
1

SAP HANA Starter

www.allitebooks.com

http://www.allitebooks.org

Instant PhoneGap
Social App
Development

Consume social network feeds and share social network
content using native plugins and PhoneGap

Kerri Shotts

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Instant PhoneGap Social App Development

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: January 2013

Production Reference: 1210113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-628-9

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Kerri Shotts

Reviewers
Becky Gibson

Julio César Sánchez

Acquisition Editor
Dilip Venkatesh

Commissioning Editor
Ameya Sawant

Technical Editor
Nitee Shetty

Project Coordinator
Amigya Khurana

Proofreader
Aaron Nash

Graphics
Aditi Gajjar

Production Coordinators
Aparna Bhagat

Nitesh Thakur

Cover Work
Aparna Bhagat

Cover Image
Aditi Gajjar

www.allitebooks.com

http://www.allitebooks.org

About the Author

Kerri Shotts has been programming since she learned BASIC on her Commodore 64.
She earned her degree in Computer Science and has worked as a Test Engineer and
Database Administrator. Now a Technology Consultant, she helps her clients with custom
websites, apps (desktop and mobile), and more. When not at the computer, she enjoys
photography and taking care of her aquariums.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Becky Gibson is a senior technical staff member in IBM’s Emerging Internet Technologies
Group. Her current focus is contributing to the open source Apache Cordova (PhoneGap)
project to enable building compelling mobile applications using Web technologies. She was
the Accessibility Lead for the Dojo Open Source JavaScript Toolkit and was responsible for
implementing full accessibility in the core widget set. She participated in the development of
the W3C WAI-ARIA (Accessible Rich Internet Applications) specification and was a contributor
in the W3C Web Content Accessibility Guidelines Working Group for several years. She
continues her commitment to accessibility by implementing it in iOS features in Cordova and
promoting mobile accessibility.

She has over 20 years of development experience in languages ranging from PC assembly,
C, C++, Java, Objective-C, to web technologies. She has contributed to various Lotus and IBM
projects including Lotus 1-2-3 and IBM Lotus Notes. She has a BS degree from the University
of Maine and an MS in Computer Science from Boston University.

Julio César Sánchez has been a professional software developer since 2007. Over the
years he has worked with many different technologies, most of them being web related. In
2010, he discovered PhoneGap and he has been following the PhoneGap Google group since
then, learning, helping other developers, and even contributing with a PhoneGap plugin. He
spends some of his spare time developing mobile apps. You can visit his Web to get to know
more about him and his work at www.solucionesmovil.es.

http://www.solucionesmovil.es/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital book
library. Here, you can access, read and search across Packt’s entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt
ff Copy and paste, print and bookmark content
ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface	 1
Instant PhoneGap Social App Development	 7

What do we build?	 7
Creating the project	 9
Designing the UI/interaction	 13
Designing the data model	 16
Implementing the data model	 18
Configuring the ChildBrowser plugin 	 29
Implementing the start view	 34
Implementing the social view	 43
Implementing the tweet view	 50
Putting it all together	 58

ii

Table of Contents

Preface
Instant PhoneGap Social App Development shows you how to create compelling mobile apps
that integrate with social media based on PhoneGap/Cordova. This book will show you how to
consume Twitter feeds and also how to share content to Twitter using Twitter Web Intents.

What this book covers
What do we build? introduces us to the app that we will be building in this book using Twitter
streams and Twitter Web Intents.

Creating the project focuses on preparing the project by downloading all the necessary
components and creating the appropriate directory structure.

Designing the UI/interaction describes how we can design our user interface
and also covers the interaction between the various widgets and views.

Designing the data model covers the task where we design our data model
for handling Twitter users and streams.

Implementing the data model describes the implementation of our data model and creation
of five Twitter accounts that we will use. We will also be introduced to the loadJSON method
in PKUTIL and the Twitter API.

Configuring the ChildBrowser plugin covers the installation and configuration of the
ChildBrowser plugin.

Implementing the start view describes the creation of our first view in our app, the
start view. It outlines the basic view as well as helps us explore with the complementary
functions of the view.

Implementing the social view explains the creation of the social view where we will display our
Twitter stream. We also explore how we can use the Twitter stream data to construct a Twitter
stream that the end user can interact with.

Preface

2

Implementing the tweet view introduces the last view, the tweet view, where the user interacts
with a given tweet. We also see how this view gives the user the opportunity to share the tweet
via Twitter Web Intents.

Putting it all together outlines the creation of the app.js file and two HTML files under
the www directory to get a fully functional app on our hands so that we can load the app
and start it off.

What you need for this book
The example application in this book is based on PhoneGap/Cordova 2.2. If you download
a more recent version, be sure to replace the cordova-2.2.0-ios.js and cordova-
2.2.0-android.js references with the appropriate versions.

To build/run the code supplied for the book, the following software is required (divided by
platform where appropriate):

Windows Linux OS X
For iOS Apps

IDE XCode 4.5+
OS OS X 10.7+
SDK iOS 5+
For Android Apps
IDE Eclipse 4.x Classic Eclipse 4.x Classic Eclipse 4.x Classic
OS XP or newer Any modern distro

supporting Eclipse
& Android SDK –
Ubuntu, RHEL, etc.

OS X 10.6+
(probably works on
lower versions)

Java 1.6 or higher 1.6 or higher 1.6 or higher
SDK Version 15+ Version 15+ Version 15+
For All Platforms
Apache Cordova /
PhoneGap

2.2 2.2 2.2

Plugins Current Current Current

Some useful websites that can be used for software download are as follows:

ff Xcode at https://developer.apple.com/xcode/

ff iOS SDK at https://developer.apple.com/devcenter/ios/index.action

ff Eclipse at http://www.eclipse.org/downloads/packages/eclipse-
classic-421/junosr1

Preface

3

ff Android SDK at http://developer.android.com/sdk/index.html

ff Apache Cordova/PhoneGap at http://phonegap.com/download

ff Plugins at https://github.com/phonegap/phonegap-plugins

Who this book is for
You’ll need to have a desire to learn about mobile application development. Since PhoneGap
uses HTML, CSS, and Javascript heavily, it is important to have a good understanding of
these topics. You should also have a good understanding of your desired platform and
corresponding SDK and IDE. (That is, if you want to develop for Android, you should be
familiar with Eclipse. For iOS, you need to be familiar with Xcode).

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: “The getScreenName() method simply returns the
screen name.”

A block of code is set as follows:

self.getScreenName = function ()
 {
 return self._screenName;
 }

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

function (success)
 {
 if (success)
 {
 startView.initializeView();
 PKUI.CORE.showView (startView);
 }
 });

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

 /etc/asterisk/cdr_mysql.conf

Preface

4

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: “ Click on Next >”.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in
the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from
your account at http://www.PacktPub.com. If you purchased this book elsewhere,
you can visit http://www.PacktPub.com/support and register to have the files
e-mailed directly to you.

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

5

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
support, selecting your book, clicking on the errata submission form link, and entering
the details of your errata. Once your errata are verified, your submission will be accepted
and the errata will be uploaded on our website, or added to any list of existing errata, under
the Errata section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Instant PhoneGap
Social App Development

Welcome to PhoneGap social app development. Social networking has changed the way we
share information in our world. Where it used to be an e-mail to a friend (or even a letter!),
now it's a tweet or a Facebook post, often for the world to see. What's even more amazing is
how relatively young the various social networks are and how quickly they have changed the
way we communicate and consume information. Because of this transformation, our apps
need to support sharing to social networks, lest our app appear dated.

You'll often see the word Cordova in our code examples in
this book. PhoneGap was recently acquired by Adobe and the
underlying code was given to the Apache Incubator project. This
project is named Cordova, and PhoneGap utilizes it to provide
its various services. So if you see Cordova, it really means the
same thing for now.

What do we build?
In this section, we will build an app that illustrates both sides of the social network equation.
The first is that of consuming information from various sources – we'll be using Twitter
streams for this. The second is that of sharing information – we'll be using Twitter's Web
Intents to accomplish this. You can find more information about Twitter Web Intents at
https://dev.twitter.com/docs/intents.

One can use each platform's native sharing capabilities, and this
will be a challenge at the end of this chapter. For some platforms,
sharing is easy, while on an iOS in particular, it's downright
painful – thus the choice to go with Twitter Web Intents.

Instant PhoneGap Social App Development

8

 What does it do?
Our app, called Socializer, will display the Twitter streams from five pre-set Twitter accounts.
The user can then read these streams, and should they find an interesting tweet, they can
tap on it to do more with it. For example, they may wish to view a link embedded in the tweet.
More importantly, the end user may wish to share the information using Twitter, and the app
will offer a Share button to do just that.

To accomplish this, we'll be working with Twitter's JSON API, a natural fit for an app already
written largely in JavaScript. The only downside is that Twitter has a pretty low cap for
rate-limiting API requests, so we'll also have to build some basic support for when this occurs.
(For more information about rate-limiting, see https://dev.twitter.com/docs/rate-
limiting.) To be honest, this is far more likely to occur to us as a developer than the user,
because we often reload the app to test a new feature, which incurs new API requests far
faster than an end user would typically incur them.

We'll also introduce the concept of PhoneGap plugins, as we'll be using the ChildBrowser
plugin, which is supported across both iOS and Android, and opens web content within the
app, rather than outside the app. This is important, since once the user is outside the app,
they may not return to the app.

Why is it great?
This project is a great introduction to handling APIs using JSON, including Twitter's API. While
we're using a very small subset of Twitter's API, the lessons learned in this project can be
expanded to deal with the rest of the API. Furthermore, JSON APIs are all over the place, and
learning how to deal with Twitter's API is a great way to learn how to deal with any JSON API.

We'll also be dealing with how to share content. To do this, we'll work with Twitter's Web
Intents, a convenient and extremely simple method that allows sharing of content without
messing with the account information or complicated code.

We'll also be working with PhoneGap plugins, which many apps will eventually require in one
way or another. For example, our app should be able to handle links to external websites – the
best way to do this is to have the ChildBrowser plugin handle it. This lets the user stay inside
our app and easily return to our app when they are done. Without it, we'd be taking the user
out of the app and into the default browser.

Instant PhoneGap Social App Development

9

The app itself will also serve to introduce you to creating mobile apps using a simple
framework named YASMF (Yet Another Simple, Mobile Framework). There are a multitude
of fantastic frameworks out there (jQuery Mobile, jQuery Touch, iUI, Sencha Touch, and so
on.), and the framework you choose to use ultimately doesn't really matter that much—they
all do what they advertise—and our using a custom framework isn't intended to throw you
off-kilter in any fashion. The main reason for using this particular custom framework is that it's
very lightweight and simple; which means the concepts it uses will be easy to transfer to any
framework. For more information regarding the framework, please visit https://github.
com/photokandyStudios/YASMF/wiki.

How are we going to do it?
To do this, we're going to break down the creation of our app into several different parts.
We'll be focusing on the design of the app before we handle the implementation using
the following:

ff Creating the project

ff Designing the UI/interaction

ff Designing the data model

ff Implementing the data model

ff Configuring the ChildBrowser plugin

ff Implementing the start view

ff Implementing the social view

ff Implementing the tweet view

ff Putting it all together

Creating the project
Before we can create the app, we need to prepare for the project by downloading all
the necessary components (PhoneGap, YASMF, and so on) and create the appropriate
directory structure.

How to do it…
1.	 Download the latest version of PhoneGap from http://phonegap.com/download,

currently 2.2.0 at the time of writing, and extract it to the appropriate directory.
(For example, I use /Applications/phonegap/phonegap220.) Make sure that
you have also installed the appropriate IDEs (Xcode for iOS development, and Eclipse
for Android development).

http://phonegap.com/download

Instant PhoneGap Social App Development

10

2.	 Next, download the latest version of the YASMF framework from https://github.
com/photokandyStudios/YASMF/downloads, and extract it anywhere. (For
example, I used my Downloads folder.)

3.	 You'll also need to download the PhoneGap plugins repository available at http://
www.github.com/phonegap/phonegap-plugins. This will ensure you have all
the necessary plugins we'll need as well as any plugins you might be interested in
working with on your own.

Downloading the example code

You can download the example code files for all Packt books
you have purchased from your account at http://www.
PacktPub.com. If you purchased this book elsewhere, you
can visit http://www.PacktPub.com/support and
register to have the files e-mailed directly to you.

4.	 Next, you need to create a project for the various platforms you intend to support.
Here's how we create both projects at once on Mac OS X. The commands should
translate to Linux and Android-only projects with a little modification, and the
same should apply to creating Android projects on Windows with some additional
modifications. For the following steps, consider $PROJECT_HOME to be the location
of your project, $PHONEGAP_HOME to be the location where you installed PhoneGap,
and $YASMF_DOWNLOAD to be the location where you extracted the YASMF
framework. The code snippet is as follows:
mkdir $PROJECT_HOME
cd $PROJECT_HOME
mkdir Android iOS www
cd $PHONEGAP_HOME/lib/android/bin
./create $PROJECT_HOME/Android/Socializer com.yourcompany.
Socializer Socializer
cd $PHONEGAP_HOME/lib/ios/bin
./create $PROJECT_HOME/iOS com.yourcompany.Socializer
Socializer
cd $PROJECT_HOME
mkdir www/cordova
cp Android/Socializer/assets/www/cordova-2.2.0.js www/cordova/
cordova-2.2.0-android.js
cp iOS/www/cordova-2.2.0.js www/cordova/cordova-2.2.0-ios.js
cd Android/Socializer/assets
rm –rf www
ln –s ../../../www
cd ../../../iOS
rm –rf www

https://github.com/photokandyStudios/YASMF/downloads
https://github.com/photokandyStudios/YASMF/downloads
http://www.github.com/phonegap/phonegap-plugins
http://www.github.com/phonegap/phonegap-plugins
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com/support

Instant PhoneGap Social App Development

11

ln -s ../www
cd ..
cd www
cp –r $YASMF_DOWNLOAD/framework .
mkdir images models views style childbrowser plugins
cd plugins
mkdir Android iOS
cd ../..
cd Android/Socializer/src/com/phonegaphotshot/Socializer

5.	 Edit Socializer.java.

6.	 Change index.html to index_android.html.(This points the Android version
at the correct index file.)

7.	 Save the file using the following code line:
cd $PROJECT_HOME/iOS/Socializer

8.	 Edit Cordova.plist.

9.	 Search for UIWebViewBounce.

10.	 Change the <true/> tag just below UIWebViewBounce to <false/>. (This ensures
that the WebView itself can't scroll, something that should never happen in an iOS
app, otherwise the user will be able to tell that the app isn't native.)

11.	 Search for ShowSplashScreenSpinner.

12.	 Change the <true/> just below ShowSplashScreenSpinner to <false/>. (This
ensures that the WebView itself can't scroll, something that should never happen in
an iOS app, otherwise the user will be able to tell that the app isn't native.)

13.	 Search for ExternalHosts.

14.	 Remove the <array/> tag and replace it with "<array>", "<string>*</string>",
"</array>". This isn't always something that you would want to do for a production
app, but as it allows for our apps to access the Internet with no restrictions, it's good
for testing purposes.

15.	 Save the file.

16.	 Edit Socializer-info.plist.

17.	 Above the line containing UISupportedInterfaceOrientations, add
"<key>UIStatusBarStyle</key>", "<string>UIStatusBarStyleBlackOpaq
ue</string>". (This makes the iOS app have a black status bar.)

18.	 Start Eclipse.

19.	 Navigate to File | New | Project….

Instant PhoneGap Social App Development

12

20.	 Select Android Project.

21.	 Click on Next >.

22.	 Select the Create project from existing source option.

23.	 Click on the Browse icon.

24.	 Navigate to $PROJECT_HOME/Android/Socializer/.

25.	 Click on Open.

26.	 Click on Next >.

27.	 Uncheck and re-check the highest Google APIs entry. (For some reason, Eclipse
doesn't always keep the correct SDK version when doing this, so you may have to
go back after the project is created and reset it. Just right-click on any directory,
Configure Build Paths… and go to the Android section. Then you can re-select the
highest SDK.)

28.	 Click on Next >.

29.	 Change the Minimum SDK level to 8.

30.	 Click on Finish.

31.	 Start Xcode.

32.	 Navigate to File | Open….

33.	 Navigate to the project in $PROJECT_HOME/iOS.

34.	 Click on Open.

35.	 At this point you should have Xcode and Eclipse open with the project. Close both;
we'll be using our favorite editor for now.

The project thus created results in the following directory structure:

ff /Android: The Android project

ff /iOS: The iOS project

ff /www

�� /cordova: We'll place the PhoneGap support libraries here

�� /framework: Our framework will be in this directory

�� /cultures: Any localization configuration will be placed in this
framework, which comes with en-US

�� /images: All of our images will be in this directory

�� /views: All of our views will be in this directory

�� /models: All of our data models will be in this directory

�� /style: Any custom CSS we need to use will be in this directory

Instant PhoneGap Social App Development

13

�� /childbrowser: Android-specific assets for ChildBrowser will be in
this directory

�� /plugins: Plugins should go in this directory

�� /Android: Android-specific plugins are in this directory

�� /iOS: iOS-specific plugins are in this directory

Designing the UI/interaction
Our first task is to design our user interface and the interaction between the various widgets
and views. Like the previous task, we will have three views: the start view, the social view, and
the tweet view.

How to do it…
We'll begin with the start view. This will be a very simple view. It is entirely optional in this app
as all we'll be doing is explaining the app and providing a way to move to the main view.

With that in mind, our sketch is shown in the following screenshot:

Instant PhoneGap Social App Development

14

In the preceding image, we have a Start button (1) that will push the social view onto the view
stack. We also have some explanatory text (2).

Our next view is the social view shown in the following screenshot:

The social view is essentially a list of tweets, one after the other. We'll display several tweets
at a time, and as such, we'll have to deal with scrolling at some point. While you can use
various libraries to accomplish this, we'll be using our own minimalist scrolling library.

Each tweet will consist of a profile image (1), the screen name and real name (if available) (2),
and the text of the tweet (3). When the user taps a tweet, we'll transition to the tweet view.

At the bottom of the view (4), we have a series of profile images for five different Twitter
accounts. The images will be retrieved from Twitter itself; we won't be storing the images
ourselves. When an image is tapped, we'll load the respective Twitter stream.

Instant PhoneGap Social App Development

15

Our tweet view looks like the following screenshot:

First, note that our tweet view repeats the tweet (1) that the user tapped on in the social view.
The same information is repeated, but we also list the various web links (2) that the tweets
might have, any hashtags (3), and any user mentions (4). Items (2) to (4) are intended to be
tappable, that is, if a user taps on (2), they should be taken to the particular website. If they
tap on (3), they should be taken back to the social view with a stream of tweets referencing
the hashtag. The same should happen if they tap on (4), except that it would be that particular
user's stream.

We also have a Back button in our navigation bar to takes the user back to the previous view,
and a Share button (5) in our toolbar, when tapped, should display the ChildBrowser plugin
with the Twitter Web Intent already displayed. If the user isn't logged in to Twitter, they'll be
prompted to do so. Once logged in, they'll be given the tweet (which they can change to suit
their needs), and they can then send it out to their followers. When complete, the user can
close the ChildBrowser plugin and return to the app.

Now that we created our mockup, we need to define some of the resources we'll need.
Let's open up our editing program and get busy designing our app.

Instant PhoneGap Social App Development

16

The following screenshot is a pretty good representation of how our final product will look:

A lot of this can be accomplished using CSS. The background of the Twitter stream and the
navigation bar are the only two components that will be difficult, so we should save those out
to our www/images directory as Background.png and NavigationBar.png respectively.
If you notice, both have a texture, so make sure to save them in a way that they will tile without
visible seams.

For this task, we've defined how our UI should look, and the various interactions between
widgets and views. We also generated a mockup of the app in our graphics editor and
created some image resources for later use.

Designing the data model
In this task, we will design our data model for handling Twitter users and streams. Our model
will, to some extent, rely on Twitter's model as well as the results that it returns from its API we
will use unmodified. We will be defining the rest of the model in this task.

Instant PhoneGap Social App Development

17

How to do it…
Let's take a look at our data model:

We'll be using TWITTER as the namespace and within it, we'll have two objects that we'll be
using a lot: TwitterUser and TwitterStream. The idea behind TwitterUser is to be an
instance of a particular user, which we'll be representing with an image on the toolbar in the
streams view. The TwitterStream object will be a representation of a single stream.

Let's examine TwitterUser more closely. The object has two properties, screenName
and userData. screenName holds the user's Twitter username. userData will hold the
response from Twitter's API. It will have lots of different information about the user, including
their profile image URL, their real name, and more.

The constructor will return an initialized TwitterUser based upon the supplied screen
name. Internally, the constructor just calls the setScreenName() method which will request
the user data from Twitter. The getScreenName() method simply returns the screen name.
The getProfileImageUrl() method will return the URL to the user's profile image. The
getUserData() will return the data that Twitter returned, and the getTimeline() method
will create a TwitterStream object for the particular user.

Instant PhoneGap Social App Development

18

The TwitterStream object operates on a similar idea: it will house the data returned
by Twitter. The TwitterStream object also provides us the ability to get a stream for a
particular user as well as the ability to return a stream for any search (such as a hashtag).

When constructed, we pass three options, the screen name or the search phrase, the
maximum number of tweets to return (up to 200), and a function to call when the stream
has finished loading.

The loadStream() method does the actual work of loading a Twitter stream based on
the above options passed to the object when created. It gets called immediately upon
construction of the object so that our app doesn't have to send a separate message
asking for the stream to be loaded.

Some methods related to the properties in the object that we have are setScreenName(),
setSearchPhrase(), getSearchPhrase(), setMaxCount(), getMaxCount() and
getStream().

The setScreenName() method does the same thing as setting the searchPhrase()
method except that it adds an @ character to the name. The loadStream() method can
then decide which API to call when loading a stream, either calling the API to return the
user's stream, or by calling the search API.

What did we do?
We created and defined our data model for our app. We've defined two objects,
TwitterUser and TwitterStream, and saw how they interact.

Implementing the data model
This section describes the implementation of our data model.

Getting ready
We'll be creating two files, twitter.js and twitterUsers.js. Place these in the
www/models directory.

How to do it…
Let's start with the twitter.js file:

var TWITTER = TWITTER || {};

As always, we define our namespace; in this case, TWITTER:
TWITTER._baseURL = "http://api.twitter.com/1/";
TWITTER._searchBase = "http://search.twitter.com/";

Instant PhoneGap Social App Development

19

We define two variables global to the TWITTER namespace: _baseURL and _searchBase.
These two URLs point at Twitter's JSON API; the first is for API requests such as user lookups,
user streams, and such, while the latter is only for searching. We define them here for two
reasons: to make the URLs a little less nasty in the following code, and if Twitter should ever
decide to have a different version of the API (and you want to change it), you can do so here.

Next, we define our first object, TwitterUser using the following code snippet:

TWITTER.TwitterUser = function (theScreenName, completion)
{
 var self = this;
 self._screenName = "";
 self._userData = {};

We've defined our two properties here, _screenName and _userData. We're using
underscores at the front to indicate that these are internal (private) variables that no
outside object should access. Instead, an outside object should use the get/set
methods we define next:

 self.getScreenName = function ()
 {
 return self._screenName;
 }

This one's simple enough, it just returns the private member when asked. But the next one's
more complicated:

 self.setScreenName = function (theScreenName, completion
)
 {
 self._screenName = theScreenName;

Like a normal set method, we've assigned theScreenName to _screenName. But when
this happens, we want to load in the user information from Twitter. This is why it is important
to have get/set methods in front of private methods; you might just need them to do
something important when the value changes or is read.

 var getUserURL = TWITTER._baseURL +
 "users/lookup.json?screen_name=" +
 encodeURIComponent(theScreenName);

Here we've defined our URL that we're going to use to ask Twitter to look up the user
in question. For more information about how this particular URL works, see the Twitter
documentation at https://dev.twitter.com/docs/api/1/get/users/lookup.
You can see a full example of what is returned at the bottom of the page.

https://dev.twitter.com/docs/api/1/get/users/lookup

Instant PhoneGap Social App Development

20

We use the encodeURIComponent() method to ensure that the text is properly encoded
(so that it can handle international characters).

Now that we have our URL, we're going to use another utility function defined for us in PKUTIL
(www/framework/utility.js), called loadJSON(). It uses AJAX to send a request to the
earlier URL, and Twitter then sends a response back, in the form of JSON. When it is finished,
the function will call the completion function we're passing as the second parameter
after getUserURL. This method can check if the request succeeded or not, and set any
private members that are necessary. We'll also call the completion function passed to
the setScreenName() method.

 PKUTIL.loadJSON (getUserURL, function (
 success, data)
 {
 if (success)
 {
 self._userData = data;

If success is true, then the JSON has been properly returned and parsed into the data
parameter. We just assign it to the private _userData member.

 }
 else
 {
 self._userData = { "error": "Twitter error; rate
 limited?" };

But, if the return value of success is false, then something's gone wrong. Anything could
have happened. Twitter might be down (not unheard of), the network connection might have
failed, or Twitter might have rate limited us. (For Twitter's error codes, see https://dev.
twitter.com/docs/error-codes-responses.) For now, we're just going to assume the
latter, but you could certainly build more complicated error-detection schemes to figure out
the type of error.

 }
 if (completion)
 {
 completion ();
 }

Finally, regardless of success or failure, we call the completion function passed to us.
This completion function is important so that we know when we can safely access
the _userData member (via getUserData a little lower).

 }
);
 }

Instant PhoneGap Social App Development

21

 self.getProfileImageURL = function ()
 {
 if (self._userData[0])
 {
 return self._userData[0].profile_image_url;
 }
 return "";
 }

The method getProfileImageURL() is a convenience function that returns the user's
profile image URL. This is a link to the avatar being used for Twitter. First we check to see if
_userData[0] exists, and if it does, return profile_image_url, a value defined by the
Twitter API. If it doesn't, we'll just return an empty string.

 self.getUserData = function ()
 {
 return self._userData;
 }

Next, the getUserData() method is used to return the _userData member. If it has been
properly loaded, it will have a lot of values in it, all determined by Twitter. If it has failed to
load, it'll have an error property in it, and if it hasn't been loaded at all, it'll be empty.

 self.getTimeline = function (theMaxCount, completion)
 {
 return new TWITTER.TwitterStream ("@" +
 self._theScreenName, completion, theMaxCount || 25
);
 }

The getTimeline() method is also a convenience function used to get the timeline for
the Twitter user. theMaxCount is the maximum number of tweets to return (up to 200),
and completion is a function to call when it's all done. We do this by creating a new
TwitterStream object (defined later) with the Twitter screen name prepended by an
@ character.

If theMaxCount isn't specified, we use a little || trick to indicate the default value of
25 tweets.

 self.setScreenName (theScreenName, completion);
}

The last thing we do is actually call the setScreenName() method with the screen name
and completion function passed in to the constructor. If you remember your JavaScript, this
whole function, while we can think of it as defining an object, is also the constructor of that
object. In this case, as soon as you create the TwitterUser object, we'll fire off a request
to Twitter to load in the user's data and set it to _userData.

Instant PhoneGap Social App Development

22

Our next object is the TwitterStream object:

TWITTER.TwitterStream = function (
 theScreenNameOrSearchPhrase, completion, theMaxCount)
{
 var self = this;

 self._searchPhrase = "";
 self._stream = {};
 self._theMaxCount = 25;

Here we've defined three properties, _searchPhrase, _stream, and _theMaxCount. The
_searchPhrase property can either be the screen name of a user or a literal search term,
such as a hashtag. The _stream property is the actual collection of tweets obtained from
Twitter, and the _theMaxCount property is the maximum number of tweets to ask for.
(Keep in mind that Twitter is free to return less than this amount.)

You may ask why we're storing either a search phrase or a screen name. The reason is that
we're attempting to promote some code re-use. It's logical to assume that a Twitter stream is
a Twitter stream, regardless of how it was found, either by asking for a particular user's stream
or by searching for a word. Fair assumption, right?

Yeah, but totally wrong, too. The streams are close enough so that we can work around
the differences, but still, not the same. So, even though we're treating them here as
one-and-the-same, they really aren't – at least until Twitter decides to change their
Search API to better match their non-Search API.

 self.setMaxCount = function (theMaxCount)
 {
 self._theMaxCount = theMaxCount;
 }

 self.getMaxCount = function ()
 {
 return self._theMaxCount;
 }

Here we have the get/set methods for the _theMaxCount property. All we do is set and
retrieve the value. One thing to note is that this should be called before we actually load
a stream. This value is part of the ultimate URL we sent to Twitter.

 self.setScreenName = function (theScreenName)
 {
 self._searchPhrase = "@" + theScreenName;
 }

 self.setSearchPhrase = function (theSearchPhrase)

Instant PhoneGap Social App Development

23

 {
 self._searchPhrase = theSearchPhrase;
 }
 self.getSearchPhrase = function ()
 {
 return self._searchPhrase;
 }

Notice that we have two set methods that act on the _searchPhrase property
while we only have one get method. What we're doing here is permitting someone
to call the setScreenName() method without the @ character. The _searchPhrase
property will then be set with the @ character prepended to the screen name. The next
set method (setSearchPhrase()) is intended to be used when setting real search
terms (such as a hashtag).

Internally, we'll use the @ character at the front to mean something special, but you'll see
that in a second.

 self.getStream = function ()
 {
 return self._stream;
 }

The getStream() method just returns the _stream property, which if we haven't loaded,
will be blank. So let's look at the loadStream() method:

 self.loadStream = function (completion)
 {
 var theStreamURL;
 var forScreenName = false;

The loadStream() method takes a completion function. We'll call this at the end of
the operation no matter what; it lets the rest of our code know when it is safe to access
the _stream member via the getStream() method.

The other component is the forScreenName variable; if true, we'll be asking Twitter for the
stream that belongs to the screen name stored in the _searchPhrase property. Otherwise,
we'll ask Twitter to do an actual search for the _searchPhrase property:

 if (self._searchPhrase.substr(0,1)=="@")
 {
 theStreamURL = TWITTER._baseURL +
 "statuses/user_timeline.json?include_entities=
 true&include_rts=true&count=" +
 self._theMaxCount + "&screen_name=" +
 encodeURIComponent(self._searchPhrase);
 forScreenName = true;

Instant PhoneGap Social App Development

24

 }
 else
 {
 theStreamURL = TWITTER._searchBase +
 "search.json?q=" +
 encodeURIComponent(self._searchPhrase) +
 "&include_entities=true" +
 "&include_rts=true&rpp=" + self._theMaxCount;
 forScreenName = false;
 }

All we've done so far is defined the theStreamURL property to point either at the Search API
(for a search term) or the non-Search API (for a screen name's stream). Next we'll load it with
the loadJSON() method using the following code snippet:

 PKUTIL.loadJSON (theStreamURL, function (success,
 data)
 {
 if (success)
 {
 if (forScreenName)
 {
 self._stream = data;
 }
 else
 {
 self._stream = data.results;
 }
 }

Here's another reason why we need to know if we're processing for a screen name or for a
search: the JSON we get back is slightly different. When searching, Twitter helpfully includes
other information (such as the time it took to execute the search). In our case, we're not
interested in anything but the results, hence the two separate code paths.

 else
 {
 self._stream = { "error": "Twitter error; rate
 limited?" };
 }

Again, if we have a failure, we're assuming that we are rate-limited.

 if (completion)
 {
 completion(self._stream);
 }

Instant PhoneGap Social App Development

25

When done, we call the completion method, helpfully passing along the data stream.

 }
);
 }
 self.setSearchPhrase (theScreenNameOrSearchPhrase);
 self.setMaxCount (theMaxCount || 25);
 self.loadStream (completion);
}

Just like at the end of the previous object, we call some methods at the end of this object
too. First we set the incoming search phrase, then we set the maximum number of tweets
to return (or 25, if it isn't given to us), and then we call the loadStream() method with
the completion function. This means that the moment we create a new TwitterStream
object, it's already working on loading all the tweets we'll be wanting to have access to.

We've taken care of almost all our data model requirements, but we've got just a little bit
left to do in the twitterUsers.js file; use the following instruction:

TWITTER.users = Array();

First, we create a users() array in the Twitter namespace. We're going to use
this to store our predefined Twitter users, which will be loaded with the following
loadTwitterUsers() method:

TWITTER.loadTwitterUsers = function (completion)
{
 TWITTER.users.push (new TWITTER.TwitterUser ("photoKandy" ,
function ()
 { TWITTER.users.push (new TWITTER.TwitterUser ("CNN" ,
 function ()
 { TWITTER.users.push (new TWITTER.TwitterUser (
 "BBCWorld" , function ()
 { TWITTER.users.push (new TWITTER.TwitterUser (
 "espn", function ()
 { TWITTER.users.push (new TWITTER.TwitterUser (
 "lemondefr", completion)); }
)); }
)) ; }
)) ; }
)) ;
}

What we've done here is essentially just chained together five requests for five different
Twitter accounts. You can store these in an array and ask for them all at once. But for
this our app needs to know when they've all been loaded. You could also do this by using
recursion through an array of users, but we'll leave it as an example to you, the reader.

Instant PhoneGap Social App Development

26

We have implemented our data model and predefined the five Twitter accounts we want to
use. We also went over the loadJSON() method in PKUTIL, which helps with the entire
process. We've also been introduced to the Twitter API.

There's more…
Before we go on, let's take a look at the loadJSON() method you've been introduced
to. It's been added to this project's www/framework/utility.js file, as shown in the
following code block:

PKUTIL.loadJSON = function (theURL, completion)
{
 PKUTIL.load(theURL, true, function (success, data)
 {

First off, this is a pretty simple function to begin with. What we're really doing is utilizing the
PKUTIL.load() method (explained later) to do the hard work of calling out to the URL and
passing us the response, but when the response is received, it's going to be coming back to
us in the data variable.

 var theParsedData = {};

The theParsedData variable will store the actual JSON data, fully parsed.

 if (success)
 {
 try
 {
 theParsedData = JSON.parse (data);

If the URL returns something successfully, we try to parse the data. Assuming it is a valid
JSON string, it'll be put into theParsedData. If it isn't, the JSON.parse() method will
throw an exception as follows:

 }
 catch (err)
 {
 console.log ("Failed to parse JSON from " + theURL);
 success = COMPLETION_FAILURE;
 }

Any exceptions will be logged to the console, and we'll end up telling our completion function
that the request failed:

 }
 if (completion)
 {

Instant PhoneGap Social App Development

27

 completion (success, theParsedData);
 }

At the end, we call the completion function and tell it if the request failed or succeeded,
and what the JSON data was (if successfully parsed).

 }
);
}

The PKUTIL.load() method is another interesting beast (for full implementation details,
visit https://github.com/photokandyStudios/YASMF/blob/master/framework/
utility.js#L126). It's defined as follows:

PKUTIL.load = function (theFileName, aSync, completion)
{

First, we'll check to see if the browser understands XMLHttpRequest. If it doesn't, we'll
have to call the completion function with a failure notice and a message describing how
we couldn't load anything. This is shown in the following code block:

 if (!window.XMLHttpRequest)
 {
 if (completion)
 {
 completion (PKUTIL.COMPLETION_FAILURE,
 "This browser does not support
 XMLHttpRequest.");
 return;
 }
 }

Next we set up the XMLHttpRequest() method, and assign the onreadystatechange
function as shown in the following code snippet:

 var r = new XMLHttpRequest();
 r.onreadystatechange = function()
 {

This function can be called many times during the loading process, so we check for a specific
value. In this case, 4 in the following code snippet means that the content has been loaded:

 if (r.readyState == 4)
 {

Instant PhoneGap Social App Development

28

Of course, just because we got data doesn't mean that it is useable data; we need to verify
the status of the load, and here we get into a little bit of murky territory. iOS defines success
with a zero value, while Android defines it with 200, as shown in the following code snippet:

 if (r.status==200 || r.status == 0)
 {

If we've successfully loaded the data, we'll call the completion function with a success
notification and the data:

 if (completion)
 {
 completion (PKUTIL.COMPLETION_SUCCESS,
 r.responseText);
 }
 }

But, if we've failed to load the data, we call the completion function with a failure
notification and the status value of the load:

 else
 {
 if (completion)
 {
 completion (PKUTIL.COMPLETION_FAILURE,
 r.status);
 }
 }
 }
 }

Keep in mind that we're still just setting up the XMLHttpRequest object; we've not actually
triggered the load yet.

The next step is to specify the path to the file, and here we run into a problem on WP7 versus
Android and iOS. On both Android and iOS we can load files relative to the index.html file,
but on WP7, we have to load them relative to the /app/www directory. Subtle to track down,
but critically important. Even though we aren't supporting WP7 in this book, the framework
does, and so it needs to handle cases such as the following:

 if (device.platform=="WinCE")
 {
 r.open ('GET', "/app/www/" + theFileName, aSync);
 }
 else
 {
 r.open ('GET', theFileName, aSync);
 }

Instant PhoneGap Social App Development

29

Now that we've set the filename, we fire off the load:

 r.send (null);

}

Should you ever decide to support WP7, it is critical that even
though the framework supports passing false for aSync, which
should result in a synchronous load, you shouldn't actually ever do
so. WP7's browser does very funny things when it can't load data
asynchronously. For one thing, it loads it asynchronously anyway (not
your intended behavior), and it also has a tendency to think the file
simply doesn't exist. So, instead of loading scripts, you'll get errors
in the console indicating that a 404 error has occurred. And you'll
scratch your head (I did!) wondering how in the world that could be
when the file is right there. Then you'll remember this tip, change
the value back to true, and things will suddenly start working. (You
seriously do not want to know the hours it took me to debug on WP7
to finally figure this out. I want those hours back!)

Configuring the ChildBrowser plugin
Most PhoneGap plugins aren't terribly hard to install or configure, but they will undoubtedly
play a vital role in your app, especially if you need to use a feature that PhoneGap doesn't
provide on its own.

In our case, we need only one plugin to display websites within our app using a plugin called
ChildBrowser.

Getting ready
If you haven't already, you should download the entire community PhoneGap plugin repository
located at https://github.com/phonegap/phonegap-plugins. This will provide you
nearly all the content necessary to use the plugins.

How to do it…
We're going to split this one up into what we have to do for each platform as the steps and
environments are all quite different.

https://github.com/phonegap/phonegap-plugins

Instant PhoneGap Social App Development

30

Plugin configuration for iOS
Let's look first at the steps necessary for installing the ChildBrowser plugin:

1.	 Open the collection of plugins you downloaded and navigate to iOS/ChildBrowser.

2.	 Drag ChildBrowser.bundle, ChildBrowserCommand.h,
ChildBrowserCommand.m, ChildBrowserViewController.h,
ChildBrowserViewController.m, and ChildBrowserViewController.xib
into XCode to the Socializer/Plugins folder as shown in the following screenshot:

Instant PhoneGap Social App Development

31

3.	 At the prompt, make sure to copy the files (instead of linking to them), as shown in
the following screenshot:

4.	 Copy the ChildBrowser.js file to your www/plugins/iOS directory. You can do
this in XCode or in Finder.

Instant PhoneGap Social App Development

32

5.	 Add the plugin to Cordova.plist in Socializer/Supporting Files in XCode:

�� Find the Plugins row, and add a new entry as shown in the following table:

ChildBrowserCommand String ChildBrowserCommand

This can be better represented by the following screenshot:

There, that wasn't too bad, right?

6.	 The final step is to update our www/index.html file to include this plugin for our
app. Add the following lines after the line that is loading the "cordova-2.2.0-ios.
js" script:
<script type="application/javascript" charset="utf-8"
 src="./plugins/iOS/ChildBrowser.js"></script>

Instant PhoneGap Social App Development

33

Plugin configuration for Android
For Android, we'll be using the same plugin, located in the repository you should have already
downloaded from GitHub (although it will be under another directory). Let's start by installing
and configuring ChildBrowser using the following steps:

1.	 Create a new package (File | New | Package) under your project's src folder.
Name it as com.phonegap.plugins.childBrowser.

2.	 Navigate to Android/ChildBrowser/src/com/phonegap/plugins/
childBrowser and drag the ChildBrowser.java file to the newly created
package in Eclipse.

3.	 Go to the res/xml folder in your project and open the config.xml file with the
text editor (usually this is done by a right-click on the file, Open With | Text Editor).

4.	 Add the following line at the bottom of the file, just above the </plugins>
ending tag:
<plugin name="ChildBrowser" value="com.phonegap.plugins.
childBrowser.ChildBrowser"/>

5.	 Navigate to the Android/ChildBrowser/www folder in the repository.

6.	 Copy childbrowser.js to assets/www/plugins/Android.

7.	 Copy the childbrowser folder to assets/www. (Copy the folder, not the contents.
You should end up with assets/www/childbrowser when done.)

8.	 The last step is to update our www/index_Android.html file by adding the
following lines just below the portion that is loading the cordova-2.0.0-android.
js file:
 <script type="application/javascript" charset="utf-8" src="./
plugins/Android/childbrowser.js"></script>

That's it. Our plugin is correctly installed and configured for Android.

There's more…
We've not actually dealt with how to use the plugin we just installed. We'll be dealing with that
as we come to the necessary steps when implementing our project. But there is one important
detail to pay attention to—the plugin's readme file, if available.

This file will often indicate the installation steps necessary, or any quirks that you might need
to watch out for. The proper use of the plugin is also usually detailed. Unfortunately, some
plugins don't come with instructions; at that point, the best thing to do is to try installing it
in the normal fashion (as we've done earlier for the ChildBrowser plugin) and see if it works.

Instant PhoneGap Social App Development

34

The other thing to remember is that PhoneGap is an ongoing project. This means that there
are plugins that are out-of-date (and indeed, some have had to be updated by the author
for this book) and won't work correctly with the most recent versions of PhoneGap. You'll
need to pay attention to the plugins so that you know which version it supports, and if it
needs to be modified to work with a newer version of PhoneGap. Modifications usually aren't
terribly difficult, but it does involve getting into the native code, so you may wish to ask the
community (located at http://groups.google.com/group/phonegap) for any help in
the modification.

Implementing the start view
To create our view, we need to create the file for it first. The file should be called startView.
html, and should live under the www/views directory. The view we're creating will end up
looking like the following screenshot for iOS:

Instant PhoneGap Social App Development

35

The view for Android will look like the following screenshot:

Before we actually create the view though, let's define the structure of our view. Depending
upon the framework in use, the structure of a view can be vastly different. For the YASMF
framework, our view will consist of some HTML that will depend on some pre-defined CSS,
and some JavaScript defined below that same HTML. You could easily make the case that the
JavaScript and inline styles should be separated out as well, and if you wish, you can do so.

The HTML portion for all our views will be of the form of the following code block:

<div class="viewBackground">
 <div class="navigationBar">
 <div id="theView_AppTitle"></div>
 <button class="barButton backButton"
 id="theView_backButton" style="left:10px" ></button>
</div>
<div class="content avoidNavigationBar avoidToolBar"
 id="theView_anId">
</div>
 <div class="toolBar">
 <button class="barButton" id="theView_aButton"
 style="right:10px"></button>
 </div>
</div>

Instant PhoneGap Social App Development

36

As you can see, there's no visible text anywhere in this code. Since everything must be
localized, we'll be inserting the text programmatically via JavaScript.

The viewBackground class will be our view's container. Everything related to the view's
structure is defined within. The style is defined in www/framework/base.css and www/
style/style.css: the latter is for our app's custom styles.

The navigationBar class indicates that the div class is just a navigation bar. For iOS users,
this has instant meaning, but it should be pretty clear to everyone else. This bar holds the title
of the view, as well as any buttons that serve for navigation (such as a back button). Notice
that the title and back button both have id values. This makes it easy for us to access them
in our JavaScript later on. Notice also that we are namespacing these IDs with the view name
and an underscore; this is to prevent any issues with using the same id twice.

The next div class is given the class of content avoidNavigationBar avoidToolBar,
where all the content will go. The latter two classes specify that it should be offset from the
top of the screen and short enough to avoid both the navigation bar (already defined) and the
toolbar (coming up).

Finally, the toolbar is defined. This is a bar much like the navigation bar, but is intended to
hold buttons that are related to the view. For Android this would be commonly shown near or
at the top of the screen, while iPhone and WP7 display this bar at the bottom. (iPad, on the
other hand, would display this just below the navigation bar or on the navigation bar.)

Below this HTML block, we'll define any templates we may need for localization, and then
finally any JavaScript we need.

How to do it…
With all the discussed points in mind, let's create our start view, which should be named
startView.html in the www/views directory, as shown in the following code block:

<div class="viewBackground">
 <div class="navigationBar">
 <div id="startView_AppTitle"></div>
 <button class="barButton" id="startView_startButton"
 style="right:10px"></button>
 </div>
 <div class="content avoidNavigationBar" id="startView_welcome">
 </div>
</div>

Instant PhoneGap Social App Development

37

This code snippet looks similar like our view template defined earlier except that we're
missing a back button and a toolbar. The first is due to the fact that the first view we
display to the user doesn't have anything to go back to, so we omit that button. Views
don't have to have toolbars, so we're omitting it here. The id values have also changed
to include the name of our view.

None of this defines what our view will look like, though. To determine that, we need to
override our framework styles in www/framework/base.css by setting them in www/
style/style.css.

First, we define the look of the navigationBar class, we use the glossy black bar from our
template defined earlier in this chapter, as shown in the following code snippet:

.navigationBar
{
 background-image: url(../images/NavigationBar.png);
 color: #FFF;
 background-color: transparent;
 border-top-left-radius: 10px;
 border-top-right-radius: 10px;
 z-index:1;
 box-shadow: 0px 3px 10px #888;
}

The view's background is defined as follows:

.viewBackground
{
 border-radius: 10px;
 background-color: #000;
}

The toolbar is defined similar to the navigation bar as follows:

.toolBar
{
 background-color: #628799;
}

The content area has a textured background, which is defined as follows:

.content
{
 background-image: url(../images/Background.png);
 background-repeat: repeat;
 background-size: 50% 50%;
 color: #333;
}

Instant PhoneGap Social App Development

38

There rest of the styling is related to specific items in our app (such as avatars),
shown as follows:

.toolBar .profileImage
{
 width: 32px;
 height: 32px;
 display: inline-block;
 line-height: 44px;
 margin-left:10px;
 margin-right:10px;
 background-size: 32px 32px;
 background-repeat: no-repeat;
 margin-top: 6px;
}

.twitterItem
{
 height: auto;
 padding:10px;
 padding-bottom: 20px;
 background-image: -webkit-linear-gradient(top,
 rgba(255,255,255,0.5), rgba(0,0,0,0.25));
 background-repeat: repeat-y;
 border-bottom: 1px solid #000;
}

.twitterItem img
{
 float: left;
 margin-right:10px;
 margin-bottom: 10px;
}

.twitterName
{
 height: 32px;
 line-height: 32px;
}

.twitterRealName
{
 font-weight: bold;
}

Instant PhoneGap Social App Development

39

.twitterScreenName
{
 color: #888;
}

.twitterTweet
{
 margin-top:10px;
 height: auto;
}

.twitterEntities .entity
{
 height:auto;
 position: relative;
 margin-top:10px;
 border-radius: 10px;
 border: 1px solid #888;
 background-color: rgba(255,255,255,.25);
 padding:10px;
}

.twitterEntities A, .twitterEntities A:visited, .twitterEntities
A:link, .twitterEntities A:hover
{
 text-decoration: none;
}

.twitterEntities A.touched
{
 text-decoration: underline;
 text-shadow: 0px 0px 10px #FFF;
}

.twitterEntities .entity.hash, .twitterEntities .entity.user
{
 display: inline-block;
 margin-right:10px;
}

.twitterEntities .entity.hash A
{
 color: #800 !important;
}

Instant PhoneGap Social App Development

40

.twitterEntities .entity.user A
{
 color: #080 !important;
}

.twitterEntities .entity.url
{
 display: block;
}

.twitterEntities .entity.url A
{
 color: #008 !important;
 display: block;
}

That's everything needed to make our start view start to look like a real app. Of course, there's
a lot of pre-built stuff in www/framework/base.css, which you're welcome to analyze and
reuse in your own projects.

Now that we've defined the view and the appearance, we need to define some of the view's
content. We're going to do this by using a hidden div class as shown in the following
code snippet:

<div id="startView_welcome_en" class="hidden">
 <h2>PhoneGap Hotshot Sample Application</h2>
 <h3>Chapter 2: Let's Get Social</h3>
 <p>This application demonstrates interaction
 with a social network (Twitter), including
 the following items:
 </p>

 Retrieving information about users
 Displaying a specific user's stream
 Searching Twitter for a specific hashtag
 Displaying external webpages in a Child Browser
 Using Twitter Web Intents to share to your followers on
 Twitter

</div>

This div block is classed as hidden so that it won't be visible to the user. We'll then use
some JavaScript to copy the content to the content area inside the view.

Instant PhoneGap Social App Development

41

Next comes the JavaScript shown as follows:

<script>

 var startView = $ge("startView") || {}; // properly namespace

Our first act is to put all our script into a namespace. Unlike most of our other namespace
definitions, we're actually going to piggyback onto the startView element (which the astute
reader will notice has not been defined yet; that'll be near the end of this chapter). While the
element is a proper DOM element, it also serves a perfect place for us to attach to, as long as
we avoid any of the cardinal sins of using DOM method names as our own which, I promise,
we won't do.

You might be wondering what $ge does. Since we're not including any JavaScript framework
such as jQuery, we don't have a convenience method to get an element by its ID. jQuery does
this with $(), and because you might actually be using jQuery along with the framework
we're using, I chose to use $ge(), short for get element. It's defined in www/framework/
utility.js as shown in the following code snippet. All it does is act as a shortened version
of document.getElementById.

function $ge (elementId)
{
 return document.getElementById (elementId);
}

Back to our start view script, we define what needs to happen when the view is initialized.
Here we hook into the various buttons and other interface elements that are in the view,
as well as localize all the text and content as shown in the following code snippet:

 startView.initializeView = function() {

 startView.applicationTitleImage = $ge("startView_AppTitle");

 startView.applicationTitleImage.innerHTML = __T("APP_TITLE");

This is our first use of the __T() method. Using this method is how we can properly localize
an image or text. Of course, we're using English as the language for this app, but it never hurts
to prepare for localization and globalization by building it in from the start. If you want to know
more about how the framework supports internationalization, visit https://github.com/
photokandyStudios/YASMF/wiki/PKLOC. We can localize our start button using the
following code lines:

 startView.startButton = $ge("startView_startButton");
 startView.startButton.innerHTML = __T("START");

Instant PhoneGap Social App Development

42

Now we've properly localized our start button, but how do we make it do anything? For this
we can use a little function defined in www/framework/ui-core.js called PKUI.CORE.
addTouchListener() as shown in following code block:

 PKUI.CORE.addTouchListener(startView.startButton, "touchend",
 startView.startApp);

Finally we need to display the correct welcome text in the content area as follows:

 var theWelcomeContent = $geLocale("startView_welcome");
 $ge("startView_welcome").innerHTML =
 theWelcomeContent.innerHTML;

 }

Next up in our start view script, we have the function that is called whenever the start button
is tapped, as seen in the following code block:

startView.startApp = function() {
 PKUI.CORE.pushView(socialView);
 }

</script>

Real short, but packs a punch. This code block displays our social view to the player, which
actually starts the app. If you want to know more about how the pushView() method works,
visit https://github.com/photokandyStudios/YASMF/wiki/PKUI.CORE.pushView.

Whew! That was a lot of work for a pretty simple view. Thankfully, most of the work is actually
done by the framework, so our actual startView.html file is pretty small.

There's more…
It probably doesn't take much to guess, but there's several complementary functions to the
pushView() method – popView, showView, and hideView.

The popView function does the exact opposite of pushView. It moves the views right
(instead of left) by popping them off the view stack.

The showView and hideView functions do essentially the same thing, but simpler. They
don't do any animation at all. Furthermore, since they don't involve any other view on the
stack, they are most useful at the beginning of an app when we have to figure out how to
display our very first view with no previous view to animate.

If you want to know more about view management, you might want to visit https://
github.com/photokandyStudios/YASMF/wiki/Understanding-the-View-Stack-
and-View-Management and explore https://github.com/photokandyStudios/
YASMF/wiki/PKUI.CORE.

Instant PhoneGap Social App Development

43

Implementing the social view
The social view is where we will display a Twitter stream.

Getting ready
Go ahead and create the socialView.html file now based on ours. Then we'll go over the
portions you haven't seen before.

How to do it…
When we're finished with this task, we should have a view that looks like the following
screenshot for iOS:

Instant PhoneGap Social App Development

44

The view for Android will look like the following screenshot:

As with all our views to this point, we're going to start with the HTML portion that describes the
actual view as follows:

<div class="viewBackground">
 <div class="navigationBar">
 <div id="socialView_title"></div>
 <button class="barButton backButton"
 id="socialView_backButton" style="left:10px" ></button>
 </div>
 <div class="content avoidNavigationBar avoidToolBar"
 style="padding:0; overflow: scroll;"
 id="socialView_scroller">
 <div id="socialView_contentArea" style="padding: 0;
 height: auto; position: relative;">
 </div>
 </div>
 <div class="toolBar" id="socialView_toolbar" style="text-
 align: center">
 </div>
</div>

Instant PhoneGap Social App Development

45

Generally, nothing is too difficult here. We've added a style to the inner div block. This takes
away our default div styling (from www/framework/base.css) and forces the height to fit
to the content (instead of to the screen). This means that when we want to scroll, we'll have
the whole content to scroll through.

Speaking of scrolling, in a perfect world, we could just rely on overflow:scroll to work on
all our platforms, but that doesn't always work out well. We can rely on native scrolling in iOS
5, but that has its own share of problems, and rules out any lower platform, and of course,
it doesn't work on Android at any version. So for iOS and Android we'll have to use our own
implementation for scrolling or use a third party scrolling library such as iScroll 4. In this
case, we're using our own implementation, which we'll cover a little later.

First, we need to determine how our toolbar will show its profile images using the
following template:

<div class="hidden" id="socialView_profileImageIcon">
 <a class="profileImage" style="background-
 image:url(%PROFILE_IMAGE_URL%)"
 href="javascript:socialView.loadStreamFor
 ('@%SCREEN_NAME%');">
</div>

Note that we have a little bit of JavaScript that fires when the user touches the image.
This is to load the appropriate stream for that image.

Next we need to define what the tweets should look like within our view using the following
code snippet:

<div class="hidden" id="socialView_twitterTemplate">
 <div class="twitterItem" onclick="socialView.selectTweet(%INDEX%);">
 <img src="%PROFILE_IMAGE_URL%" width=32 height=32 border=0
 />
 <div class="twitterName">
 %REAL_NAME%
 @%SCREEN_NAME%
 </div>
 <div class="twitterTweet">%TWEET%</div>
 </div>
</div>

In this segment of HTML, we've defined what the rest of a tweet should look like. We've given
every div and span a class so that we can target them in our style.css file (located in
www/style). That is mainly to keep the display of the tweet as separate from the content
of the tweet as possible, and to make it easy to change the look of a tweet whenever we
want. Go ahead and take a look at the style.css file to get a good idea of how they will
work to give our tweets some style.

Instant PhoneGap Social App Development

46

Next up, our code:

 var socialView = $ge("socialView") || {};
 socialView.firstTime = true;
 socialView.currentStream = {};
 socialView.lastScrollTop = 0;
 socialView.myScroll = {};

As always, we give ourselves a namespace, in this case socialView. We also declare a few
properties—firstTime, which will track if this is the first time our view is being displayed
or not, and currentStream, which will hold the current visible stream from Twitter. The
lastScrollTop property will record the position the user has scrolled to on our current page
so we can restore it when they return from looking at an individual tweet, and myScroll will
hold our actual scroller as seen in the following code block:

 socialView.initializeView = function ()
 {
 PKUTIL.include (["./models/twitterStreams.js",
 "./models/twitterStream.js"], function ()
 {
 // load our toolbar
 TWITTER.loadTwitterUsers (
 socialView.initializeToolbar);
 }
);

 socialView.viewTitle = $ge("socialView_title");
 socialView.viewTitle.innerHTML = __T("APP_TITLE");

 socialView.backButton = $ge("socialView_backButton");
 socialView.backButton.innerHTML = __T("BACK");
 PKUI.CORE.addTouchListener(socialView.backButton,
 "touchend", function () { PKUI.CORE.popView(); });

 if (device.platform != "WinCE")
 {
 socialView.myScroll = new SCROLLER.
 GenericScroller ('socialView_contentArea');
 }

 }

Instant PhoneGap Social App Development

47

Our initializeView() method isn't terribly complicated. We've highlighted a couple of
lines in the code snippet. However, note that we load our models and when they are complete,
we call the TWITTER.loadTwitterUsers() method. We pass along a completion
function, which we define next so that when Twitter has returned the user data for all five
of our Twitter users, we can call it.

We've also defined our scroller; if you want to see the complete code take a look in
www/framework/scroller.js, but suffice it to say, it is a reasonably nice scroller
that is simple to use. It doesn't beat native scrolling, but nothing will. You're free to replace
it with any library you'd like, but for the purposes of this project, we've gone this route.

 socialView.initializeToolbar = function ()
 {

 var toolbarHtml = "";
 var profileImageTemplate =
 $ge("socialView_profileImageIcon").innerHTML;
 var users = TWITTER.users;

 if (users.error)
 {
 console.log (streams.error);
 alert ("Rate limited. Please try again later.");
 }

One of the first things we do after obtaining the template's HTML is to check on our TWITTER.
users array. This array should have been filled with all sorts of user data, but if Twitter
has rate-limited us for some reason, it may not be. So we check to see if there is an error
condition, and if so, we let the user know. Granted, it's not the best method to let a user know,
but for our example app, it suffices.

 // go through each stream and request the profile image
 for (var i=0; i<users.length; i++)
 {
 var theTemplate = profileImageTemplate.replace
 ("%SCREEN_NAME%", users[i].getScreenName())
 .replace ("%PROFILE_IMAGE_URL%",
 users[i].getProfileImageURL());
 toolbarHtml += theTemplate;
 }

Next, we iterate through each of the users. There should be five users, but you could configure
it for a different number and build up an HTML string that we'll put into the toolbar as follows:

 $ge("socialView_toolbar").innerHTML = toolbarHtml;
 }

Instant PhoneGap Social App Development

48

Our next function, loadStreamFor() does the real hard work in this view. It requests
a stream from Twitter and then processes it for display; this can be seen in the following
code block:

 socialView.loadStreamFor = function (searchPhrase)
 {
 var aStream = new TWITTER.TwitterStream (searchPhrase,
 function (theStream)
 {

Something that we need to note here is that we are now inside the completion
function – the function that will be called when the Twitter stream is obtained.

 var theTweetTemplate =
 $ge("socialView_twitterTemplate").innerHTML;
 var theContentArea = $ge("socialView_contentArea");
 var theStreamHTML = "";

 if (theStream.error)
 {
 console.log (theStream.error);
 alert ("Rate limited. Please try again later.");
 }

Because Twitter may rate-limit us at any time, we check again for any error in the stream.

 for (var i=0; i<theStream.length; i++)
 {
 var theTweet = theStream[i];
 var theTemplate =
 theTweetTemplate.replace("%INDEX%", i)
 .replace ("%PROFILE_IMAGE_URL%",
 theTweet.profile_image_url ||
 theTweet.user.profile_image_url)
 .replace ("%REAL_NAME%",
 theTweet.from_user ||
 theTweet.user.name)
 .replace ("%SCREEN_NAME%",
 theTweet.from_user ||
 theTweet.user.screen_name)
 .replace ("%TWEET%",
 theTweet.text);
 theStreamHTML += theTemplate;
 }

Instant PhoneGap Social App Development

49

Here we're iterating through each item in the stream and building up a large HTML string from
the template we defined earlier.

One important thing to notice is how we're obtaining the data of the tweet using theTweet.
from_user || theTweet.user.screen_name. This is to deal with how Twitter returns a
slightly different data format when searching for a word or a hashtag versus the data format
when returning a user's timeline. Should one of them be undefined, we'll be loading the other,
and since we can only get one of them, it's easier than building a lot of if statements to take
care of it.

 theContentArea.innerHTML = theStreamHTML;
 socialView.currentStream = theStream;
 if (socialView.myScroll.scrollTo)
 {
 socialView.myScroll.scrollTo (0, 0);
 }

Once our stream HTML is built, we assign it to the content area so that the user can see
it. We also store the stream into the currentStream property so that we can reference it
later. When that's done, we scroll to the top of the page so that the user can see the most
recent tweets.

}
 , 100
);
 }

You may wonder, what is that last 100? Well, it's actually a part of the call to the
TwitterStream() method. It's the number of items to return in the stream.

Our next function deals with what should happen when a user taps on a displayed tweet:

 socialView.selectTweet = function (theIndex)
 {
 var theTweet = socialView.currentStream[theIndex];
 tweetView.setTweet (theTweet);
 PKUI.CORE.pushView (tweetView);
 }

This function is pretty simple – all we do is tell the tweet view what tweet was tapped, and
then push it on to the view stack.

 socialView.viewWillAppear = function ()
 {
 document.addEventListener("backbutton",
 socialView.backButtonPressed, false);
 if (socialView.firstTime)

Instant PhoneGap Social App Development

50

 {
 socialView.loadStreamFor ("@photokandy");
 socialView.firstTime = false;
 }
 if (socialView.myScroll.scrollTo)
 {
 PKUTIL.delay (50, function ()
 {
 socialView.myScroll.scrollTo (0,
 socialView.lastScrollTop);
 }
);
 }
 }

In the viewWillAppear() method we're checking if this is the first time the view has been
displayed. If it is, we want to load a default stream for the user. Remember, until now we've
only loaded a stream when the user taps on a profile image in the toolbar. But we don't want
to reload this stream every time our view displays. We could be coming back from the tweet
view and the user might want to continue where they left off in the previous stream. In the
final portion, we're checking to see if we had a previous scroll position, and if so, we scroll the
view to that point. We have to make a delay here since if we set it too early, the view will be
offscreen (and won't scroll), or it will be onscreen, and it'll be noticeable to the user.

The remaining two functions, viewWillHide() and backButtonPressed() are pretty
simple, so while you do need them in your code, we won't go over them here.

That's it! Not terribly difficult, but it does what we need. It displays a list of tweets. Once a user
taps on the tweet, they'll be taken to the tweet view to do more, and that's what we'll look at in
the next task.

In this task, we defined the HTML code and templates for our social view. We also used the
Twitter stream data to construct a Twitter stream that the end user can interact with.

Implementing the tweet view
Our tweet view will be where the user interacts with a given tweet. They can open any links
within the tweet using the ChildBrowser plugin, or they can search any hashtags contained
within the tweet (or any mentions, too). The view also gives the user the opportunity to share
the tweet via Twitter Web Intents.

Instant PhoneGap Social App Development

51

Getting ready
Go ahead and create your www/tweetView.html file based on ours. We'll go over the
code that is new, while leaving the rest for you to review.

How to do it…
For this next task, we should end up with a view that looks like the following screenshot
on an iOS:

Instant PhoneGap Social App Development

52

The view for Android will look like the following screenshot:

This time, we're not going to display the HTML for defining the layout of our view. You may ask
why? This is because you've seen it several times before and can look it up in the code for this
project. We're going to start with the templates that will define the content instead:

<div class="hidden" id="tweetView_tweetTemplate">
 <div class="twitterItem" onclick="tweetView.selectTweet(%INDEX%);">
 <img src="%PROFILE_IMAGE_URL%" width=64 height=64
 border=0 />
 <div class="twitterRealName">%REAL_NAME%</div>
 <div class="twitterScreenName">@%SCREEN_NAME%</div>
 <div class="twitterTweet">%TWEET%</div>
 <div class="twitterEntities">%ENTITIES%</div>
 </div>
</div>

This code is pretty similar to the template in the previous view with a couple of exceptions.
One exception is that we've made the profile image larger, and the second is that we've added
a div class that lists all the entities in the tweet. Twitter defines an entity as a URL, a hashtag,
or a mention of another twitter user. We'll display any of these that are in a tweet so that the
user can tap on them to get more information.

Instant PhoneGap Social App Development

53

The following code snippet shows our template for any entity. Notice that we've given it the
class of entity so that all our entities can have a similar appearance:

<div class="hidden" id="tweetView_entityTemplate">
 <DIV class="entity %TYPE%">%ENTITY%</DIV>
</div>

Next up, we define what each particular entity looks like; in this case, the URL template as
seen in the following code snippet:

<div class="hidden" id="tweetView_urlEntityTemplate">
 <a href="javascript:PKUTIL.showURL('%URL%');"
 class="openInNewWindow url" target="_blank">%DISPLAYURL%
</div>

Note the use of PKUTIL.showURL() in this template. This is a convenience method we've
defined in PKUTIL to use ChildBrowser to show a webpage. We've done the work of combining
how it works on each platform and put it into one function so that it is easy to call. We'll take a
look at it a little later.

Refer to the following code block:

<div class="hidden" id="tweetView_hashEntityTemplate">
 <a href="javascript:socialView.loadStreamFor('%23%HASHTAG%');
 PKUI.CORE.popView();" class="hash">#%TEXT%
</div>

This template is for a hashtag. The big difference between this and the previous template is
that it is actually referring back to our previous view! It does this to tell it to load a stream for
the hashtag, and then we call the popView() method to go back to the view. Chances are
the view won't have loaded the information from Twitter just yet, but give it a second and it'll
reload with the new stream.

Similarly, the code for a mention is as follows:

<div class="hidden" id="tweetView_userEntityTemplate">
 <a href="javascript:socialView.loadStreamFor('@%USER%');
 PKUI.CORE.popView();" class="user" >@%TEXT%
</div>

So that defines how our tweet looks and works; let's see how the view actually creates the
tweet itself:

 var tweetView = $ge("tweetView") || {};
 tweetView.theTweet = {};
 tweetView.setTweet = function (aTweet)
 {
 tweetView.theTweet = aTweet;
 }

Instant PhoneGap Social App Development

54

Here, we've defined the setTweet() method which stores a given tweet into our theTweet
property. Remember, this is called from the Twitter stream view when a tweet is tapped to
send us the tweet to display.

The next method of interest is loadTweet(). We'll skip the initializeView() method
as it is similar to the previous view. The loadTweet() method can be seen in the following
code block:

 tweetView.loadTweet = function ()
 {
 var theTweet = tweetView.theTweet;

 var theTweetTemplate =
 $ge("tweetView_tweetTemplate").innerHTML;
 var theEntityTemplate =
 $ge("tweetView_entityTemplate").innerHTML;
 var theURLEntityTemplate =
 $ge("tweetView_urlEntityTemplate").innerHTML;
 var theHashEntityTemplate =
 $ge("tweetView_hashEntityTemplate").innerHTML;
 var theUserEntityTemplate =
 $ge("tweetView_userEntityTemplate").innerHTML;

First, we obtain the HTML for each template we need – and there are several!

 var theContentArea = $ge("tweetView_contentArea");
 var theTweetHTML = "";
 var theEntitiesHTML = "";

 var theURLEntities = theTweet.entities.urls;
 for (var i=0;i<theURLEntities.length;i++)
 {
 var theURLEntity = theURLEntities[i];
 theEntitiesHTML += theEntityTemplate.replace
 ("%TYPE%", "url")
 .replace ("%ENTITY%",
 theURLEntityTemplate.replace ("%URL%",
 theURLEntity.url)
 .replace ("%DISPLAYURL%",
 theURLEntity.display_url)
);
 }

Instant PhoneGap Social App Development

55

In this code, we've gone through every URL entity that Twitter has sent us and added it to our
entity HTML string. We'll repeat that for hashtags and for mentions, but the code is so similar
that we won't repeat it here.

 var theTemplate = theTweetTemplate
 .replace ("%PROFILE_IMAGE_URL%",
 theTweet.profile_image_url ||
 theTweet.user.profile_image_url)
 .replace ("%REAL_NAME%",
 theTweet.from_user ||
 theTweet.user.name)
 .replace ("%SCREEN_NAME%",
 theTweet.from_user ||
 theTweet.user.screen_name)
 .replace ("%TWEET%", theTweet.text)
 .replace ("%ENTITIES%", theEntitiesHTML);
 theTweetHTML += theTemplate;
 theContentArea.innerHTML = theTweetHTML;

Once we've gone through all the entities, we handle the tweet itself. Note that we had to
handle the entities first because we handled the substitution earlier. Just like the previous
view, we correctly handle the tweet if it is from a search or from a timeline as well.

The next method of interest is the share() method, so we'll skip over the
viewWillAppear(), viewWillHide(), and backButtonPressed() methods. It should
suffice to say, the only different thing the viewWIllAppear() method does than any of the
others is call the loadTweet() method to display the tweet when our view is shown.

The share() method is where we call Twitter's Web Intents, as shown in the following
code snippet:

tweetView.share = function() {
 PKUTIL.showURL("https://twitter.com/intent/tweet?text=" +
encodeURIComponent(tweetView.theTweet.text) + "%20(via%20" +
encodeURIComponent("@" + (tweetView.theTweet.from_user || tweetView.
theTweet.user.screen_name)) + ")");
}

Remember that the showURL() method is a convenience method to open the ChildBrowser
plugin with a specific URL. The URL we are creating has the following components:

ff https://twitter.com/intent/tweet

ff ?text=

ff Encoded tweetView.theTweet.text
ff " (via"

ff "@" combined with the screen name who generated the tweet
ff ")"

https://twitter.com/intent/tweet

Instant PhoneGap Social App Development

56

The idea here is to generate a tweet that looks something like the following:

A tweet that I'm going to tweet to my followers (via @someone)

When added together, the user will be able to go through the following flow to tweet
anything they want:

First, if they aren't already logged in to Twitter, they'll be asked to do so, as in the
following screenshot:

Next, they'll be presented with the tweet they selected, and will be provided with the
opportunity to change it if they want, as in this next screenshot:

Instant PhoneGap Social App Development

57

After the tweet has been sent, they will see the following screen:

We displayed a single tweet and processed the various entities within it. We demonstrated
loading an external site in the ChildBrowser plugin by using PKUTIL.showURL(). We also
demonstrated how to use the Twitter Web Intents to share a tweet.

Instant PhoneGap Social App Development

58

There's more…
Let's take a quick look at PKUTIL.showURL(); this method is used to display a ChildBrowser
plugin with an external site. It's a pretty simple function, but since it takes three different ways
to show the ChildBrowser plugin, we packaged it up into a function that makes it easy to use,
as seen in the following code block:

PKUTIL.showURL = function (theURL)
{
 switch (device.platform)
 {
case "Android":
 window.plugins.childBrowser.showWebPage(theURL);
 break;

For Android, it's simple to call ChildBrowser. Typically the following code snippet shows how
you can call any plugin you want to use in PhoneGap:

default:
 cordova.exec("ChildBrowserCommand.showWebPage",
 theURL);
 }
}

And for iOS, it's very similar to Android's method, except we call it directly instead of using
window.plugins.childBrowser.showWebPage.

Well, you've done it! You've successfully written an app that displays information obtained
from Twitter and that lets the user share it on Twitter. We also installed a plugin for the first
time, and chances are pretty good that you'll need at least the ChildBrowser plugin in nearly
every project you do. Thankfully it's also an easy plugin to install!

Putting it all together
We've almost got a fully functional app on our hands, but we're missing a couple of critical
components – the parts that load it all and start it off. For this, we'll be creating an
app.js file and two HTML files under the www directory.

How to do it…
The index.html and index_android.html files are what kicks everything off by loading
the necessary scripts and calling app.js.

Instant PhoneGap Social App Development

59

First, index.html, which is intended for iOS is as follows:

<!DOCTYPE html>
<html>
 <head>
 <title>Socializer</title>
 <meta name="apple-mobile-web-app-capable" content="yes" />
 <meta name="viewport" content="width=device-width, maximum-
 scale=1.0" />
 <meta name="format-detection" content="telephone=no" />
 <link rel="stylesheet" href="./framework/base.css"
 type="text/css" />
 <link rel="stylesheet" href="./style/style.css"
 type="text/css" />
 <script type="application/javascript" charset="utf-8"
 src="./cordova/cordova-2.2.0-ios.js"></script>
 <script type="application/javascript" charset="utf-8"
 src="./plugins/iOS/ChildBrowser.js"></script>
 <script type="application/javascript" charset="utf-8"
 src="./framework/scroller.js"></script>
 <script type="application/javascript" charset="utf-8"
 src="./framework/utility.js"></script>
 <script type="application/javascript" charset="utf-8"
 src="./app.js"></script>
 </head>
 <body>
 <div class="container" id="rootContainer">
 </div>
 <div id="preventClicks"></div>
 </body>
</html>

Next, index_android.html, which is for Android is as follows:

<!DOCTYPE html>
<html>
 <head>
 <title>Socializer</title>
 <meta name="apple-mobile-web-app-capable" content="yes" />
 <meta name="viewport" content="width=device-width, maximum-
 scale=1.0, target-densityDpi=160" />
 <meta name="format-detection" content="telephone=no" />
 <link rel="stylesheet" href="./framework/base.css"
 type="text/css" />
 <link rel="stylesheet" href="./style/style.css"
 type="text/css" />

Instant PhoneGap Social App Development

60

 <script type="application/javascript" charset="utf-8"
 src="./cordova/cordova-2.2.0-android.js"></script>
 <script type="application/javascript" charset="utf-8"
 src="./plugins/Android/childbrowser.js"></script>
 <script type="application/javascript" charset="utf-8"
 src="./framework/scroller.js"></script>
 <script type="application/javascript" charset="utf-8"
 src="./framework/utility.js"></script>
 <script type="application/javascript" charset="utf-8"
 src="./app.js"></script>
 </head>
 <body>
 <div class="container" id="rootContainer">
 </div>
 <div id="preventClicks"></div>
 </body>
</html>

The app.js file is what actually starts our app. It is also what initializes our localization, sets
our current locale, loads various libraries (like ui-core.js), and finally, starts our app. Let's
look at the code now:

var APP = APP || {};

As usual, we set up our namespace – this time as APP. Next, we'll attach an event listener to
the deviceready event. This event fires whenever Cordova has finished loading its libraries.
We must wait for this event before we can do much of anything, especially anything that relies
on Cordova. If we don't, we'll get errors.

document.addEventListener("deviceready", onDeviceReady, false);

function onDeviceReady()
{
 APP.start();
}

All the function in this code snippet does is call the APP.start() method, which is defined
as follows:

APP.start = function ()
{
 PKUTIL.include (["./framework/ui-core.js",
 "./framework/device.js",
 "./framework/localization.js"],
 function () { APP.initLocalization(); });
}

Instant PhoneGap Social App Development

61

You've already seen PKUTIL.include, so it isn't anything new to you, but here we're loading
three libraries, and including a completion function to call APP.initLocalization.
Because the include command is asynchronous, we cannot continue writing code after this
call that relies on those libraries, or there's a good chance the library wouldn't be loaded in time.
Therefore, we call the initLocalization function when all three libraries are fully loaded.

The next function, initLocalization, initializes all the localization libraries and when
complete, we can load any locales we might need. When those locales are finished loading,
we call the APP.init function and this is where the real work begins.

APP.initLocalization = function ()
{
 PKLOC.initializeGlobalization(
 function ()
 {
 PKLOC.loadLocales (["en-US"],
 function ()
 {
 APP.init();
 });
 }
);
}

The APP.init() function defines our app's basic translation matrix (you may see
translations you've seen before - that's because they originated from here!), and we also
proceed to load the three views we have created into the document using the following
code snippet:

APP.init = function ()
{

Next, we have our basic translation matrix: application titles, start, back, and share, as seen
in the following code block:

PKLOC.addTranslation("en", "APP_TITLE", "Socializer");
PKLOC.addTranslation("en", "START", "Start");
PKLOC.addTranslation("en", "BACK", "Back");
PKLOC.addTranslation("en", "SHARE", "Share");

Next, we call a function in PKUI.CORE called initializeApplication. All this application
does is attach a special event handler that tracks the orientation of the device. But by doing
so, it also attaches the device, the form factor, and the orientation to the BODY element, which
is what permits us to target various platforms with CSS.

PKUI.CORE.initializeApplication ();

Instant PhoneGap Social App Development

62

Next, we load a view – gameView in this case (order doesn't really matter here):

PKUTIL.loadHTML("./views/socialView.html", {
 id: "socialView",
 className: "container",
 attachTo: $ge("rootContainer"),
 aSync: true
 }, function(success) {
 if (success) {
 socialView.initializeView();
 }
 });

We call PKUTIL.loadHTML to accomplish this, and if you're thinking it would be a lot like
PKUTIL.include, you'd be right. We'll look at the definition a little later, but it should
suffice to say that, we're loading the content inside socialView.html, wrapping it with
another div with an ID of socialView and a class of container, attaching it to the
rootContainer, and indicating that it can be loaded asynchronously.

Once it finishes loading, we'll call the initializeView() method on it.

We load the tweet view in the same way as follows:

PKUTIL.loadHTML("./views/tweetView.html", {
 id: "tweetView",
 className: "container",
 attachTo: $ge("rootContainer"),
 aSync: true
 }, function(success) {
 if (success) {
 tweetView.initializeView();
 }
 });

We load the start view almost exactly the same way as all the others. I'll highlight the
difference in the following code block:

 PKUTIL.loadHTML ("./views/startView.html",
 { id : "startView",
 className: "container",
 attachTo: $ge("rootContainer"),
 aSync: true
 },
 function (success)
 {
 if (success)
 {

Instant PhoneGap Social App Development

63

 startView.initializeView();
 PKUI.CORE.showView (startView);
 }
 });

}

The only thing we do differently is to show the startView function after we initialize it. At this
point the app is fully loaded and running, and is waiting for the user to tap the Start button.

There's More…
Let's look at PKUTIL.loadHTML a little closer:

PKUTIL.loadHTML = function(theFileName, options, completion)
{
 var aSync = options["aSync"];

The first thing we do is pull out the aSync option – we need it to call PKUTIL.load. Again,
the warning about WP7 and loading synchronously still applies; it is best to assume you'll
always be using true unless you can rule WP7 out of your supported platforms.

 PKUTIL.load (theFileName, aSync, function (success, data)
 {
 if (success)
 {

At this point, we've successfully loaded the HTML file; now we have to figure out what to do
with it.

 var theId = options["id"];
 var theClass = options["className"];
 var attachTo = options["attachTo"];

First, we extract out the other parameters we need: id, className, and attachTo.

 var theElement = document.createElement ("DIV");
 theElement.setAttribute ("id", theId);
 theElement.setAttribute ("class", theClass);
 theElement.style.display = "none";
 theElement.innerHTML = data;

Next we create a DIV element, and give it the id and class values. We also load the data
into the element.

 if (attachTo)
 {
 attachTo.appendChild (theElement);

Instant PhoneGap Social App Development

64

 }
 else
 {
 document.body.appendChild (theElement);
 }

If possible, we'll attach to the element specified in attachTo, but if it isn't defined, we'll
attach to the BODY element. It is at this point that our element become, a real DOM element
in the display hierarchy.

Unfortunately this isn't all! Remember that our HTML files have SCRIPT tags in them. For
whatever reason, these scripts don't execute automatically when loaded in this fashion;
we have to create SCRIPT tags for them again as shown in the following code block:

 var theScriptTags = theElement.getElementsByTagName
 ("script");

First, we get all the SCRIPT tags in our newly created element. Then we'll iterate through each
one, as follows:

 for (var i=0;i<theScriptTags.length;i++)
 {
 try
 {
 // inspired by
 http://bytes.com/topic/javascript/answers/513633-
 innerhtml-script-tag
 var theScriptElement =
 document.createElement("script");
 theScriptElement.type = "text/javascript";
 theScriptElement.charset = "utf-8";
 if (theScriptTags[i].src)
 {
 theScriptElement.src = theScriptTags[i].src;
 }
 else
 {
 theScriptElement.text = theScriptTags[i].text;
 }
 document.body.appendChild (theScriptElement);

If this code looks somewhat familiar, it's because it is. PKUTIL.include has a variant of it.
The important distinction is that it was only concerned about the data of the script – here we
have to worry about whether the script is defined as an external script. That's why we check to
see if the SRC attribute is defined.

http://bytes.com/topic/javascript/answers/513633-innerhtml-script-tag
http://bytes.com/topic/javascript/answers/513633-innerhtml-script-tag

Instant PhoneGap Social App Development

65

We have also surrounded this in a try-catch block, just in case the scripts have errors
in them:

 }
 catch (err)
 {
 console.log ("When loading " + theFileName +
 ", error: " + err);
 }
 }

When we've finished loading the HTML and the scripts, call the completion function:

 if (completion)
 {
 completion (PKUTIL.COMPLETION_SUCCESS);
 }
 }

If, for whatever reason, we couldn't load the view, we generate a log message and call the
completion function with a failure notification as follows:

 else
 {
 console.log ("WARNING: Failed to load " + theFileName);
 if (completion)
 {
 completion (PKUTIL.COMPLETION_FAILURE);
 }
 }
 }
);
}

As a project, Socializer does what it set out to do, but there's actually so much more that you
could do to it to make it truly useful. Why don't you try one or more of the following challenges:

ff Instead of using Twitter Web Intents, use the native sharing methods. For iOS, this
would likely mean using the ShareKitPlugin. For Android, this probably means using
the Share plugin. While the latter plugin isn't too hard to install, I'll warn you now
that the ShareKitPlugin for iOS is not easy to install.

ff Let the end user select their own initial Twitter accounts, instead of our initial five.

ff Display a loading graphic while the Twitter stream is loading so that the user knows
that the app is working on something.

Instant PhoneGap Social App Development

66

ff Style any links, mentions, or hashtags in the Twitter stream to make them stand
out more.

ff Add code to intercept the success page when a tweet is sent. Use this to close the
ChildBrowser automatically, rather than requiring the user to intuit that they need to
do it for themselves.

ff Try your hand at working with the API of any other social network of your choice.

There are some resources that you might find interesting. You might want to look through
the YASMF documentation to learn more about the framework we're using. Some of these
resources are mentioned as follows:

ff Adobe Photoshop at http://www.adobe.com/PhotoshopFamily

ff GIMP at http://www.gimp.org

ff PhoneGap downloads at http://www.phonegap.com/download

ff PhoneGap documentation at http://docs.phonegap.com

ff YASMF GitHub at https://github.com/photokandyStudios/YASMF/

ff YASMF documentation at https://github.com/photokandyStudios/YASMF/
wiki/

ff Xcode at https://developer.apple.com/xcode

ff Eclipse Classic 4.2.1 at http://www.eclipse.org/downloads/packages/
eclipse-classic-421/junosr1

ff Android SDK download at http://developer.android.com/sdk/index.html

http://www.phonegap.com/download
http://docs.phonegap.com
https://github.com/photokandyStudios/YASMF/
https://github.com/photokandyStudios/YASMF/wiki/
https://github.com/photokandyStudios/YASMF/wiki/
https://developer.apple.com/xcode
http://www.eclipse.org/downloads/packages/eclipse-classic-421/junosr1
http://www.eclipse.org/downloads/packages/eclipse-classic-421/junosr1
http://developer.android.com/sdk/index.html

Thank you for buying
Instant Phonegap Social App
Development

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

PhoneGap Beginner's Guide
ISBN: 978-1-84951-536-8 Paperback: 328 pages

Build cross-platform mobile applications with the
PhoneGap open source development framework

1.	 Learn how to use the PhoneGap mobile
application framework

2.	 Develop cross-platform code for iOS, Android,
BlackBerry, and more

3.	 Write robust and extensible JavaScript code

4.	 Master new HTML5 and CSS3 APIs

PhoneGap Mobile Application
Development Cookbook
ISBN: 978-1-84951-858-1 Paperback: 320 pages

Over 40 recipes to create mobile applications using the
PhoneGap API with examples and clear instructions

1.	 Use the PhoneGap API to create native
mobile applications that work on a wide
range of mobile devices

2.	 Discover the native device features and
functions you can access and include
within your applications

3.	 Packed with clear and concise examples to show
you how to easily build native mobile applications

Please check www.PacktPub.com for information on our titles

WordPress Mobile
Applications with PhoneGap
ISBN: 978-1-84951-986-1 Paperback: 96 pages

A straightforward, example-based guide to leveraging
your web development skills to build mobile applications
using WordPress, jQuery, jQuery Mobile, and PhoneGap

1.	 Discover how we can leverage on Wordpress as a
content management system and serve content to
mobile apps by exposing its API

2.	 Learn how to build geolocation mobile
applications using Wordpress and PhoneGap

3.	 Step-by-step instructions on how you can
make use of jQuery and jQuery mobile to
provide an interface between Wordpress
and your PhoneGap app

PhoneGap 2 Mobile
Application Development
Hotshot: RAW
ISBN: 978-1-84951-940-3 Paperback: 350 pages

Create exciting apps for mobile devices using PhoneGap

1.	 Ten apps included to help you get started on your
very own exciting mobile app

2.	 These apps include working with localization,
social networks, geolocation, as well as the
camera, audio, video, plugins, and more

3.	 Apps cover the spectrum from productivity apps,
educational apps, all the way to entertainment
and games

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Instant PhoneGap Social App Development
	What do we build?
	Creating the project
	Designing the UI/interaction
	Designing the data model
	Implementing the data model
	Configuring the ChildBrowser plugin
	Implementing the start view
	Implementing the social view
	Implementing the tweet view
	Putting it all together

