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Preface

This brief monograph is the first one to deal exclusively with the quantita-
tive approximation by artificial neural networks to the identity-unit opera-
tor. Here we study with rates the approximation properties of the “right”
sigmoidal and hyperbolic tangent artificial neural network positive linear op-
erators. In particular we study the degree of approximation of these operators
to the unit operator in the univariate and multivariate cases over bounded
or unbounded domains. This is given via inequalities and with the use of
modulus of continuity of the involved function or its higher order derivative.
We examine the real and complex cases.

For the convenience of the reader, the chapters of this book are written in
a self-contained style.

This treatise relies on author’s last two years of related research work.

Advanced courses and seminars can be taught out of this brief book. All
necessary background and motivations are given per chapter. A related list of
references is given also per chapter. My book’s results appeared for the first
time in my published articles which are mentioned throughout the references.
They are expected to find applications in many areas of computer science and
applied mathematics, such as neural networks, intelligent systems, complexity
theory, learning theory, vision and approximation theory, etc. As such this
monograph is suitable for researchers, graduate students, and seminars of the
above subjects, also for all science libraries.

The preparation of this booklet took place during 2010-2011 in Memphis,
Tennessee, USA.

I would like to thank my family for their dedication and love to me, which
was the strongest support during the writing of this book.

March 1, 2011 George A. Anastassiou
Department of Mathematical Sciences
The University of Memphis, TN, U.S.A.
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Chapter 1

Univariate Sigmoidal Neural Network
Quantitative Approximation

Here we give the univariate quantitative approximation of real and complex
valued continuous functions on a compact interval or all the real line by
quasi-interpolation sigmoidal neural network operators. This approximation
is obtained by establishing Jackson type inequalities involving the modulus of
continuity of the engaged function or its high order derivative. The operators
are defined by using a density function induced by the logarithmic sigmoidal
function. Our approximations are pointwise and with respect to the uniform
norm. The related feed-forward neural network is with one hidden layer. This
chapter relies on [4].

1.1 Introduction

Feed-forward neural networks (FNNs) with one hidden layer, the only type
of networks we deal with in this chapter, are mathematically expressed as

Nn(w):cho(<aj-x>+bj)7 z€eR®, seN,
=0

where for 0 < j < n, b; € R are the thresholds, a; € R® are the connection
weights, ¢; € R are the coefficients, (a; - ) is the inner product of a; and z,
and o is the activation function of the network. In many fundamental network
models, the activation function is the sigmoidal function of logistic type.

It is well known that FNNs are universal approximators. Theoretically, any
continuous function defined on a compact set can be approximated to any
desired degree of accuracy by increasing the number of hidden neurons. It
was shown by Cybenko [11] and Funahashi [13], that any continuous function

G.A. Anastassiou: Intelligent Systems: Approximation by ANN, ISRL 19, pp. 1
springerlink.com © Springer-Verlag Berlin Heidelberg 2011
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2 1 Univariate Sigmoidal Neural Network Quantitative Approximation

can be approximated on a compact set with uniform topology by a network of
the form N, (x), using any continuous, sigmoidal activation function. Hornik
et al. in [I5], have proved that any measurable function can be approached
with such a network. Furthermore, these authors established in [16], that
any function of the Sobolev spaces can be approached with all derivatives. A
variety of density results on FNN approximations to multivariate functions
were later established by many authors using different methods, for more or
less general situations: [I8] by Leshno et al., [22] by Mhaskar and Micchelli,
[10] by Chui and Li, [8] by Chen and Chen, [14] by Hahm and Hong, etc.

Usually these results only give theorems about the existence of an approx-
imation. A related and important problem is that of complexity: determining
the number of neurons required to guarantee that all functions belonging to
a space can be approximated to the prescribed degree of accuracy e.

Barron [5] shows that if the function is assumed to satisfy certain condi-
tions expressed in terms of its Fourier transform, and if each of the neurons
evaluates a sigmoidal activation function, then at most O (672) neurons are
needed to achieve the order of approximation €. Some other authors have pub-
lished similar results on the complexity of FNN approximations: Mhaskar and
Micchelli [23], Suzuki [24], Maiorov and Meir [20], Makovoz [21], Ferrari and
Stengel [12], Xu and Cao [26], Cao et al. [7], etc.

The author in [I] and [2], see chapters 2-5, was the first to establish neural
network approximations to continuous functions with rates by very specifi-
cally defined neural network operators of Cardaliagnet-Euvrard and ” Squash-
ing” types, by employing the modulus of continuity of the engaged function
or its high order derivative, and producing very tight Jackson type inequali-
ties. He treats there both the univariate and multivariate cases. The defining
these operators ”bell-shaped” and ”squashing” function are assumed to be of
compact support. Also in [2] he gives the Nth order asymptotic expansion for
the error of weak approximation of these two operators to a special natural
class of smooth functions, see chapters 4-5 there.

For this chapter the author is greatly motivated by the important article
[9] by Z. Chen and F. Cao.

He presents related to it work and much more beyond however [9] remains
the initial point. So the author here performs univariate sigmoidal neural
network approximations with rates to continuous functions over compact in-
tervals of the real line or over the whole R, then he extends his results to
complex valued functions. All convergences here are with rates expressed via
the modulus of continuity of the involved function or its high order derivative,
and given by very tight Jackson type inequalities.

vww .allitebooks.conl
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1.2 Background and Auxiliary Results 3

The author presents here the correct and precisely defined quasi-
interpolation neural network operator related to compact intervals, and
among others, improves results from [9]. The compact intervals are not nec-
essarily symmetric to the origin. Some of the upper bounds to error quantity
are very flexible and general. In preparation to establish our results we prove
further properties of the basic density function defining our operators.

1.2 Background and Auxiliary Results

We consider here the sigmoidal function of logarithmic type

1

-~ zeR
1+e = v

s (x)

It has the properties 111_{1 s(z)=1and lim s(z)=0.

This function plays the role of an activation function in the hidden layer of
neural networks, also has application in biology, demography, etc. ([6l, [I7]).
As in [9], we consider

& (z) ::%(S(w—l—l)—s(x—l)), x €R.

It has the following properties:

i) &(z) >0, VzeR,

i) Y d(@—k)=1, VR,
ii) Yo P(nx—k)=1, VeeR;neN,
iv) [ ®(z)dz =1,

v) @ is a density function,
vi) @ is even: ¢ (—z) =P (), > 0.

We observe that ([9])

b (x) = (622; 1) (1+e—w—16_(11+€“”“) B

)

and

N B (e” —e™™) .
o) = ( 2e? ) l e(1+er=1)%(1+eo-1)>2 =0, 220

vww .allitebooks.conl
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4 1 Univariate Sigmoidal Neural Network Quantitative Approximation

Hence

vii) @ is decreasing on R, and increasing on R_.

Let 0 < a <1, n € N. We see the following

o0

Z & (nx—k)= Z & (lnx —k|) <
= —00 k= —o0
tnz — k| > nl7e T I

e2—1 /°° 1 i <
- T
2¢2 ) Jim-acyy (L€ ) (Temo=l) 0 ™
2

V[ e () )

2 - ]. —a —a
- (e 5 >e—"“ '~ 3.1992¢ "7,

We have found that:

viii) forn € N, 0 < a < 1, we get

o0

2 - 1 —a —a
3 @ (nx— k) < (e >e—”“ " = 31992,

2
kE=—o0
L I

Denote by [-] the ceiling of a number, and by |-| the integral part of a
number. Consider z € [a,b] C R and n € N such that [na] < |nb].
We observe that

1= Z@(nm—k)> Z S (nx—k)=
k=—o0 k=[na]

Lnb]
Y P(nw—k|) > @ (jnz — ko),
k=[na]
for any ko € [[na], [nb]] NZ.
Here we can choose kg € [[na], |nb]] NZ such that |nzx — ko| < 1.
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Therefore @ (|nz — ko|) > & (1) = 0.19046485.

Consequently,
[nd)
> O(nz—k)> P (1) =0.19046485.
k=[na]
Therefore we get
iX) o < (— = 5.250312578, YV x € [a,b].

>he fral D (nx—k)

We also notice that

[nb]| [na]l—1 00
Yo omb—k)y= > Smb—k)+ > D(nb—k)
k=[na] k=—o00 k=|nb|+1

> @ (nb— |nb] — 1)
(call e :=nb— [nb], 0<e < 1)

—P(e—1)=d(1—¢)> (1) > 0.

Therefore lim (1 — Z}Eﬁfjm] b (nb — k)) >0

Similarly,
[nb] [nal—1 00
1-— Z b (na—k)= Z é(na—k) + Z P (na — k)
k=[na] k=—o00 k=|nb]+1

> & (na — [na] + 1)
(call § := [na] —na, 0<n<1)

=¢(1-n)=22(1)>0.

Therefore again lim (1 - ZLMJ d (na — k)) > 0.

n—o00 k=[na]
Therefore we obtain that

x) lim ZL nbl @ (nx — k) # 1, for at least some z € [a, b].

n—oo “k=[na]
Let f € C([a,b]) and n € N such that [na] < |[nb].
We introduce and define the positive linear neural network operator
nb
S e £ (£) @ (0 — k)
nb ’
ZIE meﬂ (nx - k)

Gn (f,x) = € [a.b]. (1.1)
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For large enough n we always have [na] < [nb]. Also a < £ < b, iff [na] <
k < [nb].
We study here the pointwise convergence of G, (f,z) to f (x) with rates.
For convenience we call

[nb]

G (fix)= Y f( ) (nz — k), (1.2)
k=[na]
that is G (f.2)
G, (f,z):= ! . 1.3
I S e "
Thus,
G (f,x)
Gn (fyz) = f (@) = - f(x)
Z,E meﬂ (nx — k)
_Gulha) - b( ) S g @ (na — k) )
E}En Hmﬂ (nz — k)
Consequently we derive
) nb)
G (f,2) = f(2)] < 0] Gy (fox)=f(x) Y @(nx—k). (L5
k=[na]
That is
[nb] )
|G (f,2) — £ (2)] < (5.250312578) | (f (E) - f(:c)) @ (nz —k)|.
k=[na]
(1.6)
We will estimate the right hand side of (1.6).
For that we need, for f € C ([a, b]) the first modulus of continuity
wi(fih) = sup|f(z)=f )|, h>0. (1.7)
z,y € [a,b]
[z =yl <h

Similarly it is defined for f € Cpg (R) (continuous and bounded on R). We
have that }lbin%wl (f,h) =0.

When f € Cp (R) we define, (see also [9])

x) = i f(%)@(nx—k% neN, reR, (1.8)

k=—o0

the quasi-interpolation neural network operator.
By [3] we derive the following three theorems on extended Taylor formula.
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Theorem 1.1. Let N € N, 0 < e < § small, and f € cN ([—% +e,5 —8]),’
z,y€ -3 +¢e,% —¢|. Then

N (fosin 1)(k) (siny) , . N
_|_Z (sinz —siny)” + Ky (y,z), (1.9)
k=1

where
1

(N 1)
/m (sinz — sins)V ! ((f o sin_l)(N) (sins)—(f o sin_l)(N) (siny)) cos s ds.
y

Theorem 1.2. Let f € CV ([e,m —¢]), N €N, e >0 small; z,y € [e,m — ¢].
Then

Ky (y,z) = (1.10)

N (focos 1)(k) (cosy) k
—1—2 (cosz —cosy)"+ Ky (y,x), (1.11)
k=1

where
1

Ky (y,z) = oo (1.12)

/w (cosz—coss)™ [(f o cos_l)(N) (coss)—(f o cos_l)(N) (cos y)} sin s ds.
y

Theorem 1.3. Let f € OV ([a,b]) (or f € CY (R)), N € N; x,y € [a,b] (or
z,y € R). Then

N (folnl)(k) (e7Y) b —
DY) e Ry ). (113
k=1 ’
where 1
Ky (y,2) = o (1.14)

x N-1 (N) (N)
e ¥ —e? folni e ?)—(folns e Y } e~ ds.
[ [ (rom) ™ e (rom) )
Remark 1.4. Using the mean value theorem we get

|sinz —siny| < |z —y|, (1.15)
|cosx —cosy| < |z —y|, Va,yekR,

furthermore we have

[sinz —siny| < 2, (1.16)
|cosx —cosy| <2, Vuz,yeR.
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Similarly we have
‘e_f”—e_y‘ <e %z —yl, (1.17)

and
le™® —e Y| <e - e Vua,yclab]. (1.18)

Let g (x) = In1 x, sin™ ' 2, cos™ ' z and assume fU) (9) =0, k=1,...,N.
Then, by [3], we get (fog~')" (g(20)) =0, j = 1,.... N.

Remark 1.5. It is well known that €® > 2™, m € N, for large x > 0.
Let fixed a,, 3 > 0, then [%1 e N, and for large z > 0 we have

wlR

e’ > Jr:(%1 >xh.
So for suitable very large x > 0 we obtain

e > (wg)% =z
We proved for large x > 0 and o, 3 > 0 that

e’ > . (1.19)

e" >n%. (1.20)
That is ;
e’ <n™%, forlargen € N. (1.21)
So for 0 < a <1 we get
e <pe (1.22)

Thus be given fixed A, B > 0, for the linear combination
An= 4 Be—"™”
The closer « is to 1 we get faster and better rate of convergence to zero.

) the (dominant) rate of convergence to zero is n™.

1.3 Real Neural Network Quantitative Approximations

Here we present a series of neural network approximations to a function given
with rates.
We first give.
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Theorem 1.6. Let f € C ([a,b]), 0 <a<1,neN, x € [a,b]. Then

i)
Gy (f,2)— f (z)] < (5.250312578) [wl <f7 n%) +6.3984 || ]| e_nu—a)} Za
(1.23)
and
ii)
1Gn (f) = flloo <A, (1.24)

where ||-|| ., is the supremum norm.

Proof. We observe that

5 (£(%)-7@) 20

<
k=[na]
Lb) .
S () - r@|eme—n =
k=[na] <n>
[nb)
Z f(%)—f(z) & (nx — k) +
{ k = [na]
-l <5
Lnb)
> (E)-r@|eme-n <
k = [na]
el >
[nb)
Z w1<f,§—z>¢(nx—k)+
{ k = [na]
Wl <
[nb)
201flloe > P (na — k) <
{ k= [na)
|k — nx| >nt=@

o (fnl—a> i B (na — k) +

k=—o00
E_ gl < L

n — n«
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o0

21 £l > ®(ne—k) <
(by (viii))
{ k=—o00

|k — nz| > nl=@

CE))

w1 (f, n%) + 2| fll (3-1992) e

1 —a
:m(ﬁﬁﬂ+awmﬂmw5“1\
That is
Lnt] k 1 (1—a)
> (f (E) - f@)) @ (nx — k)| < wy (f, ﬁ) +6.3984 ||f| e ™ .
k=[na]
Using (1.6) we prove the claim. ]

Theorem improves a lot the model of neural network approximation of
[9], see Theorem 3 there.

Next we give
Theorem 1.7. Let f e Cp (R), 0 <a<1,neN, z € R. Then

i)

a)

G (i)~ 1 @) <o (F g ) + 63984 e = (125)

and
ii) .
G ()~ 1|, < o (1.26)
Proof. We see that

|G (f,2) = f(2)] =

i f(%)@(nz—k)—f(z) i & (nz — k)| =

k=—o0 k=—o0

> (r(%)-1@) @0 < 3 r(5)-r@

k=—o0 k=—o0

i f(ﬁ>_f(z)qs(nz—k)+

& (nx—k)=

i f<ﬁ>—f($)¢(n1:—k)§
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o0
Z w1<f7
(T
oo

2[[fll oo > @ (nx —k) <

k=—c0
b >

no

%—x)@(mc—k)—&-

o0

wi (f, n%) > b (nz — k) +

k=—00
E_gl< L
n — n

o0

201flloe > O (ne—k) <
i (by (vili))
{ |k — nz| > nl=@

1 .
o1 (o) + 21l (31992)¢

—a)

_p-e

1
=w (f, ﬁ) +6.3984 || f| e ,

proving the claim. [

Theorem [[7 improves Theorem 4 of [9].
In the next we discuss high order of approximation by using the smoothness
of f.

Theorem 1.8. Let f € CV ([a,b]), n,N €N, 0< a <1, z € [a,b]. Then

i)
G (f,x) — f ()] < (5.250312578) - (1.27)

J

Z ’f]jﬂ {n% +(3.1992) (b — a)] 6_n(l()z>:| N
j=1 :

n® ) noN N| N!
i) assume further f9) (zo) =0, j =1,...,N, for some x¢ € [a,b], it holds

|G (f, 20) — f (20)] < (5.250312578) - (1.28)

[wl(f(N)’i> 1 +(6.3984)||f(N)HOO(b—a)Ne_n(l_&)]’

ne ) neN NI N!
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notice here the extremely high rate of convergence at n~(N+1e,
111)
|G (f) = fll < (5.250312578)- (1.29)

{iv: i [1 (31992)(b—a)je_”(1_a)}+

1\ 1 6384/ -9
[“’1 (f(N)’ n_a> nem Nt N ¢ '

Proof. Next we apply Taylor’s formula with integral remainder.
We have (here £, 2 € [a, b])

k

f (%) :i f(j)'.(x) (% _x>j+/; (f(N) (t) — f™V (@) %dt.

=
Then
P =3 {06, w5
o kNt
oz —k) [T (£ ) - 1 @) (zN _)1) dt
Hence
[nd] [nb]
Z f( ) (nx — k) — f (2) Z ® (nx — k) =
k=[na] k=[na]
Zf(J) % 5 (k )j+
j=1 7! k=[na] "
[nb) x kN1
" (=)
k_%ﬂ@(nz—k) /x (f(N) (t)— fv) (w)) o
Thus
b N rG) (g _
@ (f.2) ( > one- )) =S 0 (- ay) + ),
k=[na] j=1 J:
where

[nb] k (k _t)N—l

Z o mc—k/ (f(N)(t)—f(N)(x)) ﬁdt.

k=[na]
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We suppose that b—a > n%, which is always the case for large enough n € N,
that is when n > |(b— a)_é

Thus ‘%—x’ Sn%or ‘%—x’ >n%.
As in [2], pp. 72-73 for

L3

N—-1
y = / C(r™ @ - 5 @) %(w

in caseof|%—1:| L

—=, we find that

1 1
(N) =
< (f ’n“) noN NI

Notice also for x < % that

IN

(for z < £ or z > £,

k

/E (f(N) ) — AN (x)) Mdt

/% ‘f(N) ) — ) (x)‘ Mdt

kg N-1 k N N

QHf(N)H /" (31 dt:QHf(N)H (5 —=) <2Hf(N)H (b—a)”
0o Jx (N =1)! s N! - ~ N!

Next assume % < z, then

k

/; (f(N) ) — fN) (x)) Mdt

(N —1)!

/: (f(N) (t) — f (x)> Mdt

(N —1)!
/:

n

<

FN (1) — fN) (x)‘ i)]v_l
T = Mt P - e P O
Thus

N
<2 b=a)

N! 7
in all two cases.

vww .allitebooks.conl
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14 1 Univariate Sigmoidal Neural Network Quantitative Approximation

Therefore

[nb] [nb]
Ay (z) = Z & (nx—k)v+ Z b (nx — k).

k=[na] k=[na]
a|< hea|>
Hence
N
[4n (@)] < HZW P (ne—h) (wl (f ﬁ) N!nN”‘>+
& —a|<5w
[nb] N
(b—a)
O R
k=[na]
%—z|>n%
1 1 (b—a)" _p—e
(N) = || Y% n
w1<f ,na>N!nNa+2Hf Hoo 7 (3:1992)e

Consequently we have

N 00 o

[An ()] < wn (f(N) i) L (63084

"no ) noeNN| N!
We further see that
[nb] k J
GZ(( —x)) = Z D (nz — k) (——x)
k=[na]
Therefore
* Y o b _
‘Gn<( x))‘g Z é (nx k)’n T
k=[na]
[nb) L [nb] Ly
b (nz — k) |~ — b (nz—k) |~ —z| <
k= [na] k = [na]
SRR el >
. L] , L]
— @ (nx —k)+ (b—a)’ Z @ (nx — k)

{‘k:’mﬂ { k = [na]

|k — nz| > nl=@
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1 J —nt—®)
< s +(b—a) (3.1992)e
Hence )
G (C=2))| < = + (b—a) (31992) e,
n
forj=1,...,N.
Putting things together we have established
* |f j —n=)
|G (f, ) |<Z +(31992)(b a) e -
N
wr (5 1 L (6.3984) || fM)|| _ (b —a) I
"ne ) palN NI N! ’
that is establishing theorem. ]
We make

Remark 1.9. We notice that

Gu () -3 12D, ((ay) ) =

= 7

Gy (f,x) 1 "9 (z) ;
(D @ =1) - (S @0 = 1) (; G (o) ))

—f(x) =

1
(Z Lnb Hmﬂ (nz — k)) '

Lnb)
G* (f, ) (Zf ( x)j>) - ( 3 @(nx—k)) f(a:)].

k=[na]

Therefore we get

Z f(J) ( .Z‘)j> — f(2)| < (5.250312578)-

S nb)
a (f,z) (._ ( x)j)) _ (k_%ﬂ@(m_k)) f (@),

(1.30)

Ve la,b.

In the next three Theorems [[LTOHI.12] we present more general and flexible
upper bounds to our error quantities.
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We give
Theorem 1.10. Let f € CN ([a,b]), n, N €N, 0< a < 1, z € [a,b]. Then
1)
(4)
foln: (e™®) )
G () =3 ( j), Gu((e7 =) o) 1 (@) <
i=
e—aN (N) e¢—a
(5.250312578) [le ((folni) S ) +
6.3984) (e= — =) () 1a
o f(pom) ] o
2)
Gy (f,2) — f (2)] < (5.250312578) - (1.32)
(4)
N ‘(foln%> ’ (e™®)
>

1 e
e [W +(3.1992) (b — a)’ e )} +

6—aN | (N) e—@
NipaN “1 (fo n%) T pe +

(6.3984) (e= — e=)" H(foln%>(N)H e_nua)] }

N!
3)If fO9 (29) =0, j =1,...,N, it holds

|G (f,20) — f (20)] < (5.250312578) - (1.33)

el (f | )(N) e ¢ n
_— o
NipNa ! N " no

—a _ ,—b N
(6.3984) (jvv et "(f"lné)(N)H e_nua)].

Observe here the speed of convergence is extremely high at W%)Q

Proof. Call F':= folni. Let z, £ € [a,b]. Then
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% k N-1
/ (e_ﬁ — e_s> {F(N) (e_s) — FV (e_‘”)] e %ds.
T

Thus

Lnd] i [nb]
Z @(nz—k)f<a>—f(x) Z ® (nx — k) =
k=[na] k=[nal
N ) 1 Lnb) . [nb]
SRACRI o Y R R T
=1 k=[nal k=[na]
% . N-1
[ =) T e - e
Therefore
[nb]
Gil(f,af)—f(z)( 3 gp(m;_k)) _
k=[na]
N
FO) (e==) . - .
> j(!e ) n((e —e )j7w)+Un(x),
j=1
where -
= Z b (nx —
k=[na]
with

Case of |£ — |§%x
>

i) Subcase of =

i< o [ ()T - e

17

dw <

1 e N—1
o (F ) e (P e <
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k><

vz BN
et N

—aN —a
€ €
- (N) =
NN ! (F " ne ) '

Hence when z > % we have

—aN —a
e e
—- Ny &
Il < Sawwr (F : na)-

Tr— —

w1 (F(N),e_“
n

ii) Subcase of % > 2. Then e < e % and

1 < _E\ N _
|M|SM/€§ (w—e "> ’F(N)(w)—F(N) (e™)|dw <

—x

1 / (w—e_%>N_lwl (F(N)7|w—e_w|)dw§

(N - 1)' ef%

e (P —et) [, (w- ) s

i.e. N
e ¢ e ¢

<= F(N)u —a |

S Nipawer ( ne

when % > x. So in general when |% — w| < n% we proved that
6—aN e~ ¢
= (N) =
|:u’| S N!nanl (F ) ne ) .
Also we observe:

i) When % <z, we get

_k
e n

1 . N-1
= = /, (e w) dw | 2 HF -
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N
L G 1 L
— [ee) S [e’) (6 a
(N =1)! N N!

ii)” When % > x, we obtain

1 e’ e \N-1 N
= = (/e-g (w_e ) d“’)zHF( )Hoo

2PN (e s\ N _ 2]
S | S 1" (e T _ . n) < 2P Mo
N! N!
We proved always true that

— e_b)N .

(e_“ — e_b)N .

2 (e )V OO

lul <

N!
Consequently we find
|nb] [nb]|

U@l S @me-R+ > @r— k)l <

k= [na) k= [na]

|~ <= norl > s
e (P, S B — k
et (P ) )| 22 2w =h) )+

2 (e~ — e )N || F(V) o
EE N I
k=—00
|k — nz| > nl=@
—aN —a 2 (e=a — _n\N F(N) B
e - Wi (F(N)’ 6_) + < (6 e ) || ||oo> (31992) e_n(l ).

So we have proved that

—alN

e
U, (z)| < ~—
[Un (@)l < NlnaN ne N!

—a  —n\N
ot (F(N)7 e‘“) I (6.3984) (e7* —e™") ||F(N)||ooe—n(1_”‘).

We also notice that

G, ((6_' — e_f”)j ,x)‘ <G} (|e_' — e_z|j ,z) <
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[nb] j

—aj vk L 7 — —aj _ ~ — —aj_
e~ YG (| x| ,z) e Z @ (nx — k) - e
k=[na]
[nb] j [nb] k J
B(nz—k) |~ - Bnz—k) |~ —a| | <
(nx )‘n x| + Z (nz )‘n x| | <
k=[na) k=[na|
o=l <am o=l > 5=
1y , [nb]
e W—&—(b—a)J Z b (nx—k)| <
k = [na]
o= 5| > 5=
i | L (3.1992) (b= a)f e
e -y (3. ) a) e .
Thus we have established
* —- —z\J —aj 1 j _—n=®
’Gn((e — ) w)‘ge I | =+ (3.1992) (b a)’ e :
n
for j=1,..., N, and the theorem. [

We continue with

Theorem 1.11. Let f € CV ([-3 +¢,5 —¢]), nnN e N, 0 <e < I, ¢
small,xe[—%+€,%—6},0<0¢<1. Then

1)

N osin™? @) sin x ;
Gn(f,a:)—z(f j)! ( )Gn ((sin-—sinx)y,x)—f(x) <

(1.34)
w1 ((f o sin_l)(N) , n%)

(5.250312578) N

+

(3.1992)2+1 | (£ o sin=!) ™| -
o e_n
N ’

2)
|G (f, ) — f(x)] < (5.250312578) -
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@
{XN: ‘(fosm ) (smx)‘ [%4_(3.1992) (r— 26y =" cx)} N

4!

w1 ((fosin_l)(m ; n%) (3.1992) 2V+ N) )

(PR e ™) e
(1.35)

3) assume further ) (20)=0, j=1,..., N for some xo € [-Z+¢e 2 —¢],

1t holds

G (f,20) — f (z0)] < (5.250312578) - (1.36)

wr ((fosin)™ L) . ((3.1992) g+ H(fOSin_l)(N)HOO) e_n<1—a>]

[ noN N| N!

Notice in the last the high speed of convergence of order n~®WN+1),

Proof. Call F := fosin™! and let %,x € [—% +e,5 — 6}. Then

k FU (sinz) [k ) J
f (E) — = Z (sma —smx) +

Jj=1

E N-1

1 n k

o / (sin — —sin s) (F(N) (sins) — FN) (sin x)) dsin s.
-1/, n

Hence
[nd] Lnb]
Z f( ) (nx — k) — f (2) Z ® (nx — k) =
k=[na] k=[na]
N ) (s Lnb] j [nb]
FU) (sin z) ko J 1
Z# Z d(nx—k) (mnE—smx) —|—m Z D (nz—k)-
=1 k=[na] k=[na]

k 1 N-1
/ (sin — —sin s) (F(N) (sins) — FN) (sin z)) dsin s.
. n
Set here a = —5 +¢, b= 5 —¢. Thus

[nb]

G (fx)—f@) Y ®me—k) =

k=[na]

iMG* ((sln —sinz)’ | )+M (),
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where
[nb]
M, (z) == Z d (nx — k) p,
k=[na]
with

k

1 o k N-—1

__ - o (N) (e (N ) A
PN ) /z (Sln no o s) (F (sins) — F (sinz) | dsinss.
Case of |[E — 2| < L.

i) Subcase of % > x. The function sin is increasing on [a, b], i.e. sin

sin x.

Then

1
ol < ) 1)!/1

1 sin% k N—-1

in £ N-1
1 sin P k
m/s (sing—w> w1 (F(N)7|w—sinx|> dw <

in z

=

>

n

k
n

3 N-1
(sin——sins) ‘F(N) (sins) — FV) (sinz)‘dsins:
n

ko N
o (FO Jsin B _ ging) B —sinz)
n N!
N
k (£ —z) 1 1
(N) | An ) Ny -\~
w1<F "In xD N! Swl(F 7na>naNN!'

So if £ > z, then

1 1
< N =) =
Pl < @ ( "na ) Nipa¥

ii) Subcase of % < z, then sin% < sinz. Hence

1 v AN
lp| < m/ (sins—sin—) ’F(N) (sins) — F(V) (sinw)‘dsins:
- Je n

n

1 sin x k N—1
o L (0mR) [P @ nnfan s

sin

1 sin z k N—-1
-1t /b . (w—sin;) w1 (F(N),|w—sinx|)dw§

in £
sin k N-1
)/ (w—sin—) dw <
sin% n

. .k
sinx — sin —

! w1 (F(N),
)! n

(N — 1)
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N
1 k (sinx—sinﬁ)
wp (FWN) g — 2| ) 2 k) <
(N -1 ( n N
1 1 k| 1 1
(N) _— _ (N) =
NI (F ’na> T noN N1t (F 7n”‘>

We got for % < z that

1 1
< (PO )

So in both cases we proved that

1 1
Ip| < w1 (F(N)’ _> _ -

nOé

when ‘% —x’ < n%
Also in general (£ > z case)

1 ok N\ ™)
lp| < o / sin —~ —sin s dsins | 2 HF H =
in E N-1
1 Sin n k
o1 (/ (sin - — w) dw) 2 HF(N)H =
- . sinx n o0

1 k N 2N+1
m(si“;‘sm) 2| P <5

Also (case of £ < z) we get

1 x k N-—1
Il < o </k (sins — sin ﬁ) dsins) 2 HF(N)HOO =
1 sin x k N-1
- —sin— (N) —
i ([ (k) el -

n

7.

. kY
1 (smx—smﬁ) QHF(N)H < oN+1 HF(N)H
(N —=1)! N o NI )
So we obtained in general that
(N)
= =7
Therefore we derive
[nb] |nb]
M, (@) < > Sa—kK)ld+ >, Pnx—k)| <
k=[na] k=[na]
(ko= ]<7w) (k:|z= 5 |>5)

vww .allitebooks.conl
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( L (FO), n%)) | (3.1002)27+1 HF(N)H IR

NlnaN N!

So that

’ no

NlnaN N!

V) L N+1 .
M, ()] < wi ( )+(3.1992)2 HF(N)H e

Next we estimate
’G* ((sm —sinz)’ )’ <Gy (|sin- —sinz|! ,x) <
[nd]

Gy, <|-—z|j,z> = Z @(nz—k)’%—z

k=[na]

J
<

(work as before)
1 j _pt-e
—7 T (3:1992) (r —20)" .

Therefore
. 1 ‘ .
‘GZ <(Sin' —sinz)’ ,x)‘ < i +(3.1992) (7 — 2¢)’ e_”(l >’
n
j=1,..,N.
The theorem is proved. .

We finally give

Theorem 1.12. Let f € OV ([e,7—¢]), n, N € N, e > 0 small, v € [e, 7 — €],
0<a<1. Then

1)
G0 (F.2) - XN: (focos—:;)!(j) (cos ) G ((COS_ ~cosz) w) i)l <
"~ Ny (1.37)
(5.250312578) = ((f O;Ziv_;\;)!( )’”%J +
(3.1992) 2N+1 H focos™ )H -
N :
2)

|G (f, ) — f(x)] < (5.250312578) -
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0 COS™ @ CcoS T
{ZN: ’(f 1.) ( )’ {%+(3.1992) (r—2e) e ™" “)} +

4!

1

—1\ (V)
wi ((focos™t s NH s
1(( ) ) ((3 1992)2 H Focos ( )H ) (1) }’

NlnaN N!

(1.38)

3) assume further f9) (zg) =0, j = 1,..., N for some z¢ € [e,7 —¢], it
holds

Gy (f,20) — f (20)] < (5.250312578) - (1.39)

wr ((focos)™ L) . ((3.1992)2N+1 H(focos_l)(N)Hoo) e-n<1—a>] |

[ noNN!

N!
Notice in the last the high speed of convergence of order n~®N+1),
Proof. Call F := focos™! and let £,z € [,7 —¢]. Then
N .
k FU) (cos ) k /
f(a) - :Z (cos;—cosz) +
Jj=1
1 k k N-1
o) /z (cos ..~ cos s) (F(N) (coss) — F™) (cos x)) dcoss.
Hence
[nd] [nb]
Z f( ) (nz — k) — f (2) Z b (nx —k) =
k=[na] k=[na]
N j Lnb] j [nb]
FU) A J 1
71 k=[na] k=[na)

B N-1
/ (cos % — cos s) (F(N) (coss) — FY) (cos 1:)) d cos s.

Set here a = ¢, b =m — e. Thus

Gr (f,x) Z@nm— =

N 1
ZMG* ((cos —cosz)’, )+@” (@),
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where
[nb]
O, (z) := Z & (nx — k) \
k=[na]
with

k N-1
1 w
A= = / (cos %—cos s) (F(N) (coss) — FNV) (cosx)) dcoss=

ﬁ /COS% (cos% = w) o (F(N) (w) — F™) (cos z)) dw.

oS T
Case of |[£ — 2| < L.
n n
i) Subcase Of% > x. The function cosine is decreasing on [a, b] , i.e. cos % <

COS T.
Then

cos x N—-1
A < ﬁ/ (w — cos E) | (F(N) (w) — FV) (cosx)) |[dw <

sk n
os =

1 cos T k N—1
m/c N (w—cosﬁ> wr (F(N)7|w—cosx|> dw <

oS

N
w1 F(N),COS.%'—COSE (cosx—cosﬁ) <
n N!
k

o - &" ) L) _L
nl < FN) — )
n) N! _wl( 7n”‘) noN N1

1 1
Ny —
Al wr (F 7n’1> noeN NI

€T —

o ( OV,

So if £ > z, then

ii) Subcase of % < z, then cos k > cosx. Hence

n

CcOos E
n

1 N-1
|)\|§m/ (COS%—IU) ‘F(N)(w)—F(N)(cosx)‘dwg

1 cos% k N—-1
m/c (COSE—U}> w1 (F(N),w—cosz> d’lUS

oS T

cos k N-1
1 k n k
N 1)!w1 (F , COS - cosa:) /COSI (cos - w) dw <

B N
(Nil),wl (F(N), S—JUD (cos £ Ncosm) -
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[ | 1
r_ il N =) —
We proved for % < z that

n " ne
1
(N) _
|/\| <w (F ) NlpaN -

k
——2x

iwl (F(N)7
n

N!

So in both cases we got that

1
(N)
|A|§w1 (F ’I’La> ’I’LQNN!7

when |% —1:| < ni&
Also in general (% > x case)

1 cos T k N-1
Al < vo </COSk (w—cos ﬁ) dw) 2 HF(N)HOO
N (COS““ ‘“%) R N e

Also (case of % < z) we obtain

IN

3

5 k N-1
1 cos Y k
< g ([ (k) ) 2]
- ) cosx n o0

1 k N (v 2N+1
o ) 2 ||
NI (COS CO”) 2 HF H N HF Hoo
So we proved in general that
A < =[]

Therefore we derive

|nb] [nb|

10, ()] < Yoo Bz —k) N+ S dma—k)\ <

k=[na] k=[na]
CIREES (i fe 5o )

1 1 oN+1 (1—a)
Ny =)= (V) —n
(“’1 (F ’n”‘) naNN!> (3:1992) HF Hooe ‘

So that

) no

noN N1

(F(N) L)

16 ()] < 2 + (3.

noN :

(N) H e

27
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Next we estimate

‘GZ ((cos~ — CoS x)j ,x)’ <G <|cos~ — cosx|j 71‘) <

Lnb) :
Gy, <|._z|j,z> :k%ﬂ@(nz—k)‘%—zj <

(work as before)
(1)

1 .
- _ J ,—n
—7 T (31992) (r — 2¢)” e

Therefore
, 1 , w
’GZ ((cos- —cosz)’ ,x)‘ < 5t (3.1992) (7 — 2¢)’ e
j=1,..,N.
The theorem is proved. [

1.4 Complex Neural Network Quantitative
Approximations

We make

Remark 1.13. Let X := [a,b], R and f : X — C with real and imaginary
parts f1, fo: f = fi+ifs, i =+/—1. Clearly f is continuous iff f1 and fo are

continuous.

Also it holds ' '
F9 (@) = 9 (@) +ifd (), (1.40)

for all j =1,...,N, given that fi, f» € CN (X), N € N.

We denote by Cp (R,C) the space of continuous and bounded functions
f:R — C. Clearly f is bounded, iff both fi1, fo are bounded from R into R,
where f = f1 +ifs.

Here we define

Gn (f,2) =Gy, (f1,2) +iGy, (fo, ), (1.41)

and

G (f,2) =G (f1,2) +iGp (f2, ). (1.42)

We observe here that

G (f,2) = [ (@) < [Gn (f1,2) = f1 (0)[ +|Gn (f2, ) = fa ()], (1.43)
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and

1Gn (f) = fllo S NG (f1) = filloo + 1Gn (f2) = foll o - (1.44)

Similarly we get

G (f2) = [ ()| < |Gn (fr,2) = fi (@) + |Go (fo, ) = f2 (2)],  (1.45)
and
|G (f) — fHOO <||Gn (f1) - fl”oo + ||Gn (f2) — f2||oo- (1.46)
We give

Theorem 1.14. Let f € C([a,b],C), f = fi+ife, 0 < a <1, n €N,
x € [a,b]. Then

i)
G (f, ) — f ()] < (5.250312578) - (1.47)

(o (1 ) (e ) ) + 03980 Ul 1) e | =,

and

i)
1Gn (f) = flloo < ¢1- (1.48)
Proof. Based on Remark and Theorem ]
We give

Theorem 1.15. Let f € Cp (R,C), f=fi+ifs,0<a<1l,neN, zeR.
Then

i)
G (fi2) = f(2)] < (wl (fh ni’l> + w1 (fz, niO‘)) + (1.49)
(6.3984) (| full oo + 1 f2ll o) €™ = 0,
i) B
1Gn (f) = £l < o (1.50)
Proof. Based on Remark [I[.1T3] and Theorem [T.7] ]

Next we present a result of high order complex neural network approximation.

Theorem 1.16. Let f : [a,b] — C, [a,b] C R, such that f = fi1+ifs. Assume
fi,foe CN([a,b]), n,NeN, 0 < a <1, xca,b]. Then
i
Gy (f,2) — f (2)] < (5.250312578) - (1.51)
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0) (p G (
{i (49 @) ;\fz (@))) %H&lg%) (b_a)je_nu_a)} X

j=1
[ (A, ) +on (7. %)

neN N

((6'3984><Hff“\\m+HfWHQ “"”)N) ”

_|_

N!

it) assume further ffj) (z9) = fg(j) (x9) =0, 5 =1,....,N, for some xg €
[a,b], it holds
|G (f, o) — f (w0)] < (5.250312578)- (1.52)

(@ (A, )+ (£, %))

neN N

AR

_|_

N!

notice here the extremely high rate of convergence at n~ N+,

iii)
1Gn (f) = fll. < (5.250312578)-

])H >{n0‘ +(3.1992) (b — )Je—"““}ju

[@1 (A7) +en (A7 38))

noN N| +

( ~ (1.53)

(L), o)

Proof. Based on Remark and Theorem ]
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Chapter 2

Univariate Hyperbolic Tangent Neural
Network Quantitative Approximation

Here we give the univariate quantitative approximation of real and complex
valued continuous functions on a compact interval or all the real line by
quasi-interpolation hyperbolic tangent neural network operators. This ap-
proximation is obtained by establishing Jackson type inequalities involving
the modulus of continuity of the engaged function or its high order derivative.
The operators are defined by using a density function induced by the hyper-
bolic tangent function. Our approximations are pointwise and with respect
to the uniform norm. The related feed-forward neural network is with one
hidden layer. This chapter relies on [4].

2.1 Introduction

The author in [I] and [2], see chapters 2-5, was the first to present neural net-
work approximations to continuous functions with rates by very specifically
defined neural network operators of Cardaliagnet-Euvrard and ”Squashing”
types, by employing the modulus of continuity of the engaged function or its
high order derivative, and producing very tight Jackson type inequalities. He
treats there both the univariate and multivariate cases. The defining these
operators ”bell-shaped” and ”squashing” functions are assumed to be of com-
pact support. Also in [2] he gives the Nth order asymptotic expansion for
the error of weak approximation of these two operators to a special natural
class of smooth functions, see chapters 4-5 there.

For this chapter the author is inspired by the article [5] by Z. Chen and
F. Cao.

He does related to it work and much more beyond. So the author here gives
univariate hyperbolic tangent neural network approximations to continuous
functions over compact intervals of the real line or over the whole R, then

G.A. Anastassiou: Intelligent Systems: Approximation by ANN, ISRL 19, pp. 33
springerlink.com © Springer-Verlag Berlin Heidelberg 20
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34 2 Univariate Hyperbolic Tangent Neural Network

he extends his results to complex valued functions. All convergences here are
with rates expressed via the modulus of continuity of the involved function or
its high order derivative, and given by very tight Jackson type inequalities.

The author here comes up with the ”right” precisely defined quasi-
interpolation neural network operator, associated with hyperbolic tangent
function and related to a compact interval or real line. The compact intervals
are not necessarily symmetric to the origin. Some of the upper bounds to
error quantity are very flexible and general. In preparation to establish our
results we give important properties of the basic density function defining
our operators.

Feed-forward neural networks (FNNs) with one hidden layer, the only type
of networks we deal with in this chapter, are mathematically expressed as

Nn(w):cho(<aj-x>+bj)7 z€eR®, seN,
=0

where for 0 < j < n, b; € R are the thresholds, a; € R® are the connection
weights, ¢; € R are the coefficients, (a; - z) is the inner product of a; and
x, and o is the activation function of the network. In many fundamental
network models, the activation function is the hyperbolic tangent. About
neural networks see [6], [7], []].

2.2 Basic Ideas

We consider here the hyperbolic tangent function tanhz, x € R :

T _ o 621 -1
tanh x := = .
et +e T 2w 4]

It has the properties tanh0 = 0, —1 < tanha < 1,V 2 € R, and tanh (—z) =
— tanh z. Furthermore tanhx — 1 as ¢ — oo, and tanhx — —1, as x — —o0,
and it is strictly increasing on R. Furthermore it holds % tanhz = ﬁ > 0.

This function plays the role of an activation function in the hidden layer
of neural networks.

We further consider
1
U (z) = Z(tanh(x—kl) —tanh(z — 1)) >0, VzeR.

We easily see that¥ (—z) = ¥ (x), that is ¥ is even on R. Obviously ¥ is
differentiable, thus continuous.
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Proposition 2.1. ¥ (z) for x > 0 is strictly decreasing.

Proof. Clearly

v (z) 1 ( 1 - 1 )
dr 4 \cosh®(z+1) cosh?(z —1)

B (cosh® (z — 1) — cosh? (z + 1))
~ 4cosh? (z + 1) cosh? (z — 1)

B ( cosh (x — 1) + cosh (z + 1)

4 cosh? (z 4 1) cosh? (z — 1)

Suppose © — 1 > 0. Clearly x — 1 < x + 1, so that 0 < cosh(z —1) <
cosh (z + 1) and (cosh (x — 1) — cosh (z + 1)) < 0, hence ¥’ (z) < 0.

Let now  — 1 < 0, then 1 — 2 > 0, and for x > 0 we have
0 < cosh(z—1) = cosh(l—=z) < cosh(l+=xz) = cosh(z+1). Hence
(cosh (z — 1) — cosh (z + 1)) < 0, proving again ¥’ (z) < 0. Also ¥ is con-
tinuous everywhere and in particular at zero.

) (cosh (z — 1) — cosh (z + 1)).

The claim is proved. n
Clearly ¥ () is strictly increasing for < 0. Also it holds lim ¥ (z) =0 =
lim ¥ ().

Infact ¥ has the bell shape with horizontal asymptote the z-axis. So the
maximum of ¥ is zero, ¥ (0) = 0.3809297.

Theorem 2.2. We have that > oo _W(x—i)=1, VaxeR.

i=—00

Proof. We observe that

o0

Z (tanh (z —4) — tanh (z — 1 —14)) =

i=—00

o] -1
Z tanh (x — i) — tanh (z — 1 — 7))+ Z (tanh (x — i) — tanh (z — 1 — 7))
=0

i=—00

Furthermore (A € Z7T)

(tanh (z — i) — tanh (z — 1 — 1)) =

o

@
Il
=)

A
lim (tanh (z — i) —tanh (z — 1 —14)) =

A—00 4
=0
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(telescoping sum)

lim (tanhz — tanh (z — \)) = 1 + tanhz.

A—00
Similarly,
—1
Z (tanh (z — ) — tanh (z — 1 —14)) =
—1
lim (tanh (z — 4) — tanh (z — 1 — 1)) =

A—00 |
i=—

)\lim (tanh (z + \) — tanh ) = 1 — tanh .
So adding the last two limits we obtain

i (tanh (x — i) —tanh (z —1—14)) =2, VzeR.

1=—00

Similarly we obtain

Z (tanh (z +1—4) —tanh (z —4)) =2, VzeR.
Consequently
Z (tanh (z+1—4) —tanh(z —1—14)) =4, VzeR,
proving the claim. n
Thus -
Z Unx—1)=1, VneN VzzeR.

Furthermore we give:
Because ¥ is even it holds > o0 W (i—z) =1, Vo € R.

Hence >0 W (i+a) = 1, Va €R, and Yo G W(x+i) =1,V
z € R.
Theorem 2.3. It holds [*_ ¥ (z)dx = 1.
Proof. We observe that

/OOW(x)dac: i /jo&P(x)dac: i /:W(x—&-j)dac:

-0 j=—00 j=—o00
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/

So ¥ (z) is a density function on R.

oo

1
> W (z+7) dx:/‘wx:L .
0

j=—o00

Theorem 2.4. Let 0 < a < 1 and n € N. It holds

oo

Z ¥ (ne—k)<e' e

(1-a)

k=—o0
s na — k| > ntme

Proof. Let x > 1. Thatis0<z—1<z+ 1.
Applying the mean value theorem we obtain
1 1 1 1

U(r)=--2- = — ,
(@) 4 cosh?¢ 2 cosh?¢

for some x — 1 <& <z + 1.
We get cosh ( — 1) < cosh& < cosh (x + 1) and cosh? (x — 1) < cosh? ¢ <
cosh? (z +1).

Therefore
< ! < !
cosh®¢ ~ cosh? (z — 1)’
and
1 1 1 4 2
0 L S S S S S
2cosh” (x —1) 2 (en~1 4 el-o) (er=1 +el—2)

. 2
From ! +€17% > ¢?~! we obtain (e®~* +e!7%)" > ¢2(@=1 and

1 1
(ex—1 +61—x)2 < e2(@—1)"

So that

That is we proved

Thus

o0 oo

> W (nz — k) = > ¥ (|nz — k|) <

k= —o0 k= —o0
s nx — k| > nt-e s nx — k| > nt-
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o oo
9¢2 Z (e—2|nw—k|> < 262/ =27
(nl—a_l)
k=—o0
{ s na — k| > ntme
oo
= 62/ e_ydy = 626_2(’”(170‘)_1) = 64 . 6_2”’(1_&)7
2(nl-a—1)
proving the claim. -

Denote by |-] the integral part of the number and by [-] the ceiling of the
number.
We further give

Theorem 2.5. Let x € [a,b] CR and n € N so that [na] < |nb|. It holds

1 1
< 4.1488766 = ———.
St @ (na — k) (1)
Proof. We observe that
0o |nb]
1= Z ¥ (nx —k) > Z U (nx—k)=
k=—00 k=[na]
[nb]
> W (nw - k|) > ¥ (jnz — ko),
k=[na]

Y ko € [[na], [nb]] NZ.
We can choose kg € [[na], [nb]] N Z such that |nz — ko| < 1.
Therefore

U (|na — ko) > @ (1) = i (tanh (2) — tanh (0)) =

1 1 /e?—e? 1/e*—1
—tanh2=- —— | = = | —— | = 0.2410291.
g 4(e2+e_2> 4<e4+1>

So ¥ (1) = 0.2410291.
Consequently we obtain
[nb]
> W (jnx — k|) > 0.2410291 = ¥ (1),
k=[na]

and

1 1
< 4.1488766 = ——,
St ¥ (na — k) v (1)

proving the claim. n
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Remark 2.6. We also notice that

|nb] [na]—1

Y wnb—k)= Y @mb—k) + i @ (nb—k

k=[na] k=—o00 k=|nb]+1

> W (nb— |nb] — 1)
(calle :=mb— |nb],0<e<1)

=VU(e-1)=0(1-e)>¥(1)>0

Therefore RILH;O (1 - E;Lcib(Jm} v (nb— k)) >0

Similarly,
|nb] [na]—1 00
1- Z U (na—k)= Z ¥ (na—k)+ Z ¥ (na — k)
k=[na] k=—o00 k=|nb]+1

> (na— [nal +1)
(callm = [na]l —na, 0<n<1)
=¥(1-n=v¥(1)>0.

Therefore again lim (1 — Z,Eanmﬂ (na — k)) > 0.
Therefore we find that

[nd]
lim Z U (nx—k)#1,
k=[na]

for at least some x € [a, b)].

Definition 2.7. Let f € C ([a,b]) and n € N such that [na] < |nb|.
We introduce and define the positive linear neural network operator
nb

ZZE: Hmﬂ (k)w(n‘r_k)

FTL I = J
(.f $) Z]Enbrjna] (TLJL‘ — k)

€ [a.b]. (2.1)

For large enough n we always obtain [na] < |[nb]. Also a < £ < b, iff

[na] <k < |nb). !

We study here the pointwise and uniform convergence of F, (f,x) to f (x)
with rates.
For convenience we call

-3 i(Yrta-n, ©2)

k=[na]
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that is Fr (f.2)
Py (f,x) = — : . (2.3)
ZZE: meﬂ (nx - k)
So that, .2
E (f
Fn ) - -
(fiz)—f(2) = E]Lcanna-‘ (nz — k) f ()
_Fp(e) - b( ) S ¥ (n — k). o)
Z}E” Hmﬂ (nx — k)
Consequently we derive
|nb]
[Fn (f2) = f(2)] < o= z) Y W(ne—k)|. (25
( ) k=[na]
That is
[nb) "
() = £ (@) < (aaasson)| S (£(5) 1) wna ).
k=[na]
(2.6)
We will estimate the right hand side of (2.6).
For that we need, for f € C ([a, b]) the first modulus of continuity
wi(fih) = sup|f(z) = f )|, h>0. (2.7)
z,y € [a,b]
[z =yl <h

Similarly it is defined for f € Cpg (R) (continuous and bounded on R). We
have that }llin%wl (f,h) =0.

Definition 2.8. When f € Cp (R) we define,

x) = i f(%)&?(nx—k% neN, zeR, (2.8)

k=—o0
the quasi-interpolation neural network operator.
By [3] we derive the following three theorems on extended Taylor formula.

Theorem 2.9. Let N € N, 0 < e < 5 small, and f € cN ([—% +e,35 —6]);
T,y € [—%—F&,%—e]. Then

sinz — sin y)k + Ky (y,z), (2.9)

" i fosin 1)(k) (siny) (
k=1
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where
1

(N 1)

/m (sinz —sins)™ ! ((f o sin_l)(N) (sins)—(f o sin_l)(N) (siny)) cos s ds.
y

Ky (y,z) = (2.10)

Theorem 2.10. Let f € CV ([e,m —¢]), N €N, e>0 small; z,y € [e, 7 — €.
Then

cosz — cosy)" + K (y, ), (2.11)

+XN: focos™ 1)(k) (cosy)(
k=1

where
1

Ky (y,7) = "o (2.12)

/m (cosz—coss)N ! [(f o cos_l)(N) (coss)—(f o cos_l)(N) (cos y)} sin s ds.
y

Theorem 2.11. Let f € CV ([a,b]) (or f € CN(R)), N € N; z,y € [a,b]
(or x,y € R). Then

N (foln;)(k) (e™¥) r
DY) e Ry ) (23
k=1 ’
where 1
Ky (y,2) = o (2.14)

/y Cer e {(f o)™ () = (Fom) (e—y)} e

Remark 2.12. Using the mean value theorem we obtain

|sinz —siny| < |z —y, (2.15)
|cosz —cosy| < |z —y|, Vaz,yeR,

furthermore we have

[sinz —siny| < 2, (2.16)
|cosz —cosy| <2, Vaz,yeR.
Similarly we get
le™® —e7 Y| <e |z —yl, (2.17)

and

le™ —e¥| <e ™" — e’ Vaux,yclab]. (2.18)
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Let g (x) = In1 x, sin™ ' 2, cos™ ! z and assume fU) (29) =0, k=1,...,N.
Then, by [3], we get (f og_l)(j) (9(x0))=0,j=1,...,N.

Remark 2.13. It is well known that €* > 2™, m € N, for large x > 0.
Let fixed a,, 3 > 0, then [%1 € N, and for large z > 0 we have

wlR

]Zx.

wle

e >zl
So for suitable very large x > 0 we find
e > (wﬂ)% = z*
We proved for large x > 0 and o, 3 > 0 that
e’ > . (2.19)

Therefore for large n € N and fizxed o, 3 > 0, we have

e2n” > pe. (2.20)
That is .
e™? < n™, for large n € N. (2.21)
So for 0 < a <1 we get
_opl—a) —a
e <n” % (2.22)

Thus be given fixed A, B > 0, for the linear combination (An—o‘+ Be—Q”(“a))

the (dominant) rate of convergence to zero is n™¢.

The closer « is to 1 we get faster and better rate of convergence to zero.

2.3 Real Neural Network Quantitative Approximations

Here we give a series of neural network approximation to a function given
with rates.
We first present

Theorem 2.14. Let f € C' ([a,b]),0<a<1l,neN, z € [a,b]. Then
i)

o () = £ (@) < (41488760) o (£, ) 260 Lo ™ <o,

(2.23)
and
[Fn (f) = fllo S A7 (2.24)

where ||-|| o, is the supremum norm.
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Proof. We see that

[nd] k
Z fl=)—Ff())¥(ne—k)| <
2 (G)-re)
[nb) k
S (E) - r@|w e —k) =
2 )
[nb)
Z ’f<§>_f(x)W(nx—k)+
{ k = [na]
[l <5
[nb)
> p(E)-rwree-ns
k = [na]
{|% z| > 5=
Z wl(f,g—x>W(nx—k’)+
{ = [nal
el <t
[b)
20l X Tla-k)<
{ k = [nal
|k —nz| >nt=®
1 o0
wy (f’n_a> Z VU (nx —k)+
ety
n T < ae
2 ||f||oo i g:_ v (ne — k) (by The?remm)
{ |k — nz| >nt=®

1 _op(i-a)
o (o) +2 0t

1 _op—a)
= (Frmg ) 2 WA
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That is
Lnt] k 1 (1—a)
> (1(E)-r@) v <o (1) + 2t Iflge >
k=[na]
Using (2.6) we prove the claim. |

Next we give

Theorem 2.15. Let f € Cp(R), 0<a<1,neN, xz € R. Then
i)

(1-a)

Fotho) = @] <o (Frg ) 2 W™ = 229

and
i) B
|Fn (f) = £l < (2.26)
Proof. We see that
— 0 k: o0
Futro) - 1@ =| Y £(5)0ta—t- 7@ ¥ w0
k=—o0 k=—o0

<> r(5)-rw|eme-n-

k=—o00

> (1(5)-s@)wme-n

k=—o0

i f<5>_f(x)wm_k)+

i f<é>—f(x)W(nz—k)§

2| fll > ¥ (nx—k) <
k=—00
rorl> s
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w1 <f7 n%) i ¥ (nz — k) +

2(1£ll > W (nx —k) <
k=—o00
|k — nz| > nl=@
1 4,—2n(1=)
o (£ ) 2 lete

(1—a)

1
= (£ )+ 2 Ul

proving the claim. [

In the next we discuss high order of approximation by using the smoothness

of f.

Theorem 2.16. Let f € CV ([a,b]), n, N €N, 0< a <1, z € [a,b]. Then

i)
IE, (f,2) — f (2)] < (4.1488766)- (2.27)

nJ

1 1 2e¢ || FV) b—a)V o
[wl (f m’ﬁ) v | ‘JVOT( Lot |

i) suppose further f9) (z0) =0, j =1,...,N, for some xo € [a,b], it holds

N 1£0G) S
Z \fjj'(a:)\_ [L +et(b—a) e )} +
=1 :

|Fy (f,20) — f (z0)] < (4.1488766) - (2.28)

[wl (f(N), i) L 24 [V (b—a)Ne_znua)] 7

ne ) noeNN| N!

notice here the extremely high rate of convergence at n~(N+1e,

|En (f) — f||Oo < (4.1488766) - (2.29)
N f(j) - 1
UL

+et(b—a) =2 4
4! neJ

Jj=1

1 1 2e | f V] (b—a) 0.
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Proof. Next we apply Taylor’s formula with integral remainder.
We have (here £, 2 € [a, b])

f (%) _ XN: f(j;!(x) (% - x>j N /:L (f(N) (1) = f) (m)> (%]\;i)i\;u_ldt

Hence

Therefore

Lnb) NG (g ,
F (£ (Z " (na - ))zzfj—,”F:(c—w)J)Mn(x),
= L

k=[na]

M@= 3, Tna=k) [T (100 - 1V () S

k=[na] z

3=

We suppose that b—a > =%, which is always the case for large enough n € N,

that is when n > [(b —a)” g
Thus|%—x|§n%or|k |>—.
As in [2], pp. 72-73 for

Y= /; (f(N) (t) — f™ (@) %dh

ko
—~
[
~
~—
T
—_
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in case of ‘% — x’ < n%, we find that

1 1
] < wn (f<N> —)

"ne ) naNN|

(for x < £ or z > &),
n n
Notice also for x < % that

0 (£ - )N—l
[0 0= @) S <
o (£ — )N—l
/z F () = f™ (x)‘ ﬁdt <

L3
n

47

T = P = M P

1) N N

Next suppose % < z, then

k N—-1
L T @) - 5N (@) 7(%; _)1)! dt| =
‘ / w (1™ @) = 1™ @) %dt <

A N—1
FNV (1) — fN) (w)’ wdt <

x
/ﬁ
n

E\N—

k N

N!

ol [ el S <l

N!
Thus N
| (b=a)
ol < 2] =
in all two cases.
Therefore
[nb] Lnb]
Ay () = Z U (nx—k)y+ Z U (nx —k)~.

k=[na] k=[na]
Fr|<7w E o>k
Hence
|nb] 1 1
_ W) =
@i 3 v (o0 (7 2 ) o ) +

k_ 1
Iy z|<

> pa
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Lnb] a)N
> v |2 O <
k=[na]
kal> e
1 1 a N _op(i—e)
w1 (f(N)7—> NipNa +2Hf(N)H 7')646 2 .

Consequently we have

A ()] < w1 (fuvx i) S il T R

n® ) noN N1 N!

We further observe that

F* ((-—x)j> = Y w(na—k) (%—x)j.

Therefore

Lnb]
k
Z lI/(nx—k)‘E—z
k= [na

] k = [nal
|-l < e nor > e
1 |nb] ' [nb]
=7 Z v (nx —k)+ (b—a)’ Z ¥ (nx — k)
k= [na) = [na]
|k z| <L |k — nz| > nl~@
<L +(b—a) et —2n(17%)
nJ
H
ence ) ) . P
Fn((-—x))’§W+(b—a)ee ,
forj=1,...,N.

Putting things together we have proved

(1—a)

|E> (f,x) |<Z‘f [ j+e4(b—a)je_2n
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1 1 284 | M| _(b—a) s
! (f(N)’n_o‘> oNNT T H UVOT( : er2n

that is establishing theorem. ]
We make
Remark 2.17. We notice that

Fa )= 3 L2k, (= aP) - 1) =

= 7
. 1 L9 @) e (i
ey ey (55 )
—f (@) = !

(El\;nbfjna] (nz — k)) .

[F* £ (Zf(” F; ( x)f')) - ( 5 ‘I/(m—k))f(z)]

k=[na]

Therefore we find

N f(]) -
Z ( _m)ﬂ) — f ()| < (4.1488766)-

nrG) (g ) b
Fy (f.2) - (Zf 9 g ((-—w)ﬂ)) - ( > mnw—k)) f @),

|
7=1 J: k=[na]
(2.30)

Ve la,b.

In the next three Theorems 2. 18{2.20l we present more general and flexible
upper bounds to our error quantities.
We give
Theorem 2.18. Let f € CV ([a,b]), n, N €N, 0<a <1, x € [a,b]. Then
1)

—aN

(N) e«
(4.1488766) {N, — ((foln%) ’F)“L



50 2 Univariate Hyperbolic Tangent Neural Network

—a _ ,—b\NV
2el (e = <) H(foln%)(N)H 6—2”“‘”] : (2.31)
2
) |Fn (f,x) — f (x)] < (4.1488766) - (2.32)
()
N ’(foln%) ! (e7®) ] \ e
—aj [ _~ _ ) p,—2n
j; 7 e {nf"j +e*(b—a)e }
—aN (N) —a
e ((rome) ) +

e )|

3)If fO (29) =0, j =1,...,N, it holds
|, (f, 20) — f (20)] < (4.1488766) - (2.33)

6—aN | (N) e—a
NipNa “1 (fo n%) T pe +

A\
2¢t (e —e b) H(folnl)(N)H 6_2n<1a)] .

N!

Observe here the speed of convergence is extremely high at m
Proof. Call F := folnsi. Let z, £ € [a,]. Then

((5) -1 £ oy ()

Jj=1

where L )
By (o) =~
% k N-1
/ (e_ﬁ — e_s> {F(N) (e_s) — FV) (e_w)] e %ds.
Thus
[nb] k [nd]
> U(nz—k)f (E) —f(@) > W(nz—k)=
k=[na] k=[na]

N F(j) et [nb] ok N\ [nd] 1
Z# Z !P(mc—k)(e n—e "”) + Z W(mc—k)m

j=1 J k=[na] k=[na]
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/j (e_% - e—S)N_l {F(N) (=) — V) (e—w):| de5.

Therefore
[nb]
Fi(fe)=fa)| Y ¥e-k)|=
k=[na]
N
FO(e7®) (.
Z i E; ((e —e ") ,17)—|—Un(1:),
j=1
where
[nb]
Un(z):= D ¥(nz—k)p,
k=[na]
with

L[ ) [ - (e

PN 10 ).

Case of ’% —w‘ < n%
. E _
i) Subcase of © > % Ie.e n > e %,

_k
e n I

=g [ ()l e

w1 (F(N),

(@—5 — e
—_— W1 (F(N)

dw

Sh

(e_% — w)N_l w1 (F(N)7 |w — e_m|) dw <

_k —
e n —e€

N —1)!

S~
IN

e—aN 1Tl |x P=wl (F(N)

- (~) €
N!nO‘N (F T no > '

Hence when z > % we derive

—aN () e~ ¢
< s (FO 2.

| =
\_/
IN

<



2 Univariate Hyperbolic Tangent Neural Network

52
ii) Subcase of % > 2. Then e < e % and
1 o’ NN (N) (,—=
|u|§m - (w—e n) ’F (w) = FY) (e7") | dw <
1 e’ e\ N-1 N .
oo s (o) (P e aw <
1 . e N\ N1
=1 1)'w1 (F(N)7e_z—e_%)/ . (w—e_%) dw <
N
1 NS
FWN) e = <
V- )"”1( Ol n’) N ©
N
L ) €Y pman |, _E
N'w1<F ’n“)e x -
1 e e~V
il Ny &
NI (F ’ n”‘) noiN -’
ie.
6—aN e~ ¢
I (N =
< s (F 2.

when % > x. So in general when ’% — x‘ < n% we proved that

—aN —a
e e
< = JSARJ
il = Npawe ( no

Also we observe:
i) When % < x, we obtain

mﬁ /ﬁ (o —w) " aw 2[F]|

N
2fE) () 2y
(N1 N - N!

0 (e_“ — e_b)N .
ii)” When % > x, we get

1 e’ e\ V-1 N
e AN R N

2 || (V) ) 2| V)
B N O N
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We proved always true that

2 (e~ —e=)" [|FM|

ul < N x
Consequently we derive
[nb] [nb]
Ua@l< S Thma-ku+ Y. Te—k)ul <
k= [na] k= [na]
|-l < 5= Foal >

N!

<2 (e —e)” HF(N)HOO>

—aN —a 2 —a _ ,—b N F(N) B
Nt (F<m,;_a)+< R Hw>€4e_w )

So we have proved that

—alN —a 2 4 —a _ ,—b N F(N) B
|m@M§;WWM(ﬂméF>+e(e eN?H [p——

We also notice that

E; ((e_' — e_f”)j 71‘)‘ < F; (’e" —e " j,x) <
[nb] j
e EN| —a)f x) =e Z W(nz—k)‘——x =e Y.
( ) k=[na] "
[nb) P [nb) L
Z !P(nac—k)lg—x + Z W(nac—k)lg—x <
k= [na] k= [na]
ok < o k1> _

vww .allitebooks.conl



http://www.allitebooks.org

54 2 Univariate Hyperbolic Tangent Neural Network

[nb]
—aj | 1 j
e ﬁ—&—(b—a)J Z V(nw—k)| <
k= [na
[ =% > 5=

: 1 1 —a
e [nTJ +et(b—a) e~2n" ﬂ .

Thus we have established

* —. —x\J —aj 1 1 _n(l—a)
Fn<(e —e )j,zﬂge ][W+e4(b—a)362 },

for 7 =1,..., N, and the theorem. ]

We continue with

Theorem 2.19. Let f € CV ([-3 +¢,5 —¢]), n,Ne N, 0 <e < %, ¢
small,xe[—%+€,%—6},0<0¢<1. Then

1)
N N
F, (f.2) — Z (f osin j)' (sinz) F, ((sin- — sinz)’ 733) —f@)| <
=1 '
(2.34)
w1 ((f o sin_l)(N) , n%)
(4.1488766) NN +
G (CA Nl GRS
N ‘ 7
2)
|Fn (f,x) — f (x)] < (4.1488766) - (2.35)
N ’(f o sin_l)(]) (sinx)’ 1 ‘ -
> ] [W +et (m - 2e) 72" )} "
i=1 I
- (V)1
w1 ((fosm ) ana> N <e42N+1 H(fosin_l)(N)H ) =200
N!?’LD‘N N! 00 ’

3) suppose further ) (z0)=0, j=1,...,N for some zo€ [—% +e,5 — 6],
it holds
|Fon (f,z0) — f (z0)| < (4.1488766) - (2.36)
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(1-a)

w1 ((fosin—l)(N)w%) eAoN+1 H(fosin—l)(N)H
nolN N1 + N

6—271

Notice in the last the high speed of convergence of order n~®WN+1),

Proof. Call F := fosin~! and let %71' € [—% +e,5— E}. Then

k FU (sinz) (. k ) d
f (E) — = Z (smﬁ —smx) +

Jj=1

E N-1

1 n k

o / (sin — —sin s) (F(N) (sins) — FN) (sin x)) dsin s.
-1/, n

Hence

|nb] |nb]

Z f( ) (nx —k) — f (2) Z U (nx —k) =

k=[na] k=[na]
[nb) j [nb)
ZF (sinz) Z VU (nx—k) (smE smx) Z U (nz—k)-
n
j=1 k=[na]
£ & N-1
/ (sin — —sin s) (F(N) (sins) — FN) (sin x)) dsin s.
- n
Set here a = —5 +¢, b= 5 —¢. Thus
[mb)
Fy(fom) = f(@) D w(na—k)=
k=[na]
N p@) (s

ZLTHMC)F* ((sm —sinz)’ | ) + M, (x),

: J:

j=1
where

[mb)
M, (z) == Z v (nz — k) p,
k=[na]

with

1 "k N
pi= m/m (sin o sins) (F(N) (sins) — F) (sinx)) dsins.
Case of |% —w| < n%
i) Subcase of £ > z. The function sin is increasing on [a,b], i.e. sin £ >
sinz.

E
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Then

1 " .k . Nt (N) (o (N) (o .
lp| < No1 sin — —sins ‘F (sins) — F (s1nz)‘dsms:

N-1
sinE —w) (F(N) (w) — F) (sinx)) dw <
n

1 sin k N-1
m /Sin:x (Sin E B w) w1 (F(N)7 |’UJ - Sin$|> dw <

/\
=
| —
—_
=
T
=1 &,
) =1
RIES
R T

o (FO lsin® _ sing|) B —sin)”
n N!
N
k (£ —2) 1 1
™) |F_ n o~ L
w1<F "In xD N! s F "na ) paN NI

So if % > x, then

1 1
< FN) =) =
ol < wr ( "ne ) NineN

ii) Subcase of % < z, then sin% < sinz. Hence

1 @ V!
ol < m/ (sins—sing> ‘F(N) (sins) — F) (sinx)‘dsins:
EEN A

1 sin x k N—-1
o L (msns) [ - F ] <

sin

1 sinz k N—1
m/; 5 (lU—SIHE) w1 (F(N)’|w_slnx|) dwg

1n

1 ™) ) ok sinx ok N-1
mwl FYY smx—smﬁ . w—smﬁ dw <
N
1 k (sinx—sinﬁ)
- (N) |p_ ) X222 "7k
(N1 (F 1 ) N =
N

1 1 k 1 1
il (N) = _ (N)
NI (F ’na>‘x n SnaNN!w1 (F 7n0‘>'

We have shown for % < z that

1 1
|MSm(ﬂmf—)

ne ) naN NI
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So in both cases we got that

1 1
(N) =) -
lpl < wi (F ’ncx> neN N1’

when |% —x| < n%
Also in general (£ > z case)

1 ok YT ™)
lp] < m smg —sins dsins | 2 HF H =
in & N-1
1 Sll’ln
o1 (/ (sin%—w) dw) QHF(N)H =

1 k N N 2N+1 N
i (s s ) 2l < T e

Also (case of % < x) we derive

1 x k N—-1
Il < ~_1 </}c (sins — sin ﬁ) dsins) 2 HF(N)HOO =
1 sin x k N-1
- —din & (N) _
o ([ (o) ) o]

. kY
1 (sinz — sin ) QHF(N)H < N+l HF(N)H
(N —=1)! N o — NI 0o
So we proved in general that
2N+1 ()
o< = [
Therefore we have proved
|nb] |nb]
Mo < > wha-kK)lpl+ Y W(nr—k)|p| <
k=[na] k=[na]
(k:|w—% Sn%) (k:|w—%|>n%)
(N) 1 49N+1
(2 )+ S o] o
n . oo

So that

wy (F(N)7 R A
NN T TN

|Mn (fE)| < HF(N)H 6—271(17&).
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Next we estimate

E; ((sin- — sinz)’ ,x)’ < F: <|Sin~ — sinzf 71‘) <
Lnb]

Er <|-—z|j,z> = Z W(nw—k)‘%—x

k=[na]

J
<

(work as before)

1 4 j —2n1=e
s +e ( — 2¢)
Therefore
. 1 ) .
Ey ((Sin' —sinz)’ 758)‘ <t et (r — 2¢e)’ e~ )7
nOé
j=1,...,N.
The theorem is established. -

We finally present

Theorem 2.20. Let fcCN ([e,m —¢]), n, N € N, >0 small, x € [e, 7 — €],
0<a<1. Then

1)
N
Fn(f,(E)—Z

(fo cos_l)(j) (cos )

F, ((cos- —cosz) 71‘) —f(z)] <

i=1 J
(2.37)
(o)
(4.1488766) — +
_1\ (V)
V(oo )V Y
N c ’
2)
F, (f,2) — f (x)] < (4.1488766)- (2.38)
N ‘(f o cos_l)(j) (cosx)‘ 1 , _
Z 3 [W + et (7T — 2€)J 6_2n(1 ):| +
i=1 I
w1 ((f o COS_l)(N) , n%) 642N+1 ) (1-a)
+ H focos™ H —2n
NlnoN ( N! ’

3) assume further fU) (zo) =0, j = 1,..., N for some xo € [e,7 —¢], it
holds
IFy (f,20) — f (20)] < (4.1488766) - (2.39)
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w1 ((f o Cos_l)(N) , n%) etaN+1 H focos™ )H o1

oV N1 * NI ¢
Notice in the last the high speed of convergence of order n~®WN+1),
Proof. Call F':= focos™! and let £,z € [, 7 —¢]. Then

k FU (cosx) k d
f (ﬁ) — = Z (cosﬁ —cosx) +

Jj=1

L3 N-1
1 n k
o1 / (cos — — cos s) (F(N) (coss) — FY) (cos x)) dcoss.
-1/, n

Hence

|nb] |nb]

Z f( ) (nx — k) — f (2) Z U (nx —k) =
k=[na] k=[na]
Lnb) J Lnb)
ZF (cos z) Z U (nz—k) (cosﬁ—cosx> Z U (nz—k)-
n
j=1 k=[na]

n

k 1 N-1
/ (cos — — cos s) (F(N) (coss) — F™) (cos x)) dcoss.
z n

Set here a = ¢, b =m — e. Thus

[nb]

Fy(fiw)—f(z) Y Wne—k) =

k=[na]

iMF* ((cos —Cosx) >+9 (),

where

with

Ve,

ﬁ /Ci)bﬁ (cos% - w) o (F(N) (w) = F™) (cos z)) dw.

oS T

k
n

N-1
(cos %—cos s) (F(N) (cos s) — F) (cos x)) dcoss =

Case of [£ —z| < L
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i) Subcase Of% > x. The function cosine is decreasing on [a, b] , i.e. cos % <

COS T.
Then
N-1

|A| < ﬁ/ (w — cos %) ‘F(N) (w) — FN) (cos z)’ dw <

n

1 cosT k N-—1
/ (w—cos E) w1 (F(N),|w—cos1:|> dw <

(N_l)' os £

~ cos VN
w1 F(N),cossc—cosE (COSJU COS”) <
n N!

k
|z — £ 1 1
7 nl (N)
) NS (F n”‘) noN N1

o <F<N), o

So if % > x, then
_ 1 1
2 < FN) ) ——
| |_UJ1< ’na naNN!
ii) Subcase of % < z, then cos% > cosz. Hence

k

X LY S (N R PR ()
|A] < o cos — —w ’F (w) — F (cosw)’dwg

oS T

Lk N-1
1 CObn k
m/wsw (cosﬁ—w> w1 (F(N),’w—COS$> dw <

# FN) cosE — cos o cosﬁ — N_ld <
(N_l)!wl ’ n ! cos T n v =

N
1 k (cos £ — cosx)
- (N |1 _ M Pn TP~
Ok (F | J“D N
1 k A | 1
il (N) |2 r il (N) =
N!wl (F | x) - z| < N1 w1 (F n’J“) TaN

We proved for % < z, that

_ 1 1
(N)
Al < en (F ’na> NlpoN~
So in both cases we got that

- 1 1
< (955 e

when‘ﬁ—x < na'
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Also in general (£ > z case)

_ 1 cos k N—
P\‘ = (N_ 1)' (LOS% (w_cosﬁ>

1 k N)
il (cosz—cosﬁ> 2HF H

Also (case of £ < z) we obtain

cos% N-1
|A] < - cosﬁ —w
(N_ 1)' cosx n

1 k N)
il (cos——cosx) 2HF H

So we have shown in general that

IN

1
i) 2] )

2N+1
N!

i) 27 -

2N+1
N!

_ 2N+1 ()

N <= |

N <=5

Therefore we derive
[nb| _ [nb]| _
1O, (x)] < Z ¥ (nx — k) [X| + Z ¥ (nx — k) [A| <
k=[na] k:]ina‘\
(k:|z—7|<%) (k:|z—%|>"%)

1 1 oN+1 (1—a)
(N) ~ 44 (N) —2n
(wl (F ’n“) nO‘NN!> te N! HF Hooe '

So that
Wy (FOV), L)

n 42N+1 (N) —2p(1—e)
|6n (17)| < +e N F e .

noeN N1

Next we estimate

Er ((cos- — cosz)’ ,z)’ < F} <|cos- — cosal’ ,z) <

. [nd] j
Fy (I~—xlj,x) = > W(mc—k)‘— 2| <
k=[na]
(work as before) )
4 j _—2n(-
— -2
e (r - 22)
Consequently,
. 1 ) .
Fy ((COS' — cos z)’ a$>’ < —7 + et (m —2¢)’ e 2n! >,
n
j=1,...,N.

The theorem is proved.
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2.4 Complex Neural Network Quantitative
Approximations

We make

Remark 2.21. Let X := [a,b], R and f : X — C with real and imaginary

parts f1, fo: f = fr+ifa, i =+/—1. Clearly f is continuous iff f1 and fo are
continuous.

Also it holds ‘ ‘
F9O (@) = 19 (@) +ifd (), (2.40)

forallj =1,...,N, given that fi, f» € CN (X), N € N.

We denote by Cp (R,C) the space of continuous and bounded functions
f:R — C. Clearly f is bounded, iff both f1, fo are bounded from R into R,
where f = f1+1ifa.

Here we define

FE, (f,z) :=F, (f1,2) +iFy, (f2,2), (2.41)

and . o .
F.(f,z) = F,(f1,2) +iF, (f2,2). (2.42)

We see here that
o (f,2) = [ (2)] < |Fa (fr, @) = fr (@) + [Fa (f2,2) = f2 (), (2.43)
and
[F0 (f) = flloo < 1F0 (f1) = fillso + [[1Fn (f2) = folloo - (2.44)
Similarly we obtain
|Fn (fix) = f ()| < [Fu (fr,2) = fi (@) + |[Fon (f2,2) = f2 (x)],  (2.45)
and
[Fn () = Flloo <[[Fn(f) = Fill o +[[Fn (f2) = fof| - (2.46)
We give

Theorem 2.22. Let f € C([a,b],C), f = fi+ife, 0 < a <1, n €N,
x € [a,b]. Then

Y
\F, (f,2) — f ()] < (4.1488766) - (2.47)
(o1 (5 5m) +en (o) ) 2 QA+ 1l 7 | =i
and
i)

10 (f) = flloe < @1 (2.48)
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Proof. Based on Remark [2.2T] and Theorem 2.14] [
We give

Theorem 2.23. Let f € Cp (R,C), f=fi+ife,0<a<1l,neN, zeR.
Then

i)
_ 1 1
T (f.2) — £ ()] < (wl (fl, n—a) Fun (fg, n—)) L ()
2 (|| fill oo + Il fellog) e 2" =: &,
i) B
|Fn (f) = ], < Pa. (2.50)
Proof. Based on Remark [2.21] and Theorem 2151 ]

Next we present a result of high order complex neural network approximation.

Theorem 2.24. Let f : [a,b] — C, [a,b] C R, such that f = fi1+ifa. Suppose
fi,f2€CN([a,b]), n,N €N, 0<a <1, x€[a,b]. Then

i)
IE, (f,2) — f (2)] < (4.1488766)- (2.51)

() (4 )
i(\fl ( >\;]f2 ())) [L+e4 (b_a)je_wﬂ .

nJ
Jj=1

(w1 ( 0, %a) + w1 (fQ(N)’ %))

noN N|

+

(1-a)

() e Yoo )

ii) assume further fl(j) (x0) = fQ(j) (xo) =0, 75 =1,...,N, for some xy €
[a,b], it holds

|Fo (f, 20) — f (20)] < (4.1488766) - (2.52)
(wl 1(N)’ nAa +wi fQ(N)ﬂ nLa )
( n>°‘NN! ( ) N

oL S 7 N T e

(1—a)

notice here the extremely high rate of convergence at n~(N+De,

vww .allitebooks.conl
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iii)
IF (f) = fllc < (4.1488766) - (2.53)

ZN: (Hffa‘)waHféﬂHm) {Lﬂél oo ay e_gnu_a)} N

= 7! neJ
(wl ( 1(N)v r%l) +w1 (f2(N)v %))
nolV N! +

et (A ] ) 0 -0
N!

_op(l—)
e 2n

Proof. Based on Remark [2:21] and Theorem ]
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Chapter 3

Multivariate Sigmoidal Neural
Network Quantitative Approximation

Here we present the multivariate quantitative constructive approximation
of real and complex valued continuous multivariate functions on a box or
RN, N € N, by the multivariate quasi-interpolation sigmoidal neural net-
work operators. The ”right” operators for the goal are fully and precisely
described. This approximation is obtained by establishing multidimensional
Jackson type inequalities involving the multivariate modulus of continuity of
the engaged function or its high order partial derivatives. The multivariate
operators are defined by using a multidimensional density function induced
by the logarithmic sigmoidal function. Our approximations are pointwise and
uniform. The related feed-forward neural network is with one hidden layer.
This chapter is based on [5].

3.1 Introduction

Feed-forward neural networks (FNNs) with one hidden layer, the type of
networks we deal with in this chapter, are mathematically expressed in a
simplified form as

Nn(nc):cho(<aj-ac)—&—bj)7 z€eR® seN,
=0

where for 0 < j < n, b; € R are the thresholds, a; € R® are the connection
weights, ¢; € R are the coefficients, (a; - ) is the inner product of a; and z,
and o is the activation function of the network. In many fundamental network
models, the activation function is the sigmoidal function of logistic type.

To achieve our goals the operators here are more elaborate and complex,
please see (3.2) and (3.3) for exact definitions.

G.A. Anastassiou: Intelligent Systems: Approximation by ANN, ISRL 19, pp. 67-183.]
springerlink.com © Springer-Verlag Berlin Heidelberg 2011
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It is well known that FINNs are universal approximators. Theoretically, any
continuous function defined on a compact set can be approximated to any
desired degree of accuracy by increasing the number of hidden neurons. It was
proved by Cybenko [12] and Funahashi [14], that any continuous function can
be approximated on a compact set with uniform topology by a network of the
form N, (z), using any continuous, sigmoidal activation function. Hornik et
al. in [I6], have shown that any measurable function can be approached with
such a network. Furthermore, these authors proved in [I7], that any function
of the Sobolev spaces can be approached with all derivatives. A variety of
density results on FNN approximations to multivariate functions were later
established by many authors using different methods, for more or less general
situations: [19] by Leshno et al., [23] by Mhaskar and Micchelli, [I1I] by Chui
and Li, [9] by Chen and Chen, [I5] by Hahm and Hong, etc.

Usually these results only give theorems about the existence of an approx-
imation. A related and important problem is that of complexity: determining
the number of neurons required to guarantee that all functions belonging to
a space can be approximated to the prescribed degree of accuracy e.

Barron [6] proves that if the function is supposed to satisfy certain condi-
tions expressed in terms of its Fourier transform, and if each of the neurons
evaluates a sigmoidal activation function, then at most O (6_2) neurons are
needed to achieve the order of approximation €. Some other authors have pub-
lished similar results on the complexity of FNN approximations: Mhaskar and
Micchelli [24], Suzuki [25], Maiorov and Meir [21], Makovoz [22], Ferrari and
Stengel [13], Xu and Cao [27], Cao et al. [§], etc.

The author in [I], [2] and [3], see chapters 2-5, was the first to obtain
neural network approximations to continuous functions with rates by very
specifically defined neural network operators of Cardaliagnet-Euvrard and
”Squashing” types, by employing the modulus of continuity of the engaged
function or its high order derivative, and producing very tight Jackson type
inequalities. He treats there both the univariate and multivariate cases. The
defining these operators ”bell-shaped” and ”squashing” function are assumed
to be of compact support. Also in [3] he gives the Nth order asymptotic
expansion for the error of weak approximation of these two operators to a
special natural class of smooth functions, see chapters 4-5 there.

For this chapter the author is greatly motivated by the important article
[10] by Z. Chen and F. Cao, also by [4].

The author here performs multivariate sigmoidal neural network approx-
imations to continuous functions over boxes or over the whole RV, N € N,
then he extends his results to complex valued multivariate functions. All
convergences here are with rates expressed via the multivariate modulus of
continuity of the involved function or its high order partial derivatives, and
given by very tight multidimensional Jackson type inequalities.
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The author here comes up with the right and precisely defined multivariate
quasi-interpolation neural network operator related to boxes. The boxes are
not necessarily symmetric to the origin. In preparation to prove the main re-
sults we prove important properties of the basic multivariate density function
defining our operators.

For the approximation theory background we use [20] and [26].

3.2 Background and Auxiliary Results

We consider here the sigmoidal function of logarithmic type

si () = Fpp—— z; €Ri=1,..,N; x:= (x1,...,zy) € RV,

each has the properties lim s;(z;) =1and lim s;(z;)=0,i=1,...,N.
x;——+00 T ;——00

These functions play the role of activation functions in the hidden layer of
neural networks, also have applications in biology, demography, etc. (|7, [1g]).
As in [I0], we consider

1
D; (JL‘Z) = 5 (Sz (.Z‘Z—F 1) —S; (l‘l — 1)), z; R, i=1,...,N.

We have the following properties:
i) &; (z;)) >0, Va, €R,
i) Y @ (mi—ki) =1, YV €R,
i) Yoo Pi(nw —ki) =1, Va; eR;neN,
iv) ffooo &; (z;)dw; =1,
v) @; is a density function,
vi) @, is even: &, (—x;) = @; (z;), x; >0, fori=1,...,N.

We observe that ([I0])

e2—1 1
®; (1) = . i=1,..,N.
(‘T ) ( 262 ) (l—i—ewi_l)(l—‘re_zi_l) t

vii) @; is decreasing on R, and increasing on R_, i =1,..., N.
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Let 0 < 8 <1, n € N. Then as in [4] we get

viii)
Z P; (nx; — k) = Z P; (Inwi — ki)
ki = —0 kl = —0
sna; — k| > nth sna; — k| > nth

< 3199277 =1, ..

)

Denote by [-] the ceiling of a number, and by |-| the integral part of a

number. Consider here z € (Hfil [ai,bi]) C RY, N € N such that [na;] <
[nb;|,i=1,...N;a:=(a1,...,an), b:= (b1, ...,bn) .
As in [4] we obtain
ix)
0< ! < L _ 5.2560312578
E i @ (na — k) () 7

YV, € [ai,bi] ,t=1,...,N.
x) As in [4], we see that

lim Z &; (nx; — k) # 1,
k@:(naz]

for at least some x; € [a;,b;],i=1,...,N.

We will use here

N
D (1, .., 7y) =P (2) = [[ @i (z:), =RV, (3.1)
i=1
It has the properties:
(i) @(z) >0, VaeRY,
We see that
Z Z Z @($1—k1,1‘2—k27...,$1\]—kN):
kl_—oo k2:—00 kN:—OO

[’} 00 00 N

DD Hqsi(mi_m:n( 3 @i(xi—ki)>:1.

k1=—00 kg=—00 kn= =1

=—0o01=1 ki=—o00
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That is
(i)’

71

Yo ba—k)y= > > Y O —ki.an —ky) =1,

k=—oc0 ki=—00 ko=—0c0 kn=—0c0

k= (ky,....kn), V 2 € RV,
(iii)’

k=—o00
o0 o0 o0
S Y B knay k) = 1
k1:—oo k2——00 kN:—OO
VeeRN;neN
(iv)’
/ & (z)dx =1,
RN
that is @ is a multivariate density function.
Here ||z| . = max{|z1],...,|zn|}, = € RY, also set oo := (oo, ...
—00 := (—00, ..., —00) upon the multivariate context, and

[na] : = ([nai], ..., [nan]),
[nb] : = (|nb1], ..., [nbn]) .

For 0 < f < 1and n € N, fixed z € RV, have that

Lnb]

Z b (nx —k) =

k=[na]
[nb| |nb|
Z & (nx—k)+ Z & (nx — k).
{ k= [na) { k= fmﬂ
15 -2l < 55 1% -2l > 55

In the last two sums the counting is over disjoint vector of k’s, because the

ke

condition H% — xHoo > 7715 implies that there exists at least one
n%, ref{l,..,N}.
We treat

xT’ >
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N fe'e) nb, |
< H(Z PD; mcl—k)> . Z b, (nx, — ky)
o L=

| nb, |
Z &, (nx, — ky)
T

:|§T?r

— Ty

nB

naﬂ
> (by (viii)) _
< 3 b, (nz, — k) < 319927
r = —00
W] >
We have established that
(v)’
X a-s)
> @ (nz — k) <3.1992¢™™ 7,
k= [na]
15 =2l > 75
0<pB<1l,neN,xe (vazl [ai,bi]).
By (ix) clearly we obtain
0 1 B 1
nb B nb;
ZII; Hna] (TLJL‘ - k) sz\il ( ]E:ZiHnal] 451 (nxi - kl))
1 N
< —x——— = (5.250312578)
[Ti=, 2: (1)

That is,

(vi)” it holds
< (5.250312578)"

nb
Z,E Hna1 (nx — k)

Ve (Hil [ai,bi]>, n e N.
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It is also obvious that

(vii)’
o0
B

3 & (nz — k) < 3.1992e "7

{ k=—00
15 =2l > 75

0<pB<l,neN, zeRN,

By (x) we obviously observe that

(viii)’
Lnb]
lim Z S(nx—k)#1
k=[na]

for at least some = € (Hfil (@i, bi]> .

Let feC (Hfil [ai,bi]) and n € N such that [na;] < |nb;],i=1,...,N.
We introduce and define the multivariate positive linear neural network
operator (z := (z1,...,ZN) € (Hivzl [ai7bi]>)

ZlEanna] ( ) @ (nx - k)
St o @ (nw — k)

Gy (f,21,.zn) =Gy (f,2) := (3.2)

[nb1 ] [nba | \_nb ]
Zklzlfnal-\ Ek2:2|'na2] kN N]—naN-\ ?1’ ] TN) (Hz 1 ?; (TLJL‘Z - kl))

(5
[T (S0 ey @ (nas — o))

For large enough n we always obtain [na;] < |nb;|, i = 1,...,N. Also a; <
b < by, iff [na;] < ki < [nbi), i=1,..,N.

We study here the pointwise and uniform convergence of G,, (f) to f with
rates.

For convenience we call

Lnb]

G (frx)= Y f() (na — k) (3.3)

k=[na]

[nb1] [nbz] [nbw | ey kn N
)SID DU S Ly (H@(nxi_ki)),

ki=[nai]| ka=[naz2] kn=[nan]

Vae (Hgl [ai7bi]>.
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That is
Gy (f,7) -
Gn (f,2) = — Vz € (H ai, b eN.  (34)
ZIE ana] (nx - k) i=1
Therefore

Gy (fw) = [ (@) o™ oy @ (na — k)

Gn (frm) = f(z) = S e (3.5)
Consequently we derive
G (f,2) — f (2)] < (5.250312578)N |G (f, x) — f (x) % @ (nx — k)|,
e (3.6)

vae (I faibi)

We will estimate the right hand side of (3.6).

For that we need, for f € C (Hl 1 lai, b1]> the first multivariate modulus
of continuity

w1 (£.h) = sup F@=FWl h>0.  (37)
2.y € (T, las b
o=yl <

Similarly it is defined for f € Cp (RY) (continuous and bounded functions
on RY). We have that }llin%wl (f,h) =0

When f € Cp (RN ) we define

G (f,2) =G (fy21, . TN) 1= Z f (%) D (nx — k) (3.8)

k=—o0

Z Z Z f( L ha k%) <f[1¢i(nxi—ki)>7

ki=—oc0 kg=—00 kn=—o0

n €N,V eRY, N > 1, the multivariate quasi-interpolation neural network
operator.
Notice here that for large enough n € N we get that

Y B, = Lemel, 0<<L (39)
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Thus be given fixed A, B > 0, for the linear combination (An_ﬁj +

_p(=8)
Be™
is to 1 we get faster and better rate of convergence to zero.

Let fe C™ (HZ 1 lag, bz]>, m, N € N. Here f, denotes a partial derivative
of f, a:= (a1,...,an), a; €ZT,i=1,...,N, and || := Zfil a; = I, where
1=0,1,...,m. We write also f, := o°f

the (dominant) rate of convergence to zero is n~%7. The closer 3

and we say it is of order [.

ox™
We denote
wity (fa, b) = max wi (fash). (3.10)
Call also
Iall285 = e {1l o) (3.11)

||l is the supremum norm.

3.3 Real Multivariate Neural Network Quantitative
Approximations

Here we present a series of multivariate neural network approximations to a
function given with rates.
We first present

Theorem 3.1. Let [ € C(Hl 1 [al,bl])7 0<pB<l ze€ (Hfil [ai7bi]);

n, N € N. Then
i)
|Gy (f, ) — f ()] < (5.250312578)"
{or (5.55) + G080 7L e} =on, (3.12)
i)
1Gn (f) = fllo < A1 (3.13)
Proof. We observe that
nb)
Aw) =Gy (f,o)— fx) Y, ®(na—k) =
k=[na]
[nd] k [nb]
Z f(ﬁ) (nx —k Z f@)®(nx—k)=
k=[na] k=[na]
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So that Lnb] .
a@ls 3 |1(5)-r@|eme—r-
Lank:f’na] i
> | (5)-rw|ema-n+
{ k = [na]
15—l < 7
[nb) L
> |r(5)-s@|ema-n <
k= [na
15 =2l > 7
. [nb)
a(fog)e2lile X ewe-ks
{ k= (ncﬂ
15—l > 7
w1 (f, %) +(6.3984) || fll e 7.
So that 1 o
A <o (105 ) + Gaosa) | loe "
Now using (3.6) we prove claim. ]

Next we give

Theorem 3.2. Let f € Cp (RN) 0<pB<1l, zeRY, n NeN. Then

i)
G (o) — F ()] Swr (£ )+ (63989 [ fllo e ™ = 2o (3.14)
nﬁ
i) _
1Gn () = f]l. < Ae (3.15)

Proof. We have

Zf() (nz — k).

k=—o0

S
&
i
Ql

i f( ) (nz—k)— f (z) i & (nz—k) =

k=—oc0 k=—oc0

S (1(5) - 1) ot

k=—o0
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Thus
- k
Bl Y |r(5) - r@| e -n -
k=—o00
i f(%)—f(z) & (nx —k)+
= —00
{ 15 -2l < 5
i f(%)—f(m)@(m:—k)<
= —00
{ 15 -2l > 75
w1 (f’n_l5>+2”f”oo Z D (nx — k) <
{ k=—00
15 -2l > 7
w) (f, %) +(6.3984) || fll e 7.
Consequently,
|E (2)] < w1 <f7 %) +(6.3984) || £l o e,
proving the claim. [

In the next we discuss high order of approximation by using the smoothness
of f.
We present

Theorem 3.3. Let f € C™ (Hfil [ai,bi]>, 0<pB<1l,nmNEN,zc
(Hivzl [ai,bi]). Then
i)
PR fa () T e
Gn (fa I‘) f(.T) Z Z N | Gn H( xz) s L S
j=1 \|a|=j [[;2, o i=1
(3.16)
Nm max 1
(5.250312578)" - {le,m (fa, n—5> =

((63984) 1 = allZ5 [l fallSem Nm) s }

m!
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! G (f,2) — f(2)] < (5.250312578)" - (3.17)
S N
; |Z <1|_'[fjo\;_7§xa)z|l> % + <1:]1: (bz - ai)(%') A (31992) e_n(l—ﬁ) n

nN™ max f i (63984) ||b_ CL” ||fOt||max _n(1=8)
m!nmﬁ @ m! € )

" |G (f) = £l < (5.250312578)" - (3.18)
- 1ol 1 (A

32 () [ (T oo )
J=L \lel=j =177 i=1

N™ max( ) ((6.3984) Ib = all™ || foll ™, N ) _n(lm}
f(l7 e s
mlnm8 m!

i) Suppose fo (x9) = 0, for all a : |a| = 1,...,m; x¢ € (Hfil [ai7bi]).
Then G (f.20) — f (z0)] < (5.250312578)" - (3.19)

{ N™ max ( ) ((63984) ||b — a|| ||fa||max Nm) L a-® }
f(l7 e s
mlnmB ™ ml

notice in the last the extremely high rate of convergence at n~P(m+1),

Proof. Consider g, (t) := f (zo +t (2 — x0)), t > 0; 29,2 € Hi\il [ai, b;] .
Then

N J
ggj) (t): <;(Zi_x0i) %) f ($01+t(21—$01),...,ZUON“Ft(ZN—(EON)),

forall j =0,1,....m
We have the multivariate Taylor’s formula

f(z1ymzn)=9.(1) =

m () 1
% SR G, 00 (o 0o )

Notice g. (0) = f (z0). Also for j =0,1,...,m, we have

| N
99 (0) = <37> < (i -z i)ai> £ (o).
gN), o, €T, Hf\il ol )\ 0 0

ar=(a1,...,
i=1,...,N, |a|:= N | a;=j

<.
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Furthermore
(M) 0) =

m N
_ .’L'Oz a \Zo 0(z— Zo

a=(an,an), €LY, i=
i=1,...,N, |a|:=2N | a;=m

0<6<1.
So we treat f € C™ (lel [a;, b1]>

Thus, we have for £, 2 € (HZ 1 lai, bi]) that

<
I
—

Q

=(a1,...,an), a; €L,
LN, Jal:i=21, ai=j

.
Il

a:(au Lan), ezt
i=1,..,N, |a|:=" N a;=m

-[n(x+a(5—z))—ﬂxw}W-
n
We observe that

1 N
|m<m/ pe <E220<E

N .
1 ks ‘ k
> (o) (L[ o] ) (o] =] Y=
|a]=m <Hi—1 O(ﬂ) <i_1 n 00
Notice here that
1 ks 1
E_z <—|——z|<—, t=1,..,N.
n nf n nB

We further see that

ot ) 1 . ) () ) o
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wiax (fmniﬁ) m! Wit (favniﬁ) m
(W) 2 T, ol :< (mty 2 >N'

lae|=m

Conclusion: When || £ 1:|| we proved that

1
oo—nﬁ’

Nm max
e () ()

In general we notice that

1 1 N
IR|<m / (RO DY (W) (H(bi—ai>ai>2||fanoo o =
i—1 Qi "

lal=m

1 N
2> g < (bi—ami) fallo <

jaf=m LLi=

2lb — allzg [ fallsom 3 m! _ 206 —all % I fallseim N
m! Pl Y, a:! m!

We proved in general that

2lb = all5 Il fallsem N

|R| < , = As.
m!
Next we observe that
Lnd]
Upi= Y ®(nz—k)R=
k=[na]
[nb] [nb]
Z & (nx—k)R+ Z P (nx—k)R
k=[na] k= fna]
15—l <77 el >
Consequently
[nb] Nm™ .
Unl < > d(na—k) p L (fa, —) (3.1992) Aze ™"
k=[na]
5=l <75
" max (=8
< Al (fa, —) (3.1992) Aze )
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We have established that

nN™ omax 1 (63984) ||b - CL” ||fa||max _np(1=8)
|Un| < B L (fm—> ( e .

m!
We see that
[nb] Lnb)
Z f<_>¢(”x_k)—f($) Z & (nx —k) =
k=[na] k=[nal
S fa (2) ) & & < al (kz >a>
=~ (nz — k) RSy
; O‘Z_J <Hi\il Oéi! k—%(ﬂ i=1 n
[nb]
+ Z b (nx—k)R
k=[na]
The last says that
[nb]
GZ(fu(E)_f(.%') Z @(nm-k) _
k=[na]
(5 () (o)) -
v n T l) » L = Un
J‘; az—j <H£\i1 a;! i=1

Clearly G, is a positive linear operator.
Thus (here a; € Z7T : o] = Zi\il a; =7)

k= [na]

k ” 1
- —x
el =75

[nd] Ny o
Z <H i—xi )@(nm—k)<

k=[na]
5 —ell >

oo nﬂ
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1 N |nb]
W+H(bz—ai)ai >, Phr—k)| <
i=1 k=[na]
fln-=ll >

N
1 o _p(i=5)
57+ (H (b — a;) ) (3.1992) e .

So we have proved that

N
G (H (- =) z> | < <H (bi - )) (3.1902)e """,
i=1

i=1

forall j =1,...,m.
At last we observe that

G (fr2) = f(2) =) Z(%)G%H(_m%ﬁ <
i=1 \la=j \Lli=1 @ '

Lnb)
(5.250312578)" - |G (f.2) — f(x) Y. @ (nx—k)—

k=[na]
m N
fo () > ( a;
>3 (&) e (6w o
N n )
=1 \|a|=j <Hi—1 a;! i=1
Putting all of the above together we prove theorem. ]

3.4 Complex Multivariate Neural Network
Quantitative Approximations

We make

Remark 3.4. Let X =[], [a;,b;] or RN, and f : X — C with real and
imaginary parts f1, fo 1 f = f1 +if2, i =/—1. Clearly f is continuous iff fi
and fa are continuous.

Given that f1, fa € C™ (X), m € N, it holds

fo () = fr.a (2) +if20 (2), (3.20)

where o denotes a partial derivative of any order and arrangement.

We denote by Cp (RN,(C) the space of continuous and bounded functions
f:RN — C. Clearly f is bounded, iff both fi, fa are bounded from RY into
R, where f = f1 + ifa.
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Here we define

Gn (f,2) == Gn (f1,7) +iGn (f2,7), z€ (H ai,b ) (3.21)
=1

and

G (f,2) =G, (f1,2) +iGp (fa, ), z e RV, (3.22)
We see here that

G (f,2) = [ (@) < [Gn (f1,2) = f1 (0)[ +|Gn (f2, ) = fa ()], (3.23)

and

1Gn (f) = flloe <G (1) = filloo + 1Gn (f2) = foll - (3.24)

Similarly we obtain

’én (f’x) _f(fE)‘ S ‘én(fla'r) _fl (-T)’ + ‘én(f%x) _fQ('r)‘a X GRNu
(3.25)
and

G (f) = flloo < (IGn (f1) = fill o + [[Gn (f2) = fo| . - (3.26)

We give

Theorem 3.5. Let f € C ([[i—, [a:,:],C), f=fi+if2, 0<B<1,n,N€
N, z € ([Ti—, [ai,bi]). Then

i)
|Gy (f,2) — f (z)] < (5.250312578)" - (3.27)

{or (515 e (o z ) + 03980 Uil + 1) " } =51
i)

1Gn (f) = flloo < ¢1- (3.28)
Proof. Use of Theorem B.I] and Remark 3.4 ]
We present
Theorem 3.6. Let f € Cp (RN,(C), f=fi+tifs,0<B<1,nN €N,
x € RN, Then
i) = 1 1
|G (f,2) = [ (2)| <wn (fl, n—5> + wi (fz, n—5> + (3.29)
_p=8)
(6.3984) (I f1ll o + lf2lloc) € =: 1o,

G (f) = fll oo < 92 (3.30)
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Proof. By Theorem and Remark 3.4 [ ]

In the next we discuss high order of complex approximation by using the
smoothness of f.
We present

Theorem 3.7. Let f : T[] [ai,bi] — C, such that f = f1 +ifs. Assume
fi.f2€ C™(TTi2, [ai, b)), 0< B <1, n,m N €N, z e ([ [ai,bi]). Then
i)

m N
Gn(fax)_f(x)_z Z (%)Gn (H —xl
J=1 \|a|=j [z ai! i=1
(3.31)
(5.250312578)" { ]'Vmﬁ ( Lm (f1 o —) T Wi (fgm iﬁ )
(6.3984) b — allZ (Il frall 2, + ol ) N7\ }
m)!
ii)
|Gy (f,2) = f (z)] < (5.250312578)" - (3.32)
S [fro @) +1fo <x>|> P‘*
j; (odz—g ( [T, ! nfs
(H (b — ai)f’“) - (3.1992) e~ 7 ) +
i=1
2 (o ) o (50 )
(6.3984) 1o — all”2 (Il frallZ5, + I f2al ) N\ L)
m! ’
iii)
G (f) = £l < (5.250312578)" - (3.33)
- 1.0 (@)l + 1 f20 (@)l [ 1
—
; g—:j < [T, ot ) n
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s (s () oot (5 5)

(6.3984) 1o — allZ2 (Il frall 2% + I 2al 2 ) N\ )

+ n e )
m!

i) Suppose fo (x0) = 0, for all  : o] = 1,...,m; xg € (Hfil [ai7bi]).
Then
Gy (f,20) — f (20)] < (5.250312578)" - (3.34)

o)l <
Nm max 1 max 1
s (i (5055 ) ot (55 ) ¢
_|_

(6.3984) [Ib — a7 (||f1 anza"m Mol 25 )N\
e

notice in the last the extremely high rate of convergence at n~Pm+1),

Proof. By Theorem B3 and Remark B.4l ]

Example 3.8.
COHSider f(zay) = ex—&-y’ (zay) S [_13 1]2 .Let T = (‘Tlayl)7 y = (532792)a we
see that

£@ = @) = forrmr = e
= |e"1e¥t — e¥1e¥? 4 eTlel2 — eP2eY?]
le”t (e¥1 — €e¥?) + ¥ (e — e™?)
e (Je% — ] + |6 — )
e [lyr — yao| + |21 — 22|]
2¢% |7~ 7l

IA N IA

That is
f@ - f@ <2 |7 -7 - (3.35)

Consequently by (3.7) we get that
w1 (f,h) <2e%h, h > 0. (3.36)
Therefore by (3.13) we derive

|G (e°1Y) (z,y) — e*T¥|| _ < (27.5657821) (3.37)
9 [ 2 _p=8
e {n_ﬁ + (6.3984) e } ,

where 0 < < 1and n € N.
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Example 3.9
N
Let f(21,...,2N) = Zsinxi, (v1,...,25) € RY, N € N. Denote T =
i=1

(1,...,2n), 5= (y1,-..,yn) and see that
N N N
Zsinxi — Zsinyi < Z |sin ; — sin y;]
i=1 i=1 i=1
N
< Zm — il
i=1

SN|T-7l-

That is
lf @) - f@I<NIT-7l- (3.38)

Consequently by (3.7) we obtain that
wi (f,h) < Nh, h> 0. (3.39)

Therefore by (3.15) we derive

N N
G, g sina; | (x1,...,2N8)— g sin z;
i=1 =1

where 0 < < 1land n € N.

1 _p(1-8
<N (n_ﬁ + (6.3984) e ) )

(3.40)

One can easily construct many other interesting examples.
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Chapter 4

Multivariate Hyperbolic Tangent
Neural Network Quantitative
Approximation

Here we give the multivariate quantitative approximation of real and com-
plex valued continuous multivariate functions on a box or RY, N € N, by
the multivariate quasi-interpolation hyperbolic tangent neural network oper-
ators. This approximation is obtained by establishing multidimensional Jack-
son type inequalities involving the multivariate modulus of continuity of the
engaged function or its high order partial derivatives. The multivariate op-
erators are defined by using a multidimensional density function induced by
the hyperbolic tangent function. Our approximations are pointwise and uni-
form. The related feed-forward neural network is with one hidden layer. This
chapter is based on [6].

4.1 Introduction

The author in [, [2], and [3], see chapters 2-5, was the first to establish neural
network approximations to continuous functions with rates by very specifi-
cally defined neural network operators of Cardaliagnet-Euvrard and ” Squash-
ing” types, by employing the modulus of continuity of the engaged function
or its high order derivative, and producing very tight Jackson type inequali-
ties. He treats there both the univariate and multivariate cases. The defining
these operators ”bell-shaped” and ”squashing” functions are assumed to be
of compact support. Also in [3] he gives the Nth order asymptotic expan-
sion for the error of weak approximation of these two operators to a special
natural class of smooth functions, see chapters 4-5 there.

For this chapter the author is inspired by the article [7] by Z. Chen and
F. Cao, also by [], [5].

G.A. Anastassiou: Intelligent Systems: Approximation by ANN, ISRL 19, pp. 89
springerlink.com © Springer-Verlag Berlin Heidelberg 2011



90 4 Multivariate Hyperbolic Tangent Neural Network

The author here performs multivariate hyperbolic tangent neural network
approximations to continuous functions over boxes or over the whole R,
N € N, then he extends his results to complex valued multivariate functions.
All convergences here are with rates expressed via the multivariate modulus
of continuity of the involved function or its high order partial derivative, and
given by very tight multidimensional Jackson type inequalities.

The author here comes up with the ”right” precisely defined multivariate
quasi-interpolation neural network operators related to boxes or RY. The
boxes are not necessarily symmetric to the origin. In preparation to prove
our results we prove important properties of the basic multivariate density
function induced by hyperbolic tangent function and defining our operators.

Feed-forward neural networks (FNNs) with one hidden layer, the only
type of networks we deal with in this chapter, are mathematically expressed
as

Nn(w):cho(<aj-x>+bj)7 z€eR® seN,
=0

where for 0 < j < n, b; € R are the thresholds, a; € R® are the connection
weights, ¢; € R are the coefficients, (a; - ) is the inner product of a; and
x, and o is the activation function of the network. In many fundamental
network models, the activation function is the hyperbolic tangent. About
neural networks see [§], [9], [10].

4.2 Basic Ideas

We consider here the hyperbolic tangent function tanhx, z € R :

x x

— e

tanhx ;= ———.
et e~ %

It has the properties tanh0 = 0, —1 < tanhx < 1,V 2 € R, and tanh (—x) =
— tanh z. Furthermore tanhx — 1 as ¢ — oo, and tanhx — —1, as * — —o0,
and it is strictly increasing on R.

This function plays the role of an activation function in the hidden layer
of neural networks.

We further consider

U (z) = i(tanh(m—i—l)—tanh(m—l)) >0, YVzelR

We easily see that ¥ (—z) = ¥ (z), that is ¥ is even on R. Obviously ¥ is
differentiable, thus continuous.
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Proposition 4.1. ([5]) ¥ (z) for x > 0 is strictly decreasing.

Obviously ¥ () is strictly increasing for # < 0. Also it holds lim ¥ (z) =
0= lim V¥ (z).

r—00

Infact ¥ has the bell shape with horizontal asymptote the z-axis. So the
maximum of ¥ is zero, ¥ (0) = 0.3809297.

Theorem 4.2. ([5]) We have that Y ;> __W(x—i)=1, Yz eR.

1=—00

Therefore -

Z Unr—i)=1, VneN VzeR.

1=—00

Also it holds

Y W(r+i)=1, VzeR.

Theorem 4.3. ([5]) It holds [~ W (z)dz =1.
So ¥ (x) is a density function on R.
Theorem 4.4. ([3]) Let 0 < o <1 and n € N. It holds

oo

Z ¥ (nx — k) <et- e=2n 7Y
k=—c0
sna — k| > ntme

Denote by |-] the integral part of the number and by [-] the ceiling of the
number.

Theorem 4.5. ([3]) Let x € [a,b] C R and n € N so that [na] < [nb]. It
holds

1 1
< = 4.1488766.
Z,Eanmﬂ (nz—k) Y1)

Also by [B] we get that

Lnb]
lim Z (nx —k) # 1,
k=[na]

for at least some z € [a, b].
In this chapter we employ

O (x1,...,zN) =06 (x) := HII/(JUZ), = (r1,..,zx) €ERY, N eN. (4.1)
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It has the properties:
(i) ©(x) >0, Vo eRY,
(i)
NoO@—k= > > .Y O —ky..an—ky)=1,
k=—o0 ki=—00 ko=—o0 kn=—00

where k := (k1,...,kn), V 2 € RV,

(i)
Z O (nx —k) :=
k=—o
o> > O~k enay —ky) =1,
ki=—00 ka=—00 kny=—oc0
VzeRY;neN.
(iv)
O (z)dx =1,
RN

that is @ is a multivariate density function.

Here ||z| = max{|z1],...,|zn|}, 2 € RY, also set co := (00,...,00),
—00 := (—00, ..., —00) upon the multivariate context, and

[na] : = ([nai], ..., [nan]),
[nb] : = (|nb1], ..., [nbn]),

where a := (a1, ...,an), b := (b1,...,bn) .
We clearly see that

[nb] [nb] N
Z O (nx—k)= Z Hkp(nxi—xi):
k=[na] k=[na] i=1
[nb1 | [nbn] N N [nbi]
ki=[na1] kn=[nan] =1 =1 \ki=[na;]

For 0 < < 1andn €N, fixed z € RY, we have that

[nb]

Z O (nx—k)=

k=[na]



4.2 Basic Ideas 93

[nd] [nb]
Z O (nx—k)+ Z O (nz —k).
{ k= [na] { k= [ncﬂ

1% =2l > 7

oo — n

In the last two sums the counting is over disjoint vector sets of k’s, because the

E — xH > L implies that there exists at least one ’— — xT’ >
'I’L

n%, ref{l,..,N}.
We treat

2;1 ki=—oo k. = [na,|
e —an| > o5
[nb,]
= > @ (na, — k)
k. = [na,]
e —an| > o5
0 (by Theorem [Z4) _
< Z VU (nx, — ky) Y < ed et
k, = —o0
e =] > 55
We have established that
v)
Lmé] (1-p)
Z O(nz—k)<et- e ,
k= [ncﬂ
1% =2l > 75

0<pB<l,neN, ze (Hi]\il[ai,bi]).
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By Theorem clearly we obtain
1 1

0< =
[nb| nb;
Sl © = k) TIX, (S0 @ (s — k)

1

< ———— = (4.1488766)"
(@ 1)~
That is,
(vi) it holds
1 1 N
0< = — < < = (4.1488766)
D heina) © (n@ —k) (¥ (1))

Ve (Hfil [ai7bi]>, n € N.

It is also obvious that

(vii)
Z O (nx—k)<et- 27
= —00
I —wH a7
0<pB<l,neN, zeRN,
Also we find
[nb]
lim Z O (nx — k) # 1,
k=[na]

for at least some z € (Hf\il (@i, bi]) .
Let f e C (Hfil [ai7bi]) and n € N such that [na;] < [nb;], i=1,...,N.

We introduce and define the multivariate positive linear neural network
N
operator (z := (z1,...,ZN) € (Hi:l [ai7bi]>)

nb
El\; meﬂ ( ) e (?’L.T - k)
ZlEanna] (nx - k)

F, (f,x1,....,zn) = F, (f,z) :=

b1 [nb2 | Lnb ] N
Z 1(naﬂ Zkgzzfnag] kN N[nazﬂ (71’ ' TN) (Hizl v (nxi - kl))

N [nb; ] '

[Ti- ( Fimna;] ¥ (nwi = ki))

For large enough n we always obtain [na;] < [nb;|, ¢ = 1,...,N. Also a; <
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We study here the pointwise and uniform convergence of F,, (f) to f with
rates.
For convenience we call

[nb]

=Y f( ) (nz — k) (4.3)

k=[na]

\_nblj I_nsz I_nbNJ

=y x o (b (f_v[wm:—k))

ki=[nai]| ka=[na2] kn=[nan]

Ve (Hf;l ai, bz‘]) ,

That is Fo (f,a)
: ’ 4.4
Palfn) = S S (44)
Ve (Hf\il [ai,bi]>, n € N.
So that
Fy (f,2) = f(2) S0 6 (nz — k)
E,(f,z) — - . 45
(f.0) ~ (@) ST (45)
Consequently we obtain
[nb]
|Fo (f,2) = [ (2)] < (4.1488766)" | F} (f.0) = f (x) Y O (ne—k)|,
k=[na]
(4.6)

Vae (Hl 1 [az,bl]> .
We will estimate the right hand side of (4.6).
For that we need, for f € C (HZ 1 lai, bz]> the first multivariate modulus

of continuity

wi (f,h) = sup |f (@)= f)l, h>0. (4.7)
T,y € Hivzl [aiﬂbi]
[z =yl <h

Similarly it is defined for f € Cp (RN ) (continuous and bounded functions
on RY). We have that }llin%wl (f,h)=0

When f € Cp (RY) we define,

Fo(f,x) == Fn(f,21,...,aN) = Z f (%) O (nx —k):= (4.8)

k=—o0
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Yoy oy (k) (ﬂwnz—k))

k1=—00 ko=—o0 kny=—o00

ne€N,Vz € RV, N > 1, the multivariate quasi-interpolation neural network
operator.
Notice here that for large enough n € N we get that

e =B j—1,..meN, 0<f<1. (4.9)

Thus be given fixed A, B > 0, for the linear combination (An_ﬁj +
Be=2""”) the (dominant) rate of convergence to zero is n 7. The closer
0 is to 1 we get faster and better rate of convergence to zero.

Let f e C™ (Hl 1 lag, bz]>, m, N € N. Here f, denotes a partial derivative
of f, a:= (ay,...,an), s € ZT,i=1,...,N, and || := Eﬁilai = [, where
1=0,1,...,m. We write also f, := 9%/ and we say it is of order [.

x>
We denote
Wllnsf (fouh) = r‘n?} w1 (fouh) . (410)
Call also
[ falloem = max {[|falloc} (4.11)

|-l is the supremum norm.

4.3 Real Multivariate Neural Network Quantitative
Approximations

Here we show a series of multivariate neural network approximations to a
function given with rates.
We first present

Theorem 4.6. Let f € C (T1X, lai,bi)), 0 < 6 < 1, @ € (TIY, laisbi),
n, N € N. Then
i)
|Fy (f,2) — f ()] < (4.1488766)™

1 -
for (1) + 2t U™ b = (4.12)

1E (f) = flloo < At (4.13)
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Proof. We see that

[nb]
Ax) =F; (f,2)— f(x) Y O(na—k)=

k=Tnal
= (K [nb)
k_%;a] f <5> O (nx — k) - k_%:ﬂ £ @) O (nz — k) =
[b) .
3 ((5)-r@)em-n.
Therefore . k
A ()] < k_%:ﬂ f (E) (@) O — k) =
[nb)
2 ! % — f(2)| O (nz — k) +
et &
Lij ‘f(§>_f($)9(nx—k)<
et s

wl<f77;>+2fm{ ZH O (nz— k) <
k= [na

_on(t=~5)

1
or (1) + 264 e

So that
—271(175)

@] <o (fiz) +26 Il

Now using (4.6) we prove claim. ]

Next we give

Theorem 4.7. Let f € Cp (RN), 0<B<1l,zeRYN, n,NeN. Then
i)

Fnl _on(1=5)

Futhi) - f @] < (Fop ) 426 Wil ™ =0 (429
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i) .
[En (F) =l < Ao (4.15)
Proof. We have

S f(%)@(na:—k).

k=—o0

Therefore

E, (z) :=F, (f,2)—f (z) = i f(%) (nz—k)— Z O (nz—k)

k=—oc0 k=—oc0

> (7(%)-r@) e,

k=—c0

g 3 |r(5)-rw

> (&) -re|eme-n+

Hence

O(nx—k)=

——
3
| =
B |
g |
A8
%)—‘

{ i r(5)-rw|em-ns
& el > &
o (fn—lﬂ) .Y eme-k<
k=—oc0
{\|§—$Hm>%ﬁ

1 9p(1-8)
or (1) + 260 e
n
Thus )
_op(=m
Bn @) <o (1.5 ) + 264 e
n
proving the claim. [

In the next we discuss high order of approximation by using the smoothness
of f.
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We present
Theorem 4.8. Let f € C™ (HZ 1[a“bz]>, 0<pB<1,nmNEeEN, xc¢c
(Hf\il [ai,bi]). Then

i)
. fo () N
=1 \|a|=j Hi:lai' i=1
(4.16)
Nm max 1
(4.1488766)N-{ T (fmm) 4
<2e4 Ib = allZ | fall2%, N’“> }
m! € ’
ii)
\F, (f,2) — f (2)] < (4.1488766)" - (4.17)
S |fa (2)] ) 1 <N m) 4 —2n(1=8)
— + (b; — a;) -ee +
; g—:j <Hz‘N—1 ail ) | % 1;[1
N™ max 264 ”b_a” HfOéHmaX _on(=8
% (J 25 ) + ( i ) )}7
iii)
1Fn (f) = £l < (4.1488766)" - (4.18)
i Z (M) L + (ﬁ (bz _ai)ai> 646_2n(1—5) +
J=1 \la|=j Hf\;lai! nfi i=1

N ( 1) <2e4||b—a|| | fall 22, N’“> >}
) fa7_ e b
m'nmﬁ m!

w) Suppose fo (x9) = 0, for all a : |a| = 1,...,m; xp € (Hi\il [ai,bi]).

Then
|Fu (f,20) — f (z0)| < (4.1488766)" - (4.19)

{ nN™ max ( ) <2€4 ||b - a’” ||fa||max Nm) —2n(lf1‘)}
foéa e s
minmB m!

notice in the last the extremely high rate of convergence at n~P(m+1),
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Proof. Consider g, (t) := f (xo +t (2 — x0)), t > 0; 0,2 € Hfil [@i, by] .
Then

N j
g (t)= (Z(zz—wm)i) f| (@or+t (21 —201) s ... Won +t (25 —2oN)) 4

€T
i=1 9

for all 5 =0,1,...,m.
We have the multivariate Taylor’s formula

fz1,n2n)=9.(1) =

m_ - (7) 1
S s [asom (6 ) - o o) ao

J! (m—1

) N
) (0) = L)( zi—xia‘)fax )
o) (0) > (HN ) (T ) st

a:=(ai,...,an), a; €Z7,
i=1,..,N, |a|:="N | a;=j

Furthermore
g™ (0) =

S () (fie )

ar=(ai,...,an), a; €T, i=1 % =1
i=1,..., N, |a\::2£\’:1 a;=m
0<6<1.

So we treat f € C™ (vaz [a;, b1]>

1
Thus, we have for £, 2 € (H‘:l [@;, bl]) that

ar=(ai,...,an), o €77,
i=1,...,N, |a|:=2 L, ai=m
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Jro (e (E-a)) - o) a0
We see that

IRISm/O (1=0)"" () <ﬁ> <H

(Y ( 1 )(ﬁ b ) (7ot |2 =] Jpaw <
—_— — —x; wi | fas -z <
lo|=m Hi:l a! 1" n 0o
Notice here that
1 k; 1
ﬁ—flf <m¢> E_ign_57l_17 '7N'

We further observe

<y (fo ) [0-0" (5 <ﬁ)(fj{ (%)m))do:

lo|=m

W (foo 77) m! _ (e (fanm) | o
( s )\ 2 T at | e )Y
Conclusion: When ||— — 1:||oo < nlﬁ, we proved

Nm max
e () ().

In general we notice that

1 . 1 N _
|R|§m/O (1-0) (|a|z—m <m> <Zl:[1 (bi — a;) ) 2||fll||oo) do =

1 N
2> v ( <bz-—ai>ai> 1fallo <

lae|=m

2o - all % Ifallsm 3 m! ) _ 20— allS fallgm ¥
m! o T ! m!
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We proved in general

2|[b—all I falloem N
|R| S m) = Ag.
Next we see that
[nbd)
Z Onr—k)R=
k=[na]
[nd] [nb]
Z O (nx —k)R+ Z O (nx — k) R.
k=[na] k=[na]
el < ==l o>
Consequently
& N™ (1-5)
U,| < O (nx —k wiex fa, — ) + e*Age
mn lnmB Y
k=[na]
s —ell <5
" max 4 —on(1=58)
S Al (fou —) +e*Agze )

We have established that

nN™ max 1 2¢* ”b_a” ||f04||max _on(=5)
|Un| —' mﬂwlm (fa;ﬁ) + < m] e .

We observe

|nb] [nb)
Z f( ) (nz —k) — f (x) Z O (nx—k)=
k=[na] k=[nal
i Lnd] N o
e JORCNN (DY
=~ (nx — k) =g
j; Ialz—j <sz\il a;! k_%a'\ s\
Lnb)
+ Z O (nx—k)R
k=[na]

The last says that
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(5 (2 ) s (M) ) <o

=1 \|a|=j i=1 Qi- i=1

Clearly F is a positive linear operator.
Therefore (here o; € ZT : |af = Efil a; =)

N
<F; <H|-—xi|“i,x> -

i=1

—
k=[na] \i=1
[nb] N k- o
<H ﬁ—zl )@(nz—k)+
k=[na] =1
1% -2ll <55
[nb] N k. a;
Z (H—Z—xz >Q(nx—k)<
- n
k=[na] i=1
[%-2ll..>>%
1 N [nb|
BT + H (b; al)o” Z Onx—k)| <
i=1 k=[na]

Fy (H (- — i)™ w)

i=1

forall j =1,...,m.
At last we observe

Fulfn) = @)= Z(%)F@(—)w) <

i=1 \lal=j

(4.1488766)" - |Ey (f.x) — f(x) Y. O (nw—k)—
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; (XI—: (%) F (1_[1 (- —x)™ ,z)) ‘

Putting all of the above together we prove theorem. ]

4.4 Complex Multivariate Neural Network
Quantitative Approximations

We make

Remark 4.9. Let X = [[; [a;,b;] or RN, and f : X — C with real and

imaginary parts f1, fo 1 f = f1 +if2, i =/—1. Clearly f is continuous iff fi
and fo are continuous.
Given that f1, fa € C™ (X), m € N, it holds

fo () = fra(2) +if2.0 (2), (4.20)

where o denotes a partial derivative of any order and arrangement.

We denote by Cp (RN,(C) the space of continuous and bounded functions
f: RN — C. Clearly f is bounded, iff both f1, fo are bounded from RN into
R, where f = f1 +ifs.

Here we define

F, (f,x) = Fy (fi,2) +iF, (f2,2), x€ (H [ai,bi]> 7 (4.21)
i=1

and
Fy (f,2) :=Fy (f1,2) +iFy (f2,2), xRV (4.22)

We see here that
| (f,2) = f ()] < [Fa (fr,2) — fr (@) + [Fa (f2,2) — f2 (@), (4.23)

and
[Fn (f) = flloo < 1Fn (f1) = filloo + 1Fn (f2) = foll o - (4.24)
Similarly we get

|Fn (f,2) = f(2)| < [Fo (fr,2) — f1 (@) + |Fo (f2,2) — fa (2)

, zeRY,
(4.25)

and

[Fn (f) = flloo < 1 (f) = Al + 1Fn (f2) = fo| - (4.26)
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We give

Theorem 4.10. Let f € C ([ [ai,b:],C), f = fi+ife, 0 < f < 1,
n,N €N, z € ([T, [ai,bi]). Then
i)
|Fo (f, ) — f ()] < (4.1488766)" - (4.27)

for (f15) o (o p ) 26 Uil + UAed) " } s

ii)

[1Fn (f) = flloo < 21 (4.28)
Proof. Use of Theorem and Remark ]

We present

Theorem 4.11. Let f € Cp (RN,(C), f=h+ifs,0< B8 <1, n N €N,
z € RN. Then

i)
et (filloe + 1 f2llo0) 72" =2 @,
i) B
| Fn () = f]|. < Po (4.30)
Proof. By Theorem 4.7 and Remark ]

In the next we discuss high order of complex approximation by using the
smoothness of f.
We present

Theorem 4.12. Let f : [[\, [a;,bi] — C, such that f = fi +ifs. Assume
fi.f2€ C™(TTi2, las, b)), 0< B <1, n,m N eN, ze ([ [aibi]). Then
i)

m N
Fo(f, Z; le <7H i?ﬂ)F <1_[1(—1:)x> <

(4.31)

Nm max max 1
(4]‘488766)N : { ' mﬁ ( (fl 3] _> + W]_ m (fQ,Ou ﬁ)) +

2¢4 b= all 2 (I Frall 2% + ol 2 ) N\,
€

m!
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|F (f, ) — f ()] < (4.1488766)" - (4.32)
S |fra (@) +1f2a (@) [ 1
£ (2 (P e) o

N 1-8
<H (bz _ ai)ai> ,646—2n( _[)‘|> +
i=1
Nm max max 1
(5 (e ) e 2)

216 = all 7% (1 frall 2%, + 1l fo.alla, ) N7

e—2n(17ﬁ)
m! ’
i)
1F0 (f) = fllo < (4.1488766)" (4.33)
- | fra (@)l + I 2,0 <x>||oo> { 1
—+
jgl Ialz—j < ITL, o n

N 1
(H (b — ai)ai> Cete 7Y
i=1

)+
Nm max max 1
W( <f1a7—>+wlm (f2,mn—5>>+

2¢! b - alle (Mol + 1F2alZ5) N 0

m! ’

w) Suppose fo (x0) = 0, for all a : |a] = 1,....;m; z¢ € (Hivl [ai,b-])
Then

|Fy (f, o) — f (20)] < (4.1488766)" - (4.34)
Nm max max 1
s (3 (555 ) ot (55 )+
2¢4 b= all 2 (a2, + ol 2 ) N™\
m! € ’

notice in the last the extremely high rate of convergence at n=8(m+1),

Proof. By Theorem .8 and Remark
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