 ,object_id(N'Delivery.Orders'),1,null,'DETAILED');

As you can see in Figure 6-12, the index is using 1,392 pages and does not have any

fragmentation.

Figure 6-12.  Index statistics with FILLFACTOR = 100

Now, let’s run the code from Listing 6-10 and delete 50 percent of the rows from the

table. Note that we rolled back the transaction to reset the environment before the next test.

Listing 6-10.  Optimistic isolation levels and fragmentation: Deleting 50 percent

of the rows

begin tran

 delete from Delivery.Orders where OrderId % 2 = 0;

 -- update Delivery.Orders set Pieces += 1;

 select

Chapter 6 Optimistic Isolation Levels

155

 alloc_unit_type_desc as [alloc_unit]

 ,index_level

 ,page_count

 ,convert(decimal(4,2),avg_page_space_used_in_percent)

 as [space_used]

 ,convert(decimal(4,2),avg_fragmentation_in_percent)

 as [frag %]

 ,min_record_size_in_bytes as [min_size]

 ,max_record_size_in_bytes as [max_size]

 ,avg_record_size_in_bytes as [avg_size]

 from

 sys.dm_db_index_physical_stats(db_id()

 ,object_id(N'Delivery.Orders'),1,null,'DETAILED');

rollback

Figure 6-13 shows the output of this code. As you can see, this operation does not

increase the number of pages in the index. The same will happen if you update a value

of any fixed-length column. This update would not change the size of the rows, and

therefore it would not trigger any page splits.

Now, let’s enable the READ COMMITTED SNAPSHOT isolation level and repeat our test.

Listing 6-11 shows the code to do that.

Listing 6-11.  Optimistic isolation levels and fragmentation: Repeating the test

with RCSI enabled

alter database SQLServerInternals

set read_committed_snapshot on

with rollback immediate;

go

Figure 6-13.  Index statistics after DELETE statement

Chapter 6 Optimistic Isolation Levels

156

set transaction isolation level read uncommitted

begin tran

 delete from Delivery.Orders where OrderId % 2 = 0;

 -- update Delivery.Orders set Pieces += 1;

rollback

Figure 6-14 shows index statistics after the operation. Note that we were using the

READ UNCOMMITTED isolation level and rolling back the transaction. Nevertheless, row

versioning is used, which introduces page splits during data deletion.

Figure 6-14.  Index statistics after DELETE statement with RCSI enabled

After being added, the 14-byte version store pointers stay in the rows, even after the

records are removed from the version store. You can reclaim this space by performing an

index rebuild.

You need to remember this behavior and factor it into your index maintenance

strategy. It is best not to use FILLFACTOR = 100 if optimistic isolation levels are enabled.

The same applies to indexes defined on tables that have AFTER UPDATE and AFTER

DELETE triggers defined. Those triggers rely on row versioning and will also use the

version store internally.

�Summary
SQL Server uses a row-versioning model with optimistic isolation levels. Queries access

“old” committed versions of rows rather than being blocked by the incompatibility of

shared (S), update (U), and exclusive (X) locks. There are two optimistic transaction

isolation levels available: READ COMMITTED SNAPSHOT and SNAPSHOT.

READ COMMITTED SNAPSHOT is a database option that changes the behavior of readers

in READ COMMITTED mode. It does not change the behavior of writers—there is still

blocking due to (U)/(U) and (U)/(X) locks’ incompatibility. READ COMMITTED SNAPSHOT

does not require any code changes, and it can be used as an emergency technique when

a system is experiencing blocking issues.

Chapter 6 Optimistic Isolation Levels

157

READ COMMITTED SNAPSHOT provides statement-level consistency; that is, the query

reads a snapshot of the data at the time the statement started.

The SNAPSHOT isolation level is a separate transaction isolation level that needs to be

explicitly specified in the code. This level provides transaction-level consistency; that is,

the query accesses a snapshot of the data at the time the transaction started.

With the SNAPSHOT isolation level, writers do not block each other, with the exception

of the situation where both sessions are updating the same rows. That situation leads

either to blocking or to a 3960 error.

While optimistic isolation levels reduce blocking, they can significantly increase

tempdb load, especially in OLTP systems where data is constantly changing. They also

contribute to index fragmentation by adding 14-byte pointers to the data rows. You

should consider the tradeoffs of using them at the implementation stage, perform

tempdb optimization, and monitor the system to make sure that the version store is not

abused.

Chapter 6 Optimistic Isolation Levels

159
© Dmitri Korotkevitch 2018
D. Korotkevitch, Expert SQL Server Transactions and Locking, https://doi.org/10.1007/978-1-4842-3957-5_7

CHAPTER 7

Lock Escalation
Although row-level locking is great from a concurrency standpoint, it is expensive.

In memory, a lock structure uses 64 bytes in 32-bit and 128 bytes in 64-bit operating

systems. Keeping information about millions of row- and page-level locks would use

gigabytes of memory.

SQL Server reduces the number of locks held in memory with a technique called lock

escalation, which we will discuss in this chapter.

�Lock Escalation Overview
SQL Server tries to reduce memory consumption and the overhead of lock management by

using the simple technique called lock escalation. Once a statement acquires at least 5,000

row- and page-level locks on the same object, SQL Server tries to escalate—or perhaps

better said, replace—those locks with a single table- or, if enabled, partition-level lock. The

operation succeeds if no other sessions hold incompatible locks on the object or partition.

When an operation succeeds, SQL Server releases all row- and page-level locks held

by the transaction on the object (or partition), keeping the object- (or partition-) level

lock only. If an operation fails, SQL Server continues to use row-level locking and repeats

escalation attempts after about every 1,250 new locks acquired. In addition to reacting to

the number of locks taken, SQL Server can escalate locks when the total number of locks

in the instance exceeds memory or configuration thresholds.

Note  The number of locks thresholds of 5,000/1,250 is an approximation.
The actual number of acquired locks that triggers lock escalation may vary and is
usually slightly bigger than that threshold.

Let’s look at the example and run a SELECT statement that counts the number of rows

in the Delivery.Orders table in a transaction with a REPEATABLE READ isolation level.

As you will remember, in this isolation level, SQL Server keeps shared (S) locks until the

end of the transaction.

160

Let’s disable lock escalation for this table with the ALTER TABLE SET (LOCK_

ESCALATION=DISABLE) command (more about this later) and look at the number of

locks SQL Server acquires, as well as at the memory required to store them. We will use

a (ROWLOCK) hint to prevent the situation in which SQL Server optimizes the locking by

acquiring page-level shared (S) locks instead of row-level locks. In addition, while the

transaction is still active, let’s insert another row from a different session to demonstrate

how lock escalation affects concurrency in the system.

Table 7-1 shows the code of both sessions along with the output from the dynamic

management views.

Table 7-1.  Test Code with Lock Escalation Disabled

Session 1 Session 2

alter table Delivery.Orders
set (lock_escalation=disable);

set transaction isolation level
repeatable read

begin tran
 select count(*)
 from Delivery.Orders
 with (rowlock);

-- Success
insert into Delivery.Orders
 (OrderDate,OrderNum,CustomerId)
values(getUTCDate(),'99999',100);

 -- Result: 10,212,326
 select count(*) as [Lock Count]
 from sys.dm_tran_locks;

 -- Result: 1,940,272 KB
 select sum(pages_kb) as [Memory, KB]
 from sys.dm_os_memory_clerks
 where type =
 'OBJECTSTORE_LOCK_MANAGER';
commit

Chapter 7 Lock Escalation

161

Figure 7-1 shows the Lock Memory (KB) system performance counter while the

transaction is active.

As you can see, from a concurrency standpoint, the row-level locking is perfect.

Sessions do not block each other as long as they do not compete for the same rows. At

the same time, keeping the large number of locks is memory intensive, and memory is

one of the most precious resources in SQL Server. In our example, SQL Server needs to

keep millions of lock structures, utilizing almost two gigabytes of RAM. This number

includes the row-level shared (S) locks, as well as the page-level intent shared (IS) locks.

Moreover, there is the overhead of maintaining the locking information and the large

number of lock structures in the system.

Let’s see what happens if we enable default lock escalation behavior with the ALTER

TABLE SET (LOCK_ESCALATION=TABLE) command and run the code shown in Table 7-2.

Figure 7-1.  Lock Memory (KB) system performance counter

Chapter 7 Lock Escalation

162

Figure 7-2 shows the output from the sys.dm_tran_locks view.

Table 7-2.  Test Code with Lock Escalation Enabled

Session 1 (SPID=57) Session 2 (SPID=58)

alter table Delivery.Orders

set (lock_escalation=table);

set transaction isolation level

repeatable read

begin tran

 select count(*)

 from Delivery.Orders

 with (rowlock);

-- The session is blocked

insert into Delivery.Orders

 (OrderDate,OrderNum,CustomerId)

values(getUTCDate(),'100000',100);

 select

 request_session_id as [SPID]

 ,resource_type as [Resource]

 ,request_mode as [Lock Mode]

 ,request_status as [Status]

 from sys.dm_tran_locks;

commit

Figure 7-2.  Sys.dm_tran_locks output with lock escalation enabled

Chapter 7 Lock Escalation

163

SQL Server replaces the row- and page-level locks with the object shared (S) lock.

Although it is great from a memory-usage standpoint—there is just a single lock to

maintain—it affects concurrency. As you can see, the second session is blocked—it

cannot acquire an intent exclusive (IX) lock on the table because it is incompatible with

the full shared (S) lock held by the first session.

The locking granularity hints, such as (ROWLOCK) and (PAGLOCK), do not affect lock-

escalation behavior. For example, with the (PAGLOCK) hint, SQL Server uses full page-

level rather than row-level locks. This, however, may still trigger lock escalation after the

number of acquired locks exceeds the threshold.

Lock escalation is enabled by default and could introduce blocking issues, which can

be confusing for developers and database administrators. Let’s talk about a few typical

cases.

The first case occurs when reporting queries use REPEATABLE READ or SERIALIZABLE

isolation levels for data consistency purposes. If reporting queries are reading large

amounts of data when there are no sessions updating the data, those queries could

escalate shared (S) locks to the table level. Afterward, all writers would be blocked, even

when trying to insert new data or modify the data not read by the reporting queries, as

you saw earlier in this chapter. One of the ways to address this issue is by switching to

optimistic transaction isolation levels, which we discussed in the previous chapter.

The second case is the implementation of the purge process. Let’s assume

that you need to purge a large amount of old data using a DELETE statement. If the

implementation deletes a large number of rows at once, you could have exclusive (X)

locks escalated to the table level. This would block access to the table for all writers, as

well as for the readers in READ COMMITTED, REPEATABLE READ, or SERIALIZABLE isolation

levels, even when those queries are working with a completely different set of data than

what you are purging.

Finally, you can think about a process that inserts a large batch of rows with a single

INSERT statement. Like the purge process, it could escalate exclusive (X) locks to the

table level and block other sessions from accessing it.

All these patterns have one thing in common—they acquire and hold a large number

of row- and page-level locks as part of a single statement. That triggers lock escalation,

which will succeed if there are no other sessions holding incompatible locks on the table

(or partition) level. This will block other sessions from acquiring incompatible intent or

full locks on the table (or partition) until the first session has completed the transaction,

regardless of whether the blocked sessions are trying to access the data affected by the

first session.

Chapter 7 Lock Escalation

164

It is worth repeating that lock escalation is triggered by the number of locks acquired

by the statement, rather than by the transaction. If the separate statements acquire less

than 5,000 row- and page-level locks each, lock escalation is not triggered, regardless of

the total number of locks the transaction holds. Listing 7-1 shows an example in which

multiple UPDATE statements run in a loop within a single transaction.

Listing 7-1.  Lock escalation and multiple statements

declare

 @id int = 1

begin tran

 while @id < 100000

 begin

 update Delivery.Orders

 set OrderStatusId = 1

 where OrderId between @id and @id + 4998;

 select @id += 4999;

 end

 select count(*) as [Lock Count]

 from sys.dm_tran_locks

 where request_session_id = @@SPID;

commit

Figure 7-3 shows the output of the SELECT statement from Listing 7-1. Even when

the total number of locks the transaction holds is far more than the threshold, lock

escalation is not triggered.

Figure 7-3.  Number of locks held by the transaction

Chapter 7 Lock Escalation

165

�Lock Escalation Troubleshooting
Lock escalation is completely normal. It helps to reduce locking-management overhead

and memory usage, which improves system performance. You should keep it enabled

unless it starts to introduce noticeable blocking issues in the system. Unfortunately, it

is not always easy to detect if lock escalation contributes to blocking, and you need to

analyze individual blocking cases to understand it.

One sign of potential lock escalation blocking is a high percentage of intent-lock

waits (LCK_M_I*) in the wait statistics. Lock escalation, however, is not the only reason

for such waits, and you need to look at other metrics during analysis.

Note  We will talk about wait statistics analysis in Chapter 12.

The lock escalation event leads to a full table-level lock. You would see this in the

sys.dm_tran_locks view output and in the blocked process report. Figure 7-4 illustrates

the output of Listing 3-2 from Chapter 3 if you were to run it at a time when blocking is

occurring. As you can see, the blocked session is trying to acquire an intent lock on the

object, while the blocking session—the one that triggered lock escalation—holds an

incompatible full lock.

If you look at the blocked process report, you will see that the blocked process is

waiting on the intent lock on the object, as shown in Listing 7-2.

Listing 7-2.  Blocked process report (partial)

<blocked-process-report>

 <blocked-process>

 �<process id="..." taskpriority="0" logused="0" waitresource="OBJECT:

..." waittime="..." ownerId="..." transactionname="user_transaction"

lasttranstarted="..." XDES="..." lockMode="IX" schedulerid="..." ...>

Figure 7-4.  Listing 3-2 output (sys.dm_tran_locks view) during lock escalation

Chapter 7 Lock Escalation

166

Again, keep in mind that there could be other reasons for sessions to acquire

full object locks or be blocked while waiting for an intent lock on the table. You must

correlate information from other venues to confirm that the blocking occurred because

of lock escalation.

You can capture lock escalation events with SQL Traces. Figure 7-5 illustrates the

output in the Profiler application.

SQL Traces provide the following attributes:

•	 EventSubClass indicates what triggered lock escalation—number of

locks or memory threshold.

•	 IntegerData and IntegerData2 show the number of locks that

existed at the time of the escalation and how many locks were

converted during the escalation process. It is worth noting that in our

example lock escalation occurred when the statement acquired 6,248

rather than 5,000 locks.

•	 Mode tells what kind of lock was escalated.

•	 ObjectID is the object_id of the table for which lock escalation was

triggered.

•	 ObjectID2 is the HoBT ID for which lock escalation was triggered.

•	 Type represents lock escalation granularity.

•	 TextData, LineNumber, and Offset provide information on the batch

and statement that triggered lock escalation.

Another, and better, way of capturing lock escalation occurences is by using

Extended Events. Figure 7-6 illustrates a lock_escalation event and some of the

available event fields. This event is available in SQL Server 2012 and above.

Figure 7-5.  Lock escalation event shown in SQL Server Profiler

Chapter 7 Lock Escalation

167

The Extended Event is useful to understand which objects triggered lock escalation

most often. You can query and aggregate the raw captured data or, alternatively, do the

aggregation in an Extended Event session using a histogram target.

Listing 7-3 shows the latter approach, grouping the data by object_id field. This

code would work in SQL Server 2012 and above.

Listing 7-3.  Capturing number of lock escalation occurences with xEvents

create event session LockEscalationInfo

on server

add event

 sqlserver.lock_escalation

 (

 where

 database_id = 5 -- DB_ID()

)

add target

 package0.histogram

 (

 set

 slots = 1024 -- Based on # of tables in the database

 ,filtering_event_name = 'sqlserver.lock_escalation'

Figure 7-6.  Lock_escalation Extended Event

Chapter 7 Lock Escalation

168

 ,source_type = 0 -- event data column

 ,source = 'object_id' -- grouping column

)

with

 (

 event_retention_mode=allow_single_event_loss

 ,max_dispatch_latency=10 seconds

);

alter event session LockEscalationInfo

on server

state=start;

The code from Listing 7-4 queries a session target and returns the number of lock

escalations on a per-table basis.

Listing 7-4.  Analyzing captured results

;with TargetData(Data)

as

(

 select convert(xml,st.target_data) as Data

 from sys.dm_xe_sessions s join sys.dm_xe_session_targets st on

 s.address = st.event_session_address

 where s.name = 'LockEscalationInfo' and st.target_name = 'histogram'

)

,EventInfo([count],object_id)

as

(

 select

 t.e.value('@count','int')

 ,t.e.value('((./value)/text())[1]','int')

 from

 TargetData cross apply

 TargetData.Data.nodes('/HistogramTarget/Slot') as t(e)

)

Chapter 7 Lock Escalation

169

select

 e.object_id

 ,s.name + '.' + t.name as [table]

 ,e.[count]

from

 EventInfo e join sys.tables t on

 e.object_id = t.object_id

 join sys.schemas s on

 t.schema_id = s.schema_id

order by

 e.count desc;

You should not use this data just for the purpose of disabling lock escalation. It is

very useful, however, when you are analyzing blocking cases with object-level blocking

involved.

I would like to reiterate that lock escalation is completely normal and is a very useful

feature in SQL Server. Even though it can introduce blocking issues, it helps to preserve

SQL Server memory. The large number of locks held by the instance reduces the size of

the buffer pool. As a result, you have fewer data pages in the cache, which could lead to a

higher number of physical I/O operations and degrade the performance of queries.

In addition, SQL Server could terminate the queries with Error 1204 when there is no

available memory to store the lock information. Figure 7-7 shows just such an error message.

In SQL Server 2008 and above, you can control escalation behavior at the table level

by using the ALTER TABLE SET LOCK_ESCALATION statement. This option affects lock

escalation behavior for all indexes—both clustered and nonclustered—defined on the

table. Three options are available:

DISABLE: This option disables lock escalation for a specific table.

TABLE: SQL Server escalates locks to the table level. This is the

default option.

Figure 7-7.  Error 1204

Chapter 7 Lock Escalation

170

AUTO: SQL Server escalates locks to the partition level when the table

is partitioned or to the table level when the table is not partitioned.

Use this option with large partitioned tables, especially when there

are large reporting or purge queries running on the old data.

Note  The sys.tables catalog view provides information about the table lock
escalation mode in the lock_escalation and lock_escalation_desc columns.

Unfortunately, SQL Server 2005 does not support this option, and the only way to

disable lock escalation in this version is by using documented trace flags T1211 or T1224

at the instance or session level. Keep in mind that you need to have sysadmin rights to

call the DBCC TRACEON command and set trace flags at the session level.

•	 T1211 disables lock escalation, regardless of the memory conditions.

•	 T1224 disables lock escalation based on the number-of-locks

threshold, although lock escalation can still be triggered in the case of

memory pressure.

Note  You can read more about trace flags T1211 and T1224 at https://
docs.microsoft.com/en-us/sql/t-sql/database-console-commands/
dbcc-traceon-trace-flags-transact-sql.

As with the other blocking issues, you should find the root cause of the lock

escalation. You should also think about the pros and cons of disabling lock escalation

on particular tables in the system. Although it could reduce blocking in the system,

SQL Server would use more memory to store lock information. And, of course, you can

consider code refactoring as another option.

If lock escalation is triggered by the writers, you can reduce the batches to the point

where they are acquiring fewer than 5,000 row- and page-level locks per object. You can

still process multiple batches in the same transaction—the 5,000 locks threshold is per

statement. At the same time, you should remember that smaller batches are usually less

effective than larger ones. You need to fine-tune the batch sizes and find the optimal

values. It is normal to have lock escalation triggered if object-level locks are not held for

an excessive period of time and/or do not affect the other sessions.

Chapter 7 Lock Escalation

https://docs.microsoft.com/en-us/sql/t-sql/database-console-commands/dbcc-traceon-­trace-flags-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/database-console-commands/dbcc-traceon-­trace-flags-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/database-console-commands/dbcc-traceon-­trace-flags-transact-sql

171

As for lock escalation triggered by the readers, you should avoid situations in which

many shared (S) locks are held. One example is scans due to non-optimized or reporting

queries in the REPEATABLE READ or SERIALIZABLE transaction isolation levels, where

queries hold shared (S) locks until the end of the transaction. The example shown in

Listing 7-5 runs the SELECT from the Delivery.Orders table using the SERIALIZABLE

isolation level.

Listing 7-5.  Lock escalation triggered by non-optimized query

set transaction isolation level serializable

begin tran

 select OrderId, OrderDate, Amount

 from Delivery.Orders with (rowlock)

 where OrderNum = '1';

 select

 resource_type as [Resource Type]

 ,case resource_type

 when 'OBJECT' then

 object_name

 (

 resource_associated_entity_id

 ,resource_database_id

)

 when 'DATABASE' then 'DB'

 else

 (

 select object_name(object_id, resource_database_id)

 from sys.partitions

 where hobt_id = resource_associated_entity_id

)

 end as [Object]

 ,request_mode as [Mode]

 ,request_status as [Status]

 from sys.dm_tran_locks

 where request_session_id = @@SPID;

commit

Chapter 7 Lock Escalation

172

Figure 7-8 shows the output of the second query from the sys.dm_tran_locks view.

Even if the query returned just a single row, you see that shared (S) locks have been

escalated to the table level. As usual, we need to look at the execution plan, shown in

Figure 7-9, to troubleshoot it.

There are no indexes on the OrderNum column, and SQL Server uses the Clustered

Index Scan operator. Even though the query returned just a single row, it acquired and

held shared (S) range locks on all the rows it read due to the SERIALIZABLE isolation level.

As a result, lock escalation was triggered. If you add the index on the OrderNum column,

it changes the execution plan to Nonclustered Index Seek. Only one row is read, very few

row- and page-level locks are acquired and held, and lock escalation is not needed.

In some cases, you may consider partitioning the tables and setting the lock

escalation option to use partition-level escalation, rather than table level, using the

ALTER TABLE SET (LOCK_ESCALATION=AUTO) statement. This could help in scenarios

in which you must purge old data using the DELETE statement or run reporting queries

against old data in the REPEATABLE READ or SERIALIZABLE isolation levels. In those cases,

statements would escalate the locks to partitions, rather than tables, and queries that are

not accessing those partitions would not be blocked.

Figure 7-8.  Selecting data in the SERIALIZABLE isolation level

Figure 7-9.  Execution plan of the query

Chapter 7 Lock Escalation

173

In other cases, you can switch to optimistic isolation levels. Finally, you would

not have any reader-related blocking issues in the READ UNCOMMITTED transaction

isolation level, where shared (S) locks are not acquired, although this method is not

recommended because of all the other data consistency issues it introduces.

�Summary
SQL Server escalates locks to the object or partition levels after the statement acquires

and holds about 5,000 row- and page-level locks. When escalation succeeds, SQL Server

keeps the single object-level lock, blocking other sessions with incompatible lock types

from accessing the table. If escalation fails, SQL Server repeats escalation attempts after

about every 1,250 new locks are acquired.

Lock escalation fits perfectly into the “it depends” category. It reduces the SQL Server

Lock Manager memory usage and the overhead of maintaining a large number of locks.

At the same time, it could increase blocking in the system because of the object- or

partition-level locks held.

You should keep lock escalation enabled, unless you find that it introduces

noticeable blocking issues in the system. Even in those cases, however, you should

perform a root-cause analysis as to why blocking resulting from lock escalation occurs

and evaluate the pros and cons of disabling it. You should also look at the other options

available, such as code and database schema refactoring, query tuning, and switching to

optimistic transaction isolation levels. Any of these options might be a better choice to

solve your blocking problems than disabling lock escalation.

Chapter 7 Lock Escalation

175
© Dmitri Korotkevitch 2018
D. Korotkevitch, Expert SQL Server Transactions and Locking, https://doi.org/10.1007/978-1-4842-3957-5_8

CHAPTER 8

Schema and Low-Priority
Locks
SQL Server uses two additional lock types called schema locks to prevent table and

metadata alterations during query execution. This chapter will discuss schema locks in

depth along with low-priority locks, which were introduced in SQL Server 2014 to reduce

blocking during online index rebuilds and partition switch operations.

�Schema Locks
SQL Server needs to protect database metadata in order to prevent situations where

a table’s structure is changed in the middle of query execution. The problem is more

complicated than it seems. Even though exclusive (X) table locks can, in theory, block

access to the table during ALTER TABLE operations, they would not work in READ

UNCOMMITTED, READ COMMITTED SNAPSHOT, and SNAPSHOT isolation levels, where readers

do not acquire intent shared (IS) table locks.

SQL Server uses two additional lock types to address the problem: schema stability

(Sch-S) and schema modification (Sch-M) locks. Schema modification (Sch-M) locks

are acquired when any metadata changes occur and during the execution of a TRUNCATE

TABLE statement. You can think of this lock type as a “super-lock.” It is incompatible with

any other lock types, and it completely blocks access to the object.

Like exclusive (X) locks, schema modification (Sch-M) locks are held until the end

of the transaction. You need to keep this in mind when you run DDL statements within

explicit transactions. While that allows you to roll back all of the schema changes in

case of an error, it also prevents any access to the affected objects until the transaction is

committed.

176

Important  Many database schema comparison tools use explicit transactions in
the alteration script. This could introduce serious blocking when you run the script
on live servers while other users are accessing the system.

SQL Server also uses schema modification (Sch-M) locks while altering the partition

function. This can seriously affect the availability of the system when such alterations

introduce data movement or scans. Access to all partitioned tables that use such a

partition function is then blocked until the operation is completed.

Schema stability (Sch-S) locks are used during DML query compilation and

execution. SQL Server acquires them regardless of the transaction isolation level, even

in READ UNCOMMITTED mode. The only purpose they serve is to protect the table from

being altered or dropped while the query accesses it. Schema stability (Sch-S) locks are

compatible with any other lock types, except schema modification (Sch-M) locks.

SQL Server can perform some optimizations to reduce the number of locks acquired.

While a schema stability (Sch-S) lock is always used during query compilation, SQL

Server can replace it with an intent object lock during query execution. Let’s look at the

example shown in Table 8-1.

Chapter 8 Schema and Low-Priority Locks

177

The first session starts the transaction and alters the table, acquiring a schema

modification (Sch-M) lock there. In the next step, two other sessions run a SELECT

statement in the READ UNCOMMITTED isolation level and a DELETE statement, respectively.

As you can see in Figure 8-1, sessions 2 and 3 were blocked while waiting for schema

stability (Sch-S) locks that were required for query compilation.

If you run that example a second time, when queries are compiled and plans are in

the cache, you would see a slightly different picture, as shown in Figure 8-2.

Figure 8-2.  Schema locks when execution plans are cached

Table 8-1.  Schema Locks: Query Compilation

Session 1 (SPID=64) Session 2 (SPID=65) Session 3 (SPID=66)

begin tran

 alter table

Delivery.Orders

 add Dummy int;

select count(*)

from Delivery.Orders

 with (nolock);

delete from

Delivery.Orders

where OrderId = 1;

 select

 request_session_id

 ,resource_type

 ,request_type

 ,request_mode

 ,request_status

 from sys.dm_tran_locks

 where

 resource_type = 'OBJECT';

rollback

Chapter 8 Schema and Low-Priority Locks

178

The second session would still wait for the schema stability (Sch-S) lock to be

granted. There are no shared (S) locks in the READ UNCOMMITTED mode, and the schema

stability (Sch-S) lock is the only way to keep a schema stable during execution. However,

the session with the DELETE statement would wait for an intent exclusive (IX) lock

instead. That lock type needs to be acquired anyway, and it can replace a schema

stability (Sch-S) lock because it is also incompatible with schema modification (Sch-M)

locks and prevents the schema from being altered.

Mixing schema modification locks with other lock types in the same transaction

increases the possibility of deadlocks. Let’s assume that we have two sessions: the first

one starts the transaction, and it updates the row in the table. At this point, it holds an

exclusive (X) lock on the row and two intent exclusive (IX) locks on the page and table. If

another session tries to read (or update) the same row, it would be blocked. At this point,

it would wait for the shared (S) lock on the row and have intent shared (IS) locks held on

the page and the table. That stage is illustrated in Figure 8-3. (Page-level intent locks are

omitted.)

Figure 8-1.  Schema locks during query compilation

Figure 8-3.  Deadlock due to mixed DDL and DML statements: Steps 1 and 2

Chapter 8 Schema and Low-Priority Locks

179

If at this point the first session wanted to alter the table, it would need to acquire a

schema modification (Sch-M) lock. That lock type is incompatible with any other lock

type, and the session would be blocked by the intent shared (IS) lock held by the second

session, which leads to the deadlock condition, as shown in Figure 8-4.

Figure 8-4.  Deadlock due to mixed DDL and DML statements: Step 3

It is worth noting that this particular deadlock pattern may occur with any full table-

level locks. However, schema modification (Sch-M) locks increase deadlock possibility

due to their incompatibility with all other lock types in the system.

�Lock Queues and Lock Compatibility
Up until now, we have looked at blocking conditions with only two sessions involved

and with an incompatible lock type already being held on a resource. In real life, the

situation is usually more complicated. In busy systems, it is common to have dozens

or even hundreds of sessions accessing the same resource—a table, for example—

simultaneously. Let’s look at several examples and analyze lock compatibility rules when

multiple sessions are involved.

First, let’s look at a scenario where multiple sessions are acquiring row-level locks.

As you can see in Table 8-2, the first session (SPID=55) holds a shared (S) lock on the

row. The second session (SPID=54) is trying to acquire an exclusive (X) lock on the same

row, and it is being blocked due to lock incompatibility. The third session (SPID=53) is

reading the same row in the READ COMMITTED transaction isolation level. This session has

not been blocked.

Chapter 8 Schema and Low-Priority Locks

180

Table 8-2.  Multiple Sessions and Lock Compatibility: READ COMMITTED

Isolation Level

Session 1 (SPID=55) Session 2 (SPID=54) Session 3 (SPID=53)

begin tran

 select OrderId, Amount

 from Delivery.Orders

 with (repeatableread)

 where OrderId = 1;

-- Blocked

delete from

Delivery.Orders

where OrderId = 1;

-- Success

select OrderId,

Amount

from Delivery.Orders

 with (readcommitted)

where OrderId = 1;

 select

 �l.request_session_id as

[SPID]

 ,l.resource_description

 ,l.resource_type

 ,l.request_mode

 ,l.request_status

 ,r.blocking_session_id

 from

 sys.dm_tran_locks l join

sys.dm_exec_requests r on

l.request_session_id =

 r.session_id

 where l.resource_type = 'KEY'

rollback

Chapter 8 Schema and Low-Priority Locks

181

Figure 8-5 illustrates the row-level locks held on the row with OrderId=1.

As you can see in Figure 8-6, the third session (SPID=53) did not even try to acquire

a shared (S) lock on the row. There is already a shared (S) lock on the row held by

the first session (SPID=55), which guarantees that the row has not been modified by

uncommitted transactions. In the READ COMMITTED isolation level, a shared (S) lock

releases immediately after a row is read. As a result, session 3 (SPID=53) does not need

to hold its own shared (S) lock after reading the row, and it can rely on the lock from

session 1.

Let’s change our example and see what happens if the third session tries to read the

row in a REPEATABLE READ isolation level, where a shared (S) lock needs to be held until

the end of the transaction, as shown in Table 8-3. In this case, the third session cannot

rely on the shared (S) lock from another session, because it would have a different

lifetime. The session will need to acquire its own shared (S) lock, and it will be blocked

due to an incompatible exclusive (X) lock from the second session in the queue.

Figure 8-5.  Lock compatibility with more than two sessions: READ COMMITTED

Figure 8-6.  Locks acquired during the operation

Chapter 8 Schema and Low-Priority Locks

182

Table 8-3.  Multiple Sessions and Lock Compatibility (REPEATABLE READ

Isolation Level)

Session 1 (SPID=55) Session 2 (SPID=54) Session 3 (SPID=53)

begin tran

 select OrderId, Amount

 from Delivery.Orders

 with (repeatableread)

 where OrderId = 1;

-- Blocked

delete from

Delivery.Orders

where OrderId = 1;

-- Blocked

select OrderId,

Amount

from Delivery.Orders

 with

(repeatableread)

where OrderId = 1;

 select

 l.request_session_id

 as [SPID]

,l.resource_description

 ,l.resource_type

 ,l.request_mode

 ,l.request_status

,r.blocking_session_id

 from

 sys.dm_tran_locks l join

sys.dm_exec_requests r

 on

l.request_session_id =

 r.session_id

 where l.resource_type = 'KEY';

rollback

Chapter 8 Schema and Low-Priority Locks

183

Figure 8-7 illustrates the row-level lock requests at this point.

This leads us to a very important conclusion: In order to be granted, a lock needs to be

compatible with all of the lock requests on that resource—granted or not.

Important  The first scenario, when the third session ran in READ COMMITTED
isolation level and did not acquire the lock on the resource, can be considered an
internal optimization, which you should not rely on. In some cases, SQL Server still
acquires another shared (S) lock on the resource in READ COMMITTED mode, even
if there is another shared (S) lock held. In such a case, the query would be blocked
like in the REPEATABLE READ isolation level example.

Unfortunately, sessions in SQL Server do not reuse locks from other sessions on the

table level. It is impossible to estimate the time for which any table-level lock-intent, full,

or schema stability-needs be held. The session will always try to acquire an object-level

lock, and it will be blocked if any other incompatible lock types are present in the locking

queue.

This behavior may introduce serious blocking issues in the system. One of the most

common cases where it occurs is with online index rebuild operations. Even though it

holds an intent shared (IS) table lock during the rebuild process, it needs to acquire a

shared (S) table lock at the beginning and a schema modification (Sch-M) lock at the

final phase of execution. Both locks are held for a very short time; however, they can

introduce blocking issues in busy OLTP environments.

Consider a situation where you start an online index rebuild at a time when you

have another active transaction modifying data in a table. That transaction will hold

an intent exclusive (IX) lock on the table, which prevents the online index rebuild from

acquiring a shared (S) table lock. The lock request will wait in the queue and block all other

transactions that want to modify data in the table and requesting intent exclusive (IX)

locks there. Figure 8-8 illustrates this situation.

Figure 8-7.  Lock compatibility with more than two sessions

Chapter 8 Schema and Low-Priority Locks

184

This blocking condition will clear only after the first transaction is completed and

the online index rebuild acquires and releases a shared (S) table lock. Similarly, more

severe blocking could occur in the final stage of an online index rebuild when it needs

to acquire a schema modification (Sch-M) lock to replace an index reference in the

metadata. Both readers and writers will be blocked while the index rebuild waits for the

schema modification (Sch-M) lock to be granted.

Similar blocking may occur during partition switch operations, which also acquire

schema modification (Sch-M) locks. Even though a partition switch is done on the

metadata level and is very fast, the schema modification (Sch-M) lock would block other

sessions while waiting in the queue to be granted.

You need to remember this behavior when you design index maintenance and

partition management strategies. There is very little that can be done in non-Enterprise

editions of SQL Server or even in Enterprise Edition prior to SQL Server 2014. You

can schedule operations to run at a time when the system handles the least activity.

Alternatively, you can write the code terminating the operation using the LOCK_TIMEOUT

setting.

Listing 8-1 illustrates this approach. You can use it with offline index rebuild and

partition switch operations. You would still have blocking during the offline index

rebuild while the schema modification (Sch-M) lock is held. However, you would

eliminate blocking if this lock could not be acquired within the LOCK_TIMEOUT interval.

Remember, with XACT_ABORT set to OFF, the lock timeout error does not roll back the

transaction. Use proper transaction management and error handling, as we discussed in

Chapter 2.

Also, as another word of caution, do not use LOCK_TIMEOUT with online index

rebuilds, because it may terminate and roll back the operation at its final phase while the

Figure 8-8.  Blocking during the initial stage of an index rebuild

Chapter 8 Schema and Low-Priority Locks

185

session is waiting for a schema modification (Sch-M) lock to replace the index definition

in the metadata.

Listing 8-1.  Reduce blocking during offline index rebuild

set xact_abort off

set lock_timeout 100 -- 100 milliseconds

go

declare

 @attempt int = 1

 ,@maxAttempts int = 10

while @attempt <= @maxAttempts

begin

 begin try

 �raiserror('Rebuilding index. Attempt %d / %d',0,1,@attempt,

@maxAttempts) with nowait;

 alter index PK_Orders

 on Delivery.Orders rebuild

 with (online = off);

 break;

 end try

 begin catch

 if ERROR_NUMBER() = 1222 and @attempt < @maxAttempts

 begin

 set @attempt += 1;

 waitfor delay '00:00:15.000';

 end

 else

 throw;

 end catch

end;

Fortunately, the Enterprise Edition of SQL Server 2014 and above provides a better

way to handle this problem.

Chapter 8 Schema and Low-Priority Locks

186

�Low-Priority Locks
SQL Server 2014 introduced a new feature—low-priority locks–that helps to reduce

blocking during online index rebuild and partition switch operations. Conceptually, you

can think of low-priority locks as staying in a different locking queue than regular locks.

Figure 8-9 illustrates it.

Figure 8-10.  Low-priority locks in the sys.dm_tran_locks data management
view

Figure 8-9.  Low-priority locks

Important I t is essential to remember that, as soon as a low-priority lock is
acquired, it will behave the same as a regular lock, preventing other sessions from
acquiring incompatible locks on the resource.

Figure 8-10 shows the output of the query from Listing 3-2 in Chapter 3. It

demonstrates how low-priority locks are shown in the sys.dm_tran_locks view output.

It is worth noting that the view does not provide the wait time of those locks.

You can specify lock priority with a WAIT_AT_LOW_PRIORITY clause in the ALTER

INDEX and ALTER TABLE statements, as shown in Listing 8-2.

Chapter 8 Schema and Low-Priority Locks

187

Listing 8-2.  Specifying lock priority

alter index PK_Customers on Delivery.Customers rebuild

with

(

 online=on

 (

 �wait_at_low_priority

(

 max_duration=10 minutes

 ,abort_after_wait=blockers

)

)

);

alter table Delivery.Orders

switch partition 1 to Delivery.OrdersTmp

with

(

 �wait_at_low_priority

(

 max_duration=60 minutes

 ,abort_after_wait=self

)

)

As you can see, WAIT_AT_LOW_PRIORITY has two options. The MAX_DURATION setting

specifies the lock wait time in minutes. The ABORT_AFTER_WAIT setting defines the

session behavior if a lock cannot be obtained within the specified time limit. The

possible values are:

•	 NONE: The low-priority lock is converted to a regular lock. After that, it

behaves as a regular lock, blocking other sessions that try to acquire

incompatible lock types on the resource. The session continues to

wait until the lock is acquired.

•	 SELF: The operation is aborted if a lock cannot be granted within the

time specified by the MAX_DURATION setting.

Chapter 8 Schema and Low-Priority Locks

188

•	 BLOCKERS: All sessions that hold locks on the resource are aborted,

and the session, which is waiting for a low-priority lock, will be able

to acquire it.

Note  Omitting the WAIT_AT_LOW_PRIORITY option works the same way as
specifying WAIT_AT_LOW_PRIORITY(MAX_DURATION=0 MINUTES, ABORT_
AFTER_WAIT=NONE).

Very active OLTP tables always have a large number of concurrent sessions accessing

them. Therefore, there is always the possibility that a session will not be able to acquire

a low-priority lock, even with a prolonged MAX_DURATION specified. You may consider

using the ABORT_AFTER_WAIT=BLOCKERS option, which will allow the operation to

complete, especially when client applications have proper exception handling and retry

logic implemented.

Finally, it is worth noting that online index rebuilds are supported only in the

Enterprise Edition of SQL Server and in Microsoft Azure SQL Databases. You cannot use

low-priority locks during index rebuilds in other editions. Table partitioning, however,

is supported in non-Enterprise editions starting with SQL Server 2016 SP1, and you can

use low-priority locks in this scenario in any edition of SQL Server.

�Summary
SQL Server uses schema locks to protect metadata from alteration during query

compilation and execution. There are two types of schema locks in SQL Server: schema

stability (Sch-S) and schema modification (Sch-M) locks.

Schema stability (Sch-S) locks are acquired on objects referenced by queries during

query compilation and execution. In some cases, however, SQL Server can replace

schema stability (Sch-S) locks with intent table locks, which also protect the table

schema. Schema stability (Sch-S) locks are compatible with any other lock type, with the

exception of schema modification (Sch-M) locks.

Schema modification (Sch-M) locks are incompatible with any other lock type. SQL

Server uses them during DDL operations. If a DDL operation needs to scan or modify

the data (for example, adding a trusted foreign key constraint to the table or altering a

partition function on a non-empty partition), the schema modification (Sch-M) lock

Chapter 8 Schema and Low-Priority Locks

189

would be held for the duration of the operation. This can take a long time on large tables

and cause severe blocking issues in the system. You need to keep this in mind when

designing systems with DDL and DML operations running in parallel.

In order to be granted, a lock needs to be compatible with all of the lock requests

on that resource—granted or not. This may lead to serious blocking in busy systems

when some session requests schema modification (Sch-M) or full object-level locks

on the table. You need to remember this behavior when you design index or partition

maintenance strategies in the system.

SQL Server 2014 and above support low-priority locks, which can be used to reduce

blocking during online index rebuild and partition switch operations. These locks do not

block other sessions requesting incompatible lock types at the time when an operation is

waiting for a low-priority lock to be acquired.

Chapter 8 Schema and Low-Priority Locks

191
© Dmitri Korotkevitch 2018
D. Korotkevitch, Expert SQL Server Transactions and Locking, https://doi.org/10.1007/978-1-4842-3957-5_9

CHAPTER 9

Lock Partitioning
SQL Server, as with other modern database engines, is designed to work on servers with

a large number of CPUs. It has many optimizations that help the Engine to scale and

efficiently work in such environments.

This chapter will discuss one such optimization: lock partitioning, which is

automatically enabled on servers with 16 or more logical CPUs.

�Lock Partitioning Overview
As all of us are aware, hardware costs are dropping over time, allowing us to build more

powerful servers. Twenty years ago, database servers used to have just one or very few

CPUs. Nowadays, it is very common to work with servers that have dozens or sometimes

even hundreds of cores.

The majority of multi-CPU servers are built using Non-Uniform Memory Access

(NUMA) architecture. In this architecture, physical CPUs are partitioned into groups,

called NUMA nodes. The memory is also partitioned across the nodes, and each node

uses a separate system bus to access it. Each processor can access all memory in the

system; however, access to the local memory that belongs to a CPU’s NUMA node is

faster than access to foreign memory from different NUMA nodes.

Note  You can read more about NUMA architecture at https://technet.
microsoft.com/en-us/library/ms178144.aspx.

SQL Server natively supports NUMA architecture and has several internal

optimizations to take advantage of it. For example, SQL Server always tries to allocate

local memory for the thread, and it also has distributed I/O threads on a per-NUMA

basis.

https://technet.microsoft.com/en-us/library/ms178144.aspx
https://technet.microsoft.com/en-us/library/ms178144.aspx

192

Moreover, various caches and queues are partitioned on a per-NUMA—and

sometimes per-scheduler—basis, which reduces possible contention when multiple

schedulers (logical CPUs) access them. This includes lock queues in the system. When a

system has 16 or more logical processors, SQL Server starts to use a technique called lock

partitioning.

When lock partitioning is enabled, SQL Server starts to store information about locks

on a per-scheduler basis. In this mode, object-level intent shared (IS), intent exclusive (IX),

and schema stability (Sch-S) locks are acquired and stored in a single partition on the

CPU (scheduler) where the batch is executing. All other lock types need to be acquired

on all partitions.

This does not change anything from a lock-compatibility standpoint. When the

session needs to acquire an exclusive (X) table lock, for example, it would go through all

lock partitions and would be blocked if any of the partitions held an incompatible intent

lock on the table. This, however, may lead to interesting situations where an object-level

lock is being granted on a subset of partitions and is being blocked on another partition

with an incompatible intent (I*) or schema stability (Sch-S) lock held on it.

Let’s look at an example that demonstrates this. As I already mentioned, lock

partitioning is enabled automatically on servers with 16 or more logical CPUs. You can

change the number of schedulers in your test system using undocumented startup

parameter -P. Do not use this parameter in production!

Listing 9-1 shows a query that starts a transaction and selects one row from the table

in the REPEATABLE READ isolation level, which holds a shared (S) lock until the end of the

transaction. As the next step, it obtains information about the locks held by the session

using the sys.dm_tran_locks view. I am running this code in my test environment using

the -P16 startup parameter, which creates 16 schedulers and enables lock partitioning.

Listing 9-1.  Lock partitioning: Updating one row in the table

begin tran

 select *

 from Delivery.Orders with (repeatableread)

 where OrderId = 100;

 select

 request_session_id

 ,resource_type

 ,resource_lock_partition

Chapter 9 Lock Partitioning

193

 ,request_mode

 ,request_status

 from sys.dm_tran_locks

 where request_session_id = @@SPID;

Figure 9-1 illustrates the output of the SELECT statement. The resource_lock_

partition column indicates the partition (scheduler) where the lock is stored (NULL

means the lock is not partitioned and has been acquired on all partitions). As you can

see, the table-level intent shared (IS) lock is partitioned and stored in partition four.

Page- and row-level locks are not partitioned and are stored in all partitions.

Now, let’s run the code in another session that wants to perform an index rebuild

of the same table, using the ALTER INDEX PK_Orders on Delivery.Orders REBUILD

command. This operation needs to acquire a schema modification (Sch-M) lock on the

table. This lock type is non-partitioned and needs to be acquired across all partitions in

the system.

Figure 9-2 shows the lock requests from both sessions. As you can see, session 2

(SPID=77) was able to successfully acquire schema modification (Sch-M) locks on

partitions 0-3 and was blocked by Session 1 (SPID=89), which holds an intent shared (IS)

lock on partition 4.

Figure 9-1.  Lock requests after update

Chapter 9 Lock Partitioning

194

Now, when other sessions try to access the table and acquire object-level locks, they

either get blocked or succeed depending on which scheduler handles their requests.

Figure 9-3 illustrates this condition. As you can see, the request from the session with

SPID=53 executes on scheduler 14 and is granted. However, the request from the session

with SPID=115 runs on scheduler 1 and is blocked due to an incompatible schema

modification (Sch-M) lock from SPID=77 held on this partition.

Figure 9-2.  Lock requests during ALTER INDEX operation

Figure 9-3.  Lock requests from other sessions

Chapter 9 Lock Partitioning

195

Lock partitioning may lead to prolonged blocking when a session is trying to acquire

schema modification (Sch-M) or full-table locks in a busy system. SQL Server goes

through all partitions in a sequential manner, waiting for the request to be granted

before moving to the next partition. All other sessions that run on schedulers where

requests were already granted would be blocked during this time.

The most common case when this happens is a schema alteration done online at a time

when other users are accessing the system. Similarly, you can have this problem during

online index rebuilds and table partitioning-related actions, such as partition function

alteration and partition switches. Fortunately, low-priority locks handle lock partitioning

gracefully, and they would not introduce blocking while waiting in the low-priority queue.

Finally, lock partitioning increases Lock Manager memory consumption. Non-

partitioned locks are kept in each partition, which may be memory intensive in systems

with a large number of schedulers. Not all row- and page-level locks are partitioned;

thus, it is beneficial to keep lock escalation enabled when it does not introduce

noticeable blocking in the system.

�Deadlocks Due to Lock Partitioning
When SQL Server receives a batch from a client, it assigns the batch to one or—in the

case of parallel execution plans—multiple schedulers. With very rare exceptions, the

batch does not change the scheduler(s) until it is completed. However, subsequent

batches from the same session may be assigned to different scheduler(s). Even

though SQL Server tends to reuse the same scheduler for all session requests, it is not

guaranteed, especially in busy systems.

Note  You can analyze session scheduler assignments by running the SELECT
scheduler_id FROM sys.dm_exec_requests WHERE session_id =
@@SPID statement.

This behavior may lead to hard-to-explain deadlocks in busy systems. Let’s say you

have a session that starts a transaction and updates a row in a table. Let’s assume that the

batch is running on scheduler/logical CPU 2. This session acquires an intent exclusive (IX)

table lock, which is partitioned and stored on scheduler 2 only. It also acquires a

row-level exclusive (X) lock, which is not partitioned and is stored across all partitions.

(I am omitting page-level intent locks again for simplicity’s sake.)

Chapter 9 Lock Partitioning

196

Let’s assume that you have a second session that is trying to alter the table and

acquire a schema modification (Sch-M) lock. This lock type is non-partitioned, so

the session needs to acquire it on every scheduler. It successfully acquires and holds

the locks on schedulers 0 and 1, and it is blocked on scheduler 2 due to the schema

modification (Sch-M) lock’s incompatibility with the intent exclusive (IX) lock held

there. Figure 9-4 illustrates this condition.

Let’s now say that session 1 needs to update another row in the same table, and the

batch has been assigned to another scheduler—either 0 or 1. The session will need to

acquire another intent table lock in the new lock partition, but it would be blocked by the

schema modification (Sch-M) lock there, which would lead to a deadlock, as shown in

Figure 9-5.

Figure 9-4.  Deadlock due to lock partitioning: Step 1

Figure 9-5.  Deadlock due to lock partitioning: Step 2

Chapter 9 Lock Partitioning

197

As you can guess, this deadlock occurred because the second batch from the same

transaction ran on a different scheduler than the first batch. One case when this may

occur is a client application that performs data modifications on a row-by-row basis in

multiple separate batches. You can reduce the chance of possible deadlocks by batching

all updates together; for example, with table-valued parameters. This will also help to

improve the performance of the operation.

Fortunately, in many cases, SQL Server is able to reuse intent locks from different

lock partitions and avoid such a deadlock. This behavior, however, is not documented or

guaranteed. Moreover, it would not work if the second batch needed to acquire a full-

table lock; a deadlock would occur in this case.

Let’s look at the example and run the code from Listing 9-2. In my case, the batch is

running on scheduler 13 in the session with SPID=67.

Listing 9-2.  Lock partitioning deadlock: Step 1

begin tran

 select *

 from Delivery.Orders with (repeatableread)

 where OrderId = 100;

As the next step, let’s run the ALTER INDEX PK_Orders ON Delivery.Orders

REBUILD statement in the session with SPID=68. This session successfully acquires

schema modification (Sch-M) locks on partitions 0-12 and is blocked on partition 13.

Figure 9-6 illustrates the status of lock requests at this point.

Chapter 9 Lock Partitioning

198

As the next step, let’s run an UPDATE statement in the first session as shown in

Listing 9-3. At this time, the batch has been executed on scheduler 10 in my system.

Listing 9-3.  Lock partitioning deadlock: Step 2

update Delivery.Orders

set Pieces += 1

where OrderId = 10;

Even though the batch executed on a different scheduler, SQL Server was able to

reuse the intent lock from partition 13, and so a deadlock did not occur. Figure 9-7

illustrates the status of the lock requests at this point. Note that SQL Server converted a

table-level lock type from intent shared (IS) to intent exclusive (IX), and there is no more

intent shared (IS) lock on the table despite the existence of a row-level shared (S) lock.

Figure 9-6.  Lock requests after the previous steps

Chapter 9 Lock Partitioning

199

Finally, let’s trigger an operation that will need to acquire a full table-level lock with

the code from Listing 9-4 running it in the first session with SPID = 67.

Listing 9-4.  Lock partitioning deadlock: Step 3

select count(*)

from Delivery.Orders with (tablock)

SQL Server is trying to acquire a shared intent exclusive (SIX) lock on all partitions,

and it is blocked by an incompatible schema modification (Sch-M) lock held on

partition 0. This leads to deadlock.

Listing 9-5 illustrates a partial resource-list section of the deadlock graph. The

lockPartition attribute provides information about the lock partition on which the

conflicts occurred.

Figure 9-7.  Lock requests after UPDATE statement

Chapter 9 Lock Partitioning

200

Listing 9-5.  Deadlock graph (partial)

<resource-list>

 <objectlock lockPartition="13" objid=".." subresource="FULL"

 �dbid=".." objectname=".." id=".." mode="IX"

associatedObjectId="..">

 <owner-list>

 <owner id="processa4545268c8" mode="IX" />

 </owner-list>

 <waiter-list>

 <waiter id="processa475047468" mode="Sch-M" requestType="wait" />

 </waiter-list>

 </objectlock>

 <objectlock lockPartition="0" objid=".." subresource="FULL"

 �dbid=".." objectname=".." id=".." mode="Sch-M"

associatedObjectId="..">

 <owner-list>

 <owner id="processa475047468" mode="Sch-M" />

 </owner-list>

 <waiter-list>

 <waiter id="processa4545268c8" mode="SIX" requestType="wait" />

 </waiter-list>

 </objectlock>

</resource-list>

Lock partitioning–related deadlocks are rare, although they may happen, especially

when you mix intent and full table-level locks in the same transaction. It is better to

avoid such code patterns when possible.

For online index rebuilds and partition switches, you can utilize low-priority locks if

they are available. Alternatively, you can implement retry logic using TRY..CATCH around

DDL statements when you run them from the code. A SET DEADLOCK_PRIORITY boost

could also help reduce the chance that a DDL session will be chosen as the deadlock

victim. You can also implement mutex logic based on application locks, which we will

discuss in the next chapter.

Lock partitioning is enabled by design in systems with 16 or more logical CPUs, and

it cannot be disabled through documented approaches. There is the undocumented

trace flag T1229 that disables it; however, using undocumented trace flags is not

Chapter 9 Lock Partitioning

201

recommended in production. Moreover, in systems with a large number of logical CPUs,

disabling lock partitioning can lead to performance issues resulting from excessive

serialization during lock-structure management. It is better to keep lock partitioning

enabled.

�Summary
Lock partitioning is automatically enabled on servers with 16 or more logical CPUs.

When lock partitioning is enabled, SQL Server uses the separate locking queues on

a per-scheduler basis. Intent shared (IS), intent exclusive (IX) and schema stability

(Sch-S) locks are acquired and stored in a single partition. All other lock types need to be

acquired across all partitions.

SQL Server acquires non-partitioned lock types across all partitions in a sequential

manner. This may lead to the situation where lock requests were granted on some

partitions and blocked on partitions that held incompatible intent (I*) or schema

stability (Sch-S) locks. This condition may increase the blocking during online schema

alterations and may also lead to deadlocks in some cases.

Chapter 9 Lock Partitioning

203
© Dmitri Korotkevitch 2018
D. Korotkevitch, Expert SQL Server Transactions and Locking, https://doi.org/10.1007/978-1-4842-3957-5_10

CHAPTER 10

Application Locks
This chapter will discuss another SQL Server locking feature called application locks,

which place locks on an application resource identified by name. Application locks allow

you to serialize access to T-SQL code, similar to critical sections and mutexes in client

applications.

�Application Locks Overview
Application locks allow an application to place a lock on an application resource that

is not related to database objects and is identified by name only. The lock follows the

regular rules in terms of lock compatibility, and it can be one of the following types:

shared (S), update (U), exclusive (X), intent shared (IS), and intent exclusive (IX).

An application needs to call the sp_getapplock stored procedure to acquire the lock

using the following parameters:

@Resource: specifies the name of the application lock. It is case

sensitive regardless of the database and server collations.

@LockMode: specifies the lock type. You need to use one of

the following values to specify the type: Shared, Update,

IntentShared, IntentExclusive, or Exclusive.

@LockOwner: should be one of two values—Transaction or

Session—and controls the owner (and scope) of the lock

@LockTimeout: specifies the timeout in milliseconds. If a stored

procedure cannot acquire the lock within this interval, it would

return an error.

@DbPrincipal: specifies security context (The caller needs to be a

member of the database_principal, dbo, or db_owner roles.)

204

This procedure returns a value greater than or equal to zero in the case of success,

and a negative value in the case of failure. As with regular locks, there is the possibility

of deadlocks, although this would not roll back the transaction of the session that is

chosen as the victim, but rather would return the error code that indicates the deadlock

condition.

An application needs to call the sp_releaseapplock stored procedure to release

an application lock. Alternatively, in case the @LockOwner of the lock is transaction,

it would be automatically released when the transaction commits or rolls back. This

behavior is similar to that of regular locks.

�Application Lock Usage
There is a concept in computer science called mutual exclusion. It signifies that multiple

threads or processes cannot execute specific code at the same time. As an example,

think about a multi-threaded application in which threads use shared objects. In those

systems, you often need to serialize the code that accesses those objects to prevent the

race conditions that occur when multiple threads read and update the same objects

simultaneously.

Every development language has a set of synchronization primitives that can

accomplish such tasks (for example, mutexes and critical sections). Application locks do

the same trick when you need to serialize some part of the T-SQL code.

As an example, let’s think about a system that collects some data, saves it into a

database, and has a set of application servers for data processing. Each application

server reads the package of data, processes it, and finally deletes the processed data from

the original table. Obviously, you do not want different application servers processing

the same rows, and serializing the data-loading process is one of the available options.

An exclusive (X) table lock would not work, because it blocks any table access, rather

than just the data loading. Implementing serialization on the application-server level is

not a trivial task either. Fortunately, application locks could help to solve the problem.

Let’s assume that you have the table shown in Listing 10-1. For simplicity’s sake,

there is a column called Attributes that represents all of the row data.

Chapter 10 Application Locks

205

Listing 10-1.  Table structure

create table dbo.RawData

(

 ID int not null,

 Attributes char(100) not null

 constraint DEF_RawData_Attributes

 default 'Row Data',

 ProcessingTime datetime not null

 constraint DEF_RawData_ProcessingTime

 �default '2000-01-01', -- Default constraint simplifies data loading

in the code below

 constraint PK_RawData

 primary key clustered(ID)

)

There are two important columns: ID, which is the primary key, and

ProcessingTime, which represents the time the row was loaded for processing. You

should use UTC rather than local time to support situations in which application servers

reside in different time zones, as well as to prevent issues when the clock is adjusted to

Daylight Saving Time. This column also helps to prevent other sessions from rereading

the data while it is still processing. It is better to avoid Boolean (bit) columns for such

purposes because if the application server crashes, the row would remain in the table

forever. With the time column, the system can read it again after some timeout.

Now, let’s create a stored procedure that reads the data, as shown in Listing 10-2.

Listing 10-2.  Stored procedure that reads the data

create proc dbo.LoadRawData(@PacketSize int)

as

begin

 set nocount, xact_abort on

 declare

 @EarliestProcessingTime datetime

 ,@ResCode int

Chapter 10 Application Locks

206

 declare

 @Data table

 (

 ID int not null primary key,

 Attributes char(100) not null

)

 begin tran

 exec @ResCode = sp_getapplock

 @Resource = 'LoadRowDataLock'

 ,@LockMode = 'Exclusive'

 ,@LockOwner = 'Transaction'

 ,@LockTimeout = 15000; -- 15 seconds

 if @ResCode >= 0 -- success

 begin

 �-- We assume that app server processes the packet within 1

minute unless crashed

 set @EarliestProcessingTime = dateadd(minute,-1,getutcdate());

 ;with DataPacket(ID, Attributes, ProcessingTime)

 as

 (

 select top (@PacketSize) ID, Attributes, ProcessingTime

 from dbo.RawData

 where ProcessingTime <= @EarliestProcessingTime

 order by ID

)

 update DataPacket

 set ProcessingTime = getutcdate()

 �output inserted.ID, inserted.Attributes into @Data(ID, Attributes);

 end

 �-- we don't need to explicitly release application lock because

@LockOwner is Transaction

 commit

 select ID, Attributes from @Data;

end

Chapter 10 Application Locks

207

The stored procedure obtains an exclusive (X) application lock at the beginning of

the transaction. As a result, all other sessions calling the stored procedure are blocked

until the transaction is committed and the application lock is released. It guarantees that

only one session can update and read the data from within the stored procedure. At the

same time, other sessions can still work with the table (for example, insert new or delete

processed rows). Application locks are separate from data locks, and sessions would not

be blocked unless they were trying to obtain the incompatible application lock for the

same @Resource with an sp_getapplock call.

Figure 10-1 demonstrates the output from the sys.dm_tran_locks data management

view at a time when two sessions are calling the dbo.LoadRawData stored procedure

simultaneously. The session with SPID=58 successfully obtains the application lock,

while another session with SPID=63 is blocked. The Resource_type value of APPLICATION

indicates an application lock.

It is worth mentioning that, if our goal is to simply guarantee that multiple sessions

cannot read the same rows simultaneously, rather than serializing the entire read

process, there is another, simpler, solution. You can use locking table hints, as shown in

Listing 10-3.

Listing 10-3.  Serializing access to the data with table locking hints

create proc dbo.LoadRawData(@PacketSize int)

as

begin

 set nocount, xact_abort on

 declare

 @EarliestProcessingTime datetime = dateadd(minute,-1,getutcdate());

 ;with DataPacket(ID, Attributes, ProcessingTime)

 as

Figure 10-1.  Sys.dm_tran_locks output

Chapter 10 Application Locks

208

 (

 select top (@PacketSize) ID, Attributes, ProcessingTime

 from dbo.RawData with (updlock, readpast)

 where ProcessingTime <= @EarliestProcessingTime

 order by ID

)

 update DataPacket

 set ProcessingTime = getutcdate()

 output inserted.ID, inserted.Attributes into @Data(ID, Attributes);

end

The UPDLOCK hint forces SQL Server to use update (U), rather than shared (S), locks

during the SELECT operation. This prevents other sessions from reading the same rows

simultaneously. At the same time, the READPAST hint forces the sessions to skip the rows

with incompatible locks held rather than being blocked.

Although both implementations accomplish the same goal, they use different

approaches. The latter serializes access to the same rows by using data (row-level)

locks. Application locks serialize access to the code and prevent multiple sessions from

running the statement simultaneously.

While both approaches can be used with disk-based tables, locking hints would not

work in cases where queues are implemented using memory-optimized tables. Locking

hints do not work in that scenario, but application locks would help to achieve the

required serialization.

Note  We will discuss the In-Memory OLTP Concurrency Model in Chapter 13.

When a system has a structured data access tier, application locks may help to

reduce blocking and improve the user experience when some sessions acquire table-

level locks. One such example is index maintenance or partition switches in SQL Server

systems that do not support low-priority locks.

Consider a scenario where you have a multi-tenant system with a set of services

that query data on a per-tenant basis. The code shown in Listing 10-4 tries to acquire a

shared (S) application lock before querying the table. If this operation is not successful,

it returns an empty result set emulating the “no new data” condition without performing

any access to the table.

Chapter 10 Application Locks

209

Listing 10-4.  Preventing access to the table during index rebuild: Table and

stored procedure

create table dbo.CollectedData

(

 TenantId int not null,

 OnDate datetime not null,

 Id bigint not null identity(1,1),

 Attributes char(100) not null

 constraint DEF_CollectedData_Attributes

 default 'Other columns'

);

create unique clustered index IDX_CollectedData_TenantId_OnDate_Id

on dbo.CollectedData(TenantId,OnDate,Id);

go

create proc dbo.GetTenantData

(

 @TenantId int

 ,@LastOnDate datetime

 ,@PacketSize int

)

as

begin

 set nocount, xact_abort on

 declare

 @ResCode int

 begin tran

 exec @ResCode = sp_getapplock

 @Resource = 'TenantDataAccess'

 ,@LockMode = 'Shared'

 ,@LockOwner = 'Transaction'

 ,@LockTimeout = 0 ; -- No wait

Chapter 10 Application Locks

210

 if @ResCode >= 0 -- success

 begin

 if @LastOnDate is null

 set @LastOnDate = '2018-01-01';

 select top (@PacketSize) with ties

 TenantId, OnDate, Id, Attributes

 from dbo.CollectedData

 where

 TenantId = @TenantId and

 OnDate > @LastOnDate

 order by

 OnDate;

 end

 else

 -- return empty resultset

 select

 convert(int,null) as TenantId

 ,convert(datetime,null) as OnDate

 ,convert(char(100),null) as Attributes

 where

 1 = 2;

 commit

end

The second session, which needs to acquire a full table-level lock, may obtain an

exclusive (X) application lock first, as shown in Listing 10-5. This will prevent the stored

procedure from being blocked when querying the table for the duration of the index

rebuild.

Listing 10-5.  Preventing access to the table during index rebuild: Obtaining

exclusive access to the table

begin tran

 exec sp_getapplock

 @Resource = 'TenantDataAccess'

 ,@LockMode = 'Exclusive'

Chapter 10 Application Locks

211

 ,@LockOwner = 'Transaction'

 ,@LockTimeout = -1 ; -- Indefinite wait

 alter index IDX_CollectedData_TenantId_OnDate_Id

 on dbo.CollectedData rebuild;

commit

This approach may improve the user experience by eliminating possible query

timeouts in the system. Moreover, it may reduce the time it takes for an exclusive table

lock to be obtained. SQL Server does not use lock partitioning with application locks,

and therefore the application lock request needs to be granted just within the single

locking queue rather than on each partition sequentially.

Finally, it is worth noting that there is still the possibility of blocking if a stored

procedure needs to be compiled at a time when ALTER INDEX REBUILD is running. The

compilation process will need to acquire a table-level lock, which will be blocked by the

schema modification (Sch-M) lock held by the index rebuild.

�Summary
Application locks allow an application to place a lock on an application resource that is

not related to the database objects and is identified by the name. It is a useful tool that

helps you implement mutual exclusion code patterns that serialize access to T-SQL code,

similar to critical sections and mutexes in client applications.

You can create and release application locks using the sp_getapplock and

sp_releaseapplock stored procedures, respectively. Application locks can have either

session or transaction scope, and they follow the regular lock compatibility rules.

Chapter 10 Application Locks

213
© Dmitri Korotkevitch 2018
D. Korotkevitch, Expert SQL Server Transactions and Locking, https://doi.org/10.1007/978-1-4842-3957-5_11

CHAPTER 11

Designing Transaction
Strategies
A properly implemented transaction strategy would benefit every system. This chapter

will provide a set of generic guidelines on the subject and discuss how you can improve

concurrency in a system.

�Transaction Strategy Design Considerations
Consistent transaction and error-handling strategies always benefit the system. They

help to reduce blocking and simplify troubleshooting when blocking does occur.

As we already discussed in Chapter 2, the choice between client- and server-side

transaction management greatly depends on the data access tier architecture. A stored

procedure–based implementation may benefit from explicit transactions started from

within the stored procedures. A client-side implementation with ORM frameworks or

code generators, on the other hand, would require transactions to be managed in the

client code.

There is a common misconception that autocommitted transactions may benefit

the system. Even though such an approach may somewhat reduce blocking—after all,

every statement runs in its own transaction, and exclusive (X) locks are held for a shorter

amount of time—it is hardly the best choice. The large number of small transactions

could significantly increase transaction log activity and reduce the performance of the

system.

More important, autocommitted transactions may introduce data-quality issues

when multiple related data modifications partially fail due to errors. Such issues are

extremely hard to diagnose and address when they occur in production. In the vast

majority of cases it is better to use explicit transactions in the system.

214

Tip  Avoid autocommitted transactions and use explicit transactions instead.

You can further reduce the chance of having data-quality issues by using the

SET XACT_ABORT ON option. As you will remember, this setting makes a transaction

uncommittable if there is any error. This prevents explicit transactions from committing

when some data modifications have not been completed successfully.

Tip  Use SET XACT_ABORT ON in the code.

Recall the nested behavior of BEGIN TRAN/COMMIT statements. You do not need to

check the @@TRANCOUNT variable and the existence of an active transaction if you call

BEGIN TRAN and COMMIT in the same module. Do not forget, however, that the ROLLBACK

statement rolls back the entire transaction regardless of the @@TRANCOUNT nested level. It

is better to check if a transaction is active before rolling it back.

Listing 11-1 shows an example of the code that checks if there is an active transaction

before starting it. This is completely unnecessary due to the nested behavior of BEGIN

TRAN/COMMIT statements, so you can remove IF statements from the implementation.

Listing 11-1.  Implementation with unnecesary check for active transaction

create proc dbo.Proc1

as

begin

 set xact_abort on

 declare

 @CurrentTranCount = @@TRANCOUNT;

 if @CurrentTranCount = 0 -- IF is not required and can be removed

 begin tran;

 /* Some logic here */

 if @CurrentTranCount = 0 -- IF is not required and can be removed

 commit;

end

Chapter 11 Designing Transaction Strategies

215

Listing 11-2 shows the template of a stored procedure that performs server-side

transaction management and error handling. This approach works regardless of whether

this stored procedure is called from outside or within the active transaction, assuming, of

course, that the calling code handles exceptions correctly.

It is important to note that the CATCH block is checking that @@TRANCOUNT is greater

than zero. One of the common errors is using the IF @@TRANCOUNT = 1 ROLLBACK

pattern, which does not work with nested BEGIN TRAN calls.

Listing 11-2.  Server-side transaction management

create proc dbo.MyProc

as

begin

 set xact_abort on

 begin try

 begin tran

 /* Some logic here */

 commit

 end try

 begin catch

 if @@TRANCOUNT > 0 -- Transaction is active

 rollback;

 /* Optional error-handling code */

 throw;

 end catch;

end;

The client-side transaction management implementation would depend on the

technology and architecture of the system. However, it is always beneficial to use a

TRY..CATCH block and explicitly commit or roll back the transaction there. Listing 11-3

demonstrates this approach with the classic ADO.Net.

Chapter 11 Designing Transaction Strategies

216

Listing 11-3.  ADO.Net transaction management

using (SqlConnection conn = new SqlConnection(connString))

{

 conn.Open();

 �using (SqlTransaction tran =

conn.BeginTransaction(IsolationLevel.ReadCommitted))

 {

 try

 {

 SqlCommand cmd = conn.CreateCommand("exec dbo.MyProc @Param1");

 �cmd.Parameters.Add("@Param1",SqlDbType.VarChar,255).

Value = "Param Value";

 cmd.Transaction = tran;

 cmd.ExecuteNonQuery();

 tran.Commit();

 }

 catch (Exception ex)

 {

 tran.Rollback();

 throw;

 }

 }

}

Despite the fact that the client code needs to perform several actions in between

the BeginTransaction() and ExecuteNonQuery() calls, it would not introduce any

inefficiencies in the system. SQL Server considers a transaction to be started at the time

of the first data access operation rather than at the time of the BEGIN TRAN call. Moreover,

it would not log the beginning of the transaction (LOP_BEGIN_XACT) in the transaction log

until the transaction completed the first data modification.

You should remember such behavior with SNAPSHOT transactions, which work with a

“snapshot” of the data at the time when the transaction started. In practice, it means that

such transactions would see the data as of the time of the first data access operation—

whether a read or write one.

Chapter 11 Designing Transaction Strategies

217

�Choosing Transaction Isolation Level
Choosing the right transaction isolation level is not a trivial task. You should find the

right balance between blocking and tempdb overhead and the required level of data

consistency and isolation in the system. The system must provide reliable data to the

customers, and you should not compromise by choosing an isolation level that cannot

guarantee it just because you want to reduce blocking.

You should choose the minimally required isolation level that provides the required

level of data consistency. In many cases the default READ COMMITTED isolation level is

good enough, especially if queries are optimized and do not perform unnecessary scans.

Avoid using REPEATABLE READ or SERIALIZABLE isolation levels in OLTP systems unless

you have legitimate reasons to use them. Those isolation levels hold shared (S) locks

until the end of the transaction, which can lead to severe blocking issues with volatile

data. They can also trigger shared (S) lock escalation during scans.

It is completely normal to use different isolation levels in a system. For example,

financial management systems may need to use REPEATABLE READ or even SERIALIZABLE

isolation levels when they perform operations that may affect the balances of customers’

accounts. However, other use cases, such as changing customer profile information, may

be completely fine with the READ COMMITTED level.

As a general rule, it is better to avoid the READ UNCOMMITTED isolation level. Even

though many database professionals try to reduce blocking by switching to this isolation

level, either explicitly or with (NOLOCK) hints, this is rarely the right choice. First,

READ UNCOMMITTED does not address the blocking issues introduced by writers. They

still acquire update (U) locks during scans. Most important, however, by using READ

UNCOMMITTED, you are stating that data consistency is not required at all, and it is not

only about reading uncommitted data. SQL Server can choose execution plans that use

an allocation map scan on large tables, which can lead to missing rows and duplicated

reads due to page splits, especially in busy systems with volatile data.

In a majority of the cases, optimistic isolation levels, especially READ COMMITTED

SNAPSHOT, are a better choice than READ UNCOMMITTED, REPEATABLE READ, or

SERIALIZABLE, even in OLTP systems. It provides statement-level data consistency

without readers/writers blocking involved. Historically, I have been very cautious

suggesting RCSI in OLTP systems due to its tempdb overhead; however, nowadays,

it becomes a lesser issue because of modern hardware and flash-based disk arrays.

You should still factor additional index fragmentation and tempdb overhead into your

Chapter 11 Designing Transaction Strategies

218

analysis though. It is also worth repeating that READ COMMITTED SNAPSHOT is enabled in

Azure SQL Databases by default.

As a general rule, I recommend you do not use the SNAPSHOT isolation level in

OLTP systems due to its excessive tempdb usage unless transaction-level consistency is

absolutely required. It could be a good choice for data warehouse and reporting systems

where data is static most of the time.

You should be very careful with transaction management if you enable optimistic

isolation levels in the database. Bugs in the code that led to uncommitted transactions

can prevent tempdb version store clean-up and lead to excessive growth of tempdb data

files. It can happen even if you do not use optimistic isolation levels in the system, as

long as READ_COMMITTED_SNAPSHOT or ALLOW_SNAPSHOT_ISOLATION database settings

were enabled.

Optimistic isolation levels, however, often mask poorly optimized queries in the

system. Even though those queries contribute to the poor system performance, they are

not involved in the blocking conditions and thus are often ignored. It is not uncommon

to see cases where people “solve” the readers/writers blocking by enabling READ

COMMITTED SNAPSHOT and do not address the root cause of the blocking afterward. You

should remember this and perform query optimization regardless of whether you have

blocking in the system or not.

For data warehouse systems, transaction strategy greatly depends on how data is

updated. For static read-only data, any isolation level will work because readers do not

block other readers. You can even switch the database or filegroups to read-only mode to

reduce the locking overhead. Otherwise, optimistic isolation levels are the better choice.

They provide either transaction- or statement-level consistency for report queries, and

they reduce the blocking during ETL processes. You should also consider utilizing table

partitioning and using partition switches during ETL processes when this approach is

feasible.

�Patterns That Reduce Blocking
Blocking occurs when multiple sessions compete for the same set of resources. Sessions

try to acquire incompatible locks on them, which leads to lock collision and blocking.

As you already know, SQL Server acquires the locks when it processes data. It matters

less how many rows need to be modified or returned to the client. What matters more is

how many rows SQL Server accesses during statement execution. It is entirely possible

Chapter 11 Designing Transaction Strategies

219

that a query that selected or updated just a single row acquired thousands or even

millions of locks due to excessive scans it performed.

Proper query optimization and index tuning reduce the number of rows SQL Server

needs to access during query execution. This, in turn, reduces the number of locks

acquired and the chance that lock conflicts will occur.

Tip O ptimize the queries. It will help to improve concurrency, performance, and
user experience in the system.

Another method to reduce the chance of lock conflicts is to reduce the time locks

are held. Exclusive (X) locks are always held until the end of the transaction. The same is

true for the shared (S) locks in REPEATABLE READ and SERIALIZABLE isolation levels. The

longer locks are held, the bigger the chance is that lock conflicts and blocking will occur.

You need to make transactions as short as possible and avoid any long-time operations

and interactions with users through the UI while a transaction is active. You also need to be

careful when dealing with external resources that use CLR or linked servers. For example,

when a linked server is down, it can take a long time before a connection timeout occurs,

and you would like to avoid the situation where locks are kept all that time.

Tip  Make transactions as short as possible.

Update the data as close to the end of the transaction as possible. This reduces

the time that exclusive (X) locks are held. In some cases, it might make sense to use

temporary tables as the staging place, inserting data there and updating the actual tables

at the very end of the transaction.

Tip  Modify data as close to the end of the transaction as possible.

One particular variation of this technique is an UPDATE statement that is impossible

or impractical to optimize. Consider a situation where the statement scans a large

number of rows, but updates just a handful of them. You can change the code, storing

the clustered index key values of the rows that need to be updated in a temporary table,

running an UPDATE based on those collected key values afterward.

Chapter 11 Designing Transaction Strategies

220

Listing 11-4 shows an example of a statement that could lead to a clustered index

scan during execution. SQL Server will need to acquire an update (U) lock on every row

of the table.

Listing 11-4.  Reducing blocking with temporary table: Original statement

update dbo.Orders

set

 Cancelled = 1

where

 (PendingCancellation = 1) or

 (Paid = 0 and OrderDate < @MinUnpaidDate) or

 (Status = 'BackOrdered' and EstimatedStockDate > @StockDate)

You can change the code to be similar to that shown in Listing 11-5. The SELECT

statement either acquires shared (S) locks or does not acquire row-level locks at all,

depending on the isolation level. The UPDATE statement is optimized, and it acquires just

a handful of update (U) and exclusive (X) locks.

Listing 11-5.  Reducing blocking with a temporary table: Using a temporary table

to stage key values for the update

create table #OrdersToBeCancelled

(OrderId int not null primary key);

insert into #OrdersToBeCancelled(OrderId)

 select OrderId

 from dbo.Orders

 where

 (PendingCancellation = 1) or

 (Paid = 0 and OrderDate < @MinUnpaidDate) or

 (Status = 'BackOrdered' and EstimatedStockDate > @StockDate);

update dbo.Orders

set Cancelled = 1

where OrderId in (select OrderId from #OrdersToBeCancelled);

You need to remember that while this approach helps to reduce blocking, creating

and populating temporary tables can introduce significant I/O overhead, especially

Chapter 11 Designing Transaction Strategies

221

when a large amount of data involved. In some cases, you can avoid that overhead by

using a CTE, as shown in Listing 11-6.

Listing 11-6.  Reducing blocking with a CTE

;with UpdateIds(OrderId)

as

(

 select OrderId

 from dbo.Orders

 where

 (PendingCancellation = 1) or

 (Paid = 0 and OrderDate < @MinUnpaidDate) or

 (Status = 'BackOrdered' and EstimatedStockDate > @StockDate);

)

update o

set o.Cancelled = 1

from UpdateIds u inner loop join dbo.Orders o on

 o.OrderId = u.OrderId

Similar to the previous example, the SELECT statement does not acquire update (U)

locks during the scan. The inner loop join hint guarantees that exclusive (X) locks are

held only on the rows that need to be modified. Remember that join hints force the order

of joins in the statement. In our case, the CTE needs to be specified as the left (please

make left in italic) input/table of the join to generate correct execution plan.

Both approaches may reduce blocking at the cost of the additional overhead they

introduce. This overhead would increase with the amount of data to update, and you should

not use these approaches if you expect to update a large percentage of the rows in the table.

Remember that creating the right indexes is the better option in the majority of cases.

Tip  Avoid update scans on large tables.

You should avoid updating the row multiple times within the same transaction when

UPDATE statements modify data in different nonclustered indexes. Remember that SQL

Server acquires locks on a per-index basis when index rows are updated. Having multiple

updates increases the chance of deadlock when other sessions access updated rows.

Chapter 11 Designing Transaction Strategies

222

Tip  Do not update data rows multiple times in a single transaction.

You need to understand whether lock escalation affects your system, especially in the

case of OLTP workload. You can monitor object-level blocking conditions and locking

waits, then correlate it with lock_escalation Extended and Trace Events. Remember

that lock escalation helps to reduce memory consumption and improve performance

in the system. You should analyze why lock escalation occurs and how it affects the

system before making any decisions. In many cases, it is better to change the code and

workflows rather than disabling it.

Tip  Monitor lock escalation in the system.

You should avoid mixing statements that can lead to having row- and object-level

locks in the same transaction in general, and mixing DML and DDL statements in

particular. This pattern can lead to blocking between intent and full object-level locks

as well as to deadlock conditions. This is especially important when servers have 16 or

more logical CPUs, which enables lock partitioning.

Tip  Do not mix DDL and DML statements in one transaction.

You need to analyze the root cause of deadlocks if you have them in your system. In

most cases, query optimization and code refactoring would help to address them. You

should also consider implementing retry logic around critical use cases in the system.

Tip  Find the root cause of deadlocks. Implement retry logic if query optimization
and code refactoring do not address them.

It is impossible to eliminate all blocking in the system. Fortunately, understanding

the root cause of the blocking helps with designing a solution that mitigates the issue.

Chapter 11 Designing Transaction Strategies

223

�Summary
Consistent transaction and error-handling strategies reduce blocking and simplify

troubleshooting of concurrency issues. The choice between client- and server-side

implementation depends on the data access tier architecture; however, as a general rule,

you should use explicit rather than autocommitted transactions.

Business requirements should dictate the data consistency and isolation rules in the

system. You should choose the minimally required isolation level that satisfies them. Do

not use READ UNCOMMITTED unless it is absolutely necessary.

Optimistic isolation levels can be acceptable, even with OLTP workload, as long as

the system can handle additional tempdb overhead. It is better to use READ COMMITTED

SNAPSHOT unless transactional-level consistency is required.

Having proper query optimization and index tuning helps to improve concurrency

in a majority of cases. Properly optimized queries acquire fewer locks, which reduces the

chance of lock conflicts and blocking in the system. You should also keep transactions

as short as possible and modify data close to the end of the transactions to reduce the

amount of time locks are held.

Every system is unique, and it is impossible to provide generic advice that can be

applied everywhere. However, a good understanding of the SQL Server concurrency

model will help you to design the right transaction strategy and address any blocking

and concurrency issues in the system.

Chapter 11 Designing Transaction Strategies

225
© Dmitri Korotkevitch 2018
D. Korotkevitch, Expert SQL Server Transactions and Locking, https://doi.org/10.1007/978-1-4842-3957-5_12

CHAPTER 12

Troubleshooting
Concurrency Issues
System troubleshooting is both an art and a science. It is also a very big and complex

topic. If I had to write a book covering all aspects of system troubleshooting, it would

have more pages than the one you are currently reading.

The processes of system troubleshooting and performance tuning require you to take

a holistic view of the system. SQL Server never lives in a vacuum, and the root cause of

a problem may not necessarily reside in the database. Inadequate hardware, improper

OS and SQL Server configuration, inefficient database and application design—all these

factors may lead to various issues and bad system performance.

Concurrency is just a small piece of this puzzle. Every multi-user database will suffer

from some degree of blocking. Nevertheless, concurrency issues may or may not be the

main source of the problem, and you can often get a better ROI by focusing on other

areas in the system.

This chapter will discuss a common troubleshooting technique called wait statistics

analysis. Even though we will focus on locking-related waits and concurrency issues, this

technique is extremely useful during general troubleshooting. I would suggest you read

more about this technique and other wait types that may exist in the system.

Remember, however, about taking a holistic view, and analyze the entire

system—hardware and software—before focusing on in-database problems.

�SQL Server Execution Model
From a high level, the architecture of SQL Server includes six different components, as

shown in Figure 12-1.

226

The Protocol layer handles communications between SQL

Server and client applications. The data is transmitted in an

internal format called Tabular Data Stream (TDS) using one of

the standard network communication protocols, such as TCP/

IP or Named Pipes. Another communication protocol, called

Shared Memory, can be used when both SQL Server and the client

applications run locally on the same server.

The Query Processor layer is responsible for query optimization

and execution.

The Storage Engine consists of components related to data access

and data management in SQL Server. It works with the data

on disk, handles transactions and concurrency, manages the

transaction log, and performs several other functions.

The In-Memory OLTP Engine was introduced in SQL Server

2014. This lock- and latch-free technology helps to improve

the performance of OLTP workloads. It works with memory-

optimized tables that store all the data in memory. We will talk

about the In-Memory OLTP Concurrency Model in the next

chapter.

SQL Server includes a set of utilities, which are responsible for

backup and restore operations, bulk loading of data, full-text index

management, and several other actions.

Figure 12-1.  High-level SQL Server architecture

Chapter 12 Troubleshooting Concurrency Issues

227

Finally, the vital component of SQL Server is the SQL Server

Operating System (SQLOS). SQLOS is the layer between SQL

Server and the OS (Windows or Linux), and it is responsible

for scheduling and resource management, synchronization,

exception handling, deadlock detection, CLR hosting, and more.

For example, when any SQL Server component needs to allocate

memory, it does not call the OS API function directly, but rather

it requests memory from SQLOS, which in turn uses the memory

allocator component to fulfill the request.

SQLOS was initially introduced in SQL Server 2005 to improve the efficiency of

scheduling in SQL Server and to minimize context and kernel mode switching. The

major difference between Windows and SQLOS is the scheduling model. Windows

is a general-purpose operating system that uses preemptive scheduling. It controls

what processes are currently running, suspending and resuming them as needed.

Alternatively, with the exception of CLR code, SQLOS uses cooperative scheduling when

processes yield voluntarily on a regular basis.

Linux support in SQL Server 2017 led to the further transformation of SQLOS and

the introduction of the Platform Abstraction Layer (SQL PAL). It works as a gateway in

between SQLOS and the operating system, providing the abstraction for OS API/Kernel

calls. With very few exceptions in performance-critical code, SQLOS does not call the OS

API directly, but rather uses PAL instead.

SQLOS creates a set of schedulers when it starts. The number of schedulers is equal

to the number of logical CPUs in the system, with one extra scheduler for a dedicated

admin connection. For example, if a server has two quad-core CPUs with hyper-

threading enabled, SQL Server creates 17 schedulers. Each scheduler can be in either an

ONLINE or OFFLINE state based on the processor affinity settings and core-based licensing

model.

Even though the number of schedulers matches the number of CPUs in the system,

there is no strict one-to-one relationship between them unless the processor affinity

settings are enabled. In some cases, and under heavy load, it is possible to have more

than one scheduler running on the same CPU. Alternatively, when processor affinity is

set, schedulers are bound to CPUs in a strict one-to-one relationship.

Each scheduler is responsible for managing working threads called workers. The

maximum number of workers in a system is specified by the Max Worker Thread

configuration option. The default value of zero indicates that SQL Server calculates the

Chapter 12 Troubleshooting Concurrency Issues

228

maximum number of worker threads based on the number of schedulers in the system.

In a majority of the cases, you do not need to change this default value.

Each time there is a task to execute, it is assigned to a worker in an idle state. When

there are no idle workers, the scheduler creates a new one. It also destroys idle workers

after 15 minutes of inactivity or in the case of memory pressure. It is also worth noting

that each worker would use 512 KB of RAM in 32-bit and 2 MB of RAM in 64-bit SQL

Server for the thread stack.

Workers do not move between schedulers. Moreover, a task is never moved between

workers. SQLOS, however, can create child tasks and assign them to different workers;

for example, in the case of parallel execution plans.

Each task can be in one of six different states:

Pending: Task is waiting for an available worker.

Done: Task is completed.

Running: Task is currently executing on the scheduler.

Runnable: Task is waiting for the scheduler to be executed.

Suspended: Task is waiting for an external event or resource.

Spinloop: Task is processing a spinlock. Spinlocks are

synchronization objects that protect some internal objects. SQL

Server may use them when it expects that access to the object will

be granted very quickly, thus avoiding context switching for the

workers.

Each scheduler has at most one task in a running state. In addition, it has two

different queues—one for runnable tasks and one for suspended tasks. When the running

task needs some resources—a data page from a disk, for example—it submits an I/O

request and changes the state to suspended. It stays in the suspended queue until the

request is fulfilled and the page is read. The task is moved to the runnable queue when it

is ready to resume execution.

A grocery store is, perhaps, the closest real-life analogy to the SQL Server Execution

Model. Think of cashiers as representing schedulers and customers in checkout lines as

tasks in the runnable queue. A customer who is currently checking out is similar to a task

in the running state.

If an item is missing a UPC code, a cashier sends a store worker to do a price check.

The cashier suspends the checkout process for the current customer, asking her or him

Chapter 12 Troubleshooting Concurrency Issues

229

to step aside (to the suspended queue). When the worker comes back with the price

information, the customer who had stepped aside moves to the end of the checkout line

(end of the runnable queue).

It is worth mentioning that the SQL Server process is much more efficient as

compared to real life, when others wait patiently in line during a price check. However,

a customer who is forced to move to the end of the runnable queue would probably

disagree with such a conclusion.

Figure 12-2 illustrates a typical task lifecycle in the SQL Server Execution Model.

The total task execution time can be calculated as a summary of the time the task

spent in the running state (when it ran on the scheduler), runnable state (when it waited

for an available scheduler), and suspended state (when it waited for a resource or

external event).

SQL Server tracks the cumulative time tasks spend in a suspended state for

different types of waits and exposes this through the sys.dm_os_wait_tasks view.

This information is collected as of the time of the last SQL Server restart or since it was

cleared with the DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR) command.

Listing 12-1 shows how to find the top wait types in the system, which are the wait

types for which workers spent the most time waiting. It filters out some nonessential wait

types, mainly those related to internal SQL Server processes. Even though it is beneficial

to analyze some of them during advanced performance tuning, you rarely focus on them

during the initial stage of system troubleshooting.

Figure 12-2.  Task lifecycle

Chapter 12 Troubleshooting Concurrency Issues

230

Note  Every new version of SQL Server introduces new wait types. You can
see a list of wait types at https://docs.microsoft.com/en-us/sql/
relational-databases/system-dynamic-management-views/sys-dm-
os-wait-stats-transact-sql. Make sure to select the appropriate version of
SQL Server.

Listing 12-1.  Detecting top wait types in the system

;with Waits

as

(

 select

 wait_type, wait_time_ms, waiting_tasks_count,signal_wait_time_ms

 ,wait_time_ms - signal_wait_time_ms as resource_wait_time_ms

 ,100. * wait_time_ms / SUM(wait_time_ms) over() as Pct

 ,row_number() over(order by wait_time_ms desc) as RowNum

 from sys.dm_os_wait_stats with (nolock)

 where

 wait_type not in /* Filtering out non-essential system waits */

 (N'BROKER_EVENTHANDLER',N'BROKER_RECEIVE_WAITFOR'

 ,N'BROKER_TASK_STOP',N'BROKER_TO_FLUSH'

 ,N'BROKER_TRANSMITTER',N'CHECKPOINT_QUEUE',N'CHKPT'

 ,N'CLR_SEMAPHORE',N'CLR_AUTO_EVENT'

 ,N'CLR_MANUAL_EVENT',N'DBMIRROR_DBM_EVENT'

 ,N'DBMIRROR_EVENTS_QUEUE',N'DBMIRROR_WORKER_QUEUE'

 ,N'DBMIRRORING_CMD',N'DIRTY_PAGE_POLL'

 ,N'DISPATCHER_QUEUE_SEMAPHORE',N'EXECSYNC'

 ,N'FSAGENT',N'FT_IFTS_SCHEDULER_IDLE_WAIT'

 ,N'FT_IFTSHC_MUTEX',N'HADR_CLUSAPI_CALL'

 ,N'HADR_FILESTREAM_IOMGR_IOCOMPLETION'

 ,N'HADR_LOGCAPTURE_WAIT'

 ,N'HADR_NOTIFICATION_DEQUEUE'

 ,N'HADR_TIMER_TASK',N'HADR_WORK_QUEUE'

 ,N'KSOURCE_WAKEUP',N'LAZYWRITER_SLEEP'

Chapter 12 Troubleshooting Concurrency Issues

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-os-wait-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-os-wait-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-os-wait-stats-transact-sql

231

 ,N'LOGMGR_QUEUE',N'MEMORY_ALLOCATION_EXT'

 ,N'ONDEMAND_TASK_QUEUE'

 ,N'PARALLEL_REDO_WORKER_WAIT_WORK'

 ,N'PREEMPTIVE_HADR_LEASE_MECHANISM'

 ,N'PREEMPTIVE_SP_SERVER_DIAGNOSTICS'

 ,N'PREEMPTIVE_OS_LIBRARYOPS'

 ,N'PREEMPTIVE_OS_COMOPS'

 ,N'PREEMPTIVE_OS_CRYPTOPS'

 ,N'PREEMPTIVE_OS_PIPEOPS'

 , N'PREEMPTIVE_OS_AUTHENTICATIONOPS'

 ,N'PREEMPTIVE_OS_GENERICOPS'

 ,N'PREEMPTIVE_OS_VERIFYTRUST

 ',N'PREEMPTIVE_OS_FILEOPS'

 ,N'PREEMPTIVE_OS_DEVICEOPS'

 ,N'PREEMPTIVE_OS_QUERYREGISTRY'

 ,N'PREEMPTIVE_OS_WRITEFILE'

 ,N'PREEMPTIVE_XE_CALLBACKEXECUTE'

 ,N'PREEMPTIVE_XE_DISPATCHER'

 ,N'PREEMPTIVE_XE_GETTARGETSTATE'

 ,N'PREEMPTIVE_XE_SESSIONCOMMIT'

 ,N'PREEMPTIVE_XE_TARGETINIT'

 ,N'PREEMPTIVE_XE_TARGETFINALIZE'

 ,N'PWAIT_ALL_COMPONENTS_INITIALIZED'

 ,N'PWAIT_DIRECTLOGCONSUMER_GETNEXT'

 ,N'QDS_PERSIST_TASK_MAIN_LOOP_SLEEP'

 ,N'QDS_ASYNC_QUEUE'

 ,N'QDS_CLEANUP_STALE_QUERIES_TASK_MAIN_LOOP_SLEEP'

 ,N'REQUEST_FOR_DEADLOCK_SEARCH'

 ,N'RESOURCE_QUEUE',N'SERVER_IDLE_CHECK'

 ,N'SLEEP_BPOOL_FLUSH',N'SLEEP_DBSTARTUP'

 ,N'SLEEP_DCOMSTARTUP'

 ,N'SLEEP_MASTERDBREADY',N'SLEEP_MASTERMDREADY'

 ,N'SLEEP_MASTERUPGRADED',N'SLEEP_MSDBSTARTUP'

 , N'SLEEP_SYSTEMTASK', N'SLEEP_TASK'

 ,N'SLEEP_TEMPDBSTARTUP',N'SNI_HTTP_ACCEPT'

 ,N'SP_SERVER_DIAGNOSTICS_SLEEP'

Chapter 12 Troubleshooting Concurrency Issues

232

 ,N'SQLTRACE_BUFFER_FLUSH'

 ,N'SQLTRACE_INCREMENTAL_FLUSH_SLEEP'

 ,N'SQLTRACE_WAIT_ENTRIES',N'WAIT_FOR_RESULTS'

 ,N'WAITFOR',N'WAITFOR_TASKSHUTDOWN'

 ,N'WAIT_XTP_HOST_WAIT'

 ,N'WAIT_XTP_OFFLINE_CKPT_NEW_LOG'

 ,N'WAIT_XTP_CKPT_CLOSE',N'WAIT_XTP_RECOVERY'

 ,N'XE_BUFFERMGR_ALLPROCESSED_EVENT'

 , N'XE_DISPATCHER_JOIN',N'XE_DISPATCHER_WAIT'

 ,N'XE_LIVE_TARGET_TVF',N'XE_TIMER_EVENT')

)

select

 w1.wait_type as [Wait Type]

 ,w1.waiting_tasks_count as [Wait Count]

 ,convert(decimal(12,3), w1.wait_time_ms / 1000.0)

 as [Wait Time]

 ,convert(decimal(12,1), w1.wait_time_ms / w1.waiting_tasks_count)

 as [Avg Wait Time]

 ,convert(decimal(12,3), w1.signal_wait_time_ms / 1000.0)

 as [Signal Wait Time]

 ,convert(decimal(12,1), w1.signal_wait_time_ms / w1.waiting_tasks_count)

 as [Avg Signal Wait Time]

 ,convert(decimal(12,3), w1.resource_wait_time_ms / 1000.0)

 as [Resource Wait Time]

 ,convert(decimal(12,1), w1.resource_wait_time_ms

 / w1.waiting_tasks_count) as [Avg Resource Wait Time]

 ,convert(decimal(6,3), w1.Pct) as [Percent]

 ,convert(decimal(6,3), w1.Pct + IsNull(w2.Pct,0)) as [Running Percent]

from

 Waits w1 cross apply

 (

 select sum(w2.Pct) as Pct

 from Waits w2

 where w2.RowNum < w1.RowNum

) w2

Chapter 12 Troubleshooting Concurrency Issues

233

where

 w1.RowNum = 1 or w2.Pct <= 99

order by

 w1.RowNum

option (recompile);

Figure 12-3 illustrates the output of the script from one of the production servers at

the beginning of the troubleshooting process.

Figure 12-3.  Output of the script from one of the production servers

Chapter 12 Troubleshooting Concurrency Issues

234

The process of analyzing top waits in the system is called wait statistics analysis. This

is one of the most frequently used troubleshooting and performance-tuning techniques

in SQL Server, which allows you to quickly identify potential problems in the system.

Figure 12-4 illustrates a typical wait statistics analysis troubleshooting cycle.

As a first step, look at the wait statistics, which detect the top waits in the system. This

narrows the area of concern for further analysis. After that, confirm the problem using

other tools, such as DMVs, Windows Performance Monitor, SQL Traces, and Extended

Events, and detect the root cause of the problem. When the root cause is confirmed, fix it

and analyze the wait statistics again, choosing a new target for analysis and improvement.

Let’s look at locking-related wait types in detail.

Note  My Pro SQL Server Internals book provides deeper coverage of wait
statistics analysis and explains how to troubleshoot various non-locking-related
issues in the system.

You can also download a whitepaper on wait statistics analysis from
http://download.microsoft.com/download/4/7/a/47a548b9-249e-
484c-abd7-29f31282b04d/performance_tuning_waits_queues.doc.
Even though it focuses on SQL Server 2005, the content is valid for any version of
SQL Server.

�Lock Waits
Every lock type in the system has a corresponding wait type with the name starting with

LCK_M_ followed by the lock type. For example, LCK_M_U and LCK_M_IS indicate waits for

update (U) and intent exclusive (IX) locks, respectively.

Figure 12-4.  Wait statistics analysis troubleshooting cycle

Chapter 12 Troubleshooting Concurrency Issues

http://download.microsoft.com/download/4/7/a/47a548b9-249e-484c-abd7-29f31282b04d/performance_tuning_waits_queues.doc
http://download.microsoft.com/download/4/7/a/47a548b9-249e-484c-abd7-29f31282b04d/performance_tuning_waits_queues.doc

235

Lock waits occur during blocking when lock requests are waiting in the queue. SQL

Server does not generate lock waits when requests can be granted immediately and

blocking does not occur.

You need to pay attention to both total wait time and number of times waits

occurred. It is entirely possible to have wait types with a large total wait time generated

by just a handful of long waits. You may decide to troubleshoot or ignore them based on

your objectives.

You should also remember that wait statistics are accumulated from the time of

the last SQL Server restart. Servers with prolonged uptime may have wait statistics that

are not representative of the current load. In many cases it may be beneficial to clear

wait statistics with the DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR) command,

collecting recent wait information before troubleshooting. You should obviously have a

representative workload in the system when you do that.

Let’s look at locking wait types and discuss what may lead to such waits and how we

can troubleshoot them.

�LCK_M_U Wait Type
The LCK_M_U wait type is, perhaps, one of the most common locking-related wait types in

OLTP systems, as it indicates a wait for update (U) locks.

As you may remember, SQL Server uses update (U) locks during update scans

when it looks for the rows that need to be updated or deleted. SQL Server acquires an

update (U) lock when it reads the row, releasing or converting it to an exclusive (X) lock

afterward. In the majority of cases, a large number of LCK_M_U waits indicates the

existence of poorly optimized writer queries (UPDATE, DELETE, MERGE) in the system.

You can correlate the data with PAGEIOLATCH* wait types. These waits occur when

SQL Server is waiting for the data page to be read from disk. A high amount of such waits

points to high disk I/O, which is often another sign of non-optimized queries in the

system. There are other conditions besides non-optimized queries that may generate

such waits, and you should not make the conclusion without performing additional

analysis.

The PAGEIOLATCH* wait type indicates physical I/O in the system. It is common

nowadays to have servers with enough memory to cache the active data in the buffer

pool. Non-optimized queries in such environments would not generate physical reads

and PAGEIOLATCH* waits. Nevertheless, they may suffer from blocking and generate

LCK_M_U waits during update scans.

Chapter 12 Troubleshooting Concurrency Issues

236

Poorly optimized queries need to process a large amount of data, which increases

the cost of the execution plan. In many cases, SQL Server would generate parallel

execution plans for them. A high CXPACKET wait indicates a large amount of parallelism,

which may be another sign of poorly optimized queries in OLTP systems.

You should remember, however, that parallelism is completely normal and expected.

A CXPACKET wait does not necessarily indicate a problem, and you should take the system

workload into consideration during analysis. It is also worth noting that the default value

of the Cost Threshold for Parallelism setting is extremely low and needs to be increased

in the majority of cases nowadays.

There are several ways to detect poorly optimized I/O-intensive queries using

standard SQL Server tools. One of the most common approaches is by capturing system

activity using SQL Traces or Extended Events, filtering the data by the number of reads

and/or writes. This approach, however, requires you to perform additional analysis

after the data is collected. You should check how frequently queries are executed when

determining targets for optimization.

Important  Extended Events sessions and SQL Traces that capture query
execution statistics may lead to significant overhead in busy systems. Use them
with care and do not keep them running unless you are doing performance
troubleshooting.

Another very simple and powerful method of detecting resource-intensive queries

is the sys.dm_exec_query_stats data management view. SQL Server tracks various

statistics for cached execution plans, including the number of executions and I/O

operations, elapsed times, and CPU times, and exposes them through that view.

Furthermore, you can join it with other data management objects and obtain the SQL

text and execution plans for those queries. This simplifies the analysis, and it can be

helpful during the troubleshooting of various performance and plan-cache issues in the

system.

Listing 12-2 shows a query that returns the 50 most I/O-intensive queries, which

have plans cached at the moment of execution. It is worth noting that the sys.dm_exec_

query_stats view has slightly different columns in the result set in different versions of

SQL Server. The query in Listing 12-2 works in SQL Server 2008R2 and above. You can

remove the last four columns from the SELECT list to make it compatible with

SQL Server 2005-2008.

Chapter 12 Troubleshooting Concurrency Issues

237

Listing 12-2.  Using sys.dm_exec_query_stats

select top 50

 substring(qt.text, (qs.statement_start_offset/2)+1,

 ((

 case qs.statement_end_offset

 when -1 then datalength(qt.text)

 else qs.statement_end_offset

 end - qs.statement_start_offset)/2)+1) as SQL

 ,qp.query_plan as [Query Plan]

 ,qs.execution_count as [Exec Cnt]

 ,(qs.total_logical_reads + qs.total_logical_writes) /

 qs.execution_count as [Avg IO]

 ,qs.total_logical_reads as [Total Reads], qs.last_logical_reads

 as [Last Reads]

 ,qs.total_logical_writes as [Total Writes], qs.last_logical_writes

 as [Last Writes]

 ,qs.total_worker_time as [Total Worker Time], qs.last_worker_time

 as [Last Worker Time]

 ,qs.total_elapsed_time / 1000 as [Total Elapsed Time]

 ,qs.last_elapsed_time / 1000 as [Last Elapsed Time]

 ,qs.creation_time as [Cached Time], qs.last_execution_time

 as [Last Exec Time]

 ,qs.total_rows as [Total Rows], qs.last_rows as [Last Rows]

 ,qs.min_rows as [Min Rows], qs.max_rows as [Max Rows]

from

 sys.dm_exec_query_stats qs with (nolock)

 cross apply sys.dm_exec_sql_text(qs.sql_handle) qt

 cross apply sys.dm_exec_query_plan(qs.plan_handle) qp

order by

 [Avg IO] desc

As you can see in Figure 12-5, it allows you to easily define optimization targets

based on resource usage and the number of executions. For example, the second query

in the result set is the best candidate for optimization because of how frequently it runs.

Obviously, we need to focus on data modification queries if our target is to reduce the

amount of update lock waits in the system.

Chapter 12 Troubleshooting Concurrency Issues

238

Unfortunately, the sys.dm_exec_query_stats view does not return any information

for the queries that do not have execution plans cached. Usually, this is not an issue,

because our optimization targets are not only resource intensive, but they are also

frequently executed queries. Plans for those queries usually stay in the cache due to their

frequent reuse. However, SQL Server does not cache plans in the case of a statement-

level recompile; therefore, sys.dm_exec_query_stats misses them. You should use

Extended Events and/or SQL Traces to capture them. I usually start with queries from

the sys.dm_exec_query_stats output and crosscheck the optimization targets with

Extended Events later.

Query plans can be removed from the cache and, therefore, are not included in the

sys.dm_exec_query_stats result in cases of a SQL Server restart, memory pressure,

recompilations due to a statistics update, and a few other cases. It is beneficial to analyze

the creation_time and last_execution_time columns in addition to the number of

executions.

In SQL Server 2016 and above, you can use the Query Store to collect execution

statistics for all queries in the system. It provides a rich set of reports and data

management views, which you can use to quickly identify inefficient queries in the

system. The data from the Query Store is persisted in the database and would survive

SQL Server restart. The Query Store is an extremely powerful tool that helps dramatically

during troubleshooting.

You can also use the Blocking Monitoring Framework we discussed in Chapter 4. You

can analyze the data for update (U) lock waits, choosing the targets for optimization. We

will talk about this framework in more detail later in the chapter.

As we already discussed, it is also possible that blocking conditions and locking waits

occur due to incorrect transaction management in the system. Long transactions may

hold locks for a long period of time, blocking other sessions from acquiring incompatible

locks on affected rows. Remember this behavior and factor it into the analysis and

troubleshooting.

Figure 12-5.  Sys.dm_exec_query_stats results

Chapter 12 Troubleshooting Concurrency Issues

239

�LCK_M_S Wait Type
The LCK_M_S wait type indicates waits for shared (S) locks. This lock type is acquired by

SELECT queries in the READ COMMITTED, REPEATABLE READ, and SERIALIZABLE isolation

levels.

In many cases, the root cause of LCK_M_S waits are similar to those for LCK_M_U waits.

Poorly optimized SELECT queries may scan a large amount of data and may be blocked

by exclusive (X) locks held by other sessions. You can use the same troubleshooting

techniques as we just discussed to identify such queries.

In cases where queries are running in the READ COMMITTED isolation level, you can

consider enabling the READ_COMMITTED_SNAPSHOT database option to eliminate readers/

writers blocking. In this mode, SQL Server does not acquire shared (S) locks in the READ

COMMITTED isolation level, relying on row versioning instead. Remember that this approach

does not address the root cause of the issue, instead masking problems introduced by

poorly optimized queries. Also remember the additional overhead it introduces.

Note  Do not use a (NOLOCK) hint or the READ UNCOMMITTED isolation level
unless data consistency is not required.

In some cases, LCK_M_S waits may be generated by waits for table-level locks

acquired by SQL Server during some operations or because of a (TABLOCK) hint in the

code. One such example is an online index rebuild process, which acquires a short-term

shared (S) table-level lock at the beginning of execution. The volatility of the data in busy

OLTP systems may lead to a blocking condition in such a scenario, especially with lock

partitioning involved.

Such cases may present themselves in wait statistics as wait types with a relatively low

number of occurrences and high average wait time. Nevertheless, you should not rely only

on wait statistics to drive the conclusion. It is beneficial to analyze individual blocking

cases, and the Blocking Monitoring Framework may be very useful in such scenarios.

�LCK_M_X Wait Type
The LCK_M_X wait type indicates the waits for exclusive (X) locks. As strange as it sounds,

in OLTP systems with volatile data, LCK_M_X waits may occur less frequently than

LCK_M_U waits.

Chapter 12 Troubleshooting Concurrency Issues

240

As you already know, SQL Server usually uses update (U) locks during update scans.

This behavior, however, is not guaranteed. In some cases, SQL Server may decide to omit

update (U) locks, using exclusive (X) locks instead. One such example is point-lookup

searches, when a query updates a single row using a predicate on the indexed column.

In that case, SQL Server may acquire an exclusive (X) lock immediately without using an

update (U) lock. Blocking in this condition would lead to an LCK_M_X wait.

You may also have LCK_M_X waits during the conversion from an update (U) to an

exclusive (X) lock. Update (U) and shared (S) locks are compatible with each other, and,

therefore, a query may acquire an update (U) lock on a row with a shared (S) lock held.

SQL Server, however, would be unable to convert it to an exclusive (X) lock if the row

needed to be updated.

This condition happens when a SELECT query uses a REPEATABLE READ or

SERIALIZABLE isolation level and shared (S) locks are held until the end of the

transaction. It may also occur in the READ COMMITTED level when a SELECT query

sometimes holds shared (S) locks for the duration of the statement; for example, when it

reads LOB columns.

LCK_M_X waits may occur when multiple sessions work with the same data. One of

the common scenarios is a counters table implementation, when multiple sessions are

trying to increment the same counter simultaneously or even to use a (TABLOCKX) hint.

You can address this collision by switching to SEQUENCE objects or identity columns.

As usual, you should analyze individual blocking cases and understand the root

cause of the blocking when you see a large amount of LCK_M_X waits in the system.

�LCK_M_SCH_S and LCK_M_SCH_M Wait Types
LCK_M_SCH_S and LCK_M_SCH_M wait types indicate waits for schema stability (Sch-S) and

schema modification (Sch-M) locks. These waits should not occur in the system on a

large scale.

SQL Server acquires schema modification (Sch-M) locks during schema alterations.

This lock requires exclusive access to the table, and requests would be blocked,

generating the wait, until all other sessions disconnected from the table.

There are several common cases when such blocking may occur:

Database schema changes that are done online, with other users

connected to the system. Remember, in this case the schema

modification (Sch-M) lock is held until the end of the transaction.

Chapter 12 Troubleshooting Concurrency Issues

241

Offline index rebuild.

Partition switch or final phase of online index rebuild. A schema

modification (Sch-M) lock is required to modify metadata in the

database. You can reduce blocking by using low-priority locks if

they are supported.

Schema stability (Sch-S) locks are used to avoid table alterations when tables are

in use. SQL Server acquires them during query compilation and during the execution

of SELECT queries in isolation levels that do not use intent locks, such as in READ

UNCOMMITTED, READ COMMITTED SNAPSHOT, and SNAPSHOT.

Schema stability (Sch-S) locks are compatible with any other lock type except

schema modification (Sch-M) locks. The existence of LCK_M_SCH_S waits always

indicates blocking introduced by schema modifications.

If you encounter a significant amount of schema lock waits in the system, you should

identify what caused this blocking. In the majority of cases, you could address them by

changing deployment or database maintenance strategies in the system or by switching

to low-priority locks.

�Intent LCK_M_I* Wait Types
Intent lock wait types indicate waits for intent locks in the system. Each intent lock type

has a corresponding wait type. For example, LCK_M_IS indicates intent shared (IS) lock

waits, and LCK_M_IX indicates intent exclusive (IX) lock waits.

SQL Server acquires intent locks on the object (table) and page levels. On the table

level, blocking may occur in two conditions. First, the session cannot acquire an intent

lock due to an incompatible schema modification (Sch-M) lock held on the object.

Usually, in this case you would also see some schema lock waits, and you would need to

troubleshoot the reason why they occurred in the system.

Another case is the existence of an incompatible full lock on the table. For example,

neither of the intent locks can be acquired while the table has a full exclusive (X) lock held.

In some cases, this may occur due to table-level locking hints in the code, such as

(TABLOCK) or (TABLOCKX). However, this condition may also be triggered by successful

lock escalation during large batch modifications. You can confirm this by monitoring

lock_escalation Extended Events and address this by disabling lock escalation on some

of the critical tables. I will also demonstrate later in the chapter how to identify tables

involved in object-level blocking using the Blocking Monitoring Framework.

Chapter 12 Troubleshooting Concurrency Issues

242

It is also possible to have intent-lock blocking when a session requests an intent lock

on a page with an incompatible full lock held. Consider a situation where SQL Server

needs to run a SELECT statement that scans the entire table. In this scenario, SQL Server

may choose to use page-level instead of row-level locking, acquiring full shared (S) locks

on the pages. This would introduce blocking if another session tried to modify a row by

acquiring an intent exclusive (IX) lock on the page.

As usual, you need to identify and address the root cause of the blocking when you

encounter such issues.

�Locking Waits: Summary
Table 12-1 summarizes possible root causes and troubleshooting steps for common

lock-related wait types.

Table 12-1.  Most Common Lock-Related Wait Types

Wait Type Possible Root Cause Troubleshooting Steps

LCK_M_U Update scans due to poorly

optimized queries

Detect and optimize poorly optimized queries using

Query Store, sys.dm_exec_query_stats, xEvent

sessions, Blocking Monitoring Framework

LCK_M_X Multiple sessions work with

the same data

Change the code

Update scans due to poorly

optimized queries

Detect and optimize poorly optimized queries using

Query Store, sys.dm_exec_query_stats, xEvent

sessions, Blocking Monitoring Framework

LCK_M_S Select scans due to poorly

optimized queries

Detect and optimize poorly optimized queries using

Query Store, sys.dm_exec_query_stats, xEvent

sessions, Blocking Monitoring FrameworkConsider

switching to optimistic isolation levels

LCK_M_U,

LCK_M_S,

LCK_M_X

Incorrect transaction

management with long-

running transactions

holding incompatible locks

Redesign transaction strategy. Optimize the queries

(continued)

Chapter 12 Troubleshooting Concurrency Issues

243

As I already mentioned, every lock type in the system has a corresponding wait

type. You may encounter other lock-related wait types that we have not covered in this

chapter. Nevertheless, knowledge of the SQL Server Concurrency Model will help you

in troubleshooting. Analyze blocking conditions that may generate such lock types and

identify the root cause of the blocking.

�Data Management Views
SQL Server provides a large set of data management views that expose information

about system health and the SQL Server state. I would like to mention several views that

we have not yet covered.

�sys.db_exec_requests View
The sys.dm_exec_requests view provides a list of currently executed requests. This view

is extremely useful during troubleshooting and provides you with great visibility of the

sessions that are currently running on the server. The most notable columns in the view

are as follows:

The session_id column provides ID of the session. The user

sessions in the system will always have a session_id greater than 50,

although it is possible that some of the system sessions may also

have a session_id greater than 50. You can get information about

Wait Type Possible Root Cause Troubleshooting Steps

LCK_M_SCH_S,

LCK_M_SCH_M

Blocking due to database

schema alteration or index

or partition maintenance

Evaluate deployment and maintenance strategies.

Switch to low-priority locks if possible

LCK_M_I* Blocking due to database

schema alteration or index

or partition maintenance

Evaluate deployment and maintenance strategies

Lock Escalation Analyze and disable lock escalations on affected

tables

Table 12-1.  (continued)

Chapter 12 Troubleshooting Concurrency Issues

244

the session and client application by joining results with the

sys.dm_exec_sessions and sys.dm_exec_connections views.

The start_time, total_elapsed_time, cpu_time, reads, logical_

reads, and writes columns provide execution statistics for the

request.

The sql_handle, statement_start_offset, and statement_end_

offset columns allow you to get information about the query.

In SQL Server 2016 and above, you can use it together with the

function sys.dm_exec_input_buffer to obtain information

about currently running SQL statements. You can also use the

sys.dm_exec_sql_text function for such a purpose, as you have

already seen in this book.

The plan_handle column allows you to obtain the execution plan

of the statement using the sys.dm_exec_query_plan and sys.

dm_exec_text_query_plan functions.

The status column provides you with the status of the worker. For

blocked sessions in SUSPENDED status, you can use the wait_type,

wait_time, wait_resource, and blocking_session_id columns

to get information about session wait and blocker. Moreover,

the last_wait_type column will show the last wait type for the

session.

There are many scenarios where the sys.dm_exec_requests view may help with

troubleshooting. One of them is when analyzing the state of a long-running statement.

You can look at the status and wait-related columns to see if a request is running or being

blocked, identifying a blocking session by the blocking_session_id column.

Note  You can get more information about the sys.dm_exec_requests view
at https://docs.microsoft.com/en-us/sql/relational-databases/
system-dynamic-management-views/sys-dm-exec-requests-
transact-sql.

Chapter 12 Troubleshooting Concurrency Issues

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-requests-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-requests-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-requests-transact-sql

245

�sys.db_os_waiting_tasks View
You can get more information about blocked sessions by using the sys.dm_os_waiting_

tasks view. This view returns data on the tasks/workers level, which is beneficial when

you analyze blocking for queries with parallel execution plans. The output includes one

row per blocked worker and provides information about wait type and duration, blocked

resource, and ID of the blocking session.

Note  You can get more information about the sys.dm_os_waiting_tasks

view at https://docs.microsoft.com/en-us/sql/relational-
databases/system-dynamic-management-views/sys-dm-os-waiting-
tasks-transact-sql.

�sys.db_exec_session_wait_stats view and wait_info
xEvent
In some cases, you may want to track waits on the session level; for example, when you

troubleshoot the performance of long-running queries. Detailed wait information will

allow you to understand what may cause the delays and adjust your tuning strategy

accordingly.

SQL Server 2016 and above provide you this information with the sys.dm_exec_

session_wait_stats view. This view, in a nutshell, returns similar data as sys.dm_

os_wait_stats does, collected on the session level. It clears the information when the

session is opened or when the polled connection is reset.

The sys.dm_exec_session_wait_stats view is useful when you suspect that a query

suffers from a large number of short-term blocking waits. Such waits may not trigger a

blocked process report; however, they may lead to a large cumulative blocking time.

In SQL Server prior to 2016, you can track session-level waits with the wait_info

Extended Event using the opcode=1 predicate, which indicates the end of the wait. As

you can guess, this session may generate an enormous amount of information, which

can impact server performance. Do not keep it running unless you are troubleshooting,

and do not use the event_file target due to the I/O system latency it would introduce.

Chapter 12 Troubleshooting Concurrency Issues

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-os-waiting-tasks-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-os-waiting-tasks-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-os-waiting-tasks-transact-sql

246

You may set the predicate on the duration field, capturing only long-term waits—

for example, waits longer than 50ms. You can also reduce the amount of collected

information by using a session_id filter. Unfortunately, session_id is an action for

a wait_type event, which adds some overhead during data collection. SQL Server

executes actions after it evaluates the predicates on Extended Event fields, and it is

beneficial to remove unnecessary wait types from the processing.

Listing 12-3 provides a list of map values that correspond to each wait type, which

you can use as the filter for the wait types.

Listing 12-3.  Wait_type map values

select name, map_key, map_value

from sys.dm_xe_map_values

where name = 'wait_types'

order by map_key

Finally, another External Event, wait_type_external, captures information about

preemptive waits (PREEMPTIVE* wait types). Those waits are associated with external OS

calls; for example, when SQL Server needs to zero-initialize a log file or authenticate a

user in Active Directory. In some cases, you need to troubleshoot them; however, those

cases are not related to blocking and concurrency issues.

Note  You can get more information about the sys.dm_exec_session_wait_
stats view at https://docs.microsoft.com/en-us/sql/relational-
databases/system-dynamic-management-views/sys-dm-exec-
session-wait-stats-transact-sql. You can read about Extended Events
at https://docs.microsoft.com/en-us/sql/relational-databases/
extended-events/extended-events.

�sys.db_db_index_operational_stats and sys.dm_db_
index_usage_stats Views
SQL Server tracks index usage statistics with the sys.dm_db_index_usage_stats

and sys.dm_db_index_operational_stats views. They provide information about

index access patterns, such as number of seeks, scans, and lookups; number of data

modifications in the index; latching and locking statistics; and many other useful metrics.

Chapter 12 Troubleshooting Concurrency Issues

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-session-wait-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-session-wait-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-session-wait-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/extended-events/extended-events
https://docs.microsoft.com/en-us/sql/relational-databases/extended-events/extended-events

247

The sys.dm_db_index_usage_stats view focuses mainly on index access patterns,

counting the number of queries that utilize the index. The sys.dm_db_index_

operational_stats view, on the other hand, tracks operations on a per-row basis. For

example, if you ran a query that updated ten index rows in a single batch, the

sys.dm_db_index_usage_stats view would count it as one data modification and

increment the user_updates column by one, while the sys.dm_db_index_operational_

stats view would increment the leaf_update_count column by ten based on the

number of rows affected by the operation.

Both views are extremely useful during index analysis and allow you to detect

unused and inefficient indexes. Moreover, the sys.dm_db_index_operational_stats

view gives you very useful insight into index operational metrics and helps to identify the

indexes that suffer from a large amount of blocking, latching, and physical disk activity.

From a locking standpoint, the sys.dm_db_index_operational_stats view includes

three different set of columns:

•	 row_lock_count, row_lock_wait_count, and row_lock_wait_ms

indicate the number of row-level locks requested in the index along

with lock wait statistics.

•	 page_lock_count, page_lock_wait_count, and page_lock_wait_ms

show locking information on the page level.

•	 index_lock_promotion_ count and index_lock_promotion_

attempt_count return lock escalation statistics.

You can correlate this information with other venues during troubleshooting.

For example, when you analyze the impact of lock escalations in the system, you can

look at index_lock_promotion_count column values and identify the indexes that

triggered lock escalation most often.

Listing 12-4 shows a query that returns ten indexes with the highest row- and

page-level lock wait times, helping you to identify the indexes that suffer the most from

blocking.

Listing 12-4.  Indexes with the highest lock wait times

select top 10

 t.object_id

 ,i.index_id

 ,sch.name + '.' + t.name as [table]

Chapter 12 Troubleshooting Concurrency Issues

248

 ,i.name as [index]

 ,ius.user_seeks

 ,ius.user_scans

 ,ius.user_lookups

 ,ius.user_seeks + ius.user_scans + ius.user_lookups as reads

 ,ius.user_updates

 ,ius.last_user_seek

 ,ius.last_user_scan

 ,ius.last_user_lookup

 ,ius.last_user_update

 ,ios.*

from

 sys.tables t with (nolock) join sys.indexes i with (nolock) on

 t.object_id = i.object_id

 join sys.schemas sch with (nolock) on

 t.schema_id = sch.schema_id

 left join sys.dm_db_index_usage_stats ius with (nolock) on

 i.object_id = ius.object_id and

 i.index_id = ius.index_id

 outer apply

 (

 select

 sum(range_scan_count) as range_scan_count

 ,sum(singleton_lookup_count) as singleton_lookup_count

 ,sum(row_lock_wait_count) as row_lock_wait_count

 ,sum(row_lock_wait_in_ms) as row_lock_wait_in_ms

 ,sum(page_lock_wait_count) as page_lock_wait_count

 ,sum(page_lock_wait_in_ms) as page_lock_wait_in_ms

 ,sum(page_latch_wait_count) as page_latch_wait_count

 ,sum(page_latch_wait_in_ms) as page_latch_wait_in_ms

 ,sum(page_io_latch_wait_count) as page_io_latch_wait_count

 ,sum(page_io_latch_wait_in_ms) as page_io_latch_wait_in_ms

 �from sys.dm_db_index_operational_stats(db_id(),i.object_id,

i.index_id,null)

) ios

Chapter 12 Troubleshooting Concurrency Issues

249

order by

 ios.row_lock_wait_in_ms + ios.page_lock_wait_in_ms desc

Figure 12-6 shows the partial output of the query from one of the production servers.

Note that the first index in the output has a very low number of reads and high update

overhead and may potentially be removed from the system.

You can detect the queries that utilize a specific index by using the code from

Listing 12-5. The results are not bulletproof, however; this code analyzes the cached

execution plans and may miss queries that do not have plans cached for some reason.

You can adjust it to use Query Store DMVs, if it is enabled in the system.

As a word of caution, this code is CPU intensive. Be careful when you run it on CPU-

bound production servers with a large number of plans in the cache.

Listing 12-5.  Identifying queries that use a specific index

declare

 @IndexName sysname = quotename('IDX_CI'); -- Add Index Name here

;with xmlnamespaces(default 'http://schemas.microsoft.com/

sqlserver/2004/07/showplan')

,CachedData

as

(

 select distinct

 obj.value('@Database','sysname') as [Database]

 ,obj.value('@Schema','sysname') + '.' +

 obj.value('@Table','sysname') as [Table]

 ,obj.value('@Index','sysname') as [Index]

Figure 12-6.  Indexes with the highest lock wait times

Chapter 12 Troubleshooting Concurrency Issues

250

 ,obj.value('@IndexKind','varchar(64)') as [Type]

 ,stmt.value('@StatementText', 'nvarchar(max)') as [Statement]

 ,convert(nvarchar(max),qp.query_plan) as query_plan

 ,cp.plan_handle

 from

 sys.dm_exec_cached_plans cp with (nolock)

 cross apply sys.dm_exec_query_plan(plan_handle) qp

 cross apply query_plan.nodes

 �('/ShowPlanXML/BatchSequence/Batch/Statements/StmtSimple')

batch(stmt)

 cross apply stmt.nodes

 �('.//IndexScan/Object[@Index=sql:variable("@IndexName")]') idx(obj)

)

select

 cd.[Database]

 ,cd.[Table]

 ,cd.[Index]

 ,cd.[Type]

 ,cd.[Statement]

 ,convert(xml,cd.query_plan) as query_plan

 ,qs.execution_count

 ,(qs.total_logical_reads + qs.total_logical_writes) /

 qs.execution_count as [Avg IO]

 ,qs.total_logical_reads

 ,qs.total_logical_writes

 ,qs.total_worker_time

 ,qs.total_worker_time / qs.execution_count /

 1000 as [Avg Worker Time (ms)]

 ,qs.total_rows

 ,qs.creation_time

 ,qs.last_execution_time

from

 CachedData cd

 outer apply

Chapter 12 Troubleshooting Concurrency Issues

251

 (

 select

 sum(qs.execution_count) as execution_count

 ,sum(qs.total_logical_reads) as total_logical_reads

 ,sum(qs.total_logical_writes) as total_logical_writes

 ,sum(qs.total_worker_time) as total_worker_time

 ,sum(qs.total_rows) as total_rows

 ,min(qs.creation_time) as creation_time

 ,max(qs.last_execution_time) as last_execution_time

 from sys.dm_exec_query_stats qs with (nolock)

 where qs.plan_handle = cd.plan_handle

) qs

option (recompile, maxdop 1)

Both the sys.dm_db_index_usage_stats and the sys.dm_db_index_operational_

stats views provide the information, which is very useful during performance

troubleshooting. The data, however, may be incomplete. The views do not include usage

statistics from those queries that run on readable secondaries in Availability Groups. Nor

does SQL Server persist the data in the database to survive SQL Server restart. Finally,

in SQL Server 2012 RTM-SP3 CU2, SQL Server 2014 RTM and SP1, the views clear at the

time of index rebuild operations.

Use the data with care and correlate results with other venues during analysis.

Note  You can get more information about the sys.dm_db_index_
usage_stats view at https://docs.microsoft.com/en-us/sql/
relational-databases/system-dynamic-management-views/sys-dm-
db-index-usage-stats-transact-sql. Information about the sys.dm_db_
index_operational_stats view is available at https://docs.microsoft.
com/en-us/sql/relational-databases/system-dynamic-management-
views/sys-dm-db-index-operational-stats-transact-sql.

Chapter 12 Troubleshooting Concurrency Issues

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-index-usage-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-index-usage-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-index-usage-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-index-operational-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-index-operational-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-index-operational-stats-transact-sql

252

�Blocking Chains
One of the common challenges experienced during the troubleshooting of concurrency

issues is that of blocking chains, which represent a case of multi-level blocking. As

you remember, a lock request can be granted only when it is compatible with all other

requests on the resource, regardless of whether they are in a granted or pending state.

Figure 12-7 illustrates this situation. Session 1 holds an intent exclusive (IX) lock on

the table, which is incompatible with the schema modification (Sch-M) lock requested

by session 2. The schema modification (Sch-M) lock is incompatible with all lock

types and thus blocks all other sessions trying to access the table, even when their lock

requests are compatible with the intent exclusive (IX) lock held by session 1.

When this condition occurs, session 2 may become the blocking session for a

large number of other sessions in the system. It will be exposed as the blocker in data

management views and in the blocked process report. Session 1, on the other hand,

would become the blocking session only for session 2, which may be misleading during

troubleshooting.

Let’s illustrate this with a slightly more complicated example in code. Listing 12-6

updates one row from the Delivery.Customers table in the session with SPID=53.

Figure 12-7.  Blocking chain

Chapter 12 Troubleshooting Concurrency Issues

253

Listing 12-6.  Blocking chain: Step 1 (SPID=53)

begin tran

 update Delivery.Customers

 set Phone = '111-111-1234'

 where CustomerId = 1;

As the next step, let’s run the code from Listing 12-7 in the session with SPID=56.

The first statement acquires an intent exclusive (IX) lock on the Delivery.Orders table.

The second statement scans the Delivery.Customers table and is blocked due to an

incompatible exclusive (X) lock from the first session with SPID=53.

Listing 12-7.  Blocking chain: Step 2 (SPID=56)

begin tran

 update Delivery.Orders

 set Pieces += 1

 where OrderId = 1;

 select count(*)

 from Delivery.Customers with (readcommitted);

Next, we will run the code from Listing 12-8 in the session with SPID=57. This code is

trying to acquire a shared (S) lock on the Delivery.Orders table and will be blocked by

the incompatible intent exclusive (IX) lock held by the session with SPID=56.

Listing 12-8.  Blocking chain: Step 3 (SPID=57)

select count(*)

from Delivery.Orders with (tablock);

Finally, let’s run the code from Listing 12-9 in several sessions with SPID=60 and

above (you may use a different OrderId in each session). Those sessions will need to

acquire intent exclusive (IX) locks on the Delivery.Orders table and will be blocked due

to the incompatible shared (S) lock request held by the session with SPID=57.

Listing 12-9.  Blocking chain: Step 4 (SPID>=60)

update Delivery.Orders

set Pieces += 1

where OrderId = 5000;

Chapter 12 Troubleshooting Concurrency Issues

254

Figure 12-8 demonstrates the partial output of the sys.dm_os_waiting_tasks and

sys.dm_exec_requests DMVs. It may appear that the session with SPID=57 is the source

of the blocking. This is incorrect, however, and you need to unwind the blocking chain

up to the session with SPID=53 during troubleshooting.

It is also worth noting that the root blocker with SPID=53 is not present in the output.

The sys.dm_os_waiting_tasks and sys.dm_exec_requests views show currently

suspended and executed requests, respectively. In our case, the session with SPID=53 is

in the sleeping state, and therefore neither of the views includes it.

Figure 12-9 shows the partial output of the blocked process reports for sessions with

an SPID of 60, 57, or 56. You can detect the blocking chain condition by the suspended

status of the blocking process with a locking-related waitresource.

Figure 12-8.  Output of sys.dm_os_waiting_tasks and sys.dm_exec_requests views

Chapter 12 Troubleshooting Concurrency Issues

255

Even though blocking chains may add additional complexity, they do not change

your troubleshooting approach. You need to unwind the blocking chain to identify the

root cause of the blocking and address the issue.

�AlwaysOn Availability Groups and Blocking
AlwaysOn Availability Groups have perhaps become the most common High Availability

technology used with SQL Server. This technology provides database group–level

protection and stores a separate copy of the databases on each server/node. This

eliminates the single point of failure on the SQL Server level; however, there is still a

dependency on Windows or Linux Failover Clustering internally.

The implementation and maintenance of AlwaysOn Availability Groups are worth

a separate book. There are, however, a couple of things that may affect blocking and

concurrency in the system.

Figure 12-9.  Blocked process reports

Chapter 12 Troubleshooting Concurrency Issues

256

�Synchronous Commit Latency
AlwaysOn Availability Groups consist of one primary and one or more secondary nodes/

servers. All data modifications are done on the primary node, which sends a stream of

transactional log records to the secondaries. Those log records are saved (hardened)

in transaction logs on the secondary nodes and asynchronously reapplied to the data

files there by a set of REDO threads. Assuming there is no latency, each server in the

Availability Group would store exact byte-to-byte copies of the databases.

The secondary nodes may be configured using asynchronous or synchronous commit.

With asynchronous commit, a transaction is considered to be committed when the

COMMIT log record is hardened on the primary node. SQL Server then sends the COMMIT

record to a secondary node; however, it does not wait for confirmation that the record

has been hardened in the log there. This process is shown in Figure 12-10.

As you can guess, this behavior will reduce the overhead introduced by Availability

Groups at the cost of possible data loss in the event of a primary node crash/data

corruption before some of the log records have been sent to the secondaries.

This behavior changes when you use synchronous commit, as shown in Figure 12-11.

In this mode, SQL Server does not consider a transaction to be committed until it

receives the confirmation that the COMMIT log record is hardened in the log on the

secondary node. While this approach allows you to avoid data loss, it would lead to

additional commit latency while the primary node is waiting for acknowledgement from

the secondary server(s).

Figure 12-10.  Asynchonous commit

Chapter 12 Troubleshooting Concurrency Issues

257

The high synchronous commit latency may introduce subtle and hard to understand

concurrency issues in the system. SQL Server keeps the transaction active and does not

release the locks until commit acknowledgements are received. This would increase the

chance of competing lock requests and blocking in the system.

There is another potential problem. Some operations—for example, index

maintenance—may generate an enormous number of transaction log records and

saturate the send queue. This may lead to extremely high commit latency and introduce

severe blocking in the system.

Tip  You can throttle the log-generation rate of index maintenance operations by
reducing the MAXDOP option for the statement. Remember that this will increase
the time the operation will take.

You can monitor synchronous commit latency with the HADR_SYNC_COMMIT wait. The

average wait time from the sys.dm_os_wait_stats view would provide you with latency

information. Remember that latency may seriously deviate during atypical, log-intensive

workloads; consider clearing wait statistics with the DBCC SQLPERF('sys.dm_os_wait_

stats', CLEAR) command when you troubleshoot the latency at a particular time.

Figure 12-11.  Synchonous commit

Chapter 12 Troubleshooting Concurrency Issues

258

High commit latency troubleshooting requires you to locate the bottleneck and

identify what consumes the most time during the process. There are three main factors

that contribute to it:

	 1.	 The time a log record waits in the send queue. You can analyze

this with the code in Listing 12-10 using the data from the [Send

Queue Size(KB)] and [Send Rate KB/Sec] columns. It is worth

noting that the queue management process is CPU intensive,

which may lead to additional latency in systems with high CPU

load.

	 2.	 Network throughput. You can troubleshoot it with network-related

performance counters. There are also several Availability Group–

related performance counters that indicate the amount of data

sent between the nodes.

	 3.	 I/O latency on secondary nodes. Synchronous commit requires

a COMMIT log record to be hardened in the transaction log before

acknowledgement is sent back to the primary node. You can

monitor the write latency of transaction log files using the sys.

dm_io_virtual_file_stats view. I am including the script that

allows you to do this in the companion materials for this book.

Listing 12-10.  Analyze Availability Group queues

select

 ag.name as [Availability Group]

 ,ar.replica_server_name as [Server]

 ,db_name(drs.database_id) as [Database]

 �,case when ars.is_local = 1 then 'Local' else 'Remote' end

 ,case as [DB Location]

 ,ars.role_desc as [Replica Role]

 ,drs.synchronization_state_desc as [Sync State]

 ,ars.synchronization_health_desc as [Health State]

 ,drs.log_send_queue_size as [Send Queue Size (KB)]

 ,drs.log_send_rate as [Send Rate KB/Sec]

 ,drs.redo_queue_size as [Redo Queue Size (KB)]

 ,drs.redo_rate as [Redo Rate KB/Sec]

Chapter 12 Troubleshooting Concurrency Issues

259

from

 sys.availability_groups ag with (nolock)

 join sys.availability_replicas ar with (nolock) on

 ag.group_id = ar.group_id

 join sys.dm_hadr_availability_replica_states ars with (nolock) on

 ar.replica_id = ars.replica_id

 join sys.dm_hadr_database_replica_states drs with (nolock) on

 ag.group_id = drs.group_id and drs.replica_id = ars.replica_id

order by

 ag.name, drs.database_id, ar.replica_server_name

While network and I/O performance may sometimes be addressed by hardware

upgrades, it is much harder to deal with the latency introduced by a large number of log

records in very busy OLTP systems. You can reduce the impact of queue management by

utilizing CPUs with higher clock speed; however, there are some limits on what you can

achieve with hardware.

There are several things you can do when you experience this situation:

•	 Make sure that SQL Server schedulers are evenly balanced across

NUMA nodes. For example, if SQL Server is using 10 cores on a

2-NUMA-node server with 8 cores per node, set the affinity mask to

use 5 cores per node. Unevenly balanced schedules may introduce

various performance issues in the system and affect Availability

Group throughput.

•	 Reduce the number of log records generated in the system.

Some options are to redesign the transaction strategy to avoid

autocommitted transactions; remove unused and redundant

indexes; and fine-tune the index FILLFACTOR property to reduce the

page splits in the system.

•	 Rearchitect data tier in the system. It is very common that different

data in the system may have different RPO (recovery point objective)

requirements and tolerances to the data loss. You may consider

moving some data to another Availability Group that does not require

synchronous commit and/or utilize NoSQL technologies for some

entities.

Chapter 12 Troubleshooting Concurrency Issues

260

Finally, if you are using SQL Server prior to 2016, you should consider upgrading to

the latest version of the product. SQL Server 2016 has several internal optimizations that

dramatically increase Availability Group throughput over that of SQL Server 2012 and

2014. It may be the simplest solution in many cases.

Note  You may experience the same commit latency problems with synchronous
database mirroring. You should monitor the DBMIRROR_SEND wait type in this case.

�Readable Secondaries and Row Versioning
The Enterprise Edition of SQL Server allows you to configure read-only access to the

secondary nodes in AlwaysOn Availability Groups, thus scaling the read-only workload

in the system. This, however, may lead to unexpected side effects on the primary node in

the group.

When you run queries against secondary nodes, SQL Server always uses the

SNAPSHOT isolation level, ignoring the SET TRANSACTION ISOLATION LEVEL statement

and locking hints. It allows it to eliminate possible readers/writers blocking, and it

happens even if you did not enable the ALLOW_SNAPSHOT_ISOLATION database option.

It also means that SQL Server will use row versioning on the primary node. You

may not be able to use optimistic isolation levels programmatically when they are not

enabled; nevertheless, SQL Server would use row versioning internally. The databases

on the primary and secondary nodes are exactly the same, and it is impossible to use row

versioning only on the secondary nodes.

As you will remember from Chapter 6, this behavior will introduce additional tempdb

load to support the version store. It may also increase index fragmentation due to the

14-byte pointers appended to the data rows during data modifications. However, it also

leads to another phenomenon. Long-running SNAPSHOT transactions on secondary nodes

may defer ghost and version-store cleanup on the primary node. SQL Server cannot

remove deleted rows and reuse the space, because of the possibility that a SNAPSHOT

transaction on the secondary node will need to access the old versions of the rows.

Let’s look at an example and create two tables in the database, as shown in

Listing 12-11. The table dbo.T1 will have 65,536 rows and will use 65,536 pages—one row

per data page.

Chapter 12 Troubleshooting Concurrency Issues

261

Listing 12-11.  Readable secondaries: Tables creation

create table dbo.T1

(

 ID int not null,

 Placeholder char(8000) null,

 constraint PK_T1

 primary key clustered(ID)

);

create table dbo.T2

(

 Col int

);

;with N1(C) as (select 0 union all select 0) -- 2 rows

,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows

,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows

,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows

,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows

,IDs(ID) as (select row_number() over (order by (select null)) from N5)

insert into dbo.T1(ID)

 select ID from IDs;

As the next step, let’s start a transaction on the secondary node and run the

query against the dbo.T2 table, as shown in Listing 12-12. Even though we are using

explicit transactions, the same behavior will occur with long-running statements in

autocommitted transactions.

Listing 12-12.  Readable secondaries: Starting transaction on secondary node

begin tran

 select * from dbo.T2;

Next, let’s delete all data from the dbo.T1 table and then run a query that will do a

Clustered Index Scan on the primary node. The code is shown in Listing 12-13.

Chapter 12 Troubleshooting Concurrency Issues

262

Listing 12-13.  Readable secondaries: Deleting data and performing CI Scan

delete from dbo.T1;

go

-- Waiting 1 minute

waitfor delay '00:01:00.000';

set statistics io on

select count(*) from dbo.T1;

set statistics io off

--Output: Table 'T1'. Scan count 1, logical reads 65781

As you can see, despite the fact that the table is empty, the data pages have not been

deallocated. This leads to significant I/O overhead on the primary node.

Finally, let’s look at the index statistics using the code from Listing 12-14.

Listing 12-14.  Readable secondaries: Analyzing index statistics

select index_id, index_level, page_count, record_count, version_ghost_

record_count

from sys.dm_db_index_physical_stats(db_id(),object_id(N'dbo.

T1'),1,NULL,'DETAILED');

Figure 12-12 shows the output of the query. As you can see, the leaf index level

shows 65,536 rows in the version_ghost_record_count column. This column contains

the number of ghosted rows that cannot be removed due to the active transactions in

the system that rely on row versioning. In our case, this transaction runs on a different

(secondary) node.

Figure 12-12.  Index statistics

Chapter 12 Troubleshooting Concurrency Issues

263

There is nothing special about this behavior. The ghost and version store cleanup

tasks would behave the same way if SNAPSHOT transactions were running on the primary

node. It is very common, however, to see systems in which people offload non-optimized

reporting queries to secondary nodes without understanding the potential impact it may

have on the primary node.

Remember this behavior when you plan to use readable secondaries, and apply the

same considerations as when you enable optimistic isolation levels in the system. On the

flip side, there is absolutely no reason to avoid using optimistic isolation levels when you

have readable secondaries enabled. SQL Server already uses row versioning internally,

even if you do not enable it in the database.

�Working with the Blocking Monitoring Framework
Wait statistics analysis provides a holistic picture of system health and may help to

identify bottlenecks in all areas of the system, including locking and blocking. You may

be able to evaluate how badly a system suffers from concurrency issues; however, in the

end, you will need to detect and address individual blocking and deadlock cases to solve

the problems.

As we have already discussed in Chapters 4 and 5 of this book, troubleshooting is

relatively straightforward. You need to understand the root cause of the issue by reverse

engineering the blocking or deadlock condition. You need to identify the resources,

lock types, and processes involved and analyze why the processes acquired, held, and

competed for locks on the same resources. In the majority of cases, it requires you to

analyze the queries and their execution plans.

Both blocked process reports and deadlock graphs contain required information.

They, however, have dependencies on the SQL Server state at the time of the event. In

many cases, you need to query the plan cache and other data management views to

obtain the text and plan of the queries. The longer you wait, the less likely it will be that

the information will be available.

There are plenty of monitoring tools present on the market, and many of them

will capture and provide you the data. As another option, you can install the Blocking

Monitoring Framework, which I have already mentioned in this book. This framework

use Event Notifications, and it parses the blocking process report and deadlock graph,

persisting the data in a set of tables. The parsing happens at the time the event occurred,

while the information is still available through data management views.

Chapter 12 Troubleshooting Concurrency Issues

264

At the time of writing this book, the framework consists of three main tables:

•	 The dbo.BlockedProcessesInfo table stores information about

blocking occurrences based on blocked process reports. It includes

duration of the blocking, resources and lock types involved, and

blocking and blocked sessions details, along with queries and their

execution plans.

•	 The dbo.Deadlocks table stores information about deadlock events in

the system.

•	 The dbo.DeadlockProcesses table provides information about the

processes involved in the deadlock, including text and execution

plans of the statements that triggered it.

You can use the captured data to troubleshoot individual blocking occurrences.

Moreover, you can aggregate it to identify the queries most commonly involved in

blocking or deadlock cases.

Listing 12-15 shows code that returns ten queries that have been blocked the most in

the last three days. It groups the data by plan_hash, which combines queries with similar

execution plans. Consider ad-hoc queries that have different parameter values but end

up with similar execution plans, as in the example.

The code returns the first query and execution plan that matches the plan_hash

value, along with blocking statistics. Alternatively, in SQL Server 2016 and above, you

can join the data with Query Store data management views to correlate information from

multiple sources.

Note  You can use the dbo.DeadlockProcesses table instead of the
dbo.BlockedProcessesInfo table to obtain information about queries most
frequently involved in deadlocks.

Chapter 12 Troubleshooting Concurrency Issues

265

Listing 12-15.  Getting top 10 queries that were blocked the most

;with Data

as

(

 select top 10

 i.BlockedPlanHash

 ,count(*) as [Blocking Counts]

 ,sum(WaitTime) as [Total Wait Time (ms)]

 from

 dbo.BlockedProcessesInfo i

 group by

 i.BlockedPlanHash

 order by

 sum(WaitTime) desc

)

select

 d.*, q.BlockedSql

from

 Data d

 cross apply

 (

 select top 1 BlockedSql

 from dbo.BlockedProcessesInfo i2

 where i2.BlockedPlanHash = d.BlockedPlanHash

 order by EventDate desc

) q;

Listing 12-16 shows code that returns a list of tables most frequently involved in

blocking resulting from waiting for object-level intent (I*) locks. This blocking may occur

due to lock escalation, and you may benefit from disabling it on affected tables.

Do not forget that schema modification (Sch-M) locks will also block all other object-

level lock requests—factor it into your analysis.

Chapter 12 Troubleshooting Concurrency Issues

266

Listing 12-16.  Identifying the tables that may suffer from lock escalation–related

blocking

;with Objects(DBID,ObjID,WaitTime)

as

(

 select

 ltrim(rtrim(substring(b.Resource,8,o.DBSeparator - 8)))

 ,substring(b.Resource, o.DBSeparator + 1, o.ObjectLen)

 ,b.WaitTime

 from

 dbo.BlockedProcessesInfo b

 cross apply

 (

 select

 charindex(':',Resource,8) as DBSeparator

 ,charindex(':',Resource, charindex(':',Resource,8) + 1) -

 charindex(':',Resource,8) - 1 as ObjectLen

) o

 where

 left(b.Resource,6) = 'OBJECT' and

 left(b.BlockedLockMode,1) = 'I'

)

select

 db_name(DBID) as [database]

 ,object_name(ObjID, DBID) as [table]

 ,count(*) as [# of events]

 ,sum(WaitTime) / 1000 as [Wait Time(Sec)]

from Objects

group by

 db_name(DBID), object_name(ObjID, DBID);

The Blocking Monitoring Framework is an extremely useful tool for the analysis and

troubleshooting of concurrency issues. I would recommend installing it on your servers.

Chapter 12 Troubleshooting Concurrency Issues

267

Note  The current (August 2018) version of the framework is included in the
companion materials for this book. You can download the latest version from my
blog: http://aboutsqlserver.com/bmframework/.

�Summary
Databases do not live in a vacuum. They are part of a large ecosystem that includes

various hardware and software components. Slowness and unresponsiveness of client

applications are not necessarily database- or SQL Server–related issues. The root cause

of the problem can be found anywhere in the system, from hardware misconfiguration to

incorrect application code.

It is important to check the entire system infrastructure as an initial step in the

troubleshooting process. This includes the performance characteristics of the hardware,

network topology and throughput, operating system and SQL Server configuration, and

the processes and databases running on the server.

SQL Server consists of several major components, including the protocol layer, query

processor, storage engine, utilities, and SQL Server Operating System (SQLOS). SQLOS is

the layer between the OS and all other SQL Server components, and it is responsible for

scheduling, resource management, and several other low-level tasks.

SQLOS creates a number of schedulers equal to the number of logical processors in

the system. Every scheduler is responsible for managing a set of workers that perform a

job. Every task is assigned to one or more workers for the duration of the execution.

Tasks stay in one of three major states during execution: RUNNING (currently

executing on scheduler), RUNNABLE (waiting for scheduler to execute), and SUSPENDED

(waiting for the resource). SQL Server tracks the cumulative waiting time for the different

types of waits and exposes this information to the users. Wait statistics analysis is a

common performance troubleshooting technique that analyzes top system wait types

and eliminates the root causes of waits.

Every lock type has a corresponding wait type, which helps you to identify what

type of blocking happens the most in the system. Nevertheless, you need to analyze

individual blocking and deadlock cases, understand the root causes of the events, and

address them during troubleshooting.

Chapter 12 Troubleshooting Concurrency Issues

http://aboutsqlserver.com/bmframework/

269
© Dmitri Korotkevitch 2018
D. Korotkevitch, Expert SQL Server Transactions and Locking, https://doi.org/10.1007/978-1-4842-3957-5_13

CHAPTER 13

In-Memory OLTP
Concurrency Model
The In-Memory OLTP technology, introduced in SQL Server 2014, can significantly

improve the performance and throughput of OLTP systems. The key technology

component—memory-optimized tables—stores the data in-memory, utilizing lock- and

latch-free multi-versioning concurrency control.

This chapter will provide an overview of the In-Memory OLTP Concurrency Model

and explain how the Engine handles transactions internally.

�In-Memory OLTP Overview
Way back when SQL Server and other major databases were originally designed,

hardware was very expensive. Servers at that time had just one or very few CPUs and a

small amount of installed memory. Database servers had to work with data that resided

on disk, loading it into memory on demand.

The situation has changed dramatically since then. During the last 30 years, memory

prices have dropped by a factor of ten every five years, and hardware has become more

affordable. While it is also true that databases have become larger, it is often possible for

active operational data to fit into memory.

Obviously, it is beneficial to have data cached in the buffer pool. It reduces the load

on the I/O subsystem and improves system performance. However, when systems work

under a heavy concurrent load, it is often not enough to obtain required throughput.

SQL Server manages and protects page structures in memory, which introduces large

overhead and does not scale well. Even with row-level locking, multiple sessions cannot

modify data on the same data page simultaneously; they must wait for each other.

270

Perhaps the last sentence needs to be clarified. Obviously, multiple sessions can

modify data rows on the same data page, holding exclusive (X) locks on different rows

simultaneously. However, they cannot update physical data-page and row objects

simultaneously because it could corrupt the in-memory page structure. SQL Server

addresses this problem by protecting pages with latches. Latches work in a similar

manner to locks, protecting internal SQL Server data structures on the physical level by

serializing write access to them so only one thread can update data on the data page in

memory at any given point in time.

In the end, this limits the improvements that can be achieved with the current

database engine’s architecture. Although you can scale hardware by adding more CPUs

and cores, that serialization quickly becomes a bottleneck and a limiting factor in

improving system scalability.

Note  You can monitor PAGELATCH* waits for the resources in users’ databases
to understand the impact of latch contention in the system.

The In-Memory OLTP Engine, introduced in SQL Server 2014, addresses that issue.

The core component of the Engine—memory-optimized tables—stores and manages all

data completely in-memory, persisting it on disk only for durability purposes. The data

rows are, in a nutshell, individual in-memory objects. They are not stored on the data

pages; the rows are linked together through chains of memory pointers—one chain per

index. It is also worth noting that memory-optimized tables do not share memory with

disk-based tables and live outside of the buffer pool.

Let’s illustrate this with an example and create a memory-optimized table, as shown

in Listing 13-1.

Note  This technology requires you to create another filegroup in the database
to store In-Memory OLTP data. The database-creation script is included in the
companion material for this book.

Chapter 13 In-Memory OLTP Concurrency Model

271

Listing 13-1.  Creating the memory-optimized table

create table dbo.People

(

 Name varchar(64) not null

 constraint PK_People

 primary key nonclustered

 hash with (bucket_count = 1024),

 City varchar(64) not null,

 index IDX_City nonclustered hash(City)

 with (bucket_count = 1024),

)

with (memory_optimized = on, durability = schema_and_data);

This table has two hash indexes defined on the Name and City columns. Hash

indexes are the new type of index supported by In-Memory OLTP. We are not going to

discuss them in depth in this book, but as a general overview, they consist of a hash

table (an array of hash buckets, each of which contains a memory pointer to the data

row). SQL Server applies a hash function to the index-key columns, and the result of the

function determines to which bucket a row belongs. All rows that have the same hash

value and belong to the same bucket are linked together in a row chain; every row has a

pointer to the next row in the chain.

Note  It is extremely important to properly size a hash table in the hash index. You
should define bucket_count to be about 1.5–2 times bigger than the number of
unique key values in the index.

In-Memory OLTP also supports nonclustered indexes, which have a relatively
similar structure to B-Tree indexes in disk-based tables. They are a good choice
when index selectivity cannot be estimated.

Figure 13-1 illustrates this. Solid arrows represent pointers in the index on the

Name column. Dotted arrows represent pointers in the index on the City column. For

simplicity’s sake, let’s assume that the hash function generates a hash value based on the

first letter of the string. Two numbers, displayed in each row, indicate row lifetime, which

I will explain shortly.

Chapter 13 In-Memory OLTP Concurrency Model

272

�Multi-Version Concurrency Control
As I just mentioned, every row in a memory-optimized table has two values, called

BeginTs and EndTs, which define the lifetime of the row. A SQL Server instance

maintains the Global Transaction Timestamp value, which is auto-incremented when

the transaction commits and is unique for every committed transaction. BeginTs stores

the Global Transaction Timestamp of transactions that insert a row, and EndTs stores the

timestamp of transactions that delete a row. A special value called Infinity is used as

the EndTs for rows that have not been deleted.

The rows in memory-optimized tables are never updated. The update operation

creates a new version of the row, with a new Global Transaction Timestamp set as

BeginTs, and marks the old version of the row as deleted by populating the EndTs

timestamp with the same value.

At the time when a new transaction starts, In-Memory OLTP assigns the logical start

time for the transaction, which represents the Global Transaction Timestamp value

at the time when the transaction starts. It dictates what version of the rows is visible

to the transaction. A transaction can see a row only when its logical start time (Global

Transaction Timestamp value at time when the transaction starts) is between the

BeginTs and EndTs timestamps of the row.

To illustrate that, let’s assume that we ran the statement shown in Listing 13-2 and

committed the transaction when the Global Transaction Timestamp value was 100.

Figure 13-1.  Memory-optimized table with two hash indexes

Chapter 13 In-Memory OLTP Concurrency Model

273

Listing 13-2.  Updating data in the dbo.People table

update dbo.People

set City = 'Cincinnati'

where Name = 'Ann'

Figure 13-2 illustrates the data in the table after this update transaction has been

committed. As you can see, we now have two rows with Name='Ann' and different

lifetimes. The new row has been appended to the row chain referenced by the hash

bucket for the value of A in the index on the Name column. The hash index on the City

column did not have any rows referenced by the C bucket; therefore, the new row

becomes the first in the row chain referenced from that bucket.

Let’s assume that you need to run a query that selects all rows with Name='Ann' in

the transaction with the logical start time (Global Transaction Timestamp at time when

transaction started) of 110. SQL Server calculates the hash value for Ann, which is A,

and finds the corresponding bucket in the hash index on the Name column. It follows

the pointer from that bucket, which references a row with Name='Adam'. This row has

a BeginTs of 10 and an EndTs of Infinity; therefore, it is visible to the transaction.

However, the Name value does not match the predicate, and the row is ignored.

In the next step, SQL Server follows the pointer from the Adam index pointer array,

which references the first Ann row. This row has a BeginTs of 100 and an EndTs of

Infinity; therefore, it is visible to the transaction and needs to be selected.

Figure 13-2.  Data in the table after update

Chapter 13 In-Memory OLTP Concurrency Model

274

As a final step, SQL Server follows the next pointer in the index. Even though the last

row also has Name='Ann', it has an EndTs of 100 and is invisible to the transaction.

SQL Server keeps track of the active transactions in the system and detects stale

rows with an EndTs timestamp older than the logical start time of the oldest active

transaction in the system. Stale rows are invisible for active transactions in the system,

and eventually they are removed from the index row chains and deallocated by the

garbage collection process.

As you should have already noticed, this concurrency behavior and data consistency

corresponds to the SNAPSHOT transaction isolation level when every transaction sees

the data as of the time the transaction started. SNAPSHOT is the default transaction

isolation level in the In-Memory OLTP Engine, which also supports the REPEATABLE

READ and SERIALIZABLE isolation levels. However, REPEATABLE READ and SERIALIZABLE

transactions in the In-Memory OLTP behave differently than they do with disk-based

tables. In-Memory OLTP raises an exception and rolls back a transaction if REPEATABLE

READ or SERIALIZABLE data-consistency rules were violated rather than blocking a

transaction, as with disk-based tables.

In-Memory OLTP documentation also indicates that autocommitted (single

statement) transactions can run in the READ COMMITTED isolation level. However,

this is a bit misleading. SQL Server promotes and executes such transactions in the

SNAPSHOT isolation level and does not require you to explicitly specify the isolation

level in your code. Similar to SNAPSHOT transactions, the autocommitted READ

COMMITTED transaction would not see the changes committed after the transaction

started, which is a different behavior compared to READ COMMITTED transactions

performed against disk-based tables.

Let’s look at transaction isolation levels and the In-Memory OLTP Concurrency

Model in more detail.

�Transaction Isolation Levels in In-Memory OLTP
In-Memory OLTP supports three transaction isolation levels: SNAPSHOT, REPEATABLE

READ, and SERIALIZABLE. However, In-Memory OLTP uses a completely different

approach to enforcing data-consistency rules as compared to disk-based tables. Rather

than block or be blocked by other sessions, In-Memory OLTP validates data consistency

Chapter 13 In-Memory OLTP Concurrency Model

275

at the transaction COMMIT time and throws an exception and rolls back the transaction if

rules were violated:

•	 In the SNAPSHOT isolation level, any changes made by other sessions

are invisible to the transaction. A SNAPSHOT transaction always works

with a snapshot of the data as of the time when the transaction

started. The only validation at the time of commit is checking for

primary-key violations, which is called snapshot validation.

•	 In the REPEATABLE READ isolation level, In-Memory OLTP validates

that the rows that were read by the transaction have not been

modified or deleted by other transactions. A REPEATABLE READ

transaction would not be able to commit if this was the case. That

action is called repeatable read validation and is executed in addition

to snapshot validation.

•	 In the SERIALIZABLE isolation level, SQL Server performs repeatable

read validation and also checks for phantom rows that were possibly

inserted by other sessions. This process is called serializable

validation and is executed in addition to snapshot validation.

Let’s look at a few examples that demonstrate this behavior. As a first step, shown in

Listing 13-3, let’s create a memory-optimized table and insert a few rows. We will run

that script, resetting the data to its original state before each test.

Listing 13-3.  Data consistency and transaction isolation levels: Table creation

drop table if exists dbo.HKData;

create table dbo.HKData

(

 ID int not null

 constraint PK_HKData

 primary key nonclustered hash with (bucket_count=64),

 Col int not null

)

with (memory_optimized=on, durability=schema_only);

insert into dbo.HKData(ID, Col) values(1,1),(2,2),(3,3),(4,4),(5,5);

Chapter 13 In-Memory OLTP Concurrency Model

276

Table 13-1 shows how concurrency works in the REPEATABLE READ transaction

isolation level. It is important to note that SQL Server starts a transaction at the moment

of the first data access rather than at the time of the BEGIN TRAN statement. Therefore,

the session 1 transaction starts at the time when the first SELECT operator executes.

Table 13-1.  Concurrency in the REPEATABLE READ Transaction Isolation Level

Session 1 Session 2 Results

begin tran

 select ID, Col

 from dbo.HKData

 with (repeatableread)

update dbo.HKData

set Col = -2

where ID = 2

 select ID, Col

 from dbo.HKData

 with (repeatableread)

Return old version of a row

(Col = 2)

commit Msg 41305, Level 16, State 0,

Line 0

The current transaction failed

to commit due to a repeatable

read validation failure.

begin tran

 select ID, Col

 from dbo.HKData

 with (repeatableread)

insert into dbo.HKData

values(10,10)

 select ID, Col

 from dbo.HKData

 with (repeatableread)

Does not return new row

(10,10)

commit Success

Chapter 13 In-Memory OLTP Concurrency Model

277

As you can see, with memory-optimized tables, other sessions were able to modify

data that was read by the active REPEATABLE READ transaction. This led to a transaction

abort at the time of COMMIT when the repeatable read validation failed. This is a

completely different behavior than that of disk-based tables, where other sessions are

blocked, unable to modify data until the REPEATABLE READ transaction successfully

commits.

It is also worth noting that in the case of memory-optimized tables, the REPEATABLE

READ isolation level protects you from the phantom read phenomenon, which is not the

case with disk-based tables. The BeginTs value of the newly inserted rows would exceed

the logical start time of the active transaction (more on it later), making them invisible

for the transaction.

As a next step, let’s repeat these tests in the SERIALIZABLE isolation level. You can

see the code and the results of the execution in Table 13-2. Remember to rerun the

initialization script from Listing 13-3 before the test.

Table 13-2.  Concurrency in the SERIALIZABLE Transaction Isolation Level

Session 1 Session 2 Results

begin tran

 select ID, Col

 from dbo.HKData

 with (serializable)

update dbo.HKData

set Col = -2

where ID = 2

 select ID, Col

 from dbo.HKData

 with (serializable)

Return old version of a row

(Col = 2)

commit Msg 41305, Level 16, State 0,

Line 0

The current transaction failed

to commit due to a repeatable

read validation failure.

(continued)

Chapter 13 In-Memory OLTP Concurrency Model

278

As you can see, the SERIALIZABLE isolation level prevents the session from

committing a transaction when another session inserts a new row and violates the

serializable validation. Like the REPEATABLE READ isolation level, this behavior is

different from that of disk-based tables, where the SERIALIZABLE transaction successfully

blocks other sessions until the transaction is complete.

Finally, let’s repeat the tests in the SNAPSHOT isolation level. The code and results are

shown in Table 13-3.

Session 1 Session 2 Results

begin tran

 select ID, Col

 from dbo.HKData

 with (serializable)

insert into dbo.HKData

values(10,10)

 select ID, Col

 from dbo.HKData

 with (serializable)

Does not return new row

(10,10)

commit Msg 41325, Level 16, State 0,

Line 0

The current transaction failed

to commit due to a serializable

validation failure.

Table 13-2.  (continued)

Chapter 13 In-Memory OLTP Concurrency Model

279

The SNAPSHOT isolation level behaves in a similar manner to disk-based tables,

and it protects from the non-repeatable reads and phantom reads phenomena. As you

can guess, it does not need to perform repeatable read and serializable validations at

the commit stage, and therefore it reduces the load on SQL Server. However, there is

still snapshot validation, which checks for primary-key violations and is done in any

transaction isolation level.

Table 13-3.  Concurrency in the SNAPSHOT Transaction Isolation Level

Session 1 Session 2 Results

begin tran

 select ID, Col

 from dbo.HKData

 with (snapshot)

update dbo.HKData

set Col = -2

where ID = 2

 select ID, Col

 from dbo.HKData

 with (snapshot)

Return old version of a row

(Col = 2)

commit Success

begin tran

 select ID, Col

 from dbo.HKData

 with (snapshot)

insert into dbo.HKData

values(10,10)

 select ID, Col

 from dbo.HKData

 with (snapshot)

Does not return new row (10,10)

commit Success

Chapter 13 In-Memory OLTP Concurrency Model

280

It is worth mentioning that the error number and message are the same as with the

serializable validation failure even though SQL Server validated a different rule.

Write/write conflicts work the same way regardless of the transaction isolation level

in In-Memory OLTP. SQL Server does not allow a transaction to modify a row that has

been modified by other uncommitted transactions. Table 13-5 illustrates this behavior. It

uses the SNAPSHOT isolation level; however, the behavior does not change with different

isolation levels.

Table 13-4 shows the code that leads to the primary-key violation condition. In

contrast to disk-based tables, the exception is raised at the commit stage rather than at

the time of the second INSERT operation.

Table 13-4.  Primary Key Violation

Session 1 Session 2 Results

begin tran

 �insert into dbo.

HKData

 with (snapshot)

 (ID, Col)

 values(100,100)

begin tran

 insert into dbo.HKData

 with (snapshot)

 (ID, Col)

values(100,100)

commit Successfully commit the first

session

commit Msg 41325, Level 16, State 1,

Line 0

The current transaction failed

to commit due to a serializable

validation failure.

Chapter 13 In-Memory OLTP Concurrency Model

281

Table 13-5.  Write/Write Conflicts in In-Memory OLTP

Session 1 Session 2 Results

begin tran

 select ID, Col

 from dbo.HKData

 with (snapshot)

begin tran

 update dbo.HKData

 with (snapshot)

 set Col = -3

 where ID = 2

commit

update dbo.HKData

 with (snapshot)

 set Col = -2

 where ID = 2

Msg 41302, Level 16, State 110, Line 1

The current transaction attempted to

update a record that has been updated

since this transaction started. The

transaction was aborted.

Msg 3998, Level 16, State 1, Line 1

Uncommittable transaction is detected at

the end of the batch. The transaction is

rolled back.

The statement has been terminated.

begin tran

 select ID, Col

 from dbo.HKData

 with (snapshot)

begin tran

 update dbo.HKData

 with (snapshot)

 set Col = -3

 where ID = 2

(continued)

Chapter 13 In-Memory OLTP Concurrency Model

282

�Cross-Container Transactions
The In-Memory OLTP Engine is fully integrated in SQL Server, and it works side-by-

side with the classic Storage Engine. The databases may include both disk-based and

memory-optimized tables, and you can query them transparently regardless of their

technologies.

Transactions that involve both disk-based and memory-optimized tables are called

cross-container transactions. You can use different transaction isolation levels for disk-

based and memory-optimized tables. However, not all combinations are supported.

Table 13-6 illustrates possible combinations for transaction isolation levels in cross-

container transactions.

Session 1 Session 2 Results

 update dbo.HKData

 with (snapshot)

 set Col = -2

 where ID = 2

Msg 41302, Level 16, State 110, Line 1

The current transaction attempted to

update a record that has been updated

since this transaction started. The

transaction was aborted.

Msg 3998, Level 16, State 1, Line 1

Uncommittable transaction is detected at

the end of the batch. The transaction is

rolled back.

The statement has been terminated.

commit Successful commit of Session 2

transaction

Table 13-5.  (continued)

Table 13-6.  Isolation Levels Allowed for Cross-Container Transactions

Isolation Levels for Disk-based Tables Isolation Levels for Memory-optimized Tables

READ UNCOMMITTED, READ COMMITTED,

READ COMMITTED SNAPSHOT

SNAPSHOT, REPEATABLE READ, SERIALIZABLE

REPEATABLE READ, SERIALIZABLE SNAPSHOT only

SNAPSHOT Not supported

Chapter 13 In-Memory OLTP Concurrency Model

283

As you already know, internal implementations of REPEATABLE READ and

SERIALIZABLE isolation levels are very different for disk-based and memory-optimized

tables. Data-consistency rules with disk-based tables rely on locking, while In-Memory

OLTP uses pre-commit validation. It leads to a situation in cross-container transactions

where SQL Server only supports SNAPSHOT isolation levels for memory-optimized tables,

while disk-based tables require REPEATABLE READ or SERIALIZABLE isolation levels.

Moreover, SQL Server does not allow access to memory-optimized tables when

disk-based tables require SNAPSHOT isolation. Cross-container transactions, in a nutshell,

consist of two internal transactions: one for disk-based and another one for memory-

optimized tables. It is impossible to start both transactions at exactly the same time and

guarantee the state of the data at the moment the transaction starts.

As a general guideline, it is recommended to use the READ COMMITTED/SNAPSHOT

combination in cross-container transactions during a regular workload. This

combination provides minimal blocking and the least pre-commit overhead and should

be acceptable in a large number of use cases. Other combinations are more appropriate

during data migrations when it is important to avoid the non-repeatable and phantom

reads phenomena.

As you may have already noticed, SQL Server requires you to specify the transaction

isolation level with a table hint when you are accessing memory-optimized tables. This

does not apply to individual statements that execute outside of the explicitly started

(with BEGIN TRAN) transaction. As with disk-based tables, such statements are executed

in the individual autocommitted transactions, which are active for the duration of the

statement execution.

An isolation level hint is not required for statements running in autocommitted

transactions. When the hint is omitted, the statement runs in the SNAPSHOT isolation

level.

Note  Implicit transactions are not supported in In-Memory OLTP.

SQL Server allows you to keep a NOLOCK hint while accessing memory-optimized

tables from autocommitted transactions. That hint is ignored. A READUNCOMMITTED hint,

however, is not supported and triggers an error.

Chapter 13 In-Memory OLTP Concurrency Model

284

There is a useful database option called MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT,

which is disabled by default. When this option is enabled, SQL Server allows you to

omit the isolation level hint in non-autocommitted transactions. SQL Server uses the

SNAPSHOT isolation level, as with autocommitted transactions, if the isolation level hint

is not specified and the MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT option is enabled.

Consider enabling this option when you port an existing system to In-Memory OLTP and

have T-SQL code that accesses tables that become memory-optimized.

�Transaction Lifetime
Although I have already discussed a few key elements used by In-Memory OLTP to

manage data access and the concurrency model, let’s review them here:

•	 Global Transaction Timestamp is an auto-incremented value that

uniquely identifies every transaction in the system. SQL Server

increments and obtains this value at the transaction commit stage.

•	 Every row has BeginTs and EndTs timestamps, which correspond to

the Global Transaction Timestamp of the transaction that created or

deleted this version of the row.

At the time when a new transaction starts, In-Memory OLTP generates a

TransactionId value, which uniquely identifies the transaction. Moreover, In-Memory

OLTP assigns the logical start time for the transaction, which represents the Global

Transaction Timestamp value at the time when the transaction starts. It dictates what

version of the rows is visible to the transaction. The logical start time should be in

between the BeginTs and EndTs in order for the row to be visible.

When the transaction issues a COMMIT statement, In-Memory OLTP increments the

Global Transaction Timestamp value and assigns it to the transaction’s logical end time.

The logical end time will become the BeginTs for the rows inserted and the EndTs for the

rows deleted by the transaction after it is committed.

Figure 13-3 shows the lifetime of a transaction that works with memory-optimized

tables.

Chapter 13 In-Memory OLTP Concurrency Model

285

When a transaction needs to delete a row, it updates the EndTs timestamp with the

TransactionId value. Remember that the transaction’s logical end time is unknown at

this phase, and therefore In-Memory OLTP uses the TransactionId as the temporary

value. The insert operation creates a new row with the BeginTs of the TransactionId

and the EndTs of Infinity. Finally, the update operation consists of delete and insert

operations internally. It is also worth noting that during data modifications, transactions

raise an error if there are any uncommitted versions of the rows they are modifying. It

prevents write/write conflicts when multiple sessions modify the same data.

When another transaction—call it Tx1—encounters uncommitted rows with a

TransactionId within the BeginTs and EndTs timestamps (TransactionId has a

flag that indicates such a condition), it checks the status of the transaction with that

TransactionId. If that transaction is committing and the logical end time is already set,

those uncommitted rows may become visible for the Tx1 transaction, which leads to

a situation called commit dependency. Tx1 is not blocked; however, it does not return

data to the client nor commit until the original transaction on which it has a commit

dependency commits itself. I will talk about commit dependencies shortly.

Let’s look at a transaction lifetime in detail. Figure 13-4 shows the data rows after

we created and populated the dbo.HKData table in Listing 13-3, where we inserted five

different rows into the table: (1,1), (2,2), (3,3), (4,4), (5,5). Let’s assume that

the rows were created by a transaction with the Global Transaction Timestamp of 5. (The

hash index structure is omitted for simplicity’s sake.)

Figure 13-3.  Transaction lifetime

Chapter 13 In-Memory OLTP Concurrency Model

286

Let’s assume that the transaction performs the operations shown in Listing 13-4. The

explicit transaction has already started, and the BEGIN TRAN statement is not included in

the listing. All three statements are executing in the context of a single active transaction.

Listing 13-4.  Data modification operations

insert into dbo.HKData with (snapshot) (ID, Col) values(10,10);

update dbo.HKData with (snapshot) set Col = -2 where ID = 2;

delete from dbo.HKData with (snapshot) where ID = 4;

Figure 13-5 illustrates the state of the data after data modifications. An INSERT

statement created a new row, a DELETE statement updated the EndTs value in the row

with ID=4, and an UPDATE statement changed the EndTs value of the row with ID=2

and created a new version of the row with the same ID. I am using a negative value of

TransactionId (-8) to indicate that the transaction is active and that a logical end time

has not yet been assigned.

It is important to note that the transaction maintains a write set, or pointers to

rows that have been inserted and deleted by a transaction, which is used to generate

transaction log records.

In addition to the write set, in the REPEATABLE READ and SERIALIZABLE isolation

levels, transactions maintain a read set of the rows read by a transaction and use it for

repeatable read validation. Finally, in the SERIALIZABLE isolation level, transactions

maintain a scan set, which contains information about predicates used by the queries in

the transaction. The scan set is used for serializable validation.

Figure 13-4.  Data in the dbo.HKData table after insert

Chapter 13 In-Memory OLTP Concurrency Model

287

As the next step, the transaction starts a validation phase. SQL Server performs

several validations based on the isolation level of the transaction, as shown in Table 13-7.

When a COMMIT request is issued, the transaction starts the validation phase. First,

it autoincrements the current Global Transaction Timestamp value, which becomes

the logical end time of the transaction. Figure 13-6 illustrates this state, assuming that

the new Global Transaction Timestamp value is 11. Note that the BeginTs and EndTs

timestamps in the rows still have TransactionId (-8) at this stage.

Figure 13-5.  Data in the dbo.HKData table after modifications

Figure 13-6.  Start of validation phase

Chapter 13 In-Memory OLTP Concurrency Model

288

Important R epeatable read and serializable validations add overhead to the
system. Do not use REPEATABLE READ and SERIALIZABLE isolation levels
unless you have a legitimate use case for such data consistency.

After the required rules have been validated, the transaction waits for the commit

dependencies to clear and the transaction on which it depends to commit. If those

transactions fail to commit for any reason—for example, validation rules violation—the

dependent transaction is also rolled back, and an Error 41301 is generated.

At this moment, the rows modified by transactions become visible to other

transactions in the system even though the transaction has yet to be committed, which

can lead to commit dependencies. Again, we will talk about them shortly.

Figure 13-7 illustrates a commit dependency scenario. Transaction Tx2 can access

uncommitted rows from transaction Tx1 during the Tx1 validation and commit phases,

and therefore Tx2 has a commit dependency on Tx1. After the Tx2 validation phase is

complete, Tx2 has to wait for Tx1 to commit and the commit dependency to clear before

entering the commit phase.

Table 13-7.  Yes/No Done in the Different Transaction Isolation Levels

Snapshot Validation Repeatable Read
Validation

Serializable Validation

Checking for primary-key

violations

Checking for non-repeatable

reads

Checking for phantom

reads

SNAPSHOT YES NO NO

REPEATABLE

READ

YES YES NO

SERIALIZABLE YES YES YES

Chapter 13 In-Memory OLTP Concurrency Model

289

If Tx1, for example, failed to commit due to a serializable validation violation, Tx2

would be rolled back with Error 41301, as shown in Figure 13-8.

Figure 13-7.  Commit dependency: Successful commit

Figure 13-8.  Commit dependency: Validation error

A commit dependency is technically a case of blocking in In-Memory

OLTP. However, the validation and commit phases of the transactions are relatively

short, and such blocking should not be excessive.

SQL Server allows a maximum of eight commit dependencies on a single

transaction. When this number is reached, other transactions that try to take a

dependency would fail with Error 41839.

Chapter 13 In-Memory OLTP Concurrency Model

290

Note  You can track commit dependencies using the dependency_
acquiredtx_event and waiting_for_dependenciestx_event Extended
Events.

When all commit dependencies are cleared, the transaction moves to the commit

phase, generates one or more log records, saves them to the transaction log, then moves

to the post-commit phase.

It is worth noting that In-Memory OLTP transaction logging is significantly more

efficient than that for disk-based tables. The In-Memory OLTP Engine combines

multiple data modifications in one or a few transaction log records and writes them to

the transaction log only if the transaction has been successfully committed. Nothing is

logged for rolled-back transactions.

In the post-commit phase, the transaction replaces BeginTs and EndTs timestamps

with the logical end time value and decrements commit dependencies counters in the

dependent transactions. Figure 13-9 illustrates the final state of the transaction.

Figure 13-9.  Completed transaction

Finally, if a transaction is rolled back either due to an explicit ROLLBACK command

or because of a validation violation, In-Memory OLTP resets the EndTs timestamp of the

deleted rows back to Infinity. The new versions of the rows inserted by the transaction

become ghosted. They will be deallocated by the regular garbage-collection process

running in the system.

Chapter 13 In-Memory OLTP Concurrency Model

291

�Referential Integrity Enforcement
It is impossible to enforce referential integrity in pure SNAPSHOT isolation level because

transactions are completely isolated from each other. Consider a situation where a

transaction deletes a row that is referenced by a newly inserted row in another transaction

that started after the original one. This newly inserted row would be invisible to the

SNAPSHOT transaction that executes the DELETE statement during referential integrity check.

In-Memory OLTP addresses this problem by maintaining read and/or scan sets in

the SNAPSHOT isolation level for the tables and queries that were affected by referential

integrity validation.

In contrast to REPEATABLE READ and SERIALIZABLE transactions, those read and scan

sets are maintained only for affected tables rather than for entire transactions. They,

however, would include all rows that were read and all predicates that were applied

during the referential integrity check.

This behavior can lead to issues when the referencing table does not have an index

on the foreign key column(s). Similar to disk-based tables, SQL Server will have to scan

the entire referencing (detail) table when you delete a row in the referenced (master)

table. In addition to performance impact, the transaction will maintain the read set,

which includes all rows it read during the scan, regardless of whether those rows

referenced the deleted row. If any other transactions update or delete any rows from the

read set, the original transaction would fail with a repeatable read rule violation error.

Let’s look at the example and create two tables with the code in Listing 13-5.

Listing 13-5.  Referential integrity validation: Tables creation

create table dbo.Branches

(

 BranchId int not null

 constraint PK_Branches

 primary key nonclustered hash with (bucket_count = 4)

)

with (memory_optimized = on, durability = schema_only);

create table dbo.Transactions

(

 TransactionId int not null

 constraint PK_Transactions

Chapter 13 In-Memory OLTP Concurrency Model

292

 primary key nonclustered hash with (bucket_count = 4),

 BranchId int not null

 constraint FK_Transactions_Branches

 foreign key references dbo.Branches(BranchId),

 Amount money not null

)

with (memory_optimized = on, durability = schema_only);

insert into dbo.Branches(BranchId) values(1),(10);

insert into dbo.Transactions(TransactionId,BranchId,Amount)

values(1,1,10),(2,1,20);

The dbo.Transactions table has a foreign key constraint referencing the dbo.

Branches table. There are no rows, however, referencing the row with BranchId = 10.

As the next step, let’s run the code shown in Listing 13-6, deleting this row from the dbo.

Branches table and leaving the transaction active.

Listing 13-6.  Referential integrity validation: First session code

begin tran

 delete from dbo.Branches with (snapshot) where BranchId = 10;

The DELETE statement would validate the foreign key constraint and would complete

successfully. The dbo.Transactions table, however, does not have an index on the

BranchId column, and the validation will need to scan the entire table, as you can see in

Figure 13-10.

Figure 13-10.  Referential integrity validation: Execution plan of DELETE
statement

Chapter 13 In-Memory OLTP Concurrency Model

293

At this time, all rows from the dbo.Transactions table would be included in the

transaction read set. If another session updated one of the rows from the read set with

the code shown in Listing 13-7, it would succeed, and the first session would fail to

commit, offering a repeatable read rule violation error.

Listing 13-7.  Referential integrity validation: Second session code

update dbo.Transactions with (snapshot)

set Amount = 30

where TransactionId = 2;

Important  Similar to disk-based tables, you should always create an index on
the foreign key columns in the referencing table to avoid this problem.

�Additional Resources
In-Memory OLTP is a fascinating technology that may significantly improve the

performance and scalability of OLTP systems. This chapter focused on only one aspect

of the technology—the In-Memory OLTP Concurrency Model—and did not even scratch

the surface of other technology areas.

I have published another book with Apress, Expert SQL Server In-Memory OLTP,

which provides a deep overview of the technology. You might consider reading it if you

are planning to utilize In-Memory OLTP in your systems. The first edition focuses on

SQL Server 2014 implementation. The second edition covers SQL Server 2016 and 2017’s

technology enhancements.

�Summary
In-Memory OLTP supports three transaction isolation levels, SNAPSHOT, REPEATABLE

READ, and SERIALIZABLE. In contrast to disk-based tables, where non-repeatable

and phantom reads are addressed by acquiring and holding locks, In-Memory OLTP

validates data-consistency rules at the transaction commit stage. An exception will be

raised and the transaction will be rolled back if rules were violated.

Chapter 13 In-Memory OLTP Concurrency Model

294

Repeatable read validation and serializable validation add overhead to transaction

processing. It is recommended to use the SNAPSHOT isolation level during a regular

workload unless REPEATABLE READ or SERIALIZABLE data consistency is required.

SQL Server performs repeatable read and serializable validations to enforce

referential integrity in the system. Always create an index on the foreign key columns in

the referencing tables to improve performance and avoid validation errors.

You can use different transaction isolation levels for disk-based and memory-

optimized tables in cross-container transactions; however, not all combinations are

supported. The recommended practice is to use the READ COMMITTED isolation level for

disk-based and the SNAPSHOT isolation level for memory-optimized tables.

Chapter 13 In-Memory OLTP Concurrency Model

295
© Dmitri Korotkevitch 2018
D. Korotkevitch, Expert SQL Server Transactions and Locking, https://doi.org/10.1007/978-1-4842-3957-5_14

CHAPTER 14

Locking in Columnstore
Indexes
Columnstore indexes are a type of index that stores data on a per-column rather than

per-row basis. This storage format benefits query processing in data warehousing,

reporting, and analytics environments where, although queries typically read a very

large number of rows, they work with just a subset of the columns from a table.

This chapter will provide an overview of column-based storage and discuss the

locking behavior of columnstore indexes and their usage in OLTP systems.

�Column-Based Storage Overview
Even though every database system is unique, there are two generic workloads—OLTP

and Data Warehouse. OLTP, which stands for Online Transactional Processing, describes

systems that support the operational activity of a business. Such systems usually handle a

large number of simultaneous requests in short transactions and deal with volatile data.

Data Warehouse systems, on the other hand, support the reporting and analytical

activities of a business. The data in these systems is relatively static and is often

updated based on some schedule. The queries are complex, and they usually perform

aggregations and process large amounts of data.

For example, consider a company that sells items to customers. A typical OLTP

query from the company’s point-of-sale (POS) system might have the following

semantic: Provide a list of orders that were placed by this particular customer this month.

Alternatively, a typical query in a Data Warehouse system might read as follows: Provide

the total amount of sales year to date, grouping the results by item category and customer

region.

296

The separation between OLTP and Data Warehouse systems is relatively thin

though. Almost every OLTP system has some reporting queries. It is also not uncommon

to see OLTP queries in Data Warehouse systems. Finally, there is another category of

tasks called Operational Analytics, which run analytical queries against hot OLTP data.

Think about a point-of-sale system in which you want to monitor up-to-date sales and

dynamically adjust items’ sale price based on their popularity.

Performance tuning a system with a mixed workload is not a trivial task. OLTP and

Data Warehouse queries would take advantage of different database schema designs and

indexing strategies, and they may also benefit from different storage technologies.

In the classic row-based storage format, the data from all columns is stored together

in a single data row object. This approach works great in cases with volatile data—the

data from all columns is grouped together, and INSERT, UPDATE, and DELETE operations

may be done as a single action. B-Tree indexes are good for OLTP workload, when

queries typically deal with one or just a handful of rows from large tables.

Row-based storage, however, is not optimal for Data Warehouse queries that scan

a large amount of data. Such queries usually work with just a subset of the columns

from a table, and it is impossible to avoid reading entire data row objects while skipping

unnecessary columns.

Data compression may help to reduce the size of the data and I/O overhead.

However, with row-based storage, PAGE compression works on a data-page scope. The

data from different columns is not similar enough for compression to be effective, and

PAGE compression rarely compresses the data more than 2 or 2.5 times.

SQL Server 2012 introduced a new type of index-the columnstore index-which keeps

data in a column-based storage format. These indexes store data on a per-column rather

than on a per-row basis. Data in each column is stored together, separate from other

columns, as shown in Figure 14-1.

Figure 14-1.  Row-based and column-based storage

Chapter 14 Locking in Columnstore Indexes

297

Data in columnstore indexes is heavily compressed using algorithms that provide

significant space savings, even when compared to PAGE compression. Moreover, SQL

Server can skip columns that are not requested by a query, and it does not load the data

from those columns into memory, significantly reducing the I/O footprint of the query.

Moreover, the new data storage format of columnstore indexes allows SQL Server

to implement a new batch mode execution model. In this model, SQL Server processes

data in groups of rows, or batches, rather than one row at a time. The size of the batches

varies to fit into the CPU cache, which reduces the number of times that the CPU needs

to request external data from memory, or other components. All these enhancements

significantly reduce the CPU load and execution time of Data Warehouse queries.

Columnstore indexes are a relatively new feature in SQL Server and have been

evolving rapidly. Initial implementation in SQL Server 2012 supported just read-only

nonclustered columnstore indexes that stored a copy of the data from a table in a column-

based storage format. Those indexes essentially made tables read-only, and the only way

to import data was via partition switch. We are not going to discuss those indexes; from a

locking standpoint, their behavior was straightforward.

As of SQL Server 2014, you can create tables with clustered columnstore indexes

and store entire tables in a column-based storage format. These indexes are updatable;

however, you cannot define any nonclustered indexes on those tables.

This limitation has been removed in SQL Server 2016, where you can utilize

different storage technologies for the indexes defined on a table. You can support a

mixed workload by creating nonclustered B-Tree indexes on the tables with clustered

columnstore indexes or, alternatively, you can create updateable nonclustered

columnstore indexes on B-Tree tables. It is worth noting that you can create columnstore

indexes in memory-optimized tables, thus improving the performance of Operational

Analytics queries in In-Memory OLTP.

�Columnstore Index Internals Overview
Each data column in column-based storage is stored separately in a set of structures

called row groups. Each row group stores data for up to approximately one million—

or, to be precise, 2^20=1,048,576—rows. SQL Server tries to populate row groups

completely during index creation, leaving the last row group partially populated. For

example, if a table has five million rows, SQL Server creates four row groups of 1,048,576

rows each and one row group with 805,696 rows.

Chapter 14 Locking in Columnstore Indexes

298

In practice, you can have more than one partially populated row group when

multiple threads create columnstore indexes using a parallel execution plan. Each

thread will work with its own subset of data, creating separate row groups. Moreover, in

the case of partitioned tables, each table partition will have its own set of row groups.

After row groups are built, SQL Server encodes and compresses the column data in

each row group. The rows within a row group can be rearranged if that helps to achieve a

better compression rate.

Column data within a row group is called a segment. SQL Server loads an entire

segment to memory when it needs to access columnstore data. SQL Server also keeps

information about data in the segments’ metadata—for example, minimum and

maximum values stored in the segment—and can skip the segments that do not have the

required data.

The data that belong to the same data row are identified by the offset within the

segments. For example, the first row in the table consists of the first values from all

segments from the first row group on the first table partition. The second row consists

of the second values from all segments from the same row group, and so forth. The

combination of partition_id, row_group_id, and offset uniquely identifies the row

and is called a row-id in columnstore indexes.

The data in columnstore indexes is heavily compressed and can introduce significant

space savings compared to page compression. It is common to see column-based

storage providing a more than 10X compression rate over the row-based data. Moreover,

SQL Server 2014 introduced another compression option called archival compression

that reduces storage space even further. It uses the Xpress 8 compression library, which

is an internal Microsoft implementation of the LZ77 algorithm. This compression works

directly with row-group data without having any knowledge of the underlying SQL

Server data structures.

Updateable columnstore indexes have two additional elements to support data

modifications. The first is the delete bitmap, which stores the row-id of the rows that

were deleted from a table. The second structure is the delta store, which stores the newly

inserted rows. In disk-based columnstore indexes, both the delta store and the delete

bitmap are implemented as regular heap tables.

Chapter 14 Locking in Columnstore Indexes

299

Note T he internal structure of columnstore indexes defined on memory-
optimized tables is conceptually the same; however, the delta store and delete
bitmap are implemented differently. Such indexes support In-Memory OLTP multi-
version concurrency control and do not introduce any locking in memory-optimized
tables. You can read more about them in my Expert SQL Server In-Memory OLTP
book; we are not going to focus on them in this book.

Figure 14-2 illustrates the structure of an updateable columnstore index in a table

that has two partitions. Each partition can have a single delete bitmap and multiple

delta stores. This structure makes each partition self-contained and independent from

other partitions, which allows you to perform a partition switch on tables that have

columnstore indexes defined.

It is worth noting that delete bitmaps and delta stores are created on-demand. For

example, a delete bitmap would not be created unless some of the rows in the row

groups were deleted.

Every time you delete a row that is stored in a compressed row group (not in a delta

store), SQL Server adds information about the deleted row to the delete bitmap. Nothing

happens to the original row. It is still stored in a row group. However, SQL Server checks

the delete bitmap during query execution, excluding deleted rows from the processing.

Figure 14-2.  Updateable columnstore index structure

Chapter 14 Locking in Columnstore Indexes

300

As already mentioned, when you insert data into a columnstore index, it goes into

a delta store, which is a heap table. Updating a row that is stored in a row group does

not change the row data either. Such an update triggers the deletion of a row, which is,

in fact, insertion into a delete bitmap marking old version as deleted, and insertion of a

new version of the row into a delta store. However, any data modifications of the rows in

a delta store are done in-place as in regular heap tables by updating and deleting actual

rows there.

Each delta store can be in either an open or a closed state. Open delta stores accept

new rows and allow modifications and deletions of data. SQL Server closes a delta store

when it reaches 1,048,576 rows, which is the maximum number of rows that can be

stored in a row group. Another SQL Server process, called tuple mover, runs every five

minutes and converts closed delta stores to row groups that store data in a column-

based storage format.

Both large delta stores and delete bitmaps may affect query performance. SQL Server

must access delete bitmaps to check if compressed rows were deleted, and it reads the

rows from delta stores during query execution. Consider rebuilding indexes on affected

partitions if ETL processes lead to large delta stores and delete bitmaps.

Tip  You can examine the state of row groups and delta stores with the sys.
column_store_row_groups view. Rows in an OPEN or CLOSED state
correspond to delta stores. Rows in a COMPRESSED state correspond to row groups
with data in a column-based storage format. Finally, the deleted_rows column
provides statistics about deleted rows stored in a delete bitmap.

�Locking Behavior in Columnstore Indexes
Storage space savings and the updateable nature of clustered columnstore indexes make

them appealing as a replacement for large transactional tables in OLTP environments.

Their locking behavior, however, is very different than that of B-Tree indexes, and it may

not scale well in environments with a large number of concurrent transactions.

Let’s look at a few examples. As a first step, shown in Listing 14-1, we will create a table

with a clustered columnstore index and insert about four million rows there. After the

columnstore index is created, we will try to insert another row into the table, rolling back

Chapter 14 Locking in Columnstore Indexes

301

the transaction afterward. This will create an empty delta store in the index. Finally, we

will analyze the state of the row groups using the sys.column_store_row_groups view.

Listing 14-1.  Creating a test table

create table dbo.Test

(

 ID int not null,

 Col int not null

);

;with N1(C) as (select 0 union all select 0) -- 2 rows

,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows

,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows

,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows

,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows

,N6(C) AS (select 0 from N5 as T1 cross join N3 as T2 cross join N2 as T3)

-- 4,194,304 rows

,IDs(ID) as (select row_number() over (order by (select null)) from N6)

insert into dbo.Test(ID, Col)

 select ID, ID from IDs;

create clustered columnstore index CCI_Test

on dbo.Test

with (maxdop = 1);

begin tran

 insert into dbo.Test(ID, Col) values(-1,-1);

rollback

go

select *

from sys.column_store_row_groups

where object_id = object_id(N'dbo.Test');

Figure 14-3 illustrates the output from the view. Four row groups in a COMPRESSED state

store the data in a column-based format. An empty row group with row_group_id = 4 in

the OPEN state is in the delta store.

Chapter 14 Locking in Columnstore Indexes

302

Now, let’s run a few tests and analyze the locking behavior of the index.

�Inserting Data into Clustered Columnstore Index
Columnstore indexes support two types of data load. The first, and most efficient,

method requires you to utilize a BULK INSERT API for loading data in large batches. In

this mode, SQL Server creates a new row group for each batch, compressing data into

a column-based format on the fly. Since every batch becomes an individual row group,

multiple inserts would not block each other and could run in parallel.

The minimum size of the batch that triggers this behavior is about 102,000 rows;

however, you will get the best results if you use batches that match the maximum row

group size, which is 1,048,576 rows.

With smaller batches and single-row inserts, SQL Server uses trickle inserts, placing

data into delta stores. Each table partition will have separate delta stores, and in some

cases you may have several open delta stores per partition. SQL Server closes the delta

store and compresses its data into a column-based format when it reaches 1,048,576

rows or when you run an index rebuild operation.

Let’s insert a single row into a table and then analyze what locks get acquired during

the process. The code is shown in Listing 14-2.

Listing 14-2.  Inserting data into the table

begin tran

 insert into dbo.Test(ID, Col)

 values(-1,-1);

 select

 resource_type, resource_description

 ,request_mode, request_status

 ,resource_associated_entity_id

Figure 14-3.  Row groups after table was created

Chapter 14 Locking in Columnstore Indexes

303

 from sys.dm_tran_locks

 where

 request_session_id = @@SPID;

rollback

As you can see in Figure 14-4, the locking behavior is similar to locking in heap

tables. SQL Server acquired an exclusive (X) lock on the newly inserted row, along with

intent exclusive (IX) locks on the page and HOBT (allocation unit). It also acquired an

intent exclusive (IX) lock on the row group, which is conceptually similar to the object-

level lock on the table.

As you can guess, this behavior indicates that you may scale the insert workload in

a way similar to how you do so with heap tables. Multiple sessions can insert data in

parallel without blocking each other.

�Updating and Deleting Data from Clustered Columnstore
Indexes
The situation changes when you update or delete data in the table. Unfortunately, this

workload does not scale as well as inserts do.

Let’s update one row in the table using the code from Listing 14-3. As you may

remember, when a row is stored in a delta store, this operation is done in-place. Updating

an already compressed row, on the other hand, will lead to two operations—marking a

row as deleted by inserting the row-id into the delete bitmap and inserting a new version

of the row into a delta store.

Figure 14-4.  Locks acquired by INSERT operation

Chapter 14 Locking in Columnstore Indexes

304

Listing 14-3.  Updating data in the table

begin tran

 update dbo.Test

 set Col += 1

 where ID=1;

 select

 resource_type, resource_description

 ,request_mode, request_status

 ,resource_associated_entity_id

 from sys.dm_tran_locks

 where

 request_session_id = @@SPID

rollback

Figure 14-5 shows the locks that are held after the operation. You can see exclusive

(X) and intent exclusive (IX) locks acquired on the delta store and delete bitmap objects

(both are heap tables). However, the row groups and HOBT of the delta store are

protected with update intent exclusive (UIX) rather than intent exclusive (IX) locks.

The same pattern would occur if you deleted a compressed row from a table.

Listing 14-4 shows the code that performs that.

Figure 14-5.  Locks acquired by UPDATE operation

Chapter 14 Locking in Columnstore Indexes

305

Listing 14-4.  Deleting data from the table

begin tran

 delete from dbo.Test where ID=1;

 select

 resource_type, resource_description

 ,request_mode, request_status

 ,resource_associated_entity_id

 from sys.dm_tran_locks

 where

 request_session_id = @@SPID

rollback

Figure 14-6 shows the locks held after the DELETE statement. This operation does not

touch the delta store, and only the delete bitmap is affected. Nevertheless, there is still an

update intent exclusive (UIX) lock on the row group from which we deleted the row.

The reason why SQL Server uses update intent exclusive (UIX) locks is simple. The

data in columnstore indexes is not sorted, and SQL Server has to scan it during query

execution. Partition and segment elimination may allow SQL Server to skip some row

groups; however, when a row group is scanned, SQL Server acquires an update intent

exclusive (UIX) lock on it and runs an update scan, reading all rows from there.

Figure 14-7 proves that by showing the execution plan of the UPDATE statement from

Listing 14-3. You can see the Columnstore Index Scan operator there.

Figure 14-6.  Locks acquired by DELETE operation

Figure 14-7.  Execution plan of UPDATE statement

Chapter 14 Locking in Columnstore Indexes

306

Unfortunately, update intent exclusive (UIX) locks are incompatible with each other.

Moreover, they are held until the end of the transaction. This means that concurrent

update and delete workloads could introduce a large amount of blocking and would not

scale well in OLTP systems.

SQL Server 2016 and above allow you to create nonclustered B-Tree indexes on

clustered columnstore index tables. Those indexes can eliminate update scans of

column-based data by using Nonclustered Index Seek and Key Lookup operations.

Note T he key lookup operations on clustered columnstore and B-Tree indexes
are conceptually similar. SQL Server locates a row in a clustered columnstore index
based on partition_id, row_group_id, and offset from the row-id.

Let’s create the index using the CREATE NONCLUSTERED INDEX Idx_Test_ID ON

dbo.Test(ID) statement and run the code from Listing 14-3 again. Figure 14-8 illustrates

an execution plan of the UPDATE statement with Nonclustered Index Seek and Key Lookup

operations.

Figure 14-9 shows the locks that were held after this UPDATE statement. As you can

see, SQL Server did not acquire update intent exclusive (UIX) locks on the row groups,

using intent exclusive (IX) locks instead. This lock type is compatible with intent locks

from other sessions.

Figure 14-8.  Execution plan of UPDATE statement with nonclustered index

Chapter 14 Locking in Columnstore Indexes

307

Even though you can technically scale update and delete workloads with

nonclustered B-Tree indexes, this approach is dangerous. The choice of using a

nonclustered index would depend on index selectivity and the query. SQL Server may

decide to scan a columnstore index if it expects that a large number of Key Lookups is

required, which will lead to blocking in the system.

�Nonclustered Columnstore Indexes
SQL Server 2016 and above allow you to create nonclustered columnstore indexes on

B-Tree tables. These indexes persist a copy of the data in column-based format, thus

helping to optimize Operational Analytics and reporting workloads in OLTP systems. In

contrast to SQL Server 2012 implementation, these indexes are updatable and do not

make a table read-only.

Listing 14-5 shows the code that drops a clustered columnstore index on the dbo.

Test table, creating clustered B-Tree and nonclustered columnstore indexes after that.

As before, we are running an INSERT statement and rolling back the transaction to create

an empty delta store in the index.

Listing 14-5.  Creating nonclustered columnstore index on table

drop index IDX_Test_ID on dbo.Test;

drop index CCI_Test on dbo.Test;

create unique clustered index CI_Test_ID

on dbo.Test(ID);

Figure 14-9.  Locks held by UPDATE statement with nonclustered index

Chapter 14 Locking in Columnstore Indexes

308

create nonclustered columnstore index NCCI_Test

on dbo.Test(ID,Col)

with (maxdop=1);

begin tran

 insert into dbo.Test(ID, Col) values(-1,-1);

rollback

Figure 14-10 shows the output of the sys.column_store_row_groups view for the

NCCI_TestData index. The data in the table remain the same, and the index consists of

four compressed row groups and an empty delta store.

Figure 14-11 shows the locks held when you run the code from Listing 14-3 with

the UPDATE statement again. SQL Server tracks the row locations in the nonclustered

columnstore index through another internal structure called a delete buffer, which maps

the values of clustered index keys and columnstore row-ids. This allows SQL Server to

avoid update scans on column-based storage and to use intent exclusive (IX) rather than

update intent exclusive (UIX) locks.

Nonclustered columnstore indexes have been designed to work in OLTP workloads,

and they would scale well without introducing additional concurrency issues in the system.

Figure 14-10.  Row groups in nonclustered columnstore index

Figure 14-11.  Locks held after UPDATE statement

Chapter 14 Locking in Columnstore Indexes

309

�Tuple Mover and ALTER INDEX REORGANIZE Locking
Finally, let’s look at the locking behavior of the tuple mover process and the ALTER INDEX

REORGANIZE operation. Both of them compress closed delta stores into compressed row

groups and essentially do the same thing; however, their implementation is slightly

different. Tuple mover is a single-threaded process that works in the background,

preserving system resources. Alternatively, index reorganizing runs in parallel using

multiple threads.

SQL Server acquires and holds a shared (S) lock on the delta store during the

compression process. These locks do not prevent you from selecting the data from a

table, nor do they block inserts. New data will be inserted into different and open delta

stores; however, deletions and data modifications on locked delta stores would be

blocked for the duration of the operation.

Figure 14-12 illustrates lock_acquired and lock_released Extended Events taken on

delta stores during the ALTER INDEX REORGANIZE command. You can see the shared (S)

locks taken during the operation.

The associated_object_id column indicates delta store hobt_id, which we can

confirm by analysing the sys.column_store_row_groups view. Figure 14-13 shows the

state of the row groups after ALTER INDEX REORGANIZE has been completed. The row

groups in the TOMBSTONE state indicate delta stores that have just been compressed and

are waiting to be deallocated. As you can see, the delta_store_hobt_id values of those

filegroups match resources on which shared (S) locks were taken.

Figure 14-12.  Locking during ALTER INDEX REORGANIZE command

Chapter 14 Locking in Columnstore Indexes

310

As you can guess, this behavior would not scale well with update and delete

workloads in OLTP systems.

�Wrapping Up
While it is appealing to use clustered columnstore indexes to store data in OLTP

environments, this is rarely the best choice. Updateability in these indexes has been

designed to simplify ETL processes and perform infrequent data modifications. While

clustered columnstore indexes may handle append-only workloads, they would not

scale well in generic OLTP workloads with a large number of concurrent transactions

that modify data in the table.

You can still benefit from clustered columnstore indexes in OLTP systems. Many

of the systems need to retain data for a prolonged period of time, and the volatility

of the data and workload would change as the data becomes older. You can partition

the data across several tables, combining columnstore, B-Tree, and In-Memory OLTP

tables together with partitioned views. This will allow you to get the most from each

technology, thus improving system performance and reducing the size of the data in the

database.

Note I have discussed this architecture in detail, including the methods for data
movements between tables, in my Pro SQL Server Internals book.

Figure 14-13.  Row groups after ALTER INDEX REORGANIZE command

Chapter 14 Locking in Columnstore Indexes

311

�Summary
Columnstore indexes store data in a column-based format, persisting it on a per-column

rather than per-row basis. This approach may significantly improve the performance of

Data Warehouse, Operational Analytics, and reporting workloads in the system.

The data in columnstore indexes are heavily compressed. Clustered columnstore

indexes may provide significant storage-space reduction as compared to B-Tree tables.

They, however, do not scale well from a locking standpoint under OLTP workloads with

multiple concurrent sessions modifying the data in parallel. You should not use them as

a replacement for OLTP tables in such environments.

Finally, I would like to thank you again for reading this book! It was a pleasure to

write for Thank you!

Chapter 14 Locking in Columnstore Indexes

313
© Dmitri Korotkevitch 2018
D. Korotkevitch, Expert SQL Server Transactions and Locking, https://doi.org/10.1007/978-1-4842-3957-5

Index

A
ABORT_AFTER_WAIT option for

low-priority locks, 187
ACID, 25
Allocation maps, 8
Allocation map scan, 14, 217
Allocation unit, 3
ALTER DATABASE SET ALLOW_

SNAPSHOT_ISOLATION
statement, 140

ALTER DATABASE SET READ_
COMMITTED_SNAPSHOT
statement, 139

ALTER INDEX REBUILD statement, 211
ALTER INDEX REORGANIZE

statement in columnstore
indexes, 309

ALTER TABLE REBUILD statement, 10
ALTER TABLE SET LOCK_ESCALATION

statement, 169
AlwaysOn Availability Groups, 255
Application lock, 203
Archival compression in columnstore

indexes, 298
Asynchronous commit in AlwaysOn

Availability Groups, 256
Atomicity, transaction

property, 25–26
Autocommitted

transactions, 29–30, 213, 283

B
Batch mode execution, 297
BEGIN TRAN statement, 29
BeginTs timestamp, 272, 284
Blocked process report, 82, 245, 263
blocked_process_report Extended Event,

see Extended events
Blocked process threshold configuration

option, 82
Blocking, 235
Blocking chains, 80, 252–255
Blocking monitoring

framework, 263–266
B-Tree, see B-Tree index
B-Tree index, 11–16, 271
bucket_count in hash index, 271

C
Catalog views, see Data management and

catalog views
Clustered columnstore index, 297
Clustered index, 2, 11–16
Column-based storage, 296
Columnstore indexes, 1, 296, 297
Commit dependency, 285, 288
COMMIT statement, 29
Composite indexes, 17, 18
Compound indexes, see Composite

indexes

https://doi.org/10.1007/978-1-4842-3957-5

314

Consistency model, 27
Consistency, transaction property, 26
Conversion locks, 69–71
CONVERT_IMPLICIT operator, 16
Cost Threshold for Parallelism

configuration setting, 236
Covering indexes, 22
Critical section, 204
Cross-container transactions in

In-Memory OLTP, 282–284
CXPACKET wait type, see Wait types

D
Data consistency phenomena, 26
Data management and catalog views

sys.column_store_row_groups
view, 301

sys.databases catalog view, 152
sys.dm_db_file_space_usage

view, 149–150
sys.dm_db_index operational_stats

function, 246
sys.dm_db_index physical_stats

function, 5
sys.dm_db_index usage_stats

view, 246–247
sys.dm_exec_buffer function, 244
sys.dm_exec_connections view, 244
sys.dm_exec_procedure_stats

view, 127
sys.dm_exec_query_plan function, 244
sys.dm_exec_query_plan_text

function, 244
sys.dm_exec_query_stats view, 87, 236
sys.dm_exec_sessions view, 82, 244
sys.dm_exec_session_wait_stats

view, 245

sys.dm_exec_sql_text function, 125, 244
sys.dm_io_virtual_file_stats

function, 31
sys.dm_os_exec_requests

view, 75, 243
sys.dm_os_waiting_tasks

view, 75, 245
sys.dm_os_wait_tasks view, 229
sys.dm_tran_locks

view, 51, 74, 186, 207
sys.dm_tran_version_store_space_

usage view, 150
sys.dm_tran_version_store view, 150
sys.tables catalog view, 170

Data Warehouse, 295
DBMIRROR_SEND wait type,

see Wait types
DBCC SQLPERF, 229
Deadlock, 109, 178, 195–201, 204

IGNORE_DUP_KEY deadlock, 129
Key Lookup deadlock, 114–115
multiple updates deadlock, 115–121
non-optimized queries

deadlock, 111–112
Deadlock graph, 122, 263
Deadlock monitor task, 110
Dedicated admin connection, 227
Delayed durability, 33
Delete bitmap, 298
Delete buffer, 308
Delta store, 298
dependency_acquiredtx_event Extended

Event, see Extended events
Dirty reads, 26, 64
Disk-based table, 2
Done task state, see Task state
Duplicated reads phenomenon, 65
Durability, transaction property, 26

Index

315

E
EndTs timestamp, 272, 284
@@ERROR, 35
Error

1204, 169
1205, 110, 135
3960, 143

Error handling, 34–41
ERROR_LINE() function, 37
ERROR_MESSAGE() function, 36
ERROR_NUMBER() function, 36
ERROR_PROCEDURE() function, 37
ERROR_SEVERITY() function, 37
ERROR_STATE() function, 37
Event Notifications, 88–106
Exclusive (X) lock, see Lock types
Execution model in SQL Server, 225–234
Explicit transactions, 29, 283
Extended events

blocked_process_report, 84
dependency_acquiredtx_event, 290
wait_info, 245
wait_info_external, 246
waiting_for_dependency_acquiredtx_

event, 290
xml_deadlock_report, 122

Extents, 7

F
FILLFACTOR index property, 156
forwarded_record_count, 10
Forwarded row, 9
Forwarding pointer, 9

G
Global Transaction timestamp, 272, 284

H
HADR_SYNC_COMMIT wait type,

see Wait types
Hash index, 271
Heap tables, 2, 8–10, 298
High Availability, 255
HOLDLOCK locking hint, see Locking hints

I, J
IAM pages, 8
IGNORE_DUP_KEY index option, 129–133
Implicit transactions, 33, 283
Included columns, see Indexes with

included columns
Index Allocation Maps, 8
Indexes with included columns, 22–24
Index fragmentation, 13, 138, 153
Index scan, 14
Index seek, 15
In-Memory OLTP, 1, 226
IN_ROW_DATA allocation unit, 3
Intent (I*) locks, see Lock types
Intermediate level in B-Tree, 11
Isolation level, see Transaction

isolation levels
Isolation, transaction property, 26

K
Key Lookup operation, 20

L
Latches, 270
LCK_M_* wait types, see Wait types
Leaf level in B-Tree, 11
LOB columns, 60

Index

316

LOB_DATA allocation unit, 3
Lock compatibility, 57–64
Lock escalation, 159, 241, 247, 265
Locking hints

HOLDLOCK, 63
NOLOCK, 63, 140, 217, 283
NOWAIT, 68
PAGLOCK, 68, 163
READCOMMITTED, 63, 146
READPAST, 68, 208
READUNCOMMITTED, 283
REPEATABLEREAD, 63, 68
ROWLOCK, 67–68, 163
SERIALIZABLE, 63
TABLOCK, 67, 239, 241
TABLOCKX, 67, 240, 241
UPDLOCK, 67, 208
XLOCK, 67, 120

Lock manager, 47
Lock Memory (KB) performace counter,

see Performance counters
Lock partitioning, 192, 211
Lock queue, 179–185
Locks, 47
Lock types, 47

Exclusive (X) lock, 72, 203, 239
Intent (I*) locks, 51–53, 203, 241
Range (Range*) locks, 61
Schema Modification (Sch-M)

lock, 175, 240, 252
Schema Stability (Sch-S)

lock, 175, 240
Shared intent exclusive (SIX) lock, 71
Shared intent update (SIU) lock, 71
Shared (S) lock, 55–56, 203, 239
Update intent exclusive (UIX)

lock, 71, 304
Update (U) lock, 53–55, 203, 208, 235

Log buffer, 30
Logical end time of In-Memory OLTP

transaction, 284
Logical start time of In-Memory OLTP

transaction, 272, 284
Longest transaction running time

performace counter, see
Performance counters

Low-priority locks, 186–188, 195, 208, 241

M
MAX_DURATION option for low-priority

locks, 187
Max worker thread configuration

option, 227
MEMORY_OPTIMIZED_ELEVATE_TO_

SNAPSHOT database option, 284
Memory-optimized tables, 270
Microsoft Azure SQL

Databases, 1, 29, 139
Mixed extents, 7
Multi-version concurrency control

(MVCC), 272–274
Mutex, 204
Mutual exclusion, 204

N
Nested transactions, 41–45
NOLOCK locking hint, see Locking hints
Nonclustered columnstore

indexes, 297, 307–308
Nonclustered index, 2, 18–22
Non-repeatable reads, 26, 64, 279
Non-uniform memory access

(NUMA), 191
NOWAIT locking hint, see Locking hints

Index

317

O
Oldest active transaction, 274
Online index rebuild, 183
Operational analytics, 296
Optimistic concurrency, 27–28
Optimistic isolation level, 115, 137
Ordered scan, 14

P
PAGEIOLATCH* wait types, see Wait types
PAGELATCH* wait types, see Wait types
Page split, 13, 138, 153
PAGLOCK locking hint, see Locking hints
Pending task state, see Task state
Platform abstraction layer (PAL), 227
Partition, 3
Partition switch, 184
Page Free Space pages, 8
Performance counters

Lock Memory (KB), 161
longest transaction running time, 149
snapshot transactions, 149
update conflict ratio, 149
version cleanup rate (KB/s), 148
version generation rate (KB/s), 148
version store size (KB), 147, 148

Pessimistic concurrency, 27
PFS pages, 8
Phantom reads, 27, 65, 277, 279
Point-lookup, 16
PREEMPTIVE* wait types, see Wait types
Protocol layer, 226

Q
Query processor, 226
Query Store, 88, 238

R
Range (Range*) locks, see Lock types
Range scan, 16
READ COMMITTED isolation level, see

Transaction isolation levels
READCOMMITTED locking hint, see

Locking hints
READ_COMMITTED_SNAPSHOT, see

Transaction isolation levels
READPAST locking hint, see Locking hints
Read set, 286
READ UNCOMMITTED isolation level,

see Transaction isolation levels
READUNCOMMITTED locking hint, see

Locking hints
READ UNCOMMITTED SNAPSHOT

isolation level, see Transaction
isolation levels

Referential integrity
enforcement, 291–293

REPEATABLE READ isolation level, see
Transaction isolation levels

REPEATABLEREAD locking hint, see
Locking hints

Repeatable read violation
error, 275, 291

RID Lookup, 20
ROLLBACK statement, 29
Root level in B-Tree, 12
Row-based storage, 296
Row chain, 271
row-id, 19, 298
Row group in columnstore indexes, 297
ROWLOCK locking hint, see Locking hints
ROW_OVERFLOW_DATA allocation unit, 3
Row versioning, 28, 260–263
Runnable task state, see Task state
Running task state, see Task state

Index

318

S
SARGable predicate, 16
Savepoint, 43
SAVE TRANSACTION statement, 43
Scan set, 286
Schedulers, 227
Schema Modification (Sch-M) lock, see

Lock types
Schema Stability (Sch-S) lock, see Lock

types
Segments in columnstore indexes, 298
SERIALIZABLE isolation level,

see Transaction isolation levels
SERIALIZABLE locking hint,

see Locking hints
Serializable violation error, 275, 280
SET ANSI_DEFAULT option, 33
SET DEADLOCK_PRIORITY

option, 110, 200
SET IMPLICIT_TRANSACTION

option, 33
SET LOCK TIMEOUT option, 69, 184
SET TRANSACTION ISOLATION LEVEL

option, 29, 63
SET XACT_ABORT option, 38, 69, 214
Shared intent exclusive (SIX) lock, see

Lock types
Shared intent update (SIU) lock,

see Lock types
Shared memory protocol, 226
Shared (S) lock, see Lock types
Singleton lookup, see Point-lookup
Skipped rows, 66
SNAPSHOT isolation level, see

Transaction isolation levels
Snapshot transactions performace

counter, see Performance counters
Snapshot violation error, 275

sp_getapplock stored procedure, 203
Spinlock, 228
Spinloop task state, see Task state
sp_releaseapplock stored

procedure, 204
SQLOS, 227
Statement-level consistency, 140
Storage Engine, 1, 226
Suspended task state, see Task state
Synchronous commit in AlwaysOn

Availability Groups, 256–260
sys.column_store_row_groups view, see

Data management and
catalog views

sys.databases catalog view, see Data
management and catalog views

sys.dm_db_file_space_usage view, see Data
management and catalog views

sys.dm_db_index operational_stats
function, see Data management
and catalog views

sys.dm_db_index physical_stats function,
see Data management and catalog
views

sys.dm_db_index usage_stats view, see Data
management and catalog views

sys.dm_exec_buffer function, see Data
management and catalog views

sys.dm_exec_connections view, see Data
management and catalog views

sys.dm_exec_procedure_stats view, see
Data management and catalog
views

sys.dm_exec_query_plan function, see Data
management and catalog views

sys.dm_exec_query_plan_text function,
see Data management and
catalog views

Index

319

sys.dm_exec_query_stats view, see Data
management and catalog views

sys.dm_exec_sessions view, see Data
management and catalog views

sys.dm_exec_session_wait_stats view,
see Data management and
catalog views

sys.dm_exec_sql_text function, see Data
management and catalog views

sys.dm_io_virtual_file_stats function,
see Data management and
catalog views

sys.dm_os_exec_requests view, see Data
management and catalog views

sys.dm_os_waiting_tasks view, see Data
management and catalog views

sys.dm_os_wait_tasks view, see Data
management and catalog views

sys.dm_tran_locks view, see Data
management and catalog views

sys.dm_tran_version_store_space_usage
view, see Data management and
catalog views

sys.dm_tran_version_store view, see Data
management and catalog views

sys.tables catalog view, see Data
management and catalog views

system_health Extended Event
session, 122

T
Table Scan, 8
TABLOCK locking hint,

see Locking hints
TABLOCKX locking hint,

see Locking hints
Tabular data stream (TDS), 226

Task state, 228
tempdb, 8, 28, 137
THROW operator, 37
Trace flags

T1118, 8
T1211, 170
T1222, 122
T1223, 170
T1229, 200

@@TRANCOUNT, 38, 41, 214
Transaction, 25–27
Transaction isolation levels

READ COMMITTED, 28, 59, 63, 138,
217, 239, 240, 282

READ COMMITTED SNAPSHOT, 28,
62, 138–140, 217, 239, 241

READ UNCOMMITTED, 28, 51, 58, 62,
140, 217, 241, 282

REPEATABLE READ, 28, 60, 63, 163,
217, 239, 240, 275, 282

SERIALIZABLE, 28, 61, 63, 141–142,
163, 217, 239, 240, 275, 282

SNAPSHOT, 62, 140–146, 218, 241, 260,
275, 282

Transaction-level consistency, 140
Transaction lifetime in In-Memory

OLTP, 284–290
Transaction logging, 30
TransactionId in In-Memory OLTP, 284
TRY..CATCH block, 36
Tuple mover, 300, 309–310

U
Uncommittable transaction, 37
Uniform extents, 7
Update conflict ratio performace counter,

see Performance counters

Index

320

Update intent exclusive (UIX) lock,
see Lock types

Update (U) lock, see Lock types
UPDLOCK locking hint,

see Locking hints

V
Validation phase of In-Memory OLTP

transaction, 287
Version cleanup rate (KB/s) performace

counter, see Performance counters
Version generation rate (KB/s)

performace counter, see
Performance counters

Version pointer, 137
Version store, 28, 137, 147–152, 260
Version store clean-up task, 141
Version store size (KB) performace

counter, see Performance counters

W
WAIT_AT_LOW_PRIORITY option, 186
wait_info Extended Event, see Extended

events
wait_info_external Extended Event, see

Extended events

waiting_for_dependency_acquiredtx_
event Extended Event, see
Extended events

Wait statistics analysis, 225
Wait types

CXPACKET, 236
DBMIRROR_SEND, 260
HADR_SYNC_COMMIT, 257
LCK_M_I*, 165, 241–242
LCK_M_S, 75, 239
LCK_M_SCH*, 240–241
LCK_M_U, 235–238
LCK_M_X, 239–240
PAGEIOLATCH*, 235
PAGELATCH*, 270
PREEMPTIVE*, 246

Workers, see Worker threads
Worker threads, 227
Write-ahead logging, 26, 30
Write-write conflict, 27, 280
Write set, 286

X, Y, Z
XACT_STATE() function, 37
XLOCK locking hint, see Locking hints
xml_deadlock_report Extended Event, see

Extended events

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Data Storage and Access Methods
	Anatomy of a Table
	Heap Tables
	Clustered Indexes and B-Trees
	Composite Indexes
	Nonclustered Indexes
	Indexes with Included Columns
	Summary

	Chapter 2: Transaction Management and Concurrency Models
	Transactions
	Pessimistic and Optimistic Concurrency
	Transaction Isolation Levels
	Working with Transactions
	Transaction Types
	Error Handling
	Nested Transactions and Savepoints

	Summary

	Chapter 3: Lock Types
	Major Lock Types
	Exclusive (X) Locks
	Intent (I*) Locks
	Update (U) locks
	Shared (S) locks

	Lock Compatibility, Behavior, and Lifetime
	Transaction Isolation Levels and Data Consistency
	Locking-Related Table Hints
	Conversion Locks
	Summary

	Chapter 4: Blocking in the System
	General Troubleshooting Approach
	Troubleshooting Blocking Issues in Real Time
	Collecting Blocking Information for Further Analysis
	Blocking Monitoring with Event Notifications
	Summary

	Chapter 5: Deadlocks
	Classic Deadlock
	Deadlock Due to Non-Optimized Queries
	Key Lookup Deadlock
	Deadlock Due to Multiple Updates of the Same Row
	Deadlock Troubleshooting
	Deadlock Due to IGNORE_DUP_KEY Index Option
	Reducing the Chance of Deadlocks
	Summary

	Chapter 6: Optimistic Isolation Levels
	Row Versioning Overview
	Optimistic Transaction Isolation Levels
	READ COMMITTED SNAPSHOT Isolation Level
	SNAPSHOT Isolation Level

	Version Store Behavior and Monitoring
	Row Versioning and Index Fragmentation
	Summary

	Chapter 7: Lock Escalation
	Lock Escalation Overview
	Lock Escalation Troubleshooting
	Summary

	Chapter 8: Schema and Low-Priority Locks
	Schema Locks
	Lock Queues and Lock Compatibility
	Low-Priority Locks
	Summary

	Chapter 9: Lock Partitioning
	Lock Partitioning Overview
	Deadlocks Due to Lock Partitioning
	Summary

	Chapter 10: Application Locks
	Application Locks Overview
	Application Lock Usage
	Summary

	Chapter 11: Designing Transaction Strategies
	Transaction Strategy Design Considerations
	Choosing Transaction Isolation Level
	Patterns That Reduce Blocking
	Summary

	Chapter 12: Troubleshooting Concurrency Issues
	SQL Server Execution Model
	Lock Waits
	LCK_M_U Wait Type
	LCK_M_S Wait Type
	LCK_M_X Wait Type
	LCK_M_SCH_S and LCK_M_SCH_M Wait Types
	Intent LCK_M_I* Wait Types
	Locking Waits: Summary

	Data Management Views
	sys.db_exec_requests View
	sys.db_os_waiting_tasks View
	sys.db_exec_session_wait_stats view and wait_info xEvent
	sys.db_db_index_operational_stats and sys.dm_db_ index_usage_stats Views

	Blocking Chains
	AlwaysOn Availability Groups and Blocking
	Synchronous Commit Latency
	Readable Secondaries and Row Versioning

	Working with the Blocking Monitoring Framework
	Summary

	Chapter 13: In-Memory OLTP Concurrency Model
	In-Memory OLTP Overview
	Multi-Version Concurrency Control
	Transaction Isolation Levels in In-Memory OLTP
	Cross-Container Transactions
	Transaction Lifetime
	Referential Integrity Enforcement
	Additional Resources
	Summary

	Chapter 14: Locking in Columnstore Indexes
	Column-Based Storage Overview
	Columnstore Index Internals Overview
	Locking Behavior in Columnstore Indexes
	Inserting Data into Clustered Columnstore Index
	Updating and Deleting Data from Clustered Columnstore Indexes
	Nonclustered Columnstore Indexes
	Tuple Mover and ALTER INDEX REORGANIZE Locking
	Wrapping Up

	Summary

	Index

