JavaEE8
Recipes

A Problem-Solution Approach

Proven solutions for Java Enterprise
Edition 8 Development

Second Edition

Josh Juneau

Apress’

ww.allitebooks.cor

http://www.allitebooks.org

Java EE 8 Recipes

Josh Juneau

Apress-

[vww allitebooks.cond

http://www.allitebooks.org

Java EE 8 Recipes

Josh Juneau
Hinckley, Illinois, USA

ISBN-13 (pbk): 978-1-4842-3593-5 ISBN-13 (electronic): 978-1-4842-3594-2
https://doi.org/10.1007/978-1-4842-3594-2

Library of Congress Control Number: 2018946699
Copyright © 2018 by Josh Juneau

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick

Development Editor: Laura Berendson

Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar
Cover image designed by Freepik (www. freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales web
page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484235935. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

[vww allitebooks.cond

https://doi.org/10.1007/978-1-4842-3594-2
www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
http://www.apress.com/9781484235935
http://www.apress.com/source-code
http://www.allitebooks.org

This book is dedicated to my wife Angela, my five children: Kaitlyn, Jacob,
Matthew, Zachary, and Lucas. You are my joy and inspiration. It is also dedicated to
the many Java developers worldwide. I hope that these recipes can lead you to developing
the sophisticated solutions of tomorrow.

—Josh Juneau

vww allitebooks.conl

http://www.allitebooks.org

Contents

About the AUtROFcccciiiisemmnmssssssnmssssssn s nn s aannn e s s nnnnnnsnn XXXiX
About the Technical REVIEWETccxsssesrsssnsssssnsssssnsssssnsssssnsssssnnssssnnssssnsssssanssssnnssssas xli
AcknowIledgmENtScceeenisssssnmnnnnnsmmsssssssssssssssssssssssssssssnnssssssssssssnnnnnnsssssssssnnnnnns xliii
INtroducCtionccccmmissnnnnmmssssnnnmsssssnnnnsssssnnnnsssssnnnnnsssnnnnnnssssnnnnnssssnnnnnsssnnnnnnsssnnnnnnnssn xlv
Chapter 1: Working with Serviets..........cccoimnnmmmmmmnsmnmmmsssnmmssssmsssm————mm. 1
1-1. Setting Up a Java Enterprise Environmentccccovcevvcreenscnessiesssese s sessesennens 2

o (0]1] 1T 1 SRS 2
SOIULION H1....cce e e e AR e AR AR AR e pas 2
SOIULION H2.....c.eeeeer e e e e e AR e A e AR AR e p s 3

HOW HEWOTKS......coveecciscs et sa e a s s e s b e e b et a e n e ne e ne b e e e n e e nnennnnis 3

1-2. Developing @ Servlet.......... e —————— 4

o (011] 1T 1 OO RSR 4

ST 11 (o RS RSR 4

HOW BEWOTKS......cecectre ettt st a e s e s b e e e b e d e e b e b e ne e nnis 7

1-3. Packaging, Compiling, and Deploying a Servlet...........ccocvvrvrvrrerrnsersessessessessessenns 9
PPODIBIM «..vvovveveeeseeesseesssesesssessssesssssessssesssssessssesssssessssenssssesssssssssessssenssssesssssssssessssnssssessssnssssnsssssnssssnns 9

£ 10] o] PP 9

HOW EWOTKS.....vvvseeeesseesseessssesssessssnssssnsssssessssesssssessssesssssessssesssssessssesssssessssenssssessssesssssesssssnssssessssnssans 10

1-4. Registering Servlets Without WEB-XML...........ccoceriiennicrnnnesnsese e sessenns 11

[(0]0] 12T 1 SO SRRRSTRSTN 11

10 1110 3 OO 11

HOW HEWOTKS......covcecccires et s s s a e n s b bt e e e s n et ne e ne e nnennnnnns 13

\%

[vww allitebooks.cond

http://www.allitebooks.org

vi

CONTENTS

1-5. Displaying Dynamic Content with @ Servlet...........c.ccooerirrnriennscnessseree e 14
g (0] 1T TSRS 14
ST 0] 11110 o PP R 14
HOW TEWOTKS......cveeeeeees e ss e se et e st ne e ne s e e e e nsnnn s 16
1-6. Handling Requests and RESPONSES.........ccvcerrerrerverrersessenses s s e e sessessssssssasssssens 17
PrODIBIM ... 17
L3101 o] PP 17
L 0] € 19
1-7. Listening for Servlet Container Events..........ccccocrcvcrcscscscscs s 20
L] (0] 11T O 20
£ 0] 10 O 20
o (0 L € O 22
1-8. Setting Initialization Parameters............ccocvvreriiernsnesnse s 23
g (0] 1T OSSP SPS T SP 23
0] 11 10) I RSP SR 23
SOIULION H2......ceeee et e e e AR e e s e e R e e e e np e s 24
HOW TEWOTKS......cveeeeeees e ss e se et e st ne e ne s e e e e nsnnn s 24
1-9. Filtering Web ReqUESTScvvrrererrirrer ettt se e s se e snssns s nes 25
PrODIBIM ... 25
L3101 o] PP 25
0 L] € N 26
1-10. Listening for Attribute Changesccccverrrirrersssssescr e 27
L] (0] 11T O 27
£ 10 10 PP 27
o (0 L € O 29
1-11. Applying a Listener t0 @ SESSION..........ccccvvererrriernsisesrssersse s s sessens 30
Lo (0] 1T ST RRPS P 30
ST 0] 11110 o PP R 30
HOW TEWOTKS......cveeeeeees e ss e se et e st ne e ne s e e e e nsnnn s 31

CONTENTS

1-12. Managing Session AttribULes ... 32
L (0] 1T TSP 32
ST 0] 11110 o RSP SR 32
HOW TEWOTKS......ceeeeeces e e st e e e s e e e e nsnnnas 34
1-13. DownIoading @ Filecccvververrerierrerser st sa s sa e 34
PrODIBIM ... s 34
L3101 (o] PP 34
0 0 L € 37
1-14. Dispatching REQUESTSccocvcrcercr s 38
L] (0] 11T O 38
£ 10 110 O 38
o (03 Lo € S 42
1-15. Redirecting to a Different Siteccocervrenricnnsrerr s 43
Lo (0] 11T OSSP PSP 43
£ T0] 11110 o RSP SR 43
HOW TEWOTKS......ceeeecces e s et e st s s se e se e e e nannnas 43
1-16. Securely Maintaining State Within the Browserccccoevvrvrrrvncnsssensessensenens 44
PrODIBIM ... s 44
L3101 o] PP 44
0 L € 47
1-17. Finalizing Servlet TaskSc.cccverrriersrsisser s 48
L] (0] 11T O 48
£ 10 1110 o PP 48
o (0 Lo € O 49
1-18. Reading and Writing with Nonblocking I/0cccoeiirnnncennscsessseses s 49
L (0] 1T TSP 49
ST 0] 11110 o RSP SR 49
HOW TEWOTKS......ceeeeeces e e st e e e s e e e e nsnnnas 54

vii

CONTENTS

1-19. Pushing Resources from a Server to @ Clientccocvccvenrcennscnesssesssesesenens 56
g (0] 1T TSRS 56
ST 0] 11110 o TSRS 56
HOW TEWOTKS......ceeeecceieieeesesse e ss e e s e e ense s e e nannnns 57
Chapter 2: JavaServer PAgescccceemrrrmrmsssssssssssnssssssssssssssssnsssssssssssssnssnnssssssssns 59
2-1. Creating @ Simple JSP PAQEccocceenirenneresnreses s ses s ssssesssssnsens 60
g (0] 1T OSSP SPS T SP 60
ST 0] 11110 o RSP STP 60
HOW TEWOTKS......ceeeecceieieeesesse e ss e e s e e ense s e e nannnns 61
2-2. Embedding Java into @ JSP PAQEcceevrerrerrerrerrerses e e e e e s e e enns 62
PrODIBIM ... 62
£ 10 1] PP 62
0 0 L € 63
2-3. Separating Business Logic from View Codeccceeverersrnessssnssesssssesssssessessenns 64
L] (0] 11T O 64
£ 0] 0] PP 64
o (0 Lo € O 66
2-4. Yielding or Setting VAIUESc.ccocvverenirerneresnseses s sse e ssesesssssssnnsens 67
g (0] 1T OSSP SPS T SP 67
ST 0] 11110 o RSP STP 67
HOW IEWOTKS......cveeeecee et e s e s e e e e nsn s s 68
2-5. Invoking a Function in a Conditional EXpressionccoceevvrvrvensessessessessessessenaes 70
PrODIBIM ... 70
£ 10 1] PP 70
0 0 L € N 72
2-6. Creating a JSP DOCUMENL ... s 74
L] (0] 11T O 74
£ 10 110 PP 74
o (0 Lo € O 75

viii

CONTENTS

2-7. Embedding EXpressions in EL.........ccouoienierenmienensese s sessessssensens 76
L (0] 1T TSP 76
ST 0] 11110 o RSP SR 76
HOW TEWOTKS......ceeeeeces e e st e e e s e e e e nsnnnas 78
2-8. Accessing Parameters in Multiple Pages.........cocuvvvrrerrervernennensessesses s e e e e 81
PrODIBIM ... s 81
L3101 (o] PP 81
0 0 L € 82
2-9. Creating @ Custom JSP Tag.......ccceerrrrerrerserses s sss s e e s e s sns s snnnes 83
L] (0] 11T O 83
£ 10 110 O 83
o (03 Lo € S 86
2-10. Including Other JSPS int0 @ PAge..........ccocverenirennseresnsess e sesnens 87
Lo (0] 11T OSSP PSP 87
£ T0] 11110 o RSP SR 87
HOW TEWOTKS......ceeeecces e s et e st s s se e se e e e nannnas 88
2-11. Creating an Input Form for a Database Record............ccccvvrrrrrrrrrnersnsensersensenne 89
PrODIBIM ... s 89
L3101 o] PP 89
0 L € 92
2-12. Looping Through Database Records Within a Pagecccceeverereercescnssessensnnnns 94
L] (0] 11T O 94
£ 10 1110 o PP 94
o (0 Lo € O 97
2-13. HaNdliNG JSP EITOIS.......ccceeeierretsertesessesese e s ses s e s s s s s ssssssssssssssssssnnens 98
L (0] 1T TSP 98
ST 0] 11110 o RSP SR 98
HOW TEWOTKS......ceeeeeces e e st e e e s e e e e nsnnnas 99

ix

CONTENTS

2-14. Disabling Scriptlets in PAgeScccevrerernseresmsesessesssssse s ssesesssssssssnens 100
o (0] 1T TSRS 100
IS T0] 11110 o PSSR 100
HOW FEWOTKS......coceeeeeecesisecen i as s e s e s s s e s ne s e e snnnsnnnns 101
2-15.1gN0rNG EL iN PAQESecvvververierrerser s s se s e s s s s sss s s sasssssssssssssssssssssssnns 101
PrODIBIM ... e 101
RST8] (o] 12 TP 101
RST8] (0] 1 7T 101
RST8] (0] -2 TP 101
0 0 L] 102
Chapter 3: The Basics of JavaServer FAcesccvummmssssmmmsnnmnmsssssssssssssssssssssssns 103
3-1. Writing a Simple JSF AppliCationccccvvrrerrrnersesserser s ses e seneas 104
PrODIBIM ... 104
RST8] (o] 12 TP 104
RST8] (0] 1 7T 107
0 0 L] 108
3-2. Writing @ CONtroller CIaSScccvereerrersernersessss s sss s ssssessesssssnssss s snssnsssssnnneas 110
o (0] 11T T 110
RS T0] 110 o O 110
o 0 L] 6 T 115
3-3. Building Sophisticated JSF Views with Components...........cccceevvrrerrrrersersensennens 117
o (0] 1T TSRS 117
IS T0] 11110 o PSSR 117
HOW TEWOTKS......cnceeececcesiseces e e s sa s s s se s s e s nse s e e snnnnnnnes 123
3-4. Displaying Messages in JSF PAQEScccvvrverrervernennenses s sessss s e ssssssssssens 125
PrODIBIM ... e 125
£ T0] (o] PP 125

HOW [EWOTKS....ceiueiieeieiierssesssssesssessessesssssssesssssssssessssssssssessssssssssssasssssssessssssssssesanssnsssesansssesssnsanssnnss 127

CONTENTS

3-5. Updating Messages Without Recompilingccccvceernirennscnenensesssesesessessenennens 129
o (0] 1T TSP 129
IS T0] 11110 o TSRS 129
HOW FEWOTKS......coceeeeeecesisecen e as s s se s s se s nse s e nansnsnnnnnes 131
3-6. Navigating Based Upon Conditions.........cccevrrverrensennessessenses s ses s sesssssessesssssensens 131
PrODIBIM ... e 131
£ T0] (o] PP 131
0 0 L] 136
3-7.Validating USer INPUL...........coo e n e s 138
o (0] 11T T 138
RS0 110 o OO 138
HOW TEWOTKS.......coceeececee e s e se s spsns e e 142
3-8. Evaluating Page Expressions Immediatelyccceevrriennscrennsennsesenensessenennens 144
o (0] 1T TSRS 144
IS T0] 11110 o TSRS 144
HOW FEWOTKS......coceeeeeecesisecen e as s s se s s se s nse s e nansnsnnnnnes 146
3-9. Passing Page Parameters to Methods.........cccevvvrvrvrrnsrvsses s 146
PrODIBIM ... e 146
£ T0] (o] PP 146
0 0 L] 150
3-10. Using Operators and Reserved Words in EXPressionsc.ccceevververvenseessensannns 150
o (0] 11T T 150
RS T0] 110 o T 150
o 0 L o] €T 152
3-11. Creating BoOKMArkable URLSccccuuerenerseresmnesessessesessesssssssssssessesesssssssssnens 154
o (0] 1T TSP 154
IS T0] 11110 o TSRS 154
HOW FEWOTKS......coceeeeeecesisecen e as s s se s s se s nse s e nansnsnnnnnes 155

xi

CONTENTS

3-12. Displaying Lists 0f ODJECTS........ccccovierrirerreresr e 156
o (0] 1T TSRS 156
IS T0] 11110 o PSSR 156
HOW FEWOTKS......coceeeeeecesisecen i as s e s e s s s e s ne s e e snnnsnnnns 160
3-13. Developing With HTMLSccorrrr e se e e e sassnssnenas 161
PrODIBIM ... e 161
£ T0] (o] PP 161
0 0 L] 162
3-14. Creating Page TeMPIALESccccveeerrerrcer e 163
o (0] 11T T 163
RS T0] 110 o O 163
o 0 L] 6 T 164
3-15. Applying TEMPIALES......coceeeecercerr s 168
o (0]] T TSP 168
IS T0] 11110 o PSSR 168
HOW FEWOTKS......coceeeeeecesisecen i as s e s e s s s e s ne s e e snnnsnnnns 175
3-16. Adding Resources into the MiXccccvvvvrrrrernnnenses s ses e ssseas 177
PrODIBIM ... e 177
£ T0] (o] PP 178
0 0 L] 180
3-17. Handling Variable-Length Data............ccccoeeernriescsssses e 181
o (0] 11T T 181
RS T0] 110 o O 181
HOW TEWOTKS.......coceeececeee s s et se s e nennn s e 183
3-18. Invoking Controller Class Actions on Lifecycle Phase Events............ccccoccvveinnnene 188
o (0]] T TSP 188
IS T0] 11110 o PSSR 188
HOW FEWOTKS......coceeeeeecesisecen i as s e s e s s s e s ne s e e snnnsnnnns 188

xii

CONTENTS

Chapter 4: JavaServer Faces Standard Componentsccceernnnsssssssssssssnnnnnnss 191

Component and Tag PriMErccoeciernincsncne s se e sss s 191
Common Component Tag AtIHDULESccccerernrcresre e 194
Common JavaScript Component TAgScccvverrrereneresnesirsesss s sesse e s sssnssssnsssssssessssenns 194
Binding Components t0 Properties........ccoucverineienenessesssessscsse e sesss e sessesessssssssssssessssessssesns 195

4-1. Creating an INPUt FOrM ...t 196
] 1001 3 196
RS0] o] 196
HOW HEWOTKS. ... 199

4-2. Invoking Actions from Within @ Pagec.cccevrrrrvervrnrsesresses e e e 201
0 104 [T 3 201
SOIULION. .t ————— 201
HOW HEWOTKS....cocuciicciccscsmsssssss s 204

4-3. Displaying QULPUL........cocorirecre e 206
PrODIBIM .t —————————— 206
RS0 1] 206
HOW HEWOIKS....cociiiiiiiiiiisissssssss s 209

4-4. Adding Form Validationcccevererenrnsenss s sns e 213
] 1001 3 213
RS T0] 0] 1 213
R0 (0] 1K 7 214
R T0] (0] 12 T 214
HOW HEWOTKS. ... 216

4-5. Adding Select Lists 10 PAgeS........ccovrrrerrerrerrerrirser s se e ses e s sesnas 219
PIODIBIM .o 219
SOIULION. ..ttt —————— 219
HOW HEWOTKS....cocuccicmcccsssssssssssssssssss s 221

4-6. Adding Graphics t0 YOUr Pagescccerverernernenmnensnsessssss e ssesessessssessesessessssensens 223
PrODIBIM .t —————————— 223
RS0 1] 223
HOW HEWOIKS....cociiiiiiiiiiisissssssss s 223

CONTENTS

4-7. Adding Check BOXeS 10 @ VIEW........cvceerierenercrnesrsesesse s sse s s sesesssesnens 224
o (0] 1T TSRS 224
IS T0] 11110 o PSSR 224
HOW FEWOTKS......coceeeeeecesisecen i as s e s e s s s e s ne s e e snnnsnnnns 227
4-8. Adding Radio Buttons t0 @ VIEWccevvververrerrerses st ses e e e e e snneas 229
PrODIBIM ... e 229
£ T0] (o] PP 229
0 0 L] 230
4-9. Displaying a Collection of Data..........ccccceerercrnsssssss s 231
o (0] 11T T 231
RS T0] 110 o O 231
o 0 L] 6 T 236
4-10. Utilizing Custom JSF Component Libraries.........ccceeveervernserenessesnsesesessessesennens 239
o (0]] T TSP 239
IS T0] 11110 o PSSR 239
HOW FEWOTKS......coceeeeeecesisecen i as s e s e s s s e s ne s e e snnnsnnnns 239
4-11. Implementing File Uploadingccccvvrvrrerrrnensen s ses s e sessens 240
PrODIBIM ... e 240
£ T0] (o] PP 240
0 0 L] 240
Chapter 5: Advanced JavaServer Faces and AJaXccusssssssssasssssssssnsssassssasssns 243
5-1. Validating Input With AjaX.........cccevrrrinnnrrnr e seeees 244
PrODIBIM ... e 244
£ T0] (o] PP 244
0 0] 248
5-2. Submitting Pages Without Page Reloads...........ccceererverrrcssessessesses s 251
o (0] 11T T 251
RS T0] 110 o O 251
HOW TEWOTKS.......coceiececee et e s st e nenne s e 251

xiv

CONTENTS

5-3. Making Partial-Page Updatesc.ccoovrrenrierennsennsesesesse s ssesessessssssnens 252
o (0] 1] 1T 1 RSO S 252
IS T0] 11110 o TSRS 252
HOW FEWOTKS......coceeeeeecesisecen e as s s se s s se s nse s e nansnsnnnnnes 253
5-4. Applying Ajax Functionality to a Group of Componentscccceevvrverrerrersersennnns 253
g (00T S 253
S T0] 1110 o RSP SYRT S PTRSRS 253
HOW HEWOIKS......covccceceresesesss e sss e sesss s s s sas e s e s s s sss e ssssessssnsnssnsssnsssessnnenns 257
5-5. Custom Processing of Ajax Functionality...........cccceevsrirsrcsssssss s 258
Lo (0]1] 1T 1 RSSO 258
SOIUTION. ...t E e e R e R e R AR R e R e e e Re e Re e e RenReaeas 258
HOW HEWOTKS.......cecetcer et e et s bbb e e e b s p e s 260
5-6. Custom Conversion of INPUt VAIUESceevrrrercrrrsrrr e 260
o (0] 1T TSRS 260
IS T0] 11110 o TSRS 261
HOW FEWOTKS......coceeeeeecesisecen e as s s se s s se s nse s e nansnsnnnnnes 262
5-7. Maintaining Managed Bean Scopes for @ SeSSioN.........cccvvvververrersersessessessessenens 264
g (00T S 264
SOIULION. ...ttt e e e AR AR R R R e R AR e R R e e R R e Re s 264
HOW HEWOIKS......coecccececesine s ss s s e sns s s s s sss s s e sns s s sas e ssesesnssnsnssssssnsssessnneens 273
5-8. Listening for System-Level EVentscccceoeercecscscescsces e 274
Lo (0]1] 1T 1 RSSO 274
SOIUTION. ...t E e e R e R e R AR R e R e e e Re e Re e e RenReaeas 274
HOW HEWOTKS......cececests ettt a e s s bt ne e e p e e e 276
5-9. Listening for Component EVENtS.........cccccveernerenmnsennsssssesse s sessessssnnnens 276
o (0] 1] 1T 1 RSO S 276
IS T0] 11110 o TSRS 276
HOW FEWOTKS......coceeeeeecesisecen e as s s se s s se s nse s e nansnsnnnnnes 277

XV

CONTENTS

5-10. Invoking a Managed Bean Action on Renderc.ccoceevierenersennsesesensessnsennens 278
o (0] 1T TSRS 278
IS T0] 11110 o PSSR 278
HOW FEWOTKS......coceeeeeecesisecen i as s e s e s s s e s ne s e e snnnsnnnns 279
5-11. Asynchronously Updating COmponentsccccevrvrvenvennensensessessessessessessessensens 280
PrODIBIM ... e 280
£ T0] (o] PP 280
0 0 L] 283
5-12. Developing JSF Components Containing HTMLS...........cccoerercecrcscercescescennens 283
o (0] 11T T 283
RS T0] 110 o O 283
o 0 L] 6 T 285
5-13. Listening 10 JSF PRaSES.........c.ceermrierniereninesesrseses s e sesssssssnnnens 286
o (0]] T TSP 286
IS T0] 11110 o PSSR 286
HOW FEWOTKS......coceeeeeecesisecen i as s e s e s s s e s ne s e e snnnsnnnns 288
5-14. Adding Auto-Completion to Text Fieldsccccvvrvrvrrnnrrnier e 288
PrODIBIM ... e 288
£ T0] (o] PP 288
0 0 L] 290
5-15. Developing Custom Constraint Annotations...........cccceevevercnsessssessessessessen e 291
o (0] 11T T 291
RS T0] 110 o O 291
HOW TEWOTKS.......coceeececeee s s et se s e nennn s e 293
5-16. Developing @ Page FIOW...........ccoeeiernnerenneseseseses s ses e sssesnens 295
o (0]] T TSP 295
IS T0] 11110 o PSSR 295
HOW FEWOTKS......coceeeeeecesisecen i as s e s e s s s e s ne s e e snnnsnnnns 298

xvi

CONTENTS

5-17. Constructing a JSF View in Pure HTMLS.........ccccooeriirenncreseseses s 301
o (0] 1T TSP 301
IS T0] 11110 o TSRS 301
HOW FEWOTKS......coceeeeeecesisecen e as s s se s s se s nse s e nansnsnnnnnes 302
5-18. Invoking Server-Side Methods Via AjaXccccevrrerrerrersensensenses s s sessessessesens 302
PrODIBIM ... e 302
£ T0] (o] PP 303
0 0 L] 305
5-19. Broadcasting Messages from the Server to All Clients.........c.ccccverercrcrcencennne 305
o (0] 11T T 305
RS0 110 o OO 306
HOW TEWOTKS.......coceeececee e s e se s spsns e e 307
5-20. Programmatically Searching for COmponents.............cccovverenrsesnsesesessessesennens 308
o (0] 1T TSRS 308
0] 1110 0 I TSRS 308
SOIULION H2......ceeee e s R R e e R e e e e nnnnn s 309
HOW FEWOTKS......coceeeeeecesisecen e as s s se s s se s nse s e nansnsnnnnnes 310
Chapter 6: The MVC Framework........cccccunissssmmsmmmmmsssssssssssssssssssssssssssssssssssssssnns 313
6-1. Configuring an Application for the MVC Framework..........c.ccoceevvernnesenensesnennnnens 314
o (0] 1T TSP 314
IS T0] 11110 o PO 314
HOW FEWOTKS......coceeeeeecesisecen e as s s se s s se s nse s e nansnsnnnnnes 316
6-2. Making Data Available for the Applicationccocevvrvrrrrrrnsr e 317
PrODIBIM ... e 317
£ T0] (0] 2 PP 317
RST8] (0] I 7T 321
0 0 L] 326
6-3. Writing @ CONtroller CIaSScccueeeerreeserseesessessss s s sss s sesssssssssssnssnssnssnsssssnnsnas 327
o (0] 11T T 327
RS T0] 110 o 327
HOW TEWOTKS.......coceeececee e s e se s spsns e e 328

CONTENTS

6-4. Using a Model to Expose Data to a VIEW.........ccccceevcerrnerennscnessssesssese e 330
o (0] 1T TSRS 330
IS T0] 11110 o PSSR 330
HOW FEWOTKS......coceeeeeecesisecen i as s e s e s s s e s ne s e e snnnsnnnns 332
6-5. Utilizing CDI for EXpoSing Datacccccvververrerrersensessesses s sessns e sessessesssssens 332
PrODIBIM ... e 332
£ T0] (o] PP 332
0 0 L] 334
6-6. Supplying Message Feedback to the USer.........ccccoovereecrcrcrcscesces e 335
o (0] 11T T 335
RS T0] 110 o O 335
o 0 L] 6 T 337
6-7. Inserting and Updating Dataccoceerierennienennnessse s ssssnsnens 338
o (0]] T TSP 338
IS T0] 11110 o PSSR 338
HOW FEWOTKS......coceeeeeecesisecen i as s e s e s s s e s ne s e e snnnsnnnns 339
6-8. Applying a Different View ENGINE........c.ccevvverrerrernerrerses e e ses e seeens 340
PrODIBIM ... e 340
RST8] (o] 12 TP 341
RST8] (0] 1 7T 341
0 0 L] 343
Chapter 7: JDBC.......cocccuumimsmnmmmmsssssnmmssssssnsmssssssnssssssnsnssssssnnnssssssnnnsssssnnnnsssssnnnnss 345
7-1. Obtaining Database Drivers and Adding Them to the CLASSPATH...........ccccveuruee. 346
PrODIBIM ... e 346
£ T0] (o] PP 346
0 0] 346
7-2. Connecting to a Database..........ccccoeeercecrcr s ————- 347
o (0] 11T T 347
L0 1110 I T 347
L0 1110 I 7 348
o 0 L] 6 T 351

xviii

CONTENTS

7-3. Handling Database Connection EXCEPLIONSccccceveerennsenesnssesssesesessessesnnnens 352
o (0] 1T TSP 352
IS T0] 11110 o TSRS 353
HOW FEWOTKS......coceeeeeecesisecen e as s s se s s se s nse s e nansnsnnnnnes 353
7-4. Simplifying Connection Management...........ccovvrvrvrrrnsses s e e 353
PrODIBIM ... e 353
£ T0] (o] PP 354
0 0 L] 357
7-5. Querying @ Database...........cccceeeeernsnnsssesnr s n s 358
o (0] 11T T 358
RS0 110 o OO 358
HOW TEWOTKS.......coceeececee e s e se s spsns e e 359
7-6. Performing CRUD Operations...........cccceuseresessernssssesessesssssssssssssssssssssssssssssssssssens 360
o (0] 1T TSRS 360
IS T0] 11110 o TSRS 360
HOW FEWOTKS......coceeeeeecesisecen e as s s se s s se s nse s e nansnsnnnnnes 362
7-7. Preventing SQL INJECHION.........ccoveieriricrre s se e 363
PrODIBIM ... e 363
£ T0] (o] PP 364
0 0 L] 367
7-8. Utilizing Java Objects for Database ACCESS.........ccucverrerrrrsessessessnsses s ses e sessenneas 370
o (0] 11T T 370
RS T0] 110 o T 370
o 0 L o] €T 376
7-9. Navigating Data with Scrollable RESUILSELSccccevrierrserenesiennseresesenesennens 376
o (0] 1T TSP 376
IS T0] 11110 o TSRS 377
HOW FEWOTKS......coceeeeeecesisecen e as s s se s s se s nse s e nansnsnnnnnes 378

Xix

CONTENTS

7-10. Calling PL/SQL Stored ProCEAUIES..........ccoviereenmreressessesessessesessessssessesessssssssssens 379
o (0] 1] 1T 1 RS RS 379
LT 11§ OO 379
HOW BEWOTKS.......cveececetre ettt s a ettt et ne e e e e e s 380
7-11. Querying and Storing Large ODJECTS.......cccvverermrernsesessssessesessessssessesesessssennens 380
o (00T RS 380
S T0] 1110 o RSO SRSPTRSRS 381
HOW HEWOIKS......covcccscceresise s ss s s e s s sss s s ss s e sassessssessssnsnsssssssssssssnnenns 383
7-12. Caching Data for Use When Disconnected.............cccceevereercersersnssnssensessessensennnns 384
Lo (0]1] 1T 1 OO SRS 384
SOIUTION. ... r e e e e R e e e R AR R e e R e e Re e e R e e e RenReaeas 384
HOW HEWOTKS.......ceecetcestr st e s a et ne e e b e n e s 387
7-13. Joining RowSet Objects When Not Connected to the Data Source..................... 389
o (0] 1] 1T 1 RS S 389
LT 11§ OO 389
HOW BEWOTKS.......cveececetre ettt s a ettt et ne e e e e e s 392
7-14. Querying with @ REF_CURSOR.........c.ccccemrrrnnnernnesersse e sss s sesenns 393
o (10T S 393
S T0])10 o PRSP SY R RSPTRSRS 394
HOW HEWOIKS......covcccscceresise s ss s s e s s sss s s ss s e sassessssessssnsnsssssssssssssnnenns 394
Chapter 8: Object-Relational Mapping.......cccuseemmmssssnnnmmsssssnnmssssssssssssssssnsssssnnnnns 395
8-1. Creating an ENtitycoccvvvverrrrrsrsr s 396
o (00T RS 396
S T0] 1110 o RSO SRSPTRSRS 396
HOW HEWOIKS......covcccscceresise s ss s s e s s sss s s ss s e sassessssessssnsnsssssssssssssnnenns 399
8-2. Mapping Data TYPES.......cccceeereerrerrersessissss s sss s sss s s s s s s s s e s sn e snssnssnssnssnssnssnannas 400
Lo (0]1] 1T 1 OO SRS 400
SOIUTION. ... r e e e e R e e e R AR R e e R e e Re e e R e e e RenReaeas 401
HOW HEWOTKS.......ceeeete ettt s s bbb e e e b p e 402

XX

CONTENTS

8-3. Creating a Persistence UNitccvceerierenenneresnnesssese s sesssssssnsnens 403
o (0] 1T TSP 403
IS T0] 11110 o TSRS 403
HOW FEWOTKS......coceeeeeecesisecen e as s s se s s se s nse s e nansnsnnnnnes 404
8-4. Using Database Sequences to Create Primary Key Values..........cceevververrerrersennens 406
PrODIBIM ... e 406
£ T0] (o] PP 406
0 0 L] 408
8-5. Generating Primary Keys Using More Than One Attribute..........cccccoviniricnininnne 410
o (0] 11T T 410
L0 1110 I O 410
L0 1110 I 7T 413
HOW TEWOTKS.......coceeececee e s e se s spsns e e 416
8-6. Defining a One-to-0ne Relationshipc.ccovceeenmriennsenesnse s 418
o (0] 1T TSP 418
IS T0] 11110 o TSRS 418
HOW FEWOTKS......coceeeeeecesisecen e as s s se s s se s nse s e nansnsnnnnnes 420
8-7. Defining One-to-Many and Many-to-One Relationships............oovennnenenennnninen 420
PrODIBIM ... e 420
£ T0] (o] PP 421
0 0 L] 422
8-8. Defining a Many-to-Many Relationshipccccceevercercrcescsss s 424
o (0] 11T T 424
RS T0] 110 o T 424
HOW TEWOTKS.......coceeececee sttt s et se s nesne e e s 426
8-9. Querying with Named QUEKIESccoverererererereserese e e ses e seens 428
o (0] 1T TSRS 428
IS T0] 11110 o TSRS 428
HOW FEWOTKS......coceeeeeecesisecen e as s s se s s se s nse s e nansnsnnnnnes 429

xxi

CONTENTS

8-10. Performing Validation on Entity Fields..........ccceoviennniennscnesssesssesesesessesennens 429
o (0] 1T TSRS 429
IS T0] 11110 o PSSR 430
HOW FEWOTKS......coceeeeeecesisecen i as s e s e s s s e s ne s e e snnnsnnnns 431
8-11. Generating Database Schema Objects Automatically...........c.cceeevrrrrrerrerseriennn. 432
PrODIBIM ... e 432
£ T0] (o] PP 432
0 0 L] 432
8-12. Mapping Date-Time ValUEs.........cccocreeercrcrcrscne e e e e 436
o (0] 11T T 436
RS T0] 110 o O 436
o 0 L] 6 T 437
8-13. Using the Same Annotation Many TIMESc.ccccvcerrrrernsesenssessse s 437
o (0]] T TSP 437
IS T0] 11110 o PSSR 438
HOW FEWOTKS......coceeeeeecesisecen i as s e s e s s s e s ne s e e snnnsnnnns 439
Chapter 9: Enterprise JavaBeansccccuunssemmmmmmnmsmssssssssssssssnsssssssssssssssssssssssns 441
9.1. Obtaining an Entity MaNAQETcccveerrierennseresiseses s ses s ssesesssssssnsnens 441
o (0] 1T TSRS 441
L0 111 10) 0 I ST TRS 442
SOIULION H2......ceeeeee e s R e e R ne e ne e e e npnnn s 442
HOW TEWOTKS.......ceeeeeccesisecses s a s s e se s s se s s s s e e sannnnnnns 442
9.2. Developing a Stateless Session Beancccevvvrvervensessensensesses s ses s sessessessesens 443
PrODIBIM ... e 443
RST8] (o] 12 TP 443
RST8] (0] 1 7T 444
0 0] 447
9.3. Developing a Stateful Session Bean............ccccverercersssesssses s 449
o (0] 11T T 449
RS T0] 1110 o O 449
o 0 L] 6 T 453

xxii

CONTENTS

9.4. Utilizing Session Beans With JSF ... sessesesnens 455
o (0] 1T TSP 455
IS T0] 11110 o TSRS 455
HOW FEWOTKS......coceeeeeecesisecen e as s s se s s se s nse s e nansnsnnnnnes 457
9.5. Persisting an ObJECTcccvvvverrerrrrr e 459
PrODIBIM ... 459
£ T0] (o] PP 459
0 0 L] 459
9.6. Updating an ODjJEcCt..........ccececeeeeee s 460
o (0] 11T T 460
RS0 110 o OO 460
HOW TEWOTKS.......coceeececee e s e se s spsns e e 460
9.7. Returning Data to Display in @ TabIEc.cccovcereniriennnirersse e 460
o (0] 1T TSRS 460
0] 1110 0 I TSRS 461
SOIULION H2......ceeee e s R R e e R e e e e nnnnn s 462
HOW FEWOTKS......coceeeeeecesisecen e as s s se s s se s nse s e nansnsnnnnnes 463
9.8. Creating a Singleton Bean..........ccccvvvvrvrnernrrerses s ses s snsnes 464
PrODIBIM ... 464
£ T0] (o] PP 465
0 0 L] 467
9.9. Scheduling @ TIMEr SEIVICE........cccveeerrrerrrrrr s s s s ses s s ses e s e s sr s e srssnssrssrssrasnas 468
o (0] 11T T 468
L0 1110 I OO 468
L0 1110 I 7T 468
HOW TEWOTKS.......coceeececee sttt s et se s nesne e e s 469
9.10. Performing Optional Transaction Lifecycle Callbacksc.ccccueervrerierersesnennnnens 472
g (0] 1T TSRS 472
IS T0] 11110 o TSRS 472
HOW FEWOTKS......coceeeeeecesisecen e as s s se s s se s nse s e nansnsnnnnnes 473

xxiii

CONTENTS

9.11. Ensuring a Stateful Session Bean Is Not Passivated..........c..ccccevvrrrrircercercennen. 473
o (0] 1] 1T 1 RS RS 473
LT 11§ OO 473
HOW BEWOTKS.......cveececetre ettt s a ettt et ne e e e e e s 474
9.12. Denoting Local and Remote INterfacesccocvvvververrernenvensessessesses s sessessessenens 474
o (00T R 474
S T0] 1110 o RSO SRSPTRSRS 474
HOW HEWOIKS......covcccscceresise s ss s s e s s sss s s ss s e sassessssessssnsnsssssssssssssnnenns 474
9.13. Processing Messages Asynchronously from Enterprise Beans...........ccccccvvevvene 476
Lo (0]1] 1T 1 OO SRS 476
SOIUTION. ... r e e e e R e e e R AR R e e R e e Re e e R e e e RenReaeas 476
HOW HEWOTKS.......ceecetcestr st e s a et ne e e b e n e s 477
Chapter 10: The Query APl and JPQL..........ccccusmmmssammmssansmsssssssssnsssssnsssssnnssssnnsss 479
10-1. Querying All Instances of an Entityc.ccocversrcscncscsses s 479
Lo (0]1] 1T 1 OO SRS 479
SOIUTION H1 ... s e s bR e e e s Re e e e R e e e R e e eRe e e Renreaeas 479
SOIULION H2......ceee e s e e e e R e e e e s Re e e R et e R e e eRe e e Renennens 480
HOW HEWOTKS.......ceecetcestr st e s a et ne e e b e n e s 480
10-2. Setting Parameters to Filter Query ReSUlts............ccovverienrserenensennsesesessesesennes 482
o (0] 1] 1T 1 RS S 482
L0111 1 2 OO 482
SOIULION H2......ceee e s e s e e s bR e e R e e e Re e e e e et eee st eae e e aenenanas 482
HOW BEWOTKS.......cveececeere ettt s a e s et a e e e e e s e e e 482
10-3. Returning a Single ODJECT.........cccvvrrrrrrr e 484
o (00T RS 484
S T0] 1110 o RSO SRSPTRSRS 484
HOW HEWOIKS......covcccscceresise s ss s s e s s sss s s ss s e sassessssessssnsnsssssssssssssnnenns 484
10-4. Creating Native QUENIEScccvrerrersrcrserses s sn s e e snesnesnanns 484
Lo (0]1] 1T 1 OO SRS 484
SOIUTION H1 ... s e s R e e e e s Re e e e R et e R e e eRe e e Renenaens 485

XXiv

CONTENTS

RST8] (0] I 7T 485
0 L] € 486
10-5. Querying More Than One Entityc.ccocverercrssss s 487
o (0] 11T TSR 487
0] 1110 0 I T 487
SOIULION H2.....c..eeee e e e R e R e e e R e nn s 488
HOW TEWOTKS.......ceeccceescce st s e ssn e e nn e e e s 489
10-6. Calling JPQL Aggregate FUNCLIONS..........ccccevverenrnierssenessne e ssssennes 491
g (010 0 491
IS T0] 11110 o PSR S TR SS 491
0 0T € 492
10-7. Invoking Database Stored Procedures Natively..........ccccevvvervrvrsrsensessensensennenns 492
PrODIBIM ... 492
£ T0] (o] TP 492
o 0 L] € T 493
10-8. Joining to Retrieve Instances Matching All Casesccceeveerversersersessessensensnnns 493
g (0] 11T TSR 493
RS0 10 o TP 493
HOW TEWOTKS.......oceeeceeesecesisse s e st s e s ne e e nn e e e s 494
10-9. Joining to Retrieve All Rows Regardless of Matchccooecvriicnrnccneinicens 494
g (010 0 494
IS T0] 11110 o PSR S TR SS 495
0 0L 0] € 495
10-10. Applying JPQL Functional EXPreSSionsccccevvernnesessnsessssssessssessessssesssenns 496
PrODIBIM ... 496
£ T0] (o] TP 496
o 0 L] € T 497
10-11. Forcing Query Execution Rather Than Cache Use...........cccoveerinniercnnicsnnnnes 498
g (0] 1T TSR 498
£ 10 110 o O 498
HOW TEWOTKS.......coceeeceeeesccerisiee st s s se s e e ne e e nn e e e 498

XXV

CONTENTS

10-12. Performing Bulk Updates and Deletes..........cccovcrrnriennicnssssennsesesesesenenas 499
o (0] 1T TSRS 499
IS T0] 11110 o PSSR 499
HOW FEWOTKS......coceeeeeecesisecen i as s e s e s s s e s ne s e e snnnsnnnns 500
10-13. Retrieving Entity SUDCIASSESccvvrverrerierrerserrer s sessnnens 501
PrODIBIM ... e 501
£ T0] (o] PP 501
0 0 L] 502
10-14. Joining with ON Conditions.........c.ccoererieriersssrss s sne e 502
o (0] 11T T 502
RS T0] 110 o O 502
o 0 L] 6 T 503
10-15. Processing Query Results with Streams..........ccccoevriennicrennnennsesesessesesenes 504
o (0]] T TSP 504
IS T0] 11110 o PP STRS 504
HOW FEWOTKS......coceeeeeecesisecen i as s e s e s s s e s ne s e e snnnsnnnns 504
10-16. Converting Attribute Data TYPeS.......ccevvrrerrerrrrr s sneens 505
PrODIBIM ... e 505
£ T0] (o] PP 505
0 0 L] 506
Chapter 11: Bean Validationc.ccuummsmsmsmsmsmsmsmsmsmsmssssssssssssssssssssssssssssssssssans 507
11-1. Validating Fields with Built-In Constraints...........ccceevvrrrvrsnnnsrsrresrer e 508
PrODIBIM ... e 508
RST8] (o] 12 TP 508
RST8] (0] 1 7T 508
0 0] 509
11-2. Writing Custom Constraint Validatorscccceeversrcsssssssss s senens 910
o (0] 11T T 510
RS T0] 110 o O 510
o 0 L] 6 T 512

XXVi

CONTENTS

11-3. Validating at the Class LEVEI...........cceeerernnrennsers e snsseenas 512
o (0] 1T TSP 512
IS T0] 11110 o TSRS 512
HOW FEWOTKS......coceeeeeecesisecen e as s s se s s se s nse s e nansnsnnnnnes 514
11-4. Validating Parameters..........cccvvrrerrernnsensensenses s ses s s s sessesssssessessessssssssssssssnnns 515
PrODIBIM ... e 515
£ T0] (o] PP 515
0 0 L] 515
11-5. Constructor Validation...........c.ccvrnnicnnr e 516
o (0] 11T T 516
RS0 110 o OO 516
HOW TEWOTKS.......coceeececee e s e se s spsns e e 516
11-6. Validating Return VAIUEScoceerceresinernc s snse s 517
o (0] 1T TSRS 517
IS T0] 11110 o TSRS 517
HOW FEWOTKS......coceeeeeecesisecen e as s s se s s se s nse s e nansnsnnnnnes 517
11-7. Defining a Dynamic Validation Error MESSage.........cveerrerrerrersersersersessessessessensenns 518
PrODIBIM ... e 518
£ T0] (o] PP 518
0 0 L] 518
11-8. Manually Invoking Validator ENging..........ccceevercrcscscssesses s ses s 519
o (0] 11T T 519
RS T0] 110 o T 519
o 0 L o] €T 520
11-9. Grouping Validation Constraints.........c.ccccuceernrensncssnmssesnse s 520
o (0] 1T TSP 520
IS T0] 11110 o TSRS 520
HOW FEWOTKS......coceeeeeecesisecen e as s s se s s se s nse s e nansnsnnnnnes 522

xxvii

CONTENTS

Chapter 12: Java EE CONtainersccccovvmmmmmsssssssnmmssmsssssssssssssssssssssssssssssssssssnsnns 523
12.1. Installing GlassFish 5 or Payara 5 and Starting Upccccvcvrvvnicenicscnncnnncnes 523
g (0] 11T O 523
SOIUtioN #1: GIASSFISN ... s 523
SOIUTION #2: PAYAIA.......cceceereeireriresisese s e s e e e s s s e ae e s e sae e s s n e e sre e ene e enenannens 524
o 0 L] € T 524
12.2. Logging into the Administrative CONSOIE.........c.ccocvrrrrversersrss s 524
g (0] 1T TSRS 524
S T0] 1110 o PSR STRS 525
HOW TEWOTKS......coceeeeeecieieecses s e s s s s se s s e e s nse s e e sannnnnnes 526
12.3. Changing the Administrator User Password.............ccccvvrvrrersensessensensessensensensenns 530
PrODIBIM ... ———— 530
RS0] 1] 2 PP 530
RST8] (0] 1 7P 530
0 0] 531
12.4. Deploying @ WAR Fil@........ccccverirnersersersersessesses s sessessessnssessssssssssssssnssssnsnns 931
g (0] 11T T 531
10 11110 0 I 531
L0 1110 I 7O 533
o 0 L] € T 533
12.5. Adding @ Database RESOUICEccccevrerreererreeresssessesssessesssesssessesssessessssssesssssses 534
o (0] 1T TSRS 534
S T0] 1110 o PSR STRS 534
HOW TEWOTKS......coceeeeeecieieecses s e s s s s se s s e e s nse s e e sannnnnnes 537
12.6. Adding Forms-Based Authentication............ccccvevvrvrvnnrsnss s 539
PrODIBIM ... 539
£ T0] (o] PP 539
0 0] 544

xxviii

CONTENTS

12.7. Deploying a Microservice to Payara MiCro...........c.ccovvnerennsesessssesessesesessesensennes 545
o (0] 1] 1T 1 RSO S 545
LT 11§ OO 545
HOW BEWOEKS.......cveeeec ettt s a e st e e ne s e e e s 551
12.8. Packaging a Web Application with Payara Micro as an Executable JAR............. 553
o (10T 1 RS 553
S T0] 1110 o RSP SYRT S PTRSRS 553
HOW HEWOIKS......covccceceresesesss e sss e sesss s s s sas e s e s s s sss e ssssessssnsnssnsssnsssessnnenns 554
12.9. Deploying Payara Micro Apps 0N DOCKET.........c.ccecevrrercesses s e e snnens 554
Lo (0]1] 1T 1 RSSO 554
SOIUTION. ...t E e e R e R e R AR R e R e e e Re e Re e e RenReaeas 555
HOW HEWOTKS.......cecetcer et e et s bbb e e e b s p e s 556
Chapter 13: Contexts and Dependency Injection.......ccuceeeesmnmnsssmssssssssssnsssssssnns 559
13-1. Injecting a Contextual Bean or Other Object.........cccooverercrcr e 560
Lo (0]1] 1T 1 RSSO 560
SOIUTION. ... r e e AR e R e e e R AR e R e Re e Re e e RenReaeas 560
HOW HEWOTKS.......cecetcer et e et s bbb e e e b s p e s 561
13-2. Binding @ Bean t0 @ Web VIEW ... 562
o (0] 1] 1T 1 OO S 562
RS T 11§ OO 562
HOW BEWOEKS.......cveeeec ettt s a e st e e ne s e e e s 564
13-3. Allocating a Specific Bean for INjeCtioncccvvvvrvrvrsnsen s 565
g (00T S 565
S T0] 1110 o RSP SYRT S PTRSRS 565
HOW HEWOIKS......covccceceresesesss e sss e sesss s s s sas e s e s s s sss e ssssessssnsnssnsssnsssessnnenns 567
13-4. Determining the Scope of @ Bean..........cccocvercrcscssscsses s 968
Lo (0]1] 1T 1 RSSO 568
SOIUTION. ...t E e e R e R e R AR R e R e e e Re e Re e e RenReaeas 568
HOW HEWOTKS.......cecetectr et st ne e e a e e s 570

XXix

CONTENTS

13-5. Injecting Non-Bean ODJECESccccveerenmrernseresrnse e snse s 571
o (0] 1T TSRS 571
IS T0] 11110 o PSSR 571
HOW FEWOTKS......coceeeeeecesisecen i as s e s e s s s e s ne s e e snnnsnnnns 573
13-6. IgNOFING CIASSESererererierersersesserses e s e s e s e s ses e s ses e s e s ssssessassassasssssassassnssssnnnns 574
PrODIBIM ... e 574
RST8] (o] 12 TP 574
RST8] (0] 1 7T 574
0 0 L] 575
13-7. Disposing of Producer Fieldscccovernriersensnses s ses s ses s s s s snsnnns 575
o (0] 11T T 575
RS T0] 110 o O 576
o 0 L] 6 T 576
13-8. Specifying an Alternative Implementation at Deployment Time..........ccccccvvevuee 576
o (0] 1T TSRS 576
IS T0] 11110 o OO 576
HOW TEWOTKS.......ceeeeeccesisecses s a s s e se s s se s s s s e e sannnnnnns 577
13-9. Injecting a Bean and Obtaining Metadata.............ccccorrrvrrrsrnnsncrsrren s 577
PrODIBIM ... e 577
£ T0] (o] PP 577
0 0 L] 578
13-10. Invoking and Processing EVENtsS..........cccocrcrcrcscssesscsses s snnnns 578
o (0] 11T T 578
RS T0] 110 o O 578
HOW TEWOTKS.......coceiececee et e s st e nenne s e 581
13-11. Intercepting Method INVOCALIONSccccererenrnicrnse e 582
o (0]] T TSP 582
IS T0] 11110 o PSSR 582
HOW FEWOTKS......coceeeeeecesisecen i as s e s e s s s e s ne s e e snnnsnnnns 584

XXX

CONTENTS

13-12. Bootstrapping Java SE Environments.........ccccecvvrvrcrsersssessesses s 585
o (0] 1T TSP 585
IS T0] 11110 o TSRS 585
HOW FEWOTKS......coceeeeeecesisecen e as s s se s s se s nse s e nansnsnnnnnes 586
13-13. Enhancing Business Logic 0of @ Method...........cccceervrverversnsen s s senenns 586
PrODIBIM ... e 586
£ T0] (o] PP 586
0 0 L] 588
Chapter 14: Java MeSSage SerVICeccosssuussssanssssanssssansssssnsssssnsssssnsssssnnssssnnnsss 591
14-1. Creating JMS RESOUICES........ccvvrrerrerrersersersessessessessessessesssssssssssessssssssssssssssssssnnns 592
PrODIBIM ... e 592
£ T0] (0] 2 PP 592
RST8] (0] I 7T 594
0 0 L] 595
14-2. Creating @ SESSION.........ccocvcerrerirsrrsersrs s sr s sn s sr s sn s sn e sn e snennnnans 596
o (0] 11T T 596
RS0 110 o OO 596
HOW TEWOTKS.......coceeececee e s e se s spsns e e 597
14-3. Creating and Sending @ MESSAQEcccvecrererrerrsserssesesessessessssesessessesessesssseenes 598
o (0] 1T TSP 598
L0 1110 0 I PSSR 598
SOIULION H2......ceeeeree e Re e R e ne e s R e e e nnnpnnn s 599
HOW FEWOTKS......coceeeeeccteiseces i s s s ss e e n s s s e s sse s e nansnsnnnnnes 599
14-4. ReCeIVING MESSAGESerrererrersersersersersessessessessessessessessssssssssssssssssssssssssssssssssnnns 600
PrODIBIM ... e 600
£ T0] (0] 2 PP 601
RST8] (0] I 7T 602
0 0 L] 602

XXXi

CONTENTS

14-5. Filtering MESSAQES.cceerererrrrresrssessesssse e ss s ss s ssssssesss e ssesessssssnssnes 603
o (0] 1T TSRS 603
IS T0] 11110 o PSSR 603
HOW FEWOTKS......coceeeeeecesisecen i as s e s e s s s e s ne s e e snnnsnnnns 605
14-6. Inspecting Message QUEUES.........cccueeerrerrnseresrssessssessessssessesesessssesssssssessssssnes 605
PrODIBIM ... e 605
£ T0] (o] TP 605
0 0 L] 606
14-7. Creating Durable Message SUDSCIIDEIS..........cccverersersessesses s e e snnenns 606
o (0] 11T T 606
RS T0] 110 o O 606
o 0 L] 6 T 610
14-8. Delaying MesSSage DElIVErY..........ccoverenreresneresrssesesse s ssssesnes 611
o (0]] T TSP 611
IS T0] 11110 o PSSR 611
HOW FEWOTKS......coceeeeeecesisecen i as s e s e s s s e s ne s e e snnnsnnnns 611
Chapter 15: RESTful Web ServiCescccrmmmssmsmmmssssnsnmsssssssnssssssssnsssssssnnsssssnnnnss 613
15-1. Creating a JAX-WS Web Service Endpoint.............ccoveriennnerensscnnsssessssessnsennes 615
o (0] 1T TSP 615
L0 111 10) 0 I ST TRS 615
SOIULION H2......ceeeeee e s R e e R ne e ne e e e npnnn s 617
HOW TEWOTKS.......ceeeeeccesisecses s a s s e se s s se s s s s e e sannnnnnns 619
15-2. Deploying @ JAX-WS WED SEIVICEcccvvrrerrerrerrersessessessessesssssessessesssssesssssssenns 622
PrODIBIM ... e 622
RST8] (o] 12 TP 622
RST8] (0] 1 7T 622
RST8] (0] -2 TP 623
0 0] 623

xxxii

CONTENTS

15-3. Consuming a JAX-WS Web Service via WSDLcccccvveenierenesnesensessesessesessennes 623
o (0] 1T TSP 623
IS T0] 11110 o TSRS 623
HOW FEWOTKS......coceeeeeecesisecen e as s s se s s se s nse s e nansnsnnnnnes 624
15-4. Consuming a JAX-WS Web Service via a Stand-Alone Application Client 625
PrODIBIM ... e 625
£ T0] (o] PP 625
0 0 L] 626
15-5. Integrating JAX-WS Web Services into a Java EE Project............cccecrvvrcernnnne. 627
o (0] 11T T 627
RS0 110 o OO 627
HOW TEWOTKS.......coceeececee e s e se s spsns e e 629
15-6. Developing @ RESTful Web Service.........ccovvveeiccnsnencnnsc s 630
o (0] 1T TSRS 630
0] 1110 0 I TSRS 630
SOIULION H2......ceeee e s R R e e R e e e e nnnnn s 631
HOW FEWOTKS......coceeeeeecesisecen e as s s se s s se s nse s e nansnsnnnnnes 633
15-7. Consuming and Producing wWith REST.........cccvvrvrrnrnnrrrser e e senenns 635
PrODIBIM ... e 635
£ T0] (o] PP 635
0 0 L] 637
15-8. Writing @ JAX-RS ClieNt..........ccocrercrerrer i sn s snssns s e 638
o (0] 11T T 638
RS T0] 110 o T 638
HOW TEWOTKS.......coceeececee sttt s et se s nesne e e s 639
15-9. Filtering Requests and RESPONSES.........cccveerrerrerrersessessessessessessessessessessessssssnsenns 643
o (0] 1T TSRS 643
IS T0] 11110 o TSRS 643
HOW FEWOTKS......coceeeeeecesisecen e as s s se s s se s nse s e nansnsnnnnnes 644

xxxiii

CONTENTS

15-10. Processing Long-Running Operations Asynchronouslycccccveeenierenennes 646
o (0] 1T TSRS 646
IS T0] 11110 o PP STRS 646
HOW FEWOTKS......coceeeeeecesisecen i as s e s e s s s e s ne s e e snnnsnnnns 647
15-11. Pushing One-Way Asynchronous Updates from Serversccoceevvrvrrersennnnns 649
PrODIBIM ... e 649
£ T0] (o] PP 649
0 0 L] 651
15-12. Receiving Server Sent Events as a Client...........c.ccocvervrcrcssssessessessessessennns 652
o (0] 11T T 652
RS T0] 110 o O 652
o 0 L] 6 T 653
Chapter 16: WebSockets and JSONcccccmmmmmnnmmmmmmsnnssssnnsmsssmsssssssssnsssssnsnes 655
16-1. Creating a WebSocket Endpoint..........cccocrercrcrcssssesses s ses s e 655
o (0] 11T T 655
RS T0] 110 o O 655
o 0 L] 6 T 656
16-2. Sending Messages to a WebSocket Endpoint.............ccoceerirenniennsesesnsesennennes 656
o (0] 1T TSP 656
IS T0] 11110 o OO 656
HOW TEWOTKS.......ceeeeeccesisecses s a s s e se s s se s s s s e e sannnnnnns 658
16-3. Building @ JSON ODJECL........cccvverrerierrererer s se s sn s sa s sa e sn e 660
PrODIBIM ... e 660
£ T0] (o] PP 660
0 0] 661
16-4. Writing @ JSON ODject t0 DiSK.......c.cceereerrersersersesses s sessesssssesses s snssnssnssnsnnnns 662
o (0] 11T T 662
RS T0] 110 o O 662
HOW TEWOTKS.......coceiececee et e s st e nenne s e 662

XXXiv

CONTENTS

16-5. Reading JSON from an INput SOUICEccccecereerriernsrnesne s 663
o (0] 1] 1T 1 RSO S 663
IS T0] 11110 o TSRS 663
HOW FEWOTKS......coceeeeeecesisecen e as s s se s s se s nse s e nansnsnnnnnes 663
16-6. Converting Between JSON and Java ODjJECtScccvvrververnersenserses s e senenns 664
g (00T S 664
S T0] 1110 o RSP SYRT S PTRSRS 664
HOW HEWOIKS......covccceceresesesss e sss e sesss s s s sas e s e s s s sss e ssssessssnsnssnsssnsssessnnenns 666
16-7. Custom Mapping With JSON-Bcooorrercr e 667
Lo (0]1] 1T 1 RSSO 667
SOIUTION. ...t E e e R e R e R AR R e R e e e Re e Re e e RenReaeas 667
HOW HEWOTKS.......cecetcer et e et s bbb e e e b s p e s 668
16-8. Replacing a Specified Element in a JSON Documentcccovveenvrenenccnnnnnes 669
o (0] 1] 1T 1 RS RS 669
IS T0] 11110 o TSRS 669
HOW FEWOTKS......coceeeeeecesisecen e as s s se s s se s nse s e nansnsnnnnnes 670
Chapter 17: SECUrtY....ccciuissmmmmmmssssmmmmmsssnsnmmssssssnmsssssssnssssssnsnssssssnnnsssssnnnnsssssnnnnss 673
17-1. Setting Up Application Users and Groups in GlassFish...........ccccocvvvvrvrieriennnnne 674
o (0] 1] 1T 1 OO S 674
RS T 11§ OO 674
HOW FEWOTKS......coceeeeeecesisecen e as s s se s s se s nse s e nansnsnnnnnes 676
17-2. Performing Basic Web Application Authorization...........cccceeevvrvervrvessessensenienienns 677
g (00T S 677
SOIULION H1....cee e R AR R R R R R s 677
SOIULION H2......ceeeeee e AR R AR R R R R e R R e R s 678
HOW HEWOIKS......covccceceresesesss e sss e sesss s s s sas e s e s s s sss e ssssessssnsnssnsssnsssessnnenns 679
17-3. Developing a Programmatic Login Form with Custom Authentication Validation.......681
Lo (0]1] 1T 1 RSSO 681
SOIUTION. ...t E e e R e R e R AR R e R e e e Re e Re e e RenReaeas 681
HOW HEWOTKS.......ceeeetcesr sttt s s bbb e e e a e p e s 694

XXXV

CONTENTS

17-4. Authenticating with the Security API Using Database Credentials...................... 695

o (0] 1T TSRS 695

IS T0] 11110 o PSSR 695

HOW FEWOTKS......coceeeeeecesisecen i as s e s e s s s e s ne s e e snnnsnnnns 700

17-5. Managing Page Access Within a JSF Applicationcccceeevvrvrvenvensssensenseninnns 702

PrODIBIM ... e 702

£ T0] (o] PP 702

0 0 L] 703

17-6. Configuring LDAP Authentication Within GlassFish...........c.ccceveeircrcscencenceninnns 704

o (0] 11T T 704

RS T0] 110 o O 704

o 0 L] 6 T 706

17-7. Configuring Custom Security Certificates Within GlassFish/Payara.................... 706

o (0]] T TSP 706

IS T0] 11110 o PSSR 706

HOW FEWOTKS......coceeeeeecesisecen i as s e s e s s s e s ne s e e snnnsnnnns 707

Chapter 18: Concurrency and Batch Applications........c.ccccnmmsemmnmnssssnsnmsssssnnns 709
18-1. Creating Resources for Processing Tasks Asynchronously in an

APPHICALION SEIVETcveceereeceeree e sa e sa e sa e sa e sa s sa e sn e sa e nn e nas 710

PrODIBIM ... e 710

£ T0] (0] 2 TP 710

RS0 (0] 1 7P 711

0 0] 712

18-2. Configuring and Creating a Reporter Task.........cccocverersscsssses s 713

o (0] 11T T 713

RS T0] 110 o O 713

HOW TEWOTKS.......coceiececee et e s st e nenne s e 716

18-3. Running More Than One Task Concurrently...........ccoceovveenirennsennsesesessesenennes 77

o (0]] T TSP 77

IS T0] 11110 o PSSR 77

HOW FEWOTKS......coceeeeeecesisecen i as s e s e s s s e s ne s e e snnnsnnnns 719

XXXVi

CONTENTS

18-4. Utilizing Transactions Within @ TasK..........ccocuerrenniernnmnnennsesessssesssessesessessseenes 720
o (0] 1T TSP 720

IS T0] 11110 o TSRS 720
HOW FEWOTKS......coceeeeeecesisecen e as s s se s s se s nse s e nansnsnnnnnes 721
18-5. Running Concurrent Tasks at Scheduled TIMES.........cccvvrvrvrrrsessessessessensensenns 722
PrODIBIM ... e 722

£ T0] (o] PP 722

0 0 L] 724
18-6. Creating Thread INSTANCES.cccecveercrser s e 725
o (0] 11T T 725

RS0 110 o OO 725
HOW TEWOTKS.......coceeececee e s e se s spsns e e 726
18-7. Creating an Item-Oriented BatCh ProCessccccvevmrerencsessssenensesenessesenennas 727
o (0] 1T TSRS 727

IS T0] 11110 o TSRS 727
HOW FEWOTKS......coceeeeeecesisecen e as s s se s s se s nse s e nansnsnnnnnes 730
Appendix A: Java EE Development with Apache NetBeans IDE............c.ccceunrnns 733
A-1. Configuring Application Servers Within NetBeans...........ccccoccvevrervernscrennssesensennes 733
Developing Java Web or Enterprise APpliCations..........cccoceeeerreienenensnesesessesesessssse s sesesssssseens 735
A-2. Creating a NetBeans Java Web Project..........ccovvevrvrvrvs s 735
A-3. Creating JSF Application FilesScccoeeerererenense e sss s sessse s e sssssssnssennns 738
A-4. Developing Entity ClaSSES.........cuvererrrerrmsessessssesssssssessssssssssssessssssssssssessssssssssssssses 741
A-5. USING JPQAL.....c.corieirirceris et sas e s st et sas s 742
A-6. USING HTMLA........ceeeeceecte e ss e sn e nesn e sn e s sn s sn e sn e n e sr s nn e nn e nn e n s 742
INA@X..eiiiiisnnnnnsssnnnnnsssnnnsnssssnnnnnssssnnnnnssssnnnsssssnnnnsssssnnnnsssssnnnnsssssnnnnnssssnnnnssssnnnnnssss 747

XXXVii

About the Author

Josh Juneau has been developing software and database systems for several years. Database application
development and sophisticated web apps have been the focus of his career since the beginning. Early in
his career, he became an Oracle database administrator and adopted the PL/SQL language for performing
administrative tasks and developing applications for Oracle database. In an effort to build more complex
solutions, he began to incorporate Java into his PL/SQL applications and later developed stand-alone and
web applications with Java. Josh wrote his early Java web applications utilizing JDBC to work with backend
databases. Later, he incorporated frameworks into his enterprise solutions, including Java EE, Spring, and
JBoss Seam. Today, he primarily develops enterprise web solutions utilizing Java EE.

He extended his knowledge of the JVM by developing applications with other JVM languages such as
Jython and Groovy. In 2006, Josh became the editor and publisher for the Jython Monthly newsletter. In
late 2008, he began a podcast dedicated to the Jython programming language. Josh was the lead author for
The Definitive Guide to Jython, Oracle PL/SQL Recipes, and Java 7 Recipes, which were published by Apress.
Since then, he has continued to author Java-related books for Apress, including his most recent work entitled
Java 9 Recipes. He is an avid contributor to Oracle’s Java Magazine, and he speaks at Java User Groups and
conferences when he has the opportunity.

He works as an application developer and systems analyst, and he is a contributor to the Chicago Java
User Group. Josh is an Apache NetBeans committer and a Java Champion. He participates in the JCP and
had been a part of the JSF expert group for the development of Java EE 8. Josh has a wonderful wife and five
children with whom he loves to spend time. To hear more from Josh, follow his blog, which can be found at
http://jj- blogger.blogspot.com. You can also follow him on Twitter via @javajuneau.

XXXiX

About the Technical Reviewer

Alex Bretet is a 35-year-old Frenchman who has been working in
the software development industry since 2006. Specialized in Java
environments (web and enterprise), he also has several projects with
the Spring Framework. Currently based in Austria, he works as an
international contractor for the bank and insurance industry.

To the new joiners and wannabe developers, he will never
stress enough the importance of repetitively exposing oneself to new
technological challenges on a private level. Particularly before and after
graduation. Open source projects, entrepreneurial ideas, publications...
all kinds of experience that can build confidence and your longer-term
memory.

xli

Acknowledgments

To my wife Angela: I am still amazed by you and always will be. Thanks again for helping to inspire me and
keep me moving forward in my endeavors. You continue to be my rock, and I am so grateful for all you do.

To my children, Kaitlyn, Jacob, Matthew, Zachary, and Lucas—I love you all so much and I cherish every
moment we have together. I hope that you'll find your passion in life and enjoy each day as much as I enjoy
each day spending time with you. I wish I could slow time down...you are growing up too fast!

I want to thank my family for their continued support in my career. I also want to thank my co-workers
for allowing me to guide the organization’s application development efforts and build successful solutions to
keep us moving forward.

To the folks at Apress—I thank you for providing me with the chance to share my knowledge with
others, once again. I especially thank Jonathan Gennick for the continued support of my work and for
providing the continued guidance to produce useful content for our readers. I also thank Jill Balzano for
doing a great job coordinating this project and many of my others before it. To my technical reviewer, Alex
Bretet, you have done an excellent job of solidifying the book content. Thanks again for your hard work and
technical expertise. Lastly, I'd like to thank everyone else at Apress who had a hand in this book.

To the Java community—thanks again for helping to make the Java platform such an innovative and
effective realm for application development. I especially want to thank those in the Java EE community who
have a hand in helping to move things forward via EE4]J, the Eclipse Working Group, Java EE Guardians, and
other speakers, writers, and evangelists of Java EE and Jakarta EE. To the members of the Chicago Java Users
Group, I want to thank you for helping Chicago be one of the best locations for Java expertise. I also want
to thank my fellow members of the Java OffHeap podcast:—Freddy Guime, Bob Paulin, Michael Minella,
and Jeff Palmer—you help me remain engaged in all of Java technologies and it is a privilege to have the
opportunity to meet and discuss Java each month.

xliii

Introduction

The Java platform is one of the most widely used platforms for application development in the world.

The platform is so popular that there are several different flavors of Java that can be used for developing
applications that run on different mediums. From development of desktop, mobile, or web applications
and hardware operating systems, Java can be utilized for development of just about any solution. As such,
Java has become a very popular platform for development of web and enterprise applications, offering web
services, reliability, security, and much more.

Java Enterprise Edition was originally released in 1999 as Java 2 Platform, Enterprise Edition (J2EE).
Although several enterprise frameworks were available for development of reliable and secure applications
on the Java platform, it made sense to standardize some solutions in order to minimize customization and
help provide standards around Java Enterprise development to make it more prevalent in the industry.

The platform originally included a terse number of specifications for standardization, including Java
Servlet, JavaServer Pages, RM], Java Database Connectivity (JDBC), Java Message Service API (JMS), Java
Transaction API (JTA), and Enterprise JavaBeans. Early development of J2EE applications had a large
learning curve, and it was cumbersome because it required lots of XML configuration. Even with these
setbacks, it became popular among larger organizations and companies due to the prevalence of Java and
its well-known security benefits. In 2001, J2EE 1.3 was released, adding more specifications to the platform,
including the JavaServer Pages Standard Tag Library (JSTL), and Java Authentication and Authorization
Service (JAAS). Other specifications, such as Java Servlet, also gained enhancements under the J2EE 1.3
release, making evolutionary enhancements to the platform. The release of J2EE 1.4 in 2003 marked a major
milestone for Java Enterprise, as many new specifications were added to the platform, providing standards
for even more Java technologies. The release of J2EE 1.4 marked the first iteration of Web Services for J2EE
1.1, JavaServer Faces (JSF), and Java APIs for XML solutions such as JAXP, JAXR, and more. Although the
release of J2EE 1.4 included many specifications, it was still deemed as “difficult to learn,” “cumbersome,’
and “not productive”

Over the next few years, J2EE was re-worked in an attempt to make it easier to learn and utilize for the
construction of modern web applications. Although XML is an excellent means for configuration, it can
be cumbersome and difficult to manage, so configuration was a big item that was being addressed for the
next release. Technologies such as Enterprise JavaBeans (EJB) included some redundant characteristics,
making EJB coding time-consuming and difficult to manage, so an overhaul of EJB was also in order. In
May of 2006, Java EE 5 was released, leaving the J2EE acronym behind, and changing to simply Java EE
instead. The Java EE 5 platform was significantly easier to use and maintain because features such as
annotations were introduced, cutting down the amount of XML configuration significantly, as configuration
could now be injected via annotations. EJBs were made easier to develop, and Java Persistence API (JPA)
became a marketable technology for object-relational mapping. Java Enterprise Edition has since become
a widely adopted and mature platform for enterprise development. Java EE 6 was released in 2009, making
configuration and APIs even easier, and adding more specifications to the platform. Specifications such as
Contexts and Dependency Injection and Bean Validation were introduced, vastly changing the landscape
of the platform and streamlining development. Java EE 7 (released in 2013) continued to strengthen and
modernize the platform, adding the WebSockets and JSON-P specifications. In the Java EE 7 release,
specifications such as JSF and EJB were also enhanced, adding even more features to increase productivity
and functionality and allowing them to work better for more modern web solutions.

xlv

INTRODUCTION

What occurred next in the timeline was a definitive game changer for the Java EE platform. The Java
EE 8 initiative had begun in 2015 and many of the specifications that make up the platform had begun to
work. The focus of Java EE 8 was to continue to work toward Java SE 8 compatibility throughout the APIs
and to continue making the APIs easier to use. There was also a focus on creating new specifications around
making microservices easier to develop with Java EE. In late 2015, many of the specifications stopped
moving forward, and there was a halt in progress across the board. A few specifications, such as JSE, CDI, and
JSON-B, continued to progress, while many of the others stalled. During this stall, the community became
concerned about the future of Java EE, and there was a perception that it was going to be dropped. Oracle
was silent on the progress of Java EE 8 and uncertainty was in the air. It was during this same timeframe that
the Java EE Guardians group was formed, with the focus on trying to make Oracle produce a statement about
the future direction of the platform, and to make open source the platform rather than dropping it. Around
that same time, the Microprofile project was started as a collaborative effort by a number of the Java EE
container vendors, with the focus on providing a true Microservices profile for the Java EE platform.

In late 2016, Oracle changed the direction of Java EE 8 by removing some of the previously planned
specification updates and adding others. There became a renewed effort to keep Java EE 8 moving forward in
the hopes to produce a final release in 2017, working towards a better platform for producing microservices
based applications. The Java EE 8 release was final in the fall of 2017, and it included updates to many of the
specifications. However, even some of the specifications that were planned for enhancing microservices
development were dropped in an effort to produce a timely release, including MVC and the Health
Checking APIL.

In early Fall 2017 just before the release of Java EE 8, Oracle announced that they were going to open
source Java EE. After a short while, it was announced that Oracle was going to contribute all of the Java EE
sources (for each of the underlying specifications), along with all documentation and TCKs (Technology
Compatibility Kits) to the Eclipse Foundation. In late 2017, the EE4]J (Eclipse Enterprise for Java) project was
formed, and the transfer of each specification began. In early 2018 it was voted that the new name for the
platform under the open source EE4] project would become Jakarta EE. Once all of the specification sources,
documentation, and TCKs were transferred, Jakarta EE was to release a 1.0, which was in parity with Java EE 8.

This book focuses on the Java EE 8 release, as well as the Jakarta EE initial release. As such, throughout
this book, I will refer to the platform as Java EE 8. However, each of the recipes in this book also work with
the initial release of Jakarta EE. The platform is covered as a whole, touching upon each most of the widely
used specifications that make up Java EE. You will learn how to use each of the major specifications, making
use of real-world examples and solutions. This book will cover APIs that have not been updated for Java EE
8, as well as those that have been enhanced, providing complete coverage for those who are newer to the
platform. It also features recipes that cover the newest features of the platform, so that seasoned Java EE
developers can skip those introductory concepts and delve into newer material.

I work with Java EE/Jakarta EE on a daily basis, and I have a deep passion for the technologies involved
in the platform. I hope that this book increases your passion and productivity using the platform in its
entirety.

Who This Book Is For

This book is intended for all those who are interested in learning Java Enterprise Edition (Java EE)
development and/or already know Java EE but would like some information regarding the new features
included in Java EE 8. Those who are new to Java EE development can read this book, and it will allow them
to start from scratch to get up and running quickly. Intermediate and advanced Java developers who are
looking to update their arsenal with the latest features that Java EE 8 has to offer can also read the book to
quickly update and refresh their skillset.

xlvi

INTRODUCTION

How This Book Is Structured

This book is structured so that it does not have to be read from cover to cover. In fact, it is structured so that
developers can choose which topic(s) they’'d like to read about and jump right to them. Each recipe contains
a problem to solve, one or more solutions to solve that problem, and a detailed explanation of how the
solution works. Although some recipes may build on concepts that have been discussed in other recipes,
they will contain the appropriate references so that the developer can find other related recipes that are
beneficial to the solution. The book is designed to allow developers to get up and running quickly with a
solution so that they can be home in time for dinner.

Conventions

Throughout the book, I've kept a consistent style for presenting Java code, SQL, command-line text, and
results. Where pieces of code, SQL, reserved words, or code fragments are presented in the text, they are
presented in fixed-width Courier font, such as this (working) example:

public class MyExample {
public static void main(String[] args){
System.out.println("Jakarta EE is excellent!");
}

Downloading the Code

The code for the examples shown in this book is available on the Apress web site, www.apress.com. A link
can be found on the book’s information page under the Source Code/Downloads tab. This tab is located
underneath the Related Titles section of the page.

Note The sources for this book may change over time, to provide new implementations that incorporate
the most up-to-date features in Jakarta EE. That said, if any issues are found within the sources, please submit
them via the Apress website “Errata” form, and code will be adjusted accordingly.

Configuring Database for the Book Sources

This book's sources have been developed using the Apache Derby database, which ships with NetBeans IDE
and GlassFish. Please install and configure the database for use with the book sources prior to working with
the sources. The database configuration involves creation of a database schema or user, as well as execution
of the create_database.sql script (contained within the book sources) that goes along with the database
of your choice. You must also place the appropriate database JDBC driver into the GlassFish CLASSPATH.

You can do this by copying the ojdbc6. jar (Oracle) or derbyclient. jar (Apache Derby) JAR file into your
Integrated Development Environment (IDE) project for the book sources, or into the <GlassFish-Home>\
glassfish5\domains\domain1\1lib\ext directory. If you're copying into the GlassFish 1ib directory, then
once the JAR file has been copied into place, the GlassFish server will need to be restarted, if it is already
running. If you're using Payara, the JAR file can be placed into the respective location.

xlvii

http://www.apress.com/

INTRODUCTION

Once the database has been installed/configured, and the SQL scripts contained within the book
sources have been executed, log into the GlassFish administrative console and set up a database connection
pool to work with the database of your choice. For more information, see Recipe 12-5.

After a connection pool has been configured, update the persistence.xml file that is contained within
the book sources accordingly, so that the data source name aligns with the one you've assigned to the
GlassFish JDBC resource.

Setting Up NetBeans Project

** Before setting up a NetBeans project for the book sources, install and configure GlassFish or Payara
accordingly. For more information, see Recipe 12-1.

Note regarding dependencies This project depends on the use of the third-party PrimeFaces library. At
the time of this book publication, the PrimeFaces 6.x was used and available for free download.

Perform the following steps to set up the NetBeans Maven Web project:

1.

> N

xlviii

Open NetBeans IDE 8.2 or greater.

Choose the File » New Project » Maven » Web Application menu option.
Title the project JavaEE8Recipes and choose a desired project location.
Server and settings:

— Ifyouhave not yet registered your GlassFish server with NetBeans, click the
Add button in this dialog and add the server. To do so, you will need to know
the location of the GlassFish server on your file system.

— Java EE Version: As of NetBeans 8.2, you only have the option to choose
Java EE 7 Web.

Frameworks:
— Select JavaServer Faces and then accept all defaults.
Click Finish.

Go to your file system and copy the contents from within the
JavaEE8Recipes-BookSources\NBProject\src directory into your new
NetBeans project src directory.

Add the required library dependencies to your project by right-clicking on the
project and choosing the Properties option. Once the Properties dialog is open,
select Libraries and add the following dependencies:

— PrimeFaces 6.x

— Database JDBC JAR file, if not already placed within the GlassFish 1ib
directory

INTRODUCTION

Testing Java EE Application Projects

This book will not delve into the world of testing Java EE application projects. Although testing is extremely
important and essential for a project’s success, it is far too big of a topic to fit into this book. That said, I want
to get you pointed in the correct direction with my approach to testing Java EE application projects.

Note The recommendations made in this section have not been attempted with Jakarta EE since it was not
available for testing at the time of this writing. However, since Jakarta EE 1.0 is assumed to be an open source
replica of the Java EE 8 release, these recommendations should apply if you’re using Jakarta EE 1.0, and
perhaps for future versions of Jakarta EE as well.

Certainly testing is one of those objectives that meet the “more is better” mantra, so I believe it is
important to take a multi-headed approach to testing. The most obvious testing is that you must test your
application user interface and ensure that the application UI and business logic functions as expected
during user testing. This is perhaps the easiest testing, as it only requires user-documented testing of each
form within a web application. Before user testing can begin, functional testing and automated UI testing
should take place. By functional testing, I mean using a framework such as JUnit to test the business logic of
the application. Such tests can be configured to run each time a project is built and compiled. Automated UI
testing can be achieved via the use of a testing API such as Arquillian, along with an add-on like Graphene.
In fact, my approach is to utilize Arquillian for configuration and coordination of all unit tests via JUnit and
also for orchestration of the automated Ul testing via Graphene.

While this topic is too big to cover in this section, I want to point you to some online resources that you
can use to get started with Arquillian testing of your Java EE application projects. It is important to gain a
decent understanding of the Arquillian framework by reading through the documentation. One of the most
difficult pieces of the puzzle is setting up the Maven POM file with the correct dependencies. For this reason,
you will find a sample POM file dependency list for setting up Arquillian with Graphene extension in the
sources for this book. Once the dependencies are set up, it is very easy to create tests that will be executed
each time the project is built.

An Arquillian test file is simply a Java class that contains JUnit (or another testing framework) tests, that
runs under the Arquillian harness. Harness allows one to set up a custom deployment package for each test
class, packaging only the required dependencies for running the individual tests. The deployment package
can then be deployed to a running application server container, or they can be deployed to an embedded
container. In my experience, I've had the best luck deploying to an existing server...typically the same server
that I develop against on my local machine.

The Graphene extension can be used to literally code the web interaction on a specific page of an
application. You can code the completion of a web form, which is the pressing of a button, and test for a
specified result.

Use the documentation found at the following links to get started with Arquillian and Selenum.

http://arquillian.org/guides/getting started/
http://arquillian.org/guides/getting started rinse and_repeat/
http://arquillian.org/guides/shrinkwrap_introduction/
http://arquillian.org/guides/functional_testing using graphene/

xlix

http://arquillian.org/guides/getting_started/
http://arquillian.org/guides/getting_started_rinse_and_repeat/
http://arquillian.org/guides/shrinkwrap_introduction/
http://arquillian.org/guides/functional_testing_using_graphene/

CHAPTER 1

Working with Servlets

Java servlets were the first technology for producing dynamic Java web applications. Sun Microsystems
released the first Java Servlet specification in 1997. Since then it has undergone tremendous change, making
it more powerful and easing development more with each release. The 3.0 version was released as part of
Java EE 6 in December 2009.

Servlets are at the base of all Java EE applications. Although many developers use servlet frameworks
such as Java Server Pages (JSP) and Java Server Faces (JSF), both of those technologies compile pages into
Java servlets behind the scenes via the servlet container. That said, a fundamental knowledge of Java servlet
technology could be very useful for any Java web developer.

Servlets are Java classes that conform to the Java Servlet API, which allows a Java class to respond to
requests. Although servlets can respond to any type of request, they are most commonly written to respond
to web-based requests. A servlet must be deployed to a Java servlet container in order to become usable.
The Servlet API provides a number of objects that are used to enable the functionality of a servlet within
a web container. Such objects include the request and response objects, pageContext, and a great deal of
others, and when these objects are used properly, they enable a Java servlet to take care of just about any
task a web-based application needs to perform. As mentioned, servlets can produce not only static content
but also dynamic content. Since a servlet is written in Java, any valid Java code can be used within the body
of the servlet class. This empowers Java servlets and allows them to interact with other Java classes, the web
container, the underlying file server, and much more.

The Servlet 3.1 specification was released with Java EE 7, and it included many capabilities. Among
the 3.1 features were support for HTTP 1.1 upgrade, non-blocking asynchronous I/0, and more. The
Servlet 4.0 specification, which is part of Java EE 8, is a major revision, revolving around the major change
from HTTP1.1 to HTTP/2. The updated version of the HTTP protocol brings forth many enhancements,
including request/response multiplexing, server push, binary framing, and stream prioritization. Some
of the functionality enhancements take place underneath the covers, meaning that there will be no API
enhancements required to support. Other features, such as server push, expose new APIs for the developer.

This chapter will get you started developing and deploying servlets. To get started, you learn how to
install Oracle’s GlassFish application server and Payara server, which are both robust servlet containers, and
each will enable you to deploy sophisticated Java enterprise applications. You learn the basics of developing
servlets, how to use them with client web sessions, and how to link a servlet to another application. All the
while, you learn to use standards from the latest release of the Java Servlet API, which modernizes servlet
development and makes it much easier and more productive than in years past.

© Josh Juneau 2018 1
J. Juneau, Java EE 8 Recipes, https://doi.org/10.1007/978-1-4842-3594-2_1

https://doi.org/10.1007/978-1-4842-3594-2_1

CHAPTER 1 © WORKING WITH SERVLETS

Note You can run the examples in this chapter by deploying the JavaEE8Recipes.war file (contained in
the sources) to a local Java EE application server container such as GlassFish v5 or Payara 5. You can also
set up the NetBeans project entitled JavaEE8Recipes that is contained in the sources, build it, and deploy to
GlassFish v5. Otherwise, you can run the examples in Chapter 1 stand-alone using the instructions provided in
Recipe 1-3. If you deploy the JavaEE8Recipes.war file to a Java EE application server container, you can visit
the following URL to load the examples for this chapter: http://localhost:8080/JavaEE8Recipes/faces/
chapter0o1/index.xhtml.

1-1. Setting Up a Java Enterprise Environment

Problem

You want to set up an environment that you can use to deploy and run Java servlets and other Java enterprise
technologies.

Solution #1

Download and install Oracle’s GlassFish application server from the GlassFish website. The version used for
this book is the open source edition, release 5.0, and it can be downloaded from http://download.oracle.
com/glassftish/ within the 5.0 directory. Navigate into the promoted directory and grab a copy of the
glassfish-5.0-x.zip, where x determines the version. Decompress the downloaded files within a directory
on your workstation. I will refer to that directory as /JAVA_DEV/Glassfish. The GlassFish distribution comes
prepackaged with a domain so that developers can get up and running quickly. Once the . zip file has been
unpacked, you can start the domain by opening a command prompt or terminal and starting GlassFish
using the following statement:

/JAVA DEV/Glassfish/bin/asadmin start-domain domaini

The domain will start, and it will be ready for use. You will see output from the server that looks similar
to the following:

Waiting for domaini to start

Successfully started the domain : domaini

domain Location: /PATH_TO GLASSFISH/glassfish/domains/domaini

Log File: /PATH_TO GLASSFISH/glassfish/domains/domain1/logs/server.log
Admin Port: 4848

Command start-domain executed successfully.

http://dx.doi.org/10.1007/978-1-4842-3594-2_1
http://download.oracle.com/glassfish/
http://download.oracle.com/glassfish/

CHAPTER 1 * WORKING WITH SERVLETS

Solution #2

Download from the Payara website (https://www.payara.fish/downloads) and install Payara server. The
Payara team has implemented the Payara 5 branch, which composes all of the Java EE 8 specification. To
obtain Payara 5, download the archive and extract it to your drive. I refer to that directory as /JAVA_DEV/
Payara. Once extracted, the default domain can be started by opening a command prompt or terminal and
typing the following:

/JAVA_DEV/Payara/bin/asadmin start-domain domaini

Once invoked, the domain will start and it will become ready to use. The output will look as follows,
very similar to that of GlassFish:

Waiting for domaini to start

Successfully started the domain : domaini

domain Location: /Java_Dev/payara/payara4.1.1.171.0.1/payaras41/glassfish/domains/domaini
Log File: /Java_Dev/payara/payara4.1.1.171.0.1/payara4di/glassfish/domains/domain1/logs/
server.log

Admin Port: 4848

Command start-domain executed successfully.

Once started, the domain can be stopped via the administrative console or from the command line:

/JAVA_DEV/Payara/bin/asadmin stop-domain domaini

Note Upon installation, Payara will not have an administrator password in-place. It is important to open
the administrative console and set the administrator password immediately after install. Open a browser and
navigate to http://localhost:4848 to open the administrative console.

How It Works

The development of Java EE applications begins with a Java EE-compliant application server. A Java EE-
compliant server contains all the essential components to provide a robust environment for deploying and
hosting enterprise Java applications. The GlassFish application server is the reference implementation for
Java EE. Payara also produces an implementation of the GlassFish server simply named Payara Server. For
the purposes of this book, I will be using Payara open source edition. However, in a production environment,
you may want to consider using the Payara licensed version so that technical support will be available if
needed.

Installing GlassFish or Payara is very easy. The installation consists of downloading an archive and
uncompressing it on your machine. Once you've completed this, the application server will use your locally
installed Java development kit (JDK) when it is started. Once the server starts, you can open a browser and
navigate to http://localhost:4848 to gain access to the GlassFish or Payara administrative console. Most
Java EE developers who deploy on GlassFish or Payara use the administrative console often for performing a
multitude of administrative tasks. The administrative console provides developers with the tools needed to
deploy web applications, register databases with Java Naming and Directory Interface (JNDI), set up security
realms for a domain, and much more.

https://www.payara.fish/downloads)

CHAPTER 1 © WORKING WITH SERVLETS

To access the GlassFish or Payara administrative console for the first time, use the user name
of admin and the password of adminadmin. You should take some time to become familiar with the
administrative console because the more you know about it, the easier it will be to maintain your Java EE
environment. You should also note that Payara offers more options than GlassFish, as Payara has built
many features onto the base GlassFish implementation, making Payara a robust and complete solution
for production use.

Installing the GlassFish or Payara application servers is the first step toward developing Java
applications for the enterprise. Other applications servers, such as JBoss, Apache TomEE, and
WebLogic, are very well adopted for development and production use. GlassFish 5.0 offers an excellent
environment for starting development with Java EE, whereas Payara 5 offers a solution that is easy to use
and offers production-level support. Both servers offer open source options, and they are the reference
implementation for Java EE 8.

1-2. Developing a Servlet

Problem

You want to develop a web page that enables you to include dynamic content.

Solution

Develop a Java servlet class and compile it to run within a Java servlet container. In this example, a simple
servlet is created that will display some dynamic content to the web page. The following is the servlet code
that contains the functionality for the servlet:

package org.javaee8ecipes.chapter0Ol.recipe0l_02;

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

/**

* Recipe 1-2: Developing a Servlet

* @author juneau

*/

public class SimpleServlet extends HttpServlet {

J**

* Processes requests for both HTTP

* <code>GET</code> and

* <code>P0ST</code> methods.

*

* @param request servlet request

* @param response servlet response

* @throws ServletException if a servlet-specific error occurs

CHAPTER 1 © WORKING WITH SERVLETS

* @throws IOException if an I/0 error occurs
*/
protected void processRequest(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html;charset=UTF-8");

PrintWriter out = response.getWriter();

try {
// Place page output here
out.println("<html>");
out.println("<head>");
out.println("<title>Servlet SimpleServlet</title>");
out.println("</head>");
out.println("<body>");
out.println("<h2>Servlet SimpleServlet at " + request.getContextPath() + "</h2>");
out.println("
Welcome to Java EE Recipes!");
out.println("</body>");
out.println("</html>");

} finally {
out.close();

}

* Handles the HTTP GET

* @param request servlet request
* @param response servlet response
* @throws ServletException if a servlet-specific error occurs
* @throws IOException if an I/0 error occurs
*/
@verride
protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
processRequest(request, response);

}

/**
* Handles the HTTP POST
*
* @param request servlet request
* @param response servlet response
* @throws ServletException if a servlet-specific error occurs
* @throws IOException if an I/0 error occurs
*/
@0verride
protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
processRequest(request, response);

CHAPTER 1 © WORKING WITH SERVLETS

/**
* Returns a short description of the servlet for documentation purposes.
ES
* @return a String containing servlet description
*/
@0verride
public String getServletInfo() {
return "Short description”;
}// </editor-fold>

The following code is the web deployment descriptor (web.xml). This file is required for application
deployment to a servlet container. It contains the servlet configuration and mapping that maps the servlet
to a URL. The deployment descriptor must be placed within the WEB-INF folder, which is located at the web
sources root. In Recipe 1-4, you will learn how to omit the servlet configuration and to map from the web.xml
file to make servlet development, deployment, and maintenance easier.

<?xml version="1.0"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
version="3.0">

<servlet>
<servlet-name>SimpleServlet</servlet-name>
<servlet-class>org.javaee8recipes.chapter0l.recipe01_02.SimpleServlet</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>SimpleServlet</servlet-name>
<url-pattern>/SimpleServlet</url-pattern>
</servlet-mapping>
<welcome-file-list>
<welcome-file> /SimpleServlet </welcome-file>
</welcome-file-list>
</web-app>

Note Many web applications use a page named index.html or index.xhtml as their welcome file.
There is nothing wrong with doing that, and as a matter of fact, it is the correct thing to do. The use of
/SimpleServlet as the welcome file in this example is to make it easier to follow for demonstration purposes.

To compile the Java servlet, use the javac command-line utility. The following line was excerpted
from the command line, and it compiles the SimpleServlet. java file into a class file. First, traverse into the
directory containing the SimpleServlet. java file; then, execute the following:

javac -cp /JAVA_DEV/Glassfish/glassfish/modules/javax.servlet-api.jar SimpleServlet.java

CHAPTER 1 * WORKING WITH SERVLETS

Note that this command places the GlassFish javax.servlet-api. jar into the classpath for compilation.
Once the servlet code has been compiled into a Java class file, it is ready to package for deployment.

Note You may want to consider installing a Java integrated development environment (IDE) to increase
your development productivity. There are several very good IDEs available to developers, so be sure to choose
one that contains the features you find most important and useful for development. As the author of this book
on Java EE 8, | recommend installing NetBeans 8.2 or newer for development. NetBeans is an open source IDE
that is maintained by Apache, and it includes support for all the cutting-edge features that the Java industry has
to offer, including development with Java EE 8, JavaFX support, and more. To learn more about working with
NetBeans and Java EE 8, see the appendix of this book.

How It Works

Java servlets provide developers with the flexibility to design applications using a request-response
programming model. Servlets play a key role in the development of service-oriented and web application
development on the Java platform. Different types of servlets can be created, and each of them is geared
toward providing different functionality. The first type is known as GenericServlet, which provides services
and functionality. The second type, HttpServlet, is a subclass of GenericServlet, and servlets of this type
provide functionality and a response that uses HTTP. The solution to this recipe demonstrates the latter type
of servlet because it displays a result for the user to see within a web browser.

Servlets conform to a lifecycle for processing requests and posting results. First, the Java servlet
container calls the servlet’s constructor. The constructor of every servlet must take no arguments. Next, the
container calls the servlet init method, which is responsible for initializing the servlet. Once the servlet has
been initialized, it is ready for use. At that point, the servlet can begin processing. Each servlet contains a
service method, which handles the requests being made and dispatches them to the appropriate methods
for request handling. Implementing the service method is optional. Finally, the container calls the servlet’s
destroy method, which takes care of finalizing the servlet and taking it out of service.

Every servlet class must implement the javax.servlet.Servlet interface or extend another class that
does. In the solution to this recipe, the servlet named SimpleServlet extends the HttpServlet class, which
provides methods for handling HTTP processes. In this scenario, a browser client request is sent from the
container to the servlet; then the servlet service method dispatches the HttpServletRequest object to the
appropriate method provided by HttpServlet. Namely, the HttpServlet class provides the doGet, doPut,
doPost, and doDelete methods for working with an HTTP request. The most often used methods are doGet
and doPost. The HttpServlet class is abstract, so it must be subclassed, and then an implementation
can be provided for its methods. In the solution to this recipe, the doGet method is implemented, and the
responsibility of processing is passed to the processRequest method, which writes a response to the browser
using the PrintWriter. Table 1-1 describes each of the methods available to an HttpServlet.

CHAPTER 1 © WORKING WITH SERVLETS

Table 1-1. HttpServiet Methods

Method Name Description

doGet Used to process HTTP GET requests. Input sent to the servlet must be included in
the URL address. For example: ?myName=Josh&myBook=JavaEE8Recipes.

doPost Used to process HTTP POST requests. Input can be sent to the servlet within HTML
form fields. See Recipe 1-6 for an example.

doPut Used to process HTTP PUT requests.

doDelete Used to process HTTP DELETE requests.

doHead Used to process HTTP HEAD requests.

doOptions Called by the container to allow OPTIONS request handling.

doTrace Called by the container to handle TRACE requests.

getlLastModified Returns the time that the HttpServletRequest object was last modified.

init Initializes the servlet.

destroy Finalizes the servlet.

getServletInfo Provides information regarding the servlet.

A servlet generally performs some processing in the implementation of its methods and then returns a
response to the client. The HttpServletRequest object can be used to process arguments that are sent via
the request. For instance, if an HTML form contains some input fields that are sent to the server, those fields
would be contained within the HttpServletRequest object. The HttpServletResponse object is used to
send responses to the client browser. Both the doGet and doPost methods within a servlet accept the same
arguments, namely, the HttpServletRequest and HttpServletResponse objects.

Note The doGet method is used to intercept HTTP GET requests, and doPost is used to intercept HTTP
POST requests. Generally, the doGet method is used to prepare a request before displaying for a client, and the
doPost method is used to process a request and gather information from an HTML form.

In the solution to this recipe, both the doGet and doPost methods pass the HttpServletRequest
and HttpServletResponse objects to the processRequest method for further processing. The
HttpServletResponse object is used to set the content type of the response and to obtain a handle on the
PrintWriter object in the processRequest method. The following lines of code show how this is done,
assuming that the identifier referencing the HttpServletResponse object is response:

response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();

A GenericServlet can be used for providing services to web applications. This type of servlet is
oftentimes used for logging events because it implements the log method. A GenericServlet implements
both the Servlet and ServletConfig interfaces, and to write a generic servlet, only the service method
must be overridden.

CHAPTER 1 * WORKING WITH SERVLETS

1-3. Packaging, Compiling, and Deploying a Servlet

Problem

You have written a Java servlet and now want to package it and deploy it for use.

Solution

Compile the sources, set up a deployable application, and copy the contents into the server deployment
directory. From the command line, use the javac command to compile the sources.

javac -cp /JAVA DEV/Glassfish/glassfish/modules/javax.servlet-api.jar SimpleServlet.java

After the class has been compiled, deploy it along with the web.xml deployment descriptor, conforming
to the appropriate directory structure.

QUICK START

To quickly get started with packaging, compiling, and deploying the example application for the
servlet recipes in this chapter on GlassFish or other servlet containers such as Apache Tomcat, follow
these steps:

1.

Create a single application named SimpleServlet by making a directory named
SimpleServlet.

Create the WEB-INF, WEB-INF/classes and WEB-INF/1ib directories inside the
newly created SimpleServlet directory.

Drag the Chapter 1 sources (beginning with the org directory) in the WEB-INF/
classes directory you created, as well as the contents of the web folder, into the
root of your SimpleServlet directory.

Copy the web. xm1 file that is in the source’s recipeo1 o2 directory into the WEB-
INF directory you created.

Although not needed yet, download the JavaMail API code from GitHub (https://
github.com/javaee/javamail) and copy the mail. jar file from the download into
the WEB-INF/1ib directory you created. This API will be used to send mail in future
recipes.

Set your CLASSPATH to include the mail. jar file you downloaded in Step 5.

http://dx.doi.org/10.1007/978-1-4842-3594-2_1
https://github.com/javaee/javamail
https://github.com/javaee/javamail

CHAPTER 1 © WORKING WITH SERVLETS

7. Atthe command prompt, change directories so that you are in the classes
directory you created in Step 2. Compile each recipe with the command javac
org\javaee8recipes\chapteroi\recipel x*.java, where x is equal to the
recipe number.

8. Copy your SimpleServlet application directory to the /JAVA DEV/Glassfish/
glassfish/domains/domaini/autodeploy directory for GlassFish orthe /Tomcat/
webapps directory for Tomcat.

Test the application by launching a browser and going to http://localhost:8080/SimpleServlet/
servlet name, where servlet name corresponds to the servlet name in each recipe. If you're using
Tomcat, you may need to restart the server in order for the application to deploy. Alternatively, you can
deploy the example application for this book, entitled JavaEE8Recipes.war, to an application server and
launch a browser. Then navigate to http://localhost:8080/JavaEE8Recipes/SimpleServlet fo test.

How It Works

To compile the sources, you can use your favorite Java IDE such as NetBeans or Eclipse, or you can use the
command line. For the purposes of this recipe, I will use the latter. If you're using the command line, you
must ensure you are using the javac command that is associated with the same Java release that you will be
using to run your servlet container. In this example, we will say that the location of the Java SE 8 installation
is at the following path:

/Library/Java/JavaVirtualMachines/1.8.0.jdk/Contents/Home

This path may differ in your environment if you are using a different operating system and/or
installation location. To ensure you are using the Java runtime that is located at this path, set the JAVA_HOME
environment variable equal to this path. On OS X and other UNIX-based operating systems, you can set the
environment variable by opening the terminal and typing the following:

export JAVA HOME=/Library/Java/JavaVirtualMachines/1.8.0.jdk/Contents/Home

If you are using Windows, use the SET command within the command line to set up the JAVA_HOME
environment variable.

set JAVA_HOME=C:\your-java-se-path\

Next, compile your Java servlet sources, and be sure to include the javax.servlet-api. jar file that
is packaged with your servlet container (use servlet-api. jar for Tomcat) in your CLASSPATH. You can set
the CLASSPATH by using the -cp flag of the javac command. The following command should be executed at
the command line from within the same directory that contains the sources. In this case, the source file is
named SimpleServlet. java.

javac -cp /path_to_jar/javax.servlet-api.jar SimpleServlet.java
Next, package your application by creating a directory and naming it after your application. In this
case, create a directory and name it SimpleServlet. Within that directory, create another directory named

WEB-INF. Traverse into the WEB-INF directory, and create another directory named classes. Lastly, create
directories within the classes directory in order to replicate your Java servlet package structure. For this

10

CHAPTER 1 © WORKING WITH SERVLETS

recipe, the SimpleServlet. java class resides within the Java package org. javaee8recipes.chapteroi.
recipe01 02, so create a directory for each of those packages within the classes directory. Create another
directory within WEB-INF and name it 1ib; any JAR files containing external libraries should be placed within
the 1ib directory. In the end, your directory structure should resemble the following:

SimpleServlet
| WEB-INF

| _classes

| _org
| _javaee8recipes
| chaptero1i
| recipeo1 02
| _1ib

Place your web . xml deployment descriptor within the WEB-INF directory and place the compiled
SimpleServlet.class file in the recipe01_02 directory. The entire contents of the SimpleServlet directory
can now be copied in the deployment directory for your application server container to deploy the
application. Restart the application server if you're using Tomcat and visit the URL http://localhost:8080/
SimpleServlet/SimpleServlet to see the servlet in action.

1-4. Registering Servlets Without WEB-XML

Problem

Registering servlets in the web . xml file is cumbersome, and you want to deploy servlets without modifying
web.xml at all.

Solution

Use the @WebServlet annotation to annotate the servlet class and omit the web . xml registration. This will
alleviate the need to modify the web. xml file each time a servlet is added to your application. The following
adaptation of the SimpleServlet class that was used in Recipe 1-2 includes the @WebServlet annotation and
demonstrates its use:

package org.javaee8recipes.chapter0l.recipe0l _04;

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

Vais
* Recipe 1-4: Registering Servlets Without WEB-XML
* @author juneau

*/

11

CHAPTER 1 © WORKING WITH SERVLETS

@WebServlet(name = "SimpleServletNoDescriptor", urlPatterns = {"/
SimpleServletNoDescriptor"})
public class SimpleServletNoDescriptor extends HttpServlet {

/¥
* Processes requests for both HTTP
* <code>GET</code> and
* <code>P0ST</code> methods.
*
* @param request servlet request
* @param response servlet response
* @throws ServletException if a servlet-specific error occurs
* @throws IOException if an I/0 error occurs
*/
protected void processRequest(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
try {
/*
* TODO output your page here. You may use following sample code.
*/
out.println("<html>");
out.println("<head>");
out.println("<title>Servlet SimpleServlet</title>");
out.println("</head>");
out.println("<body>");
out.println("<h2>Servlet SimpleServlet at " + request.getContextPath() + "</h2>");
out.println("
Look ma, no WEB-XML!");
out.println("</body>");
out.println("</html>");
} finally {
out.close();
}

}

/**
* Handles the HTTP <code>GET</code> method.
*
* @param request servlet request
* @param response servlet response
* @throws ServletException if a servlet-specific error occurs
* @throws IOException if an I/0 error occurs
*/
@0verride
protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
processRequest(request, response);

12

CHAPTER 1 * WORKING WITH SERVLETS

/**
* Handles the HTTP <code>P0ST</code> method.
*
* @param request servlet request
* @param response servlet response
* @throws ServletException if a servlet-specific error occurs
* @throws IOException if an I/0 error occurs
*/
@0verride
protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
processRequest(request, response);

In the end, the servlet will be accessible via a URL in the same way that it would if the servlet were
registered within web.xml.

Note Remove the existing servlet mapping within the web.xm1 file in order to use the @WebServlet
annotation.

How It Works

There are a couple of ways to register servlets with a web container. The first way is to register them using the
web.xml deployment descriptor, as demonstrated in Recipe 1-2. The second way to register them is to use
the @WebServlet annotation. The Servlet 3.0 API introduced the @WebServlet annotation, which provides
an easier technique to use for mapping a servlet to a URL. The @WebServlet annotation is placed before the
declaration of a class, and it accepts the elements listed in Table 1-2.

Table 1-2. @WebServlet Annotation Elements

Element Description

description Description of the servlet

displayName The display name of the servlet
initParams Accepts list of @WebInitParam annotations
largeIcon The large icon of the servlet
loadOnStartup Load on startup order of the servlet

name Servlet name

smallIcon The small icon of the servlet

urlPatterns URL patterns that invoke the servlet

13

CHAPTER 1 © WORKING WITH SERVLETS

In the solution to this recipe, the @WebServlet annotation maps the servlet class named
SimpleServletNoDescriptor to the URL pattern of /SimpleServletNoDescriptor, and it also names the
servlet SimpleServletNoDescriptor.

@hWebServlet(name="SimpleServletNoDescriptor"”, urlPatterns={"/SimpleServletNoDescriptor"})

The new @WebServlet can be used rather than altering the web . xml file to register each servlet in an
application. This provides ease of development and manageability. However, in some cases, it may make
sense to continue using the deployment descriptor for servlet registration, such as if you do not want to
recompile sources when a URL pattern changes. If you look at the web . xml listing in Recipe 1-2, you can see
the following lines of XML, which map the servlet to a given URL and provide a name for the servlet. These
lines of XML perform essentially the same function as the @WebServlet annotation in this recipe.

<servlet>
<servlet-name>SimpleServletNoDescriptor</servlet-name>
<servlet-class>org.javaee8recipes.chapter0l.recipe01_04.SimpleServletNoDescriptor</
servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>SimpleServletNoDescriptor</servlet-name>
<url-pattern>/SimpleServletNoDescriptor</url-pattern>

</servlet-mapping>

1-5. Displaying Dynamic Content with a Servlet

Problem

You want to display some content to a web page that may change depending on server-side activity or user
input.

Solution

Define a field within your servlet to contain the dynamic content that is to be displayed. Post the dynamic
content on the page by appending the field containing it using the PrintWriter printlnmethod. The
following example servlet declares a LocalDateTime field and updates it with the current date and time each
time the page is loaded:

package org.javaee8recipes.chapter0l.recipe0l 05;

import java.io.IOException;

import java.io.PrintWriter;

import java.util.Date;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

14

CHAPTER 1 © WORKING WITH SERVLETS

/**

* Recipe 1-5: Displaying Dynamic Content with a Servlet

ES

* @author juneau

*/
@WebServlet(name = "CurrentDateAndTime", urlPatterns = {"/CurrentDateAndTime"})
public class CurrentDateAndTime extends HttpServlet {

LocalDateTime currDateAndTime = LocalDateTime.now();

/**
* Processes requests for both HTTP
* <code>GET</code> and
* <code>P0ST</code> methods.

*
* @param request servlet request
* @param response servlet response
* @throws ServletException if a servlet-specific error occurs
* @throws IOException if an I/0 error occurs
*/
protected void processRequest(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
try {
out.println("<html>");
out.println("<head>");
out.println("<title>Servlet CurrentDateAndTime</title>");
out.println("</head>");
out.println("<body>");
out.println("<h1>Servlet CurrentDateAndTime at " + request.getContextPath() +
"</h1>");
out.println("
");
synchronized(currDateAndTime){
currDateAndTime = LocalDateTime.now();
out.println("The current date and time is:

+ currDateAndTime);

out.println("</body>");
out.println("</html>");
} finally {
out.close();
}

/**
* Handles the HTTP
* <code>GET</code> method.
*

* @param request servlet request

* @param response servlet response

* @throws ServletException if a servlet-specific error occurs
* @throws IOException if an I/0 error occurs

*/

15

CHAPTER 1 © WORKING WITH SERVLETS

@0verride
protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
processRequest(request, response);

}

/**
* Handles the HTTP
* <code>P0ST</code> method.
*
* @param request servlet request
* @param response servlet response
* @throws ServletException if a servlet-specific error occurs
* @throws IOException if an I/0 error occurs
*/
@0verride
protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
processRequest(request, response);

Note Servlets are multithreaded, and many client requests may be using a servlet concurrently. When a
field is declared as a Servlet class member (not within @ method) as you have done with currDateAndTime,
you have to assure that only one client request can manipulate the field at any instance. You do this by
synchronizing around the use of the field, as shown in the processRequest() method. You synchronize around
the smallest block of code that is manageable in order to minimize latency.

synchronized(currDateAndTime) {
currDateAndTime = LocalDateTime.now();

out.println("The current date and time is: " + currDateAndTime);

The resulting output from this servlet will be the current date and time.

How It Works

One of the reasons why Java servlets are so useful is because they allow dynamic content to be displayed on
aweb page. The content can be taken from the server itself, a database, another website, or many other web-
accessible resources. Servlets are not static web pages; they are dynamic, and that is arguably their biggest
strength.

In the solution to this recipe, a servlet is used to display the current time and date of the server. When
the servlet is processed, the doGet method is called, which subsequently makes a call to the processRequest
method, passing the request and response objects. Therefore, the processRequest method is where the
bulk of the work occurs. The processRequest method creates a PrintWriter by calling the response.get
Writer method, and the PrintWriter is used to display content on the resulting web page. Next, the current

16

CHAPTER 1 © WORKING WITH SERVLETS

date and time are obtained from the server by creating a new LocalDateTime object and assigning it to the
currDateAndTime field. Lastly, the processRequest method sends the web content through the out.println
method, and the contents of the currDateAndTime field are concatenated to a string and sent to out.println
as well. Each time the servlet is processed, it will display the current date and time at the time in which the
servlet is invoked because a LocalDateTime.now() is invoked with each request.

This example just scratches the surface of what is possible with a Java servlet. Although displaying the
current date and time is trivial, you could alter that logic to display the contents of any field contained within
the servlet. Whether it be an int field that displays a calculation that was performed by the servlet container,
or data that has been retrieved from a database into a field for displaying information, the possibilities are
endless.

1-6. Handling Requests and Responses
Problem

You want to create a web form that accepts user input and then supply a response based on the input that
has been received.

Solution

Create a standard HTML-based web form, and when the Submit button is clicked, invoke a servlet to process
the end-user input and post a response. To examine this technique, you will see two different pieces of

code. The following code is HTML that is used to generate the input form. This code exists within the file
recipe01_06.html. Pay particular attention to the <form> and <input> tags. You will see that the form’s
action parameter lists a servlet name, MathServlet.

<html>
<head>
<title>Simple Math Servlet</title>
</head>
<body>
<h1>This is a simple Math Servlet</hi>
<form method="POST" action="MathServlet">
<label for="numa">Enter Number A: </label>
<input type="text" id="numa" name="numa"/>

<label for="numb">Enter Number B: </label>
<input type="text" id="numb" name="numb"/>

<input type="submit" value="Submit Form"/>
<input type="reset" value="Reset Form"/>
</form>
</body>
</html>

Next, take a look at the following code for a servlet named MathServlet. This is the Java code that
receives the input from the HTML code listed earlier, processes it accordingly, and posts a response.

17

CHAPTER 1 © WORKING WITH SERVLETS

package org.javaee8recipes.chapter0l.recipe01_06;

import java.io.IOException;
import java.io.PrintWriter;
import java.util.Date;

import javax.servlet.*;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.*;

/**

* Recipe 1-6: Handling Requests and Responses

*/

// Uncomment the following line to run example stand-alone
//@WebServlet(name="SessionServlet", urlPatterns={"/MathServlet"})

// The following will allow the example to run within the context of the JavaEE8Recipes
example

// enterprise application (JavaEE8Recipes.war distro or Netbeans Project)
@WebServlet(name = "MathServlet", urlPatterns = {"/chapteroi/MathServlet"})public class
MathServlet extends HttpServlet {

public void doPost(HttpServletRequest req, HttpServletResponse res)
throws IOException, ServletException {

res.setContentType("text/html");

// Store the input parameter values into Strings
String numA = req.getParameter("numa");
String numB = req.getParameter("numb");

PrintWriter out = res.getWriter();

out.println("<html><head>");

out.println("<title>Test Math Servlet</title>");

out.println("\t<style>body { font-family: 'Lucida Grande',
+ "'Lucida Sans Unicode';font-size: 13px; }</style>");

out.println("</head>");

out.println("<body>");

try {
int solution = Integer.valueOf(numA) + Integer.valueOf(numB);

/*
* Display some response to the user
*/

out.println("<p>Solution:

+numA + " + " + numB + " = " + solution + "</p>");

} catch (java.lang.NumberFormatException ex) {
// Display error if an exception is raised
out.println("<p>Please use numbers only...try again.</p>");

18

CHAPTER 1 © WORKING WITH SERVLETS

out.println("

");
out.println("Add Two More Numbers");
out.println("</body></html>");

out.close();

Note To run the example, copy the previous HTML code into an HTML file within the web root of your
JavaEE8Recipes application named recipe1 6.html, and then enter the following address into your browser:
http://localhost:8080/JavaEE8Recipes/recipel 6.html. This assumes you are using default port
numbers for your application server installation. If you're using the NetBeans project that was packaged with
the sources, you do not need to worry about copying the code, as everything is pre-configured.

How It Works

Servlets make it easy to create web applications that adhere to a request and response lifecycle. They have
the ability to provide HTTP responses and process business logic within the same body of code. The ability
to process business logic makes servlets much more powerful than standard HTML code. The solution to
this recipe demonstrates a standard servlet structure for processing requests and sending responses. An
HTML web form contains parameters that are sent to a servlet. The servlet then processes those parameters
in some fashion and publishes a response that can be seen by the client. In the case of an HttpServlet
object, the client is a web browser, and the response is a web page.

Values can be obtained from an HTML form by using HTML <input> tags embedded within an HTML
<form>. In the solution to this recipe, two values are accepted as input, and they are referenced by their
id attributes as numa and numb. There are two more <input> tags within the form; one of them is used to
submit the values to the form action, and the other is used to reset the form fields to blank. The form action
attribute is the name of the servlet that the form values will be passed to as parameters. In this case, the
action attribute is set to MathServlet. The <form> tag also accepts a form-processing method, either GET or
POST. In the example, the POST method is used because form data is being sent to the action; in this case,
data is being sent to MathServlet. You could, of course, create an HTML form as detailed as you would like
and then have that data sent to any servlet in the same manner. This example is relatively basic; it serves to
give you an understanding of how the processing is performed.

The <form> action attribute states that the MathServlet should be used to process the values that are
contained within the form. The MathServlet name is mapped back to the MathServlet class via the web.xml
deployment descriptor or the @WebServlet annotation. Looking at the MathServlet code, you can see that
a doPost method is implemented to handle the processing of the POST form values. The doPost method
accepts HttpServletRequest and HttpServletResponse objects as arguments. The values contained with
the HTML form are embodied within the HttpServletRequest object. To obtain those values, call the
request object’s getParameter method, passing the id of the input parameter you want to obtain. In the
solution to this recipe, those values are obtained and stored within local String fields.

String numA = req.getParameter("numa");
String numB = req.getParameter("numb");

19

CHAPTER 1 © WORKING WITH SERVLETS

Once the values are obtained, they can be processed as needed. In this case, those String values are
converted into int values, and then they are added together to generate a sum and stored into an int field.
That field is then presented as a response on a resulting web page.

int solution = Integer.valueOf(numA) + Integer.valueOf(numB);

As mentioned, the HTML form could be much more complex, containing any number of <input> fields.
Likewise, the servlet could perform more complex processing of those field values. This example is merely
the tip of the iceberg, and the possibilities are without bounds. Servlet-based web frameworks such as
JavaServer Pages and JavaServer Faces hide many of the complexities of passing form values to a servlet and
processing a response. However, the same basic framework is used behind the scenes.

1-7. Listening for Servlet Container Events

Problem

You want to have the ability to listen for application startup and shutdown events.

Solution

Create a servlet context event listener to alert when the application has started up or when it has been shut
down. The following solution demonstrates the code for a context listener, which will log application startup
and shutdown events and send email alerting of such events:

package org.javaee8recipes.chapter0l.recipe01 07;

import java.util.Properties;

import javax.mail.Message;

import javax.mail.Session;

import javax.mail.Transport;

import javax.mail.internet.InternetAddress;
import javax.mail.internet.MimeMessage;
import javax.servlet.ServletContextlListener;
import javax.servlet.ServletContextEvent;
import javax.servlet.annotation.WeblListener;

@WebListener
public class StartupShutdownListener implements ServletContextlListener {

public void contextInitialized(ServletContextEvent event) {
System.out.println("Servlet startup...");
System.out.println(event.getServletContext().getServerInfo());
System.out.println(System.currentTimeMillis());
sendEmail("Servlet context has initialized");

}

public void contextDestroyed(ServletContextEvent event) {
System.out.println("Servlet shutdown...");

20

CHAPTER 1 © WORKING WITH SERVLETS

System.out.println(event.getServletContext().getServerInfo());
System.out.println(System.currentTimeMillis());

// See error in server.log file if mail is unsuccessful
sendEmail("Servlet context has been destroyed...");

/**
* This implementation uses the GMail smtp server
* @param message
* @return
*/
private boolean sendEmail(String message) {
boolean result = false;
String smtpHost = "smtp.gmail.com";
String smtpUsername = "username";
String smtpPassword = "password";
String from = "fromaddress";
String to = "toaddress";
int smtpPort = 587;
System.out.println("sending email...");

try {
// Send email here

//Set the host smtp address

Properties props = new Properties();
props.put("mail.smtp.host", smtpHost);
props.put("mail.smtp.auth", "true");
props.put("mail.smtp.starttls.enable", "true");

// create some properties and get the default Session
Session session = Session.getInstance(props);

// create a message
Message msg = new MimeMessage(session);

// set the from and to address

InternetAddress addressFrom = new InternetAddress(from);
msg.setFrom(addressFrom);

InternetAddress[] address = new InternetAddress[1];
address[0] = new InternetAddress(to);
msg.setRecipients(Message.RecipientType.T0, address);
msg.setSubject("Servlet container shutting down");

// Append Footer

msg.setContent(message, "text/plain");

Transport transport = session.getTransport("smtp");
transport.connect(smtpHost, smtpPort, smtpUsername, smtpPassword);

Transport.send(msg);

result = true;
} catch (javax.mail.MessagingException ex) {

21

CHAPTER 1 © WORKING WITH SERVLETS

ex.printStackTrace();
result = false;

}

return result;

Note To run this example, you may need additional external JARs in your CLASSPATH. Specifically, make
sure you have mail.jar and javaee.jar.

How It Works

Sometimes it is useful to know when certain events occur within the application server container. This
concept can be useful under many different circumstances, but most often it would be used for initializing
an application upon startup or cleaning up after an application upon shutdown. A servlet listener can be
registered with an application to indicate when it has been started up or shut down. Therefore, by listening
for such events, the servlet has the opportunity to perform some actions when they occur.

To create a listener that performs actions based on a container event, you must develop a class that
implements the ServletContextListener interface. The methods that need to be implemented are
contextInitialized and contextDestroyed. Both of the methods accept a ServletContextEvent as an
argument, and they are automatically called each time the servlet container is initialized or shut down,
respectively. To register the listener with the container, you can use one of the following techniques:

e Utilize the @WebListener annotation, as demonstrated by the solution to this recipe.
e Register the listener within the web.xml application deployment descriptor.
e Usethe addListener methods defined on ServletContext.

For example, to register this listener within web.xml, you need to add the following lines of XML:

<listener>

<listener-class> org.javaee8recipes.chapteroi.recipe01 07.StartupShutdown
Listener</listener-class>
</listener>

Neither way is better than the other. The only time that listener registration within the application
deployment descriptor (web.xml) would be more helpful is if you had the need to disable the listener in
some cases. On the other hand, to disable a listener when it is registered using @WebListener, you must
remove the annotation and recompile the code. Altering the web deployment descriptor does not require
any code to be recompiled.

There are many different listener types, and the interface that the class implements is what
determines the listener type. For instance, in the solution to this recipe, the class implements the
ServletContextListener interface. Doing so creates a listener for servlet context events. If, however, the
class implements HttpSessionlListener, it would be a listener for HTTP session events. The following is a
complete listing of listener interfaces:

javax.servlet.ServletRequestlListener

javax.servlet.ServletRequestAttrbutelistener
javax.servlet.ServletContextListener

22

CHAPTER 1 © WORKING WITH SERVLETS

javax.servlet.ServletContextAttributelistener
javax.servlet.http.HttpSessionListener
javax.servlet.http.HttpSessionAttributelListener
javax.servlet.http.HttpSessionIdListener

Itis also possible to create a listener that implements multiple listener interfaces. To learn more about
listening for different situations such as attribute changes, see Recipe 1-10.

1-8. Setting Initialization Parameters

Problem

A servlet you are writing requires the ability to accept one or more parameters to be set upon initialization.

Solution #1

Set the servlet initialization parameters using the @WebInitParam annotation. The following code sets an
initialization parameter that is equal to a String value:

package org.javaee8recipes.chapter0l.recipe0l 08;

import java.io.IOException;
import java.io.PrintWriter;

import javax.servlet.*;

import javax.servlet.annotation.WebInitParam;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.*;

@WebServlet(name="SimpleServletCtx1", urlPatterns={"/SimpleServletCtx1"},
initParams={ @WebInitParam(name="name", value="Duke") })
public class SimpleServletCtx1 extends HttpServlet {

@0verride
public void doGet(HttpServletRequest req, HttpServletResponse res)
throws IOException, ServletException {

res.setContentType("text/html");
PrintWriter out = res.getWriter();
/* Display some response to the user */

out.println("<html><head>");

out.println("<title>Simple Servlet Context Example</title>");

out.println("\t<style>body { font-family: 'Lucida Grande', " +
"'Lucida Sans Unicode';font-size: 13px; }</style>");

out.println("</head>");

out.println("<body>");

23

CHAPTER 1 © WORKING WITH SERVLETS

out.println("<p>This is a simple servlet to demonstrate context! Hello "
+ getServletConfig().getInitParameter("name") + "</p>");

out.println("</body></html>");
out.close();

To execute the example using the sources for this book, load the following URL into your web browser:
http://localhost:8080/JavaEE8Recipes/SimpleServletCtx1. The resulting web page will display the
following text:

This is a simple servlet to demonstrate context! Hello Duke

Solution #2

Place the init parameters inside the web.xml deployment descriptor file. The following lines are excerpted
from the web.xml deployment descriptor for the SimpleServlet application. They include the initialization
parameter names and values.

<web-app>
<servlet>
<servlet-name>SimpleServletCtxi</servlet-name>
<servlet-class> org.javaee8recipes.chapterOi.recipe01 08.SimpleServletCtx1
</servlet-class>

<init-param>
<param-name>name</param-name>
<param-value>Duke</param-value>
</init-param>

</servlet>

</web-app>

How It Works

Oftentimes there is a requirement to set initialization parameters for a servlet in order to initialize certain
values. Servlets can accept any number of initialization parameters, and there are a couple of ways in
which they can be set. The first solution is to annotate the servlet class with the @WebInitParam annotation,
as demonstrated in Solution #1, and the second way to set an initialization parameter is to declare the
parameter within the web.xml deployment descriptor, as demonstrated in Solution #2. Either way will work;
however, the solution using @WebInitParamis based on the newer Java Servlet 3.0 API. Therefore, Solution #1
is the more contemporary approach, but Solution #2 remains valid for following an older model or using an
older Java servlet release.

To use the @WebInitParam annotation, it must be embedded within the @WebServlet annotation.
Therefore, the servlet must be registered with the web application via the @WebServlet annotation rather
than within the web. xm1 file. For more information on registering a servlet via the @WebServlet annotation,
see Recipe 1-4.

24

CHAPTER 1 © WORKING WITH SERVLETS

The @WebInitParam annotation accepts a name-value pair as an initialization parameter. In the solution
to this recipe, the parameter name is name, and the value is Duke.

@WebInitParam(name="name", value="Duke")

Once set, the parameter can be used within code by calling getServletConfig().
getInitializationParameter()and passing the name of the parameter, as shown in the following line
of code:

out.println("<p>This is a simple servlet to demonstrate context! Hello "
+ getServletConfig().getInitParameter("name") + "</p>");

The annotations have the benefit of providing ease of development, and they also make it easier to
maintain servlets as a single package rather than jumping back and forth between the servlet and the
deployment descriptor. However, those benefits come at the cost of compilation because in order to change
the value of an initialization parameter using the @WebInitParam annotation, you must recompile the code.
Such is not the case when using the web.xml deployment descriptor. It is best to evaluate your application
circumstances before committing to a standard for naming initialization parameters.

1-9. Filtering Web Requests

Problem

You want to invoke certain processing if a specified URL is used to access your application. For instance, if a
specific URL were used to access your application, you would want to log the user’s IP address.

Solution

Create a servlet filter that will be processed when the specified URL format is used to access the application.
In this example, the filter will be executed when a URL conforming to the format of /* is used. This format
pertains to any URL in the application. Therefore, any page will cause the servlet to be invoked.

package org.javaee8recipes.chapter0l.recipe01_09;

import java.io.IOException;

import java.io.PrintWriter;

import java.util.Date;

import javax.servlet.*;

import javax.servlet.annotation.WebFilter;
import javax.servlet.http.*;

Jx*

* Recipe 1-9: This filter obtains the IP address of the remote host and logs
* it

*

* @author juneau
*/

25

CHAPTER 1 © WORKING WITH SERVLETS

@WebFilter("/*")
public class LoggingFilter implements Filter {

private FilterConfig filterConf = null;

public void init(FilterConfig filterConf) {
this.filterConf = filterConf;
}

public void doFilter(ServletRequest request,
ServletResponse response,
FilterChain chain)
throws IOException, ServletException {
String userAddy = request.getRemoteHost();
filterConf.getServletContext().log("Visitor User IP: " + userAddy);
chain.doFilter(request, response);

}

@0verride
public void destroy() {

throw new UnsupportedOperationException("Not supported yet.");
}

The filter could contain any processing; the important thing to note is that this servlet is processed
when a specified URL is used to access the application.

Note To invoke the filter, load a URL for the application with which the filter is associated. For the purposes
of this example, load the following URL (for the previous recipe) to see the filter add text to the server log:
http://localhost:8080/JavaEE8Recipes/SimpleServletCtx1

How It Works

Web filters are useful for preprocessing requests and invoking certain functionality when a given URL is
visited. Rather than invoking a servlet that exists at a given URL directly, any filter that contains the same
URL pattern will be invoked prior to the servlet. This can be helpful in many situations, perhaps the most
useful for performing logging, authentication, or other services that occur in the background without user
interaction.

Filters must implement the javax.servlet.Filter interface. Methods contained within this interface
include init, destroy, and doFilter. The init and destroy methods are invoked by the container. The
doFilter method is used to implement tasks for the filter class. As you can see from the solution to this
recipe, the filter class has access to the ServletRequest and ServletResponse objects. This means the
request can be captured, and information can be obtained from it. This also means the request can be
modified if need be. For example, including the user name in the request after an authentication filter has
been used.

26

CHAPTER 1 © WORKING WITH SERVLETS

If you want to chain filters or if more than one filter exists for a given URL pattern, they will be invoked
in the order in which they are configured in the web.xml deployment descriptor. It is best to manually
configure the filters if you are using more than one per URL pattern rather than using the @WebFilter
annotation. To manually configure the web.xml file to include a filter, use the <filter> and <filter-
mapping> XML elements along with their associated child element tags. The following excerpt from a
web . xml configuration file shows how the filter that has been created for this recipe may be manually
configured within the web . xml file:

<filter>
<filter-name>LoggingFilter</filter-name>
<filter-class>LoggingFilter</filter-class>

</filter>

<filter-mapping>
<filter-name>LoggingFilter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

Of course, the @WebFilter annotation takes care of the configuration for you, so in this case the manual
configuration is not required.

Note As of Servlet 3.1 AP, if a filter invokes the next entity in the chain, each of the filter service methods
must run in the same thread as all filters that apply to the servlet.

1-10. Listening for Attribute Changes

Problem

You want to have the ability to perform an action within a servlet when a servlet attribute is added, removed,
or updated.

Solution

Generate an attribute listener servlet to listen for such events as attributes being added, removed, or
modified, and invoke an action when these events occur. The following class demonstrates this technique
by implementing HttpSessionAttributelistener and listening for attributes that are added, removed, or
replaced within the HTTP session:

package org.javaee8recipes.chapter0ol.recipe0l_10;

import javax.servlet.ServletContext;

import javax.servlet.ServletContextEvent;

import javax.servlet.ServletContextlListener;

import javax.servlet.annotation.WeblListener;

import javax.servlet.http.HttpSession;

import javax.servlet.http.HttpSessionAttributelistener;
import javax.servlet.http.HttpSessionBindingEvent;

27

CHAPTER 1 © WORKING WITH SERVLETS

/**

* Recipe 1-10: Attribute Listener

*/

@WebListener

public final class Attributelistener implements ServletContextlListener,
HttpSessionAttributelistener {

private ServletContext context = null;

public void attributeAdded(HttpSessionBindingEvent se) {
HttpSession session = se.getSession();
String id = session.getId();
String name = se.getName();
String value = (String) se.getValue();
String message = new StringBuffer("New attribute has been added to session: \n").
append("Attribute Name: ").append(name).append("\n").append("Attribute Value:").
append(value).toString();
log(message);

}

public void attributeRemoved(HttpSessionBindingEvent se) {
HttpSession session = se.getSession();
String id = session.getId();
String name = se.getName();
if (name == null) {
name = "Unknown";
}

String value = (String) se.getValue();

String message = new StringBuffer("Attribute has been removed: \n")
.append("Attribute Name: ").append(name).append("\n").append("Attribute Value:")
.append(value).toString();

log(message);

}

@0verride
public void attributeReplaced(HttpSessionBindingEvent se) {
String name = se.getName();
if (name == null) {
name = "Unknown";
}

String value = (String) se.getValue();

String message = new StringBuffer("Attribute has been replaced: \n ").append(name).
toString();

log(message);

}

private void log(String message) {
if (context != null) {
context.log("SessionlListener: " + message);

28

CHAPTER 1 © WORKING WITH SERVLETS

} else {
System.out.println("SessionListener: " + message);
}
}
@0verride

public void contextInitialized(ServletContextEvent event) {
this.context = event.getServletContext();
log("contextInitialized()");

}

@0verride
public void contextDestroyed(ServletContextEvent event) {
// Do something

}
}

In this example, messages will be displayed within the server log file indicating when attributes have
been added, removed, or replaced.

How It Works

In some situations, it can be useful to know when an attribute has been set or what an attribute value has
been set to. The solution to this recipe demonstrates how to create an attribute listener in order to determine
this information. To create a servlet listener, you must implement one or more of the servlet listener
interfaces. To listen for HTTP session attribute changes, implement HttpSessionAttributelistener. In
doing so, the listener will implement the attributeAdded, attributeRemoved, and attributeReplaced
methods. Each of these methods accepts HttpSessionBindingEvent as an argument, and their
implementation defines what will occur when an HTTP session attribute is added, removed, or changed,
respectively.

In the solution to this recipe, you can see that each of the three methods listed in the previous
paragraph contains a similar implementation. Within each method, the HttpSessionBindingEvent is
interrogated and broken down into String values, which represent the ID, name, and value of the attribute
that caused the listener to react. For instance, in the attributeAdded method, the session is obtained from
HttpSessionBindingEvent, and then the session ID is retrieved via the use of getSession. The attribute
information can be obtained directly from the HttpSessionBindingEvent using the getId and getName
methods, as shown in the following lines of code:

HttpSession session = se.getSession();
String id = session.getId();
String name = se.getName();
String value = (String) se.getValue();

After these values are obtained, the application can do whatever it needs to do with them. In this recipe,
the attribute ID, name, and session ID are simply logged and printed.

String message = new StringBuffer("New attribute has been added to session: \n")
.append("Attribute Name: ").append(name).append("\n")

.append("Attribute Value:").append(value).toString();

log(message);

29

CHAPTER 1 © WORKING WITH SERVLETS

The body of the attributeReplaced and attributeRemoved methods contain similar functionality. In
the end, the same routine is used within each to obtain the attribute name and value, and then something is
done with those values.

A few different options can be used to register the listener with the container. The @WebListener
annotation is the easiest way to do so, and the only downfall to using it is that you will need to recompile
code in order to remove the listener annotation if you ever need to do so. The listener can be registered
within the web deployment descriptor, or it can be registered using one of the addListener methods
contained in ServletContext.

Although the example in the recipe does not perform any life-changing events, it does demonstrate how
to create and use an attribute listener. In the real world, such a listener could become handy if an application
needed to capture the user name of everyone who logs in or needed to send an email whenever a specified
attribute is set.

Note that it is possible to develop more sophisticated solutions using interfaces such as the
ServletRequestAttributelistener or ServletContextAttributelistener, which can be useful for
receiving events regarding ServletRequest or ServletContext attribute changes, respectively. For more
information, refer to the JavaDoc https://javaee.github.io/javaee-spec/javadocs/javax/servlet/
ServletContextAttributelistener.html.

1-11. Applying a Listener to a Session

Problem

You want to listen for sessions to be created and destroyed so that you can count how many active sessions
your application currently contains as well as perform some initialization for each session.

Solution

Create a session listener and implement the sessionCreated and sessionDestroyed methods accordingly.
In the following example, a servlet is used to keep track of active sessions. Each time someone works with
the application, a counter has one added to it. Likewise, each time a person leaves the application, the
counter goes down by one.

package org.javaee8recipes.chapter0ol.recipe0l 11;

import javax.servlet.annotation.WeblListener;
import javax.servlet.http.HttpSession;

import javax.servlet.http.HttpSessionEvent;
import javax.servlet.http.HttpSessionlListener;

%k

* Recipe 1-11: Applying a Listener to a Session
*

* @author juneau
*/
@WebListener
public class SessionlListener implements HttpSessionListener {

private int numberOfSessions;

30

https://javaee.github.io/javaee-spec/javadocs/javax/servlet/ServletContextAttributeListener.html
https://javaee.github.io/javaee-spec/javadocs/javax/servlet/ServletContextAttributeListener.html

CHAPTER 1 © WORKING WITH SERVLETS

public SessionListener() {
numberOfSessions = 0;
}

public int getNumberOfSessions() {
return numberOfSessions;
}

@0verride

public void sessionCreated(HttpSessionEvent arg) {
HttpSession session = arg.getSession();
session.setMaxInactiveInterval(60);
session.setAttribute("testAttr", "testval");
synchronized (this) {

numberOfSessions++;
}
System.out.println("Session created, current count: " + numberOfSessions);
}
@0verride

public void sessionDestroyed(HttpSessionEvent arg) {
HttpSession session = arg.getSession();
synchronized (this) {
numberOfSessions--;
}

System.out.println("Session destroyed, current count: " + numberOfSessions);
System.out.println("The attribute value: " + session.getAttribute(("testAttr")));

Each time a new visitor visits the application, a new session is started, and testAttr is set. When the
session times out, it will be destroyed, and any attributes that have been set for the session will be removed.

How It Works

A meaningful way to track web application users is to place values in their HttpSession object. Using a Java
servlet, session attributes can be set, which will exist for the life of the HttpSession. Once the session is
invalidated, the attributes will be removed. To set up a session listener, create a Java servlet, annotate it with
the @WebListener annotation, and implement javax.servlet.http.HttpSessionListener. Doing so will
force the implementation of both the sessionCreated and sessionDestroyed methods, which is where the
session magic occurs.

In the example to this recipe, the sessionCreated method first obtains a handle on the current
HttpSession object by calling the HttpSessionEvent object’s getSession method. The handle is assigned
to an HttpSession variable named session. Now that you have that variable initialized with the session
object, it can be used to set the time of life and place attributes that will live and die with the session’s life.
The first session configuration performed in the example is to set the maximum inactive life to 60 (seconds),
after which time the servlet container will invalidate the session. Next an attribute named testAttr is setin
the session and given a value of testVal.

HttpSession session = arg.getSession();
session.setMaxInactiveInterval(60);
session.setAttribute("testAttr", "testval");

31

CHAPTER 1 © WORKING WITH SERVLETS

A field within the servlet named numberOfSessions is declared, and it is incremented each time a
new session is started. Following the session.setAttribute() call, the counter is incremented within a
synchronized statement. Finally, a message is printed to the server log indicating that a new session was
created and providing the total active session count.

Note Placing the increment within the synchronized statement helps avoid concurrency issues with
the field. For more information on Java synchronization and concurrency, see the online documentation at
http://docs.oracle.com/javase/tutorial/essential/concurrency/locksync.html.

The sessionDestroyed method is called on a session once the maximum number of inactive
seconds has passed. In this example, the method will be called after 60 seconds of inactivity. Within the
sessionDestroyed method, another synchronization statement decrements the numberOfSessions field
value by one, and then a couple of lines are printed to the server log indicating that a session has been
destroyed and providing the new total number of active sessions.

Session listeners can be used to set cookies and perform other useful tactics to help manage a user’s
experience. They are easy to use and very powerful.

1-12. Managing Session Attributes

Problem

You want to maintain some information regarding an individual session on a per-session basis when a user
visits your site.

Solution

Use session attributes to retain session-based information. To do so, use the HttpServletRequest object to
obtain access to the session, and then use the getAttribute() and setAttribute() methods accordingly. In
the following scenario, an HTML page is used to capture a user’s email address, and then the email address
is placed into a session attribute. The attribute is then used by Java servlets across different pages of the
application in order to maintain state.

The following code demonstrates what the HTML form (recipe01_12.html) may look like in this scenario:

<html>
<head>
<titley</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
</head>
<body>
<h1>Provide an email address to use with this transaction</hi1>
<bx/>
<form method="POST" action="SessionServlet">
<input type="text" id="email" name="email"/>

<input type="submit" value="Submit"/>
</formy>
</body>
</html>

32

http://docs.oracle.com/javase/tutorial/essential/concurrency/locksync.html

CHAPTER 1 © WORKING WITH SERVLETS

Next, the Java servlet named SessionServlet using a URL pattern of /SessionServlet is initiated when
the form is submitted. Any form input values are passed to SessionServlet and processed accordingly.

package org.javaee8recipes.chapter0ol.recipe0l 12;

import java.io.*;

import javax.servlet.*;

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.*;

// Uncomment the following line to run example stand-alone
//@WebServlet(name="SessionServlet", urlPatterns={"/SessionServlet"})

// The following will allow the example to run within the context of the JavaEE8Recipes
example
// enterprise application (JavaEE8Recipes.war distro or Netbeans Project
@WebServlet(name="SessionServlet", urlPatterns={"/chapteroi/SessionServlet"}) public class
SessionServlet extends HttpServlet {
public void doPost (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

// Obtain the Session object
HttpSession session = req.getSession(true);
// Set up a session attribute

String email = (String)

session.getAttribute ("session.email");

if (email == null) {
email = req.getParameter("email");
session.setAttribute ("session.email”, email);

}

String sessionld = session.getId();

res.setContentType("text/html");

PrintWriter out = res.getWriter();

out.println("<html>");

out.println("<head><title>Working with sessions</title></head>");
out.println("<body>");

out.println(“<hi1>Session Test</h1>");

out.println ("Your email address is: " + email + "

");
out.println ("Your session id: " + sessionId);
out.println("</body></html>");

In the end, the email address that was entered within the original HTML form was captured and used
throughout the different pages in the application.

33

CHAPTER 1 © WORKING WITH SERVLETS

How It Works

Since the beginning of web development, session attributes have been used to retain important information
regarding a user’s session. This concept holds true when developing using Java servlets as well, and
servlets make it easy to set and get the attribute values. All HttpServlet classes must implement doGet or
doPost methods in order to process web application events. In doing so, these methods have access to the
HttpServletRequest object as itis passed to them as an argument. An HttpSession object can be gleaned
from the HttpServletRequest, and therefore, it can be used to retrieve and set attributes as needed.

In the solution to this recipe, an HTTP session attribute is used to store an email address. That address
is then used throughout the application within different servlet classes by obtaining the session object and
then retrieving the attribute value.

// Obtain the Session object
HttpSession session = req.getSession(true);
// Set up a session attribute
String email = (String)
session.getAttribute ("session.email");
if (email == null) {
email = req.getParameter("email");
session.setAttribute ("session.email", email);

}

Any attributes will remain in the HttpSession object as long as the session remains valid. The session
ID will remain consistent when traversing between pages. You can see that the solution to this recipe obtains
and prints the current session ID for reference. Using attributes in the HttpSession is a good way to pass
data around to maintain a session’s state.

1-13. Downloading a File

Problem

You want to enable your servlet application to have the ability to download a given file.

Solution

Write a servlet that will accept the name and path of a chosen file and then read the file and stream it to
the file requestor. The following web page can be used to select a file for the servlet to download. Although
the following HTML (recipe 01_13.html) contains a statically typed file name, it could very well contain a
dynamic list of files from a database or other source:

<!DOCTYPE html>
<html>
<head>
<title></title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
</head>

34

CHAPTER 1 © WORKING WITH SERVLETS

<body>
<h1>Click on the link below to download the file.</h1>

Download test file

</body>
</html>

Note For the example in this recipe, you can create and edit a file in your root directory next to the
WEB-INF folder and name the file downloadTest.txt to see the servlet transfer the data to your browser client.

When a user clicks the link presented on the web page from the previous HTML, the following servlet
will be used to download the given file by passing the HttpServletRequest and HttpServletResponse
objects to it along with the file that should be downloaded:

package org.javaee8recipes.chapter0l.recipe01 13;

import java.io.DataInputStream;

import java.io.File;

import java.io.FileInputStream;

import java.io.IOException;

import java.io.InputStream;

import java.io.PrintWriter;

import javax.servlet.ServletContext;

import javax.servlet.ServletException;

import javax.servlet.ServletOutputStream;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

/¥

* Recipe 1-13: Downloading a File

*

* @author juneau

*/

// Uncomment the following line to run example stand-alone
//@WebServlet(name = "DownloadServlet", urlPatterns = {"/DownloadServlet"})

// The following will allow the example to run within the context of the example

// enterprise application (JavaEE8Recipes.war distro or Netbeans Project)
@WebServlet(name = "DownloadServlet", urlPatterns = {"/chapteroi/DownloadServlet"})
public class DownloadServlet extends HttpServlet {

/**

* Handles the HTTP

* <code>GET</code> method.
*

35

CHAPTER 1

WORKING WITH SERVLETS

* @param request servlet request

* @param response servlet response

* @throws ServletException if a servlet-specific error occurs
* @throws IOException if an I/0 error occurs

*/

@0verride
protected void doGet(HttpServletRequest request, HttpServletResponse response)

¥k

* X ¥ X *x

*/

throws ServletException, IOException {
// Read parameter from form that contains the file name to download
String fileToDownload = request.getParameter("filename");
// Call the download method with the given file
System.err.println("Downloading file now...");
doDownload(request, response, fileToDownload);

Sends a file to the output stream.

@param req The request
@param resp The response
@param original filename The name the browser should receive.

private void doDownload(HttpServletRequest request, HttpServletResponse response,

}

/**

36

String originalFile) throws IOException {
final int BYTES = 1024;

int length = 0;
ServletOutputStream outStream = response.getOutputStream();
ServletContext context = getServletConfig().getServletContext();

response.setContentType((context.getMimeType(originalFile) != null) ?
context.getMimeType(originalFile) : "text/plain");
response.setHeader("Content-Disposition”, "attachment; filename=\
+ Il\llll);

+ originalFile
InputStream in = context.getResourceAsStream("/" + originalFile);
byte[] bbuf = new byte[BYTES];

while ((in !'= null) & ((length = in.read(bbuf)) != -1))
{

}

outStream.flush();
outStream.close();

outStream.write(bbuf,0,length);

* Returns a short description of the servlet.

ES

* @return a String containing servlet description

*/

CHAPTER 1 © WORKING WITH SERVLETS

@0verride

public String getServletInfo() {
return "Short description”;

}

The servlet will not produce a response; it will simply download the given file to the end user when the
user clicks the link to download the file.

How It Works

Downloading files is an essential task for almost any web application. Performing the steps that are provided
by this recipe will make it easy to achieve this task. The example in this recipe demonstrates an easy case

in which users can visit a web page, click a file to download, and have the file retrieved from the server and
copied to their machine. The HTML is very simplistic in this example, and it lists a URL link that invokes the
servlet and passes the name of the file that is to be downloaded. When the user clicks the link, the name of
the file is passed to /DownloadServlet as a parameter with the name filename. When the link is clicked, the
servlet doGet method is invoked. The first task that is performed in the doGet method is to read the filename
parameter from the invoking web page. That information is then passed to the doDownload method along
with the HttpServletRequest and HttpServletResponse objects.

In the doDownload method, the ServletOutputStreamis obtained from the HttpServletResponse
object, and the ServletContext is obtained for later use. To download a file, the servlet must provide
aresponse of the same type that matches that of the file to be downloaded. It must also indicate in the
response header that an attachment is to be included. Therefore, the first tasks to be performed by the
doDownload method involve setting up the HttpServletResponse appropriately.

response.setContentType((context.getMimeType(originalFile) != null) ?
context.getMimeType(originalFile) : "text/plain");
response.setHeader("Content-Disposition”, "attachment; filename=\"" + originalFile + "\"");

The file name, in this case originalFile, is used to obtain the MIME type of the file. If the MIME type
of the file is null, then text/plain will be returned. The attachment is set up in the response header as well,
by appending the file name as an attachment to the Content-Disposition. Next, the doDownload method
obtains a reference to the file that is to be downloaded by calling the ServletContext getResourceAsStream
method and passing the name of the file. This will return an InputStream object that can be used to read
the contents of the indicated file. A byte buffer is then created, which will be used to obtain chunks of data
from the file when it is being read. The final real task is to read the file contents and copy them to the output
stream. This is done using a while loop, which will continue to read from the InputStream until everything
has been processed. Chunks of data are read in and written to the output stream using the loop.

while ((in != null) & ((length = in.read(bbuf)) != -1))
{

}

outStream.write(bbuf,0,length);

Lastly, the ServletOutputStream object’s flush method is called to clear the contents, and it is then
closed to release resources. The magic of downloading files using a Java servlet may be a bit obfuscated by
this example, however, because a static file is being used as the download source in this example. In real life,
the HTML page would probably contain a list of files that are contained within a database, and then when the
user selects a file to download, the servlet will process that file accordingly, even extracting the file from
the database if necessary.

37

CHAPTER 1 © WORKING WITH SERVLETS

1-14. Dispatching Requests

Problem

You want to write a servlet that hands off requests to other servlets based on the task that needs to be
accomplished. Furthermore, you want the requests to be handed off without redirecting the client to another
site, and therefore, the URL in the browser should not change.

Solution

Create a request dispatcher servlet, which will decide which task needs to be completed, and then send the
request to an appropriate servlet to achieve that task. The following example demonstrates this concept
via an HTML form that accepts two numbers from the user and allows the user to decide what type of
mathematical evaluation should be performed by the server. The servlet processes the request by first
determining which type of mathematical evaluation should be performed and then dispatching the request
to the appropriate servlet to perform the task.

The following HTML form accepts two numbers from the user and allows them to choose which type of
math to perform against the numbers:

<html>
<head>
<title></title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
</head>
<body>
<h1>Request Dispatch Example</h1>
<p>Perform a mathematical evaluation. Insert two numbers to be evaluated and then
choose the type of evaluation to perform.</p>
<form method="POST" action="MathDispatcher">
<label for="numa">Enter Number A: </label>
<input type="text" id="numa" name="numa"/>

<label for="numb">Enter Number B: </label>
<input type="text" id="numb" name="numb"/><bxr/>

<select id="matheval" name="matheval">
<option value="add">Add the numbers</option>
<option value="subtract">Subtract the numbers</option>
<option value="multiply">Multiply the numbers</option>
<option value="divide">Divide the numbers</option>
</select>
<input type="submit" value="Submit Form"/>
<input type="reset" value="Reset Form"/>
</form>
</body>
</html>

38

CHAPTER 1 © WORKING WITH SERVLETS

The next piece of code is the servlet, which will dispatch requests accordingly depending on the value of
the matheval field:

package org.javaee8recipes.chapter0ol.recipe0l 14;

import java.io.IOException;

import javax.servlet.RequestDispatcher;

import javax.servlet.ServletContext;

import javax.servlet.ServletException;

import javax.servlet.ServletRequest;

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

/**

*

* @author juneau

*/

// Uncomment the following line to run example stand-alone
//@WebServlet(name = "MathDispatcher", urlPatterns = {"/MathDispatcher"})

// The following will allow the example to run within the context of the example
// enterprise application (JavaEE8Recipes.war distro or Netbeans Project)
@WebServlet(name = "MathDispatcher", urlPatterns = {"/chapteroi/MathDispatcher"})
public class MathDispatcher extends HttpServlet {

/**

* Handles the HTTP

* <code>P0ST</code> method.

*

* @param request servlet request

* @param response servlet response

* @throws ServletException if a servlet-specific error occurs

* @throws IOException if an I/0 error occurs

*/

@0verride
protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
System.out.println("In the servlet...");
// Store the input parameter values into Strings
String eval = request.getParameter("matheval");
ServletContext sc = getServletConfig().getServletContext();
RequestDispatcher rd = null;
int evaluate = 0;
int add = 0;
int subtract = 1;
int multiply = 2;
int divide = 3;
if(eval.equals("add"))
evaluate = add;

39

CHAPTER 1 © WORKING WITH SERVLETS

if (eval.equals("subtract"))
evaluate = subtract;

if (eval.equals("multiply"))
evaluate = multiply;

if(eval.equals("divide")){
evaluate = divide;

}
switch(evaluate){
case(0): rd = sc.getRequestDispatcher("/AddServlet");
rd.forward(request, response);
break;
case(1): rd = sc.getRequestDispatcher("/SubtractServlet");
rd.forward(request, response);
break;
case(2): rd = sc.getRequestDispatcher("/MultiplyServlet");
rd.forward(request, response);
break;
case(3): rd = sc.getRequestDispatcher("/DivideServlet");
rd.forward(request, response);
break;
}
}
/**

* Returns a short description of the servlet.
*
* @return a String containing servlet description
*/
@0verride
public String getServletInfo() {
return "Short description”;
}

Next is an example of one of the servlets that the request will be dispatched to. The following is the code
for the AddServlet, which will add the two numbers and return the sum to the user:

package org.javaee8recipes.chapter0l.recipe0l_14;

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

/**
*

* @author juneau
*/

40

CHAPTER 1 © WORKING WITH SERVLETS

// Uncomment the following line to run example stand-alone
//@WebServlet(name = "AddServlet", urlPatterns = {"/AddServlet"})

// The following will allow the example to run within the context of the example
// enterprise application (JavaEE8Recipes.war distro or Netbeans Project)
@WebServlet(name = "AddServlet", urlPatterns = {"/chapteroi/AddServlet"})

public class AddServlet extends HttpServlet {

* Processes requests for both HTTP
* <code>GET</code> and

* <code>P0ST</code> methods.

*

* @param request servlet request
* @param response servlet response
* @throws ServletException if a servlet-specific error occurs
* @throws IOException if an I/0 error occurs
*/
protected void processRequest(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
// Store the input parameter values into Strings
String numA = request.getParameter("numa");
String numB = request.getParameter("numb");
int sum = Integer.valueOf(numA) + Integer.valueOf(numB);
try {
out.println("<html>");
out.println("<head>");
out.println("<title>The Sum of the Numbers</title>");
out.println("</head>");
out.println("<body>");
out.println("<h1>Sum:
out.println("<bx/>");
out.println("Try Again");
out.println("</body>");
out.println("</html>");
} finally {
out.close();
}

+ sum + "</h1>");

}

/**

* Handles the HTTP

* <code>GET</code> method.

*

* @param request servlet request

* @param response servlet response

* @throws ServletException if a servlet-specific error occurs
* @throws IOException if an I/0 error occurs

*/

41

CHAPTER 1 © WORKING WITH SERVLETS

@0verride
protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
processRequest(request, response);

}

/**
* Handles the HTTP
* <code>P0ST</code> method.
*
* @param request servlet request
* @param response servlet response
* @throws ServletException if a servlet-specific error occurs
* @throws IOException if an I/0 error occurs
*/
@0verride
protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
processRequest(request, response);

}

/**
* Returns a short description of the servlet.
*
* @return a String containing servlet description
*/
@verride
public String getServletInfo() {
return "Short description";
}

Each of the other servlets is very similar to AddServlet, except the mathematical evaluation is different.
To see a full listing of the code, take a look at the sources for this book.

How It Works

Sometimes it is a good idea to hide the forwarding of requests from the end user. Other times it just makes
sense to hand off a request from one servlet to another so that another type of processing can occur. These
are just two examples of when it is handy to perform a request dispatch within a servlet. Forwarding a
request versus dispatching a request is different because a forwarded request hands off the request on the
client side, whereas a dispatched request hands off the request on the server side. The difference can be
quite large since the end user has no idea of server-side dispatches, whereas the browser is redirected to a
different URL when the request is forwarded on the client side.

Dispatching requests is an easy task. The facilities for doing so are built right into the ServletContext,
so once you obtain a reference to ServletContext, you simply call the getRequestDispatcher
method to obtain a RequestDispatcher object that can be used to dispatch the request. When calling
the getRequestDispatcher method, pass a string containing the name of the servlet that you want
to hand off the request to. You can actually obtain a RequestDisptacher object for any valid HTTP
resource within the application by passing the appropriate URL for the resource in String format to the
getRequestDispatcher method. Therefore, if you'd rather dispatch to a JSP or HTML page, you can do that

42

CHAPTER 1 * WORKING WITH SERVLETS

as well. After a RequestDispatcher object has been obtained, invoke its forward method by passing the
HttpServletRequest and HttpServletResponse objects to it. The forward method performs the task of
handing off the request.

rd = sc.getRequestDispatcher("/AddServlet");
rd.forward(request, response);

In the case of the example in this recipe, you can dispatch requests to different servlets in order
to perform a specific task. Once handed off, the servlet that has obtained the request is responsible
for providing the response to the client. In this case, the servlet returns the result of the specified
mathematical evaluation.

1-15. Redirecting to a Different Site

Problem

You need to redirect the browser to another URL when a specific URL within your application is visited.

Solution

Use the HttpServletResponse object’s sendRedirect () method to redirect from the servlet to another URL.
In the following example, when a URL that matches the /redirect pattern is used, then the servlet will
redirect the browser to another site:

import java.io.IOException;

import javax.servlet.*;

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.*;

@WebServlet(name="RedirectServlet", urlPatterns={"/redirect"})
public class RedirectServlet extends HttpServlet {

@0verride
public void doGet(HttpServletRequest req, HttpServletResponse res)
throws IOException, ServletException {
String site = "http://www.apress.com";

res.sendRedirect(site);

}
}

In this example, the servlet will redirect to the www.apress . com website.
How It Works

There are some cases in which a web application needs to redirect traffic to another site or URL within the
same or another application. For such cases, the HttpServletResponse sendRedirect method can be of
use. The sendRedirect method accepts a URL in String format and then redirects the web browser to the

43

http://www.apress.com/

CHAPTER 1 © WORKING WITH SERVLETS

given URL. The fact that sendRedirect accepts a string-based URL makes it easy to build dynamic URLs as
well. For instance, some applications may redirect to a different URL based on certain parameters that are
passed from a user. Dynamic generation of a URL in such cases may look something like the following:

String redirectUrl = null;
if(parameter.equals("SOME STRING")
redirectUrl = "/" + urlPathA;
else
redirectUrl = "/" + urlPathB;
res.sendRedirect(redirectUrl);

The sendRedirect () method can also come in handy for creating the control for web menus and other
page items that can send web traffic to different locations.

Note This simple redirect, as opposed to servlet chaining, does not pass the HttpRequest object along to
the target address.

1-16. Securely Maintaining State Within the Browser

Problem

You have the requirement to save a user’s state within the browser for your application.

Solution

Use “HTTP only” browser cookies to save the state. In the following example, one servlet is used to place
some session information into a cookie in the browser. Another servlet is then called, which reads the cookie
information and displays it to the user. The following servlet demonstrates how to store a cookie in the
browser using a Java servlet:

package org.javaee8recipes.chapter0l.recipe0l_16;

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.Cookie;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

/**
* Recipe 1-16: Securely Maintaining State Within the Browser

* @author juneau

*/

@WebServlet(name = "SetCookieServlet", urlPatterns = {"/SetCookieServlet"})
public class SetCookieServlet extends HttpServlet {

44

CHAPTER 1 © WORKING WITH SERVLETS

protected void processRequest(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
Cookie cookie = new Cookie("sessionId","12345");
cookie.setHttpOnly(true);
cookie.setMaxAge(-30);
response.addCookie(cookie);
try {
out.println("<html>");
out.println("<head>");
out.println("<title>SetCookieServlet</title>");
out.println("</head>");
out.println("<body>");

out.println("<h1>Servlet SetCookieServlet is setting a cookie into the browser

</h1>");
out.println("

");

out.println("Display the cookie contents.");

out.println("</body>");
out.println("</html>");

} finally {
out.close();
}
}
@0verride

protected void doGet(HttpServletRequest request, HttpServletResponse response)

}

throws ServletException, IOException {
processRequest(request, response);

@0verride
protected void doPost(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {
processRequest(request, response);

The next code listing demonstrates a servlet that reads the cookies in the browser and prints the contents:

package org.javaee8recipes.chapter0l.recipe0l 16;

import
import
import
import
import
import
import
import

java.io.IOException;
java.io.PrintWriter;
javax.servlet.ServletException;
javax.servlet.annotation.WebServlet;
javax.servlet.http.Cookie;
javax.servlet.http.HttpServlet;
javax.servlet.http.HttpServletRequest;
javax.servlet.http.HttpServletResponse;

45

CHAPTER 1 © WORKING WITH SERVLETS

/**

* Recipe 1-16: Securely Maintaining State within the Browser

* @author juneau

*/
@hWebServlet(name = "DisplayCookieServlet", urlPatterns = {"/DisplayCookieServlet"})
public class DisplayCookieServlet extends HttpServlet {

protected void processRequest(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
Cookie[] cookies = request.getCookies();

try {

out.println("<html>");

out.println("<head>");

out.println("<title>Display Cookies</title>");

out.println("</head>");

out.println("<body>");

for(Cookie cookie:cookies){
out.println("<p>");
out.println("Cookie Name:
out.println("
");
out.println("vValue: "
out.println("</p>");

+ cookie.getName());

+ cookie.getValue());

}
out.println("</body>");
out.println("</html>");
} finally {
out.close();
}

}

@0verride
protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
processRequest(request, response);

}

@0verride
protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
processRequest(request, response);

46

CHAPTER 1 * WORKING WITH SERVLETS

How It Works

Using cookies to store data in the browser is a technique that has been in practice for years. Since Servlet

3.0 AP], the ability to mark a cookie as HTTP only has become available. This allows the cookie to be
safeguarded against client-side scripting attacks, making the cookie more secure. Any standard servlet can
create a cookie and place it into the current session. Similarly, any servlet that is contained within the same
session can read or update a session’s cookies values. In the example for this recipe, two servlets are used

to demonstrate how cookies work. The first servlet that is listed is responsible for creating a new cookie and
setting it into the browser session. The second servlet is responsible for displaying the contents of the cookie
to the user.

To create a cookie, simply instantiate a new javax.servlet.http.Cookie object and assign a name
and value to it. Passing both the name and value into the Cookie constructor at the time of instantiation can
assign a name and value, or it can be done by passing values to the cookie’s setName and setValue methods.
Once the cookie has been instantiated, properties can be set that will help to configure the cookie. In the
example to this recipe, the cookie’s setMaxAge and setHttpOnly methods are called, setting the time of
life for the cookie and ensuring that it will be guarded against client-side scripting. For a complete listing
of cookie properties, refer to Table 1-3. Finally, the cookie is placed into the response by passing it to the
response object’s addCookie method.

Cookie cookie = new Cookie("sessionId","12345");
cookie.setHttpOnly(true);

cookie.setMaxAge(-30);
response.addCookie(cookie);

Table 1-3. Cookie Property Methods

Property Description

setComment Sets a comment to describe the cookie.

setDomain Specifies the domain in which the cookie belongs.

setHttpOnly Marks the cookie as HTTP only.

setMaxAge Sets the maximum lifetime of the cookie. A negative value indicates that the cookie
will expire when the session ends.

setPath Specifies a path for the cookie to which the client should return it.

setSecure Indicates that the cookie should be sent only using a secure protocol.

setValue Assigns a value to the cookie.

setVersion Specifies the version of the cookie protocol that the cookie will comply with.

The second servlet in the example, DisplayCookieServlet, is responsible for reading and displaying
the session’s cookies values. When DisplayCookieServlet is invoked, its processRequest method is called,
which obtains the cookies within the response object by calling response.getCookies()and setting the
result to an array of Cookie objects.

Cookie[] cookies = request.getCookies();

47

CHAPTER 1 © WORKING WITH SERVLETS

The cookie object array can now be iterated over in order to obtain each cookie and print its contents.
The servlet does so by using a for loop and printing each cookie’s name and value.

for(Cookie cookie:cookies){
out.println("<p>");
out.println("Cookie Name:
out.println("
");
out.println("value: "
out.println("</p>");

+ cookie.getName());

+ cookie.getValue());

1-17. Finalizing Servlet Tasks

Problem

There are some resources you want to have your servlet clean up once the servlet is no longer in use.

Solution

The solution to the problem is twofold. First, provide code for performing any cleanup within the servlet
destroy method. Second, in the case that there are potentially long-running methods, code them so that you
will become aware of a shutdown and, if necessary, halt and return so that the servlet can shut down cleanly.
The following code excerpt is a small example of a destroy method. In this code, it is being used to initialize
local variables and is setting the beingDestroyed boolean value to indicate that the servlet is shutting down.

/**
* Used to finalize the servlet
*/
public void destroy() {
// Tell the servlet it is shutting down
setBeingDestroyed(true);
// Perform any cleanup
thisString = null;

The code within the destroy method may successfully achieve a full cleanup of the servlet, but in the
case where there may be a long-running task, then it must be notified of a shutdown. The following excerpt
is a block of code that signifies a long-running task. The task should stop processing once the shutdown is
indicated by the beingDestroyed value becoming true.

for (int x = 0; (x <= 100000 8& !isBeingDestroyed()); x++) {
doSomething();
}

48

CHAPTER 1 © WORKING WITH SERVLETS

Note If you want to perform cleanup prior to calling the destroy method, then create a public,
protected, or private method that returns void and annotate it with @PreDestroy. The @PreDestroy
annotation marks a method to be called prior to the component being removed from the container. This method
must not throw a checked exception.

How It Works

The finalization of a servlet can be very important, especially if the servlet is using some resources that

may lead to a memory leak, using a reusable resource such as a database connection, or needs to persist

some values for another session. In such cases, it is a good idea to perform cleanup within the servlet

destroy method. Every servlet contains a destroy method (which may be implemented to overload default

behavior) that is initiated once the servlet container determines that a servlet should be taken out of service.
The destroy method is called once all of a servlet’s service methods have stopped running. However, if

there is a long-running service method, then a server grace period can be set that would cause any running

service to be shut down when the grace period is reached. As mentioned earlier, the destroy method is

the perfect place to clean up resources. However, the destroy method is also a good place to help clean

up after long-running services. Cleanup can be done by setting a servlet-specific local variable to indicate

that the servlet is being destroyed and by having the long-running service check the state of that variable

periodically. If the variable indicates that the destroy method has been called, then it should stop executing.

1-18. Reading and Writing with Nonblocking 1/0

Problem

You want to read and write I/0 in an asynchronous, nonblocking manner.

Solution

Use the Non-Blocking I/0 API that is part of the Servlet 3.1 release. To use the new technology, implement
the new ReadListener interface when performing nonblocking reads, and implement the WritelListener
interface for performing nonblocking writes. The implementation class can then be registered to a
ServletInputStreamor ServletOutputStreamso that reads or writes can be performed when the listener
finds that servlet content can be read or written without blocking.

The following sources are those of a ReadListener implementation that reside in the source file
org.javaee8recipes.chapter0l.recipe01 18.AcmeReadlListenerImpl.java, and they demonstrate how to
implement the ReadListener:

package org.javaee8recipes.chapter0l.recipe01l_18;

import java.io.IOException;

import java.util.logging.Llevel;

import java.util.logging.logger;

import javax.servlet.AsyncContext;
import javax.servlet.Readlistener;
import javax.servlet.ServletInputStream;

49

CHAPTER 1 © WORKING WITH SERVLETS

public class AcmeReadlListenerImpl implements ReadlListener {

private ServletInputStream is = null;
private AsyncContext async = null;

public AcmeReadlListenerImpl(ServletInputStream in, AsyncContext ac) {
this.is = in;
this.async = ac;
System.out.println("read listener initialized");

}

@0verride
public void onDataAvailable() {
System.out.println("onDataAvailable");
try {
StringBuilder sb = new StringBuilder();
int len = -1;
byte b[] = new byte[1024];
while (is.isReady()
&% (len = is.read(b)) != -1) {
String data = new String(b, 0, len);
System.out.println(data);
}
} catch (IOException ex) {
Logger.getLogger(AcmeReadListenerImpl.class.getName()).log(Level.SEVERE, null, ex);

}

@0verride
public void onAllDataRead() {
System.out.println("onAllDataRead");
async.complete();

}

@0verride
public void onError(Throwable thrwbl) {
System.out.println("Error: " + thrwbl);
async.complete();

}

Next, use the listener by registering it to a ServletInputStream (in the case of the ReadListener) or
a ServletOutputStream (in the case of a WritelListener). For this example, I show a servlet that utilizes
the AcmeReadListenerImpl class. The sources for the following class reside in the org. javaee8recipes.
chapterol.recipe0l_18.AcmeReaderExample. java file:

package org.javaee8recipes.chapter0i.recipe01_18;
import java.io.IOException;
import java.io.InputStream;

import java.io.PrintWriter;

50

import
import
import
import
import
import
import
import
import
import

CHAPTER 1 © WORKING WITH SERVLETS

java.util.concurrent.CountDownlLatch;
javax.servlet.AsyncContext;

javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.

servlet.ServletContext;
servlet.ServletException;
servlet.ServletInputStream;
servlet.ServletOutputStream;
servlet.annotation.WebServlet;
servlet.http.HttpServlet;
servlet.http.HttpServletRequest;
servlet.http.HttpServletResponse;

@WebServlet(urlPatterns = {"/AcmeReaderServlet"}, asyncSupported=true)
public class AcmeReaderServlet extends HttpServlet {

protected void processRequest(HttpServletRequest request, HttpServletResponse response)

}

throws

ServletException, IOException {

response.setContentType("text/html;charset=UTF-8");
try (PrintWriter output = response.getWriter()) {

String

filename = "test.txt";

ServletContext context = getServletContext();

InputStream in = context.getResourceAsStream(filename);

output.
output.
output.
output.
output.
output.
output.
output.

println(“<html>");

println(“<head>");

println("<title>Acme Reader</title>");

println("</head>");

println("<body>");

println("<hi>Welcome to the Acme Reader Servlet</h1>");
println("

");

println("<p>Look at the server log to see data that was read

asynchronously from a file<p>");

AsyncContext asyncCtx = request.startAsync();

ServletInputStream input = request.getInputStream();
input.setReadlListener(new AcmeReadListenerImpl(input, asyncCtx));

output.
output.

println("</body>");
println("</html>");

} catch (Exception ex){

}

System.

out.println("Exception Occurred: " + ex);

// Http Servlet Methods ...

The last piece of code that we need is the servlet that invokes the AcmeReaderServlet, passing the
message that needs to be processed. In this example, a file from the server is passed to the AcmeReaderServlet
as input, which then is asynchronously processed via the AcmeReadListenerImpl class. The following code is
taken from org.javaee8recipes.chapterol.recipe01_18.ReaderExample.java.

51

CHAPTER 1

WORKING WITH SERVLETS

package org.javaee8recipes.chapter0i.recipe01_18;

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

java.
java.
java.
java.
java.
java.
java.
java.
java.
java.
java.

javax.
javax.
javax.
javax.
javax.
javax.

io.BufferedReader;
io.BufferedWriter;
io.IOException;
io.InputStream;
io.InputStreamReader;
io.OutputStreamiriter;
io.PrintWriter;
net.HttpURLConnection;

net.URL;

util.logging.Level;
util.logging.Logger;

servlet

servlet.
servlet.
servlet.
servlet.

ServletContext;
ServletException;
annotation.WebServlet;
http.HttpServlet;

.http.HttpServletRequest;

servlet.

http.HttpServletResponse;

@hWebServlet(name = "ReaderExample", urlPatterns = {"/ReaderExample"})
public class ReaderExample extends HttpServlet {

protected void processRequest(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");

String filename = "/WEB-INF/test.txt";

ServletContext context = getServletContext();

52

InputStream in = context.getResourceAsStream(filename);
try (PrintWriter out = response.getWriter()) {
String path = "http://"

+
+
+
+
+

request.getServerName()
request.getServerPort()
request.getContextPath()
"/AcmeReaderServlet";

out.println("<html>");

out.println("<head>");

out.println("<title>Intro to Java EE 7 - Servlet Reader Example</title>");
out.println("</head>");

out.println("<body>");

out.println("<hi>Servlet ReaderExample at " + request.getContextPath() + "</h1>");

out.println("Invoking the endpoint:

+ path + "
");

out.flush();

URL url = new URL(path);

HttpURLConnection conn = (HttpURLConnection) url.openConnection();
conn. setChunkedStreamingMode(2);

conn.setDoOutput (true);

conn.connect();

CHAPTER 1 © WORKING WITH SERVLETS

if (in != null) {
InputStreamReader inreader = new InputStreamReader(in);
BufferedReader reader = new BufferedReader(inreader);
String text = "";
out.println("Beginning Read");
try (BufferedWriter output = new BufferedWriter(new OutputStreamWriter(conn.
getOutputStream()))) {
out.println("got the output...beginning loop");
while ((text = reader.readlLine()) != null) {
out.println("reading text: " + text);
out.flush();
output.write(text);

Thread.sleep(1000);
output.write("Ending example now..");
out.flush();
}
output.flush();
output.close();
}
}
out.println("Review the Glassfish server log for messages...");
out.println("</body>");
out.println("</html>");
} catch (InterruptedException | IOException ex) {
Logger.getLogger (ReaderExample.class.getName()).log(Level.SEVERE, null, ex);
}

}

@0verride
protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
processRequest(request, response);

}

@0verride
protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
processRequest(request, response);

}

@0verride
public String getServletInfo() {
return "Short description”;
}

When the servlet is visited, the asynchronous, nonblocking read of the test. txt file will occur, and its
text will be displayed in the server log.

53

CHAPTER 1 © WORKING WITH SERVLETS

How It Works

Servlet technology has allowed only traditional (blocking) input/output during request processing since its
inception. In the Servlet 3.1 release, the new Non-Blocking I/O API makes it possible for servlets to read or
write without any blocking. This means other tasks can be performed at the same time that a read or write
is occurring, without any wait. Such a solution opens a new realm of possibilities for servlets, making them
much more flexible for use along with modern technologies such as the WebSockets protocol.

To implement a nonblocking I/0 solution, new programming interfaces have been added to
ServletInputStreamand ServletOutputStream, as well as two event listeners: ReadListener and
WritelListener. ReadlListener and Writelistener interfaces make the servlet I/O processing occur in a
nonblocking manner via callback methods that are invoked when servlet content can be read or written without
blocking. Use the ServletInputStream.setReadListener(ServletInputStream, AsyncContext) method to
register a ReadListener with a ServletInputStream, and use the I/O read ServletInputStream.setWritelis
tener (ServletOutputStream, AsyncContext) method for registering a WritelListener. The following lines of
code demonstrate how to register a ReadListener implementation with a ServletInputStream:

AsyncContext context = request.startAsync();
ServletInputStream input = request.getInputStream();
input.setReadlistener(new ReadListenerImpl(input, context));

Note In Servlet 3.0, AsyncContext was introduced to represent an execution context for an asynchronous
operation that is initiated on a servlet request. To use the asynchronous context, a servlet should be annotated
as a @WebServlet, and the asyncSupported attribute of the annotation must be set to true. The @WebFilter
annotation also contains the asyncSupported attribute.

After alistener has been registered with a ServletInputStream, the status on a nonblocking read can be
checked by calling the methods ServletInputStream.isReady and ServletInputStream.isFinished. For
instance, a read can begin once the ServletInputStream.isReady method returns a true, as shown here:

while (is.isReady() &8 (b = input.read()) != -1)) {
len = is.read(b);
String data = new String(b, 0, len);

To create a ReadListener or WritelListener, three methods must be overridden: onDataAvailable,
onAllDataRead, and onError. The onDataAvailable method is invoked when data is available to be read or
written, onAllDataRead is invoked once all the data has been read or written, and onError is invoked if an
error is encountered. The code for AcmeReadListenerImpl in the solution to this recipe demonstrates how to
override these methods.

The AsyncContext.complete method is called in the onAl1lDataRead method to indicate that the read
has been completed and to commit the response. This method is also called in the onError implementation
so that the read will complete, so it is important to perform any cleanup within the body of the onError
method to ensure that no resources are leaked, and so on.

To implement a WritelListener, use the new ServletOutputStream.canWrite method, which
determines whether data can be written in a nonblocking fashion. A Writelistener implementation
class must override a couple of methods: onWritePossible and onExrror. The onWritePossible method is
invoked when a nonblocking write can occur. The write implementation should take place within the body
of this method. The onError method is much the same as its ReadListener implementation counterpart,
because it is invoked when an error occurs.

54

CHAPTER 1 © WORKING WITH SERVLETS

The following lines of code demonstrate how to register a WriteListener with a ServletOutputStream:

AsyncContext context = request.startAsync();
ServletOutputStream os = response.getOutputStream();
os.sethritelistener(new WritelistenerImpl(os, context));

The Writelistener implementation class must include overriding methods for onWritePossible and
onError. The following is an example for a WritelListener implementation class:

import javax.servlet.AsyncContext;
import javax.servlet.ServletOutputStream;
import javax.servlet.Writelistener;

public class WriteListenerImpl implements Writelistener {

ServletOutputStream os;
AsyncContext context;

public WriteListenerImpl(ServletOutputStream out, AsyncContext ctx){
this.os = out;
this.context = ctx;
System.out.println("Write Listener Initialized");

}

@0verride

public void onWritePossible() {
System.out.println("Now possible to write...");
// Write implementation goes here...

}

@0verride

public void onError(Throwable thrwbl) {
System.out.println("Error occurred");
context.complete();

Note In most cases, the ReadListener and WritelListener implementation classes can be embedded
within the calling servlet. They have been broken out into separate classes for the examples in this book for
demonstration purposes.

The new Non-Blocking I/O API helps bring the Servlet API into compliance with new web standards.
The new API makes it possible to create web-based applications that perform well in an asynchronous
fashion.

55

CHAPTER 1 © WORKING WITH SERVLETS

1-19. Pushing Resources from a Server to a Client

Problem

You want to push resources to your clients automatically when they visit a particular page within your web
application.

Solution

Use the Servlet HTTP/2 Push API to push the resources before the page is loaded. This will cause all of the
resources to be included with the single response, rather than multiple responses that used to be needed
for HTTP 1.1 implementations. In the following example, a PushBuilder is created, and then a number of
statically typed resources are pushed to the client prior to loading the page.

@WebServlet(name = "PushServlet", urlPatterns = {"/PushServlet"})
public class PushServlet extends HttpServlet {

protected void processRequest(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
try (PrintWriter out = response.getWriter()) {
/* TODO output your page here. You may use following sample code. */
out.println("<!DOCTYPE html>");
out.println("<html>");
out.println("<head>");
out.println("<title>Servlet PushServlet</title>");
out.println("</head>");
out.println("<body>");
out.println("<hi>Servlet PushServlet at " + request.getContextPath() + "!</h1>");
out.println("</body>");
out.println("</html>");

}

@0verride
protected void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

System.out.println("In the servlet");

if(request.getRequestURI().equals("/JavaEE8Recipes/PushServlet") 83 request.

getPushBuilder() != null) {
System.out.println("Pushing resources");
PushBuilder builder =
request.getPushBuilder().path("/resources/images/javaee9recipes.png");
builder.path("/resources/images/javaee7recipes.png");
builder.push();

} processRequest(request, response);

56

CHAPTER 1 © WORKING WITH SERVLETS

How It Works

A significant problem with serving content from the web has always been the request and response lifecycle.
HTTP 1.1 requires multiple TCP connections issuing parallel requests in order to load page content
containing various resources such as JavaScript files and images. This can not only lead to significant
performance issues, but also starves network resources. HTTP/2 is fundamentally different in that it is

fully multiplexed, rather than being ordered and blocking. It also allows a single connection to be used

for issuing requests in parallel, making performance much better and using much less network resource.
Other differences for HTTP/2 include using header compression to help reduce overhead, and allowing
servers to have the ability to push resources proactively to active clients. This last feature of HTTP/2 that was
mentioned is covered by the example in this recipe, pushing resources from the server, rather than making
the client fetch each required resource.

The PushBuilder interface was introduced with Servlet 4.0, which is part of the Java EE 8 platform.

The PushBuilder is used to build a push request based on the HttpServletRequest. Once the PushBuilder
is obtained, it can be used to add resources via the path method, which are subsequently pushed to the
client while the target page is being processed. In the example, a couple PNG image resources are added
using the path method. However, an application can be coded such that any resource that is required by a
specified page can be pushed preemptively to the client and loaded into the browser cache. Once obtained,
the PushBuilder can be used as many times as required. After all resources have been loaded, initiate the
PushBuilder.push() method to perform the push action.

After the resources have been pushed, the invoked page will be loaded in an effort to process resources,
determining which resources have already been cached and which need to be loaded from the server push.
If a client browser already has the resource in the cache, it returns an RST_STREAM to indicate that the server
does not need to end it.

57

CHAPTER 2

JavaServer Pages

The JavaServer Pages (JSP) web framework introduced a great productivity boost for Java web developers
over the Java Servlet API. When the JSP technology was introduced in 1999, it was Sun’s answer to PHP,
which provided web developers with a quick way to create dynamic web content. JSPs contain a mix of XML
and HTML but can also contain embedded Java code within scripting elements known as scriptlets. Indeed,
JSPs are easy to learn and allow developers to quickly create dynamic content and use their favorite HTML
editor to lay out nice-looking pages. JSP was introduced several years ago and still remains one of the most
important Java web technologies available. Although JSP technology has changed over the years, there are
still many applications using older JSP variations in the world today.

Over the years, the creation of dynamic web content has solidified, and the techniques used to develop
web applications have become easier to maintain down the road. Whereas early JSP applications included
a mixture of Java and XML markup within the pages, today the separation of markup from business logic
is increasingly important. Newer releases of the JSP technology have accounted for these changes in the
web space, and the most recent releases allow developers the flexibility to develop highly dynamic content
without utilizing any embedded Java code but, instead, using markup and custom tags within pages.

This chapter shows you the ins and outs of JSP development. Starting with creating a simple JSP
application, you learn how to develop applications using JSP technology from the ground up and harness the
productivity and power that the technology has to offer. The chapter also brushes on advanced techniques
such as the development of custom JSP tags and the invocation of Java functions utilizing conditional tags.
Although entire books have been written on JSP, the recipes within this chapter lay a solid foundation on
which you can begin to develop applications utilizing JSP.

Note Utilizing a Java integrated development environment (IDE) can significantly reduce development
time, especially when working with Java web technologies such as JSP. To start learning how to create a JSP
application using the NetBeans IDE, see the appendix of this book.

© Josh Juneau 2018 59
J. Juneau, Java EE 8 Recipes, https://doi.org/10.1007/978-1-4842-3594-2_2

https://doi.org/10.1007/978-1-4842-3594-2_2

CHAPTER 2 © JAVASERVER PAGES

2-1. Creating a Simple JSP Page

Problem

You want to develop a web page using HTML markup that enables you to include dynamic content.

Solution

Use JavaServer Pages to create a web page that combines standard markup with blocks of Java code that are
embedded within the markup. The following JSP markup demonstrates how to include dynamic code in a page:

<%--
Document : recipe02_01
Author : juneau

--%>

<%@page contentType="text/html" pageEncoding="UTF-8"%>
<!DOCTYPE html>

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>JSP Page Example</title>
</head>
<body>
<jsp:useBean id="dateBean" scope="application" class="org.javaee8recipes.chaptero2.
recipe02_01.DateBean"/>
<h1>Hello World!</h1>

<p>
The current date is: ${dateBean.currentDate}!
</p>
</body>
</html>

The previous JSP code uses a JavaBean to pull the current date into the page. The following Java code is
the JavaBean that is used by the JSP code:

package org.javaee8recipes.chapter02.recipe02 01;

import java.util.Date;

Jx*
* Recipe 2-1: Creating a Simple JSP Page
* @author juneau
*/

public class DateBean {

private Date currentDate = new Date();

/**
* @return the currentDate
*/

60

CHAPTER 2 © JAVASERVER PAGES

public Date getCurrentDate() {
return currentDate;
}

/¥
* @param currentDate the currentDate to set
*/

public void setCurrentDate(Date currentDate) {

this.currentDate = currentDate;

}

The following output would result. Of course, the page will display the current date when you run the
code.

Hello World!
The current date is: Fri Dec 23 10:41:07 CST 2016!

How It Works

The JavaServer Pages technology makes it easy to develop web pages that can utilize both static and dynamic
web content by providing a set of tags and value expressions to expose dynamic Java fields to a web page.
Using the JSP technology, a page developer can access the underlying JavaBeans classes to pass content
between the client and the server. In the example within this recipe, a JSP page is used to display the current
date and time, which is obtained from a JavaBean class on the server. Therefore, when a user visits the JSP
page in a browser, the current time and date on the server will be displayed.

AJSP page should use a document extension of . jsp if it is a standard HTML-based JSP page. Other
types of JSP pages contain different extensions; one of those is the JSP document type. A JSP document is
an XML-based well-formed JSP page. You can learn more about JSP documents in Recipe 2-6. JSP pages
can contain HTML markup, special JSP tags, page directives, JavaScript, embedded Java code, and more.
This example contains the <jsp:useBean> tag, as well as a value expression to display the content of a
field that is contained within the JavaBean. The <jsp:useBean> tagis used to include a reference to a Java
class that will be referenced in the JSP page markup. In this case, the class that is referenced is named org.
javaee8recipes.chapter02.recipe02_01.DateBean, and it will be referenced as dateBean within the page.
For a full description of the <jsp:useBean> tag, reference Recipe 2-3.

<jsp:useBean id="dateBean" scope="application" class="org.javaee8recipes.chaptero2.
recipe02_01.DateBean"/»>

Since the <jsp:useBean> tag contains a reference to the DateBean Java class, the JSP page that includes
the tag can use any public fields or methods that are contained within the class or private fields through
public “getter” methods. This is demonstrated by using the Expression Language (EL) value expression,
which is enclosed within the ${} characters. To learn more about JSP EL expressions, see Recipe 2-4. In
the example, the value of the JavaBean field named currentDate is displayed on the page. The value of the
private field is retrieved automatically via the pubic “getter” method, getCurrentDate.

The current date is: ${dateBean.currentDate}!

61

CHAPTER 2 © JAVASERVER PAGES

LIFECYCLE OF A JSP PAGE

The lifecycle of a JSP page is very much the same as that of a Java servlet. This is because a JSP page
is translated to a servlet (the HttpJspBase JSP servlet class) behind the scenes by a special servlet.
When a request is sent to a JSP page, the special servlet checks to ensure that the JSP page’s servlet is
not older than the page itself. If it is, the JSP is retranslated into a servlet class and compiled. The JSP-
to-servlet translation is automatic, which makes JSP very productive.

When a JSP page is translated, a servlet with a name such as 0002fjspname_jsp.java is created,
where jspname is the name of the JSP page. If errors result during the translation, they will be displayed
when the JSP page response is displayed.

Different portions of the JSP page are treated differently during the translation to a Java servlet.
If the JSP page’s servlet does not already exist, then the container does the following:
e Template data is translated into code.
e JSP scripting elements are inserted into the JSP page’s servlet class.
® <jsp:XXX .../>elements are converted into method calls.
After translation, the lifecycle works similarly to the servlet lifecycle:
1. Loads the servlet class.
2. Instantiates the servlet class.

3. Initializes the servlet instance with a call to the jspInit method.

This recipe contains only beginning knowledge of what is possible with the JSP technology. To learn
more regarding the technology and best practices when using JSP, continue reading the recipes in this
chapter.

2-2. Embedding Java into a JSP Page

Problem

You want to embed some Java code into a standard JSP web page for dynamic content creation.

Solution

Use JSP scripting elements to embed Java code into the page and then display Java field content. The
following JSP code demonstrates how to import the Java Date class and then use it to obtain the current date
without using a server-side JavaBean class:

<%--
Document : recipe02 02
Author : juneau

--%>

62

CHAPTER 2 © JAVASERVER PAGES

<%@page import="java.util.Date"%>
<%@page contentType="text/html" pageEncoding="UTF-8"%>
<!DOCTYPE html>
<%! Date currDate = null; %>
<% currDate = new Date(); %>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Recipe 2-2: Embedding Java into a ISP Page</title>
</head>
<body>
<h1>Hello World!</h1>

The current date and time is: <%= currDate %>

</body>
</html>

This page will display the current system date from the server that hosts the JSP application.

How It Works

Using scripting elements within a JSP page allows you to embed Java code directly in a web page. However,
it should be noted that this is not the best approach to web development. Scripting element programming
used to be thought of as one of the best ways to code web applications using JSP technology. However, when
it came time to perform maintenance activities on a JSP page or to introduce new developers to a code base
that used scripting elements in JSP, nightmares ensued because in order to debug a problem, the developer
had to search through scripts embedded within HTML, as well as Java classes themselves. Sometimes it is
still nice to have the ability to embed Java code directly into a page, even if for nothing more than testing, so
that is why I show how it is done in this recipe. A better approach would be to separate the business logic
from the view code, which you saw in Recipe 2-1 and will also see in subsequent recipes.

In this example, the current date is pulled into the JSP page via the Java Date class. A new Date instance
is assigned to a field that is named currDate. An import page directive is used to import the java.util.Date
class into the JSP page using the following line:

<%@page import="java.util.Date"%>

The declaration of currDate is done within a declaration scripting element. Declaration scripting
elements begin with the character sequence <%! and end with the character sequence %>. Excerpted from
the example, the currDate field is declared in the following line of code:
<%! Date currDate = null; %>

Anything that is contained inside declarations goes directly to the jspService() method of the

generated JSP servlet class, creating a global declaration for the entire servlet to use. Any variable or method
can be declared within declarations’ character sequences.

63

CHAPTER 2 © JAVASERVER PAGES

Note Declarations are executed only once for the JSP page, when it is initially converted into a servlet. If
any code on the JSP page changes, it will be translated to a servlet again, and the declaration will be evaluated
again at that time. If you want for code to be executed each time the JSP page is loaded by the browser, do not
place it in a declaration.

In the example for this recipe, you can see that there are no JSP tags used to reference a server-side
JavaBean class to create a new instance of the Date class, and that is because the instantiation is done right
within the JSP code in between character sequences known as scriptlets, <% %>. Scriptlets basically have
the same syntax as declarations, except that they do not include the exclamation point in the first character
sequence. Scriptlets are used to embed any Java code that you want to have run each time the JSP is loaded,
at request-processing time. At translation time, anything contained within a scriptlet is placed into a method
named _jspService within the translated JSP servlet, and that method is executed with each request on the
JSP page. Scriptlets are the most common place to use embedded Java in a JSP page. Since in this example
you want the current date to be displayed each time the page is loaded, the new Date class is instantiated
and assigned to the currDate variable within a scriptlet.

<% currDate = new Date(); %>

Later in the JSP page, the currDate field is displayed using an expression, which is enclosed using the
<%=and %> character sequences. Expressions are used to display content, and anything that is contained
within an expression is automatically converted to a string when a request is processed. After the string

conversion, it is displayed as output on the page.

The current date and time is: <%= currDate %>

Note If the code within an expression is unable to be converted into a String, an exception will occur.

While embedding Java code in a JSP page is possible to do, it is frowned upon within the Java
community since the Model-View-Controller (MVC) paradigm makes coding much cleaner. To learn more
about coding JSP applications without using scripting elements, see the next example, Recipe 2-3.

2-3. Separating Business Logic from View Code

Problem

You want to separate the business logic from the code that is used to create a view within your web
application.

Solution

Separate the business logic into a JavaBean class and use JSP tags to incorporate the logic into the view. In
the following example, a JavaBean is referenced from within a JSP page, and one of the JavaBean fields is
displayed on the page. Each time the page is refreshed, the field value is updated because the page calls the
underlying JavaBean field’s getter method, where the field is initialized.

64

CHAPTER 2 © JAVASERVER PAGES

The following JSP markup contains a reference to a JavaBean named RandomBean and displays a field
from the bean on the page:

<%--
Document : recipe02_03
Author : juneau

--%>

<%@page contentType="text/html" pageEncoding="UTF-8"%>
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Recipe 2-3: Separating Business Logic from View Code</title>
</head>
<body>
<jsp:useBean id="randomBean" scope="application" class="org.javaee8recipes.
chapter02.recipe02_03.RandomBean"/>
<h1>Display a Random Number</h1>

<p>
Your random number is ${randomBean.randomNumber}. Refresh page to see another!
</p>
</body>
</html>

The next code is that of the JavaBean class referenced in the JSP code, known as RandomBean:
package org.javaee8recipes.chapter02.recipe02 03;

import java.util.Random;

J**

* Recipe 2-3

* @author juneau
*/

public class RandomBean {
Random randomGenerator = new Random();
private int randomNumber = 0;

/**

* @return the randomNumber

*/

public int getRandomNumber() {
randomNumber = randomGenerator.nextInt();
return randomNumber;

65

CHAPTER 2 © JAVASERVER PAGES

The resulting output for the page resembles the following, although the random number will be
different every time the page is loaded:

Your random number is -1200578984. Refresh page to see another!

How It Works

Sometimes embedding Java code directly into a JSP page can be helpful, and it can satisfy the requirement.
However, in most cases, it is a good idea to separate any Java code from markup code that is used to create
the web view. Doing so makes maintenance easier, and it allows a page developer to focus on creating nice-
looking web pages rather than wading through Java code. In some organizations, a Java developer can then
write the server-side business logic code, and a web developer can focus on the view. In many organizations
today, the same person is performing both tasks, and using the MVC methodology can help separate the
logic and increase productivity.

In the early days of JSP, embedding Java directly into a JSP page was considered the best way to go, but
as time went on, the MVC paradigm caught on, and JSP has been updated to follow suit. As a best practice, it
is good to use JSP tags to separate Java code from page markup. In the example, the <jsp:useBean> element
is used to reference a server-side JavaBean class so that the public fields and methods from that class, as
well as private fields via public “getter” methods, can be incorporated into the JSP page. The jsp:useBean
element requires that you provide an ID and a scope, along with a class name or a beanName. In the example,
the id attribute is set to randomBean, and this id is used to reference the bean within the JSP page. The
scope attribute is set to application, which means that the bean can be used from any JSP page within the
application. Table 2-1 displays all the possible scopes and what they mean. The class attribute is set to the
fully qualified name of the Java class that will be referenced via the name that is set with the id attribute,
which in this case is randomBean.

Table 2-1. jsp:useBean Element Scopes

Scope Description

page (default) The bean can be used within the same JSP page that contains the jsp:useBean element.
request The bean can be used from any JSP page processing the same request.

session The bean can be used from any JSP page within the same session as the JSP page that

contains the jsp:useBean element that created the bean. The page that creates the
bean must have a page directive with session="true".

application The bean can be used from any JSP within the same application as the JSP page that
created it.

After the jsp:useBean element has been added to a page, JavaBean properties can be used in the JSP
page, and public methods can be called from the page. The example demonstrates how to display the value
of a JavaBean property using the ${ } notation. Any variable that contains a “getter” and a “setter” method
in the JavaBean can be accessed from a JSP page by referencing the class member field in between the
${ and } character sequences, better known as an Expression Language (EL) expression. To learn more
about EL expressions, see Recipe 2-4. The following excerpt from the example demonstrates how to display
the randomNumber field from the JavaBean:

Your random number is ${randomBean.randomNumber}. Refresh page to see another!

66

CHAPTER 2 © JAVASERVER PAGES

The key to separating business logic from view logic in the JSP technology is the jsp:useBean element.
This will allow you to use JavaBean classes from within the JSP page, without embedding the code directly
in the page. Separating business logic from view code can help make it easier to maintain code in the future
and make the code easier to follow.

2-4. Yielding or Setting Values

Problem

You want to display values from a JavaBean in a JSP page. Furthermore, you want to have the ability to set
values in a JSP page.

Solution

Expose the values from a JavaBean in a JSP page using EL expressions with the ${ bean.value } syntax.In
the following JSP code, a Java class by the name of EasyBean will be used to hold the value that is entered
into a text field by a user. The value will then be read from the bean and displayed on the page using EL
expressions.

The following code shows a JSP page that contains an input form and displays the value that is entered
into the text box:

<%--
Document : recipe02_04
Author : juneau

--%>

<%@page contentType="text/html" pageEncoding="UTF-8"%>
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Recipe 2-4: Yielding or Setting Values</title>
</head>
<body>
<jsp:useBean id="easyBean" scope="page" class="org.javaee8recipes.chaptero2.
recipe02_04.EasyBean"/>
<jsp:setProperty name="easyBean" property="*"/>
<form method="post">
Use the input text box below to set the value, and then hit submit.

Set the field value:
<input id="fieldValue" name="fieldValue" type="text" size="30"/>

The value contained within the field is currently:
<jsp:getProperty name="easyBean" property="fieldValue"/>

<input type="submit">
</form>
</body>
</html>

67

CHAPTER 2 © JAVASERVER PAGES

Next, the JavaBean class, which is used to hold the value that is used by the page, looks like the
following:

package org.javaee8recipes.chapter02.recipe02 04;

Vai

* Recipe 2-4: Yielding or Setting Values

* @author juneau

*/

public class EasyBean implements java.io.Serializable {
private String fieldValue;

public EasyBean(){
fieldValue = null;
}

/**

* @return the fieldValue

*/

public String getFieldValue() {
return fieldValue;

}

J**

* @param fieldValue the fieldvalue to set

*/

public void setFieldValue(String fieldvalue) {
this.fieldValue = fieldValue;

}

This simple example demonstrates how to enter a value, “set” it into the JavaBean variable, and then
display it on the page.

How It Works

Perhaps one of the most useful web constructs is the input form, which allows a user to enter information
into text boxes or other input constructs on the page and submit them to a server for processing. JSP makes
it easy to submit values from an HTML form, and it is equally easy to display data back onto a page. To do so,
a field is declared in a Java class and accessor methods (aka, getters and setters) are provided so that other
classes can save values to the field and obtain values that are currently stored in it. Sometimes Java classes
that contain fields with accessor methods are referred to as JavaBean classes. The classes can also contain
other methods that can be used to perform tasks, but it is a best practice to keep JavaBeans as simple as
possible. JavaBean classes should also implement java.io.Serializable so that they can be easily stored as
a byte stream and resurrected.

In the example for this recipe, a Java class named EasyBean contains a private field named fieldValue.
The accessor methods getFieldValue and setFieldValue can be used to obtain and store the value in
fieldValue, respectively. Those accessor methods are declared as public, and thus they can be used from
another Java class or JSP page. The JSP page uses the jsp:useBean element to obtain a reference to the
EasyBean class. The scope is set to page so that the class can be used only within the JSP page that contains

68

CHAPTER 2 © JAVASERVER PAGES

the jsp:useBean element. Table 2-1, which can be found in the previous recipe, lists the different scopes
available for use with the jsp:useBean element.

<jsp:useBean id="easyBean" scope="page" class="org.javaee8recipes.chapter02.recipe02_04.
EasyBean"/>

Next, an HTML form is defined in the JSP page with the POST method, and it contains an input field
named fieldValue, which allows a user to enter a string of text that will be submitted as a request parameter
when the form is submitted. Note that the form in the example does not have an action specified; this means
that the same URL will be used for form submission, and the same JSP will be used for form submission and
will be displayed again once the form is submitted. Since the JSP has a jsp:useBean element specified on
the page, all request parameters will be sent to that bean when the page is submitted. The key to ensuring
that the value entered into the fieldValue input text field is stored into the fieldValue variable within the
Java class is using the jsp:setProperty element within the form. The jsp:setProperty element allows one
or more properties to be set in a JavaBean class using the corresponding setter methods. In the example,
<Jjsp:useBean> is used to instantiate the EasyBean Java class, and <jsp:setProperty> is used to set the
value that is entered within the fieldValue input text box to the fieldValue variable within the EasyBean
class. The jsp:setProperty name attribute must equal the value of the jsp:useBean 1id attribute. The
jsp:setProperty property attribute can equal the name of the field within the Java class that you want to
setin the bean, or it can be a wildcard * character to submit all input fields to the bean. The value attribute
of jsp:setProperty can be used to specify a static value for the property. The following excerpt from the
example shows how the jsp:setProperty tag is used:

<jsp:setProperty name="easyBean" property="*"/>

Note The ordering of the JSP elements is very important. <jsp:useBean> must come before
<jsp:setProperty> because the jsp:useBean element is responsible for instantiating its corresponding Java
class. Since the JSP page is executed from the top of the page downward, the bean would be unavailable for
use to any elements prior to when jsp:useBean is specified.

When the user enters a value into the input field and submits the request, it is submitted as a request
parameter to the Java class that corresponds to the jsp:useBean element for that page. There are a
couple of different ways to display the data that has been populated in the JavaBean field. The example
demonstrates how to use the jsp:getProperty element to display the value of the fieldValue variable. The
<jsp:getProperty> element must specify a name attribute, which corresponds to the id of the Java class that
was specified within the jsp:useBean element. It must also specify a property attribute, which corresponds
to the name of the JavaBean property that you want to display. The following excerpt from the example
demonstrates the use of the jsp:getProperty tag:

<jsp:getProperty name="easyBean" property="fieldValue"/>
It is also possible to display the value of a JavaBean property using EL expressions, using the id of
specified in the jsp:useBean element, along with the property name. To try this, you can replace the

jsp:getProperty element with the following EL expression:

${easyBean.fieldValue}

69

CHAPTER 2 © JAVASERVER PAGES

The JSP framework makes the development of web applications using Java technology much easier than
using servlets. Input forms such as the one demonstrated in this example show how much more productive
JSP is compared to standard servlet coding. As with anything, both servlets and JSP technology have their
place in your toolbox. For creating simple data entry forms, JSP definitely takes the cake.

2-5. Invoking a Function in a Conditional Expression

Problem

You want to use a Java function to perform a conditional evaluation within your JSP. However, you do not
want to embed Java code into your JSP page.

Solution

Code the function in a JavaBean class and then register the bean with the JSP via the <jsp:useBean> tag. You
will then need to register the function within a tag library descriptor (TLD) so that it can be made usable on
the JSP page via a tag. Finally, set up a page directive for the TLD in which the function is registered, and use
the function tag within the page. In the example that follows, a JSP page will use a function to tell the user
whether a given Java type is a primitive type. The user will enter a string value into a text box, and that value
will be submitted to a JavaBean field. The contents of the field will then be compared against a list of Java
primitive types to determine whether it is a match. If the value entered into the field is a primitive, a message
will be displayed to the user.

The following code is the Java class that contains the implementation of the function, which is going to
be used from within the JSP. The bean also contains a field that will be used from the JSP page for setting and
getting the value that is entered by the user.

package org.javaee8recipes.chapter02.recipe02_05;

/**
* Recipe 2-5: Invoking a Function in a Conditional Expression
* @author juneau
*/
public class ConditionalClass implements java.io.Serializable {
private String typename = null;
public static String[] javaTypes = new String[8];

public ConditionalClass(){
javaTypes[0] = "byte";
javaTypes[1] = "short";
javaTypes[2] = "int";
javaTypes[3] = "long";
javaTypes[4] = "float";
javaTypes[5] = "double";
javaTypes[6] = "boolean";
javaTypes[7] = "char";

}

public static boolean isPrimitive(String value){
boolean returnValue = false;

for(int x=0; x<=javaTypes.length-1; x++){

70

CHAPTER 2 © JAVASERVER PAGES

if(javaTypes[x].equalsIgnoreCase(value)){
returnValue = true;
}

}

return returnValue;

}

/**

* @return the typename

*/

public String getTypename() {
return typename;

}

J**

* @param typename the typename to set

*/

public void setTypename(String typename) {
this.typename = typename;

}

The field typename will be used from the JSP page to set the value that is entered by the user and to
retrieve it for passing to the function named isPrimitive();, which is used to compare the given value to a
list of Java primitives. Next is a listing of the TLD that is used to register the function so that it can be used as
a tag within the JSP. For simplicity, the TLD file is named functions.tld.

<?xml version="1.0" encoding="UTF-8"?>
<taglib version="2.1" xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://
Www.w3.0rg/2001/XMLSchema-instance" xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-jsptaglibrary 2 1.xsd">
<tlib-version>1.0</tlib-version>
<short-name>fct</short-name>
<uri>functions</uri>
<function>
<name>isPrimitive</name>
<function-class>org.javaee8recipes.chaptero2.recipe02_05.ConditionalClass</function-
class>
<function-signature>boolean isPrimitive(java.lang.String)</function-signature>
</function>
</taglib>

Last is the JSP code that contains the page directive for using the TLD and the conditional call to the
function isPrimitive() via a tag:

<%--
Document : recipe02_05
Author : juneau

--%>

71

CHAPTER 2 © JAVASERVER PAGES

<%@page contentType="text/html" pageEncoding="UTF-8"%>
<!DOCTYPE html>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core"
prefix="c" %>
<%@ taglib uri="/WEB-INF/tlds/functions.tld" prefix="fct" %>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Recipe 2-5: Invoking a Function in an Expression</title>
</head>
<body>

<form method="get">
<p>Name one of the primitive Java types:
<input type="text" id="typename" name="typename" size="40"/>
</p>

<input type="submit">
</form>
<jsp:useBean id="conditionalBean" scope="page" class="org.javaee8recipes.chaptero2.
recipe02_05.ConditionalClass"/>
<jsp:setProperty name="conditionalBean" property="typename"/>
<c:if test="${fct:isPrimitive(conditionalBean.typename)}" >
${ conditionalBean.typename } is a primitive type.
</c:if>

<c:if test="${conditionalBean.typename ne null and !fct:isPrimitive(conditionalBean.
typename)}" >
${ conditionalBean.typename } is not a primitive type.
</c:if>
</body>
</html>

Following the strategy used in this solution, you can create a conditional test that is usable via a JSP tag
for your pages.

How It Works

You need to take a few different steps before a Java function can become accessible from a JSP page. One of
the most commonly overlooked conditions is that the function must be declared with a static modifier in
the Java class. In the example for this recipe, the function isPrimitive is declared as static, and it returns a
boolean value indicating whether the user types the name of a Java primitive type.

The next step toward making a function accessible via a JSP page is to register it with a TLD. In the
example, a TLD named functions.tld is created. If there is already a custom TLD in your application, then
you could register the function with it rather than creating an additional one if you want. The TLD in this
example has a short-name attribute of fct, which will be used from within JSP tags. To actually register the
function, you must create a function element within the TLD, provide a function name, indicate the class
that the function resides within, and, finally, specify the function signature.

72

CHAPTER 2 © JAVASERVER PAGES

<function>
<name>isPrimitive</name>
<function-class>org.javaee8recipes.chapter02.recipe02_05.ConditionalClass</function-class>
<function-signature>boolean isPrimitive(java.lang.String)</function-signature>
</function>

The function is now ready for use within the JSP. To make the function accessible via the JSP, register the
TLD that contains the function element by including a taglib directive specifying the uri and prefix for the
TLD. The uri is the path to the TLD, and the prefix should match the name given in the short-name element
of the TLD. The following excerpt from the JSP in this example shows the taglib directive:

<%@ taglib uri="/WEB-INF/tlds/functions.tld" prefix="fct" %>

The function will now be accessible via an EL expression within the JSP by specifying the taglib prefix
along with the name of the function as it is registered in the TLD. The EL expression in the example calls the
function, passing the typename parameter. The isPrimitive function is used to determine whether the text
contained within the typename bean field is equal to one of the Java primitive types.

<c:if test="${fct:isPrimitive(conditionalBean.typename)}" >

The solution in this recipe also uses the Java Standard Tag Library (JSTL) core. Depending on the
server environment being used, this may be a separate download. The JSTL provides an extension to the
standard set of tags provided with the JSP API. For more information regarding JSTL, refer to the online
documentation, which can be found at www.oracle.com/technetwork/java/index-jsp-135995.html.

The JSTL <c:if> tag can be used to test conditions, executing the markup between its opening and
closing tags if the condition test returns a true value. Not surprisingly, the <c:if> tag includes a test
attribute that specifies an EL expression that indicates the test that needs to be performed. In the example,
the isPrimitive function is called within the EL expression, passing the bean value. If the test returns a true,
then a message is printed indicating that the given value is equal to a Java primitive type. Another <c:if> test
follows the first in the example, and this time it tests to ensure that the property value is not equal to null
and that it is not a Java primitive type. Expression Language is used to determine whether the property value
is equal to null via the ne expression. The and expression ties the first and second conditional expressions
together within the EL expression, meaning that both of the expressions must evaluate to a true value in
order for the condition to be met. If both conditions are met, then the value specified by the user is not a Java
primitive type, and a corresponding message is printed.

<c:if test="${conditionalBean.typename ne null and !fct:isPrimitive(conditionalBean.
typename)}" >

${ conditionalBean.typename } is not a primitive type.
</c:if>

It takes only a few easy steps to create a conditional function for use within JSPs. First, in the JavaBean
class, you must create a public static function, which returns a boolean value. Second, create a TLD, which
will make the function available via a JSP tag. Lastly, use the custom tag from within the JSP page along with
JSTL conditional test tags to display the content conditionally.

73

http://www.oracle.com/technetwork/java/index-jsp-135995.html

CHAPTER 2 © JAVASERVER PAGES

2-6. Creating a JSP Document

Problem

Rather than using standard HTML format, you want to ensure that your JSP code follows the XML standard
and contains only valid HTML and JSP tags.

Solution

Create a JSP document rather than a standard JSP. A JSP document is an XML-based representation of a
standard JSP document that conforms to the XML standard. The following JSP document contains the same
code that is used in the JSP code for Recipe 2-5, but it uses the JSP document format instead. As you can see,
not much is different because well-formed tags were already used to create the standard JSP document. The
page is also saved with an extension of jspx rather than jsp.

<!--
Document : recipe02_06
Author : juneau
-->
<html xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0"
xmlns:c="http://java.sun.com/jsp/jstl/core"
xmlns:fct="/WEB-INF/tlds/functions.tld">

<jsp:directive.page contentType="text/html" pageEncoding="UTF-8"/>

<body>
<form method="get">
<p>Name one of the primitive Java types:
<input type="text" id="typename" name="typename" size="40"/>
</p>

<input type="submit"/>
</form>
<jsp:useBean id="conditionalBean" scope="request" class="org.javaee8recipes.
chapter02.recipe02_05.ConditionalClass"/>
<jsp:setProperty name="conditionalBean" property="typename"
value="${param.typename}" />
<c:if test="${fct:isPrimitive(conditionalBean.typename)}" >
${ conditionalBean.typename } is a primitive type.
</c:if>

<c:if test="${fn.length(conditionalBean.typename) > 0 and !fct:isPrimitive(condition
alBean.typename)}" >

${ conditionalBean.typename } is not a primitive type.
</c:if>

</body>
</html>

This JSP document will yield the same output as the one in Recipe 2-5. However, a well-formed
document will be enforced, and this will exclude the use of scripting elements within the page.

74

How It Works

CHAPTER 2 © JAVASERVER PAGES

As foreshadowed in Recipe 2-3, separating business logic from markup code can be important for many
reasons. Standard JSP pages can adhere to the MVC paradigm, but they are not forced into doing so.
Sometimes it makes sense to enforce the separation of business logic, by strictly adhering to a well-formed
XML document using only JSP tags to work with server-side Java classes. Well-formed means that there

should be only one root element, and each starting tag must have a corresponding ending tag. Creating a

JSP document is one answer because such documents enforce well-formed XML and do not allow scripting
elements to be used within the JSP page. It is still possible to display the value of scripting expressions in the
body of a JSP document using the <jsp:expression/> tag or value expressions, as demonstrated in Recipe 2-8.
Several JSP tags can be used to communicate with Java classes, perform JSP-specific functionality,

and make markup easy to follow. As such, modern JSP-based applications should use well-formed JSP
documents utilizing such JSP tags, rather than embedding scripting elements throughout markup. Table 2-2
describes what the different JSP tags do.

Table 2-2. JSP Tags

Tag

Description

<jsp:attribute>

<jsp:body>

<jsp:declaration>

<jsp:directive>

<jsp:doBody>

<jsp:element>

<jsp:expression>

<jsp:forward>

<jsp:getProperty>

<jsp:include>

<jsp:invoke>

<Jjsp:output>

<jsp:plugin>

<jsp:root>

<jsp:scriptlet>

<jsp:setProperty>

<Jjsp:text>

<jsp:useBean>

Defines attributes for a JSP page.

Defines an element body.

Defines page declarations.

Defines page includes and page directives.

Executes the body of the JSP tag that is used by the calling JSP page to invoke the
tag.

Generates an XML element dynamically.

Inserts the value of a scripting language expression, converted into a string.
Forwards a request to another page. The new page can be HTML, JSP, or servlet.
Obtains the value of a bean property and places it in the page.

Includes another JSP or web resource in the page.

Invokes a specified JSP fragment.

Specifies the document type declaration.

Executes an applet or bean with the specified plug-in.

Defines standard elements and tag library namespaces.

Embeds code fragments into a page if necessary.

Sets specified value(s) into a bean property.

Encloses template data.

References and instantiates (if needed) a JavaBean class using a name and
providing a scope.

Creating a well-formed JSP can lead to easier development, ease of maintenance, and better overall
design. Since it is so important, the remaining recipes in this chapter use the JSP document format.

75

CHAPTER 2 © JAVASERVER PAGES

2-7. Embedding Expressions in EL

Problem

You want to use some conditional expressions and/or arithmetic within your JSP without embedding Java
code using scripting elements.

Solution

Use EL expressions within JSP tags to perform conditional and/or arithmetic expressions. This solution
will look at two examples of EL expressions. The first example demonstrates how to perform conditional
logic using EL expressions. Note that the JSTL tag library is also used in this case, to conditionally display a
message on the page if the expression results to true.

<!--
Document : recipe02_0O7a
Author : juneau
-->
<html xmlns:jsp="http://java.sun.com/ISP/Page"
xmlns:c="http://java.sun.com/jsp/jstl/core"
version="2.0">

<jsp:directive.page contentType="text/html" pageEncoding="UTF-8"/>
<head>
<title>Recipe 2-7: Embedding Expressions in EL</title>
</head>
<body>
<h1>Conditional Expressions</h1>
<p>
The following portion of the page will only display conditional
expressions which result in a true value.
</p>
<c:if test="¢${1 + 1 == 2}">
The conditional expression (1 + 1 == 2) results in TRUE.

</c:if>

<c:if test="${'x' == "y'}">
The conditional expression (x == y) results in TRUE.

</c:if>

<c:if test="${(100/10) gt 5}">
The conditional expression ((100/10) > 5) results in TRUE.

</c:if>

<c:if test="${20 mod 3 eq 2}">

The conditional expression (20 mod 3 eq 2) results in TRUE.

76

CHAPTER 2 © JAVASERVER PAGES

</c:if>
</body>

</html>

This JSP page will result in the following output being displayed:

The conditional expression (1 + 1 == 2) results in TRUE.
The conditional expression ((100/10) > 5) results in TRUE.
The conditional expression (20 mod 3 eq 2) results in TRUE.

Arithmetic expressions can also be evaluated using EL. The following JSP code demonstrates some

examples of using arithmetic within EL:

Document : recipe02_07b
Author : juneau

<html xmlns:jsp="http://java.sun.com/JSP/Page"

xmlns:c="http://java.sun.com/jsp/jstl/core"
version="2.0">

<jsp:directive.page contentType="text/html" pageEncoding="UTF-8"/>

<head>
<title>Recipe 2-7: Embedding Expressions in EL</title>

</head>

<body>
<jsp:useBean id="expBean" class="org.javaee8recipes.chapter02.recipe02_07.Expressions"/>
<h1>Arithmetic Expressions</h1>

<p>
The following expressions demonstrate how to perform arithmetic using EL.
</p>
10 - 4 = ${10 - 4}

85 / 15 = ${85 / 15}

847 divided by 6 = ${847 div 6}

${expBean.num1} * ${expBean.num2} = ${expBean.numl * expBean.num2}

</body>

</html>

The preceding JSP will result in the following output being displayed:

10 - 4 =6

85 / 15 = 5.666666666666667

847 divided by 6 = 141.16666666666666
5 * 634.324 = 3171.62

7

CHAPTER 2 © JAVASERVER PAGES

How It Works

The JSP technology makes it easy to work with expressions. Conditional page rendering can be performed
using a combination of EL value expressions, which are enclosed within the ${ } character sequences and
JSTL tags. Arithmetic expressions can also be performed using EL expressions. To make things easier, the
Expression Language contains keywords or characters that can be used to help form expressions. The example
for this recipe contains various expressions and conditional page rendering using the JSTL <c:if> tag.

In the first JSP page displayed in the example, there are some examples of conditional page rendering.
To use the <c:if> tag to perform the conditional tests, you must be sure to import the JSTL tag library
with the JSP page. To do so, add an import for the JSTL tag library and assign it to a character or string of
characters. In the following excerpt from the recipe, the JSTL library is assigned to the character c:

<html xmlns:jsp="http://java.sun.com/ISP/Page"
xmlns:c="http://java.sun.com/jsp/jstl/core"
version="2.0">

An EL value expression is contained within the ${ and } character sequences. Anything within these
characters will be treated as EL, and as such, the syntax must be correct, or the JSP page will not be able
to compile into a servlet, and it will throw an error. All expressions using the ${ } syntax are evaluated
immediately, and they are read-only expressions. That is, no expressions using this syntax can be used to
set values into a JavaBean property. The JSP engine first evaluates the expression, and then it converts into a
String and lastly returns the value to the tag handler. Four types of objects can be referenced within a value
expression. Those are JavaBean components, collections, enumerated types, and implicit objects. If using a
JavaBean component, the JavaBean must be registered with the JSP page using the jsp:useBean element (see
Recipe 2-3 for details). Collections or enumerated types can also be referenced from a JavaBean that has been
registered with the page. Implicit objects are those that allow access to page context, scoped variables, and
other such objects. Table 2-3 lists different implicit objects that can be referenced from within EL expressions.

Table 2-3. Implicit JSP Objects

Object Type Description

pageContext Context Provides access to the context of the page and various subobjects
servletContext Page context Context for JSP page servlet and web components
session Page context Session object for the client

request Page context Request that invoked the execution of the page
response Page context Response that is returned by the JSP

param N/A Responsible for mapping parameter names to values
paramValues N/A Maps request parameter to an array of values

header N/A Responsible for mapping a header name to a value
headerValues N/A Maps header name to an array of values

cookie N/A Maps a cookie name to a single cookie

initParam N/A Maps a context initialization parameter to a value
pageScope Scope Maps page scope variables

requestScope Scope Maps request scope variables

sessionScope Scope Maps session scope variables

applicationScope Scope Maps application scope variables

78

CHAPTER 2 © JAVASERVER PAGES

The following are some examples of expressions that use JavaBean components, collections,
enumerated types, and implicit objects:

// Displays the value of a variable named myVar within a JavaBean referenced as elTester
${ elTester.myVar }

// Does the same thing as the line above

${ elTester["myvar"] }

// Evaluates an Enumerated Type in which myEnum is an instance of MyEnum
${ myEnum == "myValue" }

// Reference a getter method of the Enum named getTestVal()

${ myEnum.testval}

// References a collection named myCollection within the JavaBean referenced as elTester
${ elTester.myCollection }

// Obtain the parameter named "testParam"

${ param.testParam } // Same as: request.getParameter("testParam")

// Obtain session attribute named "testAttr"

${ sessionScope.testAttr } // Same as: session.getAttribute("testAttr")

In the recipe example, the <c:if> tag is used to test a series of value expressions and conditionally
display page content. The test attribute of <c:if> is used to register a test condition, and if the test condition
returns a true result, then the content contained between the <c:if> starting and ending tags is displayed.
The following excerpt from the example demonstrates how a test is performed:

<c:if test="${'x' == "y'}">
The conditional expression (x == y) results in TRUE.

</c:if>

EL expressions can contain a series of reserved words that can be used to help evaluate the expression.
For instance, the following expression utilizes the gt reserved word to return a value indicating whether the
value returned from the calculation of 100/10 is greater than 5:

<c:if test="${(100/10) gt 5}">
The conditional expression ((100/10) > 5) results in TRUE.

</c:if>

79

CHAPTER 2 © JAVASERVER PAGES
Table 2-4 lists all the JSP EL expression reserved words and their meanings.

Table 2-4. EL Expression Reserved Words

Reserved Word Description

and Combines expressions and returns true if all of them evaluate to true
or Combines expressions and returns true if one of them evaluates to true
not Negates an expression

eq Equal

ne Not equal

1t Less than

gt Greater than

le Less than or equal

ge Greater than or equal

true True value

false False value

null Null value

instanceof Used to test whether an object is an instance of another object

empty Determines whether a list or collection is empty

div Divided by

mod Modulus

Arithmetic expressions are demonstrated by the second example in this recipe. The following
arithmetic operators can be utilized within expressions:

¢ +(addition), - (binary and unary), * (multiplication), / and div (division), %, and mod
(modulus)

e and, &% or, ||, not, !
° ==, 1=,¢,>,4<=,>=
e X ? Y : Z(ternary conditional)

Entire chapters of books have been written on the use of EL expressions within JSPs. This recipe only
touches on the possibilities of using value expressions. The best way to get used to expressions is to create a
test JSP page and experiment with the different options that are available.

80

CHAPTER 2 © JAVASERVER PAGES

2-8. Accessing Parameters in Multiple Pages

Problem

You want to access a parameter from within multiple pages of your web application.

Solution

Create an input form to submit parameters to the request object, and then utilize the request object to
retrieve the values in another page. In the example that follows, a JSP page that contains an input form is
used to pass values to another JSP page by setting the HTML form action attribute to the value of the JSP
page that will utilize the parameters. In the case of this example, the receiving JSP page merely displays the
parameter values, but other work could be performed as well.

The following JSP code demonstrates the use of an input form to save parameters into the request
object and pass them to a page named recipe02_08b.jspx:

<!--
Document : recipe02_08a
Author : juneau
-->
<html xmlns:jsp="http://java.sun.com/JSP/Page"
xmlns:c="http://java.sun.com/jsp/jstl/core"
version="2.0">

<jsp:directive.page contentType="text/html" pageEncoding="UTF-8"/>
<head>

<title>Recipe 2-8: Accessing Parameters in Multiple Pages </title>
</head>
<body>

<h1>Passing Parameters</h1>
<p>
The following parameters will be passed to the next JSP.
</p>
<form method="get" action="recipe02_08b.jspx">
Param 1: <input id="parami" name="parami" type="text" value="1"/>

Param 2: <input id="param2" name="param2" type="text" value="2 + 0"/>

Param 3: <input id="param3" name="param3" type="text" value="three"/>

<input type="submit" value="Go to next page"/>
</form>
</body>

</html>

81

CHAPTER 2 © JAVASERVER PAGES

The next JSP code receives the parameters and displays their values:

<l--
Document : recipe02 08b
Author : juneau
-->
<html xmlns:jsp="http://java.sun.com/ISP/Page"
xmlns:c="http://java.sun.com/jsp/jstl/core"
version="2.0">

<jsp:directive.page contentType="text/html" pageEncoding="UTF-8"/>
<head>

<title>Recipe 2-8: Accessing Parameters in Multiple Pages </title>
</head>
<body>

<h1>Passing Parameters</h1>
<p>
The following parameters will were passed from the original JSP.
</p>
<form method="post" action="recipe02_08a.jspx">
Param 1: <jsp:expression>request.getParameter("parami") </jsp:expression>

Param 2: <jsp:expression> request.getParameter("param2") </jsp:expression>

Param 3: <jsp:expression> request.getParameter("param3") </jsp:expression>

OR using value expressions

Param 1: ${ param.parami }

Param 2: ${ param.param2 }

Param 3: ${ param.param3 }

<input type="submit" value="Back to Page 1"/>
</form>
</body>

</html>

Asyou can see, a couple of variations can be used to display the parameter values. Both of the variations
will display the same result.

How It Works

Request parameters are one of the most useful features of web applications. When a user enters some data
into a web form and submits the form, the request contains the parameters that were entered into the

form. Parameters can also be statically embedded in a web page or concatenated onto a URL and sent to a
receiving servlet or JSP page. The data contained in request parameters can then be inserted into a database,

82

CHAPTER 2 © JAVASERVER PAGES

redisplayed on another JSP page, used to perform a calculation, or a myriad of other possibilities. The JSP
technology provides an easy mechanism for using request parameters in other JSP pages, and the example
in this recipe demonstrates how to do just that.

Note Request parameters are always translated into String values.

Note that in the example, the first JSP page uses a simple HTML form to obtain values from a user and
submit them to the request. Another JSP page named recipe02_08b.jspx is set as the form action attribute,
so when the form is submitted, it will send the request to recipe02_08b.jspx. The input fields on the first
JSP page specify both an id attribute and a name attribute, although only the name attribute is required. The
name that is given to the input fields is the name that will be used to reference the value entered into it as a
request parameter.

Note Itis a good programming practice to always include an id attribute. The ID is useful for performing
work with the DOM and for referencing elements via a scripting language such as JavaScript.

The receiving action, recipe02_08b.jspx in this example, can make a call to response.
getParameter(), passing the name of a parameter (input field name) to obtain the value that was entered
into its corresponding text field. To adhere to JSP document standards, the scriptlet containing the call to
response.getParameter () must be enclosed in <jsp:expression> tags. The following excerpt demonstrates
how this is done:

Param 1: <jsp:expression>request.getParameter("parami") </jsp:expression>

Optionally, an EL expression can contain a reference to the implicit param object and obtain the request
parameter in the same way. When the expression ${param.param1} is called, it is evaluated by the JSP
engine, and it is translated into response.getParameter("param1"). The following excerpt demonstrates
this use of EL expressions:

Param 1: ${ param.parami }

Either technique will perform the same task; the named request parameter will be obtained and
displayed on the page.

2-9. Creating a Custom JSP Tag

Problem

You want to create a JSP tag that provides custom functionality for your application.

Solution

Create a custom JSP tag using JSP 2.0 simple tag support. Suppose you want to create a custom tag that will
insert a signature into the JSP where the tag is placed. The custom tag will print a default signature, but it will
also accept an authorName attribute, which will include a given author’s name to the signature if provided. To

83

CHAPTER 2 © JAVASERVER PAGES

get started, you'll need to define a Java class that extends the SimpleTagSupport class. This class will provide
the implementation for your tag. The following code is the implementation for a class named Signature,
which provides the implementation for the custom tag.

Note To compile the following code, you need to add javax.servlet.jsp-api.jar to classpath:
cd recipe02 09

javac -cp ...\glassfish\modules\javax.servlet.jsp-api.jar *.java

package org.javaee8recipes.chapter02.recipe02_09;

import javax.servlet.jsp.JspException;

import javax.servlet.jsp.JspWriter;

import javax.servlet.jsp.PageContext;

import javax.servlet.jsp.tagext.SimpleTagSupport;

/¥
* Recipe 2-9: Creating a Custom ISP Tag

* @author juneau

*/

public class Signature extends SimpleTagSupport {

private String authorName = null;

/**

* @param authorName the authorName to set

*/

public void setAuthorName(String authorName) {
this.authorName = authorName;

}

@0verride

public void doTag() throws JspException {
PageContext pageContext = (PageContext) getJspContext();
JspWriter out = pageContext.getOut();

try {
if(authorName != null){
out.println("Written by
out.println("
");

+ authorName);
out.println("Published by Apress");

} catch (Exception e) {
System.out.println(e);
}

84

CHAPTER 2 © JAVASERVER PAGES

Next, a TLD needs to be created to map the Signature class tag implementation to a tag. The TLD that
includes the custom tag mapping is listed here:

<?xml version="1.0" encoding="UTF-8"?>
<taglib version="2.1" xmlns="http://java.sun.com/xml/ns/javaee” xmlns:xsi="http://www.
w3.0rg/2001/XMLSchema-instance"” xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-jsptaglibrary 2 1.xsd">
<tlib-version>1.0</tlib-version>
<short-name>cust</short-name>
<uri>custom</uri>
<tag>
<name>signature</name>
<tag-class>org.javaee8recipes.chapter02.recipe02_09.Signature</tag-class>
<body-content>empty</body-content>
<attribute>
<name>authorName</name>
<rtexprvalue>true</rtexprvalue>
<required>false</required>
</attribute>
</tag>
</taglib>

Once the class implementation and the TLD are in place, the tag can be used from within a JSP page.
The following JSP code is an example of using the custom tag on a page:

<!--
Document : recipe02_09
Author : juneau
-->
<html xmlns:jsp="http://java.sun.com/JSP/Page"
xmlns:c="http://java.sun.com/jsp/jstl/core"
xmlns:cust="custom"

version="2.0">

<jsp:directive.page contentType="text/html" pageEncoding="UTF-8"/>
<head>
<title>Recipe 2-9: Creating a Custom ISP Tag</title>
</head>
<body>

<h1>Custom JSP Tag</h1>

<p>
The custom JSP tag is used as the footer for this page.

</p>

<cust:signature authorName="Josh Juneau"/>

</body>
</html>

The custom tag output will now be displayed in place of the cust:signature element on the JSP page.

85

CHAPTER 2 © JAVASERVER PAGES

How It Works

One of the most useful new features of JSP 2.0 was the inclusion of the SimpleTagSupport class, which
provides an easy way for developers to create custom tags. Prior to the 2.0 release, custom tag creation took
a good deal of more work, because the developer had to provide much more code to implement the tag
within the tag’s implementation class. The SimpleTagSupport class takes care of much implementation

for the developer so that the only thing left to do is implement the doTag method in order to provide an
implementation for the custom tag.

In the example for this recipe, a custom tag is created that will print a signature on the JSP page in the
position where the tag is located. To create a custom tag implementation, create a Java class that will extend
the SimpleTagSupport class, and provide an implementation for the doTag method. The example class also
contains a field named authorName, which will be mapped within the TLD as an attribute for the custom tag.
In the doTag method, a handle on the JSP page context is obtained by calling the getJspContext method.
getIspContext is a custom method that is implemented for you in SimpleTagSupport and makes it easy to
get a hold of the JSP page context. Next, to provide the ability to write to the JSP output, a handle is obtained
on the JspWriter by calling PageContext’s getOut method.

PageContext pageContext = (PageContext) getJspContext();
JspWriter out = pageContext.getOut();

The next lines within doTag provide the implementation for writing to the JSP output via a series of
calls to out.println. Any content that is passed to out.println will be displayed on the page. Note that in
the example, the authorName field is checked to see whether it contains a null value. If it does not contain a
null value, then it is displayed on the page; otherwise, it is omitted. Therefore, if the tag within the JSP page
contains a value for the authorName attribute, then it will be printed on the page. The out.println codeis
contained within a try-catch block in case any exceptions occur.

Note To allow your tag to accept scriptlets, you will need to use the classic tag handlers. The classic
tag handlers existed before the JSP 2.0 era and can still be used today alongside the simple tag handlers.
The simple tag handlers revolve around the doTag() method, whereas the classic tag handlers deal with a
doStartTag() method and a doEndTag() method, as well as others. Since the simple tag handlers can be used
alongside the classic tag handlers, it is possible to use some of the more complex classic tag methods, while
utilizing simple tag methods in the same application. This eases the transition from the classic tag handlers to
the simple tag handlers. For more information regarding the differences between the two APIs, see some online
documentation by searching for the keywords Simple vs. Classic Tag Handlers.

That’s it; the implementation for the tag is complete. To map the implementation class to the Document
Object Model (DOM) via a tag name, a TLD must contain a mapping to the class. In the example, a TLD is
created named custom.tld, and it contains the mapping for the class. The short-name element specifies the
name that must be used within the JSP page to reference the tag. The uri element specifies the name of the
TLD, and it is used from within the JSP page to reference the TLD file itself. The meat of the TLD is contained
within the tag element. The name element is used to specify the name for the tag, and it will be used within
aJSP page in combination with the short-name element to provide the complete tag name. The tag-class
element provides the name of the class that implements the tag, and body-content specifies a value to
indicate whether the body content for the JSP page will be made available for the tag implementation class.
It is set to empty for this example. To specify an attribute for the tag, the attribute element must be added to
the TLD, including the name, rtexprvalue, and required elements. The name element of attribute specifies

86

CHAPTER 2 © JAVASERVER PAGES

the name of the attribute, rtexprvalue indicates whether the attribute can contain an EL expression, and
required indicates whether the attribute is required.

To use the tag in a JSP page, the custom.t1d TLD must be mapped to the page within the <html>
element in a JSP document or a taglib directive within a standard JSP. The following lines show the
difference between these two:

<!-JSP Document syntax -->

<html

xmlns:cust="custom"

. . .(more taglib directives) . . .>

<!-JSP syntax -->
<k@taglib prefix="cust" uri="custom" %>

To use the tag within the page, simply specify the TLD short-name along with the mapping name for the
tag implementation and any attributes you want to provide.

<cust:signature authorName="Josh Juneau"/>

Creating custom tags within JSP is easier than it was in the past. Custom tags provide developers with
the ability to define custom actions and/or content that can be made accessible from within a JSP page via
a tag rather than scriptlets. Custom tags help developers follow the MVC architecture, separating code from
business logic.

2-10. Including Other JSPs into a Page

Problem

Rather than coding the same header or footer into each JSP, you want to place the content for those page
sections into a separate JSP page and then pull them into JSP pages by reference.

Solution

Use the <jsp:include> tag to embed other static or dynamic pages in your JSP page. The following example
demonstrates the inclusion of two JSP pages within another. One of the JSP pages is used to formulate the
header of the page, and another is used for the footer. The following page demonstrates the main JSP page,
which includes two others using the <jsp:include> tag. The JSPX files named recipe02_10-header.jspx
and recipe02_10-footer.jspx are included in the body of the main JSP page in order to provide the header
and footer sections of the page.

<html xmlns:jsp="http://java.sun.com/ISP/Page"
xmlns:c="http://java.sun.com/jsp/jstl/core"
version="2.0">

<jsp:directive.page contentType="text/html" pageEncoding="UTF-8"/>
<head>

<title>Recipe 2-10: Including Other JSPs into a Page</title>
</head>

87

CHAPTER 2 © JAVASERVER PAGES

<body>
<jsp:include page="recipe02_10-header.jspx" />
<h1>This is the body of the main JSP.</h1>

¥ Both the header and footer for this page were created as separate JSPs.
zgz;:include page="recipe02_10-footer.jspx"/>
</body>
</html>

Next is the JSP code that comprises the page header. It’s nothing fancy but is a separate JSP page
nonetheless.

<html xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0">
<jsp:directive.page contentType="text/html" pageEncoding="UTF-8"/>

<p>This is the page header</p>
</html>

The following JSP code makes up the page footer:

<html xmlns:jsp="http://java.sun.com/ISP/Page" version="2.0">
<jsp:directive.page contentType="text/html" pageEncoding="UTF-8"/>
<p>This is the page footer</p>

</html>

In the end, these three pages create a single page that contains a header, a body, and a footer.

How It Works

Including other JSP pages helps increase developer productivity and reduces maintenance time. Using this
technique, a developer can extract any JSP features that appear in multiple pages and place them into a
separate JSP page. Doing so will allow a single point of maintenance when one of these features needs to be
updated.

To include another page within a JSP page, use the <jsp:include> tag. The <jsp:include> tag allows
embedding a static file or another web component. The tag includes a page attribute, which is used to specify
the relative URL or an expression that results in another file or web component to include in the page.

Note The tag also has an optional flush attribute, which can be set to true or false to indicate whether
the output buffer should be flushed prior to the page inclusion. The default value for the flush attribute is
false.

88

CHAPTER 2 © JAVASERVER PAGES

Optionally, <jsp:param> clauses can be placed between the opening and closing <jsp:include> tags
to pass one or more name-value pairs to the included resource if the resource is dynamic. An example of
performing this technique would resemble something like the following lines of code. In the following lines,
a parameter with a name of bookAuthor and a value of Juneau is passed to the header JSP page.

<jsp:include page="header.jspx">
<jsp:param name="bookAuthor" value="Juneau"/>
</jsp:include>

The ability to include other content within a JSP page provides a means to encapsulate resources and
static content. This allows developers to create content once and include it in many pages.

2-11. Creating an Input Form for a Database Record

Problem

You want to create a JSP page that will be used to input information that will be inserted as a database
record.

Solution

Create an input form and use a Java servlet action method to insert the values into the database. This
solution requires a JSP document and a Java servlet in order to complete the database input form. In the
following example, an input form is created within a JSP document to populate records within a database
table named RECIPES. When the user enters the information into the text fields on the form and clicks the
Submit button, a servlet is called that performs the database insert transaction.

The following code is the JSP document that is used to create the input form for the database
application:

<l--
Document : recipe02 11
Author : juneau
-->
<html xmlns:jsp="http://java.sun.com/ISP/Page"
xmlns:c="http://java.sun.com/jsp/jstl/core"
version="2.0">

<jsp:directive.page contentType="text/html" pageEncoding="UTF-8"/>
<head>
<title>Recipe 2-11: Creating an Input Form for a Database Record </title>
</head>
<body>
<h1>Recipe Input Form</hi1>
<p>
Please insert recipe details using the text fields below.
</p>
${ recipeBean.message }
<form method="POST" action="/Javaee8recipes/RecipeServlet">
Recipe Number: <input id="recipeNumber" name="recipeNumber" size="30"/>

89

CHAPTER 2 © JAVASERVER PAGES

Recipe Name: <input id="name" name="name" size="30"/>

Recipe Description: <input id="description" name="description" size="30"/>

Recipe Text: <input id="text" name="text" size="30"/>

<input type="submit"/>

</form>

</body>
</html>

Next is the code for a servlet named RecipeServlet. It is responsible for reading the request parameters
from the JSP document input form and inserting the fields into the database.

package org.javaee8recipes.chapter02.recipe02_11;

import java.
import java.
import java.
import java.
import java.

io.IOException;
io.PrintWriter;
sql.Connection;
sql.PreparedStatement;
sql.SQLException;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

/X%

* Recipe 2-

11: Creating an Input Form for a Database Record

* @author juneau

*/

@hWebServlet(name = "RecipeServlet", urlPatterns = {"/RecipeServlet"})
public class RecipeServlet extends HttpServlet {

/**

* Processes requests for both HTTP
* <code>GET</code> and
* <code>P0ST</code> methods.

*

* @param request servlet request

* @param response servlet response

* @throws ServletException if a servlet-specific error occurs
* @throws IOException if an I/0 error occurs

*/

protected void processRequest(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();

int

result = -1;

try {

90

CHAPTER 2 © JAVASERVER PAGES

/*
* TODO Perform validation on the request parameters here
*/
result = insertRow (request.getParameter("recipeNumber"),
request.getParameter("name"),
request.getParameter("description"),
request.getParameter("text"));
out.println("<html>");
out.println("<head>");
out.println("<title>Servlet RecipeServlet</title>");
out.println("</head>");
out.println("<body>");
out.println("<hi>Servlet RecipeServlet at " + request.getContextPath() + "</h1>");
out.println("

");

if(result > 0){
out.println("Record successfully inserted!");
out.println("

<a href="'/Javaee8recipes/chaptero2/recipe02_11.
jspx'>Insert another record");

} else {
out.println("Record NOT inserted!");
out.println("

<a href='/Javaee8recipes/chaptero2/recipe02_11.
jspx'>Try Again");

}

out.println("</body>");
out.println("</html>");
} finally {
out.close();
}

}

public int insertRow(String recipeNumber,
String name,
String description,
String text) {

String sql = "INSERT INTO RECIPES VALUES(" +
"RECIPES_SEQ.NEXTVAL,?,?,?,2)";
PreparedStatement stmt = null;
int result = -1;
try {
CreateConnection createConn = new CreateConnection();
Connection conn = createConn.getConnection();
stmt = (PreparedStatement) conn.prepareStatement(sql);
stmt.setString(1, recipeNumber);
stmt.setString(2, name);
stmt.setString(3, description);
stmt.setString(4, text);
// Returns row-count or 0 if not successful

91

CHAPTER 2 © JAVASERVER PAGES

result = stmt.executeUpdate();
if (result > 0){
System.out.println("-- Record created --");
} else {
System.out.println("!! Record NOT Created !!");
}

} catch (SQLException e) {
e.printStackTrace();
} finally {
if (stmt != null) {
try {
stmt.close();
} catch (SQLException ex) {
ex.printStackTrace();

}
}
}
return result;
}
@0verride

protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
processRequest(request, response);

}

@0verride
protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
processRequest(request, response);

If the request is successful, the record will be inserted into the database, and the user will be able
to click a link to add another record. Of course, in a real-life application, you would want to code some
validation using JavaScript either within the input form or within the server-side Java code to help ensure
database integrity.

How It Works

A fundamental task to almost every enterprise application is the use of a database input form. Database
input forms make it easy for end-users to populate database tables with data. When using JSP technology
along with servlets, this operation can become fairly simple. As you have seen in the example to this recipe,
writing a JSP input form is straightforward and can be coded using basic HTML. The key is to set up a Java
servlet to receive a submitted request and process the records using the servlet. This provides an easy
mechanism for separating web content from the application logic.

In the example, a JSP document named recipe02_11.jspx contains a standard HTML form with a
method of POST and an action of /Javaee8recipes/RecipeServlet. The input form contains four fields,
which map to database columns into which the data will eventually be inserted. The input tags contain the

92

CHAPTER 2 © JAVASERVER PAGES

name of four corresponding fields (recipeNumber, name, description, and text), which will be passed to the
form action when submitted. As you can see, the only reference to the Java code is the name of the servlet
that is contained within the form action attribute.

The Java servlet named RecipeServlet is responsible for obtaining the request parameters that were
submitted via the JSP document, validating them accordingly (not shown in the example), and inserting
them into the database. When the page is submitted, RecipeServlet is invoked, and the request is sent to
the doPost method since the HTML action method is POST. Both the doGet and doPost methods are really
just wrapper methods for a processing method named processRequest, which is responsible for most of the
work. The processRequest method is responsible for obtaining the request parameters, inserting them into
the database, and sending a response to the client.

A PrintWriter object is declared and created by making a call to response.getWriter() first because
this object will be used later to help form the response that is sent to the client. Next, an int value named
result is set up and initialized to -1. This variable will be used for determining whether the SQL insert
worked or failed. After those declarations, a try-catch block is opened, and the first line of the try block
is a call to the insertRow method, passing the request parameters as values. The result variable is going to
accept the int value that is returned from the execution of the insertRows method, indicating whether the
insert was successful.

result = insertRow (request.getParameter("recipeNumber"),
request.getParameter("name"),
request.getParameter("description"),
request.getParameter("text"));

As such, an SQL insert statement is assigned to a string named sql, and it is set up using the
PreparedStatement format. Each question mark in the SQL string corresponds to a parameter that will be
substituted in the string when the SQL is executed.

String sql = "INSERT INTO RECIPES VALUES(" +
"RECIPES_SEQ.NEXTVAL,?,?,?2,2)";

Next, the PreparedStatement and int values are initialized, and then a try-catch-finally block
is opened, which will contain the SQL insert code. Within the block, a Connection object is created by
calling a helper class named CreateConnection. If you want to read more about this helper class, you can
read Chapter 7 on JDBC. For now, all you need to know is that CreateConnection will return a database
connection that can then be used to work with the database. If for some reason the connection fails, the
catch block will be executed, followed by the finally block. A PreparedStatement object is created from
the successful connection, and the SQL string that contains the database insert is assigned to it. Each of
the request parameter values, in turn, is then set as a parameter to the PreparedStatement. Lastly, the
PreparedStatement’s executeUpdate method is called, which performs an insert to the database. The
return value of executeUpdate is assigned to the result variable and then returned to the processRequest
method. Once the control is returned to processRequest, the servlet response is created using a series
of PrintWriter statements. If the insert was successful, then a message indicating success is displayed.
Likewise, if unsuccessful, then a message indicating failure is displayed.

Developing database input forms with JSP is fairly easy to do. To preserve the MVC structure, using a
Java servlet for handing the request and database logic is the best choice.

93

http://dx.doi.org/10.1007/978-1-4842-3594-2_7

CHAPTER 2 © JAVASERVER PAGES

2-12. Looping Through Database Records Within a Page

Problem

You want to display the records from a database table on your JSP page.

Solution

Encapsulate the database logic in a Java class and access it from the JSP page. Use the JSTL c: forEach
element to iterate through the database rows and display them on the page. Two Java classes would be
used for working with the data in this situation. One of the classes would represent the table, which you are
querying from the database, and it would contain fields for each column in that table. Another JavaBean
class would be used to contain the database business logic for querying the database.

The example for this recipe will display the first and last names of each author contained within the
AUTHORS database table. The following code is used to create the JSP document that will display the data
from the table using a standard HTML-based table along with the JSTL <c:forEach> tag to loop through the
rows:

<l--
Document : recipe02_ 12
Author : juneau
-->
<html xmlns:jsp="http://java.sun.com/ISP/Page"
xmlns:c="http://java.sun.com/jsp/jstl/core"
version="2.0">

<jsp:directive.page contentType="text/html" pageEncoding="UTF-8"/>
<jsp:useBean id="authorBean" scope="session" class="org.javaee8recipes.chaptero2.
recipe02_12.AuthorBean"/>
<head>

<title>Recipe 2-12: Looping Through Database Records Within a Page </title>
</head>
<body>

<h1>Authors</h1>

<p>

The authors from the books which Josh Juneau has worked on are printed below.
</p>
<table border="1">

<c:forEach items="${authorBean.authorList }" var="author">

<tr>
<td> ${ author.first } ${ author.last }</td>

</tr>

</c:forEach>

</table>

</body>
</html>

94

Author class, which is used for holding the data contained within each table row:

package org.javaee8recipes.chapter02.recipe02_12;

/**
ES

CHAPTER 2

JAVASERVER PAGES

Asyou can see, <c:forEach> is used to loop through the items contained within ${authorBean.
authorList}. Each item within the list is an object of type Author. The following Java code is that of the

* @author juneau

*/

public class Author implements java.io.Serializable {

private int id;
private String first;
private String last;

public Author(){
id = -1;
first = null;
last = null;
}

/**

* @return the id

*/

public int getId() {
return id;

}

/X%
* @param id the id to set
*/

public void setId(int id) {

this.id = id;

}

/**

* @return the first

*/

public String getFirst() {
return first;

}

/**

* @param first the first to set

*/

public void setFirst(String first) {

this.first = first;
}

Jx*
* @return the last

95

CHAPTER 2 © JAVASERVER PAGES

*/

public String getlast() {
return last;

}

/x*¥

* @param last the last to set

*/

public void setlast(String last) {
this.last = last;

}

Lastly, the JSP document makes reference to a JavaBean named AuthorBean, which contains the
business logic to query the data and return it as a list to the JSP page. The following code is contained in the
AuthorBean class:

package org.javaee8recipes.chapter02.recipe02 12;

import java.sql.Connection;

import java.sql.PreparedStatement;

import java.sql.ResultSet;

import java.sql.SOLException;

import java.util.Arraylist;

import java.util.list;

import org.javaee8recipes.common.CreateConnection;

/¥

* Recipe 2-12: Looping Through Database Records Within a Page
* @author juneau

*/

public class AuthorBean implements java.io.Serializable {

public static Connection conn = null;
private List authorlList = null;

public List queryAuthors(){
String sql = "SELECT ID, FIRST, LAST FROM BOOK_AUTHOR";
List<Author> authorList = new ArraylList<>();
PreparedStatement stmt = null;
ResultSet rs = null;
int result = -1;
try {
CreateConnection createConn = new CreateConnection();
conn = createConn.getConnection();
stmt = (PreparedStatement) conn.prepareStatement(sql);

// Returns row-count or 0 if not successful
rs = stmt.executeQuery();
while (rs.next()){
Author author = new Author();
author.setId(rs.getInt("ID"));

96

CHAPTER 2 © JAVASERVER PAGES

author.setFirst((rs.getString("FIRST"));
author.setlast(rs.getString("LAST"));
authorList.add(author);
}
} catch (SQLException e) {
e.printStackTrace();
} finally {
if (stmt != null) {
try {
stmt.close();
} catch (SQLException ex) {
ex.printStackTrace();
}

}

return authorlist;

}

public List getAuthorlist(){
authorList = queryAuthors();
return authorlist;

}
}

The names of the authors contained in the records in the table will be displayed on the page.
How It Works

Almost any enterprise application performs some sort of database querying. Oftentimes results from a
database query are displayed in a table format. The example in this recipe demonstrates how to query
a database and return the results to a JSP page for display in a standard HTML table. The JSP page in
this example uses the JSTL c: forEach element to iterate through the results of the database query. Note
that there is more than one way to develop this type of database query using JSP; however, the format
demonstrated in this recipe is most recommended for use in a production enterprise environment.

As mentioned previously, the JSP page in this recipe uses a combination of the jsp:useBean element
and the c: forEach element to iterate over the results of a database query. The logic for querying the database
resides within a server-side JavaBean class that is referenced within the jsp:useBean element on the page. In
the example, the JavaBean is named AuthorBean, and it is responsible for querying a database table named
AUTHORS and populating a list of Author objects with the results of the query. When the c:forEach element
is evaluated with the items attribute set to ${authorBean.authorlList }, it calls on the JavaBean method
named getAuthorList because JSP expressions always append “get” to a method call behind the scenes and
capitalizes the first letter of the method name within the call. When the getAuthorList method is called, the
authorList field is populated via a call to queryAuthors. The queryAuthors method utilizes a Java Database
Connectivity (JDBC) database call to obtain the authors from the AUTHORS table. A new Author object is
created for each row returned by the database query, and each new Author object is, in turn, added to the
authorList. In the end, the populated authorList contains a number of Author objects, and it is returned to
the JSP page and iterated over utilizing the c: forEach element.

The c:forEach element contains an attribute named var, and this should be set equal to a string that
will represent each element in the list that is being iterated over. The var is then used between the opening
and closing c: forEach element tags to reference each element in the list, printing each author’s first and last
names.

97

CHAPTER 2 © JAVASERVER PAGES

This recipe provides some insight on how to combine the power of JSTL tags with other technologies
such as JDBC to produce very useful results. To learn more about the different JSTL tags that are part of JSP,
visit the online documentation at www.oracle.com/technetwork/java/jst1-137486.html. To learn more
about JDBC, read Chapter 7 of this book.

2-13. Handling JSP Errors

Problem

You want to display a nicely formatted error page when a JSP page encounters an error.

Solution

Create a standard error page and forward control to the error page if an exception occurs within the JSP
page. The following JSP document, in JSP format (not JSPX), demonstrates a standard error page to display
when an error occurs within a JSP application. If an exception occurs within any JSP page in the application,
the following error page will be displayed.

Note The example in the solution for this recipe uses the JSTL fmt library, which provides convenient
access to formatting capabilities that allow for localization of text as well as date and number formatting. Text
localization capabilities allow locales to be set so that text can be formatted into different languages, depending
on the user locale. Tags used for date manipulation make it easy for developers to format dates and times
within a JSP page and provide a way to parse dates and times for data input. Lastly, number-formatting tags
provide a way to format and parse numeric data within pages. To learn more about the JSTL fmt tag library,
refer to the online documentation at https://docs.oracle.com/javaee/5/jst1l/1.1/docs/t1lddocs/.

<%--
Document : recipe02_13_errorPage
Author : juneau

--%>

<%@page contentType="text/html" pageEncoding="UTF-8"%>
<%@ page isErrorPage="true" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core"
prefix="c" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt"
prefix="fmt" %>
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>JSP Error Page</title>
</head>
<body>
<h1>Error Encountered</h1>

98

http://www.oracle.com/technetwork/java/jstl-137486.html
http://dx.doi.org/10.1007/978-1-4842-3594-2_7
https://docs.oracle.com/javaee/5/jstl/1.1/docs/tlddocs/

CHAPTER 2 © JAVASERVER PAGES

<p>
The application has encountered the following error:

<fmt:message key="ServerError"/>: ${pageContext.errorData.statusCode}

</p>
</body>
</html>

For example, the following JSP would create an error (Nul1lPointerException) if the parameter
designated as param is null. If this occurs, the indicated error page would be displayed.

<!--
Document : recipe02_13
Author : juneau
-->
<html xmlns:jsp="http://java.sun.com/JSP/Page"
xmlns:c="http://java.sun.com/jsp/jstl/core"
version="2.0">

<jsp:directive.page contentType="text/html" pageEncoding="UTF-8"/>
<jsp:directive.page errorPage="recipe02_13_errorPage.jsp"/>

<head>
<title>Recipe 2-13: Handling JSP Errors </title>
</head>
<body>
<h1>There is an error on this page</h1>
<p>
This will produce an error:
<jsp:scriptlet>
if (request.getParameter("param").equals("value")) {
System.out.println("test");
}

</jsp:scriptlet>
</p>
</body>

</html>

How It Works

One of the most annoying issues for users while working with applications is when an error is thrown. A
nasty, long stack trace is often produced, and the user is left with no idea how to resolve the error. It is better
to display a user-friendly error page when such an error occurs. The JSP technology allows an error page to
be designated by adding a page directive to each JSP page that may produce an error. The directive should
designate an error page that will be displayed if the page containing the directive produces an error.

99

CHAPTER 2 © JAVASERVER PAGES

The second JSP document in the solution to this recipe demonstrates a JSP page that will throw an error
if the parameter being requested within the page is null. If this were to occur and there were no error page
specified, then a Nul1PointerException error message would be displayed. However, this JSP indicates an
error page by designating it within a page directive using the following syntax:

<jsp:directive.page errorPage="recipe02_13_errorPage.jsp"/>

When an error occurs on the example page, recipe02_13.errorPage.jsp is displayed. The first JSP
document listed in the solution to this recipe contains the sources for the recipe02_13.errorPage.jsp
page. Itis flagged as an error page because it includes a page directive indicating as such:

<%@ page isErrorPage="true" %>

An error page is able to determine the error code, status, exception, and an array of other information
by using the pageContext implicit object. In the example, the ${pageContext.errorData.statusCode}
expression is used to display the status code of the exception. Table 2-5 displays the other possible pieces of
information that can be gleaned from the pageContext object.

Table 2-5. pageContext Implicit Object Exception Information

Expression Value

pageContext.errorData Provides access to the error information
pageContext.exception Returns the current value of the exception object
pageContext.errorData.requestURI Returns the request URI
pageContext.errorData.servletName Returns the name of the servlet invoked
pageContext.errorData.statusCode Returns the error status code
pageContext.errorData.throwable Returns the throwable that caused the error

Providing user-friendly error pages in any application can help create a more usable and overall more
functional experience for the end-user. JSP and Java technology provide robust exception handling and
mechanisms that can be used to help users and administrators alike when exceptions occur.

2-14. Disabling Scriptlets in Pages

Problem

You want to ensure that Java code cannot be embedded into JSP pages within your web application.

Solution

Set the scripting-invalid element within the web deployment descriptor to true. The following excerpt
from aweb.xml deployment descriptor demonstrates how to do so:

<jsp-config>
<jsp-property-group>
<scripting-invalid>true</scripting-invalid>
</jsp-property-group>
</jsp-config>

100

CHAPTER 2 © JAVASERVER PAGES

How It Works

When working in an environment that encourages the use of the Model-View-Controller architecture, it
can be useful to prohibit the use of scriptlets within JSP pages and documents. When JSP 2.1 was released,
it provided solutions to help developers move Java code out of JSP pages and into server-side Java classes
where it belonged. In the early years of JSP, pages were cluttered with scriptlets and markup. This made it
difficult for developers to separate business logic from content, and it was hard to find good tools to help
develop such pages effectively. JSP 2.1 introduced tags, which make it possible to eliminate the use of
scriptlets within JSP pages, and this helps maintain the use of the MVC architecture.

To prohibit the use of scriptlets within JSP pages in an application, add the jsp-config element
within the web.xml file of the application of which you want to enforce the rule. Add a subelement of jsp-
property-group along with the scripting-invalid element. The value of the scripting-invalid element
should be set to true.

2-15. Ignoring EL in Pages

Problem

You want to turn off EL expression translation within your JSP page so that older applications will be able to
pass through expressions verbatim.

Solution #1
Escape the EL expressions within the page by using the \ character before any expressions. For instance, the

following expressions will be ignored because the \ character appears before them:

\${elBean.myProperty}
\${2 + 4}

Solution #2

Configure a JSP property group within the web . xml file for the application. Within the web.xml file, a <jsp-
property-group> element can contain child elements that characterize how the JSP page evaluates specified
items. By including an <el-ignored>true</el-ignored> element, all EL within the application’s JSP
documents will be ignored and treated as literals. The following excerpt from web.xml demonstrates this feature:

<jsp-property-group>

<el-ignored>true</el-ignored>
</jsp-property-group>

Solution #3

Include a page directive including the isELIgnored attribute and set it to true. The following page directive
can be placed at the top of a given JSP document to allow each EL expression to be treated as a literal:

<jsp:directive.page isELIgnored="true"/>
or in a standard JSP:

<%@ page isELIgnored="true" %>
101

CHAPTER 2 © JAVASERVER PAGES

How It Works

There may be a situation in which the evaluation of JSP EL expressions should be turned off. This occurs
most often in cases of legacy applications using older versions of JSP technology; EL expressions were not
yet available. There are a few different ways to turn off the evaluation of EL expressions, and this recipe
demonstrates each of them.

In the first solution to this recipe, the escape technique is demonstrated. An EL expression can be
escaped by placing the \ character directly before the expression, as shown in the example. Doing so will
cause the JSP interpreter to treat the expression as a string literal, and the output on the page will be the
expression itself, rather than its evaluation. The second solution to this recipe demonstrates adding a
jsp-property-group to the web.xml deployment descriptor in order to ignore EL. All EL within an
application will be ignored by including the isELIgnored element and providing a true value for it. Lastly,
the final solution demonstrates how to ignore EL on a page-by-page basis by including a page directive with
the isELIgnored attribute set to true.

Each of the different solutions for ignoring EL allows coverage to different parts of the application.
The solution you choose should depend on how broadly you want to ignore EL throughout an application.

102

CHAPTER 3

The Basics of JavaServer Faces /

In 2004 Sun Microsystems introduced a Java web framework called JavaServer Faces (JSF) in an effort to help
simplify web application development. It is an evolution of the JavaServer Pages (JSP) framework, adding

a more organized development lifecycle and the ability to more easily utilize modern web technologies.

JSF uses XML files for view construction and uses Java classes for application logic, making it adhere to

the Model-View-Controller (MVC) architecture. JSF is request-driven, and each request is processed by

a special servlet named the FacesServlet. The FacesServlet is responsible for building the component
trees, processing events, determining which view to process next, and rendering the response. JSF 1.x

used a special resource file named the faces-config.xml file for specifying application details such as
navigation rules, registering listeners, and so on. While the faces-config.xml file can still be used in JSF 2.x,
the more modern releases of JSF have focused on being more easy to use, minimizing the amount of XML
configuration, and utilizing annotations in place of XML where possible.

The framework is very powerful, including easy integration with technologies such as Ajax and making
it effortless to develop dynamic content. JSF works well with databases, using RESTful data calls, JDBC, or
EJB technology to work with the back end. JavaBeans, known as JSF controller class or Controllers, are used
for application business logic and support the dynamic content in each view. They can adhere to different
lifecycles, depending on the scope that is specified. Views can invoke methods within the beans to perform
actions such as data manipulation and form processing. Properties can also be declared within the beans
and exposed within the views, providing a convenient way to make dynamic content available within a view
or pass request values. JSF allows developers to customize their applications with preexisting validation and
conversion tags that can be used on components with the view to validate or convert data. It is also easy to
build custom validators, as well as custom components that can be applied to components in a view.

This chapter includes recipes that will be useful for those who are getting started with JSF and also those
who are looking to beef up their basic knowledge of the framework with some of the latest JSF techniques.
You learn how to create controller classes, work with standard components, and handle page navigation.
There are also recipes that cover useful techniques such as building custom validators and creating
bookmarkable URLs. The recipes are refined to include the most current techniques and provide the most
useful methodologies for using them. After studying the recipes in this chapter, you will be ready to build
standard JSF applications, sprinkling in some custom features as well.

Note Many people prefer to work within an integrated development environment (IDE) for increased
productivity. To get started learning how to create a new JSF project and manage it with the NetBeans IDE, see
the appendix of this book.

© Josh Juneau 2018 103
J. Juneau, Java EE 8 Recipes, https://doi.org/10.1007/978-1-4842-3594-2_3

https://doi.org/10.1007/978-1-4842-3594-2_3

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

3-1. Writing a Simple JSF Application

Problem

You want to get up and running quickly by creating a simple JSF application.

Solution #1

Create a simple JSF web application that is composed of a single XHTML page and a single JSF controller
class, along with the other required JSF configuration files. The application in this recipe simply displays a
message that is initialized in a JSF controller class.

Note It is recommended that you utilize a Java IDE to make life easier. If you have not yet created a
JSF application and are interested in learning how to create one from scratch with an IDE, see Solution #2 to
this recipe. This book focuses on working with the Apache NetBeans IDE, a cutting-edge Java development
environment that is usually one of the first to support new Java features. However, there are many excellent IDE
choices. You can choose the IDE you prefer and follow along with its instructions for working with JSF.

Displaying a JSF Controller Field Value

The following code makes up the XHTML view that will be used to display the JSF controller field value:

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/
xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:f="http://xmlns.jcp.org/jsf/core"
xmlns:h="http://xmlns.jcp.org/jsf/html">
<h:head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<title>Recipe 3-1: A Simple JSF Application</title>
</h:head>
<h:body>
<p>
This simple application utilizes a request-scoped JSF controller class
to display the message below. If you change the message within the
controller class's constructor and then recompile the application, the
new message appears.

#{helloWorldController.hello}

or

<h:outputText id="helloMessage" value="#{helloWorldController.hello}"/>
</p>
</h:body>
</html>

104

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

Asyou can see, the JSF page utilizes a JSF expression, #{helloWorldController.hello}. Much like
JSP technology, a backing JavaBean, originally referred to as a JSF managed bean, but since JSF 2.0+ as the
controller class, is referenced in the expression along with the field to expose.

Examining the JSF Controller

The following code is that of HelloWorldController, the JSF controller for this recipe example:
package org.javaee8recipes.chapter03.recipe03 01;

import java.io.Serializable;

import javax.annotation.PostConstruct;

import javax.inject.Named;

import javax.enterprise.context.RequestScoped;

/**

* Recipe 3-1: A Simple JISF Application

* @author juneau

*/

@Named(value = "helloWorldController")

@RequestScoped

public class HelloWorldController implements Serializable {

private String hello;

*%

/* Creates a new instance of HelloWorldBean
*

puglic HelloWorldController() {

}

@PostConstruct

public void init(){
System.out.println ("Instantiated helloWorldController");
hello = "Hello World";

}

/**

* @return the hello

*/

public String getHello() {
return hello;

}

/**

* @param hello the hello to set

*/

public void setHello(String hello) {
this.hello = hello;

}

105

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

Note Prior to JSF 2.0, in order to enable the JSF servlet to translate the XHTML page, you needed to
ensure that the web.xml file contained a servlet element indicating the javax.faces.webapp.FacesServlet
class and its associated servlet-mapping URL. Since the release of JSF 2.0, if you're using a Servlet 3.x
container, the FacesServlet is automatically mapped for you, so there is no requirement to adjust the web.xml
configuration.

The listing that follows is an excerpt taken from the web . xml file for the sources to this book, and it
demonstrates the features that must be added to the web. xm1 file in order to make the JSF application
function properly in a Pre JSF 2.0 environment.

<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>/faces/*</url-pattern>
</servlet-mapping>

<welcome-file-1list>
<welcome-file>faces/index.xhtml</welcome-file>
</welcome-file-1ist>

Let’s take a deeper look at the web.xml configuration for a JSF application. It is not very complex, but a
few elements could use some explanation. The javax.faces.webapp.FacesServlet servlet can optionally
be declared within the web.xml file. If declared, the declaration must contain a servlet-name; the servlet-
class element, which lists the fully qualified class name; and a load-on-startup value of 1 to ensure that
the servlet is loaded when the application is started up by the container. The web . xm1 file must then map
that servlet to a given URL within a servlet-mapping element. The servlet-mapping element must include
the servlet-name, which is the same value as the servlet-name element that is contained in the servlet
declaration, and a url-pattern element, which specifies the URL that will be used to map JSF pages with
the servlet. When a URL is specified that contains the /faces/ mapping, the FacesServlet will be used to
translate the view.

To load the application in your browser, visit http://localhost:8080/JavaEERecipes/faces/
chapter03/recipe03_01.xhtml, and you will see the following text:

Hello World
or
Hello World

This simple application utilizes a request-scoped JSF controller class to display this message. If you

change the "hello" variable within the controller class's constructor and then recompile and run the
application, the new message appears.

106

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

Solution #2

Use an IDE, such as NetBeans, to create a JSF application. To get started with NetBeans, first download
the most recent release of NetBeans from the https://netbeans.apache.org website. The examples in
this solution use NetBeans 8.x. For more information about downloading and installing NetBeans, see the
appendix of this book. Once installed, create a new project by choosing the File » New Project menu.

Follow the directions in the book’s appendix (in the “Creating a NetBeans Java Web Project” section).
The index.xhtml file will open in the editor, which will be the default landing page for your application.
Modify the index.xhtml file by making the page the same as the JSF view that is listed in Solution #1’s
“Displaying JSF Controller Field Value” section. Once you're done, add the controller class to your
application that will be used to supply the business logic for the index.xhtml page. To create the controller
class, right-click the Source Packages navigation menu for your project and choose New » JSF Controller
Class from the context menu. This will open the New JSF Controller Class dialog (see Figure 3-1), which
allows you to specify several options for your controller, including the name, location, and scope.

New JSF Managed Bean

Steps Name and Location

1. Choose File Type

5. e g Class Name: |NewJSFManagedBean

Project: WebApplicationl
Location: | Source Packages -
Package: v

Created File: /Java_Dev/WebApplicationl/srcfjava/New)SFManagedBean.java

Add data to configuration file

Configuration File:

Name: . newJSFManagedBean

ar

Scope: | request

Bean Description:

/4\Warning: It is highly recommended that you do NOT place Java classes in the

| Help | < Back Next > Finish | | Cancel

Figure 3-1. New JSF controller class via the New JSF Controller Class dialog

For the purposes of this recipe, change the name of the class to HelloWorldController, and leave the
rest of the options at their defaults; then click Finish. Copy and paste the code from Solution #1’s “Examining
the JSF Controller” section into the newly created controller class. Once you're finished, right-click the
application project from the Project navigation menu and choose Deploy to deploy your application.

107

https://netbeans.apache.org

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

To load the application in your browser, visit http://localhost:8080/WebApplication1/faces/index.
xhtml, and you will see the following text:

Hello World
or
Hello World

This simple application utilizes a request-scoped JSF controller to display this message. If you change
the "hello" variable in the controller's constructor and then recompile and run the application, the new
message appears.

How It Works

This recipe merely scratches the surface of JSE but it is meant as a starting point to guide you along the

path of becoming a JSF expert. The example in this recipe demonstrates how closely related JSF and JSP
technologies are. In fact, the main differences in the two view pages include the use of the JSF expression #{}
rather than the standard JSP value expression ${}, and the use of some JSF tags. Thanks to the JSP 2.0 unified
expression language, Java web developers now have an easy transition between the two technologies, and
they now share many of the same expression language features.

Note JSF 2.x can use the Facelets view technology to produce even more sophisticated and organized
designs. To learn more about the Facelets view technology, refer to Chapter 4.

Breaking Down a JSF Application

Now for the real reason you are reading this recipe...the explanation for building a JSF application! A JSF
application is comprised of the following parts:

e Ifit’s using or maintaining JSF applications written using JSF 1.x, it includes the
web.xml deployment descriptor that is responsible for mapping the FacesServlet
instance to a URL path.

¢ One or more web pages on which JSF components are used to provide the page
layout (may or may not utilize Facelets view technology). Typically these web pages
are referred to as “views”.

e JSF component tags within the views.

e One or more controller classes, which are simple, lightweight container-managed
objects that are responsible for supporting page constructs and basic services.

e Optionally, one or more configuration files such as faces-config.xml that can be
used to define navigation rules and configure beans and other custom objects.

e Optionally, supporting objects such as listeners, converters, or custom component.

e Optionally, custom tags for use on a JSF view.

108

http://dx.doi.org/10.1007/978-1-4842-3594-2_4

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

LIFECYCLE OF A JSF APPLICATION

The JSF view processing lifecycle contains six stages. These stages are as follows:
1. Restore View

Apply Request Values

Process Validations

2
3.
4. Update Model Values
5

Invoke Application

6. Render Response

Restore View is the first phase in the JSF lifecycle, and it is responsible for constructing the view. The
component tree then applies the request parameters to each of the corresponding component values
using the component tree’s decode method. This occurs during the Apply Request Values phase. During
this phase, any value conversion errors will be added to FacesContext for display as error messages
during the Render Response phase. Next, all of the validations are processed. During the Process
Validations phase, each component that has a registered validator is examined, and local values are
compared to the validation rules. If any validation errors arise, the Render Response phase is entered,
rendering the page with the corresponding validation errors.

If the Process Validations phase exits without errors, the Update Model Values phase begins. During
this phase, controller class properties are set for each of the corresponding input components within
the tree that contain local values. Once again, if any errors occur, then the Render Response phase is
entered, rendering the page with the corresponding errors displayed. After the successful completion of
the Update Model Values phase, the application-level events are handled during the Invoke Applications
phase. Such events include page submits or redirects to other pages. Finally, the Render Response
phase occurs, and the page is rendered to the user. If the application is using JSP pages, then the JSF
implementation allows the JSP container to render the page.

The example in this recipe uses the minimum number of these parts. To run the example, you
need to ensure that the web.xml file contains the proper JSF configuration if it's running in a pre-JSF 2.x
environment. You need to have a controller declaring the field that is exposed on the JSF view along with
the necessary accessor methods to make it work properly. And lastly, you need to have the XHTML JSF view
page containing the JSF expression that exposes the field declared in the controller class.

A JSF controller class is a lightweight, container-managed object that is associated with a JSF page.
The controller class is much like a JSP JavaBean in that it provides the application logic for a particular page
so that Java code does not need to be embedded into the view code. Components (aka JSF tags) that are
used within a JSF view are mapped to server-side fields and methods contained within the JSF controller.
Controller classes are indeed the controllers for the page logic. In the example, the JSF controller class is
named HelloWorldController, and a field named hello is declared, exposing itself to the public via the
getHello() and setHello() methods. The JSF controller class is instantiated and initialized when a page
that contains a reference to the bean is requested, and the controller class scope determines the lifespan of
the bean. In the case of this example, the controller class contains a request scope, via the @RequestScoped
annotation. Therefore, its lifespan is that of a single request, and it is re-instantiated each time a request
is made. In this case, when the page in the example is reloaded. To learn more about the scope and
annotations that are available for a controller class, see Recipe 3-2.

109

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

JSF technology utilizes a web view declaration framework known as Facelets. Facelets uses a special
set of XML tags, similar in style to the standard JSF tags, to help build componentized web views. While this
example does not use Facelets, it is a vital part of JSF view technology. Facelets pages typically use XHTML,
which is an HTML page that is comprised of well-formed XML components. The example JSF view in this
recipe is well-structured, and it contains two JSF EL expressions that are responsible for instantiating the
controller class and displaying the content for the hello field. When the EL expression #{helloWorldBean.
hello} is translated by the FacesServlet, it makes the call to the HelloBeanController’s getHello()
method.

Lots of information was thrown at you in this introductory recipe. The simple example in this recipe
provides a good starting point for working with JSF technology. Continue with the recipes in this chapter to
gain a broader knowledge of each component that is used for developing JavaServer Faces web applications.

3-2. Writing a Controller Class

Problem

You want to use a server-side Java class from within your JSF application web pages.

Solution

Develop a JSF controller class, a lightweight container-managed component, which will provide the
application logic for use within your JSF application web pages. The example in this recipe is comprised of
a JSF view and a JSF controller class. The application calculates two numbers that are entered by the user
and then adds, subtracts, multiplies, or divides them depending on the user’s selection. The following code
is the controller class that is responsible for declaring fields for each of the numbers that will be entered by
the user, as well as a field for the result of the calculation. The controller class is also responsible for creating
alist of Strings that will be displayed within an h:selectOneMenu element within the JSF view and retaining
the value that is chosen by the user.

Although it may seem as though this controller class is doing a lot of work, it actually is very simple to
make it happen! The controller class is really a beefed-up Plain Old Java Object (POJO) that includes some
methods that can be called from JSF view components.

Controller Class

The following code is for the controller class that is used for the calculation example. The class is named
CalculationController, and it is referenced as calculationController from within the JSF view. JSF
uses convention over configuration for its naming conventions. By default, JSF views can contain EL that
references a controller class by specifying the class name with the first character in lowercase.

package org.javaee8recipes.chapter03.recipe03_02;

import java.io.Serializable;

import java.util.Arraylist;

import java.util.list;

import javax.enterprise.context.SessionScoped;
import javax.faces.application.FacesMessage;
import javax.faces.context.FacesContext;
import javax.faces.model.SelectItem;

import javax.inject.Named;

110

CHAPTER 3

/**
* Recipe 3-2: Writing a JSF controller class

* @author juneau
*/

@Named
@SessionScoped
public class CalculationController implements Serializable {

private int numi;

private int num2;

private int result;

private String calculationType;

private static final String ADDITION = "Addition";

private static final String SUBTRACTION = "Subtraction";
private static final String MULTIPLICATION = “"Multiplication";
private static final String DIVISION = "Division";
List<SelectItem> calculationlList;

/**
* Creates a new instance of CalculationController
*/
public CalculationController() {
// Initialize variables

numl = 0;
num2 = 0;
result = 0;

calculationType = null;

// Initialize the list of values for the SelectOneMenu
populateCalculationList();
System.out.println("initialized the bean!");

}

/X%

* @return the numi

*/

public int getNumi() {
return numi;

}

/**

* @param numl the numl to set

*/

public void setNumi(int numi) {
this.numl = numi;

}

/**

* @return the num2
*/

THE BASICS OF JAVASERVER FACES

111

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

112

public int getNum2() {
return num2;
}

/**

* @param num2 the num2 to set

*/

public void setNum2(int num2) {
this.num2 = num2;

}

/**

* @return the result

*/

public int getResult() {
return result;

}

/**

* @param result the result to set

*/

public void setResult(int result) {
this.result = result;

}

/**

* @return the calculationType

*/

public String getCalculationType() {
return calculationType;

}

/**

* @param calculationType the calculationType to set

*/

public void setCalculationType(String calculationType) {
this.calculationType = calculationType;

}

public List<SelectItem> getCalculationList(){
return calculationlList;
}

private void populateCalculationList(){
calculationlist = new Arraylist<>();
calculationList.add(new SelectItem(ADDITION));
calculationList.add(new SelectItem(SUBTRACTION));
calculationList.add(new SelectItem(MULTIPLICATION));
calculationList.add(new SelectItem(DIVISION));

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

public void performCalculation() {
switch (getCalculationType()) {
case ADDITION:
setResult(numi + num2);
break;
case SUBTRACTION:
setResult(numi - num2);
break;
case MULTIPLICATION:
setResult(numi * num2);
break;
case DIVISION:
try{
setResult(numl / num2);
} catch (Exception ex){
FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY ERROR,
"Invalid Calculation", "Invalid Calculation");
FacesContext.getCurrentInstance().addMessage(null, facesMsg);
} break;
default:
break;

Next is the view that composes the web page, which is displayed to the user. The view is composed
within an XHTML document and is well-formed XML.

JSF View

The view contains JSF components that are displayed as text boxes into which the user can enter
information, a pick-list of different calculation types for the user to choose from, a component responsible
for displaying the result of the calculation, and an h: commandButton component for submitting the form
values.

<?xml version="1.0" encoding="UTF-8"?>
<l--
Book: Java EE 8 Recipes
Recipe: 3-2 Writing a JSF Controller Class
Author: J. Juneau
-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/
xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:f="http://xmlns.jcp.org/jsf/core"
xmlns:h="http://xmlns.jcp.org/jsf/html">
<h:head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<title>Recipe 3-2: Writing a JSF Managed Bean</title>
</h:head>
<h:body>
<f:view>
113

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

<h2>
<p>

Perform a Calculation</h2>

Use the following form to perform a calculation on two numbers.

Enter
the numbers in the two text fields below, and select a calculation to

perform, then hit the Calculate button.

<h:messages errorStyle="color: red" infoStyle="color: green"
globalOnly="true"/>

<h:form id="calulationForm">
Number1:
<h:inputText id="num1" value="#{calculationController.numi}"/>

Number2:
<h:inputText id="num2" value="#{calculationController.num2}"/>

Calculation Type:
<h:selectOneMenu id="calculationType" value="#{calculationController.
calculationType}">
<f:selectItems value="#{calculationController.calculationList}"/>
</h:selectOneMenu>

Result:
<h:outputText id="result" value="#{calculationController.result}"/>

<h:commandButton action="#{calculationController.performCalculation()}"

value="Calculate"/>

114

</p>

</h:form>

</f:view>
</h:body>
</html>

The resulting JSF view looks like Figure 3-2 when displayed to the user.

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

Perform a Calculation

Use the following form to perform a calculation on two numbers.
Enter the numbers in the two text fields below, and select a calculation to
perform, then hit the "Calculate” button.

Numberl: o
Number2: o

Calculation Type: | Addition
Result: 0

Calculate

Figure 3-2. Resulting JSF view page

How It Works

The JSF controller class is responsible for providing the application logic for a JSF-based web application.
Much like the JavaBean is to a JSP, the controller class is the backbone for a JSF view. They are also referred
to as backing beans or managed beans, because there is typically one JSF controller class per each JSF
view. Controller classes have changed a bit since the JSF technology was introduced. There used to be
configuration required for each controller class in a faces-config.xml configuration file and also in the
web . xml file for use with some application servers. Starting with the release of JSF 2.0, controller class
became easier to use, and coding powerful JSF applications is easier than ever. This recipe focuses on newer
controller class technology.

The example for this recipe demonstrates many of the most important features of a JSF controller class.
The view components refer to the controller class as calculationController. By default, a JSF controller
class can be referred to within a JSF view using the name of the bean class with a lowercase first letter. A
controller class must be annotated with @Named in order to mark it as an injectable CDI bean. Using the @
Named annotation, the string that is used to reference the bean from within a view can be changed. In the
example, calculationController is also used as the name passed to the @Named annotation, but it could
have easily been some other string. The @Named annotation should be placed before the class declaration.

@Named(value="calculationController")

Scopes

The bean in the example will be initialized when it is first accessed by a session and destroyed when the
session is destroyed. It is a controller class that “lives” with the session. The scope of the bean is configured
by an annotation on the class, just before the class declaration. There are different annotations that can be
used for each available scope. In this case, the annotation is @SessionScoped, denoting that the controller
class is session-scoped. All of the possible controller class scopes are listed in Table 3-1.

115

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

Table 3-1. Controller Class Scopes

Scope Annotation Description

@ApplicationScoped Specifies that a bean is application scoped. Initialized when the application is
started up. Destroyed when the application is shut down. Controller classes with
this scope are available to all application constructs within the same application.

@RequestScoped Specifies that a bean is request scoped in a web application context. Initialized
when an HTTP request to the bean is made and destroyed when the request is
complete.

@SessionScoped Specifies that a bean is session scoped in a web application context. Initialized

when first accessed within a session. Destroyed when the session ends.
Available to all servlet requests that are made within the same session.

@ConversationScoped Specifies that a bean is conversation scoped. A conversation is a series of HTTP
requests and responses that occur in a step-by-step manner, in order to complete
a process. This application scope is specific to web application contexts.
Initialized when a conversation is started and destroyed when the conversation
ends. Controllers with this scope are available throughout the lifecycle of a
conversation and belong to a single HTTP session. If the HTTP session ends, all
conversation contexts that were created during the session are destroyed.

@Singleton This is a pseudo-scope, meaning that it is not proxied as with other CDI scopes.
This scope specifies that only one instance of the bean will exist for the entire
application.

@Dependent This is a pseudo-scope, meaning that it is not proxied as with other CDI scopes.

Beans that use this scope behave differently than controller class containing
any of the other scopes.

@TransactionScoped Life of a bean annotated with this scope indicates that the lifespan will exist for
the duration of an active transaction. The first time a CDI bean uses a controller
with this annotation in a session, the same instance will be used throughout the
transaction.

@FLowScoped Beans of this scope are used in the context of a JSF flow. The bean will be
instantiated the first time it is accessed in the scope of a flow, and it will be
destroyed once the flow is complete.

@ViewScoped This scope indicates that the bean will remain available throughout the life of
the JSF view.

The @Named annotation specifies to the application server container that the class is a CDI bean. Prior
to JSF 2.0, a controller class had to be declared in the faces-config.xml file, and they were annotated with
@ManagedBean until JSF 2.2+. The addition of annotations has made JSF controller class XML configuration-
free. It is important to note that the controller class implements java.io.Serializable; all controller classes
should be specified as serializable so that they can be persisted to disk by the container if necessary.

Fields declared in a controller should be specified as private in order to adhere to object-oriented
methodology. To make a field accessible to the public and usable from JSF views, accessor methods should
be declared for it. Any field that has a corresponding “getter” and “setter” is known as a JSF controller class
property. Properties are available for use within JSF views by utilizing 1value JSF EL expressions, meaning
that the expression is contained in the #{ and } character sequences and that it is readable and writable.
lvalue expressions can specify targets, whereas rvalue expressions cannot. For instance, to access the
field num1 that is declared in the controller class, the JSF view can use the #{calculationController.numi}
expression, as you can see in the JSF view code for the example.

116

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

Any pubic method contained in a JSF controller class is accessible from within a JSF view using the
same EL expression syntax, that is, by specifying #{beanName .methodName} as the expression. In the example
to this recipe, the performCalculation method of the controller class is invoked from within the JSF view
using an h:commandButton JSF component. The component action is equal to the EL expression that will
invoke the JSF controller class method. To learn more about JSF components and how to use them in view,
see Recipe 3-3 and Chapter 5.

<h:commandButton action="#{calculationController.performCalculation}" value="Calculate"/>

Note The input form tag for this example contains no action attribute. JSF forms do not contain action
attributes since JSF components within the view are responsible for specifying the action method, rather than
the form itself.

JSF controller classes are a fundamental part of the JSF web framework. They provide the means for
developing dynamic, robust, and sophisticated web applications with the Java platform.

3-3. Building Sophisticated JSF Views with Components

Problem

You want to create a sophisticated user interface comprised of prebundled components.

Solution

Use the bundled JSF components in your JSF views. JSF components contain bundled application logic and
view constructs, including styles and JavaScript actions, that can be used in applications by merely adding
tags to a view. In the following example, several JSF components are used to create a view that displays the
authors for an Apress book and allows for a new author to be added to the list. The following code is the
XHTML for the JSF view:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/
xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:f="http://xmlns.jcp.org/jsf/core"
xmlns:h="http://xmlns.jcp.org/jsf/html">
<h:head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<title>Recipe 3-3: Building Sophisticated JSF Views with Components</title>
</h:head>
<h:body>
<h:form id="componentForm">
<h1>JSF Components, Creating a Sophisticated Page</h1>
<p>
The view for this page is made up entirely of JSF standard components.

As you can see, there are many useful components bundled with JSF out
of the box.

</p>

117

http://dx.doi.org/10.1007/978-1-4842-3594-2_5

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

<p>Book Recommendation: Java 9 Recipes

<h:graphicImage id="java9recipes" library="image" name="java9recipes.png"/>

<h:dataTable id="authorTable" value="#{authorController.authorList}"
var="author">
<f:facet name="header">
Java 9 Recipes Authors
</f:facet>
<h:column>
<h:outputText id="authorName" value="#{author.first} #{author.last}"/>
</h:column>
</h:dataTable>

<p>
Use the following form to add an author to the list.
</p>
<h:outputLabel for="newAuthorFirst" value="New Author First Name: "/>
<h:inputText id="newAuthorFirst" value="#{authorController.newAuthorlLast}"/>

<h:outputLabel for="newAuthorlLast" value="New Author Last Name: "/>
<h:inputText id="newAuthorLast" value="#{authorController.newAuthorlLast}"/>

<h:inputTextarea id="bio" cols="20" rows="5"
value="#{authorController.bio}"/>

<h:commandButton id="addAuthor" action="#{authorController.addAuthor}"
value="Add Author"/>

</p>
</h:form>
</h:body>
</html>

This example utilizes a JSF controller class named AuthorController. The controller class declares a
handful of properties that are exposed in the view, and it also declares and populates a list of authors that is
displayed on the page in a JSF h:dataTable component.

package org.javaee8recipes.chapter03.recipe03_03;

import java.io.Serializable;

import java.util.Arraylist;

import java.util.list;

import javax.enterprise.context.SessionScoped;
import javax.inject.Named;

118

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

@Named(value = "authorController")
@SessionScoped
public class AuthorController implements Serializable {

private String newAuthorFirst;
private String newAuthorlast;
private String bio;

private List<Author> authorlList;

/**
* Creates a new instance of RecipeController
*/

public AuthorController() {

populateAuthorlList();

private void populateAuthorList(){
System.out.println("initializing authors");
authorList = new Arraylist<>();
authorList.add(new Author("Josh", "Juneau", null));
authorList.add(new Author("Carl", "Dea", null));
authorList.add(new Author("Mark", "Beaty", null));
authorList.add(new Author("John", "0'Conner", null));
authorList.add(new Author("Freddy", "Guime", null));
System.out.println("AuthorList size:" +authorList.size());

}

public void addAuthor() {
getAuthorList().add(
new Author(this.getNewAuthorFirst(),
this.getNewAuthorLast(),

this.getBio()));
}
/**
* @return the authorlList
*/

public List<Author> getAuthorList() {
return authorlist;
}

/**

* @param authorlList the authorlList to set

*/

public void setAuthorList(List<Author> authorList) {
this.authorList = authorlist;

}

/%%
* @return the newAuthorFirst
*/

119

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

public String getNewAuthorFirst() {
return newAuthorFirst;
}

Jx*

* @param newAuthorFirst the newAuthorFirst to set

*/

public void setNewAuthorFirst(String newAuthorFirst) {
this.newAuthorFirst = newAuthorFirst;

}

/**

* @return the newAuthorlLast

*/

public String getNewAuthorLast() {
return newAuthorlast;

}

/**

* @param newAuthorlLast the newAuthorlLast to set

*/

public void setNewAuthorlast(String newAuthorlLast) {
this.newAuthorlLast = newAuthorlLast;

}

/**
* @return the bio
*/
public String getBio() {
return bio;
}

JH*

* @param bio the bio to set
*/
public void setBio(String bio) {
this.bio = bio;
}

Finally, the Author class is used to hold instances of Author objects that are loaded into the authorList.
The following code is for the Author class:

package org.javaee8recipes.chapter03.recipe03_03;

/**
* Recipe 3-3

* @author juneau
*/

public class Author implements java.io.Serializable {
private String first;
private String last;
private String bio;

120

public Author(){
this.first = null;
this.last = null;
this.bio = null;

}

public Author(String first, String last, String bio){
this.first = first;
this.last = last;
this.bio = bio;

}

/**

* @return the first

*/

public String getFirst() {
return first;

}

Vai
* @param first the first to set
*/
public void setFirst(String first) {
this.first = first;
}

Jx*¥

* @return the last

*/

public String getlast() {
return last;

}

/**

* @param last the last to set

*/

public void setlLast(String last) {
this.last = last;

}

/**

* @return the bio

*/

public String getBio() {
return bio;

}

/**
* @param bio the bio to set
*/
public void setBio(String bio) {
this.bio = bio;
}

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

121

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

The resulting web page will resemble the page shown in Figure 3-3.

JSF Components, Creating a Sophisticated Page

The view for this page is made up entirely of JSF standard components.
As you can see, there are many useful components bundled with JSF out of the box.

Java 9 Recipes Authors
Josh Juneau

Carl Dea

Mark Beaty

John O'Conner

Freddy Guime

Use the following form to add an author to the list.

New Author First Name:
New Author Last Name:

Add Author

Figure 3-3. Sophisticated JSF view example

122

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

How It Works

JSFE views are comprised of well-formed XML, being a mixture of HTML and JSF component tags. Any well-
formed HTML can be used in a JSF view, but the components are the means by which JSF communicates with
controller class instances. There are components shipped with JSF that can be used for adding images to views,
text areas, buttons, check boxes, and much more. Moreover, there are several very good component libraries
that include additional JSF components, which can be used within your applications. This recipe is meant to
give you an overall understanding of JSF components and how they work. You can learn more details regarding
JSF components and the use of external component libraries by reading the recipes in Chapter 5.

The first step toward using a component in a JSF view is to declare the tag library on the page. This is
done within the HTML element at the top of the page. The example in this recipe declares both the JSF core
component library and the JSF HTML component library within the HTML element near the top of the page.
These two libraries are standard JSF component libraries that should be declared in every JSF view.

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:f="http://xmlns.jcp.org/jsf/core"
xmlns:h="http://xmlns.jcp.org/jsf/html">

Once a library is declared, a component from within that library can be used in the view by specifying
the library namespace, along with the component you want to use. For instance, to specify an HTML
element for displaying text, use the JSF h:outputText component tag, along with the various component
attributes.

Prior to JSF 2.0, it was important to enclose a JSF view along with all of the components in the f:view
tag. As of JSF 2.0, the tag is no longer required because the underlying Facelets view technology is part of
every JSF view by default, so it takes care of specifying the view automatically. However, the f:view element
can still be useful for specifying locale, content type, or encoding. See the online documentation for more
information regarding the use of those features: https://javaserverfaces.github.io/docs/2.3/vdldoc/
index.html.

The <h:head> and <h:body> tags can be used to specify the header and body for a JSF web view.
However, using the standard HTML <head> and <body> tags is fine also. Some Java IDEs will automatically
use <h:head> and <h:body> in place of the standard HTML tags when writing JSF views. An important note
is that you must enclose any content that will be treated as an HTML input form with the <h:form> JSF tag.
This tag encloses a JSF form and renders an HTML form using a POST method if none is specified. No action
attribute is required for a JSF form tag because the JSF controller class action is invoked using one of the JSF
action components such as h: commandButton or h: commandLink.

Tip Always specify an id for the h: form tag because the form id is added as a prefix to all JSF
component tag ids when the page is rendered. For instance, if a form id of myform contained a component tag
with an id of mytag, the component id will be rendered as myform:mytag. If you do not specify an id, then one
will be generated for you automatically. If you want to use JavaScript to work with any of the page components,
you will need to have an id specified for h:form, or you will never be able to access them programmatically.

Note This recipe provides a quick overview of a handful of the standard JSF components. For an in-depth
explanation of JSF components and their usage, see Chapter 4.

123

http://dx.doi.org/10.1007/978-1-4842-3594-2_5
https://javaserverfaces.github.io/docs/2.3/vdldoc/index.html
https://javaserverfaces.github.io/docs/2.3/vdldoc/index.html
http://dx.doi.org/10.1007/978-1-4842-3594-2_4

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

The standard JSF component library contains a variety of components, and a few of them are utilized in
the example. The h:graphicImage tag can be used to place an image on the page and utilize a JSF controller
class if needed. The h:graphicImage tag is rendered into an HTML component, and as with all of the other
JSF components, it accepts JSF EL expressions in its attributes, which allows for the rendering of dynamic
images. In this recipe, a static image is specified with the url attribute, but an expression could also be used,
using a JSF controller class field. The library attribute is used to specify the directory in which the resource,
in this case an image, resides.

<h:graphicImage id="java9recipes" library="image" name="java9recipes.png"/>

The h:outputLabel tag is useful for reading controller class properties and displaying their values
when the view is rendered. They are rendered as a label for a corresponding field within the view. The
example utilizes static values for the h:outputLabel component, but they could include JSF expressions if
needed. The h:outputText component is also useful for reading controller class properties and displaying
their values. This component renders basic text on the page. The difference between h:outputlLabel and
h:outputText is that they are rendered into different HTML tags. Both components can accept JSF controller
class expressions for their value attributes.

In the example, a couple of text fields are displayed on the page using the h: inputText component,
which renders an input field. The value attribute for h: inputText can be set to a JSF controller class field,
which binds the text field to the corresponding controller class property. For instance, the example includes
an h:inputText component with a value of #{authorController.newAuthorFirst}, which binds the
component to the newAuthorFirst property in the AuthorController class. If the field contains a value,
then a value will be present within a text field when the page is rendered. If a value is entered into the
corresponding text field and the form is submitted, the value will be set into the newAuthorFirst field using
its setter method. The h: inputText tag allows for both reading and writing of controller class properties
because it uses lvalue JSF EL expressions. The h:inputTextarea tag is very similar to h: inputText in that it
works the same way, but it renders a text area rather instead of a text field.

The h:commandButton component is used to render a submit button on a page. Its action attribute
can be set to a JSF controller class method. When the button is pressed, the corresponding controller class
method will be executed, and the form will be submitted. The request will be sent to the FacesServlet
controller, and any properties on the page will be set. See Recipe 3-1 for more details regarding the JSF
lifecycle. The h: commandButton used in the example has an action attribute of #{authorController.
addAuthor}, which will invoke the addAuthor method within the AuthorController class. As you can see
from the method, when invoked it will add a new Author object to the authorlList, utilizing the values that
were populated in the corresponding h: inputText components for the newAuthorFirst, newAuthorLast,
and bio fields. The following excerpt from the example’s JSF view lists the h: commandButton component:

<h:commandButton id="addAuthor" action="#{authorController.addAuthor}"
value="Add Author"/>

The last component in the example that bears some explanation is the h:dataTable. This JSF
component is rendered into an HTML table, and it enables developers to dynamically populate tables
with collections of data from a controller class. In the example, the h:dataTable value attribute is set to
the controller class property of #{authorController.authorList}, which maps to an instance list that is
populated with Author objects. The dataTable var attribute contains a string that will be used to reference
the different objects contained in each row of the table. In the example, the var attribute is set to authozr, so
referencing #{author.first} in the dataTable will return the value for the current Author object’s first
property. The dataTable in the example effectively prints out the first and last names of each Author object
within the authorlList. This is just a quick overview of how the JSF dataTable component works. For more
details, refer to Recipe 3-12.

124

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

As you work more with constructing JSF views, you will become very familiar with the component
library. The tags will become second nature, and you will be able to construct highly sophisticated views for
your application. Adding external JSF component libraries into the mix along with using Ajax for updating
components is the real icing on the cake! You will learn more about spreading the icing on the cake and
creating beautiful and user-friendly views in Chapter 5!

3-4. Displaying Messages in JSF Pages

Problem

You have the requirement to display an information message on the screen for your application users.

Solution

Add the h:messages component to your JSF view and create messages as needed within the view’s controller
class using FacesMessage objects. The following JSF view contains an h:messages component tag that will
render any messages that were registered with FacesContext within the corresponding page’s controller
class. It also includes an h:message component that is bound to an h: inputText field. The h:message
component can display messages that are specific to the corresponding text field.

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/
xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:f="http://xmlns.jcp.org/jsf/core"
xmlns:h="http://xmlns.jcp.org/jsf/html">
<h:head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<title>Recipe 3-4: Displaying Messages in JSF Pages</title>
</h:head>
<h:body>
<h:form id="componentForm">
<h1>JSF Messages</h1>
<p>
This page contains a JSF message component below. It will display
messages from a JSF managed bean once the bean has been initialized.
</p>
<h:messages errorStyle="color: red" infoStyle="color: green" globalOnly="true"/>

Enter the word Java here:
<h:inputText id="javaText" value="#{messageController.javaText}"/>
<h:message for="javaText" errorStyle="color: red" infoStyle="color: green"/>

<h:commandButton id="addMessage" action="#{messageController.newMessage}"
value="New Message"/>

</h:form>

</h:body>
</html>

125

http://dx.doi.org/10.1007/978-1-4842-3594-2_5

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

The controller class in this example is named MessageController. It will create a JSF message
upon initialization, and then each time the newMessage method is invoked, another message will be
displayed. Also, if the text java is entered into the text field that corresponds to the h: inputText tag, then
a success message will be displayed for that component. Otherwise, if a different value is entered into
that field or if the field is left blank, then an error message will be displayed. The following listing is that of
MessageController

package org.javaee8recipes.chapter03.recipe03_04;

import java.util.Date;

import javax.enterprise.context.SessionScoped;
import javax.faces.application.FacesMessage;
import javax.faces.context.FacesContext;
import javax.inject.Named;

@Named

@SessionScoped

public class MessageController implements java.io.Serializable {
int hitCounter = 0;
private String javaText;

/**

* Creates a new instance of MessageController

*/

public MessageController() {
javaText = null;
FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY INFO, "Managed Bean
Initialized", null);

FacesContext.getCurrentInstance().addMessage(null, facesMsg);

}

public void newMessage(){
String hitMessage = null;
hitCounter++;
if(hitCounter » 1){
hitMessage = hitCounter +
} else {
hitMessage = hitCounter + " time";
}

times";

Date currDate = new Date();
FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY ERROR,
"You've pressed that button " + hitMessage + "! The current date and time:

+ currDate, null);
FacesContext.getCurrentInstance().addMessage(null, facesMsg);

if (getJavaText().equalsIgnoreCase("java")){

FacesMessage javaTextMsg = new FacesMessage(FacesMessage.SEVERITY INFO,
"Good Job, that is the correct text!", null);

126

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

FacesContext.getCurrentInstance().addMessage("componentForm: javaText",
javaTextMsg);
} else {
FacesMessage javaTextMsg = new FacesMessage(FacesMessage.SEVERITY ERROR,
"Sorry, that is NOT the correct text!", null);
FacesContext.getCurrentInstance().addMessage("componentForm: javaText",
javaTextMsg);

}

/x*%

* @return the javaText

*/

public String getJavaText() {
return javaText;

}

/**

* @param javaText the javaText to set

*/

public void setJavaText(String javaText) {
this.javaText = javaText;

}

The message will be displayed on the page in red text if it is an error message and in green text if it is an
informational message. In this example, the initialization message is printed green, and the update message
is printed in red.

How It Works

It is always a good idea to relay messages to application users, especially in the event that some action
needs to be taken by the user. The JSF framework provides an easy API that allows messages to be added to
a view from the JSF controller class. To use the API, add the h:message component to a view for displaying
messages that are bound to specific components and add the h:messages component to a view for
displaying messages that are not bound to specific components. The h:message component contains a
number of attributes that can be used to customize message output and other things. It can be bound to a
component within the same view by specifying that component’s id in the for attribute of h:message. The
most important attributes for the h:message component are as follows:

id: Specifies a unique identifier for the component

rendered: Specifies whether the message is rendered

e errorStyle: Specifies the CSS styles to be applied to error messages

e errorClass: Indicates the CSS class to apply to error messages

e infoStyle: Specifies the CSS styles to be applied to informational messages
e infoClass: Indicates the CSS class to apply to informational messages

e for: Specifies the component for which the message belongs

127

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

For a list of all attributes available for the h:message component, refer to the online documentation. In
the example for this recipe, the h:message component is bound to the h:inputText component with an id of
javaText. When the page is submitted, the newMessage method in the MessageController class is invoked.
That method is used in this example for generating messages to display on the page. If the text entered in
the javaText property matches Java, then a successful message will be printed on the page. To create a
message, an instance of the javax.faces.application.FacesMessage class is generated, passing three
parameters that correspond to message severity, message summary, and message detail. A FacesMessage
object can be created without passing any parameters, but usually it is more productive to pass the message
into the constructor at the time of instantiation. The general format for creating a FacesMessage object is as
follows:

new FacesMessage(FacesMessage.severity severity, String summary, String detail)

Passing a static field from the FacesMessage class specifies the message severity. Table 3-2 shows the
possible message severity values along with their descriptions.

Table 3-2. FacesMessage Severity Values

Severity Description

SEVERITY_ERROR Indicates that an error has occurred

SEVERITY_FATAL Indicates that a serious error has occurred
SEVERITY_INFO Indicates an informational message rather than an error
SEVERITY_WARN Indicates that an error may have occurred

In the example, if the value entered for the javaText property equals Java, then an informational message
is created. Otherwise, an error message is created. In either case, once the message is created, then it needs
to be passed into the current context using FacesContext.getCurrentInstance().addMessage(String
componentId, FacesMessage message).In the example, the method is called, passing a component ID
of componentForm: javaText. This refers to the component within the JSF view that has an ID of javaText
(h:inputText component).The componentFormidentifier belongs to the form (h:form component) that contains
the h: inputText component, so in reality the h: inputText component is nested within the h: form component.
To reference a nested component, combine component IDs using a colon as a delimiter. The following is an
excerpt from the example, demonstrating how to create a message and send it to the h:message component:

FacesMessage javaTextMsg = new FacesMessage(FacesMessage.SEVERITY ERROR,
"Sorry, that is NOT the correct text!", null);
FacesContext.getCurrentInstance().addMessage("componentForm: javaText", javaTextMsg);

The h:messages component can be used for displaying all messages that pertain to a view, or it can
be used for displaying only non-component-related messages by using the globalOnly attribute. All other
attributes for h:messages are very similar to the h:message component. By indicating a true value for the
globalOnly attribute, you are telling the component to ignore any component-specific messages. Therefore,
any FacesMessage that is sent to a specific component will not be displayed by h:messages. In the example,
the message that is displayed by h:messages is generated in the same manner as the component-specific
message, with the exception of specifying a specific component to which the message belongs. The following
excerpt demonstrates sending an error message to the h:messages component. Note that the last argument
that is sent to the FacesMessage call is a null value. This argument should be the clientId specification,
and by setting it to null, you are indicating that there is no specified client identifier. Therefore, the message
should be a global message rather than tied to a specific component.

128

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY_ERROR,
"You've pressed that button " + hitMessage + "! The current date and time:
+ currDate, null);

FacesContext.getCurrentInstance().addMessage(null, facesMsg);

Displaying the appropriate message at the right time in an application is very important. By utilizing
FacesMessages objects and displaying them using either the h:message or h:messages component, you can
ensure that your application users will be well informed of the application state.

3-5. Updating Messages Without Recompiling

Problem

Rather than hard-coding messages into your controller classes, you want to specify the messages in a
properties file so that they can be edited on the fly.

Solution

Create a resource bundle or properties file and specify your messages within it. Then retrieve the messages
from the bundle and add them to the FacesMessages objects rather than hard-coding a String value. In
the example that follows, a resource bundle is used to specify a message that is to be displayed on a page. If
you need to change the message at any time, simply modify the resource bundle and reload the page in the
browser without the need to redeploy the entire application or change any code.

The following code is for a JSF view that contains the h:messages component for displaying the message
from a corresponding controller class:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/
xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:f="http://xmlns.jcp.org/jsf/core"
xmlns:h="http://xmlns.jcp.org/jsf/html">
<h:head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<title>Recipe 3-5: Specifying Updatable Messages</title>
</h:head>
<h:body>
<h:form id="componentForm">
<h1>Utilizing a resource bundle</h1>
<p>
The message below is displayed from a resource bundle. The h:outputText
component has been added to the page only to instantiate the bean for this
example. To change
the message, simply modify the corresponding message within the bundle
and then refresh the page.
</p>
<h:outputText id="exampleProperty" value="#{exampleController.
exampleProperty}"/>

129

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

<h:messages errorStyle="color: red" infoStyle="color: green" globalOnly="true"/>
</h:form>
</h:body>
</html>

Next, the controller class is responsible for creating the message and sending it to the h:messages
component via the FacesContext. The following source is for ExampleController, which is the controller
class for the JSF view in this example:

package org.javaee8recipes.chapter03.recipe03_05;

import java.util.ResourceBundle;
import javax.enterprise.context.RequestScoped;

import javax.faces.application.FacesMessage;
import javax.faces.context.FacesContext;
import javax.inject.Named;

/**

* Recipe 3-5

* @author juneau

*/
@Named(value="exampleController")
@RequestScoped
public class ExampleController {

private String exampleProperty;

Vioio

* Creates a new instance of ExampleController
*/

public ExampleController() {

exampleProperty = "Used to instantiate the bean.";

FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY INFO,
ResourceBundle.getBundle("/org/javaeerecipes/chaptero3/Bundle").
getString("ExampleMessage"), null);

FacesContext.getCurrentInstance().addMessage(null, facesMsg);

}

/X%

* @return the exampleProperty

*/

public String getExampleProperty() {
return exampleProperty;

}

Jx*

* @param exampleProperty the exampleProperty to set
*/
public void setExampleProperty(String exampleProperty) {
this.exampleProperty = exampleProperty;
}

130

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

The resource bundle, which contains the message, is read by the controller class to obtain the message.
If you want to update the message, you can do so without recompiling any code.

This file is an example resource bundle
ExampleMessage=This message can be changed by updating the message bundle!

When the page is loaded, the h:outputText component instantiates ExampleController, which in turn
creates the FacesMessage objects that are used to display the message on the screen.

How It Works

Oftentimes it is useful to have the ability to update custom system or user messages rather than hard-coding
them. This could be useful in the case that some custom information that is contained in a particular
message may have the possibility of changing in the future. It'd be nice to simply update the message in text
format rather than editing the code, recompiling, and redeploying your application. It is possible to create
updateable messages using a resource bundle. A resource bundle is simply a properties file, which contains
name-value pairs. When adding custom messages to a bundle, name the message appropriately and then
add the custom message as the value portion of the property. An application can then look up the property by
name and utilize its value. In this case, the value is a string that will be used to create a FacesMessage instance.
In the example, the bundle contains a property named ExampleMessage, along with a corresponding
value. When the JSF view is loaded into the browser, the ExampleController class is instantiated, causing its
constructor to be executed. A FacesMessage instance is created, generating a message of type FacesMessage.
SEVERITY_INFO, and it reads the resource bundle and obtains the value for the ExampleMessage property.
The following excerpt demonstrates how to obtain a specified message value from the resource bundle:

ResourceBundle.getBundle("/org/javaee8recipes/chaptero3/Bundle").
getString("ExampleMessage"), null);

After the message is created, it is added to the current instance of FacesContext and, subsequently,
displayed on the page when it is rendered. Using a resource bundle to specify your messages can make life
much easier because you’ll no longer be required to recompile code in order to update such messages.

3-6. Navigating Based Upon Conditions

Problem

Your JSF application contains multiple pages, and you want to set up navigation between them.

Solution
Utilize one of the following techniques for performing navigation within JSF applications:

e Utilize explicit navigation through the use of a JSF controller class method along with
a corresponding faces-config.xml configuration file to control the navigation for
your application.

e Use implicit navigation for specifying the next view to render from within the controller
class, returning the name of the view in String format from an action method.

e Useimplicit navigation by specifying the name of the view to render as the action
attribute of a component tag, bypassing the controller class altogether.

131

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

The example in this recipe consists of four JSF views, and each one contains h: commandButton
components that invoke navigation to another view. The h:commandButton components are linked
to controller class methods that are present in the view’s corresponding controller class named
NavigationController. The first view listed here contains two h: commandButton components, each of which
invokes a method within the controller class named NavigationController. The first button utilizes explicit
JSF navigation, and the second uses implicit navigation.

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/
xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:f="http://xmlns.jcp.org/jsf/core"
xmlns:h="http://xmlns.jcp.org/jsf/html">
<h:head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<title>Recipe 3-6/title>
</h:head>
<h:body>
<h:form id="componentForm">
<h1>JSF Navigation - Page 1</h1>
<p>
Clicking the submit button below will take you to Page #2.
</p>

<h:commandButton id="navButton" action="#{navigationController.pageTwo}"
value="Go To Page 2"/>

<h:commandButton id="navButton2" action="#{navigationController.nextPage}"
value="Implicitly Navigate to Page 3"/>

</h:form>
</h:body>
</html>

The source for the second JSF view is very similar, except that a different controller class method is
specified in the action attribute of the view’s h: commandButton component.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/
xhtmli-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:f="http://xmlns.jcp.org/jsf/core"
xmlns:h="http://xmlns.jcp.org/jsf/html">
<h:head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<title>Recipe 3-6 JSF Navigation</title>
</h:head>
<h:body>
<h:form id="componentForm">
<h1>3SF Navigation - Page 2</h1>

132

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

<p>
Clicking the submit button below will take you to Page #1.
</p>

<h:commandButton id="navButton" action="#{navigationController.pageOne}"
value="Go To Page 1"/>
</h:form>
</h:body>
</html>

The third JSF view contains an h: commandButton component that invokes a controller class action and
utilizes conditional navigation, rendering pages depending on a conditional outcome in faces-config.xml.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/
xhtmli-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:f="http://xmlns.jcp.org/jsf/core"
xmlns:h="http://xmlns.jcp.org/jsf/html">
<h:head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<title>Recipe 3-6 JSF Navigation</title>
</h:head>
<h:body>
<h:form id="componentForm">
<h1>3SF Navigation - Page 3</h1>
<p>
The button below will utilize conditional navigation to take a user
to the next page. The application will use authentication to test
conditional navigation.
</p>

<h:commandButton id="loginButton" action="#{navigationController.login}"
value="Login Action"/>
</h:form>
</h:body>
</html>

Lastly, the fourth JSF view in the navigational example application contains an h:commandButton that
invokes a method and uses implicit navigation to return to the third JSF view, specifying the view name
within the action attribute directly and bypassing the controller class altogether.

<?xml version="1.0" encoding="UTF-8"?>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/
xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"

xmlns:f="http://xmlns.jcp.org/jsf/core"

xmlns:h="http://xmlns.jcp.org/jsf/html">

133

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

<h:head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<title>Recipe 3-6 JSF Navigation</title>
</h:head>
<h:body>
<h:form id="componentForm">
<h1>JSF Navigation - Page 4</h1>
<p>
Clicking the submit button below will take you to Page #1 using conditional
navigation rules.
</p>

<h:commandButton id="navButton2" action="recipe03_06c"
value="Implicitly Navigate to Page 3"/>
</h:form>
</h:body>
</html>

Now let’s look at the source listing for NavigationController. It contains the methods that are specified

within each page’s h:commandButton action attribute. Some of the methods return a String value, and
others do not. However, after the methods are invoked, then the FacesServlet processes the request, and
the faces-config.xml configuration file is traversed, if needed, to determine the next view to render.

package org.javaee8recipes.chapter03.recipe03 06;

import javax.inject.Named;
import javax.enterprise.context.RequestScoped;

/**
* Recipe 3-6
* @author juneau
*/
@Named(value = "navigationController")
@RequestScoped
public class NavigationController implements java.io.Serializable{

private boolean authenticated = false;

Jx*

* Creates a new instance of NavigationController
*/

public NavigationController() {

}

public String pageOne(){
return "PAGE_1";
}

public String pageTwo(){
return "PAGE_2";
}

134

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

/**
* Utilizing implicit navigation, a page name can be returned from an
* action method rather than listing a navigation-rule within faces-config.xml
* @return
*/
public String nextPage(){
// Perform some task, then implicitly list a page to render

return "recipe03_06c";

}

/**

* Demonstrates the use of conditional navigation

*/

public void login(){
// Perform some tasks, if needed, and then return boolean
setAuthenticated(true);
System.out.println("Here");

}

/**

* @return the authenticated

*/

public boolean isAuthenticated() {
return authenticated;

}

/**

* @param authenticated the authenticated to set

*/

public void setAuthenticated(boolean authenticated) {
this.authenticated = authenticated;

}

At the heart of navigation is the faces-config.xml file. It specifies which view should be displayed
after a corresponding outcome. Two of the navigation-rules use standard JSF navigation, and the last
navigation-rule uses conditional navigation.

<?xml version='1.0' encoding="UTF-8'?>

<faces-config version="2.3"
xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://xmlns.jcp.org/xml/ns/javaee http://xmlns.jcp.org/
xml/ns/javaee/web-facesconfig 2 3.xsd">
<navigation-rule>
<from-view-id>/chapter03/recipe03_06a.xhtml</from-view-id>
<navigation-case>

135

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

<from-outcome>PAGE_2/from-outcome>
<to-view-id>/chapter03/recipe03_06b.xhtml</to-view-id>
</navigation-case>
</navigation-rule>

<navigation-rule>
<from-view-id>/chaptero3/recipe03_06b.xhtml</from-view-id>
<navigation-case>
<from-outcome>PAGE_1</from-outcome>
<to-view-id>/chapter03/recipe03_06a.xhtml</to-view-id>
</navigation-case>
</navigation-rule>

<navigation-rule>
<navigation-case>
<from-action>#{navigationController.login}</from-action>
<if>#{navigationController.authenticated}</if>
<to-view-id>/chapter03/recipe03_06d.xhtml</to-view-id>
<redirect/>
</navigation-case>
</navigation-rule>
</faces-config>

How It Works

One of the most daunting tasks when building a web application is to determine the overall page navigation.
Many web frameworks have instituted XML configuration files for organizing page navigation. This is

one technique used by the JavaServer Faces web framework, and the navigational XML is placed in a

JSFE application’s faces-config.xml configuration file. When it’s using standard navigation, JSF utilizes
navigation rules to determine which view to render based on the outcome of page actions. If it’s using
standard JSF navigation, when a page action occurs, the controller class method that is associated with the
action can return a String value. That value is then evaluated using the navigational rules that are defined in
the faces-config.xml file and used to determine which page to render next.

The standard navigation infrastructure works well in most cases, but in some instances it makes
more sense to directly list the next page to be rendered within the controller class, rather than making a
navigation rule in the configuration file. When a controller class action is invoked, it can return the name
of a view, without the .xhtml suffix. Such navigation was introduced with the release of JSF 2.0, and it is
known as implicit navigation. As shown in the fourth example for the solution, you can also perform implicit
navigation by specifying the name of a view without the suffix for an action attribute of the component tag.

Yet another type of navigation was introduced with JSF 2.0, taking navigation to the next level by
allowing the use of JSF EL expressions in the faces-config.xml navigation rules. Conditional navigation
allows for an <if> element to be specified within the navigational rule, which corresponds to a JSF EL
condition. If the condition evaluates to true, then the specified view is rendered.

Navigation rules are constructed in XML residing within the faces-config.xml descriptor, and each
rule has a root element of navigation-rule. Within each rule construct, the from-view-id element should
contain the name of the view from which the action method was invoked. A series of navigation-cases
should follow the from-view-id element. Each navigation-case contains a from-outcome element, which
should be set to a String value corresponding to the String value that is returned from a subsequent
action method. For instance, when the pageOne method is invoked in the example, the String "PAGE_1"
is returned, and it should be specified within the from-outcome element within a navigation-case in the
faces-config.xml file. Lastly, the to-view-id element should follow the from-outcome element within the

136

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

navigation-case, and it should specify which view to render if the string in from-outcome is returned from
the action method. The following excerpt shows the standard navigation rule that allows for navigation from
page 1 to page 2 of the application:

<navigation-rule>
<from-view-id>/chaptero3/recipe03_06a.xhtml</from-view-id>
<navigation-case>
<from-outcome>PAGE_1</from-outcome>
<to-view-id>/chapter03/recipe03_06b.xhtml</to-view-id>
</navigation-case>
</navigation-rule>

Implicit navigation does not require any XML navigation rules to be declared. The action method that
is invoked via an h: commandButton returns a String that is equal to the name of the view that should be
rendered next. In the example, the second h:commandButton on view 1 invokes the nextPage controller class
method, which returns the name of the next view that should be rendered.

public String nextPage(){
// Perform some task, then implicitly list a page to render

return "recipe03_06c";

If you want to use implicit navigation, you can bypass the controller class altogether and specify
the name of the view that you want to render directly within the action attribute of h: commandButton or
h:commandLink. The fourth JSF view in the example demonstrates this technique.

The third view in the example, named recipe03_05c.xhtml, demonstrates conditional navigation. Its
h:commandButton action invokes the login method within the NavigationController class. That method
does not contain much business logic in this example, but it does set the bean’s authenticated field equal
to true. Imagine that someone entered an incorrect password and failed to authenticate; in such a case, the
authenticated field would be set to false. After the login method is executed, the faces-config.xml file
is parsed to determine the next view to render, and the conditional navigation rule utilizes JSF EL to specify
the navigation condition. The from-action element is set equal to the JSF EL that is used to invoke the login
method, and an <if> element is specified, referencing the navigationController.authenticated field via
JSE EL. If that field is equal to true, then the view specified within the to-view-id element will be rendered.
Note that the <redirect/> is required to tell JSF to redirect to the view listed in the <to-view-id> element
since JSF uses a redirect rather than a forward.

<navigation-rule>
<navigation-case>
<from-action>#{navigationController.login}</from-action>
<if>#{navigationController.authenticated}</if>
<to-view-id>/chapter0o3/recipe03_06d.xhtml</to-view-id>
<redirect/>
</navigation-case>
</navigation-rule>
</faces-config>

Standard JSF navigation allows enough flexibility for most cases, and its architecture is much more
sophisticated than other web frameworks. However, in JSF 2.0, two new navigational techniques known
as implicit and conditional navigation were introduced. With the addition of the new techniques, JSF
navigation is more robust and easier to manage.

137

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

3-7. Validating User Input

Problem

You want to add the ability for your application to validate any data that is entered into a JSF form.

Solution

Register a JSF validator on any text field components or other input components that need to be validated.
Use predefined JSF validators where applicable and create custom validator classes when needed. The
example for this recipe utilizes predefined validators for two h:inputText components in order to ensure
that the values entered into them are of proper length. A custom validator is added to a third text field, and
itis responsible for ensuring that the text contains a specified string. The three fields make up an employee
input form, and when an employee is entered and the data validates successfully, a new Employee object is
created and added to a list of employees. An h:dataTable element in the view is used to display the list of
employees if there are any. This is perhaps not the most true-to-life example, but you can apply the basic
philosophy to validate real-world needs in your own applications.

The following listing is for the JSF view that constructs the employee input form, including the
validation tags for each input text field:

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:f="http://xmlns.jcp.org/jsf/core"
xmlns:h="http://xmlns.jcp.org/jsf/html">
<h:head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<title>Recipe 3-7: Validating Data</title>
</h:head>
<h:body>
<h:form id="employeeForm">
<h1>Java Developer Employee Information</h1>

<h:messages globalOnly="true" errorStyle="color: red" infoStyle="color: green"/>

<h:dataTable id="empTable" var="emp"
border="1" value="#{employeeController.employeelist}"
rendered="#{employeeController.employeelist.size() > 0}">
<f:facet name="header">
Current Employees
</f:facet>
<h:column id="empNameCol">
<f:facet name="header">Employee</f:facet>
<h:outputText id="empName" value="#{emp.employeeFirst} #{emp.
employeelast}"/>
</h:column>
<h:column id="titleCol">
<f:facet name="header">Title</f:facet>
<h:outputText id="title" value="#{emp.employeeTitle}"/>
</h:column>

138

</h:dataTable>

<p>

Please use the form below to insert employee information.

</p>

<h:panelGrid columns="3">

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

<h:outputLabel for="employeeFirst" value="First: " />

<h:inputText id="employeeFirst" value="#{employeeController.employeeFirst}">
<f:validatelength minimum="3" maximum="30"/>

</h:inputText>

<h:message for="employeeFirst" errorStyle="color:red"/>

<h:outputlLabel for="employeelast" value="Last: " />

<h:inputText id="employeelast" value="#{employeeController.employeelast}">
<f:validatelength minimum="3" maximum="30"/>

</h:inputText>

<h:message for="employeelast" errorStyle="color:red"/>

<h:outputlLabel for="employeeTitle" value="Title (Must be a Java Position): "/>

<h:inputText id="employeeTitle" value="#{employeeController.employeeTitle}">
<f:validator validatorId="employeeTitleValidate" />

</h:inputText>

<h:message for="employeeTitle" errorStyle="color:red"/>

</h:panelGrid>

<h:commandButton id="employeeInsert" action="#{employeeController.

insertEmployee}"

</h:form>

</h:body>

</html>

value="Insert Employee"/>

The third h: inputText component in the view utilizes a custom validator. The f:validator tagis used
to specify a custom validator, and its validatorId attribute is used to specify a corresponding validator class.
The following listing is the Java code for a class named EmployeeTitleValidate, the custom validation class
for the text field:

package org.javaee8recipes.chapter03.recipe03 07;

import
import
import
import
import
import
import
import
import

/**
*

java.util.Date;
java.util.locale;
java.util.ResourceBundle;

javax.faces.
javax.faces.
javax.faces.
javax.faces.
javax.faces.
javax.faces.

* @author juneau

*/

application.FacesMessage;
component.UIComponent;
context.FacesContext;
validator.FacesValidator;
validator.Validator;
validator.ValidatorException;

139

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

@FacesValidator("employeeTitleValidate")
public class EmployeeTitleValidate implements Validator {

@verride
public void validate(FacesContext facesContext, UIComponent uiComponent, Object value)
throws ValidatorException {

checkTitle(value);

}

private void checkTitle(Object value) {
String title = value.toString();
if (!title.contains("Java")) {
String messageText = "Title does not include the word Java";
throw new ValidatorException(new FacesMessage(FacesMessage.SEVERITY_ERROR,
messageText, messageText));

Note As of JSF 2.3, it is possible to inject resources such as into validator classes. User-generated
validator classes are also injectable into other resources.

Now let’s look at the JSF controller class for the JSF view that contains the validation tags. The controller
class is named EmployeeController, and the action method, insertEmployee, is used to add new Employee
objects containing valid data to an ArraylList.

package org.javaee8recipes.chapter03.recipe03 07;

import java.io.Serializable;

import java.util.Arraylist;

import java.util.list;

import javax.enterprise.context.SessionScoped;

import javax.faces.application.FacesMessage;
import javax.faces.context.FacesContext;
import javax.inject.Named;

@Named(value="employeeController")
@SessionScoped
public class EmployeeController implements Serializable {

private String employeeFirst;

private String employeelast;
private String employeeTitle;

140

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

private List <Employee> employeelist;

public EmployeeController(){
employeeFirst = null;
employeelast = null;
employeeTitle = null;
employeelist = new ArraylList();

}

public void insertEmployee(){
Employee emp = new Employee(employeeFirst,
employeelast,
employeeTitle);
employeelList.add(emp);
FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY INFO, "Employee
Successfully Added", null);
FacesContext.getCurrentInstance().addMessage(null, facesMsg);

}

/**
* @return the employeeFirst
*/
public String getEmployeeFirst() {
return employeeFirst;
}

/**

* @param employeeFirst the employeeFirst to set

*/

public void setEmployeeFirst(String employeeFirst) {
this.employeeFirst = employeeFirst;

}

/X%
* @return the employeelast
*/
public String getEmployeelast() {
return employeelast;
}

/**

* @param employeelast the employeelast to set

*/

public void setEmployeelast(String employeelast) {
this.employeelast = employeelast;

}

/**

* @return the employeeTitle
*/

141

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

public String getEmployeeTitle() {
return employeeTitle;
}

/**

* @param employeeTitle the employeeTitle to set

*/

public void setEmployeeTitle(String employeeTitle) {
this.employeeTitle = employeeTitle;

}

/**

* @return the employeelist

*/

public List <Employee> getEmployeelist() {
return employeelist;

}

/**

* @param employeelist the employeelist to set

*/

public void setEmployeelList(List <Employee> employeelist) {
this.employeelist = employeelist;

}

In the end, the validators will raise exceptions if a user attempts to enter an employee first or last name
using an invalid length or a title that does not contain the word Java. When user input validation fails, error
messages are displayed next to the components containing the invalid entries.

How It Works

The JSF framework contains many features that make it more convenient for developers to customize their
applications. Validators are one of those features, because they can be used to solidify application data
and ensure data is correct before storing in a database or other data store. The JSF framework ships with

a good deal of validators that are already implemented. To use these predefined validators, simply embed
the appropriate validator tag within a component tag in a view to validate that component’s data values.
Sometimes there are cases where the standard validators will not do the trick. In such cases, JSF provides a
means for developing custom validator classes that can be used from within a view in the same manner as
the predefined validators.

In the example for this recipe, two of the h: inputText components contain standard JSF validators
used to validate the length of the values entered. The f:validatelLength tag can be embedded into a
component for string-length validation, and the tag’s minimum and maximum attributes can be populated with
the minimum and maximum string length, respectively. As mentioned previously, JSF ships with a good
number of these predefined validators. All that the developer is required to do is embed the validator tags in
the components that they want to validate. Table 3-3 lists all standard validator tags and what they do. For a
detailed look at each of the validator attributes, see the online documentation.

142

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

Table 3-3. Standard Validators

Validator Tag Description

validateLength Checks the length of a string

validatelongRange Checks the range of a numeric value

validateDoubleRange Checks the range of a floating-point value

validateRequired Ensures the input field is not empty (also an alternative to using the required

attribute on an input field component tag)

validateRegex Validates the component against a given regular expression pattern

Oftentimes, there is a need for some other type of validation to take place for a specified component.

In such cases, developing a custom validator class may be the best choice. Many developers shy away from
writing their own validators because it seems to be a daunting task at first glance. However, JSF 2.0 took great
strides toward making custom validator classes easier to write and understand.

To create a custom validator class, implement the javax.faces.validator.Validator class. Annotate
the validator class with the @FacesValidator annotation, specifying the string you want to use for registering
your validator within the f:validator tag. In the example, the name used to reference the validator class is
employeeTitleValidate. The only requirement is that the validator class overrides the validate method,
which is where the custom validation takes place. The validate method contains the following signature:

public void validate(FacesContext facesContext, UIComponent uiComponent, Object value)
throws ValidatorException

Utilizing the parameters that are passed into the method, you can obtain the current FacesContext,
a handle on the component being validated, as well as the component’s value. In the example, a helper
method is called from within the validate method, and it is used to check the component’s value
and ensure that the word Java is contained somewhere within it. If it does not validate successfully, a
ValidatorException is created and thrown. The message that is placed within the ValidatorException is
what will appear next to the component being validated if the validation fails. The following excerpt from the
validation class demonstrates creating and throwing a ValidatorException:

throw new ValidatorException(new FacesMessage(FacesMessage.SEVERITY ERROR,
messageText, messageText));

So, when does the validation occur? That is the key to the validator, isn’t it? The answer is
immediately, before the request is sent to the controller class action method. Any validation occurs
during the process validation phase, and if one or more components being validated within a view throw a
ValidatorException, then the processing stops, and the request is not sent to the action method. When the
user clicks the Submit button, the validation takes place first, and if everything is okay, then the request is
passed to the action method.

Note A means of validating that an input component simply contains a value is to use the required
attribute. The required attribute of input component tags can be set to true in order to force a value to be
entered for that component.

143

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

The validation of components in a JSF view using standard validators can really save a developer
some time and increase the usability and precision of an application’s data. The ability to create custom
validators allows validation to be performed for any scenario. Be constructive, use validation on all of your
application’s input forms, and create custom validators to perform validation using unique techniques. Your
application users will appreciate it!

3-8. Evaluating Page Expressions Immediately

Problem

You want to have some of your JSF component values evaluated immediately, rather than waiting until the
form is submitted.

Solution

Specify true for the component tag’s immediate attribute, and also specify the component’s onchange
attribute and set it equal to submit (). This will cause the input form to be submitted immediately when

the value for the component is changed, and JSF will skip the render response phase when doing so and
execute all components that specify an immediate attribute set to true during the Apply Request Values

JSF lifecycle phase. The example for this recipe uses an employee form. Instead of waiting until the form

is submitted, the first and last h: inputText components will be evaluated and validated during the Apply
Request Values phase immediately when their values change. The following source is for the JSF view named
recipe03_08.xhtml

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:f="http://xmlns.jcp.org/jsf/core"
xmlns:h="http://xmlns.jcp.org/jsf/html">
<h:head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<title>Recipe 3-8 Immediate View Evaluation</title>
</h:head>
<h:body>
<h:form id="employeeForm">
<h1>Java Developer Employee Information</hi>

<h:messages globalOnly="true" errorStyle="color: red" infoStyle="color: green"/>

<h:dataTable id="empTable" var="emp"
border="1" value="#{employeeController.employeelList}"
rendered="#{employeeController.employeelist.size() > 0}">
<f:facet name="header">
Current Employees
</f:facet>
<h:column id="empNameCol">
<f:facet name="header">Employee</f:facet>
<h:outputText id="empName" value="#{emp.employeeFirst} #{emp.
employeelast}"/>
</h:column>
<h:column id="titleCol">
<f:facet name="header">Title</f:facet>

144

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

<h:outputText id="title" value="#{emp.employeeTitle}"/>
</h:column>

</h:dataTable>
<p style="width: 40%;">
Please use the form below to insert employee information. The first and
last text fields will result in immediate evaluation during the apply
request
values phase, whereas the text field
in the middle will result in standard evaluation and be validated during
the invoke application phase.

To test, try inserting just one character in the first text field
and then tab to the next field. You should see an immediate result.
</p>
<h:panelGrid columns="3">
<h:outputLabel for="employeeFirst" value="First: " />
<h:inputText id="employeeFirst" immediate="true" onchange="submit()"
value="#{employeeController.employeeFirst}">
<f:validatelLength minimum="3" maximum="30"/>
</h:inputText>
<h:message for="employeeFirst" errorStyle="color:red"/>

<h:outputlLabel for="employeelast" value="Last: " />

<h:inputText id="employeelast" value="#{employeeController.employeelast}">
<f:validatelLength minimum="3" maximum="30"/>

</h:inputText>

<h:message for="employeelast" errorStyle="color:red"/>

<h:outputlLabel for="employeeTitle" value="Title (Must be a Java Position): "/>
<h:inputText id="employeeTitle" immediate="true"
value="#{employeeController.employeeTitle}">

<f:validator validatorId="employeeTitleValidate" />
</h:inputText>
<h:message for="employeeTitle" errorStyle="color:red"/>

</h:panelGrid>
<h:commandButton id="employeeInsert" action="#{employeeController.
insertEmployee}"
value="Insert Employee"/>
</h:form>
</h:body>
</html>

As you can see, the h: inputText components with ids of employeeFirst and employeeTitle specify

both the immediate="true" and the onchange="submit ()" attributes. These two attributes cause the
components to be validated immediately rather than when the h: commandButton action is invoked.

145

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

How It Works

Event handling that occurs immediately can be useful in cases where you do not want to validate the entire
form in order to process input but, rather, when you want chosen components to be validated immediately.
As mentioned in Recipe 3-1, when a JSF view is processed, a number of phases are executed. As such, when
a form is submitted, the Invoke Application phase initiates the event handlers for view components, and
validation occurs. When the immediate attribute for a component is set to true, the event handlers for that
component execute during the Apply Request Values phase, which occurs before the Process Validation
phase, where component validation normally occurs. This allows for an immediate validation response for
the specified components, resulting in immediate error messages if needed.

As mentioned previously, specify the immediate attribute for a component and set it to true if you
want to have that component evaluated immediately. This will cause the component to be evaluated and
validated during the Apply Request Values phase. The real fun comes into play when you also specify
the onclick attribute and set it equal to submit(), causing the form to be submitted when the value for
the component changes. Specifying attributes as such will cause any component in the view that has an
immediate attribute set to true to be validated when the component value changes.

Note The immediate attribute can also be useful when used on a commandButton component in such
instances where you do not want any form processing to take place, such as if you want to set up a Cancel
button or another button to bypass form processing.

3-9. Passing Page Parameters to Methods

Problem

You want to pass parameters to controller class methods from within a JSF view via Expression Language
(EL).

Solution

Use a standard JSF EL expression to invoke a controller class method and enclose the parameters that you
want to pass to the method within parentheses. In the example for this recipe, an h:dataTable component
is used to display a list of Author objects in a view. Each row in the h:dataTable contains an h: commandLink
component, which invokes a JSF controller class method when selected. The h:commandLink displays the
current row’s author name and invokes the AuthorController class displayAuthor method when clicked,
passing the last name for the author being displayed in the current row. In the displayAuthor method, the
list of authors is traversed, finding the element that contains the same last name as the parameter, which is
passed into the method. The current author is then displayed in a subsequent page, which is rendered using
implicit navigation.

The following source is for the JSF view entitled recipe03_09a.xhtml, which displays the list of authors
using an h:dataTable component:

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:f="http://xmlns.jcp.org/jsf/core"
xmlns:h="http://xmlns.jcp.org/jsf/html">
<h:head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<title>Recipe 3-9: Passing Page Parameters to Methods</title>

146

</h:head>
<h:body>
<h:form id="componentForm">
<h1>Author List</h1>
<p>

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

Below is the list of authors. Click on the author's last name

for more information regarding the author.

</p>

<h:graphicImage id="java9recipes" style="width: 10%; height: 20%"

library="image" name="java9recipes.png"/>

<h:dataTable id="authorTable" border="1" value="#{authorTableController.

authorList}"
var="author">
<f:facet name="header">
Java 9 Recipes Authors
</f:facet>
<h:column>

<h:commandLink id="authorName" action="#{authorTableController.

displayAuthor(author.last)}"

value="#{author.first} #{author.last}"/>

</h:column>
</h:dataTable>

</h:form>
</h:body>
</html>

The next listing is that of the controller class controller for the preceding JSF view. The controller class

populates an ArrayList with Author objects upon instantiation.
package org.javaee8recipes.chapter03.recipe03_09;

import java.io.Serializable;

import java.util.Arraylist;

import java.util.list;

import javax.enterprise.context.SessionScoped;
import javax.inject.Named;

@Named(value = "authorTableController")
@SessionScoped
public class AuthorController implements Serializable {

private List<Author> authorlList = null;

private final String juneauBio = "This is Josh Juneau's Bio";

private final String deaBio = "This is Carl Dea's Bio";

private final String beatyBio = "This is Mark Beaty's Bio";
private final String oConnerBio = "This is John 0'Connor's Bio";
private final String guimeBio = "This is Freddy Guime's Bio";

147

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

private Author current;
private String authorlast;
/**
* Creates a new instance of RecipeController
*/
public AuthorController() {
super();
authorlLast = null;
populateAuthorList();

}

private void populateAuthorList() {

if(authorList == null){
System.out.println("initializng authors list");
authorList = new Arraylist<>();
authorList.add(new Author("Josh", "Juneau", juneauBio));
authorList.add(new Author("Carl", "Dea", deaBio));
authorList.add(new Author("Mark", "Beaty", beatyBio));
authorList.add(new Author("John", "0'Conner", oConnerBio));
authorList.add(new Author("Freddy", "Guime", guimeBio));

}

public String displayAuthor(String last){
for(Author author:authorlist){
if(author.getlast().equals(last)){
current = author;
break;
}
}
return "recipe03_09b";

}

/**

* @return the authorlList

*/

public List getAuthorList() {
System.out.println("Cetting the authorlist =>" + authorList.size());
return authorlist;

}

/**

* @return the current
*/
public Author getCurrent() {
return current;
}

/%%
* @param current the current to set
*/

148

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

public void setCurrent(Author current) {
this.current = current;
}

/**

* @return the authorlast

*/

public String getAuthorLast() {
return authorlast;

}

/**

* @param authorlLast the authorlLast to set

*/

public void setAuthorlast(String authorlLast) {
displayAuthor(authorlLast);

}

The Author class is the same Author Plain Old Java Object (POJO) that was utilized in Recipe 3-3.
For the source of the Author class, refer to that recipe. Lastly, the following code is for a JSF view entitled
recipe03_09b.xhtml, the detail view for each author. When an author name is clicked from the h:dataTable
component in the first view, the component’s corresponding controller class method is invoked, and then
this view is rendered to display the selected author’s information.

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:f="http://xmlns.jcp.org/jsf/core"
xmlns:h="http://xmlns.jcp.org/jsf/html">
<h:head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<title>Recipe 3-9: Passing Page Parameters to Methods</title>
</h:head>
<h:body>
<h:form id="componentForm">
<hi>#{authorTableController.current.first} #{authorTableController.current.
last}</h1>
<p>
<h:graphicImage id="java9recipes" library="image" style="width: 10%; height:
20%" name="java9recipes.png"/>

#{authorTableController.current.bio}
</p>

<h:1link value="Go Back to List" outcome="recipe03_09a"/>
</h:form>

</h:body>
</html>

149

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

How It Works

The release of JSF 2.0 contained many enhancements that made the life of JSF developers much easier
than before. The ability to pass parameters to controller class methods from within JSF views is one such
enhancement. As you can see from the example for this recipe, it is possible to pass parameters to a method
within a JSF EL construct in the same manner that you would call any method with parameters in Java: by
enclosing the argument(s) within parentheses after the method name. It cannot get much simpler than that!
Let’s look at the lines of code that make this example hum. The first JSF view displays a table of author
names, and each name is displayed using an h: commandLink component. The value attribute for the
h:commandLink component is set to the author name, and the action attribute is set to the JSF EL, which
invokes a controller class action method named displayAuthor. Notice that within the call to the controller
class method, the EL for the author’s last name is passed as a String parameter.

<h:dataTable id="authorTable" border="1" value="#{authorTableController.authorList}"
var="author">
<f:facet name="header">
Java 9Recipes Authors
</f:facet>
<h:column>
<h:commandLink id="authorName" action="#{authorTableController.
displayAuthor(author.last)}"
value="#{author.first} #{author.last}"/>
</h:column>
</h:dataTable>

The displayAuthor method in the controller class accepts a String parameter value, which is the
author’s last name, and then finds an Author object within the list of authors that contains the same last
name. When it’s found, a class field named current is set equal to the Author object for the matching List
element. The subsequent JSF view then displays content utilizing the current Author information.

Prior to JSF 2.0, developers were unable to pass parameters to controller class methods from within a
view. This made it a bit more difficult to perform such techniques and usually involved a bit more code.

3-10. Using Operators and Reserved Words in Expressions

Problem

You want to perform some arithmetic and combine expressions within your JSF views.

Solution

JSF EL expressions can contain arithmetic using standard arithmetic operators. It is also possible to combine
two or more expressions utilizing some of JSF ELs reserved words. In the following example, some JSF EL
expressions are used to display mathematical results on a page. Both the usage of arithmetic and reserved
words are used in the expressions.

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:f="http://xmlns.jcp.org/jsf/core"
xmlns:h="http://xmlns.jcp.org/jsf/html"
xmlns:c="http://xmlns.jcp.org/jsp/jstl/core">
<h:head>

150

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<title>Recipe 3-10: Arithmetic and Reserved Words</title>

</h:head>
<h:body>
<h:form id="componentForm">

<h1>JSF Arithmetic and Reserved Words in EL</h1>

<p>

The following examples use JSF EL to perform some arithmetic.

</p>

1+1=#{1+1}

<h:outputText value="20 / 5

#{20 / 5}"/>

<h:outputText rendered="#{1 + 1 eq 2}" value="1 + 1 DOES equal 2"/>

<h:outputText rendered="#{5 * 4 != 20}" value="Is 5 * 4 equal to 20?"/>

<h:outputText rendered="#{5 * 5 eq 25 and 1 + 1 eq 2}" value="Combining some

expressions"/>

<c:if test="#{evaluationController.expr1i()}">

This will be displayed if expri() evaluates to true.

</c:if>

<c:if test="#{evaluationController.expr2() or evaluationController.field1}">
This will be displayed if expr2() or fieldi evaluates to true.

</c:if>
</h:form>
</h:body>
</html>

Some of the expressions contain controller class references for a bean named EvaluationController.

The listing for this controller class is as follows:

package org.javaee8recipes.chapter03.recipe03 10;

import javax.enterprise.context.RequestScoped;
import javax.inject.Named;

/**
* Recipe 3-10
* @author juneau
*/
@Named(value = "evaluationController")
@RequestScoped
public class EvaluationController {

private boolean fieldl = true;

151

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

/**

* Creates a new instance of EvaluationController
*/

public EvaluationController() {

}

public boolean expri(){
return true;
}

public boolean expr2(){
return false;
}

Vai

* @return the fieldi

*/

public boolean isField1() {
return fieldi;

}

/**

* @param fieldl the fieldl to set

*/

public void setFieldi(boolean field1) {
this.field1 = field1;

}

The resulting page will look as follows:

The following examples use JSF EL to perform some arithmetic.
1+1=2

20 /5 = 4.0

1 + 1 DOES equal 2

Combining some expressions
This will be displayed if expri() evaluates to true.
This will be displayed if expri() or fieldl evaluates to true.

How It Works

It is possible to use standard arithmetic and combine expressions using reserved words within JSF EL
expressions. All standard arithmetic operators are valid in EL, but a couple of things are different. For
instance, instead of writing an expression such as#{1 + 1 = 2}, you could use the eq reserved characters so
that the expression reads #{1 + 1 eq 2}. Similarly, the != symbol could be used to specify that some value
is not equal to another value, but rather, in this example, the ne reserved word is used. Table 3-4 describes all
such reserved words.

152

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

Table 3-4. JSF EL Reserved Words

Reserved Word

Description

and
div
empty
€q
false
ge

gt
instanceof
le

1t
mod
ne
not
null
or

true

Combines two or more expressions
Used to divide

Used to refer to an empty list
Equal to

Boolean false

Greater than or equal to

Greater than

Used to evaluate whether an object is an instance of another
Less than or equal

Less than

Modulus

Not equal

Used for negation

Evaluates a null value

Combines two or more expressions

Boolean true

Table 3-5 lists the available operators that can be used within JSF EL expressions, in order of

precedence.

Table 3-5. Operators for Use in Expressions

Operator

[]
0
- (unary), not, !,
*, /, div, %, mod

+, - (binary)

empty

< >, <=, >, 1t, gt, le, ge

==, |, eq, ne
&&, and
[l, or

?
L]

153

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

3-11. Creating Bookmarkable URLs

Problem

You want to enable your application to allow URLs that will be linked to display specific objects. For
instance, you want to use a GET URL such as http://myserver.com/JavaEERecipes/chaptero3/
chapter03_11.xhtml?last=juneauin order to display a page containing information on the author with the
specified last name.

Solution

Add view parameters to a JSF view for which you want to create a bookmarkable URL by defining the
parameter in an f:viewParam tag, which is a subtag of the f:metadata tag. Doing so will allow a page to
become accessible via a URL that contains request parameters, which can be used for record identification.
In this example, the view contains a view parameter, via the f:viewParam tag, that allows for the specification
of an author’s last name when the view is requested. In the following example, the controller class that
was created in Recipe 3-9 has been modified to include a new property named authorLast in order to
accommodate the new view parameter.

The sources for the view named recipe03_11.xhtml are listed next. They are very similar to the view
named recipe03_09b.xhtml, except that they include an f:viewParam element, which is enclosed between
opening and closing f:metadata elements.

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:f="http://xmlns.jcp.org/jsf/core"
xmlns:h="http://xmlns.jcp.org/jsf/html">
<h:head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<title>Recipe 3-11: Creating Bookmarkable URLs</title>

</h:head>
<h:body>

<f:metadata>
<f:viewParam name="authorLast" value="#{authorTableController.authorLast}"/>
</f:metadata>
<h:form id="componentForm">
<hi>#t{authorTableController.current.first} #{authorTableController.current.
last}</h1>
<p>
<h:graphicImage id="java9recipes" library="image" style="width: 10%; height:
20%" name="java9recipes.png"/>

#{authorTableController.current.bio}
</p>

<h:1link value="Go Back to List" outcome="recipe03_09a"/>
</h:form>

</h:body>
</html>

154

http://myserver.com/JavaEERecipes/chapter03/chapter03_11.xhtml?last=juneau
http://myserver.com/JavaEERecipes/chapter03/chapter03_11.xhtml?last=juneau

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

The code for the AuthorController class that’s pertinent to this example is listed next:
public class AuthorController implements Serializable {

private String authorlast;

/**

* @return the authorlast

*/

public String getAuthorLast() {
return authorlast;

}

/**

* @param authorlast the authorlast to set

*/

public void setAuthorlast(String authorLast) {
displayAuthor(authorlast);

}

As mentioned previously, a property named authorLast has been included in this controller. This
property makes it possible for the JSF view listed in the example to accept a request parameter named
authorlLast via a GET URL and pass it to the bean when the page is requested. In the end, the URL for
accessing the view and requesting the details for the author Josh Juneau would be as follows:

http://my-server.com/JavaEERecipes/chapter03/chapter0o3_11.xhtml?authorLast=Juneau

How It Works

In the past, JSF applications had a weakness in that they used to require a launch view, which created an
entry point for accessing the application. This gave the application a view that would set up an initial state
for the application session. While this concept is nice because each user session would begin with an
initialized application state, it prevented the ability for records to be linked directly via a URL. Sometimes
it is very useful to have the ability to link a view to a URL that contains request parameters so that records
matching the given parameters can be returned to the view without further user interaction; for instance,
say a website included information regarding a book and wanted to include a URL to find out more about
the book’s author. It's much nicer to directly link to a view containing that author’s information rather than
redirecting the user to a website that requires them to perform a manual search for the author. Such URLs
are also known as bookmarkable URLs because the URL contains all of the state that is required to make
the request. Therefore, they allow the user of a web application to bookmark the URL for direct access to a
specific point in an application.

JSF 2.0 introduced the ability to include view parameters, adding the ability for views to accept request
parameters. Utilizing a GET-based URL, a request parameter can be appended to the end along with its value,
and a view containing the new view parameter can then pass the parameter to a controller class before the
response is rendered. The bean can then accept the parameter value and query a database or search through
some other collection of data to find a record that matches the given value before rendering the response.

155

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

To include one or more view parameters within a view, you must add an opening and closing
f:metadata element to the view and embed the number of f:viewParam elements between them. The
f:viewParam element includes two attributes that must have values, those being the name and value
attributes. The name attribute specifies the name of the request parameter as you would like it to appear
within the bookmarkable URL, and the value attribute specifies the controller class field that should be
mapped to that request parameter. In the example for this recipe, the JSF view contains a view parameter
named authorlast, and the associated authorLast field within the controller class contains a setter
method, which is invoked when the page is requested. The following excerpt from the view demonstrates the
lines for adding the metadata and view parameter:

<f:metadata>
<f:viewParam name="authorLast" value="#{authorTableController.authorLast}"/>
</f:metadata>

With the addition of the view parameter, the page can be requested with a URL containing the
authorlast request parameter as follows:

http://my-server.com/JavaEERecipes/chapter03/chaptero3_11.xhtml?authorLast=Juneau

When the page is requested, the view parameter’s value invokes the setAuthorLast method in the
controller class, which then searches for an author record that contains a last name equal to the given
request parameter value.

public void setAuthorlast(String authorLast) {
displayAuthor(authorlLast);

The addition of view parameters to JSF 2.0 has made it easy to create bookmarkable URLs. This allows
applications to be more flexible and produce results immediately without requiring a user to navigate
through several pages before producing a result.

3-12. Displaying Lists of Objects

Problem

You want to display a list of objects in your rendered JSF page.

Solution

Use a JSF h:dataTable component to display the list objects, iterating over each object in the list and
displaying the specified values. The h:dataTable component is very customizable and can be configured to
display content in a variety of layouts. The following JSF view contains two h:dataTable components that
are used to display the authors for the Java 9 Recipes book using controller classes developed in previous
recipes. The first table in the view is straightforward and displays the names of each author. It has been
formatted to display alternating row colors. The second table contains two rows for each corresponding list
element, displaying the author names on the first row and their bios on the second.

156

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:f="http://xmlns.jcp.org/jsf/core"
xmlns:h="http://xmlns.jcp.org/jsf/html">
<h:head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<title>Recipe 3-12: Displaying Lists of Objects</title>

<link href="#{facesContext.externalContext.requestContextPath}/css/styles.css"
rel="stylesheet" type="text/css" />

</h:head>
<h:body>
<h:form id="componentForm">
<p>
<h:graphicImage id="java9recipes" style="width: 10%; height: 20%"
library="image" name="java9recipes.png"/>

#{authorTableController.current.bio}
</p>

<h:dataTable id="authorTable" border="1"
value="#{authorTableController.authorList}"
styleClass="authorTable"
rowClasses="authorTableOdd, authorTableEven"
var="author">
<f:facet name="header">
Java 9 Recipes Authors
</f:facet>
<h:column>
<h:outputText id="authorName" value="#{author.first} #{author.last}"/>
</h:column>
</h:dataTable>

<h:dataTable id="authorTable2" border="1" value="#{authorTableController.
authorList}"
var="author" width="500px;">
<f:facet name="header">
Java 9 Recipes Authors
</f:facet>
<h:column>
<h:panelGrid columns="2" border="1" width="100%">
<h:outputText id="authorFirst" value="#{author.first}" style="width:
50%" />
<h:outputText id="authorLast" value="#{author.last}"
style="width:50%"/>

157

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

</h:panelGrid>
<h:outputText id="authorBio" value="#{author.bio}"/>
</h:column>
</h:dataTable>

</h:form>

</h:body>
</html>

The example utilizes a cascading style sheet to help format the colors on the table. The source for the
style sheet is as follows:

.authorTable{
border-collapse:collapse;

.authorTableOdd{
text-align:center;
background:none repeat scroll o 0 #CCFFFF;
border-top:1px solid #BBBBBB;

}

.authorTableEven{
text-align:center;
background:none repeat scroll 0 0 #99CCFF;
border-top:1px solid #BBBBBB;

}

The resulting page should look similar to Figure 3-4.

158

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

Javag

Recipes

Apress®

Java 9 Recipes Authors|
Josh Juneau
Carl Dea
Mark Beaty
John O'Conner
[Freddy Guime

Java 9 Recipes Authors

osh uneau
is is Josh Juneau's Bio

arl ea
is is Carl Dea's Bio

ark eaty
is is Mark Beaty's Bio

ohn 'Conner

his is John O'Connor's Bio

reddy uime
This is Freddy Guime's Bio

Figure 3-4. JSF DataTable component examples

159

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

How It Works

AJSF h:dataTable component can be used to display lists of objects in a page. When rendered, an HTML
table is constructed, populating the cells of the table with the data for each list element or record of data.
The h:dataTable can iterate over a collection of data, laying it out in a columnar format including column
headers and the ability to customize the look using Cascading Style Sheets (CSS). The component contains
a number of important attributes, as listed in Table 3-6. Perhaps the most important of them are the value
and var attributes. The value attribute specifies the collection of data to iterate, and the var attribute lists a
String that will be used to reference each individual row of the table. The collection usually comes from the
controller class, such as in the example for this recipe. The legal data types for the value attribute are Array,
DataModel, List, and Result. The var attribute is used in each column to reference a specific field in an
object for the corresponding row.

Table 3-6. DataTable Attributes

Attribute Description

id ID for the component

border An integer indicating border thickness; 0 is default

bgcolor Background color of table

cellpadding Padding between the cell wall and its contents
cellspacing Spacing within the cells

width Overall width of the table, specified in pixels or percentages
first The first entry in the collection to display

TOWS Total number of rows to display

styleClass, captionClass, CSS attributes

headerClass, footerClass,
rowClasses, columnClasses

rendered Boolean value indicating whether the component will be rendered

The h:dataTable can contain any number of columns, and each is specified within the h:dataTable
component in the JSF view. The h: column nested element encloses the output for each column. A column
can contain just about any valid component or HTML, even embedded dataTables. An h:column normally
does not have any attributes specified, but it always contains an expression or hard-coded value for display.
<h:column>my column value</h:column>
or
<h:column>#{myTable.myColValue}</h:column>

Normally, columns in an HTML table contain headers. You can add headers to the h:dataTable or

individual columns by embedding an f:facet element within the h:dataTable and outside of the column
specifications or within each h:column by specifying the name attribute as header. The f:facet element can

160

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

also specify caption for the name attribute in order to add a caption to the table. The following excerpt from
the example demonstrates an h:dataTable that includes each of these features:

<h:dataTable id="authorTable" border="1"
value="#{authorTableController.authorList}"
styleClass="authorTable"
rowClasses="authorTableOdd, authorTableEven"
var="author">
<f:facet name="header">
Java 9 Recipes Authors
</f:facet>
<h:column>
<h:outputText id="authorName" value="#{author.first} #{author.last}"/>
</h:column>
</h:dataTable>

In the example, you can see that the h:dataTable value attribute is listed as #{authorTableController.
authorList}, alist of Author objects declared in the controller class. The var attribute establishes a variable
named author that refers to the current author who is being processed from the author list. The author
variable can then be accessed from within each h: column, displaying the data associated with the current list
element.

An important piece of the puzzle to help make tables easier to read and follow is the CSS that can
be used to style the table. The h:dataTable supports various attributes that allow you to apply externally
defined CSS classes to your table, specifically, the styleClass, captionClass, headerClass, footerClass,
rowClasses, and columnClasses attributes. Each of them can contain a CSS class specification for
formatting. The example demonstrates this feature.

3-13. Developing with HTML5

Problem

You would like to develop your view composed using standard HTML5 markup, rather than JSF tags.
Furthermore, you would like to take advantage of the JSF lifecycle and the managed bean/controller class
architecture.

Solution

Utilize the HTML-friendly markup for use within JSF views. By using HTML5 within JSF views directly,
you can take advantage of the entire JSF stack while coding views in pure HTML5. To use this solution,
HTMLS5 tags have the ability to access the JSF infrastructure via the use of a new taglib URI specification
jsft="http://xmlns.jcp.org/jst", which can be utilized within JSF views beginning with JSF 2.2 and
beyond. In views that specify the new taglib URI, HTML tags can utilize attributes that expose the
underlying JSF architecture.

In the following example view, HTML5 tags are used to compose an input form that is backed by a
JSF managed bean. To visit the sources for this example, visit the recipe03_13.xhtml view in the sources
for the book.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/
xhtmli-strict.dtd">

161

http://xmlns.jcp.org/jsf

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:jsf="http://xmlns.jcp.org/jst">
<head jsf:id="head">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>

</head>
<body jsf:id="body">
<form jsf:id="form" jsf:prependId="false">
<input type="email" jsf:id="valuel" value="#{ajaxBean.value1}">
</input>

<input type="text" jsf:id="value2" value="#{ajaxBean.value2}">

</input>

<input type="submit" jsf:id="status" jsf:value="#{ajaxBean.status}"
jsf:action="#{ajaxBean.process()}" value="Process"/>
<label for="status">Message: </label>
<output jsf:id="status">#{ajaxBean.status}</output>
</form>
</body>
</html>

Note This feature is only available to views written in Facelets. It is not available to views written in JSP.

How It Works

The JSF 2.2 release includes the ability to utilize HTML5 markup within JSF views. As a matter of fact, the
markup is not limited to HTMLS5; it can also include HTML4, and so on. The addition of a new taglib URI
makes this possible, because it allows existing HTML tags to be bound to the JSF lifecycle via the use of new
namespace attributes. It is now possible to develop entire JSF views without using any JSF tags at all.

To utilize the new namespace attributes, your JSF view must import the taglib URI jsf="http://
xmlns.jcp.org/jst". The new taglib can then be referenced as attributes within existing HTML tags,
setting the underlying JSF attributes that are referenced. For instance, to utilize an HTML input tag with JSE
you would add the jsf:id attribute and set it equal to the JSF ID that you want to assign to that component.
You would then set an attribute of jsf:value equal to the managed bean value.

Note There is no need to import the http://xmlns.jcp.org/jsf/html taglib because you are no
longer utilizing JSF component tags in the view.

The syntax provides several benefits for web developers. Although not all web developers are familiar
with JSF component tags, HTML tags are well known. By utilizing the syntax, JSF and HTML developers alike
can create web views that utilize the power of JSF along with the flexibility of HTML. The syntax also makes it
easier to bind HTML tags with JavaScript, if needed. You no longer need to worry about JSF view IDs getting

162

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

in the way when working with HTML and JavaScript. With the addition of new JSF taglib namespace for use
with HTML tags, both JSF and HTML alike have been improved.

3-14. Creating Page Templates

Problem

You want to make each of the JSF views in your application follow the same structure. Moreover, you want to
have the ability to reuse the same layout for each view.

Solution

Create a page template using the Facelets view definition language. Facelets ships as part of JavaServer
Faces, and you can use it to create highly sophisticated layouts for your views in a proficient manner. The
template demonstrated in this recipe will be used to define the standard layout for all pages within an
application. The demo application for this chapter is for a bookstore website. The site will display a number
of book titles on the left side of the screen, a header at the top, a footer at the bottom, and a main view in the
middle. When a book title is clicked in the left menu, the middle view changes, displaying the list of authors
for the selected book.

To create a template, you must first develop a new XHTML view file and then add the appropriate
HTML/JSE/XML markup to it. Content from other views will displace the ui:insert elements in the
template once the template has been applied to one or more JSF views. The following source is that of
a template named custom_template.xhtml; this is the template that will be used for all views in the
application:

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
xmlns:h="http://xmlns.jcp.org/jsf/html">

<h:head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<h:outputStylesheet library="css" name="default.css"/>
<h:outputStylesheet library="css" name="cssLayout.css"/>
<h:outputStylesheet library="css" name="styles.css"/>
<title>#{faceletsAuthorController.storeName}</title>

</h:head>

<h:body>

<div id="top">
<h2>#{faceletsAuthorController.storeName}</h2>
</div>
<div>
<div id="left">
<h:form id="navForm">
<h:commandLink action="#{faceletsAuthorController.
populateJavaRecipesAuthorList}" >Java 9 Recipes</h:commandLink>

163

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

<h:commandLink action="#{faceletsAuthorController.populateJavaEERecipesA
uthorList}">Java EE 8 Recipes </h:commandLink>
</h:form>
</div>
<div id="content" class="left_content">
<ui:insert name="content">Content</ui:insert>
</div>
</div>
<div id="bottom" style="position: absolute;width: 100%;bottom: 20px;">
Written by Josh Juneau, Apress Author
</div>

</h:body>
</html>

The template defines the overall structure for the application views. However, it uses a CSS style sheet to
declare the formatting for each of the <div> elements within the template. The style sheet, entitled default.

css, should be contained within a resources directory in the application so that it will be accessible to the
views. Refer to Recipe 3-16 for more details on the resources directory.

Note The CSS style sheets can be automatically generated for you if you’re using the NetBeans IDE.

There are also a couple of JSF EL expressions utilized within the template. The EL references a JSF
controller by the name of AuthorController, which is referenced by faceletsAuthorController. While the
source for this class is very important for the overall application, you'll wait to look at that code until Recipe
3-15 since it does not play a role in the application template layout.

How It Works

To create a unified application experience, all of the views should be coherent in that they look similar and
function in a uniform fashion. The idea of developing web page templates has been around for a number of
years, but unfortunately many template implementations contain duplicate markup on every application
page. While duplicating the same layout for every separate web page works, it creates a maintenance
nightmare. What happens when there is a need to update a single link within the page header? Such a
conundrum would cause a developer to visit and manually update every web page of an application if the
template was duplicated on every page. The Facelets view definition language provides a robust solution for
the development of view templates, and it is one of the major bonuses of working with the JSF technology.

Facelets provides the ability for a single template to be applied to one or more views within an
application. This means a developer can create one view that constructs the header, footer, and other
portions of the template, and then this view can be applied to any number of other views that are responsible
for containing the main view content. This technique mitigates issues such as changing a single link within
the page header, because now the template can be updated with the new link, and every other view within
the application will automatically reflect the change.

To create a template using Facelets, create an XHTML view, declare the required namespaces, and then
add HTML, JSE, and Facelets tags accordingly to design the layout you desire. The template can be thought
of as an “outer shell” for a web view, in that it can contain any number of other views within it. Likewise, any
number of JSF views can have the same template applied, so the overall look and feel of the application will
remain constant. Figure 3-5 provides a visual demonstrating the concept of an application template.

164

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

Figure 3-5. Visual representation of a Facelets template and client

You may have noticed from the view listing in the solution to this recipe that there are some tags toting
the ui: prefix. Those are the Facelets tags that are responsible for controlling the view layout. To utilize these
Facelets tags, you'll need to declare the XML namespace for the Facelets tag library in the <html> element in
the template. Note that the XML namespace for the standard JSF tag libraries is also specified here.

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://xmlns.jcp.org/jsf/facelets”
xmlns:h="http://xmlns.jcp.org/jsf/html">

Note The Facelets template must include the <htmls, <head>, or <h:head>, and <body> or <h:body>,
elements because they define the overall layout for each view that uses it. Each view that uses a Facelets
template is known as a composition. One template can be used by multiple compositions or views. In actuality,
everything outside of the <ui:composition> opening and closing tags in a composition is ignored. You’ll learn
more about that in the next recipe!

Facelets contains a number of special tags that can be used to help control page flow and layout.
Table 3-7 in Recipe 3-15 lists the Facelets tags that are useful for controlling page flow and layout. The
only Facelets tag that is used within the template for this recipe example is ui:insert. The ui:insert tag
contains a name attribute, which is set to the name of the corresponding ui:define element that will be
included in the view. Looking at the source for this recipe, you can see the following ui:insert tag:

<ui:insert name="content">Content</ui:insert>

If a view that uses the template, aka the template client, specifies a ui:define tag with the same name as
the ui:insert name, then any content that is placed between the opening and closing ui:define tags will be
inserted into the view in that location. However, if the template client does not contain a ui:define tag with
the same name as the ui:insert tag, the content between the opening and closing ui:insert tags in the
template will be displayed.

Templates can be created via an IDE, such as NetBeans, to provide a more visual representation of the
layout you are trying to achieve. To create a Facelets template from within NetBeans, right-click the project
folder into which you want to place the template and select New » Other from the contextual menu to open

165

CHAPTER 3 " THE BASICS OF JAVASERVER FACES

the New File window. Once that’s open, select JavaServer Faces from the Category menu and then Facelets

Template from within the file types, as shown in Figure 3-6.

New File

Steps Choose File Type

1. Choose File Type Project: | (&) JavaEERecipes

ar

2.
Categories: ~ File Types:
([web [#] JSF Page
(] JavaServer Faces |£] JSF Managed Bean
(1 Bean Validation &} JSF Faces Configuration
(3 struts @] JSF Composite Component

) JSF Pages from Entity Classes
[EfFacelets Template
|@] Facelets Template Client

[Spring Framework

(] Enterprise JavaBeans

(] Contexts and Dependenc
£ Java

[JavaFx

77 Cussimm 1L Carmar

Description:

'Creates a new Facelets template.

Help < Back | Next > Finish [

Cancel

Figure 3-6. Creating a Facelets template from within NetBeans

After you've selected the Facelets Template file type, click the Next button to open the New Facelets
Template window (see Figure 3-7). This window allows you to select the overall layout that you want to
compose for your application views, as well as choose the location and name for the template.

166

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

Steps Name and Location

1. Choose File Type

e sl g i File Name: newTemplatel

Project: JavaEERecipes
Location: JavaEERecipes - Web Pages v
Folder: resources Browse...

Created File: /Java_Dev/JavaEERecipes/web/resources/newTemplatel.xhtml

Layout Style: (=) CSS Table

Help < Back Next > Finish Cancel

Figure 3-7. New Facelets Template window in NetBeans

After you've selected the layout of your choice and filled in the other options, the template will be
opened within the NetBeans code editor, and you can begin to apply the template to JSF view clients
(see Recipe 3-15). Using a wizard such as the one offered by NetBeans can help since you can choose a
visual representation of the template at creation time.

In summary, a Facelets template consists of HTML and JSF markup, and it is used to define a
page layout. Sections of the template can specify where page content will be displayed through the
ui:insert tag. Any areas in the template that contain a ui:insert tag can have content inserted into
them from a template client.

167

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

3-15. Applying Templates

Problem

You have created a template for use within your JSF web views and you want to apply it to the views of your
application.

Solution

Use the ui:composition tag in each view that will utilize the template. The ui:composition tag should be
used to invoke the template, and ui:define tags should be placed where content should be inserted. The
following listings demonstrate how Facelets templates are applied to various views.

View #1: recipe03_15a.xhtml

recipe03_15a.xhtml is the markup for a view within the bookstore application that is used to display the
authors for the Java 9 Recipes book. The template that was created in Recipe 3-14 is applied to the view, and
individual ui:define tags are used in the view to specify the content that should be inserted into the page/
view.

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
xmlns:f="http://xmlns.jcp.org/jsf/core"
xmlns:h="http://xmlns.jcp.org/jsf/html">

<body>
<ui:composition template="./layout/custom_template.xhtml">
<ui:define name="top">
</ui:define>
<ui:define name="left">
</ui:define>

<ui:define name="content">
<h:form id="componentForm">
<h1>Author List for Java 9 Recipes</h1>
<p>
Below is the list of authors. Click on the author's last name
for more information regarding the author.
</p>

<h:graphicImage id="javarecipes" style="width: 100px; height: 120px"
library="image" name="java9recipes.png"/>

<h:dataTable id="authorTable" border="1" value="#{faceletsAuthorControl
ler.authorList}"

168

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

var="author">
<f:facet name="header">
Java 9 Recipes Authors
</f:facet>
<h:column>
<h:commandLink id="authorName" action="#{faceletsAuthorControll
er.displayAuthor(author.last)}"
value="#{author.first} #{author.last}"/>
</h:column>
</h:dataTable>

</h:form>
</ui:define>

<ui:define name="bottom">
bottom
</ui:define>

</ui:composition>

</body>
</html>

View #2: recipe03_015b.xhtml

recipe03_15b.xhtml contains the sources for the second view within the bookstore application. It is used to
list the authors for the Java EE 8 Recipes book. Again, note that the template has been applied to the view by
specifying the template attribute within the ui:composition tag.
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
xmlns:f="http://xmlns.jcp.org/jsf/core"
xmlns:h="http://xmlns.jcp.org/jsf/html">
<body>
<ui:composition template="./layout/custom_template.xhtml">
<ui:define name="top">
</ui:define>
<ui:define name="left">
</ui:define>
<ui:define name="content">

<h:form id="componentForm">
<h1>Author List for Java EE 8 Recipes</h1>

169

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

<p>
Below is the list of authors. Click on the author's last name
for more information regarding the author.

</p>

<h:graphicImage id="javarecipes" library="image" style="width: 100px;
height: 120px" name="java9recipes.png"/>

<h:dataTable id="authorTable" border="1" value="#{faceletsAuthorControl
ler.authorlList}"
var="author">
<f:facet name="header">
Java 9 Recipes Authors
</f:facet>
<h:column>
<h:commandLink id="authorName" action="#{faceletsAuthorControll
er.displayAuthor(author.last)}"
value="#{author.first} #{author.last}"/>
</h:column>
</h:dataTable>

</h:form>
</ui:define>

<ui:define name="bottom">
bottom
</ui:define>

</ui:composition>

</body>
</html>

View #3: recipe03_15c.xhtml

Recipe03_15c.xhtml contains the sources for another view listing that is part of the bookstore application. This
view is responsible for displaying the individual author detail. Again, the template is applied to this page.

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:f="http://xmlns.jcp.org/jsf/core"
xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
xmlns:h="http://xmlns.jcp.org/jsf/html">
<h:head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<title>Recipe 3-15: Facelets Page Template</title>
</h:head>
<h:body>

170

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

<ui:composition template="./layout/custom_template.xhtml">
<ui:define name="top">
</ui:define>
<ui:define name="left">
</ui:define>

<ui:define name="content">
<h:form id="componentForm">
<h1>#{faceletsAuthorController.current.first}
#{faceletsAuthorController.current.last}</h1>
<p>
<h:graphicImage id="java9recipes" library="image" style="width:
100px; height: 120px" name="javad9recipes.png"/>

#{faceletsAuthorController.current.bio}
</p>
</h:form>
</ui:define>

<ui:define name="bottom">
bottom
</ui:define>

</ui:composition>
</h:body>
</html>

Managed Bean Controller: AuthorController

Of course, all the business logic and navigation is occurring from within a JSF controller class. AuthorController
is the bean that handles all the logic for the bookstore application. Note that the @Named annotation specifies a
String value of faceletsAuthorController, which is used to reference the bean from within the views.

package org.javaee8recipes.chapter03.recipe03_15;

import java.io.Serializable;

import java.util.Arraylist;

import java.util.list;

import javax.annotation.PostConstruct;

import javax.enterprise.context.SessionScoped;
import javax.inject.Named;

@Named(value = "faceletsAuthorController")
@SessionScoped

public class AuthorController implements Serializable {

private List<Author> authorlist;
private String storeName = "Acme Bookstore";

171

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

172

private final String juneauBio =
"Josh Juneau has been developing software"
" since the mid-1990s. PL/SQL development and database programming"
was the focus of his career in the beginning, but as his skills developed,"
" he began to use Java and later shifted to it as a primary base for his"
" application development. Josh has worked with Java in the form of graphical”
user interface, web, and command-line programming for several years. "
"During his tenure as a Java developer, he has worked with many frameworks"
" such as JSF, EJB, and JBoss Seam. At the same time, Josh has extended his"
" knowledge of the Java Virtual Machine (JVM) by learning and developing
applications”
+ " with other JVM languages such as Jython and Groovy. His interest in
learning"
+ " new languages that run on the JVM led to his interest in Jython. Since 2006,"
+ " Josh has been the editor and publisher for the Jython Monthly newsletter. "
+ "In late 2008, he began a podcast dedicated to the Jython programming
language.";
private final String deaBio = "This is Carl Dea's Bio";
private final String beatyBio = "This is Mark Beaty's Bio";
private final String oConnerBio = "This is John O0'Connor's Bio";
private final String guimeBio = "This is Freddy Guime's Bio";
private Author current;
private String authorlast;

+ o+ + + + + o+

/**

* Creates a new instance of RecipeController
*/

public AuthorController() {

}

J**
* Methods that are annotated with @PostConstruct are invoked when the
* controller class is created.
*/
@PostConstruct
public void init(){
populateJavaRecipesAuthorList();
}

public String populatelavaRecipesAuthorList() {

authorList = null;

authorList = new ArraylList<>();

authorList.add(new Author("Josh", "Juneau", juneauBio));
authorList.add(new Author("Carl", "Dea", deaBio));
authorList.add(new Author("Mark", "Beaty", beatyBio));
authorList.add(new Author("John", "0'Conner", oConnerBio));
authorList.add(new Author("Freddy", "Guime", guimeBio));
return "recipe04_01a";

CHAPTER 3

public String populatelavaEERecipesAuthorList() {
System.out.println("initializng authors list");
authorList = new Arraylist<>();
authorList.add(new Author("Josh", "Juneau", juneauBio));
return "recipe04 _01b";

}

public String displayAuthor(String last) {
for (Author author : authorList) {
if (author.getlast().equals(last)) {
current = author;

}
}
return "recipe04 01c";
}
/**
* @return the authorlList
*/

public List getAuthorList() {
return authorlist;
}

/**

* @return the current

*/

public Author getCurrent() {
return current;

}

J¥*

* @param current the current to set

*/

public void setCurrent(Author current) {
this.current = current;

}

/**

* @return the authorlast

*/

public String getAuthorLast() {
return authorlast;

}

/x*¥

* @param authorlLast the authorLast to set

*/

public void setAuthorlast(String authorlLast) {
this.authorlLast = authorlast;

}

THE BASICS OF JAVASERVER FACES

173

CHAPTER 3 " THE BASICS OF JAVASERVER FACES

/**

* @return the storeName

*/

public String getStoreName() {
return storeName;

}

/**

* @param storeName the storeName to set

*/

public void setStoreName(String storeName) {

this.storeName = storeName;

}

In the end, the overall application will look like Figure 3-8. To run the application from the sources,
deploy the WAR file distribution to your application server, and then load the following URL into your
browser: http://your-server:port_number/JavaEERecipes/faces/chaptero3/chaptero3_i5a.xhtml.

Acme Bookstore

Java 9 Recipes Author List for Java 9 Recipes

Java EE 7 Recipes Below is the list of authors. Click on the author's last name for more information

Java 9

Recipes

g

Java 9 Recipes Authors

Josh Juneau

Carl Dea

Mark Beaty

John O'Conner

Freddy Guime

Written by Josh Juneau, Apress Author

Figure 3-8. Application using Facelets template

174

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

How It Works

Applying a Facelets template to individual views in a JSF application is quite easy. Views that use a template
are known as template clients. As mentioned in Recipe 3-14, a view template can specify individual
ui:insert tags, along with the name attribute, in any location on the template where view content could

be inserted. The name attribute within the ui:insert tag will pair up with the name attribute within the
ui:define tagin the template client in order to determine what content is inserted.

Note As noted in Recipe 3-14, each view that uses a Facelets template can be referred to as a
composition. It can also be referred to as a template client. It is important to note that a template client, or
composition, contains an opening and closing <ui:composition> tag. Everything outside of those tags is
actually ignored at rendering time because the template body is used instead. You can also omit the <html>
tags within a template client and just open and close the view using the <ui:composition> tags instead. See
the “Opening/Closing Template Clients with <ui:composition>" sidebar for an example.

OPENING/CLOSING TEMPLATE CLIENTS WITH <UI:COMPOSITION>

It is common to see template client views using opening and closing <html> tags, as demonstrated
with the example views in the solution to this recipe. However, since everything outside of the
<ui:composition> tags is ignored at rendering time, you can omit those tags completely. It is
sometimes useful to open and close a template client with the <ui:composition> tag. However, some
page editors will be unable to work with the code or errors will be displayed because the view does not
include the <html> element at its root. Here’s an example of using <ui:composition> as the opening
and closing elements of a template client:

<ui:composition xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
xmlns:f="http://xmlns.jcp.org/jsf/core"
xmlns:h=http://xmlns.jcp.oxrg/jsf/html
template="./layout/custom_template.xhtml">

<<same as code per the view samples in the solution to this recipe>>

</ui:composition>

Use the technique that suits your application the best! Remember, JSF and Facelets will treat each view
the same, and you can save a few lines of code specifying <ui:composition> as the root.

175

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

Applying Templates

A template can be applied to a view by specifying it within the template attribute within the view’s
ui:composition tag. For instance, all the views in this example specify the same template, as you can see in
the following excerpt:

<ui:composition template="./layout/custom_template.xhtml">
The name of the template in the example is custom_template.xhtml, and the path to the template is . /
layout/. The ui:composition tag should encapsulate all other markup in a Facelets view. All views that are

to use the template must specify the ui:composition tag. A number of other useful Facelets template tags
come along with Facelets, as described in Table 3-7.

Table 3-7. Facelets Page Control and Template Tags

Tag Description

ui:component Defines a template component and specifies a file name for the component
ui:composition Defines a page composition and encapsulates all other JSF markup

ui:debug Creates a debug component, which captures debugging information, namely, the

state of the component tree and the scoped variables in the application, when the
component is rendered

ui:define Defines content that is inserted into a page by a template

ui:decorate Decorates pieces of a page

ui:fragment Defines a template fragment, much like ui:component, except that all content
outside of tag is not disregarded

ui:include Allows another XHTML page to be encapsulated and reused within a view

ui:insert Inserts content into a template

ui:param Passes parameters to an included file or template

ui:repeat Iterates over a collection of data

ui:remove Removes content from a page

The ui:define tag encloses content that will be inserted into the template at the location of the
template’s ui:insert tags. The ui:define tagis matched to a template’s ui:insert tag based on the value of
the name attribute that is common to each tag. As you can see from the first view listing in this example, the
first ui:define tag specifies top for the name attribute, and this will correspond to the template ui:insert
tag with a name attribute equal to top. But the template does not specify such a tag! That is okay; there
does not have to be a one-to-one match between the ui:define and ui:insert tags. A view can specify
any number of ui:define tags, and if they do not correspond to any of the ui:insert tags in the template,
then they are ignored. Likewise, a template can specify any number of ui:insert tags, and if they do not
correspond to a ui:define tag in the template client view, then the content that is defined in the template in
that location will be displayed.

Looking at the same view, another ui:define tag contains a name attribute value equal to content, and
this tag does correspond with a ui:insert tagin the template that also has a name attribute value of content.
The following excerpt is taken from the template, and it shows the ui:insert tag that corresponds to the
view’s ui:define tag with the same name attribute. You can see the full listing for the template in Recipe 3-14.

176

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

<div id="content" class="left content">
<ui:insert name="content">Content</ui:insert>
</div>

The following excerpt, taken from recipe04_01a.xhtml, is the corresponding ui:define tag that will be
inserted into the template at this location:

<ui:define name="content">
<h:form id="componentForm">
<h1>Author List for Java 9 Recipes</h1>
<p>
Below is the list of authors. Click on the author's last name
for more information regarding the author.
</p>

<h:graphicImage id="javarecipes" style="width: 10%; height: 20%" library="image"
name="java9recipes.png"/>

<h:dataTable id="authorTable" border="1" value="#{faceletsAuthorController.
authorList}"
var="author">
<f:facet name="header">
Java 9 Recipes Authors
</f:facet>
<h:column>
<h:commandLink id="authorName" action="#{faceletsAuthorController.
displayAuthor(author.last)}"
value="#{author.first} #{author.last}"/>
</h:column>
</h:dataTable>

</h:form>
</ui:define>

Asyou can seg, it can be very powerful to define a view template that can be applied to several views
in an application. Facelets templating provides a very powerful solution for defining such a template,
allowing for consistent page layout and reusable page code.

3-16. Adding Resources into the Mix

Problem

You want to include resources, such as CSS, images, and JavaScript code, within your views that are
accessible for use from every view within your application. For instance, rather than hard-coding a URL to
an image, you want to reference the image location and have the application dynamically create the URL to
the image location at runtime.

177

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

Solution

Create a resource directory and, optionally, subfolders within the resources directory to contain the
resources that your application will utilize. Any CSS files, images, and so on, that are placed within
subdirectories in the resources folder can be referenced within a JSF view via a JSF component’s library
attribute, rather than specifying the full path to the resource. In the following example, a cascading style
sheet is used to style the table of authors within the application. For this recipe, you will use the styles.

c¢ss sheet that was applied to the h:dataTable in an earlier recipe. The style sheet declaration will reside in
the custom_template.xhtml template, and you will use an h:outputStylesheet component rather than a
<link> tag. As a matter of fact, all of the <1ink> tags will be removed and replaced with h:outputStylesheet
components to take advantage of the resources folder. The directory structure should look like Figure 3-9
when set up correctly.

" nnayges
v || resources
» || components
v [css
"L cssLayout.css
Y. default.css
YL styles.css

Figure 3-9. Utilizing the resources directory

The following listing is the updated custom_template.xhtml, because it now utilizes the
h:outputStylesheet component rather than the <1ink> tag. Note that the 1ibrary attribute is specified as css.

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
xmlns:f="http://xmlns.jcp.org/jsf/core"
xmlns:h="http://xmlns.jcp.org/jsf/html">

<body>
<ui:composition template="./layout/custom_template.xhtml">

<ui:define name="content">
<h:form id="componentForm">
<h1>Author List for Java 9 Recipes</h1>
<p>
Below is the list of authors. Click on the author's last name
for more information regarding the author.
</p>

<h:graphicImage id="javarecipes"
library="image" style="width: 100px; height: 120px"
name="java9recipes.png"/>

178

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

<h:dataTable id="authorTable" border="1" value="#{faceletsAuthorControl
ler.authorList}"
styleClass="authorTable"
rowClasses="authorTableOdd, authorTableEven"
var="author">
<f:facet name="header">
Java 9 Recipes Authors
</f:facet>
<h:column>
<h:commandLink id="authorName" action="#{faceletsAuthorController.
displayAuthor(author.last)}"
value="#{author.first} #{author.last}"/>
</h:column>
</h:dataTable>

</h:form>
</ui:define>

</ui:composition>

</body>
</html>

The h:dataTable component that is used to list the authors within the views of the Acme Bookstore
application can now use the styles that are listed in styles.css. The following excerpt from the XHTML
document named recipe03_16.xhtml demonstrates the h:dataTable component with the styles applied:

<h:dataTable id="authorTable" border="1" value="#{faceletsAuthorController.authorList}"
styleClass="authorTable"
rowClasses="authorTableOdd, authorTableEven"
var="author">
<f:facet name="header">
Java 9 Recipes Authors
</f:facet>
<h:column>
<h:commandLink id="authorName"
action="#{faceletsAuthorController.displayAuthor(author.last)}"
value="#{author.first} #{author.last}"/>
</h:column>
</h:dataTable>

The table should now look like Figure 3-10 when rendered on a page.

179

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

Acme Bookstore

Java 9 Recipes Author List for Java 9 Recipes

Java EE 7 Recipes Below is the list of authors. Click on the author's last name for more information regarding the author.

Java g
Recipes

A
Java 9 Recipes Authors|
Josh Juneau
Carl Dea
Mark Beaty
John O'Conner
Freddy Guime

Written by Josh Juneau, Apress Author

Figure 3-10. Author table with styles applied

How It Works

It is easy to add a resource to a JSF application because there is no need to worry about referring to a static
path when declaring the resources. Since the release of JSF 2.0, the resources folder can be used to list
subfolders, also known as libraries, into which the resources can be placed. The JSF components that can
use resources now have the 1ibrary attribute baked into them. This allows a specific library to be specified
for such components so that the component will know where to find the resources that it requires.

To use the new resources folder, create a folder at the root of an application’s web directory and name
it resources. That resources folder can then contain subfolders, which will become the libraries that can
be utilized within the JSF components. For instance, subfolders can be named css and images, and then
those names can be specified for the 1ibrary attribute of JSF components that utilize such resources. In
the example, cascading style sheets are placed into the resources/css folder, and then they are referenced
utilizing the h:outputStylesheet component and specifying the css library as follows:

<h:outputStylesheet library="css" name="default.css"/>
Other resources can be placed in such libraries. The h:graphicImage component also contains the
library attribute, so the images for the books can be moved into a folder named resources/image, and
then the h:graphicImage tag can reference the image as such:
<h:graphicImage id="javarecipes"
library="image" style="width: 100px; height: 120px"

name="java9recipes.png"/>

It has always been a challenge referencing resource files from the pages of a web application. To do
so, a developer needs to know the exact path to the resource, and sometimes the path can be broken if

180

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

folder names are changed or if the application is deployed in a different server environment. The use of
the resources folder in JSF 2.0 along with the new library attribute has greatly reduced the complexity of
managing such resources.

3-17. Handling Variable-Length Data

Problem

You are interested in iterating over a collection of data using a technique other than an h:dataTable
component because you want to use standard HTML table markup for each row and column of the table.

Solution

Use the Facelets ui:repeat tag for iterating over a collection of data rather than the h:dataTable
component. Doing so allows for the same style of collection iteration, but it does not force the use of the
h:dataTable component elements. For this recipe, the Acme Bookstore application has been rewritten

so that it now contains the ability to list each author’s books separately on their bio page. When an author
name is chosen from the book listing or when an author is searched, then the bio page will appear, and the
author’s bio is displayed along with each of the books that the author has written.

Note The example for this recipe has been rewritten to make the application more robust. A new Book
class has been created so that each book is now its own object. The Author class has been rewritten so that
one or more Book objects can now be added to each Author object. The AuthorController has been rewritten
so that the new Book and Author objects can be used to populate the author listing tables, and a new method
has been added that allows for the initialization of each Book and Author object. To use the new classes, the
application template (custom_template neworg.xhtml), search component (search_neworg.xhtml), and
each of the application have been rewritten. Refer to the sources in the org. javaee8recipes.chapteros.
recipe03_17 package and the recipe’s corresponding XHTML documents for complete listings.

The ui:repeat tagis used to iterate over a collection of the selected author’s books within the author
bio view, named recipe04_05c.xhtml. The author bio page can be reached by selecting an author from
a listing of authors or searching for an author using the search component. The following code shows the
view, recipe03_17c.xhtml, which is the bio view:

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:f="http://xmlns.jcp.org/jsf/core"
xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
xmlns:h="http://xmlns.jcp.org/jsf/html">
<h:head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<title>Recipe 3-17: Facelets Page Template</title>
</h:head>
<h:body>
<ui:composition template="./layout_enhanced/custom template search_neworg.xhtml">
<ui:define name="content">
<h:form id="componentForm">

181

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

<h1>#{uiRepeatAuthorController.current.first}
#{uiRepeatAuthorController.current.last}</h1>
<p>

#{uiRepeatAuthorController.current.bio}
</p>

<bx/>
<h1>Author's Books</h1>

<table>
<ui:repeat id="bookList" var="book" value="#{uiRepeatAuthorController.
current.books}">

<tr>
<td>
<h:graphicImage id="bookImage"
library="image"
style="width: 100px; height: 120px"
name="#{book.image}"/>
</td>
</tr>
<tr>
<td>
#{book.title}
</td>
</tr>
</ui:repeat>
</table>
</h:form>

</ui:define>

</ui:composition>
</h:body>
</html>

Each Author object contains a list of books that an author has written, and when the bio page is

rendered, it looks like Figure 3-11, displaying the list of books that the author has written using the
ui:repeat tag

182

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

Acme Bookstore

Java 9 Recipes Josh Juneau

Java EE 7 Recipes Josh Juneau has been developing software since the mid-1990s. PL/SQL and ing was the focus of his career in the beginning,
but as his skills dmluped he began to use]ava and later shll't!d to it as a primary base for his appllauon developmml: Josh has worked with Java in the form
of g user interf; web, and g for several years. During his tenure as a Java developer, he has worked with many

frameworl:s such as J5F, EJB, and JBoss Seam. .At me same ume Josh has extended his knowledge of the Java Virtual Machine (JVM) by learning and
developing applications with other JVM languages such as Jython and Groovy. His interest in learning new languages that run on the JVM led to his interest in
Jython. Since 2006, Josh has been the editor and publisher for the Jython Monthly newsletter. In late 2008, he began a podcast dedicated to the Jython
programming language.

Author's Books

Java 9 Recipes

Written by Josh Juneau, Apress Authar
Figure 3-11. Displaying a collection of objects with ui:repeat

How It Works

The Facelets ui:repeat tag is a nice alternative to the h:dataTable component if you need to have more
control over the HTML table that is rendered. The h:dataTable component is powerful in that it makes it
easy to iterate over a collection of objects and display them in a page. However, sometimes it is useful to
control the layout a bit more, and ui:repeat provides that level of control.

The ui:repeat tag has a handful of attributes that need to be specified in order to bind the tag to a
collection of data within a managed bean. Specifically, the value and var attributes, much like those of the
h:dataTable component, are used to specify the collection to iterate over and the variable that will be used
to refer to a single object within the collection, respectively. In the example, the value attribute is set to
#{uiRepeatAuthorController.current.books}, which is a collection of Book objects that is attached to the
currently selected Author, and the var attribute is set to the value book.

The markup and JSF tags placed between the opening and closing ui:repeat tags will be processed for
each iteration over the collection of objects. In the example, two table rows are placed inside ui:repeat; one
row contains the book cover image, and the other contains the name of the book. The Book object fields are
referenced within ui:repeat using the value of the var attribute, book.

In the example for this recipe, the views that display the complete author list for each of the books
use a list named authorList. The authorlList is declared within the AuthorController managed bean
and populated with Author objects. When an author is selected from the list, the displayAuthor method
within AuthorController is invoked, which populates the current Author object. Let’s look at the
AuthorController for this recipe, which has been rewritten since its use in previous recipes.

package org.javaee8recipes.chapter03.recipe03_17;
import java.io.Serializable;
import java.util.Arraylist;

import java.util.list;
import javax.annotation.PostConstruct;

183

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

import javax.enterprise.context.SessionScoped;
import javax.inject.Named;

%k

* Recipe 3-17

*

* @author juneau

*/

@Named(value

= "uiRepeatAuthorController")

@SessionScoped
public class AuthorController implements Serializable {

184

private List<Book> authorBookList;

private List<Author> authorlList;

private List<Author> completeAuthorlist;

private String storeName = "Acme Bookstore";

private String juneauBio =
"Josh Juneau has been developing software"
+ " since the mid-1990s. PL/SQL development and database programming"
+ " was the focus of his career in the beginning, but as his skills developed,"
+ " he began to use Java and later shifted to it as a primary base for his"
+ " application development. Josh has worked with Java in the form of graphical”
+ " user interface, web, and command-line programming for several years. "
+ "During his tenure as a Java developer, he has worked with many frameworks"
+ " such as JSF, EJB, and JBoss Seam. At the same time, Josh has extended his"
+ " knowledge of the Java Virtual Machine (JVM) by learning and developing
applications”
+ " with other JVM languages such as Jython and Groovy. His interest in
learning"
+ " new languages that run on the JVM led to his interest in Jython. Since 2006, "
+ " Josh has been the editor and publisher for the Jython Monthly newsletter. "
+ "In late 2008, he began a podcast dedicated to the Jython programming
language.";

private String deaBio = "This is Carl Dea's Bio";

private String beatyBio = "This is Mark Beaty's Bio";

private String oConnerBio = "This is John 0'Connor's Bio";

private String guimeBio = "This is Freddy Guime's Bio";

private Author current;

private String authorlast;

/**

* Creates a new instance of RecipeController

*/

public AuthorController() {

}

@PostConstruct

public void init(){

populateAuthors();

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

populatelavaRecipesAuthorList();
populateCompleteAuthorlList();
}
private void populateAuthors(){
Book book1l = new Book("Java 9 Recipes", "java9recipes.png");
Book book2 = new Book("Java EE 8 Recipes", "javaee8recipes.png");
Book book3 = new Book("Java FX 2.0: Introduction By Example", "javafx.png");
authorBookList = new ArraylList<Author>();

Author authori = new Author("Josh", "Juneau", juneauBio);
author1.addBook(book1);

authori.addBook(book2);

authorBookList.add(author1);

Author author2 = new Author("Carl", "Dea", deaBio);
author2.addBook(book1);

author2.addBook(book3);
authorBookList.add(author2);

Author author3 = new Author("Mark", "Beaty", beatyBio);
author3.addBook(book1);
authorBookList.add(author3);

Author author4 = new Author("John", "0'Conner", oConnerBio);
author4.addBook(book1);
authorBookList.add(author4);

Author author5 = new Author("Freddy", "Guime", guimeBio);
authors5.addBook(book1);
authorBookList.add(author5);

}

/**
* Searches through all Author objects and populates the authorlList
* with only those authors who were involved with the Java 9 Recipes book
* @return
*/
public String populatelavaRecipesAuthorList() {
authorList = new Arraylist<>();
for(Author author:authorBookList){
List<Book>books = author.getBooks();
for(Book book:books){
if(book.getTitle().equals("Java 9 Recipes")){
authorList.add(author);
}

}

return "recipe04_05a";

185

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

/**
* Searches through all Author objects and populates the authorList
* with only those authors who were involved with the Java EE 8 Recipes book
* @return
*/
public String populatelavaEERecipesAuthorList() {
authorList = new Arraylist<>();
for(Author author:authorBookList){
List<Book>books = author.getBooks();
for(Book book:books){
if(book.getTitle().equals("Java EE 8 Recipes")){
authorList.add(author);

}
}

}

return "recipe04_05b";
}
/**
* Populates completeAuthorList with each existing Author object
* @return
*/

private void populateCompleteAuthorList() {
completeAuthorList = new ArraylList();
for(Author author:authorBookList){
completeAuthorlList.add(author);
}

}

public String displayAuthor(String last) {
for (Author author : authorList) {
if (author.getlast().equals(last)) {
current = author;
}

}

return "recipe04 05c";

}

/**

* @return the authorlist

*/

public List getauthorList() {
return authorlList;

}

/**

* @return the current

*/

public Author getCurrent() {
return current;

}

186

CHAPTER 3

/**

* @param current the current to set

*/

public void setCurrent(Author current) {
this.current = current;

}

/**

* @return the authorlast

*/

public String getAuthorLast() {
return authorlast;

}

Vo

* @param authorlast the authorlast to set

*/

public void setAuthorlast(String authorLast) {
displayAuthor(authorlLast);

}

/%%

* @return the storeName

*/

public String getStoreName() {
return storeName;

}

J**

* @param storeName the storeName to set

*/

public void setStoreName(String storeName) {
this.storeName = storeName;

}

/**

* @return the completeAuthorlList

*/

public List<Author> getCompleteAuthorList() {
return completeAuthorlist;

}

/**

* @param completeAuthorList the completeAuthorlList to set
*/

THE BASICS OF JAVASERVER FACES

public void setCompleteAuthorList(List<Author> completeAuthorList) {

this.completeAuthorList = completeAuthorlist;
}

187

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

When displayAuthor is invoked, the current Author object is populated with the currently selected
author, and the bio page is rendered. The bio page source is listed in the solution to this recipe. Each Author
object contains a list of Book objects that correspond to the books that a particular author has written. The
ui:repeat tagis used to iterate over this list of books.

The ui:repeat tag can be effective in various use cases. When you're deciding to use h:dataTable or
ui:repeat, itis best to determine whether customization is going to be imperative. For those situations
where more control is desired, ui:repeat is certainly the best choice.

3-18. Invoking Controller Class Actions on Lifecycle Phase
Events

Problem

You want to automatically invoke a controller class action when a specific JSF lifecycle phase event occurs.
For instance, when a view is loading, you want to invoke a controller class action that performs a conditional
verification based on the user who is visiting the page.

Solution

Utilize a JSF view action by adding the f:viewAction facet to the JSF view. Use the facet to specify the
controller class action to invoke, as well as when to invoke the action. In the following excerpt from the
chapter03/recipe03_18.xhtml view, a controller class method action named validateUser is invoked:

<f:metadata>
<f:viewAction action="#{viewActionManagedBean.validateUser()}"/>
</f:metadata>

How It Works

In JSF 2.1 and prior, it was difficult to invoke action methods within a controller class unless they were
bound to a command component. Sometimes it makes sense to invoke a method when the page is loading,
after the page has been fully loaded, and so on. In the past, this was done by using a preRenderView event
listener, which invokes a method contained in a managed before the view is rendered. Utilization of the
preRenderView event listener works, but it does not provide the level of control that is required to invoke

a method during different phases of the view lifecycle. The preRenderView also requires developers to
programmatically check the request type and work with the navigation handler.

In the JSF 2.2 release, a new technique can be used to invoke action methods in a controller class during
specified lifecycle events that occur within the view. A new tag, f:viewAction, can be bound to a view, and
it can be incorporated into the JSF lifecycle in both non-JSF (initial) and JSF (postback) requests. To use the
tag, it must be a child of the metadata facet. View parameters can be specified within the metadata facet as
well, and they will become available from within the controller class when the action method is invoked.

In the example, the action method named validateUser is invoked using the viewAction. In the
example method, a string is returned, which enables implicit navigation based on the action method results.
If null is returned, the navigation handler is invoked, but the same view will be rendered again so long as
there are no navigation condition expressions that change the navigation. If a string-based view name is
returned, then the navigation handler will render that view once the method has completed. This can come

188

CHAPTER 3 ' THE BASICS OF JAVASERVER FACES

in handy for situations such as authentication handling, where an action method is used to check the user’s
role and then the appropriate view is rendered based on the authenticated user role.

public String validateUser() {
String viewName;
System.out.println("Look in the server log to see this message");
// Here we would perform validation based upon the user visiting the
// site to ensure that they had the appropriate permissions to view
// the selected view. For the purposes of this example, this
// conditional logic is just a prototype.
if (visitor.isAdmin()){
// visit the current page
viewName = null;
System.out.println("Current User is an Admin");
} else {
viewName = "notAdmin";
System.out.println("Current User is NOT an Admin");

}

return viewName;

}

As mentioned previously, f:viewAction facet can be customized to allow the action method to be
invoked at different stages within the view lifecycle. By default, the viewAction will be initiated before
postback because the specified action method is expected to execute whether the request was Faces or non-
Faces. However, this can be changed by setting the onPostback attribute of the f:viewAction tagto true.

<f:viewAction action="#{viewActionManagedBean.validateUser()}" onPostback="true"/>
If you need to get even more granular and invoke a view action during specified lifecycle phase, it is

possible by setting the phase attribute to the phase required. Table 3-8 specifies the different phases along
with their phase value.

Table 3-8. JSF Lifecycle Phases

Phase Tag Value

Restore View RESTORE_VIEW

Apply Request Values APPLY_REQUEST_VALUES
Process Validations PROCESS_VALIDATIONS
Update Model Values UPDATE_MODEL_VALUES
Invoke Application INVOKE_APPLICATION
Render Response RENDER_RESPONSE

The following example demonstrates the f:viewAction facet that will cause the action to be invoked
during the Process Validations phase:

<f:viewAction action="#{viewActionManagedBean.validateUser()}"
phase="PROCESS_VALIDATIONS"/>

189

CHAPTER 4

JavaServer Faces Standard
Components

The JSF framework allows developers to build applications utilizing a series of views, and each view consists
of a series of components. The framework is kind of like a puzzle in that each piece must fit into its particular
place in order to make things work smoothly. Components are just another piece of the puzzle. Components
are the building blocks that make up JSF views. One of the strengths of using the JSF framework is the
abundance of components that are available for use in views. To developers, components can be tags that
are placed within the XHTML views. Components resemble standard HTML tags; they contain a number of
attributes, an opening tag and a closing tag, and sometimes components that are to be embedded inside of
others. Components can also be written in Java code, and their tags can be bound to Java code that resides in
a JSF managed bean (aka, controller class).

A number of components come standard with the JSF framework. The recipes in this chapter cover the
standard components in detail and provide examples that will allow you to begin using components in your
applications right away.

This chapter focuses on the JSF standard component library, and toward the end it features some
recipes showing how to use external component libraries. The example in this chapter grows from the first
recipe throughout each recipe to the final recipe. In the end, a newsletter page for the Acme Bookstore will
be complete and full-featured.

Before tackling the recipes, though, the following section provides a brief overview of the standard JSF
components and associated common component tags. This will help you get the most out of the recipes.

Component and Tag Primer

Table 4-1 lists the components that are available with a clean install of the JSF framework.

© Josh Juneau 2018 191
J. Juneau, Java EE 8 Recipes, https://doi.org/10.1007/978-1-4842-3594-2_4

https://doi.org/10.1007/978-1-4842-3594-2_4

CHAPTER 4 © JAVASERVER FACES STANDARD COMPONENTS

Table 4-1. JSF HTML Components

Component Tag Description

UIColumn h:column Represents a column of data in the dataTable
component

UICommand h:commandButton Submits a form

h:commandScript

UIData

UIForm
UIGraphic
UIInput

UIOutcomeTarget
UIMessage
UIMessages
UIOutput

UIPanel

UISelectBoolean
UISelectItem

UISelectItems
UISelectMany

UISelectOne

h:commandLink

Provides ability to call an

arbitrary server-side method via

Ajax from a JSF view
h:dataTable

:form
:graphicImage
:inputHidden

= - S E—-

:inputSecret

:inputText
:inputTextarea
:link

:message
:messages
:outputFormat
:outputlabel
routputlink
:panelGrid

:panelGroup

e e E e E e e e S E S e - S -

:selectItem

h:selectItems

h:selectManyCheckbox

h:selectManyListbox

h:selectManyMenu

h:selectOnelListbox

h:selectOneMenu

h:selectOneRadio

:selectBooleanCheckbox

Links pages or actions

Represents a table used for iterating over
collections of data

Represents an input form
Displays an image
Includes a hidden variable in a form

Allows text entry without displaying the actual
text

Allows text entry

Allows multiline text entry

Links to another page or location
Displays a localized message
Displays localized messages
Displays a formatted localized message
Displays a label for a specified field
Links to another page or location
Displays a table

Groups components

Displays a boolean choice

Represents one item in a list of items for
selection

Represents a list of items for selection

Displays a group of check boxes that allow
multiple user choices

Allows a user to select multiple items from a list

Allows a user to select multiple items from a
drop-down menu

Allows a user to select a single item from a list

Allows a user to select a single item from a drop-
down menu

Allows a user to select one item from a set

192

Table 4-2 describes the JSF core tags.

CHAPTER 4 © JAVASERVER FACES STANDARD COMPONENTS

JSF provides a number of core tags that can be used to provide more functionality for the components.
For example, these tags can be embedded inside JSF component tags and specify rules that can be used to
convert the values that are displayed or used as input for the component. Other uses of the core tags are

to provide a list of options for a select component, validate input, and provide action and event listeners.

Table 4-2. JSF Core Tags

Tag Function

f:actionlistener Registers an action listener method with a component
f:phaselListener Registers a PhaselListener to a page
f:setPropertyActionListener Registers a special form submittal action listener
f:valueChangelistener Registers a value change listener with a component
f:converter Registers an arbitrary converter with a component
f:convertDateTime Registers a DateTimeConverter instance with a component
f:convertNumber Registers a NumberConverter with a component

f:facet Adds a nested component to particular enclosing parents
f:metadata Registers a particular facet with a parent component
f:selectItem Encapsulates one item in a list

f:selectItems Encapsulates all items of a list

f:websocket Provides ability to receive messages into a view via WebSockets
f:validateDoubleRange Registers a DoubleRangeValidator with a component
f:validatelength Registers a LengthValidator with a component
f:validatelLongRange Registers a LongRangeValidator with a component
f:validator Registers a custom validator with a component
f:validateRegex Registers a RegExValidator with a component (JSF 2.0)
f:validateBean Delegates validation of a local value to a BeanValidator (JSF 2.0)
f:validateWholeBean Delegates validation of an entire bean or class
f:validateRequired Ensures that a value is present in a parent component

classes contained in that package.

Note The common sources and the completed classes to run the application for Chapter 4 are contained
in the org. javaee8recipes.chaptero4 package, and one or more recipes throughout this chapter will utilize

193

http://dx.doi.org/10.1007/978-1-4842-3594-2_4

CHAPTER 4 © JAVASERVER FACES STANDARD COMPONENTS

Common Component Tag Attributes

Each standard JSF component tag contains a set of attributes that must be specified in order to uniquely
identify it from the others, register the component to a managed bean, and so on. There is a set of attributes
that are common across each component tag, and this section lists those attributes, along with a description
of each. All attributes besides id can be specified using JSF EL.

e binding: A managed bean property can be specified for this attribute, and it can
be used to bind the tag to a component instance within a managed bean. Doing so
allows you to programmatically control the component from within the managed
bean.

e id: This attribute can be set to uniquely identify the component. If you do not
specify a value for the id attribute, then JSF will automatically generate one. Each
component within a view must have a unique id attribute, or an error will be
generated when the page is rendered. I recommend you manually specify a value
Jor the 1d attribute on each component tag, because then it will be easy to statically
reference the tag from a scripting language or a managed bean if needed. If you let JSF
automatically populate this attribute, it may be different each time, and you will never
be able to statically reference the tag from a scripting language.

e immediate: This attribute can be set to true for input and command components
in order to force the processing of validations, conversions, and events when the
request parameter values are applied.

e rendered: The rendered attribute can be used to specify whether the component
should be rendered. This attribute is typically specified as a JSF EL expression that
is bound to a managed bean property yielding a boolean result. The EL expression
must be an rvalue expression, meaning that it is read-only and cannot set a value.

e style: This attribute allows a CSS style to be applied to the component. The
specified style will be applied when the component is rendered as output.

e styleClass: This attribute allows a CSS style class to be applied to the component.
The specified style will be applied when the component is rendered as output.

e value: This attribute identifies the value of a given component. For some
components, the value attribute is used to bind the tag to a managed bean property.
In this case, the value specified for the component will be read from, or set within,
the managed bean property. Other components, such as the commandButton
component, use the value attribute to specify a label for the given component.

Common JavaScript Component Tags

Table 4-3 lists a number of attributes that are shared by many of the components, which enable JavaScript
functionality to interact with the component.

194

CHAPTER 4 * JAVASERVER FACES STANDARD COMPONENTS

Table 4-3. Common Component Attributes

Attribute Description

onblur JavaScript code that should be executed when the component loses focus.

onchange JavaScript code that should be executed when the component loses focus and the
value changes.

ondblclick JavaScript code that should be executed when the component has been clicked twice.

onfocus JavaScript code that should be executed when the component gains focus.

onkeydown JavaScript code that should be executed when user presses a key down and the
component is in focus.

onkeypress JavaScript code that should be executed when user presses a key and the component
isin focus.

onkeyup JavaScript code that should be executed when key press is completed and the
component is in focus.

onmousedown JavaScript code that should be executed when user clicks the mouse button and the
component is in focus.

onmouseout JavaScript code that should be executed when user moves mouse away from the
component.

onmouseover JavaScript code that should be executed when user moves mouse onto the
component.

onmousemove JavaScript code that should be executed when user moves mouse within the
component.

onmouseup JavaScript code that should be executed when mouse button click is completed and
the component is in focus.

onselect JavaScript code that should be executed when the component is selected by user.

Binding Components to Properties

All JSF components can be bound to managed bean properties. Do so by declaring a property for the type
of component you want to bind within the managed bean and then by referencing that property using the
component’s binding attribute. For instance, the following dataTable component is bound to a managed
bean property and then manipulated from within the bean.

In the view:
<h:dataTable id="myTable" binding="#{myBean.myTable}" value="#{myBean.myTableCollection}"/>
In the bean:

// Provide getter and setter methods for this property
private javax.faces.component.UIData myTable;

myTable.setRendered(true);

Binding can prove to be very useful in some cases, especially when you need to manipulate the state of
a component programmatically before re-rendering the view.

195

CHAPTER 4 © JAVASERVER FACES STANDARD COMPONENTS

4-1. Creating an Input Form

Problem

You want to add input fields to a form within your application.

Solution

Create an input form by enclosing child input components within a parent form component. There are four
JSE components that will allow for text entry as input. Those components are inputText, inputSecret,
inputHidden, and inputTextarea. Any or all of these components can be placed within a form component
in order to create an input form that accepts text entry.

In the example for this recipe, you will create an input form that will be used to sign up for the Acme
Bookstore newsletter. The users will be able to enter their first and last names, an email address, a password,
and a short description of their interests.

The View: recipe04_01.xhtml

The following code is for the view recipe04_01.xhtml, which constructs the layout for the input form:

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
xmlns:f="http://xmlns.jcp.org/jsf/core"
xmlns:h="http://xmlns.jcp.org/jsf/html">

<body>

<ui:composition template="layout/custom_template search.xhtml">
<ui:define name="content">
<h:messages globalOnly="true" errorStyle="color: red" infoStyle="color:
green"/>
<h:form id="contactForm">
<h1>Subscribe to Newsletter</h1>

<p>
Enter your information below in order to be added to the Acme
Bookstore newsletter.

</p>

<label for="first">First: </label>

<h:inputText id="first" size="40" value="#{contactControlleri.current.
first}"/>

<label for="last">Last: </label>

<h:inputText id="last" size="40" value="#{contactControlleri.current.
last}"/>

196

CHAPTER 4 * JAVASERVER FACES STANDARD COMPONENTS

<label for="email">Email: </label>

<h:inputText id="email" size="40" value="#{contactControlleri.current.
email}"/>

<label for="password">Enter a password for site access:</label>
<h:inputSecret id="password" size="40" value="#{contactControlleri.
current.password}"/>

<label for="description">Enter your book interests</label>

<h:inputTextarea id="description" rows="5" cols="100"
value="#{contactControlleri.current.description}"/>

<h:commandButton id="contactSubmit" action="#{contactControlleri.
subscribe}" value="Save"/>

</h:form>
</ui:define>
</ui:composition>

</body>

</html>

Note

As you can see from the example, HTML can be mixed together with JSF component tags. An HTML
label tag is used to specify a label for each input component in this recipe. In Recipe 4-3, you will learn about
the JSF component that is used to render a label.

To learn more about how the commandButton component works, see Recipe 4-2.

Managed Bean: ContactController.java

Each view that contains an input form needs to have an associated managed bean, right? The managed bean
in this case is RequestScoped, and the name of the bean class is ContactController. An excerpt from the
listing for the ContactController class is as follows:

import
import
import
import
import
import
import
import
import
import

java.util.*;

javax.enterprise.context.RequestScoped;

javax.faces.
javax.faces.
javax.faces.
javax.faces.
javax.faces.
javax.faces.

application.FacesMessage;
component.UIComponent;
context.FacesContext;
event.ValueChangeEvent;
model.SelectItem;
validator.ValidatorException;

javax.inject.Inject;
javax.inject.Named;

197

CHAPTER 4 © JAVASERVER FACES STANDARD COMPONENTS

/**
* Chapter 4
ES
* @author juneau
*/
@RequestScoped
@Named(value = "contactController")
public class ContactController implements java.io.Serializable {
private Contact current;

Vak

* Creates a new instance of ContactController
*/

public ContactController() {

}

/**

* Obtain the current instance of the Contact object
* @return Contact
*/
public Contact getCurrent(){
if (current == null){
current = new Contact();
}

return current;

}

/**
* Adds a subscriber to the newsletter
* @return String
*/
public String subscribe(){
// No implementation yet, will add to a database table in Chapter 7
FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY INFO,
"Successfully Subscribed to Newsletter for " + getCurrent().getEmail(),
null);
FacesContext.getCurrentInstance().addMessage(null, facesMsg);
return "SUBSCRIBE";

}

/**
* Navigational method
* @return String
*/
public String add(){
return "ADD_SUBSCRIBER";
}

198

CHAPTER 4 © JAVASERVER FACES STANDARD COMPONENTS

Note At this time, nothing happens when the Submit button is clicked other than a nice “Success”
message being displayed on the screen. Later in the book, we will revisit the subscribe method and add the
code for creating a record within an underlying database. The input screen should look like Figure 4-1 when
rendered.

Acme Bookstore

Java 9 Recipes Subscribe to Newsletter
Java EE 8 Recipes Enter your information below in order to be added to the Acme Bookstore newsletter.
Subscribe to First:
Newsletter Last:
Email:

Enter a password for site access:

Enter your book interests

Figure 4-1. JSF input form for subscribing to the Acme Bookstore newsletter

How It Works

The JavaServer Faces framework ships with a slew of standard components that can be utilized within

JSE views. There are four standard components that can be used for capturing text input: inputText,
inputSecret, inputHidden, and inputTextarea. These component tags, as well as all of the other standard
JSF component tags, share a common set of attributes and some attributes that are unique to each specific
tag. To learn more about the common attributes, see the related section in the introduction to this chapter.
In this recipe, I go over the specifics for each of these input components. The form component, specified via
the h:formtag, is used to create an input form within a JSF view. Each component that is to be processed
within the form should be enclosed between the opening and closing h: form tags. Each form typically
contains at least one command component, such as a commandButton. A view can contain more than one
form component, and only those components that are contained within the form will be processed when the
formis submitted.

Note |recommend you always specify the id attribute for each component. Most importantly, specify the
id attribute for the form component. If you do not specify the id attribute for a given JSF component, then one
will be automatically generated for you. The automatic generation of JSF component ids prohibits the ability to
statically reference a component from within a scripting language, such as JavaScript, or a managed bean. For
instance, in the example for this recipe, the form id attribute is set to contactForm, and the first inputText
component id is set to first. This allows you to reference the component statically by appending the form id
to the component id from a scripting language or managed bean. In the case of the example, you’d reference
the first component as contactForm: first.

199

CHAPTER 4 © JAVASERVER FACES STANDARD COMPONENTS

Each of the input tags support the list of attributes that is shown in Table 4-4, in addition to those
already listed as common component attributes in the introduction to this chapter.

Table 4-4. Input Component Tag Attributes

Attribute Description

converter Allows a converter to be applied to the component’s data.

converterMessage Specifies a message that will be displayed when a registered converter fails.

dir Specifies the direction of text displayed by the component. (LTR is used to indicate

left-to-right, and RTL is used to indicate right-to-left.)

immediate Flag indicating that, if this component is activated by the user, notifications
should be delivered to interested listeners and actions immediately (that is,
during the Apply Request Values phase) rather than waiting until the Invoke

Application phase.

label Specifies a name that can be used for component identification.

lang Allows a language code to be specified for the rendered markup.

required Accepts a boolean to indicate whether the user must enter a value for the given
component.

requiredMessage Specifies an error message to be displayed if the user does not enter a value for a
required component.

validator Allows a validator to be applied to the component.

valueChangelListener Allows a managed bean method to be bound for event-handling purposes. The
method will be called when there is a change made to the component.

The inputText component is used to generate a single-line text box within a rendered page. The
inputText component value attribute is most commonly bound to a managed bean property so that
the values of the property can be retrieved or set when a form is processed. In the recipe example, the
first inputText component is bound to the managed bean property named first. The EL expression
#{contactControlleri.current.first} is specified for the component value, so if the managed bean’s
first property contains a value, then it will be displayed in the inputText component. Likewise, when the
form is submitted, then any value that has been entered within the component will be saved within the
first property in the managed bean.

The inputSecret component generates a single-line text box within a rendered page, and when text is
entered into the component, then it is not displayed; rather, asterisks are displayed in place of each character
typed. This component makes it possible for a user to enter private text, such as a password, without it being
displayed on the screen for others to read. The inputSecret component works identically to the inputText
component, other than hiding the text with asterisks. In the example, the value of the inputSecret
component is bound to a managed bean property named password via the #{contactController1.
current.password} EL expression.

The inputTextarea component is used to generate a multiline text box within a rendered page. As
such, this component has a couple of additional attributes that can be used to indicate how large the text
area should be. The inputTextarea has the rows and cols attributes, which allow a developer to specify
how many rows (height) and how many columns (wide) of space the component should take up on the
page, respectively. Other than those two attributes, the inputTextarea component works in much the same
manner as the inputText component. In the example, the value attribute of the inputTextarea component
is specified as #{contactControlleri.current.description}, so the description property will be
populated with the contents of the component when the form is submitted.

200

CHAPTER 4 © JAVASERVER FACES STANDARD COMPONENTS

The input component I have not yet discussed is the inputHidden component. This component is
used to place a hidden input field into the form. It works in the same manner as the inputText component,
except that it is not rendered on the page for the user to see. The value for an inputHidden component
can be bound to a managed bean property in the same way as the other components. You can use such a
component for passing a hidden token to and from a foxrm.

Asyou can see, the days of passing and receiving request parameters within JSP pages are over. Utilizing
the JSF standard input components, it is possible to bind values to managed bean properties using JSF EL
expressions. This makes it much easier for developers to submit values from an input form for processing.
Rather than retrieving parameters from a page, assigning them to variables, and then processing, the JSF
framework takes care of that overhead for you. Although I have not covered the usage of all input component
attributes within this recipe, I will cover more in the recipes that follow as I build upon the Acme Bookstore
newsletter subscription page.

4-2. Invoking Actions from Within a Page

Problem

You want to trigger a server-side method to be invoked from a button or link on one of your application
pages.

Solution

Utilize the commandButton or commandLink components within your view to invoke action methods within
a managed bean controller. The command components allow for the user invocation of actions within
managed beans. Command components bind buttons and links on a page directly to action methods,
allowing developers to spend more time thinking about the development of the application and less time
thinking about the Java servlet-processing lifecycle.

In the example for this recipe, a button and a link are added to the newsletter page for the Acme
Bookstore. The button that will be added to the page will be used to submit the input form for processing, and
the link will allow users to log in to the application and manage their subscriptions and bookstore accounts.

Note This recipe will not cover any authentication or security features; it focuses only on invoking actions
within managed beans. For more information regarding authentication, see Chapter 14.

The View: recipe04_02.xhtml

The following code is for the newsletter subscription view including the command components. The sources
are for the file named recipe04_02.xhtml.

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
xmlns:f="http://xmlns.jcp.org/jsf/core"
xmlns:h="http://xmlns.jcp.org/jsf/html">

201

http://dx.doi.org/10.1007/978-1-4842-3594-2_14

CHAPTER 4 © JAVASERVER FACES STANDARD COMPONENTS

<body>

<ui:

composition template="layout/custom template search.xhtml">
<ui:define name="content">
<h:messages globalOnly="true" errorStyle="color: red" infoStyle="color:
green"/>
<h:form id="contactForm">
<h1>Subscribe to Newsletter</h1>

<p>
Enter your information below in order to be added to the Acme
Bookstore newsletter.

</p>

<label for="first">First: </label>
<h:inputText id="first" size="40" value="#{contactController.current.
first}"/>

<label for="last">Last: </label>
<h:inputText id="last" size="40" value="#{contactController.current.
last}"/>

<label for="email">Email: </label>
<h:inputText id="email" size="40" value="#{contactController.current.
email}"/>

<label for="password">Enter a password for site access:</label>
<h:inputSecret id="password" size="40" value="#{contactController.
current.password}"/>

<label for="description">Enter your book interests</label>

<h:inputTextarea id="description" rows="5" cols="100"
value="#{contactController.current.description}"/>

<h:commandButton id="contactSubmit" action="#{contactController.
subscribe}" value="Save"/>

<h:commandLink id="manageAccount" action="#{contactController.manage}"
value="Manage Subscription"/>
</h:form>
</ui:define>

</ui:composition>

</body>
</html>

202

CHAPTER 4 * JAVASERVER FACES STANDARD COMPONENTS

Managed Bean: ContactController.java

The managed bean that contains the action methods is named ContactController, which was created in
Recipe 4-1. The following code excerpt is taken from the ContactController class, and it shows the updates
that have been made to the methods for this recipe.

Note The complete implementation of ContactController resides in the org. javaee8recipes.
chapteros package.

Vioio
* Adds a subscriber to the newsletter
* @return String
*/
public String subscribe(){
// Using a list implementation for now,
// but will add to a database table in Chapter 7

// Add the current contact to the subscription list
subscriptionController.getSubscriptionlList().add(current);
FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY INFO,

"Successfully Subscribed to Newsletter for " + getCurrent().getEmail(), null);
FacesContext.getCurrentInstance().addMessage(null, facesMsg);
return "SUBSCRIBE";

}

Vioio
* Navigational method
* @return String
*/
public String add(){
return "ADD_SUBSCRIBER";
}

/**
* This method will allow a user to navigate to the manageAccount view.
* This method will be moved into another managed bean that focuses on
* authentication later on.
* @return
*/
public String manage(){
return "/chaptero4/manageAccount”;
}

203

CHAPTER 4 © JAVASERVER FACES STANDARD COMPONENTS

When the view is rendered, the resulting page looks like Figure 4-2.

Acme Bookstore

Java 9 Sutk ibe to N
Java EE 8 Recipes Enter your information below in order to be added to the Acme Bookstore newsletter.
Subscribe to First:
Newsletter Last:
Email:

Enter a password for site access:

Enter your book interests

Save
Manage Subscription

Written by Josh Juneau, Apress Author

Figure 4-2. Utilizing command components within a view

How It Works

The command components make JSF vastly different from using JSP technology. In many of the other
technologies, form actions are used to handle request parameters and perform any required business logic
with them. With the JSF command components, Java methods can be bound directly to a button or a link
and invoked when the components are activated (button or link clicked). In the example for this recipe, both
the commandButton and commandLink components are utilized. The commandButton component is used to
submit the form request parameters for processing, and the commandLink component is bound to an action
method that performs a redirect to another application page.

The command components have a handful of attributes that are of note. Those attributes, along with a
description of each, are listed in Table 4-5 and Table 4-6.

Table 4-5. commandButton Component Additional Attributes

Attribute Description

action EL that specifies a managed bean action method that will be invoked when the user
activates the component.

actionlListener EL that specifies a managed bean action method that will be notified when this
component is activated. The action method should be public and accept an
ActionEvent parameter, with a return type of void.

class CSS style class that can be applied to the component.

dir Direction indication for text (LTR: left-to-right; RTL: right-to-left).
disabled A Boolean to indicate whether the component is disabled.

image Absolute or relative URL to an image that will be displayed on the button.

(continued)

204

CHAPTER 4 * JAVASERVER FACES STANDARD COMPONENTS

Table 4-5. (continued)

Attribute Description

immediate Flag indicating that, if this component is activated by the user, notifications should
be delivered to interested listeners and actions immediately (that is, during the
Apply Request Values phase) rather than waiting until the Invoke Application
phase.

label Name for the component.

lang Code for the language used for generating the component markup.

readonly Boolean indicating whether the component is read only.

rendererType Identifier of renderer instance.

tabindex Index value indicating number of tab button presses it takes to bring the
component into focus.

title Tooltip that will be displayed when the mouse hovers over component.

transient Boolean indicating whether component should be included in the state of the
component tree.

type Indicates type of button to create. Values are submit (default), reset, and button.

Table 4-6. commandLink Component Additional Attributes

Attribute Description

action EL that specifies a managed bean action method that will be invoked when the user
activates the component.

accessKey Access key value that will transfer the focus to the component.

cords Position and shape of the hotspot on the screen.

dir Direction indication for text (LTR: left-to-right; RTL: right-to-left).

disabled Specifies a boolean to indicate whether the component is disabled.

hreflang Language code of the resource designated by the hyperlink.

immediate Flag indicating that, if this component is activated by the user, notifications should be
delivered to interested listeners and actions immediately (that is, during the Apply Request
Values phase) rather than waiting until the Invoke Application phase.

lang Code for the language used for generating the component markup.

rel Relationship from the current document to the anchor specified by the hyperlink.

rev Reverse anchor specified by this hyperlink to the current document.

shape Shape of the hotspot on the screen.

tabindex Index value indicating number of tab button presses it takes to bring the component into
focus.

target Name of a frame where the resource retrieved via the hyperlink will be displayed.

title Tooltip that will be displayed when the mouse hovers over component.

type Indicates type of button to create. Values are submit (default), reset, and button.

charset Character encoding of the resource designated by the hyperlink.

205

CHAPTER 4 © JAVASERVER FACES STANDARD COMPONENTS

The commandButton and commandLink components in the example to this recipe specify only a
minimum number of attributes. That is, they both specify id, action, and value attributes. The id attribute
is used to uniquely identify each of the components. The action attribute is set to the JSF EL, which binds
the components to their managed bean action methods. The commandButton component has an action
attribute of #{contactController.subscribe}, which means that the ContactController class’s subscribe
method will be invoked when the button on the page is clicked. The commandLink has an action attribute of
#{contactController.manage}, which means that the ContactController class’s manage method will be
invoked when the link is clicked. Each of the components also specifies a value attribute, which is set to the
text that is displayed on the button or link when rendered.

Asyou can see, only a handful of the available attributes are used in the example. However, the
components can be customized using the additional attributes that are available. For instance, an
actionlistener method can be specified, which will bind a managed bean method to the component, and
that method will be invoked when the component is activated. JavaScript functions can be specified for each
of the attributes beginning with the word on, providing the ability to produce client-side functionality.

Command components vastly changed the landscape of Java web application development. They
allow the incorporation of direct Java method access from within user pages and provide an easy means for
processing request parameters.

4-3. Displaying Output

Problem

You want to display text from a managed bean property in your application pages.

Solution

Incorporate JSF output components into your views. Output components are used to display static

or dynamic text on a page, as well as the results of expression language arithmetic. The standard JSF
component library contains five components that render output: outputLabel, outputText, outputFormat,
outputlLink, and link. The Acme Bookstore utilizes each of these components in the bookstore newsletter
application facade.

The View: recipe05_03.xhtml

In the following example, the newsletter subscription view has been rewritten to utilize some of the output
components:

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
xmlns:f="http://xmlns.jcp.org/jsf/core"
xmlns:h="http://xmlns.jcp.org/jsf/html">

<body>

<ui:composition template="layout/custom_template search.xhtml">
<ui:define name="content">
<h:messages globalOnly="true" errorStyle="color: red" infoStyle="color:
green"/>
<h:form id="contactForm">

206

CHAPTER 4 * JAVASERVER FACES STANDARD COMPONENTS

<h1>Subscribe to Newsletter</hi>
<p>
<h:outputText id="newsletterSubscriptionDesc"
value="#{contactController.newsletterDescription}"/>
</p>

<h:outputlLabel for="first" value="First: "/>
<h:inputText id="first" size="40" value="#{contactController.current.
first}">
<f:validateRequired/>
<f:validatelLength minimum="2" maximum="40"/>
</h:inputText>

<h:outputLabel for="last" value="Last: "/>
<h:inputText id="last" size="40" value="#{contactController.current.last}">
<f:validateRequired/>
<f:validatelLength minimum="2" maximum="40"/>
</h:inputText>

<h:outputlLabel for="email" value="Email: "/>
<h:inputText id="email" size="40" value="#{contactController.current.
emaill}">
<f:validateRequired/>
<f:validateRegex pattern=""/>
</h:inputText>

<h:outputLabel for="password" value="Enter a password for site access: "/>
<h:inputSecret id="password" size="40" value="#{contactController.
current.password}">
<f:validateRegex pattern=""/>
</h:inputSecret>

<h:outputlLabel for="description" value="Enter your book interests"/»>

<h:inputTextarea id="description" rows="5" cols="100"
value="#{contactController.current.description}"/>

<h:commandButton id="contactSubmit" action="#{contactController.
subscribe}" value="Save"/>

<h:commandLink id="manageAccount" action="#{contactController.manage}"
value="Manage Subscription"/>

</h:form>
</ui:define>
</ui:composition>

</body>
</html>

207

CHAPTER 4 © JAVASERVER FACES STANDARD COMPONENTS

Managed Bean: ContactController.java

The ContactController managed bean has been modified throughout the recipes in this chapter to
incorporate new functionality as the recipes move forward. In this recipe, a new property has been added to
the ContactController that contains the description of the newsletter.

Note The hard-coded newsletter description is not a good idea for use in a production application. It is
used in this example for demonstration purposes only. For a production application, utilization of resource
bundles or database storage would be a more viable approach for storing strings of text.

The following source excerpt from the ContactController class shows the code that is of interest in this

example:

private String newsletterDescription;

public ContactController() {
current = null;
newsletterDescription = "Enter your information below in order to be " +
"added to the Acme Bookstore newsletter.";

}

public String getNewsletterDescription() {
return newsletterDescription;
}

public void setNewsletterDescription(String newsletterDescription) {
this.newsletterDescription = newsletterDescription;

}

The resulting page looks like Figure 4-3. Note that the text is the same, because it is merely reading the

same text from a managed bean property. Also note that there is now an additional link added to the bottom
of the page, which reads Home.

208

CHAPTER 4 © JAVASERVER FACES STANDARD COMPONENTS

Acme Bookstore

Java 9 Recipes Subscribe to Newsletter
Java EE 8 Recipes Enter your information below in order to be added to the Acme Bookstore newsletter.
Subscribe to First:
Newsletter
Last:
Email:

Enter a password for site access:
Confirm Password:

Enter your book interests

Save
Manage Subscription

Home

Written by Josh Juneau, Apress Author

Figure 4-3. Utilizing output components within a view

How It Works

Output components can be used to display output that is generated in a managed bean or to render a link

to another resource. They can be useful in many cases for displaying dynamic output to a web view. The
example for this recipe demonstrates three out of the five output component types: outputText, outputLink,
and outputLabel. Each of the components shares a common set of attributes, which are listed in Table 4-7.

Note The outputText component has become a bit less important since the release of JSF 2.0 because
the Facelets view definition language implicitly wraps inline content with a similar output component. Therefore,
the use of the outputText tag within JSF 2.0 is necessary only if you want to utilize some of the tag attributes
for rendering, JavaScript invocation, or the like.

209

CHAPTER 4 © JAVASERVER FACES STANDARD COMPONENTS

Table 4-7. Common Output Component Attributes (Not Listed in Introduction)

Attribute Description

class CSS class for styling

converter Converter that is registered with the component

dir Direction of text (LTR: left-to-right; RTL: right-to-left)

escape Boolean value to indicate whether XML- and HTML-sensitive characters are escaped

lang Code for language used when generating markup for the component

parent Parent component

title Tooltip text for the component

transient Boolean indicating whether component should be included in the state of the
component tree

The outputText component in the example contains a value of #{contactController.
newsletterDescription}, which displays the contents of the newsletterDescription property within
ContactController. Only the common output component attributes can be specified within the
h:outputText tag. Therefore, an attribute such as class or style can be used to apply styles to the text
displayed by the component. If the component contains HTML or XML, the escape attribute can be set to
true to indicate that the characters should be escaped.

The outputFormat component shares the same set of attributes as the outputText component. The
outputFormat component can be used to render parameterized text. Therefore, if you require the ability to
alter different portions of a string of text, you can do so via the use of JSF parameters (via the f:param tag).
For example, suppose you wanted to list the name of books that someone has purchased from the Acme
Bookstore; you could use the outputFormat component like in the following example:

<h:outputFormat value="Cart contains the books {0}, {1}, {2}"/>
<f:param value="Java 9 Recipes"/>
<f:param value="JavaFX 2.0: Introduction by Example"/>
<f:param value="Java EE 8 Recipes"/>

</h:outputFormat>

The outputLink and outputLabel components can each specify a number of other attributes that are
not available to the previously discussed output components. The additional attributes are listed in Table 4-
8 (outputLink) and Table 4-9 (outputLabel). The outputlLink component can be used to create an anchor
or link that will redirect an application user to another page when the link is clicked. In the example, the
outputlLink component is used to redirect a user to a view named home . xhtml. The value for the outputLink
component can be set to a static page name, as per the example, or it can contain a JSF EL expression
corresponding to a managed bean property. It is also possible to pass parameters to another page using the
outputLink component by nesting f:param tags between opening and closing h:outputLink tags as follows:

<h:outputLink id="homelLink" value="home.xhtml">
<h:outputText value="User Home Page"/>
<f:param name="username" value="#{contactController.current.email}"/>
</h:outputLink>

210

CHAPTER 4 * JAVASERVER FACES STANDARD COMPONENTS

The previous example would produce a link with the text User Home Page when rendered on the
page. It would produce the following HTML link, where emailAddress corresponds to the EL expression of
#{contactController.current.email}:

Home Page

Similarly, rather than displaying a link as text on the page, an image can be used by embedding a
graphicImage component (see Recipe 4-6 for details).

The outputlLabel component renders an HTML <label> tag, and it can be used in much the same way
as the outputText component. In the example, the outputLabel component values are all using static text,
but they could also utilize JSF EL expressions to use managed bean property values if that is more suitable

for the application.

Table 4-8. outputLink Additional Attributes

Attribute Description

accessKey Access key value that will transfer the focus to the component.

binding ValueExpresssion linking this component to a property in a backing bean.

charset The character encoding of the resource designated by this hyperlink.

cords Position and shape of the hotspot on the screen.

dir Direction indication for text (LTR: left-to-right; RTL: right-to-left).

disabled Specifies a boolean to indicate whether the component is disabled.

fragment Identifier for the page fragment that should be brought into focus when the target page
is rendered.

hreflang Language code of the resource designated by the hyperlink.

lang Code for the language used for generating the component markup.

rel Relationship from the current document to the anchor specified by the hyperlink.

rev Reverse anchor specified by this hyperlink to the current document.

shape Shape of the hotspot on the screen.

tabindex Index value indicating number of Tab button presses it takes to bring the component
into focus.

target Name of a frame where the resource retrieved via the hyperlink will be displayed.

title Tooltip that will be displayed when the mouse hovers over component.

type Type of button to create. Values are submit (default), reset, and button.

211

CHAPTER 4 © JAVASERVER FACES STANDARD COMPONENTS

Table 4-9. outputLabel Additional Attributes

Attribute

Description

accessKey Access key value that will transfer the focus to the component.

binding ValueExpresssion linking this component to a property in a backing bean.

dir Direction indication for text (LTR: left-to-right; RTL: right-to-left).

escape Flag indicating that characters that are sensitive in HTML and XML markup must be escaped.
for Client identifier of the component for which this element is a label.

lang Code for the language used for generating the component markup.

tabindex Indexvalue indicating number of Tab button presses it takes to bring the component into focus.
title Tooltip that will be displayed when the mouse hovers over a component.

type Type of button to create. Values are submit (default), reset, and button.

The last output component that I'll cover in this recipe is the link component. It was introduced to JSF in
release 2.0, and it makes the task of adding links to a page just a bit easier. The outputLink and 1ink components
produce similar results, but 1ink has just a couple of different attributes that make it react a bit differently. The
value attribute of the h:1ink tag specifies the label or text that should be used when the link is rendered on the
page, and the outcome attribute specifies the page that should be linked to. The following example of the link
component produces the same output as the outputLink component in the example for this recipe:

<h:1link id=""homeLink"" value=

Home"" outcome=""home""/>

Parameters and images can also embedded within the h:1ink tag, in the same manner as with

outputLink. The 1ink component also contains some custom attributes, as listed in Table 4-10.

Table 4-10. link Component Additional Attributes

Attribute Description

charset Character encoding of the resource that is designated by the hyperlink.

cords Position and shape of the hotspot on the screen, usually used when generating
maps or images containing multiple links.

disabled Flag to indicate that the component should never receive focus.

fragment Identifier for the page fragment that should be brought into focus when the link is
clicked. The identifier is appended to the # character.

hreflang Language of the resource designated by this link.

includeviewparams Boolean indicating whether to include page parameters when redirecting.

outcome Logical outcome used to resolve a navigational case.

rel Relationship from the current document to the resource specified by link.

rev Reverse link from the anchor specified from this link to the current document.

shape Shape of the hotspot on the screen.

target Name of the frame in which the resource linked to is to be displayed.

type Content type of resource that is linked to.

212

CHAPTER 4 * JAVASERVER FACES STANDARD COMPONENTS

This recipe provided a high-level overview of the JSF standard output components. In JSF 2.0+, it is
important to note that you can simply include a JSF EL expression without using an output component to
display text in a page. However, these components can still be quite useful under certain circumstances,
making them an important set of components to have in your arsenal.

4-4. Adding Form Validation

Problem

To ensure that valid data is being submitted via your form, you need to incorporate some validation on your
input fields.

Solution #1

Utilize prebuilt JSF validator tags on the view’s input components where possible. JSF ships with a handful of
prebuilt validators that can be applied to components within a view by embedding the validator tag within
the component you want to validate. The following code excerpt is taken from a JSF view that defines the
layout for the newsletter subscription page of the Acme Bookstore application. The sources can be found

in the view named recipe04_04.xhtml, and the excerpt demonstrates applying prebuilt validators to some
inputText components.

<h:outputlLabel for="first" value="First: "/>

<h:inputText id="first" size="40" value="#{contactController.current.first}">
<f:validatelLength minimum="1" maximum="40"/>

</h:inputText>

<h:message id="firstError"
for="first"
errorStyle="color:red"/>

<h:outputlLabel for="last" value="Last: "/>

<h:inputText id="last" size="40" value="#{contactController.current.last}">
<f:validatelength minimum="1" maximum="40"/>

</h:inputText>

<h:message id="lastError"
for="last"
errorStyle="color:red"/>

In the preceding code excerpt, you can see that the f:validatelength validator tags have been
embedded in different inputText components. When the form is submitted, these validators will be applied
to the values in the inputText component fields and will return an error message if the constraints have not
been met.

213

CHAPTER 4 © JAVASERVER FACES STANDARD COMPONENTS

Solution #2

Utilize JSF bean validation by annotating managed bean fields with validation annotations. It is possible
to perform validation from within the managed bean by annotating the property field declaration with the
validation annotations that are needed. When the form is submitted, the bean validation will be performed.

Note An f:validateBean tag can be embedded within the component in the view if you're using
validationGroups in order to delegate the validation of the local value to the Bean Validation API. If you’re
using f:validateBean, the validationGroups attribute will serve as a filter that instructs which constraints
should be enforced.

The following code excerpt is taken from the JSF view that defines the layout for the newsletter
subscription page of the Acme Bookstore application. The sources can be found in the view named
recipe04_04.xhtml.

<h:outputlLabel for="email" value="Email: "/>
<h:inputText id="email" size="40" value="#{contactController.current.email}"/>

<h:message id="emailError"
for="email"
errorStyle="color:red"/>

Next is an excerpt from the ContactController managed bean that demonstrates applying a validator
annotation to the email property field declaration:

@Pattern(regexp = "[a-zA-Z0-9]+@[a-zA-Z0-9]+\\.[a-zA-Z0-9]+", message = "Email format is
invalid.")
private String email;

When the form is submitted, the validation on the email field will occur. If the value entered into the
inputText component does not validate against the regular expression noted in the annotation, the message
will be displayed within the corresponding messages component.

Solution #3

Create a custom validator method within a managed bean and register that method with an input
component by specifying the appropriate EL for the component’s validator attribute. The following code
excerpt is taken from the JSF view that defines the layout for the newsletter subscription page of the Acme
Bookstore application. The sources can be found in the view named recipe04_04.xhtml, and the excerpt
demonstrates a custom validator method to a component by specifying it for the validator attribute.

214

CHAPTER 4 © JAVASERVER FACES STANDARD COMPONENTS

<h:outputlLabel for="password" value="Enter a password for site access: "/>
<h:inputSecret id="password" size="40" redisplay="true" value="#{contactController.current.
password}"/>

<h:outputLabel for="passwordConfirm" value="Confirm Password: "/>
<h:inputSecret id="passwordConfirm" size="40" redisplay="true"
validator="#{contactController.validatePassword}"/>

<h:message id="passwordConfirmError"

for="passwordConfirm"

style="color:red"/>

Note If you are thinking outside of the box, you’ll see that the previous code fragment would be an
excellent choice for creating into a composite component! If a composite component is created, it would be as
simple as adding a tag such as <custom: passwordVvalidate> to your form. See Recipe 4-4 for more details on
developing composite components.

The validator attribute specifies the validatePassword method within the ContactController
managed bean. The following excerpt is taken from ContactController, and it shows the validator method’s
implementation:

/**
* Custom validator to ensure that password field contents match
* @param context
* @param component
* @param value
*/
public void validatePassword(FacesContext context,
UIComponent component,
Object value){
Map map = context.getExternalContext().getRequestParameterMap();
String passwordText = (String) map.get(("contactForm:password"));
String confirmPassword = value.toString();

if (!passwordText.equals(confirmPassword)) {
throw new ValidatorException(new FacesMessage("Passwords do not match"));
}

When the form is submitted, the validatePassword method will be invoked during the Process
Validations phase. The method will read the values of both the password and passwordConfirm fields, and an
exception will be thrown if they do not match. For example, if the input form for the newsletter subscription
page is submitted without any values, then the page should be re-rendered and look like Figure 4-4.

215

CHAPTER 4 © JAVASERVER FACES STANDARD COMPONENTS

Java 9 Recipes Subscribe to Newsletter

Java EE B Recipes Enter your information below in order to be added to the Acme Bookstore newsletter.

Subscribe to First:

Newsletter contactForm:first: Validation Error: Length is less than allowable minimum of '1*
Last:

contactForm:last: Validation Error: Length is less than allowable minimum of '1'
Email:

Email format is invalid.

Enter a password for site access:

Confirm Password:

Enter your book

Manage Subscription

Written by Josh Juneau, Apress Author

Figure 4-4. Validation errors on input fields

How It Works

There are a few different ways to apply validation to form input fields. The easiest way to apply validation to an
input component is to utilize the prebuilt validator tags that ship with JSE There are prebuilt tags for validating
data for a specified length, range, and so on. See Table 4-2 in the introduction to this chapter for the complete
list of validator tags. You can also choose to apply validation to input components using bean validation. Bean
validation requires validation annotations to be placed on the property declaration within the managed bean.
Yet another possible way to perform validation is to create a custom validation method and specify the method
within the input component’s validator attribute. This section will provide a brief overview of each prebuilt
validation tag, cover the basics of bean validation, and demonstrate how to build a custom validation method.

Note Itis possible to create a class that implements the Validator interface to perform validation. For
more information, see Recipe 3-7.

No matter which validation solution you choose to implement, the validation occurs during the Process
Validations phase of the JSF lifecycle. When a form is submitted, via a command component or an Ajax
request, all validators that are registered on the components within the tree are processed. The rules that are
specified within the attributes of the component are compared against the local value for the component.

At this point, if any of the validations fails, the messages are returned to the corresponding message
components and displayed to the user.

To utilize the prebuilt validation tags, they must be embedded between opening and closing input
component tag and specify attributes according to the validation parameters you want to set. In Solution
#1 for this recipe, you learned how to use the f:validatelength validator tag, which allows validation of
component data for a specified length. The minimum and maximum attributes are set to the minimum string
length and maximum string length, respectively.

216

CHAPTER 4 © JAVASERVER FACES STANDARD COMPONENTS

The f:validatelLongRange validator can be used to check the range of a numeric value that has been
entered. The minimum and maximum attributes of f:validateLongRange are used to determine whether
the value entered falls within the lower and upper bounds, respectively.

Similar to f:validatelLongRange is the f:validateDoubleRange validator, which is used to validate the
range of a floating-point value. Again, the minimum and maximum attributes of f:validateDoubleRange
are used to determine whether the value entered falls within the lower and upper bounds, respectively.

New with the release of JSF 2.0 was the f:validateRequired validator, which is used to ensure that an
input field is not empty. No attributes are needed with this validator; simply embed it within a component
tag to ensure that the component will not contain an empty value.

Another new validator that shipped with the JSF 2.0 release was the f:validateRegex validator. This
validator uses a regular expression pattern to determine whether the value entered matches the specified
pattern. The validator’s pattern attribute is used to specify the regular expression pattern, as shown in the
example for Solution #1 to this recipe.

In Solution #2, JSF bean validation is demonstrated, which was also a new feature of the JSF 2.0 release.
Bean validation allows you to annotate a managed bean field with constraint annotations that indicate the
type of validation that should be performed. The validation automatically occurs on the annotated fields
when a form is submitted that contains input components referencing them. A handful of standard constraint
annotations can be applied to bean fields, as listed in Table 4-11. Each annotation accepts different attributes;
see the online documentation at http://docs.oracle.com/javaee/6/api/ for more details.

Table 4-11. Constraint Annotations Used for Bean Validation

Annotation Description

@AssertFalse The annotated element must be false.
@AssertTrue The annotated element must be true.

@ecimalMax The annotated element must be a decimal that has a value less than or equal to the
specified maximum.

@ecimalMin The annotated element must be a decimal that has a value greater than or equal to the

specified minimum.

@igits The annotated element must be a number within the accepted range.

@Email The annotated element must adhere to the format of an email address.

@Future The annotated element must be a date in the future.

@Max The annotated element must be a number that has a value less than or equal to the
specified maximum.

@Min The annotated element must be a number that has a value greater than or equal to the
specified minimum.

@Negative The annotated element must be a negative number.

@NotBlank The annotated element must not be null or blank after removing any trailing or leading
whitespace.

@NotEmpty The annotated element must not be null or empty.

@NotNull The annotated element must not be null.

@Null The annotated element must be null.

@Past The annotated element must be a date in the past.

(continued)

217

http://docs.oracle.com/javaee/6/api/

CHAPTER 4 © JAVASERVER FACES STANDARD COMPONENTS

Table 4-11. (continued)

Annotation Description

@Pattern The annotated element must match the pattern specified in the regular annotation’s
regular expression.

@Positive The annotated element must be a positive number.

@Size The annotated element must be between the specified boundaries

When using bean validation, the input component that references an annotated bean field can contain
an f:validateBean tag to customize behavior. The f:validateBean tag’s validationGroups annotation
can be used to specify validation groups that can be used for validating the component. For instance, such a
solution may resemble something like the following:

<h:inputText id="email" value="#{contactController.email}">
<f:validateBean validationGroups="org.javaee8recipes.validation.groups.EmailGroup"/>
</h:inputText>

Note Validation groups define a subset of constraints that can be applied for validation. A validation group
is represented by an empty Java interface. The interface name can then be applied to annotation constraints
within a bean class in order to assign such constraints to a particular group. For instance, the following field
that is annotated with @Size specifies a group of EmailGroup.class:

@Size(min=2, max=30, groups=Email.class)
private String email;

When utilizing the f:validateBean tag, any constraint annotations that are contained in the specified group
will be applied to the field for validation.

When you're using bean validation, a custom error message can be displayed if the validation for
a field fails. To add a custom message, include the message attribute in the annotation, along with the
error message that you want to have displayed. As a best practice, error messages should be pulled from a
message bundle so that they can be updated without the need to change code.

The example for Solution #3 demonstrates the use of a custom validator method in order to perform
validation on an input component. The input component’s validator attribute can reference a managed
bean method that has no return type and accepts a FacesContext, a UIComponent, and an Object. The
method can utilize the parameters to gain access to the current FacesContext, the UIComponent that is
being validated, and the current value that is contained in the object, respectively. The validation logic can
throw a javax.faces.validator.ValidatorException if the value does not pass validation and then return
a message to the user via the exception. In the example, the method named validatePassword is used
to compare the two password field contents to ensure that they match. The first two lines of code within
the method are used to obtain the value of the component with the id of password and save it into a local
variable. The actual validation logic compares that value against the incoming parameter’s Object value,
which is the current value of the component being validated, to determine whether there is a match. If not,
then a ValidationException is thrown with a corresponding message. That message will then be displayed
within the messages component that corresponds to the component being validated.

218

CHAPTER 4 © JAVASERVER FACES STANDARD COMPONENTS

As mentioned at the beginning of this recipe, there are a few ways to validate input. None of them is any
better than the other; their usage depends on the needs of your application. If you are going to be changing
validation patterns often, then you may want to stick with the prebuilt validator tags so that you do not need
to recompile code in order to change the validation. On the other hand, if you know that your validation will
not change, then it may be easier for you to work with the bean validation technique. Whatever the case,
validation can be made even easier with Ajax, and that topic is covered in Chapter 5.

4-5. Adding Select Lists to Pages

Problem

You want to provide a list of options to choose from for some of the input fields on your page.

Solution

Use the JSF selectOneMenu, selectManyMenu, selectOneListbox, or selectManyListbox component,
depending on the type of list your application requires. Each of these selection components allows for either
one or many selections to be made from a particular set of values. The example for this recipe adds to the
newsletter subscription page of the Acme Bookstore. The bookstore application will allow the customers to
select their occupation from a drop-down list and to select one or more newsletters to which they would like
to subscribe from a multiple-select list. Since they’ll be selecting only a single option for their occupation, a
selectOneMenu is used. However, since multiple newsletter selections can be made, a selectManyListbox is
the best choice.

The View: recipe04_05.xhtml

The following excerpt is taken from the JSF view named recipe04 05.xhtml, and it demonstrates the usage
of these components:

<h:outputlabel for="occupation" value="Occupation: "/>
<h:selectOneMenu id="occupation" value="#{contactController.current.occupation}">
<f:selectItem itemLabel="" itemValue=""/>
<f:selectItems value="#{contactController.occupationList}"/>
</h:selectOneMenu>

<h:outputlLabel for="newsletterList" value="Newsletters:"/>
<h:selectManylListbox id="newsletterList" value="#{contactController.current.
newsletterList}">
<f:selectItems value="#{contactController.allNewsletters}"/>
</h:selectManylListbox>

219

http://dx.doi.org/10.1007/978-1-4842-3594-2_5

CHAPTER 4 © JAVASERVER FACES STANDARD COMPONENTS

Managed Bean: ContactController.java

The components are bound to properties in the ContactController managed bean. The following excerpt,
taken from ContactController, shows the declaration of the properties, along with their corresponding
accessor methods:

// Declaration of the managed bean properties
private List<String> occupationlist;
private Map<String, Object> allNewsletters;

// Example of populating the object

private void populateOccupationList(){
occupationlist = new ArraylList();
occupationList.add("Author");
occupationList.add("IT Professional");

}

// Example of populating the object

private void populateNewsletterList(){
newsletterlist = new LinkedHashMap<String,Object>();
newsletterList.put("Java 9 Recipes Weekly", "Java");
newsletterList.put("JavaFX Weekly", "FX");
newsletterlList.put("Oracle PL/SQL Weekly", "Oracle");
newsletterList.put("New Books Weekly", "New Books");

o
* @return the occupationList
*/

public List<String> getOccupationList() {
return occupationlist;

}

/**
* @param occupationList the occupationList to set
*/

public void setOccupationlList(List<String> occupationlist) {
this.occupationlist = occupationlist;

}

/**

* @return the newsletterlist
*/

public Map<String,Object> getNewsletterList() {
return newsletterlList;

}

220

CHAPTER 4 © JAVASERVER FACES STANDARD COMPONENTS

/**

* @param newsletterList the newsletterList to set
*/

public void setNewsletterlList(Map<String,Object> newsletterList) {
this.newsletterlist = newsletterlist;

}

The newly updated newsletter subscription page should look like Figure 4-5.

Acme Bookstore

Search

Java 9 ip Sutk ibe to N
Java EE B Recipes Enter your information below in order to be added to the Acme Bockstore newsletter.
Subscribe to First:
Newsletter
Last:

Enter a password for site access:
Confirm Password:

Enter your book i

Occupation: B
Java 9 Recipes Weekly
JavaF X Weckly
Cracle PLISOL Weekly
Newsletters: New Books Weekly
Save

Manage Subscription

Home

‘Written by Josh Juneau, Apress Author

Figure 4-5. Selection components including lists of values

How It Works

To ensure data integrity, it is always a good idea to include input components that are prepopulated with
data if possible. Doing so ensures that users are not entering free-text values of varying varieties into text
boxes, and it also gives the user a convenient choice of options. Utilizing selection components provides
the user with a list of values to choose from, allowing one or more selections to be made. The standard

JSE component library ships with four input components that accept lists of data from which a user can
choose one or more selections. The selection components are selectOnelListbox, selectManyListbox,
selectOneMenu, and selectManyMenu. Each of these components shares a common set of attributes. Those
common attributes that were not already displayed in Table 4-2 are listed in Table 4-12.

221

CHAPTER 4 © JAVASERVER FACES STANDARD COMPONENTS

Table 4-12. Select Component Attributes

Attribute Description

accesskey Access key that, when pressed, transfers focus to the component

dir Direction indication for text (LTR: left-to-right; RTL: right-to-left)

disabled Boolean value to indicate whether the component is disabled

disabledClass CSS style class to apply to the rendered label on disabled options
enabledClass CSS style class to apply to the rendered label on enabled options

label Localized user-presentable name for the component

lang Code describing the language used in the generate markup for the component
size Number of available options to be shown at all times (selectManyListbox)
tabindex Index value indicating number of Tab button presses it takes to bring the

component into focus

title Tooltip that will be displayed when the mouse hovers over component

Populating the Select Lists

Before diving into each of the four components and a brief description of how they work, it is important

to note that each component displays a collection of data, and the f:selectItemor f:selectItems tags

are used to specify that set of data. If you want to list each data item separately, then the f:selectItem tag
should be used. One f:selectItemtag represents one element in the collection of values. The f:selectItem
tag contains several attributes, but I cover only some of the important ones in this discussion. Every
f:selectItemtag should minimally contain both the itemValue and itemlLabel attributes, specifying the
value for the element and the label that is to be displayed, respectively. These attributes accept a JSF EL
expression, or a string of text. In the example, both the itemValue and itemLabel attributes are left blank,
which will render an empty selection for the first menu choice. When the user selects an option from the list,
the itemValue attribute value is set into the corresponding selection component’s value.

The f:selectItems tag can be used to specify a collection of data that should be used for the
component. A List of SelectItem objects can be built within a managed bean and specified for the
f:selectItems tag. Much like the f:selectItem tag, several attributes can be used with this tag, and I'll
cover the essential ones here. Both the itemValue and itemLabel attributes can also be specified for the
f:selectItems tag, correspondingto a List or Map of values, and a string label, respectively. However, most
often, the value attribute is specified, referencing a managed bean property that contains a Collection
or array of objects. The Collection or array can contain any valid Java object, and in the example a
LinkedHashMap is used to populate the newsletterList property. It is possible to populate individual
SelectItem objects and then load them into a List for use with the f:selectItems tag. The following lines
of code show how to populate a collection of newsletters:

private void populateNewsletterList() {
allNewsletters = new LinkedHashMap<String, Object>();
allNewsletters.put("Java 9 Recipes Weekly", "Java");
allNewsletters.put("JavaFX Weekly", "FX");
allNewsletters.put("Oracle PL/SQL Weekly", "Oracle");
allNewsletters.put("New Books Weekly", "New Books");

222

CHAPTER 4 * JAVASERVER FACES STANDARD COMPONENTS

Regarding Each Component Type

The selectOneMenu is probably the most commonly used selection component, and it renders a collection
of data into a drop-down list. The user can select one entry from the menu, and the selected entry will be set
into the managed bean property that is specified for the value attribute of the component. In the example to
this recipe, the value is set to #{contactController.current.occupation}, so when an entry from the list is
selected, then it will be set into the currently selected Contact object’s occupation field.

The selectOnelListbox allows a user to select one value from a list of data. The user can see at least a
few of the entries within the list within a box on the screen and can select one of the options from the list
box. The selectOneListbox contains an additional attribute named collectionType, which allows the type
of collection to be specified using a literal value.

Both the selectManyMenu and selectManyListbox components allow the user to choose more than
one option in the selection list. The example demonstrates how to use a selectManyListbox component,
allowing the user to choose more than one newsletter from the list. The main difference when using one
of these components is that the managed bean property value for the component must be able to accept
more than one value. In the example, the selectManyListbox component value references the Contact
class’s newsletterList field. The newsletterlList field is declared as a List of String objects, so when
the user selects more than one value from the newsletterlList, all of the choices can be stored in the
current Contact object.

In the example for this recipe, two components are used to display lists of options for selection. One of
the components allows a user to select one value from the collection and displays the options in a drop-down
list, and the other allows a user to select more than one value and displays the options within a list box.

4-6. Adding Graphics to Your Pages

Problem

You want to incorporate a graphic into your site template or other select application pages.

Solution

Place the images that you want to display into a library in your application’s resources folder, and then use
the graphicImage component to display them. The book.xhtml view for the Acme Bookstore application
contains an image of each book in the store. To render the image, the book image name is populated from
the image field of the Book managed bean. The following code excerpt taken from book.xhtml demonstrates
how to use the h:graphicImage tag:

<h:graphicImage id="bookImage" library="image"
style="width: 100px; height: 120px" name="#{book.image}"/>

How It Works

Since the inception of JSE, the graphicImage component has been used to display images. Using the library
attribute of the graphicImage component, a JSF view can reference an image resource without needing

to specify a fully qualified path to the image file. In the solution to this recipe, the value specified for the
library attribute is image, meaning that the image can be found in the resource\image folder. It also
provides the convenience of accepting JSF EL in attributes as needed so that images can be dynamically
loaded based upon the current values in the corresponding managed bean properties. The graphicImage
component makes it easy to display images, both dynamically and statically.

223

CHAPTER 4 © JAVASERVER FACES STANDARD COMPONENTS

The h:graphicImage tag supports a number of attributes, above and beyond the standard JSF
component attributes, as listed in Table 4-13.

Table 4-13. graphiclmage Component-Specific Attributes

Attribute Description

alt Alternate textual description of the element rendered by the component

dir Direction indication for text (LTR: left-to-right; RTL: right-to-left)

height Overrides the height of the image

ismap Boolean indicating whether the image is to be used as a server-side image map
lang Code describing the language used in the generated markup for the component
longdesc URI to a long description of the image represented by the element

title Advisory title information about the markup elements generated by the component
usemap Name of a client-side image map for which this element provides the image

width Overrides the width of the image

When the page is rendered in the example to this recipe, the image that resides within the application’s
resources/image directory that corresponds to the name attribute on the tag will be displayed. If the
user selects a different book from the menu, then that book’s image will be displayed using the same
graphicImage component, because the name specified for the image can be changed depending on the
currently selected book object in the managed bean.

By utilizing a graphicImage in your views, you enable your images to take on the dynamic
characteristics of standard JSF components.

4-7. Adding Check Boxes to a View

Problem

You need to add check box fields to an application view.

Solution

Utilize the selectOneCheckbox and selectManyCheckbox components within the view. These components
allow you to specify a boolean value as input by simply checking a box for a true value and deselecting the
check box for a false value.

The View: recipe04_07.xhtml

The following code excerpt is taken from the view named recipe04_07.xhtml, and it demonstrates the use
of these components:

<h:outputlabel for="notifyme" value="Would you like to receive other promotional email?"/>
<h:selectBooleanCheckbox id="notifyme"
value="#{contactController.current.receiveNotifications}"/>

224

CHAPTER 4 * JAVASERVER FACES STANDARD COMPONENTS

<h:outputlLabel for="notificationTypes"
value="What type of notifications are you interested in

receiving?"/>
<h:selectManyCheckbox id="notifyTypes" value="#{contactController.current.
notificationType}">

<f:selectItems value="#{contactController.notificationTypes}"/>
</h:selectManyCheckbox>

Managed Bean Controllers

Each of the components is bound to a Contact object, so when the form is submitted, the current Contact
object will receive the data if valid. The following listing contains excerpts from the updated Contact class,
an object that is used to hold the contact’s information. For the complete listing, see the Contact.java
sources in the org. javaee8recipes.chapter0o4 packages in the sources.

private boolean receiveNotifications;
private Map<String, Object> notificationType;

/¥
* @return the receiveNotifications
*/

public boolean isReceiveNotifications() {
return receiveNotifications;

}

ik
* @param receiveNotifications the receiveNotifications to set
*/

public void setReceiveNotifications(boolean receiveNotifications) {
this.receiveNotifications = receiveNotifications;

}

/**
* @return the notificationTypes
*/
public Map<String, Object> getNotificationTypes() {
return notificationTypes;
}

/**

* @param notificationTypes the notificationTypes to set
*/
public void setNotificationTypes(Map<String, Object> notificationTypes) {
this.notificationTypes = notificationTypes;
}

225

CHAPTER 4 © JAVASERVER FACES STANDARD COMPONENTS

The last piece of the puzzle is the list of notification types that are bound to the f:selectItems tag
that is embedded within the h:selectManyCheckbox component. These are bound to a property named
notificationTypes in the ContactController managed bean. The following listing contains the relevant
excerpts from that class.

// Declaration
private Map<String, Object> notificationTypes;

// Population occurs within the constructor, calling the populateNotificationTypes method
Vioio
* Creates a new instance of ContactController
*/
public ContactController() {
current = null;
passwordConfirm = null;
newsletterDescription = "Enter your information below in order to be " +
"added to the Acme Bookstore newsletter.";
populateOccupationList();
populateNewsletterList();
populateNotificationTypes();

}

private void populateNotificationTypes() {
notificationTypes = new HashMap<>();
notificationTypes.put("Product Updates", "1");
notificationTypes.put("Best Seller Alerts","2");
notificationTypes.put("Spam", "3");

The resulting newsletter subscription input screen for the Acme Bookstore application, including the
new check box components, will look like Figure 4-6.

226

CHAPTER 4 © JAVASERVER FACES STANDARD COMPONENTS

Acme Bookstore

Java 9 Recipes Subscribe to Newsletter
Java EE 8 Recipes Enter your information below in order to be added to the Acme Bookstore newsletter.
Subscribe to First:
Newsletter
Last:
Email:

Enter a password for site access:
Confirm Password:

Enter your book interests

Occupation: | Auther]

Java 9 Recipes Weekly

JavaFX Weekly

Oracie PLISOL Weekly
Newsletters: New Boaks Weekly

Would you like to receive other promaotional email?

What type of are you | in i g
Best Seller Alerts Product Updates Spam

Save
Manage Subscription
Home

Written by Josh Juneau, Apress Author

Figure 4-6. Incorporating check boxes into your pages

How It Works

Check boxes are very common in applications because they provide an easy means for users to enter
boolean values. The box is either checked or not, and a checked box relates to a true value, leaving an
unchecked box relating to a false value. The JSF standard component library ships with a couple of different
check box selection components, namely, the selectBooleanCheckbox and the selectManyCheckbox. The
selectBooleanCheckbox renders a single HTML input element with type="checkbox" on the page, whereas
the selectManyCheckbox component renders multiple HTML input elements with type="checkbox". As
with all JSF components, the check box selection components share a standard set of attributes above and
beyond the common JSF component attributes, which are listed in Table 4-14.

227

CHAPTER 4 © JAVASERVER FACES STANDARD COMPONENTS

Table 4-14. Check Box Selection Component Attributes

Attribute Description

accessKey Access key that, when pressed, transfers focus to the element

border Width of the border to be drawn around the table containing the options list
(selectManyCheckbox)

dir Direction indication for text (LTR: left-to-right; RTL: right-to-left)

disabled Boolean value indicating whether the element must receive focus or be included in a
submit

label Localized user presentable name for the component

lang Code describing the language used in the generated markup for the component

layout Orientation of the options list to be created (selectManyCheckbox)

readonly Boolean indicating whether the component is read-only

tabindex Index value indicating number of Tab button presses it takes to bring the component into
focus

title Tooltip that will be displayed when the mouse hovers over a component

A selectBooleanCheckbox component value attribute EL expression should correspond to a boolean
property in the managed bean. In the example to this recipe, the selectBooleanCheckbox value is set to
#{contactController.current.receiveNotifications}, a boolean field in the current Contact object that
indicates whether the contact wants to receive notifications. If the user checks the box for the component,
then the value for the receiveNotifications field will be set to true; otherwise, it will be set to false. The
value attribute is the only attribute that is required for use. However, oftentimes the valueChangelistener
attribute is set to a method within a managed bean that will be invoked if the value for the component value
changes. This is most useful when using an Ajax form submit so that the client can see the results of a
ValueChangeEvent immediately, rather than after the form is re-rendered. To learn more about working
with valueChangelisteners, see Chapter 5.

The selectManyCheckbox component displays one or more check boxes on a page. The value attribute
for this component should correspond to a string array. Each check box contained within the component
has a corresponding String value. Now you are probably thinking to yourself, what does a string have to do
with a boolean value? In fact, each string in the array corresponds to a check box on the page, and when a
box is checked, the string that corresponds to that box is added to the array. If no boxes are checked, then
there are no strings added to the array. Therefore, the presence of the string signifies that the check box
corresponding to that string value has been checked.

To add check boxes, individual f:selectItem tags can be used for each check box, or a collection
of check boxes can be added using the f:selectItems tag. If you're using f:selectItem, then the
itemValue attribute is set to the String value that corresponds to that check box, and the itemLabel
attribute is set to the check box label. In the example, the f:selectItems tagis used to populate check
boxes for the component. The f:selectItems tagin the example contains a value attribute that is set
to #{contactController.notificationTypes}, which corresponds to the notificationTypes field
in the ContactController class. If you take a look at the notificationTypes field, you will see that
itis declared as a Map<String, Object>, and each element in the array will correspond to a check
box. When the ContactController class is instantiated, the populateNotificationTypes method is
called, which populates the map with the values for each check box. The following listing is that of the
populateNotificationTypes method. Each element in the map corresponds to a check box.

228

http://dx.doi.org/10.1007/978-1-4842-3594-2_5

CHAPTER 4 * JAVASERVER FACES STANDARD COMPONENTS

private void populateNotificationTypes() {
notificationTypes = new HashMap<>();
notificationTypes.put("Product Updates", "1");
notificationTypes.put("Best Seller Alerts","2");
notificationTypes.put("Spam", "3");

}

Check boxes make it easy for users to indicate a true or false (checked or unchecked) value for a given
option. The JSF check box selection components help organize content on a page, and they provide a good
means of ensuring data integrity since the user does not have to enter free text.

4-8. Adding Radio Buttons to a View

Problem

You want to display a set of items on a page in the form of radio buttons and allow the user to select only one
of them.

Solution

Use radio buttons on your page to provide the user the option of selecting one item from a set. Radio buttons
are often a nice solution when you want to display all options on the screen at once but allow only one
selection. For this recipe, the Acme Bookstore wants to add a radio button on the newsletter subscription
page to determine whether the subscriber is male or female.

The View: recipe04_08.xhtml

The following excerpt is taken from the JSF view named recipe04 08.xhtml, and it demonstrates the
selectOneRadio component:

<h:outputlLabel for="gender" value="Gender: "/>

<h:selectOneRadio id="gender" value="#{contactController.current.gender}">
<f:selectItem itemValue="M" itemlLabel="Male"/>
<f:selectItem itemValue="F" itemLabel="Female"/>

</h:selectOneRadio>

<h:message id="genderError"
for="gender"
errorStyle="color:red"/>

229

CHAPTER 4 © JAVASERVER FACES STANDARD COMPONENTS

Managed Bean

The component is bound to a managed bean property named gender that has been added to the
Contact class. The following listing contains excerpts from the Contact class, which show the updates for
incorporating the new field:

private String gender;

S
* @return the gender
*/

public String getGender() {
return gender;

}

ik
* @param gender the gender to set
*/

public void setGender(String gender) {
this.gender = gender;

}

When the selectOneRadio component is rendered on the screen, it adds a radio button for each of the
available options. The updated Acme Bookstore newsletter page looks like that in Figure 4-7.

Java 9 Recipes Subscribe to Newsletter
Java EES8 Recipes Enter your information below in order to be added to the Acme Bookstore newsletter.
Subscribe to First:
Newsletter
Last:
Email:
Gender:

| Male | Female

Figure 4-7. Using a selectOneRadio component

How It Works

Radio buttons are very similar to check boxes in that they provide the user with an on or off value for a
designated page value. The value added to using radio buttons is that they make it easy to display several
options on the screen at once and allow the user to select only one of them. If a user tries to select a different
option, then the currently selected item becomes unselected, forcing the user to select only one option. The
JSF selectOneRadio component is used to render radio buttons on a page, and the component works in
much the same manner as the selectManyCheckbox (see Recipe 4-7).

230

CHAPTER 4 © JAVASERVER FACES STANDARD COMPONENTS

The selectOneRadio shares all of the same attributes as the selectBooleanCheckbox component.
See Table 4-14 for a listing of those attributes. The selectOneRadio component also contains a number of
additional attributes, as listed in Table 4-15.

Table 4-15. selectOneRadio Attributes (in Addition to Those Listed in Table 4-14)

Attribute Description

disabledClass CSS style class to apply to the rendered label on disabled options.
group Specifies a group of radio buttons to which the component belongs.

enabledClass CSS style class to apply to the rendered label on enabled options.

To use the selectOneRadio component, the value attribute should be set to a string. In the example, the
value for the selectOneRadio component is set to the gender field in the current Contact object. When one
of the radio buttons is selected, the String value corresponding to that button will be set into the field value.
The radio buttons are populated using either the f:selectItemtagor the f:selectItems tag, much like
the selectManyCheckbox component (see Recipe 4-7). In the example, two f:selectItem tags are used to
add two radio buttons to the component; the itemValue attribute is the string that will be submitted for the
selected button, and the itemlLabel attribute is the string that is displayed next to the corresponding button.

If you want to use an f:selectItems tagto populate a collection of radio buttons, the f:selectItems
value attribute should be set to a managed bean property that is declared as a string array, a map, or a list
of SelectItem objects. To see an example, review the example for the selectManyCheckbox component in
Recipe 4-7.

Note In JSF 2.3, the group attribute was added to the component. This attribute allows radio buttons to be
placed in a view individually, while still having the ability to share selection with all other buttons of the same
group.

Radio buttons are an easy way to display multiple options to a user and allow them to select one. If you
understand how a selectManyCheckbox component works, then the selectOneRadio is very similar.

4-9. Displaying a Collection of Data

Problem

You are interested in displaying a collection of data in one of your JSF application pages.

Solution

Utilize a dataTable component to display a collection of data. A dataTable component can be used

to iterate over a collection of data, providing a handle for each row object so that column data can be
interrogated if need be or simply displayed. For this example, the book page is being updated to display
the table of contents for a chosen book. The table of contents will be displayed in a dataTable component,
which has been customized for readability.

231

CHAPTER 4 © JAVASERVER FACES STANDARD COMPONENTS

The View: recipe04_09.xhtml

The following listing is that of the view named recipe04_09.xhtml, which is an incomplete snapshot of the
book.xhtml view:

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
xmlns:f="http://xmlns.jcp.org/jsf/core"
xmlns:h="http://xmlns.jcp.org/jsf/html">
<h:head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<title>Acme Bookstore</title>
</h:head>
<h:body>
<ui:composition template="./layout/custom template search.xhtml">

<ui:define name="content">
<h:form id="componentForm">
<hi>Author List for #{ch4AuthorController.currentBook.title}</h1>
<p>
Below is the list of authors. Click on the author's last name
for more information regarding the author.
</p>

<h:graphicImage id="javarecipes" library="image"
style="width: 100px; height: 120px"
name="#{ch4AuthorController.currentBook.image}"/>

<h:dataTable id="authorTable" border="1"
value="#{ch4AuthorController.authorList}"
var="author">
<f:facet name="header">
#{ch4AuthorController.currentBook.title} Authors
</f:facet>
<h:column >
<h:commandLink id="authorName" action="#{ch4AuthorController.
displayAuthor(author.last)}"
value="#{author.first} #{author.last}"/>
</h:column>
</h:dataTable>

<h:dataTable id="bookDetail" border="1"
value="#{ch4AuthorController.currentBook.chapters}"
var="book" style="width:100%"
rowClasses="tocTableOdd, tocTableEven"
columnClasses="col1">
<f:facet name="header">
#{ch4AuthorController.currentBook.title} Details
</f:facet>

232

CHAPTER 4 * JAVASERVER FACES STANDARD COMPONENTS

<h:column >
<f:facet name="header">
Chapter
</f:facet>
<h:outputText value="#{book.chapterNumber}"/>
</h:column>
<h:column>
<f:facet name="header">
Title
</f:facet>
<h:outputText value="#{book.title}"/>
</h:column>

</h:dataTable>

</h:form>
</ui:define>

</ui:composition>

</h:body>
</html>

CSS

The dataTable utilizes some CSS style classes in order to make it easier to read. The following excerpt is
taken from the Acme Bookstore application style sheet named styles.css, and it contains the styles utilized
by the table. The styles.css sheet is linked to the view because it is declared as a resource within the
template.

.tocTable0Odd{
background: #cococo;

}

.tocTableEven{
background: #e0e0e0;

}

.coli{
text-indent: 15px;
font-weight: bold;

}

233

CHAPTER 4 © JAVASERVER FACES STANDARD COMPONENTS

Note In JSF 2.3, the dataTable has a new rowClass attribute, which accepts EL to access the current
row. Therefore, something like the following is possible:

<h:dataTable id="bookDetail" border="1"
value="#{ch4AuthorController.currentBook.chapters}"
var="book" style="width:100%"
rowClass="#{book eq 'Java EE 8 Recipes'? stylel:style2}"
columnClasses="col1">

The h:column had a new styleClass attribute added in JSF 2.3. This attribute allows you to apply a specified
style to an individual column.

Managed Bean

To accommodate the new table, a class named Chapter has been added to the application. The Chapter
class is an object that will contain the chapter number, the title, and a description of each chapter. There
is to be one Chapter object instantiated for each chapter in every book. To view the listing, see the org.
javaee8recipes.chapter04.Chapter class in the sources. To populate the Chapter objects for each
book, the AuthorController managed bean has been updated. The following excerpt is taken from the
AuthorController managed bean, and it shows how the chapters are populated into the Book objects.

Note The example demonstrates hard-coding of strings within Java classes. This is generally a bad idea,
and the use of a database or resource bundle for obtaining strings is a better fit for enterprise applications. This
code is for demonstration purposes only; to learn more about using databases to store strings, refer to Part Il or
Part Il of this book.

public void populateAuthors(){

Book book1l = new Book("Java 9 Recipes", "javadrecipes.png");
book1 = addChaptersi(book1);

private Book addChaptersi(Book book){
Chapter chapterl = new Chapter(1, "Getting Started with Java 7", null);
Chapter chapter2 = new Chapter(2, "Strings", null);
Chapter chapter3 = new Chapter(3, "Numbers and Dates", null);
Chapter chapter4 = new Chapter(4, "Data Structures, Conditionals, and Iteration", null);
Chapter chapter5 = new Chapter(5, "Input and Output", null);

234

Chapter
Chapter
Chapter
Chapter
Chapter
null);

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

chapter6
chapter7
chapter8
chapter9
chapter1o

chapter11
chapter12
chapter13
chapteri4
chapteri1s
chapter16
chapter17
chapter18
chapter19
chapter20
chapter21
chapter22
chapter23 =

new Chapter(6,
new Chapter(7,
new Chapter(8,
new Chapter(9,
new Chapter(1o0,

new Chapter(11,
new Chapter(12,
new Chapter(13,
new Chapter(14,
new Chapter(1s,
new Chapter(16,
new Chapter(17,
new Chapter(18,
new Chapter(19,
new Chapter(20,
new Chapter(21,
new Chapter(22,
new Chapter(23,

CHAPTER 4 * JAVASERVER FACES STANDARD COMPONENTS

"Exceptions, Logging, and Debugging", null);
"Object Oriented Java", null);
"Concurrency", null);

"Debugging and Unit Testing", null);

"Unicode, Internationalization, and Currency Codes",

"Working with Databases (3IDBC)", null);
"Java 2D Graphics and Media", null);
"Java 3D", null);

"Swing API", null);

"JavaFX Fundamentals", null);
"Graphics with JavaFX", null);
"Media with JavaFX", null);

"Working with Servlets", null);
"Applets”, null);

"JavaFX on the Web", null);

"Email", null);

"XML and Web Services", null);
"Networking", null);

List <Chapter> chapterList = new Arraylist();

chapterlist.
chapterlList.
.add(chapter3);

chapterlist

chapterList.
chapterlist.
chapterlist.
chapterlist.
chapterlList.
chapterlist.
chapterlList.
chapterlist.
chapterlist.
chapterlList.
chapterlist.
chapterList.
chapterlList.
chapterlist.
chapterlist.
chapterlist.
chapterlist.
chapterList.
chapterlist.
chapterlist.
book.setChapters(chapterlList);
return book;

add(chapter1);
add(chapter2);

add(chapter4);

add(chapters);

add(chapter6);

add(chapter7);

add(chapter8);

add(chapter9);

add(chapter10);
add(chapteri11);
add(chapter12);
add(chapter13);
add(chapteri14);
add(chapter15);
add(chapter16);
add(chapter17);
add(chapter18);
add(chapter19);
add(chapter20);
add(chapter21);
add(chapter22);
add(chapter23);

235

CHAPTER 4 © JAVASERVER FACES STANDARD COMPONENTS

The resulting table of contents on the book page will look like Figure 4-8.

Java 7 Recipes Details |

Chapter || Title |
1 ||Getting Started with Java 7 |
2 |[strings]
3 |[Numbers and Dates |
4 |Data Structures, Conditionals, and Iteration |
5 |Input and Output |
6 ||[Exceptions, Logging, and Debugging |
7 ||Object Oriented Java |
8 |[concurrency I
9 |[Debugging and Unit Testing |
10 |Unicode, Internationalization, and Currency Codes |
11 |[Working with Databases (JDBC) |
12 \Pava 2D Graphics and Media |
13 |pava 3D |
14 |[swing API |
15 [ravaFx Fundamentals |
16 |Graphics with JavaFX |
17 |[Media with JavaFX |
18 |[working with Serviets]
19 [Applets |
20 DavaFX on the Web |
21 |[Email |
22 IXML and Web Services |
23 |[Networking |

Figure 4-8. Using a dataTable component

How It Works

The JSF dataTable component can be used to display collections of data in a uniform fashion. The
dataTable component is easy to work with, and it allows the flexibility to work with each field within a data
collection. There are other means of displaying collections of data, such as the ui-repeat Facelets tag or the
use of a panelGrid component, but a dataTable makes a developer’s life easy if the table does not need to be
customized to the nth degree.

The dataTable component contains various attributes that can be used to customize the look and feel
of the table, as well as some behavioral characteristics. Each of those attributes is listed in Table 4-16. Each
dataTable also contains column components, which are declared within a dataTable component using the
h:column tag. As with any other JSF tag, there are many attributes that correspond to the h:column tag, as
listed in Table 4-17.

236

CHAPTER 4 * JAVASERVER FACES STANDARD COMPONENTS

Table 4-16. dataTable Attributes

Attribute Description

bgcolor Name or code of the background color for the table.

bodyrows Comma-separated list of row indices for which a new <tbody> element should be
started.

border Width (pixels) of the border to be drawn around the table.

captionClass Space-separated list of CSS style classes that will be applied to any caption generated
for the table.

captionStyle CSS style to be applied when the caption is rendered.

cellpadding Definition of how much space the user agent should leave between the border of each
cell and its contents.

cellspacing Definition of how much space the user agent should leave between the left side of the
table and the leftmost column, the top of the table and the top of the top side of the
topmost row, and so on, for the right and bottom of the table. This also specifies how
much space to leave between cells.

columnClasses Comma-delimited list of CSS styles that will be applied to the columns of the table.
A space-separated list of classes can also be specified for any individual column.

columns Number of columns to render before starting a new row.

dir Direction indication for text (LTR: left-to-right; RTL: right-to-left).

footerClass Space-separated list of CSS style classes that will be applied to any footer generated for
the table.

frame Code specifying which sides of the frame surrounding the table will be visible.

headerClass Space-separated list of CSS style classes that will be applied to any header generated
for the table.

lang Code describing the language used in the generated markup for the component.

rowClass Accepts EL to access rows, and can be used to apply CSS style classes to specified rows.

rowClasses Comma-delimited list of CSS style classes that will be applied to the rows of the table.
A space-separated list of classes may also be specified for each individual row.

rules Code specifying which rules will appear between the cells of the table. Valid values
include none, groups, rows, cols, and all.

summary Summary of the table’s purpose and structure for user agents rendering to nonvisual
media.

title Advisory title information about markup elements generated for the component.

width Width of the entire table.

Table 4-17. h:column Attributes

Attribute Description

footerClass CSS class that will be applied to the column footer
headerClass CSS class that will be applied to the column header
styleClass Allows CSS class to be applied to the individual column

237

CHAPTER 4 © JAVASERVER FACES STANDARD COMPONENTS

The easiest way to describe the dataTable is to walk through an example. The solution to this recipe
contains a JSF view, in which there are two dataTable components utilized. The first dataTable has an
id attribute of authorTable, and the second has an id attribute of bookTable. You are most interested in
the second dataTable, whose id attribute equals bookTable, although the first dataTable functions in
much the same way. The bookTable component is used to iterate over a collection of Chapter objects and
display the corresponding chapter number and title for the currently selected book. The value attribute
of the dataTable is set to #{ch4AuthorController.currentBook.chapters}, which corresponds to a
List<String> property within the AuthorController managed bean. A dataTable can iterate over many
different collection types, including a list, DataModel, and array. Beginning with the release of JSF 2.2, the
common Collection interface also became supported. The var attribute of the dataTable component is
used to specify a handle that allows access to the collection data at the row level. This means you can hone
in on a specific field of the data collection if needed. The dataTable tag does not display anything on its
own; it must have column components embedded within it in order to display the content. Each h:column
tag within a dataTable correlates to a single column of the resulting table when it is rendered. For instance,
if you look at the first h: column tag within the dataTable that has an id of bookDetail, it has an embedded
outputText component, which specifies a value of #{book . chapterNumber}. This specific column is used
to display the chapter number, which is a field within the Chapter object that correlates to the currentBook
object’s chapters List.

A column component can contain any valid JSF component, or it can contain plain JSF EL correlating
to a data field within the collection. If you look at the dataTable that has an id attribute of authorTable,
you will see that a commandLink component is used within one of the columns. Oftentimes such is the case,
because you may want to link to the currently selected row’s data from within a table cell. The dataTable
with an id of authorTable contains a good example of doing just that. The commandLink in the table contains
an action attribute that specifies a method within the AuthorController class, and the currently selected
row’s value, lastName, is passed to the method as a parameter. The underlying method uses that parameter
to retrieve all the data for the selected row and display it in a different view.

<h:commandLink id="authorName" action="#{ch4AuthorController.displayAuthor(author.last)}"
value="#{author.first} #{author.last}"/>

To place a header or footer on the table, you must embed a facet into the table using an f:facet tag.
The f:facet tag contains a number of typical JSF component attributes, but one that stands out for this
component is the name attribute. The name attribute is used to specify what type of facet the tag is, and in
the case of the dataTable those names are header and footer. To create the table header or footer, simply
embed the f:facet tag, specifying the name of the facet (type of facet to create) inside the dataTable
component.

Note A unique data type that can be used for a dataTable collection is the DataModel. To have the ability
to display row numbers, use a DataModel.

The dataTable component can be extremely useful in situations when you need to display a
collection of data. One of the pitfalls to using the dataTable is that it does not provide an overabundance of
customizability. However, it is very possible to extend the functionality of the dataTable to suit one’s need.
There are plenty of third-party component libraries that do just that; they provide extended dataTables
that feature sorting, row expansion, inline editing, and so forth. To learn more about using these custom
dataTable components, see Chapter 7.

238

http://dx.doi.org/10.1007/978-1-4842-3594-2_7

CHAPTER 4 © JAVASERVER FACES STANDARD COMPONENTS

4-10. Utilizing Custom JSF Component Libraries

Problem

You want to include components from an external JSF library in your application pages.

Solution

Obtain the latest stable version of the JSF component library that you'd like to utilize and configure it for use
in your application. This recipe will cover the configuration of the PrimeFaces component library, which
contains a number of customized components that can add a great deal of functionality to your applications.
To download the PrimeFaces library, visit the site www.primefaces.org. PrimeFaces and some other
component libraries can be used together within a single JSF application, allowing you to utilize multiple
third-party libraries if needed.

If you're downloading the libraries via the JAR files, add them to your JSF application by adding the
component library JAR file to the WEB-INF/1ib directory in your application’s web source directory. If you're
using Maven, add the specified library’s Maven coordinates to your POM file. Note that you may also need
to include additional JAR files with your application in order to utilize external libraries. For instance, the
PrimeFaces library recommends that you also include external libraries such as commons-collections.jar
and commons-beanutils.jar, among others. See each library’s documentation for complete details on
each external JARs or maven dependencies that need to be included in your application in order to gain full
functionality.

After the libraries have been added, you can begin to utilize the library’s components in your
application by declaring their corresponding tag libraries within the application views in which you want
to use them. The following tag declarations are used to allow usage PrimeFaces 5+ components within a
JSF view:

xmlns:p="http://www.primefaces.org/ui"

How It Works

The JSF standard component library contains a vast number of components for use within applications.
However, many individuals and organizations require the use of more customized components and
components that build on the functionality of the standard components. Utilizing a third-party JSF
component library is very easy and usually involves nothing more than downloading the distribution,
including the recommended JAR files or maven dependencies within your application, and referencing the
tag libraries from within the views. However, it is best to take care when utilizing more than one third-party
JSF component library in the same application, because there may be some compatibility issues/conflicts
that arise between them.

Once you have followed the procedures outlined in the solution to this recipe, you will be able to begin
adding components from the PrimeFaces library into your views. The library includes exciting components
such as the autoComplete component, which renders an input text box that will automatically complete a
string of text when the user begins to type. While I will not delve into any details of the components in this
chapter, you will begin using them within Chapter 5.

239

http://www.primefaces.org/
http://dx.doi.org/10.1007/978-1-4842-3594-2_5

CHAPTER 4 © JAVASERVER FACES STANDARD COMPONENTS

4-11. Implementing File Uploading

Problem

You want to add a file upload component to your application.

Solution

Use the JSF file upload component to create an Ajax or non-Ajax-based file upload system for your
application. To utilize the inputFile component, it must be placed within a JSF form that has an enctype set
tomultipart/form-data and does not specify an id attribute. The h:form element contains the attributes
enctype and prependId, which can be used to specify these requirements, respectively. A JSF command
component or the f:ajax tag should be set to an action method within the managed bean that will save the
file to disk.

The following JSF view demonstrates the use of the inputFile component in a non-Ajax solution:

<h:form prependId="false" enctype="multipart/form-data">
Choose a file to upload to the server:

<h:inputFile id="uploadFile" value="#{ajaxBean.file}"/>

 <h:commandButton action="#{ajaxBean.uploadFile()}" value="Upload File"/></h:form>

The sources for the uploadFile method that is invoked via the commandButton are as follows:
public void uploadFile() {

try(InputStream is = file.getInputStream();) {
byte[] b = new byte[1024];
is.read(b);
String fileName = file.getName();
FileOutputStream os = new FileOutputStream("/Java Dev/" + fileName);

} catch (IOException ex) {
Logger.getLogger(AjaxBean.class.getName()).log(Level.SEVERE, null, ex);
}

Note that in the example, the path /Java_Dev/ indicates an operating system path or directory to which
the uploaded file will be saved.

How It Works

JSF 2.2 included a new file upload component that relies on new Servlet 3.1 file upload support. The file
upload support can be Ajax-enabled or non-Ajax-enabled. The inputFile component can be used with or
without the f:ajax tag, so files can be uploaded with a page refresh (non-Ajax) or without (Ajax).

The following line of code demonstrates how to set the attributes for a form containing an inputFile
component:

<h:form prependId="false" enctype="multipart/form-data">

240

CHAPTER 4 * JAVASERVER FACES STANDARD COMPONENTS

The value attribute of the inputFile component is set to a variable of type javax.servlet.http.Part
within the AjaxBean managed bean, and the commandButton has an action set to the managed bean’s
uploadFile method. To make the solution utilize Ajax, simply embed an f:ajax taginto the commandButton,
which invokes the underlying managed bean method.

The addition of a native file upload component to JSF is much welcomed. For years now, JSF developers
have had to rely on third-party libraries to handle file-uploading procedures. The scope of components that
requires third-party integration is becoming narrower, and the default JSF component toolset is becoming
complete enough to be the only requirement for standard enterprise applications.

241

CHAPTER 5

Advanced JavaServer Faces
and Ajax

A task that can be run in the background, independent of other running tasks, is known as an asynchronous
task. JavaScript is the most popular modern browser language that is used to implement asynchronous
tasking in web applications. Ajax is a set of technologies that allows you to perform asynchronous tasks using
JavaScript in the background, sending responses from the client browser to the server, and then sending a
response back to the client. That response is used to update the page’s Document Object Model (DOM).
Enhancing an application to use such asynchronous requests and responses can greatly improve the overall
user experience. The typical web applications from years past included a series of web pages, including
buttons that were used to navigate from one page to the next. The browser had to refreshed to repaint each
new page, and when a user was finished with the next page, they'd click another button or link to go to a
subsequent page, and so on.

The days of page reloads are long gone, and client-side asynchronous processing is now the norm. Ajax
technology has overtaken the industry of web application development, and users now expect to experience
aricher and more desktop-like experience when using a web application.

The JSF framework allows developers to create rich user experiences via the use of technologies such
as Ajax and HTML5. Much of the implementation detail behind these technologies can be abstracted away
from the JSF developer using JSF components. As such, the developer needs to worry only about how to use
a JSF component tag and relate it to a server-side property.

This chapter delves into using Ajax with the JSF web framework. Along the way, you will learn how to
spruce up applications and make the user interface richer and more user friendly so that it behaves more
like that of a desktop application. You'll also learn how to listen to different component phases and system
events, allowing further customization of application functionality.

Note This chapter contains examples using the third-party component library PrimeFaces. It is
recommended to use the most recent releases of third-party libraries in order to ensure that your application
contains stable and secure sources.

© Josh Juneau 2018 243
J. Juneau, Java EE 8 Recipes, https://doi.org/10.1007/978-1-4842-3594-2_5

https://doi.org/10.1007/978-1-4842-3594-2_5

CHAPTER 5 © ADVANCED JAVASERVER FACES AND AJAX

5-1. Validating Input with Ajax

Problem

You want to validate the values that are entered into text fields of a form, but you want them to be evaluated
immediately, rather than after the form is submitted.

Solution

Perform validation on the field(s) by embedding the f:ajax tag within each component whose values you
want to validate. Specify appropriate values for the event and render attributes so that the Ajax validation
will occur when the field(s) loses focus, and any validation errors will be identified immediately. The
following listing is the JSF view for the newsletter subscription page of the Acme Bookstore application. It
has been updated to utilize Ajax validation so that the validation occurs immediately, without the need to
submit the form before corresponding errors are displayed.

<ui:composition xmlns="http://www.w3.0rg/1999/xhtml"

244

xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
xmlns:f="http://xmlns.jcp.org/jsf/core"
xmlns:h="http://xmlns.jcp.org/jsf/html"

template="layout/custom_template search.xhtml">

<ui:define name="content">

<h:messages globalOnly="true" errorStyle="color: red" infoStyle="color: green"/>
<h:form id="contactForm">
<h1>Subscribe to Newsletter</hi>

<p>
<h:outputText id="newsletterSubscriptionDesc"
value="#{ch5ContactController.newsletterDescription}"/>
</p>

<h:panelGrid columns="2" bgcolor="" border="0">
<h:panelGroup>
<h:outputlLabel for="first" value="First: "/>
<h:inputText id="first" size="40" value="#{ch5ContactController.current.
first}">
<f:validatelength minimum="1" maximum="40"/>
<f:ajax event="blur" render="firstError"/>
</h:inputText>
</h:panelGroup>
<h:panelGroup>

<h:outputlLabel for="last" value="Last: "/>
<h:inputText id="last" size="40" value="#{ch5ContactController.current.
last}">
<f:validatelLength minimum="1" maximum="40"/>
<f:ajax event="blur" render="lastError"/>
</h:inputText>
</h:panelGroup>

CHAPTER 5 * ADVANCED JAVASERVER FACES AND AJAX

<h:message id="firstError"
for="first"
errorStyle="color:red"/>

<h:message id="lastError"
for="last"
errorStyle="color:red"/>
<h:panelGroup>
<h:outputLabel for="email" value="Email: "/>
<h:inputText id="email" size="40" value="#{ch5ContactController.current.
emaill}">
<f:ajax event="blur" render="emailError"/>
</h:inputText>
</h:panelGroup>
<h:panelGroup/>
<h:message id="emailError"
for="email"
errorStyle="color:red"/>
<h:panelGroup/>

<h:selectOneRadio title="Gender" id="gender" value="#{ch5ContactController.
current.gender}">
<f:selectItem itemValue="M" itemLabel="Male"/>
<f:selectItem itemValue="F" itemLabel="Female"/>
</h:selectOneRadio>
<h:panelGroup>
<h:outputlLabel for="occupation" value="Occupation: "/>
<h:selectOneMenu id="occupation" value="#{ch5ContactController.current.
occupation}">
<f:selectItems value="#{ch5ContactController.occupationList}"/>
</h:selectOneMenu>
</h:panelGroup>
<h:message id="genderError"
for="gender"
errorStyle="color:red"/>

</h:panelGrid>

<h:outputlLabel for="description" value="Enter your book interests"/>

<h:inputTextarea id="description" rows="5" cols="75"
value="#{ch5ContactController.current.description}"/>

<h:panelGrid columns="2">

<h:outputLabel for="password" value="Enter a password for site access: "/>
<h:inputSecret id="password" size="40" value="#{ch5ContactController.
current.password}">

<f:validateRequired/>

<f:ajax event="blur" render="passwordError"/>
</h:inputSecret>

245

CHAPTER 5 © ADVANCED JAVASERVER FACES AND AJAX

246

<h:outputLabel for="passwordConfirm" value="Confirm Password: "/>
<h:inputSecret id="passwordConfirm" size="40" value="#{ch5ContactController.
passwordConfirm}"
validator="#{ch5ContactController.validatePassword}">
<f:ajax event="blur" render="passwordConfirmError"/>
</h:inputSecret>
</h:panelGrid>
<h:message id="passwordError"
for="password"
style="color:red"/>

<h:message id="passwordConfirmError"
for="passwordConfirm"
style="color:red"/>

<hx/>

<h:panelGrid columns="3">
<h:panelGroup>
<h:outputlLabel for="newsletterList" value="Newsletters:" style=" "/>
<h:selectManyListbox id="newsletterList" value="#{ch5ContactController.
current.newsletterList}">
<f:selectItems value="#{ch5ContactController.newsletterList}"/>
</h:selectManyListbox>
</h:panelGroup>
<h:panelGroup/>
<h:panelGroup>
<h:panelGrid columns="1">
<h:panelGroup>
<h:outputLabel for="notifyme" value="Would you like to receive
other promotional email?"/>
<h:selectBooleanCheckbox id="notifyme" value="#{ch5Contact
Controller.current.receiveNotifications}"/>
</h:panelGroup>
<h:panelGroup/>
<hr/>
<h:panelGroup/>
<h:panelGroup>
<h:outputLabel for="notificationTypes" value="What type of
notifications are you interested in receiving?"/>

<h:selectManyCheckbox id="notifyTypes" value="#{ch5Contact
Controller.current.notificationType}">
<f:selectItems value="#{ch5ContactController.notification
Types}"/>
</h:selectManyCheckbox>
</h:panelGroup>
</h:panelGrid>
</h:panelGroup>

CHAPTER 5 * ADVANCED JAVASERVER FACES AND AJAX

</h:panelGrid>
<hr/>

<h:commandButton id="contactSubmit" action="#{ch5ContactController.subscribe}"
value="Save"/>
<h:panelGrid columns="2" width="400px;">
<h:commandLink id="manageAccount"” action="#{ch5ContactController.manage}"
value="Manage Subscription"/>

<h:outputlink id="homelLink" value="home.xhtml">Home</h:outputLink>
</h:panelGrid>
</h:form>
</ui:define>
</ui:composition>

Once the input components have been “Ajaxified” by embedding the f:ajax tag within them, then
tabbing through the fields (causing the onBlur event to occur for each field) will result in a form that
resembles Figure 5-1.

‘Wed Jan 31 12:17:13 CST 2018

Java 9 Recipes Subscribe to Newsletter
Java EE 8 Recipes Enter your information below in order ta be added to the Acme Bookstore newsletter.
Subscribe to First: Last:
Newsletter = = - . - . e
contactForm:first: Valldation Error: Length is less than of '1' contactForm:last: Error: Length is less than allowable minimum of '1
Email:
Male Female Occupation: Auther B

Enter your book interests

Enter a password for site access:
Confirm Password:
contactForm: \ ion Error: Value is required.

Would you like to receive other promotional email?
Java 7 Recipes Week'y
JavaF X Weekly
Cracie PLISOL Weekly b " SRR
Newsletters: New Books Weekly haChypeiof ol n 9
Product Updates — Best Seller Alerts | Spam

Save
Manage Subscription Home

Written by Josh Juneau, Apress Author

Figure 5-1. Ajax validation using the f:ajax tag

247

CHAPTER 5 © ADVANCED JAVASERVER FACES AND AJAX

How It Works

In releases of JSF prior to 2.0, performing immediate validation required the manual coding of JavaScript or a
third-party component library. The f:ajax tag was added to the JSF arsenal with the release of 2.0, bringing
with it the power to easily add immediate validation (and other asynchronous processes) to JSF views using
standard or third-party components. The f:ajax tag can be embedded within any JSF input component in
order to immediately enhance the component, adding Ajax capabilities to it. This provides many benefits to
the developer in that there is no longer a need to manually code JavaScript to perform client-side validation.
It also allows validation to occur on the server (in Java code within a JSF managed bean) asynchronously,
providing seamless interaction between the client and server and generating an immediate response to the
client. The result is a rich Internet application that behaves in much the same manner as a native desktop
application. Validation can now occur instantaneously in front of an end user’s eyes without the need to
perform several page submits in order to repair all of the possible issues.

To use the f:ajax tag, simply embed it within any JSF component. There are a number of attributes that
can be specified with f:ajax, as described in Table 5-1. If an attribute is not specified, the default values are
substituted. It is quite possible to include no attributes in an f:ajax tag, and if this is done, then the default
attribute values for the component in which the f:ajax tag is embedded will take effect.

Table 5-1. f:ajax Tag Attributes

Attribute Description

delay A value that is specified in milliseconds, corresponding to the amount of delay between
sending Ajax requests from the client-side queue to the server. The value none can be
specified to disable this feature.

disabled Boolean value indicating the tag status. A value of true indicates that the Ajax behavior
should not be rendered, and a value of false indicates that the Ajax behavior should be
rendered. The default value is false.

event A String that identifies the type of event to which the Ajax action will apply. If specified, it
must be one of the supported component events. The default value is the event that triggers
the Ajax request for the parent component of the Ajax behavior. The default event is action
for ActionSource components and is valueChange for EditableValueHolder components.

execute A collection that identifies a list of components to be executed on the server. A space-
delimited string of component identifiers can be specified as the value for this attribute,
or aValueExpression (JSF EL) can be specified. The default value is @this, meaning the
parent component of the Ajax behavior.

immediate Boolean value indicating whether the input values are processed early in the lifecycle. If
its’ true, then the values are processed, and their corresponding events will be broadcast
during the Apply Request Values phase; otherwise, the events will be broadcast during the
Invoke Applications phase.

listener Name of the listener method that is called when an AjaxBehaviorEvent has been broadcast
for the listener.

onevent Name of the JavaScript function used to handle UI events.

onerror Name of the JavaScript function used to handle errors.

resetValues Iftrue, then this particular Ajax transaction will reset the values.

render Collection that identifies the components to be rendered on the client when the Ajax
behavior is complete. A space-delimited string of component identifiers can be specified as
the value for this attribute, or a ValueExpression (JSF EL) can be specified. The default value
is @none, meaning that no components will be rendered when the Ajax behavior is complete.

248

CHAPTER 5 * ADVANCED JAVASERVER FACES AND AJAX

The execute and render attributes of the f:ajax tag can specify a number of keywords to indicate
which components are executed on the server for the Ajax behavior or which are rendered again after
the Ajax behavior is complete, respectively. Table 5-2 lists the values that can be specified for these two

attributes.

Table 5-2. f:.ajax Tag execute and render Attribute Values

Attribute Value Description

@all All component identifiers

@form The form that encloses the component

@none No component identifiers (default for render attribute)
@this The Ajax behavior parent component

@child(n) The nth child of base component

@composite Closest composite component ancestor of base component
@id(id) All component descendants of base component with the specified id
@namingcontainer Closest NamingContainer ancestor of base component
@next Next component in view after base component

@parent Parent of base component

@previous Previous component to the base component

@root UIViewRoot

Component IDs

JSF EL

Space-separated list of individual component identifiers

Expression that resolves to a collection of string identifiers

In the example for this recipe, an f:ajax tag has been embedded inside many of the input components
within the form. Each of those components has been Ajaxified, in that the data entered as the value for the
components will now have the ability to be processed using the JavaScript resource library associated with
JSE. Behind the scenes, the jsf.ajax.request() method of the JavaScript resource library will collect the
data for each component that has been Ajaxified and post the request to the JavaServer Faces lifecycle. In
effect, the data is sent to the managed bean property without submitting the page in a traditional fashion.
Notice that the event attribute specifies a JavaScript event that will be used to trigger the Ajax behavior.

The JavaScript events that can be specified for the event attribute are those same JavaScript event
attributes that are available on the parent component’s tag, but the on prefix has been removed. For instance,
if you want to perform an Ajax behavior on an inputText component when it loses focus, you would specify
blur for the f:ajax event attribute rather than onBlur. Applying this concept to the example, when a user
leaves the first or last name field, they will be validated using their associated f:validate tags immediately
because the f:ajax tag has been embedded in them and the event on the f:ajax tag is specified as blur.
When the Ajax behavior (the validation in this case) is complete, then the components whose identifiers are
specified in the f:ajax render attribute will be re-rendered. In the case of the first and last inputText fields,
their associated message components will be re-rendered, displaying any errors that may have occurred

during validation.

249

CHAPTER 5 © ADVANCED JAVASERVER FACES AND AJAX

UTILIZING AN ACTION LISTENER

It is possible to bind an action listener to an f:ajax tag so that when the invoking action occurs, the
listener method is invoked. Why would you want to bind an action listener? There are any reasons

to do so. For instance, suppose you wanted to capture the text that a user is typing into a text field.

You could do so by binding an action method within a managed bean to the listener attribute of an
inputText field’s corresponding f:ajax tag and then obtaining the current component’s value from
the AjaxBehaviorEvent object within the action method. For instance, suppose that you wanted to
test a password for complexity and display a corresponding message indicating whether a password
was strong enough. The inputSecret component for the password could be modified to include an
f:ajax tag with an event specification of keyup and a listener specified as #{chsContactController.
passwordStrength}, such as the following listing demonstrates.

Within the view:

<h:outputLabel for="password" value="Enter a password for site access: "/>
<h:inputSecret id="password" size="40"
value="#{ch5ContactController.current.password}">
<f:validateRequired/>
<f:ajax event="keyup" listener="#{ch5ContactController.passwordStrength}"
render="passwordStrengthMessage"/>
</h:inputSecret>

Within the managed bean:

public void passwordStrength(AjaxBehaviorEvent event){
UIInput password = (UIInput) event.getComponent();
boolean isStrong = false;
String input = password.getValue().toString();

if(input.matches("((?=.*\\d)(?=.*[a-z]) (?=.*[A-Z]).{6,1)")) {
isStrong = true;
}

if(isStrong == true){
setPasswordStrengthMessage("Password is strong");
} else {
setPasswordStrengthMessage("Password is weak");
}

The code in this example would create a listener event that, when a user types a value, would check the
present entry to determine whether it met the given criteria for a secure password. A message would
then be displayed to the user to let them know whether the password was secure.

250

CHAPTER 5 * ADVANCED JAVASERVER FACES AND AJAX

Using the f:ajax tag makes it easy to add Ajax behavior to a JSF component. Before the f:ajax tag,
special third-party JavaScript libraries were often used to incorporate similar behaviors within JSF views.
f:ajax adds the benefit of allowing the developer to choose between using Ajax behaviors, without the need
for coding a single line of JavaScript.

5-2. Submitting Pages Without Page Reloads

Problem

You want to enable your input form to have the ability to submit input fields for processing without
reloading the page. In essence, you want your web application input form to react more like that of a desktop
application rather than navigating from page to page in order to process data.

Solution

Embed an <f:ajax/> tag within the command component in the view so that the managed bean action is
invoked without the page being submitted. Enable f:ajax to update the messages component in the view
so that any errors or success messages that result from the processing can be displayed. In this example, the
newsletter subscription page for the Acme Bookstore will be changed so that the form is submitted using
Ajax, and the commandLink component is processed without submitting the form in a traditional manner.
The following excerpt from the newsletter subscription form sources from recipe05_02.xhtml, which
demonstrates how to add Ajax functionality to the action components within the form:

<h:commandButton id="contactSubmit" action="#{ch5ContactController.subscribe}"
value="Save">
<f:ajax event="action" execute="@form" render="@all"/>
</h:commandButton>
<h:panelGrid columns="2" width="400px;">

When the button or link is clicked, JavaScript will be used in the background to process the request so
that the results will be displayed immediately without needing to refresh the page.

How It Works

The user experience for web applications has traditionally involved a point, click, and page refresh mantra.
While this type of experience is not particularly a bad one, it is not as nice as the immediate response

that is oftentimes presented within a native desktop application. The use of Ajax within web applications
has helped create a more unified user experience, allowing a web application the ability to produce an
“immediate” response much like that of a native desktop application. Field validation (covered in Recipe 5-1)
is a great candidate for immediate feedback, but another area where immediate responses work well is when
forms are being submitted.

The f:ajax tag can be embedded in an action component in order to invoke the corresponding action
method using JavaScript behind the scenes. The f:ajax tag contains a number of attributes, covered in
Table 5-1 (see Recipe 5-1), that can be used to invoke Ajax behavior given a specified event and re-render
view components when that Ajax behavior is complete. Refer to Table 5-2 to see the values that can be
specified for the execute and render attributes of the f:ajax tag.

251

CHAPTER 5 © ADVANCED JAVASERVER FACES AND AJAX

In the example for this recipe, the commandButton component with an identifier of contactSubmit
contains an f:ajax tag that specifies the event attribute as action, the execute attribute as @form, and
the render attribute as @all. This means that when the button is invoked, the ch5ContactController.
subscribe method will be called asynchronously using JavaScript, and it will send all the input component
values from the form to the server (managed bean) for processing. When the Ajax behavior (subscribe
method) is complete, all of the components in the view will be re-rendered. By re-rendering all the
components in the view, this allows those message components to display any messages that have been
queued up as a result of failed validation or a successful form submission. It is possible to process or render
only specified components during an Ajax behavior; to learn more about doing so, see Recipe 5-3.

Note Note that the event attribute has a default value of action when the f:ajax tag is embedded in a
UICommand component. However, it is specified in the code for this example for consistency.

Adding Ajax actions to a page has been simplified since the addition of the f:ajax tag with the 2.0
release of JSE. Validation and page actions are easy to process asynchronously by utilizing a single tag,
f:ajax, to incorporate Ajax functionality into any JSF component.

5-3. Making Partial-Page Updates

Problem

You want to execute only a section of a page using an Ajax event and then render the corresponding section’s
components when the Ajax behavior is complete.

Solution

Use the f:ajax tag to add Ajax functionality to the components that you want to execute and render when
the Ajax behavior is completed. Specify only the component identifiers corresponding to those components,
or @form, @this, or one of the other execute keywords, for the f:ajax tag execute attribute. Likewise, specify
only the component identifiers for the corresponding message components in the render attribute.

Suppose that the Acme Bookstore wants to execute the submission of the newsletter subscription
form values and update the form’s global message only when the submission is complete. The following
commandButton component would execute only the form in which it is placed and the component
corresponding to the identifier newsletterSubscriptionMsgs:

<h:commandButton id="contactSubmit" action="#{ch5ContactController.subscribe}" value="Save">
<f:ajax event="action" execute="@form" render="newsletterSubscriptionMsgs"/>
</h:commandButton>

When the button is clicked, the current form component values will be processed with the request, and
the ContactController managed bean’s subscribe method will be invoked. Once the subscribe method
is complete, the component in the form that contains an identifier of newsletterSubscriptionMsgs (in this
case, a messages component) will be re-rendered.

252

CHAPTER 5 * ADVANCED JAVASERVER FACES AND AJAX

Note In the case of the newsletter subscription form for the Acme Bookstore, a partial-page render upon
completion is a bad idea. This is because the form will never be submitted if the values within the form do
not validate correctly. In this case, if some of the form values do not validate correctly, then nothing will be
displayed on the page when the Save button is clicked because the subscribe method will never be invoked.
If the f:ajax tag’s render attribute is set to @all, then all of the components that failed validation will have a
corresponding error message that is displayed. This example should demonstrate how important it is to process
the appropriate portions of the page for the result you are trying to achieve.

How It Works

The f:ajax tag makes it simple to perform partial-page updates. To do so, specify the identifiers for those
components that you want to execute for the f:ajax execute attribute. As mentioned in the example for this
recipe, suppose you want to execute only a portion of a page, rather than all of the components on the given
page. You could do so by identifying the components that you want to execute within the view, specifying them
within the f:ajax execute attribute, and then rendering the corresponding message components when the
Ajax behavior was completed. If nothing is specified for an f:ajax execute attribute, then the f:ajax tag must
be embedded inside a component, in which case the parent component would be executed. Such is the default
behavior for the f:ajax execute attribute. In the example, the execute attribute of the f:ajax tag specifies the
@form keyword, rather than a specific component id. As mentioned previously, a number of keywords can be
specified for both the execute and render attributes of the f:ajax tag. Those keywords are listed in Table 5-2,
which describes that the @form keyword indicates that all components in the same form as the given f:ajax tag
will be executed when the Ajax behavior occurs. Therefore, all fields within the newsletter subscription form in
this example will be sent to the managed bean for processing when the button is clicked.

The same holds true for the render attribute, and once the Ajax behavior has completed, any
component specified for the render attribute of the f:ajax tag will be re-rendered. Thus, if a validation
occurs when a component is being processed because of the result of an f:ajax method call, a
corresponding validation failure message can be displayed on the page after the validation fails. Any
component can be rendered again, and the same keywords that can be specified for the execute attribute
can also be used for the render attribute. In the example, the newsletterSubscriptonMsgs component is
rendered once the Ajax behavior is completed.

Partial-page updates, a common use of the f:ajax tag, are easy to implement and can enhance the
functionality and usability of an application. Later in this chapter you learn how to utilize some third-party
component libraries to perform partial-page updates, creating highly usable interfaces for editing data and
the like.

5-4. Applying Ajax Functionality to a Group of Components

Problem

You want to apply Ajax functionality to a group of input components, rather than to each component separately.

Solution

Enclose any components to which you want to apply Ajax functionality within an f:ajax tag. The f:ajax
tag can be the parent to one or more JSF components, in which case each of the child components inherits
the given Ajax behavior. Applying Ajax functionality to multiple components is demonstrated in the
following code listing. In the example, the newsletter subscription view of the Acme Bookstore application

253

CHAPTER 5 © ADVANCED JAVASERVER FACES AND AJAX

is adjusted so that each of the inputText components that contains a validator is enclosed by a single
f:ajax tag. Given that each of the inputText components is embodied in the same f:ajax tag, the f:ajax
render attribute has been set to specify the message component for each of the corresponding inputText
fields in the group.

<html xmlns="http://www.w3.0rg/1999/xhtml"

254

xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
xmlns:f="http://xmlns.jcp.org/jsf/core"
xmlns:h="http://xmlns.jcp.org/jsf/html">

<ui:composition template="layout/custom_template search.xhtml">

<ui:define name="content">
<h:form id="contactForm">
<h1>Subscribe to Newsletter</hi>
<p>
<h:outputText id="newsletterSubscriptionDesc"

value="#{ch5ContactController.newsletter
Description}"/>

</p>

<h:messages id="newsletterSubscriptionMsgs" globalOnly=
"true" errorStyle="color: red" infoStyle="color: green"/>

<f:ajax event="blur" render="firstError lastError emailError genderError
passwordError passwordConfirmError">
<h:panelGrid columns="2" bgcolor="" border="0">
<h:panelGroup>
<h:outputlLabel for="first" value="First: "/>
<h:inputText id="first" size="40" value="#{ch5ContactController.
current.first}">
<f:validateLength minimum="1" maximum="40"/>

</h:inputText>
</h:panelGroup>
<h:panelGroup>

<h:outputLabel for="last" value="Last: "/>
<h:inputText id="last" size="40" value="#{ch5ContactController.
current.last}">

<f:validatelLength minimum="1" maximum="40"/>

</h:inputText>
</h:panelGroup>

CHAPTER 5 * ADVANCED JAVASERVER FACES AND AJAX

<h:message id="firstError"
for="first"
errorStyle="color:red"/>

<h:message id="lastError"
for="last"
errorStyle="color:red"/>
<h:panelGroup>
<h:outputLabel for="email" value="Email: "/>
<h:inputText id="email" size="40" value="#{ch5ContactController.
current.email}">

</h:inputText>
</h:panelGroup>
<h:panelGroup/>
<h:message id="emailError"
for="email"
errorStyle="color:red"/>
<h:panelGroup/>

<h:selectOneRadio title="Gender" id="gender" value="#{ch5Contact
Controller.current.gender}">
<f:selectItem itemValue="M" itemLabel="Male"/>
<f:selectItem itemValue="F" itemlLabel="Female"/>
</h:selectOneRadio>
<h:panelGroup>
<h:outputlLabel for="occupation" value="Occupation: "/>
<h:selectOneMenu id="occupation" value="#{ch5ContactController.
current.occupation}">
<f:selectItems value="#{ch5ContactController.occupation
List}"/>
</h:selectOneMenu>
</h:panelGroup>
<h:message id="genderError"
for="gender"
errorStyle="color:red"/>

</h:panelGrid>

<h:outputLabel for="description" value="Enter your book interests"/»>

<h:inputTextarea id="description” rows="5" cols="75" value="#{ch5Contact
Controller.current.description}"/>

<h:panelGrid columns="2">

<h:outputlLabel for="password" value="Enter a password for site
access: "/>
<h:inputSecret id="password" size="40" value="#{ch5Contact
Controller.current.password}">

<f:validateRequired/>

255

CHAPTER 5 © ADVANCED JAVASERVER FACES AND AJAX

256

<f:ajax event="keyup" listener="#{ch5ContactController.
passwordStrength}" render="passwordStrengthMessage"/>
</h:inputSecret>

<h:outputlLabel for="passwordConfirm" value="Confirm Password: "/>

<h:inputSecret id="passwordConfirm" size="40" value="#{ch5Contact

Controller.passwordConfirm}"
validator="#{ch5ContactController.validatePassword}">

</h:inputSecret>
</h:panelGrid>
<h:panelGroup>
<h:outputText id="passwordStrengthMessage" value="#{ch5Contact
Controller.passwordStrengthMessage}"/>
<h:message id="passwordError"
for="password"
style="color:red"/>
</h:panelGroup>

<h:message id="passwordConfirmError"
for="passwordConfirm"
style="color:red"/>

<hx/>

<h:panelGrid columns="3">
<h:panelGroup>
<h:outputlLabel for="newsletterList" value="Newsletters:
" style=" "/>
<h:selectManyListbox id="newsletterList" value="#{ch5Contact
Controller.current.newsletterList}">
<f:selectItems value="#{ch5ContactController.
newsletterList}"/»>
</h:selectManylListbox>
</h:panelGroup>
<h:panelGroup/>
<h:panelGroup>
<h:panelGrid columns="1">
<h:panelGroup>
<h:outputLabel for="notifyme" value="Would you like to
receive other promotional email?"/>
<h:selectBooleanCheckbox id="notifyme" value="#{ch5Contact
Controller.current.receiveNotifications}"/>
</h:panelGroup>
<h:panelGroup/>
<hx/>
<h:panelGroup/>
<h:panelGroup>
<h:outputlLabel for="notificationTypes" value="What type
of notifications are you interested in receiving?"/>

CHAPTER 5 * ADVANCED JAVASERVER FACES AND AJAX

<h:selectManyCheckbox id="notifyTypes" value="#{ch5Contact
Controller.current.notificationType}">
<f:selectItems value="#{ch5ContactController.
notificationTypes}"/>
</h:selectManyCheckbox>
</h:panelGroup>
</h:panelGrid>
</h:panelGroup>
</h:panelGrid>
<hx/>

</f:ajax>
<h:commandButton id="contactSubmit" action="#{ch5ContactController.
subscribe}" value="Save">
<f:ajax event="action" execute="@form" render="@all"/>
</h:commandButton>
<h:panelGrid columns="2" width="400px;">
<h:commandLink id="manageAccount"” action="#{ch5ContactController.
manage}" value="Manage Subscription">
<f:ajax event="action" execute="@this" render="@all"/>
</h:commandLink>
<h:outputLink id="homelLink" value="home.xhtml">Home</h:outputLink>
</h:panelGrid>
</h:form>
</ui:define>
</ui:composition>

</body>
</html>

When the page is rendered, each component will react separately given their associated validations.
That is, if validation fails for one component, only the message component that corresponds with the
component failing validation will be displayed, although each component identified within the f:ajax
render attribute will be re-rendered.

Note As a result of specifying a global f:ajax tag, the password component can now execute two Ajax
requests. One of the Ajax requests for the field is responsible for validating to ensure that the field is not blank,
and the other is responsible for ensuring that the given password string is strong.

How It Works

Grouping multiple components with the same Ajax behavior has its benefits. For one, if the behavior
needs to be adjusted for any reason, you change can now be made to the Ajax behavior, and each of the
components in the group can benefit from the single adjustment. However, the f:ajax tag is smart enough
to enable each component to still utilize separate functionality, such as validation or actions, so each can
still have their own customized Ajax behavior. To group components under a single f:ajax tag, they must

257

CHAPTER 5 © ADVANCED JAVASERVER FACES AND AJAX

be added to the view as sub-elements of the f:ajax tag. That is, any child components must be enclosed
between the opening and closing f:ajax tags. All of the enclosed components will then use Ajax to send
requests to the server using JavaScript in an asynchronous fashion.

In the example for this recipe, a handful of the inputText components within the newsletter
subscription view have been embodied inside an f:ajax tag so that their values will be validated using
server-side bean validation when they lose focus. The f:ajax tag that is used to group the components has
an event attribute set to blur, and its render attribute contains the String-based identifier for each of the
message components corresponding to the components that are included in the group. The space-separated
list of component ids is used to re-render each of the message components when the Ajax behavior is
complete, displaying any errors that occur as a result of the validation.

5-5. Custom Processing of Ajax Functionality

Problem

You want to customize the Ajax processing for JSF components within a view in your application.

Solution

Write the JavaScript that will be used for processing your request and utilize the jsf.ajax.request()
function along with one of the standard JavaScript event-handling attributes for a JSF component. The
following example is the JSF view for the newsletter subscription page for the Acme Bookstore application.
All of the f:ajax tags that were previously used for validating inputText fields (see Recipe 5-1) have

been removed, and the onblur attribute of each inputText component has been set to use the jsf.ajax.
request() method in order to Ajaxify the component. The following excerpt is taken from the view named
recipe05_05.xhtml, representing the updated newsletter subscription JSF view:

<h:outputScript name="jsf.js" library="javax.faces" target="head"/>
<h1>Subscribe to Newsletter</h1>
<p>
<h:outputText id="newsletterSubscriptionDesc"
value="#{ch5ContactController.newsletter
Description}"/>
</p>

<h:messages id="newsletterSubscriptionMsgs" globalOnly="true"
errorStyle="color: red" infoStyle="color: green"/>

<h:panelGrid columns="2" bgcolor="" border="0">
<h:panelGroup>

<h:outputlLabel for="first" value="First: "/>

<h:inputText id="first" size="40" value="#{ch5ContactController.

current.first}"
onblur="jsf.ajax.request(this, event,
{execute: 'first', render: 'firstError'});
return false;">

258

CHAPTER 5 * ADVANCED JAVASERVER FACES AND AJAX

<f:validatelLength minimum="1" maximum="40"/>
</h:inputText>
</h:panelGroup>
<h:panelGroup>
<h:outputlLabel for="last" value="Last: "/>
<h:inputText id="last" size="40" value="#{ch5ContactController.
current.last}"
onblur="jsf.ajax.request(this, event, {execute:
'last', render: 'lastError'});
return false;">
<f:validatelLength minimum="1" maximum="40"/>
</h:inputText>
</h:panelGroup>

<h:message id="firstError"
for="first"
errorStyle="color:red"/>

<h:message id="lastError"
for="last"
errorStyle="color:red"/>
<h:panelGroup>
<h:outputLabel for="email" value="Email: "/>
<h:inputText id="email" size="40" value="#{ch5ContactController.
current.email}"”
onblur="jsf.ajax.request(this, event,
{execute: 'email', render: 'emailError'});
return false;"/>
</h:panelGroup>
<h:panelGroup/>
<h:message id="emailError"
for="email"
errorStyle="color:red"/>
<h:panelGroup/>

The <h:panelGroup/> tag is used to add a placeholder panel group to the grid for spacing purposes.

Using this technique, the inputText components that specify Ajax behavior for the onblur event will
asynchronously have their values validated when they lose focus. If any custom JavaScript code needs to be
used, it can be added to the same inline JavaScript call to jsf.ajax.request().

Method calls cannot be made using the jsf.ajax.request() technique, so it is not possible

to invoke a listener explicitly with the Ajax request. However, it should be noted that the commandScript
component that was introduced with the release of JSF 2.3 can invoke server-side methods via JavaScript. See
Recipe 5-19 for more details.

259

CHAPTER 5 © ADVANCED JAVASERVER FACES AND AJAX

How It Works

The JavaScript API method jsf.ajax.request(), aJSF 2.x feature, can be accessed directly by a Facelets
application, enabling a developer to have slightly more control than using the f:ajax tag. Behind the
scenes, the f:ajax tagis converted into a call to jsf.ajax.request(), sending the parameters as specified
via the tag’s attributes. To use this technique, you must include the jsf.js library within the view. A JSF
outputScript tag should be included in the view, specifying jsf. js as the script name and javax.faces as
the library. The jsf.js script within this example will be placed in the head of the view, which is done by
specifying head for the target attribute of the outputScript tag. The following excerpt from the example
demonstrates what the tag should look like:

<h:outputScript name="jsf.js" library="javax.faces" target="head"/>

Note To avoid nested IDs, it is a good idea to specify the h:form attribute of prependId="false" when
using jsf.ajax.request() manually. For instance, the form tag should look as follows:

<h:form prependld="false”>

The jsf.ajax.request() method can be called inline, as is the case with the example for this recipe,
and it can be invoked from within any of the JavaScript event attributes of a given component. The format
for calling the JavaScript method is as follows:

jsf.ajax.request(component, event,{execute:'id or keyword', render:'id or keyword'});

Usually when the request is made using an inline call, the this keyword is specified for the first
parameter, signifying that the current component should be passed. The event keyword is passed as the
second parameter, and it passes with it the current event that is occurring against the component. Lastly, a
map of name-value pairs is passed, specifying the execute and render attributes along with the component
identifiers or keywords that should be executed and rendered after the execution completes, respectively.
For alist of the valid keywords that can be used, refer to Table 5-2.

Note You can also utilize the jsf.ajax.request method from within @ managed bean by specifying the
@ResourceDependency annotation as follows:

@ResourceDependency(name="jsf.js" library="javax.faces" target="head")

The majority of developers will never need to utilize a manual call to the JSF JavaScript API. However, if
the need ever arises, calling the jsf.ajax.request() method is fairly straightforward.

5-6. Custom Conversion of Input Values

Problem

You want to automatically convert the values of some input text in a way such that that it better conforms
to the needs of your application. However, the conversion that you want to perform is outside the scope of
those conversions that are available via the JSF standard converter library.

260

CHAPTER 5 * ADVANCED JAVASERVER FACES AND AJAX

Solution

Create a custom converter class containing the logic that is required for converting the values, and then
apply that converter to the inputText components as needed. For this example, the Acme Bookstore has
decided that it would like all first and last names in the subscriber list to appear in uppercase. The store
would also like all email addresses in lowercase. Therefore, a custom converter will be developed to perform
the string conversion automatically behind the scenes.

The following listing is for the conversion class, LowerConverter, which accepts values from registered
components and returns a formatted String value in lowercase:

import javax.faces.component.UIComponent;
import javax.faces.context.FacesContext;
import javax.faces.convert.Converter;
import javax.faces.convert.FacesConverter;

ik
*
* @author juneau
*/
@FacesConverter("org. javaee8recipes.converter.LowerConverter")
public class LowerConverter implements Converter {

@0verride
public Object getAsObject(FacesContext context, UIComponent component,
String value) {
// Return String value in lowercase
return value.toString().toLowerCase();

}

@0verride
public String getAsString(FacesContext context, UIComponent component,
Object value) {

// Return String value
return value.toString().toLowerCase();

The code that is used to create the uppercase converter is very similar, except that the getAsObject
and getAsString methods use different String functions to return the uppercase values. The sources
reside in a class named org. javaee8recipes.chapter5.converter.UpperConverter, and they are nearly
identical to the LowerConverter class with the exception of calling the toUpperCase() method, rather than
toLowerCase().

Now that the conversion classes have been built, it is time to apply the converters to the JSF
components where applicable. The following excerpt is taken from the newsletter subscription page of the
Acme Bookstore application, and it demonstrates the use of the converters for the first, last, and email input
components.

261

CHAPTER 5 © ADVANCED JAVASERVER FACES AND AJAX

<h:panelGroup>
<h:outputlLabel for="first" value="First: "/>
<h:inputText id="first" size="40" value="#{ch5ContactController.current.first}">
<f:validatelLength minimum="1" maximum="40"/>
<f:converter converterId="org.javaee8recipes.converter.UpperConverter"/>
</h:inputText>
</h:panelGroup>
<h:panelGroup>

<h:outputlLabel for="last" value="Last: "/>
<h:inputText id="last" size="40" value="#{ch5ContactController.current.last}">
<f:validatelLength minimum="1" maximum="40"/>
<f:converter converterId="org.javaee8recipes.converter.UpperConverter"/>
</h:inputText>
</h:panelGroup>

<h:message id="firstError"
for="first"
errorStyle="color:red"/>

<h:message id="lastError"
for="last"
errorStyle="color:red"/>
<h:panelGroup>
<h:outputlLabel for="email" value="Email: "/>
<h:inputText id="email" size="40" value="#{ch5ContactController.current.email}">
<f:converter converterId="org.javaee8recipes.converter.LowerConverter"/>
</h:inputText>
</h:panelGroup>
<h:panelGroup/>
<h:message id="emailError"
for="email"
errorStyle="color:red"/>
<h:panelGroup/>

Now if a user types in lowercase for the first or last name or in uppercase for the email field, the values
will automatically be converted during the Apply Request Values phase.

How It Works

How many times have you seen an application’s data become unmanageable because of inconsistencies?
Maybe you have seen some records where a particular field contains a value in lowercase and other
records contain the same value in uppercase...maybe even a mixture of cases! Applying conversion to data
before it is persisted (usually in a database) is the best way to ensure data integrity. As you may have read
about in Chapter 4, the JSF framework ships with a library of standard converters that can be applied to
JSF components in order to convert data into a manageable format. While the standard converters will

do the job for most applications, there may be situations when custom converters are needed in order to

262

http://dx.doi.org/10.1007/978-1-4842-3594-2_4

CHAPTER 5 * ADVANCED JAVASERVER FACES AND AJAX

manipulate values into a manageable format for your application. In such cases, JSF custom converter
classes can be used to develop the custom conversion logic; they are very easy to develop and apply to JSF
components with minimal configuration.

Note Beginning with JSF 2.2, converters and validators can be used as injection targets. For information
regarding injection of classes, see Chapter 13.

To develop a custom converter class, you must implement the javax.faces.convert.Converter
interface, overriding two methods: getAsString and getAsObject. The getAsString method should accept
three parameters: FacesContext, UIComponent, and a string. It should perform the desired conversion and
return the converted value in String format. In the case of the LowerConverter example, simply applying
toLowerCase() to the string and returning it is all the functionality you require. The getAsObject method
should accept the same parameters as the getAsString method, and it should also apply the desired
conversion and then return an object of any type. In the case of LowerConverter, you return a string in
lowercase, just like the getAsString method. If you follow along and look through the same methods in
UpperConverter, the opposite conversion is applied, returning an uppercase string.

To make a converter class available for use within a view, you must annotate the class by applying @
FacesConverter to the class declaration. Pass a string into the annotation, being the string-based fully
qualified name of the converter class. The UpperConverter @FacesConverter annotation reads as follows:

@FacesConverter("org. javaee8recipes.converter.UpperConverter")

Once the converter class has been written and annotated as required, the converter can be used just
like a standard JSF converter tag. The logic contained in the converter can be much more complex than that
which is demonstrated in this example, and given the wide variety of prebuilt converters, a custom converter
usually does contain complex conversion logic.

Note As of JSF 2.3, converters, validators, and behaviors are now injectable into targets. This would allow
one to utilize a converter from within another managed bean, if needed. To inject a converter that was created
in this recipe, you’d do the following within a managed bean.

@Inject
@FacesConverter(value="LowerConverter", managed=true)
private FacesConverter lowerConverter ;

It is also possible to inject resources into converters, validators, and behaviors. As such, one can inject other
managed beans or CDI injectables into a FacesConverter implementation, utilizing functionality as needed.

263

http://dx.doi.org/10.1007/978-1-4842-3594-2_13

CHAPTER 5 © ADVANCED JAVASERVER FACES AND AJAX

5-7. Maintaining Managed Bean Scopes for a Session

Problem

Your application has the requirement to maintain some managed beans that are retained for the entire
session and others that are retained only for a single request.

Solution

Develop using the proper JSF managed bean scope that your situation requires. Managed beans utilize
annotations to determine how long they are retained, so if your application needs to maintain state within

a managed bean for a certain time frame, the scope can be set by annotating the managed bean class
accordingly. In this example, you will be adding a shopping cart to the Acme Bookstore website. The cart will
be maintained for the lifetime of a browser session, so if a book is added to the cart, then it will remain there
until the current session ends. This recipe builds on those concepts that were covered in Recipe 3-2 because
it demonstrates how to use SessionScoped managed beans.

Let’s take a look at the JSF views that are being used for the shopping cart implementation. You are
adding a couple of views to the application and modifying one view to accommodate the navigational
buttons for the cart. The following excerpt is taken from the book view, which is displayed when a user clicks
one of the book titles from the left menu. You are adding buttons to the bottom of the page to add the book
to the cart and to view the current cart contents. To view the sources in entirety, see the view located in the
sources: web/chapter05/book.xhtml.

<h:panelGrid columns="2" width="45%">
<h:commandButton id="addToCart" action="#{ch5CartController.addToCart}"
value="Add to Cart">
<f:ajax render="shoppingCartMsgs"/>
</h:commandButton>
<h:commandButton id="viewCart" action="#{ch5CartController.viewCart}"
value="View Cart">
</h:commandButton>
</h:panelGrid>

The two buttons that have been added to the book view reference a new class, referred to as
chs5CartController, although the name of the class is CartController. The CartController class is a JSF
managed bean that contains the shopping cart implementation.

Note Throughout the sources for this book, CDI bean names will change, although the class names
will remain the same as those used in other chapter source packages. This is because the classes are being
modified for each particular chapter to demonstrate different functionality, and we must reference each CDI
bean by a different CDI bean name. However, the class names will remain the same so that you can see that
the same class used in other chapters is simply being modified for use with different examples throughout the
book.

264

CHAPTER 5 * ADVANCED JAVASERVER FACES AND AJAX

The new buttons in the book view are used to add the current book title to the shopping cart and to view
the cart. At this time, the shopping cart is a list of Item objects, and each Item object contains a Book object
and a quantity. The sources for the I'tem class can be seen in the next listing:

package org.javaee8recipes.chaptero0s;

/¥

* Object to hold a single cart item

* @author juneau

*/

public class Item implements java.io.Serializable {
private Book book = null;
private int quantity = 0;

public Item(Book book, int qty){
this.book = book;
this.quantity = qty;

}

/**

* @return the book

*/

public Book getBook() {
return book;

}

/**

* @param book the book to set

*/

public void setBook(Book book) {
this.book = book;

}

/**

* @return the quantity

*/

public int getQuantity() {
return quantity;

}

Vass

* @param quantity the quantity to set

*/

public void setQuantity(int quantity) {
this.quantity = quantity;

}

265

CHAPTER 5 © ADVANCED JAVASERVER FACES AND AJAX

For the new shopping cart implementation, the Book class has been updated to include a description
field; to see the sources for the Book class, refer to src/org/javaeerecipes/chapter05/Book. java. The most
important class in this example is the CartController managed bean. The sources for this class are listed
here:

package org.javaee8recipes.chapteros;

import java.io.Serializable;
import javax.enterprise.context.SessionScoped;

import javax.faces.application.FacesMessage;

import javax.faces.component.UIOutput;

import javax.faces.context.FacesContext;
import javax.faces.event.ComponentSystemEvent;
import javax.inject.Inject;

import javax.inject.Named;

Vak
* Chapter 5
ES
* @author juneau
*/
@SessionScoped
@Named("ch5CartController")
public class CartController implements Serializable {

private Cart cart = null;
private Item currentBook = null;

@Inject
private AuthorController authorController;

/**

* Creates a new instance of CartController
*/

public CartController() {

}

public String addToCart() {

if (getCart() == null) {
cart = new Cart();
getCart().addBook(getAuthorController().getCurrentBook(), 1);

} else {
System.out.println("adding book to cart...");
getCart().addBook(getAuthorController().getCurrentBook(),

searchCart(getAuthorController().getCurrentBook().getTitle()) + 1);

266

CHAPTER 5 * ADVANCED JAVASERVER FACES AND AJAX

FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY_ INFO,
"Successfully Updated Cart", null);

FacesContext.getCurrentInstance().addMessage(null, facesMsg);

return null;

}

/**
* Determines if a book is already in the shopping cart
*
* @param title
* @return
*/
public int searchCart(String title) {
int count = 0;

for (Item item : getCart().getBooks()) {
if (item.getBook().getTitle().equals(title)) {
count++;
}

}

return count;

}

public String viewCart() {
if (cart == null) {
FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY INFO,
"No books in cart...", null);
FacesContext.getCurrentInstance().addMessage(null, facesMsg);

}

return "/chapteros/cart";

}

public String continueShopping() {
return "/chapter05/book";
}

public String editItem(String title) {
for (Item item : cart.getBooks()) {
if (item.getBook().getTitle().equals(title)) {
currentBook = item;
}

}

return "/chapteros/reviewItem";

}

public String updateCart(String title) {
Item foundItem = null;
if (currentBook.getQuantity() == 0) {
for (Item item : cart.getBooks()) {

267

CHAPTER 5 © ADVANCED JAVASERVER FACES AND AJAX

if (item.getBook().getTitle().equals(title)) {
foundItem = item;
}

}
}

cart.getBooks().remove(foundItem);

FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY_INFO,
"Successfully Updated Cart", null);

FacesContext.getCurrentInstance().addMessage(null, facesMsg);

return "/chapteros/cart"”;

}

/**

* @return the cart

*/

public Cart getCart() {
return cart;

}

/**

* @param cart the cart to set

*/

public void setCart(Cart cart) {
this.cart = cart;

}

/¥

* @return the currentBook

*/

public Item getCurrentBook() {
return currentBook;

}

ik

* @param currentBook the currentBook to set

*/

public void setCurrentBook(Item currentBook) {
this.currentBook = currentBook;

}

public void isBookInCart(ComponentSystemEvent event) {
UIOutput output = (UIOutput) event.getComponent();
if (cart != null) {
if (searchCart(getAuthorController().getCurrentBook().getTitle()) > 0) {
output.setValue("This book is currently in your cart.");
} else {
output.setValue("This book is not in your cart.");
}

} else {
output.setValue("This book is not in your cart.");
}

268

CHAPTER 5 * ADVANCED JAVASERVER FACES AND AJAX

public void updateRowData(RowEditEvent event){
Item book = (Item) event.getObject();
// Do something with the edits...save to list or update database

}

ik
* @return the authorController
*/
public AuthorController getAuthorController() {
return authorController;
}

/**

* @param authorController the authorController to set

*/

public void setAuthorController(AuthorController authorController) {
this.authorController = authorController;

}

There is another class that has been added to the application in order to accommodate the shopping
cart. The Cart class is an object that is used to hold the list of books in the shopping cart. The listing for the
Cart class is as follows:

public class Cart implements java.io.Serializable {
// List containing book objects
private List<Item> books = null;

public Cart(){
books = null;
}

Vass

* @return the books

*/

public List <Item> getBooks() {
return books;

}

Vak
* @param books the books to set
*/
public void setBooks(List books) {
this.books = books;
}

/**

* Utility method to add a book and quantity
*/

269

CHAPTER 5 © ADVANCED JAVASERVER FACES AND AJAX

public void addBook(Book title, int qty){
if (books == null){
books = new ArraylList();

books.add(new Item(title, qty));

Lastly, let’s take a look at the views that are used to display the contents of the shopping cart. The cart

view is used to display the Cart object contents. The contents are displayed using a dataTable component,
and each row in the table contains a commandLink that can be clicked to edit that item’s quantity. The cart.
xhtml listing is as follows:

<html xmlns="http://www.w3.0rg/1999/xhtml"

270

xmlns:f="http://xmlns.jcp.org/jsf/core"
xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
xmlns:h="http://xmlns.jcp.org/jsf/html"
xmlns:p="http://primefaces.org/ui">

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<title>Acme Bookstore</title>

<ui:composition template="./layout/custom_template search.xhtml">
<ui:define name="content">
<h:form id="shoppingCartForm">

<h1>Shopping Cart Contents</h1>
<p>
Below are the contents of your cart.
</p>
<h:messages id="cartMessage" globalOnly="true"
errorStyle="color: red" infoStyle="color: green"/>

<p:dialog id="updateDialog" widgetVar="updateDlg"
modal="true"
height="40" resizable="false"
closable="false" showHeader="false" >

<h:graphicImage id="loading" library="image" name="ajaxloading.gif"/>
</p:dialog>
<p:dataTable id="cartTable" value="#{ch5CartController.cart.books}"
var="book"
rendered="#{ch5CartController.cart.books ne null}">
<p:ajax id="rowEditAjax" event="rowEdit" update="@this"
listener="#{ch5CartController.updateRowData}"
onstart="updateDlg.show();"
oncomplete="updateDlg.hide();"
onerror="updateDlg.hide();"/>

CHAPTER 5 * ADVANCED JAVASERVER FACES AND AJAX

<p:column id="title" headerText="Title">
<p:commandLink value="#{book.book.title}" ajax="false"
action="#{ch5CartController.editItem
(book.book.title)}"/>
</p:column>
<p:column id="quantity" headerText="Quantity">
<p:cellkditor>
<f:facet name="output">
<h:inputText readonly="true" size="10" value="#{book.
quantity}"/»>
</f:facet>
<f:facet name="input">
<h:inputText id="bookQty" size="10" value="#{book.
quantity}"/>
</f:facet>
</p:cellkditor>
</p:column>
<p:column id="edit" headerText="Edit">
<p:rowEditor />
</p:column>

</p:dataTable>

<h:outputText id="emptyCart" value="No items currently in cart.”
rendered="#{ch5CartController.cart.books eq null}"/>

<h:commandLink id="continuelLink" action="#{ch5CartController.
continueShopping}" value="Continue Shopping"/>
</h:form>
</ui:define>
</ui:composition>
</h:body>
</html>

The cart view will look like Figure 5-2 when it is rendered.

Acme Bookstore

Java 9 Recipes Shopping Cart Contents
Java EE 8 Recipes Below are the contents of your cart.
Subscribe to Title Quantity Edit
Newsletter
Java 9 Recipes 1 r

Continue Shopping

Written by Josh Juneau, Apress Author

Figure 5-2. Shopping cart view
271

CHAPTER 5 © ADVANCED JAVASERVER FACES AND AJAX

Finally, when the edit link is clicked, the current book selection quantity can be edited. The view for
editing the shopping cart items is named reviewItem.xhtml, and the sources are as follows:

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://xmlns.jcp.org/jsf/facelets”
xmlns:h="http://xmlns.jcp.org/jsf/html">
<h:head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<title>Acme Bookstore</title>
</h:head>
<h:body>
<ui:composition template="./layout/custom template search.xhtml">

<ui:define name="content">
<h:form id="bookForm">
<h1>Review Item</h1>

<h:messages id="reviewMsg" globalOnly="true"
errorStyle="color: red" infoStyle="color: green"/>

#{ch5CartController.currentBook.book.title}

<h:graphicImage id="javarecipes" library="image"
style="width: 100px; height: 120px"
name="#{ch5CartController.currentBook.book.image}"/>

<h:outputlLabel for="quantity" value="Quantity: "/>

<h:inputText id="quantity"

value="#{ch5CartController.currentBook.quantity}">

</h:inputText>

<h:panelGrid columns="2">
<h:commandButton id="updateCart" action="#{ch5CartController.update
Cart(chsCartController.currentBook.book.title)}"
value="Update"/>

<h:commandButton id="viewCart" action="#{ch5CartController.
viewCart}" value="Back To Cart">
</h:commandButton>

</h:panelGrid>

</h:form>
</ui:define>

</ui:composition>

</h:body>
</html>

272

CHAPTER 5 * ADVANCED JAVASERVER FACES AND AJAX

Figure 5-3 demonstrates how the item review form will look once it is rendered.

Acme Bookstore

Java 9 Recipes Review ltem

Java EE B Recipes
Java 9 Recip

Subscribe to
Newsletter

Java 9

Recipes

——
Quantity: 1
Update Back To Cart

Written by Josh Juneau, Apress Author

Figure 5-3. Review cart item

Note The session scope is not the best implementation for a shopping cart because it ties the managed
bean contents to a particular browser session. What happens when the user needs to leave for a few minutes
and then comes back to the browser to see that the session has expired or the browser has been closed? A
more functional scope for handling this situation is the Conversation scope, which is covered in Chapter 13.
For the most optimal solution, you would implement authentication into an account, which would then store the
user’s session that could be used for retrieval at a later time, if needed.

How It Works

Annotating the managed bean class with the CDI scope annotation corresponding to how long you

need your managed bean to remain valid controls scope. Typically, one or more JSF views belong to a
corresponding managed bean controller. CDI scope refers to how long a JSF view value needs to be retained
in a browser session. Sometimes the value can be reset after a request is placed, and other times the value
needs to be retained across several pages. Table 3-1 in Chapter 3 lists the annotations.

Note Be aware that two different sets of annotations are available for use with Java EE 8 applications.
To apply a scope to a JSF managed bean, be sure you import the correct annotation class, or your results may
vary. Typically, the classes you need to be importing for managing the JSF CDI bean scopes reside in the javax.
enterprise.context package.

273

http://dx.doi.org/10.1007/978-1-4842-3594-2_13
http://dx.doi.org/10.1007/978-1-4842-3594-2_3#Tab1
http://dx.doi.org/10.1007/978-1-4842-3594-2_3

CHAPTER 5 © ADVANCED JAVASERVER FACES AND AJAX

In this example, you will focus on the use of the @SessionScoped annotation. The shopping cart
managed bean, CartController, has been annotated with @SessionScoped, so it becomes instantiated
when a new session begins, and values that are stored in the bean are maintained throughout the client
session. When someone visits the Acme Bookstore and decides to add a book to their shopping cart, they
click the commandButton labeled Add to Cart on the book view. When this occurs, the addToCart method in
the CartController is invoked, and if a Cart instance has not yet been created, then a new instance of Cart
is instantiated. After that, the currently selected Book object is added to the cart. If the Cart instance already
exists, then the Book objects in the Cart are traversed to make sure that the book does not already exist. If
it does already exist, the quantity is bumped up by 1; otherwise, a quantity of 1 is added to the Cart for the
currently selected book.

After a book has been added to the Cart, a user can elect to continue shopping or edit the contents of
the Cart. This is where the @SessionScoped annotation does its magic. The user can go to any other page
within the application and then revisit the cart view, and the selected Book object and quantity are still
persisted. If the user elects to edit the Cart object, she can update the quantity by clicking the Update button,
which invokes the CartController class’s updateCart method, adjusting the quantity accordingly.

This is an exhaustive example to demonstrate a simple task, marking a managed bean as @
SessionScoped. If the bean had been annotated with @RequestScoped, then the Cart contents would be lost
when the user navigates to a new page in the application.

5-8. Listening for System-Level Events

Problem

You want to invoke a method in your application whenever a system-level event occurs.

Solution

Create a system event listener class by implementing the SystemEventListener interface and overriding
the processEvent(SystemEvent event) and isListenerForSource(Object source) methods. Implement
these methods accordingly to perform the desired event processing. The following code listing is for a class
named BookstoreAppListener, and it is invoked when the application is started up or when it is shutting
down:

package org.javaee8recipes.chapter05.recipe05 08;

import javax.faces.application.Application;
import javax.faces.event.*;

Vo

* Recipe 5-8: System Event Listener

* @author juneau

*/

public class BookstoreAppListener implements SystemEventListener {

@verride
public void processEvent(SystemEvent event) throws AbortProcessingException {
if(event instanceof PostConstructApplicationEvent){
System.out.println("The application has been constructed...");
}

274

CHAPTER 5 * ADVANCED JAVASERVER FACES AND AJAX

if(event instanceof PreDestroyApplicationEvent){
System.out.println("The application is being destroyed...");
}
}

@0verride
public boolean isListenerForSource(Object source) {
return(source instanceof Application);

}

Next, the system event listener must be registered in the faces-config.xml file. The following excerpt is
taken from the faces-config.xml file for the Acme Bookstore application:

<application>

<system-event-listener>
<system-event-listener-class>
org.javaee8recipes.chapter05.recipe05_08.

BookstoreApplListener
</system-event-listener-class>

<system-event-class>
javax.faces.event.PostConstructApplicationEvent

</system-event-class
</system-event-listener>

<system-event-listener>
<system-event-listener-class>
org.javaee8recipes.chapter05.recipe05 08.

BookstoreApplListener
</system-event-listener-class>

<system-event-class>
javax.faces.event.PreDestroyApplicationEvent

</system-event-class
</system-event-listener>

</application>

When the application is started, the message “The application has been constructed...” will be displayed
in the server log. When the application is shutting down, the message “The application is being destroyed..”
will be displayed in the server log.

275

CHAPTER 5 © ADVANCED JAVASERVER FACES AND AJAX

How It Works

The ability to perform tasks when an application starts up can sometimes be useful. For instance,

let’s say you'd like to have an email sent to the application administrator each time the application
starts. You can do this by performing the task of sending an email in a class that implements the
SystemEventListener interface. A class that implements SystemEventListener must then override
two methods, processEvent (SystemEvent event) and isListenerForSource(Object source).The
processEvent method is where the real action occurs, because it is the method into which your custom
code should be placed. Whenever a system event occurs, the processEvent method is invoked. In this
method, you will need to perform a check to determine what type of event has occurred so that you
can process only those events that are pertinent. To determine the event that has occurred, perform

an instanceof check on the SystemEvent object. In the example, there are two if statements used to
determine the type of event that is occurring and to print a different message for each. If the event type is
of PostConstructApplicationEvent, then that means the application is being constructed. Otherwise,
if the event type is of PreDestroyApplicationEvent, the application is about to be destroyed. The
PostConstructApplicationEvent eventis called just after the application has been constructed, and
PreDestroyApplicationEvent is called just prior to the application destruction.

The other method that must be overridden within the SystemEventListener class is named
isListenerForSource. This method must return true if this listener instance is interested in receiving
events from the instance referenced by the source parameter. Since the example class is built to listen
for system events for the application, a true value is returned if the source parameter is an instance of
Application.

After the system event listener class has been written, it needs to be registered with the
application. In the example, you want to listen for both the PostConstructApplicationEvent and the
PreDestroyApplicationEvent, so there needs to be a system-event-listener element added to the faces-
config.xml file for each of these events. Within the system-event-listener element, specify the name of
the event listener class within a system-event-listener-class element and the name of the event within a
system-event-class element.

Note As of JSF 2.3, there is now a PostRenderView event. This event is invoked after a view has been
completely rendered.

5-9. Listening for Component Events

Problem

You want to invoke a listener method when a specified component event is occurring. For instance, you want
to listen for a component render event.

Solution

Embed an f:event tag in the component for which you want to listen for events. The f:event tag allows
components to invoke managed bean listener methods based on the current component state. For instance,
if a component is being rendered or validated, a specified listener method could be invoked. In the example
for this recipe, an outputText component is added to the book view of the Acme Bookstore application to
specify whether the current book is in the user’s shopping cart. When the outputText component is being
rendered, a component listener is invoked that checks the current state of the cart to see whether the book

276

CHAPTER 5 * ADVANCED JAVASERVER FACES AND AJAX

is contained within it. If it is in the cart, then the outputText component will render a message stating so; if
not, then the outputText component will render a message stating that it is not in the cart.

The following excerpt is taken from a view named recipe05_09.xhtml, a derivative of the book view
for the application. It demonstrates the use of the f:event tag in a component. Note that the outputText
component contains no value attribute because the value will be set within the event listener.

<h:outputText id="isInCart" style="font-style: italic; color: ">
<f:event type="preRenderComponent"” listener="#{ch5CartController.isBookInCart}"/>
</h:outputText>

The CartController class contains a method named isBookInCart. The f:event tagin the view
references this listener method via the CartController managed bean name, ch5CartController. The
listener method is responsible for constructing the text that will be displayed in the outputText component.

public void isBookInCart(ComponentSystemEvent event) {
UIOutput output = (UIOutput) event.getComponent();
if (cart !'= null) {
if (searchCart(authorController.getCurrentBook().getTitle()) > 0) {
output.setValue("This book is currently in your cart.");
} else {
output.setValue("This book is not in your cart.");

} else {
output.setValue("This book is not in your cart.");
}
}
How It Works

Everything that occurs within JSF applications is governed by the JSF application lifecycle. As part of the
lifecycle, JSF components go through different phases throughout their lifetimes. Listeners can be added to
JSF components to perform different tasks when a given phase is beginning or ending. There are two pieces
to the puzzle for creating a component listener: the tag that is embedded within the component for which
your listener will perform tasks and the listener method itself. To add a listener to a component, the f:event
tag should be embedded within the opening and closing tags of the component that will be interrogated. The
f:event tag contains a handful of attributes, but only two of them are mandatory for use: type and listener.
The type attribute specifies the type of event that will be listened for, and the 1istener attribute specifies the
managed bean listener method that will be invoked when that event occurs. The valid values that could be
specified for the name attribute are preRenderComponent, postAddToView, preValidate, and postValidate.
In addition to these event values, any Java class that extends javax.faces.event.ComponentSystemEvent
can also be specified for the name attribute.

The listener method must accept a ComponentSystemEvent object. In the example, the listener checks
to see whether the shopping cart is null, and if it is, a message indicating an empty cart will be set for the
outputText component’s value. Otherwise, if the cart is not empty, then the method looks through the list of
books in the cart to see whether the currently selected book is in the cart. A message indicating whether the
book s in the cart is then added to the value of the outputText component. Via the listener, the actual value
of the component was manipulated. Such a technique could be used in various ways to alter components to
suit the needs of the situation.

277

CHAPTER 5 © ADVANCED JAVASERVER FACES AND AJAX

5-10. Invoking a Managed Bean Action on Render

Problem

You want to invoke an application-specific action when a JSF view is rendered.

Solution

Add an f:metadata tag to the head of your view and then embed a viewAction component within it,
specifying the action method you want to invoke. This technique can be handy for executing backend code
prior to loading a page. As such, this technique can also be used to replace the f:event tag in order to create
a bookmarkable URL. In this example, the Acme Bookstore author bio page has been updated so that it
can be directly linked to, passing an author’s last name as a view parameter via the URL. The viewAction
component is executed before the view is rendered, invoking the business logic to search for the requested
author by last name and to populate the view components with the found author’s information.

The following listing is for recipe05_10.xhtml, and it can be invoked by visiting a URL such as http://
your-server:8080/JavaEERecipes/faces/chapter05/recipe05_10.xhtml?authorLast=juneau:

<ui:composition xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:f="http://xmlns.jcp.org/jsf/core"
xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
xmlns:h="http://xmlns.jcp.org/jst/html"
template="./layout/custom template search.xhtml">
<f:metadata>
<f:viewParam name="authorLast" value="#{ch5AuthorController.authorLast}"/>
<f:viewAction action="#{ch5AuthorController.findAuthor}" />
</f:metadata>

<ui:define name="content">
<h:form id="componentForm">
<h1>#{ch5AuthorController.current.first} #{ch5AuthorController.current.last}</h1>
<p>
#{ch5AuthorController.current.bio}
</p>

<h1>Author's Books</h1>
<ui:repeat id="bookList" var="book" value="#{ch5AuthorController.current.books}">

<tr>
<td>
<h:graphicImage id="bookImage"
library="image"
style="width: 100px; height: 120px" name="#{book.
image}"/>
</td>
</tr>
<tr>
<td>
#{book.title}
</td>

278

CHAPTER 5 * ADVANCED JAVASERVER FACES AND AJAX

</tr>
</ui:repeat>
</h:form>
</ui:define>

</ui:composition>

The next piece of code is an excerpt from the AuthorController managed bean class. This method is
the implementation for the action method that is specified within the viewAction component. This method
is responsible for finding the author by last name and loading the current Author object with the found
object.

public void findAuthor(){
if (this.authorlast != null){
for(Author author:authorlist){
if(author.getlast().equalsIgnoreCase(authorlast)){
this.current = author;
}
}

} else {
FacesContext facesContext = FacesContext.getCurrentInstance();
facesContext.addMessage(null,
new FacesMessage("No last name specified."));

How It Works

The viewAction component was added to JSF in release 2.2, and with it comes the ability to perform
evaluations before a page is rendered. The viewAction component is very similar to f:event, except for
some notable differences.

e Theview action timing is controllable.
e The same context as the GET request can be used for the action.

e Both the initial and postback requests are supported since the view action is
incorporated into the JSF lifecycle.

e viewAction supports both implicit and explicit navigation.

The viewAction component contains a number of attributes, as described in Table 5-3.

279

CHAPTER 5 © ADVANCED JAVASERVER FACES AND AJAX

Table 5-3. viewAction Component Attributes

Attribute Description

action Method expression representing the application action to invoke when this component
is activated by the user

onPostback Boolean value to indicate whether the action should operate on postback (default:
false)

if Boolean value to indicate whether the component should be enabled (default: true)

immediate Boolean value to indicate whether notifications should be delivered to interested

listeners and actions immediately, during the Apply Requests Values phase

phase String that specifies the phase in which the action invocation should occur using the
name of the phase constraint in the PhaseId class (default: INVOKE_APPLICATION)

In the example for this recipe, the viewAction component is used to invoke a managed bean method,
which searches for the author whose last name equals that which is contained within the authorLast
property. An action method must accept no parameters, and it must return a string, which is then passed to
the NavigationHandler for the application.

5-11. Asynchronously Updating Components

Problem

You want to provide periodic, asynchronous updates to portions of your view so that the users do not have to
refresh the page in order to see the most up-to-date information.

Solution

Utilize an Ajax polling component (available from a third-party JSF component library) to poll the data
asynchronously and re-render display components with the updated data without any user interaction. In
this example, the site template for the Acme Bookstore application has been updated to include the current
time and date. The clock will be updated each second so that, from a user’s point of view, it resembles a
digital clock.

The following code is that of the view template entitled chapter05/layout/custom template search.
xhtml, and it demonstrates how to use the PrimeFaces poll component:

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
xmlns:h="http://xmlns.jcp.org/jsf/html"
xmlns:f="http://xmlns.jcp.org/jsf/core"
xmlns:p="http://primefaces.org/ui"
xmlns:s="http://xmlns.jcp.org/jsf/composite/components/util">

<h:head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<h:outputStylesheet library="css" name="default.css"/>
<h:outputStylesheet library="css" name="csslLayout.css"/>
<h:outputStylesheet library="css" name="styles.css"/>

280

CHAPTER 5 * ADVANCED JAVASERVER FACES AND AJAX

<title>#{ch5AuthorController.storeName}</title>
</h:head>

<h:body>
<div id="top">
<h2>#{ch5AuthorController.storeName}</h2>

<h:panelGrid width="100%" columns="2">
<s:search id="searchAuthor"/>

<h:form>
<p:poll id="poll" interval="1" update="dayAndTime"/>

<h:outputText id="dayAndTime" value="#{bookstoreController.dayAndTime}"/>
</h:form>
</h:panelGrid>
</div>
<div id="content">
<div id="left">
<h:form id="navForm">
<h:commandLink action="#{ch5AuthorController.populateJavaRecipes
AuthorList}" >Java 9 Recipes</h:commandLink>

<h:commandLink action="#{ch5AuthorController.populateJavaEERecipesAuthor
List}">Java EE 8 Recipes </h:commandLink>

<h:commandLink action="#{ch5ContactController.add()}">Subscribe to
Newsletter</h:commandLink>
</h:form>
</div>
<div id="content" class="left content">
<ui:insert name="content">Content</ui:insert>
</div>
</div>
<div id="bottom" >
Written by Josh Juneau, Apress Author
</div>

</h:body>
</html>

Here’s the class:
package org.javaee8recipes.jpa.jsf;
import java.util.Date;

import javax.enterprise.context.ApplicationScoped;
import javax.inject.Named;

281

CHAPTER 5 © ADVANCED JAVASERVER FACES AND AJAX

/**

ES

* @author juneau

*/

@Named ("bookstoreController")
@ApplicationScoped

public class BookstoreController {

private Date dayAndTime = null;

Vak
* Creates a new instance of BookstoreController
*/

public BookstoreController() {

}

Vs

* @return the dayAndTime

*/

public Date getDayAndTime() {
dayAndTime = new Date();
return dayAndTime;

}

/**

* @param dayAndTime the dayAndTime to set

*/

public void setDayAndTime(Date dayAndTime) {
this.dayAndTime = dayAndTime;

}

The date and time will appear on the right side of the header for the bookstore. The resulting solution
should resemble that in Figure 5-4.

Acme Bookstore

[— Wed Jan 31 22:49:46 CST 2018
I =

Java 9 Recipes Shopping Cart Contents

Java EE 8 Recipes Below are the contents of your cart.
* No books in cart...

Subscribe to

Newsletter

No items currently in cart.
Continue Shopping

Written by Josh Juneau, Apress Author

Figure 5-4. Ajax poll component used to update date/time

282

CHAPTER 5 * ADVANCED JAVASERVER FACES AND AJAX

How It Works

The poll component of the PrimeFaces JSF component library can be used to update a specified portion of
a view asynchronously on a timed interval. This can make website content more dynamic because features
can refresh in real time without any user interaction. For instance, the poll component would work well
for a stock market graph to asynchronously update the graph every minute or so. In the example for this
recipe, the PrimeFaces poll component is used to display the current time and date in the Acme Bookstore
application, updating the time every second.

For starters, you must ensure you have installed the PrimeFaces component library to utilize the
poll component. To learn more about installing a third-party component library, see Recipe 5-11. Both
PrimeFaces and RichFaces have a poll component, so you can take your pick of which to use. Neither is
better than the other, but you may choose one over the other based on the library that you like to use best.
After the library has been installed, you must add the namespace for the taglib reference to each page
in which the components will be utilized. In the example, the xmlns:p="http://primefaces.org/ui"
namespace is added to the <html> tag. After the namespace has been referenced in the view, the PrimeFaces
components can be added to the view.

The poll component can be added to a view by including a tag that uses the p prefix, therefore,
p:poll. To utilize the p:poll tag, you must set an update interval. This can be done by setting the interval
attribute to a numerical value, which defines an interval in seconds between the previous response and
the next request. In the example, the interval is set to 1 and, therefore, every second. The update attribute
of the poll component is used to specify which component(s) to update each time the specified interval
of time goes by. It is really as easy as that. In the example, the update attribute is set to the component
identifier of dayAndTime. If you look down a few lines in the code, you can see that dayAndTime is actually
an outputText component that is used to display the current contents of the dayAndTime property within
the BookstoreController managed bean via the EL #{bookstoreController.dayAndTime}. Diving into
the code for the managed bean, it is easy to see that each time the dayAndTime property is obtained, it is
set equal to a new Date() object. A new Date() object contains the current time and date at the time of
instantiation. Therefore, the date and time will always remain current.

The poll component is just one simplistic example of how third-party component libraries can assist
in the development of more dynamic applications. Although the poll component is not very complex or
difficult to use, it provides a large amount of functionality for an application view in just one line of code.
Irecommend you download the latest user guides for both the RichFaces and PrimeFaces component
libraries and read about all the components that are available. If you have a basic understanding of what is
available, it will help you formulate a plan for the development of your application when starting your next
project.

5-12. Developing JSF Components Containing HTML5

Problem

You are interested in adding some HTML5 component functionality into your web application.

Solution

Create a composite component for JSF using the HTML5 component of your choice. For this example, an
HTMLS5 video component will be constructed into a JSF composite component. The composite component
will declare attributes, which will be passed through to the HTML5 video component in a seamless manner.

The first listing is that of the composite component, which resides in the resources/components/
html5/video.xhtml file of the sources for this book.

283

CHAPTER 5 © ADVANCED JAVASERVER FACES AND AJAX

<?xml version='1.0" encoding="UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/
DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://xmlns.jcp.org/jsf/html"
xmlns:cc="http://xmlns.jcp.org/jsf/composite">

<!-- INTERFACE -->

<cc:interface>

<cc:
:attribute

<CC

<cc:
<cc:
<cc:
<cc:
:attribute

<CC

attribute

attribute
attribute
attribute
attribute

</cc:interface>

name="1id"/>

name="width" default="450"/>
name="height" default="300"/>
name="controls" default="controls"/>
name="library" default="movie"/>
name="source"/>

name="type" default="video/mp4"/>

<!-- IMPLEMENTATION -->
<cc:implementation>
<video width="#{cc.attrs.width}" height="#{cc.attrs.height}" controls="#{cc.attrs.
controls}">
<source src="#{cc.attrs.source}" type="#{cc.attrs.type}" />

</html>

Your browser does not support the video tag.
</video>
</cc:implementation>

To keep an aesthetically pleasing look to your pages, you will place a video component in the Acme
Bookstore view named recipe05_12.xhtml. And the view that uses the component will look as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/
DTD/xhtml1i-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
xmlns:h5="http://xmlns.jcp.org/jsf/composite/components/html5">

<head>
</head>

<body>

<ui:composition template="layout/custom_template search.xhtml">
<ui:define name="content">

284

<h1>Bear Movie</h1>

<p>

<h5:video id="myvideo" width="300"

</p>

source="http://www.w3schools.com/html5/movie.mp4"/>

CHAPTER 5 * ADVANCED JAVASERVER FACES AND AJAX

</ui:define>
</ui:composition>

</body>
</html>

When the view is rendered, the user will see a page that resembles Figure 5-5.

Acme Bookstore

. Wed Jan 31 20:16:45 CST 2018
T

Java 9 Recipes HTMLS5 Movie

Java EE B Recipes

Subscribe to
Newsletter

oo — o) —e I ¥

Written by Josh Juneau, Apress Author

Figure 5-5. Using HTML5 components within JSF 2 composite components

How It Works

The use of HTML5 has become prevalent across the Web over the past few years. It is becoming the standard
markup for producing web components that contain rich user interfaces. The JSF 2.2 release is being aligned
with HTMLS5 so that the two technologies can coexist within the same views seamlessly. Prior to JSF 2.2, this
was still a possible option, but some issues still may have been encountered when attempting to utilize some
of the HTML5 components.

In the example for this recipe, an HTML5 component is embedded in a JSF composite component, and
the result is a JSF-based video component that has the ability to accept the same attributes as the HTML5
video component and configure default attributes where possible. If you have not yet reviewed how to
create composite components, go to Recipe 4-4 and review the content there. The following are the major
differences between the example in Recipe 4-4 and this recipe:

e HTMLS5 is specifically used in this recipe, and it is not in Recipe 4-4.

e No server-side code is written for this composite component.

285

CHAPTER 5 © ADVANCED JAVASERVER FACES AND AJAX

The composite component is placed in the resources/components/html5 folder, so it will be made
available for use in the application views automatically. All that is required for use within a client view is
the definition of the taglib namespace in the html element. The name of the XHTML file that contains
the composite component markup is video.xhtml, and it defines the namespace for the JSF composite
component library inside the <html> element.

xmlns:cc="http://xmlns.jcp.org/jsf/composite"”

The HTMLS5 video component accepts a number of attributes, and each of these is made available to the
resulting JSF composite component by adding an interface to the component. This is done by supplying the
opening and closing cc:interface tags, and each of the attributes that are to be made available for use with
the composite component should be declared between the opening and closing tags. Each attribute is declared
by adding a cc:attribute tag, along with the name of the attribute and a default value if needed. Here, you can
see that the width attribute for the component will default to 450px if the user does not specify a width:

<cc:attribute name="width" default="450"/>

The actual component implementation takes place between the opening and closing
cc:implementation tags, and the HTML5 video component is placed there. As you can see, each of the
attributes is obtained from the composite component’s interface, so any of the attributes specified for the
composite component will accept values and pass them through to their corresponding attributes within the
video component using the #{cc.attrs.X} syntax, where X is the name of the attribute that is being passed.
That’s it...the component is now ready to be used within a view.

To use the component, specify the namespace to the taglib within the client view’s <html> element,
and then the tag will be made available. As you can see in the example, the namespace given to the taglib
for this JSF HTML5 video component is h5:

xmlns:h5="http://xmlns.jcp.org/jsf/composite/components/html5"
Once that has been completed, the composite component can be used in the same manner as any standard

JSF component or one from a third-party library. HTML5 can add exciting features to your web applications, and I
expect the number of JSF custom components utilizing HTML5 (a mix of JavaScript and markup) to increase.

5-13. Listening to JSF Phases

Problem

You want to invoke a method in your application each time a particular JSF phase event occurs.

Solution

Create a class that implements the javax.faces.event.Phaselistener interface, and then implement
the class’s beforePhase, afterPhase, and getPhaseId methods to suit the needs of your application. The
following class demonstrates the creation of a PhaseListener:

package org.javaee8recipes.chapteros;
import javax.faces.context.FacesContext;

import javax.faces.event.PhaseEvent;
import javax.faces.event.Phaseld;

286

CHAPTER 5 * ADVANCED JAVASERVER FACES AND AJAX

public class BookstorePhaselListener implements javax.faces.event.Phaselistener {

@0verride

public void beforePhase(PhaseEvent event) {

FacesContext.getCurrentInstance().getExternalContext().log("Before the Phase -

}

@0verride

+ event