-

Java EE We
Application
Primer

Building Bullhorn: A Messaging
App with JSP, Servlets, JavaScript,
Bootstrap and Oracle

Dave Wolf
A.J. Henley

ApPress’

ww.allitebooks.co

http://www.allitebooks.org

Java EE Web
Application Primer

Building Bullhorn: A Messaging
App with JSP, Servlets,
JavaScript, Bootstrap and
Oracle

Dave Wolf
A.J. Henley

Apress’

vww . allitebooks.con

http://www.allitebooks.org

Java EE Web Application Primer: Building Bullhorn: A Messaging App
with JSP, Servlets, JavaScript, Bootstrap and Oracle

Dave Wolf A.J. Henley
New York, USA Washington, D.C., District of Columbia, USA
ISBN-13 (pbk): 978-1-4842-3194-4 ISBN-13 (electronic): 978-1-4842-3195-1

https://doi.org/10.1007/978-1-4842-3195-1
Library of Congress Control Number: 2017962002

Copyright © 2017 by Dave Wolf, A.J. Henley

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Manuel Jordan Elera
Coordinating Editor: Mark Powers

Copy Editor: April Rondeau

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
email orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLCis a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please email rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484231944.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

vww . allitebooks.con

https://doi.org/10.1007/978-1-4842-3195-1
http://www.allitebooks.org

To those who seek to teach themselves.

vww . allitebooks.con

http://www.allitebooks.org

Table of Contents

About the AUthOrS.......cccciiise s ——————— ix
About the Technical REVIEWETccuusseemmmsssssnnsssssssnsssssssssnsssssssnnnsssssnns xi
INtroduction........cccuinseememmmnnnnnnsssss s ———— Xiii
Chapter 1: Getting Started.........cccucccmmnnsnemnmmnnssennmmnmsssnmssesn——————m" 1
The Oracle Virtual Machinegccucvverevnnnieniensssssese s ses s s ssssessesseens 2
Chapter 2: What Is a Database?ccccuemmmmnsssmnmmmsssssnssssssssnssssssssnsnns 5
Referential INtEgritycoovvviererrrrce e 6
NUITVAIUES ...t 6
Primary Keys, Foreign Keys, and INAEXeSccccvcvvrernnnnnienennsessesessssessessennns 7
JOINING TADIES ... ——————— 7
NOrMaliZALION.......ccocereecr s —————— 8
Structured Query Language (SQAL)........ccoverrreereserssssssssesesssssssssesessssssssssessssssssens 8
Working with the Oracle Database..........ccccvvriernnninni e 9
How to Open and Use SQL DEVEIOPENcccvvvrvvernieninenirsse s 10
Chapter 3: Installing and Running EClipSe........ccccrunssmnnnmsssssnnssssssnnnns 11
Chapter 4: Bullhorn Site OVervieW.......ccueurmmsssssnssssssssssssssssssssssssnnnnss 15
The Components of BUIINOMN...........ccoireinrcrr e 15
What Does Each Page LOOK LIKE?........ccccerennininiennnnnninsesess s s e sessens 17
Editing @ Profile ... 21

v

vww . allitebooks.con

http://www.allitebooks.org

TABLE OF CONTENTS

Chapter 5: What Is MVG?cccccusemmnmmnssnnnmmssssssnsssssssssssssssssssssssnnnnes 23
The Model, View, Controller, and Service in Bullhorn..........cccceevvvververenensenseraens 24
Chapter 6: Creating a Web Application.........ccuccmrrnssnnnnnssssssnsssssssnnns 27
Chapter 7: The DAO/RePOSIIOrY ...ccccceurrrsssnnnnssssssnsssssssnsnsssssssnnssssssnnnnes 31
Implement Java Persistence (JPA)........cooooreereecrnrcrereseree e 34
The Persistence.Xml File ... 36
The JPA ENHILIES ..c.vecvecircre e s 38
Chapter 8: The Service Layer.......c.ccccmmmmsssmnmmmsssssnnsssssssssssssssssssssssnnnnss 43
Create @ DHULIlIIES Class........ccvvvrnerennnernsesise s s sens 43
Create the DDUSEN ClaSScc.ccvvverneninnsirnsesise s ses e sens 44
Create the DDPOSE Class........c.ccvvvrneninncrns s 51
Chapter 9: The Controller.........ccccuunemmmmmsssnnnmmssssssssmsssssssessssssssesssssnnns 57
What IS @ SEIVIEL? ..o e 57
Getting the Form Data into the Serviet ... 59
Sending the Data to the Next Pageccccvvvvnnennesesnsesnnesessse e ssssesens 59
How the Servlet Finds the Next Page.........cccvivvrvrierennnnsenenssessesesesessessesaens 60
How to Set Values on Your Qutput Page.........coevververrererenrenseressesensesessesessessenaens 60
How the Log Out BUON WOTKScccevvvirverern e seesesessessesessessesaens 61
The Login Servlet CoUe ... 61
The News Feed Serviet Code. ... 64
The PostServ Serviet Code........cccuinnnininnnn e s 67
The Profile Servlet CoUe.........cuvmrmrninnnrerrrrrere s 69
The AddUser Serviet COUe.........cummmmnmmennsrse s 74
Chapter 10: The Presentation/View.........ccccrnssmmnnmmssssnssmssssssssssssssnnns 77
Chapter 11: Designing Web Pages with HTML............cccccvnneennnnssnnnnnns 79

TABLE OF CONTENTS

Chapter 12: HTMLS TagS ..cucuussssmrmmsssssnssssssnssssssssssssssssssssssssssnnssssssnnnnss 81
Explanation of COMMON TAQSccvrernererenernseres e se e sesens 82
HTML TaDIES ... e 85
A Basic HTML5 and JSP DOCUMENL..........ccooveererrererenerensesesesessese s sessesessssesennes 86
JSP Standard Tag Library (JSTL).....cccvuserrmreserssersssesssessssssessssessssessssssssssssssssennns 87
What Can You Do With JSTL? ... 89

Prevent Cross-site Scripting AackS........ccocvvvvrierinnnsninens s sessessenes 89
Loop Through @ CollECHioN........cccevvvircnern e 89
SEE AVAIUL......ccoiececccr e ———————— 90
Test @ CONAItiON.......ccvreeerierre e 90
Repeat Content a Fixed Number of TIMESc.ccccvivvennrennenennsesssesesesenennes 91
Test a Condition and Choose an AIRernativeccoeeevnrerenesesnsesnsesenseens 91
Determine If a String IS Null or EMPtycccocecvicrinccnscsercse e 92
Formatting Dates........ccccvvvernienrnssenese s 92
How to Display FOrm Datacccrevvvnineninsersere s sesesse e sessessessens 93
Create an HTML LOQin FOrMccccovvrvnienenenreniese s sessessessesessessesneees 93
Create a Page to Display the Output of Your Formccccocevvvncrienniniennenn 95
How to Allow the User to Navigate Between Web Pages.........c.ccevvrnvernennn. 96
REUSING JSP COUB......ccevereruerrereriereresaesessessessessssessessessssessessesssssssessessessssensesnens 96
CUSTOMIZING YOUF EFTOFS...ciueirireererereereesessersessessssessessessssessessessesssssssessesssssssensenses 97

Chapter 13: The Stateless Nature of the Webcccccccecvviiineeeennnnnns 101
The Process of Passing Data...........c.cueuverenernsesnsesesesesssesessssesssessssesessssssssnens 102

Chapter 14: Users and S€SSIONScccurrssssnnnsrsssssnssssssssnsssssssnsnnssssnnns 105
Adding Objects 10 the SESSIONcccccvvreriresres s 107

To Read a Value from the SESSioNccovrereresrnsesnsnesessse e 108

vii

TABLE OF CONTENTS

Chapter 15: How to Create Database Tables for Bullhorn................. 109
Chapter 16: Make Web Pages Do Something Using JavaScript........ 111
Validate a Form Using JavaSCript........ccccccvrerrnvnnenne s sesesesaenens 112
Display Number of Characters in Text BOXccccocvvivrnsennienennnnernsesenenens 114
Chapter 17: Cascading Style Sheets (CSS)cursurrsssmmrsssnsssssanssssnnsas 115
Span and Div TAQS......ccccvveriernrinrire s se s s s s s snens 116
Chapter 18: Making Pages Work on All Screen SizeS........uuseeeennsenas 119
Working With BOOISIIapcccvveernrerrresenesessese s sessssessenens 120
Chapter 19: Use Gravatar to Display User’s Avatars with Posts 123
Calculating an MD5 Hash with Javac.ccccvvvninnnnennnsnsse e 124
Chapter 20: The Presentation/Viewccccceemsmssssssssnnssmssssssssssssssnnnnes 127
The Code for the Login Page........cccevvververerenensenenessssessesesessessesessessssessessesees 127
The Code for the HOME PAQEccceevvriererrrenrire s sessessessessssssessesnes 129
The Code for the News Feed Page.........ccccvvvvnennnnnnscnnesine s sesessesessenens 130
The Code for the Profile Pageccccocvvreriincnicninsnene s 132
The Code for the Add USEr Pageccceererrrrerennenenenerssesesesesesessesesessesesnenens 134
The Code for the SUpPOrt Page.........ccccrerinnnnnnenn s 135
The Code for the Error Page......c.ccoevvvrrenevnsinsinenesis s e sessessessesssssssessesaes 136
The Navbar INCIUde Fileccovcevrerrirreerrerre e 136
The BootStrap INCIUAE File.......ccveveveeverierererersereressssesese e sessesse e ssssssessesnes 139
The Bootstrap Style Pages........cccvcvveriererernerierersssensessessessssessessessessssessessens 140

The Footer Include File..........cociiinicnirnssrn s 140
INA@X..eiiiiisnnnnrnsssnnnnmsssssnnnmssssnnnnsssssnnnnnssssnnnnsssssnnnnessssnnnnessssnnnnssssnnnnnss 141

viii

About the Authors

Dave Wolf is a certified Project Management
Professional (PMP) with over 20 years of
experience as a software developer, analyst,
and trainer. His latest projects include
collaboratively developing training materials
and programming bootcamps for Java and
Python.

A.]. Henley is a technology educator with over
20 years of experience as a developer, designer,
and systems engineer. He is an instructor at
Howard University and Montgomery College.

ix

About the Technical Reviewer

Manuel Jordan Elera is an autodidactic
developer and researcher who enjoys learning
new technologies for his own experiments and
for creating new integrations.

Manuel won the 2010 Springy Award—
Community Champion and Spring Champion
2013. In his little free time, he reads the Bible
and composes music on his guitar. Manuel

is known online as dr_pompeii. He has
tech reviewed numerous books for Apress,
including Pro Spring Messaging (2017), Pro Spring, 4th Edition (2014),
Practical Spring LDAP (2013), Pro JPA 2, Second Edition (2013), and
Pro Spring Security (2013).

Read his 13 detailed tutorials about many Spring technologies or
contact him through his blog at http://www.manueljordanelera.
blogspot.com. You can also follow him on his Twitter account,

@dr pompeii.

http://www.manueljordanelera.blogspot.com/
http://www.manueljordanelera.blogspot.com/

Introduction

Are you a Java developer wondering how to create an Enterprise
application? Do you find the different components overwhelming or
confusing, not knowing how they go together? We're here to help. What if
you could just get an example application working and use that knowledge
to continue your Java journey?

This book and the accompanying code will show you one way to
create a website. It’s not the only way. It may not be the best way for
every application. But it’s a way that will introduce you to the different
components of Java Enterprise application development. And it’s a good
way to get started.

In Java EE Web Application Primer, you’ll learn the basics of Java EE
application development. You'll see how the parts connect. You will have
the Java code for a complete, working application.

The Software

Our students take our courses to learn how to program for large
companies. We have found these are the skills most requested by the
companies hiring our students. We choose to use Java 8, Oracle 12c, and
Eclipse for developing the application. Similarly, we choose to use JPA
(Java Persistence API) instead of Hibernate. We choose JSTL (Java Standard
Tag Library) over other available options. Again, these technologies teach
core skills without hiding all the implementation details from the student.
Our application is designed to teach. We provide the complete source code.

xiii

INTRODUCTION

You will learn much simply by reviewing and modifying the source code.
This book answers the questions you may have after working with the
source code, and the source code helps explain how the concepts in this
book have been implemented.

How to Use This Book

We wrote this book based on our experience teaching Java bootcamps and
other programming courses. The objective of our courses is to help people
learn skills they can use at work. Businesses care more about results

than theory, and we apply that principle to our application. This book
answers the questions many of our students have about web application
development when starting out.

What Our Students Have Achieved

“I remember when the light bulbs started going off in my head,

when the gibberish on the screen started to make sense. It was
the most amazing feeling to start catching up with the rest of
my impressive classmates.”

—Vicky, now a project manager at a Fortune 100 company

“I went through four years of university schooling in computer
science, and I can honestly say that going through this course
gave me a wealth of experience that I only had a taste of dur-
ing my schooling. I certainly had project experience under my
belt graduating with a tech degree, but doing project after
project with Dave and Alton, the instructors, really cemented
the theory and practices I had learned previously in stone.
More than that, 1 got to patch up a lot of holes that I had left
unfilled from missed opportunities in college.”

—Francis, now an analyst at a Fortune 100 company

Xiv

INTRODUCTION

If you're ready to get started and develop your first Java Enterprise web
application, we thank you for choosing our book to begin your journey.
Know that you will face challenges and frustrations. You aren’t alone. We
have found that as our students worked through those, they learned more
about software development than we could ever teach in a book. You're in
the right place. Wait no longer. It’s time to move on to Chapter 1!

CHAPTER 1

Getting Started

VirtualBox allows you to create virtual computers within your physical
computer, enabling you to run multiple computers on one system. Setting
up VirtualBox requires very few steps. Once installed, you can then import
an existing virtual computer and begin work using that system.

Click and run the file to install VirtualBox just like with any other
software you've ever downloaded. If you are using Windows, double-click
the setup file and follow the prompts to install. If you are using a Mac, open
the DMG file that you downloaded and drag the VirtualBox file to your
Applications folder. During the installation, keep all of the options set to
their default.

Start the VirtualBox program. VirtualBox allows you to manage
your various virtual machines and easily create new ones. You can run
VirtualBox directly from the installation program, or you can start it from

the desktop icon.

Note Download VirtualBox from Oracle’s website:
http://www.oracle.com/technetwork/server-storage/
virtualbox/downloads/index.html

© Dave Wolf, A.J. Henley 2017 1
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_1

http://www.oracle.com/technetwork/server-storage/virtualbox/downloads/index.html
http://www.oracle.com/technetwork/server-storage/virtualbox/downloads/index.html

CHAPTER 1 GETTING STARTED

The Oracle Virtual Machine

Being lazy—I mean, efficient—we used a pre-built Oracle virtual

machine (VM) image to develop the site. Oracle makes this VM available
for download at no cost (registration required). The VM requires the

open source VirtualBox software be installed on your computer as just
described. The VM hosts the latest version of the Oracle database (version
12c). It also contains SQL Developer and even Java 1.8. You will only need
to install Eclipse, which we'll cover in a later section.

Tip Download the Oracle Database Application Developer virtual
machine from the Oracle website at http://www.oracle.
com/technetwork/database/enterprise-edition/
databaseappdev-vm-161299.html. You must accept the terms of
the software prior to downloading.

Once you have the Oracle virtual machine file ready, select File »
Import Appliance in the menu bar. Click the Open Appliance button to
select the Oracle virtual machine file. Navigate to the file with the .ova
file extension. Selecting this file will open a dialog box in VirtualBox that
displays the settings. You can select the Import button from here. The next
window will show you the configuration of the current virtual appliance.

Once you click on Import, VirtualBox will copy the disk images and
create a virtual machine with the settings described in the dialog. You will
see the Oracle virtual machine in the VirtualBox Manager’s list of virtual
machines. The VirtualBox Manager is the first screen that opens when you
open VirtualBox. Select your machine, click Start, and give it time to load,
then you can work with that machine as if it were a separate computer.

http://www.oracle.com/technetwork/database/enterprise-edition/databaseappdev-vm-161299.html
http://www.oracle.com/technetwork/database/enterprise-edition/databaseappdev-vm-161299.html
http://www.oracle.com/technetwork/database/enterprise-edition/databaseappdev-vm-161299.html

CHAPTER 1 GETTING STARTED

Note If you're not using the Oracle virtual machine, you can
complete everything in this book using Windows.

You can download and install Oracle database version 12c for
Windows at http://www.oracle.com/technetwork/database/
enterprise-edition/downloads/database12c-win64-
download-2297732.html.

You will also need to install SQL Developer, which you can find at
http://www.oracle.com/technetwork/developer-tools/
sql-developer/downloads/index.html.

Finally, you will need to install Eclipse Oxygen from http://www.
eclipse.org/downloads.

http://www.oracle.com/technetwork/database/enterprise-edition/downloads/database12c-win64-download-2297732.html
http://www.oracle.com/technetwork/database/enterprise-edition/downloads/database12c-win64-download-2297732.html
http://www.oracle.com/technetwork/database/enterprise-edition/downloads/database12c-win64-download-2297732.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html
http://www.eclipse.org/downloads
http://www.eclipse.org/downloads

CHAPTER 2

What Is a Database?

A database is a place to permanently store data for retrieval in a safe,
efficient way. A database allows us to create data and save it permanently.
It allows us to retrieve previously created data, update existing data, or
delete existing data.

A transaction groups SQL statements so that they are all applied to
the database. If one statement fails for some reason, all the statements
are undone from the database. Transactions ensure data integrity.
Transactions distinguish a database management system such as Oracle
from a file system.

The properties of a database transaction that ensure data validity are
atomicity, consistency, isolation, and durability.

o Atomicity refers to the fact that in each database
transaction either all the information is saved or none

of the information is saved.

o Consistency ensures that a transaction either works
correctly or the dataset is returned to the state it was in
before the transaction was executed.

o Isolation refers to the ability of a database to keep a
transaction that is not yet committed distinctly separate
from the working database.

© Dave Wolf, A.J. Henley 2017
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_2

CHAPTER 2 WHAT IS A DATABASE?

e Durability refers to the way committed data is saved by
the system such that, even in the event of a failure and
system restart, the data is available in its correct state.

The database stores data in sets, which are most commonly viewed as
tables. One row of a database table represents a record containing related
attributes, called fields. Fields are represented by the columns in a table.

Referential Integrity

Your database management system (DBMS) supports referential integrity.
The goal of referential integrity is to avoid having “orphaned” data.
Orphaned data can happen when you are deleting or updating the data

in your tables; for example, if you have a post in your database that does
not have a matching user. This shouldn’t happen and is often the result

of importing poorly formatted data or inadvertently deleting a user. A
database management system such as Oracle can enforce referential
integrity to prevent this by denying changes that will result in orphaned
data.

Null Values

Sometimes there is no value in a column of a row. In this case, the column
stores a NULL value. You can think of this as a flag to indicate the absence
of data. NULL is different from the numeric value zero or a string with a
length of zero characters. It is neither. It is nothing, because no value has
been stored in the column for this record. NULL, it turns out, is very useful.
You can search for a field in records that contain NULL and know that they
are the ones with no value in the field.

CHAPTER 2 WHAT IS A DATABASE?

Primary Keys, Foreign Keys, and Indexes

Databases are very powerful tools that allow us to search and sort data at
incredible speeds. An essential ingredient of the mechanics of a database
is that each record should be unique. To make each record unique, either
use an existing field that is unique to each record or add a field to each
record that contains a unique number.

Your DBMS can generate a unique number for each record. The
unique number of each record becomes its primary key. This field
distinguishes that record from any other in the table.

When a second table contains data related to that of the first table, the
second table can refer to the original using the primary key field.

A primary key used as a reference in another table is called a foreign
key. Foreign keys define a reference from one table (the child) to another
table (the parent).

To make access to a column of data more efficient, the database will
create an object called an index. An index contains an entry for each value
in the indexed column(s), resulting in fast access to rows. Like an index
in a print book, the database can look up the requested value in the index
and quickly locate its corresponding row in the table.

Joining Tables

Relationships are a means to join data to different tables. This helps you
avoid redundancy in the tables. You can divide your data into different
tables—entering it only once—and then reference it from other tables by
establishing relationships.

CHAPTER 2 WHAT IS A DATABASE?

There are three types of relationships, as follows:

¢ A One-to-One relationship is where each record in the
first table has only one matching record in the second
table. This usually happens when information in one table
is divided across multiple tables. This is not common.

e A One-to-Many relationship is where each record in the
first table matches with multiple records in the second
table. For example, a user can have multiple posts.

¢ A Many-to-Many relationship is where each record
in the first table can have many corresponding
records in the second table, and also each record
in the second table can have many corresponding
records in the first table.

Normalization

In a normalized data structure, each table contains information about a
single entity and each piece of information is stored in exactly one place.
Normalization is the process of efficiently organizing data in a
database. This is done by organizing the columns (fields or attributes) and
tables of a relational database to minimize data redundancy.
The goals of the normalization process are to eliminate redundant data
and ensure data dependencies make sense.

Structured Query Language (SQL)

A database has its own programming language, SQL (Structured Query
Language). SQL is a nonprocedural language that provides database

access. All database operations are performed using SQL. Java can talk
to the database management system using SQL. This is done using the

CHAPTER 2 WHAT IS A DATABASE?

JDBC API, which allows your application to specify which records to
retrieve based on various criteria. For example, you can select records
created between certain dates or update only records that meet given
criteria. SQL can also be used to create database objects, such as user
tables and saved queries, which are known as views. A view contains
no data itself but is simply the stored query the use of which simplifies
accessing the data.

SQL (pronounced as the letters S-Q-L or sequel) is a specialized
database language that consists of statements that are very close to
English. SQL has one purpose: to communicate with a database. We
communicate with the database to add, update, or delete data. We also
communicate with the database to create and modify tables and other
database objects.

Almost every major DBMS supports SQL. Learning SQL will enable
you to interact with almost every database you might encounter. SQL is
easy to learn. The statements consist of descriptive English words. SQL
is powerful. Cleverly using the language elements allows you to perform
complex database operations. SQL is a standard governed by ANSI
(American National Standards Institute). In addition to the standard
implementation of SQL, most vendors implement their own proprietary
extensions. The version of SQL) you use for Oracle may differ from the
version you use to access other databases.

Working with the Oracle Database

Just as you use an IDE (integrated development environment) to work with
Java programs, you can also use an IDE to work with Oracle databases.
This IDE is called SQL Developer. The virtual machine has a copy of SQL
Developer already installed.

CHAPTER 2 WHAT IS A DATABASE?

How to Open and Use SQL Developer

To open SQL Developer in the virtual machine, simply click its icon on the
desktop.

Tip Oracle provides step-by-step instructions for using SQL
Developer on their technetwork website. If you use the virtual
machine, then everything is installed for you. Browse to http://
www.oracle.com/webfolder/technetwork/tutorials/obe/
db/sqldev/r40/sqldev4.0 _GS/sqldev4.0 _GS.html.

10

http://www.oracle.com/webfolder/technetwork/tutorials/obe/db/sqldev/r40/sqldev4.0_GS/sqldev4.0_GS.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/db/sqldev/r40/sqldev4.0_GS/sqldev4.0_GS.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/db/sqldev/r40/sqldev4.0_GS/sqldev4.0_GS.html

CHAPTER 3

Installing and
Running Eclipse

Your virtual machine contains all the software you need to create
Bullhorn—the Oracle Database 12c, SQL Developer, and Java 1.8—but it
doesn’t contain the Eclipse IDE. You will need to download and install that
yourself. Fortunately, the installation process is very easy.

INSTALL ECLIPSE ON THE VIRTUAL MACHINE

To install Eclipse on the virtual machine, you will need to open Firefox and
download the Eclipse archive. Then, you will need to extract the files from the
archive. Next, you will need to run the setup program that is included in the
archive files. Finally, open Eclipse.

1. From the virtual machine, open the Firefox web browser. You
can get to Firefox by clicking on the Applications menu and
selecting the icon for Firefox Web Browser.

2. Next, browse to http://www.eclipse.org/downloads.

3. Click on the orange button to download Eclipse. You'll be
installing the latest version, which is called Oxygen.

4. You'll be directed to another page with an orange Download
button. Click this one as well.

© Dave Wolf, A.J. Henley 2017 11
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_3

http://www.eclipse.org/downloads

CHAPTER 3 INSTALLING AND RUNNING ECLIPSE

5. Select the option to open with the Archive Manager when this
window is displayed. The Archive Manager is the program that
will extract your files.

6. You'll be prompted to select a folder into which you want to
place the extracted files. Browse to the Home folder and select
Extract.

7. Check the option to open the folder to view the files.
Once you see the extracted files, look for the file called
eclipse-install.

8. Select the option to install Eclipse for Java EE.

9. Your folder should be /home/oracle/eclipse/
jee-oxygen.

10. Click Launch.

11. Accept the default workspace. This is where your project files
will be kept.

You have just installed Eclipse Oxygen.

HOW TO CHANGE THE PORT IN TOMCAT

By default, Tomcat is configured to listen on the following port numbers: 8005,
8080, and 8009. The port we’re most interested in is 8080 since it’s used for
HTTP access. When you run a web application in Eclipse using Tomcat, the
URL becomes http://localhost:8080/ApplicationName. However,
sometimes these ports are used by other software running on the computer.
Fortunately, Eclipse makes it easy to change the port numbers.

12

CHAPTER 3 INSTALLING AND RUNNING ECLIPSE

1. From your web project, in the Servers view, double-click on the
server name.

2. That will open a configuration page for Tomcat as follows:

3. Notice that the port numbers are shown in the table on the
right. Click to edit; for example:

4. Once you change the port number for HTTP from 8080 to 9000,
you should press Ctrl + S to save the change and restart the
Server.

Your application should now run without conflict. If you do get a conflict, then
you’ve chosen another used port. Repeat the process with a different port
number. It’s best to select a port within the range of 1025 to 65535. You can
research “Well-known port numbers” to find many articles explaining the
reasoning here.

13

CHAPTER 4

Bullhorn Site Overview

The diagram in Figure 4-1 illustrates how the site fits together. Only the

core components are shown. You may wish to add additional pages and
classes as needed.

@

JPA (data

) 7 | access)

.m Bullhorn Overview Diagram Classes
<

Session = Visible to all servlets-and JSPs
Session times out 20.minutes after last accessed

Database

User object in ion is available to all servlets and JSPs PostsTable
UsersTable

. Newsfeed
Login Servlet Home Servlet o

Request| Request Request Request Request Request
Login Page |=]ICJ] ome Page| ||| ewsteed [_|[C0] rofie | |(C3| [

Posts
user email Post item |

user email

Post item - password

Login Post item
Session holds objects (but only if Servlet adds them)

JSP (Java Server Page) = HTML + Java Code (and maybe JavaScript)

Servlet = Java code which create objects such as the User

Class = Java code used as a blueprint for an objects Note: Not all classes

For simplicity, all passwords are the word ‘password’ are shown in this diagram

motto

o

Figure 4-1. The components that make up Bullhorn

The Components of Bullhorn

¢ Servlets Java classes that extend the web server to
provide an interface to the browser and database or
other servlets.

© Dave Wolf, A.J. Henley 2017 15
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_4

CHAPTER 4 BULLHORN SITE OVERVIEW

o JPA classes Java Persistence API classes that are used
to communicate between the servlets and the database.

« Request objects represent information sent between
the browser and the servlets. This information might
include email addresses and passwords that are being
used by the servlet to allow access to the site.

« Sessions are the web server’s method or approach of
retaining data while the user is accessing the site.

o User objects The user information is stored in a class
that will be stored in the session and is available to all
pages for the current user.

o JSP (Java Server Pages) Web pages that contain HTML
and tags from the JSP Standard Tag Library to add
functionality. Because they contain code they can
dynamically render for each user’s request. The JSP
Standard Tag Library permits each person to view their

own version of the page.

e HTML (Hypertext Markup Language) pages. HTML is a
system for tagging text files to control fonts, colors, and
images on your web pages.

Tip To keep your HTML from getting too complicated, use CSS
(Cascading Style Sheets) and JavaScript to control the presentation of
your content and let HTML control the layout.

The Bullhorn application contains web pages for login, home, news
feed, and user profile. The user starts at the login page. Once the user
clicks the Login button, the request (data from the login form) will be sent
to the login servlet.

16

CHAPTER 4 BULLHORN SITE OVERVIEW

The login servlet will validate the user against the database. A
valid user will be stored in the session, which is the website’s way of
remembering data between page views. Invalid users will not get past the
login page until they enter a correct username and password combination.
We will create other objects (classes) to validate data or support the
classes and pages shown in the diagram.

What Does Each Page Look Like?

The login page will contain text boxes in which the user will enter their
email and password. This information will be verified in the login servlet. If
they match what is in the database then the user will be redirected to their
home page. If they do not match then the user will be prompted to log in
again. Users who reach the login page but aren’t registered on the site can
register for a login by clicking on the “Join” link. See Figure 4-2.

Login

Please sign in

Figure 4-2. The login page contains text boxes for email and
password and a button to sign in to the application

17

CHAPTER 4 BULLHORN SITE OVERVIEW

The home page will allow each user to create a new post. Each post is
limited to 141 characters, so the home page enforces this restriction (see
Figure 4-3). Once the user is logged in, all pages contain a navigation bar at
the top that allows the user to navigate to different pages, view or edit their
profile, and search for posts containing a specific word.

.Qs\ Home News Feed User Options ~ Search Submit

This is the home page

Create New Post (141 char):

Express yourselfl

141 characters remaining

submit || clear

") Bullhorm Web Site £2017

Figure 4-3. The home page contains a form to submit a post to the
database. The form contains a text box and buttons to either submit
the post or clear the form.

Each page contains the same navigation bar, which allows the user
to move around the application. The navigation bar contains the logo,
links for the home page and the news feed page, and a search box. It also
displays the name of the logged-in user. The user can also select from
various user options, which is implemented as a drop-down list. These
include logging out, viewing or editing profile, and submitting feedback.
See Figure 4-4.

18

CHAPTER 4 BULLHORN SITE OVERVIEW

‘ts\ Home | News Feed ‘

(D user 1 User Options - ‘

Figure 4-4. The navigation bar in Bullhorn shows at the top of every
page

The “News Feed” link in the navigation bar will take a user to the
news feed page, which displays all posts from all users. Each user’s email
address is a link that will display the user’s profile information. Clicking
Search in the navigation bar will also display the news feed, but filtered to
posts that contain the text entered in the search text box. See Figure 4-5.

*l'{) Home = News Feed Search
W

(D user 1 User Options ~

This is the newsfeed page

User Post Date

useri@domain.com ddd 16-Jun-18

%) Bullhorn Web Site ©2017

Figure 4-5. The news feed page displays any posts that are in the
database

19

CHAPTER 4 BULLHORN SITE OVERVIEW

The profile for a user is read-only. It displays their email, motto, join
date, and avatar image, if any. Users can view profiles for other users by
clicking on their user names from the news feed page. See Figure 4-6.

‘ *&d} Home News Feed Search
ShW

(D) userz UserOptions ~

Profile for user 1

Email: useri@domain.com
Motto: motto for user 1

Join Date: Jun 18, 2016

%) Bullhom Web Site ©2017 h

Figure 4-6. The profile page for a user shown in read-only view

20

CHAPTER 4 BULLHORN SITE OVERVIEW

Editing a Profile

If a user views their own profile, then the profile can be edited. See
Figure 4-7.

*k \ Home News Feed Search
)

O\

(") user1 UserOplions -

Edit Profile for user 1

Email: juser1@domain.com

Motto: _motto for user 1

Join Date: Jun 18, 2016
Save Changes

%) Bullhorn Web Site ©2017

Figure 4-7. The profile page for the logged-in user displays with text
boxes and a button so the user can make changes

21

CHAPTER 4 BULLHORN SITE OVERVIEW

The support page doesn’t show much, just some text to let you know
it exists. We could modify this to include a text box that will send an email
or add a record to the database. Then, the support person could check for

new messages periodically. See Figure 4-8.

B [
SHW

(D user 1 User Options ~

This is the support page

%) Bulthom Web Site £2017

Figure 4-8. The support page could allow you to let users submit
requests to the web administrator

22

CHAPTER 5

What Is MVC?

The model-view-controller (MVC) pattern is a software-design pattern
used for creating data-driven web applications. A design pattern is a
general solution that addresses common software-design challenges.
While not a finished design, you may think of a design pattern as a
template or set of best practices.

Following the MVC pattern means you intend to keep the presentation
layer (view), business logic (controller), and database layer (model)
separate. Changes made to one layer will minimally impact the others.

The real benefit of MVC is not seen when writing the code, but rather
when maintaining it. Code is in independent units and can be maintained
without keeping the entire application in your head.

Team building around MVC is easier. The design lends itself to
segmentation among different people or groups. Imagine a View Team
that is responsible for great views, a Model Team that knows all about the
data, and a Controller Team that understands the application flow and
business rules. Each can work on their part of the application concurrently
without regard for the other teams. This allows for more rapid application
development.

Another great advantage of MVC is code reuse. The application’s logic
implemented in the model and controller gets reused for each different view.

© Dave Wolf, A.J. Henley 2017 23
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_5

CHAPTER 5 WHAT IS MVC?

The Model, View, Controller, and Service
in Bullhorn

When you think of the model, think of the database. Generally, the model
is constructed first. The model must store the data. The model may consist
of classes that communicate with the database. The model in Bullhorn is
represented by the Oracle database and the entity classes, which represent
the tables in Oracle.

Once you create the data model and any classes that are part of the
model, move on to the services. The services are all the code that interacts
with the model.

Next, move on to the controller. The controller is part of the web
application and moves data between the services and the view. The
controller also determines which page or servlet is called next. In Bullhorn,
the servlets happen to also be the controller. This is not always the case.
The controller is simply that code that controls application-specific logic.
Since this is a web application, the servlets are in charge of getting data
from the view and determining which JSP will display next. If you have Java
classes that contain that functionality, they will be part of the controller.

The part of the application the user actually sees is called the view.

It presents the data to the user and gets data from the user, which is then
passed back to the model through the services and controller. The view
in Bullhorn consists of JSPs (Java Server Pages) using Bootstrap, CSS
(Cascading Style Sheets), JavaScript, and images. All the parts of the view
work to create the pages that are displayed in the user’s browser. See
Figure 5-1.

24

CHAPTER 5 WHAT IS MVC?

Model View Controller Service

Java Classes
(Service)

%

Entity
Classes
(Model)

Servlets

(Controller)

Java Server
Pages (JSP)
(view)

Browser
(view)

Oracle Database
(Model)

Figure 5-1. The components of Bullhorn are logically divided into
layers called Model, View, Controller, and Service

Tip Perform validation in every layer. Data can come to your
application through ways unanticipated by you when you initially
develop it, not just through the browser. For example, it may come

to be that you need to import information into your database.

Or, you may later write a web service that interacts directly with your

service layer.

25

CHAPTER 6

Creating a Web
Application

We will create the Bullhorn application as a dynamic web project, which will
allow us to develop it with HTML, JSP, servlets, and using JPA to connect to the
database. If you understand what all those things are then you can stop reading
now. If you're still with me, then those things will be explained as we go.

Our dynamic web application will contain not only static HTML pages
but also dynamic Java Server Pages (JSPs) and servlets. We'll be able to
pass data between the different parts of the application.

The database is actually a separate piece of software that your web
application will communicate with. In many systems, the database actually
resides on a different computer entirely. The JSPs will send information
to the servlets. The servlets will send information to (and get information
from) the database through the service layer. And the servlet will send the
result back to the JSP.

Note It is possible to send information straight to the database
from a JSP. It is also possible to send information between two JSPs.
We won’t do that here. We’re putting a servlet in between every
conversation. That allows us to intercept each message with some
Java code in the servlet, which will make it easy to validate, evaluate,
and redirect each intercepted message.

© Dave Wolf, A.J. Henley 2017 27
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_6

CHAPTER6 CREATING A WEB APPLICATION

CREATE A DYNAMIC WEB PROJECT USING ECLIPSE

Eclipse is preconfigured for various types of projects. | find the Dynamic Web
Project most helpful. Starting one only consists of a few simple steps.

1. From Eclipse choose File » New » Dynamic Web Project.

Give it a project name, such as SampleDynamicWebProject,
as shown in Step 2.

2. Select the target runtime as Tomcat v.8.0 or higher. You may be
prompted to install Tomcat before you can continue.

W row Dyramic web Project
Dynamic Web Project o
Create a standalone Dynamic Wek project or acdd it 1o @ now or eisting Enterprise Applaation. |

Project name: SampleDynamicWibProjoect

Project location
=] Use defauh location
1| Chwhiersomedipse-mygen-bock-workspace\SampleDynamicweProje | Bitwae
Target runtione
<Nores < | Now Buntime._
T8 New Server Runtime Emdronmment a *®
Mew Server Runtime Environment D
Defing 3 new senver runtime emironment

Select the type of runtinie environment:
type flior boxt

8 Apache Tomcar vs.5 -
0 Apache Tomeat va.0
8 Apache Tomeat v7.0
8 Apache lomcat v8.0
8 Apache Tomcat vi.5
¥ Apache Tomcat 1.0
EL i o Fuatin 27

.
Apache Tomeat v8.5 supports J2EE 1.2, 1.3, 1.4, and Java EE 5, & and 7 Web modules.

Clcreate a new bo<al server

3. Click Finish.

4. If prompted, select “Yes” to associate with a Java EE
Perspective.

5. Once your project contains some web pages, you can start them by
selecting the page in the Project Explorer, then right-click and select
Run As » Run on Server. Your application will start in Eclipse.

28

CHAPTER6 CREATING A WEB APPLICATION

4 22 SampleDynamicWebProject
. ‘@a Deployment Descriptor: SampleDynamicWebProject
. A9 JAX-WS Web Services

4 7B Java Resources

b (B src

» ¥, Libraries
. =, JavaScript Resources
> = build
4 (= WebContent

> (= META-INF

4 (= WEB-INF

& lib

Figure 6-1. The folder structure of a dynamic web project in
Eclipse

The dynamic web project generates folders for organizing

Java code (see Figure 6-1). The most important are the Java
source folder and the web content folder. Java servlets and
classes should be placed in the src folder shown under Java
Resources. JSP files belong in the WebContent folder. JSP files
must not be placed in WEB-INF or they will not be accessible
by your application. Use the 1ib folder under WEB-INF for JAR
(Java Archive) files. We’ll work with JAR files when we add the
database to our project.

Tip The JAR (Java Archive) files for Bullhorn can be found in
WebContent/WEB-INF/1ib. You should copy all the JAR files
in Bullhorn to the /WEB-INF/1ib directory for any Dynamic Web
Application you choose to develop.

29

CHAPTER 7

The DAO/Repository

Bullhorn requires two tables, for users and posts. We'll create these tables
in Oracle and call them Bhuser and Bhpost, respectively. The user table
will need the following fields: user name, user email, password, motto,
and join date. The posts table will contain fields for post text, post date,
and the ID of the user who created the post. Each table will also contain an
ID field to uniquely identify each record. We can instruct SQL Developer
to construct the tables by running scripts. Simply enter the text seen in
Listing 7-1 in SQL Developer inside a new SQL worksheet.

Listing 7-1. The Data Definition for the Bhuser Table

CREATE TABLE BHUSER
("BHUSERID" NUMBER GENERATED BY DEFAULT ON NULL AS IDENTITY
MINVALUE 1 MAXVALUE 9999999999999999999999999999 INCREMENT
BY 1 START WITH 1 CACHE 20 NOORDER NOCYCLE ,

"USERNAME" VARCHAR2(50 BYTE) NOT NULL,

"USERPASSWORD" VARCHAR2(50 BYTE),

"MOTTO" VARCHAR2(100 BYTE) NOT NULL,

"USEREMAIL" VARCHAR2(100 BYTE) NOT NULL,

"JOINDATE" DATE NOT NULL,

PRIMARY KEY ("BHUSERID")

)

© Dave Wolf, A.J. Henley 2017 31
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_7

CHAPTER 7 THE DAO/REPOSITORY

Now that we have a place to store our users, we can add another table
in which to store the posts. The SQL for creating the Bhpost table is shown
in Listing 7-2. You will enter that in SQL Developer in a SQL worksheet.
Many developers use the same SQL worksheet and enter each table
one below the other. Once the SQL is in a SQL worksheet, highlight the
statements and press the CTRL and Enter keys together. Create the Bhuser
table first since the Bhpost table contains a foreign key representing the
BhuserId in the Bhuser table.

Listing 7-2. SQL for Creating the Bhpost Table

CREATE TABLE BHPOST

("POSTID" NUMBER GENERATED BY DEFAULT ON NULL AS IDENTITY
MINVALUE 1 MAXVALUE 9999999999999999999999999999 INCREMENT
BY 1 START WITH 1 CACHE 20 NOORDER NOCYCLE ,

"POSTDATE" DATE NOT NULL,

"POSTTEXT" VARCHAR2(141 BYTE) NOT NULL,

"BHUSERID" NUMBER NOT NULL,

PRIMARY KEY ("POSTID")

)5

Next, you may wish to enter some test data. Listings 7-3 and 7-4 show
a few statements you can run. Enter the SQL into SQL Developer, highlight
the statements, and press CTRL + Enter.

Listing 7-3. SQL Statements for Entering Test Data for the Bhuser
Table

Insert into BHUSER (USERNAME,USERPASSWORD,MOTTO,USEREMAIL,JOI
NDATE) values ('user 1','password', 'motto for user 1','user1@
domain.com',to date('18-JUN-16", 'DD-MON-RR"));
Insert into BHUSER (USERNAME,USERPASSWORD,MOTTO,USEREMAIL,JOI
NDATE) values ('user 2','password', 'motto for user 2','user2@
domain.com',to date('22-JUL-15", 'DD-MON-RR"));

32

CHAPTER 7 THE DAO/REPOSITORY

Insert into BHUSER (USERNAME,USERPASSWORD,MOTTO,USEREMAIL,JOI
NDATE) values ('user 3','password', 'motto for user 3','user3@
domain.com',to date('31-DEC-16", 'DD-MON-RR"));
Insert into BHUSER (USERNAME,USERPASSWORD,MOTTO,USEREMAIL,JOI
NDATE) values ('user 4','password', 'motto for user 4','users@
domain.com',to date('22-JAN-17', 'DD-MON-RR"));

-- commit saves the data to the database
commit;

Listing 7-4. SQL Statements for Entering Test Data for the Bhpost
Table

Insert into BHPOST (POSTDATE,POSTTEXT,BHUSERID) values (to_
date('18-JUN-17','DD-MON-RR'), 'This is a test post',1);

Insert into BHPOST (POSTDATE,POSTTEXT,BHUSERID) values (to_
date('21-AUG-17", 'DD-MON-RR"), 'Bullhorn is a fun program!',2);
Insert into BHPOST (POSTDATE,POSTTEXT,BHUSERID) values
(to_date('30-3JUL-17','DD-MON-RR'), 'Hello, I am posting
something',2);

-- commit saves the data to the database
commit;

If you need to recreate the tables, you can just delete them by running
the following two lines in a SQL worksheet (Listing 7-5).

Listing 7-5. SQL Statements for Deleting Existing Table and Data

DROP TABLE BHPOST;
DROP TABLE BHUSER;

Now that you have your tables created and some test data entered
in Oracle, it’s time to go back to Eclipse and connect your project to the
database. We'll use the Java Persistence API (JPA) for this.

33

CHAPTER 7 THE DAO/REPOSITORY

Implement Java Persistence (JPA)

The Java Persistence API (JPA) is a set of standards that specify how Java
will connect to a database using entities, also known as POJO (plain old
Java objects). Each entity represents a single row in our database table. JPA
treats the database objects as Java objects. Our program simply interacts
with the entity, which in turn interacts with the database.

Sometimes we have a table that contains data from other tables. For
example, a post in the Bullhorn table will contain a user ID that identifies
the user who submitted the post. With JPA, the ID is replaced with the
entire User object, allowing you to access all the data about the user from
the Post entity.

JPA allows you to use your object-oriented programming skills to work
with a database. Furthermore, it makes all databases look the same to
your program. JPA is an object-relational mapping specification. It takes
care of the details of connecting to the database. You set the values of
various parameters for your existing database, and JPA will do the rest.
The Eclipse JPA tools examine the tables and create a class for each. The
class name is based on the table name. We will use Eclipse JPA tools to
create the class and its getters and setters. The class fields map to the table
fields. Each class represents one table in your database. An instance of
a class represents one record, or row, in the table. The Eclipse JPA tools
will handle sequences and identity keys. They will also handle table
relationships. When your table contains a foreign key to another record
in another table in the database, your class will contain an instance of the
object representing the foreign key’s table. For example, a userID column
in your Posts table becomes a User object embedded in your Posts class.

An advantage of using JPA is that we can change the database without
changing our Java code. The database information is stored in an XML
file, which can be edited without recompiling your application. You may
start off writing your application using MySQL, then as it grows move up to
Oracle without any changes to your application code.

34

CHAPTER 7 THE DAO/REPOSITORY

Queries in JPA are written in a language called JPQL (Java Persistence
Query Language). This language is the same for all databases.

To implement JPA we need to configure a file called the persistence.
xml. This file must be found under the Java source code folder in a folder
called META-INF. Eclipse uses that configuration to generate the entity
classes. After that, we will create helper classes for our application.

The first step is to copy three JAR files to the WEB-INF\1ib folder of
your project. The JAR files for this project are included with the code
download. They can also be found in the WEB-INF\1ib folder of the
Bullhorn application. The JAR files are called eclipselink. jar, javax.
persistence 2.1.0.v201304241213.jar, and ojdbc6. jar.

4 [y > WebContent

- (&3 images

» &% META-INF

b [styles

4 (= WEB-INF

4 (& lib

&'y eclipselink.jar
%'y javax.persistence_2.1.0.v201304241213 jar
&'y javax.servietjsp.jstl-api-1.2.1.jar
&'y ojdbcb.jar
%'y taglibs-standard-impl-1.2.5 jar

Note Place the following JAR files in the WEB-INF\1ib folder:
eclipselink.jar,javax.persistence 2.1.0.v201304241213.
jar,and ojdbc6. jar.Any other location may not work. You may
include the other JAR files you find in Bullhorn at the same time. We’ll use
them later.

35

CHAPTER 7 THE DAO/REPOSITORY

The Persistence.xml File

To configure JPA, we need to create the persistence.xml file. In Eclipse,

there are a few ways to create such a file, but we will create it in the src

directory called META-INF. This particular location is required by the JPA

specification. It can be any text file, which you will fill in with the values

shown in Table 7-1. Don't feel like typing it all? You can copy the file from

the download that accompanies this book. The values you need to change

are detailed in the table. You may need to modify them as shown.

Table 7-1. Settings for the Elements of the Bullhorn persistence.xml

File

XML Tag Name

Recommended Value

Persistence Unit Name
Transaction Type
Provider

Class

Exclude Unlisted Classes
Java.persistence.jdbc.url
javax.persistence.jdbc.user

javax.persistence.jdbc.
password

javax.persistence.jdbc.driver

Bullhorn
RESOURCE_LOCAL
org.eclipse.persistence.jpa.PersistenceProvider

List once for each table in your database. So there
should be two class elements: model.Bhuser and
model.Bhpost

False
jdbc:oracle:thin:@localhost:1521:0ral
system

password

oracle.jdbc.OracleDriver

36

CHAPTER 7 THE DAO/REPOSITORY

Listing 7-6 shows the full persistence.xml file.

Listing 7-6. Example persistence.xml File That Details All the JPA
Settings

<?xml version="1.0" encoding="UTF-8"?>

<persistence version="2.1" xmlns=
"http://xmlns.jcp.org/xml/ns/persistence” xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalocation=
"http://xmlns.jcp.org/xml/ns/persistence http://xmlns.jcp.org/
xml/ns/persistence/

persistence 2 1.xsd">

<persistence-unit name="Bullhoxrn"
transaction-type="RESOURCE_LOCAL">

<provider>
org.eclipse.persistence.jpa.PersistenceProvider
</provider>

<class>model.Bhpost</class>

<class>model .Bhuser</class>
<exclude-unlisted-classes>

False

</exclude-unlisted-classes>

<properties>
<property name="javax.persistence.jdbc.url"
value="jdbc:oracle:thin:@localhost:1521:0ra1"/>

<property name="javax.persistence.jdbc.user" value="system"/>

<property name="javax.persistence.jdbc.driver" value="oracle.
jdbc.OracleDriver"/>

37

CHAPTER 7 THE DAO/REPOSITORY

<property name="javax.persistence.jdbc.password"
value="password"/>

</properties>

</persistence-unit></persistence>

Remember The peristence.xml file belongs in the META-INF
directory found below the src directory. This location is required.

Once you have your persistence.xml file set up, you are ready to
let Eclipse automatically generate the entities from the tables in your
database. To do this, right-click on the project name and select “New.”
Then, navigate to the JPA menu for JPA Entities from Tables. The resulting
dialog box will use the information in your persistence.xml file to
connect to the database and generate a Java class for each table. Your
program will use these Java classes (and the persistence.xml file) to find,
add, edit, and delete records in the database.

The JPA Entities

package model;

import java.io.Serializable;
import javax.persistence.*;
import java.util.Date;
import java.util.Llist;

@Entity
@NamedQuery(name="Bhuser.findAl1l", query="SELECT b FROM Bhuser b")
public class Bhuser implements Serializable {

private static final long serialVersionUID = 1L;

38

CHAPTER 7 THE DAO/REPOSITORY

@Id
@GeneratedValue(strategy=GenerationType.IDENTITY)
private long bhuserid;

@Temporal(TemporalType.DATE)
private Date joindate;

private String motto;
private String useremail;
private String username;
private String userpassword;

//bi-directional many-to-one association to Bhpost
@0neToMany (mappedBy="bhuser")
private List<Bhpost> bhposts;

public Bhuser() {

}

public long getBhuserid() {
return this.bhuserid;

}

public void setBhuserid(long bhuserid) {
this.bhuserid = bhuserid;

}

public Date getJoindate() {
return this.joindate;

}

public void setJoindate(Date joindate) {
this.joindate = joindate;

}

public String getMotto() {
return this.motto;

39

CHAPTER 7 THE DAO/REPOSITORY

public void setMotto(String motto) {
this.motto = motto;

}

public String getUseremail() {
return this.useremail;

}

public void setUseremail(String useremail) {
this.useremail = useremail;

}

public String getUsername() {
return this.username;

}

public void setUsername(String username) {
this.username = username;

}

public String getUserpassword() {
return this.userpassword;

}

public void setUserpassword(String userpassword) {
this.userpassword = userpassword;

}

public List<Bhpost> getBhposts() {
return this.bhposts;

}

public void setBhposts(List<Bhpost> bhposts) {
this.bhposts = bhposts;

}

public Bhpost addBhpost(Bhpost bhpost) {
getBhposts().add(bhpost);
bhpost.setBhuser(this);

return bhpost;

40

CHAPTER 7 THE DAO/REPOSITORY

}
public Bhpost removeBhpost(Bhpost bhpost) {

getBhposts().remove(bhpost);
bhpost.setBhuser(null);
return bhpost;

}

package model;

import java.io.Serializable;
import javax.persistence.*;

import java.math.BigDecimal;
import java.util.Date;

@Entity
@NamedQuery(name="Bhpost.findAll",
query="SELECT b FROM Bhpost b")
public class Bhpost implements Serializable {
private static final long serialVersionUID = 1L;

@Id
@GeneratedValue(strategy=GenerationType.IDENTITY)
private long postid;

@Temporal(TemporalType.DATE)

private Date postdate;

private String posttext;

//bi-directional many-to-one association to Bhuser
@ManyToOne

@JoinColumn(name="BHUSERID")

private Bhuser bhuser;

public Bhpost() {

}

41

CHAPTER 7 THE DAO/REPOSITORY

42

public

}
public

}
public

}
public

}
public

}
public

}
public

public

long getPostid() {
return this.postid;

void setPostid(long postid) {
this.postid = postid;

Date getPostdate() {
return this.postdate;

void setPostdate(Date postdate) {
this.postdate = postdate;

String getPosttext() {
return this.posttext;

void setPosttext(String posttext) {
this.posttext = posttext;

Bhuser getBhuser() {
return this.bhuser;

void setBhuser(Bhuser bhuser) {
this.bhuser = bhuser;

CHAPTER 8

The Service Layer

Your application will interact with the DAO through the service layer.

Create a DbUtilities Class

Every time your application connects to the database, it will execute the
same code. You can make your application more efficient by creating a
class of reusable methods that you can call as needed. Create a class called
DbUtilities. This will allow you to simplify calling the Entity Manager
when you need to read or write to the database. This class will be static
(no instantiation required). It will have one method, getFactory().

It will return an instance of EntityManagerFactory as identified in the
persistence.xml. See Listing 8-1.

Listing 8-1. The code listing for the DbUTtilities Class

//DbUtil.java
package service;

import javax.persistence.EntityManager;
import javax.persistence.Persistence;

public class DbUtil {
public static EntityManager getEntityManager(String s)

© Dave Wolf, A.J. Henley 2017 43
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_8

CHAPTER 8 THE SERVICE LAYER

return
Persistence.createEntityManagerFactory(s).
createEntityManager();

}
//End of DbUtil.java

Create the DbUser Class

The DbUser class contains methods for working with the user. DbPost
contains methods for working with the posts. Both classes are very similar,
so only select methods from DbUser are shown here.

//DbUser.java
package service;

import javax.persistence.EntityManager;
import javax.persistence.EntityTransaction;
import javax.persistence.NoResultException;
import javax.persistence.TypedQuery;

import service.util.MD5Util;
import model.Bhuser;

/**

* @author djw

* DbUser class contains helper methods for working with Bhusers
*

*/
public class DbUser {
/**
* Gets a Bhuser from the database
* @param userID - primary key from database. Must be type long
* @return Bhuser
*/
44

CHAPTER 8 THE SERVICE LAYER

public static Bhuser getUser(long userID)

{

}

EntityManager em = DbUtil.getEntityManager
("Bullhorn");

Bhuser user = em.find(Bhuser.class, userID);
return user;

public static void insert(Bhuser bhUser) {

EntityManager em = DbUtil.getEntityManager

("Bullhorn");

EntityTransaction trans = em.getTransaction();

try {
trans.begin();
em.persist(bhUser);
trans.commit();

} catch (Exception e) {
e.printStackTrace();
trans.rollback();

} finally {
em.close();

Gets a Gravatar URL given the email and size

In accordance with Gravatar's requirements the email
will be hashed

with the MD5 hash and returned as part of the url
The url will also include the s=xx attribute to
request a Gravatar of a

particular size.

References: <a href="http://www.gravatar.
com">http://www.gravatar.com</>

45

CHAPTER 8 THE SERVICE LAYER

* @param email - email of the user who's gravatar
you want
* @param size - indicates pixel height of the image to
be returned. Height and Width are same.
* @return - the gravatar URL. You can test it in a
browser.
*/
public static String getGravatarURL(String email,
Integer size){
StringBuilder url = new StringBuilder();
url.append("http://www.gravatar.com/avatar/");
url.append(MD5Util.md5Hex (email));
url.append("?s=" + size.toString());
return url.toString();

* Updates the data in a Bhuser
* Pass the method a Bhuser with all the values set to
your liking and
* this method will update the database with these
values.
* This method doesn't actually return anything but the
good feeling
* that your update has been completed. If it can't be
completed then
* it won't tell you. Sounds like something needs to be
added in the future. Hmmm.
* @param bhUser
*/
public static void update(Bhuser bhUser) {
EntityManager em = DbUtil.getEntityManager
("Bullhorn");

46

CHAPTER 8 THE SERVICE LAYER

EntityTransaction trans = em.getTransaction();
try {
trans.begin();
em.merge(bhUser);
trans.commit();
} catch (Exception e) {
System.out.println(e);
trans.rollback();
} finally {
em.close();

* Removes a Bhuser from the database.
* Not sure why you'd want to delete a Bhuser from the
database but this
* method will do it for you. This method does not
explicitly remove the user's
* posts, but most likely you've set up the database
with cascading deletes, which
* will take care of that. Gives no feedback.
* @param bhUser that you never want to see again
*/
public static void delete(Bhuser bhUser) {
EntityManager em = DbUtil.getEntityManager
("Bullhorn");
EntityTransaction trans = em.getTransaction();
try {
trans.begin();
em.remove(em.merge(bhUser));
trans.commit();

47

CHAPTER 8 THE SERVICE LAYER

} catch (Exception e) {
System.out.println(e);
trans.rollback();

} finally {
em.close();

Gets a user given their email address.

You've got the email when they log in but you really
need the

user and all its related information. This method
will find the user

matching that email. The database should ensure that
you can't have two users

with the same email. Otherwise there's no telling
what you'd get.

* @param email

* @return Bhuser with that unique email address

public static Bhuser getUserByEmail(String email)

{

48

EntityManager em = DbUtil.getEntityManager
("Bullhorn");
String qString = "Select u from Bhuser u "

+ "where u.useremail

=:useremail”;

TypedQuery<Bhuser> q = em.createQuery(qString,
Bhuser.class);
q.setParameter("useremail”, email);

Bhuser user = null;

/*

*
*

*

*

pu
St

{

CHAPTER 8 THE SERVICE LAYER

try {

System.out.println("Getting single user");
user = q.getSingleResult();
System.out.println(user.getUsername());

}catch (NoResultException e){
System.out.println(e);
}inally{
em.close();

}
return user;
*
Is this user valid? This method has the answer for
you.

Checks the database and counts the number of users
with this

username and password. If it returns 0 then either
the username

or password don't exist in the database. If it
returns 1 then you have found

the user with that username and password. If it
returns >1 then you need to

fix your database.

@param userEmail and userPassword

@return true or false indicating the user exists or
doesn't

/

blic static boolean isValidUser(String userEmail,
ring userPassword)

49

CHAPTER 8 THE SERVICE LAYER

}

EntityManager em =
DbUtil.
getEntityManager("Bullhorn");
String qString = "Select count(b.bhuserid) from
Bhuser b "
+ "where b.useremail = :useremail and
b.userpassword = :userpass”;
TypedQuery<Long> q =
em.createQuery(qString,Long.class);
boolean result = false;
q.setParameter("useremail”, userEmail);
q.setParameter("userpass”, userPassword);

try{
long userId = q.getSingleResult();

if (userId > 0)

{

result = true;

}
}catch (Exception e){

result = false;

}
finally{

em.close();

}

return result;

//End of DbUser.java

50

CHAPTER 8

Create the DbPost Class

//DbPost.java
package service;

import java.util.Llist;

import javax.persistence.EntityManager;
import javax.persistence.EntityTransaction;
import javax.persistence.TypedQuery;

import model.Bhpost;

public class DbPost {

public static void insert(Bhpost bhPost) {

THE SERVICE LAYER

EntityManager em = DbUtil.getEntityManager

("Bullhorn");

EntityTransaction trans = em.getTransaction();

try {
trans.begin();
em.persist(bhPost);
trans.commit();

} catch (Exception e) {

System.out.println(e.getMessage());

trans.rollback();
} finally {
em.close();

¥
public static void update(Bhpost bhPost) {

EntityManager em = DbUtil.getEntityManager

("Bullhorn");

EntityTransaction trans = em.getTransaction();

51

CHAPTER 8

52

THE SERVICE LAYER

try {
trans.begin();
em.merge(bhPost);
trans.commit();
} catch (Exception e) {
trans.rollback();
} finally {
em.close();

}
public static void delete(Bhpost bhPost) {

EntityManager em = DbUtil.getEntityManager

("Bullhorn");

EntityTransaction trans = em.getTransaction();

try {
trans.begin();
em.remove(em.merge(bhPost));
trans.commit();

} catch (Exception e) {
System.out.println(e);
trans.rollback();

} finally {
em.close();

}
public static List<Bhpost> bhPost (){

EntityManager em = DbUtil.getEntityManager
("Bullhorn");
String qString = "select b from Bhpost b";

List<Bhpost> posts = null;
try{

}

CHAPTER 8 THE SERVICE LAYER

TypedQuery<Bhpost> query = em.create
Query(qString,Bhpost.class);
posts = query.getResultList();

}catch (Exception e){
e.printStackTrace();
}
finally{
em.close();

}

return posts;

public static List<Bhpost> postsofUser(long userid)

{

EntityManager em = DbUtil.getEntityManager("Bul
lhorn");

List<Bhpost> userposts = null;

String qString = "select b from Bhpost b where
b.bhuser.bhuserid = :userid";

try{
TypedQuery<Bhpost> query = em.create

Query(qString,Bhpost.class);
query.setParameter("userid"”, userid);
userposts = query.getResultlList();
}catch (Exception e){
e.printStackTrace();
}
finally{
em.close();

}

return userposts;

53

CHAPTER 8 THE SERVICE LAYER

public static List<Bhpost> postsofUser(String useremail)
{

EntityManager em = DbUtil.getEntityManager

("Bullhorn");

List<Bhpost> userposts = null;

String qString = "select b from Bhpost b "

+ "where b.bhuser.useremail =
:useremail”;

try{
TypedQuery<Bhpost> query = em.create
Query(qString,Bhpost.class);
query.setParameter("useremail"”,
useremail);
userposts = query.getResultlList();
}catch (Exception e){
e.printStackTrace();
}
finally{
em.close();

}

return userposts;

public static List<Bhpost> searchPosts (String search)
{

EntityManager em = DbUtil.getEntityManager

("Bullhorn");

List<Bhpost> searchposts = null;

String qString = "select b from Bhpost b "

+ "where b.posttext like
:search";

54

CHAPTER 8 THE SERVICE LAYER

try{
TypedQuery<Bhpost> query = em.create
Query(qgString,Bhpost.class);
query.setParameter("search", "%" +
search + "%");
searchposts = query.getResultlList();
}catch (Exception e){
e.printStackTrace();
}inally{
em.close();
}return searchposts;

}
//End of DbPost.java

55

CHAPTER 9

The Controller

The controller layer in our application contains code to handle
application-specific logic. This includes concerns such as receiving data
from web pages, sending data to the classes in the service layer, and
sending the user the next servlet or JSP as appropriate. The controller does
not access the database directly. The controller finds out what needs to be
done, then finds the right class in the service layer or presentation layer
and calls on that class to do its work. In our application, most of the code
for the controller resides in Java servlets.

What Is a Servlet?

Servlets are Java classes that respond to incoming HTTP requests. The
request is sent by the browser whenever you browse to a URL or submit

a form. Servlets reside within the web server—Tomcat—and listen for
requests. Then, they spring into action and process the request. Think of
“operators are standing by!” When you create a servlet you are actually
extending the functionality of the servlet container, Tomcat. Think of
Tomcat as a web server that knows how to work with servlets and JSP files
in addition to HTML.

The URL (web address) of your servlet will look something like
http://localhost:8080/webTest/SimpleServlet, where localhost is
the name representing your computer, 8080 is the port number, webTest is
the application (or project) name, and SimpleServlet is the servlet URL as
indicated in the servlet’s @WebServlet annotation.
© Dave Wolf, A.]. Henley 2017 57

D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_9

CHAPTER9 THE CONTROLLER

The servlet code in Listing 9-1 features a servlet that can be found
atthe SimpleServlet URL as specified in the @WebServlet attribute. It
contains no code to process a request, only showing the structure. A servlet
contains two methods, doGet and doPost. Each corresponds to the get or
post method of a form. When the form is submitted, the method attribute
of the form tag should be set to GET if you are only using the form values to
retrieve read-only data such as another web page. If the web form is using
GET, the data is transferred within the URL. You can see the parameter and
its values in the URL following a ? symbol. This allows the user to copy and
paste a link and get the same results again.

When submitting data to the server for entry into the database, you
should use the POST method. POST does not use the URL to submit data.
The parameters and values are transferred to the server in a package of
data. This has several advantages, including the fact that the form and its
submitted data cannot be bookmarked. Using POST also allows a form to
submit larger quantities of data.

Listing 9-1. A Simple Web Servlet (Excluding Import Statements)

@WebServlet("/SimpleServlet")
public class SimpleServlet
extends HttpServlet {

protected void doGet(
HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
//code to handle GET requests goes here

}

protected void doPost(
HttpServletRequest request,
HttpServletResponse response)

58

CHAPTER9 THE CONTROLLER

throws ServletException, IOException {
//code to handle POST requests goes here

}

Getting the Form Data into the Serviet

When the user clicks the Submit button, the data from the form gets sent
to the servlet in the request object. The web server takes care of this. The
servlet container, Tomcat, will make the request object available to your
servlet. Your input, named userName, will contain the name that the user
has typed. The servlet can read that name by using the following code:

//set a variable with the value from the request
String userEmail = request.getParameter("userkEmail");

Sending the Data to the Next Page

You can add any data (including objects such as ArraylLists) to the
request or session. These will be available to the next page the servlet calls.
Note that the request packet from the incoming request will not remain in
scope, so it’s necessary to put the data back into a new request packet.

//put the value back in the servlet's request
request.setAttribute("userEmail”, userEmail);

Now the servlet has the data in a variable called userEmail. You're just
writing Java code now, so you can work with it however you see fit. We'll
use the userEmail and userPassword variables to hold the data and then
validate that they match our expectations. At first we'll just create a method
to validate known values. Later, we’ll use the database to store the valid
data and create Java code to query the database to check the results.

59

CHAPTER9 THE CONTROLLER

Once the servlet validates the user they will be redirected to the home
page. If they entered an invalid password they will be redirected back to
the login page.

How the Servlet Finds the Next Page

After the servlet has validated and processed all the incoming data, you
want to tell it to take the user to the next page.

The last line in your servlet’s doPost or doGet methods will handle
that. When the servlet comes to this line of code it will send the user to the
correct page.

//redirect to next page as indicated by the value of the
nextURL variable
String nextURL = "home.jsp";

getServletContext().getRequestDispatcher(nextURL)
.forward(request,response);

How to Set Values on Your Output Page

Create a jsp page called home. jsp. Add the following code to your page

so it will read the values of the parameters from the servlet. The notation
${userEmail} will read the parameter from the request packet. You set that
in the servlet.

<html>
<head>
<title>The results of my form</title>
</head>
<body>
<h1>Using GET Method to Read Form Data</h1>

60

CHAPTER9 THE CONTROLLER

<p>First Name: ${firstName} </p></1li>
<p>Last Name: ${lastName} </p></1i>

</body>
</html>

How the Log Out Button Works

When the user wants to log out, you simply end their session. That makes
logging out easy. Most users won't click the Log Out button. For them, the
session ends when the session timeout is reached. You can set the session
timeout property or use the default of 20 minutes.

Create a form that will pass a parameter called action with a value of
logout to your login servlet. To pass that parameter, you'll create a hidden
input and give it a name and ID of action with a value of logout.

The form’s action will be the name of the login servlet. When the
servlet receives the parameter it will invalidate the session and redirect
the user to the login page. The Java code to end a session is session.
invalidate();.

The Login Servlet Code

Listing 9-2. The Code for the Login Servlet

//LoginServlet. java
package controller;
/*
* the login servlet processes login.jsp. The servlet has one
job

61

CHAPTER9 THE CONTROLLER

* which is to validate the user and add them to the session so

* that user will be available to all pages. If the user is not
valid

* then the login servlet will redirect back to the login page.

*/

import java.io.IOException;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

import service.DbUser;

import model.Bhuser;

@WebServlet("/LoginServlet")
public class LoginServlet extends HttpServlet {
private static final long serialVersionUID = 1L;

public LoginServlet() {

super();

protected void doPost(HttpServletRequest request,
HttpServletResponse response) throws ServletException,
IOException {
//this page does not require user to be
logged in
String useremail = request.getParameter
("email");
String userpassword = request.getParameter
("password");

62

CHAPTER9 THE CONTROLLER

String action = request.getParameter("action");
//String remember = request.getParameter
("remember");

String nextURL = "/error.jsp";

//get an instance of the session so we can set
attributes to it

//the ISP and NavBar will read from the session
//The session is one of the primary ways we
maintain state

//in an otherwise stateless web application
HttpSession session = request.getSession();

//create an instance of the user and put it in
the session
//only add the user to the session if the user
if valid.
//The presence of the user is used to determine
who
//owns the site and will be used to connect to
the database
if (action.equals("logout")){
session.invalidate();
nextURL = "/login.jsp";

telse{

if (DbUser.isValidUser(useremail,

userpassword)){
Bhuser user = DbUser.
getUserByEmail (useremail);
session.setAttribute
("user", user);
int gravatarImageWidth = 30;

63

CHAPTER9 THE CONTROLLER

String gravatarURL =
DbUser.getGravatarURL
(useremail,
gravatarImageWidth);

session.setAttribute

("gravatarURL", gravatarURL);

nextURL = "/home.jsp";

}else{
nextURL = "/login.jsp";

}

//redirect to next page as indicated by the
value of the nextURL variable
getServletContext().getRequest
Dispatcher(nextURL).forward(request,response);

}
//End of LoginServlet.java

The News Feed Servlet Code

Listing 9-3. The Code for the News Feed Servlet

//Newsfeed. java
package controller;

import java.io.IOException;

import java.util.Llist;

import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

64

CHAPTER9 THE CONTROLLER

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.servlet.http.HttpSession;

import model.Bhpost;

import service.DbPost;

@WebServlet("/Newsfeed")
public class Newsfeed extends HttpServlet {
private static final long serialVersionUID = 1L;

public Newsfeed() {

super();

protected void doGet(HttpServletRequest request,
HttpServletResponse response) throws ServletException,
IOException {

}

//users can get to this servlet through a get
request so handle it here

//With a get request the parameters are part of
the url.

//We already handle everything in doPost so
just call that.

doPost(request,response);

protected void doPost(HttpServletRequest request,
HttpServletResponse response) throws ServletException,
IOException {

long filterByUserID = 0;

String searchtext = "";

//set the value of the next page. It should
change in the code below.

65

CHAPTER9 THE CONTROLLER

66

String nextURL = "/error.jsp";

//get user out of session.

//1f they don't exist then send them back to

the login page.

//kill the session while you're at it.

HttpSession session = request.getSession();

if (session.getAttribute("user")==null){
nextURL = "/login.jsp";
session.invalidate();
response.sendRedirect(request.
getContextPath() + nextURL);

return;//return prevents an error

}

//get posts based on parameters; if no
parameters then get all posts
List<Bhpost> posts = null;
if (request.getParameter("userid")!=null
8& !request.getParameter
("userid").isEmpty()){
filterByUserID = Integer.parselnt
(request.getParameter("userid"));
posts = DbPost.postsofUser
(filterByUserID);

}else if (request.getParameter("searchtext")!=
null
8& !request.getParameter
("searchtext™).isEmpty()){
searchtext = request.getParameter
("searchtext").toString();
posts = DbPost.searchPosts(searchtext);

CHAPTER9 THE CONTROLLER

telse{
posts = DbPost.bhPost();

}

//add posts to request
request.setAttribute("posts"”, posts);
//display posts in newsfeed.jsp

nextURL = "/newsfeed.jsp";

//redirect to next page as indicated by the
value of the nextURL variable
getServletContext().getRequestDispatcher
(nextURL) . forward(request,response);

}

//end of Newsfeed.java

The PostServ Servlet Code

Listing 9-4. The Code for the PostServ Servlet

//PostServ.java
package controller;

import java.io.IOException;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

import java.util.Calendar;

67

CHAPTER9 THE CONTROLLER

import java.util.Date;
import model.Bhpost;
import model.Bhuser;
import service.DbPost;

@WebServlet("/PostServ")
public class PostServ extends HttpServlet {
private static final long serialVersionUID = 1L;

public PostServ() {

super () ;
}
protected void doPost(HttpServletRequest request,
HttpServletResponse
response)
throws
ServletException,

IOException {

String posttext = request.getParameter
("posttext");
String nextURL = "/error.jsp";

//Get user out of session. If they don't exist then

//end the session and send them back to the

login page.

HttpSession session = request.getSession();

if (session.getAttribute("user")==null){
nextURL = "/login.jsp";
session.invalidate();

} else {

68

CHAPTER9 THE CONTROLLER

//Get the user out of the session
Bhuser bhuser = (Bhuser)session.getAttribute
("user");

//insert the post

Bhpost bhPost = new Bhpost();
bhPost.setBhuser(bhuser);

Date postdate = Calendar.getInstance().
getTime();//today's date
bhPost.setPostdate(postdate);
bhPost.setPosttext(posttext);
DbPost.insert(bhPost);

nextURL = "/Newsfeed";//go to newsfeed servlet
to show all posts

}

//the value of nextURL will be newsfeed, login,

oI error

getServletContext().getRequestDispatcher(nextURL)
.forward(request, response);

//end of PostServ.java

The Profile Serviet Code

Listing 9-5. The Code for the Profile Servlet

//ProfileServlet.java

package controller;

69

CHAPTER9 THE CONTROLLER

import
import
import
import
import
import
import
import
import
import

java.io.IOException;
javax.servlet.ServletException;
javax.servlet.annotation.WebServlet;
javax.servlet.http.HttpServlet;
javax.servlet.http.HttpServletRequest;
javax.servlet.http.HttpServletResponse;
javax.servlet.http.HttpSession;
java.text.SimpleDateFormat;
service.DbUser;

model.Bhuser;

@WebServlet("/ProfileServlet")

public

class ProfileServlet extends HttpServlet {
private static final long serialVersionUID = 1L;

public ProfileServlet() {

}

super();

protected void doGet(HttpServletRequest request,
HttpServletResponse response) throws ServletException,
IOException {

70

doPost(request,response);

protected void doPost(HttpServletRequest request,
HttpServletResponse response) throws ServletException,
IOException {
/*
* simplify this so that it always requires two
parameters, userid and action
* action is view or edit. If edit then the
userID of the session(user) must be same as
userID for profile

CHAPTER9 THE CONTROLLER

* since you can only edit your own.

* all urls coming to this page must contain
both parameters or get error.

*/

HttpSession session = request.getSession();

String nextURL = "/error.jsp";

long userid = 0;

String action = "";

Bhuser profileUser = null;

Bhuser loggedInUser = null;

//get user out of session. If they don't exist

then send them back to the login page.

//kill the session while you're at it.

if (session.getAttribute("user")==null){
nextURL = "/login.jsp";
session.invalidate();
response.sendRedirect(request.
getContextPath() + nextURL);

return;//return prevents an error

}

try{
userid = Long.parselong(request.getParameter

("userid"));

action = request.getParameter("action");

//update profile for user in request variable
if action = updateprofile
if (request.getParameter("action").
equals("updateprofile™)){
long uid = Long.parselong
(request.getParameter("userid"));

71

CHAPTER9 THE CONTROLLER

String userEmail = request.getParameter
("useremail™);

String userMotto = request.getParameter
("usermotto");

Bhuser updateUser = DbUser.getUser(uid);
updateUser.setMotto(userMotto);
updateUser.setUseremail (userEmail);

DbUser.update(updateUser);
}

//get the user from the parameter
profileUser = DbUser.getUser(userid);

//get the current user out of the session
loggedInUser = (Bhuser) session.getAttribute
("user");

if (profileUser.getBhuserid()==1loggedInUser.get
Bhuserid()){
//display profile as form
//the session variable editProfile is
used by the ISP to
//display the profile in edit mode
session.setAttribute("editProfile",

true);

telse{
//display profile read-only
//the session variable editProfile is
used by the ISP to
//display the profile in read-only mode
session.setAttribute("editProfile",
false);

}

72

CHAPTER9 THE CONTROLLER

//populate the data in the attributes

int imgSize = 120;

SimpleDateFormat sdf = new SimpleDateFormat

("MMM d, yyyy");

String joindate = sdf.format(profileUser.

getJoindate());

request.setAttribute("userid", profileUser.

getBhuserid());

request.setAttribute("userimage"”,
DbUser.getGravatarURL
(profileUser.getUseremail(),
imgSize));

request.setAttribute("username", profileUser.

getUsername());

request.setAttribute("useremail”, profileUser.

getUseremail());

request.setAttribute("usermotto”, profileUser.

getMotto());

request.setAttribute("userjoindate”, joindate);

nextURL = "/profile.jsp";

}catch(Exception e){
//print the exception so we can see it
while testing the application
//in production it isn't a good idea to
print to the console since it
//consumes resources and will not be seen
System.out.println(e);

}

//redirect to next page as indicated by the

value of the nextURL variable

73

CHAPTER9 THE CONTROLLER

getServletContext().getRequestDispatcher
(nextURL)

.forward(request,response);

}

}
//ProfileServlet.java

The AddUser Servlet Code

Listing 9-6. The Code for the AddUser Servlet

//AddUser . java
package controller;

import java.io.IOException;
import java.util.Calendar;
import java.util.Date;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

import model.Bhuser;
import service.DbUser;

@WebServlet("/AddUser™)
public class AddUser extends HttpServlet {
private static final long serialVersionUID = 1L;
public AddUser() {

74

CHAPTER9 THE CONTROLLER

super ();

protected void doPost(HttpServletRequest request,
HttpServletResponse response) throws
ServletException, IOException {

HttpSession session = request.getSession();

//This page does not require user to be logged in

String userName = request.getParameter
("userName");

String userEmail = request.getParameter
("userEmail");

String userPassword = request.getParameter
("userPassword");

String userMotto = request.getParameter
("userMotto");

String nextURL = "/error.jsp";

//check if user exists (by email)

Bhuser user = DbUser.getUserByEmail(userEmail);

//create user and add them if they don't exit
if (user == null){
user = new Bhuser();
user.setUsername(userName);
user.setUseremail (userkmail);
user.setUserpassword(userPassword);
Date joindate = Calendar.getInstance().
getTime();
user.setJoindate(joindate);
user.setMotto(userMotto);

75

CHAPTER9 THE CONTROLLER

DbUser.insert(user);
nextURL = "/home.jsp"”;

telse{
String message = "You have an
account - ";
request.setAttribute("message"”,
message);
nextURL = "/login.jsp";

}

//add the user to the session
session.setAttribute("user", user);

//redirect to next page as indicated by the
value of the nextURL variable
getServletContext().getRequestDispatcher(nextURL)

.forward(request,response);

}

}
// end of AddUser.java

76

CHAPTER 10

The Presentation/View

Users interact with your application through their web browser. The role of
the web browser is to display the HTML, JavaScript, and images. Each web
document contains a section we call the head and a section we call the
body.

The head contains the title tag, link tag, and script tag. The link and
script tags allow the page to include external files for style sheets and
JavaScript, respectively. Our application will contain links to style sheets
and JavaScript for Bootstrap.

The body of the document has more information. The body is where
the content seen in the browser will go. This includes the form, text
displayed to the user, links, and images. All the content in the body will be
marked up with tags, which determine how the content will render.

You can include comments in your web page that won’t show to the
user. They help you document your page layout.

© Dave Wolf, A.]. Henley 2017 7
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_10

CHAPTER 11

Designing Web Pages
with HTML

HTML (hypertext markup language) is a markup language for creating web
documents (web pages). The main function of a browser is to receive the
web page as HTML from the web server and display it. The browser applies
all fonts, styles, and layouts specified by the HTML tags and CSS property
values. This content can be further manipulated by using JavaScript, the
programming language of the browser.

The document object model (DOM) is a representation of your HTML
document as a tree structure. The DOM sees each node as an object
representing a part of the document. The objects can be manipulated
programmatically by JavaScript, allowing your page to interact with the user.

Here’s all you need to know about HTML:

e HTML documents are composed of elements
called tags.

e The collection of HTML elements in a web page
document is called the DOM (document object model).

o Tags are used to identify document content and
structure.

o Tags often contain attributes that provide parameters
for the element.

© Dave Wolf, A.J. Henley 2017 79
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_11

CHAPTER 11 DESIGNING WEB PAGES WITH HTML

e The HTML document, which contains content and tags,
is rendered by the browser to display the formatted
version of the web page.

o The latest version of HTML is called HTMLS5.

80

CHAPTER 12

HTMLS Tags

A tag is created by putting the tag names in angle brackets, like this: <tag>.
The word in brackets, in this case tag, is the tag name. Tags contain an
opening tag and a closing tag. An opening tag contains only the tag name
in angle brackets. A closing tag precedes the tag name with a forward slash.
For example: <table></table>. If a tag contains no data, then the opening
and closing tags can be combined, as in
.

Tags can contain attributes that give further information about them.
HTMLS5 attributes are created using a name-value pair and are usually put
alongside the tag name. In this chapter, we’ll discuss attributes and then
look at some of the tags we’ll use for developing Bullhorn.

Name-value pairs are represented by a set of text strings in which
name="value" and are usually separated by commas, semicolons, or space
or newline characters. HTMLS5 attributes are written inside the element’s
tag and separated by spaces. See Listing 12-1.

Listing 12-1. An Example Input Tag from an HTML Form

<input type="text" id="email"
name = "email" value="user@domain.com"/>

In this code, the attributes are type, id, name, and value, and their
values are always in quotes following the equal sign. Attributes provide
extra information about an element. We now know, for example, the
preceding input element is a text box, is identified by the name/id email,
and contains a default value of user@domain.com. The id attribute is a

© Dave Wolf, A.J. Henley 2017 81
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_12

CHAPTER 12 HTMLS5 TAGS

unique identifier for the element. The id is used by CSS and JavaScript.
The name attribute specifies a name for an element. We use the name when
retrieving the element’s value in the servlet. Use name attributes for form
controls (such as <input>). Name is the identifier used in the POST or GET
call that happens on form submission. Use the id attribute to identify a
particular HTML element with CSS of JavaScript. It’s possible to look up
elements by name but simpler to use id.

Explanation of Common Tags

o <IDOCTYPE html> Identifies the document as an
HTML5 document. This makes sure the document will
be parsed the same way by different browsers.

o <head></head> All data in the head section of an HTML
document is considered metadata, meaning data about
data. The information in this section is not normally
displayed directly. Instead, elements such as style affect
the appearance of other elements in the document.
Some items in the head section may be used by
programs such as search engines to learn more about
the page for reference purposes.

o <title></title> Belongs in the head section of the
document and sets the title that is displayed in the
browser tab.

o <body></body> The entire document body is contained
within these two tags.

o <h1></h1> Any text contained within these tags is often
displayed as a large bold font heading, but the actual
formatting is up to the browser. There are six heading
tags, h1 (largest) to h6 (smallest).

82

CHAPTER 12 HTMLS5 TAGS

e <p></p> Any content with the paragraph tags is
considered a paragraph. You can add an attribute such
as style to the paragraph tags to control which styles
impact the text within the paragraph tags.

o The image tag is used to display images.
It has two attributes you need to use: src and alt.
The src attribute contains the path to the image file.
The path can be either a filename or a URL. The alt
attribute contains the alternate text to be displayed
when the images don’t show or can’t be seen. It is
also used by screen readers to describe the image.

A complete image tag would look like this: <img
src="path/to/filename.png" alt="Picture of
my cat"/>

An HTML form allows the user to submit data to the web server. The
data from the form will be sent in the request packet to the servlet. The
servlet will receive the data and can use it to either query the database or
choose another page to send the user to. See Listing 12-2. Notice that every
tag has a closing tag (or contains /> to indicate it is self-closing).

Listing 12-2. Example HTML Form

<form action="PostServ" method="post">

<label for="posttext">Create New Post (141 char):</label>
<textarea name="posttext" id="posttext" rows="2"
maxlength="141"></textarea>

<input type="submit" value="Submit" id="submit"/>

<input type="reset" value="Clear"/>

</form>

83

CHAPTER 12

84

HTMLS TAGS

<form></form> The form tag contains all the elements
of a user input form that gets data from the user

and sends it to the servlet. The form tag contains

two required attributes, method and action. The
method attribute can be either "get" or "post”, and

it determines how the data is sent to the servlet. The
action attribute contains the URL of the servlet that
processes the form data.

<input></input> The purpose of a form is to get input
from the user and display data that will be sent to the
server. The way you get input from the user is with the
input tag. It will create a text box on the web page.

The contents of the input tag will be sent to the servlet
when the Submit button is clicked. Submit itself is an
input. An input tag becomes a Submit button when the
type attribute is set to "submit".

Some example input tags:

<input id="email" name="email" type="text"
value=""/> An input tag that displays as a text box and
collects the email address of the user

<input type="submit" value="Submit"
id="submit"/> An input tag that displays as a button
and calls the form’s action when clicked

<input type="reset" value="Clear"/> Aninputtag
that displays as a button with a label that says Clear and
causes all the form'’s input boxes to clear

<textarea></textarea> An input that contains
multiple rows:<textarea name="posttext"
id="posttext" rows="2" maxlength="141">
</textarea>

CHAPTER 12 HTMLS5 TAGS

HTML Tables

A table starts with <table> and ends with </table>.

Each table is made of table rows, which start with <tr> and end with
</tr>.

Each row is made up of cells of table data, which start with <td> and
end with </td>.

The first row of a table can be used as the header row. In this case,
change the <td> tags to <th> for the first row. You can change the style of
the header row to make it appear different from the other table rows.

<caption>...</caption> is useful for defining or describing the
content of the table. Captions are optional. To add a caption to a table, add
the caption element after the opening table tag, with the text of the caption
inside the element. Captions are usually displayed outside the border of
the table, at the top. The exact appearance and placement of captions is
subject to CSS styling. See Listing 12-3 and Figure 12-1.

Listing 12-3. Minimal HTML Table Example

<table border="1">
<caption>Formulas and Results</caption>
<tr><th>Formula</th><th>Result</th></tr>
<tr><td>1 + 1</td><td>2</td></tr>
<tr><td>3 * 5¢/td><td>15</td></tr>
</table>

Formulas and
Results

[Formula IResult
1+1 |2
15

3*5

Figure 12-1. The table generated from the preceding code

85

CHAPTER 12 HTMLS5 TAGS

A Basic HTML5 and JSP Document

A JSP (JavaServer Pages) page is a dynamic HTML page. It contains both
HTML and JSP tags. The content can change depending on the data the
user is viewing.

AJSP is still a text document. It also contains HTML tags just like
an HTML document. But there’s more. The JSP can receive and display
data sent by the servlet. Now you can personalize your site for each user,
whereas an HTML page displays the same for every user. JSTL allows
you to embed logic within a JSP page without using Java code directly.
Using standardized tags is not only more secure, but it also allows code
to be more maintainable and keeps the Java code separate from the user
interface. This template would be saved as a text document with a .jsp
extension. See Listing 12-4.

Listing 12-4. The Structure of a Basic HTML/JSP Page

<%@ page language="java" contentType="text/html; charset=UTF-8"

pageEncoding="UTF-8"%>

<%@ taglib prefix="c"
uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="fmt"
uri="http://java.sun.com/jsp/jstl/fmt" %>

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; UTF-8">

<title>Insert title here</title>

</head>

<body>

<h1>This is a sample heading</h1>

86

CHAPTER 12 HTMLS5 TAGS

<h2>This is a sub heading</h2>

<p>This is paragraph text</p>

</body>

</html>

JSP Standard Tag Library (JSTL)

The JSP Standard Tag Library (JSTL) is a collection of useful tags you can
add to your JSP pages. These tags add functionality common to many
JSP applications. JSTL adds support for common structural tasks, such as
iteration and conditionals. They also add support for properly escaping
HTML or XML code in your pages. This prevents the tags from being
evaluated and potentially executing malicious code.

EL (expression language) is a subset of JSTL that makes it easy to
use Java classes (called beans) in your JSP. Expression language has a
compact syntax and allows you to access the nested properties of objects.
For example, a post object contains a user. Expression language allows
your JSP to access the getUsername() method of the user with the relaxed
syntax of ${user.username}. Expression language can also retrieve
the values of scalar variables set from the servlet using syntax such as
${message}.

To include JSTL in your JSP, add the directives shown in the following
code listing (Listing 12-5) to the top of your page. Exact placement isn’t
important, but just above the <html> tag is a good place. JSTL is composed
of libraries that add functionality for tasks such as looping and if/else
statements, as well as formatting numbers, dates, and times. Since we
know we want to include looping and if/else functionality in our JSP, and
we want to also format dates, we’ll include both the core library and the
formatting library. See Listing 12-5.

87

CHAPTER 12 HTMLS5 TAGS

Listing 12-5. JSTL Directives Which Should Be Included Just Above
the <HTML> Tag on Your Page. The C Prefix Includes Tags from the
Core Library. The FMT Prefix Includes Tags from the Formatting
Library.

<k@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

HOW TO USE JSTL TAGS IN YOUR JSP

1. Copy the following two Java archive (jar) files from the files
included with this book to the WEB-INF/1ib folder of a
dynamic web application.

i. taglibs-standard-impl-1.2.5.jar
i. javax.servlet.jsp.jstl-api-1.2.1.jar

2. Add the following directives to include the core and
formatting libraries for JSTL to the top of the page:

<%@ taglib prefix="c
com/jsp/jstl/core” %>

uri="http://java.sun.

<%@ taglib prefix="fmt" uri="http://java.
sun.com/jsp/jstl/fmt" %>

You can now use any of the JSTL tags discussed next.

88

CHAPTER 12 HTMLS5 TAGS

What Can You Do with JSTL?

Prevent Cross-site Scripting Attacks

Cross-site scripting (XSS) is a computer security vulnerability that occurs
when malicious users input scripts or other code into your website through
the text boxes on your web pages. The JSTL core out tag prevents cross-
site scripting attacks. The c:out escapes any input from the user so it is no
longer executable. If a user entered malicious JavaScript in a text box on
your website, that JavaScript would be executed and could compromise
the data. The c:out JSTL tag reduces this vulnerability.

Loop Through a Collection

The JSTL forEach tag provides a mechanism to loop through the items
in a collection. The collection can be set in the servlet, and the JSTL code
in your JSP will loop through it and repeat the code between the forEach
open and closing tags. Any HTML in between those tags will also be
repeated for each item in the collection. You can see an example of the
forEach tag in the newsfeed. jsp page. See also Listing 12-6.

Listing 12-6. The JSTL forEach Tag Allows You to Loop Through a
Collection of Posts

<c:forEach var="post" items="${posts}">
<c:out value="${post.user.username}"/>

<c:out value="${post.posttext}"/>
</c:forkach>

89

CHAPTER 12 HTMLS5 TAGS

Set a Value

The code in Listing 12-7 shows how to set the value of a variable called
number. You can then refer to the variable later in the page or even the
session. To refer to the variable only on the current page, set the scope

to "request". To refer to the variable on other pages in your application,
set the scope to "session", which applies just to a single user, or
"application", which applies to all users. You can then use the variable
with a c:out tag later in your page or application. In the example here we
simply set the value to some random value, say, 10.

Listing 12-7. Using the set Tag of the JSTL Core Library

<c:set var="number" scope="session" value="10"/>
<c:out value="${number}"/>

Test a Condition

JSTL allows you to include or exclude code based on a condition. In the
example in Listing 12-8, the value of the variable called number determines
if the content between the JSTL if tags will be displayed or not.

Listing 12-8. JSTL Allows You to Show or Hide Code Based on a
Condition

<c:set var="number" scope="session" value="10"/>

<c:if test="${number<100}">
<c:out value=
“this line will print if number is less than 100">
</c:out>
<p>Any content between the if tags will
display when the condition if true</p>
</c:if>

90

CHAPTER 12 HTMLS5 TAGS

Repeat Content a Fixed Number of Times

The JSTL core library forEach tag will repeat content a fixed number of
times. The content is whatever you have specified in between the opening
and closing forEach tags. The content will be repeated the number of
times indicated by the begin and end attributes, inclusively. In the code in
Listing 12-9, the numbers 5 6 7 8 9 10 will be displayed in the browser.

Listing 12-9. JSTL Allows You to Repeat Content a Fixed Number of
Times

<c:forkach var="number" begin="5" end="10">
<c:out value="${number}"></c:out>
</c:forEach>

Test a Condition and Choose an Alternative

JSTL does not feature an else clause to go with the if statement. However,
the JSTL core when and otherwise tags work like an if-else statement when
placed inside the JSTL core choose tag. You can have any number of when
tags but only one otherwise tag. See Listing 12-10.

Listing 12-10. The JSTL choose, when, and otherwise Tags Allow
You to Simulate an if/else Condition

<c:choose>
<c:when test="${number % 2==0}">
<p>
<c:out value="The number is an even number">
</c:out>
</p>
</c:when>
<c:otherwise>
<p>

91

CHAPTER 12 HTMLS5 TAGS

<c:out value="The number is an odd number">
</ciout></p>
</c:otherwise>

</c:choose>

Determine If a String Is Null or Empty

JSTL will allow your code to test a value and determine if the value is null
or empty. As shown in the code in Listing 12-11, you pass the variable,
which can be set in the servlet or from a collection you're looping through.
Then, if the string is null or empty, the code between the c:if statements
will execute. If HTML code is between the c:if tags then it will be
displayed in the browser when the condition is true. You can negate the
condition by placing the word not prior to the word empty.

Listing 12-11. Test If a Variable Is Null or Empty

<c:if test="${empty vari}">
<h2>var1 is empty or null.</h2>
</ciif>

Formatting Dates

JSTL will allow you to display dates in a format you specify. We use this

in Bullhorn when we display the post date. We only want to see the date
as the year followed by the month abbreviation and then the day. The
value of the date should be a Date object, java.util.Date. If your date is
a String object, then you should convert it first. The JSTL formatDate tag
will format a date according to the specified pattern. See Listing 12-12.

Listing 12-12. Using the JSTL Format Library to Format a Date

<fmt:formatDate value="${post.postdate}"
pattern="yy-MMM-dd"/>

92

CHAPTER 12 HTMLS5 TAGS

How to Display Form Data

Java web applications typically contain forms that collect user input and
pass it to a servlet for processing. The servlet can then communicate with
the database and do something with the data. Once the servlet is finished
working with the data it will send a new web page to the browser with the
results of the form. All this happens in an instant on the server and out of
the sight of the user.

Create an HTML Login Form

HTML forms allow users to submit data to your servlet.

We want to enable the user to log in with their email and a password.
So, we need to create a web page with an HTML login form.

The form should contain two text boxes—one for username and one
for password. The form needs a Submit button. The text boxes and button
must be contained within the tags that declare the form so they will be
submitted to the URL of the login servlet indicated in the action attribute
of the form tag.

All attribute values must be in quotes and in the format of
attribute="value". These values will be used by the web server to
determine how the form is processed.

The form will not work until we create the servlet. The servletis a
container that can run Java code and process our form. It will receive the
values from the inputs. Then, we can write Java code to do something with
the inputs.

<!DOCTYPE html>
<html>
<body>
<h1>Login</h1>
<!--the action will be set to the same value as

93

CHAPTER 12 HTMLS5 TAGS

the servlet's @WebServlet annotation -->
<form action="LoginServlet" method="post">
Email Address:

<input type="text" name="email">

Password:

<input type="password" name="password">

<input type="submit" value="Submit">
</form>
</body>
</html>

The resulting web form can be seen in Figure 12-2.
Login
Email Address:

Password:

Submit

Figure 12-2. Ifyou click the Submit button, the form’s data will be
sent to a servlet called LoginServlet.java, which contains an
@WebServlet annotation at the top of the code set to 'loginServlet’.

Be sure to set the action attribute of your form to match your
servlet’s @WebServlet annotation.

94

CHAPTER 12 HTMLS5 TAGS

Create a Page to Display the Output of Your Form

Next, we will create a JSP to display the output of the form. The form will
send its data to the servlet, and the servlet will send the data to the output
JSP. While it’s possible to bypass the servlet, there’s no good reason to do so
since any application of significance will use the servlet to perform some
processing. The page to display the output will be called, simply enough,
output.jsp. See Listing 12-13. The page will not display anything since
there is not HTML code in the body.

Listing 12-13. A Simple JSP Page, output.jsp

<%@ page language="java"
contentType="text/html;
charset=UTF-8"
pageEncoding="UTF-8"%>
<!DOCTYPE html
PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type"
content="text/html; charset=UTF-8">

Page

</head>

<body>

</body>
</html>

95

CHAPTER 12 HTMLS5 TAGS

How to Allow the User to Navigate Between
Web Pages

Links are found in nearly all web pages. Links allow users to click their way
from page to page. HTML links are called hyperlinks. They are defined with
the <a> tag:

 link text

A hyperlink is text or an image you can click on to jump to another
document. For example:

Visit Some Site

Alocal link (link to the same website) is specified with a relative URL
(without http://www....):

My other page

Reusing JSP Code

Writing code is fun. Writing the same code repetitively is . . . repetitive.
And not fun. Java Server Pages allow you to reuse code by creating include
files. An include file is simply a JSP or fragment of a JSP (or HTML) that you
include in your existing page. The advantage of including some fragment
of code in one page is that you can then include that same fragment in
other pages, saving you valuable time from rewriting the same code. The
code for the navigation bar for Bullhorn goes at the top of every page, just
below the opening body tag. I could copy that code to every page. Then,

if I choose to modity it, I could open every page and modify every page. A
better idea is to put the code for the navigation bar in one JSP file and add
an include tag at the location where I want the navigation bar to appear
(see Listings 12-14 to 12-16). Now I only need to change or update the
navigation bar in one place. Nice!

96

CHAPTER 12 HTMLS5 TAGS

Listing 12-14. The include Directive That Goes in Every Page to
Include the navbar on Bullhorn

<jsp:include page="navbar.jsp"></jsp:include>

Listing 12-15. The First Two Lines of navbar.jsp (you can view the
entire file in the source code that accompanies this book)

<nav class="navbar navbar-default">
<div class="container-fluid">

Listing 12-16. The Last Three Lines of navbar.jsp (you can view the
entire file in the source code that accompanies this book)

</div><!-- /.navbar-collapse -->
</divy><!-- /.container-fluid -->
</nav>

Customizing Your Errors

While you are developing your application, you probably won’t want to
implement custom error pages. The Tomcat error pages are exactly what
you need, with all the information you could want in one place.

Once you are ready to deploy your application, the default error pages
lack...polish...and can be a sign of an unprofessional application.

There are two kinds of errors that you are going to want your
application to be able to handle: HTML errors and Java exceptions.

The main HTML errors you need to handle are the 404 error (page not
found) and the 500 error (server error).

As for Java exceptions, we can build a general page that handles
them all.

97

CHAPTER 12 HTMLS5 TAGS

HOW TO ADD A CUSTOM ERROR PAGE

The easiest way to handle custom errors is to add entries to the web . xm1 file.
By default, the web . xm1 file is not available, so to add it you need to do the
following:

1. Right-click your dynamic web project.
Select Java EE Tools » Generate Deployment Descriptor Stub.

Double-click the web . xml file in WebContent/WEB-INF.

LN

Add an extra line before </web-app> and insert the following:

<error-page>
<error-code>404</error-code>
<location>/error_404.7jsp</location>
</error-page>

5. Then, create a corresponding JSP with the proper message.

If you run your application and try to navigate to a page that doesn’t exist, you
should now get your new custom error page.

To create your own attractive page for handling ALL Java exceptions,
add the following to your web. xml file:

<error-page>
<location>/error java.jsp</location>
</error-page>

Then, put something like the following in your error_java.jsp:

98

CHAPTER 12 HTMLS5 TAGS

<h1>Error</h1>
<p>Sorry, Java has thrown an exception.</p>
<p>To continue, click the Back button.</p>

<h2>Details</h2>
<p>Type: ${pageContext.exception["class"]}</p>
<p>Message: ${pageContext.exception.message}</p>

99

CHAPTER 13

The Stateless Nature
of the Web

A web application does not maintain state. It has no memory. Each request
to the web server is an independent event. Each request does not know
about previous requests. When you send your username and password,
the web server views this as an independent event. It does not keep track of
what you're logging in to. The information is simply sent to the server.

When you submit a form, all the information about what to do with the
form data must be sent along with the form. Why? Because each request is
an independent transaction.

In real life this is what it would be like if you went to the bank and
got a new teller after each question. And the tellers don't talk to each
other—only to you. And each teller would want to see your ID and check
your balance and do everything the other teller had already done. To make
such a situation easier, you could keep a running log of each transaction
that each teller could use to verify what has been done.

So, how does a web application maintain state? The answer is by using
either session variables or passing information known as parameters from
the previous transaction. Parameters are sent between the client
(web browser) and the server via either the URL or as other information
sent to the server as part of the request. This is called the request packet;
we have touched on this already in our discussion of servlets.

© Dave Wolf, A.J. Henley 2017 101
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_13

CHAPTER 13 THE STATELESS NATURE OF THE WEB

Session variables exist in the memory of the web server. Each request
includes a session ID. The session ID links the request to the session data
for that user. The session ID is automatically passed between requests. You
don’t have to do anything. It’s always there.

Since there is one session per user, you can store variables in each
user’s session. This is a space in memory that holds data while the user is
using the site. Since Java always knows the session ID, it has access to any
data in the session.

So, it’s the request packet and the session that tie the room together.
And you thought it was the rug! (Not funny? Watch The Big Lebowski
again). A session makes it easy for the server to connect one request to
another.

The Process of Passing Data

The following list is a summary of the steps that are followed for data to be
sent from a web form to a JSP using a servlet:

1. The form passes the request.
2. Servlet receives the request.

3. The servlet processes the request with
request.getParameter().

4. The servlet generates a response based on the data
in the request.

5. The servlet constructs a response in an object that
will be sent to the JSP.

6. The JSP contains an attribute ${user}.

102

CHAPTER 13 THE STATELESS NATURE OF THE WEB

7. The servlet sets the attribute request.setAttribute
("user",myUser);.

8. The servlet sends the JSP back to the originating
browser by calling getServletContext().
getRequestDispatcher(url).forward(request,
response);.

103

CHAPTER 14

Users and Sessions

The user first accesses your site through the login page. The user’s email
and password are validated against the database in the login servlet. A user
email with the correct matching password is presumed to be a valid user.
The valid user is retrieved from the database and stored in the User object.
Recall that the User object is generated by the “JPA Generate Entities from
Tables” option.

A User object that is stored in the session is easily available to every
servlet or JSP in your site. The login servlet validated the user and sent
them to the next page, but the next page doesn’t know anything about the
user. We put the user in the session, and the next page, as well as other
pages in our application, can access the session and therefore the user. See
Listing 14-1.

Listing 14-1. The Private Member Variables of the User Class
Correspond with the User Table

@Entity
@NamedQuery(name="Bhuser.findAll",
query="SELECT b FROM Bhuser b")
public class Bhuser
implements Serializable {
@Id
@GeneratedValue(
strategy=GenerationType.IDENTITY)

© Dave Wolf, A.J. Henley 2017 105
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_14

CHAPTER 14 USERS AND SESSIONS

private long bhuserid;
@Temporal (TemporalType.DATE)
private Date joindate;
private String motto;
private String useremail;
private String username;
private String userpassword;

Each user can create many posts. Each post in the database contains
the user ID pointing back to the user. The user table keeps track of the
posts by placing all the posts in a list. Therefore, the User object contains a
list of all the posts for that user, not just the PostId. See Listing 14-2.

Listing 14-2. The Private Member Variable for the Posts
Corresponds to the Posts Table. The User Contains Posts So the
Posts Are Implemented as a List.

@0neToMany (mappedBy="bhuser")
private List<Bhpost> bhposts;

The user class is a POJO—Plain Old Java Object. It contains getters
and setters for each private member variable. The getter and setter for
the user ID are shown in Listing 14-3. The naming convention is: always
the word get or set followed by the capitalized private member variable
name. You'll see later when we are accessing the variable in the JSP pages
that the word get or set can be eliminated and the JSP will still find the
correct value. You don’t have to program this behavior—it’s part of the Java
Standard Tag Library.

Listing 14-3. Getter and Setter for the User Class

public long getBhuserid() {
return this.bhuserid;

106

CHAPTER 14 USERS AND SESSIONS

public void setBhuserid(long bhuserid) {
this.bhuserid = bhuserid;

The session allows every page to display the user’s name, email, and
Gravatar. Java servlets provide a variable called HttpSession that we use
to identify a user across multiple page requests. Sessions persist for twenty
minutes (by default) after they are last used.

Your program obtains a reference to the HttpSession object by calling
the getSession() method of HttpServletRequest. The request is stored in
avariable called request and is managed by Tomcat, the servlet container.
See Listing 14-4.

Listing 14-4. By Adding This line of Code, Any Servlet in the
Application Can Access Objects Stored in the Session.

javax.servlet.http.HttpSession session =
request.getSession();

Think of a session as the memory common to all your application’s
servlets and JSPs. It works like the Windows clipboard. One servlet puts
data into the session, and another JSP can access a copy of it.

Adding Objects to the Session

Objects stored in the session can be accessed by different pages in the
application. Add objects to the session in the login servlet as soon as you
validate the user. The object is then available for use on other pages of the
application. See Listing 14-5.

107

CHAPTER 14 USERS AND SESSIONS

Listing 14-5. Adding a User to the Session. This Code Can Be Found
in the Login Servlet

User user = new User();
user.setUserName("Larry");
user.setEmail("larry12345@domain.com");
//add the user to the session
session.setAttribute("user", user);

To Read a Value from the Session

The user is stored in the session as an object. When you retrieve the user
from the session, you need to cast it to the User object and assign it to a
variable so you can work with it. See Listing 14-6.

Listing 14-6. Retrieving a Value from the Session

User user = (User) session.getAttribute("user");
//now we can get values out of the class

String username = user.getUserName();

String email = user.getEmail();

108

CHAPTER 15

How to Create
Database Tables
for Bullhorn

Scripts for creating the database tables are included with the source code
for Bullhorn. I usually recommend saving SQL scripts in a folder within
your project called SQL Scripts so you can easily recreate the database on
other systems.

To create a table in a database, you code the table name followed by
the field names and data types, as shown in Listing 15-1. The POSTID and
BHUSERID fields in the code listing are generated by the database.

You can create the tables by running the scripts found in the SQL
Scripts folder of Bullhorn. Copy the code to SQL Developer and press F5 to
run the scripts.

Listing 15-1. Code for Creating BHPOST and BHUSER Tables

CREATE TABLE BHPOST
(POSTID NUMBER
GENERATED BY DEFAULT ON NULL AS IDENTITY,
POSTDATE DATE DEFAULT NULL,
POSTTEXT VARCHAR2(141 BYTE) DEFAULT NULL,
BHUSERID NUMBER DEFAULT NULL

)

© Dave Wolf, A.J. Henley 2017 109
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_15

CHAPTER 15 HOW TO CREATE DATABASE TABLES FOR BULLHORN

CREATE TABLE BHUSER

(

)5

110

BHUSERID NUMBER

GENERATED BY DEFAULT ON NULL AS IDENTITY,
USERNAME VARCHAR2(50 BYTE),

USERPASSWORD VARCHAR2(50 BYTE),

MOTTO VARCHAR2(100 BYTE) DEFAULT NULL,
USEREMAIL VARCHAR2(100 BYTE),

JOINDATE DATE DEFAULT NULL

CHAPTER 16

Make Web Pages Do
Something Using
JavaScript

JavaScript is the language of the browser. It is an object-oriented
programming language. Although JavaScript looks much like Java
(because both were based on C and C++), it is not at all related. JavaScript
is often used to programmatically interact with an HTML page. It does
this by interacting with the DOM (document object model. JavaScript is
supported by all major browsers).

Include JavaScript in your web page by putting the script between
<script> and </script> tags. You can place the script tags in the head
section or at the bottom of page. If you place the JavaScript on top of
your page or between the <head> tags, the user may see a blank page for
a few seconds. However, once the page is loaded, everything will be fully
functional from the first second. If you place the JavaScript at the bottom
of the page, the page will seem to load faster, but the JavaScript will not
run until the page (and script) is fully loaded. JavaScript may also be saved
in a text file (no script tags are needed in this case) and referenced in the
head section of your page. This allows you to reuse the same JavaScript on
multiple pages. Using linked files is better from a maintenance perspective
since all the JavaScript resides in only one location, making updates easy.

© Dave Wolf, A.J. Henley 2017 111
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_16

CHAPTER 16 MAKE WEB PAGES DO SOMETHING USING JAVASCRIPT

Because many developers find JavaScript challenging to work with,
various libraries have been developed over the years to simplify the routine
tasks of working with JavaScript. JQuery (http://www.jquery.com) works
across all browsers that support JavaScript and makes working with
JavaScript much more consistent. JQuery is used extensively in BootStrap.
We will look at BootStrap shortly; it makes working with JQuery, HTML,
and CSS even more fun.

Note Manipulating the DOM is one of JavaScript’s more powerful
uses. With DOM, you can navigate through and modify an entire page,
ranging from simply adding an element to rearranging several areas
on the page. DOM breaks up a document into a free of nodes.

Validate a Form Using JavaScript

The form in Listing 16-1 is used to submit a post to Bullhorn. The post
should be validated before the user attempts to submit it. JavaScript allows
us to do this at the browser. The JavaScript method to validate the form is
shown in the listing and contains one method, validate(). The JavaScript
should be placed between <script>...</script> tags at the bottom

of the page just before the closing body tag, </body>. Placing the script
after the elements it references ensures the elements have been created
by the DOM before the script is executed. The validate method looks at
the element with an ID of posttext and returns false if the length of this
text box is 0 (empty post). A false return will prevent the form from being
submitted.

112

http://www.jquery.com/

CHAPTER 16 MAKE WEB PAGES DO SOMETHING USING JAVASCRIPT

Listing 16-1. A JavaScript Function to Validate the Form Can Go
Between Script Tags at the Bottom of the Web Page, Just Before the
Closing Body Tag

function validate() {
valid = true;
if ($('#posttext').val().length==0){
alert("You may not submit an empty post.");
valid = false;

}

return valid;

}

The HTML form that will use the preceding validation script goes
on your web page within the <body>. . .</body> tags and before your
JavaScript. This form will call the script when the Submit button is clicked.
If the validate method returns false then the form will not be submitted.
See Listing 16-2. The onsubmit attribute of the form tag calls the JavaScript
function to validate the form.

Listing 16-2. Form for Submitting a Post

<form role="form"
action="PostServ" method="post"
onsubmit="return validate();">
<label for="post">Create New Post (141 char):</label>
<textarea name="posttext" id="posttext"
Maxlength="141"></textarea>

<div id="textarea_feedback"></div>
<input type="submit" value="Submit" id="submit"/>
<input type="reset" value="Clear"/>

</form>

113

CHAPTER 16 MAKE WEB PAGES DO SOMETHING USING JAVASCRIPT

Display Number of Characters in Text Box

We can also use JavaScript to count the number of characters remaining
and update the web page dynamically as the user types. This is an
excellent example of the power of JavaScript. It shows that it can be used
to manipulate the web page at the browser. This JavaScript function will
load when the document is ready. The document is ready after it has been
fully rendered and all the DOM has been downloaded from the web server
to the browser. Then the function will be created. This function will set the
HTML property of the element with the ID of textarea feedback to “XX
characters remaining,” where XX is the number of remaining characters
from the max length of 141. Within document.ready, the keyup event of the
element with an ID of posttext is modified to include another function
that counts the number of remaining characters and displays them in the
textarea_feedback element. See Listing 16-3.

Listing 16-3. JavaScript to Return the Number of Characters
Remaining in the Text Box

$(document).ready(function() {
var text max = 141;
$('#textarea feedback').html
(text_max + ' characters remaining');
$("#posttext').keyup(function() {
var text length = $('#posttext').val().length;

var text remaining = text max - text length;
$('#textarea feedback').html(text remaining +
characters remaining');

1

D

114

CHAPTER 17

Cascading Style
Sheets (CSS)

Cascading Style Sheets (CSS) allow you to specify the visual style and
presentation your web application. CSS allows you to separate the style
from the structure. This means you are looking through less code when
working with your page. The separation of style from structure and

content also increases maintainability. Cascading Style Sheets are a set

of programmable rules to define how your web pages display content.

The styles described by CSS include the colors, fonts, layout, and other
presentation aspects of a document, including variations in display for
different devices and screen sizes. A single CSS file can describe a common
style applicable to many documents.

Typically, an element in an HTML file has a “cascade” of CSS style rules
that can be applied to it. The styles cascade based on the location of the
definition. If you define a style in multiple locations, then the last definition
is applied. You can place your CSS between the <head>. . .</head> tags of a
document, in an external style sheet (on your server or on another server),
or as a style attribute of an element on your page.

An external style sheet is generally recommended. To link an external
style sheet to your document, add a link to the style sheet between the
<head>...</head> tags of the document. Keeping the style definitions
separate from your HTML content minimizes duplication and makes your
site easier to maintain.

© Dave Wolf, A.J. Henley 2017 115
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_17

CHAPTER 17 CASCADING STYLE SHEETS (CSS)

When you create a style sheet, you create a rule for each element by
name, class, or ID. These values are set as attributes of the element. The
browser will apply the CSS rule when the page is rendered. Each rule has
two parts: a selector and a group of one or more declarations surrounded
by braces. Each declaration consists of a property name and value pair.
There can be several declarations in one rule. See Listing 17-1, which
shows an example CSS rule to be applied to all span tags for a document.
This rule can be placed in the head section of your web page between
<style>...</style> tags or in a separate file.

Listing 17-1. Example CSS Rule

span {

font-weight: bold;
color: yellow;
background-color: black;

}

If you wish to include your CSS rules in a separate file, just add a link to
that file in the head section of your web page. See Listing 17-2.

Listing 17-2. Example Link to a Style Sheet

<link href="styles/bullhorn.css" rel="stylesheet">

Span and Div Tags

Span and div are container tags that define parts of your document. Use
span and div to apply styles to a section of a JSP or HTML page. Your page
is more organized when you divide it into parts such as header, body, and
footer.

116

CHAPTER 17 CASCADING STYLE SHEETS (CSS)

The <div> tagis used to divide your HTML page into sections and
therefore encapsulates various elements. The tag is used to group
inline elements in a document. The <div> and tags provide no
visual change on their own. These tags provide a way to control the style
of part of your document when each tag includes a style, class, or ID
attribute. The difference between an ID and a class is that an ID can be
used to identify one element while a class can be used to identify multiple
elements. When you wish to apply a style to multiple elements, specify
the style as a class, since only one element can have an ID attribute with a
particular value, but many elements can share the same value in their class
attribute. The and <div> tags have no required attributes. The most
common attributes used are:

o style specifies a style that applies to all content and
elements up to the corresponding end tag.

o class specifies a CSS class that applies to all content
and elements up to the end tag. The value of the class
attribute is a CSS class specified in the style sheet file.
In the style sheet, the class name is preceded by a
period.

o id identifies the tag so you can select it with jQuery or
JavaScript. The id attribute for any element must be
unique. In the style sheet, the ID name is preceded by a
hash character.

Listing 17-3. Example HTML Code to Which Styles from Your Style
Sheet Will Be Applied

<p>This text will be highlighted</p>

<p name="intro">This text will be red</p>

117

CHAPTER 17 CASCADING STYLE SHEETS (CSS)

Listing 17-4. Example style sheet that can be placed either between
<style> tags in the head section of your JSP page or in a separate file
with the link placed within the head section

.highlight {
background-color: yellow;

}
#intro {

color: red;

}

118

CHAPTER 18

Making Pages Work
on All Screen Sizes

Responsive web design (RWD) refers to the approach of developing a web
application such that it displays well on any size screen, from desktop
computer to mobile phone. A computer, phone, or tablet screen is composed
of pixels. A popular screen resolution for a computer is 1366 x 768. That
means the screen is 1366 pixels wide and 768 pixels high. Screen resolution
determines the clarity with which text and images are displayed. Items
appear sharper at higher resolutions. They also appear smaller, which
enables more items to fit on screen. When viewed on a tablet the screen may
only have 1024 pixels across. A phone has maybe 480 pixels across. Creating
aweb page so that it displays nicely on different devices is known as making
your web page responsive. In the past, developers actually created multiple
websites for different devices.

BootStrap (http://getbootstrap.com) is a library for developing
responsive web applications. It allows you to quickly develop an
application interface without spending lots of time learning HTML, CSS,
or JavaScript. BootStrap requires jQuery to function. You can implement
BootStrap by adding the following to your project:

BootStrap makes its code available via a content delivery network
(CDN). That means the latest version of BootStrap is stored on servers
scattered around the world. Your page can retrieve the latest version by
including a link to the BootStrap CDN in the HEAD section of your page.

© Dave Wolf, A.J. Henley 2017 119
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_18

http://getbootstrap.com/

CHAPTER 18 MAKING PAGES WORK ON ALL SCREEN SIZES

Working with BootStrap

Developers like yourself create code. Designers make the interface look
nice. But not every project has a designer. Sometimes that job is also yours.
Congratulations!

You have a secret weapon. BootStrap is the most popular HTML, CSS,
and JS framework for developing responsive mobile-first projects on the
web. BootStrap is a library. It uses HTML, CSS, and JavaScript. It contains
design templates for typography, forms, buttons, navigation, and other
interface components.

BootStrap allows you to create responsive web pages. Responsive
web pages adapt their layout to different devices. Without responsive
design, you would have to develop different pages for different devices.
BootStrap solves that problem and ends the madness. It is based on a
1170-pixel-wide, 12-column layout. You can set attributes for different
devices (and resolutions) in your HTML tags. Listing 18-1 shows an
example of a three-column layout that would go in the body of your
page. You can easily add additional columns using div tags. Place your
content in the body element.

Listing 18-1. BootStrap Starter Template

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8"/>
<meta name="viewport"
content="width=device-width,
initial-scale=1, shrink-to-fit=no">

<!-- Bootstrap CSS -->
<link rel="stylesheet" href=

120

CHAPTER 18 MAKING PAGES WORK ON ALL SCREEN SIZES

"https://maxcdn.bootstrapcdn.com/
bootstrap/4.0.0-beta/css/bootstrap.min.css">
</head>
<body>
<h1>Hello, world!</h1>

<script src=
https://code. jquery.com/jquery-3.2.1.slim.min.js/>

<script src=
"https://cdnjs.cloudflare.com/ajax/1ibs/popper.js/1.11.0/umd/
popper.min.js">
</script>

<script src=
"https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-beta/js/
bootstrap.min.js">
</script>

</body>
</html>

121

CHAPTER 19

Use Gravatar
to Display User’s
Avatars with Posts

An avatar is an image people use for their online identity. Gravatar is a
free service for providing globally unique avatars. Gravatar allows users to
register an account using their email address. Users then upload an image
to be associated with their Gravatar account. When the user uses the same
email address on a website that uses Gravatar, the website retrieves the
user’s avatar from Gravatar by using an image URL based on a hash of the
email address. Websites, including Bullhorn, may freely use Gravatar to
display the user’s image. Bullhorn displays the image next to posts and on
the profile page.

<img src="https://www.gravatar.com/avatar/205e460b479e2e5b48aec
07710c08d50?s=150"/>

To control the size of the image, append the URL with ?s=150 where
150 is the height or width in pixels of the square image to be returned by
the URL. The value of ‘s’ can range from 1 to 2048. Lower values will look
better.

© Dave Wolf, A.J. Henley 2017 123
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_19

CHAPTER 19 USE GRAVATAR TO DISPLAY USER’S AVATARS WITH POSTS

If a user does not have a Gravatar set up then a default image will be
displayed:

https://www.gravatar.com/avatar/unknownhash

Calculating an MD5 Hash with Java

An MD?5 hash is a way of encrypting text such that it is not identifiable by
looking at it. The value of MD5 is that the same email address will always
generate the same MD?5 hash.

The Gravatar URL is made from an MD5 hash of the user’s email
address. You can create an MD5 hash of an email address using code
provided at the Gravatar website. This code is implemented in Bullhorn in
the MD5Util. java class. The code will return a string containing the MD5
hash given the user’s email address.*

The DbUser class in Bullhorn contains a method that generates the
Gravatar URL. The method takes two parameters, email and image size.
The method then returns the correct URL, which can be used in an image
tag throughout the Bullhorn site. See Listing 19-1.

'The source code for the MD5 class in Bullhorn is derived from that found at
http://en.gravatar.com/site/implement/images/java.

124

https://www.gravatar.com/avatar/unknownhash
http://en.gravatar.com/site/implement/images/java

CHAPTER 19 USE GRAVATAR TO DISPLAY USER’S AVATARS WITH POSTS

Listing 19-1. The Method to Generate a Gravatar URL Based on the
User’s Email Address

public static String getGravatarURL(String email, Integer size)
{
StringBuilder url = new StringBuilder();
url.append("http://www.gravatar.com/avatar/");
url.append(MD5Util.md5Hex (email));
url.append("?s=" + size.toString());
return url.toString();

125

CHAPTER 20

The Presentation/View

The presentation layer, also known as the view, is the perspective your end
user has of your application. They don'’t see all the Java code. They only see
what the browser displays. The view consists mostly of HTML, JavaScript,
and images. In this section, we’ll look at the different JSP files that make up
the view. The JSP files contain other code such as JSTL, but the end result
is that they become HTML files sent to the user’s browser.

To start, the user browses to the site’s URL for the login.jsp page. The
URL for your development environment will be http://localhost:8080/
Bullhorn/login. jsp.

Note To start your application in Eclipse, at the login page simply
right-click on the login page and select the option to Run on Server.
Your site will open in a browser inside the Eclipse environment.

The Code for the Login Page

<!-- login.jsp -->
<%@ page language="java" contentType="text/html;
charset=UTF-8" pageEncoding="UTF-8"%>
<IDOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">
<html>
<head>
© Dave Wolf, A.J. Henley 2017 127

D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_20

CHAPTER 20 THE PRESENTATION/VIEW

<meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"/>
<jsp:include page="bootstrap.jsp"></jsp:include>
</head>
<body>
<h1>Login</h1>

<div class="container">

<form class="form-signin" method="post"

action="LoginServlet">
<h2 class="form-signin-heading">${message}Please sign
in</h2>
<label for="inputEmail" class="sr-only">Email address
</label>
<input name="email" type="email" id="inputEmail"
class="form-control"
placeholder="Email address" required autofocus>
<input type="hidden" name="action" id="action"
value="login"/>
<label for="inputPassword" class="sr-only">Password
</label>
<input name="password" type="password"
id="inputPassword"
class="form-control” placeholder="Password" required>

<button class="btn btn-1lg btn-primary btn-block"
type="submit">Sign in</button>
</form>
Join
</div> <!-- /container -->

<jsp:include page="footer.jsp"></jsp:include>
</body>
</html>

128

CHAPTER 20 THE PRESENTATION/VIEW

The Code for the Home Page

<!-- home.jsp -->
<%@ page language="java" contentType="text/html;
charset=UTF-8" pageEncoding="UTF-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"/>
<title>Bullhorn</title>
<jsp:include page="bootstrap.jsp"></jsp:include>
</head>
<body>
<jsp:include page="navbar.jsp"></jsp:include>
<h1>This is the home page</h1>
<form role="form" action="PostServ" method="post"
onsubmit="return validate(this);">
<div class="form-group">
<label for="post">Create New Post (141
char):</label>
<textarea name= "posttext" id="posttext"
class="form-control" rows="2" placeholder=
"Express yourself!" maxlength="141"></textarea>
<div id="textarea_ feedback"></div>
</div>
<div class = "form-group">
<input type="submit" value="Submit"
id="submit"/>
<input type="reset" value="Clear"/>
</div>
</form>
129

CHAPTER 20 THE PRESENTATION/VIEW

<jsp:include page="footer.jsp"></jsp:include>

<script>

$(document).ready(function() {
var text_max = 141;
$('#textarea feedback').html(text max + ' characters
remaining');

$("#posttext').keyup(function() {
var text length = $('#posttext').val().length;
var text _remaining = text max - text length;

$('#textarea feedback').html(text remaining + '
characters remaining');
D;
D;

function validate(form) {
valid = true;
if ($('#posttext').val().length==0){
alert("You may not submit an empty post.");
valid = false;
}
return valid;
}
</script>
</body>
</html>

The Code for the News Feed Page

<!-- newsfeed.jsp -->
<%@ page language="java" contentType="text/html;
charset=UTF-8" pageEncoding="UTF-8"%>

130

CHAPTER 20 THE PRESENTATION/VIEW

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>
<fmt:setlLocale value="en US" /><!-- fixes date not displaying
correctly in Eclipse browser -->
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"/>
<title>BullHorn</title>
<jsp:include page="bootstrap.jsp"></jsp:include>
</head>
<body>
<jsp:include page="navbar.jsp"></jsp:include>
<h1>This is the news feed page</h1>
<div class="container">
<table class="table table-bordered">
<thead>
<tr><th>User</th><th>Post</th><th>Date</th></tr>
</thead>
<tbody>
<c:forEach var="post" items="${posts}">
<tr><td><a href="ProfileServlet?action=viewprofile&user
id=<c:out value="${post.bhuser.bhuserid}"/>">
<c:out value="${post.bhuser.useremail}"/></td>
<td><c:out value="${post.posttext}"/></td>
<td><fmt:formatDate value="${post.postdate}"
pattern="yy-MMM-dd"/></td>
</tr>

131

CHAPTER 20 THE PRESENTATION/VIEW

</c:forEach>
</tbody>
</table>

</div>

<jsp:include page="footer.jsp"></jsp:include>
</body>

The Code for the Profile Page

</html>

<!-- profile.jsp -->

<%@ page language="java" contentType="text/html;
charset=UTF-8" pageEncoding="UTF-8"%>

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.0rg/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html;

charset=UTF-8"/>

<title>BullHorn</title>

<jsp:include page="bootstrap.jsp"></jsp:include>

</head>

<body>

<jsp:include page="navbar.jsp"></jsp:include>

132

<c:choose>

CHAPTER 20 THE PRESENTATION/VIEW

<c:when test="${editProfile==false}">
<h1><img src="${userimage}" alt=<c:out value="
${username}"/>/>8nbsp;8nbsp;Profile for <c:out
value="${username}"/></h1>
<h2>Email: <c:out value="${useremail}"/></h2>
<h2>Motto: <c:out value="${usermotto}"/></h2>
<h2>Join Date: <c:out
value="${userjoindate}"/></h2>

</c:when>

<c:when test="${editProfile==true}">
<h1>8nbsp;8&n
bsp;Edit Profile for ${username}</h1>

<form action="ProfileServlet" method="post">

</form>
</c:when>
</c:choose>

<input type="hidden" name="action"
value="updateprofile">

<input type="hidden" name="userid"
value="${userid}">

<h2>Email: <input

type="text" name="useremail"
value="${useremail}"/></h2>
<h2>Motto: <input

type="text" name="usermotto"
value="${usermotto}"/></h2>
<h2>Join Date: <c:out
value="${userjoindate}"/></h2>
<input type="submit" value="Save
Changes"/>

133

CHAPTER 20 THE PRESENTATION/VIEW

<jsp:include page="footer.jsp"></jsp:include>
</body>
</html>

The Code for the Add User Page

<!-- adduser.jsp -->

<%@ page language="java" contentType="text/html;
charset=UTF-8" pageEncoding="UTF-8"%>

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

<fmt:setlLocale value="en US" /><!-- fixes date not displaying

correctly in Eclipse browser -->

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.0rg/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html;

charset=UTF-8"/>

<title>BullHorn</title>

<jsp:include page="bootstrap.jsp"></jsp:include>

</head>

<body>

<form action="AddUser" method="post">
<input type="hidden" name="action" value="addUser">
<h1>Add New User</h1>
<h2>Name: <input type="text" name="userName"
value=""/></h2>
<h2>Email: <input type="text" name="userEmail"
value=""/></h2>

134

CHAPTER 20 THE PRESENTATION/VIEW

<h2>Password: <input type="password"
name="userPassword" value=""/></h2>
<h2>Motto: <input type="text" name="userMotto"
value=""/></h2>
<!-- <h2>Join Date: <input type="text" value=""/></h2>-->
<input type="submit" value="Join Us"/>

</form>

<jsp:include page="footer.jsp"></jsp:include>
</body>
</html>

The Code for the Support Page

<!-- support.jsp -->

<%@ page language="java" contentType="text/html;
charset=UTF-8" pageEncoding="UTF-8"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.0rg/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html;

charset=UTF-8"/>

<title>BullHorn</title>

<jsp:include page="bootstrap.jsp"></jsp:include>

</head>

<body>

<jsp:include page="navbar.jsp"></jsp:include>

<h1>This is the support page</h1>

<jsp:include page="footer.jsp"></jsp:include>

</body>

</html>

135

CHAPTER 20 THE PRESENTATION/VIEW

The Code for the Error Page

<!-- error.jsp -->

<%@ page language="java" contentType="text/html;
charset=UTF-8" pageEncoding="UTF-8"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.0rg/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html;

charset=UTF-8"/>

<title>BullHorn</title>

<jsp:include page="bootstrap.jsp"></jsp:include>

</head>

<body>

<jsp:include page="navbar.jsp"></jsp:include>

<div style="text-align:center">
<h1>Something's Wrong...</h1>
</div>

<jsp:include page="footer.jsp"></jsp:include>
</body>
</html>

The Navbar Include File

<!-- begin navbar -->
<nav class="navbar navbar-default">
<div class="container-fluid">
<!-- Brand and toggle get grouped for better mobile
display -->

136

CHAPTER 20 THE PRESENTATION/VIEW

<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed”
data-toggle="collapse" data-target="#bs-example-navbar-
collapse-1" aria-expanded="false">

Toggle navigation

</button>
<img src="images/bullhornlogo50x50.png" alt="Bullhorn
Logo"/> <h2>Bullhorn</h2>

</div>

<!-- Collect the nav links, forms, and other content for
toggling -->

<div class="collapse navbar-collapse" id="bs-example-
navbar-collapse-1">

<ul class="nav navbar-nav">
<li class="active">Home(current)</1i>
News Feed</1i>

<form class="navbar-form navbar-right" role="search"
action="Newsfeed" method="get">
<div class="form-group">
<input type="text" class="form-control"
placeholder="Search" name="searchtext">
</div>
<button type="submit" class="btn btn-default">Submit
</button>
</form>

<ul class="nav navbar-nav navbar-right">
<% if (session.getAttribute("user") != null) { %>

137

CHAPTER 20 THE PRESENTATION/VIEW

<a href="ProfileServlet?userid=${user.bhuserid}&act
ion=viewprofile"><img alt="${user.username}" src="${gra
vatarURL}"/>8nbsp; ${user.username}</1i>
<%} %>
<1i class="dropdown">
<a href="#" class="dropdown-toggle"
data-toggle="dropdown" role="button"
aria-haspopup="true" aria-expanded="false">User
Options
<ul class="dropdown-menu">
<1li>
<!-- Log
out</1i>-->
<!-- Bootstrap allows me to put a form here and
it will show in the navbar.
I want to use a form so it can call the
servlet with the Post method.
-=>
<form class="navbar-form navbar-left"
role="form" action="LoginServlet" method="post">
<input type="hidden" name="action"
id="action" value="logout"/>
<button class="btn btn-default"
id="addBookButton">Logout</button>
</form>
</1i>

Show my Posts</1i>
<a href="ProfileServlet?userid=${user.bhuserid }
8action=editprofile">Edit Profile</1i>
<li role="separator" class="divider"></1i>
Feedback</1i>

138

CHAPTER 20 THE PRESENTATION/VIEW

</1i>

</div><!-- /.navbar-collapse -->
</div><!-- /.container-fluid -->
</nav>
<!-- end navbar -->

The BootStrap Include File

The BootStrap include file contains links for the BootStrap files. These
links come from the BootStrap website. They use a content delivery service
called MaxCDN to host their files. You don’t have to download anything.
Simply include the links from the BootStrap site, and your application will
retrieve the file over the internet.

The BootStrap include file also contains links to some style sheets,
which can be found in the styles folder of your Bullhorn application. The
styles folder lies below the WebContent folder.

<!-- BEGIN Bootstrap -->

<link href="//maxcdn.bootstrapcdn.com/bootstrap/3.3.1/css/
bootstrap.min.css" rel="stylesheet">

<!-- jQuery (necessary for BootStrap's JavaScript plugins) -->
<script src="https://ajax.googleapis.com/ajax/1libs/
jquery/1.11.1/jquery.min.js"></script>

<!-- Include all compiled plugins (below), or include
individual files as needed -->

<script src="//maxcdn.bootstrapcdn.com/bootstrap/3.3.1/js/
bootstrap.min.js"></script>

<link href="styles/cerulean.bootstrap.min.css" rel="stylesheet">
<link href="styles/bullhorn.css" rel="stylesheet">

<!-- END Bootstrap -->

139

CHAPTER 20 THE PRESENTATION/VIEW

The Bootstrap Style Pages

The Bullhorn site contains some style sheets that have been downloaded
from https://bootswatch.com/. This site contains free downloadable
BootStrap themes that you can include in your projects. Simply browse
their collection and include them in your site. Then, from each web page,
you need to include a link to the theme you want to use. This is done in the
BootStrap include file.

The Footer Include File

<!--footer.jsp-->

<div id="push"></div>

<div id="footer">

<div class="container">
<p class="text-muted"><span class="glyphicon
glyphicon-volume-up" aria-hidden="true">
Bullhorn © 2016</p>
</div>
</div>

<!-- end footer.jsp -->

140

https://bootswatch.com/

Index

A

AddUser servlet code, 74
American National Standards
Institute (ANSI), 9

Attributes

action, 84

alt, 83

method, 84

name, 82

src, 83

type, 84
Avatar, 123

B

Bhpost table

SQL for

creating, 32

SQL statements, 33
BHPOST table, 109-110
Bhuser table, 109-110

data definition, 31

delete the table, 33

entering data, 32

SQL statements, 32-33
BootStrap, 119

include file, 139

Starter Template, 120-121

© Dave Wolf, A.J. Henley 2017

style pages, 140

working with, 120
Bullhorn, 112, 123-124

application, 27

DbUser class, 124
Bullhorn components

HTML, 16

JPA classes, 16

JSP, 16

request objects, 16

servlets, 15

sessions, 16

user objects, 16
Bullhorn site

components (see Bullhorn

components)
profile editing, 21

C

Cascading style sheets (CSS), 79,
82, 85,112,115, 119-120
rule, 116
span and div tags, 116-118
Code, 23-24
Content delivery
network (CDN), 119
Controller, 23-25, 57
Cross-site scripting (XSS), 89

141

D. Wolf and A.J. Henley, Java EE Web Application Primer,

https://doi.org/10.1007/978-1-4842-3195-1

INDEX

D

Database, 15, 17-19, 22, 105-106
fields, 6
foreign key, 7
index, 7
layer, 23
open SQL developer, 10
primary key, 7
relationship types, 8
many-to-many, 8
one-to-many, 8
one-to-one, 8
working with oracle
databases, 9
Database management system
(DBMS), 6, 8-9
Database tables, 109
Bullhorn, 109
source code, 109
Database
transaction, 5
atomicity, 5
consistency, 5
durability, 6
isolation, 5
Data integrity, 5
DbPost class, 51-55
DbUser class, 44-49
DbUtilities class, 43-44
Document object model
(DOM), 79,111-112,114
Dynamic Web
Project, 28-29

142

E

Eclipse, 28
IDE, 11
installation, 11-12

F

Footer include file, 140

G

Gravatar, 123-124
user’s email address, 125

H

HTML5, 80-82, 86
Hyperlinks, 96
Hypertext markup language
(HTML), 57, 79, 80,
111-115,117,119-121
creating web documents, 79
errors, 97
tags, 79
web page, 79

Integrated development
environment (IDE), 9

J, K

Java Archive(JAR) files, 29

Java exceptions, 97
Java Persistence API (JPA), 34
eclipselink, 35
Eclipse tools, 34
entities, 38-42
JPQL, 35
META-INF 35-36
POJO, 34
Java Persistence Query Language
(JPQL), 35
JavaScript, 79, 82, 89, 111-112
for Bootstrap, 77
script tags, 113
validating a form, 112-113
submitting post, 113
text box, characters, 114
Java server page (JSP), 27, 57, 86,
89, 95-96, 102, 105-107
JQuery, 112
JSP Standard Tag Library (JSTL),
86-87, 89, 91-92

L

Links, 96
Login servlet, 17
Log Out button, 61

MD5, 124

Model, 25

Model-view-controller (MVC), 23
benefits, 23

INDEX

and Bullhorn service, 24-25
team building, 23

N

Navbar include file, 136-139
Navigation bar, 18-19

News Feed servlet code, 64
Normalization, 8

Null value, 6

O

Object-oriented programming
language, 111

Oracle database, 24

Oracle virtual machine,
Virtualbox Manager, 2

PQ

Parameters, 79, 101
Passing data process, 102
Persistence.xml file, 36, 38
Plain old Java object
(POJO), 106
PostServ servlet code, 67
Presentation layer, 23, 57
add user page, 134-135
error page, 136
home page, 129-130
news feed page, 130, 132
profile age, 132-134
support page, 135
Profile servlet code, 69

143

INDEX

R

Referential integrity, 6
Request packet, 101-102

Responsive web design (RWD), 119

S

Service, 25
Service layer, 57
Service layer creation
DbPost class, 51-55
DbUser class, 44-50
DbUtilities class, 43-44
Servlets, 27, 101-102
code, 58
AddUser servlet, 74-76
login servlet, 61-64
News Feed servlet, 64-67
PostServ servlet, 67-69
Profile servlet, 69-74
finding next page, 60
form data into, 59
Java classes, 57
sending data to next page, 59
set values on output page, 60
Tomcat, 57, 59
URL, 57
Web, 58
Software-design pattern, 23
SQL Developer, 109
SQL Scripts, 109
Structured Query
Language (SQL), 8-9

144

—~

Tag
angle brackets, 81
attributes, 81
id, 82
form, 84
head, 82
heading, 82
image, 83
input, 84
paragraph, 83
table, 85
title, 82
Tomcat, 12-13, 97

U

URL, 57-58
Users and sessions
adding objects, 107-108
getter and setter for user
class, 106
HttpSession, 107
object, 105-106
private member
variables, 105-106
retrieving value, 108

\'

View, 24
Virtualbox, 1
Virtual machine (VM), 11

INDEX

W; X, Yy y4 Web browser, 77
Web administrator, 22 Web server, 101-102
Web application, 27, 101 Website, 123-124

145

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Introduction
	Chapter 1: Getting Started
	 The Oracle Virtual Machine

	Chapter 2: What Is a Database?
	 Referential Integrity
	 Null Values
	 Primary Keys, Foreign Keys, and Indexes
	 Joining Tables
	 Normalization
	 Structured Query Language (SQL)
	 Working with the Oracle Database
	 How to Open and Use SQL Developer

	Chapter 3: Installing and Running Eclipse
	Chapter 4: Bullhorn Site Overview
	 The Components of Bullhorn
	 What Does Each Page Look Like?
	 Editing a Profile

	Chapter 5: What Is MVC?
	 The Model, View, Controller, and Service in Bullhorn

	Chapter 6: Creating a Web Application
	Chapter 7: The DAO/Repository
	 Implement Java Persistence (JPA)
	 The Persistence.xml File
	 The JPA Entities

	Chapter 8: The Service Layer
	 Create a DbUtilities Class
	 Create the DbUser Class
	 Create the DbPost Class

	Chapter 9: The Controller
	 What Is a Servlet?
	 Getting the Form Data into the Servlet
	 Sending the Data to the Next Page
	 How the Servlet Finds the Next Page
	 How to Set Values on Your Output Page
	 How the Log Out Button Works
	 The Login Servlet Code
	 The News Feed Servlet Code
	 The PostServ Servlet Code
	 The Profile Servlet Code
	 The AddUser Servlet Code

	Chapter 10: The Presentation/View
	Chapter 11: Designing Web Pages with HTML
	Chapter 12: HTML5 Tags
	 Explanation of Common Tags
	 HTML Tables
	 A Basic HTML5 and JSP Document
	 JSP Standard Tag Library (JSTL)
	 What Can You Do with JSTL?
	 Prevent Cross-site Scripting Attacks
	 Loop Through a Collection
	 Set a Value
	 Test a Condition
	 Repeat Content a Fixed Number of Times
	 Test a Condition and Choose an Alternative
	 Determine If a String Is Null or Empty
	 Formatting Dates

	 How to Display Form Data
	 Create an HTML Login Form
	 Create a Page to Display the Output of Your Form
	 How to Allow the User to Navigate Between Web Pages

	 Reusing JSP Code
	 Customizing Your Errors

	Chapter 13: The Stateless Nature of the Web
	 The Process of Passing Data

	Chapter 14: Users and Sessions
	 Adding Objects to the Session
	 To Read a Value from the Session

	Chapter 15: How to Create Database Tables for Bullhorn
	Chapter 16: Make Web Pages Do Something Using JavaScript
	 Validate a Form Using JavaScript
	 Display Number of Characters in Text Box

	Chapter 17: Cascading Style Sheets (CSS)
	 Span and Div Tags

	Chapter 18: Making Pages Work on All Screen Sizes
	 Working with BootStrap

	Chapter 19: Use Gravatar to Display User’s Avatars with Posts
	 Calculating an MD5 Hash with Java

	Chapter 20: The Presentation/View
	 The Code for the Login Page
	 The Code for the Home Page
	 The Code for the News Feed Page
	 The Code for the Profile Page
	 The Code for the Add User Page
	 The Code for the Support Page
	 The Code for the Error Page
	 The Navbar Include File
	 The BootStrap Include File
	 The Bootstrap Style Pages

	 The Footer Include File

	Index

