
Michael Iedema
Foreword by Harvind Samra

BUILD OPEN SOURCE MOBILE NETWORKS

Getting
Started with
 OpenBTS

Compliments of

www.allitebooks.com

http://www.allitebooks.org

Michael Iedema

Getting Started with OpenBTS

www.allitebooks.com

http://www.allitebooks.org

Getting Started with OpenBTS
by Michael Iedema

Copyright © 2015 Range Networks. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Brian MacDonald
Production Editor: Melanie Yarbrough
Copyeditor: Lindsy Gamble
Proofreader: Charles Roumeliotis

Indexer: WordCo Indexing Services
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Rebecca Demarest

January 2015: First Edition

Revision History for the First Edition:

2015-01-12: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781491910658 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Getting Started with OpenBTS, the cover
image of a Sun Conure, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While the publisher and the author have used good faith efforts to ensure that the information and instruc‐
tions contained in this work are accurate, the publisher and the author disclaim all responsibility for errors
or omissions, including without limitation responsibility for damages resulting from the use of or reliance
on this work. Use of the information and instructions contained in this work is at your own risk. If any code
samples or other technology this work contains or describes is subject to open source licenses or the intel‐
lectual property rights of others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

ISBN: 978-1-491-91065-8

[LSI]

www.allitebooks.com

http://safaribooksonline.com
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781491910658
http://www.allitebooks.org

Table of Contents

Foreword. vii
Introduction. ix

1. Getting Set Up. 1
Hardware Components 1

Linux Server 1
Software Defined Radio 2
Antennas 3
Test Phones 3
Test SIMs 4

Operating System and Development Environment Setup 7
Git Compatibility 8
Downloading the Code 8
Building the Code 9

Installation 10
Installing Dependencies 10
Installing Components 11
Starting/Stopping Components 13

2. Initial Testing and Configuration. 15
Initial State 15
Confirm Radio Connectivity 15

Ettus Research Radios 15
Range Networks Radios 18
Troubleshooting USB 18
Troubleshooting Ethernet 19

Starting Up the Network 19
The Configuration System and CLI 19
Changing the Band and ARFCN 20

iii

www.allitebooks.com

http://www.allitebooks.org

Range Networks Radio Calibration 21
Ettus Research Radio Calibration 22

Searching for the Network 23
Testing Radio Frequency Environment Factors 24

Reducing Noise 25
Boosting Handset Power 27

First Connection 27
Finding the IMSI 27
Finding the IMEI 28
Adding a Subscriber 29
Connecting 30

Test SMS 30
Echo SMS (411) 30
Direct SMS 31
Two-Party SMS 32

Test Calls 32
Test Tone Call (2602) 32
Echo Call (2600) 32
Two-Party Call 33
Measuring Link Quality 33

Configuration System, Continued 34
config 34
devconfig 34
rawconfig 35
unconfig 35
rmconfig 35

Personalizing Your Network 36
Shortname 36
Registration Messages 36

3. Troubleshooting and Performance Tuning. 39
The stats Command 39
Runtime Logs 40

Log Levels 41
Environmental Tuning 42

Nonsubscriber Phones 43
Coverage Area 44
Signal Distortion 46

Stronger, Cleaner Signals 46

4. From Single to Multinode. 49
Mobility, Handover, and Roaming 49

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Mobility 49
Handover 50
Roaming 50

Topology 51
Central Services Setup 52

Remove OpenBTS 52
Configure Logging 52
Asterisk, SMQueue, and SIPAuthServe 52

Tower Setup 52
Configure SIP Proxies 53
Configure Logging 54
Topology Reworked 54

Adding Neighboring Towers 54
Must Be Identical 55
Must Be Unique 56
Neighbor List and Command 57
Neighbor-Enabled Commands 58

Coverage Overlap Tuning 58

5. GPRS. 61
Enabling/Disabling 61
Central Services 62
Connecting 62
Troubleshooting 63
Performance Tuning 64

Voice versus GPRS 64
Individual Handset Throughput 65
Coverage Area versus Throughput 66

Expectations 66

6. OpenRegistration. 67
Enabling 67
Personalizing 68
Disabling 69

7. NodeManager APIs. 71
nmcli.py 71
Version API 72
Configuration API 72

Read All Keys 72
Read One Key 73
Update 74

Table of Contents | v

PhysicalStatus API 74

8. Onward and Upward. 77
Connecting to the Outside World 77

Voice 77
SMS 77

Spectrum Regulation 78
Switch Integrations 78
3G Data 78
Open Source Hardware 78
The Community 79
The Revolution 79

A. Quick Reference. 81

B. Operating System Installation. 85

C. Capturing Traffic. 93

Glossary. 97

Index. 99

vi | Table of Contents

Foreword

As one of the original developers of the OpenBTS project, I’m excited to see this book
become a reality. It all started in our living rooms; we were not telecom people—we
were digital signal processing (DSP) software guys who had been doing GSM stuff,
started playing with some early software defined radios, got introduced to VoIP, and
just wanted to see if we could build our own mobile network for less than the GDP of
a South Pacific island.

Since the original source code release in 2008, it’s been astounding to see the widespread
adoption and interest in OpenBTS, which now helps provide cellular service on all seven
continents (including several islands) and has found its way into innumerable labs and
universities. It has really grown into a force for change in telecommunications.

Typically, when I’m asked about the value or importance of OpenBTS, the discussion
turns to the technical aspects of software defined radios and replacing legacy telecom
protocols with IP, etc. But why is OpenBTS—and this book, by extension—really im‐
portant?

Nowadays, few would argue that mobile telephony is not an essential utility—for many
people, as indispensable as water, electricity, and gas. But the world of mobile network
infrastructure today is a monolithic “black box.” It has de facto closed, complex systems
that few suppliers provide, which are run on pre-Internet protocols and architectural
concepts that have evolved in increments over 40 years to do a specific job—but not
economically, and with little flexibility.

So OpenBTS is really about empowerment. You can build a cell network. You can operate
a cell network. You can learn how cell networks work. The technologies needed to build
a network are no longer prohibitively expensive, nor has a handful of big organizations
locked them down.

Enjoy getting started on your journey into the world of cellular networks.

— Harvind Samra, Cofounder of the OpenBTS project, cofounder and CTO of Range
Networks

vii

Introduction

Telephones are cool. Yes, smartphones are cool, too, but I’m talking about plain old two-
wire, curly corded telephones. The ability to transmit your voice between any two points
on Earth is an amazing human accomplishment.

Perhaps even more amazing is how quickly this accomplishment has been taken for
granted. Monumental efforts were undertaken over the past 100 years to build the public
switched telephone network. Webs of copper were hung and buried. Long distance lines
between cities and then towns were laid. Humans manually routed and connected calls,
then analog machines and finally digital computers did that automatically. Along the
way, mobile networks were invented and deployed. The same infrastructure story took
place as technologies advanced: equipment was upgraded, mobile phones repeatedly
replaced.

Now, with both wired and wireless telephony networks delivering voice service solidly
for decades, the next upgrade cycle is under way for data bandwidth: fiber optic to your
home and LTE to your smartphone.

OpenBTS bridges these two worlds. By converting between the wireless radio interface
and open IP protocols, it allows anyone with IP connectivity to deploy a mobile network.

Many places on Earth still do not have home telephone lines or mobile network recep‐
tion. But, more often than not, they do have an Internet connection via satellite or long-
haul WiFi. Properly integrated, OpenBTS can convert and distribute this Internet con‐
nection as a mobile network across a large geographic region. Any GSM phone can
connect and use voice services or SMS, even basic data. Connectivity can be brought to
remote regions while skipping the entire cycle of infrastructure build-out and upgrades.

The combination of OpenBTS and software defined radios changes the way we should
think about mobile networks. This new technology allows the construction of complex
radio networks purely in software. OpenBTS is a C++ application that implements the
GSM stack. As new features are implemented or protocol support added, an existing
OpenBTS mobile network’s capabilities can be enhanced via a simple software update!

ix

Also, because OpenBTS is just software, you can make it do whatever you’d like. You
no longer need a hardware vendor’s permission to access its closed black box imple‐
mentations. You can build a niche product or experimental feature; the mobile network
is finally open for innovation.

Who Should Read This Book
Telecom engineers—wired or wireless, circuit-switched, or packet-switched—should
be able to latch onto this introduction to the OpenBTS project. At the risk of spreading
the material too thin, care has been taken to explain both the radio and IP sides of
OpenBTS. If you are a radio frequency (RF) expert, you will learn something about
Internet telephony. If you are comfortable with SIP and RTP, you will pick up a thing
or two about radio systems and protocols.

Software engineers of baseband firmware, smartphone apps, or hosted services will learn
about how the mobile network itself can now be controlled and inspected at a very low
level. If you’re interested in debugging an application on a mobile device, OpenBTS
provides several raw interfaces to see exactly what’s going on over the air. There are also
new data APIs your software can consume to build applications for search-and-rescue,
emergency response, power optimization, roadway traffic analytics, etc.

Why I Wrote This Book
My background is mainly in VoIP. When I began working with OpenBTS, I was blissfully
unaware of how complex radio systems can be. Conversely, other people I was working
with were radio experts but had never touched VoIP. Documentation for the OpenBTS
project is plentiful but very broad to support this wide audience of interested parties; it
needed simplification.

We wanted a new book that would be able to give a complete newcomer to the technology
enough information to successfully set up their own network: get voice calls working,
exchange some SMS messages, etc. This initial success should then build confidence
and let that person set out on their own.

I’ve tried to mix a healthy amount of context into the step-by-step sections. Mobile
networks are still quite complex on the GSM and RF side. Every hint helps. I’m hoping
you will be able to avoid the large gotchas when setting yours up!

I also wanted the book to be interesting enough to read in the absence of hardware. This
book should give you enough information to scope the required resources before diving
into an OpenBTS-related project.

x | Introduction

A Word on Mobile Networks Today
As Marc Andreessen famously stated, “Software is eating the world.” This is definitely
true in the mobile industry. As processing power gets faster and cheaper, it is now viable
to implement extremely complex signal processing algorithms in software. This soft‐
ware is also able to run on increasingly generic hardware. The days of vendor lock-in
due to specialized hardware and protocols are numbered and a chance for some real
competition and innovation in mobile infrastructure seems to be getting closer.

A few years ago, a “build-your-own-mobile-network” book would have been a tome for
a very different audience. The words “compile” and “customize” may not even have made
an appearance. The architecture for such a network is illustrated in Figure I-1.

Figure I-1. Traditional architecture

This network architecture is an incredible piece of engineering that many people ex‐
amined over many years. It is very robust and scalable, though unfortunately, quite
inflexible and very expensive.

There is a growing focus on this problem at universities, most notably UC Berkeley’s
Technology and Infrastructure for Emerging Regions (TIER) group and Carnegie Mel‐
lon University’s CyLab Mobility Research Center in Silicon Valley, which recently pub‐
lished a paper on the limitations of this traditional mobile architecture, including evo‐
lutionary baggage from the traditional wired network.

Introduction | xi

http://tier.cs.berkeley.edu
http://tier.cs.berkeley.edu
http://repository.cmu.edu/silicon_valley/176/

Multiple open source projects have sprung up to address this. To name a few: Osmo‐
com, OpenLTE, and YateBTS. Each project has different goals and architectures, tack‐
ling the pain points of traditional networks in its own way.

This book, however, is about the veteran of the group, OpenBTS. The OpenBTS
project is a collection of open source software components that can be used to build a
more modern, lightweight network. OpenBTS allows the “Um” radio interface of the
traditional mobile network to directly interconnect with Internet telephony protocols.
This new “hybrid” architecture is illustrated in Figure I-2.

Figure I-2. Hybrid IP architecture

Software or configuration changes on the handset are unnecessary, as the radio interface
to the mobile network is identical to a traditional network. The network core, however,
is no longer comprised of an array of complex protocols and servers. It consists of open
protocols and uses IP as its transport. Many software projects already exist that imple‐
ment these open protocols. Some new components were also developed alongside
OpenBTS to provide functionality, which was still unavailable, to bridge the GSM and
Internet worlds.

With so much excitement around “the cloud” and so much excitement around “apps,”
it seems that finally the conduit between these two is beginning to bloom.

Navigating This Book
By the end of this book, you will have built a fully functional mobile network. It will
appear as any other network does on your handset and route calls and SMS among the
participants in the network, as well as provide data connectivity between handsets and
the Internet.

xii | Introduction

http://osmocom.org
http://osmocom.org
http://openlte.sourceforge.net
http://www.yatebts.com
http://www.openbts.org
http://www.openbts.org

• Chapter 1 guides you step-by-step through selecting radio and processing hard‐
ware, setting up the base operating system and development environment, and
compiling and installing the software components.

• Chapter 2 covers initial component configuration and activation as well as network
functionality tests.

• Chapter 3 dives into troubleshooting and performance-tuning techniques for pro‐
duction networks.

• Chapter 4 details how to expand your single-node network into a true multinode
mobile network complete with Mobility and Handover.

• Chapter 5 builds on your configuration to offer general packet radio service (GPRS)
data capability.

• Chapter 6 explores an OpenBTS-specific feature akin to WiFi captive portals, useful
for emergency response and ad hoc networks.

• Chapter 7 provides reference material for interacting with and building applications
on top of the OpenBTS NodeManager control and event APIs.

• Chapter 8 illustrates some next steps for your network: interconnecting with the
public switched telephone network (PSTN), private branch eXchange (PBX) inte‐
grations, and the current state of spectrum regulation.

• Appendix A provides a quick reference for GSM terminology, RF measurements,
component ports, paths, and files.

• Appendix B walks through the installation of the Ubuntu 12 operating system.
• Appendix C shows how to capture not only IP exchanges, but raw GSM radio frames

as well.

Online Resources
• OpenBTS Community
• OpenBTS Documentation
• GSM Time Slot and Channel Visualizer
• OpenBTS Source Code Repository on GitHub

Introduction | xiii

http://openbts.org/community/
http://openbts.org/documentation/
http://openbts.org/visualizer/
https://github.com/RangeNetworks/

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Safari® Books Online
Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley

xiv | Introduction

http://www.safaribooksonline.com
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals

Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/1yPbnN2.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Harvind Samra and David Burgess brought OpenBTS to life. This book would not have
been possible without them. A special thanks to David for inviting me to join Range. I
haven’t stopped learning since!

Thanks to the community who never fails to surprise me with possible applications for
OpenBTS, and to Rangers past and present who’ve humored my questions: Tom, Pat,
John, Donald, Faith, and Doug.

My editor, Brian MacDonald, was very kind to this first-time author and provided great
direction. Technical reviews from Kurtis Heimerl, Ralph Schmid, and Neel Pandeya
kept the material honest. Thanks to everyone involved in that process, especially to John
Callon for deflecting bureaucracy.

Introduction | xv

http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/1yPbnN2
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Manuel Kasper was the first one to introduce me to VoIP during the Free World Dialup
days. Without that push, I would have never have dove in so deep to Internet telephony.
Congrats to the entire Askozia team for building such a fine company from that project
and to Diederich Wermser for believing in the concept from day one.

On a more personal note: I would never have been able to study abroad nor finish my
CS degree without Tom Halverson of Dakota State University and Peter Riegler of the
Fachhochschule Braunschweig Wolfenbüttel. Both went above and beyond their duties
to make the exchange happen, which allowed me to start my IMS research. Thanks also
to the Madison and Wolfenbüttel release celebration teams: Berger, Bobby, Dan, Jon,
Jorj, Levi, Mitch, Phil, Seth, Steve, Dege, Markus, Milo, Raiko, Sid, and Löloff.

And finally to my family: Big G, Little M, Ry, and Norus. Let’s never stop making each
other laugh.

xvi | Introduction

CHAPTER 1

Getting Set Up

In this chapter, we will guide you through the selection of hardware, installation of a
base operating system, and development environment setup, as well as actually compil‐
ing and installing the components that compose the OpenBTS software suite. Several
shortcuts can be taken along the way—for example, if you would prefer to use the official
binary packages instead of compiling your own—but the entire process is detailed for
those wishing to build from scratch.

Hardware Components
Although OpenBTS implements most of the complexity involved in building a mobile
network in software, radio waves must still be transmitted and received somehow. This
section details which hardware components you should procure to implement this ca‐
pability in a development setting. The configuration of these components is covered in
Chapter 2.

Linux Server
The first requirement is a standard commodity Linux server. Other architectures are
beginning to be supported, but stick to an x86 processor running a 32-bit operating
system for the best results for now. This computer can be a separate machine in your
test environment or it can actually be a virtual machine on the laptop or desktop you
use daily.

Minimum requirements for processing power and RAM are not clearly defined due to
the many variables involved, such as the number of concurrent carrier signals, network
load, network usage type, radio environment, etc. Each will affect the required resources.

A single carrier signal requires the OpenBTS software to generate downlink waveforms
to transmit to the handset and demodulate the uplink waveforms received from the

1

handset. OpenBTS supports the creation of multiple concurrent carrier signals on a
single physical radio to linearly increase network capacity, but the processing demands
are very high. For a stable lab setup with a single carrier signal (maximum of seven
concurrent voice channels), an Intel i5 or something comparable with 2 GB of RAM is
recommended. It must also have at least a USB2 interface, but USB3 is quickly becoming
a requirement on newer software defined radios. It may be a good idea to start with
USB3 now to avoid a future upgrade.

The need for increased throughput on the USB interface relates to the quantity and size
of radio waveform samples being communicated through it. In a production environ‐
ment, multiple simultaneous carrier signals can be utilized, which drastically increases
the required sample bandwidth. Additionally, the algorithms used to demodulate signals
can be configured to operate in a more robust manner (e.g., to rectify signal distortion
due to the deployment environment). Thus, the processing power needed to generate
and demodulate these signals could be an order of magnitude greater than in a lab setup.

Another thing to keep in mind is that as newer releases of OpenBTS are made available,
new capabilities may require more processing power or memory. For example,
OpenBTS in Global System for Mobile (GSM) mode can run smoothly on an Intel Atom
processor but the new OpenBTS-UMTS (Universal Mobile Telephone System) requires
at least an Intel i7. This sidenote is actually the main advantage of having a radio access
network (RAN) defined in software. As new standards are released, they can be applied
to a production RAN via a simple software update instead of swapping expensive hard‐
ware infrastructure.

Software Defined Radio
The software defined radio (SDR) is the key breakthrough that makes OpenBTS possible
from a hardware perspective. SDRs have been used in military applications for about
20 years. Only recently have they become available to a wider audience due to the de‐
creasing cost of the technology.

A modern SDR is a piece of hardware that connects to your computer via a USB cable
or over Ethernet. They are typically as small as a deck of cards or as large as a stack of
three DVDs and are powered either directly via the USB host connection or by a small
external power supply. The SDR hardware implements a completely generic radio that
can send and receive raw waveforms in a defined frequency range (i.e., 60 MHz to 4
GHz) with a host application. That host application could be an FM radio implemen‐
tation that receives the raw waveforms, demodulates the signal, and plays back the audio.
This means that radio hardware is no longer designed around a specific application; it
is completely up to the host to define the implementation, allowing anyone to create
radio applications purely in software.

OpenBTS supports SDRs from several vendors: Ettus Research, Fairwaves, Nuand, and
Range Networks. These products range in price from approximately $500 to over $2500.

2 | Chapter 1: Getting Set Up

http://www.ettus.com
http://www.fairwaves.co
http://www.nuand.com
http://www.rangenetworks.com

If you choose a product that connects via Ethernet, make sure your Linux server has a
dedicated Ethernet port for the radio (preferably gigabit Ethernet).

Most SDRs are completely generic hardware suitable for any radio
project while some are specifically optimized for implementing mo‐
bile networks. Check with the vendor before purchasing.

Antennas
Many SDRs have enough transmit and receive sensitivity to operate without antennas
in a small environment. Typically, a coverage area with a radius of 1 m can be achieved.
This is a desirable setup for a lab environment, especially if multiple developers are using
multiple radios. The coverage areas will not overlap and interfere with each other. Ad‐
ditionally, your network will not interfere with any carriers in the area.

Even if your coverage area is very small, the national regulator will
still most likely require you to obtain a test license before using GSM
frequencies. More information is in “Spectrum Regulation” on page 78.

In lab environments where a single OpenBTS instance is to be shared among multiple
developers, the coverage area must be expanded. Adding a pair of small 5 dBi antennas
can increase it dramatically, up to a 25 m radius in an unobstructed environment. These
are usually rubber duck–style antennas with a SubMiniature version A (SMA) connec‐
tor, similar in appearance to a typical home WiFi router antenna. An example is shown
in Figure 1-1.

Antennas are tuned for a specific frequency, so choose one that most closely matches
the GSM band you will be using (850, 900, 1800, or 1900 MHz).

The frequency also plays a role in the coverage area size. Low-frequency bands (850 and
900 MHz) propagate larger distances than high-frequency bands—sometimes nearly
twice as far.

Test Phones
For testing, at least two GSM handsets compatible with the band you will be using (850,
900, 1800, or 1900 MHz) are needed. Most modern GSM handsets are “quad-band,”
meaning that all bands are supported. There are also “tri-band” and “dual-band” hand‐
sets. The easiest way to determine if a handset will be band compatible with your network

Hardware Components | 3

is to search for the model on GSM Arena. Complete technical specifications are listed
there.

Figure 1-1. Rubber-duck antenna

You must also make sure that the handset you are using is unlocked. If the handset is
“locked,” it means that the manufacturer has programmed the hardware’s baseband
processor to only work with a specific carrier. This restriction can be removed, usually
by entering a sequence of numbers on the dialpad, but that is beyond the scope of this
book. The easiest choice is to use an unlocked handset that will accept any carrier’s
subscriber identity module (SIM) card.

Test SIMs
The SIM used in GSM handsets is nothing more than a trimmed-down smart card.
Smart cards are also known as chip cards or integrated circuit cards (ICCs) and can be
found in many authentication and identification applications. A full-size smart card has
the same dimensions as a credit card; newer credit cards actually use smart card tech‐
nology to increase security. SIM cards are programmed using standard smart card
writers and, once written, are popped out of the full-size card frame so they fit into a
GSM handset. Figure 1-2 shows the full-size smart card carrier, popped out full-size
SIM card, and trimmed-down micro SIM card.

4 | Chapter 1: Getting Set Up

http://www.gsmarena.com

Figure 1-2. Smart card frame, full-size SIM, and micro SIM

There are a couple of ways to procure SIMs for use in your test environment. Depending
on your needs and future deployment plans, you can decide to utilize spare SIMS, create
some new ones yourself, or contract a company to program them in bulk.

Using spare SIMs
For testing purposes, any SIM card that physically fits into the handset will probably
work. However, using your existing SIM, an expired SIM, or a foreign country’s SIM
has trade-offs, mainly concerning security features. There is a secret key, named “Ki,”
stored in the SIM, which only the SIM issuer knows. It is stored in an unreadable portion
of memory in the SIM and is not retrievable after the manufacturer places it there. This
shared secret between operator and handset is what allows the network to determine
cryptographically if the subscriber is valid.

OpenBTS has an alternative authentication method for this situa‐
tion known as “Cache Based Auth.” It performs an initial authenti‐
cation exchange with the handset and records the results. It uses this
same request and expects the same answer in the future. The meth‐
od is not as secure as unique exchanges for each request but is still
better than completely disabling authentication.

Hardware Components | 5

Another key, named “Kc,” is used to support call encryption. When using another car‐
rier’s SIM in your test environment you will lose these two features, but if you do not
have access to a smart card writer and blank cards, this is your best option.

Some handsets are tricky when using another carrier’s SIM to con‐
nect to your own OpenBTS network. If the handset can detect its
“home” carrier signal, the option to manually select another carri‐
er may be hidden from the settings menu. This is commonly ob‐
served when using AT&T SIMs in unlocked iPhones.

DIY SIMs
To create a small batch of SIM cards for your own test environment, you will need blank,
rewritable “magic” SIMs and a smart card writer. Many products are available from
several vendors on Alibaba’s website. An example writer connected via USB is pictured
in Figure 1-3, but there are many different-looking writers on the market.

Figure 1-3. Smart card writer

The software installation and write commands depend on which writer and cards have
been selected. The most up-to-date information about writing SIM cards can be found
on the OpenBTS wiki page.

6 | Chapter 1: Getting Set Up

http://www.alibaba.com
http://bit.ly/1t3iRp3

Batch SIMs
SIM-writing companies are starting to offer lower quantity runs of cards for reasonable
prices. You will typically submit some parameters about your order, such as card art‐
work, authentication algorithm needed, and card quantity, to receive a quotation. Once
ordered, the finished product will be a box of your SIMs along with a separate document
or file containing a list of IDs and encryption keys for each card.

This list can then be batch-imported into your subscriber database by using a script.
Now all of your subscribers are provisioned into the system without manually burning
10,000 individual SIMs and you’re left with a nicely packaged SIM card for each user.

Full-size versus micro versus nano
Once you have a technically compatible SIM card (2G versus 3G versus 4G, etc.), it may
still have an incompatible form factor. This is easily remedied by using a SIM cutter,
something that carrier shops love to charge decent service fees to use. It’s a device that
looks like a stapler but functions more like a cookie cutter, as illustrated in Figure 1-4.
They can be purchased for less than $20 and will convert SIMs from standard to micro
and from micro to nano. The only difference between these sizes is the amount of plastic
surrounding the actual chip.

Figure 1-4. SIM cutter

Operating System and Development Environment Setup
Now that the hardware has been gathered, you are ready to proceed with setting up a
development environment. OpenBTS has traditionally been developed and tested on
Ubuntu Long-Term Support (LTS) distributions. It has also been tested on Debian and
CentOS distributions.

For this book, the most tested distribution and architecture will be used: Ubuntu Server
12.04 LTS 32-bit. Starting with OpenBTS 5.0, 64-bit systems are also supported but have
not been as widely deployed. In addition to Ubuntu 12, the Ubuntu 13 and 14 systems

Operating System and Development Environment Setup | 7

have also been used successfully. Preliminary packaging for RPM-based systems (Cen‐
tOS, Fedora, and Red Hat Enterprise Linux) is also available but will not be covered in
this book. Please visit OpenBTS.org for more information.

If you do not yet have a compatible operating system installed, Appendix B has a com‐
plete step-by-step guide.

If you plan on using the official OpenBTS release packages, feel free to skip ahead to
“Installation” on page 10.

Git Compatibility
Git is a version-control system that manages software source code changes. The
OpenBTS project utilizes several new features in Git, such as submodule branch track‐
ing. To make sure your client is compatible (e.g., newer than 1.8.2), it needs to be up‐
dated.

First, execute this command to add support for Personal Package Archives, an alternate
way to distribute binary release packages:

$ sudo apt-get install software-properties-common python-software-properties

Then, execute the following command to add a repository for the latest Git builds to
your system:

$ sudo add-apt-repository ppa:git-core/ppa

Now, you must simply refresh the list of packages and install Git again to update your
system’s client:

$ sudo apt-get update
$ sudo apt-get install git

To confirm that the new Git client is installed properly, run the following command:

$ git --version
git version 1.9.1

Now that you have Git installed, you can proceed to downloading the development
scripts.

Downloading the Code
The OpenBTS project consists of multiple software components hosted in separate de‐
velopment repositories on GitHub. Understanding the intricacies of Git should not be
a barrier to using OpenBTS, so several development scripts have been written to make
it easier to download the code, switch branches, and compile components. To download
these development scripts into your new environment, run the following command:

$ git clone https://github.com/RangeNetworks/dev.git

8 | Chapter 1: Getting Set Up

http://www.openbts.org

The development scripts assume that you have Secure Shell (SSH)
keys set up for GitHub. If you do not, please follow these instruc‐
tions to set them up before proceeding.

Now, to download all of the components, simply run the clone.sh script:

$ cd dev
$./clone.sh

Each component’s repository will be cloned from GitHub into your development en‐
vironment. The clone.sh script also automatically initializes any submodules needed.

Now that the OpenBTS project sources are in your development environment, you can
select a specific branch or release to compile. The switchto.sh script is used to toggle
between build version targets. For example, if you wanted to build the v4.0.0 release,
run the following command:

$./switchto.sh v4.0.0

The current version target can be listed for each component by using the state.sh
script. This script also lists any outstanding local changes for each component.

$./state.sh

This book focuses on the 5.0 series branch. To target the latest, greatest code in 5.0, run
the following command:

$./switchto.sh 5.0

Building the Code
Your development environment is now prepared to build the newest bits in the 5.0 series
branch. To compile binary packages, you will use the build.sh script. It automatically
installs the compiler and autoconfiguration tools as well as any required dependencies.
It also controls which radio transceiver application will be built. As there are several
different drivers available for the various radio types, build.sh requires an argument
so it knows which hardware is being targeted (valid radio types are SDR1, USRP1, B100,
B110, B200, B210, N200, and N210).

OpenBTS also supports the UmTRX hardware from Fairwaves. How‐
ever, it uses a custom version of the UHD radio driver and the
build.sh script has not yet automated its installation.

This book targets the Ettus Research N200. Run the build command now:

Operating System and Development Environment Setup | 9

http://bit.ly/genkeys
http://bit.ly/genkeys

$./build.sh N200

This process can take a while (30–60 minutes) the first time it is run, depending on the
hardware it is being executed on. Going forward, you will only need to recompile up‐
dated components. The following command, for example, recompiles just the OpenBTS
package for an Ettus Research B100 radio:

$./build.sh B100 openbts

When the build script finishes, you will have a new directory named “BUILDS” con‐
taining a subdirectory with the build’s timestamp. An example listing of this directory
follows:

$ ls dev/BUILDS/2014-07-29--20-44-51/*.deb
liba53_0.1_i386.deb range-asterisk-config_5.0_all.deb
libcoredumper1_1.2.1-1_i386.deb range-configs_5.0_all.deb
libcoredumper-dev_1.2.1-1_i386.deb sipauthserve_5.0_i386.deb
openbts_5.0_i386.deb smqueue_5.0_i386.deb
range-asterisk_11.7.0.4_i386.deb

Congratulations! You can now move on to installing and starting each component, as
well as learning what purpose each serves.

Installation
Now that you’ve downloaded a set of official release packages or compiled your own,
they need to be installed and started. A bit of background for each component will be
provided, followed by the installation procedure and any initializing configuration
needed. As some components depend on others, they will be presented in the order
needed to satisfy these interdependencies.

Change into your new build directory before continuing:

$ cd dev/BUILDS/2014-07-29--20-44-51/

Installing Dependencies
If you compiled your own set of packages in the previous section using the build.sh
script, these dependencies have already been installed and this section can be skipped
over. If you’re using a set of official release packages, you’ll need to install some addi‐
tional system libraries and define an additional repository source so all dependencies
can be found and installed.

Execute the following commands to define an additional repository source for ZeroMQ,
a library that all the components use:

$ sudo apt-get install software-properties-common python-software-properties
$ sudo add-apt-repository ppa:chris-lea/zeromq
$ sudo apt-get update

10 | Chapter 1: Getting Set Up

Coredumper library
OpenBTS uses the coredumper shared library to produce meaningful debugging in‐
formation if OpenBTS crashes. Google originally wrote it and there are actually two
libcoredumper packages: libcoredumper-dev contains development files needed to
compile programs that utilize the coredumper library, and libcoredumper contains the
shared library that applications load at runtime:

$ sudo dpkg -i libcoredumper1_1.2.1-1_i386.deb

The exact version numbers found in the package names may have
changed since the publishing of this book.

A5/3 library
OpenBTS uses the A5/3 shared library to support call encryption. It contains crypto‐
graphic routines that must be distributed separately from OpenBTS:

$ sudo dpkg -i liba53_0.1_i386.deb

Installing Components
By installing all of the following components on a fresh system, you are guaranteed a
functional GSM network-in-a-box. Everything needed for voice, SMS, and data will be
running in a single system.

The overall architecture of what you will be installing is visible in Figure 1-5. The Session
Initiation Protocol (SIP) and Real-time Transport Protocol (RTP) are the two protocols
that OpenBTS uses to convert GSM traffic into VoIP.

System configs
This package contains a set of default configurations that will allow a fresh Ubuntu
system to work out of the box when installed. It includes settings for the network in‐
terface, firewall rules, domain name system (DNS) configuration, logging, etc.

You may not want to install this package if you are already comfortable configuring a
Linux distribution, but its contents can serve as a guide for the required changes. During
installation, you will be prompted several times to confirm the overwriting of certain
configuration files. If you are unsure what the file does, a safe answer is always “Y” when
dealing with a fresh system:

$ sudo dpkg -i range-configs_5.0_all.deb

Installation | 11

Figure 1-5. Component architecture

This package will overwrite your network interface configuration if
you answer “Y” when asked about the /etc/network/interfaces
change. You can answer “N” to this prompt and your configura‐
tion will be retained: however, GPRS will not function correctly until
you have manually added the text detailed in “Central Services” on
page 62 to your interface definition. It is responsible for calling
iptables-restore to automatically load firewall rules.

Asterisk
Asterisk is a VoIP switch responsible for handling SIP INVITE requests, establishing
the individual legs of the call, and connecting them together. There are two packages
responsible for setting up an Asterisk installation that works without any additional
configuration: range-asterisk and range-asterisk-configs.

The range-asterisk package contains a confirmed-working version of the Asterisk SIP
switch software and ensures that the appropriate modules needed for OpenBTS are
already included. No other patches to Asterisk are included; it is simply intended to
represent the latest confirmed-working version of Asterisk.

The range-asterisk-configs package contains a set of configuration files so Asterisk
knows about and can communicate with the subscriber registry database. This database
is where the various components store and update subscribers’ phone numbers, iden‐
tities, authentications, caller IDs, and registration states. Also, by using this database, it
is no longer necessary to manually edit Asterisk configuration files when adding new
handsets to the network:

$ sudo dpkg -i range-asterisk*.deb
$ sudo apt-get install -f

12 | Chapter 1: Getting Set Up

SIPAuthServe
SIP Authorization Server (SIPAuthServe) is an application that processes SIP REGIS‐
TER requests that OpenBTS generates when a handset attempts to join the mobile net‐
work.

When a handset authenticates successfully, SIPAuthServe is responsible for updating
the subscriber registry database with the IP address of the OpenBTS instance that ini‐
tiated it, allowing other subscribers to call the handset:

$ sudo dpkg -i sipauthserve_5.0_i386.deb
$ sudo apt-get install -f

SMQueue
SIP MESSAGE Queue (SMQueue) is an application that processes SIP MESSAGE re‐
quests that OpenBTS generates when a handset sends an SMS. It stores the messages,
schedules them for delivery in the network, and reschedules them if the target handset
is unavailable:

$ sudo dpkg -i smqueue_5.0_i386.deb
$ sudo apt-get install -f

OpenBTS
Finally, we reach the star of the show. OpenBTS is responsible for implementing the
GSM air interface in software and communicating directly with GSM handsets over it.
This communication is converted into SIP and RTP on the IP network side and interacts
with the components above to form the core network.

The GSM handsets see a fully compatible GSM radio access network and the core net‐
work sees standard SIP endpoints. Neither side must know that there is a layer between
allowing the handsets to connect seamlessly to the IP world:

$ sudo dpkg -i openbts_5.0_i386.deb
$ sudo apt-get install -f

Starting/Stopping Components
Now that each component has been installed, you need to start them. Components are
controlled on Ubuntu with a system named Upstart. Future releases of the OpenBTS
suite will support other mechanisms such as systemd, but for now, Upstart is used.

To start all components, execute the following:

$ sudo start asterisk
$ sudo start sipauthserve
$ sudo start smqueue
$ sudo start openbts

Conversely, to stop all components, use:

Installation | 13

$ sudo stop openbts
$ sudo stop asterisk
$ sudo stop sipauthserve
$ sudo stop smqueue

The order of startup and shutdown is not critical, but if OpenBTS is
running without the other components, a GSM network will be visi‐
ble but unusable.

Each component runs in the background and will automatically restart if a fault arises.
To monitor the console output for the component once it is running in the background,
the following log files can be used:

/var/log/upstart/asterisk.log
/var/log/upstart/sipauthserve.log
/var/log/upstart/smqueue.log
/var/log/upstart/openbts.log

The system components have been installed and are running. The next step will be to
start testing and configuring them.

14 | Chapter 1: Getting Set Up

CHAPTER 2

Initial Testing and Configuration

The software and hardware should now be in place. This chapter will guide you through
some initial sanity checks, functional testing, and basic configuration customization.
By the end of this chapter, you will have successfully exchanged the first SMS messages
and voice calls among phones over your private mobile network!

Initial State
Some of the manual steps that follow will conflict and fail if other instances of the services
are already running. To make sure that nothing else is running on this system, execute
the following:

$ sudo stop openbts
$ sudo stop asterisk
$ sudo stop sipauthserve
$ sudo stop smqueue

Now you can proceed to confirm connectivity at each step in the chain before running
the first basic tests.

Confirm Radio Connectivity
The first thing you should verify is that the transceiver application can communicate
with the radio hardware. Different vendors have different methods for accomplishing
this.

Ettus Research Radios
All Ettus hardware uses the Transceiver52M binary, which was installed in /OpenBTS
in the last chapter. Run it as follows to see if the hardware device is detected:

15

$ cd /OpenBTS
$ sudo ./transceiver
[sudo] password for openbts:
linux; GNU C++ version 4.6.3; Boost_104601; UHD_003.006.002-release

Using internal clock reference
-- Opening a USRP2/N-Series device...
-- Current recv frame size: 1472 bytes
-- Current send frame size: 1472 bytes

The example above shows a successful attempt. The transceiver can be stopped by
pressing Ctrl-C. If you instead see something like the following output, there is a prob‐
lem:

$ cd /OpenBTS
$ sudo ./transceiver
[sudo] password for openbts:
linux; GNU C++ version 4.6.3; Boost_104601; UHD_003.007.002-release

Using internal clock reference
ALERT 1745:1745 2014-09-05T22:37:00.4 UHDDevice.cpp:528:open: No UHD devices
found with address ''
ALERT 1745:1745 2014-09-05T22:37:00.4 runTransceiver.cpp:160:main: Transceiver
exiting...

Ettus provides a couple of helper applications to automatically detect and inspect at‐
tached radios. Run the following command to list all attached devices. If yours does not
show up, skip to “Troubleshooting USB” on page 18 or “Troubleshooting Ethernet” on
page 19 to remedy the connectivity issue. This example shows an N200 attached via
Ethernet:

$ uhd_find_devices
linux; GNU C++ version 4.6.3; Boost_104601; UHD_003.007.002-release

UHD Device 0
Device Address:
 type: usrp2
 addr: 192.168.10.2
 name:
 serial: XXXXXX

Another helpful application is uhd_usrp_probe, which will inspect a device and return
its technical information and configuration. An example run of this application follows:

$ uhd_usrp_probe
linux; GNU C++ version 4.6.3; Boost_104601; UHD_003.007.002-release

-- Opening a USRP2/N-Series device...
-- Current recv frame size: 1472 bytes
-- Current send frame size: 1472 bytes

 /

16 | Chapter 2: Initial Testing and Configuration

| Device: USRP2 / N-Series Device
| ___
| /
| | Mboard: N200r4
| | hardware: 2576
| | mac-addr: XX:XX:XX:XX:XX:XX
| | ip-addr: 192.168.10.2
| | subnet: 255.255.255.255
| | gateway: 255.255.255.255
| | gpsdo: none
| | serial: XXXXXX
| | FW Version: 12.3
| | FPGA Version: 10.0
| |
| | Time sources: none, external, _external_, mimo
| | Clock sources: internal, external, mimo
| | Sensors: mimo_locked, ref_locked
| | ___
| | /
| | | RX DSP: 0
| | | Freq range: -50.000 to 50.000 Mhz
| | ___
| | /
| | | RX DSP: 1
| | | Freq range: -50.000 to 50.000 Mhz
| | ___
| | /
| | | RX Dboard: A
| | | ID: SBX (0x0054)
| | | Serial: XXXXXX
| | | ___
| | | /
| | | | RX Frontend: 0
| | | | Name: SBXv3 RX
| | | | Antennas: TX/RX, RX2, CAL
| | | | Sensors: lo_locked
| | | | Freq range: 400.000 to 4400.000 Mhz
| | | | Gain range PGA0: 0.0 to 31.5 step 0.5 dB
| | | | Connection Type: IQ
| | | | Uses LO offset: No
| | | ___
| | | /
| | | | RX Codec: A
| | | | Name: ads62p44
| | | | Gain range digital: 0.0 to 6.0 step 0.5 dB
| | | | Gain range fine: 0.0 to 0.5 step 0.1 dB
| | ___
| | /
| | | TX DSP: 0
| | | Freq range: -250.000 to 250.000 Mhz
| | ___
| | /

Confirm Radio Connectivity | 17

| | | TX Dboard: A
| | | ID: SBX (0x0055)
| | | Serial: XXXXXX
| | | ___
| | | /
| | | | TX Frontend: 0
| | | | Name: SBXv3 TX
| | | | Antennas: TX/RX, CAL
| | | | Sensors: lo_locked
| | | | Freq range: 400.000 to 4400.000 Mhz
| | | | Gain range PGA0: 0.0 to 31.5 step 0.5 dB
| | | | Connection Type: QI
| | | | Uses LO offset: No
| | | ___
| | | /
| | | | TX Codec: A
| | | | Name: ad9777
| | | | Gain Elements: None

Range Networks Radios
Range Networks SDR1 radio uses the TransceiverRAD1 binary, which was installed
in /OpenBTS in the last chapter. Run it as follows to see if the hardware device is detected:

$ cd /OpenBTS
$ sudo ./transceiver 1

If the program does not stop immediately and continues running, it has successfully
detected the radio hardware. The transceiver can be stopped by pressing Ctrl-C as
shown here:

$ cd /OpenBTS
$ sudo ./transceiver 1
^CReceived shutdown signal

If the program stopped immediately as shown in the following output, continue on to
the Troubleshooting USB section that immediately follows to remedy the problem:

$ cd /OpenBTS
$ sudo ./transceiver 1
$

Troubleshooting USB
When using a virtual machine setup, the most common problem with USB connectivity
is that the desired USB device is not associated with the correct virtual machine. Use
your virtual machine’s settings to find and assign the appropriate USB device to the
virtual machine running your OpenBTS development environment.

18 | Chapter 2: Initial Testing and Configuration

Troubleshooting Ethernet
Whether using a virtual machine or real server, an extra Ethernet interface must be
available for your Ethernet connected radio. While it is possible to change the IP address
of the radio to match your local network, this is undesirable because the samples being
exchanged over Ethernet between the transceiver application and radio hardware are
very sensitive to delay and loss. They should be on a dedicated connection. Install an
extra physical Ethernet interface in your server or create an additional virtual Ethernet
interface in the virtual machine.

Make sure this interface is on the same subnet as the radio hardware. The default IP
address for all Ettus hardware is 192.168.10.2. Assign an appropriate address to your
extra Ethernet interface using the following example:

$ sudo ifconfig eth1 192.168.10.1/24

Now test the connection with a simple ping. Press Ctrl-C to stop the ping test:

$ ping 192.168.10.2
PING 192.168.10.2 (192.168.10.2) 56(84) bytes of data.
64 bytes from 192.168.10.2: icmp_req=1 ttl=64 time=1.037 ms
64 bytes from 192.168.10.2: icmp_req=2 ttl=64 time=1.113 ms
^C

Starting Up the Network
Now that you have confirmed the transceiver software can communicate with the radio
hardware, you can start running the OpenBTS service in the background. Do that with
the following command:

$ sudo start openbts

The OpenBTS service will automatically start an instance of the transceiver software
and connect to the radio hardware. Radio samples are then exchanged between the
transceiver software and OpenBTS software over a local User Datagram Protocol (UDP)
socket.

The Configuration System and CLI
All configuration of OpenBTS is accomplished by manipulating keys stored in an
SQLite3 database. By default, this database is stored at /etc/OpenBTS/OpenBTS.db. Each
key is defined in a schema that is compiled in OpenBTS and used to validate the values
being used.

One advantage afforded by this style of configuration system is that most key values can
be changed and are applied to the running system within a few seconds without inter‐
rupting service. These are dynamic keys. There are also a few static keys in the config‐
uration system that require a restart of OpenBTS to apply the change.

Starting Up the Network | 19

The easiest way to manipulate the configuration keys is via the OpenBTS command-
line interface (CLI). Run the following shell command to open it:

$ sudo /OpenBTS/OpenBTSCLI

You are now presented with an OpenBTS prompt. This is where commands, including
configuration changes, can be executed for processing by OpenBTS.

From now on, commands prefixed with $ are to be executed on the Linux command
line. Commands prefixed with OpenBTS> are for the OpenBTS command line. It may
be convenient to have two terminal windows open so there is no need to constantly
enter and exit the OpenBTS command line.

Changing the Band and ARFCN
The first things you must check are the radio band and Absolute Radio Frequency
Channel Number (ARFCN) being used. The radio band is one of four values: 850, 900,
1800, or 1900 MHz, corresponding to the four GSM bands available around the world.
An ARFCN is simply a pair of frequencies within the selected band that will be used for
the transmission and reception of radio signals. Each radio band has over 100 different
ARFCNs that can be used. ARFCN may also be referred to as the carrier (e.g., systems
using multiple ARFCNs are multiple carrier systems). Choosing the correct band and
ARFCN is important for regulatory reasons and to avoid interference with or from local
carriers. You use the OpenBTS config command to inspect the current band and
ARFCN settings.

These configuration keys are in the GSM.Radio category. To view all configuration keys
with the word GSM.Radio in their name, enter the following command:

OpenBTS> config GSM.Radio
GSM.Radio.ARFCNs 1 [default]
GSM.Radio.Band 900 [default]
GSM.Radio.C0 51 [default]
GSM.Radio.MaxExpectedDelaySpread 4 [default]
GSM.Radio.PowerManager.MaxAttenDB 10 [default]
GSM.Radio.PowerManager.MinAttenDB 0 [default]
GSM.Radio.RSSITarget -50 [default]
GSM.Radio.SNRTarget 10 [default]

The GSM.Radio.Band key shows that the 900 MHz band is being used and the
GSM.Radio.C0 key indicates that ARFCN #51 in that band is currently selected.

If your radio hardware does not have limitations on or optimizations for a particular
frequency, you can proceed with these settings. An easy optimization for eliminating
interference is to choose a band that is not used by other carriers in your country. In
general, the Americas use 850 and 1900 MHz systems while the rest of the world uses
900 and 1800 MHz. A country-by-country list can be found on Wikipedia. Also, choose

20 | Chapter 2: Initial Testing and Configuration

http://en.wikipedia.org/wiki/GSM_frequency_bands

a lower frequency if possible to improve coverage with lower power. If your local reg‐
ulator has assigned you a specific band and ARFCN, then you must use it.

To change your GSM band, you must again use the OpenBTS config command. This
time, add the desired band to the end of the command. The following example changes
the band to 850 MHz:

OpenBTS> config GSM.Radio.Band 850
GSM.Radio.Band changed from "900" to "850"
WARNING: GSM.Radio.C0 (51) falls outside the valid range of ARFCNs 128-251 for
GSM.Radio.Band (850)
GSM.Radio.Band is static; change takes effect on restart

The command confirms that the band has been changed but delivers two additional
pieces of information. First, there is a warning about the ARFCN not being valid any‐
more for the 850 MHz band. The valid range is 128–251 for 850 MHz. Second, you are
informed that the GSM.Radio.Band parameter is static and cannot be applied at runtime;
OpenBTS must be restarted.

To fix the first warning, use the config command again to set a valid ARFCN for the
850 MHz band:

OpenBTS> config GSM.Radio.C0 166
GSM.Radio.C0 changed from "51" to "166"
GSM.Radio.C0 is static; change takes effect on restart

The command confirms that the ARFCN has been changed and warns again about this
parameter being static. You can now restart OpenBTS to apply the change:

$ sudo stop openbts
openbts stop/waiting
$ sudo start openbts
openbts start/running, process 6075

The service will take a few seconds to start back up and you are again free to use the
OpenBTS CLI.

Range Networks Radio Calibration
The Range Networks SDR1 hardware can ship with filters in place that optimize the
radio for a specific GSM band. Each unit is also calibrated to a specific band and may
not perform well if the OpenBTS settings do not match this calibration. To view the
radio’s factory calibration, use the trxfactory command:

OpenBTS> trxfactory
Factory Information
 SDR Serial Number = XXXX
 RF Serial Number = XXX
 GSM.Radio.Band = 850
 GSM.Radio.RxGain = 52

Starting Up the Network | 21

 TRX.TxAttenOffset = 1
 TRX.RadioFrequencyOffset = 116

To determine if anything needs adjusting, use the audit command. The audit com‐
mand is your constant companion when troubleshooting an installation. It reports
nondefault values, invalid values, conflicting values, and if you are using Range Net‐
works hardware, there will be a section listing any mismatches between the factory
calibration and the current running configuration:

OpenBTS> audit
+---+
| WARNING : Factory Radio Calibration [key current-value (factory)] |
| To use the factory value again, execute: rmconfig key |
+---+
TRX.RadioFrequencyOffset "132" ("116")

In this example, the TRX.RadioFrequencyOffset parameter does not match the factory
calibration. As the message indicates, you can use the factory value again by using the
rmconfig command:

OpenBTS> rmconfig TRX.RadioFrequencyOffset
TRX.RadioFrequencyOffset set back to its default value
TRX.RadioFrequencyOffset is static; change takes effect on restart

This is another static parameter that requires a restart of OpenBTS as detailed above.
Most configuration parameters are not static, so restarting OpenBTS will be the excep‐
tion rather than the rule. Repeat this procedure for any other calibration parameters
that are reported as mismatches.

Ettus Research Radio Calibration
One main difference between the Range Networks and Ettus Research radios is in the
proper value for GSM.Radio.RxGain. Range Networks uses a much higher value for this
parameter and if it is not adjusted, the Ettus Research equipment will not work correctly.
The signal being received will overdrive the demodulator.

For starters, set GSM.Radio.RxGain to 10:

OpenBTS> devconfig GSM.Radio.RxGain 10
GSM.Radio.RxGain changed from "52" to "10"
GSM.Radio.RxGain is static; change takes effect on restart

There is also a dedicated command that allows you to set this parameter without re‐
starting OpenBTS. Use rxgain if you need to make fine adjustments to avoid restarting
each time.

22 | Chapter 2: Initial Testing and Configuration

Searching for the Network
Now that the radio is calibrated and the settings are confirmed, you will use a handset
to search for the newly created network. Each handset’s menu is different but the item
is usually similar to “Carrier Selection” or “Network Selection.” The process for manually
selecting a different carrier on Android is detailed in Figure 2-1.

1. Launch the “Settings” application from the Android menu system.
2. Select “More.”
3. Select “Mobile networks.”
4. Select “Network operators.” This may or may not start a search. If it does not, select

“Search networks.”
5. Once the search has finished, a list of available carrier networks is presented.

Figure 2-1. Android manual carrier selection

The process for manually selecting a different carrier on iOS 7 is detailed in Figure 2-2.

1. From the home screen, open the “Settings” app.
2. Select “Carrier.”
3. On the “Network Selection” screen, disable the automatic carrier selection.
4. The handset will now search for available carrier networks.
5. Once the search has finished, a list of available carrier networks is presented.

Searching for the Network | 23

Figure 2-2. iOS 7 manual carrier selection

Here we see the test network in the list of selectable carriers. Depending on the handset
model, firmware, and SIM used, the network ID will be displayed as “00101,” “001-01,”
“Test PLMN 1-1,” or the GSM shortname of “OpenBTS.” If your test network is not
detected, force the search again by either reselecting the menu item, toggling airplane
mode between on and off, or power cycling the handset. If that still does not work,
confirm again that the handset supports the GSM band you have configured above and
that the baseband is unlocked (i.e., not restricted by contract to only using a specific
carrier).

This section had you verify that the downlink is functional; the following section will
guide you through verifying the uplink. Then you will move on to entering the identity
parameters for your handset and connecting to the network in “First Connection” on
page 27.

Testing Radio Frequency Environment Factors
If you’ve never had a project that involves RF or analog signals in general, you may be
surprised by the number of things that can go wrong with them. You may actually be
surprised, in the end, that RF communication can work at all! RF experts in the OpenBTS
community are sometimes regarded as practitioners of black magic…but I digress.

In a GSM network, two separate radio frequencies are used so the base station and
handsets can communicate simultaneously in both directions. Put another way, GSM
uses frequency division multiple access to establish full duplex communication. The
ARFCN selected (see “Changing the Band and ARFCN” on page 20) is what determines
which pair of frequencies will be used. The path from the base station to the handset is
known as the downlink and the path from the handset back to the base station is known
as the uplink.

24 | Chapter 2: Initial Testing and Configuration

In the previous section, you’ve been able to successfully search for and find the new
network beacon. This shows that the network’s downlink is reaching your handset and
the signal is clean enough to demodulate and interpret the information as evidenced by
the network shortname and/or identity numbers being displayed.

The next thing to look out for when setting up a new network is excess radio interference
or “noise” from other sources on the uplink. If the uplink is too noisy, the signals from
handsets cannot reliably be demodulated into usable information. OpenBTS will show
the current level by using the noise command:

OpenBTS> noise
noise RSSI is -68 dB wrt full scale
MS RSSI target is -50 dB wrt full scale
INFO: the current noise level is acceptable.

In this example, the detected environmental noise Received Signal Strength Indication
(RSSI) is –68 dB (lower numbers are better and mean less noise is present) and the
configured target RSSI level for handsets is –50 dB. This means that the base station
can, at best, receive 18 dB more energy from the handsets than the environmental noise
—a very good margin meaning uplink reception issues due to noise should not be a
problem.

Smaller margins between these two numbers will produce different informational mes‐
sages. For example, having a margin of 10 dB or less will report:

WARNING: the current noise level is approaching the MS RSSI target, uplink
connectivity will be extremely limited.

And a margin of zero or less will report:

WARNING: the current noise level exceeds the MS RSSI target, uplink connectivity
will be impossible.

If either of these WARNING messages are reported, you will need to take action to
reduce uplink noise and/or increase the handset transmit power.

In the future, if your handset can see the base station but can no longer
connect, noise should be the first thing to check. Your configuration
could still be 100% correct and functional but the radio environ‐
ment may have changed, preventing communication.

Reducing Noise
If your base station radio setup does not include a frequency duplexer, the number one
source of noise on the uplink can actually be the downlink signal. Without proper
duplexing to filter it out, the downlink signal is usually the closest energy source to the
uplink both physically and by frequency. More information about duplexers can be

Testing Radio Frequency Environment Factors | 25

found in “Stronger, Cleaner Signals” on page 46. Even without a duplexer, there are ways
to reduce noise on the uplink.

Antenna alignment
A quick duplexer of sorts is simply aligning the antennas so they do not so readily feed
into each other. If you are using rubber duck–style antennas, tilt them so they form a
90 degree angle. The radiation pattern for these antennas will then be perpendicular as
shown in Figure 2-3.

Figure 2-3. Antenna alignment

If the antennas are parallel to each other, signal can efficiently flow from the transmit
to the receive antenna, but when the antennas form a 90 degree angle, the signal is being
transmitted on a different plane than it is being received on. Observe the change by
running the noise command before and after your adjustment. This simple adjustment
can reduce noise by as much as 10 dB.

Downlink transmission power
The alignment step above reduced the flow of energy from the transmit antenna to the
receive antenna. This received energy may still be too high for the uplink to be usable.
Decreasing the downlink transmission power will further clean up the uplink. The cov‐
erage area lost by decreasing the downlink power is not significant in a lab environment.
Cleaner signals are preferable to strong ones. Run the power command with no argu‐
ments to see the current level. The power is reported in decibels of attenuation:

OpenBTS> power
current downlink power 0 dB wrt full scale

To decrease the downlink transmission power, for example by 20 dB, enter the following:

26 | Chapter 2: Initial Testing and Configuration

OpenBTS> power 20
current downlink power -20 dB wrt full scale

The downlink is now transmitting with 20 dB less power. Use the noise command to
observe the improvement.

Boosting Handset Power
Handsets can also be told to use more power by adjusting the GSM.Radio.RSSITarget
and GSM.Radio.SNRTarget keys. The default values for these keys should be sufficient
in most situations. However, if you encounter large fluctuations in received power (e.g.,
walking around corners in an underground mine), it may be necessary to increase these
values to provide a larger buffer in allowable power differences. Boosting the power for
all handsets will drain their batteries more rapidly but uplink signals will be more reli‐
able. There are always trade-offs.

If your noise level is still too high, go back to “Starting Up the Network” on page 19 to
change your ARFCN to a less noisy one.

First Connection
You have now verified both the downlink and uplink. To make sure all settings have
been applied, issue the following command to restart OpenBTS:

$ sudo stop openbts
$ sudo start openbts

The only step left before actually connecting to your test network is to find and enter
your handset’s identity parameters so it will be accepted onto the network.

Finding the IMSI
The main identity parameter you will be searching for is the International Mobile Sub‐
scriber Identity (IMSI). This is a 14–15 digit number stored in the SIM card and is
analogous to the handset’s username on the network.

Handsets will not usually divulge the IMSI of their SIM card. It can sometimes be located
in a menu or through a field test mode, but this method of determining a SIM’s IMSI is
very cumbersome to explain. Luckily, there are other methods; OpenBTS also knows
the IMSIs it has interacted with and, because you are in control of the network side, you
also have access to this information.

To force an interaction between a handset and your test network, you will perform a
location update request (LUR) operation on the network, analogous to a registration.
This is nothing more complicated than selecting the network from the carrier selection
list.

First Connection | 27

Before attempting any LURs, you need to start the SIPAuthServe daemon responsible
for processing these requests:

$ sudo start sipauthserve
sipauthserve start/running, process 7017

Now, again following the steps in “Searching for the Network” on page 23, bring up the
carrier selection list and choose your test network. After a short time, the handset should
report a registration failure.

It may also receive an SMS from your test network indicating that
registration has failed. This message automatically includes the IM‐
SI, thus you can skip to “Adding a Subscriber” on page 29. However,
this feature does not work on all hardware so continue on if you did
not receive an SMS.

OpenBTS remembers these LUR interactions in order to perform something called
IMSI/Temporary Mobile Subscriber Identity (TMSI) exchanges. IMSI/TMSI exchanges
swap the user-identifiable IMSI for a TMSI and are used to increase user privacy on the
network. The exchanges are disabled by default (modify Control.LUR.SendTMSIs to
enable); however, the information is still there to inspect using the tmsis command.
Use it now to view all recent LUR interactions with handsets:

OpenBTS> tmsis
IMSI TMSI IMEI AUTH CREATED ACCESSED TMSI_ASSIGNED
214057715229963 - 012546629231850 0 78s 78s 0
001010000000002 - 351771054186520 1 80h 95s 0
001010000000003 - 351771053005400 1 80h 108s 0

Entries are sorted by time, with the top entries corresponding to the most recent inter‐
actions. Your handset should be the top entry on this list—the most recent interaction
with AUTH set to 0 because the LUR failed due to the handset not being a known
subscriber. The other entries in this example are additional test handsets that have suc‐
cessfully performed an LUR as indicated by the AUTH column being set to 1.

Finding the IMEI
In a busy environment, it can be difficult to ascertain which handset hardware corre‐
sponds to which entry on this list. To match an IMSI to a specific piece of hardware,
you can use the International Mobile Equipment Identifier (IMEI). It is the unique
identifier given to the handset’s physical radio hardware, analogous to a MAC address
on an Ethernet interface.

28 | Chapter 2: Initial Testing and Configuration

A handset’s IMSI is usually printed under its battery cover or somewhere very near the
SIM itself. On many handsets, the IMEI can also be accessed by dialing the following
on the keypad:

*#06#

The IMEI value is typically only used for reporting and detecting stolen hardware in
production environments. Here it serves as a convenient way to determine which SIM
is in which handset. The final digit of your IMEI may not match what OpenBTS displays.
It is a check digit and is shown as a zero in OpenBTS.

Adding a Subscriber
You should now have all the necessary pieces of information to create a new subscriber
account on your test network.

A couple of fields are still needed but are freely selectable: Name and Mobile Station
International Subscriber Directory Number (MSISDN). The Name field is merely a
friendly name for this subscriber so you can remember which handset or which person
it is associated with. The MSISDN field is nothing more complicated than the sub‐
scriber’s phone number. Because you are not connected to the public telephone network,
this can be any number you choose.

The program you need to add subscribers is nmcli.py. It is a simple client for the No‐
deManager APIs (more on those in Chapter 7) and allows you to change configuration
parameters, add subscribers, monitor activity, etc., all via JSON formatted commands.

nmcli.py is already present in your development directory—move there now to access
it:

$ cd dev/NodeManager

There are two ways to add a subscriber using nmcli.py. The first creates a subscriber
that will use cached authentication:

$./nmcli.py sipauthserve subscribers create name imsi msisdn

The second creates a subscriber that will use full authentication:

$./nmcli.py sipauthserve subscribers create name imsi msisdn ki

If the IMSI is the “username,” the “password” for a handset is the Ki field discussed in
“Using spare SIMs” on page 5. If you are using a spare SIM from another provider, you
do not have access to Ki and should use the first invocation style. If you are using a SIM
that you have burned yourself, Ki will be known to you. Use the second invocation style
of nmcli.py to include it for your new subscriber.

In this example, a spare SIM is being used in an iPhone 4 and it will be assigned a fake
number in South Dakota (area code 605):

First Connection | 29

The IMSI field consists of the numeric IMSI prefixed with the liter‐
al string “IMSI.”

$./nmcli.py sipauthserve subscribers create "iPhone 4" IMSI214057715229963 \
6055551234
raw request: {"command":"subscribers","action":"create","fields":
{"name":"iPhone 4","imsi":"IMSI214057715229963","msisdn":"6055551234","ki":""}}
raw response: {
 "code" : 200,
 "data" : "both ok"
}

Perform the same command substituting your own information to add the first sub‐
scriber to your test network.

Connecting
Now when you select your test network in the connection menu, the LUR should suc‐
ceed. This can be confirmed with the tmsis command in OpenBTS. The “AUTH” col‐
umn will now have a “1” in the entry corresponding to your IMSI:

OpenBTS> tmsis
IMSI TMSI IMEI AUTH CREATED ACCESSED TMSI_ASSIGNED
214057715229963 - 012546629231850 1 11m 56s 0
001010000000002 - 351771054186520 1 80h 8m 0
001010000000003 - 351771053005400 1 80h 9m 0

Congratulations, you’ve successfully registered to your own private mobile network!
Feel free to register any additional handsets you wish to use before proceeding.

Test SMS
Now that a handset has access to your network, you can perform some more interesting
tests. The first is a quick test of your network’s SMS capabilities.

The component responsible for receiving, routing, and scheduling the delivery of SMS
messages is SMQueue. It must be started before testing out these features; execute the
following command to do so:

$ sudo start smqueue
smqueue start/running, process 21101

Echo SMS (411)
On your handset, compose an SMS to the number 411. This is a “shortcode” handler in
SMQueue that will simply echo back whatever it receives along with some additional

30 | Chapter 2: Initial Testing and Configuration

information about the network and subscriber account that was used. The body of the
message to 411 can be whatever you’d like, although it can be useful to use unique content
for each message or sequential numbers or letters. This helps you pinpoint which mes‐
sage is being responded to in case an error occurs.

Once you have your message composed to 411, hit send. After a few seconds, a reply
should appear (an example follows):

“1 queued, cell 0.1, IMSI214057715229963, phonenum 6055551234, at Sep 8 02:30:59,
Ping pong"

This indicates the following:

• There is one message queued for delivery.
• The base station has a load factor of 0.1.
• The message was received from IMSI 214057715229963, MSISDN 6055551234.
• The message was sent on September 8 at 02:30:59.
• The message body was “Ping pong.”

Direct SMS
SMS messages can also be tested directly from OpenBTS by using the sendsms com‐
mand. From the OpenBTS CLI, let’s see how it is invoked by using the help command:

OpenBTS> help sendsms
sendsms IMSI src# message... -- send direct SMS to IMSI on this BTS, addressed
from source number src#.

Messages are sent by specifying a target IMSI, the source number the message should
appear to have originated from, and the message body itself. Substitute the information
for your subscriber account to compose a message and press Enter:

OpenBTS> sendsms 214057715229963 8675309 direct SMS test
message submitted for delivery

After a few seconds, your handset should display a new incoming message from the
imaginary number 8675309 with a body of “direct SMS test.”

SMS messages created in this way do not route through SMQueue at all; they are sent
directly out through the GSM air interface to the handset and, as such, cannot be re‐
scheduled. If the handset is offline or unreachable, these messages are simply lost. This
is why SMQueue is needed—to attempt and reschedule deliveries in the inherently
unpredictable wireless environment.

Test SMS | 31

Two-Party SMS
If you have configured more than one handset for use in your network, feel free to send
a few messages back and forth between them. Verify that the source numbers are correct
when receiving messages and that replies to these messages are routed back to the orig‐
inal sender.

Test Calls
The other service to test is voice. As with SMS, OpenBTS does not directly handle voice
and requires an additional service to be run—in this case, Asterisk.

Start Asterisk now:

$ sudo start asterisk
asterisk start/running, process 1809

Using the same handset you used in the SMS tests, you will now verify a few aspects of
the voice service. This is accomplished by utilizing a few test extensions that the range-
asterisk-configs package defines. An extension is an internal phone number, unreach‐
able from the outside.

Test Tone Call (2602)
The first test extension you will use plays back a constant tone. This might not sound
too exciting but does confirm many things about the network:

• Asterisk is running and reachable.
• Call routing is working as expected.
• Downlink audio is functional.

Call 2602 with your handset now.

As you listen to the tone, listen for changes in pitch. These changes in pitch are due to
missing information in the downlink voice stream path, similar to packet loss. In the
field, this is the primary use for the test tone extension: testing downlink quality. A
downlink loss of 3% is normal in production networks, with losses of 5%–7% still pro‐
viding an understandable conversation.

Echo Call (2600)
The next test extension creates an “echo call.” Basically, all audio that Asterisk receives
will be immediately echoed back to the sender. In addition to confirming the items listed
for the test tone call, the echo call will reveal any delay or uplink quality issues present
in your network.

32 | Chapter 2: Initial Testing and Configuration

Call 2600 with your handset now.

As you speak into the microphone, you should hear yourself very shortly afterward in
the earpiece. A little delay is normal, but longer delays lead to an experience more like
using a walkie-talkie. The human brain can deal with delays up to about 200 ms without
trouble. Beyond that, the conversation starts to break down and both sides stop speaking
because it becomes uncomfortable.

Two-Party Call
If you have configured more than one handset for use in your network, feel free to place
some calls between them. Verify that the source numbers are correct when receiving a
call.

Measuring Link Quality
At this point, you should learn about a handy tool available on the OpenBTS CLI, the
chans command. This tool can be used to objectively quantify link quality instead of
basing it on user perception. To see anything useful with this command, there must be
an active call.

In this example, a call was placed to the 2602 test tone extension and after 10 seconds
the chans command was executed (note the “Time” column). The handset was moved
a meter farther away from the radio being used and another sample with the chans
command was taken:

OpenBTS> chans
CN TN chan transaction Signal SNR FER TA TXPWR RXLEV_DL BER_DL Time IMSI
 type id dB pct sym dBm dBm pct
0 1 TCH/F T101 28 28.7 0.15 1.2 7 -61 0.00 0:10 2140...
OpenBTS> chans
CN TN chan transaction Signal SNR FER TA TXPWR RXLEV_DL BER_DL Time IMSI
 type id dB pct sym dBm dBm pct
0 1 TCH/F T101 14 31.4 0.50 1.2 19 -73 0.00 0:26 2140...

There are a lot of fields here and they’re all very useful but for now let’s focus on signal-
to-noise ratio (SNR), TXPWR, and RXLEV_DL.

In both readings, there is a single active channel. The SNR column represents the up‐
link’s SNR as measured by the base station: higher is better. As the handset is moved
away, this number actually improves! How can that be? The answer lies in the TXPWR
column. This column represents the uplink transmit power that the handset reported.
In the second reading, this number has jumped from 7 to 19 dBm, meaning the handset
used more power to transmit its signal to the base station. This would explain why there
was a better SNR measured at the base station.

Test Calls | 33

The network independently instructs the handsets to transmit with different power
levels depending on how well the base station receives their uplink signal. This is so all
signals are received at the base station with about the same strength, making it easier to
demodulate.

Base stations, however, use the same transmission power on the downlink for all hand‐
sets. This can be observed in the RXLEV_DL column. This column represents the
downlink signal level that the handset reported. In the second reading, this number has
gone down from –61 dBm to –73 dBm as the handset moves farther away from the base
station. It is receiving the downlink signal with less strength because it is now farther
away.

A complete listing of these fields can be retrieved by running:

OpenBTS> help chans

Configuration System, Continued
In this chapter you’ve become familiar with several OpenBTS commands, the most
important one likely being config. Before moving on, some final details on config will
be provided and you will be introduced to a few of its relatives.

config
You have so far used config to search for configuration keys and change their values.
It can also be used to provide additional information about a specific configuration key
if the complete name is provided:

OpenBTS> config SIP.Proxy.SMS
SIP.Proxy.SMS 127.0.0.1:5063 (default)

 - description: The hostname or IP address and port of the proxy
to be used for text messaging. This is smqueue, for example.
 - type: hostname or IP address and port
 - default value: 127.0.0.1:5063
 - visibility level: customer warn - a warning will be presented and
confirmation required before changing this sensitive setting
 - static: 0
 - scope: value must be the same across all nodes

devconfig
The devconfig command functions identically to the config command. However, it
allows you to manipulate more types of keys. Each key has a visibility level that signals
whom the key was intended for: user, developer, or factory. Using devconfig gives you
access to these more sensitive keys, such as protocol timers:

34 | Chapter 2: Initial Testing and Configuration

OpenBTS> config GSM.Timer
GSM.Timer.Handover.Holdoff 10 [default]
GSM.Timer.T3109 30000 [default]
GSM.Timer.T3212 0 [default]

OpenBTS> devconfig GSM.Timer
GSM.Timer.Handover.Holdoff 10 [default]
GSM.Timer.T3103 12000 [default]
GSM.Timer.T3105 50 [default]
GSM.Timer.T3109 30000 [default]
GSM.Timer.T3113 10000 [default]
GSM.Timer.T3212 0 [default]

rawconfig
The rawconfig command takes things a bit further than devconfig and removes all
input validation. If you have a key that you would like changed to an experimental value
outside of the valid range, you need to use rawconfig.

Another use of rawconfig is to define completely new custom key/value pairs in the
database. This is convenient when authoring a new feature:

OpenBTS> rawconfig My.New.Setting zebra
defined new config My.New.Setting as "zebra"

unconfig
Some keys that control optional features can be disabled. Keys that can be disabled will
have “string (optional)” set in their type field:

OpenBTS> config Control.LUR.FailedRegistration.Message
Control.LUR.FailedRegistration.Message Your handset is not provisioned
for this network. [default]

 - description: Send this text message, followed by the IMSI, to
unprovisioned handsets that are denied registration.
 - type: string (optional)

The unconfig command will attempt to disable a key and report back if it was successful:

OpenBTS> unconfig Control.LUR.FailedRegistration.Message
Control.LUR.FailedRegistration.Message disabled

rmconfig
To set a key back to its default value, use rmconfig:

OpenBTS> rmconfig SIP.Proxy.SMS
SIP.Proxy.SMS set back to its default value

Configuration System, Continued | 35

This command can also be used to remove custom key/value pairs that were defined
with rawconfig:

OpenBTS> rmconfig My.New.Setting
My.New.Setting removed from the configuration table

Personalizing Your Network
Your network is up and running and you know how to control it, not a bad start. This
is, however, your network, so it should be customized to your tastes. This section will
walk through the process of personalizing a few things so that it’s definitely your net‐
work.

Shortname
The shortname is displayed on some handsets when browsing. It’s the first thing some‐
one will notice when searching for the network, so go ahead and change it from the
default of OpenBTS:

OpenBTS> config GSM.Identity.ShortName GroundControl
GSM.Identity.ShortName changed from "OpenBTS" to "GroundControl"

Spaces and special characters are not allowed in the name—only al‐
phanumeric characters.

Registration Messages
If you remember, in “First Connection” on page 27 there was a “registration failed” SMS
sent to the handset. Actually, there are several SMS messages like this for different events.
To see a list of them, search for configuration keys with Registration.Message in their
name:

OpenBTS> config Registration.Message
Control.LUR.FailedRegistration.Message Your handset is not provisioned for
 this network. [default]
Control.LUR.NormalRegistration.Message (disabled) [default]
Control.LUR.OpenRegistration.Message Welcome to the test network. Your IMSI
 is [default]

The registration failed message is nice but kind of boring. You can change it with the
config command:

OpenBTS> config Control.LUR.FailedRegistration.Message Nuh-uh-uh, you didn't say
the magic word.

36 | Chapter 2: Initial Testing and Configuration

Control.LUR.FailedRegistration.Message changed from "Your handset is not
provisioned for this network." to "Nuh-uh-uh, you didn't say the magic word."

Or, to completely disable the failed registration message, you can use unconfig:

OpenBTS> unconfig Control.LUR.FailedRegistration.Message
Control.LUR.FailedRegistration.Message disabled

There is another message, Control.LUR.NormalRegistration.Message, which is dis‐
abled by default. This message is sent to the handset every time it successfully registers.
While annoying in a production environment, it can be a useful tool for labs, especially
if they are operating multiple base stations. The message serves as a heads-up if the
registration updates or switches:

OpenBTS> config Control.LUR.NormalRegistration.Message Welcome to BTS 1
Control.LUR.NormalRegistration.Message changed from "" to "Welcome to BTS 1"

To test it out, try power cycling your handset or toggling airplane mode between on and
off. When the handset reacquires your base station signal and registers, you should
receive a message.

The Control.LUR.OpenRegistration.Message parameter will be covered in Chapter 6.

Personalizing Your Network | 37

CHAPTER 3

Troubleshooting and Performance Tuning

As your network becomes ever more production-ready, you will need some additional
techniques to help debug problems as they arise. While some errors are directly related
to misconfiguration, others are less obvious. Depending on the deployment conditions
and network usage patterns, problems with the network may actually be related to poor
performance. Optimizing the network’s performance for your particular scenario can
be key. Because of this, troubleshooting and tuning are presented together.

The stats Command
A quick and easy way to observe when events occur in OpenBTS is by using the stats
command. There are several dozen event types that are tracked. To get a full list of them,
run the stats command with no arguments:

OpenBTS> stats

Each event type is simply a key name in a small SQLite3 database and the value for each
key corresponds to the number of times this event has happened since the last time the
stats database was cleared. Clearing the database is handy to give yourself a known
starting count for the events you are interested in. To clear the database, execute the
following:

OpenBTS> stats clear
stats table (gReporting) cleared

Now, if you send an SMS from one handset to the other on your network and search
for SMS-related events, you will see something like the following:

OpenBTS> stats SMS
OpenBTS.GSM.MM.CMServiceRequest.MOSMS: 1 events over 4 minutes
OpenBTS.GSM.SMS.MOSMS.Start: 1 events over 4 minutes
OpenBTS.GSM.SMS.MOSMS.Complete: 1 events over 4 minutes

39

OpenBTS.GSM.SMS.MTSMS.Start: 1 events over 4 minutes
OpenBTS.GSM.SMS.MTSMS.Complete: 1 events over 4 minutes

OpenBTS.GSM.MM.CMServiceRequest.MOSMS shows that a handset signaled to the base
station that it wished to perform a mobile originated SMS (MOSMS). The
OpenBTS.GSM.SMS.MOSMS.Start and Complete keys show that an MOSMS was both
started and completed. These first three keys are related to the initial transmission from
source handset to base station. The last two keys show that the mobile terminated SMS
(MTSMS) from the base station to the destination handset was both started and com‐
pleted.

Runtime Logs
The logs for all OpenBTS components are stored in /var/log/OpenBTS.log. To monitor
them live as they are produced, execute:

$ tail -f /var/log/OpenBTS.log

If you’d like to only monitor log entries that contain a certain bit of text, you can chain
the tail and grep commands. For example, to only monitor new entries that contain
the text “sipauthserve”, use the following:

$ tail -f /var/log/OpenBTS.log | grep sipauthserve

You can also search through existing logs for a specific text. In this example, we’re not
monitoring for new entries, but rather searching the entire logfile for the text “sipauth‐
serve”:

$ grep sipauthserve /var/log/OpenBTS.log

Log entries contain many different pieces of information. Here is an example entry that
OpenBTS produced:

2014-09-04T10:50:09.258961+02:00 ubuntu openbts: NOTICE 27238:27238 2014-09-04T
10:50:09.2 GSMConfig.cpp:132:regenerateBeacon: regenerating system information
messages, changemark 5

The fields from left to right are:

• Data write timestamp: “2014-09-04T10:50:09.258961+02:00”
• System hostname: “ubuntu”
• System application: “openbts”
• Event level: “NOTICE”
• Event user and group: “27238:27238”
• Data create timestamp: “2014-09-04T10:50:09.2”
• Event source file, line, and function name: “GSMConfig.cpp:132:regenerateBea‐

con”

40 | Chapter 3: Troubleshooting and Performance Tuning

• Event text: “regenerating system information messages, changemark 5”

Log Levels
By default, the components are only set to log events at the NOTICE level and above.
This is usually enough information to debug typical service errors such as dropped calls
or high interference rates. The logging system that all OpenBTS components use has
eight levels for reporting events:
EMERG

Report serious faults associated with service failure or hardware damage

ALERT
Report likely service disruption caused by misconfiguration or poor connectivity

CRIT
Report anomalous events that are likely to degrade service

ERR
Report internal errors of the software that may result in degradation of service in
unusual circumstances

WARNING
Report anomalous events that may indicate a degradation of normal service

NOTICE
Report anomalous events that probably do not affect service but may be of interest
to network operators

INFO
Report normal events

DEBUG
Will degrade system performance; only for use by developers

To get different information out of the system, you adjust the logging level. The INFO
level, for example, also reports normal events (in addition to NOTICE and above). These
normal events can provide context for you to deduce what error may have occurred. To
change the logging level component-wide, execute the following:

OpenBTS> config Log.Level INFO
Log.Level changed from "NOTICE" to "INFO"

Once you’ve localized some suspicious activity from the logs, you can use the source
file field to expose more information from that part of the application. The event ex‐
ample above was emitted from GSMConfig.cpp. To enable DEBUG level logging on just
that source file, execute the following:

Runtime Logs | 41

OpenBTS> rawconfig Log.Level.GSMConfig.cpp DEBUG
defined new config Log.Level.GSMConfig.cpp as "DEBUG"

You need to use rawconfig to define this key/value pair because it is not in the config‐
uration schema. To remove this custom key/value pair from the configuration database,
use rmconfig:

OpenBTS> rmconfig Log.Level.GSMConfig.cpp
Log.Level.GSMConfig.cpp removed from the configuration table

Starting in OpenBTS 5.0, it is now possible to define a log level for the individual sub-
system groups in OpenBTS. Each of the following groups can be individually adjusted:

• Log.Level.Control

• Log.Level.SIP

• Log.Level.GSM

• Log.Level.GPRS

• Log.Level.Layer2

• Log.Level.SMS

Again, because this is a custom key/value pair, you must use rawconfig:

OpenBTS> rawconfig Log.Level.SIP DEBUG
defined new config Log.Level.SIP as "DEBUG"

And again, to remove a custom key/value pair from the configuration database, use
rmconfig:

OpenBTS> rmconfig Log.Level.SIP
Log.Level.SIP removed from the configuration table

Using the DEBUG level component-wide produces so much infor‐
mation that it can destabilize OpenBTS. DEBUG should only be used
on an individual source file or log group.

Environmental Tuning
Adapting OpenBTS to perform well in the environment where it is deployed is a critical
step. The surrounding buildings and foliage, climate, tower height, antenna selection,
cable length, and amplifier power all play a role. Entire businesses are built on providing
expertise in this area and the hardware topic is much too broad for it to be covered in
a meaningful way here. Any robust deployment will need both hardware and software
tuning. This section sticks to the controls available in the OpenBTS software.

42 | Chapter 3: Troubleshooting and Performance Tuning

Nonsubscriber Phones
If your deployment is using an amplified RF chain as described in “Stronger, Cleaner
Signals” on page 46 and other carrier signals in the area are weak or nonexistent, you will
have to deal with nonsubscriber handsets. All handsets that can see your network will
attempt to join because they have no local service.

In rural community deployments, this is a very common problem. The majority of the
residents in these communities have handsets for when they travel to nearby towns with
service. When they arrive back, the handset may not be powered down. If a new tower
goes up in these situations, it may have to deal with thousands of nonsubscriber hand‐
sets.

These handsets generate LURs that will be rejected. There are over 20 different ways to
reject these requests; the key is to use the right one for your deployment. By default,
OpenBTS uses a very friendly reject cause (0×04), allowing the handset to retry within
a few minutes. You need to use a reject cause that tells the handset to go away for a long
period of time so LUR traffic does not overwhelm your system to the point that sub‐
scribers cannot use it.

There are two parameters where you can define the reject cause you’d like to use:

OpenBTS> config RejectCause
Control.LUR.404RejectCause 0x04 [default]
Control.LUR.UnprovisionedRejectCause 0x04 [default]

The key Control.LUR.404RejectCause defines which cause to use when an unknown
subscriber attempts to join, whereas Control.LUR.UnprovisionedRejectCause defines
which to use when a known subscriber attempts to join but fails to authenticate. There
may be reasons to adjust these independently but for now they will be set identically.
The allowed reject codes are described in Table 3-1.

Table 3-1. Reject causes, as defined in GSM 04.08 section 10.5.3.6
Hex value Description

0x02 IMSI unknown in HLR

0x04 IMSI unknown in VLR

0x05 IMEI not accepted

0x0B PLMN not allowed

0x0C Location area not allowed

0x0D Roaming not allowed in this location area

0x11 Network failure

0x16 Congestion

0x20 Service option not supported

0x21 Requested service option not subscribed

Environmental Tuning | 43

Hex value Description

0x22 Service option temporarily out of order

0x26 Call cannot be identified

0x30 Retry upon entry into a new cell

0x5F Semantically incorrect message

0x60 Invalid mandatory information

0x61 Message type nonexistent or not implemented

0x62 Message type not compatible with the protocol state

0x63 Information element nonexistent or not implemented

0x64 Conditional IE error

0x65 Message not compatible with the protocol state

0x6F Unspecified protocol error

Each of these may have a different effect depending on the handset. Through testing, a
few favorites have emerged and are highlighted in Table 3-1. These are values that will
instruct nonsubscriber handsets to go away for a long time, but at the same time, not
cause that handset to give up on joining other networks.

Change these values now to cut down on nonsubscriber LUR traffic:

OpenBTS> config Control.LUR.404RejectCause 0x0C
Control.LUR.404RejectCause changed from "0x04" to "0x0C"
OpenBTS> config Control.LUR.UnprovisionedRejectCause 0x0C
Control.LUR.UnprovisionedRejectCause changed from "0x04" to "0x0C"

Coverage Area
Another way to make handsets ignore your network is to actually prevent them from
seeing it. This is done by shrinking the usable coverage area both physically and by
policy.

The coverage area for SMS and registration services can be approxi‐
mately 4× larger (2× the radius) than that of voice services because
lost frames can be retransmitted without breaking the service.

Shrinking physically
OpenBTS has a power control mechanism that adjusts attenuation of the transmit power
to expand or contract the coverage area. To check the base station’s current attenuation
level, use the power command:

OpenBTS> power
current downlink power –10 dB wrt full scale

44 | Chapter 3: Troubleshooting and Performance Tuning

To adjust the attenuation, simply provide an argument to the power command. To in‐
crease the base station to maximum power with the largest coverage area, specify that
there should be 0 dB of attenuation:

OpenBTS> power 0
current downlink power 0 dB wrt full scale

Conversely, increase the attenuation to decrease power and shrink the coverage area:

OpenBTS> power 20
current downlink power -20 dB wrt full scale

There is another physical power control available. Handsets also transmit to the base
station using different power levels so the received power from all handsets is approx‐
imately equal in strength when it reaches the base station. The base station controls the
power levels used by and available to the handsets so we can limit this range. The handset
has no control over what power level it will use so we can limit the range of values it is
told to use. The MS.Power keys allow this:

OpenBTS> config MS.Power
GSM.MS.Power.Damping 75 [default]
GSM.MS.Power.Max 33 [default]
GSM.MS.Power.Min 5 [default]

Although this method is less commonly used, it is included here for completeness.

Shrinking by policy
Physically shrinking the coverage area may not be enough to stabilize your network
under a heavy usage load. There is still one further parameter that can come in handy,
GSM.MS.TA.MAX:

OpenBTS> config GSM.MS.TA
GSM.MS.TA.Damping 50 [default]
GSM.MS.TA.Max 62 [default]

TA stands for Timing Advance. Timing Advance is a method that GSM uses to com‐
pensate for handsets that are very far away from the base station. The farther away the
handset is, the larger the TA value will be. This value tells the handset to transmit its
radio bursts earlier so they arrive at the base station squarely within their allotted time
slot. The speed of light is fast but still not instantaneous.

Back to the parameter: setting GSM.MS.TA.MAX to 10, for example, causes OpenBTS to
silently ignore any radio bursts with a TA greater than 10. TA is measured in something
called a symbol period and corresponds to a distance of about 550 m. With
GSM.MS.TA.MAX set to 10, OpenBTS will ignore by policy any bursts from handsets lo‐
cated over 5.5 km away.

Because coverage areas are never perfect circles, this is where a limitation by policy is
convenient. If your tower is in a valley and is guarded by elevation in three directions,

Environmental Tuning | 45

the remaining direction will receive a signal from the tower much farther out. You don’t
want to turn down power because there are users on the hillsides, so instead, you can
limit the coverage area by policy.

Signal Distortion
Signal distortion is highly dependent on the terrain surrounding your installation. By
default, OpenBTS is configured to be very thorough in mitigating multipath distortions.
It does this by looking at a larger window of time when attempting to cancel out dis‐
tortions. This is very computationally expensive.

If your installation is in open terrain without any buildings or trees, you may be able to
reduce the CPU load considerably by adjusting GSM.Radio.MaxExpectedDelaySpread.
Smaller coverage areas are also candidates for using a small value here:

OpenBTS> config Delay
GSM.Radio.MaxExpectedDelaySpread 4 [default]

This key dictates how many symbol periods will be examined. Adjust back to the default
of 4 if poor performance occurs after adjusting down.

Stronger, Cleaner Signals
To effectively extend the coverage of the network for production use you need an
amplifier and cavity duplexer. Because GSM handsets usually have a transmit power
capability of 2 W and your SDR has a transmit power of 100 mW, the base station will
be the factor limiting your coverage area. The uplink signal can reach from handset to
base station, but the downlink signal back from base station to handset is too weak for
the handset to receive. The relative power asymmetry between the base station and
handset is illustrated in Figure 3-1.

To illustrate, adding an amplifier of 2 W into the transmit chain on the base station will
increase your coverage area, but now an extra precaution must be taken regarding the
receive chain. The receive antenna is now receiving such an increased amount of energy
from the transmit antenna that it can actually damage the circuitry of the SDR. At the
very least, it will make demodulating a clean signal impossible because the additional 2
W of local transmit energy from the amplifier counts as noise and will completely drown
out any remote handsets. To solve this, you need a cavity duplexer.

A cavity duplexer attaches to both the transmit and receive antenna ports. A single
antenna is then attached to the duplexer as shown in Figure 3-2. GSM transmits and
receives on different frequencies, so the duplexer is able to cleanly split transmit and
receive signals.

46 | Chapter 3: Troubleshooting and Performance Tuning

Figure 3-1. Power asymmetry

This prevents unwanted transmit energy from circling back into the receive chain. Be‐
cause this split is based on frequency, a duplexer must be selected that matches the GSM
band you will be using (850, 900, 1800, or 1900 MHz).

Figure 3-2. Duplexer hookup

Stronger, Cleaner Signals | 47

CHAPTER 4

From Single to Multinode

A mobile network with a single tower is infinitely more useful than one with zero towers.
However, there comes a point where no matter how well that single tower is tuned, it
cannot effectively cover a given area.

Because OpenBTS uses the same software stack to implement large
and small coverage areas and has even been made to run on a Rasp‐
berry Pi, try to free your mind of the classic “cell tower” image. A
tower could easily fit in a shoebox or blend in with your WiFi ac‐
cess point.

This chapter describes how to expand your network to multiple physical sites but still
maintain a single logical network. This logical network will support Mobility and
Handover as any commercial network would.

Mobility, Handover, and Roaming
There is some confusion among these terms. While they do mean very specific things,
even experts in the field will throw them around in discussion and expect the other
party to understand the correct meaning from the context. To clear up this ambiguity
each term will be outlined briefly.

Mobility
Mobility is the ability of a handset to receive service on different physical base stations
in an operator’s network. As the handset moves in three-dimensional space, the signal
quality it receives from neighboring base stations will fluctuate. When the handset de‐
tects a significantly better signal from a neighboring base station, it sends an LUR to
register or “camp” to the new base station. To differentiate, a periodic LUR at the same

49

http://www.paconsulting.com/our-experience/how-to-shrink-a-base-station-into-a-raspberry-pi/
http://www.paconsulting.com/our-experience/how-to-shrink-a-base-station-into-a-raspberry-pi/

base station is refreshing an existing registration but an LUR at a new base station is
recamping, switching the registration to a new tower.

An LUR is not performed unless the two base stations have differ‐
ent location area codes (LACs). In a traditional GSM network, all base
stations in a given geographic region have the same LAC. However,
OpenBTS currently requires all base stations to have a unique LAC
so LURs will be performed when moving in between base stations.
This triggers an updated SIP REGISTER message and, thus, an up‐
dated subscriber registry entry containing the IP of the new base
station.

Mobility is a function of the network but the handset makes the decision to recamp.
Also, it is also only possible when the handset is not in an active transaction such as a
voice call or exchanging SMS. Mobility may also be referred to as “idle mode recamping.”

Handover
Handover is the ability of an active voice call to survive the transition between two base
stations. Mobility is a prerequisite for Handover, but unlike Mobility, the network de‐
termines and executes Handover. The handset has no choice but to obey Handover
commands that the network has sent it.

The Base Station Controller (BSC) controls Handover in a traditional GSM network.
OpenBTS eliminates the need for a BSC through the use of a new peer-to-peer protocol.
Information about neighboring frequencies, identities, and active transactions is ex‐
changed over this protocol, simplifying the deployment architecture.

Several factors determine the decision to execute a Handover. First, the downlink signal
from the base station currently serving the handset must be sufficiently weak. Also, the
signal from the strongest neighboring base station must also exceed the serving base
station level by a set threshold. Finally, the strongest neighboring base station must not
have recently rejected any Handovers due to congestion. If these conditions are met,
the serving base station will initiate a Handover to the strongest neighboring base sta‐
tion.

Roaming
Roaming is Mobility across carriers. It requires an administrative agreement between
those carriers and common interface technology, usually GSM-Mobile Application Part
(MAP) signaling across the Signaling System No. 7 (SS7) network. It is impossible to
roam within your own network.

50 | Chapter 4: From Single to Multinode

Topology
Up until now, you have been building a “network-in-a-box” topology with every single
component located on a single server, a single logical entity. In a multinode network
there are now two logical entities: Central Services and the “tower.” The components
you are familiar with so far must be rearranged a bit to support this. Central Services
will need SIPAuthServe, SMQueue, and Asterisk installed. For the sake of simplicity,
SIPAuthServe, SMQueue, and Asterisk will be referred to as Central Services for the
remainder of this chapter. The tower will only run OpenBTS.

There will be a single Central Services install and multiple tower installs as shown in
Figure 4-1.

Figure 4-1. Multinode topology

Towers are backhauled over IP to Central Services, allowing multiple coverage areas to
share the same subscriber database and configuration.

In the following instructions, Central Services will be located at 192.168.158.100 and
towers will start at 192.168.158.201.

Topology | 51

Central Services Setup
Instead of extracting Central Services from your existing network-in-a-box configura‐
tion, it’s easier to just move the OpenBTS instance and radio hardware to a new home.
This avoids having to transplant the subscriber data and configurations for SMQueue,
SIPAuthServe, and Asterisk.

Remove OpenBTS
To make sure OpenBTS doesn’t start on boot and continually fail because it’s missing a
radio, uninstall it now:

$ sudo apt-get remove openbts

Configure Logging
Each tower independently, as well as Central Services, will generate logging information.
You need to set up Central Services to accept logging information from all towers so all
activity across the network can be captured in a single file.

This step is not necessary to establish a functional multinode network but is extremely
useful when debugging. Tracking down errors across multiple towers with separate logs
is not very much fun.

Edit /etc/rsyslog.conf with your favorite editor and uncomment the two lines directly
after “provides UDP syslog reception”:

provides UDP syslog reception
$ModLoad imudp
$UDPServerRun 514

These two lines mean that rsyslog will accept UDP log traffic on port 514. To apply these
settings, a restart of the service is needed:

$ sudo service rsyslog restart

Asterisk, SMQueue, and SIPAuthServe
There is nothing to reconfigure in these components. They don’t care if the OpenBTS
instance is communicating locally or across an IP network.

Tower Setup
Jump back to “Operating System and Development Environment Setup” on page 7 and
follow along on a new virtual machine or fresh server to get your new tower’s OS and
components up and running. Make sure to pick a unique hostname for the tower so it’s

52 | Chapter 4: From Single to Multinode

distinguishable in the centralized logs. Also, save some time at the end of those instruc‐
tions by only installing OpenBTS.

These instructions assume that both your tower and Central Services machines are
located on the same network subnet. Once you log in to the new tower installation,
make sure you can ping Central Services (press Ctrl-C to stop the ping command):

$ ping 192.168.158.100
PING 192.168.158.100 (192.168.158.100) 56(84) bytes of data.
64 bytes from 192.168.158.100: icmp_req=1 ttl=128 time=4.28 ms
64 bytes from 192.168.158.100: icmp_req=2 ttl=128 time=4.34 ms
64 bytes from 192.168.158.100: icmp_req=3 ttl=128 time=4.48 ms
64 bytes from 192.168.158.100: icmp_req=4 ttl=128 time=4.48 ms
^C
--- 192.168.158.100 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3006ms
rtt min/avg/max/mdev = 4.285/4.399/4.484/0.086 ms

Configure SIP Proxies
OpenBTS connects to all other components using SIP. Now that these components are
on another host, the SIP.Proxy key needs to be adjusted accordingly. Also, now that
OpenBTS is speaking to services on IP addresses other than localhost, it needs to know
what address to send its own requests to. The SIP.Local.IP key allows you to set the
IP address that other services should use when contacting OpenBTS or replying to its
requests. Set it now using your tower’s IP address:

OpenBTS> config SIP.Local.IP 192.168.158.201
SIP.Local.IP changed from "127.0.0.1" to "192.168.158.201"
SIP.Local.IP is static; change takes effect on restart

Restart OpenBTS to apply this static key:

$ sudo stop openbts
$ sudo start openbts

Now, each SIP.Proxy key can be updated to point to Central Services, so registration,
voice, and SMS traffic are sent there instead of to localhost:

OpenBTS> config SIP.Proxy.Registration 192.168.158.100:5064
SIP.Proxy.Registration changed from "127.0.0.1:5064" to "192.168.158.100:5064"
OpenBTS> config SIP.Proxy.SMS 192.168.158.100:5063
SIP.Proxy.SMS changed from "127.0.0.1:5063" to "192.168.158.100:5063"
OpenBTS> config SIP.Proxy.Speech 192.168.158.100:5060
SIP.Proxy.Speech changed from "127.0.0.1:5060" to "192.168.158.100:5060"

Make sure to include the port information. Each component runs
on a different port and routing requests to the incorrect port would
break functionality.

Tower Setup | 53

Force a handset to register via this new topology to test things out. Voice and SMS should
also function. Verify this before moving on.

Configure Logging
Logging information that each tower generates can be sent to Central Services. The
logging daemon on Central Services has already been changed to accept this traffic; now
it’s time to tell our tower nodes to send it.

Edit /etc/rsyslog.d/OpenBTS.conf with your favorite editor so it contains a new line di‐
rectly below the existing local7 entry:

local7.* /var/log/OpenBTS.log
local7.* @the-central-services-ip

This line means that in addition to logging information to the OpenBTS.log file on disk,
the same messages will also be sent to Central Services for logging there. To apply these
settings, a restart of the service is needed:

$ sudo service rsyslog restart

Topology Reworked
So far your network is functionally the same. There is still one coverage area created
with one logical tower and Central Services—they’ve just been split onto two separate
physical machines. The next step involves adding additional neighboring towers to the
network and configuring them to appear as a single RAN.

Adding Neighboring Towers
The tower setup section can now be repeated for as many physical towers as you’d like
to add. Once they have been configured to at least function as an independent tower,
they must be configured to behave as a proper neighboring tower within the network.
Additionally, all existing towers must be informed about this new tower.

So far, assume that there is only one tower in your network—the one you just ported
from the network-in-a-box layout. Take a look at its identity parameters now:

OpenBTS> config Identity
GSM.Identity.BSIC.BCC 2 [default]
GSM.Identity.BSIC.NCC 0 [default]
GSM.Identity.CI 10 [default]
GSM.Identity.LAC 1000 [default]
GSM.Identity.MCC 001 [default]
GSM.Identity.MNC 01 [default]
GSM.Identity.ShortName GroundControl

Of these parameters, some must be unique and others must be identical across all
neighbors. Table 4-1 is a convenient summary. The configuration schema also embeds

54 | Chapter 4: From Single to Multinode

this information in the scope field. The scope field will tell you if the key must be unique
or identical among neighboring towers or across all towers in your network.

Table 4-1. Configuration scope
Identical Unique

GSM.Identity.MCC GSM.Identity.LAC

GSM.Identity.MNC GSM.Identity.CI

GSM.Identity.BSIC.NCC GSM.Identity.BSIC.BCC

GSM.CellSelection.NCCsPermitted GSM.Radio.C0

GSM.Identity.ShortName

Some background information will be presented, so each parameter is understood,
along with a step-by-step guide to setting up your next tower.

Must Be Identical
The GSM.Identity.MCC and GSM.Identity.MNC keys are the highest-level identification
for any network, indicating what country this network is in and which carrier is running
it. Regulatory bodies assign both of these IDs. Test networks always use 001 and 01,
respectively. If this isn’t a test network, you will probably have paid money for a license
and be very aware of the appropriate value.

The GSM.Identity.BSIC.NCC key is your Network Color Code (NCC), a piece of in‐
formation that handsets use to very quickly determine if they can gain access to the
network. All carriers in a given area must have unique color codes.

Related to the last key is GSM.CellSelection.NCCsPermitted. This key is used when
working with partner networks to express the following: “not only is my NCC OK but
these other NCCs are permitted.” The NCCsPermitted key is a bitwise flag, not an integer
value. Regardless, all towers should have the same NCCsPermitted setting.

The GSM.Identity.ShortName key should be identical across all towers but it is not
required to be. A convenient debugging technique when deploying a multinode network
is to set unique shortnames for each tower. If your handset reliably shows the shortname,
you now instantly know what tower your handset is camped to while moving around.

Step-by-step
The step-by-step instructions for this section are pretty basic: make sure all of these keys
are identical to the existing towers in your network.

Adding Neighboring Towers | 55

Must Be Unique
The first key, GSM.Radio.C0, must be unique because it is the ARFCN and thus RF being
used on this tower. If physically adjacent towers are using the same frequency, it will
create interference and deny service to any participants in the overlapping signal region.

Not only do the C0 ARFCNs need to be unique, but they also must
not be numerically adjacent. Because the signal spacing is only 200
KHz and the signal bandwidth is 270 KHz, adjacent ARFCNs over‐
lap. Use at least every other ARFCN when deploying physically ad‐
jacent towers (e.g., tower 1 uses ARFCN 151 and tower 2 uses
ARFCN 153).

The GSM.Identity.BSIC.BCC must also be unique for physically adjacent towers. It
signals the Base Station Color Code (BCC), a 3-bit field allowing seven unique values.

Your licensed C0 ARFCNs and the BCC are very limited in number and a color map
might be helpful in assigning values to towers if you plan on having a lot of them. A
color map shows the geographic location of all towers and assigns each one a color. Each
color corresponds to an ARFCN number and BCC pair as shown in Figure 4-2. If your
planning shows that no two adjacent towers have the same “color,” then Mobility and
Handovers will not be hindered by clashing ARFCNs or BCCs.

Figure 4-2. Color map

56 | Chapter 4: From Single to Multinode

GSM.Identity.LAC must be unique across all towers in your network. As a handset
moves across tower boundaries it realizes that the Location Area Code is changing and
should perform another LUR. This LUR is translated into a SIP REGISTER, and
SIPAuthServe can update the IP address for the tower where this handset is reachable.
The requirement that the LAC be unique is specific to OpenBTS. Traditional networks
have LACs that correspond to much larger geographic areas containing multiple towers.

GSM.Identity.CI is the Cell ID (CI) and must be unique across all towers in your
network.

Step-by-step
Assign a color to the new tower and use the corresponding C0 value and BCC:

OpenBTS> config GSM.Radio.C0 168
GSM.Radio.C0 changed from "151" to "168"
GSM.Radio.C0 is static; change takes effect on restart
OpenBTS> config GSM.Identity.BSIC.BCC 3
GSM.Identity.BSIC.BCC changed from "2" to "3"

As there are plenty of LAC and CI values, simply use the next one for each tower:

OpenBTS> config GSM.Identity.LAC 1001
GSM.Identity.LAC changed from "1000" to "1001"
OpenBTS> config GSM.Identity.CI 11
GSM.Identity.CI changed from "10" to "11"

Restart OpenBTS to apply the changes:

$ sudo stop openbts
$ sudo start openbts

Neighbor List and Command
Your towers are now configured so as not to stomp on each other either physically
through their transmission frequencies or logically in their ID numbering schemes.
They must still be told about each other in the configuration. This is accomplished using
the GSM.Neighbors key. Each tower must have its GSM.Neighbors key set to a space-
separated list of IP addresses corresponding to all physically adjacent towers but ex‐
cluding itself.

On your new tower (192.168.158.202), enter the following to tell it about your original
tower (192.168.158.201):

OpenBTS> config GSM.Neighbors 192.168.158.201
GSM.Neighbors changed from "" to "192.168.158.201"

Do the same for your original tower so it knows about the new tower:

OpenBTS> config GSM.Neighbors 192.168.158.202
GSM.Neighbors changed from "" to "192.168.158.202"

Adding Neighboring Towers | 57

Still on your original tower, 192.168.158.201, check out the neighbors command:

OpenBTS> neighbors
host C0 BSIC FreqIndex Noise ARFCNs TCH-Avail Updated Holdoff
------------------ --- ---- --------- ----- ------ --------- ------- -------
192.168.158.202:16001 168 2 0 68 1 7 16 0

The OpenBTS peering protocol automatically queries for information about the neigh‐
boring base stations defined in GSM.Neighbors. The neighbors command provides
access to this information. Here you see the C0 ARFCN, current noise level, total
ARFCN count, and available traffic channels (TCHs).

Neighbor-Enabled Commands
Now that you have a functional pair of neighbors, the chans command will also provide
additional information during an active call. This information is related to the current
reception level of the strongest neighboring tower that the handset reported. To see it,
use the chans command with a –l flag:

OpenBTS> chans -l
CN TN chan transaction LAPDm recyc Signal RSSI RSSP SNR FER BER TA
 type id state dB dB dB pct pct sym
0 1 TCH/F T100 LinkEstablished false 26 -50 -24 38.7 0.00 0 0.9

 TXPWR TA_DL RXLEV_DL BER_DL Time IMSI Neighbor Handover
 dBm sym dBm pct M:S ARFCN(dBm) C0:BSIC
 7 0 -93 2.26 0:25 2140... 168 (-76)

Coverage Overlap Tuning
With each tower tuned individually, the trickiest part is to tune them in relation to each
other. Take a look again at Figure 4-1. The area of overlap between Tower 1 and Tower
2 is crucial. This area must be wide enough so that a handset traveling through it can
contact both towers reliably for as long as it takes to perform a Handover. The terrain
in this area must be taken into account as well as the potential handset velocity. The
overlap must not be too excessive as to waste resources though. Finding this balance
between reliable overlap and optimized overall coverage is key. Again, entire businesses
can be built on this expertise and a deep dive falls outside the scope of a “getting started”
book.

Handset Mobility only has a single key to configure: GSM.CellSelection.CELL-
RESELECT-HYSTERESIS. This key indicates to the handset how much better a potential
neighboring tower’s signal should be before it recamps.

58 | Chapter 4: From Single to Multinode

OpenBTS can more directly control Handover. There are several keys available for tun‐
ing Handover behavior:

OpenBTS> config Handover
GSM.Handover.FailureHoldoff 20 [default]
GSM.Handover.Margin 15 [default]
GSM.Handover.Ny1 50 [default]
GSM.Timer.Handover.Holdoff 10 [default]

The GSM.Handover.Margin key is similar to GSM.CellSelection.CELL-RESELECT-
HYSTERESIS except that it’s used for Handover operations. With both of these settings,
it is important to remember that if they are set too high (e.g., the tower must be much
stronger before switching), there is a risk that the handset will not jump over in time.
If they are set too low (e.g., the tower must only be slightly stronger before switching),
the network can be hit with a spike of traffic from handsets located in an area where
both signals are approximately equal as the handsets rapidly jump back and forth.

Even more parameters are available with devconfig if you would like to experiment
with the weights inside the OpenBTS Handover algorithm:

OpenBTS> devconfig Handover
GSM.Handover.FailureHoldoff 20 [default]
GSM.Handover.History.Max 32 [default]
GSM.Handover.Margin 15 [default]
GSM.Handover.Ny1 50 [default]
GSM.Handover.RXLEV_DL.History 6 [default]
GSM.Handover.RXLEV_DL.Margin 10 [default]
GSM.Handover.RXLEV_DL.PenaltyTime 20 [default]
GSM.Handover.RXLEV_DL.Target 60 [default]
GSM.Timer.Handover.Holdoff 10 [default]

Coverage Overlap Tuning | 59

CHAPTER 5

GPRS

Mobile networks have, in many areas of the world, been reduced to being data networks.
Over-the-top (OTT) services like WhatsApp and Skype only need a data pipe and par‐
ticipants can connect regardless of carrier. Fees between the participants are also not
dependent upon geographic location, unlike local versus long-distance charges.

GPRS is much too slow to support bidirectional streaming video but can suffice for a
low-quality voice call. Its speeds are ideal for email and OTT text messaging.

The world of sensors and infrastructure such as heat and flow sensors or electrical and
parking meters also needs data connectivity. These low-bandwidth machine-to-
machine (M2M) devices, now referred to as Internet of Things (IoT) devices, are a very
common use for GPRS.

GPRS is actually not a part of GSM. It was developed after GSM had been standardized
and is usually referred to as 2.5G, whereas plain GSM is 2G. OpenBTS abstracts these
differences and presents a unified configuration where possible.

Enabling/Disabling
By default, the GPRS service is disabled in OpenBTS. Turn it on now by toggling the
GPRS.Enable key:

OpenBTS> config GPRS.Enable 1
GPRS.Enable changed from "0" to "1"
GPRS.Enable is static; change takes effect on restart

Restart OpenBTS to apply this static key:

$ sudo stop openbts
$ sudo start openbts

Once OpenBTS has restarted, log back in to its command line and use the gprs list
command to confirm that OpenBTS has set up a few channels for GPRS:

61

OpenBTS> gprs list
 PDCH ARFCN=166 TN=1 FER=0%
 PDCH ARFCN=166 TN=2 FER=0%

Central Services
GPRS does not rely on any additional components but some configuration must be in
place on your Linux host for things to work correctly. This should be taken care of
already from the range-configs package during setup but this is how to double-check
that things are in order.

The handsets’ IP traffic is piped through OpenBTS and into a virtual network interface
named sgsntun. You can confirm now that OpenBTS has created it by using ifconfig:

$ ifconfig sgsntun
sgsntun Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00
 UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:500
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

The virtual network interface also needs routes and rules applied to it for the iptables
Linux firewall. Example rules are located in /etc/OpenBTS/iptables.rules and can be
modified if needed to change the gateway interface name. By default, they are written
for eth0. Apply the rules now manually:

$ sudo iptables-restore < /etc/OpenBTS/iptables.rules

To have the system apply these rules every time your eth0 interface comes up, modify /
etc/network/interfaces to add the final line below, which contains “pre-up”:

This file describes the network interfaces available on your system
and how to activate them. For more information, see interfaces(5).

The loopback network interface
auto lo
iface lo inet loopback

The primary network interface
auto eth0
iface eth0 inet dhcp
 pre-up iptables-restore < /etc/OpenBTS/iptables.rules

With the tunnel device present and the rules applied, your Linux host should be in order.

Connecting
While your handset should perform an LUR and join the network once it’s back up,
there may be additional steps to make sure the GPRS service is recognized and usable.

62 | Chapter 5: GPRS

In GPRS this is not an LUR; it is called GPRS Attach. The handset may not perform this
Attach for several reasons.

If you are using another carrier’s SIM card, the handset GPRS subsystem will probably
consider itself to be roaming when joining your OpenBTS network. The GPRS subsys‐
tem will not attempt to Attach unless “use data roaming” has been switched on in your
handset.

Also double-check your handset’s Access Point Name (APN) settings. OpenBTS does
not care what information is put in the name, username, and password fields but the
handset may not make an Attach request until something has been entered.

Android has a very peculiar bug when it comes to APN entries. In
some versions, you are allowed to add a new APN but it will not save
unless the Mobile Country Code (MCC) and Mobile Network Code
(MNC) you enter match those defined on your SIM card. This fail‐
ure is silent and no indication is given that the new APN settings will
not be used. They also do not show up in the list of APNs on the
device. However, if you replace the SIM card with one that match‐
es the MCC and MNC you entered, your APN information magi‐
cally reappears.

All that said, some phones may still take a few minutes to Attach. They may be presenting
old network access information to OpenBTS before giving up and starting a fresh At‐
tach. Once they have successfully attached, the handset’s IP address is visible via the
sgsn list command:

OpenBTS> sgsn list
 GMM Context: imsi=001010000000009 ptmsi=0x47001 tlli=0xc0047001
 state=GmmRegisteredNormal age=32 idle=0 MS#1,TLLI=c0047001,7d4373ae
 IPs=192.168.99.1

Troubleshooting
If you are able to connect but have not received an IP address, the firewall setting may
be getting in the way. Normally this is not a problem, but depending on the Linux
installation and IP network configuration it is possible. Disable the firewall now and
restart OpenBTS to apply the change:

OpenBTS> config GGSN.Firewall.Enable 0
GGSN.Firewall.Enable changed from "1" to "0"
GGSN.Firewall.Enable is static; change takes effect on restart

OpenBTS also tries to detect your DNS server settings and pass them on to the handsets.
If you find the handset unable to resolve domain names, try setting a DNS server man‐
ually and restart OpenBTS to apply the change:

Troubleshooting | 63

OpenBTS> config GGSN.DNS 8.8.8.8
GGSN.DNS changed from "" to "8.8.8.8"
GGSN.DNS is static; change takes effect on restart

The Gateway GPRS Support Node (GGSN) and Serving GPRS Support Node (SGSN)
are typically separate entities in a GSM network but are embedded in OpenBTS directly.
To gain some more insight into what is happening in those components, you can set up
a separate logfile and observe its contents as handsets interact with the GPRS service
on your network. Set the GGSN.Logfile.Name key to a file path where you would like
the logs sent and restart OpenBTS to apply the change:

OpenBTS> devconfig GGSN.Logfile.Name /tmp/GGSN.log
GGSN.Logfile.Name changed from "" to "/tmp/GGSN.log"
GGSN.Logfile.Name is static; change takes effect on restart

Now, as activity on the GPRS network passes through the GGSN, new entries are added
to this log file. Use the tail command with an -f flag to monitor the contents:

$ tail -f /tmp/GGSN.log
 19:44:04.5: GGSN.MS.IP.Base=192.168.99.1
 19:44:04.5: GGSN.MS.IP.MaxCount=254
 19:44:04.5: GGSN.MS.IP.Route=192.168.99.0/24
 19:44:04.5: GGSN.IP.MaxPacketSize=1520
 19:44:04.5: GGSN.IP.ReuseTimeout=180
 19:44:04.5: GGSN.Firewall.Enable=0
 19:44:04.5: GGSN.IP.TossDuplicatePackets=0
 19:44:04.5:GGSN: DNS servers: 8.8.8.8 0.0.0.0
 19:44:04.5:ip link set sgsntun up
 19:44:04.7:ip route add to 192.168.99.0/24 dev sgsntun

Performance Tuning
OpenBTS attempts to intelligently divide resources between standalone dedicated con‐
trol channels (SDCCHs) for signaling and TCH for media. However, it does not yet
have a mechanism to balance different types of TCH usage.

Voice versus GPRS
Both voice and GPRS traffic use time slots that carry TCH logical channels. If your
network will be deployed to primarily serve GPRS instead of voice, you should adjust
the GPRS.Channels.Min.C0 key that specifies the minimum number of available TCH
time slots that should be used for GPRS. The default value is two. To view the current
number of available channels, use the load command:

OpenBTS> load
== GSM ==
SDCCH load/available: 0/4
TCH/F load/available: 0/5
PCH load: active, total: 0, 0

64 | Chapter 5: GPRS

AGCH load: active, pending: 0, 0
== GPRS ==
current PDCHs: 2
utilization: 0%

Here we see that there are seven total TCH channels available: five for GSM voice
(GSM:TCH/F) and two available for GPRS data (GPRS:PDCHs). To maximize the net‐
work for GPRS, set GPRS.Channels.Min.C0 to seven, the total number of TCH channels
available, and restart OpenBTS to apply the change:

OpenBTS> config GPRS.Channels.Min.C0 7
GPRS.Channels.Min.C0 changed from "2" to "7"
GPRS.Channels.Min.C0 is static; change takes effect on restart

Rerunning load will show that all TCH channels have been assigned to GPRS:

OpenBTS> load
== GSM ==
SDCCH load/available: 0/4
TCH/F load/available: 0/0
PCH load: active: 0 total: 0
AGCH load: active: 0 () pending: 0
== GPRS ==
current PDCHs: 7
utilization: 0%

OpenBTS allows you to change all time slot assignments if you’d like to control them
manually. You can adjust how many Combination 1 (TCH) versus Combination 7
(SDCCH) time slots are assigned. You can also adjust the ordering of those time slots,
and where the GPRS time slots should appear in multi-ARFCN systems. Take a look at
all the keys by searching for “Channels”:

OpenBTS> config Channels
GPRS.Channels.Min.C0 2 [default]
GPRS.Channels.Min.CN 0 [default]
GSM.Channels.C1sFirst 0 [default]
GSM.Channels.NumC1s auto [default]
GSM.Channels.NumC7s auto [default]
GSM.Channels.SDCCHReserve 0 [default]

Individual Handset Throughput
Handsets can use more than one time slot concurrently to access GPRS. The number
of concurrent time slots that are supported for uplink and downlink is known as a
multislot class. By default, OpenBTS is set to support a 3+2 multislot class: three con‐
current time slots for downlink and two for uplink. This does not mean that one handset
will dominate all five time slots concurrently, but you may now see why adding as many
time slots as possible to a GPRS-focused network is important. A higher multislot class
will deliver higher speed data to a single handset, but the network will become more
quickly congested as multiple handsets attempt to use it.

Performance Tuning | 65

You can adjust the supported multislot class using the following two keys:

OpenBTS> config Multislot
GPRS.Multislot.Max.Downlink 3 [default]
GPRS.Multislot.Max.Uplink 2 [default]

Coverage Area versus Throughput
GPRS defines four different coding schemes (CSs) for the data being delivered. They
are appropriately named CS1, CS2, CS3, and CS4. Coding Scheme 1 has the lowest
throughput but the highest reliability. It assigns more bits to be used for backing out
errors introduced during the radio transmission. Coding Scheme 4, on the other hand,
has the highest throughput but is susceptible to errors during transmission. These
transmission errors limit the usable coverage area for each coding scheme.

OpenBTS supports CS1 and CS4. You can choose between low throughput but a reliable
and, thusly, larger coverage area, or higher throughput with less robust error correction,
resulting in a smaller coverage area. By default, OpenBTS has both enabled, but they
can be adjusted individually on the uplink and downlink:

OpenBTS> devconfig Codecs
GPRS.Codecs.Downlink 1,4 [default]
GPRS.Codecs.Uplink 1,4 [default]

Expectations
GPRS is not fast, but data is data. Where WiFi is unavailable, relatively large areas can
have modem-speed Internet access whether that be for M2M/IoT devices or people
contacting their friends and relatives. Some expected throughputs per handset are il‐
lustrated in Table 5-1.

Table 5-1. Multislot class and coding scheme throughputs
Slots down+up 1+1 2+1 2+2 3+2

CS1 9.05/9.05 kbps 18.1/9.05 kbps 18.1/18.1 kbps 27.15/18.1 kbps

CS4 21.4/21.4 kbps 42.8/21.4 kbps 42.8/42.8 kbps 64.2/42.8 kbps

These are optimal throughputs and are very dependent on network congestion, both
locally on the radio as well as on the Internet uplink.

Admittedly, the OpenBTS GPRS support is not perfect yet. GSM voice and SMS are
nearly “finished” pieces of work inside of OpenBTS, but GPRS still has improvements
and optimizations that can be made. Most of these improvements have to do with al‐
gorithms that divvy up access to the radio medium and how packets are rescheduled.
Optimizing these will greatly improve the GPRS experience in OpenBTS.

66 | Chapter 5: GPRS

CHAPTER 6

OpenRegistration

OpenRegistration is an OpenBTS-specific feature that provides a WiFi captive portal-
like implementation for mobile networks. Captive portals are familiar to anyone who
has used an airport or hotel’s public WiFi connection. Your device can connect to the
WiFi network but is denied access to certain features until you answer a question, watch
an advertisement, enter a pin, etc. The device is used to provision itself.

Similarly, OpenRegistration allows a handset to join a mobile network with initially
restricted access. It may be able to dial out but the handset does not have an assigned
number and as such cannot be called by other participants in the network. However, it
can be used to provision its own number via SMS.

This type of network is very useful in any ad hoc installation where the users are tem‐
porary and fluid or the network itself is only temporarily needed: emergency response,
remote work areas, tourist destinations, large festivals, etc. Because an administrator is
not needed to create accounts and assign numbers, OpenRegistration networks are eas‐
ier to deploy and still very useful for the users.

Enabling
To get started with an OpenRegistration network, the feature itself must be enabled.
First, take a look at the keys:

OpenBTS> config OpenRegistration
Control.LUR.OpenRegistration (disabled) [default]
Control.LUR.OpenRegistration.Message Welcome to the test network. Your
IMSI is [default]
Control.LUR.OpenRegistration.Reject (disabled) [default]
Control.LUR.OpenRegistration.ShortCode 101 [default]

To enable OpenRegistration, the Control.LUR.OpenRegistration key must be set to a
regular expression. A regular expression (sometimes written “regex”) is a way of defin‐

67

ing a pattern to be matched. There are a few standards for them and more information
can be found on Wikipedia. IMSIs matching this regular expression will be given access
to the network. A few examples of patterns and their effect are in Table 6-1.

Table 6-1. OpenRegistration regular expressions
Regular Expression OpenRegistration Effect

.* Match all IMSIs

^460 Match any IMSI starting with “460”, the MCC for China

^46002 Match any IMSI from China Mobile (MCC=460, MNC=02)

460027217080245 Match only IMSI “460027217080245”

0 Match any IMSI containing a “0”

1 Match any IMSI containing a “1”

1234$ Match any IMSI ending in “1234”

For this book, OpenRegistration will be enabled to accept any IMSI it encounters:

OpenBTS> config Control.LUR.OpenRegistration .*
Control.LUR.OpenRegistration changed from "" to ".*"

There is an additional key that allows the explicit rejection of IMSIs it matches. This is
convenient if you would like to allow every IMSI except a specific group. Drawing again
from the table above, set the network to explicitly reject any IMSI from China Mobile:

OpenBTS> config Control.LUR.OpenRegistration.Reject ^46002
Control.LUR.OpenRegistration.Reject changed from "" to "^46002"

Make sure you are confident in understanding how these patterns
work before deploying them in the wild. The nightmare scenario is
that someone inadvertently joins your open network, has a heart
attack, and cannot call emergency services because your network
does not support it. Double-check that your network’s GSM.RACH.AC
is still set to the default of 0x0400. This advertises “Emergency Calls
Not Supported” in your beacon.

Personalizing
Users joining your network will be greeted with the contents of the Control.LUR.Open
Registration.Reject key. Change it now to be more relevant for your installation:

OpenBTS> config Control.LUR.OpenRegistration.Message Welcome to IslandNet! Call
or text 101 for assistance. Your IMSI is:
Control.LUR.OpenRegistration.Message changed from "Welcome to the test network.
Your IMSI is " to "Welcome to IslandNet! Call or text 101 for assistance. Your
IMSI is: "

68 | Chapter 6: OpenRegistration

http://en.wikipedia.org/wiki/Regular_expression

This instructs newly joined members to seek assistance by dialing 101. Your network
should have someone assigned to the 101 number or implement an automated voice
menu there. Users may also send an SMS to that number as instructed. By default,
SMQueue has a shortcode handler for the 101 number and will begin a dialogue with
the users to get their desired phone number assigned. The SC.Register.* parameters
in SMQueue control which shortcode is use and how messages are worded, as well as
what user-selectable number ranges are allowed. SMQueue does not have a CLI interface
yet but nmcli.py can be used to read and modify these parameters:

$./nmcli.py smqueue config read
$./nmcli.py smqueue config update Configuration.Key.Name new-value

If you would like to use a number other than 101, you should make
sure the OpenBTS Control.LUR.OpenRegistration.ShortCode is set
to your new number. This key sets the source address for the wel‐
come SMS. If it’s set to your new help number, users can simply reply
to the initial message.

Disabling
To disable OpenRegistration again, the accept and reject patterns must be reset:

OpenBTS> unconfig Control.LUR.OpenRegistration
Control.LUR.OpenRegistration disabled
OpenBTS> unconfig Control.LUR.OpenRegistration.Reject
Control.LUR.OpenRegistration.Reject disabled

OpenBTS has now been reverted to using the subscriber database to grant or deny access
instead of IMSI patterns.

Disabling | 69

CHAPTER 7

NodeManager APIs

NodeManager is a common control interface across OpenBTS, SMQueue, and
SIPAuthServe used for system configuration and monitoring. All components support
some common functionality (such as configuration manipulation) with specialized
APIs available for component-specific tasks or data sources. The NodeManager APIs
are divided into two main categories: request/response and streaming. Both types use
JSON formatted messages and communicate over ZeroMQ, a library that creates simple
and robust socket connections between processes. NodeManager APIs were imple‐
mented to simplify the remote management of multiple OpenBTS instances, as well as
Central Services like SMQueue and SIPAuthServe.

APIs are such a normal part of the Internet that this might not seem too exciting. How‐
ever, keep Figure I-1 in mind when reading through “PhysicalStatus API” on page 74.
No need for a dozen protocols and entities—the core radio measurement data is now
available directly as a stream of JSON messages! Additional APIs will be added to the
NodeManager interface in future releases.

nmcli.py
A small Python utility is included in the NodeManager repository named nmcli.py. It
requires a few dependencies to be installed, but the build.sh script (in “Building the
Code” on page 9) should have already done this. To make sure you have them, here are
the manual commands:

$ sudo add-apt-repository -y ppa:chris-lea/zeromq
$ sudo apt-get update
$ sudo apt-get install libzmq3-dev libzmq3 python-zmq

The capabilities of nmcli.py are always being expanded as new NodeManager APIs are
implemented. To see the current usage, run nmcli.py without any arguments:

$./nmcli.py

71

http://zeromq.org
http://bit.ly/11vJDR6

The utility of nmcli.py is not as a professional interface to NodeManager APIs, but
rather a development tool to quickly format messages and test new API endpoints as
they are implemented. It will be used in this chapter to demonstrate the different API
endpoints. First the nmcli.py usage will be listed, followed by the formatted JSON
messages that are exchanged.

Version API
All components implement version, a request/response API. It is a trivial API but
exposes a very important piece of information about a component running on a remote
node: its current version. Use nmcli.py to ask SMQueue for its version now:

$./nmcli.py smqueue version

The JSON request it sends to SMQueue is quite simple:

{
 "command" : "version"
}

…and the response back is equally unambiguous:

{
 "code" : 200,
 "data" : "release 5.0.0-prealpha+667f928701 CommonLibs:3ad343b97b
built 2014-09-17T21:26:56 "
}

Configuration API
All components implement config, a request/response API. This API is used to modify
configuration values in each component. Each component’s configuration schema val‐
idates requests before they are accepted, which makes the API preferable to simply
updating values in the appropriate SQLite3 databases.

Read All Keys
Use nmcli.py to ask SMQueue for all configuration parameters now:

$./nmcli.py smqueue config read

It generates a request with a command of “config” and an action of “read”:

{
 "command" : "config",
 "action" : "read"
}

SMQueue responds with a gigantic list of every configuration key it supports (clipped
for space):

72 | Chapter 7: NodeManager APIs

{
 "code" : 200,
 "data" : [
 ...
]
}

Read One Key
The API also supports reading a particular key. Use nmcli.py to ask SMQueue for the
SC.Register.Code parameter now:

$./nmcli.py smqueue config read SC.Register.Code

It generates a request with a command of “config,” an action of “read,” and a new key
field of SC.Register.Code:

{
 "command" : "config",
 "action" : "read",
 "key" : "SC.Register.Code"
}

SMQueue responds with this specific configuration key’s schema and value information:

{
 "code" : 200,
 "data" : {
 "defaultValue" : "101",
 "description" : "Short code to the application which↵
 registers the sender to the system.",
 "key" : "SC.Register.Code",
 "scope" : 0,
 "static" : false,
 "type" : "string",
 "units" : "",
 "validValues" : "^[0-9]{3,6}$",
 "value" : "101",
 "visibility" : "customer - can be freely changed by
the customer without any detriment to their system"
 }
}

Requesting a key that does not exist will result in a 404 response like this from the
component:

{
 "code" : 404
}

Configuration API | 73

Update
A configuration API would not be too useful if it did not allow new values to be set. The
message’s action field is changed to “update” and a new value field must be specified
that contains the desired change. Use nmcli.py to update the last key we queried—
SC.Register.Code—to 555 instead of 101:

$./nmcli.py smqueue config update SC.Register.Code 555

Notice the new value field and updated action field:

{
 "command" : "config",
 "action" : "update",
 "key" : "SC.Register.Code",
 "value" : "555"
}

The response includes two pieces of information:

{
 "code" : 204,
 "dirty" : 0
}

The 204 code indicates that the action was successful but there is no data that needs
reporting. The dirty field lets you know that there aren’t any static keys that need to be
applied, a.k.a., your configuration is live. If dirty is nonzero, the component will need
to be restarted eventually to fully apply the changes.

Here are the other response possibilities:

• 304: nothing to change, old and new values match
• 404: unknown key (just like the read command)
• 406: new value is invalid
• 409: new value conflicts with another configuration key
• 500: database error, storing the new value failed

PhysicalStatus API
OpenBTS is the only component that implements PhysicalStatus, a streaming API.
It is not activated by default; use the NodeManager.API.PhysicalStatus key to enable
it. To maintain backward compatibility, the PhysicalStatus API supports different
schemas as they are released. Currently, only schema 0.1 has been implemented. Setting
the key to the value 0.1 will activate the PhysicalStatus API and stream event data using
schema 0.1. Since you already have nmcli.py handy, use it now to activate the API:

74 | Chapter 7: NodeManager APIs

$./nmcli.py openbts config update NodeManager.API.PhysicalStatus 0.1

With this stream activated, you need to attach a client to view the data that is being
produced. An example client named JSONEventsClient.cpp is provided in the OpenBTS/
apps repository directory. It is compiled by default when building OpenBTS, but not
installed onto the system when using the package. This client connects to the ZeroMQ
port defined by NodeManager.Events.Port and waits for the API to publish events.

Go into your clone of the OpenBTS source code now and execute the client in place:

$ cd dev/openbts/apps
$./JSONEventsClient

Nothing interesting will happen until there is activity on your OpenBTS installation.
Power cycle a handset, send an SMS, or place a call, and PhysicalStatus readings will
start showing up on the console. An example of these readings follows:

{
 "name" : "PhysicalStatus",
 "timestamp" : "18446744072283447705",
 "version" : "0.1",
 "data" : {
 "burst" : {
 "RSSI" : -49.4808,
 "RSSP" : -27.4808,
 "actualMSPower" : 11,
 "actualMSTimingAdvance" : 0,
 "timingError" : 1.59709
 },
 "channel" : {
 "ARFCN" : 153,
 "IMSI" : "001010000000001",
 "carrierNumber" : 0,
 "timeslotNumber" : 0,
 "typeAndOffset" : "SDCCH/4-1",
 "uplinkFrameErrorRate" : 0
 },
 "reports" : {
 "neighboringCells" : [],
 "servingCell" : {
 "RXLEVEL_FULL_dBm" : -67,
 "RXLEVEL_SUB_dBm" : -67,
 "RXQUALITY_FULL_BER" : 0,
 "RXQUALITY_SUB_BER" : 0
 }
 }
 }
}

These readings show the physical radio burst information as traffic flows between the
handset and base station. These readings are also known as Measurement Reports and
happen in the background as part of the GSM standard. They provide the base station

PhysicalStatus API | 75

http://bit.ly/11vK1PN
http://bit.ly/11vK1PN

with information used to appropriately adjust transmit power on the handset, trigger
Handover messages, and calculate Timing Advance.

So what is the value in accessing this data? Many applications can use this raw meta
information about the radio conditions of a network to make smart decisions on power
consumption, share the load more intelligently, and so on.

It is currently being used in search-and-rescue operations. Helicopters in Iceland have
been outfitted with portable base stations running OpenBTS and are being flown into
remote areas where lost hikers are known to be. OpenRegistration is configured so all
handsets in the area are automatically allowed to join the network. The radio reception
levels and transmit power from both base station and handset are recorded constantly
as the network sends out test SMS messages. Alongside this radio information, the
current latitude, longitude, and altitude of the helicopter is recorded. This information
can then be analyzed algorithmically to determine the location of any handsets in the
area within 65 m of accuracy at distances of up to 35 km. More information about this
project can be found here.

76 | Chapter 7: NodeManager APIs

http://bit.ly/11vKaT7

CHAPTER 8

Onward and Upward

Hopefully you’ve completed the book having succeeded at implementing the areas you
were interested in. Here are a few jumping-off points for further research and experi‐
mentation.

Connecting to the Outside World
To connect your handsets with “real” phones in the outside world, you will need an
Internet Telephony Service Provider (ITSP). ITSPs accept the SIP signaling and RTP
media coming from your network and bridge them to the PSTN.

Voice
Finding ITSPs for voice service is straightforward. There are already online directo‐
ries for these companies and a variety of plans are offered from prepaid minutes to flat
monthly rates. Inbound phone numbers, or Direct Inward Dials (DIDs), are also offered
in the majority of countries around the world. Many of these companies also supply
instructions for how to connect to them when using Asterisk and can provide technical
assistance for your installation.

SMS
SMS is more difficult. There are not very many ITSPs offering SIP MESSAGE to SMS
service. Providers that do offer this service do not usually pair it with a voice DID so a
single handset will have a different caller ID when making voice calls than when it sends
SMS messages. This situation is improving but for now alternatives are needed.

Other providers offer Short Message Peer-to-Peer (SMPP) gateways or HTTP REST
API gateways. Again, availability across all DIDs is unpredictable and some extra glue
is needed to connect from SIP MESSAGE to either of these solutions.

77

http://bit.ly/11vKkdo
http://bit.ly/11vKkdo

An example of a successful integration using such APIs is available from nexmo.

Spectrum Regulation
The number one problem that this book alone cannot solve is the legal availability of
radio frequencies that are heavily regulated. While access to spectrum has traditionally
only been for the biggest players, this is beginning to change. Pressure is mounting on
regulators to divide access into smaller usable chunks and distribute them to entities
willing to do something useful in their regions.

The most forward-thinking spectrum policies seem to be developing in Europe. The
United Kingdom, Netherlands, and Sweden have already allocated several ARFCNs’
worth of spectrum for public use, including in standard GSM bands. Anyone can use
these frequencies at a limited power level without a license. The United States FCC
appears to be evolving and is planning a large spectrum auction in 2015 that would
release as much as 28 MHz of guard-band spectrum for unlicensed use in a given area.

Groups such as the Dynamic Spectrum Alliance and initiatives like GSM whitespace
research are, respectively, addressing the problem of spectrum access politically and
technologically.

Switch Integrations
Work is also taking place to standardize the SIP signaling that OpenBTS needs—pri‐
marily, the use of GSM and UMTS authentication algorithms instead of MD5.

So far integrations have been on a one-off basis but the effort is gathering pace. Patches
to have Asterisk and FreeSWITCH directly support registration and voice calls from
OpenBTS have been written and are in various stages of adoption by those projects.
The Kazoo platform already has the most complete support, with registration, voice,
and SMS all working.

3G Data
OpenBTS-UMTS 1.0 was released in October 2014. It is the first open source UMTS
stack that we know of and adds 3G data speeds to the list of capabilities for these new
“hybrid networks.” More information is available here.

Open Source Hardware
If you are a hardware designer and curious about how SDRs are built, you are in luck.
Not only are mobile networks being constructed with open source software, but they
are being built with open source hardware. The schematics for several SDRs are com‐
pletely open and available on GitHub.

78 | Chapter 8: Onward and Upward

http://success.nexmo.com/endaga/
http://www.dynamicspectrumalliance.org
http://bit.ly/11vKFNd
http://bit.ly/11vKFNd
http://wiki.2600hz.org
http://openbts.org/w/index.php/OpenBTS-UMTS

• Fairwaves UmTRX
• HackRF
• Range Networks RAD1/SDR1

The Community
The OpenBTS community can provide expertise on many subjects. Sign up for the email
list. There are participants with many different backgrounds: makers, hackers, re‐
searchers, and integrators welcome!

The Revolution
What would a modern mobile network look like if it were to be designed using standards
from the Internet world? We’re starting to see the answer to that question: massively
simplified, extremely flexible, open to all kinds of new ideas, and a heck of a lot less
expensive.

For the first time ever, mere mortals can download some software, pick up a radio, and
build a functional mobile network. Welcome to the revolution!

The Community | 79

https://github.com/fairwaves/umtrx-schematics
https://github.com/mossmann/hackrf
https://github.com/RangeNetworks/hardware-designs
http://www.openbts.org/community
http://www.openbts.org/community

APPENDIX A

Quick Reference

Here’s a quick reference for many facts scattered throughout the book. I find myself
looking these things up constantly and wanted to present them in a unified section.

GSM Hierarchy
This book cannot attempt to teach you GSM in a few short chapters. However, a very
helpful thing to have a grasp on is a hierarchy of GSM jargon from macro to micro.

A tower is the mast with antennas that we’re all familiar with, sometimes disguised as a
cactus or tree. Each tower can be divided into multiple sectors. These sectors cover a
portion of the possible 360º (e.g., four 90º sectors on a tower). A single sector tower
covers all 360º. Each sector will be assigned one or more ARFCNs, sometimes also called
carriers, because they are the actual pair of frequencies where data is physically ex‐
changed.

Each ARFCN has eight time slots. Each time slot has a combination assigned to it. Each
combination is composed of multiple logical channels. These logical channels are divi‐
ded into two main categories of signaling and media. SDCCHs (standalone dedicated
control channels) carry signaling such as handset registration traffic or SMS traffic.
TCHs (traffic channels) carry media such as GPRS data or voice traffic. Logical channels
are made up of multiple frames and frames are made up of bursts.

To see this system in action, open up the GSM Timeslot and Channel Visualizer.

Decibels and Decibel Milliwatts
Decibels can be used to express ratios between two values or, when paired with a base
unit, an absolute value. When written as dB, only a ratio is being expressed. For example,
an SNR of 10 dB means that the signal is 10× stronger than the noise. When written as

81

http://openbts.org/visualizer/

dBm, an absolute value in milliwatts is being expressed. For example, GSM handsets
can transmit with a maximum of 33 dBm or 2 W.

A convenient factor to keep in mind is that every time a change of 3 dB occurs, the ratio
doubles or halves.

Table A-1. dB: Decibels and ratios
dB Ratio

30 1000

20 100

10 10

6 ~4

3 ~2

1 1.259

0 1

-1 0.794

-3 ~0.5

-6 ~0.25

-10 0.1

-20 0.01

-30 0.001

Table A-2. dBm: Decibel milliwatts
dBm Absolute value

30 1000 mW or 1 W

20 100 mW

10 10 mW

6 4 mW

3 2 mW

1 1.3 mW

0 1.0 mW or 1000 µW

-1 794 µW

-3 501 µW

-6 251 µW

-10 100 µW

-20 10 µW

-30 1 µW or 1000 nW

82 | Appendix A: Quick Reference

Network Ports
Table A-3. Network ports

Port Type Setting Description

5062 UDP SIP.Local.Port OpenBTS SIP signaling

5063 UDP SIP.Local.Port SMQueue SIP signaling

5064 UDP SIP.Local.Port SIPAuthServe VoIP SIP signaling

5700 UDP TRX.Port Raw radio samples between OpenBTS and transceiver
application

16001 UDP Peering.Port OpenBTS multinode info and event string exchange

16484 UDP RTP.Start and RTP.Range OpenBTS VoIP RTP media

45060 ZeroMQ RESP NodeManager.Commands.Port OpenBTS NodeManager command port

45063 ZeroMQ RESP NodeManager.Commands.Port SMQueue NodeManager command port

45064 ZeroMQ RESP NodeManager.Commands.Port SIPAuthServe NodeManager command port

45160 ZeroMQ PUB NodeManager.Events.Port OpenBTS NodeManager events port

49300 TCP CLI.Port OpenBTS command-line interface string exchange

File Paths
Table A-4. Important files

File path Description

/etc/OpenBTS/OpenBTS.db OpenBTS configuration database

/etc/OpenBTS/SIPAuthServe.db SIPAuthServe configuration database

/etc/OpenBTS/SMQueue.db SMQueue configuration database

/var/log/OpenBTS.log Logging destination for events from all components

/etc/asterisk/sip.conf Extra SIP account configuration for Asterisk

/etc/asterisk/extensions.conf Extra dialplan configuration for Asterisk

/var/lib/asterisk/sqlite3dir/sqlite3.db Subscriber registry database used by SIPAuthServe, SMQueue, and Asterisk

Network Ports | 83

APPENDIX B

Operating System Installation

On either a fresh computer or in a virtual machine, follow these steps to produce a
compatible minimal OS installation. If you already have a compatible operating system
installed, feel free to skip to “Git Compatibility” on page 8.

When using a virtual machine, at least two cores must be assigned
to the instance.

Downloading and Preparing the Boot Media
The Ubuntu 12.04 LTS installation image (an .iso file) is available from this page. In the
“Server install CD” section, download the file linked from “PC (Intel ×86) server install
CD.” This is the 32-bit server installer.

Ubuntu Desktop will also work equally as well as Ubuntu Server, but
the Server edition has a smaller install footprint.

Once the image has been downloaded, it can be burnt onto a physical disk for installation
on standalone server hardware. If you are using a virtual machine, simply select
this .iso image file when prompted for boot media.

85

http://releases.ubuntu.com/precise/

If you are using VMware software, uncheck the “Use Easy Install”
option.

Once the physical server has this fresh disk in its CD tray, power it on. Similarly, the
new virtual machine can now be started.

Starting the Installation
The first thing you will see is a language selection menu. This is the language that will
be used for the installation process. English will be used for this book but feel free to
use your native language. Move the selector to highlight the desired language with the
arrow keys, then press Enter.

The main menu will now appear as shown in Figure B-1.

Figure B-1. Main menu

Select “Install Ubuntu Server” from this menu.

86 | Appendix B: Operating System Installation

Configuring the Installation
The next screen that appears is another language selection menu. This is the language
that will be used in the installed system, not the install process. Again, English will be
used in this book but you can select a more comfortable option if desired. Move the
selector to highlight the desired language by using the arrow keys, then press Enter.

The subsequent screen is titled “Select your location” and is used to configure the time
zone and regional settings such as the formatting of dates and times. The US will be
used in this book. Move the selector to highlight your country by using the arrow keys,
then press Enter.

Now your keyboard layout must be selected.

You can either use keyboard layout autodetection or select the country and layout. Au‐
todetection is a relatively simple series of requested key presses and questions that will
determine the keyboard type being used. The steps in this book assume you have used
the autodetection method. After the question “Detect keyboard layout?” appears, use
the arrow keys to select “Yes” and press Enter to begin the autodetection process as
shown in Figure B-2. When completed, confirm the detected layout by pressing Enter
to choose “Continue.”

Figure B-2. Keyboard selection

Finally, a hostname must be entered for your system. You may choose a hostname that
fits into your network naming scheme. The default name “Ubuntu” is used in this book.
Select it by pressing Tab to highlight “Continue,” then press Enter to confirm.

Adding the OpenBTS User
The user “openbts” must be present on the system. The easiest way to get this into place
is to configure it during installation. On the “Set up users and passwords” screen, in the
“Full name of the new user” field, type “openbts,” press Tab to highlight “Continue,” then
press Enter to confirm.

Configuring the Installation | 87

The next field, “Username for your account,” will appear. Enter “openbts” in this field
as well, press Tab to highlight “Continue,” then press Enter to confirm.

The password field for the new user will now appear. Enter a password, press Tab to
highlight “Continue,” then press Enter to confirm. A password confirmation field will
then appear. Enter the same password, press Tab to highlight “Continue,” then press
Enter to confirm.

If the password is not complex enough, a screen may appear asking if you’d like to use
this weak password. It’s up to you to either make a more complex password or accept
it as is. Once the question “Use weak password?” is asked, use the arrow keys to select
“Yes” or “No” and press Enter to confirm.

Finally, a screen will appear that asks if you’d like to encrypt the home directory for this
user. The OpenBTS suite has not been tested with encrypted user directories so the safe
choice here is “No.” Use the arrow keys to select “No” and press Enter to confirm.

Network Configuration and Autodetection
The installer mostly automates the next section, as it automatically configures the net‐
work connection by using DHCP. If a DHCP service is not available, you will need to
manually enter an IP address for your server as well as your network’s netmask, gateway,
and DNS information. This falls outside the scope of this book. Please consult the
Ubuntu server documentation online.

After the network hardware and configuration has completed automatically, a prompt
will appear with the autodetected time zone as shown in Figure B-3.

Figure B-3. Time zone autodetection

If the time zone corresponds to your location, use the arrow keys to select “Yes” and
press Enter to confirm. If it does not match, select “No” and press Enter to bring up a
manual selection menu.

88 | Appendix B: Operating System Installation

http://bit.ly/11vMl9k

Configuring the Disk
The installer is now nearly ready to start writing files to the disk but it must first be
partitioned. The easiest way is to have Ubuntu use the entire disk. If you already have
another operating system installed on the disk or would like to customize the parti‐
tioning scheme used, you will need to again consult the Ubuntu documentation, as this
falls outside the scope of this book.

On the “Partitioning disks” screen, in the “Partitioning method” question, use the arrow
keys to highlight “Guided - Use Entire Disk” and press Enter to confirm.

A new screen will appear that lists the available disks. Use the arrow keys to highlight
the desired target disk and press Enter to confirm.

Finally, a confirmation screen will appear as shown in Figure B-4.

Figure B-4. Commit changes to disk prompt

Be absolutely sure it is the correct target disk. After this step com‐
pletes, the disk contents may be irreversibly lost.

For the “Write the changes to disks?” question, use the arrow keys to select “Yes” and
press Enter to confirm.

Base Software and Updates
The package manager now needs to be configured. The first screen that appears allows
you to specify the HTTP proxy on your network. If you have one, enter it in the “HTTP

Configuring the Disk | 89

http://bit.ly/11vMl9k

proxy information” field; otherwise leave it blank. Press Tab to highlight “Continue”
and press Enter to confirm.

The next screen titled “Configuring tasksel” allows automatic updates to be activated
on the system. To avoid the possibility of a security update breaking your system without
your permission, this should be left deactivated. Confirm the default of “No automatic
updates” by pressing Enter.

Finally, a screen will appear that allows you to add some base software to the default
installation. The only interesting item is “OpenSSH,” which installs the Secure Shell
service, allowing remote console access to the server.

Use the space bar to activate “OpenSSH,” then press Tab to highlight “Continue” and
press Enter to confirm, as shown in Figure B-5.

Figure B-5. Adding SSH to the default installation

Finishing the Installation
A small piece of software called GRUB is still needed so that the operating system can
be loaded on system boot. As with the partitioning instructions, if you are installing
Ubuntu alongside another existing operating system, you will need to consult the
Ubuntu documentation. Once the question, “Install the GRUB boot loader to the master
boot record?” appears, use the arrow keys to highlight “Yes” and press Enter to confirm.

The final screen will appear confirming that the installation is complete. If this is a
physical server, remove the installation CD at this point. Press Enter to confirm and the
system will now reboot.

90 | Appendix B: Operating System Installation

http://bit.ly/11vMl9k

First Login
Once the system has rebooted, log in with the username “openbts” and your password.

SSH
If you do not want to use the Linux Server hardware or virtual machine directly, use
SSH access instead. This is the “OpenSSH” service that was installed during the instal‐
lation steps. It allows you to log in to the machine across a network connection. If you
are using OS X or a Linux desktop, the SSH client is built in. Open the Terminal appli‐
cation and execute the following:

$ ssh openbts@your-linux-server-ip

If you are using Windows, you will need a third-party client. The most popular one is
PuTTY. Use the following login details to connect:

• Username: openbts
• Password: your-chosen-password
• Host: your-linux-server-ip
• Port: 22

You’re logged in and now ready to continue configuring the development environment.

First Login | 91

http://www.putty.org

APPENDIX C

Capturing Traffic

Two sources can be used to capture activity on an OpenBTS installation. The IP side of
the network can be recorded for debugging or analysis, as can the raw GSM and GPRS
radio frames. Unified into a single stream, it provides a very powerful research tool for
baseband developers, application authors, and network engineers.

IP Traffic
The first source is the raw IP packets being sent between the individual components of
OpenBTS. In addition to VoIP signaling and media streams, there are a multitude of
other ports exchanging data. A list of these ports, their settings, and their types can be
found in Table A-3.

To capture data from these ports, a small utility named tcpdump is needed. It can listen
to any network interface on your system and display and/or record the traffic to a file.
Install it now:

$ sudo apt-get install tcpdump

The exact usage of tcpdump is outside of the scope of this book so only a few examples
will be presented. To learn more about it, use the man (manual) command:

$ man tcpdump

To display (-s0 -A) all SIP signaling (portrange 5060–5069) on the console from the
local loopback interface (-i lo), execute the following:

$ sudo tcpdump -i lo -n -s0 -A portrange 5060-5069

Instead of displaying the traced traffic, you can record it in a pcap (packet capture)
formatted file. The Wireshark GUI tool, which is outlined below, uses the pcap format.
To record all RTP media (portrange 16484–16584) to a file (-w rtp.pcap), execute the
following:

93

$ sudo tcpdump -i lo -n -s0 -w rtp.pcap portrange 16484-16584

When running a multinode system, the traffic will not be present on the loopback in‐
terface. It will be physically transmitted and received over a hardware network interface.
To specify this interface, use the “-i” flag as above but replace “lo” with the interface
name. For example, to display (-s0 -A) all peering protocol (port 16001) exchanges
on the console from the eth0 interface, execute the following:

$ sudo tcpdump -i eth0 -n -s0 -A port 16001

GSM Traffic
IP traffic is easy to capture but how about the radio interface? There’s a convenient
feature for doing this named GSMTAP. It re-encapsulates the GSM and GPRS radio
bursts being sent and received over the air into IP packets. These packets then become
part of a normal IP trace, captured by tcpdump, as detailed above.

There are three parameters involved in configuring GSMTAP:
Control.GSMTAP.GSM

Enable or disable GSM traces

Control.GSMTAP.GPRS

Enable or disable GPRS traces

Control.GSMTAP.TargetIP

IP destination for GSMTAP data

Assuming all of your components are running from the same machine, Con
trol.GSMTAP.TargetIP’s default value of 127.0.0.1 will be fine. It means that the
GSMTAP frames will be sent to the local loopback interface for capturing by tcpdump.
If your components are running on different machines, you will want to set Con
trol.GSMTAP.TargetIP to the IP address of your Central Services machine.

To begin sending GSM radio traffic as IP, the Control.GSMTAP.GSM key must be enabled:

OpenBTS> config Control.GSMTAP.GSM 1
Control.GSMTAP.GSM changed from "0" to "1"

Now, use tcpdump to capture all IP traffic on the loopback interface and store it as a
pcap file:

$ sudo tcpdump -i lo -n -s0 -w gsmtap.pcap

When you’re done tracing, tcpdump can be stopped by pressing Ctrl-C.

The resulting file, gsmtap.pcap, can be opened in Wireshark. You can either install
Wireshark on your test system if it already has a usable desktop, or copy the pcap file
to your daily desktop machine using SFTP.

94 | Appendix C: Capturing Traffic

https://www.wireshark.org

Once open in Wireshark, GSMTAP data can be displayed as any other network traffic.
It even has its own display filter: gsmtap. In the screenshot below, a pretty common filter
combination is used: (gsmtap or sip) and !icmp. With this filter combination, GSM
and SIP signaling are visible in chronological order, making traces easy to understand.

Figure C-1 is from a GSMTAP trace of a handset successfully registering with a base
station. Packets 1991 and 1992, a SIP exchange between OpenBTS and SIPAuthServe,
initiate this GSM request for authentication information. The highlighted packet, 2042,
is an authentication request sent from the base station to the handset. The following
packet, 2055, is the handset’s response back to the base station.

Figure C-1. GSMTAP data in Wireshark

As you can see, GSMTAP combined with tcpdump and Wireshark makes for a very
powerful tool.

GSM Traffic | 95

Glossary

ARFCN (Absolute Radio Frequency Channel Number)
A pair of uplink and downlink frequencies
on which the mobile network is operating.
The bandwidth on these frequencies is ap‐
proximately 270 KHz. A single base station
can operate on multiple ARFCNs to in‐
crease capacity. Typically pronounced “arf-
con.”

BCC (Base Station Color Code)
A 3-bit value unique among neighboring
base stations from the same operator in a
given area. Usually assigned from a color
map so each neighboring base station has a
unique “color” value and no two adjacent
base stations have the same color.

BSIC (Base Station Identity Code)
A 6-bit value composed of two 3-bit pieces:
the NCC and BCC. Commonly pro‐
nounced as “bee-sick,” it is one of the first
things a Mobile Station uses to identify a
network and quickly ascertain if it can ex‐
pect to receive service on it.

BTS (Base Transceiver Station)
The “access point” in a GSM network to
which Mobile Stations can attach. Usually
referred to as the base station.

CI (Cell Identity)
A 16-bit value unique to every single base
station in the network.

GSM (Global System for Mobile)
The standard for mobile network infra‐
structure used throughout most of the
world. Many other standards exist such as
CDMA, UMTS, and LTE.

IMEI (International Mobile Equipment Identity)
A 15-digit number that uniquely identifies
the handset hardware. It encodes the man‐
ufacturer and model and is analogous to a
MAC address. The IMEI is usually only
used to detect stolen hardware but can, for
example, be used as an identity when mak‐
ing an emergency call, where having a func‐
tional SIM is not required.

IMSI (International Mobile Subscriber Identity)
A 14–15 digit number stored in the SIM
that identifies the subscriber. Analogous to
a username. It also embeds information
about the issuing operator network.

IMSI 310150123456789

MCC 310150123456789

MNC 310150123456789

MSIN 310150123456789

LAC (Location Area Code)
A 16-bit value that identifies the paging area
of a base station. In production carrier net‐
works, a single LAC could, for example, be

97

assigned to an area of roughly 400,000 in‐
habitants.

MCC (Mobile Country Code)
A three-digit number that identifies the
network’s country of operation. The Inter‐
national Telecommunications Union (ITU)
assigns this number. A single country can
have multiple MCCs. The code 001 is re‐
served for test networks.

MNC (Mobile Network Code)
A two- or three-digit number the national
regulator assigns that uniquely identifies
the carrier. Commonly through acquisi‐
tions and mergers, a single carrier will have
multiple MNCs. The code 01 is reserved for
test networks.

MS (Mobile Station)
The client that connects to the mobile net‐
work. This is usually referred to as a “hand‐
set” or “phone” but could also be a smart
parking meter, point-of-sale machine, or
telemetric sensor—anything that can con‐
nect to mobile network infrastructure.

MSIN (Mobile Subscription Identification Number)
A nine-digit number contained within the
IMSI that represents the subscriber’s
unique account ID within that operator
network.

MSISDN (Mobile Subscriber Integrated Services Digital Number)
This is simply the subscriber’s telephone
number. Handsets do not know their own
MSISDN and the mapping between IMSI
and MSISDN exists only in the network.
This is how number portability is possible.

NCC (Network Color Code)
A 3-bit value unique to each operator net‐
work in a given area that the national reg‐
ulator usually assigns.

PSTN (Public Switched Telephone Network)
The global circuit-switched telephony net‐
work which has been in use for nearly 100
years.

RAN (Radio Access Network)
The base stations in a provider’s network,
seen as a whole, form the Radio Access Net‐
work.

RTP (Real-time Transfer Protocol)
A media protocol in many VoIP implemen‐
tations. It encapsulates audio and video
streams between endpoints.

SDR (Software defined radio)
Typically a USB or Ethernet connected
computer peripheral that presents a raw ra‐
dio interface for applications to send and
receive signals through, instead of imple‐
menting an FM radio in hardware and a
separate AM radio in hardware. One must
now only have a single SDR and write two
applications: one for demodulating FM sig‐
nals and another for demodulating AM sig‐
nals.

SIP (Session Initiation Protocol)
A signaling protocol in many VoIP imple‐
mentations. It is responsible for establish‐
ing calls, describing media, and routing
among transport hops.

TMSI (Temporary Mobile Subscriber Identity)
A 32-bit number the operator network as‐
signs that uniquely identifies a subscriber.
Used to support anonymous transactions
by exchanging the IMSI for a random TMSI
upon registration and then periodically ex‐
changing TMSIs for new TMSIs.

VoIP (Voice over Internet Protocol)
The method of transmitting speech as
packetized data over an IP network.

MCC (Mobile Country Code)

98 | Glossary

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
3G data, 78

A
A5/3 library, 11
Absolute Radio Frequency Channel Number

(ARFCN), 20
spacing between towers, 56

Access Point Name (APN), 63
Alibaba, 6
amplifiers, 46
Andreesen, Marc, xi
Android, APN entries and, 63
antennas, 3

alignment of, 26
Asterisk, 12

calls, testing, 32–34
on Central Services, 13
on multinode networks, 52

audit command, 22
autodetection

keyboard layout, 87
network, 88

B
Base Station Color Code (BCC), 56
Base Station Controller (BSC), 50

bursts, 81

C
Cache Based Auth, 5
captive portals, 67
Carnegie Mellon University, xi
cavity duplexer, 46
CentOS, 7
Central Services

GPRS and, 62
setting up, 52

combinations, 81
command-line interface (CLI), 20

configuration, 19
components

Asterisk, 12
installing, 11–13
SIP Authorization Server, 13
SIP MESSAGE Queue, 13
starting/stopping, 13
system config, 11

config command, 34
configuration, 34–37

Absolute Radio Frequency Channel Number
(ARFCN), 20

CLI and, 19
Ettus research radios, 22
input validations, removing, 35
keys, setting to default, 35

99

optional features, disabling, 35
parameters, reading, 72
radio bands, 20
Range Networks SDR1, 21

connections
adding subscribers, 29
GPRS, 62
IMSI number, 27
testing, 27–30, 30

coredumper library, 11
coverage area, 44–46

antennas and, 3
shrinking by policy, 45
shrinking physically, 44
throughput vs., 66

coverage overlap tuning, 58
CyLab Mobility Research (Carnegie Mellon

University), xi

D
data

3G, 78
GPRS and, 66

Debian, 7
decibel milliwatts, 81
decibels, 81
dependencies, installing, 10
devconfig command, 34
development environment

building, 9
downloading, 8
git and, 8
installing, 10–14
setting up, 7–10

Direct Inward Dials (DIDs), 77
DIY SIM cards, 6
DNS server settings, 63
downlink

measuring quality of, 33
missing information in, 32
transmission power, 26
waveforms, 1

Dynamic Spectrum Alliance, 78

E
echo calls, 32
emergency calls, 68

environmental tuning, 42–46
nonsubscriber phones, 43
signal distortion, 46

Ethernet, troubleshooting, 19
Ettus Research radios, 2, 15–18

calibration, 22
helper functions, 16

events, reporting, 41

F
Fairwaves SDR, 2

UmTRX, 9
Federal Communication Commission (FCC), 78
file paths, 83
frames, 81

G
Gateway GPRS Support Node (GGSN), 64
git, 8
GitHub, 8
Google, 11
GPRS, 61–66

central services and, 62
connecting, 62
disabling, 61
enabling, 61
expectations of, 66
individual handset throughput, 65
performance tuning, 64–66
TCH logical channels, 64
troubleshooting, 63
voice vs., 64

GSM air interface, 13
GPRS vs., 61

GSM Arena, 4
GSM handsets

SIM cards and, 4–7
GSM hierarchy, 81
GSM traffic, capturing, 94
GSM whitespace research, 78
GSM-Mobile Application Part (MAP), 50
GSMTAP feature, 94

H
Handover, 50

configuring, 59

100 | Index

handsets
APN setting, 63
boosting power of, 27
connecting to GPRS, 62
connection problems with, 25
forcing connections on, 27
IMEI number of, 28
IP traffic, routing, 62
locked vs. unlocked, 4
mobility and, 49
nonsubscriber, 43
power level of, 45
recamping, 50
restricting access of, 67
test, 3
throughput, 65

hardware, 1–7
antennas, 3
damage, reporting, 41
Ettus research radios, 15–18
handsets, 27
Linux server, 1
open source, 78
single carrier signal, requirements for, 1
software defined radio, 2
test SIM cards, 4–7

home telephones, places without, ix

I
Iceland, 76
IMSI/Temporary Mobile Subscriber Identity

(TMSI) exchanges, 28
inbound phone numbers, 77
INFO logging level, 41
initial state, 15

radio connectivity, 15–19
input validations, removing, 35
installing

components, 11–13
Ubuntu, 86

integrated circuit cards (ICCs), 4
internal errors, reporting, 41
International Mobile Equipment Identifier (IM‐

EI), 28
International Mobile Subscriber Identity (IMSI),

27
Internet of Things (IoT), 61
Internet Telephony Service Provider (ITSP), 77

Voice, 77

IP traffic, capturing, 93

K
Kazoo platform, 78
keys

reading all, 72
reading particular, 73
setting to default, 35

L
link quality, measuring, 33
Linux server, 1
location area codes (LACs), 50
location update request (LUR) operation, 27
logging

configuring on towers, 54
levels of, 41
on multinode networks, 52
runtime, 40–42

logical channels, 81

M
Measurement Reports, 75
misconfiguration, reporting, 41
Mobile Station International Subscriber Direc‐

tory Number (MSISDN), 29
mobile terminated SMS (MTSMS), 40
Mobility, 49

configuring on handsets, 58
multinode networks, 49–59

Asterisk on, 52
central services, setting up, 52
handover, 50
logging on, 52
mobility, 49
roaming, 50
SIP Authorization Server on, 52
SMQueue on, 52
topology, 51
towers, 52–58

N
nano-SIM cards, 7
neighbor command, 57
neighbor enabled commands, 58
neighbor list, 57

Index | 101

neighboring towers, 54–58
configuring identification for, 55
unique keys for, 56

Netherlands, 78
network configuration

autodetection, 88
range-config package and, 12

network ports, 83
networks, 19–24

adding subscribers, 29
CLI and, 19
configuring, 19
personalizing, 36
registration message, 36
searching for, 23
shortname, 36
topology, 51

nexmo, 78
nmcli.py, 71–74

adding subscribers with, 29
reading all keys with, 72
reading individual, 73
version API, 72

NodeManager API, 71–76
nmcli.py, 71–74
PhysicalStatus API, 74–76
updating, 74

noise reduction, 25
antenna alignment, 26
downlink transmission power, 26
environmental factors and, 25

nonsubscriber phones, 43
Nuand SDR, 2

O
open source hardware, 78
OpenBTS, xii, 1–14

building, 9
Central Services and, 52
command-line interface for, 20
components, 11–13
components, starting/stopping, 13
dependencies, installing, 10
downloading, 8
file paths, 83
GGSN in, 64
hardware components, 1–7
installation command, 13
installing, 10–14

PhysicalStatus API, 74–76
sending SMS messages from, 31
SGSN on, 64
UmTRX support in, 9

OpenBTS-UMTS, 78
OpenLTE, xii
OpenRegistration networks, 67–69

disabling, 69
enabling, 67
personalizing, 68

operating system, 7–10
optional features, disabling, 35
Osmocom, xii
Over-the-top (OTT) services, 61

P
performance tuning

environmental tuning, 42–46
GPRS, 64–66
signals, cleaner, 46–47

PhysicalStatus API, 74–76
poor connectivity, reporting, 41
power command, 44

R
radio bands, 20

noise reduction and, 27
radio connectivity, 15–19

Ethernet, troubleshooting, 19
Ettus research radios, 15–18
Range Networks Radios, 18
USB, troubleshooting, 18

radio frequency
reducing noise, 25
regulation of, 78
signals, cleaner, 46–47
testing environmental factors, 24–27

Range Networks SDR, 2, 18
calibration, 21

Raspberry Pi, OpenBTS on, 49
rawconfig command, 35
recamping, 50
Received Signal Strength Indication (RSSI), 25
registration message, 36
regular expressions, 67
regulations

ARFCN and, 20
on tower identification keys, 55

102 | Index

reject codes, listed, 43
rmconfig command, 35
roaming, 50
rubber-duck antennas, 3
runtime logs, 40–42
rural community deployments, 43
rxgain command, 22

S
search-and-rescue operations, 76
sectors, 81
security

A5/3 library, 11
openbts user account, 87
spare SIM cards and, 5

service failure, reporting, 41
Serving GPRS Support Node (SGSN), 64
Short Message Peer-to-Peer (SMPP) gateways,

77
shortname of networks, 36
signal distortion, 46
Signaling System No. 7 (SS7) network, 50
SIM cards

APN information on, 63
batched, 7
DIY, 6
full-size, 7
nano-, 7
test, 4–7
using spares, 5

SIM stamper, 7
single carrier signal, 1
SIP Authorization Server, 13

on Central Services, 13
on multinode networks, 52
proxy, configuring on towers, 53

SIP INVITE requests, 12
SIP MESSAGE requests, 13
SIP proxies, configuring, 53
SIP REGISTER requests, 13
SIPAuthServe daemon, 28
Skype, 61
smart cards, 4–7

writers, 6
SMQueue

components, 13
nmcli.py and, 72
on Central Services, 13
on multinode networks, 52

SMS messages and, 31
version API and, 72

SMS
echo, 30
ITSP and, 77
stats command and, 39
testing, 30–32
two-party, 32

software defined radio (SDR), 2
Ethernet and, 19
supported by OpenBTS, 2

spectrum regulation, 78
SSH, 91

installing, 90
keys for GitHub, 9

standalone dedicated control channels
(SDCCHs), 81

state, initial, 15
stats command, 39
subscriber identity module (SIM) card, 4
subscribers, adding, 29
Sweden, 78
switch integrations, 78
system config, 11
systemd (Ubuntu), 13

T
TCHs (traffic channels), 64

defined, 81
tcpdump utility, 93
Technology and Infrastructure for Emerging

Regions (TIER) group (UC Berkeley), xi
terrain, coverage area and, 45
test phones, 3
test tone calls, 32
testing

calls, 32–34
DEBUG log level, 41
SMS, 30–32
two-party SMS, 32

throughput
coverage area vs., 66
handsets, 65

time slots, 81
Timing Advance, 45
topology, 51

for multiple towers, 54
towers, 52–58

adding neighboring, 54–58

Index | 103

configuring SIP proxies on, 53
coverage overlap tuning, 58
defined, 81
logging on, 54
neighbor enabled commands, 58
neighbor list, 57
topology for multiple, 54

traffic channels (TCHs), 81
Transceiver52M binary, 15
troubleshooting

GPRS, 63
runtime logs, 40–42
with stats command, 39

trxfactory command, 21
two-party calls, 33
two-party SMS, 32

U
Ubuntu LTS, 7, 85–91

adding OpenBTS user, 87
configuration, 87
disk, configuring, 89
downloading, 85
installation, 86
logging in, 91
network autodetection, 88
network configuration, 88
SSH and, 91
updates, 89

UmTRX SDR (Fairwaves), 9
unconfig command, 35
United Kingdom, 78
Universal Mobile Telephone System (UMTS), 2

University of California Berkeley, xi
updating configurations, 74
Upstart (Ubuntu), 13
USB

throughput, 2
troubleshooting, 18
virtual machines and, 18

V
version API, 72
virtual machines and USB, 18
virtual network interface, 62
voice calls

echoing, 32
handover and, 50
link quality, measuring, 33
TCH logical channels, 64
test tone, 32
testing, 32–34

Voice ITSP, 77
VoIP, 12

W
WhatsApp, 61
Wireshark GUI tool, 93

Y
YateBTS, xii

Z
ZeroMQ, 10

104 | Index

About the Author
After first experimenting with VoIP in 2004, Michael Iedema worked on IMS proof-
of-concept projects until 2007, when he founded the AskoziaPBX project, an easy-to-
use telephony system now being sold and deployed in over 100 countries. In 2011, he
moved on to do VoIP-related research and development for Ubiquiti Networks. Michael
is currently a Senior Engineer at Range Networks, the creators of OpenBTS.

Colophon
The animal on the cover of Getting Started with OpenBTS is a sun conure, or sun par‐
akeet (Aratinga solstitialis), a medium-sized, brightly colored parrot. Adult males and
females are similarly decked out with golden-yellow plumage and orange underparts
and face, with red around the ears. Their tails are olive green with blue tips. Juvenile
sun conures’ plumage is predominantly green, changing to its distinctive yellow, orange,
and red coloration as it matures. They reach sexual maturity at two years of age with a
lifespan of 25 to 30 years. Hens lay clutches of 3 to 5 eggs; incubation lasts 23 days.

The sun conure is native to northeastern South America. Though its exact habitat re‐
quirements are largely unknown, sightings suggest it lives at the edge of humid forests
growing in foothills in the Guiana Shield. Common among other members of the
Aratinga genus, sun parakeets are social and typically found in groups of up to 30 in‐
dividuals. They mainly feed on fruit, flowers, berries, and nuts.

They were previously categorized as Least Concern, but recent surveys in southern
Guyana and Roraima (a Brazilian state) have shown rarity and possible extirpation.
They are endangered and threatened by habitat loss and pet trade trapping. Though
they are regularly bred in captivity, the capture of wild sun conures remains a serious
threat.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from FILL IN CREDITS. The cover fonts are URW Typewriter and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Foreword
	Introduction
	Who Should Read This Book
	Why I Wrote This Book
	A Word on Mobile Networks Today
	Navigating This Book
	Online Resources
	Conventions Used in This Book
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Getting Set Up
	Hardware Components
	Linux Server
	Software Defined Radio
	Antennas
	Test Phones
	Test SIMs

	Operating System and Development Environment Setup
	Git Compatibility
	Downloading the Code
	Building the Code

	Installation
	Installing Dependencies
	Installing Components
	Starting/Stopping Components

	Chapter 2. Initial Testing and Configuration
	Initial State
	Confirm Radio Connectivity
	Ettus Research Radios
	Range Networks Radios
	Troubleshooting USB
	Troubleshooting Ethernet

	Starting Up the Network
	The Configuration System and CLI
	Changing the Band and ARFCN
	Range Networks Radio Calibration
	Ettus Research Radio Calibration

	Searching for the Network
	Testing Radio Frequency Environment Factors
	Reducing Noise
	Boosting Handset Power

	First Connection
	Finding the IMSI
	Finding the IMEI
	Adding a Subscriber
	Connecting

	Test SMS
	Echo SMS (411)
	Direct SMS
	Two-Party SMS

	Test Calls
	Test Tone Call (2602)
	Echo Call (2600)
	Two-Party Call
	Measuring Link Quality

	Configuration System, Continued
	config
	devconfig
	rawconfig
	unconfig
	rmconfig

	Personalizing Your Network
	Shortname
	Registration Messages

	Chapter 3. Troubleshooting and Performance Tuning
	The stats Command
	Runtime Logs
	Log Levels

	Environmental Tuning
	Nonsubscriber Phones
	Coverage Area
	Signal Distortion

	Stronger, Cleaner Signals

	Chapter 4. From Single to Multinode
	Mobility, Handover, and Roaming
	Mobility
	Handover
	Roaming

	Topology
	Central Services Setup
	Remove OpenBTS
	Configure Logging
	Asterisk, SMQueue, and SIPAuthServe

	Tower Setup
	Configure SIP Proxies
	Configure Logging
	Topology Reworked

	Adding Neighboring Towers
	Must Be Identical
	Must Be Unique
	Neighbor List and Command
	Neighbor-Enabled Commands

	Coverage Overlap Tuning

	Chapter 5. GPRS
	Enabling/Disabling
	Central Services
	Connecting
	Troubleshooting
	Performance Tuning
	Voice versus GPRS
	Individual Handset Throughput
	Coverage Area versus Throughput

	Expectations

	Chapter 6. OpenRegistration
	Enabling
	Personalizing
	Disabling

	Chapter 7. NodeManager APIs
	nmcli.py
	Version API
	Configuration API
	Read All Keys
	Read One Key
	Update

	PhysicalStatus API

	Chapter 8. Onward and Upward
	Connecting to the Outside World
	Voice
	SMS

	Spectrum Regulation
	Switch Integrations
	3G Data
	Open Source Hardware
	The Community
	The Revolution

	Appendix A. Quick Reference
	GSM Hierarchy
	Decibels and Decibel Milliwatts
	Network Ports
	File Paths

	Appendix B. Operating System Installation
	Downloading and Preparing the Boot Media
	Starting the Installation
	Configuring the Installation
	Adding the OpenBTS User
	Network Configuration and Autodetection
	Configuring the Disk
	Base Software and Updates
	Finishing the Installation
	First Login
	SSH

	Appendix C. Capturing Traffic
	IP Traffic
	GSM Traffic

	Glossary
	Index
	About the Author

