
M A N N I N G

William P. Bejeck Jr.
Foreword by Neha Narkhede

Real-time apps and
microservices with the
Kafka Streams API

www.allitebooks.com

http://www.allitebooks.org

Patterns

Masking

Source

Electronics

sink

Cafe

sink

Patterns

sink
Purchases

sink

Rewards

Branch

processor

Filtering

processor

Cafe

processor

Electronics

processor

Rewards

sink

Select-key

processor

 www.allitebooks.com

http://www.allitebooks.org

Kafka Streams
in Action

ERVICES

AMS API

 BEJECK JR.
NARKHEDE

A N N I N G
HELTER ISLAND
REAL-TIME APPS AND MICROS

WITH THE KAFKA STRE

WILLIAM P.
FOREWORD BY NEHA

M
S

www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2018 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Acquisitions editor: Michael Stephens
20 Baldwin Road Development editor: Frances Lefkowitz
PO Box 761 Technical development editors: Alain Couniot, John Hyaduck
Shelter Island, NY 11964 Review editor: Aleksandar Dragosavljević

Project manager: David Novak
Copy editors: Andy Carroll, Tiffany Taylor
Proofreader: Katie Tennant

Technical proofreader: Valentin Crettaz
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617294471
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – DP – 23 22 21 20 19 18
 www.allitebooks.com

www.manning.com
http://www.allitebooks.org

brief contents
PART 1 GETTING STARTED WITH KAFKA STREAMS 1

1 ■ Welcome to Kafka Streams 3

2 ■ Kafka quickly 22

PART 2 KAFKA STREAMS DEVELOPMENT55

3 ■ Developing Kafka Streams 57

4 ■ Streams and state 84

5 ■ The KTable API 117

6 ■ The Processor API 145

PART 3 ADMINISTERING KAFKA STREAMS173

7 ■ Monitoring and performance 175

8 ■ Testing a Kafka Streams application 199

PART 4 ADVANCED CONCEPTS WITH KAFKA STREAMS215

9 ■ Advanced applications with Kafka Streams 217
iii

 www.allitebooks.com

http://www.allitebooks.org

contents
foreword xi
preface xiii
acknowledgments xiv
about this book xv
about the author xix
about the cover illustration xx

PART 1 GETTING STARTED WITH KAFKA STREAMS1

1 Welcome to Kafka Streams 3
1.1 The big data movement, and how it changed

the programming landscape 4
The genesis of big data 4 ■ Important concepts from
MapReduce 5 ■ Batch processing is not enough 8

1.2 Introducing stream processing 8
When to use stream processing, and when not to use it 9

1.3 Handling a purchase transaction 10
Weighing the stream-processing option 10 ■ Deconstructing the
requirements into a graph 11
v

CONTENTSvi
1.4 Changing perspective on a purchase transaction 12
Source node 12 ■ Credit card masking node 12
Patterns node 13 ■ Rewards node 13 ■ Storage node 13

1.5 Kafka Streams as a graph of processing nodes 15
1.6 Applying Kafka Streams to the purchase

transaction flow 16
Defining the source 16 ■ The first processor: masking credit card
numbers 17 ■ The second processor: purchase patterns 18
The third processor: customer rewards 19 ■ The fourth
processor—writing purchase records 20

2 Kafka quickly 22
2.1 The data problem 23
2.2 Using Kafka to handle data 23

ZMart’s original data platform 23 ■ A Kafka sales transaction
data hub 24

2.3 Kafka architecture 25
Kafka is a message broker 26 ■ Kafka is a log 27
How logs work in Kafka 27 ■ Kafka and partitions 28
Partitions group data by key 29 ■ Writing a custom
partitioner 30 ■ Specifying a custom partitioner 31
Determining the correct number of partitions 32
The distributed log 32 ■ ZooKeeper: leaders, followers,
and replication 33 ■ Apache ZooKeeper 33 ■ Electing
a controller 34 ■ Replication 34 ■ Controller
responsibilities 35 ■ Log management 37
Deleting logs 37 ■ Compacting logs 38

2.4 Sending messages with producers 40
Producer properties 42 ■ Specifying partitions and
timestamps 42 ■ Specifying a partition 43
Timestamps in Kafka 43

2.5 Reading messages with consumers 44
Managing offsets 44 ■ Automatic offset commits 46
Manual offset commits 46 ■ Creating the consumer 47
Consumers and partitions 47 ■ Rebalancing 47
Finer-grained consumer assignment 48 ■ Consumer example 48

2.6 Installing and running Kafka 49
Kafka local configuration 49 ■ Running Kafka 50
Sending your first message 52

CONTENTS vii
PART 2 KAFKA STREAMS DEVELOPMENT 55

3 Developing Kafka Streams 57
3.1 The Streams Processor API 58
3.2 Hello World for Kafka Streams 58

Creating the topology for the Yelling App 59 ■ Kafka Streams
configuration 63 ■ Serde creation 63

3.3 Working with customer data 65
Constructing a topology 66 ■ Creating a custom Serde 72

3.4 Interactive development 74
3.5 Next steps 76

New requirements 76 ■ Writing records outside of Kafka 81

4 Streams and state 84
4.1 Thinking of events 85

Streams need state 86

4.2 Applying stateful operations to Kafka Streams 86
The transformValues processor 87 ■ Stateful customer
rewards 88 ■ Initializing the value transformer 90
Mapping the Purchase object to a RewardAccumulator
using state 90 ■ Updating the rewards processor 94

4.3 Using state stores for lookups and previously
seen data 96
Data locality 96 ■ Failure recovery and fault tolerance 97
Using state stores in Kafka Streams 98 ■ Additional key/value
store suppliers 99 ■ StateStore fault tolerance 99 ■ Configuring
changelog topics 99

4.4 Joining streams for added insight 100
Data setup 102 ■ Generating keys containing customer
IDs to perform joins 103 ■ Constructing the join 104
Other join options 109

4.5 Timestamps in Kafka Streams 110
Provided TimestampExtractor implementations 112
WallclockTimestampExtractor 113 ■ Custom
TimestampExtractor 114 ■ Specifying a
TimestampExtractor 115

CONTENTSviii
5 The KTable API 117
5.1 The relationship between streams and tables 118

The record stream 118 ■ Updates to records or the changelog 119
Event streams vs. update streams 122

5.2 Record updates and KTable configuration 123
Setting cache buffering size 124 ■ Setting the commit
interval 125

5.3 Aggregations and windowing operations 126
Aggregating share volume by industry 127 ■ Windowing
operations 132 ■ Joining KStreams and KTables 139
GlobalKTables 140 ■ Queryable state 143

6 The Processor API 145
6.1 The trade-offs of higher-level abstractions vs.

more control 146
6.2 Working with sources, processors, and sinks to create a

topology 146
Adding a source node 147 ■ Adding a processor node 148
Adding a sink node 151

6.3 Digging deeper into the Processor API with a stock analysis
processor 152
The stock-performance processor application 153 ■ The process()
method 157 ■ The punctuator execution 158

6.4 The co-group processor 159
Building the co-grouping processor 161

6.5 Integrating the Processor API and the
Kafka Streams API 170

PART 3 ADMINISTERING KAFKA STREAMS173

7 Monitoring and performance 175
7.1 Basic Kafka monitoring 176

Measuring consumer and producer performance 176
Checking for consumer lag 178 ■ Intercepting the producer
and consumer 179

7.2 Application metrics 182
Metrics configuration 184 ■ How to hook into the collected
metrics 185 ■ Using JMX 185 ■ Viewing metrics 189

CONTENTS ix
7.3 More Kafka Streams debugging techniques 191
Viewing a representation of the application 191 ■ Getting
notification on various states of the application 192
Using the StateListener 193 ■ State restore listener 195
Uncaught exception handler 198

8 Testing a Kafka Streams application 199
8.1 Testing a topology 201

Building the test 202 ■ Testing a state store in the topology 204
Testing processors and transformers 205

8.2 Integration testing 208
Building an integration test 209

PART 4 ADVANCED CONCEPTS WITH KAFKA STREAMS.... 215

9 Advanced applications with Kafka Streams 217
9.1 Integrating Kafka with other data sources 218

Using Kafka Connect to integrate data 219 ■ Setting up
Kafka Connect 219 ■ Transforming data 222

9.2 Kicking your database to the curb 226
How interactive queries work 228 ■ Distributing state stores 229
Setting up and discovering a distributed state store 230 ■ Coding
interactive queries 232 ■ Inside the query server 234

9.3 KSQL 237
KSQL streams and tables 238 ■ KSQL architecture 238
Installing and running KSQL 240 ■ Creating a KSQL
stream 241 ■ Writing a KSQL query 242 ■ Creating
a KSQL table 243 ■ Configuring KSQL 244

appendix A Additional configuration information 245
appendix B Exactly once semantics 251

index 253

foreword
I believe that architectures centered around real-time event streams and stream pro-
cessing will become ubiquitous in the years ahead. Technically sophisticated compa-
nies like Netflix, Uber, Goldman Sachs, Bloomberg, and others have built out this type
of large, event-streaming platform operating at massive scale. It’s a bold claim, but I
think the emergence of stream processing and the event-driven architecture will have
as big an impact on how companies make use of data as relational databases did.

 Event thinking and building event-driven applications oriented around stream pro-
cessing require a mind shift if you are coming from the world of request/response–style
applications and relational databases. That’s where Kafka Streams in Action comes in.

 Stream processing entails a fundamental move away from command thinking
toward event thinking—a change that enables responsive, event-driven, extensible, flex-
ible, real-time applications. In business, event thinking opens organizations to real-
time, context-sensitive decision making and operations. In technology, event thinking
can produce more autonomous and decoupled software applications and, conse-
quently, elastically scalable and extensible systems.

 In both cases, the ultimate benefit is greater agility—for the business and for the
business-facilitating technology. Applying event thinking to an entire organization is
the foundation of the event-driven architecture. And stream processing is the technol-
ogy that enables this transformation.

 Kafka Streams is the native Apache Kafka stream-processing library for building
event-driven applications in Java. Applications that use Kafka Streams can do sophisti-
cated transformations on data streams that are automatically made fault tolerant and
xi

FOREWORDxii
are transparently and elastically distributed over the instances of the application.
Since its initial release in the 0.10 version of Apache Kafka in 2016, many companies
have put Kafka Streams into production, including Pinterest, The New York Times, Rabo-
bank, LINE, and many more.

 Our goal with Kafka Streams and KSQL is to make stream processing simple
enough that it can be a natural way of building event-driven applications that respond
to events, not just a heavyweight framework for processing big data. In our model, the
primary entity isn’t the processing code: it’s the streams of data in Kafka.

 Kafka Streams in Action is a great way to learn about Kafka Streams, and to learn how
it is a key enabler of event-driven applications. I hope you enjoy reading this book as
much as I have!

—NEHA NARKHEDE

Cofounder and CTO at Confluent, Cocreator of Apache Kafka

preface
During my time as a software developer, I’ve had the good fortune to work with cur-
rent software on exciting projects. I started out doing a mix of client-side and backend
work; but I found I preferred to work solely on the backend, so I made my home
there. As time went on, I transitioned to working on distributed systems, beginning
with Hadoop (then in its pre-1.0 release). Fast-forward to a new project, and I had an
opportunity to use Kafka. My initial impression was how simple Kafka was to work
with; it also brought a lot of power and flexibility. I found more and more ways to inte-
grate Kafka into delivering project data. Writing producers and consumers was straight-
forward, and Kafka improved the quality of our system.

 Then I learned about Kafka Streams. I immediately realized, “Why do I need
another processing cluster to read from Kafka, just to write back to it?” As I looked
through the API, I found everything I needed for stream processing: joins, map val-
ues, reduce, and group-by. More important, the approach to adding state was superior
to anything I had worked with up to that point.

 I’ve always had a passion for explaining concepts to other people in a way that is
straightforward and easy to understand. When the opportunity came to write about
Kafka Streams, I knew it would be hard work but worth it. I’m hopeful the hard work
will pay off in this book by demonstrating that Kafka Streams is a simple but elegant
and powerful way to perform stream processing.
xiii

acknowledgments
First and foremost, I’d like to thank my wife Beth and acknowledge all the support I
received from her during this process. Writing a book is a time-consuming task, and
without her encouragement, this book never would have happened. Beth, you are fan-
tastic, and I’m very grateful to have you as my wife. I’d also like to acknowledge my
children, who put up with Dad sitting in his office all day on most weekends and
accepted the vague answer “Soon” when they asked when I’d be finished writing.

 Next, I thank Guozhang Wang, Matthias Sax, Damian Guy, and Eno Thereska, the
core developers of Kafka Streams. Without their brilliant insights and hard work,
there would be no Kafka Streams, and I wouldn’t have had the chance to write about
this game-changing tool.

 I thank my editor at Manning, Frances Lefkowitz, whose expert guidance and
infinite patience made writing a book almost fun. I also thank John Hyaduck for his
spot-on technical feedback, and Valentin Crettaz, the technical proofer, for his excel-
lent work reviewing the code. Additionally, I thank the reviewers for their hard work
and invaluable feedback in making the quality of this book better for all readers:
Alexander Koutmos, Bojan Djurkovic, Dylan Scott, Hamish Dickson, James Frohnhofer,
Jim Manthely, Jose San Leandro, Kerry Koitzsch, László Hegedüs, Matt Belanger,
Michele Adduci, Nicholas Whitehead, Ricardo Jorge Pereira Mano, Robin Coe, Sumant
Tambe, and Venkata Marrapu.

 Finally, I’d like to acknowledge all the Kafka developers for building such high-
quality software, especially Jay Kreps, Neha Narkhede, and Jun Rao—not just for start-
ing Kafka in the first place, but also for founding Confluent, a great and inspiring
place to work.
xiv

about this book
I wrote Kafka Streams in Action to teach you how to get started with Kafka Streams and,
to a lesser extent, how to work with stream processing in general. My approach to writ-
ing this book is a pair-programming perspective; I imagine myself sitting next to you
as you write the code and learn the API. You’ll start by building a simple application,
and you’ll layer on more features as you go deeper into Kafka Streams. You’ll learn
about testing and monitoring and, finally, wrap things up by developing an advanced
Kafka Streams application.

Who should read this book
Kafka Streams in Action is for any developer wishing to get into stream processing.
While not strictly required, knowledge of distributed programming will be helpful in
understanding Kafka and Kafka Streams. Knowledge of Kafka itself is useful but not
required; I’ll teach you what you need to know. Experienced Kafka developers, as well
as those new to Kafka, will learn how to develop compelling stream-processing appli-
cations with Kafka Streams. Intermediate-to-advanced Java developers who are famil-
iar with topics like serialization will learn how to use their skills to build a Kafka
Streams application. The book’s source code is written in Java 8 and makes extensive
use of Java 8 lambda syntax, so experience with lambdas (even from another lan-
guage) will be helpful.
xv

ABOUT THIS BOOKxvi
How this book is organized: a roadmap
This book has four parts spread over nine chapters. Part 1 introduces a mental model
of Kafka Streams to show you the big-picture view of how it works. These chapters also
provide the basics of Kafka, for those who need them or want a review:

■ Chapter 1 provides some history of how and why stream processing became
necessary for handling real-time data at scale. It also presents the mental model
of Kafka Streams. I don’t go over any code but rather describe how Kafka
Streams works.

■ Chapter 2 is a primer for developers who are new to Kafka. Those with more
experience with Kafka can skip this chapter and get right into Kafka Streams.

Part 2 moves on to Kafka Streams, starting with the basics of the API and continuing
to the more complex features:

■ Chapter 3 presents a Hello World application and then presents a more realistic
example: developing an application for a fictional retailer, including advanced
features.

■ Chapter 4 discusses state and explains how it’s sometimes required for stream-
ing applications. You’ll learn about state store implementations and how to per-
form joins in Kafka Streams.

■ Chapter 5 explores the duality of tables and streams, and introduces a new con-
cept: the KTable. Whereas a KStream is a stream of events, a KTable is a stream
of related events or an update stream.

■ Chapter 6 goes into the low-level Processor API. Up to this point, you’ve been
working with the high-level DSL, but here you’ll learn how to use the Processor
API when you need to write customized parts of an application.

Part 3 moves on from developing Kafka Streams applications to managing Kafka
Streams:

■ Chapter 7 explains how to test a Kafka Streams application. You’ll learn how to
test an entire topology, unit-test a single processor, and use an embedded Kafka
broker for integration tests.

■ Chapter 8 covers how to monitor your Kafka Streams application, both to see
how long it takes to process records and to locate potential processing bottle-
necks.

Part 4 is the capstone of the book, where you’ll delve into advanced application devel-
opment with Kafka Streams:

■ Chapter 9 covers integrating existing data sources into Kafka Streams using
Kafka Connect. You’ll learn to include database tables in a streaming applica-
tion. Then, you’ll see how to use interactive queries to provide visualization
and dashboard applications while data is flowing through Kafka Streams, with-
out the need for relational databases. The chapter also introduces KSQL,

ABOUT THIS BOOK xvii
which you can use to run continuous queries over Kafka without writing any
code, by using SQL.

About the code
This book contains many examples of source code both in numbered listings and
inline with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

 Finally, it’s important to note that many of the code examples aren’t meant to
stand on their own: they’re excerpts containing only the most relevant parts of what is
currently under discussion. You’ll find all the examples from the book in the accom-
panying source code in their complete form. Source code for the book’s examples is
available from GitHub at https://github.com/bbejeck/kafka-streams-in-action and
the publisher’s website at www.manning.com/books/kafka-streams-in-action.

 The source code for the book is an all-encompassing project using the build tool
Gradle (https://gradle.org). You can import the project into either IntelliJ or Eclipse
using the appropriate commands. Full instructions for using and navigating the source
code can be found in the accompanying README.md file.

Book forum
Purchase of Kafka Streams in Action includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the
forum, go to https://forums.manning.com/forums/kafka-streams-in-action. You can
also learn more about Manning’s forums and the rules of conduct at https://forums
.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking him some challenging questions lest his interest stray! The forum
and the archives of previous discussions will be accessible from the publisher’s website
as long as the book is in print.

https://github.com/bbejeck/kafka-streams-in-action
https://gradle.org
https://forums.manning.com/forums/kafka-streams-in-action
https://forums.manning.com/forums/about
https://forums.manning.com/forums/about
https://forums.manning.com/forums/about
http://www.manning.com/books/kafka-streams-in-action

ABOUT THIS BOOKxviii
Other online resources
■ Apache Kafka documentation: https://kafka.apache.org
■ Confluent documentation: https://docs.confluent.io/current
■ Kafka Streams documentation: https://docs.confluent.io/current/streams/index

.html#kafka-streams
■ KSQL documentation: https://docs.confluent.io/current/ksql.html#ksql

https://kafka.apache.org
https://docs.confluent.io/current
https://docs.confluent.io/current/streams/index.html#kafka-streams
https://docs.confluent.io/current/streams/index.html#kafka-streams
https://docs.confluent.io/current/streams/index.html#kafka-streams
https://docs.confluent.io/current/ksql.html#ksql

about the author
Bill Bejeck, a contributor to Kafka, works at Confluent on the
Kafka Streams team. He has worked in software development for
more than 15 years, including 8 years focused exclusively on the
backend, specifically, handling large volumes of data; and on
ingestion teams, using Kafka to improve data flow to downstream
customers. Bill is the author of Getting Started with Google Guava
(Packt Publishing, 2013) and a regular blogger at “Random
Thoughts on Coding” (http://codingjunkie.net).
xix

http://codingjunkie.net

about the cover illustration
The figure on the cover of Kafka Streams in Action is captioned “Habit of a Turkish Gen-
tleman in 1700.” The illustration is taken from Thomas Jefferys’ A Collection of the Dresses
of Different Nations, Ancient and Modern (four volumes), London, published between
1757 and 1772. The title page states that these are hand-colored copperplate engrav-
ings, heightened with gum arabic. Thomas Jefferys (1719–1771) was called “Geogra-
pher to King George III.” He was an English cartographer who was the leading map
supplier of his day. He engraved and printed maps for government and other official
bodies and produced a wide range of commercial maps and atlases, especially of North
America. His work as a map maker sparked an interest in local dress customs of the
lands he surveyed and mapped, which are brilliantly displayed in this collection.

 Fascination with faraway lands and travel for pleasure were relatively new phenom-
ena in the late eighteenth century, and collections such as this one were popular,
introducing both the tourist as well as the armchair traveler to the inhabitants of
other countries. The diversity of the drawings in Jefferys’ volumes speaks vividly of the
uniqueness and individuality of the world’s nations some 200 years ago. Dress codes
have changed since then, and the diversity by region and country, so rich at the time,
has faded away. It is now often hard to tell the inhabitant of one continent from
another. Perhaps we have traded a cultural and visual diversity for a more varied per-
sonal life—certainly, a more varied and interesting intellectual and technical life.

 At a time when it is hard to tell one computer book from another, Manning celebrates
the inventiveness and initiative of the computer business with book covers based on the
rich diversity of regional life of two centuries ago, brought back to life by Jefferys’ pictures.
xx

Part 1

Getting started
with Kafka Streams

In part 1 of this book, we’ll discuss the big data era: how it began with the
need to process large amounts of data and eventually progressed to stream pro-
cessing—processing data as it becomes available. We’ll also discuss what Kafka
Streams is, and I’ll show you a mental model of how it works without any code so
you can focus on the big picture. We’ll also briefly cover Kafka to get you up to
speed on how to work with it.

Welcome to Kafka Streams
In this book, you’ll learn how to use Kafka Streams to solve your streaming applica-
tion needs. From basic extract, transform, and load (ETL) to complex stateful
transformations to joining records, we’ll cover the components of Kafka Streams so
you can solve these kinds of challenges in your streaming applications.

 Before we dive into Kafka Streams, we’ll briefly explore the history of big data
processing. As we identify problems and solutions, you’ll clearly see how the need
for Kafka, and then Kafka Streams, evolved. Let’s look at how the big data era got
started and what led to the Kafka Streams solution.

This chapter covers
 Understanding how the big data movement

changed the programming landscape

 Getting to know how stream processing works
and why we need it

 Introducing Kafka Streams

 Looking at the problems solved by Kafka Streams
3

4 CHAPTER 1 Welcome to Kafka Streams
1.1 The big data movement, and how it changed
the programming landscape
The modern programming landscape has exploded with big data frameworks and
technologies. Sure, client-side development has undergone transformations of its
own, and the number of mobile device applications has exploded as well. But no mat-
ter how big the mobile device market gets or how client-side technologies evolve,
there’s one constant: we need to process more and more data every day. As the
amount of data grows, the need to analyze and take advantage of the benefits of that
data grows at the same rate.

 But having the ability to process large quantities of data in bulk (batch processing)
isn’t always enough. Increasingly, organizations are finding that they need to process
data as it becomes available (stream processing). Kafka Streams, a cutting-edge approach
to stream processing, is a library that allows you to perform per-event processing of
records. Per-event processing means you process each record as soon as it’s avail-
able—no grouping of data into small batches (microbatching) is required.

NOTE When the need to process data as it arrives became more and more
apparent, a new strategy was developed: microbatching. As the name implies,
microbatching is nothing more than batch processing, but with smaller quan-
tities of data. By reducing the size of the batch, microbatching can sometimes
produce results more quickly; but microbatching is still batch processing,
although at faster intervals. It doesn’t give you real per-event processing.

1.1.1 The genesis of big data

The internet started to have a real impact on our daily lives in the mid-1990s. Since
then, the connectivity provided by the web has given us unparalleled access to infor-
mation and the ability to communicate instantly with anyone, anywhere in the world.
An unexpected byproduct of all this connectivity emerged: the generation of massive
amounts of data.

 For our purposes, I’ll say that the big data era officially began in 1998, the year
Sergey Brin and Larry Page formed Google. Brin and Page developed a new way of
ranking web pages for searches: the PageRank algorithm. At a very high level, the Page-
Rank algorithm rates a website by counting the number and quality of links pointing
to it. The assumption is that the more important or relevant a web page is, the more
sites will refer to it.

 Figure 1.1 offers a graphical representation of the PageRank algorithm:

 Site A is the most important, because it has the most references pointing to it.
 Site B is somewhat important. Although it doesn’t have as many references, an

important site does point to it.
 Site C is less important than A or B. More references are pointing to site C than

site B, but the quality of those references is lower.
 The sites at the bottom (D through I) have no references pointing to them.

This makes them the least valuable.

5The big data movement, and how it changed the programming landscape
The figure is an oversimplification of the PageRank algorithm, but it gives you the
basic idea of how the algorithm works.

 At the time, PageRank was a revolutionary approach. Previously, searches on the web
were more likely to use Boolean logic to return results. If a website contained all or most
of the terms you were looking for, that website was in the search results, regardless of the
quality of the content. But running the PageRank algorithm on all internet content
required a new approach—the traditional approaches to working with data took too
long. For Google to survive and grow, it needed to index all that content quickly
(“quickly” being a relative term) and present quality results to the public.

 Google developed another revolutionary approach for processing all that data: the
MapReduce paradigm. Not only did MapReduce enable Google to do the work it
needed to as a company, it inadvertently spawned an entire new industry in computing.

1.1.2 Important concepts from MapReduce

The map and reduce functions weren’t new concepts when Google developed Map-
Reduce. What was unique about Google’s approach was applying those simple con-
cepts at a massive scale across many machines.

 At its heart, MapReduce has roots in functional programming. A map function
takes some input and maps that input into something else without changing the origi-
nal value. Here’s a simple example in Java 8, where a LocalDate object is mapped into
a String message, while the original LocalDate object is left unmodified:

Function<LocalDate, String> addDate =
(date) -> "The Day of the week is " + date.getDayOfWeek();

Site A
Site B

Site C

Site D Site E Site F Site G Site H Site I

Figure 1.1 The PageRank algorithm in action. The circles represent websites, and the larger
ones represent sites with more links pointing to them from other sites.

6 CHAPTER 1 Welcome to Kafka Streams
Although simple, this short example is sufficient for demonstrating what a map func-
tion does.

 On the other hand, a reduce function takes a number of parameters and reduces
them down to a singular, or at least smaller, value. A good example of that is adding
together all the values in a collection of numbers.

 To perform a reduction on a collection of numbers, you first provide an initial
starting value. In this case, we’ll use 0 (the identity value for addition). The next step
is adding the seed value to the first number in the list. You then add the result of that
first addition to the second number in the list. The function repeats this process until
it reaches the last value, producing a single number.

 Here are the steps to reduce a List<Integer> containing the values 1, 2, and 3:

0 + 1 = 1
1 + 2 = 3
3 + 3 = 6

As you can see, a reduce function collapses results together to form smaller results. As
in the map function, the original list of numbers is left unchanged.

 The following example shows an implementation of a simple reduce function
using a Java 8 lambda:

List<Integer> numbers = Arrays.asList(1, 2, 3);

int sum = numbers.reduce(0, (i, j) -> i + j);

The main topic of this book is not MapReduce, so we’ll stop our background discus-
sion here. But some of the key concepts introduced by the MapReduce paradigm
(later implemented in Hadoop, the original open source version based on Google’s
MapReduce white paper) come into play in Kafka Streams:

 How to distribute data across a cluster to achieve scale in processing
 The use of key/value pairs and partitions to group distributed data together
 Instead of avoiding failure, embracing failure by using replication

The following sections look at these concepts in general terms. Pay attention, because
you’ll see them coming up again and again in the book.

DISTRIBUTING DATA ACROSS A CLUSTER TO ACHIEVE SCALE IN PROCESSING

Working with 5 TB (5,000 GB) of data could be overwhelming for one machine. But if
you can split up the data and involve more machines, so each is processing a manage-
able amount, your problem is minimized. Table 1.1 illustrates this clearly.

 As you can see from the table, you may start out with an unwieldy amount of data
to process, but by spreading the load across more servers, you eliminate the difficulty

Adds the seed value
to the first number Takes the result from

step 1 and adds it to
the second number
in the listAdds the sum of step 2

to the third number

7The big data movement, and how it changed the programming landscape
of processing the data. The 1 GB of data in the last line of the table is something a lap-
top could easily handle.

 This is the first key concept to understand about MapReduce: by spreading the
load across a cluster of machines, you can turn an overwhelming amount of data into
a manageable amount.

USING KEY/VALUE PAIRS AND PARTITIONS TO GROUP DISTRIBUTED DATA

The key/value pair is a simple data structure with powerful implications. In the previ-
ous section, you saw the value of spreading a massive amount of data over a cluster of
machines. Distributing your data solves the processing problem, but now you have the
problem of collecting the distributed data back together.

 To regroup distributed data, you can use the keys from the key/value pairs to par-
tition the data. The term partition implies grouping, but I don’t mean grouping by
identical keys, but rather by keys that have the same hash code. To split data into par-
titions by key, you can use the following formula:

int partition = key.hashCode() % numberOfPartitions;

Figure 1.2 shows how you could apply a hashing function to take results from Olympic
events stored on separate servers and group them on partitions for different events.

Table 1.1 How splitting up 5 TB improves processing throughput

Number of machines Amount of data processed per server

10 500 GB

100 50 GB

1000 5 GB

5000 1 GB

swimming, result_1
sprinting, result_3

swimming, result_3
sprinting, result_2

swimming, result_2
sprinting, result_1

Swim results partition

Sprint results partition

Partition = key.hashCode % 2

Figure 1.2 Grouping records by key on partitions. Even though the records start out on separate
servers, they end up in the appropriate partitions.

8 CHAPTER 1 Welcome to Kafka Streams
All the data is stored as key/value pairs. In the image below the key is the name of the
event, and the value is a result for an individual athlete.

 Partitioning is an important concept, and you’ll see detailed examples in later
chapters.

EMBRACING FAILURE BY USING REPLICATION

Another key component of Google’s MapReduce is the Google File System (GFS). Just
as Hadoop is the open source implementation of MapReduce, Hadoop File System
(HDFS) is the open source implementation of GFS.

 At a very high level, both GFS and HDFS split data into blocks and distribute
those blocks across a cluster. But the essential part of GFS/HDFS is the approach to
server and disk failure. Instead of trying to prevent failure, the framework embraces
failure by replicating blocks of data across the cluster (by default, the replication
factor is 3).

 By replicating data blocks on different servers, you no longer have to worry about
disk failures or even complete server failures causing a halt in production. Replication
of data is crucial for giving distributed applications fault tolerance, which is essential
for a distributed application to be successful. You’ll see later how partitions and repli-
cation work in Kafka Streams.

1.1.3 Batch processing is not enough

Hadoop caught on with the computing world like wildfire. It allowed people to pro-
cess vast amounts of data and have fault tolerance while using commodity hardware
(cost savings). But Hadoop/MapReduce is a batch-oriented process, which means you
collect large amounts of data, process it, and then store the output for later use. Batch
processing is a perfect fit for something like PageRank because you can’t make deter-
minations of what resources are valuable across the entire internet by watching user
clicks in real time.

 But business also came under increasing pressure to respond to important ques-
tions more quickly, such as these:

 What is trending right now?
 How many invalid login attempts have there been in the last 10 minutes?
 How is our recently released feature being utilized by the user base?

It was apparent that another solution was needed, and that solution emerged as stream
processing.

1.2 Introducing stream processing
There are varying definitions of stream processing. In this book, I define stream process-
ing as working with data as it’s arriving in your system. The definition can be further
refined to say that stream processing is the ability to work with an infinite stream of
data with continuous computation, as it flows, with no need to collect or store the data
to act on it.

9Introducing stream processing
 Figure 1.3 represents a stream of data, with each circle on the line representing
data at a point in time. Data is continuously flowing, as data in stream processing is
unbounded.

Who needs to use stream processing? Anyone who needs quick feedback from an
observable event. Let’s look at some examples.

1.2.1 When to use stream processing, and when not to use it

Like any technical solution, stream processing isn’t a one-size-fits-all solution. The
need to quickly respond to or report on incoming data is a good use case for stream
processing. Here are a few examples:

 Credit card fraud—A credit card owner may not notice a card has been stolen,
but by reviewing purchases as they happen against established patterns (loca-
tion, general spending habits), you may be able to detect a stolen credit card
and alert the owner.

 Intrusion detection—Analyzing application log files after a breach has occurred
may be helpful to prevent future attacks or to improve security, but the ability to
monitor aberrant behavior in real time is critical.

 A large race, such as the New York City Marathon—Almost all runners will have a
chip on their shoe, and when runners pass sensors along the course, you can
use that information to track the runners’ positions. By using the sensor data,
you can determine the leaders, spot potential cheating, and detect whether a
runner is potentially having problems.

 The financial industry—The ability to track market prices and direction in real
time is essential for brokers and consumers to make effective decisions about
when to sell or buy.

On the other hand, stream processing isn’t a solution for all problem domains. To
effectively make forecasts of future behavior, for example, you need to use a large
amount of data over time to eliminate anomalies and identify patterns and trends.
Here the focus is on analyzing data over time, rather than just the most current data:

 Economic forecasting—Information is collected on many variables over an extended
period of time in an attempt to make an accurate forecast, such as trends in
interest rates for the housing market.

 School curriculum changes—Only after one or two testing cycles can school adminis-
trators measure whether curriculum changes are achieving their goals.

Figure 1.3 This marble diagram is a simple representation of stream processing. Each circle represents
some information or an event occurring at a particular point in time. The number of events is unbounded
and moves continually from left to right.

10 CHAPTER 1 Welcome to Kafka Streams
Here are the key points to remember: If you need to report on or take action immedi-
ately as data arrives, stream processing is a good approach. If you need to perform
in-depth analysis or are compiling a large repository of data for later analysis, a stream-
processing approach may not be a good fit. Let’s now walk through a concrete exam-
ple of stream processing.

1.3 Handling a purchase transaction
Let’s start by applying a general stream-processing approach to a retail sales example.
Then we’ll look at how you can use Kafka Streams to implement the stream-processing
application.

 Suppose Jane Doe is on her way home from work and remembers she needs tooth-
paste. She stops at a ZMart, goes in to pick up the toothpaste, and heads to the check-
out to pay. The cashier asks Jane if she’s a member of the ZClub and scans her
membership card, so Jane’s membership info is now part of the purchase transaction.

 When the total is rung up, Jane hands the cashier her debit card. The cashier
swipes the card and gives Jane the receipt. As Jane is walking out of the store, she
checks her email, and there’s a message from ZMart thanking her for her patronage,
with various coupons for discounts on Jane’s next visit.

 This transaction is a normal occurrence that a customer wouldn’t give a second
thought to, but you’ll have recognized it for what it is: a wealth of information that can
help ZMart run more efficiently and serve customers better. Let’s go back in time a lit-
tle, to see how this transaction became a reality.

1.3.1 Weighing the stream-processing option

Suppose you’re the lead developer for ZMart’s streaming-data team. ZMart is a big-
box retail store with several locations across the country. ZMart does great business,
with total sales for any given year upwards of $1 billion. You’d like to start mining the
data from your company’s transactions to make the business more efficient. You know
you have a tremendous amount of sales data to work with, so whatever technology you
implement will need to be able to work fast and scale to handle this volume of data.

 You decide to use stream processing because there are business decisions and
opportunities that you can take advantage of as each transaction occurs. After data is
gathered, there’s no reason to wait for hours to make decisions. You get together with
management and your team and come up with the following four primary require-
ments for the stream-processing initiative to succeed:

 Privacy—First and foremost, ZMart values its relationship with its customers.
With all of today’s privacy concerns, your first goal is to protect customers’ pri-
vacy, and protecting their credit card numbers is the highest priority. However
you use the transaction information, customer credit card information should
never be at risk of exposure.

 Customer rewards—A new customer-rewards program is in place, with customers
earning bonus points based on the amount of money they spend on certain

11Handling a purchase transaction
items. The goal is to notify customers quickly, once they’ve received a reward—
you want them back in the store! Again, appropriate monitoring of activity is
required here. Remember how Jane received an email immediately after leav-
ing the store? That’s the kind of exposure you want for the company.

 Sales data—ZMart would like to refine its advertising and sales strategy. The
company wants to track purchases by region to figure out which items are more
popular in certain parts of the country. The goal is to target sales and specials
for best-selling items in a given area of the country.

 Storage—All purchase records need to be saved in an off-site storage center for
historical and ad hoc analysis.

These requirements are straightforward enough on their own, but how would you go
about implementing them against a single purchase transaction like Jane Doe’s?

1.3.2 Deconstructing the requirements into a graph

Looking at the preceding requirements, you can quickly recast them in a directed acyclic
graph (DAG). The point where the customer completes the transaction at the register
is the source node for the entire graph. ZMart’s requirements become the child nodes
of the main source node (figure 1.4).

Next, you need to determine how to map a purchase transaction to the require-
ments graph.

Patterns

Masking

Rewards

Purchase

Storage

Figure 1.4 The business
requirements for the streaming
application presented as a
directed acyclic graph. Each
vertex represents a requirement,
and the edges show the flow of
data through the graph.

12 CHAPTER 1 Welcome to Kafka Streams
1.4 Changing perspective on a purchase transaction
In this section, we’ll walk through the steps of a purchase and see how it relates, at a
high level, to the requirements graph from figure 1.4. In the next section, we’ll look at
how to apply Kafka Streams to this process.

1.4.1 Source node

The graph’s source node (figure 1.5) is where the application consumes the purchase
transaction. This node is the source of the sales transaction information that will flow
through the graph.

1.4.2 Credit card masking node

The child node of the graph source is where the credit card masking takes place (fig-
ure 1.6). This is the first vertex or node in the graph that represents the business
requirements, and it’s the only node that receives the raw sales data from the source
node, effectively making this node the source for all other nodes connected to it.

For the credit card masking operation, you make a copy of the data and then convert
all the digits of the credit card number to an x, except the last four digits. The data
flowing through the rest of the graph will have the credit card field converted to the
xxxx-xxxx-xxxx-1122 format.

The point of purchase is the source or
parent node for the entire graph.

Purchase

Figure 1.5 The simple start for the sales
transaction graph. This node is the source of
raw sales transaction information that will
flow through the graph.

Credit card numbers are masked
here for security purposes.Masking

Purchase

Figure 1.6 The first node in the graph that
represents the business requirements. This
node is responsible for masking credit card
numbers and is the only node that receives
the raw sales data from the source node,
effectively making it the source for all other
nodes connected to it.

13Changing perspective on a purchase transaction
1.4.3 Patterns node

The patterns node (figure 1.7) extracts the relevant information to establish where
customers purchase products throughout the country. Instead of making a copy of the
data, the patterns node will retrieve the item, date, and ZIP code for the purchase and
create a new object containing those fields.

1.4.4 Rewards node

The next child node in the process is the rewards accumulator (figure 1.8). ZMart has
a customer rewards program that gives customers points for purchases made in the
store. This node’s role is to extract the dollar amount spent and the client’s ID and
create a new object containing those two fields.

1.4.5 Storage node

The final child node writes the purchase data out to a NoSQL data store for further
analysis (figure 1.9).

 We’ve now tracked the example purchase transaction through ZMart’s graph of
requirements. Let’s see how you can use Kafka Streams to convert this graph into a
functional streaming application.

Data is extracted here for
determining purchase patterns.Patterns

Masking

Purchase

Figure 1.7 The patterns node consumes purchase information from the
masking node and converts it into a record showing when a customer
purchased an item and the ZIP code where the customer completed the
transaction.

14 CHAPTER 1 Welcome to Kafka Streams
Data is pulled from the transaction here for
use in calculating customer rewards.

Patterns

Masking

Rewards

Purchase

Figure 1.8 The rewards node is
responsible for consuming sales records
from the masking node and converting
them into records containing the total of
the purchase and the customer ID.

Purchase is stored here to
be available for further

ad hoc analysis.

Patterns

Masking

Rewards

Purchase

Storage

Figure 1.9 The storage node consumes records from the masking node as well.
These records aren’t converted into any other format but are stored in a NoSQL
data store for ad hoc analysis later.

15Kafka Streams as a graph of processing nodes
1.5 Kafka Streams as a graph of processing nodes
Kafka Streams is a library that allows you to perform per-event processing of records.
You can use it to work on data as it arrives, without grouping data in microbatches.
You process each record as soon as it’s available.

 Most of ZMart’s goals are time sensitive, in that you want to take action as soon as
possible. Preferably, you’ll be able to collect information as events occur. Additionally,
there are several ZMart locations across the country, so you’ll need all the transaction
records to funnel into a single flow or stream of data for analysis. For these reasons,
Kafka Streams is a perfect fit. Kafka Streams allows you to process records as they
arrive and gives you the low-latency processing you require.

 In Kafka Streams, you define a topology of processing nodes (I’ll use the terms pro-
cessor and node interchangeably). One or more nodes will have as source Kafka topic(s),
and you can add additional nodes, which are considered child nodes (if you aren’t
familiar with what a Kafka topic is, don’t worry—I'll explain in detail in chapter 2). Each
child node can define other child nodes. Each processing node performs its assigned
task and then forwards the record to each of its child nodes. This process of perform-
ing work and then forwarding data to any child nodes continues until every child
node has executed its function.

 Does this process sound familiar? It should, because you similarly transformed
ZMart’s business requirements into a graph of processing nodes. Traversing a graph is
how Kafka Streams works—it’s a DAG or topology of processing nodes.

 You start with a source or parent node, which has one or more children. Data
always flows from the parent to the child nodes, never from child to parent. Each
child node, in turn, can define child nodes of its own, and so on.

 Records flow through the graph in a depth-first manner. This approach has signifi-
cant implications: each record (a key/value pair) is processed in full by the entire
graph before another record is forwarded through the topology. Because each record
is processed depth-first through the whole DAG, there’s no need to have backpressure
built into Kafka Streams.

DEFINITION There are varying definitions of backpressure, but here I define it
as the need to restrict the flow of data by buffering or using a blocking mech-
anism. Backpressure is necessary when a source is producing data faster than a
sink can receive and process that data.

By being able to connect or chain together multiple processors, you can quickly build
up complex processing logic, while at the same time keeping each component rela-
tively straightforward. It’s in this composition of processors that Kafka Streams’ power
and complexity come into play.

DEFINITION A topology is the way you arrange the parts of an entire system and
connect them with each other. When I say Kafka Streams has a topology, I’m
referring to transforming data by running through one or more processors.

16 CHAPTER 1 Welcome to Kafka Streams
1.6 Applying Kafka Streams to the purchase
transaction flow
Let’s build a processing graph again, but this time we’ll create a Kafka Streams pro-
gram. To refresh your memory, figure 1.4 shows the requirements graph for ZMart’s
business requirements. Remember, the vertexes are processing nodes that handle
data, and the edges show the flow of data.

 Although you’ll be building a Kafka Streams program as you build your new graph,
you’ll still be taking a relatively high-level approach. Some details will be left out. We’ll
go into more detail later in the book when we look at the actual code.

 The Kafka Streams program will consume records, and when it does, you’ll convert
the raw records into Purchase objects. These pieces of information will make up a
Purchase object:

 ZMart customer ID (scanned from the member card)
 Total dollar amount spent
 Item(s) purchased
 ZIP code of the store where the purchase took place
 Date and time of the transaction
 Debit or credit card number

1.6.1 Defining the source

The first step in any Kafka Streams program is to establish a source for the stream.
The source could be any of the following:

 A single topic
 Multiple topics in a comma-separated list
 A regex that can match one or more topics

In this case, it will be a single topic named transactions. If any of these Kafka terms
are unfamiliar to you, remember—they’ll be explained in chapter 2.

 It’s important to note that to Kafka, the Kafka Streams program looks like any
other combination of consumers and producers. Any number of applications could

Kafka Streams and Kafka
As you might have guessed from the name, Kafka Streams runs on top of Kafka. In
this introductory chapter, you don’t need to know about Kafka, because we’re focus-
ing more how Kafka Streams works conceptually. A few Kafka-specific terms may be
mentioned, but for the most part, we’ll be concentrating on the stream-processing
aspects of Kafka Streams.

If you’re new to Kafka or are unfamiliar with it, you’ll learn what you need to know
about Kafka in chapter 2. Knowledge of Kafka is essential for working effectively with
Kafka Streams.

17Applying Kafka Streams to the purchase transaction flow
be reading from the same topic in conjunction with your streaming program. Figure 1.10
represents the source node in the topology.

1.6.2 The first processor: masking credit card numbers

Now that you have a source defined, you can start creating processors that will work
on the data. Your first goal is to mask the credit card numbers recorded in the incom-
ing purchase records. The first processor will convert credit card numbers from some-
thing like 1234-5678-9123-2233 to xxxx-xxxx-xxxx-2233.

 The KStream.mapValues method will perform the masking represented in fig-
ure 1.11. It will return a new KStream instance with values masked as specified by a
ValueMapper. This particular KStream instance will be the parent processor for any
other processors you define.

CREATING PROCESSOR TOPOLOGIES

Each time you create a new KStream instance by using a transformation method,
you’re in essence building a new processor that’s connected to the other processors
already created. By composing processors, you can use Kafka Streams to create com-
plex data flows elegantly.

 It’s important to note that calling a method that returns a new KStream instance
doesn’t cause the original instance to stop consuming messages. A transforming method

Source

Figure 1.10 The source node: a Kafka topic

Child node of the source node

Source node consuming message from
the Kafka transaction topic

Source

Masking

Figure 1.11 The masking processor is a
child of the main source node. It receives
all the raw sales transactions and emits
new records with the credit card number
masked.

18 CHAPTER 1 Welcome to Kafka Streams
creates a new processor and adds it to the existing processor topology. The updated
topology is then used as a parameter to create the next KStream instance, which starts
receiving messages from the point of its creation.

 It’s very likely that you’ll build new KStream instances to perform additional trans-
formations while retaining the original stream for its original purpose. You’ll work
with an example of this when you define the second and third processors.

 It’s possible to have a ValueMapper convert an incoming value to an entirely new
type, but in this case it will return an updated copy of the Purchase object. Using a
mapper to update an object is a pattern you’ll see frequently.

 You should now have a clear image of how you can build up your processor pipe-
line to transform and output data.

1.6.3 The second processor: purchase patterns

The next processor to create is one that can capture information necessary for deter-
mining purchase patterns in different regions of the country (figure 1.12). To do this,
you’ll add a child-processing node to the first processor (KStream) you created. The
first processor produces Purchase objects with the credit card number masked.

 The purchase-patterns processor receives a Purchase object from its parent node
and maps the object to a new PurchasePattern object. The mapping process extracts

Here the Purchase object is “mapped”
to a PurchasePatterns object.

The child processor node of the
patterns processor has a child node

that writes the PurchasePatterns object
out to the patterns topic. The

format is JSON.

patterns
topic

Patterns

Masking

Source

Figure 1.12 The purchase-pattern processor takes Purchase objects and converts
them into PurchasePattern objects containing the items purchased and the ZIP
code where the transaction took place. A new processor takes records from the
patterns processor and writes them out to a Kafka topic.

19Applying Kafka Streams to the purchase transaction flow
the item purchased (toothpaste, for example) and the ZIP code it was bought in and
uses that information to create the PurchasePattern object. We’ll go over exactly how
this mapping process occurs in chapter 3.

 Next, the purchase-patterns processor adds a child processor node that receives
the new PurchasePattern object and writes it out to a Kafka topic named patterns.
The PurchasePattern object is converted to some form of transferable data when it’s
written to the topic. Other applications can then consume this information and use it
to determine inventory levels as well as purchasing trends in a given area.

1.6.4 The third processor: customer rewards

The third processor will extract information for the customer rewards program (fig-
ure 1.13). This processor is also a child node of the original processor. It receives the
Purchase objects and maps them to another type: the RewardAccumulator object.

 The customer rewards processor also adds a child-processing node to write the
RewardAccumulator object out to a Kafka topic, rewards. By consuming records from
the rewards topic, other applications can determine rewards for ZMart customers and
produce, for example, the email that Jane Doe received.

Here the Purchase object is “mapped”
to a RewardAccumulator object.

The child processor node of the
Rewards processor has a child node
that writes the RewardAccumulator

object out to the rewards topic.
The format is JSON.

patterns
topic

Patterns

Masking

Source

Rewards

rewards
topic

Figure 1.13 The customer rewards processor is responsible for transforming Purchase objects
into a RewardAccumulator object containing the customer ID, date, and dollar amount of the
transaction. A child processor writes the Rewards objects to another Kafka topic.

20 CHAPTER 1 Welcome to Kafka Streams
1.6.5 The fourth processor—writing purchase records

The last processor is shown in figure 1.14. This is the third child node of the masking
processor node, and it writes the entire masked purchase record out to a topic called
purchases. This topic will be used to feed a NoSQL storage application that will con-
sume the records as they come in. These records will be used for later analysis.

As you can see, the first processor, which masks the credit card number, feeds three
other processors: two that further refine or transform the data, and one that writes the
masked results to a topic for further use by other consumers. By using Kafka Streams,
you can build up a powerful processing graph of connected nodes to perform stream
processing on your incoming data.

Summary
 Kafka Streams is a graph of processing nodes that combine to provide powerful

and complex stream processing.
 Batch processing is powerful, but it’s not enough to satisfy real-time needs for

working with data.

This last processor writes out
the purchase transaction as
JSON to the purchases topic,

which is consumed by a NoSQL
storage engine.

patterns
topic

Patterns

Masking

Source

Rewards

rewards
topic

purchases
topic

Figure 1.14 The final processor is responsible for writing out the entire Purchase object to
another Kafka topic. The consumer for this topic will store the results in a NoSQL store such as
MongoDB.

21Summary
 Distributing data, key/value pairs, partitioning, and data replication are critical
for distributed applications.

To understand Kafka Streams, you should know some Kafka. For those who don’t
know Kafka, we’ll cover the essentials in chapter 2:

 Installing Kafka and sending a message
 Exploring Kafka’s architecture and what a distributed log is
 Understanding topics and how they’re used in Kafka
 Understanding how producers and consumers work and how to write them

effectively

If you’re already comfortable with Kafka, feel free to go straight to chapter 3, where
we’ll build a Kafka Streams application based on the example discussed in this chapter.

Kafka quickly
Although this is a book about Kafka Streams, it’s impossible to explore Kafka
Streams without discussing Kafka. After all, Kafka Streams is a library that runs on
Kafka.

 Kafka Streams is designed very well, so it’s possible to get up and running with
little or no Kafka experience, but your progress and ability to fine-tune Kafka will
be limited. Having a good fundamental knowledge of Kafka is essential to get the
most out of Kafka Streams.

NOTE This chapter is for developers who are interested in getting started
with Kafka Streams but have little or no experience with Kafka itself. If you
have a good working knowledge of Kafka, feel free to skip this chapter and
proceed directly to chapter 3.

This chapter covers
 Examining the Kafka architecture

 Sending messages with producers

 Reading messages with consumers

 Installing and running Kafka
22

23Using Kafka to handle data
Kafka is too large a topic to cover in its entirety in one chapter. I’ll cover enough to
give you a good understanding how Kafka works and a few of the core configuration
settings you’ll need to know. For in-depth coverage of Kafka, take a look at Kafka in
Action by Dylan Scott (Manning, 2018).

2.1 The data problem
Organizations today are swimming in data. Internet companies, financial businesses,
and large retailers are better positioned now than ever to use this data, both to serve
their customers better and to find more efficient ways of conducting business. (We’re
going to take a positive outlook on this situation and assume only good intentions
when looking at customer data.)

 Let’s consider the various requirements you’d like to have in the ZMart data-
management solution:

 You need a way to send data to a central storage quickly.
 Because machines frequently fail, you also need the ability to have your data

replicated, so those inevitable failures don’t cause downtime and data loss.
 You need the potential to scale to any number of consumers of data without

having to keep track of different applications. You need to make the data avail-
able to anyone in an organization, but not have to keep track of who has and
has not viewed the data.

2.2 Using Kafka to handle data
In chapter 1, you were introduced to the large retail company ZMart. At that point,
ZMart wanted a streaming platform to use the company’s sales data in order to offer
better customer service and improve sales overall. But six months before that, ZMart
was looking to get a handle on its data situation. ZMart had a custom solution that ini-
tially worked well but had become unmanageable for reasons you’ll soon see.

2.2.1 ZMart’s original data platform

Originally, ZMart was a small company that had retail sales data flowing into its system
from separate applications. This worked fine initially, but over time it became evident
that a new approach would be needed. Data from sales in one department is not of
interest only to that department. Several parts of the company are interested, and
each part has a different take on what’s important and how they want the data struc-
tured. Figure 2.1 shows ZMart’s original data platform.

 Over time, ZMart continued to grow by acquiring other companies and expanding
its offerings in existing stores. With each addition, the connections between applica-
tions become more complicated. What started out as a handful of applications com-
municating with each other turned into a veritable pile of spaghetti. As you can see in
figure 2.2, even with just three applications, the number of connections is cumber-
some and confusing. You can see how adding new applications will make this data
architecture unmanageable over time.

24 CHAPTER 2 Kafka quickly
2.2.2 A Kafka sales transaction data hub

A solution to ZMart’s problem is to create one intake process to hold all transaction
data—a transaction data hub. This transaction data hub should be stateless, accepting

Sales

Auditing

Marketing

Figure 2.1 The original data architecture for ZMart was simple enough to
have information flowing to and from each source of information.

Sales

Acquired company A Auditing

Marketing

Acquired company CAcquired company B

Customer info

Figure 2.2 With more applications being added over time, connecting all these information sources has
become complex.

25Kafka architecture
transaction data and storing it in such a fashion that any consuming application can
pull the information it needs. It will be up to the consuming application to keep track
of what it’s seen. The transaction data hub will only know how long it’s been holding
any transaction data, and when that data should be rolled off or deleted.

 In case you haven’t guessed it yet, we have the perfect use case here for Kafka.
Kafka is a fault-tolerant, robust publish/subscribe system. A single Kafka node is called
a broker, and multiple Kafka servers make up a cluster. Kafka stores messages written by
producers in topics. Consumers subscribe to topics and contact Kafka to see if messages
are available in those subscribed topics. Figure 2.3 shows how you can envision Kafka
as the sales transaction data hub.

You’ve seen an overview of Kafka from 50,000 feet. We’ll take a closer look in the fol-
lowing sections.

2.3 Kafka architecture
In the next several subsections, we’ll look at the key parts of Kafka’s architecture and
at how Kafka works. If you’re interested in kicking the tires on Kafka sooner rather
than later, skip ahead to section 2.6, on installing and running Kafka. After you’ve got
it installed, come back here to continue learning about Kafka.

Sales

With Kafka as a sales transaction
data hub, the architecture becomes
much simpler. Each application only
needs to know how to read/write to
Kafka. Adding or removing
applications has no effect on other
applications in the data processing.

Acquired company A

Marketing

Acquired company CAcquired company B

Customer info

Auditing

Kafka

Figure 2.3 Using Kafka as a sales transaction hub simplifies the ZMart data architecture
significantly. Now each machine doesn’t need to know about every other source of
information. All they need to know is how to read from and write to Kafka.

26 CHAPTER 2 Kafka quickly
2.3.1 Kafka is a message broker

Earlier, I stated that Kafka is a publish/subscribe system, but it would be more precise
to say that Kafka acts as a message broker. A broker is an intermediary that brings
together two parties that don’t necessarily know each other for a mutually beneficial
exchange or deal. Figure 2.4 shows the evolution of the ZMart data infrastructure.
The producers and consumers have been added to show how the individual parts
communicate with Kafka. They don’t communicate directly with each other.

Kafka stores messages in topics and retrieves messages from topics. There’s no direct
connection between the producers and the consumers of the messages. Additionally,
Kafka doesn’t keep any state regarding the producers or consumers. It acts solely as a
message clearinghouse.

 The underlying technology of a Kafka topic is a log, which is a file that Kafka
appends incoming records to. To help manage the load of messages coming into a
topic, Kafka uses partitions. We discussed partitions in chapter 1, and you may recall
that one use of partitions is to bring data located on different machines together on
the same server. We’ll discuss partitions in detail shortly.

Sales

In this simplified view of Kafka,
we’re assuming a cluster is installed.

All output is sent from a producer, and
input is consumed by a consumer.

Acquired company A

Consumer

Marketing

Acquired company CAcquired company B

Customer info

Auditing

Producer

Consumer Producer

Consumer Producer

Consumer Producer Consumer Producer

Consumer Producer

Consumer Producer

Kafka

ZooKeeper
A cluster of ZooKeeper nodes communicates
with Kafka to maintain topic info and keep
track of brokers in the cluster.

Figure 2.4 Kafka is a message broker. Producers send messages to Kafka, and those messages
are stored and made available to consumers via subscriptions to topics.

27Kafka architecture
2.3.2 Kafka is a log

The mechanism underlying Kafka is the log. Most software engineers are familiar with
logs that track what an application’s doing. If you’re having performance issues or
errors in your application, the first place to check is the application logs. But that’s a
different sort of log. In the context of Kafka (or any other distributed system), a log is
“an append-only, totally ordered sequence of records ordered by time.”1

 Figure 2.5 shows what a log looks like. An application appends records to the end
of the log as they arrive. Records have an implied ordering by time, even though there
might not be a timestamp associated with each record, because the earliest records
are to the left and the last record to arrive is at the right end.

Logs are a simple data abstraction with powerful implications. If you have records in
order with respect to time, resolving conflicts or determining which update to apply
to different machines becomes straightforward: the latest record wins.

 Topics in Kafka are logs that are segregated by topic name. You could almost
think of topics as labeled logs. If the log is replicated among a cluster of machines,
and a single machine goes down, it’s easy to bring that server back up: just replay
the log file. The ability to recover from failure is precisely the role of a distributed
commit log.

 We’ve only scratched the surface of a very deep topic when it comes to distributed
applications and data consistency, but what you’ve seen so far should give you a basic
understanding of what’s going on under the covers with Kafka.

2.3.3 How logs work in Kafka

When you install Kafka, one of the configuration settings is log.dir, which specifies
where Kafka stores log data. Each topic maps to a subdirectory under the specified log
directory. There will be as many subdirectories as there are topic partitions, with a for-
mat of partition-name_partition-number (I’ll cover partitions in the next section). Inside

1 Jay Kreps, “The Log: What Every Software Engineer Should Know About Real-time Data’s Unifying Abstrac-
tion,” http://mng.bz/eE3w.

First record to arrive Latest record to arrive

0 1 2 3 4 5 6 7 8 9

Figure 2.5 A log is a file where incoming records are appended—each
newly arrived record is placed immediately after the last record received.
This process orders the records in the file by time.

http://mng.bz/eE3w

28 CHAPTER 2 Kafka quickly
each directory is the log file where incoming messages are appended. Once the log
files reach a certain size (either a number of records or size on disk), or when a con-
figured time difference between message timestamps is reached, the log file is
“rolled,” and Kafka appends incoming messages to a new log (see figure 2.6).

You can see that logs and topics are highly connected concepts. You could say that a
topic is a log, or that it represents a log. The topic name gives you a good handle on
which log the messages sent to Kafka via producers will be stored in. Now that we’ve cov-
ered the concept of logs, let’s discuss another fundamental concept in Kafka: partitions.

2.3.4 Kafka and partitions

Partitions are a critical part of Kafka’s design. They’re essential for performance, and
they guarantee that data with the same keys will be sent to the same consumer and in
order. Figure 2.7 shows how partitions work.

The logs directory is configured in the root at /logs.

/logs

/logs/topicA_0 topicA has one partition.

/logs/topicB_0 topicB has three partitions.

/logs/topicB_1

/logs/topicB_2

Figure 2.6 The logs directory is the base
storage for messages. Each directory under
/logs represents a topic partition. Filenames
within the directory start with the name of the
topic, followed by an underscore, which is
followed by a partition number.

Partition 2

0 1 2 3 4 5 6 7 8 9

Partition 1

0 1 2 3 4 5 6 7 8 9

Partition 0

0 1 2 3 4 5 6 7 8 9

The numbers shown in the
rectangles are the offsets
for the messages.

As messages or records come in,
they are written to a partition
(assigned by producer) and
appended in time order to
the end of the log.

Topic with partitions

Data comes into a single
topic but is placed into
individual partitions either
(0, 1, or 2). Because
there are no keys with
these messages,
partitions are assigned
in round-robin fashion.

Each partition is in strictly
increasing order, but there’s
no order across partitions.

Figure 2.7 Kafka uses partitions to achieve high throughput and spread the messages for an
individual topic across several machines in the cluster.

29Kafka architecture
Partitioning a topic essentially splits the data forwarded to a topic across parallel
streams, and it’s key to how Kafka achieves its tremendous throughput. I explained
that a topic is a distributed log; each partition is similarly a log unto itself and follows
the same rules. Kafka appends each incoming message to the end of the log, and all
messages are strictly time-ordered. Each message has an offset number assigned to it.
The order of messages across partitions isn’t guaranteed, but the order of messages
within each partition is guaranteed.

 Partitioning serves another purpose, aside from increasing throughput. It allows
topic messages to be spread across several machines so that the capacity of a given
topic isn’t limited to the available disk space on one server.

 Now let’s look at another critical role partitions play: ensuring messages with the
same keys end up together.

2.3.5 Partitions group data by key

Kafka works with data in key/value pairs. If the keys are null, the Kafka producer will
write records to partitions chosen in a round-robin fashion. Figure 2.8 shows how par-
tition assignment operates with non-null keys.

If the keys aren’t null, Kafka uses the following formula (shown in pseudocode) to
determine which partition to send the key/value pair to:

HashCode.(key) % number of partitions

By using a deterministic approach to select a partition, records with the same key will
always be sent to the same partition and in order. The default partitioner uses this

Partition 1

Partition 0

hashCode(barBytes) % 2 = 1

hashCode(fooBytes) % 2 = 0

Once the partition is determined, the message
is appended to the appropriate log.

Incoming messages:

{foo, message data}
{bar, message data}

are used to determine partition theMessage keys which
Thesemessage should go to. keys are not null.

The bytes of the key are used to calculate the hash.

Figure 2.8 “foo” is sent to partition 0, and
“bar” is sent to partition 1. You obtain the
partition by hashing the bytes of the key,
modulus the number of partitions.

30 CHAPTER 2 Kafka quickly
approach; if you need a different strategy for selecting partitions, you can provide a
custom partitioner.

2.3.6 Writing a custom partitioner

Why would you want to write a custom partitioner? Of the several possible reasons,
we’ll look at one simple case here—the use of composite keys.

 Suppose you have purchase data flowing into Kafka, and the keys contain two val-
ues: a customer ID and a transaction date. But you need to group values by cus-
tomer ID, so taking a hash of the customer ID and the purchase date won’t work. In
this case, you’ll need to write a custom partitioner that knows which part of the com-
posite key determines which partition to use. For example, the composite key found
in src/main/java/bbejeck/model/PurchaseKey.java (source code can be found on
the book’s website here: https://manning.com/books/kafka-streams-in-action) is
shown in the following listing.

public class PurchaseKey {

private String customerId;
private Date transactionDate;

public PurchaseKey(String customerId, Date transactionDate) {
this.customerId = customerId;
this.transactionDate = transactionDate;

}

public String getCustomerId() {
return customerId;

}

public Date getTransactionDate() {
return transactionDate;

}
}

When it comes to partitioning, you need to ensure that all transactions for a particular
customer go to the same partition, but using the key in its entirety won’t enable this to
happen. Because purchases happen on many dates, including the date will result in
different key values for a single customer, placing the transactions across random par-
titions. You need to ensure you send all transactions with the same customer ID to the
same partition. The only way to do that is to only use the customer ID when determin-
ing the partition.

 The following example custom partitioner does what’s required. PurchaseKey-
Partitioner (from src/main/java/bbejeck/chapter_2/partitioner/PurchaseKey-
Partitioner.java) extracts the customer ID from the key to determine which partition
to use.

Listing 2.1 PurchaseKey composite key

https://manning.com/books/kafka-streams-in-action

31Kafka architecture
public class PurchaseKeyPartitioner extends DefaultPartitioner {

@Override
public int partition(String topic, Object key,

byte[] keyBytes, Object value,
byte[] valueBytes, Cluster cluster) {

 Object newKey = null;
if (key != null) {

PurchaseKey purchaseKey = (PurchaseKey) key;
newKey = purchaseKey.getCustomerId();
keyBytes = ((String) newKey).getBytes();

}
return super.partition(topic, newKey, keyBytes, value,

 valueBytes, cluster);

}
}

This custom partitioner extends DefaultPartitioner. You could implement the
Partitioner interface directly, but there’s existing logic in DefaultPartitioner that
we’re using in this case.

 Keep in mind that when creating a custom partitioner, you aren’t limited to using
only the key. Using the value alone, or the value in combination with the key, is valid
as well.

NOTE The Kafka API provides a Partitioner interface that you can use to
write a custom partitioner. We won’t be covering writing a partitioner from
scratch, but the principles are the same as those in the listing 2.2.

You’ve just seen how to construct a custom partitioner. Next, let’s wire up the parti-
tioner with Kafka.

2.3.7 Specifying a custom partitioner

Now that you’ve written a custom partitioner, you need to tell Kafka you want to use it
instead of the default partitioner. Although we haven’t covered producers yet, you
specify a different partitioner when configuring the Kafka producer:

partitioner.class=bbejeck_2.partitioner.PurchaseKeyPartitioner

By setting a partitioner per producer instance, you’re free to use any partitioner class
for any producer. We’ll go over producer configuration in detail when we cover using
Kafka producers.

WARNING You must exercise some caution when choosing the keys you use
and when selecting parts of a key/value pair to partition on. Make sure the
key you choose has a fair distribution across all of your data. Otherwise, you’ll

Listing 2.2 PurchaseKeyPartitioner custom partitioner

If the key isn’t
null, extracts
the customer ID

Sets the key
bytes to the
new value

Returns the partition with the
updated key, delegating to

the superclass

32 CHAPTER 2 Kafka quickly
end up with a data-skew problem, because most of your data will be located
on just a few of your partitions.

2.3.8 Determining the correct number of partitions

Choosing the number of partitions to use when creating a topic is part art and part sci-
ence. One of the key considerations is the amount of data flowing into a given topic.
More data implies more partitions for higher throughput. But as with anything in life,
there are trade-offs.

 Increasing the number of partitions increases the number of TCP connections and
open file handles. Additionally, how long it takes to process an incoming record in a
consumer will also determine throughput. If you have heavyweight processing in your
consumer, adding more partitions may help, but ultimately the slower processing will
hinder performance.2

2.3.9 The distributed log

We’ve discussed the concepts of logs and partitioned topics. Let’s take a minute to
look at those two concepts together to demonstrate distributed logs.

 So far, we’ve focused on logs and topics on one Kafka server or broker, but typically
a Kafka production cluster environment includes several machines. I’ve intentionally
kept the discussion centered on a single node, as it’s easier to understand the con-
cepts when considering one node. But in practice, you’ll always be working with a clus-
ter of machines in Kafka.

 When a topic is partitioned, Kafka doesn’t allocate those partitions on one machine—
Kafka spreads them across several machines in the cluster. As Kafka appends records
to a log, Kafka is distributing those records across several machines by partition. In fig-
ure 2.9, you can see this process in action.

 Let’s walk through a quick example using figure 2.9 as a guide. For this example,
we’ll assume one topic and null keys, so the producer assigns partitions in a round-
robin manner.

 The producer sends its first message to partition 0 on Kafka broker 1, the second
message to partition 1 on Kafka broker 1, and the third message to partition 2 on
Kafka broker 2. When the producer sends its sixth message, it goes to partition 5 on
Kafka broker 3, and the next message starts over, going to partition 0 on Kafka bro-
ker 1. Message distribution continues in this manner, spreading message traffic across
all nodes in the Kafka cluster.

 Although storing data remotely may sound risky, because a server can go down,
Kafka offers data redundancy. Data is replicated to one or more machines in the
cluster as you write to one broker in Kafka (we’ll cover replication in an upcoming
section).

2 Jun Rao, “How to Choose the Number of Topics/Partitions in a Kafka Cluster?” http://mng.bz/4C03.

http://mng.bz/4C03

33Kafka architecture
2.3.10 ZooKeeper: leaders, followers, and replication

So far, we’ve discussed the role topics play in Kafka, and how and why topics are parti-
tioned. You’ve seen that partitions aren’t all located on one machine but are spread
out on brokers throughout the cluster. Now it’s time to look at how Kafka provides
data availability in the face of machine failures.

 Kafka has the notion of leader and follower brokers. In Kafka, for each topic parti-
tion, one broker is chosen as the leader for the other brokers (the followers). One of
the chief duties of the leader is to assign replication of topic partitions to the follower
brokers. Just as Kafka allocates partitions for a topic across the cluster, Kafka also
replicates the partitions across machines. Before we go into the details of how leaders,
followers, and replication work, we need to discuss the technology Kafka uses to
achieve this.

2.3.11 Apache ZooKeeper

If you’re a complete Kafka newbie, you may be asking yourself, “Why are we talking
about Apache ZooKeeper in a Kafka book?” Apache ZooKeeper is integral to Kafka’s

This topic has 6 partitions on a 3-node Kafka
cluster. The log for the topic is spread across
the 3 nodes. Only the leader brokers for the
topic partitions are shown here.

If no keys are associated with the
messages, partitions are chosen
in a round-robin fashion. Otherwise,
partitions are determined by the hash
of the key, modulus the number of partitions.

Partition 1

Partition 0

Partition 2

Partition 3

Partition 4

Partition 5

Kafka broker 1

Kafka broker 2

Kafka broker 3

Producer

Figure 2.9 A producer writes messages to partitions of a topic. If no key is associated with the
message, the producer chooses a partition in a round-robin fashion. Otherwise, the hash of the key,
modulus the number of partitions is used.

34 CHAPTER 2 Kafka quickly
architecture, and it’s ZooKeeper that enables Kafka to have leader brokers and to do
such things as track the replication of topics (https://zookeeper.apache.org):

ZooKeeper is a centralized service for maintaining configuration information, naming,
providing distributed synchronization, and providing group services. All of these kinds of
services are used in some form or another by distributed applications.

Given that Kafka is a distributed application, it should start to be clear how ZooKeeper
is involved in Kafka’s architecture. For this discussion, we’ll only consider Kafka instal-
lations where there are two or more Kafka servers installed.

 In a Kafka cluster, one of the brokers is “elected” as the controller. We covered parti-
tions in the previous section and discussed how Kafka spreads partitions across differ-
ent machines in the cluster. Topic partitions have a leader and follower(s) (the level
of replication determines the degree of replication). When producing messages,
Kafka sends the record to the broker that is the leader for the record’s partition.

2.3.12 Electing a controller

Kafka uses ZooKeeper to elect the controller broker. Discussing the consensus algo-
rithms involved is way beyond the scope of this book, so we’ll take the 50,000-foot view
and just state that ZooKeeper elects a broker from the cluster to be the controller.

 If the controlling broker fails or becomes unavailable for any reason, ZooKeeper
elects a new controller from a set of brokers that are considered to be caught up with
the leader (an in-sync replica [ISR]). The brokers that make up this set are dynamic,
and ZooKeeper recognizes only brokers in this set for election as leader.3

2.3.13 Replication

Kafka replicates records among brokers to ensure data availability, should a broker in
the cluster fail. You can set the level of replication for each topic (as you saw in our
previous example of publishing and consuming) or for all topics in the cluster. Fig-
ure 2.10 demonstrates the replication flow between brokers.

 The Kafka replication process is straightforward. Brokers that follow a topic parti-
tion consume messages from the topic-partition leader and append those records to
their log. As discussed in the previous section, follower brokers that are caught up
with their leader broker are considered to be ISRs. ISR brokers are eligible to be
elected leader, should the current leader fail or become unavailable.4

3 Kafka documentation, “Replicated Logs: Quorums, ISRs, and State Machines (Oh my!),” http://kafka.apache
.org/documentation/#design_replicatedlog.

4 Kafka documentation, “Replication,” http://kafka.apache.org/documentation/#replication.

https://zookeeper.apache.org
http://kafka.apache.org/documentation/#design_replicatedlog
http://kafka.apache.org/documentation/#design_replicatedlog
http://kafka.apache.org/documentation/#design_replicatedlog
http://kafka.apache.org/documentation/#replication

35Kafka architecture
2.3.14 Controller responsibilities

The controller broker is responsible for setting up leader/follower relationships for
all partitions of a topic. If a Kafka node dies or is unresponsive (to ZooKeeper heart-
beats), all of its assigned partitions (both leader and follower) are reassigned by the
controller broker. Figure 2.11 illustrates a controller broker in action.5

 The figure shows a simple failure scenario. In step 1, the controller broker detects
that broker 3 isn’t available. In step 2, the controller broker reassigns the leadership
of the partition on broker 3 to broker 2.

5 Some of the information in this section came from answers given by Gwen Shapira, “What is the actual role
of Zookeeper in Kafka? What benefits will I miss out on if I don’t use Zookeeper and Kafka together?” on
Quora at http://mng.bz/25Sy.

The topic foo has 2 partitions and a replication
level of 3. Dashed lines between partitions point
to the leader of the given partition. Producers
write records to the leader of a partition, and
the followers read from the leader.

Broker 1 is the leader for partition 0 and
is a follower for partition 1 on broker 3.

foo topic partition 1

Kafka broker 1

foo topic partition 0

foo topic partition 0

Kafka broker 2

foo topic partition 1

foo topic partition 1

Kafka broker 3

foo topic partition 0

Broker 2 is a follower for partition 0 on broker
1 and a follower for partition 1 on broker 3.

Broker 3 is a follower for partition 0 on
broker 1 and the leader for partition 1.

Figure 2.10 Brokers 1 and 3 are leaders for one topic partition and followers for another, whereas
broker 2 is a follower only. Follower brokers copy data from the leader broker.

http://mng.bz/25Sy

36 CHAPTER 2 Kafka quickly
ZooKeeper is also involved in the following aspects of Kafka operations:

 Cluster membership—Joining a cluster and maintaining membership in a cluster.
If a broker becomes unavailable, ZooKeeper removes the broker from cluster
membership.

 Topic configuration—Keeping track of the topics in a cluster, which broker is the
leader for a topic, how many partitions there are for a topic, and any specific
configuration overrides for a topic.

 Access control—Identifying who can read from and write to particular topics.

You’ve now seen why Kafka has a dependency on Apache ZooKeeper. It’s ZooKeeper
that enables Kafka to have a leader broker with followers. The head broker has the
critical role of assigning topic partitions for replication to the followers, as well as reas-
signing them when a member broker fails.

The topic foo has 2 partitions and a replication
level of 3. These are the initial leaders and
followers:
Broker 1 leader partition 0, follower partition 1
Broker 2 follower partition 0, follower partition 1
Broker 3 follower partition 0, leader partition 1

Broker 3 has become unresponsive.

Step 2: The controller has reassigned the
leadership of partition from broker 3 to1
broker 2. All records for partition will go1
to broker 2, and broker will now consume1
messages for partition from broker 2.1

Step : As the leader, broker1 1
has detected that broker 3
has failed.

foo topic partition 1

Kafka broker 1

foo topic partition 0

foo topic partition 0

Kafka broker 2

foo topic partition 1

foo topic partition 1

Kafka broker 3

foo topic partition 0

Figure 2.11 The controller broker is responsible for assigning other brokers to be the leader broker
for some topics/partitions and followers for other topics/partitions. When a broker becomes
unavailable, the controller broker will reassign the failed broker’s assignments to other brokers
in the cluster.

37Kafka architecture
2.3.15 Log management

We’ve covered appending messages, but we haven’t talked about how logs are man-
aged as they continue to grow. The amount of space on spinning disks in a cluster is a
finite resource, so it’s important for Kafka to remove messages over time. When it
comes to removing old data in Kafka, there are two approaches: the traditional log-
deletion approach, and compaction.

2.3.16 Deleting logs

The log-deletion strategy is a two-phased approach: first, the logs are rolled into seg-
ments, and then the oldest segments are deleted. To manage the increasing size of the
logs, Kafka rolls them into segments. The timing of log rolling is based on time-
stamps embedded in the messages. Kafka rolls a log when a new message arrives,
and its timestamp is greater than the timestamp of the first message in the log plus
the log.roll.ms configuration value. At that point, the log is rolled and a new seg-
ment is created as the new active log. The previous active segment is still used to
retrieve messages for consumers.

 Log rolling is a configuration setting you can specify when setting up a Kafka bro-
ker.6 There are two options for log rolling:

 log.roll.ms—This is the primary configuration, but there’s no default value.
 log.roll.hours—This is the secondary configuration, which is only used if

log.role.ms isn’t set. It defaults to 168 hours.

Over time, the number of segments will continue to grow, and older segments will need
to be deleted to make room for incoming data. To handle the deletion, you can specify
how long to retain the segments. Figure 2.12 illustrates the process of log rolling.

 Like log rolling, the removal of segments is based on timestamps in the messages
and not just the clock time or time when the file was last modified. Log-segment
deletion is based on the largest timestamp in the log. Here are three settings, listed
in order of priority, meaning that configurations earlier in the list override the later
entries:

 log.retention.ms—How long to keep a log file in milliseconds
 log.retention.minutes—How long to keep a log file in minutes
 log.retention.hours—Log file retention in hours

I present these settings based on the assumption of high-volume topics, where you’re
guaranteed to reach the maximum file size in a given time period. Another configura-
tion setting, log.retention.bytes, could be specified with a longer rolling-time
threshold to keep down I/O operations. Finally, to guard against the case of a signifi-
cant spike in volume when there are relatively large roll settings, the log.segment
.bytes setting governs how large an individual log segment can be.

6 Kafka documentation, “Broker Configs,” http://kafka.apache.org/documentation/#brokerconfigs.

http://kafka.apache.org/documentation/#brokerconfigs

38 CHAPTER 2 Kafka quickly
The deletion of logs works well for non-keyed records, or records that stand alone.
But if you have keyed data and expected updates, there’s another method that will suit
your needs better.

2.3.17 Compacting logs

Consider the case where you have keyed data, and you’re receiving updates for that
data over time, meaning a new record with the same key will update the previous
value. For example, a stock ticker symbol could be the key, and the price per share
would be the regularly updated value. Imagine you’re using that information to dis-
play stock values, and you have a crash or restart—you need to be able to start back up
with the latest data for each key.7

 If you use the deletion policy, a segment could be removed between the last update
and the application’s crash or restart. You wouldn’t have all the records on startup. It
would be better to retain the last known value for a given key, treating the next record
with the same key as you would an update to a database table.

 Updating records by key is the behavior that compacted topics (logs) deliver.
Instead of taking a coarse-grained approach and deleting entire segments based on
time or size, compaction is more fine-grained and deletes old records per key in a log.
At a very high level, a log cleaner (a pool of threads) runs in the background, recopying

7 Kafka documentation, “Log Compaction,” http://kafka.apache.org/documentation/#compaction.

This segment log has
been deleted.

Older log segment files that
have been rolled. The bottom

segment is still in use.

The records are appended
to this current log.

Figure 2.12 On the left are the
current log segments. On the upper
right is a deleted log segment, and
the one below it is a recently rolled
segment still in use.

http://kafka.apache.org/documentation/#compaction

39Kafka architecture
log-segment files and removing records if there’s an occurrence later in the log with
the same key. Figure 2.13 illustrates how log compaction retains the most recent mes-
sage for each key.

This approach guarantees that the last record for a given key is in the log. You can
specify log retention per topic, so it’s entirely possible to have some topics using time-
based retention and other topics using compaction.

 By default, the log cleaner is enabled. To use compaction for a topic, you’ll need to
set the log.cleanup.policy=compact property when creating the topic.

 Compaction is used in Kafka Streams when using state stores, but you won’t be cre-
ating those logs/topics yourself—the framework handles that task. Nevertheless, it’s
important to understand how compaction works. Log compaction is a broad subject,
and we’ve only touched on it here. For more information, see the Kafka documenta-
tion: http://kafka.apache.org/documentation/#compaction.

NOTE With a cleanup.policy of compact, you might wonder how you can
remove a record from the log. With a compacted topic, deletion provides a
null value for the given key, setting a tombstone marker. Any key with a null
value ensures that any prior record with the same key is removed, and the
tombstone marker itself is removed after a period of time.

The key takeaway from this section is that if you have independent, standalone events
or messages, use log deletion. If you have updates to events or messages, you’ll want to
use log compaction.

 We’ve spent a good deal of time covering how Kafka handles data internally. Now
it’s time to move outside of Kafka and discuss how we can send messages to Kafka with
producers and read messages from Kafka with consumers.

Before compaction After compaction

Offset ValueKey

Offset ValueKey

10 Afoo

11 Bbar

12 Cbaz

13 Dfoo13 Dfoo

14 Ebaz

15 Fboo

16 Gfoo

17 Hbaz

11 Bbar

15 Fboo

16 Gfoo

17 Hbaz

Figure 2.13 On the left is a log before compaction—you’ll notice duplicate keys with different
values that are updates for the given key. On the right is the log after compaction—the latest value
for each key is retained, but the log is smaller in size.

http://kafka.apache.org/documentation/#compaction

40 CHAPTER 2 Kafka quickly
2.4 Sending messages with producers
Going back to ZMart’s need for a centralized sales transaction data hub, let’s look at
how you’ll send purchase transactions into Kafka. In Kafka, the producer is the client
used for sending messages. Figure 2.14 revisits ZMart’s data architecture with the pro-
ducers highlighted, to emphasize where they fit into the data flow.

Although ZMart has a lot of sales transactions, we’re going to consider the purchase of
a single item for now: a book costing $10.99. When the customer completes the sales
transaction, the information is converted into a key/value pair and sent to Kafka via a
producer.

 The key is the customer ID, 123447777, and the value is in JSON format:
"{\"item\":\"book\",\"price\":10.99}". (I’ve escaped the double quotes so the
JSON can be represented as a string literal in Java.) With the data in this format, you
can use a producer to send the data to the Kafka cluster. The following example can
be found in src/main/java/bbejeck.chapter_2/producer/SimpleProducer.java.

Sales

Acquired company A

Consumer

Marketing

Acquired company CAcquired company B

Customer info

Auditing

Producer

Consumer Producer

Consumer Producer

Consumer Producer Consumer Producer

Consumer Producer

Consumer Producer

Kafka

ZooKeeper

In this simplified view of Kafka,
we’re assuming a cluster is installed.

All output is sent from a producer, and
input is consumed by a consumer.

A cluster of ZooKeeper nodes communicates
with Kafka to maintain topic info and keep
track of brokers in the cluster.

Figure 2.14 Producers are used to send messages to Kafka. Producers don’t know which
consumer will read the messages or when.

41Sending messages with producers

Ins
the P
Properties properties = new Properties();
properties.put("bootstrap.servers", "localhost:9092");
properties.put("key.serializer", "org.apache.kafka.common.serialization.Strin

gSerializer");
properties.put("value.serializer",

➥ "org.apache.kafka.common.serialization.StringSerializer");
properties.put("acks", "1");
properties.put("retries", "3");
properties.put("compression.type", "snappy");
properties.put("partitioner.class",

➥ PurchaseKeyPartitioner.class.getName());

PurchaseKey key = new PurchaseKey("12334568", new Date());

try(Producer<PurchaseKey, String> producer =

➥ new KafkaProducer<>(properties)) {
ProducerRecord<PurchaseKey, String> record =

➥ new ProducerRecord<>("transactions", key, "{\"item\":\"book\",
\"price\":10.99}");

Callback callback = (metadata, exception) -> {
if (exception != null) {

System.out.println("Encountered exception "

➥ + exception);
}

};

Future<RecordMetadata> sendFuture =

➥ producer.send(record, callback);
}

Kafka producers are thread-safe. All sends to Kafka are asynchronous—Producer

.send returns immediately once the producer places the record in an internal buffer.
The buffer sends records in batches. Depending on your configuration, there could
be some blocking if you attempt to send a message while a producer’s buffer is full.

 The Producer.send method depicted here takes a Callback instance. Once the
leader broker acknowledges the record, the producer fires the Callback.onComplete
method. Only one of the arguments will be non-null in the Callback.onComplete
method. In this case, you’re only concerned with printing out the stacktrace in the
event of error, so you check if the exception object is non-null. The returned Future
yields a RecordMetadata object once the server acknowledges the record.

DEFINITION In listing 2.3, the Producer.send method returns a Future object.
A Future object represents the result of an asynchronous operation. More
important, a Future gives you the option to lazily retrieve asynchronous results
instead of waiting for their completion. For more information on futures, see
the Java documentation for “Interface Future<V>”: http:// mng.bz/0JK2.

Listing 2.3 SimpleProducer example

Properties for
configuring a
producer

Creates the
KafkaProducer

tantiates
roducer-

Record

Builds a
callback

Sends the record and sets the
returned Future to a variable

http:// mng.bz/0JK2

42 CHAPTER 2 Kafka quickly
2.4.1 Producer properties

When you created the KafkaProducer instance, you passed a java.util.Properties
parameter containing the configuration for the producer. The configuration of a
KafkaProducer isn’t complicated, but there are key properties to consider when set-
ting it up. These settings are where you’d specify a custom partitioner, for example.
There are too many properties to cover here, so we’ll just look at the ones used in list-
ing 2.3:

 Bootstrap servers—bootstrap.servers is a comma-separated list of host:port
values. Eventually the producer will use all the brokers in the cluster; this list is
used for initially connecting to the cluster.

 Serialization—key.serializer and value.serializer instruct Kafka how to
convert the keys and values into byte arrays. Internally, Kafka uses byte arrays
for keys and values, so you need to provide Kafka with the correct serializers to
convert objects to byte arrays before them sending across the wire.

 acks—acks specifies the minimum number of acknowledgments from a bro-
ker that the producer will wait for before considering a record send completed.
Valid values for acks are all, 0, and 1. With a value of all, the producer will
wait for a broker to receive confirmation that all followers have committed
the record. When set to 1, the broker writes the record to its log but doesn’t
wait for any followers to acknowledge committing the record. A value of 0
means the producer won’t wait for any acknowledgments—this is mostly
fire-and-forget.

 Retries—If sending a batch results in a failure, retries specifies the number of
times to attempt to resend. If record order is important, you should consider
setting max.in.flight.requests.per.connection to 1 to prevent the scenario
of a second batch being sent successfully before a failed record being sent as
the result a retry.

 Compression type—compression.type specifies what compression algorithm to
apply, if any. If set, compression.type instructs the producer to compress a
batch before sending. Note that it’s the entire batch that’s compressed, not
individual records.

 Partitioner class—partitioner.class specifies the name of the class implement-
ing the Partitioner interface. The partitioner.class is related to our earlier
discussion of custom partitioners discussion in section 2.3.7.

For more information about producer configuration, see the Kafka documentation:
http://kafka.apache.org/documentation/#producerconfigs.

2.4.2 Specifying partitions and timestamps

When you create a ProducerRecord, you have the option of specifying a partition, a
timestamp, or both. When you instantiated the ProducerRecord in listing 2.3, you

http://kafka.apache.org/documentation/#producerconfigs

43Sending messages with producers
used one of four overloaded constructors. Other constructors allow for setting a parti-
tion and timestamp, or just a partition:

ProducerRecord(String topic, Integer partition, String key, String value)
ProducerRecord(String topic, Integer partition,

Long timestamp, String key,
String value)

2.4.3 Specifying a partition

In section 2.3.5, we discussed the importance of partitions in Kafka. We also discussed
how the DefaultPartitioner works and how you can supply a custom partitioner.
Why would you explicitly set the partition? There are a variety of business reasons why
you might do so. Here’s one example.

 Suppose you have keyed data coming in, but it doesn’t matter which partition the
records go to, because the consumers have logic to handle any value that the key
might contain. Additionally, the distribution of the keys might not be even, and you
want to ensure that all partitions receive roughly the same amount of data. Here’s a
rough implementation that would do this.

AtomicInteger partitionIndex = new AtomicInteger(0);

int currentPartition = Math.abs(partitionIndex.getAndIncrement()) %

➥ numberPartitions;
ProducerRecord<String, String> record =

➥ new ProducerRecord<>("topic", currentPartition, "key", "value");

Here, you use the Math.abs call, so you don’t have to keep track of the value of the
integer if it goes beyond Integer.MAX_VALUE.

DEFINITION AtomicInteger belongs to the java.util.concurrent.atomic pack-
age, which contains classes that support lock-free, thread-safe operations on
single variables. For more information, see the Java documentation for the
java.util.concurrent.atomic package: http://mng.bz/PQ2q.

2.4.4 Timestamps in Kafka

Kafka version 0.10 added timestamps to records. You set the timestamp when you cre-
ate a ProducerRecord via this overloaded constructor call:

ProducerRecord(String topic, Integer partition,

➥ Long timestamp, K key, V value)

If you don’t set a timestamp, the producer will (using the current clock time) before
sending the record to the Kafka broker. Timestamps are also affected by the

Listing 2.4 Manually setting the partition

Creates an AtomicInteger
instance variable

Gets the current partition and
uses it as a parameter

http://mng.bz/PQ2q

44 CHAPTER 2 Kafka quickly
log.message.timestamp.type broker configuration setting, which can be set to either
CreateTime (the default) or LogAppendTime. Like many other broker settings, the value
configured on the broker applies to all topics as a default value, but when you create a
topic, you can specify a different value for that topic. If you specify LogAppendTime
and the topic doesn’t override the broker’s configuration, the broker will overwrite
the timestamp with the current time when it appends the record to the log. Other-
wise, the timestamp from ProducerRecord is used.

 Why would you choose one setting over another? LogAppendTime is considered to
be “processing time,” and CreateTime is considered to be “event time.” Which you
should use depends on your business requirements. You’ll need to decide whether
you need to know when Kafka processed the record, or when the actual event
occurred. In later chapters, you’ll see the important role timestamps have in con-
trolling data flow in Kafka Streams.

2.5 Reading messages with consumers
You’ve seen how producers work; now it’s time to look at consumers in Kafka. Suppose
you’re building a prototype application to show the latest ZMart sales statistics. For
this example, you’ll consume the message you sent in the previous producer example.
Because this prototype is in its earliest stages, all you’ll do at this point is consume the
message and print the information to the console.

NOTE Because the version of Kafka Streams covered in the book requires
Kafka version 0.10.2 or higher, we’ll only discuss the new consumer that was
part of the Kafka 0.9 release.

KafkaConsumer is the client you’ll use to consume messages from Kafka. The Kafka-
Consumer class is straightforward to use, but there are a few operational consider-
ations to take into account. Figure 2.15 shows the ZMart architecture, highlighting
where consumers play a role in the data flow.

2.5.1 Managing offsets

KafkaProducer is essentially stateless, but KafkaConsumer manages some state by peri-
odically committing the offsets of messages consumed from Kafka. Offsets uniquely
identify messages and represent the starting positions of messages in the log. Consum-
ers periodically need to commit the offsets of messages they have received.

 Committing an offset has two implications for a consumer:

 Committing implies the consumer has fully processed the message.
 Committing also represents the starting point for that consumer in the case of

failure or a restart.

45Reading messages with consumers
If you have a new consumer instance or some failure has occurred, and the last com-
mitted offset isn’t available, where the consumer starts from will depend on your con-
figuration:

 auto.offset.reset="earliest"—Messages will be retrieved starting at the
earliest available offset. Any messages that haven’t yet been removed by the log-
management process will be retrieved.

 auto.offset.reset="latest"—Messages will be retrieved from the latest off-
set, essentially only consuming messages from the point of joining the cluster.

 auto.offset.reset="none"—No reset strategy is specified. The broker throws
an exception to the consumer.

In figure 2.16, you can see the impact of choosing an auto.offset.reset setting. By
selecting earliest, you receive messages starting at offset 1. If you choose latest,
you’ll get a message starting at offset 11.

 Next, we need to discuss the options for committing offsets. You can do this either
automatically or manually.

Sales

In this simplified view of Kafka,
we’re assuming a cluster is installed.

All output is sent from a producer, and
input is consumed by a consumer.

Acquired company A

Consumer

Marketing

Acquired company CAcquired company B

Customer info

Auditing

Producer

Consumer Producer

Consumer Producer

Consumer Producer Consumer Producer

Consumer Producer

Consumer Producer

Kafka

ZooKeeper

A cluster of ZooKeeper nodes communicates
with Kafka to maintain topic info and keep
track of brokers in the cluster.

Figure 2.15 These are the consumers that read messages from Kafka. Just as producers have
no knowledge of the consumers, consumers read messages from Kafka with no knowledge of who
produced the messages.

46 CHAPTER 2 Kafka quickly
2.5.2 Automatic offset commits

Automatic offset commits are enabled by default, and they’re represented by the
enable.auto.commit property. There’s a companion configuration option, auto
.commit.interval.ms, which specifies how often the consumer will commit offsets
(the default value is 5 seconds). You should take care when adjusting this value. If it’s
too small, it will increase network traffic; if it’s too large, it could result in the con-
sumer receiving large amounts of repeated data in the event of a failure or restart.

2.5.3 Manual offset commits

There are two types of manually committed offsets—synchronous and asynchronous.
These are the synchronous commits:

consumer.commitSync()
consumer.commitSync(Map<TopicPartition, OffsetAndMetadata>)

The no-arg commitSync() method blocks until all offsets returned from the last retrieval
(poll) succeed. This call applies to all subscribed topics and partitions. The other ver-
sion takes a Map<TopicPartition, OffsetAndMetadata> parameter, and it commits
only the offsets, partitions, and topics specified in the map.

 There are analogous consumer.commitAsync() methods that are completely asyn-
chronous and return immediately. One of the overloaded methods accepts no argu-
ments, and two of the consumer.commitAsync methods have an option to provide an
OffsetCommitCallback object, which is called when the commit has concluded either
successfully or with an error. Providing a callback instance allows for asynchronous
processing and error handling. The advantage of using manual commits is that it gives
you direct control over when a record is considered processed.

A config setting of “earliest”
means messages starting
from offset 0 will be sent to
the consumer.

A config setting of “latest”
means the consumer will
get the next message when
it is appended to the log.

Ten messages have been sent to a topic.
A new consumer starts up, so it doesn’t

have a last offset committed.

0 987654321

Figure 2.16 A graphical representation of setting auto.offset.reset to earliest versus
latest. A setting of earliest will give you all messages not yet deleted; latest means you’ll
wait for the next available message to arrive.

47Reading messages with consumers
2.5.4 Creating the consumer

Creating a consumer is similar to creating a producer. You supply a configuration in
the form of a Java java.util.Properties object, and you get back a KafkaConsumer
instance. This instance then subscribes to topics from a supplied list of topic names or
by specifying a regular expression. Typically, you’ll run the consumer in a loop, where
you poll for a period specified in milliseconds.

 A ConsumerRecords<K, V> object is the result of the polling. ConsumerRecords
implements the Iterable interface, and each call to next() returns a Consumer-
Record object containing metadata about the message, in addition to the actual key
and value.

 After you’ve exhausted all of the ConsumerRecord objects returned from the last call
to poll, you return to the top of the loop, polling again for the specified period. In
practice, consumers are expected to run indefinitely in this manner, unless an error
occurs or the application needs to be shut down and restarted (this is where committed
offsets come into play—on reboot, the consumer will pick up where it left off).

2.5.5 Consumers and partitions

You’ll generally want multiple consumer instances—one for each partition of a topic.
It’s possible to have one consumer read from multiple partitions, but it’s not uncom-
mon to have a thread pool with as many threads as there are partitions, and with each
thread running a consumer that’s assigned to one partition.

 This consumer-per-partition pattern maximizes throughput, but if you spread your
consumers across multiple applications or machines, the total thread count across all
instances shouldn’t exceed the total number of partitions in the topic. Any threads in
excess of the total partition count will be idle. If a consumer fails, the leader broker
assigns its partitions to another active consumer.

NOTE This example shows a consumer subscribing to one topic, but this is for
demonstration purposes only. You can subscribe a consumer to an arbitrary
number of topics.

The leader broker assigns topic partitions to all available consumers with the same
group.id. The group.id is a configuration setting that identifies the consumer as
belonging to a consumer group—that way, consumers don’t need to reside on the same
machine. In fact, it’s probably preferable to have your consumers spread out across a
few machines. That way, in the case of one machine failing, the leader broker can
assign topic partitions to consumers on good machines.

2.5.6 Rebalancing

The process of adding and removing topic-partition assignments to consumers
described in the previous section is called rebalancing. Topic-partition assignments to a
consumer aren’t static—they’re dynamic. As you add consumers with the same group
ID, some of the current topic-partition assignments are taken from active consumers

48 CHAPTER 2 Kafka quickly
and given to the new consumers. This reassignment process continues until every par-
tition has been assigned to a consumer that’s reading data.

 After that equilibrium point, any additional consumers will remain idle. When
consumers leave the group for whatever reason, their topic-partition assignments are
reassigned to other consumers.

2.5.7 Finer-grained consumer assignment

In section 2.5.5, I described the use of a thread pool and subscribing multiple con-
sumers (in the same consumer group) to the same topics. Although Kafka will balance
the load of topic-partitions across all consumers, the assignment of the topic and par-
tition isn’t deterministic. You won’t know what topic-partition pairings each consumer
will receive.

 KafkaConsumer has methods that allow you to subscribe to a particular topic and
partition:

TopicPartition fooTopicPartition_0 = new TopicPartition("foo", 0);
TopicPartition barTopicPartition_0 = new TopicPartition("bar", 0);

consumer.assign(Arrays.asList(fooTopicPartition_0, barTopicPartition_0));

There are trade-offs to consider when using manual topic-partition assignment:

 Failures won’t result in topic partitions being reassigned, even for consumers
with the same group ID. Any changes in assignments will require another call to
consumer.assign.

 The group specified by the consumer is used for committing, but because each
consumer will be acting independently, it’s a good idea to give each consumer a
unique group ID.

2.5.8 Consumer example

Here’s the consumer code for the ZMart prototype that consumes transactions and
prints them to the console. You can find it in src/main/java/bbejeck.chapter_2/con-
sumer/ThreadedConsumerExample.java.

public void startConsuming() {
executorService = Executors.newFixedThreadPool(numberPartitions);
Properties properties = getConsumerProps();

for (int i = 0; i < numberPartitions; i++) {
Runnable consumerThread = getConsumerThread(properties);
executorService.submit(consumerThread);

}
}

private Runnable getConsumerThread(Properties properties) {
return () -> {

Listing 2.5 ThreadedConsumerExample example

Builds a
consumer

thread

49Installing and running Kafka
Consumer<String, String> consumer = null;
try {

consumer = new KafkaConsumer<>(properties);
consumer.subscribe(Collections.singletonList(

➥ "test-topic"));
while (!doneConsuming) {

ConsumerRecords<String, String> records =

➥ consumer.poll(5000);
for (ConsumerRecord<String, String> record : records) {

String message = String.format("Consumed: key =

➥ %s value = %s with offset = %d partition = %d",
record.key(), record.value(),
record.offset(), record.partition());

System.out.println(message);
}

}
} catch (Exception e) {

e.printStackTrace();
} finally {

if (consumer != null) {
consumer.close();

}
}

};
}

This example leaves out other sections of the class for clarity—it won’t stand on its
own. You can find the full example in this chapter’s source code.

2.6 Installing and running Kafka
As I write this, Kafka 1.0.0 is the most recent version. Because Kafka is a Scala project,
each release comes in two versions: one for Scala 2.11 and another for Scala 2.12. I use
the 2.12 Scala version of Kafka in this book. Although you can download the release,
the book’s source code includes a binary distribution of Kafka that will work with
Kafka Streams as demonstrated and described in this book. To install Kafka, extract
the .tgz file found in the book’s source code repo (source code can be found on the
book’s website here: https://manning.com/books/kafka-streams-in-action), to some-
where in the libs folder on your machine.

NOTE The binary distribution of Kafka includes Apache ZooKeeper, so no
extra installation work is required.

2.6.1 Kafka local configuration

Running Kafka locally on your machine requires minimal configuration if you accept
the default values. By default, Kafka uses port 9092, and ZooKeeper uses port 2181.
Assuming you have no applications already using those ports, you’re all set.

 Kafka writes its logs to /tmp/kafka-logs, and ZooKeeper uses /tmp/zookeeper
for its log storage. Depending on your machine, you may need to change permission

Subscribes
to the topic

Polls for 5
seconds

Prints a
formatted
message

Closes the consumer—
will leak resources
otherwise

https://manning.com/books/kafka-streams-in-action

50 CHAPTER 2 Kafka quickly
or ownership of those directories or to modify the location where you want to write
the logs.

 To change the Kafka logs directory, cd into <kafka-install-dir>/config and open the
server.properties file. Find the log.dirs entry, and change the value to what you’d
rather use. In the same directory, open the zookeeper.properties file and change the
dataDir entry.

 We’ll look at configuring Kafka in detail later in this book, but that’s all the configu-
ration you need to do for now. Keep in mind that these “logs” are the actual data used
by Kafka and ZooKeeper, and not application-level logs that track the application’s
behavior. The application logs are found in the <kafka-install-dir>/logs directory.

2.6.2 Running Kafka

Kafka is simple to get started. Because ZooKeeper is essential for the Kafka cluster to
function properly (ZooKeeper determines the leader broker, holds topic information,
performs health checks on cluster members, and so on), you’ll need to start Zoo-
Keeper before starting Kafka.

NOTE From now on, all directory references assume you’re working in your
Kafka installation directory. If you’re using a Windows machine, the directory
is <kafka-install-dir>/bin/windows.

STARTING ZOOKEEPER

To start ZooKeeper, open a command prompt and enter the following command:

bin/zookeeper-server-start.sh config/zookeeper.properties

You’ll see a lot of information run by on the screen, and it should end up looking
something like figure 2.17.

STARTING KAFKA

To start Kafka, open another command prompt and type this command:

bin/Kafka-server-start.sh config/server.properties

Again, you’ll see text scroll by on the screen. When Kafka has fully started, you should
see something similar to figure 2.18.

TIP ZooKeeper is essential for Kafka to run, so it’s important to reverse the
order when shutting down: stop Kafka first, and then stop ZooKeeper. To
stop Kafka, you can press Ctrl-C from the terminal Kafka is running in, or run
kafka-server-stop.sh from another terminal. The same goes for Zoo-
Keeper, except the shutdown script is zookeeper-server-stop.sh.

51Installing and running Kafka
Figure 2.17 Output visible on the console when ZooKeeper starts up

Figure 2.18 Output from Kafka when starting up

52 CHAPTER 2 Kafka quickly
2.6.3 Sending your first message

Now that you have Kafka up and running, it’s time to use Kafka for what it’s meant to
do: sending and receiving messages. But before you send a message, you’ll need to
define a topic for a producer to send a message to.

YOUR FIRST TOPIC

Creating a topic in Kafka is simple. It’s just a matter of running a script with some con-
figuration parameters. The configuration is easy, but the settings you provide have
broad performance implications.

 By default, Kafka is configured to autocreate topics, meaning that if you attempt to
send to or read from a nonexistent topic, the Kafka broker will create one for you
(using default configurations in the server.properties file). It’s rarely a good practice
to rely on the broker to create topics, even in development, because the first pro-
duce/consume attempt will fail, as it takes time for the metadata about the topic’s
existence to propagate. Be sure to always proactively to create your topics.

CREATING A TOPIC

To create a topic, you need to run the kafka-topics.sh script. Open a terminal window
and run this command:

bin/kafka-topics.sh --create --topic first-topic --replication-factor 1

➥ --partitions 1 --zookeeper localhost:2181

When the script executes, you should see something similar to figure 2.19 in your
terminal.

Most of the configuration flags in the previous command are obvious, but let’s quickly
review two of them:

 replication-factor—This flag determines how many copies of the message
the leader broker distributes in the cluster. In this case, with a replication factor
of 1, no copies will be made. Just the original message will reside in Kafka. A
replication factor of 1 is fine for a quick demo or prototype, but in practice
you’ll almost always want a replication factor of 2 or 3 to provide data availabil-
ity in the case of machine failures.

Figure 2.19 These are the results from creating a topic. It’s important to create your topics ahead of time so you
can supply topic-specific configurations. Otherwise, autocreated topics will use default configuration or the
configuration in the server.properties file.

53Installing and running Kafka
 partitions—This flag specifies the number of partitions that the topic will use.
Again, just one partition is fine here, but if you have greater load, you’ll certainly
want more partitions. Determining the correct number of partitions is not an
exact science.

SENDING A MESSAGE

Sending a message in Kafka generally involves writing a producer client, but Kafka
also comes with a handy script called kafka-console-producer that allows you to
send a message from a terminal window. We’ll use the console producer in this exam-
ple, but we’ve covered how to use the KafkaProducer in section 2.4.1 of this chapter.

 To send your first message, run the following command (also shown in figure 2.20):

command assumes running from bin directory
./kafka-console-producer.sh --topic first-topic --broker-list localhost:9092

There are several options for configuring the console producer, but for now we’ll only
use the required ones: the topic to send the message to, and a list of Kafka brokers to
connect to (in this case, just the one on your local machine).

 Starting a console producer is a “blocking script,” so after executing the preceding
command, you enter some text and press Enter. You can send as many messages as you
like, but for our demo purposes you can type a single message, “the quick brown fox
jumped over the lazy dog,” press Enter, and then press Ctrl-C to exit the producer.

READING A MESSAGE

Kafka also provides a console consumer for reading messages from the command line.
The console consumer is similar to the console producer: once started, it will keep
reading messages from the topic until the script is stopped by you (with Ctrl-C).

 To launch the console consumer, run this command:

bin/kafka-console-consumer.sh --topic first-topic

➥ --bootstrap-server localhost:9092 --from-beginning

After starting the console consumer, you should see something like figure 2.21 in your
terminal.

 The --from-beginning parameter specifies that you’ll receive any message not
deleted from that topic. The console consumer won’t have any committed offsets, so if
you didn’t have the --from-beginning setting, you’d only get messages sent after the
console consumer had started.

Figure 2.20 The console producer is a great tool for quickly testing your configuration and ensuring
end-to-end functionality.

54 CHAPTER 2 Kafka quickly
You’ve just completed a whirlwind tour of Kafka and produced and consumed your
first message. If you haven’t read the first part of this chapter, it’s time to go back to
the beginning this chapter to learn the details of how Kafka works!

Summary
 Kafka is a message broker that receives messages and stores them in a way that

makes it easy and fast to respond to consumer requests. Messages are never
pushed out to consumers, and message retention in Kafka is entirely indepen-
dent of when and how often messages are consumed.

 Kafka uses partitions for achieving high throughput and to provide a means for
grouping messages with the same keys in order.

 Producers are used for sending messages to Kafka.
 Null keys mean round-robin partition assignment; otherwise, the producer uses

the hash of the key, modulus the number of partitions, for partition assignment.
 Consumers are what you use to read messages from Kafka.
 Consumers that are part of a consumer group are given topic-partition alloca-

tions in an attempt to distribute messages evenly.

In the next chapter, we’ll start looking at Kafka Streams with a concrete example from
the world of retail sales. Although Kafka Streams will handle the creation of all con-
sumer and producer instances, you should be able to see the concepts we introduced
here come into play.

Figure 2.21 The console consumer is a handy tool for quickly getting a feel for whether data is flowing and if
messages contain the expected information.

Part 2

Kafka Streams development

This part of the book builds on the previous part and puts the mental model
of Kafka Streams into action as you develop your first Kafka Streams applica-
tion. Once you’ve gotten your feet wet, we’ll walk through the significant Kafka
Streams APIs.

 You’ll learn about providing state to a streaming application and how to use
state for performing joins, much like the joins you perform when running SQL
queries. Then we’ll move on to a new abstraction from Kafka Streams: the KTable
API. This part of the book begins with the high-level DSL, but we’ll wrap up by
discussing the lower-level Processor API and how you can use it to make Kafka
Streams do pretty much anything you need it to do.

Developing Kafka Streams
In chapter 1, you learned about the Kafka Streams library. You learned about build-
ing a topology of processing nodes, or a graph that transforms data as it’s streaming
into Kafka. In this chapter, you’ll learn how to create this processing topology with
the Kafka Streams API.

 The Kafka Streams API is what you’ll use to build Kafka Streams applications.
You’ll learn how to assemble Kafka Streams applications; but, more important,
you’ll gain a deeper understanding of how the components work together and how
they can be used to achieve your stream-processing goals.

This chapter covers
 Introducing the Kafka Streams API

 Building Hello World for Kafka Streams

 Exploring the ZMart Kafka Streams application
in depth

 Splitting an incoming stream into multiple
streams
57

58 CHAPTER 3 Developing Kafka Streams
3.1 The Streams Processor API
The Kafka Streams DSL is the high-level API that enables you to build Kafka Streams
applications quickly. The high-level API is very well thought out, and there are meth-
ods to handle most stream-processing needs out of the box, so you can create a sophis-
ticated stream-processing program without much effort. At the heart of the high-level
API is the KStream object, which represents the streaming key/value pair records.

 Most of the methods in the Kafka Streams DSL return a reference to a KStream
object, allowing for a fluent interface style of programming. Additionally, a good
percentage of the KStream methods accept types consisting of single-method inter-
faces allowing for the use of Java 8 lambda expressions. Taking these factors into
account, you can imagine the simplicity and ease with which you can build a Kafka
Streams program.

 Back in 2005, Martin Fowler and Eric Evans developed the concept of the fluent
interface—an interface where the return value of a method call is the same instance
that originally called the method (https://martinfowler.com/bliki/FluentInterface
.html). This approach is useful when constructing objects with several parameters,
such as Person.builder().firstName("Beth").withLastName("Smith").with-

Occupation("CEO"). In Kafka Streams, there is one small but important difference:
the returned KStream object is a new instance, not the same instance that made the
original method call.

 There’s also a lower-level API, the Processor API, which isn’t as succinct as the
Kafka Streams DSL but allows for more control. We’ll cover the Processor API in chap-
ter 6. With that introduction out of the way, let’s dive into the requisite Hello World
program for Kafka Streams.

3.2 Hello World for Kafka Streams
For the first Kafka Streams example, we’ll deviate from the problem outlined in chap-
ter 1 to a simpler use case. This will get off the ground quickly so you can see how
Kafka Streams works. We’ll get back to the problem from chapter 1 later in section 3.1.1
for a more realistic, concrete example.

 Your first program will be a toy application that takes incoming messages and con-
verts them to uppercase characters, effectively yelling at anyone who reads the mes-
sage. You’ll call this the Yelling App.

 Before diving into the code, let’s take a look at the processing topology you’ll assem-
ble for this application. You’ll follow the same pattern as in chapter 1, where you built
up a processing graph topology with each node in the graph having a particular func-
tion. The main difference is that this graph will be simpler, as you can see in figure 3.1.

 As you can see, you’re building a simple processing graph—so simple that it resem-
bles a linked list of nodes more than the typical tree-like structure of a graph. But
there’s enough here to give you strong clues about what to expect in the code. There
will be a source node, a processor node transforming incoming text to uppercase, and
a sink processor writing results out to a topic.

https://martinfowler.com/bliki/FluentInterface.html
https://martinfowler.com/bliki/FluentInterface.html
https://martinfowler.com/bliki/FluentInterface.html

59Hello World for Kafka Streams
This is a trivial example, but the code shown here is representative of what you’ll see in
other Kafka Streams programs. In most of the examples, you’ll see a similar structure:

1 Define the configuration items.
2 Create Serde instances, either custom or predefined.
3 Build the processor topology.
4 Create and start the KStream.

When we get into the more advanced examples, the principal difference will be in the
complexity of the processor topology. With that in mind, it’s time to build your first
application.

3.2.1 Creating the topology for the Yelling App

The first step to creating any Kafka Streams application is to create a source node.
The source node is responsible for consuming the records, from a topic, that will flow
through the application. Figure 3.2 highlights the source node in the graph.

 The following line of code creates the source, or parent, node of the graph.

KStream<String, String> simpleFirstStream = builder.stream("src-topic",

➥ Consumed.with(stringSerde, stringSerde));

The simpleFirstStreamKStream instance is set to consume messages written to the
src-topic topic. In addition to specifying the topic name, you also provide Serde

Listing 3.1 Defining the source for the stream

UpperCase
processor

src-topic

Source
processor

Sink
processor

out-topic

Here the source processor will consume
messages that will be fed into the
processing topology.

The UpperCase processor simply uppercases all
incoming text. It’s important to note that the
copy of the original message is what gets
uppercased, but the original value is unchanged.

The terminal processor here takes
the uppercase text from the
previous processor and writes
it out to a topic.

Figure 3.1 Graph (topology) of the Yelling App

60 CHAPTER 3 Developing Kafka Streams
objects (via a Consumed instance) for deserializing the records from Kafka. You’ll use
the Consumed class for any optional parameters whenever you create a source node in
Kafka Streams.

 You now have a source node for your application, but you need to attach a process-
ing node to make use of the data, as shown in figure 3.3. The code used to attach the

UpperCase
processor

src-topic

Source
processor

Sink
processor

out-topicFigure 3.2 Creating the source node
of the Yelling App

UpperCase
processor

src-topic

Source
processor

Sink
processor

out-topicFigure 3.3 Adding the uppercase
processor to the Yelling App

61Hello World for Kafka Streams
processor (a child node of the source node) is shown in the following listing. With this
line, you create another KStream instance that’s a child node of the parent node.

KStream<String, String> upperCasedStream =

➥ simpleFirstStream.mapValues(String::toUpperCase);

By calling the KStream.mapValues function, you’re creating a new processing node
whose inputs are the results of going through the mapValues call.

 It’s important to remember that you shouldn’t modify the original value in the Value-
Mapper provided to mapValues. The upperCasedStream instance receives transformed
copies of the initial value from the simpleFirstStream.mapValues call. In this case,
it’s uppercase text.

 The mapValues() method takes an instance of the ValueMapper<V, V1> interface.
The ValueMapper interface defines only one method, ValueMapper.apply, making it
an ideal candidate for using a Java 8 lambda expression. This is what you’ve done here
with String::toUpperCase, which is a method reference, an even shorter form of a
Java 8 lambda expression.

NOTE Many Java 8 tutorials are available for lambda expressions and method
references. Good starting points can be found in Oracle’s Java documenta-
tion: “Lambda Expressions” (http://mng.bz/J0Xm) and “Method References”
(http://mng.bz/BaDW).

You could have used the form s s.toUpperCase(), but because toUpperCase is an
instance method on the String class, you can use a method reference.

 Using lambda expressions instead of concrete implementations is a pattern
you’ll see over and over with the Streams Processor API in this book. Because most
of the methods expect types that are single method interfaces, you can easily use
Java 8 lambdas.

 So far, your Kafka Streams application is consuming records and transforming
them to uppercase. The final step is to add a sink processor that writes the results out
to a topic. Figure 3.4 shows where you are in the construction of the topology.

 The following code line adds the last processor in the graph.

upperCasedStream.to("out-topic", Produced.with(stringSerde, stringSerde));

The KStream.to method creates a sink-processing node in the topology. Sink proces-
sors write records back out to Kafka. This sink node takes records from the upper-
CasedStream processor and writes them to a topic named out-topic. Again, you
provide Serde instances, this time for serializing records written to a Kafka topic. But
in this case, you use a Produced instance, which provides optional parameters for cre-
ating a sink node in Kafka Streams.

Listing 3.2 Mapping incoming text to uppercase

Listing 3.3 Creating a sink node

http://mng.bz/J0Xm
http://mng.bz/BaDW

62 CHAPTER 3 Developing Kafka Streams
NOTE You don’t always have to provide Serde objects to either the Consumed
or Produced objects. If you don’t, the application will use the serializer/dese-
rializer listed in the configuration. Additionally, with the Consumed and
Produced classes, you can specify a Serde for either the key or value only.

The preceding example uses three lines to build the topology:

KStream<String,String> simpleFirstStream =

➥ builder.stream("src-topic", Consumed.with(stringSerde, stringSerde));
KStream<String, String> upperCasedStream =

➥ simpleFirstStream.mapValues(String::toUpperCase);
upperCasedStream.to("out-topic", Produced.with(stringSerde, stringSerde));

Each step is on an individual line to demonstrate the different stages of the building
process. But all methods in the KStream API that don’t create terminal nodes (meth-
ods with a return type of void) return a new KStream instance, which allows you to use
the fluent interface style of programming mentioned earlier. To demonstrate this
idea, here’s another way you could construct the Yelling App topology:

builder.stream("src-topic", Consumed.with(stringSerde, stringSerde))

➥ .mapValues(String::toUpperCase)

➥ .to("out-topic", Produced.with(stringSerde, stringSerde));

This shortens the program from three lines to one without losing any clarity or pur-
pose. From this point forward, all the examples will be written using the fluent inter-
face style unless doing so causes the clarity of the program to suffer.

UpperCase
processor

src-topic

Source
processor

Sink
processor

out-topicFigure 3.4 Adding a processor for
writing the Yelling App results

63Hello World for Kafka Streams
 You’ve built your first Kafka Streams topology, but we glossed over the important
steps of configuration and Serde creation. We’ll look at those now.

3.2.2 Kafka Streams configuration

Although Kafka Streams is highly configurable, with several properties you can
adjust for your specific needs, the first example uses only two configuration settings,
APPLICATION_ID_CONFIG and BOOTSTRAP_SERVERS_CONFIG:

props.put(StreamsConfig.APPLICATION_ID_CONFIG, "yelling_app_id");
props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");

Both settings are required because no default values are provided. Attempting to start
a Kafka Streams program without these two properties defined will result in a Config-
Exception being thrown.

 The StreamsConfig.APPLICATION_ID_CONFIG property identifies your Kafka Streams
application, and it must be a unique value for the entire cluster. It also serves as a
default value for the client ID prefix and group ID parameters if you don’t set either
value. The client ID prefix is the user-defined value that uniquely identifies clients
connecting to Kafka. The group ID is used to manage the membership of a group of
consumers reading from the same topic, ensuring that all consumers in the group can
effectively read subscribed topics.

 The StreamsConfig.BOOTSTRAP_SERVERS_CONFIG property can be a single host-
name:port pair or multiple hostname:port comma-separated pairs. The value of this
setting points the Kafka Streams application to the locaction of the Kafka cluster. We’ll
cover several more configuration items as we explore more examples in the book.

3.2.3 Serde creation

In Kafka Streams, the Serdes class provides convenience methods for creating Serde
instances, as shown here:

Serde<String> stringSerde = Serdes.String();

This line is where you create the Serde instance required for serialization/deserializa-
tion using the Serdes class. Here, you create a variable to reference the Serde for
repeated use in the topology. The Serdes class provides default implementations for
the following types:

 String
 Byte array
 Long
 Integer
 Double

Implementations of the Serde interface are extremely useful because they contain the
serializer and deserializer, which keeps you from having to specify four parameters

64 CHAPTER 3 Developing Kafka Streams

Creat
Serde
to ser
dese

ke

Cr
actu
with
top

pa
in t
(key serializer, value serializer, key deserializer, and value deserializer) every time you
need to provide a Serde in a KStream method. In an upcoming example, you’ll create a
Serde implementation to handle serialization/deserialization of more-complex types.

 Let’s take a look at the whole program you just put together. You can find the
source in src/main/java/bbejeck/chapter_3/KafkaStreamsYellingApp.java (source
code can be found on the book’s website here: https://manning.com/books/kafka-
streams-in-action).

public class KafkaStreamsYellingApp {

public static void main(String[] args) {

Properties props = new Properties();

props.put(StreamsConfig.APPLICATION_ID_CONFIG, "yelling_app_id");
props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");

StreamsConfig streamingConfig = new StreamsConfig(props);

Serde<String> stringSerde = Serdes.String();

StreamsBuilder builder = new StreamsBuilder();

KStream<String, String> simpleFirstStream = builder.stream("src-topic",

➥ Consumed.with(stringSerde, stringSerde));

KStream<String, String> upperCasedStream =

➥ simpleFirstStream.mapValues(String::toUpperCase);

upperCasedStream.to("out-topic",

➥ Produced.with(stringSerde, stringSerde));

KafkaStreams kafkaStreams = new KafkaStreams(builder.build(),streamsConfig);

kafkaStreams.start();
Thread.sleep(35000);
LOG.info("Shutting down the Yelling APP now");
kafkaStreams.close();

}
}

You’ve now constructed your first Kafka Streams application. Let’s quickly review the
steps involved, as it’s a general pattern you’ll see in most of your Kafka Streams
applications:

1 Create a StreamsConfig instance.
2 Create a Serde object.

Listing 3.4 Hello World: the Yelling App

Properties for configuring
the Kafka Streams program

Creates the
StreamsConfig with

the given properties

es the
s used
ialize/
rialize
ys and
values Creates the StreamsBuilder

instance used to construct
the processor topology

eates the
al stream
 a source
ic to read
from (the
rent node
he graph)

A processor using a Java 8
method handle (the first
child node in the graph)

Writes the transformed
output to another topic
(the sink node in the graph)

Kicks off the Kafka
Streams threads

https://manning.com/books/kafka-streams-in-action
https://manning.com/books/kafka-streams-in-action

65Working with customer data
3 Construct a processing topology.
4 Start the Kafka Streams program.

Apart from the general construction of a Kafka Streams application, a key takeaway here
is to use lambda expressions whenever possible, to make your programs more concise.

 We’ll now move on to a more complex example that will allow us to explore more
of the Streams Processor API. The example will be new, but the scenario is one you’re
already familiar with: ZMart data-processing goals.

3.3 Working with customer data
In chapter 1, we discussed ZMart’s new requirements for processing customer data,
intended to help ZMart do business more efficiently. We demonstrated how you could
build a topology of processors that would work on purchase records as they come stream-
ing in from transactions in ZMart stores. Figure 3.5 shows the completed graph again.

Let’s briefly review the requirements for the streaming program, which will also serve
as a good description of what the program will do:

 All records need to have credit card numbers protected, in this case by masking
the first 12 digits.

 You need to extract the items purchased and the ZIP code to determine pur-
chase patterns. This data will be written out to a topic.

Patterns

Masking

Source

Rewards

Patterns
sink

Rewards
sink

Purchases
sink

Figure 3.5 Topology for ZMart Kafka Streams program

66 CHAPTER 3 Developing Kafka Streams
 You need to capture the customer’s ZMart member number and the amount
spent and write this information to a topic. Consumers of the topic will use this
data to determine rewards.

 You need to write the entire transaction out to topic, which will be consumed by
a storage engine for ad hoc analysis.

As in the Yelling App, you’ll combine the fluent interface approach with Java 8 lamb-
das when building the application. Although it’s sometimes clear that the return type
of a method call is a KStream object, other times it may not be. Keep in mind that the
majority of the methods in the KStream API return new KStream instances. Now, let’s
build a streaming application that will satisfy ZMart’s business requirements.

3.3.1 Constructing a topology

Let’s dive into building the processing topology. To help make the connection between
the code you’ll create here and the processing topology graph from chapter 1, I’ll high-
light the part of the graph that you’re currently working on.

BUILDING THE SOURCE NODE

You’ll start by building the source node and first processor of the topology by chaining
two calls to the KStream API together (highlighted in figure 3.6). It should be fairly obvi-
ous by now what the role of the origin node is. The first processor in the topology will be
responsible for masking credit card numbers to protect customer privacy.

Patterns

Masking

Source

Rewards

Patterns
sinkRewards

sink

Purchases
sink

Source node consuming messages from
the Kafka transactions topic

Second node does the masking
of credit card numbers

Figure 3.6 The source processor consumes from a Kafka topic, and it feeds the
masking processor exclusively, making it the source for the rest of the topology.

67Working with customer data
KStream<String,Purchase> purchaseKStream =

➥ streamsBuilder.stream("transactions",

➥ Consumed.with(stringSerde, purchaseSerde))

➥ .mapValues(p -> Purchase.builder(p).maskCreditCard().build());

You create the source node with a call to the StreamsBuilder.stream method using a
default String serde, a custom serde for Purchase objects, and the name of the topic
that’s the source of the messages for the stream. In this case, you only specify one
topic, but you could have provided a comma-separated list of names or a regular
expression to match topic names instead.

 In this listing 3.5, you provide Serdes with a Consumed instance, but you could have
left that out and only provided the topic name and relied on the default Serdes pro-
vided via configuration parameters.

 The next immediate call is to the KStream.mapValues method, taking a ValueMap-
per<V, V1> instance as a parameter. Value mappers take a single parameter of one
type (a Purchase object, in this case) and map that object to a to a new value, possibly
of another type. In this example, KStream.mapValues returns an object of the same
type (Purchase), but with a masked credit card number.

 Note that when using the KStream.mapValues method, the original key is unchanged
and isn’t factored into mapping a new value. If you wanted to generate a new key/value
pair or include the key in producing a new value, you’d use the KStream.map method
that takes a KeyValueMapper<K, V, KeyValue<K1, V1>> instance.

HINTS ABOUT FUNCTIONAL PROGRAMMING

An important concept to keep in mind with the map and mapValues functions is that
they’re expected to operate without side effects, meaning the functions don’t modify
the object or value presented as a parameter. This is because of the functional pro-
gramming aspects in the KStream API. Functional programming is a deep topic, and a
full discussion is beyond the scope of this book, but we’ll briefly look at two central
principles of functional programming here.

 The first principle is avoiding state modification. If an object requires a change or
update, you pass the object to a function, and a copy or entirely new instance is made,
containing the desired changes or updates. In listing 3.5, the lambda passed to
KStream.mapValues is used to update the Purchase object with a masked credit card
number. The credit card field on the original Purchase object is left unchanged.

 The second principle is building complex operations by composing several smaller
single-purpose functions together. The composition of functions is a pattern you’ll
frequently see when working with the KStream API.

DEFINITION For the purposes of this book, I define functional programming as a
programming approach in which functions are first-class objects. Further-
more, functions are expected to avoid creating side effects, such as modifying
state or mutable objects.

Listing 3.5 Building the source node and first processor

68 CHAPTER 3 Developing Kafka Streams
BUILDING THE SECOND PROCESSOR

Now you’ll build the second processor, responsible for extracting pattern data from a
topic, which ZMart can use to determine purchase patterns in regions of the country.
You’ll also add a sink node responsible for writing the pattern data to a Kafka topic.
The construction of these is demonstrated in figure 3.7.

In listing 3.6, you can see the purchaseKStream processor using the familiar mapValues
call to create a new KStream instance. This new KStream will start to receive Purchase-
Pattern objects created as a result of the mapValues call.

KStream<String, PurchasePattern> patternKStream =

➥ purchaseKStream.mapValues(purchase ->

➥ PurchasePattern.builder(purchase).build());

patternKStream.to("patterns",

➥ Produced.with(stringSerde,purchasePatternSerde));

Listing 3.6 Second processor and a sink node that writes to Kafka

Again you see two nodes in the graph, but
with the fluent style of programming in
Kafka Streams, sometimes it’s easy to
overlook the fact that you’re creating
two nodes.

Patterns

Masking

Source

Rewards

Patterns

sinkRewards

sink

Purchases

sink

This is the fourth node overall,
but it does no processing. This
node writes PurchasePattern
out to a topic.

Second processing node
(third node overall) builds
the PurchasePattern object

Figure 3.7 The second processor builds purchase-pattern information. The sink node writes the
PurchasePattern object out to a Kafka topic.

69Working with customer data
Here, you declare a variable to hold the reference of the new KStream instance,
because you’ll use it to print the results of the stream to the console with a print call.
This is very useful during development and for debugging. The purchase-patterns
processor forwards the records it receives to a child node of its own, defined by the
method call KStream.to, writing to the patterns topic. Note the use of a Produced
object to provide the previously built Serde.

 The KStream.to method is a mirror image of the KStream.source method.
Instead of setting a source for the topology to read from, the KStream.to method
defines a sink node that’s used to write the data from a KStream instance to a Kafka
topic. The KStream.to method also provides overloaded versions in which you can
leave out the Produced parameter and use the default Serdes defined in the configu-
ration. One of the optional parameters you can set with the Produced class is Stream-
Partitioner, which we’ll discuss next.

BUILDING THE THIRD PROCESSOR

The third processor in the topology is the customer rewards accumulator node shown
in figure 3.8, which will let ZMart track purchases made by members of their pre-
ferred customer club. The rewards accumulator sends data to a topic consumed by
applications at ZMart HQ to determine rewards when customers complete purchases.

The rewards
processor builds a
Rewards object and
passes the object to a
sink processor, which
serializes and writes the
object out to a topic.

Patterns

Masking

Source

Rewards

Patterns
sink

Rewards
sink

Purchases
sink

Figure 3.8 The third processor creates the RewardAccumulator object from the
purchase data. The terminal node writes the results out to a Kafka topic.

70 CHAPTER 3 Developing Kafka Streams
KStream<String, RewardAccumulator> rewardsKStream =

➥ purchaseKStream.mapValues(purchase ->

➥ RewardAccumulator.builder(purchase).build());
rewardsKStream.to("rewards",

➥ Produced.with(stringSerde,rewardAccumulatorSerde));

You build the rewards accumulator processor using what should be by now a familiar
pattern: creating a new KStream instance that maps the raw purchase data contained
in the record to a new object type. You also attach a sink node to the rewards accumu-
lator so the results of the rewards KStream can be written to a topic and used for deter-
mining customer reward levels.

BUILDING THE LAST PROCESSOR

Finally, you’ll take the first KStream you created, purchaseKStream, and attach a sink
node to write out the raw purchase records (with credit cards masked, of course) to a
topic called purchases. The purchases topic will be used to feed into a NoSQL store
such as Cassandra (http://cassandra.apache.org/), Presto (https://prestodb.io/), or
Elastic Search (www.elastic.co/webinars/getting-started-elasticsearch) to perform ad
hoc analysis. Figure 3.9 shows the final processor.

purchaseKStream.to("purchases", Produced.with(stringSerde, purchaseSerde));

Listing 3.7 Third processor and a terminal node that writes to Kafka

Listing 3.8 Final processor

The final processor, a sink
processor to be precise, writes
the purchase data out to
a topic with the credit card
information still masked.

Patterns

Masking

Source

Rewards

Rewards
sinkRewards

sink

Purchases
sink

Figure 3.9 The last node writes out the entire purchase transaction to a topic whose
consumer is a NoSQL data store.

http://cassandra.apache.org/
https://prestodb.io/
http://www.elastic.co/webinars/getting-started-elasticsearch

71Working with customer data

e

Now that you’ve built the application piece by piece, let’s look at the entire applica-
tion (src/main/java/bbejeck/chapter_3/ZMartKafkaStreamsApp.java). You’ll quickly
notice it’s more complicated than the previous Hello World (the Yelling App) example.

public class ZMartKafkaStreamsApp {

public static void main(String[] args) {
// some details left out for clarity

StreamsConfig streamsConfig = new StreamsConfig(getProperties());

JsonSerializer<Purchase> purchaseJsonSerializer = new

➥ JsonSerializer<>();
JsonDeserializer<Purchase> purchaseJsonDeserializer =

➥ new JsonDeserializer<>(Purchase.class);
Serde<Purchase> purchaseSerde =

➥ Serdes.serdeFrom(purchaseJsonSerializer, purchaseJsonDeserializer);
//Other Serdes left out for clarity

Serde<String> stringSerde = Serdes.String();

StreamsBuilder streamsBuilder = new StreamsBuilder();

KStream<String,Purchase> purchaseKStream =

➥ streamsBuilder.stream("transactions",

➥ Consumed.with(stringSerde, purchaseSerde))

➥ .mapValues(p -> Purchase.builder(p).maskCreditCard().build());

KStream<String, PurchasePattern> patternKStream =

➥ purchaseKStream.mapValues(purchase ->

➥ PurchasePattern.builder(purchase).build());

patternKStream.to("patterns",

➥ Produced.with(stringSerde,purchasePatternSerde));

KStream<String, RewardAccumulator> rewardsKStream =

➥ purchaseKStream.mapValues(purchase ->

➥ RewardAccumulator.builder(purchase).build());

rewardsKStream.to("rewards",

➥ Produced.with(stringSerde,rewardAccumulatorSerde));

purchaseKStream.to("purchases",

➥ Produced.with(stringSerde,purchaseSerde));

KafkaStreams kafkaStreams =

➥ new KafkaStreams(streamsBuilder.build(),streamsConfig);
kafkaStreams.start();

}

Listing 3.9 ZMart customer purchase KStream program

Creates the Serde; th
data format is JSON.

Builds the
source and first
processor

Builds the
PurchasePattern
processor

Builds the
RewardAccumula
tor processor

Builds the storage sink, the topic
used by the storage consumer

72 CHAPTER 3 Developing Kafka Streams
NOTE I’ve left out some details in listing 3.9 for clarity. The code examples in
the book aren’t necessarily meant to stand on their own. The source code
that accompanies this book provides the full examples.

As you can see, this example is a little more involved than the Yelling App, but it has a
similar flow. Specifically, you still performed the following steps:

 Create a StreamsConfig instance.
 Build one or more Serde instances.
 Construct the processing topology.
 Assemble all the components and start the Kafka Streams program.

In this application, I’ve mentioned using a Serde, but I haven’t explained why or how
you create them. Let’s take some time now to discuss the role of the Serde in a Kafka
Streams application.

3.3.2 Creating a custom Serde

Kafka transfers data in byte array format. Because the data format is JSON, you need
to tell Kafka how to convert an object first into JSON and then into a byte array when
it sends data to a topic. Conversely, you need to specify how to convert consumed byte
arrays into JSON, and then into the object type your processors will use. This conver-
sion of data to and from different formats is why you need a Serde. Some serdes are
provided out of the box by the Kafka client dependency, (String, Long, Integer, and
so on), but you’ll need to create custom serdes for other objects.

 In the first example, the Yelling App, you only needed a serializer/deserializer for
strings, and an implementation is provided by the Serdes.String() factory method.
In the ZMart example, however, you need to create custom Serde instances, because
the types of the objects are arbitrary. We’ll look at what’s involved in building a Serde
for the Purchase class. We won’t cover the other Serde instances, because they follow
the same pattern, just with different types.

 Building a Serde requires implementations of the Deserializer<T> and Serial-
izer<T> interfaces. We’ll use the implementations in listings 3.10 and 3.11 through-
out the examples. Also, you’ll use the Gson library from Google to convert objects to
and from JSON. Here’s the serializer, which you can find in src/main/java/bbejeck/
util/serializer/JsonSerializer.java.

public class JsonSerializer<T> implements Serializer<T> {

private Gson gson = new Gson();

@Override
public void configure(Map<String, ?> map, boolean b) {

}

Listing 3.10 Generic serializer

Creates the
Gson object

73Working with customer data
@Override
public byte[] serialize(String topic, T t) {

return gson.toJson(t).getBytes(Charset.forName("UTF-8"));
}

@Override
public void close() {

}
}

For serialization, you first convert an object to JSON, and then get the bytes from the
string. To handle the conversions from and to JSON, the example uses Gson (https://
github.com/google/gson).

 For the deserializing process, you take different steps: create a new string from a
byte array, and then use Gson to convert the JSON string into a Java object. This
generic deserializer can be found in src/main/java/bbejeck/util/serializer/Json-
Deserializer.java.

public class JsonDeserializer<T> implements Deserializer<T> {

private Gson gson = new Gson();
private Class<T> deserializedClass;

public JsonDeserializer(Class<T> deserializedClass) {
this.deserializedClass = deserializedClass;

}

public JsonDeserializer() {
}

@Override
@SuppressWarnings("unchecked")
public void configure(Map<String, ?> map, boolean b) {

if(deserializedClass == null) {
deserializedClass = (Class<T>) map.get("serializedClass");

}
}

@Override
public T deserialize(String s, byte[] bytes) {

if(bytes == null){
return null;

}

return gson.fromJson(new String(bytes),deserializedClass);

}

Listing 3.11 Generic deserializer

Serializes an
object to bytes

Creates the
Gson object

Instance variable of
Class to deserialize

Deserializes bytes to an
instance of expected Class

https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson

74 CHAPTER 3 Developing Kafka Streams
@Override
public void close() {

}
}

Now, let’s go back to the following lines from listing 3.9:

JsonDeserializer<Purchase> purchaseJsonDeserializer =

➥ new JsonDeserializer<>(Purchase.class);
JsonSerializer<Purchase> purchaseJsonSerializer =

➥ new JsonSerializer<>();
Serde<Purchase> purchaseSerde =

➥ Serdes.serdeFrom(purchaseJsonSerializer,purchaseJsonDeserializer);

As you can see, a Serde object is useful because it serves as a container for the serial-
izer and deserializer for a given object.

 We’ve covered a lot of ground so far in developing a Kafka Streams application. We
still have much more to cover, but let’s pause for a moment and talk about the devel-
opment process itself and how you can make life easier for yourself while developing a
Kafka Streams application.

3.4 Interactive development
You’ve built the graph to process purchase records from ZMart in a streaming fashion,
and you have three processors that write out to individual topics. During development
it would certainly be possible to have a console consumer running to view results, but
it would be good to have a more convenient solution, like the ability to watch data
flowing through the topology in the console, as shown in figure 3.10.

 There’s a method on the KStream interface that can be useful during develop-
ment: the KStream.print method, which takes an instance of the Printed<K, V> class.

Creates the Deserializer
for the Purchase class

Creates the Serializer
for the Purchase class

Creates the Serde for
Purchase objects

Figure 3.10 A great tool while you’re developing is the capacity to print the data that’s output from each node to
the console. To enable printing to the console, just replace any of the to methods with a call to print.

75Interactive development
Printed provides two static methods allowing you print to stdout, Printed.toSys-
Out(), or to write results to a file, Printed.toFile(filePath).

 Additionally, you can label your printed results by chaining the withLabel()
method, allowing you to print an initial header with the records. This is useful when
you’re dealing with results from different processors. It’s important that your objects
provide a meaningful toString implementation to create useful results when printing
your stream either to the console or a file.

 Finally, if you don’t want to use toString, or you want to customize how Kafka
Streams prints records, there’s the Printed.withKeyValueMapper method, which
takes a KeyValueMapper instance so you can format your records in any way you want.
The same caveat I mentioned earlier—that you shouldn’t modify the original
records—applies here as well.

 In this book, I focus on printing records to the console for all examples. Here are
some examples of using KStream.print in listing 3.11:

patternKStream.print(Printed.<String, PurchasePattern>toSysOut()

➥ .withLabel("patterns"));

rewardsKStream.print(Printed.<String, RewardAccumulator>toSysOut()

➥ .withLabel("rewards"));

purchaseKStream.print(Printed.<String, Purchase>toSysOut()

➥ .withLabel("purchases"));

Let’s take a quick look at the output you’ll see on the screen (figure 3.11) and how it can
help you during development. With printing enabled, you can run the Kafka Streams
application directly from your IDE as you make changes, stop and start the application,
and confirm that the output is what you expect. This is no substitute for unit and integra-
tion tests, but viewing streaming results directly as you develop is a great tool.

Sets up to print the PurchasePattern
transformation to the console

Sets up to print the RewardAccumulator
transformation to the console

Prints the purchase
data to the console

Name(s) given to the print
statement, helpful to make
this the same as the topic

The values for the records. Note that these are
JSON strings and the Purchase, PurchasePattern,
and RewardAccumulator objects defined toString
methods to get this rendering on the console.

The keys for the records,
which are null in this case

Note the masked
credit card number!

Figure 3.11 This a detailed view of the data on the screen. With printing to the console enabled, you’ll quickly
see if your processors are working correctly.

76 CHAPTER 3 Developing Kafka Streams
One downside of using the print() method is that it creates a terminal node, mean-
ing you can’t embed it in a chain of processors. You need to have a separate statement.
However, there’s also the KStream.peek method, which takes a ForeachAction
instance as a parameter and returns a new KStream instance. The ForeachAction
interface has one method, apply(), which has a return type of void, so nothing from
KStream.peek is forwarded downstream, making it ideal for operations like printing.
You can embed it in a chain of processors without the need for a separate print state-
ment. You’ll see the KStream.peek method used in this manner in other examples in
the book.

3.5 Next steps
At this point, you have your Kafka Streams purchase-analysis program running well.
Other applications have also been developed to consume the messages written to the
patterns, rewards, and purchases topics, and the results for ZMart have been good.
But alas, no good deed goes unpunished. Now that the ZMart executives can see what
your streaming program can provide, a slew of new requirements come your way.

3.5.1 New requirements

You now have new requirements for each of the three categories of results you’re pro-
ducing. The good news is that you’ll still use the same source data. You’re being asked
to refine, and in some cases further break down, the data you’re providing. The new
requirements may be able to be applied to current topics, or they may require you to
create entirely new topics:

 Purchases under a certain dollar amount need to be filtered out. Upper man-
agement isn’t much interested in the small purchases for general daily articles.

 ZMart has expanded and has bought an electronics chain and a popular coffee
house chain. All purchases from these new stores will flow through the stream-
ing application you’ve set up. You need to send the purchases from these new
subsidiaries to their topics.

 The NoSQL solution you’ve chosen stores items in key/value format. Although
Kafka also uses key/value pairs, the records coming into your Kafka cluster
don’t have keys defined. You need to generate a key for each record before the
topology forwards it to the purchases topic.

More requirements will inevitably come your way, but you can start to work on the cur-
rent set of new requirements now. If you look through the KStream API, you’ll be
relieved to see that there are several methods already defined that will make fulfilling
these new demands easy.

NOTE From this point forward, all code examples are pared down to the
essentials to maximize clarity. Unless there’s something new to introduce, you
can assume that the configuration and setup code remain the same. These
truncated examples aren’t meant to stand alone—the full code listing for this

77Next steps
example can be found in src/main/java/bbejeck/chapter_3/ZMartKafka-
StreamsAdvancedReqsApp.java.

FILTERING PURCHASES

Let’s start with filtering out purchases that don’t reach the minimum threshold. To
remove low-dollar purchases, you’ll need to insert a filter-processing node between
the KStream instance and the sink node. You’ll update the processor topology graph
as shown in figure 3.12.

You can use the KStream method, which takes a Predicate<K,V> instance as a param-
eter. Although you’re chaining method calls together here, you’re creating a new pro-
cessing node in the topology.

KStream<Long, Purchase> filteredKStream =

➥ purchaseKStream((key, purchase) ->

➥ purchase.getPrice() > 5.00).selectKey(purchaseDateAsKey);

This code filters purchases that are less than $5.00 and selects the purchase date as a
long value for a key.

 The Predicate interface has one method defined, test(), which takes two parame-
ters—the key and the value—although, at this point, you only need to use the value.
Again, you can use a Java 8 lambda in place of a concrete type defined in the KStream API.

Listing 3.12 Filtering on KStream

The filtering processor will
only allow records through that
match the given predicate—in
this case, purchases over a
certain dollar amount.

Patterns

Masking

Source

Rewards

Patterns
sinkRewards

sink

Purchases
sink

Filtering
processor

Figure 3.12 You’re placing a processor between the masking processor and the terminal
node that writes to Kafka. This filtering processor will drop purchases under a given dollar
amount.

78 CHAPTER 3 Developing Kafka Streams
DEFINITION If you’re familiar with functional programming, you should feel
right at home with the Predicate interface. If the term predicate is new to you,
it’s nothing more than a given statement, such as x < 100. An object either
matches the predicate statement or doesn’t.

Additionally, you want to use the purchase timestamp as a key, so you use the select-
Key processor, which uses the KeyValueMapper mentioned in section 3.4 to extract the
purchase date as a long value. I cover details about selecting the key in the section
“Generating a key.”

 A mirror-image function, KStreamNot, performs the same filtering functionality
but in reverse. Only records that don’t match the given predicate are processed further
in the topology.

SPLITTING/BRANCHING THE STREAM

Now you need to split the stream of purchases into separate streams that can write to
different topics. Fortunately, the KStream.branch method is perfect. The KStream
.branch method takes an arbitrary number of Predicate instances and returns an
array of KStream instances. The size of the returned array matches the number of
predicates supplied in the call.

 In the previous change, you modified an existing leaf on the processing topology.
With this requirement to branch the stream, you’ll create brand-new leaf nodes on
the graph of processing nodes, as shown in figure 3.13.

The KStream.branch method takes an array of
predicates and returns an array containing an equal
number of KStream instances, each one accepting
records matching the corresponding predicate.

Patterns

Masking

Source

Rewards

Patterns
sink

Rewards
sink

Purchases
sink

Filtering
processor

Processor for records
matching predicate at
index 0

Processor for records
matching predicate at
index 1

Branch
processor

Cafe
processor

Electronics
processor

Cafe
sink

Electronics
sink

Figure 3.13 The branch processor splits the stream into two: one stream consists of purchases from
the cafe, and the other stream contains purchases from the electronics store.

79Next steps
As records from the original stream flow through the branch processor, each record is
matched against the supplied predicates in the order that they’re provided. The pro-
cessor assigns records to a stream on the first match; no attempts are made to match
additional predicates.

 The branch processor drops records if they don’t match any of the given predi-
cates. The order of the streams in the returned array matches the order of the predi-
cates provided to the branch() method. A separate topic for each department may
not be the only approach, but we’ll stick with this for now. It satisfies the requirement,
and it can be revisited later.

Predicate<String, Purchase> isCoffee =

➥ (key, purchase) ->

➥ purchase.getDepartment().equalsIgnoreCase("coffee");

Predicate<String, Purchase> isElectronics =

➥ (key, purchase) ->

➥ purchase.getDepartment().equalsIgnoreCase("electronics");

int coffee = 0;
int electronics = 1;

KStream<String, Purchase>[] kstreamByDept =

➥ purchaseKStream.branch(isCoffee, isElectronics);

kstreamByDept[coffee].to("coffee",
Produced.with(stringSerde, purchaseSerde));

kstreamByDept[electronics].to("electronics",

➥ Produced.with(stringSerde, purchaseSerde));

WARNING The example in listing 3.13 sends records to several different top-
ics. Although Kafka can be configured to automatically create topics when it
attempts to produce or consume for the first time from nonexistent topics,
it’s not a good idea to rely on this mechanism. If you rely on autocreating top-
ics, the topics are configured with default values from the server.config prop-
erties file, which may or may not be the settings you need. You should always
think about what topics you’ll need, the level of partitions, and the replica-
tion factor ahead of time, and create them before running your Kafka
Streams application.

In listing 3.13, you define the predicates ahead of time, because passing four lambda
expression parameters would be a little unwieldy. The indices of the returned array
are also labeled, to maximize readability.

 This example demonstrates the power and flexibility of Kafka Streams. You’ve
been able to take the original stream of purchase transactions and split them into four
streams with very few lines of code. Also, you’re starting to build up a more complex
processing topology, all while reusing the same source processor.

Listing 3.13 Splitting the stream

Creates the
predicates as
Java 8 lambdas

Labels the expected indices
of the returned array Calls branch to split

the original stream
into two streams

Writes the results of each
stream out to a topic

80 CHAPTER 3 Developing Kafka Streams
So far, so good. You’ve met two of the three new requirements with ease. Now it’s time
to implement the last additional requirement, generating a key for the purchase
record to be stored.

GENERATING A KEY

Kafka messages are in key/value pairs, so all records flowing through a Kafka Streams
application are key/value pairs as well. But there’s no requirement stating that keys
can’t be null. In practice, if there’s no need for a particular key, having a null key will
reduce the overall amount of data that travels the network. All the records flowing
into the ZMart Kafka Streams application have null keys.

 That’s been fine, until you realize that your NoSQL storage solution stores data in
key/value format. You need a way to create a key from the Purchase data before it gets
written out to the purchases topic. You certainly could use KStream.map to generate a
key and return a new key/value pair (where only the key would be new), but there’s a
more succinct KStream.selectKey method that returns a new KStream instance that
produces records with a new key (possibly a different type) and the same value. This
change to the processor topology is similar to filtering, in that you add a processing
node between the filter and the sink processor, shown in figure 3.14.

KeyValueMapper<String, Purchase, Long> purchaseDateAsKey =

➥ (key, purchase) -> purchase.getPurchaseDate().getTime();

KStream<Long, Purchase> filteredKStream =

➥ purchaseKStream((key, purchase) ->

➥ purchase.getPrice() > 5.00).selectKey(purchaseDateAsKey);

filteredKStream.print(Printed.<Long, Purchase>

➥ toSysOut().withLabel("purchases"));
filteredKStream.to("purchases",

➥ Produced.with(Serdes.Long(),purchaseSerde));

To create the new key, you take the purchase date and convert it to a long. Although you
could pass a lambda expression, it’s assigned to a variable here to help with readability.

Splitting vs. partitioning streams
Although splitting and partitioning may seem like similar ideas, they’re unrelated in
Kafka and Kafka Streams. Splitting a stream with the KStream.branch method
results in creating one or more streams that could ultimately send records to another
topic. Partitioning is how Kafka distributes messages for one topic across servers,
and aside from configuration tuning, it’s the principal means of achieving high
throughput in Kafka.

Listing 3.14 Generating a new key

The KeyValueMapper
extracts the purchase
date and converts to
a long.

Filters out purchases
and selects the key in
one statement

Prints the results
to the console

Materializes the results
to a Kafka topic

81Next steps
Also, note that you need to change the serde type used in the KStream.to method,
because you’ve changed the type of the key.

This is a simple example of mapping to a new key. Later, in another example, you’ll
select keys to enable joining separate streams. Also, all the examples up until this
point have been stateless, but there are several options for stateful transformations as
well, which you’ll see a little later on.

3.5.2 Writing records outside of Kafka

The security department at ZMart has approached you. Apparently, in one of the
stores, there’s a suspicion of fraud. There have been reports that a store manager is
entering invalid discount codes for purchases. Security isn’t sure what’s going on, but
they’re asking for your help.

 The security folks don’t want this information to go into a topic. You talk to them
about securing Kafka, about access controls, and about how you can lock down access
to a topic, but the security folks are standing firm. These records need to go into a
relational database where they have full control. You sense this is a fight you can’t win,
so you relent and resolve to get this task done as requested.

Patterns

Masking

Source

Rewards

Patterns
sink

Rewards
sink

Purchases
sink

Add the select-key
processor here after the
filtering, as you only need to
generate keys for records
that will be written out to
the purchases topic.

Filtering
processor

Select-key
processor

Branch
processor

Cafe
processor

Electronics
processor

Cafe
sink

Electronics
sink

Figure 3.14 The NoSQL data store will use the purchase date as a key for the data it stores. The new select-
Key processor will extract the purchase date to be used as a key, right before you write the data to Kafka.

82 CHAPTER 3 Developing Kafka Streams
FOREACH ACTIONS

The first thing you need to do is create a new KStream that filters results down to a sin-
gle employee ID. Even though you have a large amount of data flowing through your
topology, this filter will reduce the volume to a tiny amount.

 Here, you’ll use KStream with a predicate that looks to match a specific employee
ID. This filter will be completely separate from the previous filter, and it’ll be attached
to the source KStream instance. Although it’s entirely possible to chain filters, you
won’t do that here; you want full access to the data in the stream for this filter.

Next, you’ll use a KStream.foreach method, as shown in figure 3.15. KStream.foreach
takes a ForeachAction<K, V> instance, and it’s another example of a terminal node.
It’s a simple processor that uses the provided ForeachAction instance to perform an
action on each record it receives.

ForeachAction<String, Purchase> purchaseForeachAction = (key, purchase) ->

➥ SecurityDBService.saveRecord(purchase.getPurchaseDate(),

➥ purchase.getEmployeeId(), purchase.getItemPurchased());

Listing 3.15 Foreach operations

This filter will only forward records where the
employee ID matches the given predicate.

Patterns

Masking

Source

Rewards

Patterns
sink

Rewards
sink

Purchases
sink

After records are forwarded to the Foreach processor,
the value of each record is written to an external database.

Purchase-
price

processor

Select-key
processor

Branch
processor

Employee
ID

processor

Foreach-
Value

processor

Cafe
processor

Electronics
processor

Cafe
sink

Electronics
sink

Figure 3.15 To write purchases involving a given employee outside of the Kafka Streams application, you’ll first
add a filter processor to extract purchases by employee ID, and then you’ll use a foreach operator to write
each record to an external relational database.

83Summary
purchaseKStream.filter((key, purchase) ->

➥ purchase.getEmployeeId()

➥ .equals("source code has 000000"))

➥ .foreach(purchaseForeachAction);

ForeachAction uses a Java 8 lambda (again), and it’s stored in a variable, purchase-
ForeachAction. This requires an extra line of code, but the clarity gained by doing so
more than makes up for it. On the next line, another KStream instance sends the fil-
tered results to the ForeachAction defined directly above it.

 Note that KStream.foreach is stateless. If you need state to perform some action
for each record, you can use the KStream.process method. The KStream.process
method will be discussed in the next chapter when you add state to a Kafka Streams
application.

 If you step back and look at what you’ve accomplished so far, it’s pretty impressive,
considering the amount of code written. Don’t get too comfortable, though, because
upper management at ZMart has taken notice of your productivity. More changes and
refinements to the purchase-streaming analysis program are coming.

Summary
 You can use the KStream.mapValues function to map incoming record values to

new values, possibly of a different type. You also learned that these mapping
changes shouldn’t modify the original objects. Another method, KStream.map,
performs the same action but can be used to map both the key and the value to
something new.

 A predicate is a statement that accepts an object as a parameter and returns
true or false depending on whether that object matches a given condition.
You used predicates in the filter function to prevent records that didn’t match a
given predicate from being forwarded in the topology.

 The KStream.branch method uses predicates to split records into new streams
when a record matches a given predicate. The processor assigns a record to a
stream on the first match and drops unmatched records.

 You can modify an existing key or create a new one using the KStream.select-
Key method.

In the next chapter, we’ll start to look at state, the required properties for using state
with a steaming application, and why you might need to add state at all. Then you’ll add
state to a KStream application, first by using stateful versions of KStream methods you’ve
seen in this chapter (KStream.mapValues()). For a more advanced example, you’ll per-
form joins between two different streams of purchases to help ZMart improve customer
service.

Streams and state
In the last chapter, we dove headfirst into the Kafka Streams DSL and built a pro-
cessing topology to handle streaming requirements from purchases at ZMart loca-
tions. Although you built a nontrivial processing topology, it was one dimensional
in that all transformations and operations were stateless. You considered each
transaction in isolation, without any regard to other events occurring at the same
time or within certain time boundaries, either before or after the transaction. Also,
you only dealt with individual streams, ignoring any possibility of gaining addi-
tional insight by joining streams together.

 In this chapter, you’ll extract the maximum amount of information from the
Kafka Streams application. To get this level of information, you’ll need to use state.
State is nothing more than the ability to recall information you’ve seen before and
connect it to current information. You can utilize state in different ways. We’ll look

This chapter covers
 Applying stateful operations to Kafka Streams

 Using state stores for lookups and remembering
previously seen data

 Joining streams for added insight

 How time and timestamps drive Kafka Streams
84

85Thinking of events
at one example when we explore the stateful operations, such as the accumulation of
values, provided by the Kafka Streams DSL.

 Another example of state we’ll discuss is the joining of streams. Joining streams is
closely related to the joins performed in database operations, such as joining records
from the employee and department tables to generate a report on who staffs which
departments in a company.

 We’ll also define what the state needs to look like and what the requirements are
for using state when we discuss state stores in Kafka Streams. Finally, we’ll weigh the
importance of timestamps and look at how they can help you work with stateful opera-
tions, such as ensuring you only work with events occurring within a given time frame
or helping you work with data arriving out of order.

4.1 Thinking of events
When it comes to event processing, events sometimes require no further information
or context. At other times, an event on its own may be understood in a literal sense,
but without some added context, you might miss the significance of what is occurring;
you might think of the event in a whole new light, given some additional information.

 An example of an event that doesn’t require additional information is the
attempted use of a stolen credit card. The transaction is canceled immediately once
the stolen card’s use is detected. You don’t need any additional information to make
that decision.

 But sometimes a singular event won’t give you enough information to make a deci-
sion. Consider a series of stock purchases by three individual investors within a short
period. On the face of it, there’s nothing about the purchases of XYZ Pharmaceutical
stock, shown in figure 4.1, that would give you pause. Investors buying shares of the
same stock is something that happens every day on Wall Street.

Now let’s add some context. Within a short period of the individual stock purchases,
XYZ Pharmaceutical announced government approval for a new drug, which sent the
stock price to historic highs. Additionally, those three investors had close ties to XYZ
Pharmaceutical. Now the transactions, shown in figure 4.2, can be viewed in a whole
new light.

Timeline

9:30 a.m. 9:50 a.m. 10:30 a.m.

10,000 shares of XYZ
Pharmaceutical

purchased

12,000 shares of XYZ
Pharmaceutical

purchased

15,000 shares of XYZ
Pharmaceutical

purchased

Figure 4.1 Stock transactions without any extra information don’t look like anything
out of the ordinary.

86 CHAPTER 4 Streams and state
The timing of these purchases and the information release raises some questions.
Were these investors leaked information ahead of time? Or do the transactions repre-
sent one investor with inside information trying to cover their tracks?

4.1.1 Streams need state

The preceding fictional scenario illustrates something that most of us already know
instinctively. Sometimes it’s easy to reason about what’s going on, but usually you need
some context to make good decisions. When it comes to stream processing, we call
that added context state.

 At first glance, the notions of state and stream processing may seem to be at odds
with each other. Stream processing implies a constant flow of discrete events that
don’t have much to do with each other and need to be dealt with as they occur. The
notion of state might evoke images of a static resource, such as a database table.

 In actuality, you can view these as one and the same. But the rate of change in a
stream is potentially much faster and more frequent than in a database table.1

 You don’t always need state to work with streaming data. In some cases, you may
have discrete events or records that carry enough information to be valuable on their
own. But more often than not, the incoming stream of data will need enrichment
from some sort of store, either using information from events that arrived before, or
joining related events with events from different streams.

4.2 Applying stateful operations to Kafka Streams
In this section, we’ll look at how you can add a stateful operation to an existing state-
less one to improve the information collected by our application. You’re going to
modify the original topology from chapter 3, shown in figure 4.3 to refresh your
memory.

 In this topology, you produced a stream of purchase-transaction events. One of the
processing nodes in the topology calculated reward points for customers based on the

1 Jay Kreps, “Why Local State Is a Fundamental Primitive in Stream Processing,” http://mng.bz/sfoI.

Timeline

9:30 a.m. 9:50 a.m. 10:30 a.m.

10,000 shares of XYZ
Pharmaceutical

purchased

12,000 shares of XYZ
Pharmaceutical

purchased

15,000 shares of XYZ
Pharmaceutical

purchased

11:00 a.m.

FDA announces approval
of experimental drug
developed by XYZ

Pharmaceutical. Stock
price soars 30%.

Figure 4.2 When you add some additional context about the timing of the stock purchases, you’ll
see them in an entirely new light.

http://mng.bz/sfoI

87Applying stateful operations to Kafka Streams
amount of the sale. But in that processor, you just calculated the total number of
points for the single transaction and forwarded the results.

 If you added some state to the processor, you could keep track of the cumulative
number of reward points. Then, the consuming application at ZMart would need to
check the total and send out a reward if needed.

 Now that you have a basic idea of how state can be useful in Kafka Streams (or
any other streaming application), let’s look at some concrete examples. You’ll start
with transforming the stateless rewards processor into a stateful processor using
transformValues. You’ll keep track of the total bonus points achieved so far and the
amount of time between purchases, to provide more information to downstream
consumers.

4.2.1 The transformValues processor

The most basic of the stateful functions is KStream.transformValues. Figure 4.4 illus-
trates how the KStream.transformValues() method operates.

 This method is semantically the same as KStream.mapValues(), with a few excep-
tions. One difference is that transformValues has access to a StateStore instance to
accomplish its task. The other difference is its ability to schedule operations to occur
at regular intervals via a punctuate() method. The punctuate() method will be dis-
cussed in detail when we cover the Processor API in chapter 6.

Patterns

Masking

Source

Rewards

Patterns
sinkRewards

sink

Purchases
sink

Source node consuming messages from
the Kafka transactions topic

Second node does the
masking of credit
card numbers

Figure 4.3 Here’s another look at the topology from chapter 3.

88 CHAPTER 4 Streams and state
4.2.2 Stateful customer rewards

The rewards processor from the chapter 3 topology (see figure 4.3) for ZMart extracts
information for customers belonging to ZMart’s rewards program. Initially, the rewards
processor used the KStream.mapValues() method to map the incoming Purchase
object into a RewardAccumulator object.

 The RewardAccumulator object originally consisted of just two fields, the customer
ID and the purchase total for the transaction. Now, the requirements have changed
some, and points are being associated with the ZMart rewards program:

public class RewardAccumulator {

private String customerId;
private double purchaseTotal;
private int currentRewardPoints;

//details left out for clarity
}

Whereas before, an application read from the rewards topic and calculated customer
achievements, now management wants the point system to be maintained and calcu-
lated by the streaming application. Additionally, you need to capture the amount of
time between the customer’s current and last purchase.

Transaction object representing
customer purchase in store

Retrieves state by key
and uses previously seen

data to update object

Takes current data plus
previous data to create

updated state stored by key

transformValues forwards
transformed object to next

processor in stream

Records flowing
into transform

transformValues uses
local state to perform

transformation

Customer ID
Total reward points
Days since last purchase
…………...

transformValues
processor

Date
Items purchased
Customer ID
Store ID
………...

Local state

In-memory
key/value store

Figure 4.4 The transformValues processor uses information stored in local state to
update incoming records. In this case, the customer ID is the key used to retrieve and store
the state for a given record.

Customer ID

Total dollar amount
of purchase

Current number of
reward points

89Applying stateful operations to Kafka Streams
 When the application reads records from the rewards topic, the consuming appli-
cation will only need to check whether the total points are above the threshold to dis-
tribute an award. To meet this new goal, you can add the totalRewardPoints and
daysFromLastPurchase fields to the RewardAccumulator object, and use the local
state to keep track of accumulated points and the last date of purchase. Here’s the
refactored RewardAccumulator code (found in src/main/java/bbejeck/model/Reward-
Accumulator.java; source code can be found on the book’s website here: https://
manning.com/books/kafka-streams-in-action) needed to support these changes.

public class RewardAccumulator {

private String customerId;
private double purchaseTotal;
private int currentRewardPoints;
private int daysFromLastPurchase;
private long totalRewardPoints;

//details left out for clarity
}

The updated rules for the purchase program are simple. The customer earns a point
per dollar, and transaction totals are rounded down to the nearest dollar. The overall
structure of the topology won’t change, but the rewards-processing node will change
from using the KStream.mapValues() method to using KStream.transformValues().
Semantically, these two methods operate the same way, in that you still map the
Purchase object into a RewardAccumulator object. The difference lies in the ability to
use local state to perform the transformation.

 Specifically, you’ll take two main two steps:

 Initialize the value transformer.
 Map the Purchase object to a RewardAccumulator using state.

The KStream.transformValues() method takes a ValueTransformerSupplier<V, R>
object, which supplies an instance of the ValueTransformer<V, R> interface. Your imple-
mentation of the ValueTransformer will be PurchaseRewardTransformer<Purchase,
RewardAccumulator>. For the sake of clarity, I won’t reproduce the entire class here in
the text. Instead, we’ll walk through the important methods for the example applica-
tion. Also note that these code snippets aren’t meant to stand alone, and some details
will be left out for clarity. The full code can be found in the chapter source code
(found on the book’s website here: https://manning.com/books/kafka-streams-in-
action). Let’s move on and initialize the processor.

Listing 4.1 Refactored RewardAccumulator object

Field added for
tracking total
points

https://manning.com/books/kafka-streams-in-action
https://manning.com/books/kafka-streams-in-action
https://manning.com/books/kafka-streams-in-action
https://manning.com/books/kafka-streams-in-action
https://manning.com/books/kafka-streams-in-action

90 CHAPTER 4 Streams and state
4.2.3 Initializing the value transformer

The first step is to set up or create any instance variables in the transformer init()
method. In the init() method, you retrieve the state store created when building the
processing topology (we’ll cover how you add the state store in section 4.3.3).

private KeyValueStore<String, Integer> stateStore;

private final String storeName;
private ProcessorContext context;

public void init(ProcessorContext context) {
this.context = context;
stateStore = (KeyValueStore)

➥ this.context.getStateStore(storeName);
}

Inside the transformer class, you cast to a KeyValueStore type. You’re not concerned
with the implementation inside the transformer at this point, just that you can retrieve
values by key (more on state store implementation types in the next section).

 There are other methods (such as punctuate() and close()) not listed here that
belong to the ValueTransformer interface. We’ll discuss punctuate() and close()
when we discuss the Processor API in chapter 6.

4.2.4 Mapping the Purchase object to a RewardAccumulator
using state

Now that you’ve initialized the processor, you can move on to transforming a Purchase
object using state. A few simple steps for performing the transformation are as follows:

1 Check for points accumulated so far by customer ID.
2 Sum the points for the current transaction and present the total.
3 Set the reward points on the RewardAccumulator to the new total amount.
4 Save the new total points by customer ID in the local state store.

public RewardAccumulator transform(Purchase value) {
RewardAccumulator rewardAccumulator =

➥ RewardAccumulator.builder(value).build();
Integer accumulatedSoFar =

➥ stateStore.get(rewardAccumulator.getCustomerId());

if (accumulatedSoFar != null) {
rewardAccumulator.addRewardPoints(accumulatedSoFar);

}

Listing 4.2 init() method

Listing 4.3 Transforming Purchase using state

Instance variables

Sets a local reference
to ProcessorContext

Retrieves the StateStore instance
by storeName variable. storeName
is set in the constructor.

Builds the Reward-
Accumulator object
from Purchase

Retrieves the latest
count by customer ID

If an accumulated number exists,
adds it to the current total

91Applying stateful operations to Kafka Streams
stateStore.put(rewardAccumulator.getCustomerId(),
rewardAccumulator.getTotalRewardPoints());

return rewardAccumulator;
}

In the transform() method, you first map a Purchase object into the RewardAccumu-
lator—this is the same operation used in the mapValues() method. In the next few
lines, the state gets involved in the transformation process. You do a lookup by key
(customer ID) and add any points accumulated so far to the points from the current
purchase. Then, you place the new total in the state store until it’s needed again.

 All that’s left is to update the rewards processor. But before you do, you need to
consider the fact that you’re accessing all sales by customer ID. Gathering information
per sale for a given customer implies that all transactions for that customer are on the
same partition. But because the transactions come into the application without a key,
the producer assigns the transactions to partitions in a round-robin fashion. We cov-
ered round-robin partition assignment in chapter 2, but it’s worth reviewing it here
again—see figure 4.5.

 You’ll have an issue here (unless you’re using topics with only one partition).
Because the key isn’t populated, round-robin assignment means the transactions for a
given customer won’t land on the same partition.

Stores the new
total points in
stateStoreReturns the new

accumulated
rewards points

Because the keys are null, partition
assignment starts at 0 and increases
by 1 for each message up to 5. Then
the partition assignment starts over
at 0 again. Partition 1

Partition 0

Partition 2

Partition 3

Partition 4

Partition 5

Kafka broker 1

Kafka broker 2

Kafka broker 3

ProducerProducer

0

5

4

3

2

1

Figure 4.5 A Kafka producer distributes records evenly (round-robin) when the keys are null.

92 CHAPTER 4 Streams and state
Placing customer transactions with the same ID on the same partition is important,
because you need to look up records by ID in the state store. Otherwise, you’ll have
customers with the same ID spread across different partitions, requiring you to look
up the same customer in multiple state stores. (This statement could be interpreted to
mean that each partition has its own state store, but that’s not the case. Partitions are
assigned to a StreamTask, and each StreamTask has its own state store.)

 The way to solve this problem is to repartition the data by customer ID. We’ll look
at how to do this next.

REPARTITIONING THE DATA

First, let’s have a general discussion on how repartitioning works (see figure 4.6). To
repartition records, first you may modify or change the key on the original record,
and then you write out the record to a new topic. Next, you consume those records
again; but as a result of repartitioning, those records may come from different parti-
tions than they were in originally.

Although, in this simple example, you replaced the null key with a concrete value,
repartitioning need not always change the key. By using StreamPartitioner (http://
mng.bz/9Z8A), you can apply just about any partition strategy you can think of, such

The keys are originally null, so distribution is done round-robin,
resulting in records with the same ID across different partitions.

Now with the key populated, all
records with the identical ID land
the same partition.

Original topic Repartition topic

(null, {“id”:”5”, “info”:”123”})

(null, {“id”:”4”, “info”:”abc”})

null, {“id”:”5”, “info”:”456”})

(null, {“id”:”4”, “info”:”def”})

(“4”, {“id”:”4”, “info”:”def”})

(“4”, {“id”:”4”, “info”:”abc”})

(“5”, {“id”:”5”, “info”:”456”})

(“5”, {“id”:”5”, “info”:”123”})

Partition 0

Partition 1

Partition 0

Partition 1

For repartitioning, set the ID
field as the key, and then write
the records to a topic.

Figure 4.6 Repartitioning: changing the original key to move records to a different partition

http://mng.bz/9Z8A
http://mng.bz/9Z8A
http://mng.bz/9Z8A

93Applying stateful operations to Kafka Streams
as partitioning on the value or part of the value instead of the key. In the next section,
we’ll demonstrate using StreamPartitioner in Kafka Streams.

REPARTITIONING IN KAFKA STREAMS

Repartitioning in Kafka Streams is easily accomplished by using the KStream.through()
method, as illustrated in figure 4.7. The KStream.through() method creates an inter-
mediate topic, and the current KStream instance will start writing records to that topic.
A new KStream instance is returned from the through() method call, using the same
intermediate topic for its source. This way, the data is seamlessly repartitioned.

Under the covers, Kafka Streams creates a sink and source node. The sink node is a
child processor of the calling KStream instance, and the new KStream instance uses
the new source node for its source of records. You could write the same type of sub-
topology yourself using the DSL, but using the KStream.through() method is more
convenient.

 If you’ve modified or changed keys and you don’t need a custom partition strategy,
you can rely on the DefaultPartitioner of the internal Kafka Streams Kafka-
Producer to handle the partitioning. But if you’d like to apply your own partitioning
approach, you can use StreamPartitioner. You’ll do just that in the next example.

 The code for using the KStream.through method is shown in the following list-
ing. In this example, KStream.through() takes two parameters: the topic name and
a Produced instance that provides the key Serde, the value Serde, and a Stream-
Partitioner. Note that if you want to use the default key and value Serde instances
and have no need for a custom partitioning strategy, there’s a version of KStream
.through where you only provide the topic name.

RewardsStreamPartitioner streamPartitioner =

➥ new RewardsStreamPartitioner();

Listing 4.4 Using the KStream.through method

The returned KStream instance immediately
starts to consume from the intermediate topic.

Original KStream node
making the “through” call

Writes to topic

Reads from topic

Intermediate topic
(created by the application)

Figure 4.7 Writing out to an
intermediate topic and then
reading from it in a new
KStream instance

Instantiates the concrete
StreamPartitioner instance

94 CHAPTER 4 Streams and state

the
ugh
KStream<String, Purchase> transByCustomerStream =

➥ purchaseKStream.through("customer_transactions",
Produced.with(stringSerde,

purchaseSerde,
streamPartitioner));

Here, you’ve instantiated a RewardsStreamPartitioner. Let’s take a quick look at how
it works as well as demonstrate how to create a StreamPartitioner.

USING A STREAMPARTITIONER

Typically, the partition assignment is calculated by taking the hash of an object, modu-
lus the number of partitions. In this case, you want to use the customer ID found in
the Purchase object so that all data for a given customer ends up in the same state
store. The following listing shows the StreamPartitioner implementation (found in
src/main/java/bbejeck/chapter_4/partitioner/RewardsStreamPartitioner.java).

public class RewardsStreamPartitioner implements

➥ StreamPartitioner<String, Purchase> {

@Override
public Integer partition(String key,

Purchase value,
int numPartitions) {

return value.getCustomerId().hashCode() % numPartitions;
}

}

Notice that you haven’t generated a new key. You’re using a property of the value to
determine the correct partition. The key point to take away from this quick detour is
that when you’re using state to update and modify records, it’s necessary for those
records to be on the same partition.

WARNING Don’t mistake this simple repartitioning demonstration for some-
thing you can be cavalier with. Although repartitioning is sometimes neces-
sary, it comes at the cost of duplicating your data and incurs processing
overhead. My advice is to use mapValues(), transformValues(), or flatMap-
Values() operations whenever possible, because map(), transform(), and
flatMap() can trigger automatic repartitioning. It’s best to use repartitioning
logic sparingly.

Now, let’s get back to making changes in the rewards processor node to support state-
ful transformation.

4.2.5 Updating the rewards processor

Up to this point, you’ve created a new processing node that writes purchase objects
out to a topic, partitioned by customer ID. This new topic will also be the source for
your soon-to-be-updated rewards processor. You did this to ensure that all purchases

Listing 4.5 RewardsStreamPartitioner

Creates a new
KStream with
KStream.thro
method

Determines the
partition by
customer ID

95Applying stateful operations to Kafka Streams
for a given customer are written to the same partition; hence, you’ll use the same state
store for all purchases by a given customer. Figure 4.8 shows the updated processing
topology with the new through processor between the credit card–masking node (the
source for all purchase transactions) and the rewards processor.

Now, you’ll use the new Stream instance (created by the KStream.through() method)
to update the rewards processor and use the stateful transform approach with the fol-
lowing code.

KStream<String, RewardAccumulator> statefulRewardAccumulator =

➥ transByCustomerStream.transformValues(() ->

➥ new PurchaseRewardTransformer(rewardsStateStoreName),
rewardsStateStoreName);

statefulRewardAccumulator.to("rewards",
Produced.with(stringSerde,

rewardAccumulatorSerde));

The KStream.transformValues method takes a ValueTransformerSupplier<V, R>
instance, which is provided via a Java 8 lambda expression.

Listing 4.6 Changing the rewards processor to use stateful transformation

Branch
processor

Cafe
processor

Electronics
processor

Cafe
sink

Electronics
sink

The through processor
repartitions data with
new keys.

Patterns

Source

Through
processor

Patterns
sink

Rewards
sink

Purchases
sink

Filtering
processor

In-memory key/value store
used by the Rewards transforms
values for state processing.

The rewards-processor
node is updated to use
a stateful TransformValues
processor.

Rewards
processor

Local state
store

Masking

Figure 4.8 The new through processor ensures that you send purchases to partitions by customer ID,
allowing the rewards processor to make the right updates using local state.

Uses a stateful
transformation

Writes the
results out
to a topic

96 CHAPTER 4 Streams and state
 In this section, you’ve added stateful processing to a stateless node. By adding state
to the processor, ZMart can take action sooner after a customer makes a reward-quali-
fying purchase. You’ve seen how to use a state store and the benefits using one pro-
vides, but we’ve glossed over important details that you’ll need to understand about
how state can impact your applications. With this in mind, the next section will discuss
which type of state store to use, what requirements you’ll need to make state efficient,
and how you can add the state stores to a Kafka Streams program.

4.3 Using state stores for lookups and previously
seen data
In this section, we’ll look at the essentials of using state stores in Kafka Streams and the
key factors related to using state in streaming applications in general. This will enable
you to make practical choices when using state in your Kafka Streams applications.

 So far, we’ve discussed the need for using state with streams, and you’ve seen an
example of one of the more basic stateful operations available in Kafka Streams.
Before we get into more detail about using state stores in Kafka Streams, let’s briefly
look at two important attributes of state: data locality and failure recovery.

4.3.1 Data locality

Data locality is critical for performance. Although key lookups are typically very fast,
the latency introduced by using remote storage becomes a bottleneck when you’re
working at scale.

 Figure 4.9 illustrates the principle behind data locality. The dashed line represents a
network call to retrieve data from a remote database. The solid line depicts a call to an

Server

Processor

Local data
store

Data locality

Remote data
store

The processor needs to
communicate with a remote
store: the data must travel
further and is subject to
network availability.

The processor communicates
with a local store, which could
be in memory or off-heap: the
data travels a shorter distance,
and there’s no reliance on
network availability.

Figure 4.9 Data locality is necessary for stream processing.

97Using state stores for lookups and previously seen data
in-memory data store located on the same server. As you can see, making a call to get
data locally is more efficient than making a call across a network to a remote database.

 The key point here isn’t the degree of latency per record retrieval, which may be
minimal. The important factor is that you’ll potentially process millions or billions of
records through a streaming application. When multiplied by a factor that large, even
a small degree of network latency can have a huge impact.

 Data locality also implies that the store is local to each processing node, and
there’s no sharing across processes or threads. This way, if a process fails, it shouldn’t
have an impact on the other stream-processing processes or threads.

 The key point here is that although streaming applications will sometimes require
state, it should be local to where the processing occurs. Each server or node in the
application should have an individual data store.

4.3.2 Failure recovery and fault tolerance

Application failure is inevitable, especially when it comes to distributed applications.
We need to shift our focus from preventing failure to recovering quickly from failure,
or even from restarts.

 Figure 4.10 depicts the principles of data locality and fault tolerance. Each proces-
sor has its local data store, and a changelog topic is used to back up the state store.

Process 2

Processor

Local data
store

Local data
store

Process 1

Fault tolerance and failure recovery:
two Kafka Streams processes running on the same server

Because each process has its own local state store and a shared-nothing
architecture, if either process fails, the other process will be unaffected.
Also, each store has its keys/values replicated to a topic, which is used

to recover values lost when a process fails or restarts.

Data in state
store backed
up in topic

Topic used
as changelog
for store

Topic used
as changelog
for store

Data in state
store backed
up in topic

Processor

Figure 4.10 The ability to recover from failure is important for stream-processing applications. Kafka
Streams persists data from the local in-memory stores to an internal topic, so when you resume
operations after a failure or a restart, the data is repopulated.

98 CHAPTER 4 Streams and state
Backing up a state store with a topic may seem expensive, but there are a couple of
mitigating factors at play: a KafkaProducer sends records in batches, and by default,
records are cached. It’s only on cache flush that Kafka Streams writes records to the
store, so only the latest record for a given key is persisted. We’ll discuss this caching
mechanism with state stores in more detail in chapter 5.

 The state stores provided by Kafka Streams meet both the locality and fault-toler-
ance requirements. They’re local to the defined processors and don’t share access
across processes or threads. State stores also use topics for backup and quick recovery.

 We’ve now covered the requirements for using state with a streaming application.
The next step is to look at how you can enable the use of state in a Kafka Streams
application.

4.3.3 Using state stores in Kafka Streams

Adding a state store is a simple matter of creating a StoreSupplier instance with one
of the static factory methods on the Stores class. There are two additional classes for
customizing the state store: the Materialized and StoreBuilder classes. Which one
you’ll use depends on how you add the store to the topology. If you use the high-level
DSL, you’ll typically use the Materialized class; when you work with the lower-level
Processor API, you’ll use the StoreBuilder.

 Even though the current example uses the high-level DSL, you add a state store to
a Transformer, which provides Processor API semantics. So, you’ll use the StoreBuilder
for state store customization.

String rewardsStateStoreName = "rewardsPointsStore";
KeyValueBytesStoreSupplier storeSupplier =

➥ Stores.inMemoryKeyValueStore(rewardsStateStoreName);

StoreBuilder<KeyValueStore<String, Integer>> storeBuilder =

➥ Stores.keyValueStoreBuilder(storeSupplier,
Serdes.String(),
Serdes.Integer());

builder.addStateStore(storeBuilder);

You first create a StoreSupplier that provides an in-memory key/value store. Then,
you provide the StoreSupplier as a parameter to create a StoreBuilder, additionally
specifying String keys and Integer values. Finally, you add the StateStore to the
topology by providing the StoreBuilder to the StreamsBuilder.

 Here, you’ve created an in-memory key/value store with String keys and Integer
values, and you’ve added the store to the application with the StreamsBuilder
.addStateStore method. As a result, you can now use the state in your processors by
using the name rewardsStateStoreName created above, for the state store.

Listing 4.7 Adding a state store

Creates the
StateStore
supplier

Creates the StoreBuilder
and specifies the key
and value types

Adds the state store
to the topology

99Using state stores for lookups and previously seen data
 You’ve now seen an example of building an in-memory state store, but you have
options for creating different types of StateStore instances. Let’s look at those options.

4.3.4 Additional key/value store suppliers

In addition to the Stores.inMemoryKeyValueStore method, you can use these other
static factory methods for producing store suppliers:

 Stores.persistentKeyValueStore

 Stores.lruMap

 Stores.persistentWindowStore

 Stores.persistentSessionStore

It’s worth noting that all persistent StateStore instances provide local storage using
RocksDB (http://rocksdb.org).

 Before we move on from state stores, I’d like to cover two other important aspects
of Kafka Streams state stores: how fault tolerance is provided with changelog topics,
and how you can configure changelog topics.

4.3.5 StateStore fault tolerance

All the StateStoreSupplier types have logging enabled as a default. Logging, in this
context, means a Kafka topic used as a changelog to back up the values in the store
and provide fault tolerance.

 For example, suppose you lost a machine running Kafka Streams. Once you recov-
ered your server and restarted your Kafka Streams application, the state stores for that
instance would be restored to their original contents (the last committed offset in the
changelog before crashing).

 This logging can be disabled when using the Stores factory with the disable-
Logging() method. But you shouldn’t disabling logging without serious consideration,
because doing so removes fault tolerance from the state stores and eliminates their
ability to recover after a crash.

4.3.6 Configuring changelog topics

The changelogs for state stores are configurable via the withLoggingEnabled(Map
<String, String> config) method. You can use any configuration parameters avail-
able for topics in the map. The configuration of changelogs for state stores is import-
ant when building a Kafka Streams application. But keep in mind that you never need
to create changelog topics—Kafka Streams handles changelog topic creation for you.

NOTE State store changelogs are compacted topics, which we discussed in
chapter 2. As you may recall, the delete semantics require a null value for a
key, so if you want to remove a record from a state store permanently, you’ll
need to do a put(key, null) operation.

With Kafka topics, the default setting for data retention for a log segment is one week,
and the size is unlimited. Depending on your volume of data, this might be acceptable,

http://rocksdb.org

100 CHAPTER 4 Streams and state
but there’s a good chance you’ll want to adjust those settings. Additionally, the default
cleanup policy is delete.

 Let’s first take a look at how you can configure your changelog topic to have a
retention size of 10 GB and a retention time of 2 days.

Map<String, String> changeLogConfigs = new HashMap<>();
changeLogConfigs.put("retention.ms","172800000");
changeLogConfigs.put("retention.bytes", "10000000000");

// to use with a StoreBuilder
storeBuilder.withLoggingEnabled(changeLogConfigs);

// to use with Materialized
Materialized.as(Stores.inMemoryKeyValueStore("foo")

.withLoggingEnabled(changeLogConfigs));

In chapter 2, we discussed compacted topics offered by Kafka. To refresh your mem-
ory: compacted topics use a different approach to cleaning a topic. Instead of deleting
log segments by size or time, log segments are compacted by keeping only the latest
record for each key—older records with the same key are deleted. By default, Kafka
Streams creates changelog topics with a delete policy of compact.

 But if you have a changelog topic with a lot of unique keys, compaction might not
be enough, as the size of the log segment will keep growing. In that case, the solution
is simple. You specify a cleanup policy of delete and compact.

Map<String, String> changeLogConfigs = new HashMap<>();
changeLogConfigs.put("retention.ms","172800000");
changeLogConfigs.put("retention.bytes", "10000000000");
changeLogConfigs.put("cleanup.policy", "compact,delete");

Now your changelog topic will be kept at a reasonable size even with unique keys. This
has been a brief section on topic configuration; appendix A provides more informa-
tion about changelog topics and internal topic configuration.

 You’ve been introduced to the basics of stateful operations and state stores. You’ve
learned about the in-memory and persistent state stores Kafka Streams provides and
how you can include them in your streaming applications. You’ve also learned about
the importance of data locality and fault tolerance when using state in a streaming
application. Let’s move on to joining streams.

4.4 Joining streams for added insight
As we discussed earlier in the chapter, streams need state when events in the stream
don’t stand alone. Sometimes the state or context you need is another stream. In this

Listing 4.8 Setting changelog properties

Listing 4.9 Setting a cleanup policy

101Joining streams for added insight
section, you’ll take different events from two streams with the same key, and combine
them to form a new event.

 The best way to learn about joining streams is to look at a concrete example, so
we’ll return to the ZMart scenario. As you’ll recall, ZMart opened a new line of stores
that carried electronics and related merchandise (CDs, DVDs, smart phones, and so
on). Trying a new approach, ZMart has partnered with a national coffee house and
has embedded a cafe in each store.

 In chapter 3, you were asked to separate the purchase transactions in those stores
into two distinct streams. Figure 4.11 shows the topology for this requirement.

This approach of embedding the cafe has been a big success for ZMart, and the com-
pany would like to see this trend continue, so they’ve decided to start a new program.
ZMart wants to keep traffic in the electronics store high by offering coupons for the
cafe (hoping that increased traffic leads to additional purchases).

 ZMart wants to identify customers who have bought coffee and made a purchase in
the electronics store and give them coupons almost immediately after their second
transaction (see figure 4.12). ZMart intends to see if it can generate some sort of Pav-
lovian response in their customers.

The KStream.branch method takes an array of
predicates and returns an array containing an equal
number of KStream instances, each one accepting
records matching the corresponding predicate.

Patterns

Masking

Source

Rewards

Patterns
sink

Rewards
sink

Purchases
sink

Filtering
processor

Processor for records
matching predicate at
index 0

Processor for records
matching predicate at
index 1

Branch
processor

Cafe
processor

Electronics
processor

Cafe
sink

Electronics
sink

Figure 4.11 The branch processor, and where it stands in the overall topology

102 CHAPTER 4 Streams and state
To determine when to issue a coupon, you’ll need to join the sales from the cafe with
the sales in the electronics store. Joining streams is relatively straightforward in terms
of the code you need to write. Let’s start by setting up the data you need to process for
doing joins.

4.4.1 Data setup

First, let’s take another look at the portion of the topology responsible for branching
the streams (figure 4.13). In addition, let’s review the code used to implement the

Determining free coffee coupons

Issue coupon for free
coffee drink.

Cafe
purchase

Electronics
store

purchase

Cafe
purchase

Electronics
store

purchase

20-minute interval

20-minute interval

Figure 4.12 Purchase records with timestamps within 20 minutes of each other are joined by
customer ID and used to issue a reward to the customer—a free coffee drink, in this case.

Processor for records
matching predicate at
index 0

This processor contains the
array of predicates and returns
an equal number of KStream
instances, accepting records that
match the given predicate.

Branch
processor

Cafe
processor

Electronics
processor

Cafe
sink

Electronics
sink

Processor for records
matching predicate at
index 1

Figure 4.13 To perform a join, you need more than one stream. The branch processor
takes care of this by creating two streams: one containing cafe purchases and the other
containing electronics purchases.

103Joining streams for added insight

g

branching requirement (found in src/main/java/bbejeck/chapter_3/ZMartKafka-
StreamsAdvancedReqsApp.java).

Predicate<String, Purchase> coffeePurchase = (key, purchase) ->

➥ purchase.getDepartment().equalsIgnoreCase("coffee");

Predicate<String, Purchase> electronicPurchase = (key, purchase) ->

➥ purchase.getDepartment().equalsIgnoreCase("electronics");

final int COFFEE_PURCHASE = 0;
final int ELECTRONICS_PURCHASE = 1;

KStream<String, Purchase>[] branchedTransactions =

➥ transactionStream.branch(coffeePurchase, electronicPurchase);

This code shows how to perform branching: you use predicates to match incoming
records into an array of KStream instances. The order of matching is the same as the
position of KStream objects in the array. The branching process drops any record not
matching any predicate.

 Although you have two streams to join, there’s an additional step to perform.
Remember that purchase records come into the Kafka Streams application with no
keys. As a result, you need to add another processor to generate a key containing the
customer ID. You need populated keys because that’s what you’ll use to join the
records together.

4.4.2 Generating keys containing customer IDs to perform joins

To generate a key, you select the customer ID from the purchase data in the stream.
To do so, you need to update the original KStream instance (transactionStream) and
create another processing node between it and the branch node. This is shown in the fol-
lowing code (found in src/main/java/bbejeck/chapter_4/KafkaStreamsJoinsApp.java).

KStream<String, Purchase>[] branchesStream =

➥ transactionStream.selectKey((k,v)->

➥ v.getCustomerId()).branch(coffeePurchase, electronicPurchase);

Figure 4.14 shows an updated view of the processing topology based on listing 4.11.
You’ve seen before that changing the key may require you to repartition the data.
That’s true in this example as well, so why isn’t there a repartitioning step?

 In Kafka Streams, whenever you invoke a method that could result in generating a
new key (selectKey, map, or transform), an internal Boolean flag is set to true, indi-
cating that the new KStream instance requires repartitioning. With this Boolean flag
set, if you perform a join, reduce, or aggregation operation, the repartitioning is han-
dled for you automatically.

Listing 4.10 Branching into two streams

Listing 4.11 Generating new keys

Defines the
predicates
for matchin
records

Uses labeled integers for
clarity when accessing the
corresponding array

Creates the
branched
stream

Inserts the selectKey
processing node

104 CHAPTER 4 Streams and state
In this example, you perform a selectKey() operation on the transactionStream, so
the resulting KStream is flagged for repartitioning. Additionally, you immediately per-
form a branching operation, so each KStream resulting from the branch() call is
flagged for repartitioning as well.

NOTE In the example, you repartition by the key only. But there may be times
when you either don’t want to use the key or want to use some combination
of the key and value. In these cases, you can use the StreamPartitioner<K,
V> interface, as you saw in the example in listing 4.5 in the section, “Using a
StreamPartitioner.”

Now that you have two separate streams with populated keys, you’re ready for the next
step: joining the streams by key.

4.4.3 Constructing the join

The next step is to perform the actual join. You’ll take the two branched streams and
join them with the KStream.join() method. The topology is shown in figure 4.15.

Branch
processor

Cafe
processor

Electronics
processor

Cafe
sink

Electronics
sink

This processor is inserted to extract the
customer ID from the transaction object to
be used for the key. This sets up the join
between the two types of purchases.

Processor for records
matching predicate at
index 0

Patterns

Masking

Source

Rewards

Patterns
sink

Rewards
sink

Purchases
sink

Filtering
processor

Select-key
processor

Processor for records
matching predicate at
index 1

Figure 4.14 You need to remap the key/value purchase records into records where the key contains the
customer ID. Fortunately, you can extract the customer ID from the Purchase object.

105Joining streams for added insight
JOINING PURCHASE RECORDS

To create the joined record, you need to create an instance of a ValueJoiner<V1, V2,
R>. ValueJoiner takes two objects, which may or may not be of the same type, and it
returns a single object, possibly of a different type. In this case, ValueJoiner takes two
Purchase objects and returns a CorrelatedPurchase object. Let’s take a look at the
code (found in src/main/java/bbejeck/chapter_4/joiner/PurchaseJoiner.java).

public class PurchaseJoiner

➥ implements ValueJoiner<Purchase, Purchase, CorrelatedPurchase> {

@Override
public CorrelatedPurchase apply(Purchase purchase, Purchase purchase2) {

CorrelatedPurchase.Builder builder =

➥ CorrelatedPurchase.newBuilder();

Date purchaseDate =

➥ purchase != null ? purchase.getPurchaseDate() : null;

Double price = purchase != null ? purchase.getPrice() : 0.0;

Listing 4.12 ValueJoiner implementation

Patterns

Masking

Source

Join
processor

Patterns
sink

Rewards
sink

Purchases
sink

Select-key
processor

Branch
processor

Join results
Filtering

processor

Cafe
processor

Electronics
processor

Local state
store

Transform
values

Local state
store

Local state
store

The join is actually a series of
processors used to complete
the join. Because that code is
internal to Kafka Streams, you
abstract the join away and
represent it as one “logical”
join processor.

Records from
both processors
flow into the
join processor.

Two state stores are used for
joins: one to hold the keys
for the main stream, and the
other to look for matches in
the other stream.

Through
processor

Figure 4.15 In the updated topology, both the cafe and electronics processors forward their records to the join
processor. The join processor uses two state stores to search for matches for a record in the other stream.

Instantiates
the builder

106 CHAPTER 4 Streams and state
String itemPurchased =

➥ purchase != null ? purchase.getItemPurchased() : null;

Date otherPurchaseDate =

➥ otherPurchase != null ? otherPurchase.getPurchaseDate() : null;

Double otherPrice =

➥ otherPurchase != null ? otherPurchase.getPrice() : 0.0;

String otherItemPurchased =

➥ otherPurchase != null ? otherPurchase.getItemPurchased() : null;

List<String> purchasedItems = new ArrayList<>();

if (itemPurchased != null) {
purchasedItems.add(itemPurchased);

}

if (otherItemPurchased != null) {
purchasedItems.add(otherItemPurchased);

}

String customerId =

➥ purchase != null ? purchase.getCustomerId() : null;

String otherCustomerId =

➥ otherPurchase != null ? otherPurchase.getCustomerId() : null;

builder.withCustomerId(customerId != null ? customerId : otherCustome
rId)

.withFirstPurchaseDate(purchaseDate)

.withSecondPurchaseDate(otherPurchaseDate)

.withItemsPurchased(purchasedItems)

.withTotalAmount(price + otherPrice);

return builder.build();
}

}

To create the CorrelatedPurchase object, you extract some information from each
Purchase object. Because of the number of items you need to construct the new
object, you use the builder pattern, which makes the code clearer and eliminates any
errors due to misplaced parameters. Additionally, the PurchaseJoiner checks for null
values with both of the provided Purchase objects, so it can be used for inner, outer,
and left-outer joins. We’ll discuss the different join options in section 4.4.4. For now,
we’ll move on to implementing the join between streams.

IMPLEMENTING THE JOIN

You’ve seen how to merge records resulting from the join between streams, so let’s
move on to calling the actual KStream.join method (found in src/main/java/bbejeck/
chapter_4/KafkaStreamsJoinsApp.java).

Handles a null
Purchase in the case
of an outer join

Handles a null
Purchase in the

case of a left
outer join

Returns the new
CorrelatedPurchase
object

107Joining streams for added insight
KStream<String, Purchase> coffeeStream =

➥ branchesStream[COFFEE_PURCHASE];
KStream<String, Purchase> electronicsStream =

➥ branchesStream[ELECTRONICS_PURCHASE];

ValueJoiner<Purchase, Purchase, CorrelatedPurchase> purchaseJoiner =

➥ new PurchaseJoiner();

JoinWindows twentyMinuteWindow = JoinWindows.of(60 * 1000 * 20);

KStream<String, CorrelatedPurchase> joinedKStream =

➥ coffeeStream.join(electronicsStream,
purchaseJoiner,
twentyMinuteWindow,
Joined.with(stringSerde,

purchaseSerde,
purchaseSerde));

joinedKStream.print("joinedStream");

You supply four parameters to the KStream.join method:

 electronicsStream—The stream of electronic purchases to join with.
 purchaseJoiner—An implementation of the ValueJoiner<V1, V2, R> inter-

face. ValueJoiner accepts two values (not necessarily of the same type). The
ValueJoiner.apply method performs the implementation-specific logic and
returns a (possibly new) object of type R (maybe a whole new type). In this exam-
ple, purchaseJoiner will add some relevant information from both Purchase
objects, and it will return a CorrelatedPurchase object.

 twentyMinuteWindow—A JoinWindows instance. The JoinWindows.of method
specifies a maximum time difference between the two values to be included in
the join. In this case, the timestamps must be within 20 minutes of each other.

 A Joined instance—Provides optional parameters for performing joins. In this
case, it’s the key and the value Serde for the calling stream, and the value Serde
for the secondary stream. You only have one key Serde because, when joining
records, keys must be of the same type.

NOTE Serdes are required for joins because join participants are materialized
in windowed state stores. This example provides only one Serde for the key,
because both sides of the join must have a key of the same type.

You’ve specified that the purchases need to be within 20 minutes of each other, but no
order is implied. As long as the timestamps are within 20 minutes of each other, the
join will occur.

 Two additional JoinWindows() methods are available, which you can use to specify
the order of events:

Listing 4.13 Using the join() method

Extracts the
branched streams

ValueJoiner instance used
to perform the join

Calls the join method,
triggering automatic
repartitioning of
coffeeStream and
electronicsStream

Constructs the join

Prints the join results
to the console

108 CHAPTER 4 Streams and state
 JoinWindows.after—streamA.join(streamB,...,twentyMinuteWindow.after

(5000)....) This specifies that the timestamp of the streamB record is at most
5 seconds after the timestamp of the streamA record. The starting time bound-
ary of the window is unchanged.

 JoinWindows.before—streamA.join(streamB,...,twentyMinuteWindow

.before(5000),...) This specifies that the timestamp of the streamB record is
at most 5 seconds before the timestamp of the streamA record. The ending time
boundary of the window is unchanged.

With both the before() and after() methods, the time difference is expressed in
milliseconds. The timespans used for the join are an example of sliding windows. We’ll
look at windowing operations in detail in the next chapter.

NOTE In listing 4.13, you’re relying on the actual timestamps of the transac-
tion, not timestamps set by Kafka. In order to use the timestamps embedded
in the transaction, you specify a custom timestamp extractor by setting Streams-
Config.DEFAULT_TIMESTAMP_EXTRACTOR_CLASS_CONFIG to use Transaction-
TimestampExtractor.class.

You’ve now constructed a joined stream: electronics purchases made within 20 min-
utes of a coffee purchase will result in a coupon for a free drink on the customer’s
next visit to ZMart.

 Before we go any further, I’d like to take a minute to explain an important require-
ment for joining data—co-partitioning.

CO-PARTITIONING

In order to perform a join in Kafka Streams, you need to ensure that all join partici-
pants are co-partitioned, meaning that they have the same number of partitions and are
keyed by the same type. As a result, when you call the join() method in listing 4.13,
both KStream instances will be checked to see if a repartition is required.

NOTE GlobalKTable instances don’t require repartitioning when involved in
a join.

In section 4.4.2, you use the selectKey() method on the transactionStream and
immediately branched on the returned KStreams. Because the selectKey() method
modifies the key, both coffeeStream and electronicsStream require repartitioning.
It’s worth repeating that repartitioning is necessary because you need to ensure that
identical keys are written to the same partition. This repartitioning is handled auto-
matically. Additionally, when you start your Kafka Streams application, topics involved
in a join are checked to make sure they have the same number of partitions; if any
mismatches are found, a TopologyBuilderException is thrown. It’s the developer’s
responsibility to ensure the keys involved in a join are of the same type.

 Co-partitioning also requires all Kafka producers to use the same partitioning
class when writing to Kafka Streams source topics. Likewise, you need to use the same

109Joining streams for added insight
StreamPartitioner for any operations writing Kafka Streams sink topics via the
KStream.to() method. If you stick with the default partitioning strategies, you won’t
need to worry about partitioning strategies.

 Let’s continue on with joins and look at the other options available to you.

4.4.4 Other join options

The join in listing 4.13 is an inner join. With an inner join, if either record isn’t pres-
ent, the join doesn’t occur, and you don’t emit a CorrelatedPurchase object. There
are other options that don’t require both records. These are useful if you need infor-
mation even when the desired record for joining isn’t available.

OUTER JOINS

Outer joins always output a record, but the forwarded join record may not include
both of the events specified by the join. If either side of the join isn’t present when
the time window expires, an outer join sends the record that’s available down-
stream. Of course, if both events are present within the window, the issued record
contains both events.

 For example, if you wanted to use an outer join in listing 4.13, you’d do so like this:

coffeeStream.outerJoin(electronicsStream,..)

Figure 4.16 demonstrates the three possible outcomes of the outer join.

Only the calling stream’s event is available
in the time window, so that’s the only record
included.

Both streams’ events are available in the
time window, so both are included in the
join record.

Only the other stream’s event is available
in the time window, so nothing is sent
downstream.

Join time window

(Coffee purchase, null)

(Coffee purchase, electronics purchase)

(Null, electronics purchase)

Electronics
purchase

Coffee
purchase

Coffee
purchase

Electronics
purchase

Figure 4.16 Three outcomes are possible with outer joins: only the calling stream’s event, both
events, and only the other stream’s event.

110 CHAPTER 4 Streams and state
LEFT-OUTER JOIN

The records sent downstream from a left-outer join are similar to an outer join, with
one exception. When the only event available in the join window is from the other
stream, there’s no output at all. If you wanted to use a left-outer join in listing 4.13,
you’d do so like this:

coffeeStream.leftJoin(electronicsStream..)

Figure 4.17 shows the outcomes of the left-outer join.

We’ve now covered joining streams, but there’s one concept that deserves a more
detailed discussion: timestamps and the impact they have on your Kafka Streams
application. In the join example, you specified a maximum time difference between
events of 20 minutes. In this case, it’s the time between purchases, but how you set or
extract these timestamps wasn’t specified. Let’s take a closer look at that.

4.5 Timestamps in Kafka Streams
Section 2.4.4 discussed timestamps in Kafka records. In this section, we’ll discuss the
use of timestamps in Kafka Streams. Timestamps play a role in key areas of Kafka
Streams functionality:

 Joining streams
 Updating a changelog (KTable API)
 Deciding when the Processor.punctuate() method is triggered (Processor API)

Only the calling stream’s event is available
in the time window, so that’s the only record
included.

Both streams’ events are available in the
time window, so both are included in the
join record.

Only the other stream’s event is available
in the time window, so nothing is sent
downstream.

Join time window

(Coffee purchase, null)

(Coffee purchase, electronics purchase)

No output

Electronics
purchase

Coffee
purchase

Coffee
purchase

Electronics
purchase

Figure 4.17 Three outcomes are possible with the left-outer join, but there’s no output if only
the other stream’s record is available.

111Timestamps in Kafka Streams
We haven’t covered the KTable or Processor APIs yet, but that’s OK. You don’t need
them to understand this section.

 In stream processing, you can group timestamps into three categories, as shown in
figure 4.18:

 Event time—A timestamp set when the event occurred, usually embedded in the
object used to represent the event. For our purposes, we’ll consider the time-
stamp set when the ProducerRecord is created as the event time as well.

Timestamp embedded in data object at time of event, or
timestamp set in ProducerRecord by a Kafka producer

Timestamp set at time record is appended to log (topic)

Timestamp generated at the moment when record
is consumed, ignoring timestamp embedded in data
object and ConsumerRecord

Event time

Ingest time

Processing time

Or

Value

Record

Timestamp

Record

Value Timestamp

Value

Record

Timestamp

Timestamp generated
when record is consumed

(wall-clock time)

Timestamp

Kafka producer

Kafka broker

Kafka Streams

Some event
timestamp

Figure 4.18 There are three categories of timestamps in Kafka Streams: event
time, ingestion time, and processing time.

112 CHAPTER 4 Streams and state
 Ingestion time—A timestamp set when the data first enters the data processing
pipeline. You can consider the timestamp set by the Kafka broker (assuming a
configuration setting of LogAppendTime) to be ingestion time.

 Processing time—A timestamp set when the data or event record first starts to flow
through a processing pipeline.

You’ll see in this section how the Kafka Streams API supports all three types of process-
ing timestamps.

NOTE So far, we’ve had an implicit assumption that clients and brokers are
located in the same time zone, but that might not always be the case. When
using timestamps, it’s safest to normalize the times using the UTC time zone,
eliminating any confusion over which brokers and clients are using which
time zones.

We’ll consider three cases of timestamp-processing semantics:

 A timestamp embedded in the actual event or message object (event-time
semantics)

 Using the timestamp set in the record metadata when creating the ProducerRe-
cord (event-time semantics)

 Using the current timestamp (current local time) when the Kafka Streams
application ingests the record (processing-time semantics)

For event-time semantics, using the timestamp placed in the metadata by the Producer-
Record is sufficient. But there may be cases when you have different needs. Consider
these examples:

 You’re sending messages to Kafka with events that have timestamps recorded in
the message objects. There’s some lag time in when these event objects are
made available to the Kafka producer, so you want to consider only the embed-
ded timestamp.

 You want to consider the time when your Kafka Streams application consumes
records as opposed to using the timestamps of the records.

To enable different processing semantics, Kafka Stream provides a TimestampExtractor
interface with one abstract and four concrete implementations. If you need to work
with timestamps embedded in the record values, you’ll need to create a custom Time-
stampExtractor implementation. Let’s briefly look at the included implementations
and implement a custom TimestampExtractor.

4.5.1 Provided TimestampExtractor implementations

Almost all of the provided TimestampExtractor implementations work with time-
stamps set by the producer or broker in the message metadata, thus providing either
event-time processing semantics (timestamp set by the producer) or log-append-time

113Timestamps in Kafka Streams
processing semantics (timestamp set by the broker). Figure 4.19 demonstrates pulling
the timestamp from the ConsumerRecord object.

Although you’re assuming the default configuration setting of CreateTime for the
timestamp, bear in mind that if you were to use LogAppendTime, this would return
the timestamp value for when the Kafka broker appended the record to the log.
ExtractRecordMetadataTimestamp is an abstract class that provides the core function-
ality for extracting the metadata timestamp from the ConsumerRecord. Most of the
concrete implementations extend this class. Implementors override the abstract
method, ExtractRecordMetadataTimestamp.onInvalidTimestamp, to handle invalid
timestamps (when the timestamp is less than 0).

 Here’s a list of classes that extend the ExtractRecordMetadataTimestamp class:

 FailOnInvalidTimestamp—Throws an exception in the case of an invalid time-
stamp.

 LogAndSkipOnInvalidTimestamp—Returns the invalid timestamp and logs a
warning message that the record will be discarded due to the invalid timestamp.

 UsePreviousTimeOnInvalidTimestamp—In the case of an invalid timestamp,
the last valid extracted timestamp is returned.

We’ve covered the event-time timestamp extractors, but there’s one more provided
timestamp extractor to cover.

4.5.2 WallclockTimestampExtractor

WallclockTimestampExtractor provides process-time semantics and doesn’t extract
any timestamps. Instead, it returns the time in milliseconds by calling the System
.currentTimeMillis() method.

 That’s it for the provided timestamp extractors. Next, we’ll look at how you can
create a custom version.

Timestamp

Consumer timestamp extractor
retrieves timestamp set by
Kafka producer or broker

Dotted rectangle represents
ConsumerRecord metadata

Key Value

Entire enclosing rectangle represents
a ConsumerRecord object

Figure 4.19 Timestamps in the ConsumerRecord object: either the
producer or broker set this timestamp, depending on your configuration.

114 CHAPTER 4 Streams and state
4.5.3 Custom TimestampExtractor

To work with timestamps (or calculate one) in the value object from the Consumer-
Record, you’ll need a custom extractor that implements the TimestampExtractor
interface. Figure 4.20 depicts using the timestamp embedded in the value object ver-
sus one set by Kafka (either producer or broker).

Here’s an example of a TimestampExtractor implementation (found in src/main/
java/bbejeck/chapter_4/timestamp_extractor/TransactionTimestampExtractor.java),
also used in the join example from listing 4.12 in the section “Implementing the Join”
(although not shown in the text, because it’s a configuration parameter).

public class TransactionTimestampExtractor implements TimestampExtractor {

@Override
public long extract(ConsumerRecord<Object, Object> record,

➥ long previousTimestamp) {
Purchase purchaseTransaction = (Purchase) record.value();
return purchaseTransaction.getPurchaseDate().getTime();

}
}

In the join example, you used a custom TimestampExtractor because you wanted to
use the timestamps of the actual purchase time. This approach allows you to join the
records even if there are delays in delivery or out-of-order arrivals.

Listing 4.14 Custom TimestampExtractor

Timestamp

ConsumerRecord metadata

Custom TimestampExtractor knows where
to pull the timestamp from the value in a
ConsumerRecord object

Key Value

Entire enclosing
rectangle represents a
ConsumerRecord object

Record in JSON format

{ “recordType” = “purchase”,
“amount” = 500.00,
“timestamp” = 1502041889179 }

Figure 4.20 A custom TimestampExtractor provides a timestamp based
on the value contained in the ConsumerRecord. This timestamp could be an
existing value or one calculated from properties contained in the value object.

Retrieves the Purchase object from
the key/value pair sent to Kafka

Returns the timestamp
recorded at the point of sale

115Summary
WARNING When you create a custom TimestampExtractor, take care not to
get too clever. Log retention and log rolling are timestamp based, and the
timestamp provided by the extractor may become the message timestamp
used by changelogs and output topics downstream.

4.5.4 Specifying a TimestampExtractor

Now that we’ve discussed how timestamp extractors work, let’s tell the application
which one to use. You have two choices for specifying timestamp extractors.

 The first option is to set a global timestamp extractor, specified in the properties
when setting up your Kafka Streams application. If no property is set, the default set-
ting is FailOnInvalidTimestamp.class. For example, the following code would con-
figure the TransactionTimestampExtractor via properties when setting up the
application:

props.put(StreamsConfig.DEFAULT_TIMESTAMP_EXTRACTOR_CLASS_CONFIG,

➥ TransactionTimestampExtractor.class);

The second option is to provide a TimestampExtractor instance via a Consumed object:

Consumed.with(Serdes.String(), purchaseSerde)
.withTimestampExtractor(new TransactionTimestampExtractor()))

The advantage of doing this is that you have one TimestampExtractor per input
source, whereas the other option requires you to handle records from different topics
in one TimestampExtractor instance.

 We’ve come to the end of our discussion of timestamp usage. In the coming chap-
ters, you’ll run into situations where the difference between timestamps drives some
action, such as flushing the cache of a KTable. I don’t expect you remember all three
types of timestamp extractors, but it’s vital to understand that timestamps are an
important part of how Kafka and Kafka Streams function.

Summary
 Stream processing needs state. Sometimes events can stand on their own, but

usually you’ll need additional information to make good decisions.
 Kafka Streams provides useful abstractions for stateful transformations, includ-

ing joins.
 State stores in Kafka Streams provide the type of state required for stream pro-

cessing: data locality and fault tolerance.
 Timestamps control the flow of data in Kafka Streams. The choice of timestamp

sources needs careful consideration.

In the next chapter, we’ll continue exploring state in streams with more-significant
operations, like aggregations and grouping. We’ll also explore the KTable API. Whereas

116 CHAPTER 4 Streams and state
the KStream API concerns itself with individual discrete records, a KTable is an imple-
mentation of a changelog, where records with the same key are considered updates.
We’ll also discuss joins between KStream and KTable instances. Finally, we’ll explore
one of the most exciting developments in Kafka Streams: queryable state. Queryable
state allows you to directly observe the state of your stream, without having to material-
ize the information by reading data from a topic in an external application.

The KTable API
So far, we’ve covered the KStream API and adding state to a Kafka Streams applica-
tion. In this chapter, we’re going to look deeper into adding state. Along the way,
you’ll be introduced to a new abstraction, the KTable.

 In discussing the KStream API, we’ve talked about individual events or an event
stream. In the original ZMart example, when Jane Doe made a purchase, you con-
sidered the purchase to be an individual event. You didn’t keep track of how many
purchases Jane made, or how often. In the context of a database, the purchase
event stream could be considered a series of inserts. Because each record is new
and unrelated to any other record, you could continually insert them into a table.

This chapter covers
 Defining the relationship between streams

and tables

 Updating records, and the KTable abstraction

 Aggregations, and windowing and joining
KStreams and KTables

 Global KTables

 Queryable state stores
117

118 CHAPTER 5 The KTable API
 Now let’s add a primary key (customer ID) to each purchase event. You have a
series of related purchase events or updates for Jane Doe. Because you’re using a pri-
mary key, each purchase is updated with respect to Jane’s purchase activity. Treating
an event stream as inserts, and events with keys as updates, is how you’ll define the
relationship between streams and tables.

 In this chapter, we’ll cover the relationship between streams and tables in more
depth. This relationship is important, as it will help you understand how the KTable
operates.

 Second, we’ll discuss the KTable. The KTable API is necessary because it’s designed
to work with updates to records. We need the ability to work with updates for opera-
tions like aggregations and counts. We touched on updates in chapter 4 when intro-
ducing stateful transformations; in section 4.2.5, you updated the rewards processor
to keep track of customer purchases.

 Third, we’ll get into windowing operations. Windowing is the process of bucketing
data for a given period. For example, how many purchases have there been over the
past hour, updated every ten minutes? Windowing allows you to gather data in
chunks, as opposed to having an unbounded collection.

NOTE Windowing and bucketing are somewhat synonymous terms. Both oper-
ate by placing information into smaller chunks or categories. Windowing
implies categorizing by time, but the result of either operation is the same.

Our final topic in this chapter will be queryable state stores. Queryable state stores are
an exciting feature of Kafka Streams: they allow you to run direct queries against state
stores. In other words, you can view stateful data without having to consume it from a
Kafka topic or read it from a database. Let’s move on to our first topic.

5.1 The relationship between streams and tables
In chapter 1, I defined a stream as an infinite sequence of events. That wording is
pretty generic, so let’s narrow it down with a specific example.

5.1.1 The record stream

Suppose you want to view a series of stock price updates. You can recast the generic
marble diagram from chapter 1 to look like figure 5.1. You can see that each stock
price quote is a discrete event, and they aren’t related to each other. Even if the same
company accounts for many price quotes, you’re only looking at them one at a time.
This view of events is how the KStream works—it’s a stream of records.

 Now, let’s see how this concept ties into database tables. Look at the simple stock
quote table in figure 5.2.

NOTE To keep our discussion straightforward, we’ll assume a key to be a sin-
gular value.

119The relationship between streams and tables
Next, let’s take another look at the record stream. Because each record stands on its
own, the stream represents inserts into a table. Figure 5.3 combines the two concepts
to illustrate this point.

 What’s important here is that you can view a stream of events in the same light as
inserts into a table, which can help give you a deeper understanding of using streams
for working with events. The next step is to consider the case where events in the
stream are related to one another.

5.1.2 Updates to records or the changelog

Let’s take the same stream of customer transactions, but now track activity over time.
If you add a key of customer ID, the purchase events can be related to each other, and
you’ll have an update stream as opposed to an event stream.

 If you consider the stream of events as a log, you can consider this stream of
updates as a changelog. Figure 5.4 demonstrates this concept.

Company AAVF
Amount $100.57

TS 12:14:35 1/20/17

Company APPL
Amount $203.77

TS 12:15:57 1/20/17

Company FRLS
Amount $40.27

TS 12:18:41 1/20/17

Company AMEX
Amount $57.17

TS 12:20:38 1/20/17

Imagine that you are observing a stock ticker displaying updated share prices in real time.

Each circle on the line represents a publicly traded stock’s share price adjusting to
market forces.

Time

Figure 5.1 A marble diagram for an unbounded stream of stock quotes

The rows from table above can be recast as key/value pairs.
For example, the first row in the table can be converted
to this key/value pair:

{key:{stockid: 235588}, value:{ts:32225544289, price: 05.36}}1 1

ABVF 105.3632225544289

APPL 333.6632225544254

Stock_ID Share_PriceTimestamp

Key Value

Figure 5.2 A simple database
table represents stock prices for
companies. There’s a key column,
and the other columns contain
values. You can consider this a
key/value pair if you lump the
other columns into a “value”
container.

120 CHAPTER 5 The KTable API
Stock_ID AMEX
Share $105.36

TS 148907726274

Stock_ID RLPX
Share $203.77

TS 148907726589

Stock_ID AMEX
Amount $107.05

TS 1489077288531

Stock_ID RLPX
Amount $201.57

TS 1148907736628

This shows the relationship between events and inserts into a database. Even though it’s
stock prices for two companies, it counts as four events because we’re considering

each item on the stream as a singular event.

As a result, each event is an insert, and we increment the key by one for each insert into the table.

With that in mind, each event is a new, independent record or insert into a database table.

AMEX 105.36148907726274

Stock_ID Share_PriceTimestamp

RLPX 203.77148907726589

AMEX 107.051489077288531

RLPX 201.57148907736628

1

Key

2

3

4

Figure 5.3 A stream of individual events compares to inserts into a database table. You could
similarly imagine streaming each row from the table.

The previous records
for these stocks have
been overwritten with
updates.

Latest records from
event stream

If you use the stock ID as a primary key, subsequent events with the same key are updates
in a changelog. In this case, you only have two records, one per company. Although more

records can arrive for the same companies, the records won’t accumulate.

AMEX 105.36148907726274

Stock_ID Share_PriceTimestamp

RLPX 203.77148907726589

AMEX 107.051489077288531

RLPX 201.57148907736628

Stock_ID AMEX
Share $105.36

TS 148907726274

Stock_ID RLPX
Share $203.77

TS 148907726589

Stock_ID AMEX
Amount $107.05

TS 1489077288531

Stock_ID RLPX
Amount $201.57

TS 1148907736628

Figure 5.4 In a changelog, each incoming record overwrites the previous one with the same key.
With a record stream, you’d have a total of four events, but in the case of updates or a changelog, you
have only two.

121The relationship between streams and tables
Here, you can see the relationship between a stream of updates and a database table.
Both a log and a changelog represent incoming records appended to the end of a file.
In a log, you see all the records; but in a changelog, you only keep the latest record for
any given key.

NOTE With both a log and a changelog, records are appended to the end of
the file as they come in. The distinction between the two is that in a log, you
want to see all records, but in a changelog, you only want the latest record for
each key.

To trim a log while maintaining the latest records per key, you can use log compac-
tion, which we discussed in chapter 2. You can see the impact of compacting a log in
figure 5.5. Because you only care about the latest values, you can remove older
key/value pairs.1

You’re already familiar with event streams from working with KStreams. For a chan-
gelog or stream of updates, we’ll use an abstraction known as the KTable. Now that
we’ve established the relationship between streams and tables, the next step is to com-
pare an event stream to an update stream.

1 This section derived information from Jay Kreps’s “Introducing Kafka Streams: Stream Processing Made Sim-
ple” (http://mng.bz/49HO) and “The Log: What Every Software Engineer Should Know About Real-time
Data’s Unifying Abstraction” (http://mng.bz/eE3w).

Before compaction After compaction

Offset ValueKey

Offset ValueKey

10 Afoo

11 Bbar

12 Cbaz

13 Dfoo13 Dfoo

14 Ebaz

15 Fboo

16 Gfoo

17 Hbaz

11 Bbar

15 Fboo

16 Gfoo

17 Hbaz

Figure 5.5 On the left is a log before compaction—you’ll notice duplicate keys with different
values, which are updates. On the right is the log after compaction—you keep the latest value for
each key, but the log is smaller in size.

http://mng.bz/49HO
http://mng.bz/eE3w

122 CHAPTER 5 The KTable API
5.1.3 Event streams vs. update streams

We’ll use the KStream and the KTable to drive our comparison of event streams versus
update streams. We’ll do this by running a simple stock ticker application that writes
the current share price for three (fictitious!) companies. It will produce three itera-
tions of stock quotes for a total of nine records. A KStream and a KTable will read the
records and write them to the console via the print() method.

 Figure 5.6 shows the results of running the application. As you can see, the
KStream printed all nine records. We’d expect the KStream to behave this way because
it views each record individually. In contrast, the KTable printed only three records,
because the KTable views records as updates to previous ones.

NOTE Figure 5.6 demonstrates how a KTable works with updates. I made an
implicit assumption that I’ll make explicit here. When working with a KTable,
your records must have populated keys in the key/value pairs. Having a key is
essential for the KTable to work, just as you can’t update a record in a data-
base table without having the key.

From the KTable’s point of view, it didn’t receive nine individual records. The KTable
received three original records and two rounds of updates, and it only printed the last

Here are all three
events/records

for the KStream.

Here is the last update
record for the KTable.

As expected, the values for the last KStream
event and KTable update are the same.

A simple stock ticker for three fictitious companies with a data generator producing
three updates for the stocks. The KStream printed all records as they were received.

The KTable only printed the last batch of records because they were the latest
updates for the given stock symbol.

Figure 5.6 KTable versus KStream printing messages with the same keys

123Record updates and KTable configuration
round of updates. Notice that the KTable records are the same as the last three
records published by the KStream. We’ll discuss the mechanisms of how the KTable
emits only the updates in the next section.

 Here’s the program for printing stock ticker results to the console (found in
src/main/java/bbejeck/chapter_5/KStreamVsKTableExample.java; source code can
be found on the book’s website here: https://manning.com/books/kafka-streams-in-
action).

KTable<String, StockTickerData> stockTickerTable =

➥ builder.table(STOCK_TICKER_TABLE_TOPIC);
KStream<String, StockTickerData> stockTickerStream =

➥ builder.stream(STOCK_TICKER_STREAM_TOPIC);

stockTickerTable.toStream()

➥ .print(Printed.<String, StockTickerData>toSysOut()

➥ .withLabel("Stocks-KTable"));

stockTickerStream

➥ .print(Printed.<String, StockTickerData>toSysOut()

➥ .withLabel("Stocks-KStream"));

The takeaway here is that records in a stream with the same keys are updates, not new
records in themselves. A stream of updates is the main concept behind the KTable.

 You’ve now seen the KTable in action, so let’s discuss the mechanisms behind its
functionality.

5.2 Record updates and KTable configuration
To figure out how the KTable functions, we should ask the following two questions:

 Where are records stored?
 How does a KTable make the determination to emit records?

Listing 5.1 KTable and KStream printing to the console

Using default serdes
In creating the KTable and KStream, you didn’t specify any serdes to use. The same
is true with both calls to the print() method. You were able to do this because you
registered a default serdes in the configuration. like so:

props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG,

➥ Serdes.String().getClass().getName());
props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG,

➥ StreamsSerdes.StockTickerSerde().getClass().getName());

If you used different types, you’d need to provide serdes in the overloaded methods
for reading or writing records.

Creates the
KTable instance

Creates the
KStream instance

KTable prints results
to the console

KStream prints results
to the console

https://manning.com/books/kafka-streams-in-action
https://manning.com/books/kafka-streams-in-action

124 CHAPTER 5 The KTable API
As we get into aggregation and reducing operations, the answers to these questions are
necessary. For example, when performing an aggregation, you’ll want to see updated
counts, but you probably won’t want an update each time the count increments by one.

 To answer the first question, let’s look at the line that creates the KTable:

builder.table(STOCK_TICKER_TABLE_TOPIC);

With this simple statement, the StreamsBuilder creates a KTable instance and simul-
taneously, under the covers, creates a StateStore for tracking the state of stream, thus
creating an update stream. The StateStore created by this approach has an internal
name and won’t be available for interactive queries.

 There’s an overloaded version of StreamsBuilder.table that accepts a Material-
ized instance, allowing you to customize the type of store and provide a name to
make it available for querying. We’ll discuss interactive queries later in this chapter.

 That gives us the answer to our first question: the KTable uses the local state inte-
grated with Kafka Streams for storage. (We covered state stores in section 4.3.)

 Now let’s move on to the next question: what determines when the KTable emits
updates to downstream processors? To answer this question, we need to consider a few
factors:

 The number of records flowing into the application. Higher data rates will tend
to increase the rate of emitting updated records.

 How many distinct keys are in the data. Again, a greater number of distinct keys
may lead to more updates being sent downstream.

 The configuration parameters cache.max.bytes.buffering and commit

.interval.ms.

From this list, we’ll only cover what we can control: configuration parameters. First,
let’s look at the cache.max.bytes.buffering configuration.

5.2.1 Setting cache buffering size

The KTable cache serves to deduplicate updates to records with the same key. This
deduplication allows child nodes to receive only the most recent update instead of all
updates, reducing the amount of data processed. Additionally, only the most recent
update is placed in the state store, which can amount to significant performance
improvements when using persistent state stores.

 Figure 5.7 illustrates the cache operation. As you can see, with caching enabled,
not all the record updates get forwarded downstream. The cache keeps only the latest
record for any given key.

NOTE A Kafka Streams application is a topology or graph of connected nodes
(processors). Any given node may have one or more child nodes, unless it’s a
terminal processor. Once a processor has finished working with a record, it
forwards the record “downstream” to its child nodes.

125Record updates and KTable configuration
Because the KTable represents a changelog of events in a stream, you’ll expect to
work with only the latest update at any given point. Using the cache enforces this
behavior. If you wanted to process all records in the stream, you’d use an event stream,
the KStream, covered earlier.

 A larger cache will reduce the number of updates emitted. Additionally, caching
reduces the amount of data written to disk by persistent stores (RocksDB), and if log-
ging is enabled, the number of records sent to the changelog topic for any store.

 Cache size is controlled by the cache.max.bytes.buffering setting, which speci-
fies the amount of memory allocated for the record cache. The amount of memory
specified is divided evenly across the number of stream threads. (The number of
stream threads is specified by the StreamsConfig.NUM_STREAM_THREADS_CONFIG set-
ting, with 1 being the default.)

WARNING To turn off caching, you can set cache.max.bytes.buffering to 0.
But this setting will result in every KTable update being sent downstream,
effectively turning your changelog stream into an event stream. Also, no cach-
ing means more I/O, as persistent stores will now write each update to disk
instead of only writing the latest update.

5.2.2 Setting the commit interval

The other setting is the commit.interval.ms parameter. The commit interval speci-
fies how often (in milliseconds) the state of a processor should be saved. When the
state of the processor is saved (committing), it forces a cache flush, sending the latest
updated, deduplicated records downstream.

 In the full caching workflow (figure 5.8), you can see two forces at play when it
comes to sending records downstream. Either a commit or the cache reaching its
maximum size will send records downstream. Conversely, disabling the cache will send
all records downstream, including duplicate keys. Generally speaking, it’s best to have
caching enabled when using a KTable.

33.56NDLE

105.36YERB

105.24YERB

105.36YERB

Incoming stock ticker record

Cache

As records come in, they are also
placed in the cache, with new records
replacing older ones.

Figure 5.7 KTable caching deduplicates updates
to records with the same key, preventing a flood of
consecutive updates to child nodes of the KTable
in the topology.

126 CHAPTER 5 The KTable API
As you can see, we need to strike a balance between cache size and commit time. A
large cache with a small commit time will still result in frequent updates. A longer
commit interval could lead to fewer updates (depending on the memory settings)
because cache evictions occur to free-up space. There are no hard rules here—only
trial and error will determine what works best for you. It’s best to start with the default
values of 30 seconds (commit time) and 10 MB (cache size). The key thing to remem-
ber is that the rate of updated records sent from a KTable is configurable.

 Next, let’s take a look at how you can use the KTable in your applications.

5.3 Aggregations and windowing operations
In this section, we’ll move on to cover some of the most potent parts of Kafka Streams.
So far, we’ve looked at several aspects of Kafka Streams:

 How to set up a processing topology
 How to use state in your streaming application
 How to perform joins between streams
 The difference between an event stream (KStream) and an update stream

(KTable)

Both records with the key of
YERB were stored first and

then forwarded.

With caching disabled (setting cache.max.bytes.buffering= 0),
incoming updates are immediately written to the state store

and sent downstream.

Due to caching, this update was never
stored or sent downstream; it was
automatically deduped by the cache.

Either when the commit time or the max-cache size is reached,
records are flushed from the cache and then written to state
store and forwarded downstream. Notice all records are not

stored or forwarded due to deduping by the cache.

Incoming stock ticker record

105.36YERB

Caching enabled?

Yes

105.36YERB

33.56NDLE105.36YERB

33.56NDLE

105.36YERB

105.24YERB

33.56NDLE

105.36YERB

105.24YERB
No

33.56NDLE

105.36YERB

State store

Figure 5.8 Full caching workflow: if caching is enabled, records are deduped and sent downstream
on cache flush or commit.

127Aggregations and windowing operations
In the examples that follow, we’ll tie all these elements together. Additionally, I’ll
introduce windowing, another powerful tool in streaming applications. The first exam-
ple is a straightforward aggregation.

5.3.1 Aggregating share volume by industry

Aggregation and grouping are necessary tools when you’re working with streaming
data. Reviewing single records as they arrive is often not enough. To gain any insight,
you’ll need grouping and combining of some sort.

 In this example, you’ll take on the role of being a day trader, and you’ll track the
share volume of companies across a list of selected industries. In particular, you’re
interested in the top five companies (by share volume) in each industry.

 To do this aggregation, a few steps will be required to set up the data in the correct
format. At a high level, these are the steps:

1 Create a source from a topic publishing raw stock-trade information. You’ll need to
map a StockTransaction object into a ShareVolume object. The reason for per-
forming this mapping step is simple: the StockTransaction object contains
metadata about the trade, but you only want the volume of shares involved in
the trade.

2 Group ShareVolume by its ticker symbol. Once it’s grouped by symbol, you can
reduce it to a rolling total of share volume. I should note here that calling
KStream.groupBy returns a KGroupedStream instance. Then, calling KGrouped-
Stream.reduce is what will get you to a KTable instance.

Let’s pause for a minute and look at figure 5.9, which shows what you’ve built so far.
This topology is something you’re familiar with by now.

 Now, let’s look at the code behind the topology (found in src/main/java/bbejeck/
chapter_5/AggregationsAndReducingExample.java).

What is the KGroupedStream?
When you use KStream.groupBy or KStream.groupByKey, the returned instance is
a KGroupedStream. The KGroupedStream is an intermediate representation of the
event stream after grouping by keys and is never meant for you to work with directly.
Instead, the KGroupedStream is required to perform aggregation operations, which
always result in a KTable. Because the aggregate operations produce a KTable and
use a state store, not all updates may end up being forwarded downstream.

There’s an analogous KGroupedTable resulting from the KTable.groupBy method,
which is the intermediate representation of the update stream regrouped by key.

128 CHAPTER 5 The KTable API
KTable<String, ShareVolume> shareVolume =

➥ builder.stream(STOCK_TRANSACTIONS_TOPIC,
Consumed.with(stringSerde, stockTransactionSerde)

➥ .withOffsetResetPolicy(EARLIEST))

➥ .mapValues(st -> ShareVolume.newBuilder(st).build())

➥ .groupBy((k, v) -> v.getSymbol(),
Serialized.with(stringSerde, shareVolumeSerde))

➥ .reduce(ShareVolume::reduce);

This code is concise and squeezes a lot of power into a few lines. If you look at the first
parameter of the builder.stream method, you’ll see something new: the AutoOffset-
Reset.EARLIEST enum (there’s also a LATEST) that you set with the Consumed
.withOffsetResetPolicy method. This enum allows you to specify the offset-reset
strategy for each KStream or KTable. Using the enum takes precedence over the off-
set-reset setting in the streams configuration.

Listing 5.2 Source for the map-reduce of stock transactions

KTable<String, ShareVolume>

MapValues
processor

Reducing
processor

stock-
transactions

topic

Source
processor

Group-by
processor

Reduces ShareVolume objects
down to a single ShareVolume
instance with a rolling update
of total share volume. The final

result of this process is a
KTable<String, ShareVolume>

instance.

Maps StockTransaction
objects to ShareVolume objects

Consumes from
stock-transactions topic

Groups ShareVolume
objects by stock
ticker symbol

Figure 5.9 Mapping and reducing StockTransaction objects into ShareVolume objects and
then reducing to a rolling total

The source processor
consumes from a topic.

Maps StockTransaction
objects to ShareVolume
objects

Groups the
ShareVolume

objects by their
stock ticker symbol

Reduces
ShareVolume
objects to contain
a rolling aggregate
of share volume

129Aggregations and windowing operations
It’s clear what mapValues and groupBy are doing, but let’s look into the sum() method
(found in src/main/java/bbejeck/model/ShareVolume.java).

public static ShareVolume sum(ShareVolume csv1, ShareVolume csv2) {
Builder builder = newBuilder(csv1);
builder.shares = csv1.shares + csv2.shares;
return builder.build();

}

NOTE You’ve seen the builder pattern in use earlier in the book, but it’s used
here in a somewhat different context. In this example, you’re using the
builder to make a copy of an object and update a field without modifying the
original object.

The ShareVolume.sum method gives you the rolling total of share volume, and the
outcome of the entire processing chain is a KTable<String, ShareVolume> object.
Now, you can see the role of the KTable. As ShareVolume objects come in, the associ-
ated KTable keeps the most recent update. It’s important to remember that every
update is reflected in the preceding shareVolumeKTable, but each update is not nec-
essarily emitted.

NOTE Why do a reduce instead of an aggregation? Although reducing is a
form of aggregation, a reduce operation will yield the same type of object. An
aggregation also sums results, but it could return a different type of object.

Next, you’ll take the KTable and use it to perform a top-five aggregation (by share vol-
ume) summary. The steps you’ll take here are similar to the steps for the first aggregation:

1 Perform another groupBy operation to group the individual ShareVolume objects
by industry.

GroupByKey vs. GroupBy
KStream has two methods for grouping records: GroupByKey and GroupBy. Both
return a KGroupedTable, so you might wonder what the difference is and when you
should use which one.

The GroupByKey method is for when your KStream already has non-null keys. More
importantly, the “needs repartitioning” flag is never set.

The GroupBy method assumes you’ve modified the key for the grouping, so the repar-
tition flag is set to true. After calling GroupBy, joins, aggregations, and the like will
result in automatic repartitioning.

The bottom line is that you should prefer GroupByKey over GroupBy whenever possible.

Listing 5.3 The ShareVolume.sum method

Uses a Builder
for a copy
constructorSets the number of

shares to the total of
both ShareVolume

objects

Calls build and returns a
new ShareVolume object

130 CHAPTER 5 The KTable API
2 Start to add the ShareVolume objects. This time, the aggregation object is a fixed-
size priority queue. The fixed-size queue keeps only the top-five companies by
share volume.

3 Map the queue into a string, reporting the top-five stocks per industry by share
volume.

4 Write out the string result to a topic.

Figure 5.10 shows a topology graph of the data flow. As you can see, this second round
of processing is straightforward.

Now that you have a clear picture of the structure of this second round of processing,
it’s time to look at the source code (found in src/main/java/bbejeck/chapter_5/
AggregationsAndReducingExample.java).

Comparator<ShareVolume> comparator =

➥ (sv1, sv2) -> sv2.getShares() - sv1.getShares()

FixedSizePriorityQueue<ShareVolume> fixedQueue =

➥ new FixedSizePriorityQueue<>(comparator, 5);

shareVolume.groupBy((k, v) -> KeyValue.pair(v.getIndustry(), v),

➥ Serialized.with(stringSerde, shareVolumeSerde))
.aggregate(() -> fixedQueue,

(k, v, agg) -> agg.add(v),
(k, v, agg) -> agg.remove(v),
Materialized.with(stringSerde, fixedSizePriorityQueueSerde))

Listing 5.4 KTable groupBy and aggregation

Aggregate
processor

Group-by
processor

KTable<String, ShareVolume>

The grouped records are
aggregated into a Top-N

queue—in this case N=5.

The queue contents are
mapped to a string

in this format.
) YERB:2 7,9341 1

2) OCHK: 47,074, and so on1

Groups the reduced
ShareVolume objects

by industry

Results are
written out to

a topic.

MapValues
processor

To topic

Figure 5.10 Topology for grouping by industry, aggregating by top five, mapping the top-five queue to
a string, and writing out the string to a topic

Groups by industry and
provides required serdes

The Aggregate initializer is
an instance of the

FixedSizePriorityQueue
class (for demonstration

purposes only!).

Aggregate
adder adds

new updates
Aggregate remover
removes old updates Serde for the aggregator

131Aggregations and windowing operations

ts

d
.mapValues(valueMapper)

.toStream().peek((k, v) ->

➥ LOG.info("Stock volume by industry {} {}", k, v))
.to("stock-volume-by-company", Produced.with(stringSerde,

➥ stringSerde));

In this initializer, there’s a fixedQueue variable. This is a custom object that wraps a
java.util.TreeSet, which is used to keep track of the top N results in decreasing
order of share volume.

 You’ve seen the groupBy and mapValues calls before, so we won’t go over them
again (you call the KTable.toStream method, as KTable.print is deprecated). But
you haven’t seen the KTable version of aggregate before, so let’s take a minute to dis-
cuss it.

 As you’ll recall, what makes a KTable unique is that records with the same key are
updates. The KTable replaces the old record with the new one. Aggregation works in
the same manner. It aggregates the most recent records with the same key. As a record
arrives, you add it to the FixedSizePriorityQueue using the adder method (the
second parameter in the aggregate call), but if another record exists with the same
key, you remove the old record with the subtractor (the third parameter in the
aggregate call).

 What this means is that your aggregator, FixedSizePriorityQueue, doesn’t aggre-
gate all values with the same key. Instead, it keeps a running tally of the top N stocks
that have the largest volume. Each record coming in has the total volume of shares
traded so far. Your KTable will show you which companies have the top number of
shares traded at the moment; you don’t want a running aggregation of each update.

 You’ve now learned how to do two important things:

 Group values in a KTable by a common key
 Perform useful operations like reducing and aggregation with those grouped

values

The ability to perform these operations is important when you’re trying to make sense
of your data, or to determine what your data is telling you, as it flows through your
Kafka Streams application.

 We’ve also brought together some of the key concepts discussed earlier in the
book. In chapter 4, you learned about the importance of having fault-tolerant, local
state for streaming applications. The first example in this chapter showed why local
state is so important—it allows you to keep track of what you’ve seen. Having local
access avoids network latency, making your application more robust and performant.

 Any time you execute a reduction or aggregation operation, you provide the name
of a state store. Reduction and aggregation operations return a KTable instance, and
the KTable uses the state store to replace older results with the newer ones. As you’ve

ValueMapper
instance conver
aggregator to a
string that’s use
for reporting

Calls toStream() to log the
results (to the console) via

the peak method
Writes the results to
the stock-volume-by-

company topic

132 CHAPTER 5 The KTable API
seen, not every update gets forwarded downstream, and that’s important because you
perform aggregation operations to gather summary information. If you didn’t use
local state, the KTable would forward every aggregation or reduction result.

 Next, we’ll look at how you can perform aggregation-like operations over distinct
periods of time, a process called windowing.

5.3.2 Windowing operations

In the previous section, we looked at a “rolling” reduction and aggregation. The appli-
cation performed a continuous reduction of share volume and then a top-five aggre-
gation of shares traded in the stock market.

 Sometimes, you’ll want an ongoing aggregation and reduction of results like this.
At other times, you’ll only want to perform operations for a given time range. For
example, how many stock transactions have involved a particular company in the last
10 minutes? How many users have clicked to view a new advertisement in the last 15
minutes? An application may perform these operations many times, but the results
may only be for a defined period or window of time.

COUNTING STOCK TRANSACTIONS BY CUSTOMER

In the next example, you’ll track stock transactions for a handful of traders. These
could be large institutional traders or financially savvy individuals.

 There are two likely reasons for doing this tracking. One reason is that you may
want to see where the market leaders are buying and selling. If these big hitters or
savvy investors see an opportunity in the market, you’ll follow the same strategy. The
other reason is that you may want to identify any indications of insider trading. You’ll
want to look into the timing of large spikes in trading and correlate them with signifi-
cant news releases.

 Here are the steps to do this tracking:

1 Create a stream to read from the stock-transactions topic.
2 Group incoming records by the customer ID and stock ticker symbol. The

groupBy call returns a KGroupedStream instance.
3 Use the KGroupedStream.windowedBy method to return a windowed stream, so

you can perform some sort of windowed aggregation. Depending on the win-
dow type provided, you’ll get either a TimeWindowedKStream or a Session-
WindowedKStream in return.

4 Perform a count for the aggregation operation. The windowing stream deter-
mines whether the record is included in the count.

5 Write the results to a topic, or print the results to the console during development.

The topology for this application is straightforward, but it’s helpful to have a mental
picture of the structure. Take a look at figure 5.11.

 Next, let’s look at the windowing functionality and corresponding code.

133Aggregations and windowing operations
WINDOW TYPES

In Kafka Streams, three types of windows are available:

 Session windows
 Tumbling windows
 Sliding/hopping windows

Which type you choose depends on your business requirements. The tumbling and
hopping windows are time bound, whereas session windows are more about user activ-
ity; the length of the session(s) is determined solely by how active the user is. A key
point to keep in mind for all windows is that they’re based on the timestamps in the
records and not wall-clock time.

 Next, you’ll implement the topology with each of the window types. We’ll only look
at the full code in the first example. Other than changing the type of window opera-
tion, everything will remain the same for the other windows.

SESSION WINDOWS

Session windows are very different from other windows. Session windows aren’t bound
strictly by time as much as by user activity (or the activity of anything you want to
track). You delineate session windows by a period of inactivity.

 Figure 5.12 shows how you can view session windows. The smaller session will be
merged with the session on the left. But the session on the right will be a new ses-
sion because it follows a large inactivity gap. Session windows are based on user

stock-
transactions

topic

Source
processor

Sink/Print
processor

Group-by
processor

Count
processor

Groups StockTransactions by
customer ID and stock ticker

symbol. These are encapsulated in
a TransactionSummary object.

Counts number of transactions by
TransactionSummary (customer ID and stock
symbol). You’ll use a windowed approach to

contain the counts. The window could be
a tumbling, hopping, or session window.

Consumes from
stock-transactions topic

You’ll write out the results to
a topic (or print to the console

during development).

The final object returned from the count processor is a
KTable<Windowed<TransactionSummary>, Long>.

Figure 5.11 Counting windows topology

134 CHAPTER 5 The KTable API

 in

activity, but they use timestamps in the records to determine which session a record
belongs to.

USING SESSION WINDOWS TO TRACK STOCK TRANSACTIONS

Let’s use session windows to capture the stock transactions. The following code (found
in src/main/java/bbejeck/chapter_5/CountingWindowingAndKTableJoinExample
.java) shows how to implement the session windows.

Serde<String> stringSerde = Serdes.String();
Serde<StockTransaction> transactionSerde =

➥ StreamsSerdes.StockTransactionSerde();

Serde<TransactionSummary> transactionKeySerde =

➥ StreamsSerdes.TransactionSummarySerde();

long twentySeconds = 1000 * 20;
long fifteenMinutes = 1000 * 60 * 15;
KTable<Windowed<TransactionSummary>, Long>

➥ customerTransactionCounts =

➥ builder.stream(STOCK_TRANSACTIONS_TOPIC, Consumed.with(stringSerde,

➥ transactionSerde)
.withOffsetResetPolicy(LATEST))
.groupBy((noKey, transaction) ->

➥ TransactionSummary.from(transaction),

➥ Serialized.with(transactionKeySerde, transactionSerde))
.windowedBy(SessionWindows.with(twentySeconds).

➥ until(fifteenMinutes)).count();

Listing 5.5 Tracking stock transactions with session windows

350 600

Inactivity gaps

This inactivity gap is large, so new events
go into a separate session.

There’s a small inactivity gap here, so
these sessions would probably be merged

into one larger session.

Session windows are different because they aren’t strictly bound by time but
represent periods of activity. Specified inactivity gaps demarcate the sessions.

100 200 500 400100 200 500 400100 200 500 400 350 600

Figure 5.12 Session windows separated by a small inactivity gap are combined to form
a new, larger session.

KTable resulting
from the groupBy
and count calls

Creates the stream from the
STOCK_TRANSACTIONS_TOPIC

(a String constant). Uses the
offset-reset-strategy enum of

LATEST for this stream.

Groups records by
customer ID and stock
symbol, which are stored
the TransactionSummary
object.

Windows the groups with SessionWindow with an
inactivity time of 20 seconds and a retention time of 15

minutes. Then performs an aggregation as a count.

135Aggregations and windowing operations
customerTransactionCounts.toStream()

➥ .print(Printed.<Windowed<TransactionSummary>, Long>toSysOut()

➥ .withLabel("Customer Transactions Counts"));

You’ve seen most of the operations specified in this topology before, so we don’t need
to cover them again. But there are a couple of new items, and we’ll discuss those now.

 Any time you do a groupBy operation, you’ll typically perform some sort of aggre-
gation operation (aggregate, reduce, or count). You can perform a cumulative aggre-
gation where previous results continue to build up, or you can perform windowed
aggregations where records are combined for the specified time of the window.

 The code in listing 5.5 does a count over session windows. Figure 5.13 breaks
it down.

With the call to windowedBy(SessionWindows.with(twentySeconds).until(fifteen-
Minutes)), you create a session window with an inactivity gap of 20 seconds and a
retention period of 15 minutes. An inactivity time of 20 seconds means the applica-
tion includes any record arriving within 20 seconds of the current session’s ending or
start time within the current (active) session.

 You then specify the aggregation operation to perform count, in this case, on the
session window. If an incoming record falls outside the inactivity gap (on either side of
the timestamp), the application creates a new session. The retention period maintains
the session for the specified amount of time and allows for late-arriving data that’s out-
side the inactivity period of a session but can still be merged. Additionally, as sessions
are combined, the newly created session uses the earliest timestamp and latest time-
stamp for the start and end of the new session, respectively.

 Let’s walk through a few records from the count method to see sessions in action:
see table 5.1.

Table 5.1 Sessioning table with a 20-second inactivity gap

Arrival order Key Timestamp

1 {123-345-654,FFBE} 00:00:00

2 {123-345-654,FFBE} 00:00:15

Converts the KTable output to a KStream
and prints the result to the console

The with call creates
the inactivity gap of

20 seconds.

The until method creates
the retention period—
5 minutes, in this case.1

SessionWindows.with(twentySeconds).until(fifteenMinutes)

Figure 5.13 Creating session windows with inactivity periods and retention

136 CHAPTER 5 The KTable API
As records come in, you look for existing sessions with the same key, with ending times
less than current timestamp – inactivity gap, and with starting times greater than
current timestamp + inactivity gap. With that in mind, here’s how the four records
in table 5.15.1 end up being merged into a single session:

1 Record 1 is first, so start and end are 00:00:00.
2 Record 2 arrives, and you look for sessions with an earliest ending of 23:59:55

and a latest start of 00:00:35. You find record 1, so you merge sessions 1 and 2.
You keep the session 1 start time (earliest) and the session 2 end time (latest),
so you have one session starting at 00:00:00 and ending at 00:00:15.

3 Record 3 arrives, and you look for sessions between 00:00:30 and 00:01:10 and
find none. You add a second session for key 123-345-654, FFBE starting and
ending at 00:00:50.

4 Record 4 arrives, and you search for sessions between 23:59:45 and 00:00:25.
This time you find both sessions 1 and 2. All three are merged into one session
with a start time of 00:00:00 and an end time of 00:00:15.

There are a couple of key points to remember from this section:

 Sessions are not a fixed-size window. Rather, the size of a session is driven by the
amount of activity within a given time frame.

 Timestamps in the data determine whether an event fits into an existing session
or falls into an inactivity gap.

Now, we’ll move on to the next windowing option, tumbling windows.

TUMBLING WINDOWS

Fixed or tumbling windows capture events within a given period. Imagine you want to
capture all stock transactions for a company every 20 seconds, so you collect every
event for that time. After the 20-second period is over, your window will “tumble” to a
new 20-second observation period. Figure 5.14 shows this situation.

 As you can see, each event that has come in for the last 20 seconds is included in
the window. A new window is created after the specified time.

 Here’s how you could use tumbling windows to capture stock transactions every 20
seconds (found in src/main/java/bbejeck/chapter_5/CountingWindowingAndKtable-
JoinExample.java).

3 {123-345-654,FFBE} 00:00:50

4 {123-345-654,FFBE} 00:00:05

Table 5.1 Sessioning table with a 20-second inactivity gap (continued)

Arrival order Key Timestamp

137Aggregations and windowing operations
KTable<Windowed<TransactionSummary>, Long> customerTransactionCounts =

➥ builder.stream(STOCK_TRANSACTIONS_TOPIC, Consumed.with(stringSerde,
transactionSerde)

➥ .withOffsetResetPolicy(LATEST))
.groupBy((noKey, transaction) -> TransactionSummary.from(transaction),

➥ Serialized.with(transactionKeySerde, transactionSerde))
.windowedBy(TimeWindows.of(twentySeconds)).count();

With this minor change of the TimeWindows.of call, you can use a tumbling window.
This example doesn’t include the until() method. By not specifying the duration of
the window, you’ll get the default retention of 24 hours.

 Finally, we’ll move on to the last of the windowing options: hopping windows.

SLIDING OR HOPPING WINDOWS

Sliding or hopping windows are like tumbling windows but with a small difference. A
sliding window doesn’t wait the entire time before launching another window to pro-
cess recent events. Sliding windows perform a new calculation after waiting for an
interval smaller than the duration of the entire window.

 To illustrate how hopping windows differ from tumbling windows, let’s recast the
stock transaction count example. You still want to count the number of transactions,
but you don’t want to wait the entire period before you update the count. Instead,
you’ll update the count at smaller intervals. For example, you’ll still count the number
of transactions every 20 seconds, but you’ll update the count every 5 seconds, as
shown in figure 5.15. You now have three result windows with overlapping data.

Listing 5.6 Using tumbling windows to count user transactions

100 200 500 400 350 600 50 2500

The box on the left is the first 20-second window. After 20 seconds, it “tumbles”
over or updates to capture events in a new 20-second period.

There is no overlapping of events. The first event window contains [00, 200, 500, 400]1
and the second event window contains [350, 600, 50, 2500].

Next 20-second periodInitial 20-second period

The current time period “tumbles” (represented by the dashed box)
into the next time period completely with no overlap.

Figure 5.14 Tumbling windows reset after a fixed period.

Specifies a tumbling window of 20 seconds

138 CHAPTER 5 The KTable API
Here’s how to specify hopping windows with code (found in src/main/java/bbejeck/
chapter_5/CountingWindowingAndKtableJoinExample.java).

KTable<Windowed<TransactionSummary>, Long> customerTransactionCounts =

➥ builder.stream(STOCK_TRANSACTIONS_TOPIC, Consumed.with(stringSerde,

➥ transactionSerde)

➥ .withOffsetResetPolicy(LATEST))
.groupBy((noKey, transaction) -> TransactionSummary.from(transaction),

➥ Serialized.with(transactionKeySerde, transactionSerde))
.windowedBy(TimeWindows.of(twentySeconds)

➥ .advanceBy(fiveSeconds).until(fifteenMinutes)).count();

With the addition of the advanceBy() method, you can convert a tumbling window to
a hopping window. This example specifies a retention time of 15 minutes.

NOTE You’ll notice in all the windowing examples presented here that the
only code that changes is the windowedBy call. Instead of having four nearly
identical example classes in the sample code, I’ve included four different win-
dowing lines in the src/main/java/bbejeck/chapter_5/CountingWindowing-
AndKtableJoinExample.java file. To see a different windowing operation in
action, comment out the current windowing operation and uncomment the
one you want to execute.

You’ve now seen how to put your aggregation results into time windows. In particular,
I want you to remember three things from this section:

 Session windows aren’t fixed by time but are driven by user activity.
 Tumbling windows give you a set picture of events within the specified time frame.
 Hopping windows are of fixed length, but they’re frequently updated and can

contain overlapping records in each window.

Listing 5.7 Specifying hopping windows to count transactions

100 200 500 400 350 600 50 2500

The box on the left is the first 20-second window, but the window “slides” over
or updates after 5 seconds to start a new window. Now you see an overlapping
of events. Window contains [00, 200, 500, 400], window 2 contains [500,1 1
400, 350, 600], and window 3 is [350, 600, 50, 2500].

Figure 5.15 Sliding windows update frequently and may contain
overlapping data.

Uses a hopping
window of 20
seconds, advancing
every 5 seconds

139Aggregations and windowing operations

e
n

y
Next, we’ll look at how to convert a KTable back into a KStream to perform a join.

5.3.3 Joining KStreams and KTables

In chapter 4, we discussed joining two KStreams. Now, you’re going to join a KTable
and a KStream. The reason to do this is simple. KStreams are record streams, and
KTables are streams of record updates, but sometimes you may need to add some
additional context to your record stream with the updates from a KTable.

 Let’s take the stock transaction counts and join them with financial news from rel-
evant industry sectors. Here are the steps to make this happen with the existing code:

1 Convert the KTable of stock transaction counts into a KStream where you
change the key to the industry of the count by ticker symbol.

2 Create a KTable that reads from a topic of financial news. The new KTable will
be categorized by industry.

3 Join the news updates with the stock transaction counts by industry.

With these steps laid out, let’s walk through how you can accomplish these tasks.

CONVERTING THE KTABLE TO A KSTREAM

To do the KTable-to-KStream conversion, you’ll take the following steps:

1 Call the KTable.toStream() method.
2 Use the KStream.map call to change the key to the industry name, and extract

the TransactionSummary object from the Windowed instance.

These steps are chained together in the following manner (found in src/main/java/
bbejeck/chapter_5/CountingWindowingAndKtableJoinExample.java).

KStream<String, TransactionSummary> countStream =

➥ customerTransactionCounts.toStream().map((window, count) -> {
TransactionSummary transactionSummary = window.key();
String newKey = transactionSummary.getIndustry();
transactionSummary.setSummaryCount(count);
return KeyValue.pair(newKey, transactionSummary);

});

Because you’re performing a KStream.map operation, repartitioning for the returned
KStream instance is done automatically when it’s used in a join.

 Now that you have the conversion process completed, the next step is to create the
KTable to read the financial news.

Listing 5.8 Converting a KTable to a KStream

Calls toStream, immediately
followed by the map call

Extracts the TransactionSummary
object from the Windowed instance

Sets the key to the industry
segment of the stock purchase

Takes the count valu
from the aggregatio
and places it in the
TransactionSummar
object

Returns the new
KeyValue pair for

the KStream

140 CHAPTER 5 The KTable API
CREATING THE FINANCIAL NEWS KTABLE

Fortunately, creating the KTable involves just one line of code (found in src/main/
java/bbejeck/chapter_5/CountingWindowingAndKtableJoinExample.java).

KTable<String, String> financialNews =

➥ builder.table("financial-news", Consumed.with(EARLIEST));

It’s worth noting here that you don’t need to provide any serdes because the configu-
ration is using string serdes. Also, by using the enum EARLIEST, you populate the table
with records on startup.

 Now, we’ll move on to the last step, setting up the join.

JOINING NEWS UPDATES WITH TRANSACTION COUNTS

Setting up the join is very simple. You’ll use a left join, in case there’s no financial
news for the industry involved in the transaction (found in src/main/java/bbe-
jeck/chapter_5/CountingWindowingAndKtableJoinExample.java).

ValueJoiner<TransactionSummary, String, String> valueJoiner =

➥ (txnct, news) ->

➥ String.format("%d shares purchased %s related news [%s]",

➥ txnct.getSummaryCount(), txnct.getStockTicker(), news);

KStream<String,String> joined =

➥ countStream.leftJoin(financialNews, valueJoiner,

➥ Joined.with(stringSerde, transactionKeySerde, stringSerde));

joined.print(Printed.<String, String>toSysOut()

➥ .withLabel("Transactions and News"));

The leftJoin statement is straightforward. Unlike the joins in chapter 4, you don’t
provide a JoinWindow because, when performing a KStream-to-KTable join, there’s
only one record per key in the KTable. The join is unrelated to time; the record is
either present in the KTable or not. The key point here is that you can use KTables to
provide less-frequently updated lookup data to enrich your KStream counterparts.

 Next, we’ll look at a more efficient way to enhance KStream events.

5.3.4 GlobalKTables

We’ve established the need to enrich or add context to our event streams. You’ve also
seen joins between two KStreams in chapter 4, and the previous section demonstrated

Listing 5.9 KTable for financial news

Listing 5.10 Setting up the join between the KStream and KTable

Creates the KTable with the EARLIEST
enum, topic financial-news

ValueJoiner
combines the
values from the
join result.

The leftJoin statement for the
countStream KStream and the

financial news KTable, providing
serdes with a Joined instancePrints results to the console (in

production this would be written to a
topic with a to("topic-name") call)

141Aggregations and windowing operations
a join between a KStream and a KTable. In all of these cases, when you map the keys to
a new type or value, the stream needs to be repartitioned. Sometimes you’ll do the
repartitioning explicitly yourself, and other times Kafka Streams will do it automati-
cally. Repartitioning makes sense, because the keys have been changed and will end
up on new partitions or the join won’t happen (this was discussed in the chapter 4 sec-
tion, “Repartitioning the data”).

REPARTITIONING HAS A COST

Repartitioning isn’t free. There’s additional overhead in this process: creating inter-
mediate topics, storing duplicate data in another topic, and increased latency due to
writing to and reading from another topic. Additionally, if you want to join on more
than one facet or dimension, you’ll need to chain joins, map the records with new
keys, and repeat the repartitioning process.

JOINING WITH SMALLER DATASETS

In some cases, the lookup data you want to join against will be relatively small, and
entire copies of the lookup data could fit locally on each node. For situations where
the lookup data is reasonably small, Kafka Streams provides the GlobalKTable.

 GlobalKTables are unique because the application replicates all the data to each
node. Because the entirety of the data is on each node, the event stream doesn’t need
to be partitioned by the key of the lookup data in order to make it available to all par-
titions. GlobalKTables also allow you to do non-key joins. Let’s revisit one of the previ-
ous examples to demonstrate this capability.

JOINING KSTREAMS WITH GLOBALKTABLES

In section 5.3.2, you performed a windowed aggregation of stock transactions per cus-
tomer. The output of the aggregation looked like this:

{customerId='074-09-3705', stockTicker='GUTM'}, 17
{customerId='037-34-5184', stockTicker='CORK'}, 16

Although this output accomplished the goal, it would have more impact if you could
see the client’s name and the full company name. You could perform regular joins to
fill out the customer and company names, but you’d need to do two key mappings
and repartitioning. With GlobalKTables, you can avoid the expense of those opera-
tions. To accomplish this, you’ll use the countStream from the following listing
(found in src/main/java/bbejeck/chapter_5/GlobalKTableExample.java) and join it
against two GlobalKTables.

KStream<String, TransactionSummary> countStream =
builder.stream(STOCK_TRANSACTIONS_TOPIC,

➥ Consumed.with(stringSerde, transactionSerde)

➥ .withOffsetResetPolicy(LATEST))
.groupBy((noKey, transaction) ->

➥ TransactionSummary.from(transaction),

Listing 5.11 Aggregating stock transactions using session windows

142 CHAPTER 5 The KTable API
➥ Serialized.with(transactionSummarySerde, transactionSerde))
.windowedBy(SessionWindows.with(twentySeconds)).count()
.toStream().map(transactionMapper);

We covered this previously, so we won’t review it again here. But note that the code in
the toStream().map function is abstracted into a function object instead of having an
in-line lambda, for readability purposes.

 The next step is to define two GlobalKTable instances (found in src/main/java/
bbejeck/chapter_5/GlobalKTableExample.java).

GlobalKTable<String, String> publicCompanies =

➥ builder.globalTable(COMPANIES.topicName());

GlobalKTable<String, String> clients =

➥ builder.globalTable(CLIENTS.topicName());

Note that the topic names are defined using enums.
 Now that the components are in place, you need to construct the join (found in

src/main/java/bbejeck/chapter_5/GlobalKTableExample.java).

countStream.leftJoin(publicCompanies, (key, txn) ->

➥ txn.getStockTicker(),TransactionSummary::withCompanyName)
.leftJoin(clients, (key, txn) ->

➥ txn.getCustomerId(), TransactionSummary::withCustomerName)
.print(Printed.<String, TransactionSummary>toSysOut()

➥ .withLabel("Resolved Transaction Summaries"));

Although there are two joins here, they’re chained together because you don’t use
any of the results alone. You print the results at the end of the entire operation.

 If you run the join operation, you’ll now get results like this:

{customer='Barney, Smith' company="Exxon", transactions= 17}

The facts haven’t changed, but these results are clearer for reading.
 Including chapter 4, you’ve seen several types of joins in action. They’re listed in

table 5.2. This table represents the state of join options as of Kafka Streams 1.0.0, but
this may change in future releases.

Listing 5.12 Defining the GlobalKTables for lookup data

Listing 5.13 Joining a KStream with two GlobalKTables

The publicCompanies lookup is
for finding companies by their
stock ticker symbol.

The clients lookup is for getting
customer names by customer ID.

Sets up the leftJoin with the publicCompanies table,
keys by stock ticker symbol, and returns the

transactionSummary with the company name added

Sets up the leftJoin with the clients table, keys by
customer ID, and returns the transactionSummary

with the customer named added
Prints the results
out to the console

143Aggregations and windowing operations
In conclusion, the key thing to remember is that you can combine event streams
(KStream) and update streams (KTable), using local state. Additionally, when the
lookup data is of a manageable size, you can use a GlobalKTable. GlobalKTables rep-
licate all partitions to each node in the Kafka Streams application, making all data
available, regardless of which partition the key maps to.

 Next, we’ll look at a capability of Kafka Streams that allows you to observe changes
to state without having to consume data from a Kafka topic.

5.3.5 Queryable state

You’ve performed several operations involving state, and you’ve always printed the
results to the console (for development) or written them to a topic (for production).
When you write the results to a topic, you need to use a Kafka consumer to view the
results.

 Reading the data from these topics could be considered a form of materialized
views. For our purposes, we can use Wikipedia’s definition of a materialized view: “a
database object that contains the results of a query. For example, it may be a local
copy of data located remotely, or may be a subset of the rows and/or columns of a
table or join result, or may be a summary using an aggregate function” (https://en
.wikipedia.org/wiki/Materialized_view).

 Kafka Streams also offers interactive queries from state stores, giving you the ability to
read these materialized views directly. It’s important to note that querying state stores
is a read-only operation. By making the queries read-only, you don’t have to worry
about creating an inconsistent state while the application continues to process data.

 The impact of making the state stores directly queryable is significant. It means
you can create dashboard applications without having to consume the data from a
Kafka consumer first. There are also some gains in efficiency resulting from not writ-
ing the data out again:

 Because the data is local, you can access it quickly.
 You avoid duplicating data by not copying it to an external store.2

Table 5.2 Kafka Streams joins

Left join Inner join Outer join

KStream-KStream KStream-KStream KStream-KStream

KStream-KTable KStream-KTable N/A

KTable-KTable KTable-KTable KTable-KTable

KStream-GlobalKTable KStream-GlobaKTable N/A

2 For more details, see Eno Thereska, “Unifying Stream Processing and Interactive Queries in Apache Kafka,”
http://mng.bz/dh1H.

https://en.wikipedia.org/wiki/Materialized_view
https://en.wikipedia.org/wiki/Materialized_view
https://en.wikipedia.org/wiki/Materialized_view
http://mng.bz/dh1H

144 CHAPTER 5 The KTable API
The main thing I want you to remember here is that you can query state from the
application directly. I can’t stress enough the power this feature gives you. Instead of
consuming from Kafka and storing records in a database to feed your application, you
can directly query the state stores for the same results. The impact of direct queries on
state stores means less code (no consumer) and less software (no need for a database
table to store results).

 We’ve covered a lot in this chapter, so we’ll stop here in our discussion of interac-
tive queries on state stores. But fear not: in chapter 9, you’ll build a simple dashboard
application with interactive queries. It will use some of the examples from this and
previous chapters to demonstrate interactive queries and how you can add them to
your Kafka Streams applications.

Summary
 KStreams represent event streams that are comparable to inserts into a data-

base. KTables are update streams and are more akin to updates to a database.
The size of a KTable doesn’t continue to grow; older records are replaced with
newer records.

 KTables are essential for performing aggregation operations.
 You can place your aggregated data into time buckets with windowing operations.
 GlobalKTables give you lookup data across the entire application, regardless of

the partitions.
 You can perform joins with KStreams, KTables, and GlobalKTables.

So far, we’ve focused on the high-level KStreams DSL to build Kafka Streams applica-
tions. Although the high-level approach gives nice, concise programs, everything is a
trade-off. By working with the KStreams DSL, you relinquish a level of control and
gain more-concise code. In the next chapter, we’ll cover the low-level Processor API
and make different trade-offs. You won’t have the conciseness of the applications
you’ve built so far, but you’ll gain the ability to create virtually any kind of processor
you need.

The Processor API
Up to this point in the book, we’ve been working with the high-level Kafka Streams
API. It’s a DSL that allows developers to create robust applications with minimal
code. The ability to quickly put together processing topologies is an important fea-
ture of the Kafka Streams DSL. It allows you to iterate quickly to flesh out ideas for
working on your data without getting bogged down in the intricate setup details
that some other frameworks may need.

 But at some point, even when working with the best of tools, you’ll come up
against one of those one-off situations: a problem that requires you to deviate from

This chapter covers
 Evaluating higher-level abstractions versus

more control

 Working with sources, processors, and sinks to
create a topology

 Digging deeper into the Processor API with a
stock analysis processor

 Creating a co-grouping processor

 Integrating the Processor API and the Kafka
Streams API
145

146 CHAPTER 6 The Processor API
the traditional path. Whatever the particular case may be, you need a way to dig down
and write some code that just isn’t possible with a higher-level abstraction.

6.1 The trade-offs of higher-level abstractions vs.
more control
A classic example of trading off higher-level abstractions versus gaining more control
is using object-relational mapping (ORM) frameworks. A good ORM framework maps
your domain objects to database tables and creates the correct SQL queries for you at
runtime. When you have simple-to-moderate SQL operations (simple SELECT or JOIN
statements), using the ORM framework saves you a lot of time. But no matter how
good the ORM framework is, there will inevitably be those few queries (very complex
joins, SELECT statements with nested subselect statements) that just don’t work the way
you want. You need to write raw SQL to get the information from the database in the
format you need. You can see the trade-off between a higher-level abstraction versus
more programmatic control here. Often, you’ll be able to mix the raw SQL with the
higher-level mappings provided with the framework.

 This chapter is about those times when you want to do stream processing in a way
that the Kafka Streams DSL doesn’t make easy. For example, you’ve seen from work-
ing with the KTable API that the framework controls the timing of forwarding records
downstream. You may find yourself in a situation where you want explicit control over
when a record is sent. You might be tracking trades on Wall Street, and you only want
to forward records when a stock crosses a particular price threshold. To gain this type
of control, you can use the Processor API. What the Processor API lacks in ease of
development, it makes up for in power. You can write custom processors to do almost
anything you want.

 In this chapter, you’ll learn how to use the Processor API to handle situations
like these:

 Schedule actions to occur at regular intervals (either based on timestamps in
the records or wall-clock time).

 Gain full control over when records are sent downstream.
 Forward records to specific child nodes.
 Create functionality that doesn’t exist in the Kafka Streams API (you’ll see an

example of this when we build a co-grouping processor).

First, let’s look at how to use the Processor API by developing a topology step by step.

6.2 Working with sources, processors, and sinks to create
a topology
Let’s say you’re the owner of a successful brewery (Pops Hops) with several locations.
You’ve recently expanded your business to accept online orders from distributors,
including international sales to Europe. You want to route orders within the company
based on whether the order is domestic or international, converting any European
sales from British pounds or euros to US dollars.

147Working with sources, processors, and sinks to create a topology
 If you were to sketch out the flow of operation, it would look something like fig-
ure 6.1. In building this example, you’ll see how the Processor API gives you the flexi-
bility to select specific child nodes when forwarding records. Let’s start by creating a
source node

6.2.1 Adding a source node

The first step in constructing a topology is establishing the source nodes. The follow-
ing listing (found in src/main/java/bbejeck/chapter_6/PopsHopsApplication.java)
sets the data source for the new topology.

topology.addSource(LATEST,
purchaseSourceNodeName,
new UsePreviousTimeOnInvalidTimestamp(),
stringDeserializer,
beerPurchaseDeserializer,
Topics.POPS_HOPS_PURCHASES.topicName())

In the Topology.addSource() method, there are some parameters you didn’t use in
the DSL. First, you name the source node. When you used the Kafka Streams DSL,
you didn’t need to pass in a name because the KStream instance generated a name
for the node. But when you use the Processor API, you need to provide the names of
the nodes in the topology. The node name is used to wire up a child node to a par-
ent node.

Listing 6.1 Creating the beer application source node

Source node

domestic-sales sink international-sales sink

Beer-purchase processor

Figure 6.1 Beer sales distribution pipeline

Specifies the offset
reset to use Specifies the name

of this node

Specifies the
TimestampExtractor

to use for this
source

Sets the key deserializer

Sets the value
deserializerSpecifies the name of the

topic to consume data from

148 CHAPTER 6 The Processor API
 Next, you specify the timestamp extractor to use with this source. In section 4.5.1,
we discussed the different timestamp extractors available to use for each stream
source. Here, you’re using the UsePreviousTimeOnInvalidTimestamp class; all other
sources in the application will use the default FailOnInvalidTimestamp class.

 Next, you provide a key deserializer and a value deserializer, which represents
another departure from the Kafka Streams DSL. In the DSL, you supplied Serde
instances when creating source or sink nodes. The Serde itself contains a serializer
and deserializer, and the Kafka Streams DSL uses the appropriate one, depending on
whether you’re going from object to byte array, or from byte array to object. Because
the Processor API is a lower-level abstraction, you directly provide a deserializer when
creating a source node and a serializer when creating a sink node. Finally, you provide
the name of the source topic.

 Let’s next look at how you’ll work with purchase records coming into the application.

6.2.2 Adding a processor node

Now, you’ll add a processor to work with the records coming in from the source node
(found in src/main/java/bbejeck/chapter_6/PopsHopsApplication.java).

BeerPurchaseProcessor beerProcessor =

➥ new BeerPurchaseProcessor(domesticSalesSink, internationalSalesSink);

topology.addSource(LATEST,
purchaseSourceNodeName,
new UsePreviousTimeOnInvalidTimestamp(),
stringDeserializer,
beerPurchaseDeserializer,
Topics.POPS_HOPS_PURCHASES.topicName())

.addProcessor(purchaseProcessor,
() -> beerProcessor,
purchaseSourceNodeName);

This code uses the fluent interface pattern for constructing the topology. The differ-
ence from the Kafka Streams API lies in the return type. With the Kafka Streams API,
every call on a KStream operator returns a new KStream or KTable instance. In the
Processor API, each call to Topology returns the same Topology instance.

 In the second annotation, you pass in the processor instantiated on the first line of
the code example. The Topology.addProcessor method takes an instance of a
ProcessorSupplier interface for the second parameter, but because the Processor-
Supplier is a single-method interface, you can replace it with a lambda expression.

 The key point in this section is that the third parameter, purchaseSourceNode-
Name, of the addProcessor() method is the same as the second parameter of the
addSource() method, as illustrated in figure 6.2. This establishes the parent-child
relationship between nodes. The parent-child relationship, in turn, determines how

Listing 6.2 Adding a processor node

Names the
processor node

Adds the processor
defined above

Specifies the name of the
parent node or nodes

149Working with sources, processors, and sinks to create a topology
records move from one processor to the next in a Kafka Streams application. Figure 6.3
reviews what you’ve built so far.

Let’s take a second to discuss the BeerPurchaseProcessor, created in listing 6.1, func-
tions. The processor has two responsibilities:

 Convert international sales amounts (in euros) to US dollars.
 Based on the origin of the sale (domestic or international), route the record to

the appropriate sink node.

All of this takes place in the process() method. To quickly summarize, here’s what
the process() method does:

1 Check the currency type. If it’s not in dollars, convert it to dollars.
2 If it’s a non-domestic sale, forward the updated record to the international-

sales topic.
3 Otherwise, forward the record directly to the domestic-sales topic.

Here’s the code for this processor (found in src/main/java/bbejeck/chapter_6/
processor/BearPurchaseProcessor.java).

Figure 6.2 Wiring up parent and child nodes in the Processor API

builder.addSource(LATEST,
,purchaseSourceNodeName

new UsePreviousTimeOnInvalidTimestamp()
stringDeserializer,
beerPurchaseDeserializer,
"pops-hops-purchases");

builder.addProcessor(purchaseProcessor,
() -> beerProcessor,

);purchaseSourceNodeName

The of the source node (above) is usedname
for the of the processing nodeparent name
(below). This establishes the parent-child
relationship, which directs data flow
in Kafka Streams.

name
parent name

Figure 6.3 The Processor API topology so far,
including node names and parent names

Source node

Beer-purchase processor

name = "beer-purchase-source"

name = "purchase-processor"
parent = "beer-purchase-source"

150 CHAPTER 6 The Processor API

sreco
do

sales
do

chi
public class BeerPurchaseProcessor extends

➥ AbstractProcessor<String, BeerPurchase> {

private String domesticSalesNode;
private String internationalSalesNode;

public BeerPurchaseProcessor(String domesticSalesNode,
String internationalSalesNode) {

this.domesticSalesNode = domesticSalesNode;
this.internationalSalesNode = internationalSalesNode;

}

@Override
public void process(String key, BeerPurchase beerPurchase) {

Currency transactionCurrency = beerPurchase.getCurrency();

if (transactionCurrency != DOLLARS) {
BeerPurchase dollarBeerPurchase;
BeerPurchase.Builder builder =

➥ BeerPurchase.newBuilder(beerPurchase);
double internationalSaleAmount = beerPurchase.getTotalSale();
String pattern = "###.##";
DecimalFormat decimalFormat = new DecimalFormat(pattern);
builder.currency(DOLLARS);
builder.totalSale(Double.parseDouble(decimalFormat.

➥ format(transactionCurrency

➥ .convertToDollars(internationalSaleAmount))));
dollarBeerPurchase = builder.build();
context().forward(key,

➥ dollarBeerPurchase, internationalSalesNode);
} else {

context().forward(key, beerPurchase, domesticSalesNode);
}

}
}

This example extends AbstractProcessor, a class with overrides for Processor inter-
face methods, except for the process() method. The Processor.process() method
is where you perform actions on the records flowing through the topology.

NOTE The Processor interface provides the init(), process(), punctuate(),
and close() methods. The Processor is the main driver of any application
logic that works with records in your streaming application. In the examples,
you’ll mostly use the AbstractProcessor class, so you’ll only override the
methods you want. The AbstractProcessor class initializes the Processor-
Context for you, so if you don’t need to do any setup in your class, you don’t
need to override the init() method.

Listing 6.3 BeerPurchaseProcessor

Sets the
names for
different
nodes to
forward
records to

The process() method,
where the action takes place

Converts
international
sales to US dollar

Uses the ProcessorContext (returned from
the context() method) and forwards

records to the international child node

Sends
rds for
mestic
 to the
mestic

ld node

151Working with sources, processors, and sinks to create a topology
The last few lines of listing 6.3 demonstrate the main point of this example—the abil-
ity to forward records to specific child nodes. The context() method in these lines
retrieves a reference to the ProcessorContext object for this processor. All processors
in a topology receive a reference to the ProcessorContext via the init() method,
which is executed by the StreamTask when initializing the topology.

 Now that you’ve seen how you can process records, the next step is to connect a
sink node (topic) so you can write records back to Kafka.

6.2.3 Adding a sink node

By now, you probably have a good feel for the flow of using the Processor API. To add
a source, you used addSource, and for adding a processor, you used addProcessor. As
you might imagine, you’ll use the addSink() method to wire up a sink node (topic) to
a processor node. Figure 6.4 shows the updated topology.

You can update the topology you’re building by adding sink nodes in the code now
(found in src/main/java/bbejeck/chapter_6/PopsHopsApplication.java).

topology.addSource(LATEST,
purchaseSourceNodeName,
new UsePreviousTimeOnInvalidTimestamp(),
stringDeserializer,
beerPurchaseDeserializer,
Topics.POPS_HOPS_PURCHASES.topicName())

.addProcessor(purchaseProcessor,

Listing 6.4 Adding a sink node

Figure 6.4 Completing the topology by adding sink nodes

Source node

Domestic sales sink International sales sink

Beer-purchase processor

name = purchaseSourceNodeName

name = domesticSalesSink
parent = purchaseProcessor

name = purchaseProcessor
parent = purchaseSourceNodeName

name = internationalSalesSink
parent = purchaseProcessor

Note that the two sink nodes
here have the same parent.

152 CHAPTER 6 The Processor API
() -> beerProcessor,
purchaseSourceNodeName)

.addSink(internationalSalesSink,
"international-sales",
stringSerializer,
beerPurchaseSerializer,
purchaseProcessor)

.addSink(domesticSalesSink,
"domestic-sales",
stringSerializer,
beerPurchaseSerializer,
purchaseProcessor);

In this listing, you add two sink nodes, one for dollars and another for euros. Depend-
ing on the currency of the transaction, you’ll write the records out to the appropri-
ate topic.

 The key point to notice when adding two sink nodes here is that both have the
same parent name. By supplying the same parent name to both sink nodes, you’ve
wired both of them to your processor (as shown in figure 6.4).

 You’ve seen in this first example how you can wire topologies together and forward
records to specific child nodes. Although the Processor API is a little more verbose
than the Kafka Streams API, it’s still easy to construct topologies. The next example
will explore more of the flexibility the Processor API provides.

6.3 Digging deeper into the Processor API with a stock
analysis processor
You’ll now return to the world of finance and put on your day trading hat. As a day
trader, you want to analyze how stock prices are changing with the intent of picking
the best time to buy and sell. The goal is to take advantage of market fluctuations and
make a quick profit. We’ll consider a few key indicators, hoping they’ll indicate when
you should make a move.

 This is the list of requirements:

 Show the current value of the stock.
 Indicate whether the price per share is trending up or down.
 Include the total share volume so far, and whether the volume is trending up

or down.
 Only send records downstream for stocks displaying 2% trending (up or down).
 Collect a minimum of 20 samples for a given stock before performing any cal-

culations.

Let’s walk through how you might handle this analysis manually. Figure 6.5 shows the
sort of decision tree you’ll want to create to help make decisions.

Name of
the sink

The topic this
sink represents

Serializer
for the key

Serializer for the value

Parent node
for this sink

Name of the sink

The topic this
sink representsSerializer for

the value

Parent node
for this sink

153Digging deeper into the Processor API with a stock analysis processor
There are a handful of calculations you’ll need to perform for your analysis. Addition-
ally, you’ll use these calculation results to determine if and when you should forward
records downstream.

 This restriction on sending records means you can’t rely on the standard mecha-
nisms of commit time or cache flushes to handle the flow for you, which rules out
using the Kafka Streams API. It goes without saying that you’ll also require state, so
you can keep track of changes over time. What you need here is the ability to write a
custom processor. Let’s look at the solution to the problem.

6.3.1 The stock-performance processor application

Here’s the topology for the stock-performance application (found in src/main/java/
bbejeck/chapter_6/StockPerformanceApplication.java).

Topology topology = new Topology();
String stocksStateStore = "stock-performance-store";
double differentialThreshold = 0.02;

For demo purposes only
I’m pretty sure it goes without saying, but I’ll state the obvious anyway: these stock
price evaluations are for demonstration purposes only. Please don’t infer any real
market-forecasting ability from this example. This model bears no similarity to a real-
life approach and is presented only to demonstrate a more complex processing situ-
ation. I’m certainly not a day trader!

Listing 6.5 Stock-performance application with custom processor

Figure 6.5 Stock trend updates

Yes

No

Hold until conditions change.

Over the last X number of trades, has the price
or volume of shares increased/decreased
by more than 2%?

The current status of stock XXYY

Symbol: XXYY; Share price: $10.79; Total volume: 5,123,987

If the price and/or volume is increasing, sell;
if the price and/or volume is decreasing, buy.

Sets the percentage
differential for forwarding
stock information

154 CHAPTER 6 The Processor API

Cr
a

me
key/

state

KeyValueBytesStoreSupplier storeSupplier =

➥ Stores.inMemoryKeyValueStore(stocksStateStore);
StoreBuilder<KeyValueStore<String, StockPerformance>> storeBuilder

➥ = Stores.keyValueStoreBuilder(

➥ storeSupplier, Serdes.String(), stockPerformanceSerde);

topology.addSource("stocks-source",
stringDeserializer,
stockTransactionDeserializer,
"stock-transactions")

.addProcessor("stocks-processor",

➥ () -> new StockPerformanceProcessor(

➥ stocksStateStore, differentialThreshold), "stocks-source")
.addStateStore(storeBuilder,"stocks-processor")
.addSink("stocks-sink",

"stock-performance",
stringSerializer,
stockPerformanceSerializer,
"stocks-processor");

This topology has the same flow as the previous example, so we’ll focus on the new
features in the processor. In the previous example, you don’t have any setup to do, so
you rely on the AbstractProcessor.init method to initialize the ProcessorContext
object. In this example, however, you need to use a state store, and you also want to
schedule when you emit records, instead of forwarding records each time you
receive them.

 Let’s look first at the init() method in the processor (found in src/main/java/
bbejeck/chapter_6/processor/StockPerformanceProcessor.java).

@Override
public void init(ProcessorContext processorContext) {
super.init(processorContext);
keyValueStore =

➥ (KeyValueStore) context().getStateStore(stateStoreName);
StockPerformancePunctuator punctuator =

➥ new StockPerformancePunctuator(differentialThreshold,
context(),
keyValueStore);

context().schedule(10000, PunctuationType.WALL_CLOCK_TIME,

➥ punctuator);
}
}

First, you need to initialize the AbstractProcessor with the ProcessorContext, so
you call the init() method on the superclass. Next, you grab a reference to the state
store you created in the topology. All you need to do here is set the state store to a

Listing 6.6 init() method tasks

eates
n in-
mory
value
store

Creates the
StoreBuilder
to place in the
topology

 Adds the
processor to
the topology

Adds the
state store
to the stocks
processor

Adds a sink for
writing results out,
although you could
use a printing sink

as well

Initializes
ProcessorContext via
the AbstractProcessor
superclass

Retrieving state
store created when
building topology

Initializing the
Punctuator to handle
the scheduled
processingSchedules Punctuator.punctuate() to

be called every 10 seconds

155Digging deeper into the Processor API with a stock analysis processor
variable for use later in the processor. Listing 6.5 also introduces a Punctuator, an
interface that’s a callback to handle scheduled execution of processor logic but encap-
sulated in the Punctuator.punctuate method.

TIP The ProcessorContext.schedule(long, PunctuationType, Punctuator)
method returns a type of Cancellable, allowing you to cancel a punctuation
and manage more-advanced scenarios, like those found in the “Punctuate
Use Cases” discussion (http://mng.bz/YSKF). I don’t have examples or a dis-
cussion here, but I present some examples in src/main/java/bbejeck/chap-
ter_6/cancellation.

In the last line of listing 6.5, you use the ProcessorContext to schedule the Punctu-
ator to execute every 10 seconds. The second parameter, PunctuationType.WALL
_CLOCK_TIME, specifies that you want to call Punctuator.punctuate every 10 sec-
onds based on WALL_CLOCK_TIME. Your other option is to specify Punctuation-
Type.STREAM_TIME, which means the execution of Punctuator.punctuate is still
scheduled every 10 seconds but driven by the time elapsed according to timestamps
in the data. Let’s take a moment to discuss the difference between these two
PunctuationType settings.

PUNCTUATION SEMANTICS

Let’s start our conversation on punctuation semantics with STREAM_TIME, because it
requires a little more explanation. Figure 6.6 illustrates the concept of stream time.
Let’s walk through some details to gain a deeper understanding of how the schedule is
determined (note that some of the Kafka Stream internals are not shown):

1 The StreamTask extracts the smallest timestamp from the PartitionGroup. The
PartitionGroup is a set of partitions for a given StreamThread, and it contains
all timestamp information for all partitions in the group.

2 During the processing of records, the StreamThread iterates over its Stream-
Task object, and each task will end up calling punctuate for each of its proces-
sors that are eligible for punctuation. Recall that you collect a minimum of 20
trades before you examine an individual stock’s performance.

3 If the timestamp from the last execution of punctuate (plus the scheduled
time) is less than or equal to the extracted timestamp from the Partition-
Group, then Kafka Streams calls that processor’s punctuate() method.

The key point here is that the application advances timestamps via the Timestamp-
Extractor, so punctuate() calls are consistent only if data arrives at a constant rate. If
your flow of data is sporadic, the punctuate() method won’t get executed at the regu-
larly scheduled intervals.

 With PunctuationType.WALL_CLOCK_TIME, on the other hand, the execution of
Punctuator.punctuate is more predictable, as it uses wall-clock time. Note that sys-
tem-time semantics is best effort—wall-clock time is advanced in the polling interval,
and the granularity is dependent on how long it takes to complete a polling cycle. So,

http://mng.bz/YSKF

156 CHAPTER 6 The Processor API
with the example in listing 6.6, you can expect the punctuation activity to be executed
closer to every 10 seconds, regardless of data activity.

 Which approach you choose to use is entirely dependent on your needs. If you
need some activity performed on a regular basis, regardless of data flow, using system
time is probably the best bet. On the other hand, if you only need calculations per-
formed on incoming data, and some lag time between executions is acceptable, try
stream-time semantics.

NOTE Before Kafka 0.11.0, punctuation involved the ProcessorContext
.schedule(long time) method, which in turn called the Processor.punctuate
method at the scheduled interval. This approach only worked on stream-
time semantics, and both methods are now deprecated. I mention depre-
cated methods in this book, but I only use the latest punctuation methods
in the examples.

Now that we’ve covered scheduling and punctuation, let’s move on to handling incom-
ing records.

Figure 6.6 Punctuation scheduling using STREAM_TIME

Partition A Partition B

Because partition A has the smallest timestamp, it’s chosen first:
1) process called with record A
2) process called with record B

Now partition B has the smallest timestamp:
3) process called with record C
4) process called with record D

Switch back to partition A, which has the smallest timestamp again:
5) process called with record E
6) punctuate called because time elapsed from timestamps is 5 seconds
7) process called with record F

Finally, switch back to partition B:
8) process called with record G
9) punctuate called again as 5 more seconds have elapsed, according to the timestamps

A:1
B:2
E:5
F:6

C:3

D:4

G:10

In the two partitions below, the letter represents the record, and the number is

the timestamp. For this example, we’ll assume that is scheduled topunctuate

run every five seconds.

157Digging deeper into the Processor API with a stock analysis processor
6.3.2 The process() method

The process() method is where you’ll perform all of your calculations to evaluate
stock performance. There are several steps to take when you receive a record:

1 Check the state store to see if you have a corresponding StockPerformance
object for the record’s stock ticker symbol.

2 If the store doesn’t contain the StockPerformance object, one is created. Then,
the StockPerfomance instance adds the current share price and share volume
and updates your calculations.

3 Start performing calculations once you hit 20 transactions for any given stock.

Although financial analysis is beyond the scope of this book, we should take a minute
to look at the calculations. For both the share price and volume, you’re going to per-
form a simple moving average (SMA). In the financial-trading world, SMAs are used
to calculate the average for datasets of size N.

 For this example, you’ll set N to 20. Setting a maximum size means that as new
trades come in, you collect the share price and number of shares traded for the first
20 transactions. Once you hit that threshold, you remove the oldest value and add the
latest one. Using the SMA, you get a rolling average of stock price and volume over
the last 20 trades. It’s important to note you won’t have to recalculate the entire
amount as new values come in.

 Figure 6.7 provides a high-level walk-through of the process() method, illustrat-
ing what you’d do if you were to perform these steps manually. The process()
method is where you’ll perform all the calculations.

Now, let’s look at the code that makes up the process() method (found in src/main/
java/bbejeck/chapter_6/processor/StockPerformanceProcessor.java).

Figure 6.7 Stock analysis process() method walk-through

1) Price: $10.79, Number shares: 5,000
2) Price: $11.79, Number shares: 7,000

20) Price: $12.05, Number shares: 8,000

As stocks come in, you keep a rolling average of share price
and volume of shares over the last 20 trades. You also
record the timestamp of the last update.

Before you have 20 trades, you take the average of the number
of trades you’ve collected so far.

1) Price: $10.79, Number shares: 5,000
2) Price: $11.79, Number shares: 7,000

20) Price: $12.05, Number shares: 8,000
21) Price: $11.75, Number shares: 6,500
22) Price: $11.95, Number shares: 7,300

After you hit 20 trades, you drop the oldest trade and add
the newest one. You also update the rolling average by
removing the old value from the average.

158 CHAPTER 6 The Processor API

l
U

th
st

s S
tim
of t
@Override
public void process(String symbol, StockTransaction transaction) {
StockPerformance stockPerformance = keyValueStore.get(symbol);

if (stockPerformance == null) {
stockPerformance = new StockPerformance();
}

stockPerformance.updatePriceStats(transaction.getSharePrice());
stockPerformance.updateVolumeStats(transaction.getShares());
stockPerformance.setLastUpdateSent(Instant.now());

keyValueStore.put(symbol, stockPerformance);
}

In the process() method, you take the latest share price and the number of shares
involved in the transaction and add them to the StockPerformance object. Notice that
all details of how you perform the updates are abstracted inside the StockPerformance
object. Keeping most of the business logic out of the processor is a good idea—we’ll
come back to that point when we cover testing in chapter 8.

 There are two key calculations: determining the moving average, and calculating
the differential of stock price/volume from the current average. You don’t want to cal-
culate an average until you’ve collected data from 20 transactions, so you defer doing
anything until the processor receives 20 trades. When you have data from 20 trades
for an individual stock, you calculate your first average. Then, you take the current
value of the stock price or a number of shares and divide by the moving average, con-
verting the result to a percentage.

NOTE If you want to see the calculations, the StockPerformance code can be
found in src/main/java/bejeck/model/StockPerformance.java.

In the Processor example in listing 6.3, once you worked your way through the
process() method, you forwarded the records downstream. In this case, you store
the final results in the state store and leave the forwarding of records to the
Punctuator.punctuate method.

6.3.3 The punctuator execution

We’ve already discussed the punctuation semantics and scheduling, so let’s jump
straight into the code for the Punctuator.punctuate method (found in src/main/
java/bejeck/chapter_6/processor/punctuator/StockPerformancePunctuator.java).

Listing 6.7 process() implementation

Retrieves
previous
performance
stats,
possibly nul

Creates a new StockPerformance
object if one isn’t in the state store

pdates
e price
atistics
for this

stock

Updates the
volume statistic
for this stock

ets the
estamp
he last
update

Places the updated StockPerformance
object into the state store

159The co-group processor
@Override
public void punctuate(long timestamp) {
KeyValueIterator<String, StockPerformance> performanceIterator =

➥ keyValueStore.all();

while (performanceIterator.hasNext()) {
KeyValue<String, StockPerformance> keyValue =

➥ performanceIterator.next();
String key = keyValue.key;
StockPerformance stockPerformance = keyValue.value;

if (stockPerformance != null) {
if (stockPerformance.priceDifferential()

➥ >= differentialThreshold ||
stockPerformance.volumeDifferential()

➥ >= differentialThreshold) {
context.forward(key, stockPerformance);

}
}

}
}

The procedure in the Punctuator.punctuate method is simple. You iterate over the
key/value pairs in the state store, and if the value has crossed over the predefined
threshold, you forward the record downstream.

 An important concept to remember here is that, whereas before you relied on a
combination of committing or cache flushing to forward records, now you define the
terms for when records get forwarded. Additionally, even though you expect to exe-
cute this code every 10 seconds, that doesn’t guarantee you’ll emit records. They must
meet the differential threshold. Also note that the Processor.process and Punctuator
.punctuate methods aren’t called concurrently.

NOTE Although we’re demonstrating access to a state store, it’s a good time
to review Kafka Streams’ architecture and go over a few key points. Each
StreamTask has its own copy of a local state store, and StreamThread objects
don’t share tasks or data. As records make their way through the topology,
each node is visited in a depth-first manner, meaning there’s never concur-
rent access to state stores from any given processor.

This example has given you an excellent introduction to writing a custom processor,
but you can take writing custom processors a bit further by adding a new data struc-
ture and an entirely new way of aggregating data that doesn’t currently exist in the
API. With this in mind, we’ll move on to adding a co-group processor.

6.4 The co-group processor
Back in chapter 4, we discussed joins between two streams; specifically, we joined pur-
chases from different departments within a given time frame to promote business. You

Listing 6.8 Punctuation code

Retrieves the iterator
to go over all key values
in the state store

Checks the threshold
for the current stock

If you’ve met or
exceeded the
threshold, forwards
the record

160 CHAPTER 6 The Processor API
can use joins to bring together records that have the same key and that arrive in the
same time window. With joins, there’s an implied one-to-one mapping of records from
stream A to stream B. Figure 6.8 depicts this relationship.

Now, let’s imagine that you want to do a similar type of analysis, but instead of using a
one-to-one join by key, you want two collections of data joined by a common key, a co-
grouping of data. Suppose you’re the manager of a popular online day-trading applica-
tion. Day traders use your application for several hours a day—sometimes the entire
time the stock market is open. One of the metrics your application tracks is the notion
of events. You’ve defined an event as being when a user clicks on a ticker symbol to
read more about a company and its financial outlook. You want to do some deeper
analysis between those user clicks in the application and the purchase of stocks by
users. You want course-grained results, comparing multiple clicks and purchases to
determine some overall pattern. What you need is a tuple with two collections of each
event type by the company trading symbol, as shown in figure 6.9.

Figure 6.8 Records A and B joined by a common key

Records A and B are individually joined by a key
and combined to produce a single joined record.

AB:1 AB:2 AB:3 AB:4 AB:5

Cafe purchases

Stream A key/value pairs
A:1 A:2 A:3 A:4 A:5

Electronics purchases

Stream B key/value pairs
B:1 B:2 B:3 B:4 B:5

For this example, you assume the window time lines up to
give you only one-to-one joins so that each record uniquely

matches up with only one other record.

Joins

Records A (click events from the day-trading application)
and B (purchase transactions) are co-grouped by key
(stock symbol) and produce a key/value pair where the key
is K, and the value is Tuple, containing a collection of click
events and a collection of stock transactions.

K, Tuple ([A1, A2, A3, A4, A5], [B1, B2, B3, B4, B5])

ClickEvents key/value pairs

A:1 A:2 A:3 A:4 A:5

StockPurchase key/value pairs

B:1 B:2 B:3 B:4 B:5

For this example, each collection is populated with what’s available at the
time punctuate is called. There might be an empty collection at any point.

Figure 6.9 Output of a key with a tuple containing two collections of data—
a co-grouped result

161The co-group processor
Your goal is to combine snapshots of click events and stock transactions for a given
company, every N seconds, but you aren’t waiting for records from either stream to
arrive. When the specified amount of time goes by, you want a co-grouping of click
events and stock transactions by company ticker symbol. If either type of event isn’t
present, one of the collections in the tuple will be empty. If you’re familiar with
Apache Spark or Apache Flink, this functionality is similar to the PairRDDFunctions
.cogroup method (http://mng.bz/LaD4) and the CoGroupDataSet class (http://mng
.bz/FH9m), respectively. Let’s walk through the steps you’ll take in constructing this
processor.

6.4.1 Building the co-grouping processor

To create the co-grouping processor, you need to tie a few pieces together:

1 Define two topics (stock-transactions, events).
2 Add two processors to consume records from the topics.
3 Add a third processor to act as an aggregator/co-grouping for the two preced-

ing processors.
4 Add a state store for the aggregating processor to keep the state for both events.
5 Add a sink node to write the results to (and/or a printing processor to print

results to console).

Now, lets walk through the steps to put this processor together.

DEFINING THE SOURCE NODES

You’re already familiar with the first step, creating the source nodes. This time, you’ll
create two source nodes to support reading both the click event stream and the stock-
transactions stream. To keep track of where we are in the topology, we’ll build on fig-
ure 6.10. The code for creating the source nodes is shown in the following listing
(found in src/main/java/bbejeck/chapter_6/CoGroupingApplication.java).

//I’ve left out configuration and (de)serializer creation for clarity.

topology.addSource("Txn-Source",
stringDeserializer,
stockTransactionDeserializer,
"stock-transactions")

.addSource("Events-Source",
stringDeserializer,
clickEventDeserializer,
"events")

With the sources for the topology in place, let’s move on to the next step.

Listing 6.9 Source nodes for co-grouping processor

Source node for the
stock-transactions topic

Source node for
the events topic

http://mng.bz/LaD4
http://mng.bz/FH9m
http://mng.bz/FH9m
http://mng.bz/FH9m

162 CHAPTER 6 The Processor API
ADDING THE PROCESSOR NODES

Now, you’ll add the workhorses of the topology, the processors. Figure 6.11 shows the
updated topology graph. Here’s the code for adding these new processors (found in
src/main/java/bbejeck/chapter_6/CoGroupingApplication.java).

.addProcessor("Txn-Processor",
StockTransactionProcessor::new,
"Txn-Source")

.addProcessor("Events-Processor",
ClickEventProcessor::new,
"Events-Source")

.addProcessor("CoGrouping-Processor",
CogroupingProcessor::new,
"Txn-Processor",
"Events-Processor")

In the first two lines, the parent names are the names of source nodes reading from
the stock-transactions and events topics, respectively. The third processor has the
names of both processors given as parent nodes. This means both processors will feed
the aggregation processor.

Listing 6.10 The processor nodes

Figure 6.10 Co-grouping
source nodes

transaction-source topic Click events source node

Adds the
StockTransactionProcessor

Adds the
ClickEventProcessor

Adds the CogroupingProcessor, which
is a child node of both processors

Figure 6.11 Adding processor nodes

transaction-source topic Click event source node

Txn processor Events processor

Co-grouping processor

Both of those send records to
the co-grouping processor.

The source nodes send
records to the Txn processor

and events processor.

163The co-group processor
For the ProcessorSupplier instances, you’re again taking a Java 8 shortcut. This time,
you’ve shortened the form, even more, to use a method handle: in this case, a con-
structor call to create the associated processor.

TIP With single-method no-arg interfaces in Java 8, you can use a lambda in
the form of ()-> doSomething. But because the ProcessorSupplier’s only role
is to return a (possibly new each time) Processor object, you can shorten the
form even more to use a method handle for the constructor of the Processor
type. Note that this only applies for no-arg constructors.

Let’s look at why you’ve set up the processors in this manner. This example is an
aggregation operation, and the roles of the StockTransactionProcessor and Click-
EventProcessor are to wrap their respective objects into smaller aggregate objects
and then forward them to another processor for a total aggregation. Both the Stock-
TransactionProcessor and the ClickEventProcessor perform the smaller aggregation,
and they forward their records to the CogroupingProcessor. The CogroupingProcessor
then performs the co-grouping and forwards the results at regular intervals (intervals
driven by timestamps) to an output topic.

 The following listing shows the code for the processors (found in src/main/java/
bbejeck/chapter_6/processor/cogrouping/StockTransactionProcessor.java).

public class StockTransactionProcessor extends

➥ AbstractProcessor<String, StockTransaction> {

@Override
@SuppressWarnings("unchecked")
public void init(ProcessorContext context) {

super.init(context);
}

@Override
public void process(String key, StockTransaction value) {

if (key != null) {
Tuple<ClickEvent, StockTransaction> tuple =

➥ Tuple.of(null, value);
context().forward(key, tuple);

}
}

}

As you can see, StockTransactionProcessor adds the StockTransaction to the
aggregator (the Tuple) and forwards the record.

NOTE The Tuple<L, R> shown in listing 6.11 is a custom object for examples
in this book. You can find it in src/main/java/bbejeck/util/collection/
Tuple.java.

Listing 6.11 StockTransactionProcessor

Creates an
aggregate
object with the
StockTransaction

Forwards the tuple to the
CogroupingProcessor

164 CHAPTER 6 The Processor API
Now, let’s look at the ClickEventProcessor code (found in src/main/java/bbejeck/
chapter_6/processor/cogrouping/ClickEventProcessor.java).

public class ClickEventProcessor extends

➥ AbstractProcessor<String, ClickEvent> {

@Override
@SuppressWarnings("unchecked")
public void init(ProcessorContext context) {

super.init(context);

}

@Override
public void process(String key, ClickEvent clickEvent) {

if (key != null) {
Tuple<ClickEvent, StockTransaction> tuple =

➥ Tuple.of(clickEvent, null);
context().forward(key, tuple);

}
}

}

As you can see, the ClickEventProcessor adds the ClickEvent to the Tuple aggrega-
tor, much like the previous listing.

 To complete the picture of how to perform the aggregation, we need to look at the
CogroupingProcessor code. It’s more involved, so we’ll examine each method in
turn, starting with CogroupingProcessor.init() (found in src/main/java/bbejeck/
chapter_6/processor/cogrouping/AggregatingProcessor.java).

public class CogroupingProcessor extends

➥ AbstractProcessor<String, Tuple<ClickEvent,StockTransaction>> {

private KeyValueStore<String,

➥ Tuple<List<ClickEvent>,List<StockTransaction>>> tupleStore;
public static final String TUPLE_STORE_NAME = "tupleCoGroupStore";

@Override
@SuppressWarnings("unchecked")
public void init(ProcessorContext context) {

super.init(context);
tupleStore = (KeyValueStore)

➥ context().getStateStore(TUPLE_STORE_NAME);
CogroupingPunctuator punctuator =

➥ new CogroupingPunctuator(tupleStore, context());
context().schedule(15000L, STREAM_TIME, punctuator);

}

Listing 6.12 ClickEventProcessor

Listing 6.13 The CogroupingProcessorinit() method

Adds the
ClickEvent
to the initial
aggregator
object

Forwards the tuple to the
CogroupingProcessor

Retrieves the configured
state store

Creates a Punctuator
instance, Cogrouping-
Punctuator, which handles
all scheduled calls

Schedules a call to the Punctuator.punctuate() method every 15 seconds

165The co-group processor
As you might expect, the init() method handles the details of setting up the class.
You grab the state store configured in the main application and save it in a variable for
use later on. You create the CogroupingPunctuator to handle the scheduled punctua-
tion calls.

Listing 6.13 schedules punctuate for every 15 seconds. Because you’re using the
PunctuationType.STREAM_TIME semantics, the timestamps in the arriving data drive
the calls to punctuate. Remember that if the flow of data isn’t relatively constant, you
may have more than 15 seconds between calls to Punctuator.punctuate.

NOTE You’ll recall from our previous discussion of punctuate semantics that
you have two choices: PunctuationType.STREAM_TIME and Punctuation-
Type.WALL_CLOCK_TIME. Listing 6.13 uses STREAM_TIME semantics. There’s
an additional processor example showing WALL_CLOCK_TIME semantics in
src/main/ava/bbejeck/chapter_6/processor/cogrouping/CogroupingSystem-
TimeProcessor.java, so you can observe the differences in performance and
behavior.

Next, let’s look at how the CogroupingProcessor performs one of its main tasks in
the process() method (found in src/main/java/bbejeck/chapter_6/processor/
cogrouping/CogroupingProcessor.java).

@Override
public void process(String key,

➥ Tuple<ClickEvent, StockTransaction> value) {

Tuple<List<ClickEvent>, List<StockTransaction>> cogroupedTuple

➥ = tupleStore.get(key);
if (cogroupedTuple == null) {

cogroupedTuple =

➥ Tuple.of(new ArrayList<>(), new ArrayList<>());
}

if (value._1 != null) {
cogroupedTuple._1.add(value._1);

}

Method handles for Punctuator
You can specify a method handle for the Punctuator instance. To do so, declare a
method in the processor that accepts a single parameter of type long and a void
return type. Then, schedule punctuation like this:

context().schedule(15000L, STREAM_TIME, this::myPunctuationMethod);

For an example of this, look in src/main/java/bbejeck/chapter_6/processor/
cogrouping/CogroupingMethodHandleProcessor.java.

Listing 6.14 The CogroupingProcessorprocess() method

Initializes the total
aggregation if it
doesn’t exist yet

If the ClickEvent is
not null, adds it to the
list of click events

166 CHAPTER 6 The Processor API
if (value._2 != null) {
cogroupedTuple._2.add(value._2);

}

tupleStore.put(key, cogroupedTuple);
}

}

As you process incoming smaller aggregates of your overall co-grouping, the first is
step checking if you have an instance in your state store already. If you don’t, you cre-
ate a Tuple with empty collections of ClickEvent and StockTransaction.

 Next, you check the incoming smaller aggregation, and if either a ClickEvent or
StockTransaction is present, you add it to the overall aggregation. The last step in
the process() method is putting the Tuple back into the store, updating your aggre-
gation total.

NOTE Although you have two processors forwarding records to one processor
and accessing one state store, you don’t have to be concerned about concur-
rency issues. Remember, parent processors forward records to child proces-
sors in a depth-first manner, so each parent processor serially calls the child
processor. Additionally, Kafka Streams only uses one thread per task, so there
are never any concurrency access issues.

The next step is to look at how punctuation is handled (found in src/main/java/
bbejeck/chapter_6/processor/cogrouping/CogroupingPunctuator.java). You use the
updated API, so we won’t look at the Processor.punctuate call, which is deprecated.

// leaving out class declaration and constructor for clarity
@Override
public void punctuate(long timestamp) {
KeyValueIterator<String, Tuple<List<ClickEvent>,

➥ List<StockTransaction>>> iterator = tupleStore.all();

while (iterator.hasNext()) {
KeyValue<String, Tuple<List<ClickEvent>, List<StockTransaction>>>

➥ cogrouping = iterator.next();

// if either list contains values forward results
if (cogrouping.value != null &&

➥ (!cogrouping.value._1.isEmpty() ||

➥ !cogrouping.value._2.isEmpty())) {
List<ClickEvent> clickEvents =

➥ new ArrayList<>(cogrouping.value._1);
List<StockTransaction> stockTransactions =

➥ new ArrayList<>(cogrouping.value._2);

Listing 6.15 The CogroupingPunctuator.punctuate() method

If the StockTransaction
is not null, adds it to the list
of stock transactions

Places the updated aggregation
into the state store

Gets iterator of
all co-groupings
in the store

Retrieves the next
co-grouping

Ensures that the value is not null, and
that either collection contains data

Makes defensive
copies of co-grouped
collections

167The co-group processor
context.forward(cogrouping.key,

➥ Tuple.of(clickEvents, stockTransactions));
cogrouped.value._1.clear();
cogrouped.value._2.clear();
tupleStore.put(cogrouped.key, cogrouped.value);

}
}
iterator.close();

}

During each punctuate call, you retrieve all of the stored records in a KeyValue-
Iterator, and you start to pull out each co-grouped result contained in the iterator.
Then, you make defensive copies of the collections, create a new co-grouped Tuple,
and forward it downstream. In this case, you send the co-grouped results to a sink
node. Finally, you remove the current co-grouped results and store the tuple back in
the store, ready for the next round of records to arrive.

 Now that we’ve covered the co-grouping functionality, let’s complete building the
topology.

ADDING THE STATE STORE

As you’ve seen, the ability to perform aggregations in a Kafka streaming application
requires having state. You’ll need to add a state store to the CogroupingProcessor for
it to function properly. Figure 6.12 shows the updated topology.

Forwards the key and
aggregated co-grouping

Puts the cleared-out
tuple back into the store

Figure 6.12 Adding a state store to the co-grouping processor in the topology

Transaction source node Click event source node

Txn processor Events processor

Co-grouping processor

Both of those send records to
the co-grouping processor.

State store used by co-grouping processor

The source nodes send
records to the Txn processor

and events processor.

168 CHAPTER 6 The Processor API

for
B)

he
lder
Now, let’s look at the code for adding the state store (found in src/main/java/bbejeck/
chapter_6/CoGroupingApplication.java).

// this comes earlier in source code, included here for context
Map<String, String> changeLogConfigs = new HashMap<>();
changeLogConfigs.put("retention.ms","120000");
changeLogConfigs.put("cleanup.policy", "compact,delete");

KeyValueBytesStoreSupplier storeSupplier =

➥ Stores.persistentKeyValueStore(TUPLE_STORE_NAME);
StoreBuilder<KeyValueStore<String,

➥ Tuple<List<ClickEvent>, List<StockTransaction>>>> storeBuilder =
Stores.keyValueStoreBuilder(storeSupplier,

Serdes.String(),
eventPerformanceTuple)

➥ .withLoggingEnabled(changeLogConfigs);

.addStateStore(storeBuilder, "CoGrouping-Processor")

Here, you add a persistent state store. This is a persistent store, because you might get
infrequent updates for some keys. With the in-memory and LRU-based stores, infre-
quently used keys and values might eventually be removed, and here you’ll want the
ability to retrieve information for any key you’ve worked with before.

TIP The first three lines in listing 6.16 create specific configurations for the
state store to keep the changelog at a manageable size. Remember: you can
configure changelog topics with any valid topic configuration.

This code is straightforward. One point to notice, though, is that the CoGrouping-
Processor is specified as the only processor that can access this store.

 You now have one step left to complete the topology: the ability to read the results
of the co-grouping.

ADDING THE SINK NODE

For the co-grouping topology to be of use, you need to write the data out to a topic (or
the console). Let’s update the topology one more time, as shown in figure 6.13.

NOTE In several examples, I talk about adding a sink node, but in the source
code there’s a sink that writes to the console; the sink that writes to a topic is
commented out. For development purposes, I use the sink node writing to a
topic and to stdout interchangeably.

Listing 6.16 Adding a state store node

Specifies how long to keep records, and
uses compaction and delete for cleanup

Creates the store supplier
a persistent store (RocksD

Creates t
store bui

Adds the changelog configs
to the store builder

Adds the store to the
topology with the name
of the processor that
will access the store

169The co-group processor
Now, the co-grouped aggregation results are written out to a topic for use in further
analysis. Here’s the code (found in src/main/java/bbejeck/chapter_6/CoGrouping-
Application.java).

.addSink("Tuple-Sink",
"cogrouped-results",
stringSerializer,
tupleSerializer,
"CoGrouping-Processor");

topology.addProcessor("Print",
new KStreamPrinter("Co-Grouping"),
"CoGrouping-Processor");

In this final piece of the topology, you add a sink node, as a child of the CoGrouping-
Processor, that writes the co-grouping results out to a topic. Listing 6.17 also adds an
additional processor for printing results to the console during development—it’s also
a child node of the CoGrouping-Processor. Remember that with the Processor API,
the order in which you define nodes doesn’t establish a parent-child relationship. The
parent-child relationship is determined by providing the names of previously defined
processors.

Listing 6.17 The sink node and a printing processor

Figure 6.13 Adding a sink node completes the co-grouping topology

Sink node

Co-grouping processor

Events processor

Click event source nodeTransaction source node

Txn processor

State store used by the
co-grouping processor

The sink node writes
the co-grouped tuples
out to a topic.

This processor prints
results to stdout for use
during development.

170 CHAPTER 6 The Processor API
 You’ve now built the co-grouping processor. The key point I want you to remember
from this section is that, although it involves more code, using the Processor API gives
you the flexibility to create virtually any kind of streaming topology you need.

 Let’s wrap up this chapter with a look at how you can integrate some Processor API
functionality into a KStreams application.

6.5 Integrating the Processor API and the
Kafka Streams API
So far, our coverage of the Kafka Streams and the Processor APIs has been separate,
but that’s not to say that you can’t combine approaches. Why would you want to mix
the two approaches?

 Let’s say you’ve used both the KStream and Processor APIs for a while. You’ve
come to prefer the KStream approach, but you want to include some of your previ-
ously defined processors in a KStream application, because they provide some of the
lower-level control you need.

 The Kafka Streams API offers three methods that allow you to plug in functionality
built using the Processor API: KStream.process, KStream.transform, and KStream
.transformValues. You already have some experience with this approach because you
worked with the ValueTransformer in section 4.2.2.

 The KStream.process method creates a terminal node, whereas the KStream
.transform (or KStream.transformValues) method returns a new KStream instance
allowing you to continue adding processors to that node. Note also that the trans-
form methods are stateful, so you also provide a state store name when using them.
Because KStream.process results in a terminal node, you’ll usually want to use either
KStream.transform or KStream.transformValues.

 From there, you can replace your Processor with a Transformer instance. The
main difference between the two interfaces is that the Processor’s main action method
is process(), which has a void return, whereas the Transformer uses transform() and
expects a return type of R. Both offer the same punctuation semantics.

 In most cases, replacing a Processor is a matter of taking the logic from the
Processor.process method and placing it in the Transformer.transform method.
You’ll need to account for returning a value, but returning null and forwarding results
with ProcessorContext.forward is an option.

TIP The transformer returns a value: in this case, it returns a null, which is fil-
tered out, and you use the ProcessorContext.forward method to send mul-
tiple values downstream. If you wanted to return multiple values instead,
you’d return a List<KeyValue<K,V>> and then attach a flatMap or flat-
MapValues to send individual records downstream. An example of this can be
found in src/main/java/bbejeck/chapter_6/StockPerformanceStreamsAnd-
ProcessorMultipleValuesApplication.java. To complete the replacement of a
Processor instance, you’d plug in the Transformer (or ValueTransformer)
instance using the KStream.transform or KStream.transformValues method.

171Summary
A great example of combining the KStream and Processor APIs can be found in
src/main/java/bbejeck/chapter_6/StockPerformanceStreamsAndProcessorApplication
.java. I didn’t present that example here because the logic is, for the most part, identi-
cal to the StockPerformanceApplication example from section 6.3.1. You can look it
up if you’re interested. Additionally, you’ll find a Processor API version of the original
ZMart application in src/main/java/bbejeck/chapter_6/ZMartProcessorApp.java.

Summary
 The Processor API gives you more flexibility at the cost of more code.
 Although the Processor API is more verbose than the Kafka Streams API, it’s

still easy to use, and the Processor API is what the Kafka Streams API, itself, uses
under the covers.

 When faced with a decision about which API to use, consider using the Kafka
Streams API and integrating lower-level methods (process(), transform(),
transformValues()) when needed.

At this point in the book, we’ve covered how you can build applications with Kafka
Streams. Our next step is to look at how you can optimally configure these applica-
tions, monitor them for maximum performance, and spot potential issues.

Part 3

Administering
Kafka Streams

In these chapters, we’ll shift focus to how you can measure the performance
of your Kafka Streams application. Additionally, you’ll learn how to monitor and
test your Kafka Streams code so you know it’s working as expected and will grace-
fully handle errors.

Monitoring and
performance
So far, you’ve learned how to build a Kafka Streams application from the bottom
up. You’ve worked with the high-level Kafka Streams DSL, and you’ve seen the
power of using a declarative API. You’ve also learned about the Processor API and
have seen how you can give up some convenience to gain more control in writing
your streaming applications.

 It’s now time to change gears a bit. You’re going to put on your forensic investi-
gator hat and dig into your application from a different perspective. Your focus is
going to shift from how you get things to work to what is going on. In some respects,
the initial building of an application is the most comfortable part. Getting the
application to run successfully, scale correctly, and work properly is always the more
significant challenge. Despite your best efforts, there’s almost always a situation you
didn’t account for.

This chapter covers
 Looking at basic Kafka monitoring

 Intercepting messages

 Measuring performance

 Observing the state of the application
175

176 CHAPTER 7 Monitoring and performance
 In this chapter, you’ll learn how to check the running state of your Kafka Streams
application. You’ll see how you can measure the performance of the application in
order to spot performance bottlenecks. You’ll also see techniques you can use to
notify you about various states of the application and to view the structure of the
topology. You’ll learn what metrics are available, how you can collect them, and how
you can observe the collected metrics as the application is running. Let’s start with
monitoring a Kafka Streams application.

7.1 Basic Kafka monitoring
Because the Kafka Streams API is a part of Kafka, it goes without saying that monitoring
your application will require some monitoring of Kafka as well. Full-blown surveillance
of a Kafka cluster is a big topic, so we’ll limit our discussion of Kafka performance to
where the two meet—we’ll talk about monitoring Kafka consumers and producers.
More information on monitoring a Kafka cluster can be found in the documentation
(https://kafka.apache.org/documentation/#monitoring).

NOTE One thing I should note here is that to measure Kafka Streams perfor-
mance, we also need to measure Kafka itself. At times, some of our coverage
of performance will edge over to the Kafka side of things. But because this is a
book on Kafka Streams, we’ll focus on Kafka Streams.

7.1.1 Measuring consumer and producer performance

For our discussion of consumer and producer performance, let’s start by looking at
figure 7.1, which depicts one of the fundamental performance concerns for a pro-
ducer and consumer. As you can see, producer and consumer performance are very
similar in that both are concerned with throughput. But where we put the emphasis is
just different enough that they can be considered two sides of the same coin.

For producers, we care mostly about how fast the producer is sending messages to the
broker. Obviously, the higher the throughput, the better.

 For consumers, we’re also concerned with performance, or how fast we can read
messages from a broker. But there’s another way to measure consumer performance:

Figure 7.1 Kafka producer and consumer performance concerns, writing to and reading
from a broker

Producer Consumer

MB per second consumed
Records per second consumed

MB per second produced
Records per second produced

Kafka broker

https://kafka.apache.org/documentation/#monitoring

177Basic Kafka monitoring
consumer lag. Take a look at figure 7.2. This measures producer and consumer through-
put with a slightly different focus.

You can see that we care about how much and how fast our producers can publish to a
broker, and we simultaneously care about how quickly our consumers can read those
messages from the broker. The difference between how fast the producers place records
on the broker and when consumers read those messages is called consumer lag.

 Figure 7.3 illustrates that consumer lag is the difference between the last commit-
ted offset from the consumer and the last offset from a message written to the broker.
There’s bound to be some lag from the consumer, but ideally the consumer will catch
up, or at least have a consistent lag rather than a gradually increasing lag

Figure 7.2 Kafka producer and consumer performance revisited

Producer Consumer

How fast are records consumed
from topic A?

How fast are records being
produced to topic A?

Kafka broker

Does the consumer keep up with the rate of records coming from the producer?

Figure 7.3 Consumer lag is the difference in offsets committed by the consumer and offsets
written by the producer

Producer Consumer

Last message consumed
at offset 994

Last offset produced Last offset consumed

The difference between the most recent offset produced and the last
offset consumed (from the same topic) is known as consumer lag.

In this case, the consumer lags behind the producer by six records.

Most recent message produced
has an offset of 1000 995

994

996

997

998

999

1000

1000 994

178 CHAPTER 7 Monitoring and performance
Now that we’ve defined our performance parameters for producers and consumers,
let’s see how we can monitor them for performance and troubleshooting issues.

7.1.2 Checking for consumer lag

To check for consumer lag, Kafka provides a convenient command-line tool, kafka-
consumer-groups.sh, found in the <kafka-install-dir>/bin directory. The script has a
few options, but here we’ll focus on the list and describe options. These two
options will give you the information you need about consumer group performance.

 First, use the list command to find all active consumer groups. Figure 7.4 shows
the results of running this command.

<kafka-install-dir>/bin/kafka-consumer-groups.sh \
--bootstrap-server localhost:9092 \
--list

With this information, you can choose a consumer group name and run the following
command:

<kafka-install-dir>/bin/kafka-consumer-groups.sh \
--bootstrap-server localhost:9092 \
--group <GROUP-NAME> \
--describe

Figure 7.5 shows the results: the status of how this consumer is performing.

These results show that you have a small consumer lag. Having a consumer lag isn’t
always indicative of a problem—consumers read messages in batches and won’t
retrieve another batch until they’re finished processing the current batch. Processing
the records takes time, so a little lag is not entirely surprising.

Figure 7.4 Listing available consumer groups from the command line

Figure 7.5 Status of a consumer group

Number of messages read = 3 Number of messages sent to topic = 01

10 (messages sent) – 3 (messages read) = 7 (lag, or records behind)

179Basic Kafka monitoring
 A small lag or one that stays constant is OK, but a lag that continues to grow over
time is an indication you’ll need to give your consumer more resources. For example,
you might need to increase the partition count and hence increase the number of
threads consuming from the topic. Or maybe your processing after reading the mes-
sage is too heavyweight. After consuming a message, you could hand it off to an async
queue, where another thread can pick up the message and do the processing.

 In this section, you’ve learned how to determine how quickly a consumer is read-
ing messages from a broker. Next, we’ll dig a little deeper into observing behavior for
debugging purposes—you’ll see how to intercept what the producers are sending and
consumers are receiving before your Kafka Streams application sends or consumes
records.

7.1.3 Intercepting the producer and consumer

Early in 2016, Kafka Improvement Proposal 42 (KIP-42) introduced the ability to
monitor or “intercept” information on client (consumer and producer) behavior. The
goal of the KIP was to provide “the ability to quickly deploy tools to observe, measure,
and monitor Kafka client behavior, down to the message level.”1

 Although interceptors aren’t typically your first line for debugging, they can prove
useful in observing the behavior of your Kafka streaming application, and they’re a
valuable addition to your toolbox. An excellent example of using an interceptor (pro-
ducer) is using one to keep track of the message offsets your Kafka Streams applica-
tion is producing back to Kafka.

NOTE Because Kafka Streams can consume or produce any number of key
and value types, the internal Consumer and Producer are configured to work
with byte[] keys and byte[] values; hence, they always handle unserialized
data. Serialized data means you can’t inspect messages without an extra dese-
rialization/serialization step.

Let’s get started by discussing the consumer interceptor.

CONSUMER INTERCEPTOR

The consumer interceptor gives you two access points to intercept. The first is Consumer-
Interceptor.onConsume(), which reads ConsumerRecords between the point where
they’re retrieved from the broker, and before the messages are returned from the
Consumer.poll() method. The following pseudocode will give you an idea of where
the consumer interceptor is doing its work:

ConsumerRecords<String, String> poll(long timeout) {
ConsumerRecords<String, String> consumerRecords =

➥ ...consuming records
return interceptors.onConsume(consumerRecords);

1 Apache Kafka, “KIP-42: Add Producer and Consumer Interceptors,” http://mng.bz/g8oX.

Fetches new records
from the broker

Runs records through the
interceptor chain and
returns the results

http://mng.bz/g8oX

180 CHAPTER 7 Monitoring and performance
Although this pseudocode bears no resemblance to the actual KafkaConsumer code, it
illustrates the point. Interceptors accept the ConsumerRecords returned from the bro-
ker inside the Consumer.poll() method and have the opportunity to perform any
operation, including filtering or modification, before the KafkaConsumer returns the
records from the poll method.

 ConsumerInterceptors are specified via ConsumerConfig.INTERCEPTOR_CLASSES
_CONFIG with a Collection of one or more ConsumerInterceptor implementor
classes. Multiple interceptors are chained together and executed in the order speci-
fied in the configuration.

 A ConsumerInterceptor accepts and returns a ConsumerRecords instance. If there
are multiple interceptors, the returned ConsumerRecords from one interceptor serves
as the input parameter for the next interceptor in the chain. Thus, any modifications
made by one interceptor are propagated to the next interceptor in the chain.

 Exception handling is an important consideration when chaining multiple inter-
ceptors together. If an Exception occurs in an interceptor, it logs the error, but it
doesn’t short-circuit the chain. Thus, ConsumerRecords continues to work its way
through the remaining interceptors.

 For example, suppose you have three interceptors: A, B, and C. All three modify
the records and rely on changes made by the previous interceptor in the chain. But if
interceptor A encounters an error, the ConsumerRecords object continues to intercep-
tors B and C, but without the expected modifications, rendering the results from the
interceptor chain invalid. For this reason, it’s best not to have an interceptor rely on
ConsumerRecords modified by a previous interceptor in the chain.

 The second interception point is the ConsumerInterceptor.onCommit() method.
After the consumer commits its offsets to the broker, the broker returns a Map<Topic-
Partition, OffsetAndMetadata> containing information with the topic, partition,
and committed offsets, along with associated metadata (time of commit, and so on).
The commit information can be useful for tracking purposes. Here’s an example of a
simple ConsumerInterceptor used for logging purposes (found in src/main/java/
bbejeck/chapter_7/interceptors/StockTransactionConsumerInterceptor.java).

public class StockTransactionConsumerInterceptor implements

➥ ConsumerInterceptor<Object, Object> {

// some details left out for clarity
private static final Logger LOG =

➥ LoggerFactory.getLogger(StockTransactionConsumerInterceptor.class);

public StockTransactionConsumerInterceptor() {
LOG.info("Built StockTransactionConsumerInterceptor");

}

@Override
public ConsumerRecords<Object, Object>

➥ (ConsumerRecords<Object, Object> consumerRecords) {

Listing 7.1 Logging consumer interceptor

181Basic Kafka monitoring

LOG.info("Intercepted ConsumerRecords {}",
buildMessage(consumerRecords.iterator()));

return consumerRecords;
}

@Override
public void onCommit(Map<TopicPartition, OffsetAndMetadata> map) {

LOG.info("Commit information {}", map);
}

Now let’s cover the producing side of intercepting.

PRODUCER INTERCEPTOR

The ProducerInterceptor works similarly and has two access points: Producer-
Interceptor.onSend() and ProducerInterceptor.onAcknowledgement(). With the
onSend method, the interceptor can perform any action, including mutating the
ProducerRecord. Each producer interceptor in the chain receives the returned object
from the previous interceptor.

 Exception handling is the same as on the consumer side, so the same caveats apply
here as well. The ProducerInterceptor.onAcknowledgement() method is called when
the broker acknowledges the record. If sending the record fails, onAcknowledgement
is called at that point as well.

 Here’s a simple logging ProducerInterceptor example (found in src/main/java/
bbejeck/chapter_7/interceptors/ZMartProducerInterceptor.java).

public class ZMartProducerInterceptor implements

➥ ProducerInterceptor<Object, Object> {
// some details left out for clarity
private static final Logger LOG =

➥ LoggerFactory.getLogger(ZMartProducerInterceptor.class);

@Override
public ProducerRecord<Object, Object> onSend(ProducerRecord<Object,

➥ Object> record) {
LOG.info("ProducerRecord being sent out {} ", record);
return record;
}

@Override
public void onAcknowledgement(RecordMetadata metadata,Exception exception) {
if (exception != null) {

LOG.warn("Exception encountered producing record {}",

➥ exception);
} else {

LOG.info("record has been acknowledged {} ", metadata);
}

}

Listing 7.2 Logging producer interceptor

Logs the consumer records and metadata
before the records are processed

Logs the commit information once
the Kafka Streams consumer

commits offsets to the broker

Logs right before
the message is sent
to the broker

Logs broker
acknowledgement
or whether error
occurred (broker-
side) during the
produce phase

182 CHAPTER 7 Monitoring and performance
The ProducerInterceptor is specified with ProducerConfig.INTERCEPTOR_CLASSES
_CONFIG and takes a Collection of one or more ProducerInterceptor classes.

TIP When configuring interceptors in a Kafka Streams application, you need
to prefix the consumer and producer interceptors’ property names with
props.put(StreamsConfig.consumerPrefix(ConsumerConfig.INTERCEPTOR
_CLASSES_CONFIG) and StreamsConfig.producerPrefix(ProducerConfig
.INTERCEPTOR_CLASSES_CONFIG), respectively.

If you want to see the interceptors in action, src/main/java/bbejeck/chapter_7/
StockPerformanceStreamsAndProcessorMetricsApplication.java uses a consumer inter-
ceptor, and src/main/java/bbejeck/chapter_7/ZMartKafkaStreamsAd-vancedReqs-
MetricsApp.java uses a producer interceptor. Both classes include the configuration
required for using interceptors.

 As a side note, because interceptors work on every record in the Kafka Streams
application, the output of the logging interceptors is significant. The interceptor
results are output to consumer_interceptor.log and producer_interceptor.log, found
in the logs directory at the base of the source code installation.

 We’ve spent some time looking at metrics on consumer performance and how you
can intercept records coming into and out of a Kafka Streams application. But this
information is coarse grained and outside of a Kafka Streams application. Let’s now go
inside a Kafka Streams application and see what’s going on under the hood. The next
step is to measure performance inside the topology by gathering metrics.

7.2 Application metrics
When it comes to measuring the performance of an application, you can get a sense
of how long it takes to process one record, and measuring end-to-end latency is
undoubtedly a good indicator of overall performance. But if you want to improve per-
formance, you’ll need to know exactly where things are slowing down.

 Measuring performance is essential for streaming applications. The mere fact
that you’re using a streaming application implies you want to process data or infor-
mation as it becomes available. It stands to reason that if your business needs dictate
a streaming solution, you’ll want the most efficient and correct streaming process you
can get.

 Before we discuss the actual metrics we’ll focus on, let’s revisit one of the applica-
tions you built in chapter 3, the advanced ZMart application. That app is a good can-
didate for metrics tracking because there are several processing nodes, so we’ll use
that topology for this example. Figure 7.6 shows the topology you created.

183Application metrics
Keeping the ZMart topology in mind, let’s take a look at the categories of metrics:

 Thread metrics
– Average time for commits, poll, process operations
– Tasks created per second, tasked closed per second

 Task metrics
– Average number of commits per second
– Average commit time

 Processor node metrics
– Average and max processing time
– Average number of process operations per second
– Forward rate

 State store metrics
– Average execution time for put, get, and flush operations
– Average number put, get, and flush operations per second

Note that this isn’t an exhaustive list of the possible metrics. I’ve chosen these because
they offer excellent coverage of the most common performance scenarios. You can
find a full list on the Confluent website: http://mng.bz/4bcA.

Figure 7.6 ZMart advanced application topology with a lot of nodes

Patterns

Masking

Source

Electronics
sink

Cafe
sink

Patterns
sinkPurchases

sink

Rewards

Branch
processor

Filtering
processor

Cafe
processor

Electronics
processor

Rewards
sink

Select-key
processor

http://mng.bz/4bcA

184 CHAPTER 7 Monitoring and performance
 Now that we have what we’re going to measure, let’s look at how to capture the
information.

7.2.1 Metrics configuration

Kafka Streams already provides the mechanism for collecting performance metrics.
For the most part, you just need to provide some configuration values. Because the
collection of metrics does incur a performance cost, there are two levels, INFO and
DEBUG. An individual metric may not be that expensive on its own, but when you con-
sider that some metrics may involve every record flowing through the Kafka Streams
application, you can see how the impact on performance can add up.

 The metric levels are used like logging levels. When you’re troubleshooting an
issue or observing how the application behaves, you’ll want more information, so you
can use the DEBUG level. Other times, you don’t need all the information, so you can
use the INFO level.

 Typically, you won’t want to use DEBUG in production, as the cost of performance
would be too high. Each of the previously listed metrics are available at different levels,
as shown in table 7.1. As you can see, thread metrics are available at any level, whereas
the rest of the metric categories are only collected when using the DEBUG level.

You set the level when you set the configuration of your Kafka Streams application.
That setting has been there all along with your other application configurations;
you’ve accepted the default settings up to this point. The default level of metrics col-
lection is INFO.

 Let’s update the configs in the advanced ZMart application and turn on the collec-
tion of all metrics (src/main/java/bbejeck/chapter_7/ZMartKafkaStreamsAdvanced-
ReqsMetricsApp.java).

private static Properties getProperties() {
Properties props = new Properties();
props.put(StreamsConfig.CLIENT_ID_CONFIG,

➥ "metrics-client-id");

Table 7.1 Metrics availability by levels

Metrics category DEBUG INFO

Thread x x

Task x

Processor node x

State store x

Record cache x

Listing 7.3 Updating the configs for DEBUG metrics

Client ID

185Application metrics
props.put(ConsumerConfig.GROUP_ID_CONFIG,

➥ "metrics-group-id");
props.put(StreamsConfig.APPLICATION_ID_CONFIG,

➥ "metrics-app-id");
props.put(StreamsConfig.METRICS_RECORDING_LEVEL_CONFIG,

➥ "DEBUG");
props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG,

➥ "localhost:9092");
return props;

}

You’ve now enabled the collection and recording of DEBUG-level metrics. The key
points I want you to remember from this section is there are built-in metrics to mea-
sure the full scope of a Kafka Steams application, and that you should carefully con-
sider the performance impact before turning on metrics collection at the DEBUG level.

 Now that we’ve discussed what metrics are available and how they’re collected, the
next step is to observe the collected metrics.

7.2.2 How to hook into the collected metrics

The metrics in a Kafka Streams application are collected and distributed to metrics
reporters. As you might have guessed, Kafka Streams provides a default reporter via
Java Management Extensions (JMX).

 Once you’ve enabled collecting metrics at the DEBUG level, you have nothing left to
do but observe them. One thing to keep in mind is that JMX only works with live run-
ning applications, so the metrics we’ll look at will be when the application is running.

TIP You can also access metrics programmatically. For an example of pro-
grammatic metrics access, take a look at src/main/java/bbejeck/chapter_7/
StockPerformanceStreamsAndProcessorMetricsApplication.java.

You’re likely familiar with using JMX or have at least heard of it. In the next section,
I’ll provide a brief overview on how to get started using JMX, but if you’re an experi-
enced JMX user, feel free to skip this next section.

7.2.3 Using JMX

JMX is a standard way of viewing the behavior of programs running on the Java VM.
You can also use JMX to see how the Java Virtual Machine (Java VM) is performing. In
a nutshell, JMX gives you the infrastructure to expose parts of your running program.

 Fortunately, you won’t need to write any code to do this monitoring. You’ll just
connect either Java VisualVM (http://mng.bz/euif), JConsole (http://mng.bz/Ea71),
or Java Mission Control (http://mng.bz/0r5B).

Group ID

Application ID

Sets the metrics
recording level
to DEBUG

Sets the connection
for the brokers

http://mng.bz/euif
http://mng.bz/Ea71
http://mng.bz/0r5B

186 CHAPTER 7 Monitoring and performance
TIP Java Mission Control (JMC) is powerful and can be a great tool for moni-
toring, but it requires a commercial license for use in production. Because
JMC ships with the JDK, you can start JMC directly from the command line
with the command jmc (assuming the JDK bin directory is on your path).
Additionally, you’ll need to add these flags when starting your Kafka stream-
ing application: -XX:+UnlockCommercialFeatures -XX:+FlightRecorder.

As JConsole is the most straightforward approach, we’ll start with it for now.

STARTING JCONSOLE

JConsole ships with the JDK, so if you’ve got Java installed, you already have JConsole.
Starting JConsole is as simple as running jconsole from a command prompt (assum-
ing Java is on your path). Once it’s started, a GUI will come up, as shown in figure 7.7.
Once JConsole is up, the next step is to use it to look at some metric data!

STARTING TO MONITOR A RUNNING PROGRAM

If you look at the center of the JConsole GUI, you’ll see a New Connection dialog box.
Figure 7.8 shows the starting point for JConsole. For now, we’re only concerned with
the Java processes listed in the Local Process section.

NOTE You can use JConsole to monitor remote applications, and you can
secure access to JMX. You can see the Remote Process, Username, and Pass-
word text boxes in figure 7.8. In this book, however, we’ll limit our discussion
to local access during development. The internet is full of instructions on
remote and secure JConsole access, and Oracle’s documentation is a great
starting point (http://mng.bz/Ea71).

What is JMX?
Oracle says the following in “Lesson: Overview of the JMX Technology” http://mng
.bz/Ej29):

The Java Management Extensions (JMX) technology is a standard part of the Java
Platform, Standard Edition (Java SE platform), added to the platform in the 5.0
release.

The JMX technology provides a simple, standard way of managing resources such
as applications, devices, and services. Because the JMX technology is dynamic, you
can use it to monitor and control resources as they are created, installed, and imple-
mented. You can also use the JMX technology to monitor and manage the Java Vir-
tual Machine (Java VM).

The JMX specification defines the architecture, design patterns, APIs, and services
in the Java programming language for management and monitoring of applications
and networks.

http://mng.bz/Ej29
http://mng.bz/Ej29
http://mng.bz/Ej29
http://mng.bz/Ea71

187Application metrics
Figure 7.7 JConsole start menu

Figure 7.8 JConsole connect to program

Select Connection > New Connection to
refresh the Local Process dialog below.

Select the application
process from the

dialog here.

188 CHAPTER 7 Monitoring and performance
If you haven’t already started your Kafka Streams application, do so now. Then, to get
your application to show up in the Local Process window, click Connection > New
Connection (as in figure 7.8). The processes listed under Local Process should refresh,
and you’ll see your Kafka Streams application. Double-click the Kafka Streams applica-
tion process.

 Chances are that after you double-click the program you want to connect to, you’ll
be greeted with a warning similar to the one in figure 7.9. Because you’re on your
local machine, you can click the Insecure Connection button.

Now you’re all set to look at the metrics being collected by your Kafka Streams appli-
cation. The next step is to look at the information available.

WARNING You’re using an insecure connection for development on a local
machine. In practice, you should always secure access to any remote services
accessing the internal state of your application.

VIEWING THE INFORMATION

Once you’re connected, you’ll see a GUI screen looking something like figure 7.10.
JConsole offers several handy options for peeking inside the internals of running
applications.

 Of the Overview, Memory, Threads, Classes, VM Summary, and MBeans tabs, you’re
only going use the MBeans tab. MBeans contain the collected statistics about the per-
formance of your Kafka Streams program. The other tabs provide relevant informa-
tion, but it’s info that relates more to overall application health and how the program

Figure 7.9 JConsole connect warning, no SSL

You’re running on your local development
machine, so select this button.

189Application metrics
is utilizing resources. The metrics collected in the MBeans contain information about
the internal performance of the topology.

 That’s the end of your introduction to using JConsole. The next step is to start
viewing the recorded metrics for the topology.

7.2.4 Viewing metrics

Figure 7.11 shows how you can view some metrics via JConsole while running the
ZMart application (src/main/java/bbejeck/chapter_7/ZMartKafkaStreamsAdvanced-
ReqsMetricsApp.java). As you can see, you can drill down to all processors and nodes
in the topology to view performance (either throughput or latency).

TIP Because JMX only works with running applications, some of the example
applications in src/main/java/bbejeck/chapter_7 will run continuously so
that you can play with the metrics. As a result, you’ll need to explicitly stop
them either in the IDE or by pressing Ctrl-C from the command line.

Figure 7.10 JConsole started

Select the MBeans tab. You could use the other
tabs to perform other monitoring tasks, but you

want to look at your collected metrics.

You’re going to use the metrics found
under the kafka.streams folder.

Here, you can see a good selection
of MBeans for different metrics.

190 CHAPTER 7 Monitoring and performance
Figure 7.11 shows the process-rate metric, which tells you the average number of
records processed per millisecond. If you look at the upper right, under Attribute
Value, you can see that the process rate averages 3.537 records per millisecond (3,537
records per second). Additionally, as discussed earlier, you can see the producer and
consumer metrics from JConsole.

TIP Although the provided metrics are comprehensive, there may be cases
where you want custom metrics. This is a low-level detail and probably not a

Figure 7.11 JConsole metrics for ZMart

Here’s the
process-rate value.

All the nodes in the topology
with one of the branch
processors expanded

191More Kafka Streams debugging techniques
very common use case, so we won’t walk through an example in detail. But
you can look at the StockPerformanceMetricsTransformer.init method for
an example of how you can add a custom metric and the StockPerformance-
MetricsTransformer.transform method for an example of how you can uti-
lize it. The StockPerformanceMetricsTransformer is found in src/main/
java/bbejeck/chapter_7/transformer/StockPerformanceMetrics-Transformer
.java.

Now that you’ve seen how to view Kafka Streams metrics, let’s move on to other useful
techniques for observing what’s going on in an application.

7.3 More Kafka Streams debugging techniques
We’ll now look at some more ways you can observe and debug Kafka streaming appli-
cations. The previous section was more about performance; the techniques we’ll look
at in this section focus on getting notified about various states of the application and
viewing the structure of the topology.

7.3.1 Viewing a representation of the application

After your application is up and running, you might run into situations where you
need to debug it. You might like to get a second pair of eyes on the job, but for what-
ever reason, you can’t share the code. Or you’d like to see the TopicPartition
assigned to the tasks of the application.

 The Topology.describe() method provides general information on the structure
of the application. It prints out information regarding the structure of the program,
including any internal topics created to support repartitioning. Figure 7.12 displays

Figure 7.12 Displaying node names, associated child nodes, and other info

StreamsTask taskId: 0_0
ProcessorTopology:

Txn-Source:
topics: [stock-transactions]

children: [Txn-Processor]
Txn-Processor:

children: [CoGrouping-Processor]
CoGrouping-Processor:

states: [tupleCoGroupStore]
children: [Tuple-Sink, Print]

Tuple-Sink:
topic: cogrouped-results
Print:

Events-Source:
topics: [events]

children: [Events-Processor]
Events-Processor:

children: [CoGrouping-Processor]
CoGrouping-Processor:

states: [tupleCoGroupStore]
children: [Tuple-Sink, Print]

Tuple-Sink:
topic: cogrouped-results
Print:

Processor name

Associated state store

Child nodes

Processor name

Topic name

The taskId

192 CHAPTER 7 Monitoring and performance
the results of calling describe on the CoGroupingListeningExampleApplication
from chapter 7 (src/main/java/bbejeck/chapter_7/CoGroupingListeningExample-
Application.java).

 As you can see, the Topology.describe() method prints out a nice, concise
view of the application structure. Notice that the CoGroupingListeningExample-
Application used the Processor API, so all the nodes in the topology have the names
you chose. With the Kafka Streams API, the names of the nodes are a little more
generic:

KSTREAM-SOURCE-0000000000:
topics: [transactions]
children: [KSTREAM-MAPVALUES-0000000001]

TIP When you’re using the Kafka Streams DSL API, you don’t directly use
the Topology class, but it’s easily accessed. If you want to print the physical
topology of the application, use the StreamsBuilder.build() method, which
returns a Topology object, and then you can call Topology.describe() as
you just saw.

Getting information about the StreamThread objects, which shows runtime informa-
tion, in your application can be useful as well. To access the StreamThread info, use
the KafkaStreams.localThreadsMetadata() method.

7.3.2 Getting notification on various states of the application

When you start your Kafka Streams application, it doesn’t automatically begin process-
ing data—some coordination has to happen first. The consumer needs to fetch metadata
and subscription information; the application needs to start StreamThread instances and
assign TopicPartitions to StreamTasks.

 This process of assigning or redistributing tasks (workload) is called rebalancing.
Rebalancing means Kafka Streams can autoscale up or down. This is a crucial strength—
you can add new application instances while an existing application is already running,
and the rebalancing process will redistribute the workload.

 For example, suppose you have a Kafka Streams application with two source topics,
and each topic has two partitions, resulting in four TopicPartition objects needing
assignment. You initially start the application with one thread. Kafka Streams deter-
mines the number of tasks to create by taking the max partition size among all input
topics. In this case, each topic has two partitions, so the max is two, and you end up
with two tasks. The rebalance process then assigns the two tasks two TopicPartition
objects each.

 After running the app for a little while, you decide you want to process records
more quickly. All you need to do is start another version of the application with the
same application ID, and the rebalance process will distribute the load across the new
application thread, resulting in the two tasks being assigned across both threads.

193More Kafka Streams debugging techniques
You’ve just doubled the scale of your application while the original version is still run-
ning—there’s no need to shut the initial application down.

 Other causes of rebalancing include another Kafka Streams instance (with the same
application ID) starting or stopping, adding partitions to a topic, or, in the case of a
regex-defined source node, adding or removing topics matching the regex pattern.

 During the rebalance phase, external interaction temporarily pauses until the
application has completed the assignment of topic partitions to stream tasks, so you’d
like to be aware of this point in the lifecycle of the application. For example, the que-
ryable state stores are unavailable, so you’d like to be able to restrict requests to view
the contents of the store until the stores are available again.

 But how can you check whether your other applications are going through a rebal-
ance? Fortunately, Kafka Streams provides just such a mechanism, the StateListener,
which we’ll look at next.

7.3.3 Using the StateListener

A Kafka Streams application can be in one of six states at any point in time. Figure 7.13
shows the possible valid states for a Kafka Streams application. As you can see, there
are a few state-change scenarios we could discuss, but we’re going to focus on the tran-
sition between running and rebalancing. The transition between these two states is
the most frequent and has the most impact on performance, because during the
rebalancing phase no processing occurs.

To capture these state changes, you’ll use the KafkaStreams.setStateListener
method, which takes an instance of the StateListener interface. It’s a single-method

Figure 7.13 Possible states of a Kafka Streams application

Created RebalancingRunning

Error

Pending shutdown

Not running

Six states of a Kafka Streams application

The arrows show the
directions of valid

transitions.

Only the pending-shutdown state
can go into the not-running state.

Only the running and
rebalancing states can
go into an error state.

194 CHAPTER 7 Monitoring and performance
interface, so you can use Java 8 lambda syntax, as follows (found in src/main/java/
bbejeck/chapter_7/ZMartKafkaStreamsAdvancedReqsMetricsApp.java).

KafkaStreams.StateListener stateListener = (newState, oldState) -> {
if (newState == KafkaStreams.State.RUNNING &&

➥ oldState == KafkaStreams.State.REBALANCING) {
LOG.info("Application has gone from REBALANCING to RUNNING ");
LOG.info("Topology Layout {}",

➥ streamsBuilder.build().describe());
}

};

TIP Listing 7.4, running ZMartKafkaStreamsAdvancedReqsMetricsApp.java,
involves viewing JMX metrics and the state-transition notification, so I’ve
turned off printing the streaming results to the console. You’re writing solely
to Kafka topics. When you run the app, you should see the listener output in
the console.

For your first StateListener implementation, you’ll log the state change to the con-
sole. In section 7.3.1, when we discussed printing the topology structure, I spoke of
needing to wait until the application has completed rebalancing. That’s what you do in
the listing 7.4: print out the structure once all tasks and assignments are complete.

 Let’s take this example a little further and show how to signal when the application
is going into a rebalancing state. You can update your code to handle this additional
state transition as follows (found in src/main/java/bbejeck/chapter_7/ZMartKafka-
StreamsAdvancedReqsMetricsApp.java).

KafkaStreams.StateListener stateListener = (newState, oldState) -> {
if (newState == KafkaStreams.State.RUNNING &&

➥ oldState == KafkaStreams.State.REBALANCING) {
LOG.info("Application has gone from REBALANCING to RUNNING ");
LOG.info("Topology Layout {}", streamsBuilder.build().describe());

}

if (newState == KafkaStreams.State.REBALANCING) {
LOG.info("Application is entering REBALANCING phase");

}
};

Even though you’re using simple logging statements, it should be evident how you can
add more-sophisticated logic to handle the state changes within your application.

Listing 7.4 Adding a state listener

Listing 7.5 Updating the state listener when REBALANCING

Checks that you’re
transitioning from

REBALANCING to
RUNNING

Prints out the structure
of the topology

Adds an action when entering
the rebalancing phase

195More Kafka Streams debugging techniques
NOTE Because Kafka Streams is a library and not a framework, you can run a
single instance on one server. If you do run multiple applications on different
machines, you’ll only see results from state changes on your local machine.

The critical point of this section is that you can hook into the current state of your
Kafka Streams application, making it less of a black-box operation.

 Next, we’ll look at rebalancing in a little more in depth. Although the ability to
automatically rebalance the workload is a strength of Kafka Streams, you’ll likely want
to keep the number of rebalances to a minimum. When a rebalance occurs, you’re
not processing data, and you’d like to have your application processing data as much
as possible.

7.3.4 State restore listener

You learned in chapter 4 about state stores and the importance of having your state
stores backed up, in case of a failure. In Kafka Streams, we use topics frequently called
changelogs as the backup for the state stores.

 The changelog records the updates to the state store as the update occurs. When a
Kafka Streams application fails, or you restart it, the state store can recover from the
local state files, as shown in figure 7.14.

In some circumstances, however, you may need to do a full recovery of state store from
the changelog, such as if you’re running your Kafka Streams application in a stateless
environment like Mesos, or if you encounter a severe failure and the files on local disk

Figure 7.14 Restoring a state store from clean start/recovery

Processor

State
storeRecords in the changelog are

consumed on startup and used
to restore the state store.

On a clean startup with no persisted
local state, the state is fully restored from

the backing topic or changelog.

Backing changelog

State store restoration

196 CHAPTER 7 Monitoring and performance
are wiped out. Depending on the amount of data you have to restore, this restoration
process could take a non-trivial amount of time.

 During this recovery period, any state stores you have exposed for querying are
unavailable, so it would be nice to get an idea of how long this restoration process is
likely to take and how progress is coming along. Additionally, if you have a custom
state store, you’d like notification of when the restore is starting and ending so you
can do any necessary setup or teardown tasks.

 The StateRestoreListener interface, much like the StateListener, allows notifi-
cation of what’s going on inside the application. StateRestoreListener has three meth-
ods: onRestoreStart, onBatchRestored, and onRestoreEnd. The KafkaStreams.set-
GlobalRestoreListener method is used to specify the global restore listener to use.

NOTE The provided StateRestoreListener is shared application-wide and is
expected to be stateless. If you need to keep track of any state in the listener,
you’ll need to provide the synchronization.

Let’s walk through the listener code to get an idea of how this notification process can
work. We’ll start with the declaration of the variable and the onRestoreStart method
(found in src/main/java/bbejeck/chapter_7/restore/LoggingStateRestoreListener
.java).

public class LoggingStateRestoreListener implements StateRestoreListener {

private static final Logger LOG =

➥ LoggerFactory.getLogger(LoggingStateRestoreListener.class);
private final Map<TopicPartition, Long> totalToRestore =

➥ new ConcurrentHashMap<>();
private final Map<TopicPartition, Long> restoredSoFar =

➥ new ConcurrentHashMap<>();

@Override
public void onRestoreStart(TopicPartition topicPartition,

➥ String store, long start, long end) {
long toRestore = end - start;
totalToRestore.put(topicPartition, toRestore);
LOG.info("Starting restoration for {} on topic-partition {}

➥ total to restore {}", store, topicPartition, toRestore);
}

// other methods left out for clarity covered below
}

Your first steps are to create two ConcurrentHashMap instances for keeping track of
restoration progress. In the onRestoreStart method, you store the total number of
records you need to restore and log the fact that you’re starting.

Listing 7.6 A logging restore listener

Creates Concurrent-
HashMap instances
for keeping track of
restore progress

Stores the total
amount to restore
for the given
TopicPartition

197More Kafka Streams debugging techniques

s the
e of
n

Sto
num

r
re
 Next, let’s move on to the code that handles each batch restored (found in
src/main/java/bbejeck/chapter_7/restore/LoggingStateRestoreListener.java).

@Override
public void onBatchRestored(TopicPartition topicPartition,

➥ String store, long start, long batchCompleted) {
NumberFormat formatter = new DecimalFormat("#.##");

long currentProgress = batchCompleted +

➥ restoredSoFar.getOrDefault(topicPartition, 0L);
double percentComplete =

➥ (double) currentProgress / totalToRestore.get(topicPartition);

LOG.info("Completed {} for {}% of total restoration for {} on {}",
batchCompleted,

➥ formatter.format(percentComplete * 100.00),

➥ store, topicPartition);
restoredSoFar.put(topicPartition, currentProgress);

}

The restoration process uses an internal consumer to read the changelog topic, so it
follows that the application restores records in batches from each consumer.poll()
method call. As a consequence, the maximum size of any batch will be equal to the
max.poll.records setting.

 The onBatchRestored method is called after the restore process has loaded the lat-
est batch into the state store. First, you add the size of the current batch to the accumu-
lated restore count. Then, you calculate the percentage of restoration completed and
log the results. Finally, you store the new total number of records, computed earlier.

 The last step we’ll cover is when the restoration process completes (found in
src/main/java/bbejeck/chapter_7/restore/LoggingStateRestoreListener.java).

@Override
public void onRestoreEnd(TopicPartition topicPartition,

➥ String store, long totalRestored) {
LOG.info("Restoration completed for {} on

➥ topic-partition {}", store, topicPartition);
restoredSoFar.put(topicPartition, 0L);

}

Once the application completes the recovery process, you make one final call to the
listener with the total number of records restored. In this example, you log the fin-
ished state and update the full restoration count map to 0.

 Finally, you can use the LoggingStateRestoreListener in your application as
follows (found in src/main/java/bbejeck/chapter_7/CoGroupingListeningExample-
Application.java).

Listing 7.7 Handling onBatchRestored

Listing 7.8 Method called when restoration is completed

Calculates the total
number of records
restored

Determine
percentag
restoratio
completed

Logs the percent
restored

res the
ber of

ecords
stored
so far

Keeps track of restore progress
for a TopicPartition

198 CHAPTER 7 Monitoring and performance
kafkaStreams.setGlobalStateRestoreListener(new LoggingStateRestoreListener());

This is an example of using a StateRestoreListener. In chapter 9, you’ll see an
example that includes a graphical representation of the restore progress.

TIP To view the log file generated by running the CoGroupingListening-
ExampleApplication example, look for a log file named logs/state_restore_
listener.log in the root directory where you installed the source code.

7.3.5 Uncaught exception handler

I think it’s fair to say that every developer, from time to time, has encountered an
unaccounted-for Exception and the big stack trace in the console/log as your pro-
gram suddenly quits. Although this situation doesn’t quite fit into a “monitoring”
example, the ability to get a notification and handle any cleanup when the unex-
pected occurs is good practice. Kafka Streams provides KafkaStreams.setUncaught-
ExceptionHandler for dealing with these unexpected errors (found in src/main/
java/bbejeck/chapter_7/CoGroupingListeningExampleApplication.java)

kafkaStreams.setUncaughtExceptionHandler((thread, exception) -> {
CONSOLE_LOG.info("Thread [" + thread + "]

➥ encountered [" + exception.getMessage() +"]");
});

This is definitely a bare-bones implementation, but it serves to demonstrate where you
can set a hook for dealing with unexpected errors, either by logging the error as
shown here or by performing any required cleanup and shutting down the streams
application.

 That wraps up our coverage of monitoring Kafka Streams applications.

Summary
 To monitor Kafka Streams, you’ll need to look at the Kafka brokers as well.
 You should enable metrics reporting from time to time to see the how the per-

formance of the application is doing.
 Peeking under the hood is required, and sometimes you’ll need to go to lower

levels and use command-line tools included with Java, such as jstack (thread
dumps) and jmap/jhat (for heap dumps) to understand what your application
is doing.

In this chapter, we focused on observing behavior. In the next chapter, we’ll shift our
focus to making sure the application handles errors consistently and adequately. We’ll
also make sure that it provides expected behavior by doing regular testing.

Listing 7.9 Specifying the global restore listener

Listing 7.10 Basic uncaught exception handler

Testing a Kafka Streams
application
So far, we’ve covered the essential building blocks for creating a Kafka Streams
application. But there’s one crucial part of application development I’ve left out
until now: how to test your application. One of the critical concepts we’ll focus on
is placing your business logic in standalone classes that are entirely independent of
a Kafka Streams application, because that makes your logic much more accessible
to test. I expect you’re aware of the importance of testing, but we’ll review my top
two reasons for why testing is just as necessary as the development process itself.

 First, as you develop your code, you’re creating an implicit contract of what you
and others can expect about how the code will execute. The only way to prove that
the code works is by testing thoroughly, so you’ll use testing to provide a good

This chapter covers
 Testing a topology

 Testing individual processors and transformers

 Integration testing with an embedded Kafka
cluster
199

200 CHAPTER 8 Testing a Kafka Streams application
breadth of possible inputs and scenarios to make sure your code works appropriately
under reasonable circumstances.

 The second reason you need an excellent suite of tests is to deal with the inevitable
changes in software. Having a good set of tests gives you immediate feedback when
your new code has broken the expected set of behaviors. Additionally, when you do a
major refactor or add new functionality, passing tests give you a level of confidence
about the impact of your changes (provided you have good tests).

 Even once you understand the importance of testing, testing a Kafka Streams
application isn’t always straightforward. You still have the option of running a simple
topology and observing the results, but there’s one drawback with that approach.
You’ll want a suite of repeatable tests that you can run at any time, and as part of a build,
so you’d like the ability to test your applications without a Kafka cluster and Zoo-
Keeper ensemble.

 That’s what we’ll cover in this chapter. First, you’ll see how you can test a topology
without Kafka running, so you can see the entire topology working from a unit test.
You’ll also learn how to test a processor or transformer independently and mock any
required dependencies.

NOTE You likely have experience testing with mock objects, but if not, Wiki-
pedia’s article provides a good introduction: https://en.wikipedia.org/wiki/
Mock_object.

Although unit testing is critical for repeatability and quick feedback, integration
testing is important as well, because sometimes you’ll need to see the moving parts
of your application in action. For example, consider the case of rebalancing, an
essential part of a Kafka Streams application. Getting rebalancing to work in a unit
test is nearly impossible. Table 8.1 summarizes the differences between unit and inte-
gration testing.

You need to trigger an actual rebalance under realistic conditions to test it. For those
situations, you’ll need to run with a live instance of a Kafka cluster. But you don’t want
to rely on having an external cluster set up, so we’ll look at how you can use an
embedded Kafka and ZooKeeper for integration testing.

Table 8.1 Testing approaches

Test type Purpose Testing speed Level of use

Unit Testing individual parts of
functionality in isolation

Fast Large majority

Integration Testing integration points
between whole systems

Longer to run Small minority

https://en.wikipedia.org/wiki/Mock_object
https://en.wikipedia.org/wiki/Mock_object
https://en.wikipedia.org/wiki/Mock_object

201Testing a topology
8.1 Testing a topology
The first topology we built, in chapter 3, was relatively complicated. Figure 8.1 shows it
again, to refresh your memory.

The processing logic is pretty straightforward, but as you can see from the structure, it
has several nodes. It also has one key thing that will help demonstrate testing: it takes
one input—an initial purchase—and it performs several transformations. This will
make testing somewhat easy, in that you only need to supply a single purchase value,
and you can confirm that all the appropriate transformations take place.

TIP In most cases, you’ll want to have your logic in separate classes so you can
unit test the business logic separately from the topology. In the case of the
ZMart topology, most of the logic is simple and represented as Java 8 lambda
expressions, so in this case you’ll test the topology flow.

You’ll want a repeatable standalone test, so you’ll use the ProcessorTopologyTest-
Driver, which will allow you to write such a test without needing Kafka to run the test.
Remember, the ability to test your topology without a live Kafka instance makes testing
faster and more lightweight, leading to a quicker development cycle. Also note that
the ProcessorTopologyTestDriver is a generic testing framework that tests the indi-
vidual Kafka Streams Topology objects you’ve created.

Figure 8.1 Initial complete topology for ZMart Kafka Streams program

Patterns

Masking

Source

Rewards

Patterns
sink

Rewards
sink

Purchases
sink

This topology takes a single input from
the source node and performs several
transformations, making this a great
demonstration of testing.

202 CHAPTER 8 Testing a Kafka Streams application
TIP If you write your own projects using Kafka and Kafka Streams testing
code, it’s best if you use the all the dependencies that come with the sample
code.

When you initially built this topology, you did it entirely within the ZMartKafka-
StreamsApp.main method, which was fine for quick development at the time, but it
doesn’t lend itself to being testable. What you’ll do now is refactor the topology into a
standalone class, which will enable you to test the topology.

 The logic isn’t changing, and you’ll move the code as is, so I won’t show the con-
version here. Instead, I’ll point you to src/main/java/bbejeck/chapter_8/ZMart-
Topology.java, where you can view it if you choose.

 With the code transitioned, let’s get on with constructing a test.

8.1.1 Building the test

Let’s move on to building a unit test for the ZMart topology. You can use a standard
JUnit test, and you’ll have some setup work to do before running the test (found in
src/main/java/bbejeck/chapter_8/ZMartTopologyTest.java).

Using Kafka Streams’ testing utilities
To use Kafka Streams’ testing utilities, you’ll need to update your build.gradle file
with the following:

testCompile group:'org.apache.kafka', name:'kafka-streams',

➥ version:'1.0.0', classifier:'test'

testCompile group:'org.apache.kafka', name:'kafka-clients',

➥ version:'1.0.0', classifier:'test'

If you’re using Maven, use this code:

<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-streams</artifactId>
<version>1.0.0</version>
<scope>test</scope>
<classifier>test</classifier>

</dependency>

<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>1.0.0</version>
<scope>test</scope>
<classifier>test</classifier>

</dependency>

203Testing a topology
@Before
public void setUp() {

// properties construction left out for clarity
StreamsConfig streamsConfig = new StreamsConfig(props);
Topology topology = ZMartTopology.build();

topologyTestDriver =

➥ new ProcessorTopologyTestDriver(streamsConfig, topology);
}

The critical point of listing 8.1 is the creation of the ProcessorTopologyTestDriver,
which you’ll use in the following listing when you run your test (found in src/main/
java/bbejeck/chapter_8/ZMartTopologyTest.java).

@Test
public void testZMartTopology() {

// serde creation left out for clarity

Purchase purchase = DataGenerator.generatePurchase();

topologyTestDriver.process("transactions",
null,
purchase,
stringSerde.serializer(),
purchaseSerde.serializer());

ProducerRecord<String, Purchase> record =

➥ topologyTestDriver.readOutput("purchases",
stringSerde.deserializer(),
purchaseSerde.deserializer());

Purchase expectedPurchase =

➥ Purchase.builder(purchase).maskCreditCard().build();
assertThat(record.value(), equalTo(expectedPurchase));

There are two critical sections in listing 8.2. Starting with topologyTestDriver
.process, you feed a record into the transactions topic, because it’s the source for
the entire topology. With the topology loading completed, you can verify that the cor-
rect actions have taken place. In the following line, using the topologyTestDriver
.readOutput method, you read the record from the purchases topic, with one of the
sink nodes defined in the topology. In the second-to-last line, you create the expected
output record, and on the final line, you assert that the results are what you expect.

Listing 8.1 Setup method for topology test

Listing 8.2 Testing the topology

Refactored ZMart
topology: now you can
get the topology from
the method call.

Creates the ProcessorTopologyTestDriver

Creates a test object;
reuses the generation
code from running
the topology

Sends an initial record
into the topology

Reads a record from
the purchases topic

Converts the
test object to
the expected
format

Verifies that the record from the
topology matches the expected record

204 CHAPTER 8 Testing a Kafka Streams application
 There are two other sink nodes in the topology, so let’s complete the test by verify-
ing you get the correct output from them (found src/test/java/bbejeck/chapter_8/
ZMartTopologyTest.java).

@Test
public void testZMartTopology() {

// continuing test from the previous section

RewardAccumulator expectedRewardAccumulator =

➥ RewardAccumulator.builder(expectedPurchase).build();

ProducerRecord<String, RewardAccumulator> accumulatorProducerRecord =

➥ topologyTestDriver.readOutput("rewards",
stringSerde.deserializer(),
rewardAccumulatorSerde.deserializer());

assertThat(accumulatorProducerRecord.value(),

➥ equalTo(expectedRewardAccumulator));

PurchasePattern expectedPurchasePattern =

➥ PurchasePattern.builder(expectedPurchase).build();

ProducerRecord<String, PurchasePattern> purchasePatternProducerRecord =

➥ topologyTestDriver.readOutput("patterns",
stringSerde.deserializer(),
purchasePatternSerde.deserializer());

assertThat(purchasePatternProducerRecord.value(),

➥ equalTo(expectedPurchasePattern));
}

As you add another processing node to the test, you’ll see the same pattern as in list-
ing 8.3. You read records from each topic and verify your expectations with an assert
statement. The critical point to keep in mind with this test is that you now have a
repeatable test running a record through your entire topology, without the overhead
of running Kafka.

 The ProcessorTopologyTestDriver also supports testing topologies with a state
store, so let’s look at how you’d accomplish that.

8.1.2 Testing a state store in the topology

To demonstrate testing a state store, you’ll refactor another class, StockPerformance-
StreamsAndProcessorApplication, to have the Topology returned from a method
call. You’ll find the class in src/main/java/bbejeck/chapter_8/StockPerformance-
StreamsProcessorTopology.java. I haven’t made any changes to the logic, so we won’t
review it here.

Listing 8.3 Testing the rest of the topology

Reads a
record from
the rewards

topic

Verifies the rewards topic
output matches expectations

Reads a record from
the patterns topic

Verifies the patterns topic
output matches expectations

205Testing a topology
 The test setup is the same as in the previous test, so I’ll limit my explanations to the
parts that are new (src/test/java/bbejeck/chapter_8/StockPerformanceStreams-
ProcessorTopologyTest.java).

StockTransaction stockTransaction =

➥ DataGenerator.generateStockTransaction();

topologyTestDriver.process("stock-transactions",
stockTransaction.getSymbol(),
stockTransaction,
stringSerde.serializer(),
stockTransactionSerde.serializer());

KeyValueStore<String, StockPerformance> store =

➥ topologyTestDriver.getKeyValueStore("stock-performance-store");

assertThat(store.get(stockTransaction.getSymbol()),

➥ notNullValue());

As you can see, the last assert line quickly verifies that your code is using the state
store as expected. You’ve seen the ProcessorTopologyTestDriver in action, and
you’ve seen how you can achieve end-to-end testing of a topology. The topologies you
test can be very simple, with one processing node, or very complex, consisting of sev-
eral sub-topologies. Even though you’re doing this testing without a Kafka broker,
make no mistake: this is a full test of the topology that will exercise all parts, including
serializing and deserializing records.

 You’ve seen how you can do end-to-end testing of a topology. But you’ll also want
to test the internal logic of your Processor and Transformer objects. Testing an
entire topology is great, but verifying the behavior inside each class requires a more
fine-grained approach, which we’ll cover next.

8.1.3 Testing processors and transformers

To verify the behavior inside a single class requires a true unit test, where there’s only
one class under test. Writing a unit test for a Processor or Transformer shouldn’t be
very challenging, but remember that both classes have a dependency on the Processor-
Context for obtaining any state stores and scheduling punctuation actions.

 You don’t want to create a real ProcessorContext object, but rather a stand-in you
can use for testing purposes: a mock object. When it comes to using a mock object,
you can follow two paths.

 One option is to use a mock object framework such as Mockito (http://site
.mockito.org) to generate mock objects in your test. Another option is to use the
MockProcessorContext object found in the same test library as ProcessorTopology-
TestDriver. Which one you use will depend on how you need to use them.

Listing 8.4 Testing the state store

Generates a
test record

Processes the record
with the test driver

Retrieves the
state store from

the test topology

Asserts the store contains
the expected value

http://site.mockito.org
http://site.mockito.org
http://site.mockito.org

206 CHAPTER 8 Testing a Kafka Streams application
 If you need the mock object strictly as a placeholder for a real dependency, con-
crete mocks (mocks not created from a framework) are a good choice. But if you want
to verify the parameters passed to a mock, the value returned, or any other behavior,
using a mock object generated by a framework is a good choice. Mock object frame-
works (like Mockito) come with a rich API for setting expectations and verifying
behavior, saving you development time and speeding up your testing process.

 In listing 8.5, you’ll use both types of mock objects. You’ll use the Mockito frame-
work to create the ProcessorContext mock, because you want to verify parameters
during the init call as well as validate that you’re forwarding the expected values
from the punctuate() method. You’ll also use a custom mock object for the key/value
store, which you’ll see in action as we step through the code example.

 In this listing, you’ll test a Processor, using mock objects. You’ll start with a test
for the AggregatingMethodHandleProcessor named AggregatingMethodHandle-
ProcessorTest, located in src/test/java/bbejeck_chapter6/processor/cogrouping/.
First, you want to verify the parameters used in the init method (see src/test/java/
bbejeck/chapter_6/AggregatingMethodHandleProcessorTest.java).

// some details left out for clarity
private ProcessorContext processorContext =

➥ mock(ProcessorContext.class);
private MockKeyValueStore<String, Tuple<List<ClickEvent>,

➥ List<StockTransaction>>> keyValueStore =

➥ new MockKeyValueStore<>();

private AggregatingMethodHandleProcessor processor =

➥ new AggregatingMethodHandleProcessor();

@Test
@DisplayName("Processor should initialize correctly")
public void testInitializeCorrectly() {
processor.init(processorContext);
verify(processorContext).schedule(eq(15000L), eq(STREAM_TIME),

➥ isA(Punctuator.class));
verify(processorContext).getStateStore(TUPLE_STORE_NAME);

}

This first test is a simple one: you call the init method on the processor under test
with the mocked ProcessorContext. You then validate the parameters used to sched-
ule the punctuate method, and that the state store is retrieved.

 Next, let’s test the punctuate method to verify that the records are forwarded as
expected (found in src/test/java/bbejeck/chapter_6/AggregatingMethodHandle-
ProcessorTest.java).

Listing 8.5 Testing the init method

Mocks the ProcessorContext
with Mockito

A mock
KeyValueStore
object

The class under test

Calls the init method on the
processor, triggering method
calls on ProcessorContext

Verifies the parameters for the
ProcessorContext.schedule method

Verifies retrieving
the state store

207Testing a topology

me
p

ut
n

c

the

p

@Test
@DisplayName("Punctuate should forward records")
public void testPunctuateProcess(){
when(processorContext.getStateStore(TUPLE_STORE_NAME))

.thenReturn(keyValueStore);

processor.init(processorContext);
processor.process("ABC", Tuple.of(clickEvent, null));
processor.process("ABC", Tuple.of(null, transaction));

Tuple<List<ClickEvent>,List<StockTransaction>> tuple =

➥ keyValueStore.innerStore().get("ABC");
List<ClickEvent> clickEvents = new ArrayList<>(tuple._1);
List<StockTransaction> stockTransactions = new ArrayList<>(tuple._2);

processor.cogroup(124722348947L);

verify(processorContext).forward("ABC",

➥ Tuple.of(clickEvents, stockTransactions));

assertThat(tuple._1.size(), equalTo(0));
assertThat(tuple._2.size(), equalTo(0));

}

This test is a little more involved, and it utilizes a mix of mock and real behavior. Let’s
take a brief walk through the test.

 The first line specifies the behavior for the mock ProcessorContext to return the
stubbed-out KeyValueStore when the ProcessorContext.getStateStore method is
called. This line alone is an interesting mix of generated mock versus a stubbed-out
mock object.

 I could easily have used Mockito to generate a mock KeyValueStore, but I chose not
to for two reasons. First, a generated mock returning another generated mock seems a
bit unnatural (in my opinion). Second, you want to verify and use the stored values in the
KeyValueStore during the test instead of setting expectations with a canned response.

 The next three lines, starting with processor.init, run the processor through its
usual steps: first initializing and then processing records. The fourth step is where hav-
ing a working KeyValueStore is important. Because the KeyValueStore is a simple
stub, you use a java.util.HashMap underneath for the actual storage. In the three
lines after setting processor expectations, you retrieve the contents from the store
placed there by the process() method calls. You create new ArrayList objects with
the contents of the Tuple (again, this is a custom class developed for the sample code
in this book) pulled from the state store by the provided key.

 Next, you drive the punctuate method of the processor. Because this is a unit test,
you don’t need to test how time is advanced—that would constitute testing the Kafka
Streams API itself, which you don’t want here. Your goal is to verify the behavior of the
method you defined as your Punctuator (via a method reference).

Listing 8.6 Testing the punctuate method

Sets mock behavior to
return a KeyValueStore
when called

Calls init
thod on

rocessor
Processes a ClickEvent
and a StockTransaction

Extracts the entries p
into the state store i
the process methodCalls the

o-group
method,
which is
 method
used to

schedule
unctuate

Validates that the
ProcessorContext forwards
the expected records

Validates that the collections
within the tuple are cleared out

208 CHAPTER 8 Testing a Kafka Streams application
 Now, you verify the main point of the test: that the expected key and value are for-
warded downstream via the ProcessorContext.forward method. This portion of the
test demonstrates the usefulness of a generated mock object. Using the Mockito
framework, you just need to tell the mock to expect a forward call with the given key
and value, and verify that the test executed the code precisely in this manner. Finally,
you verify that the processor cleared out the collections of ClickEvent and Stock-
Transaction objects after forwarding them downstream.

 As you can see from this test, you can isolate the class under test with a mix of gen-
erated and stubbed-out mock objects. As I stated earlier in this chapter, the bulk of the
testing in your Kafka Streams API application should be unit tests on your business
logic and on any individual Processor or Transformer objects. Kafka Streams itself is
thoroughly tested, so you’ll want to focus your efforts on new, untested code.

 You probably won’t want to wait to deploy your application to see how it interacts
with a Kafka cluster. You’ll want to sanity check your code, which will require integra-
tion testing. Let’s look at how you can locally test against a real Kafka broker.

8.2 Integration testing
So far, you’ve seen how you can test an entire topology or an individual component in
a unit test. For the most part, these types of tests are best, as they’re quick to run, and
they validate specific parts of your code.

 But there are times where you’ll need to test all the working parts together, end to
end: in other words, an integration test. Usually, an integration test is required when
you have some functionality that can’t be covered in a unit test.

 For an example, let’s go back to our very first application, the Yelling App. Because
you created the topology so long ago, take another look at it in figure 8.2.

UpperCase
processor

src-topic

Source
processor

Sink
processor

out-topicFigure 8.2 Another look at the
Yelling App topology

209Integration testing

h
Suppose you’ve decided to change the source from a single named topic to any topic
matching a regex:

yell-[A-Za-z0-9-]

As an example, you want to confirm that if a topic matching the pattern yell-at-
everyone is added while your application is deployed and running, you’ll start read-
ing information from that newly added topic.

 You won’t update the original Yelling App, since it’s so small. Instead you’ll use the
following modified version directly in the test (found in src/java/bbejeck/chapter_3/
KafkaStreamsYellingIntegrationTest.java).

streamsBuilder.<String,String>stream(Pattern.compile("yell.*"))
.mapValues(String::toUpperCase)
.to(OUT_TOPIC);

Because you add topics at the Kafka broker level, the only real way to test whether
your application picks up a newly created topic is to add one while your application is
running. Running this scenario is all but impossible with a unit test. But does this
mean you need to deploy your updated app to test it?

 Fortunately, the answer is no. You can use the embedded Kafka cluster available with
Kafka test libraries.

 By using the embedded Kafka cluster, you can run an integration test requiring a
Kafka cluster on your machine at any point, either individually or as part of your
entire battery of tests. This speeds up your development cycle. (I use the term embed-
ded here to refer to running a large application like Kafka or ZooKeeper in local
standalone mode, or “embedding” it in an existing application.) Let’s move on to
building an integration test.

8.2.1 Building an integration test

The first step to using the embedded Kafka server requires you to add three more test-
ing dependencies—scala-library-2.12.4.jar, kafka_2.12-1.0.0-test.jar, and kafka_2.12-
1.0.0.jar—to your build.gradle or pom.xml file. We’ve already covered the syntax for
providing a test JAR in section 8.1, so I won’t repeat it here.

 While it may seem like the number of dependencies is starting to increase, remem-
ber that anything you add here is a testing dependency. Testing dependencies aren’t
packaged up and deployed with your application code; hence, they won’t affect the
size of your final application.

 Now that you’ve added the required dependencies, let’s start defining the integra-
tion test with an embedded Kafka broker. You’ll use a standard JUnit approach for
creating the integration test.

Listing 8.7 Updating the Yelling App

Subscribes
to any topic
starting wit
"yell"

Converts all text
to uppercase Writes out to topic,

or yells at people!

210 CHAPTER 8 Testing a Kafka Streams application
ADDING THE EMBEDDEDKAFKACLUSTER

Adding the embedded Kafka broker to the test is a matter of adding one line, as
shown in the following listing (found in src/java/bbejeck/chapter_3/KafkaStreams-
YellingIntegrationTest.java).

private static final int NUM_BROKERS = 1;

@ClassRule
public static final EmbeddedKafkaCluster EMBEDDED_KAFKA

➥= new EmbeddedKafkaCluster(NUM_BROKERS);

In the second line listing 8.8, you create the EmbeddedKafkaCluster instance that
serves as the cluster for running the tests in the class. The key point in this example is
the @ClassRule annotation. A full description of testing frameworks and JUnit is
beyond the scope of this book, but I’ll take a minute here to explain the importance
of @ClassRule and how it drives the test.

JUNIT RULES

JUnit introduced the concept of rules to apply some common logic JUnit tests. Here’s
a brief definition, from https://github.com/junit-team/junit4/wiki/Rules#rules:
“Rules allow very flexible addition or redefinition of the behavior of each test method
in a test class.”

 JUnit provides three types of rules, and the EmbeddedKafkaCluster class uses the
ExternalResource rules (https://github.com/junit-team/junit4/wiki/Rules#exter-
nalresource-rules). You use ExternalResource rules for setting up and tearing down
external resources, such as the EmbeddedKafkaCluster needed for a test.

 JUnit provides the ExternalResource class, which has two no-op methods,
before() and after(). Any class extending the ExternalResource must override the
before() and after() methods for setting up and tearing down the external resource
needed for testing.

 Rules provide an excellent abstraction for using external resources in your tests.
After you create your class extending ExternalResource, all you need to do is create a
variable in your test and use the @Rule or @ClassRule annotation, and all the setup
and teardown methods will be executed automatically.

 The difference between @Rule and @ClassRule is how often before() and
after() are called. The @Rule annotation executes before() and after() methods
for each individual test in the class. @ClassRule executes the before() and after()
methods once; before() is executed prior to any test execution, and after() is called
when the last test in the class completes. Setting up an EmbeddedKafkaCluster is rela-
tively resource intensive, so it makes sense that you’ll only want to set it up once per
test class.

Listing 8.8 Adding the embedded Kafka broker

Defines the number
of brokers

The JUnit ClassRule
annotation

Creates an instance of the
EmbeddedKafkaCluster

https://github.com/junit-team/junit4/wiki/Rules#rules
https://github.com/junit-team/junit4/wiki/Rules#externalresource-rules
https://github.com/junit-team/junit4/wiki/Rules#externalresource-rules

211Integration testing
 Let’s get back to building an integration test. You’ve created an EmbeddedKafka-
Cluster, so the next step is to create any topics you’ll initially need.

CREATING TOPICS

Now that your embedded Kafka cluster is available, you can use it to create topics, as
follows (src/java/bbejeck/chapter_3/KafkaStreamsYellingIntegrationTest.java).

@BeforeClass
public static void setUpAll() throws Exception {
EMBEDDED_KAFKA.createTopic(YELL_A_TOPIC);
EMBEDDED_KAFKA.createTopic(OUT_TOPIC);

}

Creating topics for the test is something you’ll want to do only once for all tests, so you
can use a @BeforeClass annotation, which creates the required topics before the
execution of any tests. For this test, you only need topics with a single partition and
a replication factor of 1, so you can use the convenience method EmbeddedKafka-
Cluster.createTopic(String name). If you needed more than one partition, a repli-
cation factor greater than 1 requires configurations different from the defaults. For
that, you can use one of the following overloaded createTopic methods:

 EmbeddedKafkaCluster.createTopic(String topic, int partitions, int
replication)

 EmbeddedKafkaCluster.createTopic(String topic, int partitions, int
replication, Properties topicConfig)

With all the pieces in place for the embedded Kafka cluster to run, let’s move on to
testing the topology with the embedded broker.

TESTING THE TOPOLOGY

All the pieces are in place. Now you can follow these steps to execute the integra-
tion test:

1 Start the Kafka Streams application.
2 Write some records to the source topic and assert the correct results.
3 Create a new topic matching your pattern.
4 Write some additional records to the newly created topic and assert the cor-

rect results.

Let’s start with the first two parts of the test (found in src/java/bbejeck/chapter_3/
KafkaStreamsYellingIntegrationTest.java).

// some setup code left out for clarity

kafkaStreams = new KafkaStreams(streamsBuilder.build(), streamsConfig);

Listing 8.9 Creating the topics for testing

Listing 8.10 Starting the application and asserting the first set of values

BeforeClass annotation

Creates the first
source topicCreates the

output topic

212 CHAPTER 8 Testing a Kafka Streams application
kafkaStreams.start();

List<String> valuesToSendList =

➥ Arrays.asList("this", "should", "yell", "at", "you");
List<String> expectedValuesList =

➥ valuesToSendList.stream()
.map(String::toUpperCase)
.collect(Collectors.toList());

IntegrationTestUtils.produceValuesSynchronously(YELL_A_TOPIC,
valuesToSendList,
producerConfig,
mockTime);

int expectedNumberOfRecords = 5;
List<String> actualValues =

➥ IntegrationTestUtils.waitUntilMinValuesRecordsReceived(

➥ consumerConfig, OUT_TOPIC, expectedNumberOfRecords);

assertThat(actualValues, equalTo(expectedValuesList));

This portion of the test is pretty standard testing code. You “seed” your streaming
application by writing records to the source topic. The streaming application is
already running, so it consumes, processes, and writes out records as part of its stan-
dard processing. To verify that the application is performing as you expect, the test
consumes records from the sink-node topic and compares the expected values to the
actual values.

 Toward the end of listing 8.10 are two static utility methods, IntegrationTest-
Utils.produceValuesSynchronously and IntegrationTestUtils.waitUntilMin-
ValuesRecordsReceived, making the construction of this integration test much more
manageable. These producing and consuming utility methods are part of kafka-
streams-test.jar. Let’s discuss these methods briefly.

PRODUCING AND CONSUMING RECORDS IN A TEST

The IntegrationTestUtils.produceValuesSynchronously method creates a Producer-
Record for each item in the collection with a null key. This method is synchronous, as
it takes the resulting Future<RecordMetadata> from the Producer.send call and
immediately calls Future.get(), which blocks until the produce request returns.
Because this method is sending records synchronously, you know the records are avail-
able for consuming once the method returns. Another method, IntegrationTest-
Utils.produceKeyValuesSynchronously, takes a collection of KeyValue<K,V> if you
want to specify a value for the key.

 For consuming records in listing 8.10, you use the IntegrationTestUtils.wait-
UntilMinValuesRecordsReceived method. As you can probably guess from the name,
this method will attempt to consume the expected number of records from the given
topic. By default, this method will wait up to 30 seconds, and if the expected number
of records has not been consumed, an AssertionError is thrown, failing the test.

Starts the Kafka
Streams application Specifies the list

of values to send

Creates the list of
expected values

Produces the values
to embedded Kafka

Consumes
records
from Kafka

Asserts the values
read are equal to
the expected values

213Integration testing

t
 If you need to work with the consumed KeyValue instead of just the value, there’s
the IntegrationTestUtils.waitUntilMinKeyValueRecordsReceived method, which
works in the same manner but returns a Collection of KeyValue results. Additionally,
there are overloaded versions of the consuming utility, where you can specify a custom
amount of time to wait via a parameter of type long.

 Now, let’s finish describing the test.

DYNAMICALLY ADDING A TOPIC

You’re at the point in the test where you want to test the dynamic behavior that you
need a live Kafka broker for. The previous portion of the test was done to verify the
starting point. Now, you’re going to use the EmbeddedKafkaCluster to create a new
topic, and you’ll test that the application consumes from the new topic and processes
records as expected (found in src/java/bbejeck/chapter_3/KafkaStreamsYellingInte-
grationTest.java).

EMBEDDED_KAFKA.createTopic(YELL_B_TOPIC);

valuesToSendList = Arrays.asList("yell", "at", "you", "too");

expectedValuesList = valuesToSendList.stream()
.map(String::toUpperCase)
.collect(Collectors.toList());

IntegrationTestUtils.produceValuesSynchronously(YELL_B_TOPIC,
valuesToSendList,
producerConfig,
mockTime);

expectedNumberOfRecords = 4;
List<String> actualValues =

➥IntegrationTestUtils.waitUntilMinValuesRecordsReceived(

➥consumerConfig, OUT_TOPIC, expectedNumberOfRecords);

assertThat(actualValues, equalTo(expectedValuesList));

You create a new topic matching the pattern for the source node of the streaming
application. After that, you go through the same steps of populating the new topic
with data, and consuming records from the topic backing the sink node of the stream-
ing application. At the end of the test, you verify that the consumed results match the
expected results.

 You can run this test from inside your IDE, and you should see a successful result.
You’ve completed your first integration test!

 You won’t want to use an integration test for everything, because unit tests are eas-
ier to write and maintain. But integration tests can be indispensable when the only
way to verify the behavior of your code is working with a live Kafka broker.

Listing 8.11 Starting the application and asserting values

Creates the
new topic Specifies a new lis

of values to send

Creates the
expected
values

Produces the values to the source
topic of the streaming application

Consumes the
results of the
streaming
application

Asserts that the
expected results match
the actual results

214 CHAPTER 8 Testing a Kafka Streams application
NOTE It may be tempting to make all your tests using the EmbeddedKafka-
Cluster, but it’s best if you don’t. If you run the sample integration test you
just built, you’ll notice that it takes much longer to run than the unit tests.
The few extra seconds taken by one test might not seem like much, but when
you multiply that time by several hundred or a thousand or more tests, the
time it takes to run your test suite is substantial. Additionally, you should
always try to keep your tests small and focused on one specific piece of func-
tionality instead of exercising all parts of the application chain.

Summary
 Strive to keep business logic in standalone classes that are entirely independent

of your Kafka Streams application. This makes them easy to unit test.
 It’s useful to have at least one test using ProcessorTopologyTestDriver to test

your topology from end to end. This type of test doesn’t use a Kafka broker, so
it’s fast, and you can see end-to-end results.

 For testing individual Processor or Transformer instances, try to use a mock
object framework only when you need to verify the behavior of some class in the
Kafka Streams API.

 Integration tests with the EmbeddedKafkaCluster should be used sparingly, and
only when you have interactive behavior that can only be verified with a live,
running Kafka broker.

It’s been a fun journey, and you’ve learned quite a lot about the Kafka Streams API
and how you can use it to handle your data-processing needs. So to conclude your
learning path, we’ll now switch gears from student to master. The next and final chap-
ter of this book will be a capstone project based on everything you’ve learned so far,
and in some cases extending out to write custom code that isn’t in the Kafka Streams
API. The result will be a live, end-to-end application using the core functionality pre-
sented in this book.

Part 4

Advanced concepts
with Kafka Streams

In this final part, you’ll take everything you’ve learned and apply it to build-
ing advanced applications. You’ll integrate Kafka Streams with Kafka Connect so
that you can stream data even if it’s being written to a relational database. Then,
you’ll learn how to use the power of interactive queries to display—in real time—
information your application is building, directly from Kafka Streams, without
needing an external tool. Finally, you’ll learn about KSQL, a new tool intro-
duced by Confluent (the company founded by the original developers of Kafka
at LinkedIn), and how you can write SQL statements and run continuous que-
ries on data coming into Kafka.

Advanced applications
with Kafka Streams
You’ve come a long way in your journey to learn how to use Kafka Streams. We’ve
covered a lot of ground, and now you should know how to build streaming applica-
tions. Up to this point, you’ve included the core functionality of Kafka Streams, but
there’s much more you can do. In this chapter, you’ll use what you’ve learned to
build two advanced applications that will allow you to work in real-world situations.

 For example, in many organizations, when you bring in new technology, it must
mesh with legacy technology or processes. It’s not uncommon to see database
tables as the main sink for incoming data. You learned in chapter 5 that tables are
streams, so you know you should be able to treat database tables as streams of data.

 The first advanced application we’ll look at in this chapter will “convert” a
physical database into a streaming application by integrating Kafka Connect with
Kafka Streams. Kafka Connect will listen for new insertions into the table(s) and

This chapter covers
 Integrating outside data into Kafka Streams with

Kafka Connect

 Kicking your database to the curb with interactive
queries

 KSQL continuous queries in Kafka
217

218 CHAPTER 9 Advanced applications with Kafka Streams
write those records to a topic in Kafka. This same topic will serve as the source for
the Kafka Streams application so that you can turn your database table into a stream-
ing application.

 When you’re working with legacy applications, even if data is captured in real time,
it’s typical to dump the data into a database to serve as the data source for dashboard
applications. In this chapter’s second advanced application, you’ll see how to use
interactive queries that expose the Kafka Streams state stores for direct queries. A
dashboard application can then pull directly from the state stores and show data as it’s
flowing through the streaming application, eliminating the need for a database.

 We’ll wrap up our coverage of advanced features by looking at a powerful new
Kafka feature: KSQL. KSQL lets you write long-running SQL queries on data coming
into Kafka. KSQL gives you all the power of Kafka Streams combined with the ease of
writing a SQL query. When you use KSQL, it uses Kafka Streams under the covers to
get the job done.

9.1 Integrating Kafka with other data sources
For the first advanced example application, let’s suppose you work at an established
financial services firm, Big Short Equity (BSE). BSE wants to migrate its legacy data
operations into the modern era, and that plan includes using Kafka. The migration is
part-way through, and you’re tasked with updating the company’s analytics. The goal
is to display the latest equities transactions and associated information in real time,
and Kafka Streams is the perfect fit.

 BSE offers funds focused on different areas of the financial market. The company
records fund transactions in real time in a relational database. Eventually, BSE plans
to write transactions directly into Kafka, but in the short term, the database is the sys-
tem of record.

 Given that incoming data is fed into a relational database, how can you bridge the
gap between the database and your emerging Kafka Streams application? The answer
is to use Kafka Connect (https://kafka.apache.org/documentation/#connect), a frame-
work that’s included with Apache Kafka and that integrates Kafka with other systems.
Once Kafka has the data, you’re no longer concerned about the location of the source
data; you just point your Kafka Streams application at the source topic as you’ve done
with other Kafka Streams applications.

NOTE When you use Kafka Connect to bring in data from other sources, the
integration point is a Kafka topic. This means any application using Kafka-
Consumer can use the imported data. Because this is a book about Kafka
Streams, I emphasize how to integrate with a Kafka Streams application.

Figure 9.1 shows how this integration between the database and Kafka works. In this
case, you’ll use Kafka Connect to monitor a database table and stream updates into a
Kafka topic, which is the source of your financial analysis application.

https://kafka.apache.org/documentation/#connect
https://maven.apache.org/download.cgi

219Integrating Kafka with other data sources
TIP Because this is a book on Kafka Streams, this section is a whirlwind tour
of Kafka Connect. For more in-depth information, see the Apache Kafka doc-
umentation (https://kafka.apache.org/documentation/#connect) and Kafka
Connect Quick Start (https://docs.confluent.io/current/connect/quickstart
.html).

9.1.1 Using Kafka Connect to integrate data

Kafka Connect is explicitly designed for streaming data from other systems into Kafka
and for streaming data from Kafka into another data-storage application such as
MongoDB (www.mongodb.com) or Elasticsearch (www.elastic.co). With Kafka Con-
nect, it’s possible to import entire databases into Kafka, or other data such as perfor-
mance metrics.

 Kafka Connect uses specific connectors to interact with outside data sources. Several
connectors are available (www.confluent.io/product/connectors), many developed
by the connector community, making integration between Kafka and almost any other
storage system possible. If there isn’t a connector available for your purposes, you can
implement a connector of your own (https://docs.confluent.io/current/connect/
devguide.html).

9.1.2 Setting up Kafka Connect

Kafka Connect runs in two flavors: distributed mode and standalone mode. For most
production environments, running in distributed mode makes sense, because you can

Kafka Connect

Kafka broker

Database

Topic

Kafka Streams

Kafka Connect reads from the configured table and writes
the data to a topic(s) named + . The importprefix tablename
process runs continuously, by executing select statements to
pull in newly inserted records.

The Kafka Streams application now
processes the incoming data.

Because the import process is
continuous, you are essentially stream
processing a database table.

Connect uses configured connectors
to perform data integration.

prefix tablename

Figure 9.1 Kafka Connect integrating a database table and Kafka Streams

https://kafka.apache.org/documentation/#connect
https://docs.confluent.io/current/connect/quickstart.html
https://docs.confluent.io/current/connect/quickstart.html
https://docs.confluent.io/current/connect/quickstart.html
https://docs.confluent.io/current/connect/devguide.html
https://docs.confluent.io/current/connect/devguide.html
https://docs.confluent.io/current/connect/devguide.html
http://www.mongodb.com
http://www.elastic.co
http://www.confluent.io/product/connectors

220 CHAPTER 9 Advanced applications with Kafka Streams
take advantage of the parallelism and fault tolerance available when you run multiple
Connect instances. I’m assuming you’ll run the examples on your local machine, so
everything is configured in standalone mode.

 The connectors that Kafka Connect uses to interact with outside data sources
come in two types: source connectors and sink connectors. Figure 9.2 illustrates how
Kafka Connect uses both types. As you can see, source connectors bring data into
Kafka, and sink connectors receive data from Kafka for use by another system.

For this example, you’ll use the Kafka JDBC connector (https://github.com/conflu-
entinc/kafka-connect-jdbc). It’s available on GitHub and also packaged with the book’s
source code distribution as a convenience (https://manning.com/books/kafka-streams-
in-action).

 When using Kafka Connect, you’ll need to do some minor configuration to Kafka
Connect itself and to the individual connector you’re using to import or export data.
First, let’s look at the configuration parameters you’ll work with for Kafka Connect:

 bootstrap.servers—Comma-separated list of the Kafka broker(s) used by
Connect.

 key.converter—Class of the converter that controls serialization of the key
from Connect format to the format written to Kafka.

 value.converter—Class of the converter that controls serialization of the
value from Connect format to the format written to Kafka. For this example,
you’ll use the built-in org.apache.kafka.connect.json.JsonConverter.

Kafka cluster

Kafka Connect

Kafka cluster

Kafka Connect

Connect uses sink connectors
to push data from Kafka
to external data sources

(database, filesystem, and so on).

Connect uses source connectors
to pull from external data sources

(database, filesystem, and so
on) to push data to Kafka.

Figure 9.2 Kafka Connect source and sink connectors

https://github.com/confluentinc/kafka-connect-jdbc
https://github.com/confluentinc/kafka-connect-jdbc
https://manning.com/books/kafka-streams-in-action
https://manning.com/books/kafka-streams-in-action

221Integrating Kafka with other data sources
 value.converter.schemas.enable—true or false, specifying whether Con-
nect should include the schema for the value. In this example, you’ll set this
value to false; I explain why in the next section.

 plugin.path—Tells Connect the location of a connector and its dependencies.
This location can be a single, top-level directory containing an uber JAR file or
multiple JAR files. You can also provide several paths in a comma-separated list
of locations.

 offset.storage.file.filename—File containing the offsets stored by the Con-
nect consumer.

You’ll also need to provide some configuration for the JDBC connector. Let’s review
those settings:

 name—Name of the connector.
 connector.class—Class of the connector.
 tasks.max—The maximum number of tasks used by this connector.
 connection.url—URL used to connect to the database.
 mode—Method the JDBC source connector uses to detect changes.
 incrementing.column.name—Name of the column tracked for detecting

changes.
 topic.prefix—Connect writes each table to a topic named topic.prefix+

table name.

Most of these configurations are straightforward, but we need to discuss two of
them—mode and incrementing.column.name—in a little more detail, because they
play an active role in how the connector runs. The JDBC source connector uses mode
to detect which rows it needs to load. The example uses the incrementing setting,
which relies on an auto-incrementing column where each insert increments the col-
umn value by 1. By tracking an incrementing column, you’ll only pull in new records;
updates will go unnoticed. Your Kafka Streams application is only concerned with
pulling in the latest equities-product purchases, so this setting is ideal. incrementing
.column.name is the name of the column containing the auto-incrementing value.

TIP The source code for the book contains the nearly completed configura-
tion for both Connect and the JDBC connector. The config files are located
in the src/main/resources directory of the source code distribution (https://
manning.com/books/kafka-streams-in-action). You’ll need to provide some
information about the path where you’ve extracted the source code reposi-
tory. Be sure to look at the README.md file for full instructions.

This brings us to the end of our overview of Kafka Connect and the JDBC source con-
nector. We have one more integration point to cover, which we’ll discuss in the next
section.

https://manning.com/books/kafka-streams-in-action
https://manning.com/books/kafka-streams-in-action
https://manning.com/books/kafka-streams-in-action

222 CHAPTER 9 Advanced applications with Kafka Streams
NOTE You can find more information about the JDBC source connector in
the Confluent documentation (http://mng.bz/01vh). Additionally, there are
other incremental query modes you should look over (http://mng.bz/0pjP).

9.1.3 Transforming data

Before getting this new assignment, you had already developed a Kafka Streams appli-
cation using similar data. As a result, you have an existing model and Serde objects
(using Gson underneath for JSON serialization and deserialization). To keep your
development velocity high, you’d prefer not to write any new code to support working
with Connect. As you’ll see in the next section, you’ll be able to import data from Con-
nect seamlessly.

TIP Gson (https://github.com/google/gson) is an Apache licensed library
developed by Google for the serialization and deserialization of Java objects
into and from JSON. You can learn more from the user guide: http://mng
.bz/JqV2.

To enable this seamless integration, you’ll need to make some minor additional con-
figuration changes to your JDBC connector’s properties. Before you do, let’s revisit
section 9.1.2, where we discussed configuration settings. Specifically, I said you’d use
org.apache.kafka.connect.json.JsonConverter with schemas disabled; hence, the
value is converted into a simple JSON format.

 Although JSON is what you want to consume in your Kafka Streams application,
there are two issues. First, when converting the data into JSON format, the column
names are used for the names of fields in the converted JSON. The names are all in an
abbreviated BSE format that has no meaning outside the organization, so when your
Gson serde is converted from JSON to the expected model object, all the fields are
null because the names don’t match.

 Second, the date and time are stored in the database as a timestamp, as expected.
But the provided Gson serde hasn’t defined a custom TypeAdapter (http://mng
.bz/inzB) for the Date type, so all dates need to be a String formatted like this: yyyy-
MM-dd’T’HH:mm:ss.SSS-0400. Fortunately, Kafka Connect provides a mechanism that
allows you to handle these two issues with ease.

 Kafka Connect has the concept of Transformations that let you perform lightweight
transformations before Connect writes data to Kafka. Figure 9.3 shows where this
transformation process takes place.

 In this example, you’ll use two built-in transformations: TimestampConverter
and ReplaceField. As I mentioned previously, to use these transformations, you
need to add the following configuration lines to the connector-jdbc.properties file
(see src/main/resources/conf/connector-jdbc.properties).

http://mng.bz/01vh
http://mng.bz/0pjP
https://github.com/google/gson
http://mng.bz/JqV2
http://mng.bz/JqV2
http://mng.bz/JqV2
http://mng.bz/inzB
http://mng.bz/inzB
http://mng.bz/inzB

223Integrating Kafka with other data sources
transforms=ConvertDate,Rename
transforms.ConvertDate.type=

➥ org.apache.kafka.connect.transforms.TimestampConverter$Value
transforms.ConvertDate.field=TXNTS
transforms.ConvertDate.target.type=string
transforms.ConvertDate.format=yyyy-MM-dd'T'HH:mm:ss.SSS-0400
transforms.Rename.type=

➥ org.apache.kafka.connect.transforms.ReplaceField$Value
transforms.Rename.renames=SMBL:symbol, SCTR:sector,....

These properties are relatively self descriptive, so we won’t spend much time on them.
As you can see, they provide you with exactly what you need for your Kafka Streams
application to successfully deserialize messages imported into Kafka by Connect and
the JDBC connector.

 With all the Connect pieces in place, completing the integration between the data-
base table and your Kafka Streams application is just a matter of using a topic with the
prefix specified in the connector-jdbc.properties file (found in src/main/java/bbejeck/
chapter_9/StockCountsStreamsConnectIntegrationApplication.java).

Listing 9.1 JDBC connector properties

SYMB

SCTR

INDSTY

Original column names

Connect transforms

SYMB:symbol, SCTR:sector, INDSTY:industry,...

{"symbol":"xxxx", "sector":"xxxxx", "industry":"xxxxx",...}

Transforms take the original
column names and map them
to the new configured names.

The JSON message sent to Kafka
topics now has the expected field
names needed for deserialization.

Figure 9.3 Transforming the names of the columns to match expected field names

Aliases for the
transformers Type for the

ConvertDate alias
Date field to convert

Output
type of the
converted
date field

Format of
the date

Type for the
Rename alias

List of column names (truncated for
clarity) to replace. The format is

Original:Replacement.

224 CHAPTER 9 Advanced applications with Kafka Streams
Serde<StockTransaction> stockTransactionSerde =

➥ StreamsSerdes.StockTransactionSerde();
StreamsBuilder builder = new StreamsBuilder();
builder.stream("dbTxnTRANSACTIONS",

➥ Consumed.with(stringSerde,stockTransactionSerde))
.peek((k, v)->

➥ LOG.info("transactions from database key {}value {}", k, v));

At this point, you’re stream processing records from a database table in Kafka
Streams, but there’s more to do. You’re streaming stock-transaction data—to do any
analysis, you need to group the transactions by their stock ticker symbol.

 You’ve seen how to select a key and repartition the records, but it’s more efficient
if the records come into Kafka keyed; that way, your Kafka Streams application can
skip the repartitioning step, which saves processing time and disk space. Let’s revisit
the configuration for Kafka Connect.

 First, you can add a ValueToKey transformer that takes a list of field names in the
value to extract and use for the key. Update the connector-jdbc.properties file as
shown here (src/main/resources/conf/connector-jdbc.properties).

transforms=ConvertDate,Rename,ExtractKey
transforms.ConvertDate.type=

➥ org.apache.kafka.connect.transforms.TimestampConverter$Value
transforms.ConvertDate.field=TXNTS
transforms.ConvertDate.target.type=string
transforms.ConvertDate.format=yyyy-MM-dd'T'HH:mm:ss.SSS-0400
transforms.Rename.type=

➥ org.apache.kafka.connect.transforms.ReplaceField$Value
transforms.Rename.renames=SMBL:symbol, SCTR:sector,....
transforms.ExtractKey.type=

➥ org.apache.kafka.connect.transforms.ValueToKey
transforms.ExtractKey.fields=symbol

You add the ExtractKey transform and give Connect the name of the transformer
class: ValueToKey. You also provide the name of the field to use for the key: symbol.
This could consist of multiple comma-separated values, but in this case, you need only
one value. Note that you use the renamed version for the field, because this trans-
former is executed after the Rename transformer.

 The result of the ExtractKey field is a struct of one value. But you only want the
value contained in the struct for the key—the stock ticker symbol. For this operation,
you’ll add a FlattenStruct transform to pull the ticker symbol out by itself (see
src/main/resources/conf/connector-jdbc.properties).

Listing 9.2 Kafka Streams source topic populated with data from Connect

Listing 9.3 Updated JDBC connector properties

Serde for the
StockTransaction object

Uses the topic Connect
writes to as the source
for the stream

Prints messages out to the console

Adds the
ExtractKey
transform

Specifies the
class name of
the ExtractKey
transform

Lists the field(s) to
extract for the key

225Integrating Kafka with other data sources
transforms=ConvertDate,Rename,ExtractKey,FlattenStruct
transforms.ConvertDate.type=

➥ org.apache.kafka.connect.transforms.TimestampConverter$Value
transforms.ConvertDate.field=TXNTS
transforms.ConvertDate.target.type=string
transforms.ConvertDate.format=yyyy-MM-dd'T'HH:mm:ss.SSS-0400
transforms.Rename.type=

➥ org.apache.kafka.connect.transforms.ReplaceField$Value
transforms.Rename.renames=SMBL:symbol, SCTR:sector,....
transforms.ExtractKey.type=org.apache.kafka.connect.transforms.ValueToKey
transforms.ExtractKey.fields=symbol
transforms.FlattenStruct.type=

➥ org.apache.kafka.connect.transforms.ExtractField$Key
transforms.FlattenStruct.field=symbol

You add the final transform (FlattenStruct) and specify the ExtractField$Key class,
which is used by Connect to extract the named field and only include that field in the
results (in this case, the key). Finally, you provide the name of the field (symbol),
which is the same as in the previous transform; this makes sense, because that’s the
field used to create the key struct.

 With just a few extra lines of configuration, you can expand the previous Kafka
Streams application to do more-advanced operations without the need to select a key
and do the repartitioning step (found in src/main/java/bbejeck/chapter_9/Stock-
CountsStreamsConnectIntegrationApplication.java).

Serde<StockTransaction> stockTransactionSerde =

➥ StreamsSerdes.StockTransactionSerde();
StreamsBuilder builder = new StreamsBuilder();
builder.stream("dbTxnTRANSACTIONS",

➥ Consumed.with(stringSerde, stockTransactionSerde))
.peek((k, v)->

➥ LOG.info("transactions from database key {}value {}", k, v))
.groupByKey(

➥ Serialized.with(stringSerde,stockTransactionSerde))
.aggregate(()-> 0L,(symb, stockTxn, numShares) ->

➥ numShares + stockTxn.getShares(),
Materialized.with(stringSerde, longSerde)).toStream(

)
.peek((k,v) -> LOG.info("Aggregated stock sales for {} {}",k, v))
.to("stock-counts", Produced.with(stringSerde, longSerde));

Because the data is coming in keyed, you can use groupByKey, which won’t set the
automatic repartitioning flag. From the group-by operation, you can directly go into
an aggregation without performing a repartitioning step, which is important for per-
formance reasons. The README.md file included with the source code contains

Listing 9.4 Adding a transform

Listing 9.5 Processing transactions from a table in Kafka Streams via Connect

Adds
the last
transform

Specifies the class
for the transform
(ExtractField$Key)

Name of the field
to pull out

Groups by key

Performs an
aggregation
of the total
number of
shares sold

226 CHAPTER 9 Advanced applications with Kafka Streams
instructions for running an embedded H2 database (www.h2database.com/html/
main.html) and Kafka Connect to produce data for the dbTxnTRANSACTIONS topic to
run the streaming application.

TIP Although it might seem tempting to use Transformations to perform all
the work when importing data into Kafka via Connect, remember that trans-
formations are meant to be lightweight. For any transformations beyond the
simple ones shown in the examples, it’s better to pull the data into Kafka and
then use Kafka Streams to do the heavy transformational work.

Now that you’ve seen how to use Kafka Connect to get data into Kafka for processing
with Kafka Streams, let’s turn our attention to how you can visualize the state of data
in real time.

9.2 Kicking your database to the curb
In chapter 4, you learned how to add local state to a Kafka Streams application. Stream-
ing applications need to use state to perform operations like aggregations, reduces,
and joins. Unless your streaming application works exclusively with individual records,
having local state is required.

 Going back to the requirements from BSE, you’ve developed a Kafka Streams
application that captures three categories of equity transactions:

 Total transactions by market sector
 Customer purchases of shares per session
 Total number of shares traded by stock symbol, in tumbling windows of

10 seconds

In the examples so far, you’ve either reviewed the results in the console or read them
from a sink topic. Viewing data in the console is suitable for development, but the con-
sole isn’t the best medium for displaying results. To do any analytic work or quickly
understand what’s going on, a dashboard application is a better medium to use.

 In this section, you’ll see how you can use interactive queries in Kafka Streams to
develop a dashboard application for viewing analytics, without the need for a relational
database to hold the state. You’ll populate the dashboard application directly from
Kafka Streams, as the data streams. Hence, the app will continually update naturally.

 In a typical architecture, data that’s captured and operated on is pushed out to a
relational database for viewing. Figure 9.4 shows this setup: pre-Kafka Streams, you
ingested data with Kafka, fed an analysis engine, and then pushed the data to a rela-
tional database table used by a dashboard application.

 If you add Kafka Streams, using local state, the architecture changes slightly, as
shown in figure 9.5. You can simplify the structure significantly by removing an entire
cluster (not to mention that the deployment is much more manageable). Kafka
Streams still writes back to Kafka, and the database is still the primary consumer of the
transformed data.

http://www.h2database.com/html/main.html
http://www.h2database.com/html/main.html
http://www.h2database.com/html/main.html

227Kicking your database to the curb
In chapter 5, I talked about interactive queries. Let’s revisit the definition briefly:
interactive queries let you directly view the data in the state store without having to con-
sume the data from Kafka. In other words, the stream becomes the database as well.

 Because a picture is worth a thousand words, let’s take another look at figure 9.5,
but adjusted in figure 9.6 to use interactive queries.

Kafka

Processing cluster
Database

Web browser/REST
service

The processing
cluster pushes results

out to a database.

An external browser using
a REST service connects
to the data store to view
the processing results.

The processing cluster
ingests data from Kafka.

Figure 9.4 Architecture of applications viewing processed data prior to Kafka
Streams

Kafka

Kafka Streams

Web browser/REST
service

Database

External
application

You simplify things, removing the need
for a separate cluster, by running

a Kafka Streams application.

An external app
consumes the results

and writes them
to a database.

Figure 9.5 Architecture with Kafka Streams and state added

228 CHAPTER 9 Advanced applications with Kafka Streams
The idea demonstrated here is simple but powerful. While state stores hold the state
of the stream, Kafka Streams provides read-only access from outside the streaming
application via a RESTful interface. It’s worth stating again how powerful this con-
cept is; you can view the running state of the stream without the need for an exter-
nal database.

 Now that you have an understanding of the impact of interactive queries, let’s walk
through how they work.

9.2.1 How interactive queries work

For interactive queries to work, Kafka Streams exposes state stores in a read-only wrap-
per. It’s important to understand that while Kafka Streams makes the stores available
for queries, there’s no updating or modifying the state store in any way. Kafka Streams
exposes state stores from the KafkaStreams.store method.

 Here’s how this method works:

ReadOnlyWindowStore readOnlyStore =

➥ kafkaStreams.store(storeName, QueryableStoreTypes.windowStore());

This example retrieves a WindowStore. In addition, QueryableStoreTypes provides
two other types:

 QueryableStoreTypes.sessionStore()

 QueryableStoreTypes.keyValueStore()

Once you have a reference to the read-only store, it’s just a matter of exposing the
store to a service (a RESTful service, for example) for users to query the state of the

Kafka

Kafka Streams

Web browser/REST
service

State store

Now, you really simplify your architecture,
because you remove the processing

cluster the database.and

The Kafka Streams application consumes
from the broker, and local state captures

the current state of the stream.

The REST service now connects directly
to the local state store, retrieving live

results from the stream.

and

Figure 9.6 Architecture using interactive queries

229Kicking your database to the curb
streaming data. But retrieving the state store is only part of the picture. The state store
extracted here will only contain keys contained in the local store.

NOTE Remember, Kafka Streams assigns a state store per task, and as long as
you use the same application ID, a Kafka Streams application can consist of
multiple instances. Additionally, those instances need not all be located on
the same host. Thus, it’s possible that the state store you query may contain
only a subset of all the keys; other state stores (with the same name, located
on other machine[s]) may contain another subset of the keys.

Let’s use the analytics listed earlier to make this concept clear.

9.2.2 Distributing state stores

Consider the first analytic: aggregating stock trades per market sector. Because you’re
doing an aggregation, state stores come into play. You want to expose the state stores
to provide a real-time view of the number of trades per sector, to gain insight into
which segment of the market is seeing the most action at the moment.

 Stock market activity generates significant data volume, but I’ll only discuss using
two partitions, to keep the details of the example clear. Additionally, let’s say you’re
running two single-threaded instances on two separate machines, located in the same
data center. Because of Kafka Streams’ automatic load balancing, each application will
have one task processing the data from each partition of the input topic.

 Figure 9.7 shows the distribution of tasks and state stores. As you can see, instance
A handles all records on partition 0, and instance B handles all records on partition 1.

Streams app A Streams app B

State store State store

The assigned task for Kafka
Streams application instance B

is TopicPartition T .1

Processes messages
on partition 0

Processes messages
on partition 1

The assigned task for Kafka
Streams application instance A

is TopicPartition T0.

Kafka topic T with
two partitions

Figure 9.7 Task and state store distribution

230 CHAPTER 9 Advanced applications with Kafka Streams
Figure 9.8 illustrates what happens when you have two records with the keys "Energy"
and "Finance".

"Energy":"100000" lands in the state store on instance A, and "Finance":"110000"
ends up in the state store on instance B. Going back to the example of exposing the
state store for queries, you can clearly see that if you expose the state store on instance
A to a web service or any external querying, you can only retrieve the value for the key
"Energy".

 What’s the solution to this issue? You certainly don’t want to set up an individual
web service to query each instance—that approach won’t scale. Fortunately, you don’t
have to: the solution is as simple as setting a configuration.

9.2.3 Setting up and discovering a distributed state store

To enable interactive queries, you need to set the StreamsConfig.APPLICATION
_SERVER_CONFIG parameter. It consists of the hostname of the Kafka Streams applica-
tion and the port that a query service will listen on, in hostname:port format.

 When a Kafka Streams instance receives a query for a given key, you’ll need to find
out whether the key is contained in the local store. More important, if it’s not local,
you’ll want to find out which instance contains the key and query against that store.

 Several methods on the KafkaStreams object allow for retrieving information for
all running instances with the same application ID and defining the APPLICATION
_SERVER_CONFIG. Table 9.1 lists the method names and descriptions.

 You can use KafkaStreams.allMetadata to obtain information for all instances
that are eligible for interactive queries. I find that KafkaStreams.allMetadataForKey
is the method I use most when writing interactive queries.

Streams app A Streams app B

State store State store

Partition 0 Partition 1

{"Energy":" 00000"} is written1
to partition 0 and stored in the
state store in app instance A.

{"Finance":" 0000"} is written11
to partition and stored in the1
state store in app instance B.

Figure 9.8 Key and value distribution in state stores

231Kicking your database to the curb
Next, let’s take another look at the key/value distribution across Kafka Streams
instances, adding the sequence of checking for the "Finance" key, which is found and
returned from another instance (see figure 9.9). Each Kafka Streams instance has a
lightweight embedded server listening to the port specified in APPLICATION_SERVER
_CONFIG.

It’s important to point out that you’ll need to query only one of the Kafka Streams
instances, and which one you choose doesn’t matter (assuming you’ve configured the
application correctly). By using an RPC mechanism and metadata-retrieval methods,
if the instance you’ve queried doesn’t contain the data you’re looking for, the queried
Kafka Streams instance will find where it’s located, pull the results, and return the
results to the original query.

Table 9.1 Methods for retrieving store metadata

Name Parameter(s) Usage

allMetadata N/A All instances, some possibly remote

allMetadataForStore Store name All instances (some remote) contain-
ing the named store

allMetadataForKey Key, Serializer All instances (some remote) with the
store containing the key

allMetadataForKey Key, StreamPartitioner All instances (some remote) with the
store containing the key

Streams app A

Host = hostA:4567

Streams app B

Host = hostB:4568

{"Energy":"100000"}

State store State store

{"Finance":"110000"}

A query comes into application instance A
for the key "Finance". Using metadata,

instance A is able to determine that the
key "Finance" is located on instance B.

The value is retrieved from
the state store on instance B and
returned to satisfy the original

request on instance A.

Instance A uses host and port info
from metadata to retrieve the value

for "Finance" from instance B.

Figure 9.9 Key and value query-and-discovery process

232 CHAPTER 9 Advanced applications with Kafka Streams
 You can see this in action by tracing the flow of the calls in figure 9.9. Instance A
doesn’t contain the key "Finance" but discovers that instance B does contain the key.
So, A issues a call to the embedded server on B, which retrieves the data and returns
the result to the original caller.

NOTE Interactive queries will work on a single node out of the box, but an
RPC mechanism isn’t provided—you have to implement your own. This sec-
tion offers one possible solution, but you’re free to implement your own pro-
cess, and I’m sure many of you will come up with something better. A great
example of another RPC implementation is located in the Confluent kafka-
streams-examples GitHub repo: http://mng.bz/Ogo3.

Let’s move on to see interactive queries in action.

9.2.4 Coding interactive queries

The application you’ll write for interactive queries will look very similar to the other
apps you’ve written so far, with a couple of small changes. The first difference is that
you need to pass in two arguments when launching the Kafka Streams application: the
hostname and the port the embedded service will listen to (found in src/main/java/
bbejeck/chapter_9/StockPerformanceInteractiveQueryApplication.java).

public static void main(String[] args) throws Exception {

if(args.length < 2){
LOG.error("Need to specify host and port");
System.exit(1);

}

String host = args[0];
int port = Integer.parseInt(args[1]);
final HostInfo hostInfo = new HostInfo(host, port);

Properties properties = getProperties();
properties.put(

➥ StreamsConfig.APPLICATION_SERVER_CONFIG,host+":"+port);

// other details left out for clarity

Until this point, you’ve fired up the application without a second thought. Now, you
need to provide two arguments (the host and the port), but this change has minimal
impact.

 You also embed the local server for performing actual queries: for this implemen-
tation, I’ve chosen to use the Spark web server (http://sparkjava.com). (Not that
Spark—this is a book about Kafka Streams, after all!) My motivation for going with the
Spark web server is its small footprint, its convention-over-configuration approach,
and the fact that it’s purpose-built for microservices—and a microservice is what you

Listing 9.6 Setting the hostname and port

Creates a
HostInfo object
for later use in
the application

Sets the config
for enabling
interactive
queries

http://mng.bz/Ogo3
http://sparkjava.com

233Kicking your database to the curb

s

te

rs

can provide by using interactive queries. If the Spark web server isn’t to your liking,
feel free to replace it with another web server.

NOTE I think most readers will be familiar with the term microservice, but
here’s the best definition I’ve seen, from http://microservices.io: “Microser-
vices—also known as the microservice architecture—is an architectural style
that structures an application as a collection of loosely coupled services,
which implement business capabilities. The microservice architecture enables
the continuous delivery/deployment of large, complex applications. It also
enables an organization to evolve its technology stack.”

Now, let’s look at the point in the code where you embed the Spark server, and some
of the supporting code used to manage it (found in src/main/java/bbejeck/chapter_9/
StockPerformanceInteractiveQueryApplication.java).

// details left out for clarity

KafkaStreams kafkaStreams = new KafkaStreams(builder.build(), streamsConfig);
InteractiveQueryServer queryServer =

➥ new InteractiveQueryServer(kafkaStreams, hostInfo);
queryServer.init();

kafkaStreams.setStateListener(((newState, oldState) -> {
if (newState == KafkaStreams.State.RUNNING && oldState ==

➥ KafkaStreams.State.REBALANCING) {
LOG.info("Setting the query server to ready");
queryServer.setReady(true);

} else if (newState != KafkaStreams.State.RUNNING) {
LOG.info("State not RUNNING, disabling the query server");
queryServer.setReady(false);

}
}));

kafkaStreams.setUncaughtExceptionHandler((t, e) -> {
LOG.error("Thread {} had a fatal error {}", t, e, e);
shutdown(kafkaStreams, queryServer);

});

Runtime.getRuntime().addShutdownHook(new Thread(() -> {
shutdown(kafkaStreams, queryServer);

}));

In this code, you create an instance of InteractiveQueryServer, which is a wrapper
class containing the Spark web server and the code to manage the web service calls
and start and stop the web server.

Listing 9.7 Initializing the web server and setting its status

Creates the embedded
web server (actually a

wrapper class)

Adds a StateListener to only enable
queries to state stores until ready

Enables queries to
state stores once
the Kafka Stream
application is in a
RUNNING state.
Queries are
disabled if the sta
isn’t RUNNING.

Sets an Uncaught-
ExceptionHandler to
log unexpected erro
and close everything
down

Adds a shutdown
hook to close
everything down
when the application
exits normally

http://microservices.io

234 CHAPTER 9 Advanced applications with Kafka Streams
 Chapter 7 discussed using a StateListener for notifications about various states of
a Kafka Streams application. Here you can see an efficient use of this listener. Recall
that when running an interactive query, you need to use an instance of StreamsMeta-
data to determine whether the data for the given key is local to the instance process-
ing the query. You set the state of the query server to true, allowing access to the
metadata needed for queries only if the application is in the RUNNING state.

 A key point to keep in mind is that the metadata returned is a snapshot of the
makeup of the Kafka Streams application. At any point in time, you can scale the
application up (or down). When this occurs (or when any other qualifying event takes
place, such as adding topics with a regex source node), the Kafka Streams application
goes through a rebalancing phase and may change partition assignments. In this case,
you’re allowing queries only in the RUNNING state, but feel free to use whatever strategy
you think is appropriate.

 Next is another example of a concept covered in chapter 7: setting an Uncaught-
ExceptionHandler. In this case, you log the error and shut down the application and
the query server. Because this application runs indefinitely, you add a shutdown hook
to close everything down once you stop the demo.

 Now that you’ve seen how to instantiate and start the service, let’s move on to the
code for running the query server.

9.2.5 Inside the query server

When implementing your RESTful service, the first step is to map URL paths to the
correct methods to execute (found in src/main/java/bbejeck/webserver/Interactive-
QueryServer.java).

public void init() {
LOG.info("Started the Interactive Query Web server");

get("/kv/:store", (req, res) -> ready ?

➥ fetchAllFromKeyValueStore(req.params()) :

➥ STORES_NOT_ACCESSIBLE);
get("/session/:store/:key", (req, res) -> ready ?

➥ fetchFromSessionStore(req.params()) :

➥ STORES_NOT_ACCESSIBLE);
get("/window/:store/:key", (req, res) -> ready ?

➥ fetchFromWindowStore(req.params()) :

➥ STORES_NOT_ACCESSIBLE);
get("/window/:store/:key/:from/:to",(req, res) -> ready ?

➥ fetchFromWindowStore(req.params()) :

➥ STORES_NOT_ACCESSIBLE);
}

This code highlights the decision to go with the Spark web server: you can concisely
map URLs to a Java 8 lambda expression to handle the request. These mappings are

Listing 9.8 Mapping URL paths to methods

Mapping to retrieve
all values from a plain
key/value store

Mapping to return all
sessions (from a session
store) for a given key

Mapping for a
window store with
no times specified

Mapping for a window store
with from and to times

235Kicking your database to the curb
straightforward, but notice that you map the retrieval from the window store twice. To
retrieve values from a window store, you need to provide a from time and a to time.

 In the URL mappings, notice the check for the ready Boolean value. This value is
set in StateListener. If ready evaluates to false, you don’t attempt to process the
request, and you return a message that the stores aren’t currently accessible. This
makes sense because a window store is segmented by time, with the segment size estab-
lished when you create the store. (We covered windowing in section 5.3.2.) But I’m
cheating here and offering you a method that accepts only a key and a store and pro-
vides default from and to times that we’ll explore in the next example.

NOTE There’s a proposal (KIP-205, http://mng.bz/lI9Y) to extend ReadOnly-
WindowStore to provide an all() method that retrieves all time segments by
key, alleviating the need to specify from and to times. This functionality hasn’t
been implemented yet but should be included in a future release.

As an example of how the interactive query service works, let’s walk through retrieving
from a windowed store. Although we’ll only look at one example, the source code
contains instructions to run all types of queries.

CHECKING FOR THE STATE STORE LOCATION

You’ll remember that you need to collect various metrics on BSE’s securities sales to
provide stock-transaction data analysis. You decide to first track sales of individual
stocks, keeping a running total over 10-second windows to identify stocks that may
trend up or down.

 You’ll use the following mapping to walk through the example, from reviewing the
request to returning the response:

get("/window/:store/:key", (req, res) -> ready ?

➥ fetchFromWindowStore(req.params()) : STORES_NOT_ACCESSIBLE);

To help you keep your place in the query process, let’s use figure 9.9 as a roadmap.
You’ll start by sending an HTTP get request http://localhost:4567/window/Number-
SharesPerPeriod/XXXX, where XXXX represents the ticker symbol for a given stock
(found in src/main/java/bbejeck/webserver/InteractiveQueryServer.java).

private String fetchFromWindowStore(Map<String, String> params) {
String store = params.get(STORE_PARAM);
String key = params.get(KEY_PARAM);
String fromStr = params.get(FROM_PARAM);
String toStr = params.get(TO_PARAM);

HostInfo storeHostInfo = getHostInfo(store, key);

if(storeHostInfo.host().equals("unknown")){
return STORES_NOT_ACCESSIBLE;

}

Listing 9.9 Mapping the request and checking for the key location

Extracts the request
parameters

Gets the HostInfo
for the key

If the hostname is
"unknown", returns an
appropriate message

http://mng.bz/lI9Y

236 CHAPTER 9 Advanced applications with Kafka Streams

if(dataNotLocal(storeHostInfo)){
LOG.info("{} located in state store on another instance", key);
return fetchRemote(storeHostInfo,"window", params);

}

The request is mapped to the fetchFromWindowStore method. The first step is to pull
out the store name and key (stock symbol) from the request-parameters map. You
fetch the HostInfo object for the key in the request, and you use the hostname to
determine whether the key is located on this instance or a remote one.

 Next, you check whether the Kafka Streams instance is (re)initializing, which is
indicated by the host() method returning "unknown". If so, you stop processing the
request and return a "not accessible" message.

 Finally, you check whether the hostname matches the hostname for the current
instance. If the hostname doesn’t match, you get the data from the instance contain-
ing the key and return the results.

 Next, let’s look at how you retrieve and format the results (found in src/main/
java/bbejeck/webserver/InteractiveQueryServer.java).

Instant instant = Instant.now();
long now = instant.toEpochMilli();
long from = fromStr !=

➥ null ? Long.parseLong(fromStr) : now - 60000;
long to = toStr != null ? Long.parseLong(toStr) : now;

List<Integer> results = new ArrayList<>();

ReadOnlyWindowStore<String, Integer> readOnlyWindowStore =

➥ kafkaStreams.store(store,

➥ QueryableStoreTypes.windowStore());
try(WindowStoreIterator<Integer> iterator =

➥ readOnlyWindowStore.fetch(key, from , to)){
while (iterator.hasNext()) {
results.add(iterator.next().value);

}
}
return gson.toJson(results);

I mentioned earlier that you’ll cheat on the window store query if the from and to
parameters aren’t provided in the query. If the user doesn’t specify a range, by default
you return the last minute of results from the window store. Because you’ve defined a
window of 10 seconds, you’ll return six-windowed results. After you fetch the window
segments from the store, you iterate over them, building a response that indicates the
number of shares purchased for each 10-second interval over the last minute.

Listing 9.10 Retrieving and formatting the results

Checks whether the returned hostname
matches the host of this instance

Gets the current
time in milliseconds

Sets the window segment
start time or, if not
provided, the time as
of one minute ago

Sets the window
segment ending time
or, if not provided,
the current time

Retrieves the ReadOnlyWindowStore

Fetches the window segments

Builds up the response

Converts the results to JSON
and returns to the requestor

237KSQL
RUNNING THE INTERACTIVE QUERY EXAMPLE

To observe the results of this example, you need to run three commands:

 ./gradlew runProducerInteractiveQueries produces the data needed for the
examples.

 ./gradlew runInteractiveQueryApplicationOne starts a Kafka Streams appli-
cation with HostInfo using port 4567.

 ./gradlew runInteractiveQueryApplicationTwo starts a Kafka Streams appli-
cation with HostInfo using port 4568.

Then, point your browser to http://localhost:4568/window/NumberSharesPerPeriod/
AEBB. Click Refresh a few time to see different results. Here’s a static list of company
symbols for this example: AEBB, VABC, ALBC, EABC, BWBC, BNBC, MASH, BARX, WNBC,
WKRP.

RUNNING A DASHBOARD APPLICATION FOR INTERACTIVE QUERIES

A better example is a mini-dashboard web application that updates automatically (via
Ajax) and displays the results from four different Kafka Streams aggregation opera-
tions. By running the commands listed in the previous subsection, you have every-
thing set up; point your browser to localhost:4568/iq or localhost:4567/iq to run the
dashboard application. By going to either instance, you’ll see how Kafka Stream’s
interactive queries handle getting results from all instances with the same application
ID. Look in the README file in the source code for full instructions on how to set up
and start the dashboard application.

 As you can see from observing the web application, you can view live results of the
stream in a dashboard-like application. Previously, this type of application required a
relational database; but here, Kafka Streams provides the information as needed.

 We’ve wrapped up our coverage of interactive queries. Let’s move on to KSQL: an
exciting new tool that Confluent (the company founded by the original developers of
Kafka at LinkedIn) recently released, which allows you to specify long-running queries
against records streaming into Kafka without code, but using SQL.

9.3 KSQL
Imagine you’re working with business analysts at BSE. The analysts are interested in
your ability to quickly write applications in Kafka Streams to perform real-time data
analysis. This interest puts you in a bind.

 You want to work with the analysts and write applications for their requests, but
you also have your normal workload—the additional work makes it hard to keep up
with everything. The analysts understand the added work they’re creating, but they
can’t write code, so they depend on you to write their analytics.

 The analysts are experts on working with relational databases and thus are com-
fortable with SQL queries. If there were some way to give the analysts a SQL layer over
Kafka Streams, everyone’s productivity would increase. Well, now there is.

http://localhost:4568/window/NumberSharesPerPeriod/AEBB
http://localhost:4568/window/NumberSharesPerPeriod/AEBB
http://localhost:4568/window/NumberSharesPerPeriod/AEBB

238 CHAPTER 9 Advanced applications with Kafka Streams
 In August 2017, Confluent unveiled a powerful new tool for stream processing:
KSQL (https://github.com/confluentinc/ksql#-ksql). KSQL is a streaming SQL engine
for Apache Kafka, providing an interactive SQL interface that you can use to write
powerful stream-processing queries without writing code. KSQL is especially adept at
fraud detection and real-time applications.

NOTE KSQL is a big topic and could take a chapter or two if not an entire
book on its own. So, the coverage here will be concise. Fortunately, you’ve
already learned the core concepts underpinning KSQL, because it uses Kafka
Streams under the covers. For more information, see the KSQL documenta-
tion (http://mng.bz/zw3F).

KSQL provides scalable, distributed stream processing, including aggregations, joins,
windowing, and more. Additionally, unlike SQL run against a database or a batch-
processing system, the results of a KSQL query are continuous. Before we dive into
writing streaming queries, let’s take a minute to review some fundamental concepts
of KSQL.

9.3.1 KSQL streams and tables

Section 5.1.3 discussed the concept of an event stream versus an update stream. An event
stream is an unbounded stream of individual independent events, where an update or
record stream is a stream of updates to previous records with the same key.

 KSQL has a similar concept of querying from a Stream or a Table. A Stream is an
infinite series of immutable events or facts, but with a query on a Table, the facts are
updatable or can even be deleted.

 Although some of the terminology is different, the concepts are pretty much the
same. If you’re comfortable with Kafka Streams, you’ll feel right at home with KSQL.

9.3.2 KSQL architecture

KSQL uses Kafka Streams under the covers to build and fetch the results of queries.
KSQL is made up of two components: a CLI and a server. Users of standard SQL tools
such as MySQL, Oracle, and even Hive will feel right at home with the CLI when writ-
ing queries in KSQL. Best of all, KSQL is open source (Apache 2.0 licensed).

 The CLI is also the client connecting to the KSQL server. The KSQL server is
responsible for processing the queries and retrieving data from Kafka as well as writ-
ing results into Kafka.

 KSQL runs in two modes: standalone, which is useful for prototyping and develop-
ment; and distributed, which of course is how you’d use KSQL when working in a more
realistic-size data environment. Figure 9.10 shows how KSQL works in local mode. As
you can see, the KSQL CLI, REST server, and KSQL engine are all located on the
same JVM, which is ideal when running on your laptop.

 Now, let’s look at KSQL in distributed mode; see figure 9.11. The KSQL CLI is by
itself, and it will connect to one of the remote KSQL servers (we’ll cover starting and

https://github.com/confluentinc/ksql#-ksql
http://mng.bz/zw3F

239KSQL
connections in the next section). A key point is that although you only explicitly con-
nect to one of the remote KSQL servers, all servers pointing to the same Kafka cluster
will share in the workload of the submitted query.

Kafka

KSQL CLI
REST

interface

KSQL
engine

JVM

The KSQL CLI and KSQL engine
are in one JVM locally.

Figure 9.10 KSQL in local mode

Kafka

KSQL CLI

REST interface

KSQL engine

REST interface

KSQL engine

REST interface

KSQL engine

Each of the
KSQL engines is in a

separate JVM.

Figure 9.11 KSQL in distributed mode

240 CHAPTER 9 Advanced applications with Kafka Streams
Note that the KSQL servers are using Kafka Streams to execute the queries. This
means that if you need more processing power, you can stand up another KSQL
server, even during live operations (just like you can spin up another Kafka Streams
application). The opposite case works just as well: if you have excess capacity, you can
stop any number of KSQL servers, with the assumption that you’ll leave at least one
server operational. Otherwise, your queries will stop running!

 Next, let’s see how you get KSQL installed and running.

9.3.3 Installing and running KSQL

To install KSQL, you’ll clone the KSQL repo with the command git clone
git@github.com:confluentinc/ksql.git and then cd into the ksql directory and
execute mvn clean package to build the entire KSQL project. If you don’t have git
installed or don’t want to build from source, you can download the KSQL release
from http://mng.bz/765U.

TIP KSQL is an Apache Maven–based project, so you’ll need Maven installed
to build KSQL. If you don’t have Maven installed and you’re on a Mac and
have Homebrew installed, run brew install maven. Otherwise, you can head
over to https://maven.apache.org/download.cgi and download Maven directly;
installation instructions are at https://maven.apache.org/install.html.

Make sure you’re in the base directory of the KSQL project before going any further.
The next step is to start KSQL in local mode:

./bin/ksql-cli local

Note that you’ll be using KSQL in local mode for all the examples, but we’ll still cover
how to run KSQL in distributed mode.

 After running the previous command, you should see something like figure 9.12 in
your console. Congratulations—you’ve successfully installed and launched KSQL!
Next, let’s start writing some queries.

Figure 9.12 KSQL successful launch result

http://mng.bz/765U
https://maven.apache.org/download.cgi
https://maven.apache.org/install.html

241KSQL
9.3.4 Creating a KSQL stream

Getting back to your work at BSE, you’ve been approached by an analyst who is inter-
ested in one of the applications you’ve written and would like to make some tweaks to
it. But instead of this request resulting in more work, you spin up a KSQL console and
turn the analyst loose to reconstruct your application as a SQL statement!

 The example you’re going to convert is the last windowed stream from the interac-
tive queries example found in src/main/java/bbejeck/chapter_9/StockPerformance-
InteractiveQueryApplication.java, lines 96-103. In that application, you track the number
of shares sold every 10 seconds, by company ticker symbol.

 You already have the topic defined (the topic maps to a database table) and a
model object, StockTransaction, where the fields on the object map to columns in
a table. Even though the topic is defined, you need to register this information with
KSQL by using a CREATE STREAM statement in src/main/resources/ksql/create_
stream.txt.

CREATE STREAM stock_txn_stream (symbol VARCHAR, sector VARCHAR, \
industry VARCHAR, shares BIGINT, sharePrice DOUBLE, \
customerId VARCHAR, transactionTimestamp STRING, purchase BOOLEAN) \
WITH (VALUE_FORMAT = 'JSON', KAFKA_TOPIC = 'stock-transactions');

With this one statement, you create a KSQL Streams instance that you can issue
queries against. The WITH clause has two required parameters: VALUE_FORMAT, tell-
ing KSQL the format of the data, and KAFKA_TOPIC, telling KSQL where to pull the
data from. There are two additional parameters you can use in the WITH clause
when creating a stream. The first is TIMESTAMP, which associates the message time-
stamp with a column in the KSQL stream. Operations requiring a timestamp, such
as windowing, will use this column to process the record. The other parameter is
KEY, which associates the key of the message with a column on the defined stream.
In this case, the message key for the stock-transactions topic matches the symbol
field in the JSON value, so you don’t need to specify the key. Had this not been the
case, you would have needed to map the key to a named column, because you
always need a key to perform grouping operations. You’ll see this when you execute
the stream SQL.

TIP The KSQL command list topics; shows a list of topics on the broker
the KSQL CLI is pointing to and whether the topics are registered.

Listing 9.11 Creating a stream

CREATE STREAM statement to create a
stream named stock_txn_stream

Registers the fields of the
StockTransaction object

as columns

Specifies the data format and the Kafka
topic serving as the source of the stream
(both required parameters)

242 CHAPTER 9 Advanced applications with Kafka Streams
You can view all streams and verify that KSQL created the new stream as expected with
the following commands:

show streams;
describe stock_txn_stream;

The results are shown in figure 9.13. Notice that KSQL inserted two extra columns:
ROWTIME and ROWKEY. The ROWTIME column is the timestamp placed on the message
(either from the producer or by the broker), and ROWKEY is the key (if any) of the
message.

Now, let’s run the query on this stream.

NOTE You’ll need to run ./gradlew runProducerInteractiveQueries to
provide data for the KSQL examples

9.3.5 Writing a KSQL query

The SQL query for performing the stock analysis is as follows:

SELECT symbol, sum(shares) FROM stock_txn_stream

➥ WINDOW TUMBLING (SIZE 10 SECONDS) GROUP BY symbol;

Run this query, and you’ll see results similar
to those shown in figure 9.14. The column
on the left is the ticker symbol, and the num-
ber is the number of shares traded for that
symbol over the last 10 seconds. With this
query, you specify a tumbling window of 10
seconds, but KSQL supports session and hopping windows, as well, as we discussed in
section 5.3.2.

Figure 9.13 Listing streams, and
describing your newly created stream

Figure 9.14 Results of
the tumbling window query

243KSQL
 You’ve built a streaming application without writing any code—quite an achieve-
ment. For a comparison, let’s look at the corresponding application written in the
Kafka Streams API.

KStream<String, StockTransaction> stockTransactionKStream =

➥ builder.stream(MockDataProducer.STOCK_TRANSACTIONS_TOPIC,
Consumed.with(stringSerde, stockTransactionSerde)

.withOffsetResetPolicy(Topology.AutoOffsetReset.EARLIEST));

Aggregator<String, StockTransaction, Integer> sharesAggregator =

➥ (k, v, i) -> v.getShares() + i;

stockTransactionKStream.groupByKey()
.windowedBy(TimeWindows.of(10000))
.aggregate(() -> 0, sharesAggregator,

Materialized.<String, Integer,
WindowStore<Bytes,
byte[]>>as("NumberSharesPerPeriod")

.withKeySerde(stringSerde)

.withValueSerde(Serdes.Integer()))
.toStream().

➥ peek((k,v)->LOG.info("key is {} value is{}", k, v));

Even though the Kafka Streams API is concise, the equivalent you wrote in KSQL is a
one-liner query. Before we wrap up our coverage of KSQL, let’s discuss some additional
features of KSQL.

9.3.6 Creating a KSQL table

So far, we’ve demonstrated creating a KSQL stream. Now, let’s see how to create a
KSQL table, using the stock-transactions topic as the source, for familiarity (found
in src/main/resources/ksql/create_table.txt).

CREATE TABLE stock_txn_table (symbol VARCHAR, sector VARCHAR, \
industry VARCHAR, shares BIGINT, \
sharePrice DOUBLE, \
customerId VARCHAR, transactionTimestamp \
STRING, purchase BOOLEAN) \
WITH (KEY='symbol', VALUE_FORMAT = 'JSON', \
KAFKA_TOPIC = 'stock-transactions');

Once you’ve created the table, you can execute queries against it. Keep in mind that
the table will contain updates for each transaction by symbol, because the stock-
transactions topic is keyed by the ticker symbol.

Listing 9.12 Stock analysis application written in Kafka Streams

Listing 9.13 Creating a KSQL table

244 CHAPTER 9 Advanced applications with Kafka Streams
 A useful experiment is to pick a ticker symbol from the streaming stock-perfor-
mance query, and then run the following queries in the KSQL console, and notice the
difference in output:

select * from stock_txn_stream where symbol='CCLU';
select * from stock_txn_table where symbol='CCLU';

The first query produces several results, because it’s a stream of individual events. But
the table query returns far fewer results (one record, when I ran the experiment).
These results are the expected behavior, because a table represents updates to facts,
whereas a stream represents a series of unbounded events.

9.3.7 Configuring KSQL

KSQL offers the familiar SQL syntax and the ability to write powerful streaming appli-
cations quickly, but you may have noticed the lack of configuration. This is not to say
you can’t configure KSQL. You’re free to override any settings as needed, and any of
the stream, consumer, and producer configs that you can set for a Kafka Streams
application are available. To view the properties that are currently set, run the show
properties; command.

 As an example of setting a property, here’s how you can change auto.offset
.reset to earliest:

SET 'auto.offset.reset'='earliest';

This is the approach you use to set any property in the KSQL shell. But if you need to
set several configurations, typing each one into the console isn’t convenient. Instead,
you can specify a configuration file on startup:

./bin/ksql-cli local --properties-file /path/to/configs.properties

This has been a quick tour of KSQL, but I hope you can see the power and flexibility it
gives you for creating streaming applications on Kafka.

Summary
 By using Kafka Connect, you can incorporate other data sources into your

Kafka Streams applications.
 Interactive queries are a potent tool: they allow you to see data in a stream as it

flows through your Kafka Streams application, without the need for a relational
database.

 The KSQL language lets you quickly build powerful streaming applications
without code. KSQL promises to deliver the power and flexibility of Kafka
Streams to workers who aren’t developers.

appendix A
Additional configuration

information

This appendix covers common and not-so-common configuration options for a
Kafka Streams application. During the course of the book, you’ve seen several exam-
ples of configuring a Kafka Streams application, but the configurations usually
included only the required (application ID, bootstrap servers) and a handful of other
configs (key and value serdes). In this appendix, I’ll show you some other settings
that, although not required, will help you keep your Kafka Streams applications run-
ning smoothly. These options will be presented in somewhat of a cookbook fashion.

Limiting the number of rebalances on startup
When starting up a Kafka Streams application, if you have multiple instances, the
first instance gets all the topic partitions assigned from the GroupCoordinator on
the broker. If you start another instance, a rebalance occurs, removing current
TopicPartition assignments and reassigning all TopicPartitions across both
Kafka Streams instances. This process is repeated until you’ve started all Kafka
Streams applications that have the same application ID.

 This is normal operation for a Kafka Streams application. But during a rebal-
ance, processing of records is paused until the rebalance is completed; thus, you’d
like to limit the number of rebalances when starting up, if possible.

 With the release of Kafka 0.11.0, a new broker configuration, group.initial
.rebalance.delay.ms, was introduced. This configuration delays the initial consumer
rebalance from the GroupCoordinator when a new consumer joins the group by the
amount specified in the group.initial.rebalance.delay.ms configuration. The
default setting is 3 seconds. As other consumers join the group, the rebalance is con-
tinually delayed by the configured amount (up to a limit of max.poll.interval.ms).
245

246 APPENDIX A Additional configuration information
This benefits Kafka Streams because as you start new instances, the rebalance is
delayed until all instances have come online (assuming you’re starting them up one
after another). For example, if you start four instances with the appropriate rebal-
ance-delay setting, you should have only one rebalance after all four instances come
online—meaning you’ll start processing data more quickly.

Resilience to broker outages
To keep your Kafka Streams application resilient in the face of broker failures, here
are some recommended settings (see listing A.1):

■ Set Producer.NUM_RETRIES to Integer.MAX_VALUE.
■ Set Producer.REQUEST_TIMEOUT to 305000 (5 minutes).
■ Set Producer.BLOCK_MS_CONFIG to Integer.MAX_VALUE.
■ Set Consumer.MAX_POLL_CONFIG to Integer.MAX_VALUE.

Properties props = new Properties();
props.put(StreamsConfig.producerPrefix(

➥ ProducerConfig.RETRIES_CONFIG), Integer.MAX_VALUE);
props.put(StreamsConfig.producerPrefix(

➥ ProducerConfig.MAX_BLOCK_MS_CONFIG), Integer.MAX_VALUE);
props.put(StreamsConfig.REQUEST_TIMEOUT_MS_CONFIG, 305000);
props.put(StreamsConfig.consumerPrefix(

➥ ConsumerConfig.MAX_POLL_INTERVAL_MS_CONFIG), Integer.MAX_VALUE);

Setting these values should help ensure that if all brokers in the Kafka cluster go
down, your Kafka Streams application will stay up and be ready to resume working
once the brokers are back online.

Handling deserialization errors
Kafka works with byte arrays for keys and values, and you need to deserialize the keys and
values to work with them. This is why you need to provide serdes for all source and sink
processors. It wouldn’t be unexpected to have some malformed data during record pro-
cessing. Kafka Streams provides the default.deserialization.exception.handler
and StreamsConfig.DEFAULT_DESERIALIZATION_EXCEPTION_HANDLER_CLASS_CONFIG

configurations to specify how you want to handle these deserialization errors.
 The default setting is org.apache.kafka.streams.errors.LogAndFailException-

Handler, which, as the name implies, logs the error. Your Kafka Streams application
instance will fail (shut down) due to this deserialization exception. Another class,
org.apache.kafka.streams.errors.LogAndContinueExceptionHandler, logs the error,
but your Kafka Streams application will continue to run.

 You can implement your own deserialization exception handler by creating a class
implementing the DeserializationExceptionHandler interface.

Listing A.1 Setting properties for resilience to broker outages

247Scaling up your application
Properties props = new Properties();
props.put(StreamsConfig.DEFAULT_DESERIALIZATION_EXCEPTION_HANDLER_CLASS_

➥ CONFIG, LogAndContinueExceptionHandler.class);

I only show how to set the LogAndContinueExceptionHandler handler, because the
log-and-fail version is the default setting.

Scaling up your application
In all the examples in the book, the Kafka Streams applications run with one stream
thread. That’s fine for development, but in practice you’ll most likely need to run with
more than one stream thread. The question is how many threads and how many Kafka
Streams instances to use. There are no concrete answers, because only you know your
circumstances well enough to address those questions, but we can go over some basic
calculations to give you a good idea.

 You’ll remember from chapter 3 that Kafka Streams creates a StreamTask per par-
tition of the input topic(s). For our first example, we’ll consider a single input topic
with 12 partitions, to keep the discussion straightforward.

 With 12 input partitions, Kafka Streams creates 12 tasks. For the moment, let’s
assume you want to have 1 task per thread. You could have 1 instance with 12 threads,
but that approach has a drawback: if the machine hosting your Kafka Streams applica-
tion were to go down, all stream processing would stop.

 But if you start instances with 4 threads each, then each instance will process 4
input partitions. The benefit of this approach is that if one of the Kafka Streams
instances goes down, a rebalance will be triggered, and the 4 tasks from the non-
running instance will be assigned to the other 2 instances; thus, the remaining appli-
cations will process 6 tasks each. Additionally, when the stopped instance resumes
running, another rebalance will occur, and all 3 instances will go back to processing 4
tasks.

 One important consideration is that when determining the number of tasks to cre-
ate, Kafka Streams takes the maximum number of partitions from all input topics. If
you have 1 topic with 12 partitions, you end up with 12 tasks; but if the number of
source topics is 4, with 3 partitions each, you’ll have 3 tasks, each of which is responsi-
ble for processing 4 partitions.

 Keep in mind that any stream threads beyond the number of tasks will be idle.
Going back to the example of 3 Kafka Streams instances, if you stand up a fourth
instance of 4 threads, then after rebalancing you’ll have 4 idle stream threads among
your applications (16 threads, but only 12 tasks).

 This is a key component of Kafka Streams that I mentioned earlier in the book.
This dynamic scaling up or down doesn’t involve taking your application offline—it
happens automatically. This feature is helpful because if you have an uneven flow of

Listing A.2 Setting a deserialization handler

248 APPENDIX A Additional configuration information
data into the application, you can spin up additional instances to handle the load and
then take some offline when the volume drops off.

 Do you always want a single thread per task? Maybe, but it’s hard to say, because it
depends on the demands of your application.

RocksDB configuration
For stateful operations, Kafka Streams uses RocksDB (http://rocksdb.org) under the
covers as the persistence mechanism. RocksDB is a fast, highly configurable key/value
store. There are too many options to make specific recommendations here, but Kafka
Streams provides a way to override the default settings with the RocksDBConfigSetter
interface.

 To set custom RocksDB settings, create a class implementing the RocksDBConfig-
Setter interface, and then provide the class name when configuring your Kafka
Streams application via the StreamsConfig.ROCKSDB_CONFIG_SETTER_CLASS_CONFIG
setting. To get an idea of what you can adjust with RocksDB, I encourage you to read
the RocksDB Tuning Guide at http://mng.bz/I88k.

Creating repartitioning topics ahead of time
In Kafka Streams, any time you perform an operation that may potentially change the
map key—transform or groupBy, for example—an internal flag is set in the Streams-
Builder class, indicating that repartitioning will be required. Now, performing a map
or transform won’t automatically force the creation of a repartitioning topic and the
repartitioning operation; but as soon as you add an operation using the updated key, a
repartitioning operation will be triggered.

 Although this is a required step (covered in chapter 4), in some cases, it’s better to
repartition the data yourself ahead of time. Consider the following (abbreviated)
example:

KStream<String, String> mappedStream =

➥ streamsBuilder.stream("inputTopic").map(....);
KTable<Windowed<String>, Long> ktable1 =

➥ mappedStream.groupByKey().windowedBy...count()
KTable<Windowed<String>, Long> ktable2 =

➥ mappedStream.groupByKey().windowedBy...count()
KTable<Windowed<String>, Long> ktable3 =

➥ mappedStream.groupByKey().windowedBy...count()

Here, you map the original stream to create a new key to group by. You want to per-
form three counts with three different windowing options—a legitimate use case. But
because you mapped to a new key, each windowed count operation creates a new
repartition topic. Again, the need for a repartition topic makes sense due to the
changed key, but having three repartition topics duplicates data when you need only
one repartition topic.

Maps the original input
stream to create a new key

Windowed
count option 1

Windowed
count option 2

Windowed
count option 3

http://rocksdb.org
http://mng.bz/I88k

249Configuring internal topics

nal
o
ey,
ns
 The solution to this issue is simple: after your map call, you immediately use a
through operation to partition the data. Then, the subsequent groupByKey calls won’t
trigger repartitioning, because the groupByKey operator does not set the repartition-
needed flag. Here’s the revised code:

KStream<String, String> mappedStream =

➥ streamsBuilder.stream("inputTopic").map(....).through(...);

By adding the through processor and repartitioning manually, you have one reparti-
tion topic instead of three.

Configuring internal topics
When building a topology, depending on the processors you add, Kafka Streams may
create several internal topics. These internal topics can be changelogs for backing up
state stores, or repartition topics. Depending on your data volume, these internal top-
ics can consume a large amount of space. Additionally, even though changelog topics
are by default created with a cleanup policy of "compact", if you have many unique
keys, these compacted topics can grow in size. With this in mind, it’s a good idea to
configure your internal topics to keep their size manageable.

 You have two options for managing internal topics. First, you can provide configs
directly when creating state stores, using either StoreBuilder.withLoggingEnabled
or Materialized.withLoggingEnabled. Which method you use depends on how
you create the state store. Both methods take a Map<String, String> containing the
topic properties. You can see an example in src/main/java/bbejeck/chapter_7/
CoGroupingListeningExampleApplication.

 The other option for managing internal topics is to provide configurations for
them when configuring your Kafka Streams application:

Properties props = new Properties();
// other properties set here
props.put(StreamsConfig.topicPrefix("retention.bytes"), 1024 * 1024);
props.put(StreamsConfig.topicPrefix("retention.ms"), 3600000);

When using the StreamsConfig.topicPrefix approach, the provided settings are
applied globally to all internal topics. Any topic settings provided when creating a
state store will take precedence over the settings provided with StreamsConfig.

 I can’t give you much advice regarding what settings to use, because that depends
on your particular use case. But keep in mind that the default size of a topic is unlim-
ited and the default retention time is one week, so you should adjust the retention
.bytes and retention.ms settings. In addition, for changelogs backing state stores
with many unique keys, you can set cleanup.policy to compact, delete to ensure that
the topic size stays manageable.

Maps the origi
input stream t
create a new k
and repartitio

250 APPENDIX A Additional configuration information
Resetting your Kafka Streams application
At some point, you may need to start a Kafka Streams application over and reprocess
data, either in development or after a code update. To do this, Kafka Streams pro-
vides a kafka-streams-application-reset.sh script in the bin directory of the Kafka
installation.

 The script has one required parameter: the application ID of the Kafka Streams
application. The script offers several options, but in a nutshell, it can reset input top-
ics to the earliest available offset, reset intermediate topics to the latest offset, and
delete any internal topics. Note that you’ll need to call KafkaStreams.cleanUp the
next time you start your application, to delete any local state from previous runs.

Cleaning up local state
Chapter 4 discussed how Kafka Streams stores local state per task on the local filesys-
tem. During development or testing, or when migrating to a new instance, you may
want to clean out all previous local state.

 To clean up any previous state, you can use KafkaStreams.cleanUp either before
you call KafkaStreams.start or after KafkaStreams.stop. Using the cleanUp method
at any other time will result in an error.

appendix B
Exactly once semantics

Kafka achieved a major milestone with the release of version 0.11.0: exactly once
semantics. Prior to this release of Kafka, the delivery semantics of Kafka could have
been described as at-least-once or at-most-once, depending on the producer.

 In the case of at-least-once delivery, a broker can persist a message but experi-
ence an error before sending the acknowledgment back to the producer, assuming
the producer is configured with asks="all" and times out waiting for the acknowl-
edgment. If the producer is configured with retries greater than zero, it will resend
the message, unaware that the previous message was successfully persisted. In this
scenario (although rare), a duplicate message is delivered to consumers—hence,
the phrase at least once.

 For the at-most-once condition, consider the case where a producer is config-
ured with retries set to zero. In the previous example, the message in question
would be delivered only once, because there are no retries. But if the broker
experiences an error before it can persist the message, the message won’t be sent.
In this case, you’ve traded receiving all messages for not receiving any duplicate
messages.

 With exactly once semantics, even in situations where a producer resends a mes-
sage that was previously persisted to a topic, consumers will receive the message
exactly once. To enable transactions or exactly once processing with a Kafka-
Producer, you add a configuration transactional.id and a couple of method calls,
as shown in the following example. Otherwise, producing messages with transactions
looks familiar. Note that this excerpt doesn’t stand alone—it’s provided to highlight
what’s required to produce and consume messages with the transactional API:

Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("transactional.id", "transactional-id");
251

252 APPENDIX B Exactly once semantics
Producer<String, String> producer =

➥ new KafkaProducer<>(props, new StringSerializer(), new StringSerializer());

producer.initTransactions();

try {
// called right before sending any records
producer.beginTransaction();

...sending some messages

// when done sending, commit the transaction
producer.commitTransaction();

} catch (ProducerFencedException | OutOfOrderSequenceException |

➥ AuthorizationException e) {

producer.close();
} catch (KafkaException e) {

producer.abortTransaction();
}

To use KafkaConsumer with transactions, you need to add only one configuration:

props.put("isolation.level", "read_committed");

In read_committed mode, KafkaConsumer only reads successfully committed transac-
tional messages. The default setting is read_uncommitted, which returns all messages.
Non-transactional messages are always retrieved in either configuration setting.

 The impact of exactly once semantics is a big win for Kafka Streams. With exactly
once, or transactions, you’re guaranteed to process records through a topology
exactly once.

 To enable exactly once processing with Kafka Streams, set StreamsConfig.PROCESSING
_GUARANTEE_CONFIG to exactly_once. The default setting for PROCESSING_GUARANTEE
_CONFIG is at_least_once, or non-transactional processing. With that simple configu-
ration setting, Kafka Streams handles all required steps for performing transactional
processing.

 This has been a quick overview of Kafka’s transactional API. For more information,
check out the following resources:

■ Dylan Scott, Kafka in Action (Manning, forthcoming), www.manning.com/books/
kafka-in-action

■ Neha Narkhede, “Exactly-once Semantics Are Possible: Here’s How Kafka Does
It,” Confluent, June 30, 2017, http://mng.bz/t9rO

■ Apurva Mehta and Jason Gustafson, “Transactions in Apache Kafka,” Confluent,
November 17, 2017, http://mng.bz/YKqf

■ Guozhang Wang, “Enabling Exactly-Once in Kafka Streams,” Confluent, Decem-
ber 13, 2017, http://mng.bz/2A32

When setting transactional.id,
you need to call this method
before any others.

The only option for any of the
non-recoverable exceptions is
to close the producer.

For any other exception,
abort and retry.

http://mng.bz/t9rO
http://mng.bz/YKqf
http://mng.bz/2A32
http://www.manning.com/books/kafka-in-action
http://www.manning.com/books/kafka-in-action
http://www.manning.com/books/kafka-in-action

index
A

abstractions, higher-level vs.
more control 146

AbstractProcessor class 150
access control 36
adder() method 131
addProcessor() method 148
addSource() method 148
advanceBy() method 138
advanced applications with

Kafka Streams
integrating Kafka with other

data sources 218–226
Kafka Connect 219–222
transforming data 222–226

interactive queries 226–237
coding 232–234
overview 228–229
query server 234–237
state stores 230–232

KSQL 237–244
architecture 238–240
configuring 244
installing and running 240
queries 242–243
streams 241–242
tables 243–244

AggregatingMethodHandle-
Processor 206

AggregatingMethodHandle-
ProcessorTest 206

aggregations 126–144
GlobalKTables 140–143

joining KStreams with
141–143

joining with smaller
datasets 141

repartitioning, cost of 141
joining KStreams and

KTables 139–140
converting KTable to

KStream 139
creating financial news

KTable 140
joining news updates with

transaction counts 140
Queryable state 143–144
share volume by

industry 127–132
application metrics 182–191

collected metrics 185
metrics configuration

184–185
using JMX 185–189

JConsole, starting 186
monitoring running

program 186–188
viewing information

188–189
viewing metrics 189–191

architecture, Kafka 25–39
controller

electing 34
responsibilities of 35–36

logs 27–28
compacting 38–39
deleting 37–38
distributed 32
management of 37

message broker 26
partitions 28–29

determining correct num-
ber of 32

grouping data by key 29–30
specifying custom

partitioner 31–32
writing custom

partitioner 30–31
replication 34
ZooKeeper 33–34

at-least-once condition 251
at-most-once condition 251
AtomicInteger 43
automatic offset commits 46

B

backpressure 15
batch processing 4
batch processing, inadequacy

for 8
big data 4–8

batch processing, inadequacy
for 8

genesis of 4–5
MapReduce 5–8

distributing data across
cluster to achieve scale
in processing 6–7

embracing failure by using
replication 8

using key/value pairs and
partitions 7–8

bootstrap servers 42
branch() method 79
broker 25
broker outages 246
253

INDEX254
bucketing 118
builder.stream method 128

C

cache operation 124
Callback.onComplete

method 41
Cassandra 70
changelog, updates to

119–121
@ClassRule annotation 210
cleaning local state 250
ClickEventProcessor 164
close() method 90, 150
cluster 25
cluster membership 36
co-group processor 159–170

processor nodes, adding
162–167

sink node, adding 168–170
source nodes, defining 161
state store, adding 167–168

CoGrouping-Processor 169
commitSync() method 46
compression type 42
ConcurrentHashMap 196
configuration

cleaning local state 250
creating repartitioning topics

ahead of time 248–249
handling deserialization

errors 246–247
internal topics 249
limiting number of rebalances

on startup 245–246
local 49–50
resetting Kafka Streams

application 250
resilience to broker

outages 246
RocksDB 248
scaling up application

247–248
Consumed class 60
consumer group 47
consumer lag 177
consumers 25
consumers, reading messages

with 44–49
consumer example 48–49
creating consumer 47
finer-grained consumer

assignment 48
offsets 44–46

partitions and consumers 47
rebalancing 47–48

controller
electing 34
responsibilities of 35–36

co-partitioning 108–109
count() method 135
credit cards

masking node 12
masking numbers 17–19

custom partitioner
specifying 31–32
writing 30–31

customer data 65–74
constructing topology 66–72

building source node
66–67

functional programming
hints 67

last processor 70–72
second processor 68–69
third processor 69–70

creating custom Serde 72–74
customer IDs, keys

containing 103–104
customer rewards 10, 19, 88–89

D

data locality 96–97
DEBUG level 184
debugging Kafka Streams

191–198
getting notification on vari-

ous states of
application 192–193

State restore listener
195–198

uncaught exception
handler 198

using StateListener 193–195
viewing representation of

application 191–192
DefaultPartitioner 31
deserialization errors 246–247
DeserializationExceptionHan-

dler interface 246
developing Kafka Streams

customer data 65–74
constructing topology

66–72
creating custom Serde

72–74
Hello World 58–65

configuration 63

Serde creation 63–65
topology for Yelling

App 59–63
interactive development

74–76
next steps 76–83
Streams Processor API 58

disableLogging() method 99
distributed logs 32

E

economic forecasting 9
electronicsStream

parameter 107
embedded Kafka cluster 209
EmbeddedKafkaCluster 210,

214
ETL (extract, transform, load) 3
event streams, vs. update

streams 122–123
event time 111
ExtractKey 224
ExtractRecordMetadataTime-

stamp class 113

F

FailOnInvalidTimestamp
class 113

failure
embracing by using

replication 8
recovery from 97–98

fault tolerance 97–98
fetchFromWindowStore

method 236
fixedQueue variable 131
FixedSizePriorityQueue 131
FlattenStruct 225
fluent interface 58
foreach actions 82–83
ForeachAction interface 76, 83
fraud 9
from-beginning parameter 53
functional programming 67

G

GlobalKTables 140–143
joining KStreams with

141–143
joining with smaller

datasets 141
repartitioning, cost of 141

INDEX 255
graph of processing nodes
15–16

GroupBy method 129
groupBy operation 135
GroupByKey method 129
groupByKey operator 249
GroupCoordinator 245
grouping data, by key 29–30
grouping records 7
Gson 73

H

hashing function 7
Hello World 58–65

configuration 63
Serde creation 63–65
topology for Yelling App

59–63
higher-level abstractions vs.

more control 146
hopping windows 133, 137–139

I

IDs, customer, keys
containing 103–104

INFO level 184
ingestion time 112
init() method 90, 151
installing

Kafka 49–50
KSQL 240

interactive development 74–76
interactive queries 143, 226–237

coding 232–234
inside query server 234–237
overview 228–229
state stores 229–232

InteractiveQueryServer
class 233

internal topics, configuring 249
intrusion detection 9
ISR (in-sync replica) 34

J

Java VisualVM 185
JConsole, starting 186
JMX, application metrics

using 185–189
JConsole, starting 186
monitoring running

program 186–188
viewing information 188–189

join() method 105
joined parameter 107
joining

Kafka Streams 100–110
co-partitioning 108–109
data setup 102–103
implementation 106–108
keys containing customer

IDs 103–104
left-outer join 110
outer joins 109
purchase records 105–106

KStreams and KTables
139–140

converting KTable to
KStream 139

creating financial news
KTable 140

joining news updates with
transaction counts 140

JoinWindows.after method 108
JoinWindows.before

method 108
JoinWindows.of method 107
JUnit rules 210–211

K

Kafka
installing, local

configuration 49–50
starting 50
See also architecture, Kafka

Kafka Connect 218–222
Kafka Streams 15–16

API, integrating Processor API
with 170–171

debugging techniques
191–198

getting notification on
various states of
application 192–193

State restore listener
195–198

uncaught exception
handler 198

using StateListener
193–195

viewing representation of
application 191–192

events 85–86
joining 100–110

co-partitioning 108–109
data setup 102–103
implementation 106–108

keys containing customer
IDs 103–104

left-outer join 110
outer joins 109
purchase records 105–106

state and 86
state stores

configuring changelog
topics 99–100

using for lookups and
previously seen
data 96–100

stateful operations, applying
to 86–96

mapping Purchase object to
RewardAccumulator
using state 90–94

stateful customer
rewards 88–89

transformValues
processor 87

updating rewards
processor 94–96

value transformer,
initializing 90

TimestampExtractor
custom 114–115
provided implementations

112–113
specifying 115
WallclockTimestamp-

Extractor 113
See also advanced applications

with Kafka Streams; devel-
oping Kafka Streams; pur-
chase transaction; stream
processing

Kafka Streams application
resetting 250
testing

integration testing
208–214

topology 201–208
KafkaConsumer 252
KafkaProducer 42, 251
key/value pairs 7–8, 15
key/value store suppliers 99
keys

containing customer
IDs 103–104

grouping data by 29–30
KeyValueIterator 167
KGroupedStream 127
KGroupedStream.windowedBy

method 132

INDEX256
KSQL 237–244
architecture 238–240
configuring 244
installing and running 240
queries 242–243
streams 238, 241–242
tables 238, 243–244

KStream.mapValues
function 61, 83

KStreamNot 78
KStreams, joining to

KTables 139–140
converting KTable to

KStream 139
creating financial news

KTable 140
joining news updates with

transaction counts 140
KStream.through() method

93
KStream.to() method 109
KTable API

aggregations 126–144
GlobalKTables 140–143
joining KStreams and

KTables 139–140
Queryable state 143–144
share volume by industry

127–132
record updates and KTable

configuration 123–126
cache buffering size

124–125
commit interval 125–126

streams and tables,
relationship between
118–123

event streams vs. update
streams 122–123

record stream 118–119
updates to records or

changelog 119–121
windowing operations

132–139
counting stock transactions

by customer 132
session windows 133–134
session windows, using to

track stock
transactions 134–136

sliding or hopping
windows 137–139

tumbling windows
136–137

window types 133

KTables, joining to
KStreams 139–140

converting KTable to
KStream 139

creating financial news
KTable 140

joining news updates with
transaction counts 140

KTable.toStream() method 139

L

left-outer join 110
list command 178
local configuration 49–50
local state, cleaning 250
log rolling 37
LogAndSkipOnInvalidTime-

stamp class 113
LoggingStateRestoreListener

197
logs 27–28

compacting 38–39
deleting 37–38
distributed 32
management of 37

M

manual offset commits 46
MapReduce 5–8

distributing data across cluster
to achieve scale in
processing 6–7

embracing failure by using
replication 8

using key/value pairs and
partitions 7–8

mapValues method 89, 94
Materialized class 98
materialized views 143
message broker 26
messages

reading 53–54
reading with consumers

44–49
consumer example 48–49
creating consumer 47
finer-grained consumer

assignment 48
offsets 44–46
partitions and

consumers 47
rebalancing 47–48

sending first message 52–54

sending with producers
40–44

partitions, specifying
42–43

producer properties 42
timestamps 43–44

metrics. See application metrics
microbatching 4
microservices 233
Mockito 205
monitoring and performance

application metrics 182–191
collected metrics 185
metrics configuration

184–185
using JMX 185–189
viewing metrics 189–191

basic monitoring 176–182
consumer and producer

performance,
measuring 176–178

consumer lag, checking
for 178–179

producer and consumer,
intercepting
179–182

Kafka Streams, debugging
techniques 191–198

N

next() method 47
null value 39

O

onBatchRestored method 197
onRestoreStart method 196
ORM (object-relational

mapping) 146
outer joins 109

P

PageRank algorithm 5
PairRDDFunctions.cogroup

method 161
partitioner class 42
Partitioner interface 31
partitioning streams 79
partitions 7, 28–29

consumers and 47
determining correct number

of 32
grouping data by key 29–30

INDEX 257
partitions (continued)
specifying 42–43
specifying custom partitioner

31–32
writing custom partitioner

30–31
partitions flag 53
patterns node 13
performance. See monitoring

and performance
print() method 76, 122–123
Printed.toSysOut() method 75
Printed.withKeyValueMapper

method 75
privacy 10
process() method 149, 157–158
processing nodes, graph of

15–16
processing time 112
Processor API

co-group processor 159–170
processor nodes, adding

162–167
sink node, adding 168–170
source nodes, defining 161
state store, adding

167–168
higher-level abstractions vs.

more control 146
integrating with Kafka

Streams API 170–171
stock analysis processor

152–159
process() method

157–158
punctuator execution

158–159
stock-performance proces-

sor application
153–156

topology 146–152
processor node 148–151
sink node 151–152
source node 147–148

processor node, Processor
API 148–151

ProcessorContext object 154
Processor.punctuate method

110
ProcessorSupplier() method

148
ProcessorTopologyTestDriver

201, 214
ProducerInterceptor 182
producers 25

producers, sending messages
with 40–44

partitions, specifying 42–43
producer properties 42
timestamps 43–44

punctuate() method 87, 150,
155, 206

Purchase object 90–94
purchase patterns 18–19
purchase records

general discussion 105–106
writing 20

purchase transaction
changing perspective on

12–13
credit card masking node 12
patterns node 13
rewards node 13
source node 12
storage node 13

flow of, applying to Kafka
Streams to 16–20

customer rewards 19
masking credit card

numbers 17–19
purchase patterns 18–19
source, defining 16–17
writing purchase

records 20
handling 10–11

deconstructing require-
ments into graph 11

weighing stream-processing
option 10–11

purchaseJoiner parameter 107
PurchaseKeyPartitioner 30
PurchasePattern object 18

Q

queries
interactive 226–237

coding 232–234
inside query server 234–237
overview 228–229
state stores 229–232

KSQL 242–243
Queryable state 143–144

R

reading messages, with
consumers 44–49

consumer example 48–49
creating consumer 47

finer-grained consumer
assignment 48

offsets 44–46
partitions and consumers 47
rebalancing 47–48

ReadOnlyWindowStore 235
rebalances, limiting number of

on startup 245–246
record stream 118–119
records, updates to 119–121
repartitioning

creating topics ahead of
time 248–249

general discussion 92–94
repeatable tests 200
ReplaceField 222
replication 8, 34
replication-factor flag 52
resetting Kafka Streams

application 250
retries 42
RewardAccumulator object 19,

88
RewardAccumulator, mapping

to Purchase object using
state 90–94

rewards node 13
rewards processor, updating

94–96
RocksDB 99, 248

S

sales data 11
sales transaction data hub

24–25
scaling up application

247–248
SELECT statements 146
selectKey method 83, 108
sending messages, with

producers 40–44
partitions, specifying 42–43
producer properties 42
timestamps 43–44

Serde class 60, 63–65
Serde.String() method 72
serialization 42
session windows 133–134
ShareVolume 127
ShareVolume.sum method 129
simpleFirstStream 59
sink node, Processor API

151–152
sliding windows 133, 137–139

INDEX258
SMA (simple moving average)
157

source, defining 16–17
splitting streams 79
state 86

state stores
configuring changelog

topics 99–100
using for lookups and

previously seen data
96–100

stateful operations, applying
to Kafka Streams 86–96

mapping Purchase object to
RewardAccumulator
using state 90–94

stateful customer
rewards 88–89

transformValues
processor 87

updating rewards
processor 94–96

value transformer,
initializing 90

State restore listener 195–198
StateListener 193–195
StateRestoreListener 196
StateStore fault tolerance 99
stock analysis processor

152–159
process() method 157–158
punctuator execution

158–159
stock-performance processor

application 153–156
storage 11
storage node 13
StoreBuilder class 98
stream processing 4

overview 8–10
when to use and when not

to 9–10
StreamPartitioner 94
Streams Processor API 58
StreamsBuilder class 248
StreamsBuilder.stream

method 67
StreamsConfig.APPLICATION

_ID_CONFIG property 63
StreamsConfig.BOOTSTRAP

_SERVERS_CONFIG
property 63

StreamTask 92, 155, 247
StreamThread 155
sum() method 129

T

tables
KSQL 243–244
streams and 118–123

event streams vs. update
streams 122–123

record stream 118–119
updates to records or

changelog 119–121
test() method 77
testing Kafka Streams applica-

tion
integration testing 208–214

dynamically adding topic
213–214

EmbeddedKafkaCluster,
adding 210

JUnit rules 210–211
producing and consuming

records in test 212–213
testing topology 211–212
topics, creating 211

topology 201–208
building test 202–204
processors and

transformers 205–208
state store in 204–205

TimestampConverter 222
TimestampExtractor 110–115

custom 114–115
provided implementations

112–113
specifying 115
WallclockTimestampExtractor

113
TimestampExtractor

interface 112
timestamps 43–44
topic configuration 36
TopicPartition 245
topics 25, 27
topology 15
TopologyBuilderException 108
Topology.describe()

method 191
topologyTestDriver.readOutput

method 203

toStream().map function 142
toUpperCase() method 61
TransactionSummary object 139
transform() method 91
transformValues processor 87
transformValues() method 87,

89, 171
tumbling windows 133, 136–137
twentyMinuteWindow

parameter 107

U

until() method 137
update streams, vs. event

streams 122–123
updates

to changelog 119–121
to records 119–121, 123–126

UsePreviousTimeOnInvalid-
Timestamp class 113, 148

V

value transformer, initializing
90

ValueMapper interface 18, 61

W

WallclockTimestampExtractor
113

windowing 118
windowing operations 132–139

counting stock transactions by
customer 132

session windows 133–134
sliding or hopping

windows 137–139
tumbling windows 136–137
window types 133

withLabel() method 75

Y

Yelling App, topology for 59–63

Z

ZMart’s original data
platform 23

ZooKeeper 33–34, 50

Patterns

Masking

Source

Rewards

Patterns

sink

Rewards

sink

Purchases

sink

This topology takes a single input from
the source node and performs several
transformations, making this a great
demonstration of testing.

William P. Bejeck Jr.

N
ot all stream-based applications require a dedicated
processing cluster. The lightweight Kafka Streams
library provides exactly the power and simplicity you

need for message handling in microservices and real-time
event processing. With the Kafka Streams API, you fi lter and
transform data streams with just Kafka and your application.

Kafka Streams in Action teaches you to implement stream
processing within the Kafka platform. In this easy-to-follow
book, you’ll explore real-world examples to collect, trans-
form, and aggregate data, work with multiple processors, and
handle real-time events. You’ll even dive into streaming SQL
with KSQL! Practical to the very end, it fi nishes with testing
and operational aspects, such as monitoring and debugging.

What’s Inside
● Using the KStream API
● Filtering, transforming, and splitting data
● Working with the Processor API
● Integrating with external systems

Assumes some experience with distributed systems. No
knowledge of Kafka or streaming applications required.

Bill Bejeck is a Kafka Streams contributor and Confl uent
engineer with over 15 years of software development
experience.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/kafka-streams-in-action

$44.99 / Can $59.99 [INCLUDING eBOOK]

Kafka Streams IN ACTION

SOFTWARE DEVELOPMENT

M A N N I N G

“A great way to learn
about Kafka Streams and
how it is a key enabler of

event-driven applications.”
—From the Foreword by

Neha Narkhede
Cocreator of Apache Kafka

“A comprehensive guide
to Kafka Streams—from

introduction to production!”
—Bojan Djurkovic, Cvent

“Bridges the gap between
message brokering and real-
 time streaming analytics.”—Jim Mantheiy Jr.

Next Century

“Valuable both as an
introduction to streams
as well as an ongoing

 reference.”
—Robin Coe, TD Bank

See first page

	Kafka Streams
in Action
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: a roadmap
	About the code
	Book forum
	Other online resources

	about the author
	about the cover illustration
	Part 1—Getting started with Kafka Streams
	1 Welcome to Kafka Streams
	1.1 The big data movement, and how it changed the programming landscape
	1.1.1 The genesis of big data
	1.1.2 Important concepts from MapReduce
	1.1.3 Batch processing is not enough
	1.2 Introducing stream processing
	1.2.1 When to use stream processing, and when not to use it
	1.3 Handling a purchase transaction
	1.3.1 Weighing the stream-processing option
	1.3.2 Deconstructing the requirements into a graph
	1.4 Changing perspective on a purchase transaction
	1.4.1 Source node
	1.4.2 Credit card masking node
	1.4.3 Patterns node
	1.4.4 Rewards node
	1.4.5 Storage node
	1.5 Kafka Streams as a graph of processing nodes
	1.6 Applying Kafka Streams to the purchase transaction flow
	1.6.1 Defining the source
	1.6.2 The first processor: masking credit card numbers
	1.6.3 The second processor: purchase patterns
	1.6.4 The third processor: customer rewards
	1.6.5 The fourth processor—writing purchase records
	Summary

	2 Kafka quickly
	2.1 The data problem
	2.2 Using Kafka to handle data
	2.2.1 ZMart’s original data platform
	2.2.2 A Kafka sales transaction data hub
	2.3 Kafka architecture
	2.3.1 Kafka is a message broker
	2.3.2 Kafka is a log
	2.3.3 How logs work in Kafka
	2.3.4 Kafka and partitions
	2.3.5 Partitions group data by key
	2.3.6 Writing a custom partitioner
	2.3.7 Specifying a custom partitioner
	2.3.8 Determining the correct number of partitions
	2.3.9 The distributed log
	2.3.10 ZooKeeper: leaders, followers, and replication
	2.3.11 Apache ZooKeeper
	2.3.12 Electing a controller
	2.3.13 Replication
	2.3.14 Controller responsibilities
	2.3.15 Log management
	2.3.16 Deleting logs
	2.3.17 Compacting logs
	2.4 Sending messages with producers
	2.4.1 Producer properties
	2.4.2 Specifying partitions and timestamps
	2.4.3 Specifying a partition
	2.4.4 Timestamps in Kafka
	2.5 Reading messages with consumers
	2.5.1 Managing offsets
	2.5.2 Automatic offset commits
	2.5.3 Manual offset commits
	2.5.4 Creating the consumer
	2.5.5 Consumers and partitions
	2.5.6 Rebalancing
	2.5.7 Finer-grained consumer assignment
	2.5.8 Consumer example
	2.6 Installing and running Kafka
	2.6.1 Kafka local configuration
	2.6.2 Running Kafka
	2.6.3 Sending your first message
	Summary

	Part 2—Kafka Streams development
	3 Developing Kafka Streams
	3.1 The Streams Processor API
	3.2 Hello World for Kafka Streams
	3.2.1 Creating the topology for the Yelling App
	3.2.2 Kafka Streams configuration
	3.2.3 Serde creation
	3.3 Working with customer data
	3.3.1 Constructing a topology
	3.3.2 Creating a custom Serde
	3.4 Interactive development
	3.5 Next steps
	3.5.1 New requirements
	3.5.2 Writing records outside of Kafka
	Summary

	4 Streams and state
	4.1 Thinking of events
	4.1.1 Streams need state
	4.2 Applying stateful operations to Kafka Streams
	4.2.1 The transformValues processor
	4.2.2 Stateful customer rewards
	4.2.3 Initializing the value transformer
	4.2.4 Mapping the Purchase object to a RewardAccumulator using state
	4.2.5 Updating the rewards processor
	4.3 Using state stores for lookups and previously seen data
	4.3.1 Data locality
	4.3.2 Failure recovery and fault tolerance
	4.3.3 Using state stores in Kafka Streams
	4.3.4 Additional key/value store suppliers
	4.3.5 StateStore fault tolerance
	4.3.6 Configuring changelog topics
	4.4 Joining streams for added insight
	4.4.1 Data setup
	4.4.2 Generating keys containing customer IDs to perform joins
	4.4.3 Constructing the join
	4.4.4 Other join options
	4.5 Timestamps in Kafka Streams
	4.5.1 Provided TimestampExtractor implementations
	4.5.2 WallclockTimestampExtractor
	4.5.3 Custom TimestampExtractor
	4.5.4 Specifying a TimestampExtractor
	Summary

	5 The KTable API
	5.1 The relationship between streams and tables
	5.1.1 The record stream
	5.1.2 Updates to records or the changelog
	5.1.3 Event streams vs. update streams
	5.2 Record updates and KTable configuration
	5.2.1 Setting cache buffering size
	5.2.2 Setting the commit interval
	5.3 Aggregations and windowing operations
	5.3.1 Aggregating share volume by industry
	5.3.2 Windowing operations
	5.3.3 Joining KStreams and KTables
	5.3.4 GlobalKTables
	5.3.5 Queryable state
	Summary

	6 The Processor API
	6.1 The trade-offs of higher-level abstractions vs. more control
	6.2 Working with sources, processors, and sinks to create a topology
	6.2.1 Adding a source node
	6.2.2 Adding a processor node
	6.2.3 Adding a sink node
	6.3 Digging deeper into the Processor API with a stock analysis processor
	6.3.1 The stock-performance processor application
	6.3.2 The process() method
	6.3.3 The punctuator execution
	6.4 The co-group processor
	6.4.1 Building the co-grouping processor
	6.5 Integrating the Processor API and the Kafka Streams API
	Summary

	Part 3—Administering Kafka Streams
	7 Monitoring and performance
	7.1 Basic Kafka monitoring
	7.1.1 Measuring consumer and producer performance
	7.1.2 Checking for consumer lag
	7.1.3 Intercepting the producer and consumer
	7.2 Application metrics
	7.2.1 Metrics configuration
	7.2.2 How to hook into the collected metrics
	7.2.3 Using JMX
	7.2.4 Viewing metrics
	7.3 More Kafka Streams debugging techniques
	7.3.1 Viewing a representation of the application
	7.3.2 Getting notification on various states of the application
	7.3.3 Using the StateListener
	7.3.4 State restore listener
	7.3.5 Uncaught exception handler
	Summary

	8 Testing a Kafka Streams application
	8.1 Testing a topology
	8.1.1 Building the test
	8.1.2 Testing a state store in the topology
	8.1.3 Testing processors and transformers
	8.2 Integration testing
	8.2.1 Building an integration test
	Summary

	Part 4—Advanced concepts with Kafka Streams
	9 Advanced applications with Kafka Streams
	9.1 Integrating Kafka with other data sources
	9.1.1 Using Kafka Connect to integrate data
	9.1.2 Setting up Kafka Connect
	9.1.3 Transforming data
	9.2 Kicking your database to the curb
	9.2.1 How interactive queries work
	9.2.2 Distributing state stores
	9.2.3 Setting up and discovering a distributed state store
	9.2.4 Coding interactive queries
	9.2.5 Inside the query server
	9.3 KSQL
	9.3.1 KSQL streams and tables
	9.3.2 KSQL architecture
	9.3.3 Installing and running KSQL
	9.3.4 Creating a KSQL stream
	9.3.5 Writing a KSQL query
	9.3.6 Creating a KSQL table
	9.3.7 Configuring KSQL
	Summary

	Appendix A—Additional configuration information
	Limiting the number of rebalances on startup
	Resilience to broker outages
	Handling deserialization errors
	Scaling up your application
	RocksDB configuration
	Creating repartitioning topics ahead of time
	Configuring internal topics
	Resetting your Kafka Streams application
	Cleaning up local state

	Appendix B—Exactly once semantics
	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

	Back cover

