
www.allitebooks.com

http://www.allitebooks.org

[FM-1]

Getting Started with React

A light but powerful way to build dynamic real-time
applications using ReactJS

Doel Sengupta

Manu Singhal

Danillo Corvalan

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

[FM-2]

Getting Started with React

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2016

Production reference: 1250416

Published by Packt Publishing Ltd.

Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-057-9

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

[FM-3]

Credits

Authors
Doel Sengupta

Manu Singhal

Danillo Corvalan

Reviewer
Ilan Filonenko

Commissioning Editor
Sarah Crofton

Acquisition Editor
Rahul Nair

Content Development Editor
Samantha Gonsalves

Technical Editor
Mohit Hassija

Copy Editor
Dipti Mankame

Project Coordinator
Sanchita Mandal

Proofreader
Safis Editing

Indexer
Priya Sane

Graphics
Kirk D'Penha

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.allitebooks.com

https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=c5f31a3e-5777-6d64-83fa-53db7d2a8a5e
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=a156f537-9916-4318-2e9f-5608d78c15de
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=cb37d09d-a01e-ab8a-3b61-53db8b6f50c1
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=cb37d09d-a01e-ab8a-3b61-53db8b6f50c1
http://www.allitebooks.org

[FM-4]

About the Authors

Doel Sengupta is a software programmer and is working in the industry for
over 7 years, as a DevOps engineer and as a developer building enterprise level
Web and mobile applications using RubyonRails and Rhomobile, Chef. Currently she
is exploring the Javascript ecosystem. She has been a speaker in Ruby conferences.
She finds interest in life sciences and has publications of her work in customised
human joint prostheses design using Ansys & Mimics. She is an avid blogger
(www.doels.net) writing about her technical and not-so-technical passions like
culinary, photography, films. Follow her on twitter @doelsengupta.

Manu Singhal has been a programmer for 8 years and loves to code on Ruby and
React. These days, he is busy cofounding a startup in e-commerce. In earlier roles, he
has developed many enterprise and consumer based web/mobile applications and
has also been a speaker at Ruby Conferences in India and the USA. He never misses
a chance to play tennis and go hiking.

He has worked with Tata Consultancy Services and McKinsey & Company as a
software developer and an architect.

He has contributed in books on Rhomobile and RubyMotion by Packt earlier.

www.allitebooks.com

www.doels.net
http://www.allitebooks.org

[FM-5]

Acknowledgments

We want to extend our heartfelt thanks to our family members and friends for their
tireless support and belief. Our special thanks goes to Patrick Shaughnessy, Rohan
Daxini and Kiprosh team, Abhishek Nalwaya, Akshat Paul, Naveen Rawat for taking
out time to review the book. We also like to extend our gratitude to the ReactJS
vibrant and ever enthusiastic online community, without which the vigorous
task of writing such a book won't have been possible.

Thanks to the entire Packt publishing house especially Rahul Nair and team who
helped in editing, proof reading and reviewing the book. As the famous saying
goes "The journey is the reward", the very experience of writing this book is such
a tremendous experience for us.

[FM-6]

Danillo Corvalan is a software engineer who is passionate about software
patterns and practices. He has a keen interest in the rapidly changing world of
software development. He is quite insistent about the need of fast and reliable
frameworks. He is originally from Brazil, now living in Amsterdam, the
Netherlands. He loves biking a lot.

In Brazil, he worked on applications for the general public and lawyers, at the Court
of Justice in his hometown city, Cuiabá/MT. Then, he moved to Florianópolis/SC,
and worked at Bravi Software for developing hybrid and responsive web apps for
education. Now, in Amsterdam, he is working at Vigour.io and helping to develop
live multiscreen and responsive apps. From the web client-side perspective, in
general, he has been in touch with technologies, such as vanilla JavaScript, jQuery,
Backbone, and ReactJS.

For the past 5 years, Danillo has also worked with open source platforms and
JavaScript on the server side (Node.js). He has played with React Native in
order to develop native mobile applications with ReactJS.

[FM-7]

About the Reviewer

Ilan is currently an undergraduate studying computer science in the College of
Engineering at Cornell University. His interests in computer science stemmed
from his early work in biophysics where he proposed a schematic that could
potentially be used to synthetically create a proton transport Complex I and a virtual
representation of the mitochondrion that can now function as the framework to
synthesize a real biological system. Throughout his high school education and early
years of college, he built various computational models and full-stack applications
that showcased his expertise across a wide range of technologies from Mathematica
to Ruby on Rails. In his first year of college, he cofounded and led the engineering
team for four start-ups that have primarily disrupted their respective industries—
MusicTech: Tunetap, MedTech: saund, FinTech: TheSimpleGroup, and FoodTech:
Macrofuel. To this day, he contributes to these ventures as a project manager and
continues to lead the backend engineering initiative for two Cornell engineering
project teams. In addition to his academics and entrepreneurial endeavors, he works
as a part-time software engineer for the R&D division at Bloomberg L.P., where he
spent two summers researching and optimizing their distributed systems platform
for large-scale data analytics.

[FM-8]

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

[i]

Table of Contents
Preface	 v
Chapter 1: Getting Started with ReactJS	 1

Introducing ReactJS	 1
Who uses ReactJS?	 3

Downloading ReactJS	 3
Installing ReactJS with NPM	 4
Installing ReactJS with Bower	 5

Tools	 5
Text editors	 6
Chrome extension	 7

Trying ReactJS	 7
Configuring ReactJS in a web page	 7
Creating your first React component	 8
Configuring JSX	 9
Serving files through the web server	 10
Creating a React component with the JSX syntax	 11

Summary	 11
Chapter 2: Exploring JSX and the ReactJS Anatomy	 13

What is JSX?	 13
Why JSX?	 16

Tools for transforming JSX	 18
The ReactJS anatomy	 19

Creating a component	 20
Rendering a component	 20
Maximum number of roots	 21
Children components	 22
Supported attributes	 23

Table of Contents

[ii]

Supported elements	 24
HTML elements	 24
SVG elements	 25

Learning JSX and Gotchas	 25
Expressions	 25
Properties/attributes	 27

Transferring properties	 27
Mutating properties	 30

Comments	 31
Component style	 31

Style	 31
CSS classes	 32

Summary	 34
Chapter 3: Working with Properties	 35

Component properties	 35
Data flow with properties	 37

Configuring Facebook Open-Graph API	 40
What it is and how to configure it	 40
Creating an app-id on the Facebook developers site	 42
Open-Graph JavaScript SDK	 44

Rendering data in a ReactJS component	 50
Summary	 54

Chapter 4: Stateful Components and Events	 55
Properties versus states in ReactJS	 55
Exploring the state property 	 56

Initializing a state	 56
Setting a state	 57
Replacing a state	 59
A React state example using an interactive form	 61

Events	 63
Form events	 64
Mouse events	 64
nativeEvent	 66
Event pooling	 71
Supported events	 71

Summary	 78
Chapter 5: Component Life cycle and Newer ECMAScript in React	 79

React component lifecycle	 80
Mounting category	 80
Updating category	 85
Unmounting category	 87

Table of Contents

[iii]

Other ES (ECMAScript) versions in React	 91
ES6	 91
ES7	 99

Summary	 99
Chapter 6: Reacting with Flux	 101

An overview of Flux	 101
Flux versus the MVC architecture	 102

Flux advantages	 103
Flux components	 104

Actions	 104
Dispatchers	 106
Stores	 110
Controller-Views and Views	 115
Revisiting the code	 117
Summary	 121

Chapter 7: Making Your Component Reusable	 123
Understanding Mixins	 123

Exploring Mixins by example	 124
Higher-order components in Mixins	 130

Validations	 130
An example using the isRequired validator	 132
An example using custom validator	 134

The structure of component	 137
Summary	 138

Chapter 8: Testing React Components	 139
Testing in JavaScript using Chai and Mocha	 140
Testing using ReactTestUtils	 143

Installing React and JSX	 143
The jestTypical example of a Testsuite with Mocha, expect,
ReactTestUtils and Babel	 147
Testing with shallow rendering	 149
Summary	 156

Chapter 9: Preparing your Code for Deployment	 157
An introduction to Webpack	 157

Building a simple React application	 158
Setting up Webpack	 160

Advantages of Webpack	 167
Introduction to Gulp	 167

Installing Gulp and creating Gulp file	 168
Summary	 172

Table of Contents

[iv]

Chapter 10: What's Next	 173
AJAX in React	 173
React Router	 176
Server-side rendering	 176

ReactDOMServer	 177
Isomorphic applications	 183
Hot reloading	 183
Redux React	 183
Relay and GraphQL	 184
React Native	 185
References	 186
Summary	 186

Index	 187

[v]

Preface
Learning ReactJS is a light but powerful way to build fantastic UI components! This
book will help you develop robust, reusable, and fast user interfaces with ReactJS.
This book will ensure a smooth and seamless transition to the ReactJS ecosystem. The
books is full of hands on real applications. From setup to implementation, testing,
and deployment: discover the new frontier of front-end web development. ReactJS,
popularly known as V of MVC architecture, is developed by the Facebook and
Instagram developers. We will take a deep dive on the ReactJS world and explore
the unidirectional data flow, virtual DOM, DOM difference, which ReactJS leverages
in order to increase the performance of the UI. You will learn the key concepts of
ReactJS in a step-by-step process. You will also learn ES6 syntaxes used in ReactJS for
the future browsers, with the transpiling techniques to be used in order to support it
in current browsers.

You will not only learn to apply and implement ReactJS concepts but also know how
you can test JS-based applications and deploy them. In addition to this, you will
also be developing a full-fledged application using Flux architecture. You will also
learn about Redux, which lets you understand how you can manipulate the data in
ReactJS applications easily, by introducing some limitations on the updates. With
ample codes covering the concepts and their theoretical explanations coupled with
screenshots of the application, you will gain a deep understanding of ReactJS.

Preface

[vi]

What this book covers
Chapter 1, Getting Started with ReactJS, is a brief overview of React about where to
download and how to make it work on your web page. It will demonstrate how to
create your first React component.

Chapter 2, Exploring JSX and the ReactJS Anatomy, will show the same simple react
component, created in the first chapter, built with the JSX syntax. It'll explain
the purpose of JSX and demystify its usage. It will compare some older template
techniques to JSX and try to clarify some common questions about it.

Chapter 3, Working with Properties, will make you start developing your own app.
It will use Facebook Open Graph API. This will cover how to configure it, get your
friends' list, and render it using React. After this, we're going to break UI into
small components.

Chapter 4, Stateful Components and Events, covers components that have state,
practices to communicate between them, and how to respond to 'users' input/events
in order to have UI reflect this state. This chapter also covers how the state changes
your React UI performance with the Virtual DOM.

Chapter 5, Component Life cycle and Newer ECMAScript in React, explores what is the
life cycle of such a React component. Furthermore, we will also dig into the future
ECMA Script syntaxes and few changes that the React community also used from
version 0.13.0. For this, we will review some ES6 and ES7 features within the
react library.

Chapter 6, Reacting with Flux, will explain the flux architecture, which is used to build
client-side web applications. It complements React's composable view components
by using a unidirectional data flow. There is an in-depth explanation of all the
components of the FLUX architecture (view, stores, action, and dispatchers).

Chapter 7, Making Your Component Reusable, will cover React good practices and
patterns. This includes practices to develop reusable components, how to structure
your components hierarchically to a better data flow and how to validate your
components behavior.

Chapter 8, Testing React components, will show how to test your React code as
this has never been so easy in React. To do so, we're going to unit test our app
developed so far.

Preface

[vii]

Chapter 9, Preparing Your Code for Deployment, tells us that React comes with a
transformer for JSX that works on the fly. This should never be deployed in
production though. This chapter will talk you through the ways of building
those files offline using node libs, such as Webpack and Gulp.

Chapter 10, What's Next, explains some other advanced concepts, such as react-router,
react-ajax, hot-reloading, redux, isomorphic apps, and so on.

What you need for this book
The basic requirement is NodeJS followed by the installation of npm packages,
like react, react-tools, express etc. Complete list chapter-wise is given below:

Chapter number Software required (With version)
1 Nodejs 4.2.4

ReactJS:
•	 http://fb.me/react-0.14.7.js (development)
•	 http://fb.me/react-0.14.7.min.js (production)

JSXTransformer :
•	 https://cdnjs.cloudflare.com/ajax/libs/

react/0.13.3/JSXTransformer.js

Install Python or httpster for serving webserver
Chrome / Mozilla ReactJS addon/extension for browser JS tool

2 npm install react-tools
3 Open-Graph JavaScript SDK: https://developers.facebook.

com/docs/javascript

5 ReactJS version 0.13.0 or above
JSXTransformer (0.13.3)

8 Npm install -g -d chai mocha jest-cli babel-loader babel-preset-es2015
babel-preset-react babel-preset-stage-2 react-addons-test-utils

9 npm install -g webpack browserify
npm install --save-dev gulp gulp-concat gulp-uglify gulp-react
gulp-html-replace
npm install --save-dev vinyl-source-stream browserify watchify
reactify gulp-streamify

10 npm install express
npm install react-redux

http://fb.me/react-0.14.7.js
http://fb.me/react-0.14.7.min.js
https://cdnjs.cloudflare.com/ajax/libs/react/0.13.3/JSXTransformer.js
https://cdnjs.cloudflare.com/ajax/libs/react/0.13.3/JSXTransformer.js
https://developers.facebook.com/docs/javascript
https://developers.facebook.com/docs/javascript

Preface

[viii]

Who this book is for
Whether you are new to the JS world or an experienced JS developer, this book
will ensure to glide you seamlessly in the ReactJS ecosystem. You will not only
know and implement the ReactJS concepts but also learn how can you test JS-based
applications and deploy them. In addition to these, you will also be introduced to
Flux and build applications based on Flux Application Architecture, which is not a
full-fledged framework but an architecture. You will also learn about Redux, which
lets you understand how you can easily manipulate the data in ReactJS applications,
by introducing some limitations on the updates. With ample codes covering the
concepts explained theoretically and screenshots of the application, you will have a
simple yet deep understanding of ReactJS.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Once Sublime editor is installed, go to the installed directory, and you can open
Sublime from the terminal by running subl in the directory that your are in and
you will open the files of the current directory in sublime."

A block of code is set as follows:

<!DOCTYPE html>
<html>
<head>
 <script src="fb-react-0.12.2.js"></script>
</head>
<body>
 <div id="root"></div>
</body>
</html>

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

function loadUserAndLikes () {
 FB.api('/me', function (userResponse) {
 React.render(<UserDetails userDetails={userResponse} />,
 document.getElementById('user'));

Preface

[ix]

 var fields = { fields: 'category,name,picture.type(normal)'
 };
 FB.api('/me/likes', fields, function (likesResponse) {
 React.render(<UserLikesList list={likesResponse.data} />,
 document.getElementById('main'));
 });
 });
}

Any command-line input or output is written as follows:

sudo npm install jest-cli –save-dev

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: " I've
experienced using Atom on a MacOS X Yosemite is that the font quality looks poorer
than that in Sublime Text. If you face it, you just need to uncheck the Use Hardware
Acceleration option in Atom's settings.."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[x]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.
2.	 Hover the mouse pointer on the SUPPORT tab at the top.
3.	 Click on Code Downloads & Errata.
4.	 Enter the name of the book in the Search box.
5.	 Select the book for which you're looking to download the code files.
6.	 Choose from the drop-down menu where you purchased this book from.
7.	 Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

•	 WinRAR / 7-Zip for Windows
•	 Zipeg / iZip / UnRarX for Mac
•	 7-Zip / PeaZip for Linux

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from http://www.packtpub.com/
sites/default/files/downloads/GettingStartedwithReact_ColorImages.pdf.

http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/GettingStartedwithReact_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/GettingStartedwithReact_ColorImages.pdf

Preface

[xi]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Getting Started with ReactJS
In this chapter, we are going to look at an overview of ReactJS—what it is and some
highlights on what this powerful and flexible library does. We'll also learn how to
download and make it work in a small application. In this chapter, we will cover the
following topics:

•	 Introducing ReactJS
•	 Downloading ReactJS
•	 Tools
•	 Trying ReactJS

Introducing ReactJS
ReactJS is a JavaScript library, created by Facebook and Instagram, in order to build
user interfaces (UIs) that can respond to users' input events along with creating
and maintaining states. States are used to maintain changes to components, which
will be covered in detail in later chapters. The page loads faster by comparing only
the changed and the updated part of the web page (we will cover Virtual DOM
(Document Object Model) in more detail in Chapter 4, Stateful Components and
Events). React provides a one-way data flow that reduces complexity compared
with a traditional data-binding system, which facilitates creating reusable and
encapsulated components. We will also explore React data flow in Stateful
Components and Events chapter and how to make your UI components more
reusable in Chapter 7, Making Your Components Reusable.

Getting Started with ReactJS

[2]

ReactJS is not just another JavaScript library though many developers consider
it to be the V of the MVC application. It drives you through building reusable
components, rethinking your UI and best practices. Nowadays, performance
and portability are vital to build user interfaces, mainly due to the large use of
Internet-accessible devices and the fast-paced developmental phases of the projects.
This can result in complex frontend code. The need for using a library that helps
your code to grow in both performance and quality is really important; otherwise,
you just end up writing big HTML files with UI logic everywhere that takes ages
to modify and can compromise code quality. ReactJS encourages the best practices
shown here:

•	 Following a pattern
•	 Separating concerns
•	 Splitting your UI into components
•	 Communication between components with one-way data flow
•	 Use of properties and states appropriately

ReactJS is a library that takes care of the UI (Views) differently from a framework.
Let's say we are building a Single Page Application (SPA) and we want to handle a
routing system, we can use whatever library we want that deals with routing. This
applies to every other part of the technology stack required to build a SPA except
the UI or, as some say, the View, when working on an MVC/MV* architecture. In
the ReactJS world, when you're talking about the view, actually you're talking about
a component. They are a little different from each other. A React component holds
both logic and behavior of the View. In general, a single component represents a
small part of the View, whereas many of these components together represent the
whole View of the application.

We will be discussing more about MVC/MV* and FLUX architecture in Chapter 6,
Reacting with FLUX.

MVC stands for Model View Controller and MV* for Model
View Whatever.

It is very straightforward to build or change just a small part of your web
application. Facebook did that with their commenting interface. They replaced it
with one made in ReactJS. There is detailed code at https://facebook.github.io/
react/docs/tutorial.html about how the comments appear in Facebook
using ReactJS.

https://facebook.github.io/react/docs/tutorial.html
https://facebook.github.io/react/docs/tutorial.html

Chapter 1

[3]

This commenting interface, which the Facebook development team explained, gives
us the live updates and Optimistic commenting, in which the comments are shown in
the list before having been saved on the server. There is also a Facebook developer
plugin, which enables users to add comments in your website using their Facebook
accounts (https://developers.facebook.com/docs/plugins/comments).

One of my experiences was to build a survey app in ReactJS and place it in some
web application already in production. ReactJS provides a bunch of life cycle events,
which facilitates the integration with other libraries, plugins, and even frameworks.
In Chapter 5, Component Life Cycle, we will go through all the life cycle phases of
a React component, and in Chapter 7, Making Your Component Reusable, we will be
incorporating validations and organizing our code using Mixins.

ReactJS understands the UI elements as objects. When building React components,
we will modularize the code by encapsulating the view logic and the view
representation. This is another feature that supports componentization and is one
of the reasons for Virtual DOM to work. React code can also be written in another
syntax, JSX (an extension to ECMASCRIPT), instead of JavaScript. Although it is not
mandatory to use, it is easy to use and increases the readability of the code. We're
going to dig more into JSX and see how it works and why it's necessary in Chapter 2,
Exploring JSX.

Who uses ReactJS?
ReactJS is one of the emerging JavaScript libraries to build web UI components,
and some big companies are already using it in production. They are as follows:

•	 The Instagram website
•	 Facebook comments, page insights, business management tools, Netflix,

Yahoo, Atlassian, and most new JS development
•	 New JS development for Khan Academy, PayPal, AirBnb, Discovery Digital

Networks, and many more
•	 Some projects inside The New York Times

Downloading ReactJS
Before we start coding some ReactJS, we need to download it. You can download
ReactJS through their website, http://facebook.github.io/react/downloads.
html.

https://developers.facebook.com/docs/plugins/comments
http://facebook.github.io/react/downloads.html

Getting Started with ReactJS

[4]

At the time of writing this book, ReactJS is currently at version 0.14.7. Two versions
of ReactJS scripts are provided—one is for development, which has all the core code
with comments if you want to debug or even contribute to them. The other one is for
production, which includes extra performance optimizations. Here are the links of
the versions of the script for downloading:

•	 http://fb.me/react-0.14.7.js (development)
•	 http://fb.me/react-0.14.7.min.js (production)

Versions of 0.13.0 and higher contain a huge set of enhancements. There is a support
for the ES6 class syntax and removal of mix-ins, which are covered in Chapter 5,
Component Life Cycle and Newer ECMAscript in ReactJS.

Inside the ReactJS downloads page, there are other versions of the ReactJS script
with add-ons. This script extends the ReactJS library to support animations and
transitions, and also provides some other utilities that are not part of core React.
There is no need to download this version for now because we're not going to use
those features in the following examples.

There is also the JSX transformer script for download. You can download it at
https://cdnjs.cloudflare.com/ajax/libs/react/0.13.3/JSXTransformer.js.

It should only be used in the development environment and not in production. JSX
will be covered in more detail in the Chapter 2, Exploring JSX and the ReactJS Anatomy.

If you are using a tool to control your dependencies, such as Node Package Manager
(NPM) or Bower, it's also possible to download ReactJS through these tools. Details
can be found at https://facebook.github.io/react/downloads.html.

Installing ReactJS with NPM
Check whether node is already installed on your machine using node -v.

Otherwise, install the node packages from their website (https://nodejs.org/en/),
based on your operating system.

We cover installing packages through NPM in Chapter 8, Testing React Components
and Chapter 9, Deployment.

If you have Node and NPM configured on your machine, execute the following
command inside your application's folder from any console tool to install
react-tools:

npm install react-tools

http://fb.me/react-0.12.2.js
http://fb.me/react-0.12.2.js
http://fb.me/react-0.12.2.min.js
http://fb.me/react-0.12.2.min.js
https://cdnjs.cloudflare.com/ajax/libs/react/0.13.3/JSXTransformer.js
https://cdnjs.cloudflare.com/ajax/libs/react/0.13.3/JSXTransformer.js
https://facebook.github.io/react/downloads.html
https://nodejs.org/en/

Chapter 1

[5]

Once installed, you can reference React dependency as follows:

Var React = require('react');

From now on, you can use the React variable and its methods, such as React.
createClass({…});. Remember that because you've installed it using NPM, it's
required that you bundle your code or transform it to a static asset before testing
your application. In Chapter 2, Exploring JSX, we're going to cover some transform
tools that you might use. You can check for more details about deployment in
Chapter 8, Preparing Your Code for Deployment.

Installing ReactJS with Bower
Unlike NPM, Bower controls browser-ready packages, so it's also the same.
Apart from using the NPM packages, we can also use Bower-ready packages
(https://facebook.github.io/react/downloads.html). Bower helps to
maintain all the packages by installing and maintaining the correct versions
of the necessary packages (http://bower.io/).

First, make sure that you have Bower installed and configured. After this, execute the
following command:

bower install --save react

This will save ReactJS as a dependency in you Bower configuration file. Now
you just need to reference that in your HTML code. By default, it's provided at
./bower_components/react/react.js. The minified version is also provided
in the same folder at react.min.js.

Tools
The community has already developed a bunch of tools to improve our coding
experience and productivity. In this section, we'll get through some text editors,
their packages, and a browser extension created to improve debugging applications
in ReactJS.

https://facebook.github.io/react/downloads.html
https://facebook.github.io/react/downloads.html
http://bower.io/

Getting Started with ReactJS

[6]

Text editors
Most of the text editors available today provide syntax highlighting for JSX and useful
snippets and helpers for ReactJS. Here are some text editors that I suggest using:

•	 Vim—http://www.vim.org/download.php

•	 Emacs Editor—https://www.gnu.org/software/emacs/

•	 Sublime Text—http://www.sublimetext.com/

•	 Atom—https://atom.io/

•	 Brackets—http://brackets.io/

Sublime Text requires a paid license although it works in free mode, always
showing a popup that might trouble you from time to time. Also, you will need to
install its package manager separately. You can find sublime Text packages and more
information on how to install its package manager at https://packagecontrol.
io/. Once the Sublime editor is installed, go to the installed directory, and you can
open Sublime from the terminal by running subl in the directory that your are in
and you will open the files of the current directory in Sublime.

Atom is recent and free and was made by GitHub. It comes with a package manager
included and there is no need to install it separately. You just need to go to the
settings and install the React package. It comes with syntax highlights, snippets, and
so on. The only problem I've experienced using Atom on a MacOS X Yosemite is that
the font quality looks poorer than that in Sublime Text. If you face it, you just need to
uncheck the Use Hardware Acceleration option in Atom's settings.

Brackets is also free and has a lot of great features such as live preview; for example,
you can edit your code files and see the changes being applied in the browser.
Brackets has a built-in extension manager, and you can install ReactJS JSX syntax
highlighting as well. However, at the time of writing this book, some highlighting
features were not working well.

All of these text editors are pretty good and have lots of features, but it's not the
purpose of this book to show them. Feel free to choose one if you don't have a
preferred text editor already.

http://www.vim.org/download.php
https://www.gnu.org/software/emacs/
http://www.sublimetext.com/
https://atom.io/
http://brackets.io/
https://packagecontrol.io/
https://packagecontrol.io/

Chapter 1

[7]

Chrome extension
The ReactJS team created a browser extension for Google Chrome. It allows you to
inspect the component hierarchy, and it helps a lot when you need to debug your
application. You can open Chrome Web Store, search for React Developer Tools,
and install it. You need to open Chrome Developer Tools (F12 on Windows and
Linux, ⌘-Option-I on Mac) to use the extension. We're going to use the extension
in later chapters to understand the ReactJS component hierarchy. In order to have
the React extension/add-on work in Chrome/Firefox, we need to have a React
component globally available on the web page.

Trying ReactJS
It is time to hack some code and create our first application with ReactJS. We'll start
configuring React in a simple web page by adding the ReactJS script dependency.
Then, we'll create a JavaScript file that will hold our ReactJS component code and
render it in an HTML element.

Then, we'll rebuild the same example using JSX syntax and learn how to configure
that in the page. Don't worry about JSX for now as it will be covered in detail in the
Chapter 2, Exploring JSX and the ReactJS Anatomy.

This is going to be a simple application for learning purposes. In following chapters,
we're going to create a full web application that will consume the Facebook Open
Graph API, log in with your Facebook's account, render your friend list, and so on.
So, let's get our hands dirty!

Configuring ReactJS in a web page
After downloading ReactJS scripts dependencies, we need to create an HTML file
with a simple element inside its body. We're going to call the file root.html. It will
be responsible for rendering our ReactJS component.

Here is how your HTML file should look like:

<!DOCTYPE html>
<html>
<head>
 <script src="http://fb.me/react-0.12.2.js"></script>
</head>
<body>
 <div id="root"></div>
</body>
</html>

Getting Started with ReactJS

[8]

It references Facebook CDN scripts, but you can reference the scripts that we have
downloaded (fb-react-0.12.2.js) locally.

Here is how your HTML file should look like if the locally downloaded ReactJS file is
used instead of CDN:

<!DOCTYPE html>
<html>
<head>
 <script src="fb-react-0.12.2.js"></script>
</head>
<body>
 <div id="root"></div>
</body>
</html>

Creating your first React component
Now create a JavaScript file named hello-world.js and reference that in the
HTML file by placing this code after the root div element:

<div id="root"></div>
<script src="hello-world.js"></script>

We will make use of React.createElement to create React element. The format of
React.createElement is:

ReactElement createElement(
 string/ReactClass type,
 [object props],
 [children ...]
)

Paste the following code into hello-world.js:

var HelloWorld = React.createClass({
 render: function () {
 return React.createElement('h1', null, "Hello World from
 Learning ReactJS");

 }
});

React.render(
 React.createElement(HelloWorld, null),

Chapter 1

[9]

 document.getElementById('root')
);

In the above code
return React.createElement('h1', null, "Hello World from Learning
ReactJS");
h1 → Is the type of HTML element to be created
null → means there is no object properties presentation
Third argument → the content of the h1 tag

Details of this code will be covered in more detail in the following chapters.

Now open the page in any browser and check that it created an h1 html element and
placed the text inside it. You should see something like this:

Configuring JSX
Now we are going to make the same application using JSX syntax. First, we need
to configure that in our HTML page by adding the JSX transformer script file
JSXTransformer-0.12.2.js after the ReactJS script react-0.12.2.js within
the head element:

<head>
 <script src="http://fb.me/react-0.12.2.js"></script>
 <script src="http://fb.me/JSXTransformer-0.12.2.js"></script>
</head>

You also need to change the hello-world.js type reference to text/jsx in the
HTML page. It must be like this:

<script type="text/jsx" src="hello-world.js"></script>

Getting Started with ReactJS

[10]

Serving files through the web server
Google Chrome doesn't accept requests to local files of type text/jsx, it throws a
cross-origin request error (commonly named as the CORS error). CORS is sharing a
resource on a different domain than the current one. Chrome security doesn't allow it
by default; however, you can access it on Firefox and Safari. It's also possible to work
around with CORS errors by starting a local server, such as Python, Node, or any
other web server you want.

Another way is to install the node package httpster:

npm install -g httpster

Once installed, run the command httpster from the react application directory.
The application will load up in your browser (default port 3333):

Another way is to install the simple Python server. Install it and run its command
inside the folder you want to serve and then you're ready to go. You can find out
how to install python at https://www.python.org/. After installing python, you
can run the following command inside your project folder:

python -m SimpleHTTPServer

It will output a message saying the port it's running such as Serving HTTP on
0.0.0.0 port 8000. You can now navigate to http://localhost:8000/. If this
port is being used by another application, consider passing the desired port number
as the last parameter in the same command as follows:

python -m SimpleHTTPServer 8080

If you don't want to use python, ReactJS has provided a tutorial page with scripts in
other languages to run a simple web server and you should be able to test it. You can
check it out at https://github.com/reactjs/react-tutorial/.

https://www.python.org/
http://localhost:8000/
http://localhost:8000/
https://github.com/reactjs/react-tutorial/

Chapter 1

[11]

Creating a React component with the JSX
syntax
With our HTML page configured, we can now change the hello-world.js script
file to follow the JSX Syntax. Your script file should look like this:

var HelloWorld = React.createClass({
 render: function () {
 return <h1>Hello World from Learning ReactJS</h1>;
 }
});

React.render(
 <HelloWorld />,
 document.getElementById('root')
);

It will generate the same result as in the previous Hello World example. As you can
see, there is no need to call the createElement method explicitly.

Thus, the JSX will produce the same output as the JavaScript, but without the extra
braces and semicolons.

In the following chapter, Chapter 2, Exploring JSX and the ReactJS Anatomy you're
going to learn how JSX works and why it is highly recommended.

Summary
In this chapter, you learned what ReactJS is, downloaded it, and used it in a small
application. We have created our first React component and reviewed key benefits
of this powerful library.

In the next chapter, we are going to dive into JSX and learn how to build some
practical components that demonstrate this powerful extension syntax. We'll also
learn some "gotchas" and best practices and learn why JSX suits our needs when
developing a React components presentation.

[13]

Exploring JSX and the
ReactJS Anatomy

In this chapter, you are going to explore the JSX syntax and learn what it is and
why it makes it easier for us to understand UI components. You will learn about
the ReactJS anatomy and code some common scenarios in order to demonstrate
this efficient syntax so that we can step forward in next chapters and build a full
application. This chapter will walk you through the following topics:

•	 What is JSX?
•	 The ReactJS anatomy
•	 JSX Gotchas

What is JSX?
JSX is a JavaScript syntax extension that looks similar to XML. It is used to build UI
components in ReactJS. It's very similar to HTML with some subtle differences. JSX
extends JavaScript in such a way that you can easily build ReactJS components with
the same understanding as building HTML pages. It's commonly mixed with your
JavaScript code because ReactJS thinks about UI in a different way. This paradigm
will be explained later in the chapter.

It's wrong to say that you are mixing up your HTML with JavaScript. As already
said, JSX extends JavaScript. Actually, you're not writing HTML tags, but you're
writing JavaScript objects in the JSX syntax. Of course, it has to be transformed into
plain JavaScript first.

Exploring JSX and the ReactJS Anatomy

[14]

When you write this example:

var HelloWorld = React.createClass({
 render: function () {
 return <h1>Hello World from Learning ReactJS</h1>;
 }
});

It's transformed into this:

var HelloWorld = React.createClass({
 render: function () {
 return React.createElement('h1', null, "Hello World from
 Learning ReactJS"); }
});

This transformer script file detects JSX notations and transforms them into plain
JavaScript notations. These scripts and tools should never be placed in a production
environment because it would be painful for the server to transform the script on
every request. For the production environment, we should provide the transformed
file. We will be covering that process later in this chapter.

As discussed in Chapter 1, Getting Started with ReactJS, note the following:

•	 ReactElement is the primary API of React. ReactElement has four properties:
type, props, key, and ref.

•	 ReactElement has no methods of itself, and nothing has been defined on the
prototype also.

•	 ReactElement objects can be created by calling the React.createElement
method.

•	 In the highlighted code mentioned earlier, we can see that the first argument
for the React.createElement method is creating an h1 element, with
properties being passed as null and the actual content of the h1 element
being the string Hello World from Learning ReactJS

•	 ReactElements are passed into DOM in order to create a new tree in DOM.
•	 ReactElements are named virtual DOM and are not the same as DOM

elements. Details of virtual DOM will be discussed in later chapters.
•	 As per the official React documentation (https://facebook.github.io/

react/docs/glossary.html), "ReactElement is a light, stateless, immutable,
virtual representation of a DOM Element".

https://facebook.github.io/react/docs/glossary.html
https://facebook.github.io/react/docs/glossary.html

Chapter 2

[15]

Let's check our previous example again when we didn't use the JSX syntax:

React.createElement('h1', null, "Hello World from Learning
ReactJS");

This code is creating an h1 element. Think about it being like creating an element
through JavaScript with the document.createElement() function, which makes
the code very readable.

JSX is not mandatory, but it's highly recommended. It is painful to create large and
complex components using JavaScript. For example, if we want to create nested
elements using JSX, we would need to do the following:

var CommentList = React.createClass({
 render: function() {
 return (

 ReactJS
 JSX

 <input type="text" />
 <button>Add</button>

);
 }
});

However, using plain JavaScript ReactJS objects, it would look like this:

var CommentList = React.createClass({displayName: "CommentList",
 render: function() {
 return (
 React.createElement("ul", null,
 React.createElement("li", null, "ReactJS"),
 React.createElement("li", null, "JSX"),
 React.createElement("li", null,
 React.createElement("input", {type: "text"}),
 React.createElement("button", null, "Add")
)
)
);
 }
});

Exploring JSX and the ReactJS Anatomy

[16]

We can see a big scary component that might grow in case of more complex logic.
Such complex components are difficult to maintain and understand.

Why JSX?
In general, HTML and JavaScript are segregated in frameworks by defining UI or a
view to represent their mutable data, which normally is a template language and/or
a display logic interpreter. The following is some jQuery code:

<html>
 <head>
 <title>Just an example</title>
 </head>
 <body>
 <div id="my-awesome-app">
 <!-- Here go my rendered template -->
 </div>

 <script id="my-list" type="text/html">

 {{each items}}

 ${name}

 {{/each}}

 </script>
 </body>
</html>

The script element represents a template component that will be rendered in the
my-awesome-app div element. The code here is a JavaScript file that pushes data to
that template and asks jQuery to do the job and render the UI:

$("#my-list").tmpl(serverData).appendTo("#my-my-awesome-app");

Whenever you want to put some display logic on that code, you will need to rely
on both JavaScript and HTML files. In other words, a single component is a mix
of files—normally, a JavaScript file that controls the view, a template/markup
file representing the view, and a model/service that fetches data from the server
and sends it to the view. Typically in an MVC application, the logic of M(model),
V(view), and C(controller) are separated in order to provide the separation of
concern and better readability and maintenance of the code.

Chapter 2

[17]

Let's say that we now have to change this view and need to hide the list when the
user is not logged in. Considering that the model/service code is already bringing
this information, we'll have to change both the code that controls the view and the
markup one in order to apply those changes. Harder the change is, more painful it is
to apply those changes. Our code ends up in big JavaScript and HTML files, mixed
up with display logic, template expressions, and business code.

Although you are an experienced frontend developer, apply some separation of
concerns, and split your UI into smaller views, you end up with hundreds of files
just to represent a single piece of UI: view controller, HTML template, style sheet,
and your model. It makes a small application look complex with that amount of
files, and you'll certainly get messy wondering which file is part of a specific view
or component.

The thing we want to show here is that we've been mixing markup and logic code
since the beginning, but other than that, we've also been splitting them into other
files, making it more difficult to find and to modify them.

ReactJS with JSX drives you in the other way. There is a really interesting
paragraph in the ReactJS official page that honestly reasons this powerful
library and its paradigm:

"We strongly believe that components are the right way to separate concerns
rather than "templates" and "display logic." We think that markup and the code
that generates it are intimately tied together. Additionally, display logic is often
very complex and using template languages to express it becomes cumbersome.
(http://facebook.github.io/react/docs/displaying-data.
html#jsx-syntax)

We like to think of ReactJS components as a single source of truth. All other locations
that use your component will be just references. Every change you apply to the
original one will be propagated to all other places referencing it. Customization is
easily done through properties and child componentization. JSX is like a middleware
that converts your markup code to objects where ReactJS can handle them.

JSX speeds up the frontend development in ReactJS. Instead of creating literal
objects to represent your UI, you create XML-like elements very similar to HTML,
and you can even reference other components that you've created. Also, it's very
straightforward to reuse third-party components or even publish your own. In a
corporate environment, you could have a commonly used components repository
that other projects can import from.

http://facebook.github.io/react/docs/displaying-data.html#jsx-syntax
http://facebook.github.io/react/docs/displaying-data.html#jsx-syntax

Exploring JSX and the ReactJS Anatomy

[18]

Tools for transforming JSX
The JSX Transformer file and other tools, as already mentioned, are responsible
for transforming your JSX syntax into plain JavaScript. The ReactJS team and
the community provide some tools for that. Such tools can deal with any kind of
file since they have JavaScript code and JSX syntax. In older versions of React, a
comment was required on the first line of .js files such as /** @jsx React.DOM */.
Thankfully, this was removed after version 0.12.

JSX Transformer has been deprecated now. Instead, we can use https://babeljs.
io/repl/ to compile the JSX syntax into JavaScript. To include JSX in your script
tag, either use <script type="text/jsx"> or while transforming, use babel

<script type="text/babel">.

Earlier there was an online tool at http://facebook.github.io/react/jsx-
compiler.html. However, the React developer team discontinued it, and JSX
Transformer has been deprecated.

Since such JSX transformation would take a substantial computation at the client
side, we should not be doing these transformations in production environments.
Instead, we should use:

npm install -g babel-cli

We can also use the node npm package that the ReactJS team built to transform your
JSX files. First, you need to install the react-tools NPM package with:

npm install react-tools –g

Chapter 2

[19]

This will install react-tools globally. All you need now is to run the following
command from your project folder:

jsx --watch src/ build/

This command transforms every script in the src folder and puts it in the build
folder. The watch parameter makes this tool run the same command every time a
file changes in the src folder. This is a very useful tool because you're using node to
bundle your frontend code.

If you're familiar with task runner tools such as Grunt or Gulp, they also have
JSX transformer packages that can be installed with npm as well. In this case, they
provide more options that can fit better in our deployment/building process, mainly
if you already use one of them. It's not the purpose of this book to dive into Grunt or
Gulp. In order to configure and install them, you can follow their guidelines in the
following links: Details of these are covered in Chapter 9, Preparing Your Code
for Deployment.

•	 Grunt – https://www.gruntjs.com
•	 Gulp – https://www.gulpjs.com

Both sites have a /plugins page where you can search for available plugins.
The following are the links of these download tools:

•	 Grunt React task—https://www.npmjs.com/package/grunt-react

•	 Gulp React task—https://www.npmjs.com/package/gulp-react/

They work much the same as do the React tools. We are going to use the
transformer script file that is placed in head the element of our HTML page for the
next examples, as this is easier to do. In Chapter 9, Preparing Your Code for Deployment,
we are going to use webpack and gulp as the npm packages to transform our JSX code
and prepare it for deployment.

The ReactJS anatomy
Before going any further into JSX, we need to understand some basic rules to build
ReactJS components. First, we're going to detail the basic methods that you've
already used to create and render components. Then, we'll move to some rules to
create them, and finally, we'll talk about children components.

https://www.gruntjs.com
https://www.gulpjs.com
/plugins
https://www.npmjs.com/package/grunt-react
https://www.npmjs.com/package/gulp-react/

Exploring JSX and the ReactJS Anatomy

[20]

Creating a component
In order to create a component, we need to use the React.createClass function.
ReactJS components are basically classes. This method returns a ReactJS component
definition that has a method named render, which is mandatory to implement.
There are many other methods to configure your component and change its
behavior that we are going to cover throughout the book.

This is an example of how to use the createClass and render method:

var HelloMessage = React.createClass({
 render: function() {
 return (
 <h1>Have a good day!</h1>
);
 }
});

It's a good practice to name all the classes and components in
PascalCase. In addition to being a common pattern in JavaScript,
it also helps to distinguish them from other variables.

Rendering a component
Once you have your component definition, as seen in our last example, the
HelloMessage component, we can render it with the render method of ReactJS.
It requires the component definition and the target location, where the component
will be rendered. Let's demonstrate this with the following:

React.render(<HelloMessage />, document.body);

In the code mentioned earlier, you could change document.body with any other
element in your page. For example, you could use the document object method
document.getElementById('id') to find an element by its ID or any other helper
that returns a DOM element. In the specific ID of the DOM (id in this case), the React
component will be rendered.

Chapter 2

[21]

Maximum number of roots
It's not possible to return more than one element in the render method. Not for now,
as they say in official ReactJS docs at http://facebook.github.io/react/tips/
maximum-number-of-jsx-root-nodes.html:

var HelloMessage = React.createClass({
 render: function() {
 return (
 <h1>Have a good day!</h1>
 <h2>This is going to BREAK!</h2>

);
 }
});

The ReactJS library will throw a strange error that doesn't address clearly that you
have more than one element being rendered. Therefore, take care to not do this;
otherwise, you can get stuck trying to find the problem.

When you have more than one element being represented by a ReactJS component,
you must wrap them in a single parent element. The next example demonstrates this:

var HelloMessage = React.createClass({
 render: function() {
 return (
 <div>
 <h1>Have a good day!</h1>
 <h2>This is NOT going to BREAK!</h2>
 </div>
);
 }
});

You can use whichever valid HTML element you want that supports children
elements. It is also possible to render a custom ReactJS component that has children
support (more about this in the next section).

This is one of the reasons to choose a good text editor and a good linter/lint package
that can watch your code and warn you whenever you make a mistake.

http://facebook.github.io/react/tips/maximum-number-of-jsx-root-nodes.html
http://facebook.github.io/react/tips/maximum-number-of-jsx-root-nodes.html

Exploring JSX and the ReactJS Anatomy

[22]

Children components
If there is a really necessary thing when you talk about creating reusable user
interfaces, it has to do with nesting components. This way you can better structure
and separate concerns of your application. It's a pretty common thing to do on web
world as well, as HTML has this feature built-in. As you could see in the last section
and earlier examples of this book, ReactJS supports this feature as well and JSX
syntax makes it very straightforward.

Let's say that you have a Header component and you want to place other
components inside. ReactJS allows this and includes support for placing other
ReactJS components:

var Header = React.createClass({
 render: function () {
 return (
 <nav>
 <h1>This is my awesome app</h1>
 {this.props.children}
 </nav>
);
 }
});

var Clock = React.createClass({
 render: function () {
 return {new Date().toLocaleTimeString()};
 }
});

var ComponentThatHasHeader = React.createClass({
 render: function () {
 return(
 <Header>
 <h2>This is my another component</h2>
 <Clock />
 </Header>
);
 }
});

React.render(<ComponentThatHasHeader />, document.body);

Chapter 2

[23]

You can use either built-in components, such as h2, or custom components, such as
the Clock component, described here. In this example, the expression {this.props.
children} will be considered as a JavaScript array. If there was a single component
like the one mentioned later, it will be addressed as a JavaScript object instead of an
array. This saves array allocation, but we should be careful and not try to iterate it or
check for its length:

<Header>
 <Clock />
</Header>

Supported attributes
Some HTML attributes conflict with JavaScript reserved words, and as ReactJS
elements are basically JavaScript objects, such attributes have a different name in
ReactJS to match the DOM API specification:

•	 The class is className
•	 for is htmlFor
•	 Custom attributes, such as data-* and aria-*, are supported by ReactJS.

There is an official list of HTML attributes supported, as follows:

accept acceptCharset accessKey action allowFullScreen allowTransparency
alt async autoComplete autoPlay cellPadding cellSpacing charSet checked
classID className cols colSpan content contentEditable contextMenu
controls coords crossOrigin data dateTime defer dir disabled download
draggable encType form formAction formEncType formMethod formNoValidate
formTarget frameBorder height
hidden href hrefLang htmlFor httpEquiv icon id label lang list loop
manifest marginHeight marginWidth max maxLength media mediaGroup method
min multiple muted name noValidate open pattern placeholder poster preload
radioGroup readOnly rel required role rows rowSpan sandbox scope scrolling
seamless selected shape size sizes span spellCheck src srcDoc srcSet start
step style tabIndex target title type useMap value width wmode

At the time of writing this book, this is available at http://facebook.github.io/
react/docs/tags-and-attributes.html.

http://facebook.github.io/react/docs/tags-and-attributes.html
http://facebook.github.io/react/docs/tags-and-attributes.html

Exploring JSX and the ReactJS Anatomy

[24]

Supported elements
The official ReactJS website also provides a list of supported elements. ReactJS
supports mostly all HTML elements. A comprehensive list of all the supported
elements are given on their website, https://facebook.github.io/react/docs/
tags-and-attributes.html.

HTML elements
The following are the elements that are supported. There are many more to the list
as well:

a abbr address area

article aside audio b

base bdi bdo big

blockquote body br button

canvas caption cite code

col colgroup data datalist

dd del details dfn

dialog div dl dt

em embed footer fieldset

figcaption figure form h4

h1 h2 h3 h5

h6 head header hr

html i iframe img

input ins kbd keygen

label legend li link

main map mark menu

menuitem meta meter nav

noscript object ol optgroup

option output p param

picture pre progress q

rp rt ruby s

samp script section select

small source span strong

style sub summary sup

table tbody td textarea

tfoot thead time tr

track u ul video

wbr

https://facebook.github.io/react/docs/tags-and-attributes.html
https://facebook.github.io/react/docs/tags-and-attributes.html

Chapter 2

[25]

SVG elements
The following are some of the supported SVG elements:

circle defs ellipse g line linearGradient mask path pattern polygon
polyline radialGradient rect stop svg text tspan

Learning JSX and Gotchas
Now it's time to master JSX and learn some Gotchas. You're going to learn some
basic concepts to build ReactJS UI components using JSX. It includes practices when
writing expressions, conditions, and creating lists of components. It will also walk
you through how JSX differs from HTML (because it's not HTML) in some aspects.

Expressions
Consider the following code:

var Clock = React.createClass({
 render: function () {
 var today = new Date();
 return <h1>The time is { today.toLocaleTimeString() }</h1>;
 }
});

React.render(<Clock />, document.body);

JSX understands the curly braces {} whenever you want to put JavaScript code
within your presentation code.

In the next example, let's improve our Clock component by supporting greetings
depending on what the time is.

In the highlighted code mentioned later, if the current hour is lesser than 4, it should
return day, and if the hour is greater than 4 but less than 18, it should return night:

var GreetingsClock = React.createClass({
 render: function () {
 var today = new Date();
 return <h1>Hey! Have a good { today.getHours() > 4 && today.
getHours() < 18 ? 'day' : 'night' }!</h1>;
 }
});

React.render(<GreetingsClock />, document.body);

Exploring JSX and the ReactJS Anatomy

[26]

As you can see, it's possible to make a ternary within the curly braces. You can place
any valid JavaScript code within them. It's more common to create a variable and
address it to the result of this expression before rendering your component. This
makes your code cleaner and more readable.

In the next example, we will demonstrate how to render a component based on a
condition. There are two components, one for login and the other for the user details.
It depends on the fact that if the user is logged in, the user details component will
be shown; otherwise, the login one will be rendered. The code to detect whether the
user is logged in or not will be skipped, as this is just to demonstrate how to put
rendering logic inside ReactJS components using JSX syntax:

var loginPane;
if (IsUserLoggedIn) {
 loginPane = <UserDetails />
} else {
 loginPane = <LoginButton />
}

React.render(loginPane, document.getElementById('login-div'));

You can put this code inside a component that contains all other components as
children, as demonstrated in the next example:

var App = React.createClass({
 render: function () {
 var loginPane;
 if (isUserLoggedIn) {
 loginPane = <UserDetails />
 } else {
 loginPane = <LoginButton />
 }

 return (
 <nav>
 <Home />
 {loginPane}
 </nav>
)
 }
});

React.render(<App />, document.body);

Chapter 2

[27]

Properties/attributes
Properties allow you to customize your components, and JSX supports them in a very
similar way to HTML elements. You can pass properties to ReactJS elements and get
them before rendering the component. This is a very key fundamental of ReactJS, and
you're going to learn how to work with them using JSX. In the next chapter, we'll dive
into how properties work and discuss good practices on how to use them.

Consider the following example:

var HelloMessage = React.createClass({
 render: function() {
 return (
 <h1>Have a good day {this.props.name}</h1>
);
 }
});

In order to render this component, you have to pass properties to it, just like we do
in HTML elements:

React.render(<HelloMessage name="reader" />, document.body);

You can also use expressions inside properties:

React.render(<HelloMessage name={1 + 1} />, document.body);

If we don't set the properties (name) required by a component, in our last example,
it will be rendered as an empty string. Thus, if there are expressions trying to access
that property, then it will throw an error.

Transferring properties
Passing properties throughout your component hierarchy is a very common thing
to do in ReactJS. You can think of properties as a way of making your component
dynamic, and because you are splitting your components into smaller ones, you
need an efficient way to pass incoming configuration and data to them.

Consider the following nested components:

var UserInfo = React.createClass({
 render: function () {
 return (
 <section id="user-section">
 <h2>{this.props.firstName} {this.props.lastName}</h2>
 <h3>{this.props.cityName} / {this.props.stateName}</h3>
 </section>

Exploring JSX and the ReactJS Anatomy

[28]

);
 }
});

var App = React.createClass({
 render: function () {
 return (
 <div>
 <h1>My Awesome app!</h1>
 <UserInfo firstName={this.props.firstName}
 lastName={this.props.lastName}
 cityName={this.props.cityName}
 stateName={this.props.stateName} />
 </div>
);
 }
});

React.render(<App firstName="Learning"
 lastName="ReactJS"
 cityName="Florianopolis"
 stateName="Santa Catarina" />, document.body);

As we can see, it's possible to pass properties to child components. If you have lots
of properties to pass on, it becomes a tedious task to do and your code will get
very messy.

Fortunately, you can transfer them in a fancy way that JSX provides us. All you're
going to do is to change your App component, so it can pass all its properties on that
were received by the React.render function. This is done using the spread operator
{...this.props} notation that JSX understands. The following is an example
explaining this:

var App = React.createClass({
 render: function () {
 return (
 <div>
 <h1>My Awesome app!</h1>
 <UserInfo {...this.props} />
 </div>
);
 }
});

Chapter 2

[29]

Much clearer! However, there is still a problem with that solution. It can override
properties on your subcomponents. Let's take another example, imagine you have
a property named name, and you want to pass it along. Some elements, basically
HTML input elements, have this attribute to define their names inside forms. If you
change it, it can result in unexpected consequences. Another example is the input
checkbox or radio. Both have an attribute named checked, which defines whether
the control will be visually checked. If you pass on a property named checked, it'd
definitely result in a bad behavior. In order to avoid this, it's possible to skip some
properties using the same notation. You just need to specify them as:

var App = React.createClass({
 render: function () {
 var {name} = this.props;

 return (
 <div>
 <h1>My Awesome app! {name}</h1>

 </div>
);
 }
});

Everything that comes before the three dots, ..., will be considered as separated
variables, and the one that comes after the three dots, ..., will be addressed to an
array with all the remaining properties. This is an experimental ES6 (ECMA Script)
syntax, and there are some ways you can transform that code into plain JavaScript.
Details of ES6 are covered later in Chapter 5, Component Lifecycle and Newer ECMA
Script in React.

By looking through https://www.npmjs.com/package/react-tools, you can find
the details of the different options you can pass with the JSX Transformer.

--harmony: turns on JS transformations such as ES6 classes and so on.

Thus, the ES6 syntax will be transformed into ES5-compatible syntaxes.

The first way is to put an extra argument named harmony on your HTML script
element so that the transformer will know that it's going to need to understand the
new version of ECMAScript in order to transform. This is how your script tag should
look like:

<script type="text/jsx;harmony=true"
src="properties.js"></script>

Exploring JSX and the ReactJS Anatomy

[30]

ES6 (also known as Harmony) is a version (actual is ES5) of
ECMAScript that is a standardized scripting language. The most
known implementation of this standard is the JavaScript language,
but there are many others.

You can also use the react-tools node package. This exposes a command named
jsx that can transform your files offline. In order to use it, you're going to need to
run this command from any console tool within your application's folder:

jsx -x jsx --harmony . .

The -x option allows you to specify the syntax to search for. In our examples, we are
creating the .jsx files, but you could also do that with the .js files that have the
JSX code inside. The --harmony option is the same from the last example. It tells the
transformer to understand ES6/ES7 features of the JavaScript language.

You can find out how to install react-tools in the earlier section Tools for
transforming JSX, as discussed earlier in this chapter.

The reason to use the .jsx files is it facilitates text editors to match an installed
syntax highlight without the need for configuring it.

Mutating properties
Once your React component is rendered, it's not recommended to mutate its
properties. This is considered an antipattern. Properties are immutable, and they
roughly represent your presentation once it's rendered. Consider the following code:

var HelloMessage = React.createClass({
 render: function () {
 return <h1>Hello {this.props.name}</h1>;
 }
});

var component = <HelloMessage />;
component.props.name = 'Testing';

React.render(component, document.body);

Although this work has a great chance to end up in unexpected results. The
component's state is the only way to mutate data in a ReactJS component. The next
two chapters cover details of props and states and when and where they should be
used. States and properties are both keys in how ReactJS core works.

Chapter 2

[31]

Comments
JSX allows you to place comments in your code; they differ in syntax depending
on whether you're placing them in a nested component or outside of it. Follow the
next example:

var Header = React.createClass({
 render: function () {
 return (
 //this is the nav
 <nav>
 {/* this is the nav */}
 <h1>This is my awesome app</h1>
 {this.props.children}
 </nav>
);
 }
});

When within a nested component, you just need to wrap your comment with curly
braces (like expressions).

Component style
You can either style your component with the className or style properties.
The className property works in the same way HTML class does and the style
property applies inline style to your component, also similar to HTML. It's up to
you to choose one that you prefer; both of them have an easy way to be handled in
ReactJS, mainly when you need it to be dynamic.

Style
Whenever you want to apply style to your component, you can use a JavaScript
object to do so. This object's properties must match the DOM style specification,
such as height, width, and so on. See the example here:

var StyledComponent = React.createClass({
 render: function () {
 return (
 <div style={{height: 50, width: 50, backgroundColor:
 'red'}}>
 I have style!
 </div>

Exploring JSX and the ReactJS Anatomy

[32]

);
 }
});

React.render(<StyledComponent />, document.body);

This is going to render a red small square div with text inside. You can move this
style object to a variable and dynamically set that depending on your component
properties or state. Properties and state will be discussed later in Chapter 3, Breaking
Your UI into Components and Chapter 4, Stateful Components and Events, respectively.
For demonstration purposes, this is how you move this style object out of the
component markup:

render: function () {
 var style = { height: 50, width: 50, backgroundColor: 'red' };

 return (
 <div style={style}>
 I have style!
 </div>
);
}

When you have styles where names are separated by dashes -, you need to write
them in CamelCase, as you can see in our example for the backgroundColor style
property earlier. Vendor prefixes other than ms should begin with a capital letter;
for example, WebkitTransition will be transformed to webkit-transition and
msTransition will be transformed to ms-transition. All other vendor names must
begin with a capital letter.

CSS classes
In order to add CSS classes to your component, you need to specify the className
property for them: <component className="class1 class2" />. Unfortunately,
className doesn't support an object literal like style does. If we want to change
them dynamically, you need to concatenate strings or use classnames from
https://github.com/JedWatson/classnames. Consider the following example:

var ClassedComponent = React.createClass({
 render: function () {
 var className = 'initial-class';
 if (this.props.isUrgent) {

https://github.com/JedWatson/classnames

Chapter 2

[33]

 className += ' urgent';
 }

 return (
 <div className={className}>
 I have class!
 </div>
);
 }
});

React.render(<ClassedComponent isUrgent={true} />, document.body);

In this example, we are concatenating strings, but this is a very tedious task to
do, and it might lead to mistakes and errors. There is a class manipulation utility
provided by ReactJS add-ons. If we are using ReactJS library script file, you should
get the one that comes with add-ons embedded, as mentioned in downloading the
ReactJS section on Chapter 1, Getting Started with ReactJS:

<script src="http://fb.me/react-with-addons-0.12.2.js"></script>

If you are using node or other CommonJS/AMD package to require ReactJS
dependency, you can reference add-ons through requiring require('react/
addons') instead of just requiring React.

Now, let's check how our code functions using this utility code:

var Button = React.createClass({
 // ...
 render () {
 var btnClass = 'btn';
 if (this.state.isPressed) btnClass += ' btn-pressed';
 else if (this.state.isHovered) btnClass += ' btn-over';
 return <button className={btnClass}>{this.props.label}</button>;
 }
});

Try changing the isUrgent property and see that the class property changes when
you reload the page.

Exploring JSX and the ReactJS Anatomy

[34]

Summary
In this chapter, you learned what JSX is, its syntax, and why it is necessary.
We looked into some examples and how to build them using JSX. We covered
very basic principles of ReactJS and how JSX helps you build components faster,
easy to read, and reasonable.

In the next chapter, we are going to dive into ReactJS properties and how to break
the UI into smaller components. You are going to learn it by creating a small
application that will consume the Facebook Open Graph API and list your
liked pages.

[35]

Working with Properties
In this chapter, we will be exploring how to work with ReactJS properties. We're also
going to learn how to integrate ReactJS with an external API (Facebook Open-Graph
API) and render incoming data in a set of components. This chapter will cover the
following items:

•	 Component properties
•	 Component's data flow
•	 Configuring and consuming Facebook Open-Graph API
•	 Creating a ReactJS component and list data from API

Component properties
In the Chapter 2, Exploring JSX and ReactJS Anatomy, we talked a lot about ReactJS
properties and used them throughout our examples, but so far, we've just used them
like HTML properties. They play a role that is far beyond that. It's common to use
them to pass data through your components tree that defines your view; to pass
configuration properties that come from parent components; to pass callbacks for
user input, UI/custom events that need to be triggered outside, and so on.

Properties of a ReactJS component can't be changed once the component is rendered
in the DOM.

Working with Properties

[36]

Properties define the declarative interface of the component. In a h1 element that
renders a name property, for example, you can't change this name once it's rendered,
unless you create another instance of the component and render it in the same place
in the DOM, replacing the old rendered component.

var GreetingsComponent = React.createClass({
 render: function() {
 return (
 <h1>Hello {this.props.name}!</h1>
);
 }
});

React.render(<GreetingsComponent name="Readers" />,
document.body);
// instead of rendering on the body rendering in a specific id
('app)
React.render(<GreetingsComponent name="Folks" />,
document.getElemenById('app'));

This happens because ReactJS represents the state of your component at any point in
time and not only at initialization. Consider the following example:

var CustomInput = React.createClass({
 render: function() {
 return (
 <input type="text" value={this.props.text} />
);
 }
});

React.render(<CustomInput text="Learning ReactJS" />,
document.body);

The input text being rendered is considered to be a controlled component because
it won't change the value even if you try typing on it. If we don't specify the value
property of the input then it is considered to be an uncontrolled component.
Controlled components have their data updated via the ReactJS data flow and
component cycle. However, if you did not specify the value property, the value
property would not be controlled by ReactJS and would exist externally to the
ReactJS data flow. The correct way to change the value from forms inputs or other
components is to set up state for them, which will be described in more detail in
the next chapter.

Chapter 3

[37]

Data flow with properties
One of the ReactJS fundamentals and best practices is to pass data to nested
components through properties. In that way, the children components can have
the single responsibility of rendering only what they have to render and pass the
job to further components, thus ensuring the separation of concerns. It's also used
for configuring nested components so that the ones at the top of the hierarchy can
say what particular aspects the children components should have, just by passing
properties. It's also common to define functions on parent nodes and pass them
to children as a callback to be triggered whenever the child component wants,
improving the component reusability and testability.

Let's demonstrate a small example simulating a static to-do list. The list is split
into small components that render only the necessary and pass properties down to
children components, defining the whole functionality of the view. This is what it is
going to render at the end:

We're going to break our view into smaller components and will start doing it from
the innermost one to the topmost one. Before we start, let's discuss a little more
about each component and its role in view:

•	 TaskList – This component represents a list (the ul element) that accepts
an array of tasks to be rendered. It iterates through the tasks array creating
a TaskItem component. Along with passing the task details through a
property, to be rendered in the TaskItem component, it also passes some
function callbacks that, for now, will just fake some operations to simplify
the demonstration.

•	 TaskItem – This component represent a single task (the li element) that
renders the task name, an input checkbox representing whether the task is
completed, and a button to remove the task. Again, the input and the button
will just log some text to simplify the demonstration.

The TaskItem component should look like this:
var TaskItem = React.createClass({
 render: function() {

Working with Properties

[38]

 var task = this.props.task;

 return (

 {task.name}
 <div>
 <input type="checkbox"

 if (task.completed) {
 checked = "checked";
 } else {
 checked = "";
 }
 onChange={this.props.markTaskComplete

 <button
 onClick={this.props.removeTask}>Remove</button>
 </div>

);
 }
});

The TaskList component should be as follows:

var TaskList = React.createClass({
 markTaskCompleted: function (task) {
 console.log('task ' + task.name + ' has been
 completed!');
 },

 removeTask: function (task) {
 console.log('task ' + task.name + ' has been
 removed!');
 },

 render: function() {
/*The map() method creates a new array with the results of
calling a provided function on every element in this
array. Here this.props.tasks will create a new array, with
the callback as task. (source HYPERLINK
"https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Array/map"h
ttps://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
HYPERLINK ""). */

Chapter 3

[39]

 var taskItems = this.props.tasks.map(function (task) {
 return <TaskItem task={task}
 markTaskCompleted={this.markTaskCompleted}
 removeTask={this.removeTask} />;
 }.bind(this));
/*The bind() method creates a new function that, when
called, has its this keyword set to the provided value, with
a given sequence of arguments (if any) this (source HYPERLINK
"https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Function/bi
nd"https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Function/bi
nd). .bind is used in this case to simply more arguments
and esnsure a parent chind relationship, which is not new
to ReactJS but a concenpt of core Javascript. */
 return (

 {taskItems}

);
 }
});

The task list has a bit more functionality and code. It takes care of rendering the list
of tasks and handles operations on it. This is a very common pattern in ReactJS, to
maintain the control of your model objects in a single place that is, of course, if it's
responsibility for doing so. In a more complicated scenario, you would have some
"controllers" or "containers" (as they like to call them in the ReactJS community),
each one having its own task and encapsulating what they are responsible for.
Thus, all of the containers are having their own responsibility and not interfering
with each other.

There is just one missing part in our static task list example, which is to render the
component in an HTML element:

var tasks = [
 { name: 'Write this book with love <3', completed: false },
 { name: 'Learn isomorphic web apps', completed: false },
 { name: 'Study FLUX architecture', completed: true },
];

React.render(<TaskList tasks={tasks} />, document.body);

Working with Properties

[40]

We're passing some static tasks to the list to explain how properties work and some
practices on how to use them. We think that small examples as to-do/tasks/hello-
worlds don't represent the real-world problems that we face day by day; although
they are great for starting to learn a tool functionality, they fail when you try to
make more reasonable examples that have asynchronous operations, deal with
outside APIs, authentication, and so on. For that reason, the following topics will
cover how to set up our real scenario applications using Facebook API (also known
as Open-Graph API), logins into Facebook, and lists that a logged-in user likes.

Configuring Facebook Open-Graph API
In the following sections, we're going to learn more about Facebook Open-Graph
API and configure it so we can start crafting some code to build our awesome
application.

What it is and how to configure it
Facebook Open-Graph API is a service for getting, editing, and adding common
Facebook resources. Some of its functionalities that you can use in your own
application are: login; request user-specific resource permissions such as manage
events, post to friends walls, and the list goes on. It has a bunch of functionalities
that you can use and integrate your app with. One of the main functionalities used
by third-party applications is, of course, the login integration. You can use it just as a
login platform, for instance, if you don't want or don't have time to build one.

The API documentation is provided at https://developers.
facebook.com/ and it's recommended that you check this out.

If you want to test some requests to their API, without having to start developing an
application from scratch, you can use a very useful tool called Graph API Explorer.
It's commonly used for testing out an endpoint before developing it or just checking
how the response JSON result is returned. Graph API Explorer can be found at the
Tools & Support menu item at the top header. This is what the tool looks like:

https://developers.facebook.com/
https://developers.facebook.com/

Chapter 3

[41]

Most of the resources available on Facebook Open-Graph API require authorization.
Just a few are available without having to provide an access token. An access
token is a kind of ticket used by your application to act on the user's behalf, so you
can get or submit data. Basically, you ask Facebook for some user's permissions;
Facebook opens a popup asking the user to log in and shows the permissions your
app is requesting; once the user allows them, Facebook will send back the user
information/object to your page with the generated access token. From that time on,
you have access to other Open-Graph API resources that your app needs. You just
have to provide this token to every subsequent request you make. This is how OAuth
authorization standards work but this book will not cover OAuth in detail, as it is
not the purpose of this book.

You can find more details about OAuth at http://oauth.net/2/.

In Graph API Explorer, you can get an access token by clicking on the button Get
Access Token. This will open a popup with a bunch of permissions that your
operation can use. Once you have selected the permissions you want, Graph API
Explorer will show a popup requesting you to confirm the permissions requested.
This process generates a new access token that allows you to make request actions
to those restricted resources. Try checking out the user_likes permission and
requesting your user's list of likes through the endpoint /me/likes:

http://oauth.net/2/

Working with Properties

[42]

You will probably see a JSON result in the box below the Submit button.

This works very well when in Graph API Explorer but this is used just for testing
purposes. In order to make that work, we have to create an application (APP-ID) at
the Facebook developers site. This follows the OAuth standards specification and
allows the user, who is logging in to your app, to know more about your application
before granting access. In order to create an application in Facebook and obtain this
APP-ID, go to the My Apps menu at the header of the page; there will be an option
for creating a new app.

At the time of writing this book, the Facebook Open-Graph API recommended
version was v.2.2.

Creating an app-id on the Facebook
developers site
When you click the Add a New App button shown in the preceding image, Facebook
will ask you which type of application you need.

Chapter 3

[43]

Choose the Website option, which indicates our app is going to run in a separate
web page with no Facebook content around. After that, give it a fancy, original,
and unpredictable name as I did: learning-reactjs. Once it's done, you will be
redirected to the app details and configuration page that looks something like this:

Yay! We have our app-id ready; now we can use it to make request calls to Facebook
Open-Graph API.

One important thing to note is that some permissions require further
analysis from Facebook before going into production. As we are going
to use this just for getting the data of our own user, it's OK. If you try
to log in with a different user, it won't be possible as the user_likes
permission requires your application to be submitted to analysis and
doing that takes lots of time and should be done just in case you want to
put your application into production.

Working with Properties

[44]

Open-Graph JavaScript SDK
Facebook Open-Graph API provides SDKs for common programming languages
to ease the pain of consuming their resources. The JavaScript SDK can be found at
https://developers.facebook.com/docs/javascript. Their documentation
(https://developers.facebook.com/docs/javascript/quickstart/v2.5) is
comprehensive and they have tutorials such as logging in, working with multiple
requests, and so on. If you're considering taking an advanced course in learning
Open-Graph API using JavaScript SDK, it is worth taking a look afterward.

Just to recap what we're about to do: we're going to create a simple HTML page that
will load the Facebook JavaScript SDK. After that, we're going to log in to Facebook
and request our logged-in user list of likes and pass it to a ReactJS component, which
we will also create, through properties.

The Facebook JavaScript SDK needs to be loaded in the background, without the
waiting time (asynchronously) after the page finishes loading. In order to do that, we
need to create a script HTML element, put its src (source) attribute to point to the
SDK script, and, finally, insert that into the DOM. Fortunately, the SDK page has an
example ready to use and you just need to replace the APP-ID property within it.
We are going to use their example. This is what the script looks like:

<script>
 window.fbAsyncInit = function() {
 FB.init({
 appId : '784445024959168',
 xfbml : true,
 version : 'v2.2'
 });
 };

 (function(d, s, id){
 var js, fjs = d.getElementsByTagName(s)[0];
 if (d.getElementById(id)) {return;}
 js = d.createElement(s); js.id = id;

 js.src = "//connect.facebook.net/en_US/sdk/debug.js";
 fjs.parentNode.insertBefore(js, fjs);
 }(document, 'script', 'facebook-jssdk'));
</script>

window.fbAsyncInit is an initialization function with your
Facebook appId and other details.

Once the asynchronous initialization is done, if the concerned element is found, then
JavaScript(js) connects with //connect.facebook.net/en_US/sdk/debug.js.

We need to change the appId parameter to t Facebook-app-id.

https://developers.facebook.com/docs/javascript
https://developers.facebook.com/docs/javascript/quickstart/v2.5

Chapter 3

[45]

So, let's get started by creating an index.html file inside a separate folder to
organize things. The page will be like this:

<html>
 <head>
 <title>Rahh</title>
 <script src="http://fb.me/react-0.12.2.js"></script>
 <script src="http://fb.me/JSXTransformer-0.12.2.js"></script>
 </head>
 <body>

 <h1>Facebook User's list of likes</h1>
 Logout
 <div id="main"></div>

 <script>
 window.fbAsyncInit = function() {
 FB.init({
 appId : '784445024959168',
 xfbml : true,
 version : 'v2.2'
 });

 checkLoginStatusAndLoadUserLikes();
 };

 (function(d, s, id){
 var js, fjs = d.getElementsByTagName(s)[0];
 if (d.getElementById(id)) {return;}
 js = d.createElement(s); js.id = id;
 //js.src = "//connect.facebook.net/en_US/sdk.js";
 js.src = "//connect.facebook.net/en_US/sdk/debug.js";
 fjs.parentNode.insertBefore(js, fjs);
 }(document, 'script', 'facebook-jssdk'));
 </script>

 <script type="text/jsx" src="index.jsx"></script>
 </body>
</html>

We are commenting the js.src line and duplicating it with a debug JavaScript file.
This helps with finding errors and debugging your script.

A Content Delivery Network or Content Distribution Network
(CDN) is a globally distributed network of proxies. Source: https://
en.wikipedia.org/wiki/Server_(computing)
Servers are deployed in multiple data centers. Source: https://
en.wikipedia.org/wiki/Data_center
The goal of a CDN is to serve content to end users with
high availability and high performance. Source https://
en.wikipedia.org/wiki/Content_delivery_network

https://en.wikipedia.org/wiki/Server_(computing)
https://en.wikipedia.org/wiki/Server_(computing)
https://en.wikipedia.org/wiki/Data_center
https://en.wikipedia.org/wiki/Data_center
https://en.wikipedia.org/wiki/Content_delivery_network
https://en.wikipedia.org/wiki/Content_delivery_network

Working with Properties

[46]

First, we need to reference ReactJS dependencies and we are referencing the
CDN version ones to make it easier to demonstrate and for learning purposes.
After referencing the dependencies, we create some HTML elements, a title, a
logout anchor to log out from Facebook, and a div that will be the host for the
ReactJS component to be rendered. Later, we configure the Facebook Open-
Graph JavaScript SDK as explained before, but with one extra command,
checkLoginStatusAndLoadUserLikes();, that will be explained soon. Lastly,
we reference our index.jsx file that will contain the magic to make it all happen.

We put the checkLoginStatusAndLoadUserLikes call within the fbAsyncInit
function because the Open-Graph SDK JavaScript triggers that function once it is
loaded, so this is the right place to call Open-Graph API calls. Continuing with
our development, inside our index.jsx file, let's implement the logout and
checkLoginStatusAndLoadUserLikes functions and test it out in order to see
the Facebook integration working.

The logout function should be as simple as this:

function logout() {
 FB.logout();
}

This will just log the user out of Facebook, requiring him to log in again. As we'll
keep it simple, for learning purposes, we're not going to handle the scenario where
the user logs in and out to manage the list of likes when these events happen in
sequence. So, let's implement our checkLoginStatusAndLoadUserLikes function:

function checkLoginStatusAndLoadUserLikes() {
 FB.login(function(response) {
 console.log('We are live!!');
 });
}

This is a very straightforward code as well. Every call made by the Open-Graph
JavaScript SDK will be done asynchronously, so we have to provide a functions
callback that will be triggered once the request made to Facebook API returns with
the response. In this code, we're going to log in to the console once we've logged in to
the app. This process will call a Facebook login popup:

Chapter 3

[47]

Try it out! Load the screen and once logged in, click the logout anchor and reload the
page again, check out the console from your browser, and see the log we've printed.
The following image shows the login popup.

In order to make it work in localhost:3000, it's necessary that you
run the Python SimpleHTTPServer command from inside the code
folder, python -m SimpleHTTPServer. For more details about
this command and other ways of running your app, check Chapter 1,
Getting Started with ReactJS.
You can also make it work by using the following command:
npm -g install httpster

httpster: Is a simple http server to run the static content. In chrome
browser the index.html file sometime's doesn't render due to
X-origin error. Hence running this webserver from your application
directory, will be easier to test your application in Chrome. Just run the
command httpster from your application's root directory.
By Default the server runs in port 3333, thus localhost:3333 in the
browsers should render the index.html page of your application.

Working with Properties

[48]

Now that we have our integration working, let's get this list of likes for the logged-in
user. Change your checkLoginStatusAndLoadUserLikes function to be like so:

function checkLoginStatusAndLoadUserLikes() {
 FB.getLoginStatus(function(response) {
 if (response.status === 'connected') {
 loadUserAndLikes();
 } else {
 loginAndLoadUserLikes();
 }
 });
}

The first step is to check out where the user is already logged in. Calling the
FB.getLoginStatus function can do this. Inside the callback function, the parameter
passed represents the response from the API. This response contains information
about the login status for the user. This will be a very common parameter as other
API calls also return a response object back to your callback function. The status that
represents that the user has authorized the app and has successfully logged in is the
connected one. If the user is already logged in, we just call the loadUserAndLikes
function, but if it's not connected then it calls another function that will log in and
then call the API to load the user's list of likes.

The function loginAndLoadUserLikes should be as follows:

function loginAndLoadUserLikes() {
 FB.login(function(response) {
 loadUserAndLikes();
 }, {scope: 'user_likes'});
}

The login functionality has been moved to this method. Once the login operation
is complete then we call loadUserAndLikes. Notice that we now pass an object at
the end of the login function call {scope: 'user_likes'}; this object represents
the scope/permissions on Facebook, as required by our applicaton. In the following
example, within the first function call (loadUserAndLikes), the userResponse of the
logged-in user is returned. Then the API lists all the likes of that logged-in user.

The function loadUserAndLikes should look like this:

function loadUserAndLikes() {
 FB.api('/me', function(userResponse) {
 console.log(1, userResponse);
 FB.api('/me/likes', function(likesResponse) {
 console.log(2, likesResponse);
 });
 });
}

Chapter 3

[49]

You can have as much JavaScript code as you want inside JSX files. It's not a specific
type of file that understands only its own syntax, it just converts the places where
you use JSX-specific syntax markup instead.

Notice that we are making two requests for the API: the first one will get the user
details and the other will get the user's list of likes. We are logging them to the
console in order to test first before we implement our ReactJS component to
render it. This is what it logs out for my user:

Until now, we have explored Facebook Open-Graph API and ways to configure
it. You might be wondering what it has to do with learning ReactJS? All I can say
is that, in my experience, all the examples that most people try to provide when
teaching a new library or framework, rely on To-Do apps, synchronous operations
and, when they use an external. It doesn't make common integration tasks such as
login. Such integration gives a better idea of how the thing being taught works when
we put more realistic scenarios into place and try to make them as straightforward
as possible. After finishing this example, we will have an idea about how to integrate
ReactJS with your own private API, for instance.

Working with Properties

[50]

Rendering data in a ReactJS component
We now have our data to pass to the ReactJS component we're going to create. First,
let's start with the UserDetails component. This is going to show a link with the
logged-in username and the source to this user Facebook page. First, remove our old
logout anchor from the index.html file as this is not going to be necessary anymore.
Our logout functionality will be moved to our ReactJS component instead. We'll also
create another div, named user, above the main div; this new element will hold the
UserDetails component. The changes in index.html should look like this:

<h1>Facebook User's list of likes</h1>
<div id="user"></div>
<div id="main"></div>

You can create the UserDetails ReactJS component at the bottom of the
index.jsx file:

var UserDetails = React.createClass({
 handleLogout: function () {
 FB.logout(function () {
 alert("You're logged out, refresh the page in order to
 login again.");
 });
 }
 render: function () {
 return (
 <section id="user-details">

 {this.props.userDetails.name}

 {' | '}
 Logout
 </section>
)
 },

});

Now, we need to change the loadUserAndLikes function to call the React.render
method, pointing it to the user HTML div element:

function loadUserAndLikes () {
 FB.api('/me', function (userResponse) {
 React.render(<UserDetails userDetails={userResponse} />,
 document.getElementById('user'));

Chapter 3

[51]

 FB.api('/me/likes', function (likesResponse) {
 console.log(2, likesResponse);
 });
 });
}

As you can see, the UserDetails ReactJS component is very straightforward and
basic; it works like a template and just renders data that is passed to it. Don't be
disappointed with this because we're going to give this more functionality in coming
chapters, such as rendering a login button when logged out, instead of asking to
refresh the page, hiding the list, and showing a loading gif image when waiting for
the SDK response. All of those features require that we deal with a state and this is
going to be covered in the next chapter.

You can test it by refreshing the page, clicking the logout button, and refreshing the
page again. Once you log in on Facebook, the user details should be displayed in the
browser, below the title of our page.

We now need to render the user's list of likes and substitute the ugly console.
log(2, likesResponse); command to a ReactJS render function. First, let's
create our UserLikesList component at the bottom of the index.jsx file:

var UserLikesList = React.createClass({
 render: function() {
 var items = this.props.list.map(function (likeObject) {
 return <UserLikeItem data={likeObject} />;
 });

 return (
 <ul id="user-likes-list">
 {items}

);
 }
});

We create an array of UserLikeItem components called items and we're rendering
them inside the list element. The UserLikeItem component should look
like this:

var UserLikeItem = React.createClass({
 render: function() {
 var data = this.props.data;

 return (

Working with Properties

[52]

 <h1>{data.name} <small>{data.category}</small></h1>

);
 }
});

We put our property data in a separate variable to avoid long names inside the
component markup. Note that we are also displaying an image from the liked
Facebook resource; because of that, we also need to ask that in our API call and
render our component passing this list of likes:

function loadUserAndLikes () {
 FB.api('/me', function (userResponse) {
 React.render(<UserDetails userDetails={userResponse} />,
 document.getElementById('user'));

 var fields = { fields: 'category,name,picture.type(normal)'
 };
 FB.api('/me/likes', fields, function (likesResponse) {
 React.render(<UserLikesList list={likesResponse.data} />,
 document.getElementById('main'));
 });
 });
}

We've changed the loadUserAndLikes function to ask the API to also bring a picture
of the liked Facebook resource. By default, it's omitted from the response.

Try it out and see if you get a list of your likes displayed in the page. It might be
looking very odd because we haven't created any style. Create a style element in
the index.html page for styling our list: a very basic one but just for making our
example more pleasing to look at:

<style>
 #user-likes-list {
 list-style: none;
 padding: 5px;
 margin: 0;
 }
 #user-likes-list li {
 display: inline-block;
 width: 270px;
 margin: 5px;
 background-color: rgb(122, 174, 233);

Chapter 3

[53]

 height: 100px;
 overflow: hidden;
 }
 #user-likes-list img {
 display: inline-block;
 vertical-align: top;
 width: 100px;
 }
 #user-likes-list h1 {
 font-size: 1.4em;
 display: inline-block;
 width: 160px;
 vertical-align: top;
 margin-left: 5px;
 color: rgb(20, 90, 169);
 margin: 5px 0 0 5px;
 }
 #user-likes-list small {
 font-size: 0.7em;
 display: block;
 color: rgb(145, 50, 0);
 margin-top: 5px;
 }
</style>

Working with Properties

[54]

OK, maybe it's bad without styling. Anyway, you can always ask a designer for help!

ReactJS properties make your components configurable and changeable. As you can
see, it's very straightforward to create ReactJS components and render them in your
page, even in an existing one. You don't need to make the whole app support the
framework or start one from scratch. You simply define what your components are,
considering them as a set, avoiding big ones that are difficult to maintain, and render
them somewhere in the page. Its power increases by intelligently working with
stateful components, and this is our next step in learning ReactJS.

Summary
In this chapter, we've learned how to pass properties to ReactJS components and
render the UI based on those components. We have also learned how to make
a parent component to communicate with its children. We have seen how to
configure Facebook Open-Graph API, how to integrate that with ReactJS using
login functionality, and how to render the response of an API request call into
a set of smaller ReactJS components.

In the next chapter, we are going to dive into stateful components and explore how
to make mutable ReactJS components based on a user's input or for any other reason
that requires the state to change and your UI to represent that automatically.

[55]

Stateful Components
and Events

In this chapter, we will exploit the React states and events in detail. This chapter will
cover the components that have a state, the practices to communicate between them,
and how to respond to users input/events in order to have the UI reflect this state.
We will develop a web page where we can update the name of our liked pages from
Facebook. This also covers how the state changes your React UI having enhanced
performance using the virtual DOM.

This chapter will cover the following items:

•	 React states
•	 Event ecosystem

Properties versus states in ReactJS
Let's glance through the differences between props and states in React.

Properties are declared when React components are created, while states
are declared within the component definitions. Thus, during the component
initialization phase props are declared.

•	 In most of the scenarios, React components take data and pass in the form of
props. In the other cases, when you are required to take user input to have a
server request, states are used.

•	 (this.props) is used to access parameters passed from the parent
component, while (this.state) is used to manage dynamic data.
State should be considered private data.

Stateful Components and Events

[56]

Exploring the state property
In the last chapter, we explored React properties (props). Just as components
can have properties, they can also have states. States are primarily set to those
components where it is necessary to change, for example if the component has
to be updated or replaced in future. Thus, it is not mandatory to have a state for
the entire component.

Components can be both stateless and stateful:

•	 Stateless components are those where only props are present, but no
state is defined. Thus, there will no change in these prop values for these
components within the component life cycle. The only source of static data
should be presented to the component instance via the props. Thus, props
are immutable data for a React component.

•	 Stateful components: Stateless components, are meant to represent any
React component declared as a function that has no state and returns
the same markup given the same props. As the name implies, stateful
components are those where both props and states are declared. Generally,
any kind of such data-change communication is done via the state change
[setState(data, callback)]. The updated state is then rendered in the
UI. In case of interactive apps [form submission etc] where the data
changes continuously, it's necessary to have such stateful components.
Otherwise, for non-interactive apps, it's advisable to have fewer stateful
components, because they increase complexity and redundancy in the app.

Initializing a state
Initialization of a component state is done by the method getInitialState(),
which returns an object:

object getInitialState()

The getInitialState() method is invoked once before the component is mounted.
The return value will be used as the initial value of this.state

For all the following examples, we have the same content in the
index.html file. Thus, we can use the same index.html file and
only change the contents of the corresponding JavaScript file based
on the topic being discussed.

Chapter 4

[57]

We can create a React stateful component as follows:

var FormComponent = React.createClass({
 getInitialState:function(){
 return {
 name: 'Doel',
 id: 1
 };
 },
 render : function() {
 return <div>
 My name is {this.state.name}
 and my id is {this.state.id}.
 </div>;
 }
});
React.renderComponent(
 <FormComponent />,
 document.body
);

The getInitialState() method initiates the component with
the values (name: Doel, id: 1), during the first render cycle. These
values are persisted until the state values are changed and can be
collected by running {this.state.<VALUE>}.

Setting a state
Data change in React is commonly done by invoking the method setState(data,
callback), which together with the data of this.state re-renders the component.
If you provide an optional callback argument, React will call it when executing this
method, although usually it's not required as React keeps the UI updated.

A state is set from inside the component.

The following code shows how the state is updated/set:

var InterfaceComponent = React.createClass({
 getInitialState : function() {
 return {
 name : "doel"
 };
 },
 handleClick : function() {

Stateful Components and Events

[58]

 this.setState({
 name : "doel sengupta"
 });
 },
 render : function() {
 return <div onClick={this.handleClick}>
 hello {this.state.name}, your name is successfully updated!
 </div>;
 }
});
React.renderComponent(
 <InterfaceComponent />,
 document.body
);

Here is what we did:

•	 Changed values in states are reflected only after the component is mounted.
•	 Mounting of the component happens when it has been passed to React.

render(<Component />).
•	 Our event handler onClick calls the handleClick() function, which is

internally calling this.state(). So when the onClick event is initialized
on the name doel, it will change its value from doel to doel sengupta.

In the React documentation (http://facebook.github.io/react/docs/
interactivity-and-dynamic-uis.html), Facebook recommends:

•	 Have many stateless components to render data and a stateful component
as parent, which passes its states to the stateless children via props.

•	 Essentially, the function of the stateful component is to contain the
interaction logic and the stateless components render the data.

•	 The state of a component has the data that is manipulated by the
component's event handlers.

•	 You should keep minimal data in this.state and perform all the
computations within the render method. This reduces redundancy
or storage of computed values and ensures more reliability on React's
computational abilities.

•	 React components should be built within render() based on the underlying
props and states

•	 Props should be essentially used as the source of truth. Any data that can be
changed via the user's input or otherwise, should be stored in states.

http://facebook.github.io/react/docs/interactivity-and-dynamic-uis.html
http://facebook.github.io/react/docs/interactivity-and-dynamic-uis.html

Chapter 4

[59]

Replacing a state
It's also possible to replace values in the state by using the replaceState() method.
Let's look at an example of this:

Here's a snippet of code from index.html:

<!DOCTYPE html>
<html>
<head>
<script src="https://cdnjs.cloudflare.com/ajax/libs/react/0.14.0-
rc1/react.min.js"></script>
<script
src="https://cdnjs.cloudflare.com/ajax/libs/react/0.13.3/JSXTransf
ormer.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/
 jquery/2.1.1/jquery.min.js"></script>
 <script
 src="https://cdnjs.cloudflare.com/ajax/libs/react/0.14.0-
 rc1/react-dom.js"></script>
 <meta charset="utf-8">
 <title>My React App</title>
</head>
<body>
 <div id="myApp"></div>
 <script type="text/jsx", src="replace_state.js"></script>
</body>
</html>

Here's the code for replace_state.js:

//calling replaceSet() method
var FormComponent = React.createClass({
 getInitialState : function() {
 return {
 first_name : "michael",
 last_name : "jackson"
 };
 },
 handleClick : function() {
 this.replaceState({
 last_name : "jordan"
 });
 },
 render : function() {
 return <div onClick={this.handleClick}>

Stateful Components and Events

[60]

 Hi {this.first_name + " " + this.state.last_name }
 </div>;
 }
});

The replaceState() method is used when existing values are to be
cleared and new ones have to be added.

Here's what the app looks like when it is run for the first time:

App screenshot during initial page load

After the page initially loads, the value of the first_name attribute is michael, but
when the onClick function is called the value changes to undefined. The component
states with the attributes first_name and last_name have been replaced with only
last_name when replaceState() is called. The following screenshot illustrates this:

Chapter 4

[61]

Re-rendering the component after replaceState() is called

A React state example using an interactive
form
Let's build a form and see how the values can be passed between Component1 and
Component2, as in the next example.

Here's a snippet of code from index.html:

<!DOCTYPE html>
<html>
<head>
<script src="https://cdnjs.cloudflare.com/ajax/libs/react/0.14.0-
rc1/react.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/react/0.13.3/
JSXTransf
ormer.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/
 jquery/2.1.1/jquery.min.js"></script>
 <script
 src="https://cdnjs.cloudflare.com/ajax/libs/react/0.14.0-
 rc1/react-dom.js"></script>
 <meta charset="utf-8">
 <title>My React App</title>
</head>

Stateful Components and Events

[62]

<body>
 <div id="myApp"></div>
 <script type="text/jsx", src="react_state.js"></script>
</body>
</html>

This code shows how to pass values between components. The next code snippet is
in the react_state.js file:

/* declaration of React component1 with initial values and the
changed value to be set in the update function.
*/
var Component1 =
React.createClass({
 getInitialState:function(){
 return {
 name: 'hi',
 id: 1
 };
 },
 update: function(e){
 this.setState({name: e.target.value});
 },
 render:function(){
 return (
 <div>
/* The render method returns the Component2 with props name and
the value to be called on update method*/
 < Component2 name={this.state.name} update={this.update}
 />
 </div>
);

 }
});
/* Declaration of Component2 which calls the update function when
onChange method is called. */
var Component2 = React.createClass({
 render:function(){
 return (
 <div>
 <input type="text" onChange={this.props.update} />

 {this.props.name}
 </div>

Chapter 4

[63]

);

 }
});
ReactDOM.render(< Component1 name="this is the text property" />,
document.getElementById('myApp'));

When we first run the code we see:

User interactive form

After typing in the textbox, the value below automatically changes, as seen here:

Form data updated using this.setState()

Let's now dig deeper into how events flow within a React ecosystem.

Events
React uses SyntheticEvent, which is a cross-browser wrapper around the browser's
native event. So all the event handlers in the react applications will be passed
instances of SyntheticEvent. React's event ecosystem has the same interface as any
of the browser's native events with the advantage that it works identically in all the
browsers and provides stopPropagation() and preventDefault() too.

Stateful Components and Events

[64]

If React is installed as an NPM module, then these SyntheticEvent-related files can
be found in the following location within your app: app/node_modules/react/lib.

All these events comply with the W3C standard. The main event flow happens as:

•	 Dispatching the event : @param {object} dispatchConfig
•	 Marker identifying the event target: @param {object} dispatchMarker
•	 Native event: @param {object} nativeEvent

The way React uses this event delegation is by listening to the nodes that have
listeners. Depending on the event handlers on the particular node, the synthetic
event system of React implements its own bubbling.

Some of the event names in the Synthetic Event system are as follows. Refer to the
Facebook documentation for the complete list of the listed registered events.

Form events
•	 Event names for Form events are:

°° onChange, onInput, onSubmit

For more information about the onChange event, refer to Forms
(https://facebook.github.io/react/docs/forms.html).

Mouse events
•	 Event names for Mouse events are:

°° onClick, onContextMenu, onDoubleClick, onDrag, onDragEnd,
onDragEnter, onDragExit

°° onDragLeave, onDragOver, onDragStart, onDrop, onMouseDown,
onMouseEnter, onMouseLeave

°° onMouseMove, onMouseOut, onMouseOver, onMouseUp

https://facebook.github.io/react/docs/forms.html

Chapter 4

[65]

Let's show an example of some of the different events called by the SyntheticEvent
system on a React component.

In the JavaScript file, we have the following code snippet:

/* React component EventBox is decalred which shows the different
functions it fires in response of diffenrent Synthetic events.*/
var EventBox = React.createClass({

 getInitialState:function(){
 return {e: 'On initial page load'}
 },

 update: function(e){
 this.setState({e: e.type})
 },

 render:function(){
 return (
 <div>
 <textarea
/*Following are the various events (on the left hand side). In
response of all these events then the update function is called.
*/
 onKeyDown={this.update}
 onKeyPress={this.update}
 onCopy={this.update}
 onFocus={this.update}
 onBlur={this.update}
 onDoubleClick={this.update}
/>
 <h1>{this.state.e}</h1>
 </div>
);});

Stateful Components and Events

[66]

The following code displays a textbox in the browser. As we type in the box, the
corresponding event type prints out below. Since we are updating the state with
event.type, the corresponding event is shown below as we type in the box.

ReactDOM.render(<EventBox />,
document.getElementById('myTextarea'));

User interactive form

nativeEvent
Sometimes we may need the underlying browser event for our application; in that
case, we need to use its nativeEvent attribute. This code shows how we can attach
DOM events, which are not provided by the React synthetic event system, to a
React component.

The following is the code snippet for the index.js file:

/* React component MyBrowserDimension, with nativeEvent attribute
which is needed for manipulating the underlying browser
events(window.innerWidth, window.innerHeight). */
var MyBrowserDimension = React.createClass({
getInitialState:function(){
 return {
 width: window.innerWidth,
 height: window.innerHeight
 };
 },

Chapter 4

[67]

 update: function(){
 this.setState({
 height: window.innerHeight,
 width: window.innerWidth
 });
 },

//componentDidMount is called after the component is mounted and //
has a DOM presentation. This is often a place where we will //attach
generic DOM events.

 componentDidMount:function(){
 window.addEventListener('resize', this.update);
 window.addEventListener('resize', this.update);
 },

 componentWillUnmount:function(){
 window.removeEventListener('resize', this.update);
 window.removeEventListener('resize', this.update);
 },

 render:function(){
 return <div>
 <p>My Browser Window current Inner Width is:
 {this.state.width} pixels</p>
 <p>My Browser Window current height is {this.state.height}
 pixels</p>
 </div>;
 }
});

ReactDOM.render(<MyBrowserDimension />,
document.getElementById('myApp'));

Here's the source code for the corresponding HTML page:

<!DOCTYPE html>
<html>
<head>
<script src="https://cdnjs.cloudflare.com/ajax/libs/react/0.14.0-
rc1/react.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/react/0.14.0-
rc1/react-dom.js"></script>
<script
src="https://cdnjs.cloudflare.com/ajax/libs/react/0.13.3/JSXTransf
ormer.js"></script>

Stateful Components and Events

[68]

 <meta charset="utf-8">
 <title>React DOM attributes</title>
</head>
<body>
<div id="myApp"></div>
 <script type="text/jsx", src="index.js"></script>
</html>

From the following screenshots, we can see that as we resize the browser window,
the width and height values change. The first image shows the full size [1311/681]
of the browser.

App showing browser's native attributes

The second image from the preceding application code shows that after resizing the
browser window, the pixel values changed to 497/219.

Chapter 4

[69]

Native DOM attributes changing with browser window changes

According to the Facebook developer team (http://facebook.
github.io/react/tips/dom-event-listeners.html):

"The event callbacks which are declared in a React app, are all bound to
the React components. These event callbacks are not tied to the original
elements. By autobinding, these methods are automatically bounded to
the current element."

 Also, every SyntheticEvent object has the following attributes:

•	 boolean bubbles: All event handlers are triggered in the event bubbling
phases; it can be true/false

•	 boolean cancelable: Whether the SyntheticEvent object can be cancelled or
not (true/false)

•	 DOMEventTarget currentTarget: As per W3C recommendations, the
currentTarget event property returns the element whose event listeners
triggered the event

This is particularly useful during capturing and bubbling.

http://facebook.github.io/react/tips/dom-event-listeners.html
http://facebook.github.io/react/tips/dom-event-listeners.html

Stateful Components and Events

[70]

The currentTarget property always refers to the element whose event listener
triggered the event, as opposed to the target property, which returns the element
that triggered the event.

•	 boolean defaultPrevented: Whether the SyntheticEvent object can be
prevented by default or not (true/false)

•	 number eventPhase: The eventPhase event property returns a number
that indicates which phase of the event flow is currently being evaluated
(see: https://developer.mozilla.org/en-US/docs/Web/API/Event/
eventPhase)
The number is represented by four constants:

0 – NONE.
1 – CAPTURING_PHASE: The event flow is within the capturing phase.
2 – AT_TARGET: The event flow is in the target phase, that is, it is
being evaluated at the event target.
3 – BUBBLING_PHASE: The event flow is in the bubbling phase.

•	 boolean isTrusted: As per JS recommendations, in Chrome, Firefox, and
Opera, the event is trusted (returns true) if it is invoked by the user, and not
trusted if it is invoked by a script ((returns false)).

•	 DOMEvent nativeEvent: nativeEvent is a kind of DOMEvent.
•	 void preventDefault(): The preventDefault() method does cancel the

event if it is cancellable (it cancels the default action of the method) but it
does not prevent further propagation of an event through the DOM. The
return type of preventDefault() in React is void.

•	 void stopPropagation(): stopPropagation is called to prevent events
from bubbling up to their parent elements, which thereby prevents any
parent event handlers from being invoked.

•	 boolean isDefaultPrevented(): isDefaultPrevented is used to check
whether the preventDefault() method is called (true) or not (false).

•	 boolean isPropagationStopped(): isPropagationStopped is used to
check whether the stopPropagation() method is called (true) or not (false).

•	 DOMEventTarget target: It is used to identify the target of the
SyntheticEvent object declared, which returns the element that
triggered the event. The return type is in DOMEventTarget.

•	 number timeStamp: This is used to identify the timestamp of the
SyntheticEvent object declared. The return type is in the form number.

•	 string type: This is used to identify a kind of SyntheticEvent object
declared. The return type is in the form string.

http://www.w3schools.com/jsref/event_target.asp
https://developer.mozilla.org/en-US/docs/Web/API/Event/eventPhase
https://developer.mozilla.org/en-US/docs/Web/API/Event/eventPhase

Chapter 4

[71]

Note: As of v0.14, returning false from an event handler will no
longer stop event propagation. Instead, e.stopPropagation() or
e.preventDefault() should be triggered manually, as appropriate.

Event pooling
A pool is a place where events/objects are kept, so that they can be reused at a
later stage, after being garbage collected. In the React ecosystem, the event objects
(SyntheticEvent) that are received in callbacks are pooled. As mentioned before,
after the event callback has been called, SyntheticEvent will be put back in the pool
with empty attributes, which thereby reduces the pressure on the Garbage Collector.
Next are some key highlights for event pooling as mentioned in the Facebook
documentation as well.

The SyntheticEvent system in React is pooled.

"This means that the SyntheticEvent object will be reused.

All properties will be nullified after the event callback has been invoked.

This is for performance reasons.

We cannot access the event in an asynchronous way.

In order to access the event properties in an asynchronous way, we should call
event.persist() on the event, which will remove the synthetic event from the
pool and allow references to the event to be retained by user code."

Supported events
React normalizes events so that they have consistent properties across
different browsers.

According to the Facebook documentation (http://facebook.github.io/react/
docs/events.html)

"The event handlers of the Synthetic Events of the React ecosystem are triggered by
an event in the bubbling phase."

Now that we have covered what a state is in the React component and how event
handling happens, let's see how we can use these in the app that we were building
in the last chapter.

http://facebook.github.io/react/docs/events.html
http://facebook.github.io/react/docs/events.html

Stateful Components and Events

[72]

Until the last chapter, we were able to display the likes of a user, using the Graph-API
and Facebook login into our app. Based on its props, each component has rendered
itself once. Props are immutable: they are passed from the parent and are owned by
the parent. Now, we will be able to update the name of the liked component onClick
on any part of the particular div where the React component resides.

The index.html code snippet for the following example is:

<html>
 <head>
 <title>Learning React State</title>
 <script src="http://fb.me/react-0.13.3.js"></script>
 <script src="http://fb.me/JSXTransformer-0.13.3.js"></script>
 </head>
 <body>
 <h1>Facebook User's list of likes</h1>
 <div id="user"></div>
 <div id="main"></div>
 Logout
 <script>
 window.fbAsyncInit = function() {
 FB.init({
 appId : '1512084142440038',
 xfbml : true,
 version : 'v2.2'
 });

 checkLoginStatusAndLoadUserLikes();
 };

 (function(d, s, id){
 var js, fjs = d.getElementsByTagName(s)[0];
 if (d.getElementById(id)) {return;}
 js = d.createElement(s); js.id = id;
 js.src = "//connect.facebook.net/en_US/sdk/debug.js";
 fjs.parentNode.insertBefore(js, fjs);
 }(document, 'script', 'facebook-jssdk'));
 </script>

 <script type="text/jsx" src="index.js"></script>
 </body>
</html>

Chapter 4

[73]

The following code is within the js file:

// The following code block explains in order to login to user's
Facebook //account and call the function internally(
loginAndLoadUserLikes) if //successfully connected.
function checkLoginStatusAndLoadUserLikes() {
 FB.getLoginStatus(function(response) {
 if (response.status === 'connected') {
 loadUserAndLikes();
 } else {
 loginAndLoadUserLikes();
 }
 });
}

function loginAndLoadUserLikes() {
 FB.login(function(response) {
 loadUserAndLikes();
 }, {scope: 'user_likes'});
}

//Once logged in, this method should load the details of the
specific user.
var UserDetails = React.createClass({
 render: function () {
 return (
 <section id="user-details">

 {this.props.userDetails.name}

 {' | '}
 Logout
 </section>
)
 },

//Specified user should be able to logout from the respective
account
handleLogout: function () {
 FB.logout(function () {
 alert("You're logged out, refresh the page in order to login
 again.");
 });
 }
});

Stateful Components and Events

[74]

//Once logged in, this method should load the likes pages of the
specific user.
function loadUserAndLikes () {
 FB.api('/me', function (userResponse) {
 React.render(<UserDetails userDetails={userResponse} />,
 document.getElementById('user'));

 var fields = { fields: 'category,name,picture.type(normal)' };
 FB.api('/me/likes', fields, function (likesResponse) {
 React.render(<UserLikesList list={likesResponse.data} />,
 document.getElementById('main'));
 });
 });
}

//Once logged in, this method should list the liked pages of the
specific user.
var UserLikesList = React.createClass({
 render: function() {
 var items = this.props.list.map(function (likeObject) {
 return <UserLikeItem data={likeObject} />;
 });

 return (
 <ul id="user-likes-list">
 {items}

);
 }
});
var UserLikeItem = React.createClass({
 getInitialState: function() {
 return {data_name: this.props.data.name};
 },
 handleClick: function(){
 this.setState({
	 data_name: 'I liked it'})
	 },

Chapter 4

[75]

 render: function() {
 var props_data = this.props.data;

 return (
 <div onClick={this.handleClick}>
 <img src={props_data.picture.data.url}
 title={props_data.name} />
 <h1> {this.state.data_name} <small>{props_data.category}</
small></h1>
 </div>
);
 }
});

The highlighted part shows the changes we made, in order to save the state.

•	 getInitialState(): is declared by initializing the value of the liked data
name's value from the props data. getInitialState() executes exactly
once during the lifecycle of the component and sets up the initial state of
the component.

The reason for the mutable state (the state that can be changed) is as follows:

•	 The mutable state is introduced to the component (UserLikedItem). In
order to implement interactions, this.state can be changed by calling
this.setState() and is private to the component. When the state updates,
the component (UserLikedItem) re-renders itself.

•	 render() methods are written by the Facebook developer team,
declaratively as functions of this.props and this.state. They ensure
that the framework guarantees the UI is always consistent with the inputs.

Stateful Components and Events

[76]

•	 This is a perfect example of how data flows between components in the
React ecosystem. The property (data) is passed from the React component
UserLikesList to another component, UserLikedItem.

App fetching user's liked pages from Facebook

Chapter 4

[77]

React attaches event handlers to components using a camelCase naming convention.
We attach an onClick handler to the div element, so that whenever a user clicks at
any portion of the image or the image name or category, it will change to I liked it.

React this.setState() replacing liked item's name

Stateful Components and Events

[78]

Summary
According to Facebook's Reconciliation documentation (https://facebook.
github.io/react/docs/reconciliation.html)

"React's key design decision is to make the API seem like it re-renders the whole
app on every update."

Thus, whenever the setState() method is called on an object, that particular node
is marked. At the end of the event loop, all the nodes are re-rendered where the
setState() method is called.

React is fast because it never talks to the DOM directly. It maintains an in-memory
representation of the actual DOM. Whenever the render() method is called, it
returns a mapping of the actual DOM. React can detect (using a diff algorithm)
changes in the mapped DOM compared to the in-memory representation. It
then re-renders the changes and updates the UI likewise.

The event ecosystem in React is implemented by a full synthetic event system
(SyntheticEvent()). Cross-browser efficiency is achieved as all the events bubble
up consistently.

In the current chapter, we have explored the stateful components in React and how
the synthetic event system is handled in React applications. States are used for those
properties in React components that are mutable. In the next chapter, we will explore
the component lifecycle and how these lifecycle methods interact with various events
and the DOM as a whole.

https://facebook.github.io/react/docs/reconciliation.html

[79]

Component Life cycle and
Newer ECMAScript in React

So far, we have explored React component properties and how we need to initialize,
update, and change the component's state(s) for interactive applications. Let's now
explore the lifecycle of such a React component in this chapter. We will also dig into
future ECMAScript syntax and a few changes that the React community also used
from version 0.13.0. For this, we will review some ES6 and ES7 features within the
React library.

While creating any React component by calling React.createClass(), we need to
always have a render method. This render method returns a description of the DOM.
React has a performance edge in our applications because React maintains a fast
in-memory representation of the DOM and never directly interacts with the actual
DOM. Thus, when the render method returns the description of the DOM, React can
compare the difference between the actual DOM and the in-memory representation,
and, based on the difference(s), re-renders the view accordingly.

In this chapter, we will cover the following topics:

•	 React component lifecycle
•	 Using React with ECMAScript

Component Life cycle and Newer ECMAScript in React

[80]

React component lifecycle
As per Facebook's React documentation from http://facebook.github.io/react/
docs/working-with-the-browser.html, the React component lifecycle can be
broadly classified into three categories as follows:

"Mounting: A component is being inserted into the DOM.

Updating: A component is being re-rendered to determine if the DOM should
be updated.

Unmounting: A component is being removed from the DOM."

React provides lifecycle methods that you can specify to hook into this process. We
provide will methods, which are called right before something happens, and did
methods which are called right after something happens.

Mounting category
Mounting is the process of publishing the virtual representation of a component
into the final UI representation (for example, DOM or native components). In a
browser, it would mean publishing a React element into an actual DOM element
in the DOM tree.

Method Name Method Function
getInitialState() This method is invoked before the component is mounted.

In the case of stateful components, this method returns the
initial state data.

componentWillMount() This method is called just before React mounts the
component in the DOM.

componentDidMount() This method is called immediately after mounting occurs.
The initialization process that DOM nodes requires
should go within this method.

Like in the previous chapters, most of the code in the index.html is the same.
We will only be replacing the contents of the JavaScript file.

The code of index.html will become as follows:

<!DOCTYPE html>
<html>
<head>
<script src="https://cdnjs.cloudflare.com/ajax/libs/react/0.14.0-
rc1/react.min.js"></script>

http://facebook.github.io/react/docs/working-with-the-browser.html
http://facebook.github.io/react/docs/working-with-the-browser.html

Chapter 5

[81]

<script src="https://cdnjs.cloudflare.com/ajax/
libs/react/0.13.3/JSXTransformer.js"></script>
 <script src="https://cdnjs.cloudflare.com/
 ajax/libs/react/0.14.0-rc1/react-dom.js"></script>
 <meta charset="utf-8">
 <title>My React App</title>
</head>
<body>
 <div id="app"></div>
 <script type="text/jsx", src="index.js"></script>
</body>
</html>

Let's illustrate the lifecycle method, using a code snippet. Place the following code in
the index.js file:

var MyButton = React.createClass({
 getInitialState: function(){
 return {value: 11}
 },
 addOnClick: function(){
 this.setState({value: this.state.value + 2});
 },
 render: function(){
 console.log("myButton React component is rendering");
 return <button
 onClick={this.addOnClick}>{this.state.value}</button>
 }
});
ReactDOM.render(<MyButton />,
document.getElementById('myComponent'));

Component Life cycle and Newer ECMAScript in React

[82]

Initially, we can see the value of myButton set to 11:

Chapter 5

[83]

The value of myButton increases by two when the onClick(addOnClick) event
occurs. Thus, the value of state changes.

Value of myButton increases by two when the onClick event occurs

If we add the componentWillMount method to the preceding code, we will be able to
see that the React component is only mounted in the DOM once, but is rendered each
time we click on the button.

 componentWillMount: function(){
 console.log('MyButton component is mounting');
 },

Component Life cycle and Newer ECMAScript in React

[84]

The screenshot of the app component mounting on the DOM shows in the console,
MyButton component is mounting.

Screenshot of app component mounting on the DOM

Let's implement the last mounting method, componentDidMount, which is called
after the component is mounted. As you can see in the next screenshot, the console
shows the component has been mounted once but the component is rendered the
number of times we click on the button, four times in this case: 11 + (2*4) =19.

 componentDidMount: function(){
 console.log('MyButton component is mounted');
 },

The screenshot shows methods where mounting and mounted on the DOM is called
once, though rendering happens. Thus, after the componentDidMount method is
executed, in the console we can see the output MyButton component is mounted.

Chapter 5

[85]

Screenshot of methods where mounting and mounted on the DOM is called once, though rendering happens

Updating category
The React component lifecycle allows updating components at runtime. This can be
done using the following methods:

Method Name Method Function
componentWillReceiveProps(ob
ject nextProps)

This method is invoked when a mounted
React component receives new properties
(props). This means you can use it to
compare between this.props, the current
set of properties, and nextProps, the new
property values. There is no similar method
like componentWillReceiveState. Thus,
an incoming property transition may cause
a state change, but an incoming state may
not cause a property change. If we want to
perform some operation in response to a state
change, we would need to use the method
componentWillUpdate.
Thus, the component's property changes will
be rendered in the updated view without re-
rendering the view.

Component Life cycle and Newer ECMAScript in React

[86]

Method Name Method Function
shouldComponentUpdate(object
nextProps, object nextState)

This method is invoked when a component
requires an update in the DOM.
The return type is boolean (true/false).
It returns false when there is no change
in the props and/or state, which will
prevent componentWillUpdate and
componentDidUpdate from being called.

componentWillUpdate(object
nextProps, object nextState)

As the name suggests, this method is invoked
immediately before updating occurs, but not in
the first render call.
this.setState() cannot be called
within this lifecycle method. To update a
state in response to a property change, use
componentWillReceiveProps instead.

componentDidUpdate(object
prevProps, object prevState)

This is invoked immediately after updating
occurs in the DOM and not during the initial
render() call.

Let's add the preceding methods in our code:

//Updating lifecycle methods
 shouldComponentUpdate: function() {
 console.log('ShouldComponentUpdate');
 return true;
 },
 componentWillReceiveProps: function(nextProps) {
 console.log('ComponentWillRecieveProps invoked');
 },
 componentWillUpdate: function() {
 console.log('ComponentWillUpdate invoked');
 },
 componentDidUpdate: function() {
 console.log('ComponentDidUpdate invoked');
 },

Chapter 5

[87]

Execute the preceding code to see the following output. We can see the various
lifecycle events of the React component and the corresponding output they give in
the console.

Screenshot of component being updated

Unmounting category
componentWillUnmount() is invoked immediately before a component is
unmounted and destroyed. You should perform any necessary cleanup here.

 componentWillUnmount: function(){
 console.log('Umounting MyButton component');
 }

Here's the complete example encompassing all the lifecycle methods of a React
component. The index.html is the same as the preceding.

The code of index.html:

<!DOCTYPE html>
<html>
<head>
<script src="https://cdnjs.cloudflare.com/ajax/libs/react/0.14.0-rc1/
react.min.js"></script>
<script src="https://cdnjs.cloudflare.com/
ajax/libs/react/0.13.3/JSXTransformer.js"></script>

Component Life cycle and Newer ECMAScript in React

[88]

 <script src="https://cdnjs.cloudflare.com/
 ajax/libs/react/0.14.0-rc1/react-dom.js"></script>
 <meta charset="utf-8">
 <title>My React App</title>
</head>
<body>
 <div id="app"></div>
 <script type="text/jsx", src="index.js"></script>
</body>
</html>

Here is the corresponding index.js code:

var MyButton = React.createClass({
 getDefaultProps: function() {
 console.log('GetDefaultProps is invoked');
 return {id: 1};
 },
 getInitialState: function(){
 return {value: 11}
 },
 addOnClick: function(){
 this.setState({value: this.state.value + 2});
 },
 componentWillMount: function(){
 console.log('MyButton component is mounting');
 },
 render: function(){
 console.log("myButton React component is rendering");
 return (<div>
 <button>{this.props.id}</button>
 <button
 onClick={this.addOnClick}>{this.state.value}</button>
 </div>);
 },
 componentDidMount: function(){
 console.log('MyButton component is mounted');
 },

//Updating lifecycle methods
 shouldComponentUpdate: function() {
 console.log('ShouldComponentUpdate');
 return true;
 },

Chapter 5

[89]

 componentWillReceiveProps: function(nextProps) {
 console.log('ComponentWillRecieveProps invoked');
 },
 componentWillUpdate: function() {
 console.log('ComponentWillUpdate invoked');
 },
 componentDidUpdate: function() {
 console.log('ComponentDidUpdate invoked');
 },

//Unmounting Lifecycle Methods
 componentWillUnmount: function(){
 console.log('Umounting MyButton component');
 }

});

var ComponentApp = React.createClass({
 mount: function(){
 ReactDOM.render(<MyButton />,
 document.getElementById('myApp'));
 },
 unmount: function(){
 ReactDOM.unmountComponentAtNode(document.getElementById
 ('myApp'));
 },
 render: function(){
 return (
 <div>
 <button onClick={this.mount}>Mount</button>
 <button onClick={this.unmount}>Unmount</button>
 <div id="myApp"></div>
 </div>
);
 }
});

ReactDOM.render(<ComponentApp />, document.getElementById('app'));

Component Life cycle and Newer ECMAScript in React

[90]

Observe the following:

•	 After executing the preceding code, we will be able to see two buttons as
Mount and Unmount

•	 The initial value of the component is set to 11
•	 onClick on the React component; its value is increased by a value of two
•	 While clicking on the Mount, the lifecycle methods of the React component

is called
•	 For each of these lifecycle methods, we can see an output in the console

Screenshot of unmouting the component from the DOM

Note: Mounted composite components support the method
component.forceUpdate(). This method can be invoked on any
mounted component, in case of some changes in the deeper aspect of
the component, without using this.setState().

Chapter 5

[91]

Our React component's lifecycles are shown next. The lifecycles are highlighted in
the right portion of the developer tool:

Screenshot showing the React component's lifecycle, as highlighted in the right portion of the developer tool

Other ES (ECMAScript) versions in React
In the second half of this chapter, we will explore how React supports newer
versions of ECMAScript. Until now, we have explored the different lifecycle methods
in a React component. In this section of the chapter, we will dig into something
different: how changes in the new version of ECMAScript have been adopted
by React.

ES6
ES6 is the current version of the ECMAScript Language Specification Standard.
Further details about the changes and the new things incorporated can be found on
the Mozilla Development Network site: https://developer.mozilla.org/en-US/
docs/Web/JavaScript/New_in_JavaScript/ECMAScript_6_support_in_Mozilla

Complete documentation for ES6 is beyond the scope of this book.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/New_in_JavaScript/ECMAScript_6_support_in_Mozilla
https://developer.mozilla.org/en-US/docs/Web/JavaScript/New_in_JavaScript/ECMAScript_6_support_in_Mozilla

Component Life cycle and Newer ECMAScript in React

[92]

According to the Facebook documentation:

Starting with React 0.13.0 a transpiler allows us to use ES6 classes. JavaScript
originally didn't have a built-in class system. The developer team wanted
class creation using the idiomatic JavaScript style. Therefore instead of React.
createClass the developer team has introduced a component. You can use the
transpiler they ship with react-tools by making use of the harmony option and
setting it to true as follows:

jsx –harmony

By looking through https://www.npmjs.com/package/react-tools, you can find
details of the different options you can pass with the JSX Transformer. --harmony
turns on JS transformations such as ES6 classes and so on.

Thus, ES6 syntax will be transformed into ES5 compatible syntaxes.

Transpiling is a method for taking source code written in one
language and transforming it into another language that has a similar
level of abstraction.
When TypeScript is compiled and is transformed by the compiler
into JavaScript, it has very similar levels of abstraction. Hence, it is
called transpiling.

Here, React classes are defined as a plain JavaScript class. Let's go through the
following code from their documentation with some modifications and explanations.

Code within index.html:

<!DOCTYPE html>
<html>
<head>
<script src="https://cdnjs.cloudflare.com/ajax/libs/react/0.14.0-rc1/
react.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/react/0.14.0-rc1/
react-dom.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax
/libs/react/0.13.3/JSXTransformer.js"></script>
 <meta charset="utf-8">
 <title>React ES6</title>
 <h1>ok</h1>
 </style>
</head>
<body>
<div id="react-content"></div>
 <script type="text/jsx;harmony=true" src="index.js"></script>
</html>

https://www.npmjs.com/package/react-tools

Chapter 5

[93]

The highlighted line with the argument as harmony=true ensures that the jsx syntax
with ES6 code should be transpiled into JavaScript using ES5 syntax.

Code within index.js:

//line 1
class Es6Component extends React.Component {

//line 2
render() {

 return <div onClick={this._handleClick}>
 Hi There, I am learning ES6 in React.</div>;

}

_handleClick() {

 console.log("hi");

}

}

ReactDOM.render(<Es6Component />, document.getElementById('react-
content '));

Explanation:

•	 Line 1: Declaring the React component ES6Component, which extends from
React.Component instead of React.createClass

•	 Line 2: The render function call syntax is different. Before, it was
render: function()

Component Life cycle and Newer ECMAScript in React

[94]

Here is a screenshot demonstrating it:

Screenshot of the React component using ES6

Instead of getInitialState in React.createClass, using ES6 the new constructor
has the new own state property in React.Component, which is exported.

export class Counter extends React.Component

/* The constructor of the newly created React class, Counter.
There are the following things to be noted:
call to super(props)And instead of calling getInitialState()
ifecycle method, React team used the instance property called
this.state() */

constructor(props) {super(props);
 this.state = {count: props.initialCount};
 }

 tick() {
 this.setState({count: this.state.count + 1});
 }

 render() {
 return (
 <div onClick={this.tick.bind(this)}>
 Clicks: {this.state.count}

Chapter 5

[95]

 </div>
);
 }
}

/* For validation and default values purposes propTypes and
defaultProps are inbuilt within React's component. Here the
propTypes and defaultProps are defined as properties on the
constructor instead within the the class body. */

// Declares the React's class Counter property types as number
Counter.propTypes = { initialCount: React.PropTypes.number };

/* sets the defaultProps for the Counter React class as
initialCount being 0. These values are passed as super(props)*/
Counter.defaultProps = { initialCount: 0 };

Screenshot of the React component using ES6

Another feature of React using ES6 is No Autobinding.

As with ES6 classes, which do not automatically bind to the instance, we need to use
bind.(this) OR use the arrow sign (=>) explicitly in ES6.

Component Life cycle and Newer ECMAScript in React

[96]

Following these ES6 syntaxes, we can rewrite our sample app from Chapter XX,
which lists the user's likes in Facebook. Just as before, if the user clicks on the
liked-page name, the string I Liked it will be updated on the page.

The changes as per the new ES6 syntaxes are highlighted next:

use 'strict';
function checkLoginStatusAndLoadUserLikes() {

 FB.getLoginStatus(function(response) {
 if (response.status === 'connected') {
 loadUserAndLikes();
 } else {
 loginAndLoadUserLikes();
 }
 });
}

function loginAndLoadUserLikes() {
 FB.login(function(response) {
 loadUserAndLikes();
 }, {scope: 'user_likes'});
}

//var UserDetails = React.createClass({

class UserDetails extends React.component {
 render() {
 return (
 <section id="user-details">

 {this.props.userDetails.name}

 {' | '}
 Logout
 </section>
)
 },

 handleLogout: function () {
 FB.logout(function () {
 alert("You're logged out, refresh the page in order to login
again.");
 });
 }

Chapter 5

[97]

});

function loadUserAndLikes () {
 FB.api('/me', function (userResponse) {
 ReactDOM.render(<UserDetails userDetails={userResponse} />,
 document.getElementById('user'));

 var fields = { fields: 'category,name,picture.type(normal)' };
 FB.api('/me/likes', fields, function (likesResponse) {
 React.render(<UserLikesList list={likesResponse.data} />,
 document.getElementById('main'));
 });
 });
}

//var UserLikesList = React.createClass({
class UserLikesList extends React.Component {
 render() {
 let items = this.props.list.map(function (likeObject) {
 return <UserLikeItem data={likeObject} />;
 });

 return (
 <ul id="user-likes-list">
 {items}

);
 }
//});

}

//var UserLikeItem = React.createClass({

class UserLikeItem extends React.createComponent {

 //getInitialState: function() {
 // return {data_name: this.props.data.name};
 //},
 handleClick(){
 this.setState({
 data_name: 'I liked it'})
 },

 render() {
 let props_data = this.props.data;

Component Life cycle and Newer ECMAScript in React

[98]

 return (
 <div onClick={this.handleClick}>
 <img src={props_data.picture.data.url}
 title={props_data.name} />

 <h1> Name:{this.state.data_name} </h1>
	 <h2>Category <small>{props_data.category}</small></h2>
 </div>
);
 }
}

let is used instead of var to declare a variable in a local scope.

The output remains the same, as per the next screenshot:

Screenshot of the React app, fetching the user's liked pages, using ES6 syntaxes

Note: ES6 does not support mixins. Mixins will be covered
later in this book in Chapter 7, Making your Component
Reusable, in more detail. Mixins are used to write reusable
codes in React applications.

Chapter 5

[99]

ES7
ECMAScript7 is one step beyond ES6. Even before ES6 was finalized, new features
started to be proposed. Please view the experimental and stabilized feature list at
the following URL:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/New_in_
JavaScript/ECMAScript_7_support_in_Mozilla

Keeping ES7 in mind, the React developer community presented us with some
syntactic sugar to the existing React class code. In the future version of JavaScript
(ES7), there can be more declarative syntax for property initialization, as this would
be a more idiomatic way of expressing. Here's a quick example:

// Future Version
export class Counter extends React.Component {
 static propTypes = { initialCount: React.PropTypes.number };
 static defaultProps = { initialCount: 0 };
 state = { count: this.props.initialCount };
 //constructor
// render method
);
 }
}

Summary
In this chapter, we have gone through the lifecycle of a typical React component,
the various phases it undergoes, and how React renders the view based on the
diff-ing algorithm (that is, calculating the deltas between the virtual DOM and
the actual DOM).

In the second part of the chapter, we explored the future of ECMAScript and how
React.js already supports it. For this, we have used sample code examples from
Facebook's documentation.

In the next chapter, we will discuss React's reusable components known as mixins.
We will also explore how we can add validations in a React-based application.
Validations are required for apps that accept user input. User inputs should be
validated before being sent to the server, to prevent malicious or invalid content
from being sent.

https://developer.mozilla.org/en-
https://developer.mozilla.org/en-

[101]

Reacting with Flux
So far in the previous chapters, we have dug deep into the react world. Let's
now explore the new dimension of react world, Flux, which is nothing but a
unidirectional dataflow architecture. Flux is developed by the Facebook internal
development team and is used in order to build client-side web applications
at Facebook.

We will cover the following topics as we go along:

•	 The synopsis of Flux versus the MVC architecture
•	 Actions
•	 Dispatchers
•	 Stores
•	 Controller-Views and Views

An overview of Flux
Flux should not be confused as a framework based on ReactJS. Flux is an architecture
and is designed in order to reduce the complexity of a huge application built with
Model View Controller (MVC) architecture and has been designed as an alternative
of MVC.

The following are the different Flux components:

•	 View—This is like for any web app, the views (basically the react component)
receives the event and passes it to the Actions

•	 Action—They are helper methods (actionCreators) that pass the
data (payload) and actionType, received from an external API/view
to a dispatcher

Reacting with Flux

[102]

•	 Dispatcher—These are Central hub of all registered callbacks. It receives the
actions and acts as a "traffic controller" before it passes it to the Stores

•	 Store—It is a data layer that stores all the computations and business logic.
It is also responsible for storing the application state and the single source
of truth for the application state. It receives the action from the dispatchers
based on the registered callbacks.

•	 Controller-View—This receives the state from the stores based on the
changeEvents and passes it to the React views component via props.

A diagram here illustrates this:

ACTION

DISPATCHER

STORE

ACTION

VIEW

Typical Flux Data Flow Architecture

Flux versus the MVC architecture
In a typical application built on the MVC architecture, the views get updated from
the data, which is typically stored in the models. As the application grows, the
number of models and views also grow, and there grows the interdependency
among the various models. Therefore the views also get tdependent on multiple
models, thus increasing the complexity of the application.

Chapter 6

[103]

The interdependence of views and models can create diffraction in the source of
truth, leading to increased application complexity and unpredictability. As a result,
there needs to be a solution to internalize the control by moving all the control into
the individual pieces.

ACTION CONTROLLER

MODEL

MODEL

MODEL

MODEL

MODEL

VIEW

VIEW

VIEW

VIEW

VIEW

Issue with a growing app built with MVC

Flux advantages
According to the Facebook Flux development team, the objects within a Flux
application are highly decoupled, and adhere very strongly to the first part of the
Law of Demeter: the principle that each object within a system should know as little
as possible about the other objects in the system. This results in software that is more.

•	 Maintainable
•	 Adaptable
•	 Testable
•	 Easier and more predictable for new engineering team members to

understand

Reacting with Flux

[104]

The following is a Flux application structure of our library_app application.

Our Library App Structure

Flux components
Let's dive into an application, built with Flux architecture with React View. Here, we
will be building an app named library_app. This is a basic Flux-based ReactJS app,
where we can borrow books from the library_app store to our reading list. Once we
finish the book, we can strike it off from our reading list.

From the command line execute:
sudo npm install flux

The above will install the flux package as a node module and your
library_app application will have a directory called node_modules with
the flux library installed within it.

Actions
Actions are typically the data that enters into an application, either directly from the
View or from an external Web API. Each action is nothing but a JavaScript method,
which contains two parts: the actionType and the actual data. The actionCreators
methods are simply discrete, semantic helper functions that facilitate passing data
to the dispatcher in the form of an action. The different types of actions are declared
as a JavaScript object, in a file named App-Constants.js. According to the Flux app
hierarchy, the App-Contstants.js file resides under src/js/constants. Typical
example for such a file looks like the following:

Chapter 6

[105]

module.exports = {
 ADD_BOOK: 'ADD_BOOK',
 DELETE_BOOK: 'DELETE_BOOK',
 INC_BOOK_COUNT: 'INC_BOOK_COUNT',
 DEC_BOOK_COUNT: 'DEC_BOOK_COUNT'
}

Here, ADD_BOOK, DELETE_BOOK are the actions.

Actions, by itself, do not contain any functionality of their own.
Actions are typically executed by the stores and are available in order
to trigger the views. In React, we have handful of helper methods
named actionCreators, which ideally creates the action object and
passes the action to the Flux dispatcher (AppDispatcher).

All the actions defined in the AppConstants are declared in the AppActions.

The use of constants in the AppConstants, which declares the action names,
helps the developer to understand the app's functionality. As in our case,
it deals with books.

In the following example while adding books in a library_app store, we are dealing
with four actionTypes:

•	 ADD_BOOK

•	 DELETE_BOOK

•	 INC_BOOK_COUNT

•	 DEC_BOOK_COUNT

The actions (such as addBook, removeBook, incBookCount, and decBookCount) are
unique based on their actionType attribute. Thus, when these actions are dispatched
by the dispatchers to the stores, stores mutates themselves depending on the specific
callback registered with the dispatchers.

Typical action file resides in library_app/src/js/actions/app-actions.js:

var AppConstants = require('../constants/app-constants');
var AppDispatcher = require('../dispatchers/app-dispatchers');

var AppActions = {
 addBook:function(item){
 AppDispatcher.handleViewAction({
 actionType: AppConstants.ADD_BOOK,
 item: item

Reacting with Flux

[106]

 })
 },
 removeBook:function(index){
 AppDispatcher.handleViewAction({
 actionType: AppConstants.REMOVE_BOOK,
 index: index
 })
 },
 incBookCount:function(index){
 AppDispatcher.handleViewAction({
 actionType: AppConstants.INC_BOOK_COUNT,
 item: index
 })
 },
 decBookCount:function(index){
 AppDispatcher.handleViewAction({
 actionType: AppConstants.DEC_BOOK_COUNT,
 item: index
 })
 }
}

module.exports = AppActions;

Dispatchers
As the name aptly defines, Flux dispatchers dispatches the actions to the subsequent
stores. Dispatchers can be called as a registry of callbacks. All the stores are
registered with the dispatchers.

Some key points of dispatcher are the following:

•	 There is only one dispatcher per app.
•	 Dispatchers being used as a center for all the registered callbacks.
•	 It functions as a broadcaster of all the actions to the stores. Dispatchers acts

as a queue, which sequentially broadcasts the actions. This is different from
generic pub-sub systems in the following two ways:

1.	 Callbacks are not subscribed to particular events. Every payload is
dispatched to every registered callback.

2.	 Callbacks can be deferred in whole or part until other callbacks have
been executed.

Chapter 6

[107]

•	 The dispatcher has the capability to invoke the callbacks in the order
specified, and it waits for other updates (waitFor() method does that).

•	 In the flux library (npm install flux) node_module, the register()
and dispatch() methods are defined, in the flux library_app, within the
dispatcher class.

See the file located at library_app/node_modules/Flux/lib/Dispatcher.js:

 // Registers a callback to be invoked with every dispatched
payload. Returns
 // a token that can be used with `waitFor()`.

 Dispatcher.prototype.register = function register(callback) {
 var id = _prefix + this._lastID++;
 this._callbacks[id] = callback;
 return id;
 };

Thus, when the dispatchers receive the trigger (actions) from the Actions, it
dispatches all the actions to the registered stores, one by one. This dispatching-flow
is initiated with the dispatch() method, which passes the payload (data) to the
registered store and has the callback registered to it.

The following code is an excerpt from the Flux.js library within the node_modules
for the dispatcher:

 /**
 * Dispatches a payload to all registered callbacks. The highlighted
code below ensures the fact that dispatches cannot be triggered in the
middle of another dispatch.

 */

 Dispatcher.prototype.dispatch = function dispatch(payload) {
 !!this._isDispatching ? process.env.NODE_ENV !== 'production'
 ? invariant(false, 'Dispatch.dispatch(...):
 Cannot dispatch in
 the middle of a dispatch.') : invariant(false) : undefined;
 this._startDispatching(payload);
 try {
 for (var id in this._callbacks) {
 if (this._isPending[id]) {
 continue;
 }
 this._invokeCallback(id);
 }

Reacting with Flux

[108]

 } finally {
 this._stopDispatching();
 }
 };

Let's create AppDispatcher for our BookStore app now.

The file app-dispatcher.js file should be created under the dispatcher directory of
the src.

AppDispatcher is an instance of the dispatcher from the Flux
package with some additional properties (action in this case).
It has the handleViewAction method, which passes the action to
be passed to the registered store via the callback.

The following is the code snippet from our app specific app-dispatcher class.

The file location is at library_app/src/js/dispatchers/app-dispatchers.js:

var Dispatcher = require('flux').Dispatcher;
var assign = require('react/lib/Object.assign');

var AppDispatcher = assign(new Dispatcher(),{
 handleViewAction: function(action){
 console.log('action',action);
 this.dispatch ({
 source: 'VIEW_ACTION',
 action: action
 })
 }
});

module.exports = AppDispatcher;

Before implementing the library_app store, let's check whether our payload (data)
is printing out in the console. In order to do so, a handler function is created in the
React component app.js, which is called when any part of the heading My First
Flux App is clicked.

The file location is library_app/src/js/components/app.js:

var React = require('react');
var ReactDOM = require('react-dom');

//call the AppActions directly, before creation of the Store
var AppActions = require('../actions/app-actions');

//create a App component

Chapter 6

[109]

var App = React.createClass({
 handler: function(){
 AppActions.addBook('This is the book..Sherlock Holmes')
 },
 render:function(){
 return <h1 onClick={this.handler}>My First Flux App </h1>
 }

});
module.exports = App;

Run the httpster from your application's root directory:
doel@doel-Vostro:~/reactjs/ch6_flux_library$httpster

Starting HTTPster v1.0.1 on port3333 from /home/doel/
reactjs/ch6_flux_library

Open the browser and check the console, after clicking on the heading:

A screenshot from library_app

Reacting with Flux

[110]

For a quick recap about the flow of our bookstore app till now:

The default index.html page serves the static content (Sample Application) on
localhost:3333

The index.html page internally calls the main.js, which internally creates the React
class and renders the content in the <App /> React component (from the src/js/
components/app.js). The React component is rendered in the div tag with ID main

Once we click on any portion of the <App /> component (My First Flux App), an
onClick event handler triggers the handler() function, which calls, AppActions.
addBook (This is the book..Sherlock Holmes), here, AppActions in the
AppConstant. AddBook is the specific action to be called with the payload / item/
data (This is the book..Sherlock Holmes).

Once AppActions.addBook method is called, it is assigned to the callback
handleViewAction of the dispatcher, with the following:

•	 actionType: AppConstants.ADD_BOOK
•	 item: This is the book..Sherlock Holmes
•	 The handleViewAction method of the dispatcher passes the action (with

action_type and item) and logs the output in the console and dispatches it.
•	 We see the following output in the console.log after clicking on My First

Flux App:
action Object { actionType: "ADD_BOOK", item: "This is the
book..Sherlock Holmes" }

•	 This is just a way to pass the JS objects (item: "This is the book..
Sherlock Holmes") in a uniform and expected manner for the store to
handle. It simplifies the data flow of the application and makes tracing
and debugging easier.

Stores
Flux stores can be comparable with the models in MVC, though essentially they are
not the same. From similar point of view, they are the same as all the business logic
and computations happen in the Flux store. According to the Facebook team, "Stores
manage the state of many objects—they do not represent a single record of data like
ORM models do. Nor they are the same as Backbone's collections. More than simply
managing a collection of ORM-style objects, stores manages the application state for
a particular domain within the application."

https://en.wikipedia.org/wiki/Object-relational_mapping

Chapter 6

[111]

Source https://en.wikipedia.org/wiki/Object-relational_mapping.

Object Relational Mapping (ORM) in computer science is a programming
technique for converting data between incompatible type systems in object-oriented
programming languages. This creates, in effect, a "virtual object database" that can
be used from within the programming language. In object-oriented programming,
data management tasks act on object-oriented (OO) objects that are almost always
nonscalar values. For example, consider an address book entry that represents a
single person along with zero or more phone numbers and zero or more addresses.
This could be modeled in an object-oriented implementation by "Person object"
with attributes/fields to hold each data item that the entry comprises: the person's
name, a list of phone numbers, and a list of addresses. The list of phone numbers
would itself contain "PhoneNumber objects" and so on. The address book entry is
treated as a single object by the programming language (it can be referenced by a
single variable containing a pointer to the object, for instance). Various methods
can be associated with the object, such as a method to return the preferred phone
number, the home address, and so on.

The store(s) receives the action(s) from the dispatchers. Depending on the registered
callback (with the dispatcher), the Store decides whether it should respond to the
action dispatched by the dispatcher. No objects outside the app are responsible
for changing the values within the Store or the Views. Thus any change, which is
brought by the actions, results in the data change based on the registered callbacks
and never by any setter methods.

As the Flux stores update themselves without any external intervention, hence
it reduces the complexities typically found in MVC applications. The Flux stores
controls what happens within them, only the input is via the dispatchers. In a MVC
app, interdependency of various models with various views may lead to instability
and complicated test cases.

A single app can have multiple stores, based on its functionality, but each store deals
with a single domain. A store exhibits characteristics of both collection of models and
a singleton model of a logical domain.

The following is quick recap of Stores Functionality:

•	 Stores register itself with the dispatchers through callbacks.
•	 Computations of the business logic reside in the stores as JS functions.
•	 After the action been dispatched from the dispatcher to the Stores, they are

identified by the registered callbacks.
•	 The action is acted upon within stores by the state update.

https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Type_system
https://en.wikipedia.org/wiki/Object-oriented
https://en.wikipedia.org/wiki/Object_database
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Data_management
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Scalar_(computing)
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Attribute_(computing)
https://en.wikipedia.org/wiki/Attribute_(computing)

Reacting with Flux

[112]

•	 JS arrays: _library and _readingItems store the books available and what
the reader wants to read.

•	 EventEmitter is a class of the events module, which is part of the Node.
js core library. In this example, the event emitter function is done by the
eventEmitter.on() method, where the first argument is the event, and the
second argument is the function to be added. Thus, the eventEmitter.on()
method simply registers the function. When the the emit() method is called,
then it executes all the functions that are registered with the on method.

•	 The public methods getReadingList() and getLibrary() allow us to get
the computed data from the _readingItems and _readingList JS arrays.

•	 dispatcherIndex in the app-stores.js code is used in order to store the
return value of the dispatcher's registration method.

•	 The switch statement is the determining factor, in case of a dispatcher's
broadcast, for what actions has to be performed. If a relevant action is taken,
a change event is emitted and views that are listening for this event update
their states.

The following is the code for app_stores.js for our library_app. It has all the
business logic and computations of our app:

var AppDispatcher = require('../dispatchers/app-dispatchers');
var AppConstants = require('../constants/app-constants');
var assign = require('react/lib/Object.assign');

//eventEmitter allows the Stores to listen/broadcast changes to the
//Controller-Views/React-Components
var EventEmitter = require('events').EventEmitter;

var CHANGE_EVENT = 'change';

var _library = [];

for(var i=1; i<6; i++){
 _library.push({
 'id': 'Book_' + i,
 'title':'Sherlock Holmes Story ' + i,
 'description': 'Sherlock Series by Sir Arthur Conan Doyle'
 });
}

var _readingItems = [];

Chapter 6

[113]

function _removeItem(index){
 _readingItems[index].inReadingList = false;
 _readingItems.splice(index, 1);
}

function _increaseItem(index){
 _readingItems[index].qty++;
}

function _decreaseItem(index){
 if(_readingItems[index].qty>1){
 _readingItems[index].qty--;
 }
 else {
 _removeItem(index);
 }
}

function _addItem(item){
 if(!item.inReadingList){
 item['qty'] = 1;
 item['inReadingList'] = true;
 _readingItems.push(item);
 }
 else {
 _readingItems.forEach(function(cartItem, i){
 if(cartItem.id===item.id){
 _increaseItem(i);
 }
 });
 }
}
var AppStore = assign(EventEmitter.prototype, {
 emitChange: function(){
 this.emit(CHANGE_EVENT)
 },
 addChangeListener: function(callback){
 this.on(CHANGE_EVENT, callback)
 },
 removeChangeListener: function(callback){
 this.removeListener(CHANGE_EVENT, callback)
 },
 getReadingList: function(){
 return _readingItems

Reacting with Flux

[114]

 },
 getLibrary: function(){
 return _library
 }

dispatcherIndex is used to store the return value of the
Dispatchers registration method. dispatcherIndex is used
in case of waitFor() method, that is when one part of the app
has to wait for another part of the app to get updated.

The following is the code that shows the dispatcherIndex:

dispatcherIndex: AppDispatcher.register(function(payload){
 var action = payload.action;
 switch(action.actionType){
 case AppConstants.ADD_BOOK:
 _addItem(payload.action.item);
 break;

 case AppConstants.DELETE_BOOK:
 _removeItem(payload.action.index);
 break;

 case AppConstants.INC_BOOK_COUNT:
 _increaseItem(payload.action.index);
 break;

 case AppConstants.DEC_BOOK:
 _decreaseItem(payload.action.index);
 break;
 }

 AppStore.emitChange();

 return true;
 })
})
module.exports = AppStore;

Chapter 6

[115]

Controller-Views and Views
Views are primarily the React Views, which essentially generate the actions.
Controller-View listens to our stores, for any changeEvent been broadcasted. The
emitChange events let our Controller-Views know if any change has to be performed
into the state of the view or not. They are essentially React components. In our code,
we have five such react components, as follows:

•	 app-addbooktoreadinglist.js

•	 app-booklist.js

•	 app.js

•	 app-readinglist.js

•	 app-removefromreadinglist.js

The following is the code for app-booklist.js:

var React = require('react');
var AppStore = require('../stores/app-stores');
var AddBookToReadingList = require('./app-addbooktoreadinglist')

function getLibrary(){
 return {items: AppStore.getLibrary()}
}

var BookList = React.createClass({
 getInitialState:function(){
 return getLibrary()
 },
 render:function(){
 var items = this.state.items.map(function(item){
 return (
 <tr key={item.id}>
 <td>{item.title}</td>
 <td><AddBookToReadingList item={item} /></td>
 </tr>
);
 })
 return (
 <table className="table table-hover">
 {items}
 </table>
)
 }
});

module.exports = BookList;

Reacting with Flux

[116]

The following is the code that is internally called on the AddBookToReadingList
React component:

var React = require('react');
var AppActions = require('../actions/app-actions');

//create a AddBookToLibrary component
var AddBookToReadingList = React.createClass({
 handleClick: function(){
 AppActions.addBook(this.props.item)
 },
 render:function(){
 return <button onClick={this.handleClick}>I want to borrow
</button>
 }

});
module.exports = AddBookToReadingList;

At the end, the following component <Booklist \> is added in the app.js. This is
essentially for the part where a user can see the books they have in the ReadingList
list section:

var React = require('react');
var AppStore = require('../stores/app-stores.js');
var RemoveFromReadingList = require('./app-
removefromreadinglist');

function readingItems(){
 return {items: AppStore.getReadingList()}
}

var ReadingList = React.createClass({
 getInitialState:function(){
 return readingItems()
 },
 componentWillMount:function(){
 AppStore.addChangeListener(this._onChange)
 },
 _onChange: function(){
 this.setState(readingItems())
 },
 render:function(){
 var total = 0;
 var items = this.state.items.map(function(item, i){

Chapter 6

[117]

 return (
 <tr key={i}>
 <td><RemoveFromReadingList index={i} /></td>
 <td>{item.title}</td>
 <td>{item.qty}</td>
 </tr>
);
 })
 return (
 <table className="table table-hover">
 <thead>
 <tr>
 <th></th>
 <th>Book Name</th>
 <th>Qty</th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 </table>
)
 }
});
module.exports = ReadingList

Revisiting the code
In each of the React components (readingList and bookList), getInitialState()
is initialized with the store public method getReadingList() and getLibrary(),
respectively.

Various methods are executed at precise points in a component's lifecycle.

•	 componentWillMount() is a React lifecycle method. It is invoked once, both
on the client and server, immediately before the initial rendering occurs. If
you call setState within this method, render() will see the updated state
and will be executed only once despite change in the state:
componentWillMount:function(){
 AppStore.addChangeListener(this._onChange)
 },
 _onChange: function(){
 this.setState(readingItems())
 }

Reacting with Flux

[118]

•	 Thus, componentWillMount() is listening to the addChangeListener
(defined in the AppStore store). If the _onChange parameter is passed,
then the current object (_this) is updated (setState) with the
new/updated data/payload (readingItems).

•	 In order to remove the items from the reading list, the event listener
(handleClick) is unmounted.

The following is the code of app-removebookfromreadinglist.js:

var React = require('react');
var AppActions = require('../actions/app-actions');

//create a DeleteBookFromLibrary component
var DeleteBookFromReadingList = React.createClass({
 handleClicr: function(){
 AppActions.deleteBook(this.props.index)
 },
 render:function(){
 return <button onClick={this.handleClicr}>Book
 Completed</button>
 }
});
module.exports = DeleteBookFromReadingList;

The following is the code of app.js:

var React = require('react');
var BookList = require('./app-booklist');
var ReadingList = require('./app-readinglist');
//create a App component
var App = React.createClass({
 render:function(){
 return <div><h1>Book List</h1><BookList /><h1>Reading List</
h1><ReadingList /></div>
 }
});
module.exports = App

Chapter 6

[119]

The final view of our library_app Flux application

On clicking on the button I want to borrow, the corresponding book will come to my
Reading List. Once I am done with the book, click on the button Book Completed,
to remove the book from the reading list.

The following is a screenshot of our library_app application.

How to run this Flux app will be covered in the building and deployment
structure later.

The following are the details of the components of a Flux-based app:

•	 Actions
•	 Dispatchers (registry of callbacks)
•	 Stores (callbacks registered with dispatchers)

Reacting with Flux

[120]

•	 Views
•	 Controllers Views

ACTION

Action_Constant
Data Payload

DISPATCHER

STORE

Action_Constant
Data Payload

State

CONTROLLER
VIEWS

Props

VIEWS VIEWS

Action methods are called and send
the action constant and payload.

The Dispatcher receives the action. It then dispatches based
on the callbacks registered to the stores.

Internal State & Changes event (inherited from
Event emitter class)

Reacts Properties

The Dispatcher dispatches the action constant
and data to all registered callbacks.

If a Store has a callback registered with the Dispatcher,
it will receive the dispatched event/data

Top level component
Holds all state

Passes it to children as props

Views are React Components which receive change events
and updates itself and child views. Views call action

creators and the process repeats.

API
(External)

data flow in Flux app

Chapter 6

[121]

Summary
Through our libary_app application, we have explored how the unidirectional data
flow in a simple Flux-based application. The users can see the booklist in the views.
They can add books in the reading list, thus the actions (adding books) gets passed
to the dispatchers. Internally the dispatchers have the registered callbacks with
the stores. The stores then adds/removes the books based on the user's action and
computes the business logic and re-renders the changes accordingly again to
the views.

In the next chapter, we will cover React good practices and patterns. This includes
practices to develop reusable components, how to structure your components
hierarchically to a better data flow, and how to validate your components behavior.
In our app, we'll be improving our components developed so far.

[123]

Making Your Component
Reusable

Until now, we have dug into React's components' lifecycle, properties, state, and
ECMAScript with respect to React 0.1.13 and future versions. In this chapter, we will
also see how we can write reusable components/code in React applications. Such
reusable components in React are named Mixins. Furthermore, we will explore how
the React component's properties can be validated.

The following topics to be covered in this chapter:

•	 Understanding mixins
•	 A higher order component in ECMA6 (as Mixin is not supported in ECMA6)
•	 Different types of validations in a React application
•	 The structure of a React component and application's architecture

Understanding Mixins
The Mixins (reusable components) are typically those React components that are
used in multiple places and thus can be reused. Typically, the design elements, such
as buttons, layout components, form fields, or any code logic/computation, that
are used more than once are extracted in code named Mixin. Thus, Mixins help us
incorporate some additional functionalities to existing React components by acting
as helpers.

Like in the previous chapters , the index.html content remains the
same. Only the contents of the corresponding js (having the React
components) changes.

Making Your Component Reusable

[124]

Exploring Mixins by example
In this example we are setting the interval of the window global objects for every
100 ms:

Content of index.html:

<!DOCTYPE html>
 <html>
<head>
<script src="https://cdnjs.cloudflare.com/ajax/libs/react/0.14.0-rc1/
react.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/react/0.13.3/
JSXTransformer.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/react/0.14.0-
rc1/react-dom.js"></script>

<meta charset="utf-8">
 <title>JS Bin</title>
</head>
<body>
 <div id="myReactContainer">
 <script type="text/jsx", src="index.js"></script>
 </div>
</body>
</html>

Content of index.js:

//Defining the Mixin
 . var ReactMixin = {
 . getInitialState:function(){
 . return {count:0};
 . },

// componentWillMount, a lifecycle method, is added as a part of the
Mixin.
 . componentWillMount:function(){
 console.log('Component will mount!');
 },
 increaseCountBy10: function(){
 this.setState({count: this.state.count+10})
 }
 }

Chapter 7

[125]

//This method displays text to display
 var App = React.createClass({
 render:function(){
 return (
 <div>
 <Label txt="SetInterval increase by 10 in every 100ms" />
 </div>
)
 }
 });

// React component (<Label />), called from the <App /> component.
 var Label = React.createClass({

// Mixins are called using the keyword Mixin, followed by the Mixin
name within an array.
 mixins:[ReactMixin],
 componentWillMount:function(){

 //setting the interval to 100ms
 interval = setInterval(this.increaseCountBy10,100);
 },

//The function is called for the second time to update the interval
every 100ms
 componentWillUnMount:function(){
 clearInterval(this.interval);
 },
 render:function(){
 return <label>{this.props.txt} : {this.state.count}</label>
 }
 });

ReactDOM.render(<App />,
document.getElementById('myReactContainer'));

Run the httpserver from the application's root dir:
doel@doel-Vostro-3500:~/reactjs/ch7_mixins_
validationProps/app1_mixin$ httpster

Starting HTTPster v1.0.1 on port 3333 from /home/doel/
reactjs/ch7_mixins_validationProps/app1_mixin

Making Your Component Reusable

[126]

The following is the output for this code on opening localhost:3333:

The app screenshot using Mixin with a lifecycle method

The explanation of the executed code:

A mixin is nothing but a JavaScript object, which can be reused within the React
component later. We begin with defining the Mixin.

The componentWillMount is a lifecycle method, which is added as a part of the
Mixin. Later, when the Mixin is called from the react component, the log from
console.log can be seen in the bottom part of the developer tool portion of the
webpage to present Component Will Mount.

We add a typical react component (<App />), which calls the <Label /> component.
It's a render function, which displays the text presented on the label. The App
component can have multiple react components, which will internally call different
react components.

In the next example, we will see such an example.

React component (<Label />) is called from the <App /> component. It's using the
React Mixin (ReactMixin).

Chapter 7

[127]

In line mixins:[ReactMixin], Mixins in React, are called using the keyword Mixin,
followed by the Mixin name (ReactMixin in this case), within an array. We can define
multiple Mixins, as JavaScript objects. All these separate Mixins can then be called
from a single React component (each Mixin representing a separate element in
an array).

We will explore such an example, with multiple Mixins, later in the chapter.

We then add the setInterval() function

•	 The setInterval() method is a window function in JavaScript.
•	 It's declared as window.setInterval(function, milliseconds).
•	 Although it's a method based on window object, but it's not necessary to call

the setInterval() method on the window object, such as in the previously
mentioned code. It can be called without the window prefix.

•	 The first parameter is the function that gets executed (this.
increaseCountBy10).

•	 The second parameter is the interval of time between executions of each
of the function, this.increaseCountBy10. The interval is set to 100ms
in this case.

The lifecycle method (componentWillMount) is then called for the second time in
the previously mentioned code. For the first time, it is called within the Mixin body,
which logs the Component Will Mount on the log.

For the second time, it is called within the React component (<Label />). Due to the
second call, the setInterval() method is incrementing the value from 0 (count set
to 0 initially) to 10, in each 100 ms.

Take a look at the Facebook documentation https://facebook.
github.io/react/docs/reusable-components.html:
"A nice feature of Mixins is that if a component is using multiple Mixins
and several Mixins define the same lifecycle method (i.e. several Mixins
want to do some clean up when the component is destroyed), all of the
lifecycle methods are guaranteed to be called. Methods defined on Mixins
run in the order Mixins were listed, followed by a method call on the
component."

https://facebook.github.io/react/docs/reusable-components.html
https://facebook.github.io/react/docs/reusable-components.html

Making Your Component Reusable

[128]

We will see another example of Mixins in the next section:

Calling Multiple Mixins from a single React Component

We shall now see another example where multiple Mixin will be called from a single
React component. The following code is declared:

First, we shall declare two react Mixins:

var ReactMixin1= {

 getDefaultProps: function () {

 return {text1: "I am from first Mixin"};

 }

};

var ReactMixin2 = {

 getDefaultProps: function () {

 return {text2: "I am from second Mixin"};

 }

};

In the Second part of the code, we will call both the React Mixins, from the react
component <App />:

var App = React.createClass({

 Mixins:[ReactMixin, ReactMixin2],

 render: function () {

 return (

 <div>

 <p>Mixin1: {this.props.text1} </p>

 <p>Mixin2: {this.props.text2}</p>

 </div>

);

Chapter 7

[129]

 }

});

ReactDOM.render(<App />,
document.getElementById('myReactContainer'));
\\

Execute the command httpster from application root directly like before to see the
output from two Mixins:

The app screenshot using multiple Mixins

Note the following:

•	 The same property name in both the Mixins, for example, text, in this case,
will throw an error

•	 The same method name within the different Mixins will throw an error
•	 The same lifecycle methods can be called both within Mixin and within a

React component. The order of execution of these lifecycle methods is Mixin,
followed by a React component.

•	 In case the same lifecycle method is called within different Mixins, then the
order of execution is in the order in which the Mixins are called within the
array [lower to higher index].

Making Your Component Reusable

[130]

Higher-order components in Mixins
In ReactJS using ES6, Mixins are no longer supported. Instead of this, they have
introduced higher order components.

These higher order components are widely used in the Relay framework,
which is a complete React-based framework released by Facebook. The higher order
component wraps up child UI components. Thus, these components when called
will first execute its queries and thereby render the child UI component(s). When
the query is passed, data is passed from the child component to the higher order
component in as props.

Validations
Validations are an integral part of any application dealing with user input.
In ReactJS, there are some validations provided by the library that enables the
developer to validate the data received.

Data are received mostly as properties (props) in react application. The various
validators are exported from React.PropTypes. Any validation error, if occurs, will
appear in the JavaScript console. Any such error occurring due to validation check
will only occur in the development mode due to performance reasons.

Take a look at the Facebook ReactJS development team documentation https://
facebook.github.io/react/docs/reusable-components.html#prop-
validation. The following is an example of the various validators:

React.createClass({
 propTypes: {
 // You can declare that a prop is a specific JS primitive. By
 default, these
 // are all optional.
 optionalArray: React.PropTypes.array,
 optionalBool: React.PropTypes.bool,
 optionalFunc: React.PropTypes.func,
 optionalNumber: React.PropTypes.number,
 optionalObject: React.PropTypes.object,
 optionalString: React.PropTypes.string,

 // Anything that can be rendered: numbers, strings, elements
 or an array
 // (or fragment) containing these types.
 optionalNode: React.PropTypes.node,

Chapter 7

[131]

 // A React element.
 optionalElement: React.PropTypes.element,

 // You can also declare that a prop is an instance of a class.
 This uses
 // JS's instanceof operator.
 optionalMessage: React.PropTypes.instanceOf(Message),

 // You can ensure that your prop is limited to specific values
 by treating
 // it as an enum.
 optionalEnum: React.PropTypes.oneOf(['News', 'Photos']),

 // An object that could be one of many types
 optionalUnion: React.PropTypes.oneOfType([
 React.PropTypes.string,
 React.PropTypes.number,
 React.PropTypes.instanceOf(Message)
]),

 // An array of a certain type
 optionalArrayOf:
 React.PropTypes.arrayOf(React.PropTypes.number),

 // An object with property values of a certain type
 optionalObjectOf:
 React.PropTypes.objectOf(React.PropTypes.number),

 // An object taking on a particular shape
 optionalObjectWithShape: React.PropTypes.shape({
 color: React.PropTypes.string,
 fontSize: React.PropTypes.number
 }),

 // You can chain any of the above with `isRequired` to make
 sure a warning
 // is shown if the prop isn't provided.
 requiredFunc: React.PropTypes.func.isRequired,

 // A value of any data type
 requiredAny: React.PropTypes.any.isRequired,

Making Your Component Reusable

[132]

 // You can also specify a custom validator. It should return
 an Error
 // object if the validation fails. Don't `console.warn` or
 throw, as this
 // won't work inside `oneOfType`.
 customProp: function(props, propName, componentName) {
 if (!/matchme/.test(props[propName])) {
 return new Error('Validation failed!');
 }
 }
 },
 /* ... */
});

An example using the isRequired validator
The index.html page. Use different JS pages in order to check the different versions
of the validations used:

<!DOCTYPE html>
<html>
<head>
<script src="https://cdnjs.cloudflare.com/ajax/libs/react/0.14.0-rc1/
react.js"></script>
<script
src="https://cdnjs.cloudflare.com/ajax/libs/react/0.13.3/JSXTransf
ormer.js"></script>
 <script
 src="https://cdnjs.cloudflare.com/ajax/libs/react/0.14.0-
 rc1/react-dom.js"></script>
 <script type="text/jsx", src="index4.js"></script>

<meta charset="utf-8">
 <title>JS Bin</title>
</head>
<body>
 <div id="myReactContainer">
 <script type="text/jsx", src="index.js"></script>
 </div>
</body>
</html>

Chapter 7

[133]

As the name of the validation suggests, the isRequired validator ensures that
the property of the React component remains present. Otherwise, it will throw an
error in the JS console. The React.PropTypes.{foo} properties are the JavaScript
functions, which internally check whether a prop is valid or not. When the prop is
valid, it will return null, but when the prop is invalid, then it returns an error. In
Chapter 4, Stateful Components and Events we dug into ES6. In the next example, we
will be using the ES6 syntax:

"use strict"

class App extends React.Component {

 render () {

 return (

 <div className="app">

 <h1 ref="title" className="app__title"></h1>

 <div ref="content"
 className="widget__content">{this.props.content}</div>

 </div>

)

 }

}

App.propTypes = {

 title: React.PropTypes.string.isRequired,

 content: React.PropTypes.node.isRequired

}

ReactDOM.render(<App content="I am learning
react"/>,document.getElementById('myReactContainer'));

Making Your Component Reusable

[134]

Run the httpster from your app's root dir in order to see the output
in your browser's localhost:3333

The output will be as shown here:

The app screenshot—the isRequired validation in the React component prop

A few points from the ES6 point of view with respect to the previously
mentioned code:

use strict has been used opt in to a restricted variant of JavaScript. This is used
as we are using let instead of var. use strict allows to place a component in a
strict operating context and prevents certain actions from being taken and
throws more exceptions.

let declares variables that are limited in scope to the block, statement, or expression
on which it is used.

See the details at https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/.

An example using custom validator
The following is the template, generally used while using custom validation in
the code:

error = propTypes[propName](props, propName, componentName, location);

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/

Chapter 7

[135]

Let's go through an example of our own with custom error messages and use a few
of these validations and see how it validates in the JavaScript console:

var ValidationApp = React.createClass({

 propTypes: {

 name: function(props, propName,componentName){

 if(!(propName in props)) {

 throw new Error("Property Name Missing ")

 }
 },

 render:function(){
 return <h1>{this.props.name}</h1>
 }
});
 ReactDOM.render(<ValidationApp />,
document.getElementById('myReactContainer')); //missing prop name

Run the httpster from your app's root dir in order to see the output in
your browser's localhost:3333

The output of this code is shown in this screenshot:

The app screenshot—custom validation in the React component prop

Making Your Component Reusable

[136]

We can add more validations in the property (name) as:

var ValidationApp = React.createClass({

 propTypes: {

 name: function(props, propName,componentName){

 if(!(propName in props)) {

 throw new Error("Property Name Missing ")

 }

 if(props[propName].length < 7) {

 throw new Error("Can you add a longer Property Name, more than
7chars")

 }

 }

 },

 render:function(){

 return <h1>{this.props.name}</h1>

 }

});

// ReactDOM.render(<ValidationApp />, document.getElementById('myReact
Container')); //missing prop name

ReactDOM.render(<ValidationApp name="react" />,
document.getElementById('myReactContainer')); //prop length
should be more than 7 chars

Chapter 7

[137]

Run the httpster from your app's root dir in order to see the output in
your browser's localhost:3333

The output of the following code is shown here:

The app screenshot—validation in React component prop

Thus, if we pass the name property with more than seven chars, there would be no
error in the JS console, as expected.

The structure of component
Now that we have explored quite a lot regarding ReactJS, there might be queries
in your mind about how to architecture a react component or more broadly a react
application as a whole. There are no ground rules that have been set, which is ideal
while writing an application based on ReactJS. However, if we dig into the tutorials
by the Facebook documentation team, hyperlink https://facebook.github.io/
react/docs/tutorial.html, we will be able to understand the underlying way
they have used while writing such an app.

Let's explore first how a component is structured mostly:

1.	 The component declaredData is fetched from the server [if required].
2.	 The propTypes of the component are declared [used for validations].
3.	 Component lifecycle methods [componentWillMount, componentDidMount,

componentDidUpdate,componentWillUnmount, and so on] are defined.

https://facebook.github.io/react/docs/tutorial.html
https://facebook.github.io/react/docs/tutorial.html

Making Your Component Reusable

[138]

4.	 Within each of these lifecycle methods, the functions of these methods
are either declared or called internally from another JS functions, defined
explicitly for a particular task. It's to be remembered that the previously
mentioned lifecycle methods are not necessary to use all at the same time/
any in an application.

5.	 The render method, which has to be present within any react component.
Thus, the way to structure any react-based application varies application-
wise. Although there is no best way, but like any other application, it's
advisable to compartmentalize the code in order to follow separation
of concerns. We should separate the react views, components and data.
One component directory can call other child component(s) as and when
required, which thereby increases readability and testability of the code.

React being an open source JavaScript library, there are various open source sites and
developers who are working on this library each day in order to enhance and tweak
the library, as required.

For an application, using the ReactJS library, typically the views (React views) are
separated as per their function (for example, home page, admin page, and product
catalog). With each of the subfolder within the view, you can add the test.js file or
you can keep all the test-related files under the same tests folder. In case you need
some react views, which should be shared across other components, you can keep all
those related files under the shared/lib folder.

Summary
In this chapter, we explored how we can develop reusable components in ReactJS
(Mixins, before ES6 implementation). We also came to know about the higher order
components, which are used later in the latter versions of ReactJS (from 0.13), which
support ES6 and doesn't support Mixins. Validations are an integral part of any
application, especially those using user input (that is, form inputs). We explored
how ReactJS deals with validations and how we can use our custom validations as
well. We got an overview how the react components are structured. In the following
chapter, we will be dealing with the testing, in a React application.

[139]

Testing React Components
Until now, we have explored React's components lifecycle, properties, state,
validations, and ECMAScript with respect to React 0.1.13 and future versions.
In this chapter, we will explore the testing of JavaScript and ReactJS-related stuffs.
First, we will be going through the testing as a whole using different JavaScript test
frameworks and how we can run the tests, followed by testing views build with the
ReactJS library.

The following are the things we will be covering in this chapter:

•	 Testing in JavaScript using Chai and Mocha
•	 ReactTestUtils to test React components
•	 Exploring Jest
•	 Testing React-based app using Expect, Mocha, and Shallow rendering

There are various ways that you can mix and match while testing JavaScript. Let's
have a brief overview of the various things such as frameworks, assertion libraries,
and testing tools. The list given here is not an exhaustive one, and covering all of
them in detail is beyond the scope of this book.

Mocha and Jasmine are testing frameworks. They can be used with various testing
assertion libraries as follows:

•	 should.js which is an assertion library. It is framework agnostic and
works from IE9 and higher. The details of the library can be found from
https://www.npmjs.com/package/should.

•	 chaijs is also an assertion library, where we add plugins. It also works with
the testing framework(s). The details of the library can be found online from
http://chaijs.com/karma. It is a JavaScript testing tool, which enables to
test JavaScript codes in browsers. It's framework agnostic (can be used
to run Mocha, Jasmine, Qunit, and so on). The details can be found at
https://www.npmjs.com/package/karma.

https://www.npmjs.com/package/should
http://chaijs.com/
http://chaijs.com/
https://www.npmjs.com/package/karma
https://www.npmjs.com/package/karma

Testing React Components

[140]

It should be remembered that karma is neither a JavaScript framework like Jasmine
or Mocha nor an assertion library like chaijs or should.js. This, we should use the
assertion library and the framework as required along with karma in order to launch
the HTTP server so that we can test the JS code in browsers.

Jest is also a framework on Jasmine framework. The Facebook developer team
suggests the use of Jest for testing React-based applications. According to the Jest
website (https://facebook.github.io/jest/), these are some advantages of
using Jest instead of vanilla jasmine for testing purposes:

•	 Jest provides multiple layers on top of Jasmine
•	 It automatically searches and finds tests for you to execute
•	 It mocks dependencies for you while you run the tests
•	 It runs tests in parallel, hence finishing executing them faster
•	 It allows you to test asynchronous code synchronously
•	 It enables you to run tests on the command line with the fake DOM

implementation via jsdom

Testing in JavaScript using Chai and
Mocha
As discussed earlier, in order to write test cases for the React code, we will be
installing some testing libraries to run tests and write assertions. Let's walk through
the setup for the Chai assertion library and the Mocha testing framework. We need
to install the libraries with the help of npm.

In the terminal type:

npm i -D mocha chai

install shortform: i
devDependencies shortform: D (the package will be installed
only in a development environment)

https://facebook.github.io/jest/

Chapter 8

[141]

After the Chai and Mocha libraries are installed by the previously mentioned
command, they can be found under the node_modules directory.

We need to add the Mocha and Chai entries in our package.json file.

Package.json code

{
 "name": "JSApp",
 "version": "1.0.0",
 "description": "Get random numbers",
 "main": "index.js",
 "scripts": {
 "test": "mocha test.js"
 },
 "devDependencies": {
 "chai": "3.2.0",
 "mocha": "2.2.5"
 }
}

According to https://docs.nodejitsu.com/articles/getting-started/npm/
what-is-the-file-package-json

All npm packages contain a file named package.json. This file is usually found in the
project root. This file holds all metadata relevant to the project. A package.json file
is used to offer information to npm thus allowing it to identify the project as well as
handle the project's dependencies efficiently.

•	 name: This depicts the name of the application.
•	 version: This is a version of the application.
•	 description: This is general description of the application.
•	 main: This is the main JavaScript file, which may internally call other JS files.

In this example, it's index.js file.
•	 scripts: This is the script to be executed when we call npm start. It should

execute the test (mocha test.js file).
•	 devDependencies: These are the packages that are installed in the same

directory as in package.json, unless the –production flag is passed on it.
The packages are not installed on any other directory unless the –dev option
is passed.

https://docs.nodejitsu.com/articles/getting-started/npm/what-is-the-file-package-json
https://docs.nodejitsu.com/articles/getting-started/npm/what-is-the-file-package-json

Testing React Components

[142]

Add a test.js file. In order to check the setup working properly, we are adding a
simple single test assertion.

Test.js file code
var expect = require('chai').expect
, name = 'my Name';

var random = require('./index');

describe('random', function() {
 it('should work!', function() {
 expect(false).to.be.false;
 });

 it ('return my Name', function() {
 expect(name).to.be.a('string');
 expect(name).to.equal('my Name');
 expect(name).to.have.length(7);
 })
});

assertions are called from Chai.
describe is called from Mocha framework to describe the tests.

Now we run the test, from the app's root directory in terminal, as shown here:

npm test

A console screenshot using the Mocha and Chai setup

Chapter 8

[143]

Testing using ReactTestUtils
ReactTestUtils is used to test React-based components. It can simulate all the
JavaScript-based events, which ReactJS supports. The documentation is cited in
the Facebook developer site (https://facebook.github.io/react/docs/test-
utils.html).

The code is as shown for the stimulate function:

Simulate.{eventName}(
 DOMElement element,
 [object eventData]
)

Installing React and JSX
As mentioned earlier, while installing the Chai and mocha, we are here installing
React- and JSX-specific test tools (ReactTestUtils) in order to ease our task. Let's
explore the ReactTestUtils with help from some React-based components and
stimulate them to test the behavior and functionality.

The following is an example of such a code.

We need to install the jest package via npm with the following code in the terminal:

sudo npm install jest-cli –save-dev

sudo/root access to the machine/server where the node packages has to be installed
is required. This is particularly required as the directory where the node is installed.
We can check the installed directory, using the following command:

npm config get prefix

https://facebook.github.io/react/docs/test-utils.html
https://facebook.github.io/react/docs/test-utils.html

Testing React Components

[144]

As per the screenshot here, it's installed in the /usr directory, which has the
permissions set to root. Hence, we need to install the npm packages using the
sudo option.

A console screenshot of the /usr directory file owner/permissions.

Another way is to set the permission of the /usr directory to the user, which can
have permissions to own and modify the files in the directory:

sudo chown -R $(whoami) $(npm config get
prefix)/{lib/node_modules,bin,share}

Let's try to have a approach of test-driven development (TDD) , whereby we will be
creating a failing test case following the actual code to pass.

Create a JS file, which will greet any name with hi:

// greeting.js

module.exports = greetings;

Now, let's create the test file within a directory named __test__:

// __tests__/greeting-test.js

 jest.dontMock('../greetings');

//executed when the test runs
 describe('greetings', function() {
 it('greets the name', function() {
 var greet = require('../greetings');
 expect(greet("react")).toBe("hi react");
 });
 });

Chapter 8

[145]

Let's recap about some jest properties, from the earlier-mentioned code:

•	 jest.dontMock is explicitly mentioned here, as jest by default mocks
everything. Thus in order to test the actual code without mocking we need
to ask jest not to mock the code which has to be tested (greetings.js)

•	 describe('greetings', function()) each describe block is the test suite
which gets executed when the test runs (npm test/jest). One describe
block can have multiple test cases.

•	 it('greets the name', function(), it block the actual test spec/case
within the describe block.

In order to execute the tests within the __test__/ directory, we need to have the
package.json file with the following entries:

We will be covering more about packaging in the next chapter.

Here is the code for package.json file:

{
 "dependencies": {
 "react": "~0.14.0",
 "react-dom": "~0.14.0"
 },
 "devDependencies": {
 "jest-cli": "^0.8.2",
 "react-addons-test-utils": "~0.14.0"
 },
 "scripts": {
 "test": "jest"
 },
 "jest": {
 "unmockedModulePathPatterns": [
 "<rootDir>/node_modules/react",
 "<rootDir>/node_modules/react-dom",
 "<rootDir>/node_modules/react-addons-test-utils",
 "<rootDir>/node_modules/fbjs"
]
 }
}

Let's have a quick recap of the this code within package.json.

Testing React Components

[146]

Once all are ready, we can run the test in the terminal, using the following command:

npm test

The output is shown as here:

The TDD console screenshot, showing failing tests.

Now, let's add the code so that the name is greeted with the name and the test passes:

// greeting.js

function greetings(name) {
 return "hi "+name;
}
module.exports = greetings;

Now, when we execute the test, we will be seeing a passing test case:

The TDD console screenshot, using npm test, showing passing tests.

One of the other ways to execute the tests is by installing jest and executing them
by calling the jest from the terminal:

sudo npm install -g jest-cli

Chapter 8

[147]

The output is as shown here:

The TDD console screenshot, using jest, showing passing tests.

Thus, we can see with either of the commands npm test/jest, we are getting the
same output.

The jestTypical example of a Testsuite
with Mocha, expect, ReactTestUtils and
Babel
Let's see a typical example of package.json, which is using the following:

•	 Mocha as a testing framework
•	 Expect as an assertion library
•	 ReactTestUtils to test react-based JavaScript components
•	 Babel used as a transcompiler, which changes the ES6 codes into currently

compatible (ES5) JavaScript code.

The example of package.json file:

"scripts": {
 "test": "mocha './src/**/*.test.js' --compilers js:babel-core/
register",
 },
 "devDependencies": {
 "babel-core": "6.1.4",
 "babel-loader": "6.1.0",
 "babel-preset-es2015": "6.1.4",
 "babel-preset-react": "6.1.4",
 "babel-preset-stage-2": "6.1.2",
 "mocha": "2.3.3",
 "react-addons-test-utils": "0.14.3",
 }
}

Testing React Components

[148]

As in the previous examples, within the script object, we keep the the test files and
all the test files follow the convention of ending with the .test.js extension. Any
extension for the test files can be used. For compilation from ES6 code to browser
compatible JS code, the –compiler tag is added in the script.

Install all the following packages, as here, mentioned in package.json:

npm install babel-loader babel-preset-es2015 babel-preset-react babel-
preset-stage-2 react-addons-test-utils
Babel being the transpiler, we need to add the following entry to enable
the import (reserver keyword) in the following .babelrc file:

{
 "presets": ["es2015"]
}

Here is the definition of a transpiler. Source https://en.wikipedia.org/wiki/
Source-to-source_compiler

"A source-to-source compiler, transcompiler, or transpiler is a type of compiler that
takes the source code of a program written in one programming language as its
input and produces the equivalent source code in another programming language."

The .babelrc file contains all the Babel API options. The following is the screenshot
of the file structures of the app with test suite setup. The details can be found in the
Babel documentation at https://babeljs.io/docs/usage/babelrc/.

The screenshot showing the dir structure of a typical JS Application with the __test__ , node_modules,
package.json, and .babelrc

Using the same greetings.js file as before but testing with the new ES6 syntax in
the greetings.test.js and index.test.js files, let's test the testsuite.

Code __test__/greetings.test.js (using ES6 syntax)

import expect from 'expect';
describe('greetings', () => {

https://en.wikipedia.org/wiki/Source-to-source_compiler
https://babeljs.io/docs/usage/babelrc/
https://babeljs.io/docs/usage/babelrc/

Chapter 8

[149]

 it('greets the name', () => {
 var greet = require('../greetings');
 expect(greet("react")).toBe("hi react");
 });
});

Code __test__/index.test.js (using ES6 syntax)

import expect from 'expect';
 describe('setup',() => {
 it('testing the setup is working', () => {
 expect(true).toEqual(true);
 });
 });

A screenshot showing tests using ES6 syntaxes, mocha, and babel

Executing this test file using ES6 syntaxes with the mocha testing framework, expect
assertion library and after been transpiled by Babel yielded the same result as before.

Testing with shallow rendering
Shallow rendering is a method used while testing React components in which the
component is "one level deep". Such a shallow-rendered test component has the facts
regarding the returned things with respect to the render methods. Such components
do not have the child components attached to it, and it does not require DOM.

Thus, while testing with a shallow rendering method, it should be remembered that
any changes in the parent component that has the DOM changes and/or any child
components been changed may require in rewriting the test.

Testing React Components

[150]

Let's explore this with help of some code. In the following example, we will be
creating a React component (GreetingComponent) where the render method will
return a div with two children (h2 and span elements).

The code of greeting.js:

// greeting.js

import React from 'react';

const { div, h2, span} = React.DOM;

export default React.createClass({

 displayName: 'GreetingComponent',

 render(){

 return(

 div({classname: 'Greeting'},

 h2({classname: "heading2"}, "Hi"),

 span({classname: "like"},"ReactJs")

)

);

 }

});

Let's write the test for this React code using the shallow rendering method.

Code of __test__/greeting.test.js

// Importing the necessary libraries and JavaScript code to be tested
import expect from 'expect';
import React from 'react';
import TestUtils from 'react-addons-test-utils';
import GreetingComponent from '../greetings.js';

Chapter 8

[151]

describe('GreetingComponent', () => {
 it('should greet with the name', () => {

// Creating a shallow rendered object and stored within renderer
 const renderer = TestUtils.createRenderer();

/*creating the react element (GreetingComponent, declared in the
greeting.js code). This might be comparable to the "place" where the
component to be tested is rendered. This component can respond to
events and update itself
*/
 renderer.render(React.createElement(GreetingComponent));
/* method is called on the renderer (TestUtils.createRenderer()) and
stored within output. We can inspect this output in the console */
 const output = renderer.getRenderOutput();
 console.log(output);
 expect(output.type).toBe('div');

The output value is printed in the console. Based on that, we can see the different
hierarchy and values of the concerned react component. The following is output
from console.log (output)

The screenshot showing the renderedOutput() method in the console.

Let's go a level deep and check the value of the following: const output =
renderer.getRenderOutput().props.children.

Testing React Components

[152]

Thus, we can see the exact two children with their types and values of the
GreetingComponent React div element:

The screenshot showing the renderedOutput() method of the children in the console.

Based on the output, we can test both the children (h2 and span) of the div element
of the React GreetingComponent as follows:

Code of __test__/greeting.test.js
import React from 'react';
import TestUtils from 'react-addons-test-utils';
import GreetingComponent from '../greetings.js';

describe('GreetingComponent', () => {

 it('should greet with the greeting Hi', () => {

 const renderer = TestUtils.createRenderer();
 renderer.render(React.createElement(GreetingComponent));
 const output = renderer.getRenderOutput();
 console.log(output);
 expect(output.type).toBe('div');

 expect(output.props.children[0].type).toBe('h2');
 expect(output.props.children[0].props.classname).toBe('heading2');
 expect(output.props.children[0].props.children).toBe('Hi');

 });

Chapter 8

[153]

 it('should return the like as ReactJs', () => {

 const renderer = TestUtils.createRenderer();

 renderer.render(React.createElement(GreetingComponent));

 const output = renderer.getRenderOutput();

 console.log(output);

 expect(output.type).toBe('div');

 expect(output.props.children[1].type).toBe('span');

 expect(output.props.children[1].props.classname).toBe('like');

 expect(output.props.children[1].props.children).toBe('ReactJs');

 });

});

We can see that there are several lines of codes that are common between the two it
blocks. Hence, we can separate these common codes and refactor it as shown here:

// __tests__/sum-test.js

//jest.dontMock('../greetings.js');

import expect from 'expect';
import React from 'react';
import TestUtils from 'react-addons-test-utils';
import GreetingComponent from '../greetings.js';

describe('GreetingComponent', () => {
 describe('Common code', () => {
 const renderer = TestUtils.createRenderer();
 renderer.render(React.createElement(GreetingComponent));
 const output = renderer.getRenderOutput();
// console.log(renderer);
 console.log("From Common Code");

Testing React Components

[154]

 console.log(output);

 it('should greet with the greeting Hi', () => {
// console.log(renderer);
 console.log("h2 component");
 console.log(output);
 expect(output.props.children[0].type).toBe('h2');
 expect(output.props.children[0].props.classname).toBe('heading2');
 expect(output.props.children[0].props.children).toBe('Hi');
 });

 it('should return the like as ReactJs', () => {
// console.log(renderer);
 console.log("span component");
 console.log(output);

 expect(output.props.children[1].type).toBe('span');

 expect(output.props.children[1].props.classname).toBe('like');

 expect(output.props.children[1].props.children).toBe('ReactJs');

 });

});

});

While executing the code, we can get the output in a file, with the
following command:

npm test > test_output.txt

Chapter 8

[155]

The following is the output in the test_output.txt file. You can play and check the
different properties of the React elements. The explanation of each of them is beyond
the scope of this book. But we can see that all React components are nothing but
JavaScript objects.

Testing React Components

[156]

Summary
We saw how we can test the different components in a React-based application and
JavaScript as whole. In order to test a JavaScript code, we used chai and expect as
assertion libraries, jasmine and jest as testing frameworks. To test a React application,
we used ReactTestUtils and shallow rendering. In the following chapter, you will be
learning about the deployment process of a React application. We will be exploring
more about package.json, which we touched on in this chapter.

[157]

Preparing Your Code for
Deployment

Going through the ReactJS fundamentals and flux, we have almost approached
the end of this book. After developing any application, we are left with the most
crucial part of making the application available to the outside world, thus deploying
your application. It's a good practice to keep the code in a source control repository
such as GitHub or Bitbucket and to version control the code using Git. These help
while working in a group and retrieval of any code as and when necessary. The
explanation of how to set up the earlier-mentioned things is beyond the scope of
this book, but there are a plenty of resources available for the same.

In this chapter, we will be exploring the following topics:

•	 An introduction to Webpack
•	 The ways of deploying a React application using Webpack and Gulp
•	 The configuration options used for browserify
•	 Installing a simple web server

An introduction to Webpack
Webpack is a module bundler, which is used to deploy JavaScript-based
applications. It takes the input as modules with dependencies and then
outputs these into static assets.

Preparing Your Code for Deployment

[158]

From the Webpack documentation site (https://webpack.github.io/docs/what-
is-webpack.html#how-is-webpack-different), the following image explains
the same.

modules
with dependencies

webpack
MODULE BUNDLER

.js .js

.png .js

.js

.js
.jade

.coffee

.css

.less

.less

.png

.coffee

static
assets

Building a simple React application
As in the earlier chapters, let's build a simple React-based application with which we
will be integrating the Webpack and deploy thereafter.

Install the packages vis npm from a terminal as:

sudo npm install babel-loader babel-preset-es2015 babel-preset-react
babel-preset-stage-2

npm -g install httpster

httpster: It is a simple http server to run the static content. In chrome
browser, the index.html file sometimes doesn't render due to the
X-origin error. Hence, running this webserver from your application
directory will be easier to test your application in Chrome. Just run the
command httpster.
By default, the server runs in port 3333, thus localhost:3333 in the
browsers should render the index.html page of your application.

We have created the following files:

•	 src/bundle.js: This is where Webpack writes its output to, after transpiling
the code and performing any other transformations of the file to plain JS.
The details of this file are discussed in the latter section.

Chapter 9

[159]

•	 index.html: Application landing page.
•	 index.js: React-based components.
•	 .babelrc: presets and environments of babel are declared here.
•	 node_modules: Installed npm packages are present.
•	 Webpack.config.js: Webpack-related configurations are present here.

The following is a console screenshot, showing app directory structure
using Webpack:

Take a look at the simple React app code example:

index.html:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <script
src="https://cdnjs.cloudflare.com/ajax/libs/react/0.14.0-
rc1/react.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/react/0.14.0-
rc1/react-dom.js"></script>
<script
src="https://cdnjs.cloudflare.com/ajax/libs/react/0.13.3/JSXTransf
ormer.js"></script>

Preparing Your Code for Deployment

[160]

 <title>React App with Webpack</title>
</head>
<body>
 <div id="app"></div>
 <script type = "text/jsx" src="index.js"></script>
</body>
</html>

index.js:

"use strict";
class App extends React.Component {
 render() {
 return <div>Hello </div>;
 }

}
ReactDOM.render(<App />, document.getElementById('app'));

.babelrc:
{
 "presets": ["es2015", "react"]
}

Setting up Webpack
Now that we got an overview of what Webpack is, let's install and configure it so
that we can use it in our React application, as mentioned later.

In you terminal, type the following:

 sudo npm install -g webpack

The -g option installs the Webpack library globally in
your computer.

Chapter 9

[161]

As you can see, in the following screenshot, there are many dependent packages,
which also gets installed while installing Webpack:

A console screenshot, showing webpack package installation with all the dependencies

After Webpack's installation, we will be creating the webpack-config.js file,
with entries given as follows:

// The declaration of the object having all the Webpack-related
configuration details.
module.exports = {

//entry point of the application
 entry: "./app/components/index.js",

/* In this bundle.js file,Webpack will have the output after
transpilation of the code from index.js (ES6 to ES5) & combining
all the components' and it's children js files are present.
*/
 output: {
 filename: "src/bundle.js"
 },
 module: {
// Loading the test loader, it is used to transform any JSX code
in the tests into plain JavaScript code.

 loaders: [
 {
// All the packages which are installed within the node_modules
directories are to be excluded.
 test: /\.jsx?$/,
 exclude: /(node_modules)/,

Preparing Your Code for Deployment

[162]

//specifying which one to use
 loader: 'babel',
 query: {
 presets: ['react', 'es2015']
 }
 }
]
 }
}

Let's explain the preceding code.

We start off with the entry point of our application. As React-based applications
generally have many components, having a common entry point for all of
these components will be easier to manage and important for well-structured
modular applications.

We then direct the output to a file bundle.js and combine all components and
its children.

After loading the test loader, we mention which packages are to be excluded within
the node_modules directory.

We then use the loaders, specifying which one of them to use. The presets loader
does all the transformations that Babel does while transpiling the ES6 code into the
current browser-compatible code.

Let's run the Webpack command in our terminal now,

sudo webpack -w -v

•	 sudo is used as we need the sudo/root permission in order to execute the
Webpack commands or we need to change the ownership/permissions of
the specific directory.
The -w option ensures to watch any file that changes. It'll watch the source
files for changes, and when changes are made, the bundle will be recompiled.
(Source: https://webpack.github.io/docs/webpack-dev-server.html).
The -v option gives the verbose output.

https://webpack.github.io/docs/webpack-dev-server.html

Chapter 9

[163]

•	 webpack --help: This command gives the output of all the options and their
corresponding meanings, which can be passed as arguments.

A console screenshot, after the webpack execution on the terminal

Thus, all the transformations and transpirations of the code is there in the
src/bundle.js output file.

Typical out of the bundle.js file from the app mentioned earlier:

/******/ (function(modules) { // webpackBootstrap

/******/ // The module cache

/******/ var installedModules = {};

/******/ // The require function

/******/ function __webpack_require__(moduleId) {

/******/ 	 // Check if module is in cache

/******/ 	 if(installedModules[moduleId])

/******/ return installedModules[moduleId].exports;

Preparing Your Code for Deployment

[164]

/******/ // Create a new module (and put it into the cache)

/******/ var module = installedModules[moduleId] = {

/******/ exports: {},

/******/ id: moduleId,

/******/ loaded: false

/******/ };

/******/ // Execute the module function

/******/ modules[moduleId].call(module.exports, module,
module.exports, __webpack_require__);

/******/ // Flag the module as loaded

/******/ module.loaded = true;

/******/ // Return the exports of the module

/******/ return module.exports;

/******/ }

/******/ // expose the modules object (__webpack_modules__)

/******/ __webpack_require__.m = modules;

/******/ // expose the module cache

/******/ __webpack_require__.c = installedModules;

/******/ // __webpack_public_path__

/******/ __webpack_require__.p = "";

Chapter 9

[165]

/******/ // Load entry module and return exports

/******/ return __webpack_require__(0);

/******/ })

/**
****/

/******/ ([

/* 0 */

/***/ function(module, exports) {

	 "use strict";

 var _createClass = function () { function
 defineProperties(target, props) { for (var i = 0; i <
 props.length; i++) { var descriptor = props[i];
 descriptor.enumerable = descriptor.enumerable || false;
 descriptor.configurable = true; if ("value" in descriptor)
 descriptor.writable = true; Object.defineProperty(target,
 descriptor.key, descriptor); } } return function (Constructor,
 protoProps, staticProps) { if (protoProps)
 defineProperties(Constructor.prototype, protoProps); if
 (staticProps) defineProperties(Constructor, staticProps);
 return Constructor; }; }();

 function _classCallCheck(instance, Constructor) { if
 (!(instance instanceof Constructor)) { throw new
 TypeError("Cannot call a class as a function"); } }

 function _possibleConstructorReturn(self, call) { if (!self) {
 throw new ReferenceError("this hasn't been initialised -
 super() hasn't been called"); } return call && (typeof call
 === "object" || typeof call === "function") ? call : self; }

 function _inherits(subClass, superClass) { if (typeof
 superClass !== "function" && superClass !== null) { throw new
 TypeError("Super expression must either be null or a function,
 not " + typeof superClass); } subClass.prototype =
 Object.create(superClass && superClass.prototype, {
 constructor: { value: subClass, enumerable: false, writable:
 true, configurable: true } }); if (superClass)
 Object.setPrototypeOf ? Object.setPrototypeOf(subClass,
 superClass) : subClass.__proto__ = superClass; }

Preparing Your Code for Deployment

[166]

 var App = function (_React$Component) {
 _inherits(App, _React$Component);

 function App() {
 _classCallCheck(this, App);

 return _possibleConstructorReturn(this,
 Object.getPrototypeOf(App).apply(this, arguments));
 }
 _createClass(App, [{
 key: "render",
 value: function render() {
 return React.createElement(
 "div",
 null,
 "Hello "
);
 }
 }]);
 return App;
 }(React.Component);

 ReactDOM.render(React.createElement(App, null),
 document.getElementById('app'));
/***/ }
/******/]);

Refer to the Webpack documentation at https://webpack.github.io/docs/
webpack-dev-server.html.

The newly generated bundle.js is stored in the memory in a location, which is the
relative path specified in publicPath.

For example, with the preceding configuration, the bundle will be available at
localhost:8080/assets/bundle.js.

In order to load the bundled files, we create the html file (mostly named as the
index.html file) in the build folder from which static files are served:

<!DOCTYPE html>
<html lang="en">
<head>

https://webpack.github.io/docs/webpack-dev-server.htme
https://webpack.github.io/docs/webpack-dev-server.htme
https://webpack.github.io/docs/webpack-dev-server.html

Chapter 9

[167]

 <meta charset="UTF-8">
 <title>Document</title>
</head>
<body>
 <script src="bundle.js"></script>
</body>
</html>

By default, the application runs in localhost:8080/ to launch your app.
For example, with the configuration mentioned earlier (with publicPath),
go to localhost:8080/assets/.

Advantages of Webpack
Along the various advantages of using Webpack, as yet another bundler, these are
the most important ones:

1.	 Code splitting: Based on the code size, it helps modularize the code chunks
of code and loads these modules as and when needed. You can define the
split points on your code, based on which the code chunks will be used.
Thus, it helps in faster page load and performance improvement.

2.	 Loaders: As in the earlier-mentioned image, in the left-hand side, you can see
that there are various other formats such as coffescripts/jsx instead of
JavaScript and .less instead of .css. Thus, these loaders (npm packages) are
used to convert these other formats into the accepted standardized formats,
which makes the life of the developers much easy to code into any format
they want. In React-based applications that we were seeing earlier, JSX
formats are widely used. Hence, these loaders will come handy.

3.	 Clever parsing: It helps to parse most of the third-party library and handles
the widely used styles in CommonJS and AMD.

4.	 Plugin system: In case you want to extend Webpack to create a step within
the build process, you can create a plugin that uses a callback to the Webpack
reference point, where you want to call it.

Introduction to Gulp
Now that we have seen a module bundler, let's see what Gulp will do for us.
Gulp is a build tool for compiling and compressing JS/assets, and it does live reload
on the browsers. Gulp file is basically a file with the set of instructions, which Gulp
should do. The file can have a default task or several other tasks to be called from
one another.

Preparing Your Code for Deployment

[168]

Installing Gulp and creating Gulp file
Let's install gulp and configure it with our existing application:

npm install -g gulp (for globally installing gulp)

npm install gulp –save-dev (as a developer dependancy)

Next, create a simple gulpfile.js file at the root of your app directory:

var gulp = require('gulp');

gulp.task('default', function() {
 // tasks goes here
});

Let's execute the command from terminal:

A console screenshot, after the gulp command is executed

Then, we are installing some other packages for Gulp-related tasks. We are adding
these in our package.json file and running npm install, in order to install these:

Package.json
{
 "name": "app1",
 "version": "1.0.0",
 "description": "ReactApp",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "Doel Sengupta",
 "license": "ISC",
 "dependencies": {
 "react": "^0.14.3",
 "react-dom": "^0.14.3"
 },
 "devDependencies": {
 "babel-core": "^6.3.13",
 "babel-loader": "^6.2.0",

Chapter 9

[169]

 "babel-preset-es2015": "^6.3.13",
 "babel-preset-react": "^6.3.13",
 "browser-sync": "^2.9.6",
 "gulp": "^3.9.0",
 "gulp-babel": "^6.1.1",
 "gulp-concat": "^2.6.0",
 "gulp-eslint": "^1.1.1",
 "gulp-filter": "^3.0.1",
 "gulp-notify": "^2.2.0",
 }
}

A few of the key things in gulp:
•	 Initially, we need to require all the gulp and related gulp

plugins/packages, which are required while executing
the tasks

•	 The gulp tasks are declared with gulp.task.
•	 The .pipe command is used to stream data that needs to

be processed. This command is used concatenated, which
results in getting the output together.

Now if we add some tasks in the Gulp file, it will look like the following:

var gulp = require('gulp');
var babel = require('gulp-babel');
var browserSync = require('browser-sync');
var concat = require('gulp-concat');
var eslinting = require('gulp-eslint');
var notify = require('gulp-notify');
var reload = browserSync.reload;

var jsFiles = {
 vendor: [

],
 source: [
 '*.js',
 '*.jsx',
]
};

Preparing Your Code for Deployment

[170]

// Lint JS/JSX files
gulp.task('eslinting', function() {
 return gulp.src(jsFiles.source)
 .pipe(eslinting({
 baseConfig: {
 "ecmaFeatures": {
 "jsx": true
 }
 }
 }))
 .pipe(eslinting.format())
 .pipe(eslinting.failAfterError());
});

// Watch JS/JSX files
gulp.task('watch', function() {
 gulp.watch('*.{js,jsx,html}').on("change",reload);
});

// BrowserSync
gulp.task('browsersync', function() {
 browserSync({
 server: {
 baseDir: './'
 },
 open: false,
 online: false,
 notify: false,
 });
});
gulp.task('default', ['eslinting', 'browsersync', 'watch']);

Let's go through the preceding code:

•	 Four Gulp tasks are declared earlier and are highlighted. The default
mandatory task is calling three tasks internally, as in the last highlighted line.
In Gulp terms, any task calling other tasks are mentioned as array elements
of the parent task.

•	 gulp.task ('eslinting', function): This task is used to check any issue
with the code in the js & jsx files. In order to check the jsx with gulp-
eslint plugin, the ecmaFeature: {"jsx": true} option is set.

Chapter 9

[171]

•	 gulp.watch: As the name suggests, this task watches any change in the JS
files, and recompiles the files thereafter. In case it's not required to watch any
files, we need to pass read: false to the options object. After the change
in the js/jsx files, we can call browserSync.reload or add tasks in order to
reload your html page.

•	 browsersync: This plugin is not officially for gulp; though it can work with
any gulp task. Any change in the js/jsx files will be synced to the browser.

After executing the gulp command from app's root directory in the terminal, we
should be able to see such an output in the terminal. See the following image:

A console screenshot, after the gulp command with tasks been executed

Let's check once how the gulp-eslint works. Add a line such as require 'react',
at the beginning of the index.js file.

require "react";
var ReactApp1 = React.createClass({
 render: function(){
 return (
 <div>
 Hello World
 </div>
)
 }
});

Preparing Your Code for Deployment

[172]

ReactDOM.render(<ReactApp1 />, document.getElementById('app'));

A console screenshot, after the gulp command with an eslint task with error been executed

As we know, it should be var React = require("react"); is the correct way of
requiring the React package.

There are many for Gulp plugins, which are helpful in our day-to-day application
development apart from the ones mentioned in the earlier-mentioned example.
Please feel free to see the Gulp documentation and related plugins from their
website http://gulpjs.com/.

Summary
In this chapter, we came to know how we can deploy our React applications using
Webpack and the way Gulp eases our life by automating tasks, minifying our assets
(JS, JSX, CSS, SASS, images, and so on), watching any changes on these files and live-
reload built in the browser. In Chapter 10, What's Next, we will be exploring some
advanced concepts of ReactJS.

http://gulpjs.com/

[173]

What's Next
Until now, we have covered all the topics from building a React-based JavaScript
application from scratch, integrating it with the Facebook Graph API, digging into
the various stages of a component, it's life cycle, validating, testing, and deploying
the apps. With that, we have reached the end of this book, but let's explore some
advanced topics in React world.

In this chapter, we will be exploring the following topics briefly because it's not
possible to cover everything in detail within one chapter:

•	 AJAX in React
•	 React Router
•	 Server-side rendering
•	 Isomorphic applications
•	 Hot reloading
•	 Redux React
•	 Relay and GraphQL
•	 React Native

AJAX in React
Like in any other applications, AJAX in a React-based application can be used to fetch
data asynchronously. According to the Facebook documentation of loading the data
from the server using AJAX (https://facebook.github.io/react/tips/initial-
ajax.html), you need to remember some of the key points as mentioned here:

•	 Include the jQuery library in your HTML:
<script src="//code.jquery.com/jquery-1.12.0.min.js"></script>

https://facebook.github.io/react/tips/initial-ajax.html
https://facebook.github.io/react/tips/initial-ajax.html

What's Next

[174]

Because there is no separate Ajax-only library from jQuery that can be used,
the entire jQuery has to be used in a React-based application, while using
Ajax. Downloading the minified version of jQuery from cdn results in much
less load time.
Load the data in the life cycle phase of componentDidMount. This method
occurs only once during the life cycle on the client, and any child components
can be accessed in this phase. Any external js library or loading data using
AJAX is advised to be done in this phase.

•	 The isMounted method is used to check whether the component is mounted
in the DOM. Although this is used with AJAX before setState(), this
method will be deprecated while using ES6 syntaxes, which use React.
component, and may be entirely removed in future React versions. Refer to
https://facebook.github.io/react/docs/component-api.html.

Here is the code of index.html:

<!DOCTYPE html>
<html>
<head>
<script src="https://cdnjs.cloudflare.com/ajax/libs/react/0.14.0-
rc1/react.min.js"></script>
<script
src="https://cdnjs.cloudflare.com/ajax/libs/react/0.13.3/
JSXTransformer.js"></script>
 <script
 src="https://cdnjs.cloudflare.com/ajax/libs/react/0.14.0-rc1/react-
dom.js"></script>
<script src="//code.jquery.com/jquery-1.12.0.min.js"></script>
<meta charset="utf-8">
 <title>JS Bin</title>
</head>
<body>
 <div id="app">
 <script type="text/jsx", src="index.js"></script>
 </div>
</body>
</html>

https://facebook.github.io/react/docs/component-api.html

Chapter 10

[175]

The following is the code for index.js:

var GithubUser = React.createClass({
 getInitialState: function() {
 return {
 username: '',
 user_url: ''
 };
 },

 componentDidMount: function() {
 $.get(this.props.source, function(result) {
 console.log(result);
 var user = result;
 if (this.isMounted()) {
 this.setState({
 username: user.login,
 user_url: user.html_url
 });
 }
 }.bind(this));
 },

 render: function() {
 return (
 <div>
 {this.state.username}'s last gist is
 here.
 </div>
);
 }
});

What's Next

[176]

ReactDOM.render(
 <User source="https://api.github.com/users/doel" />,
 document.getElementById('app')
);

React with Ajax (https://facebook.github.io/react/tips/initial-ajax.html)

React Router
React Router is a library based on top of the React library, which helps in easy and
quick routing of an application with multiple pages. Although it may be possible
to build such a flow in the application without the React-router, as the application
grows with many pages, it becomes cumbersome to identify the child-parent
relationship between the pages. This is where React-router comes to our rescue,
where it identifies how to build the nested UIs.

Sources:
•	 https://github.com/reactjs/react-router

•	 https://www.npmjs.com/package/react-router

Server-side rendering
Server-side rendering in ReactJS is done by JavaScript (NodeJS or io.js). This method
actually prerenders the initial state of the React components at the server side.
Thus, it is helpful in fast rendering of web pages, as the users can see the web pages
without having to wait for the entire JavaScript at the client side to finish loading.

https://facebook.github.io/react/tips/initial-ajax.html
https://github.com/reactjs/react-router
https://www.npmjs.com/package/react-router

Chapter 10

[177]

However, this kind of rendering should not be used for those applications where a
huge amount of data has to be piped from the server to the client side, which may
slow the page load. In such cases, we may use pagination or bulk load the data in
chunks, which won't slow the page load, but can be fetched from the server side in
specific time intervals.

The following two methods from the React API provides the backbone of server-side
rendering (https://facebook.github.io/react/docs/top-level-api.html).

ReactDOMServer
The react-dom/server package allows you to render your components on
the server.

The ReactDOMServer.renderToString method returns a string. It generates two
additional DOM attributes—data-React-id and data-React-checksum—which
are used internally by the ReactJS library.

This method renders an element of ReactElement to the initial HTML of the view
and returns an HTML string.

It should only be used while using the server-side rendering and at the server side.

During the initial page load, sending this method from the server to the client results
in faster page load and enables web crawling for search engine optimization (SEO).

When the ReactDOM.render() is called to any node previously, React will attach
event handlers on those nodes, resulting in faster page loads.

The syntax is:

string renderToString(ReactElement element)

The ReactDOMServer.renderToStaticMarkup method is similar to
renderToString.

It is used mainly to generate static pages.

The syntax is:

string renderToStaticMarkup(ReactElement element)

https://facebook.github.io/react/docs/top-level-api.html

What's Next

[178]

In order to illustrate the example of the server-side rendering in ReactJS, we can
use express (the minimalistic web framework for NodeJS applications) at the
server side.

•	 The npm update
•	 The npm install express
•	 npm init: This will generate a package.json file

Add the content mentioned later in the index.js file to initiate a simple web
application running on port 3000 using express. The same example can be found
in the readme file of the node_modules/express directory:

var express = require('express');
//....Initialise the app variable requiring the express.
var app = express();

/* Denotes the basic routing by the express server. */
app.get('/', function (request, response) {

 response.send('Hello World');

})

// The following code will make the app listen in your localhost,
 i port 3000
app.listen(3000);

We first begin with declaring the app as an instance of express.

We then denote the basic routing by the express server. In this example, the
express instance (app) is using the GET HTTP method. Thus, when app.get calls
the default path (/) or any PATH on the server, the third parameter being the
HANDLER, should send a response Hello World to the client (browser) when
the route is matched.

The application runs on port 3000. You can run the app on any port as per
your requirement.

Execute the application using the node command on the express file:

node index.js

Chapter 10

[179]

Using express, we can now see the example of ReactJS server-side rendering:

•	 Within your app directory, execute the following command to
download express:
npm install react express

•	 From the express.js file, we will be calling the React component

Here is the code for creating the ReactComponent, without using JSX:

The ReactComponent.js file:

var React = require('react')

var ReactComponent = React.createClass({

 render:function(){

 return React.createElement('li', null, this.props.argument)

 }

});

module.exports = ReactComponent;

After running the express with the above command as node index.js from your app's
root dir in the terminal, we will be seeing the following screenshot in our browser's
localhost:3000.

Express JS simple app

Here is the explanation on the earlier-mentioned code.

What's Next

[180]

createElement is the primary type of React, which has four properties (types,
properties, keys, ref). The highlighted code mentioned earlier means that it will
create a React element of the type list (li), which does not have any property but
will pass the values from the React-rendered component's property (whose key
name is argument).

According to the Facebook documentation (https://facebook.github.io/react/
docs/top-level-api.html) for the React API, the highlighted code with respect to
renderToStaticMarkup

string renderToStaticMarkup(ReactElement element),

"Similar to renderToString, except this doesn't create extra DOM attributes
such as data-react-id, that React uses internally. This is useful if you want to
use React as a simple static page generator, as stripping away the extra attributes
can save lots of bytes."

renderToString renders ReactElement to its initial HTML. This should only be
used on the server. React will return an HTML string. You can use this method to
generate HTML on the server and send the markup down on the initial request for
faster page loads and to allow search engines to crawl your pages for SEO purposes.

If you call ReactDOM.render() on a node that already has this server-rendered
markup, React will preserve it and only attach event handlers, allowing you
to have a very fast first-load experience.

The code for the express.js file is:

var express = require('express');

var React = require('react');

var ReactComponent =
React.createFactory(require('./ReactComponent'));

var app = express();

function landingPage(request, response){

 var argument = request.params.argument || 'This is the default
 Landing Page in absence of any parameter in url';

 var reactComponent = ReactComponent({argument:argument});

 response.send(React.renderToStaticMarkup(reactComponent));

}

https://facebook.github.io/react/docs/top-level-api.html
https://facebook.github.io/react/docs/top-level-api.html

Chapter 10

[181]

app.get('', landingPage);

app.get('/:argument', landingPage)

app.listen(4000)

After running the express with the above command as node index.js from your app's
root dir in the terminal, we will be seeing the following screenshot in our browser's
localhost:4000.

The screenshot of the application, React with server-side rendering, showing default pages.
As we can see, the port in which the app is listening is 4000.

In case of dynamic routes, this is the screenshot of React with server-side rendering,
showing other pages.

What's Next

[182]

As mentioned earlier, if we use renderToString instead of renderToStaticMarkup,
we can see two attributes such as data-react-id and data-react-checksum in the
React component.

data-react-id: is the custom data attribute that the ReactJS library uses to
specifically identify it's components within DOM. It can be present both at the client
or the server side, whereas the one present at the server starts with a dot followed by
some letters and then numbers, the IDs present at client side are only numbers.

The following example shows the earlier method rederToString():

function landingPage(request, response){

 var argument = request.params.argument || 'This is the default
 Landing Page in absence of any parameter in url';

 var reactComponent = ReactComponent({argument:argument});

 response.send(React.renderToString(reactComponent));

}

Rerunning the express with the above changes, will render the following in the
browser's localhost:4000, as depicted in the screenshot below.

A screenshot of the application, React with server-side rendering, using method renderToString

To sum up, we can see that React-router is a library that is capable of running both
at the server side and at the client side (browser). In order to use the server-side
rendering, we use the renderToString() method along with the routes. During the
request-response cycle, the React-router on the server matches with the requested
route and renders the correct route from the server to the client (browser) using the
renderToString() method of the React library.

Chapter 10

[183]

Isomorphic applications
Isomorphic JavaScript applications are those where JavaScript is used both at
the server and client side. Thus, the same React component can be used both at
the client as well as at the server side. Some of the advantages of building such
applications are:

•	 Whenever required, render the view at the server side based on the
application state

°° The server will render the application in exactly the same way the
client would have rendered for increased consistency

•	 In case the JavaScript in the browser is not working, the application would
still work because the same JavaScript is present at the server side as well.
You need to send the action to the server in order to attain the same result.

Hot reloading
Hot reloading is a term used in the JavaScript world, which is used to refer to live
changes in the browser without the browser being refreshed. In the React ecosystem,
React Hot Loader is widely used for the same purpose.

React Hot Loader is a plugin for Webpack, which results in instantaneous and live
changes in the browser, without losing states. The changes can be visible while
editing React components and functions as LiveReload for React.

Some limitations of the react hot loader first version have been discussed by the
author (Dan Abramov) here at https://medium.com/@dan_abramov/the-death-
of-react-hot-loader-765fa791d7c4#.fc78lady9. The details of the project can
be found at https://gaearon.github.io/react-hot-loader/.

Redux React
Redux is a JavaScript library designed by Dan Abramov, which helps in
containerization of the states for the JavaScript applications. As the application
grows, the complexity rises due to the requirement of the back and forth state
updatability between the model and the view. Redux came to the rescue to solve this
crooked complex path of state mutation and asynchronism. Thus, it defines itself as
an attempt to make predictable state mutations.

https://gaearon.github.io/react-hot-loader/
https://gaearon.github.io/react-hot-loader/

What's Next

[184]

It can be used with React or any other view library. Some of the key points to be
remembered while using Redux are as follows:

•	 The state of the JavaScript application is stored entirely inside the same object
tree inside a single store. Thus, even when the application grows, it's easier to
debug. The development phase is also faster as the entire application state is
in one place. The state is read only; there are only getters in the state and no
setters as you are unable to write to this store.

•	 Any change to the state can only be done by emitting an action. The action is
nothing but an object that describes the changes that happened. These action
objects can be logged, serialized, stored, and replayed later in order to debug.
Except for these actions, no views or network callback can change the state.
This restriction makes the changes in the state mutation predictable, without
the hassle of looking out for any transient hidden changes.

•	 The third component in Redux is reducers. Reducers tell how the actions
change the state tree. The reducers are nothing but functions that have the
previous state and an action. The reducers therefore act as the setters for the
state store as they are setting the new state. Any change to be performed is
not on the actual state object but on the copy of the state object (new state
object). A single root reducer can be used in simple applications, whereas
you can delegate to multiple child reducers (by passing additional data) as
the number of tasks grow.

Source:

•	 http://redux.js.org/docs/basics/UsageWithReact.html

Relay and GraphQL
Relay is a framework in ReactJS for declarative data fetching, which solves the
problem of updating the data in a React-based application and where exactly it has
to be updated. Using GraphQL, the Relay framework decouples what data is to be
fetched from how it should be fetched.

GraphQL is like a query language to query a graph though not typically a graph like
those represented in pie charts, x, y axes, or Venn diagrams.

•	 It's used to query from a relationship graph, where each node and the
relationship between them are represented as edges.

•	 In order to fetch data from a subset of such a relationship-based graph,
GraphQL is very useful.

http://redux.js.org/docs/basics/UsageWithReact.html

Chapter 10

[185]

•	 Unlike in representational state transfer (REST) where data is fetched from
the server based on server endpoint using resources, in GraphQL data are
fetched from the server based on the requirement by the client.

•	 Thus, the data is decoupled, and all the data are fetched at one go from the
server within a single network request.

•	 Data can be stored and retrieved from a cache with ease and this results in
faster performance.

•	 Any write operation is named a mutation. It's not a 1:1 relationship between
the data change in the disk which GraphQL stores and returns to the
developer. The best way is to use a query that is the intersection between
the cached-date and the data that may change.

For an in-depth understanding of the Relay framework, refer to https://facebook.
github.io/relay/docs/thinking-in-relay.html#content.

React Native
As the name suggests, React Native is used to build native applications in iOS and
Android platforms using JavaScript and ReactJS. Some of the key features of React
Native, favored by the Facebook developer teams (https://facebook.github.io/
react-native/) for the native platforms, are mentioned here:

•	 It has the power of consistency in look and feel using React component
counterparts

•	 You can develop the app using Chrome developer tools and run in
a simulator

•	 There is asynchronous execution of all the code between the application and
the native platform

•	 React Native seamlessly handles touch events, polyfills, StyleSheet
abstraction, designing common UI layouts

•	 It's widely used to extend native code creating iOS and Android modules
and views and reusing them later, with ease

•	 React Native's qualities of being declarative, asynchronous, and responsive
are highly beneficial for iOS development

https://facebook.github.io/react-native/
https://facebook.github.io/react-native/

What's Next

[186]

References
Note that the list here is nothing near to an exhaustive one, there are plethora of
good articles, blog posts, and newer ones budding each new day.

Here are some of the sites to keep an eye on:

•	 https://facebook.github.io/react/blog/

•	 https://egghead.io

•	 https://code-cartoons.com/

The following are some of the communities on social media:

•	 https://twitter.com/ReactJSNews

•	 https://twitter.com/reactjs

•	 https://twitter.com/dan_abramov

Summary
ReactJS is a vibrant JS community. There are many changes and advancements in the
JavaScript ecosystem happening on a daily basis. Keeping ourselves up to date is a
mammoth and essential task. We can closely track the latest in JS world by following
them on social platforms, question-answer forums, their websites, attending
conferences and, last but not the least, always getting our hands dirty.

For any comments, suggestions or discussion feel free to contact us at @
doelsengupta, @singhalmanu.

https://facebook.github.io/react/blog/
https://facebook.github.io/react/blog/
https://egghead.io/
https://code-cartoons.com/
https://code-cartoons.com/
https://code-cartoons.com/
https://twitter.com/reactjsnews
https://twitter.com/reactjs
https://twitter.com/reactjs
https://twitter.com/dan_abramov
https://twitter.com/dan_abramov
https://twitter.com/dan_abramov

[187]

Index
A
access token 41
actions

defining 104, 105
AJAX, in React

defining 173, 174
references 174
URL 173

API documentation
URL 40

Atom
about 6
URL 6

B
Bower

about 4
ReactJS, installing with 5
URL 5

Brackets
about 6
URL 6

C
CDN

URL 46
chaijs

about 139
URL 139

code
revisiting 117-120

communities, on social media
references 186

component properties
data flow, with properties 37-39
defining 35, 36

component structure
defining 137, 138
URL 137

component style, JSX and Gotchas
about 31
CSS classes 32
style 31

Content Distribution Network (CDN) 46
Controller-Views

and Views 115, 116
CSS classes

references 32

D
data centers

URL 46
declarative data fetching 184
dispatchers

defining 106-110
DOM (Document Object Model) 1

E
ECMAScript7

URL 99
Emacs Editor

URL 6

[188]

ES6 30
ES(ECMAScript) versions, React

ES6 91-98
ES7 99

eventPhase event property
URL 70

events
defining 63
event pooling 71
Form events 64
Mouse events 64-70
supported events 71-77

F
Facebook developer plugin

URL 3
Facebook developer team

references 69
Facebook documentation

URL 71
Facebook Open-Graph API

app-id, creating on Facebook
developers site 42, 43

configuring 40-42
defining 40- 42
Open-Graph JavaScript SDK 44-49

Facebook ReactJS development
team documentation

URL 130
Flux

advantages 103
components 101-104
defining 101, 102
versus MVC architecture 102

Flux dispatchers 106

G
GraphQL

about 184
and Relay 184, 185

Grunt
URL 19

Grunt React task
URL 19

Gulp
defining 167
installing 168-172
URL 19

Gulp documentation
URL 172

Gulp file
creating 168-172

Gulp React task
URL 19

H
hot reloading

defining 183
limitations 183
URL 183

I
Isomorphic applications

defining 183

J
Jasmine 139
JavaScript

references 134
testing, Chai used 140-142
testing, Mocha used 140-142

JavaScript SDK
references 44
URL 44

Jest
about 140
advantages 140
URL 140

jestTypical example
with Babel 147-149
with Expect 147-149
with Mocha 147-149
with ReactTestUtils 147-149

JSX
configuring 9
defining 13
installing 143-146

[189]

need for 16
transforming, tools used 18, 19

JSX and Gotchas
comments 31
component style 31
expressions 25
learning 25
properties/attributes 27
properties, mutating 30
properties, transferring 27

JSX syntax
React component, creating with 11

JSX Transformer
references 18, 29

M
maximum number of roots, ReactJS

URL 21
Mixins

defining 123
defining, by example 124-129
higher-order components 130

Mocha 139
Model View Controller (MVC) 101
mounting category

method, defining 80
Mozilla Development Network site

URL 91
mutable state

defining 75
mutation 185

N
Node Package Manager (NPM)

about 4
ReactJS, installing with 4

node packages
references 4

NPM packages
references 5

O
OAuth

URL 41
online tool

reference 18
ORM models

URL 110

P
Package.json

URL 141
package manager

URL 6
pool 71
properties 55
Python

URL 10

R
React

ES(ECMAScript) versions 91
installing 143-146

React component
creating 8, 9
creating, with JSX syntax 11

React component lifecycle
defining 80
mounting category 80-84
unmounting category 80, 87, 90, 91
updating category 80, 85, 87
URL 80

React documentation
URL 14

ReactJS
about 1
children components 22
component, creating 20
component, rendering 20
configuring, in web page 7
defining 1-3, 7, 19

[190]

downloading 3, 4
files, serving through web server 10
installing, with Bower 5
installing, with NPM 4
maximum number of roots 21
properties, versus states 55
reference 10
references 2, 4
supported attributes 23
supported elements 24
URL 4
using 3

ReactJS component
data, rendering 50-54

ReactJS, with JSX
references 17

React Native
defining 185
URL 185

React Router
defining 176

ReactTestUtils
about 143
URL 143
used, for testing 143

React tools
URL 92

Redux React
defining 183, 184

Relay
about 184
and GraphQL 184, 185

Relay framework
references 185

S
search engine optimization (SEO) 177
server-side rendering

defining 176, 177
ReactDOMServer 177-182
URL 177

shallow rendering 149

should.js
about 139
URL 139

Single Page Application (SPA) 2
stateful component 56
stateless components 56
state property

defining 56
React state example,

interactive form used 61-63
state, initializing 56, 57
state, replacing 59, 60
state, setting 57, 58

states 55, 56
stores

defining 110-114
functionality 111

Sublime Text
about 6
URL 6

supported attributes
URL 23

supported elements
HTML elements 24
references 24
SVG elements 25

T
test-driven development (TDD) 144
testing

with shallow rendering 149-155
text editors 6
tools

about 5
Chrome Extension 7
text editors 6
used, for transforming JSX 18, 19

transpiler
reference 148

transpiling 92

[191]

V
validations

defining 130
example, custom validator used 134-137
example, isRequired validator used 132-134

Views
and Controller-Views 115, 116

Vim
URL 6

W
Webpack

about 157
advantages 167
setting up 160-167
simple React application, building 158, 159
URL 158

Webpack documentation
URL 166

	Cover

	Copyright
	Credits
	About the Authors
	Acknowledgments
	About the Reviewer

	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with ReactJS

	Introducing ReactJS
	Who uses ReactJS?

	Downloading ReactJS
	Installing ReactJS with NPM
	Installing ReactJS with Bower

	Tools
	Text editors
	Chrome extension

	Trying ReactJS
	Configuring ReactJS in a web page
	Creating your first React component
	Configuring JSX
	Serving files through the web server
	Creating a React component with the JSX syntax

	Summary

	Chapter 2: Exploring JSX and the ReactJS Anatomy

	What is JSX?
	Why JSX?
	Tools for transforming JSX

	The ReactJS anatomy
	Creating a component
	Rendering a component
	Maximum number of roots
	Children components
	Supported attributes
	Supported elements
	HTML elements
	SVG elements

	Learning JSX and Gotchas
	Expressions
	Properties/attributes
	Transferring properties
	Mutating properties

	Comments
	Component style
	Style
	CSS classes

	Summary

	Chapter 3: Working with Properties

	Component properties
	Data flow with properties

	Configuring Facebook Open-Graph API
	What it is and how to configure it
	Creating an app-id on the Facebook developers site
	Open-Graph JavaScript SDK

	Rendering data in a ReactJS component
	Summary

	Chapter 4: Stateful Components
and Events

	Properties versus states in ReactJS
	Exploring the state property
	Initializing a state
	Setting a state
	Replacing a state
	A React state example using an interactive form

	Events
	Form events
	Mouse events
	Event pooling
	Supported events

	Summary

	Chapter 5: Component Life cycle and Newer ECMAScript in React

	React component lifecycle
	Mounting category
	Updating category
	Unmounting category

	Other ES (ECMAScript) versions in React
	ES6
	ES7

	Summary

	Chapter 6: Reacting with Flux

	An overview of Flux
	Flux versus the MVC architecture
	Flux advantages
	Flux components

	Actions
	Dispatchers
	Stores
	Controller-Views and Views
	Revisiting the code
	Summary

	Chapter 7: Making Your Component Reusable

	Understanding Mixins
	Exploring Mixins by example
	Higher-order components in Mixins

	Validations
	An example using the isRequired validator
	An example using custom validator

	The structure of component
	Summary

	Chapter 8: Testing React Components

	Testing in JavaScript using Chai and Mocha
	Testing using ReactTestUtils
	Installing React and JSX

	The jestTypical example of a Testsuite with Mocha, expect, ReactTestUtils and Babel
	Testing with shallow rendering
	Summary

	Chapter 9: Preparing your Code for Deployment

	An introduction to Webpack
	Building a simple React application
	Setting up Webpack

	Advantages of Webpack
	Introduction to Gulp
	Installing Gulp and creating Gulp file

	Summary

	Chapter 10: What's Next

	AJAX in React
	React Router
	Server-side rendering
	ReactDOMServer

	Isomorphic applications
	Hot reloading
	Redux React
	Relay and GraphQL
	React Native
	References
	Summary

	Index

