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A microservice production environment has several components: a deployment target,  
a deployment pipeline, runtime management, networking features, and support for  

observability. In this book, we'll teach you about these components and how you can use  
them to build a stable, modern microservice application.
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preface
Over the past five years, the microservice architectural style — structuring applications 
as fine-grained, loosely coupled, and independently deployable services — has become 
increasingly popular and increasingly feasible for engineering teams, regardless of 
company size.

For us, working on microservice projects at Onfido was a revelation, and this book 
records many of the things we learned along the way. By breaking apart our product, 
we could ship faster and with less friction, instead of tripping over each other’s toes in 
a large, monolithic codebase. A microservice approach helps engineers build applica-
tions that can evolve over time, even as product complexity and team size grow.

Originally, we set out to write a book about our real-world experience running micro-
service applications. As we scoped the book, that mission evolved, and we decided to 
distill our experience of the full application lifecycle — designing, deploying, and oper-
ating microservices — into a broad and practical review. We’ve picked tools to illustrate 
these techniques — such as Kubernetes and Docker — that are popular and go hand in 
hand with microservice best practice, but we hope that you can apply the lessons within 
regardless of which language and tools you ultimately use to build applications.

We sincerely hope you find this book a valuable reference and guide — and that the 
knowledge, advice, and examples within help you build great products and applications 
with microservices.
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about this book
Microservices in Action is a practical book about building and deploying microservice-based 
applications. Written for developers and architects with a solid grasp of service-oriented 
development, it tackles the challenge of putting microservices into production. You'll 
begin with an in-depth overview of microservice design principles, building on your 
knowledge of traditional systems. Then you'll start creating a reliable road to production. 
You'll explore examples using Kubernetes, Docker, and Google Container Engine as you 
learn to build clusters and maintain them after deployment.

The techniques in this book should apply to developing microservices in most pop-
ular programming languages. We decided to use Python as the primary language for 
this book because its low-ceremony style and terse syntax lend themselves to clear and 
explicit examples. Don’t worry if you’re not too familiar with Python — we’ll guide you 
through running the examples.

How this book is organized: a roadmap
Part 1 of this book gives a brief introduction to microservices, exploring the properties 
and benefits of microservice-based systems and the challenges you may face in their 
development.

Chapter 1 introduces the microservice architecture. We examine the benefits and 
drawbacks of the microservice approach and explain the key principles of microservice 
development. Lastly, we introduce the design and deployment challenges we’ll cover 
throughout this book.

Chapter 2 applies the microservice approach to an example domain — SimpleBank. 
We design a new feature with microservices and examine how to make that feature 
ready for production.

 



xxxx ﻿ ABOUT THIS BOOK

In part 2, we explore the architecture and design of microservice applications.
Chapter 3 walks through the architecture of a microservice application, covering 

four layers: platform, service, boundary, and client. The goal of this chapter is to give 
the reader a big-picture model that they can use when working to understand any 
microservice system.

Chapter 4 covers one of the hardest parts of microservice design: how to decide on 
service responsibilities. This chapter lays out four approaches to modeling — business 
capabilities, use cases, technical capabilities, and volatility — and, using examples from 
SimpleBank, explores how to make good design decisions, even when boundaries are 
ambiguous.

Chapter 5 explores how to write business logic in distributed systems, where trans-
actional guarantees no longer apply. We introduce the reader to different transaction 
patterns, such as sagas, and query patterns, such as API composition and CQRS.

Chapter 6 covers reliability. Distributed systems can be more fragile than monolithic 
applications, and communication between microservices requires careful consider-
ation to avoid availability issues, downtime, and cascading failures. Using examples in 
Python, we explore common techniques for maximizing application resiliency, such as 
rate limits, circuit breakers, health checks, and retries.

In chapter 7, you’ll learn how to design a reusable microservice framework. Consis-
tent practices across microservices improve overall application quality and reliability 
and reduce time to development for new services. We provide working examples in 
Python.

In part 3, we look at deployment best practices for microservices.
Chapter 8 emphasizes the importance of automated continuous delivery in microser-

vice applications. Within this chapter, we take a single service to production — on Google 
Compute Engine — and from that example learn about the importance of immutable 
artifacts and the pros and cons of different microservice deployment models.

Chapter 9 introduces Kubernetes, a container scheduling platform. Containers, 
combined with a scheduler like Kubernetes, are a natural and elegant fit for running 
microservices at scale. Using Minikube, you’ll learn how to package a microservice and 
deploy it seamlessly to Kubernetes.

In chapter 10, you’ll build on the example in the previous chapter to construct an 
end-to-end delivery pipeline using Jenkins. You’ll script a pipeline with Jenkins and 
Groovy that takes new commits to production rapidly and reliably. You’ll also learn how 
to apply consistent deployment practices to a microservice fleet.

In this book’s final part, we explore observability and the human side of microservices.
Chapter 11 will walk you through the development of a monitoring system for micro-

services, using StatsD, Prometheus, and Grafana to collect and aggregate metrics to 
produce dashboards and alerts. We’ll also discuss good practices for alert management 
and avoiding alert fatigue.

Chapter 12 builds on the work in the previous chapter to include logs and traces. 
Getting rich, real-time, and searchable information from our microservices helps us 
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understand them, diagnose issues, and improve them in the future. Examples in this 
chapter use Elasticsearch, Kibana, and Jaeger.

Lastly, chapter 13 takes a slight left turn to explore the people side of microservice 
development. People implement software: building great software is about effective col-
laboration as much as implementation choices. We’ll examine the principles that make 
microservice teams effective and explore the psychological and practical implications 
of the microservice architectural approach on good engineering practices.

About the code
This book contains many examples of source code, both in numbered listings and 
inline with normal text. In both cases, source code is formatted in a fixed-width font 
like this to separate it from ordinary text. Sometimes code is also in bold, either 
to highlight specific lines or to differentiate entered commands from the resulting 
output.

In many cases, we’ve reformatted the original source code; we’ve added line breaks 
and reworked indentation to accommodate the available page space in the book. In 
rare cases, even this was not enough, and listings include line-continuation markers 
(➥). Additionally, we’ve often removed comments in the source code from the listings 
when we’ve described the code in the text. Code annotations accompany many of the 
listings, highlighting important concepts.

The source code within this book is available on the book’s website at https://www 
.manning.com/books/microservices-in-action and on the Github repository at https://
github.com/morganjbruce/microservices-in-action.

You can find instructions on running examples throughout the book. We typically 
use Docker and/or Docker Compose to simplify running examples. The appendix cov-
ers configuring Jenkins, used in chapter 10, to run smoothly on a local deployment of 
Kubernetes.

Book forum
Purchase of Microservices in Action includes free access to a private web forum run by 
Manning Publications where you can make comments about the book, ask techni-
cal questions, and receive help from the authors and from other users. To access the 
forum, go to https://forums.manning.com/forums/microservices-in-action. You can 
also learn more about Manning's forums and the rules of conduct at https://forums. 
manning.com/forums/about.

Manning’s commitment to our readers is to provide a venue where a meaningful 
dialogue between individual readers and between readers and the authors can take 
place. It is not a commitment to any specific amount of participation on the part of the 
authors, whose contribution to the forum remains voluntary (and unpaid). We suggest 
you try asking the authors some challenging questions, lest their interest stray! The 
forum and the archives of previous discussions will be accessible from the publisher’s 
website as long as the book is in print.
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Part 1

The lay of the land

This part introduces microservice architecture, explores the properties and 
benefits of microservice applications, and presents some of the challenges you’ll 
face in developing microservice applications. We’ll also introduce SimpleBank, a 
fictional company whose attempts to build a microservice application will be the 
common thread in many examples used in this book.

 



 



3

1Designing and  
running microservices

This chapter covers
¡	Defining a microservice application

¡	The challenges of a microservices approach

¡	Approaches to designing a microservice 
application

¡	Approaches to running microservices 
successfully

Software developers strive to craft effective and timely solutions to complex prob-
lems. The first problem you usually try to solve is: What does your customer want? If 
you’re skilled (or lucky), you get that right. But your efforts rarely stop there. Your 
successful application continues to grow: you debug issues; you build new features; 
you keep it available and running smoothly.

Even the most disciplined teams can struggle to sustain their early pace and agility 
in the face of a growing application. At worst, your once simple and stable product 
becomes both intractable and delicate. Instead of sustainably delivering more value to 
your customers, you’re fatigued from outages, anxious about releasing, and too slow to 
deliver new features or fixes. Neither your customers nor your developers are happy.

Microservices promise a better way to sustainably deliver business impact. Rather 
than a single monolithic unit, applications built using microservices are made up of 
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loosely coupled, autonomous services. By building services that do one thing well, you 
can avoid the inertia and entropy of large applications. Even in existing applications, 
you can progressively extract functionality into independent services to make your 
whole system more maintainable.

When we started working with microservices, we quickly realized that building smaller 
and more self-contained services was only one part of running a stable and business-critical 
application. After all, any successful application will spend much more of its life in pro-
duction than in a code editor. To deliver value with microservices, our team couldn’t be 
focused on build alone. We needed to be skilled at operations: deployment, observation, 
and diagnosis.

1.1	 What is a microservice application?
A microservice application is a collection of autonomous services, each of which does 
one thing well, that work together to perform more intricate operations. Instead of a 
single complex system, you build and manage a suite of relatively simple services that 
might interact in complex ways. These services collaborate with each other through 
technology-agnostic messaging protocols, either point-to-point or asynchronously.

This might seem like a simple idea, but it has striking implications for reducing friction in 
the development of complex systems. Classical software engineering practice advocates high 
cohesion and loose coupling as desirable properties of a well-engineered system. A system that 
has these properties will be easier to maintain and more malleable in the face of change.

Cohesion is the degree to which elements of a certain module belong together, whereas 
coupling is the degree to which one element knows about the inner workings of another. 
Robert C. Martin’s Single Responsibility Principle is a useful way to consider the former:

Gather together the things that change for the same reasons. Separate those things that 
change for different reasons.

In a monolithic application, you try to design for these properties at a class, module, 
or library level. In a microservice application, you aim instead to attain these proper-
ties at the level of independently deployable units of functionality. A single microservice 
should be highly cohesive: it should be responsible for some single capability within an 
application. Likewise, the less that each service knows about the inner workings of other 
services, the easier it is to make changes to one service — or capability — without forcing 
changes to others.

To get a better picture of how a microservice application fits together, let’s start by 
considering some of the features of an online investment tool:

¡	Opening an account
¡	Depositing and withdrawing money
¡	Placing orders to buy or sell positions in financial products (for example, shares)
¡	Modeling risk and making financial predictions

Let’s explore the process of selling shares:

1	 A user creates an order to sell some shares of a stock from their account.

2	 This position is reserved on their account, so it can’t be sold multiple times.
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3	 It costs money to place an order on the market — the account is charged a fee.

4	 The system needs to communicate that order to the appropriate stock market.

Figure  1.1 shows how placing that sell order might look as part of a microservice 
application.

You can observe three key characteristics of microservices in figure 1.1:

¡	Each microservice is responsible for a single capability. This might be business related or 
represent a shared technical capability, such as integration with a third party (for example, 
the stock exchange).

¡	A microservice owns its data store, if it has one. This reduces coupling between 
services because other services can only access data they don’t own through the 
interface that a service provides.

¡	Microservices themselves, not the messaging mechanism that connects them nor 
another piece of software, are responsible for choreography and collaboration  — the 
sequencing of messages and actions to perform some useful activity.

Transaction
database

User

1. Places order to sell
100 units of Stock A
from account ABC

2. Records order
details in database

3. Requests reservation
of 100 units of Stock A
against account ABC

4. Records reserved
stock position against
account ABC

5. Requests calculation
of fee

6. Requests placement
of order to market

7. Places order onto
stock exchange

Account
transactions

service

Orders service

Fees service

Fee rules
database

Market service Stock exchange
Order

database

Figure 1.1    The flow of communication through microservices in an application that allows users to sell 
positions in financial shares
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In addition to these three characteristics, you can identify two more fundamental attri-
butes of microservices:

¡	Each microservice can be deployed independently. Without this, a microservice 
application would still be monolithic at the point of deployment.

¡	A microservice is replaceable. Having a single capability places natural bounds on 
size; likewise, it makes the individual responsibility, or role, of a service easy to 
comprehend.

The idea that microservices are responsible for coordinating actions in a system is the 
crucial difference between this approach and traditional service-oriented architec-
tures (SOAs). Those types of systems often used enterprise service buses (ESBs) or 
more complex orchestration standards to externalize messaging and process orches-
tration from applications themselves. In that model, services often lacked cohesion, 
as business logic was increasingly added to the service bus, rather than the services 
themselves.

It’s interesting to think about how decoupling functionality in the online investment 
system helps you be more flexible in the face of changing requirements. Imagine that 
you need to change how fees are calculated. You could make and release those changes 
to the fees service without any change to its upstream or downstream services. Or imag-
ine an entirely new requirement: when an order is placed, you need to alert your risk 
team if it doesn’t match normal trading patterns. It’d be easy to build a new microser-
vice to perform that operation based on an event raised by the orders service without 
changing the rest of the system.

1.1.1	 Scaling through decomposition

You also can consider how microservices allow you to scale an application. In The Art 
of Scalability, Abbott and Fisher define three dimensions of scale as the scale cube (fig-
ure 1.2).

Monolithic applications typically scale through horizontal duplication: deploying 
multiple, identical instances of the application. This is also known as cookie-cutter, 
or X-axis, scaling. Conversely, microservice applications are an example of Y-axis scal-
ing, where you decompose a system to address the unique scaling needs of different 
functionality.

NOTE     The Z axis refers to horizontal data partitions: sharding. You can apply 
sharding to either approach — microservices or monolithic applications — but 
we won’t be exploring that topic in this book.

Let’s revisit the investment tool as an example, with the following characteristics:

¡	Financial predictions might be computationally onerous and are rarely done.
¡	Complex regulatory and business rules may govern investment accounts.
¡	Market trading may happen in extremely large volumes, while also relying on 

minimizing latency.
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Z axis–data
partitioning
Scale by splitting
similar things

Y axis–functional
decomposition

Scale by splitting
different things

x axis–horizontal duplication
Scale by cloning

Figure 1.2    The three dimensions of scaling an application

If you build features as microservices that meet the requirements of these characteristics, 
you can choose the ideal technical tools to solve each problem, rather than trying to fit 
square pegs into round holes. Likewise, autonomy and independent deployment mean 
you can manage the microservices’ underlying resource needs separately. Interestingly, 
this also implies a natural way to limit failure: if your financial prediction service fails, 
that failure is unlikely to cascade to the market trading or investment account services. 

Microservice applications have some interesting technical properties:

¡	Building services along the lines of single capabilities places natural bounds on 
size and responsibility.

¡	Autonomy allows you to develop, deploy, and scale services independently.

1.1.2	 Key principles

Five cultural and architectural principles underpin microservices development:

¡	Autonomy
¡	Resilience
¡	Transparency
¡	Automation
¡	Alignment
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These principles should drive your technical and organizational decisions when you’re 
building and running a microservice application. Let’s explore each of them.

Autonomy

We’ve established that microservices are autonomous  — each service operates and 
changes independently of others. To ensure that autonomy, you need to design your ser-
vices so they are:

¡	Loosely coupled  — By interacting through clearly defined interfaces, or through 
published events, each microservice remains independent of the internal imple-
mentation of its collaborators. For example, the orders service we introduced 
earlier shouldn’t be aware of the implementation of the account transactions 
service. This is illustrated in figure 1.3.

¡	Independently deployable  — Services will be developed in parallel, often by multi-
ple teams. Being forced to deploy them in lockstep or in an orchestrated forma-
tion would result in risky and anxious deployments. Ideally, you want to use your 
smaller services to enable rapid, frequent, and small releases.

Autonomy is also cultural. It’s vital that you delegate accountability for and ownership 
of services to teams responsible for delivering business impact. As we’ve established, 
organizational design has an influence on system design. Clear service ownership 
allows teams to build iteratively and make decisions based on their local context and 
goals. Likewise, this model is ideal for promoting end-to-end ownership, where a team 
is responsible for a service in both development and production. 

NOTE     In chapter 13, we’ll discuss developing responsible and autonomous 
engineering teams and why this is crucial when working with microservices.

Messaging between
services should be language

agnostic—for example
gRPC, Thrift, JSON+HTTP.

A service exposes a
contract. Messages are

constructed according to
this contract.

Internal implementation is
irrelevant to the caller, as long

as it meets the contract.

ImplementsUsesOrders service

Messaging

Account
transactions

service

Contract

Figure 1.3    You can loosely couple services by having them communicate through defined contracts 
that hide implementation details.
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Resilience

Microservices are a natural mechanism for isolating failure: if you deploy them inde-
pendently, application or infrastructure failure may only affect part of your system. 
Likewise, being able to deploy smaller bits of functionality should help you change 
your system more gradually, rather than releasing a risky big bang of new functionality.

Consider the investment tool again. If the market service is unavailable, it won’t be 
able to place the order to market. But a user can still request the order, and the service 
can pick it up later when the downstream functionality becomes available.

Although splitting your application into multiple services can isolate failure, it 
also will multiply points of failure. In addition, you’ll need to account for what hap-
pens when failure does occur to prevent cascades. This involves both design — favor-
ing asynchronous interaction where possible and using circuit breakers and timeouts 
appropriately — and operations — using provable continuous delivery techniques and 
robustly monitoring system activity.

Transparency

Most importantly, you need to know when a failure has occurred, and rather than one 
system, a microservice application depends on the interaction and behavior of mul-
tiple services, possibly built by different teams. At any point, your system should be 
transparent and observable to ensure that you both observe and diagnose problems.

 Every service in your application will produce business, operational, and infrastruc-
ture metrics; application logs; and request traces. As a result, you’ll need to make sense 
of a huge amount of data.

Automation

It might seem counterintuitive to alleviate the pain of a growing application by build-
ing a multitude of services. It’s true that microservices are a more complex architecture 
than building a single application. By embracing automation and seeking consistency 
in the infrastructure between services, you can significantly reduce the cost of managing 
this additional complexity. You need to use automation to ensure the correctness of 
deployments and system operation.

It’s not a coincidence that the popularity of microservice architecture parallels both 
the increasing mainstream adoption of DevOps techniques, especially infrastructure- 
as-code, and the rise of infrastructure environments that are fully programmable 
through APIs (such as AWS or Azure). These two trends have done a lot to make micro-
services feasible for smaller teams.

Alignment

Lastly, it’s critical that you align your development efforts in the right way. You should 
aim to structure your services, and therefore your teams, around business concepts. 
This leads to higher cohesion.

To understand why this is important, consider the alternative. Many traditional SOAs 
deployed the technical tiers of an application separately — UI, business logic, integra-
tion, data. Figure 1.4 compares SOA and microservice architecture.
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Presentation UI UI API

Service Process Service

Transport Orchestration Message

Store Store Store

Business services Responsibility split by tier

Orchestration between
components governed by

a smart message bus

Services contain
full vertical stack.

Services own data.

Microservice architecture
Service-Oriented Architecture (SOA)

Independent
components

collaborate directly.

Service

Service

Service

Service

Store

Logic

API

Data services

Enterprise service bus

Figure 1.4    SOA versus microservice architecture

This use of horizontal decomposition in SOA is problematic, because cohesive function-
ality becomes spread across multiple systems. New features may require coordinated 
releases to multiple services and may become unacceptably coupled to others at the 
same level of technical abstraction.

A microservice architecture, on the other hand, should be biased toward vertical 
decomposition; each service should align to a single business capability, encapsulating 
all relevant technical layers.

NOTE     In rare instances, it might make sense to build a service that implements 
a technical capability, such as integration with a third-party service, if multiple 
services require it.

You also should be mindful of the consumers of your services. To ensure a stable  
system, you need to ensure you’re developing patiently and maintaining backwards 
compatibility — whether explicitly or by running multiple versions of a service — to 
ensure that you don’t force other teams to upgrade or break complex interactions 
between services.

Working with these five principles in mind will help you develop microservices well, 
leading to systems that are highly amenable to change, scalable, and stable.

1.1.3	 Who uses microservices?

Many organizations have successfully built and deployed microservices, across many 
domains: in media (The Guardian); content distribution (SoundCloud, Netflix); 
transport and logistics (Hailo, Uber); e-commerce (Amazon, Gilt, Zalando); banking 
(Monzo); and social media (Twitter).
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Most of these companies took a monolith-first approach.1 They started by building 
a single large application, then progressively moved to microservices in response to 
growth pressures they faced. These pressures are outlined in Table 1.1.

Table 1.1    Pressures of growth on a software system

Pressure Description

Volume The volume of activity that a system performs may outgrow the capacity of 
original technology choices.

New features New features may not be cohesive with existing features, or different technol-
ogies may be better at solving problems.

Engineering team growth As a team grows larger, lines of communication increase. New developers 
spend more time comprehending the existing system and less time adding 
product value.

Technical debt Increased complexity in a system — including debt from previous build  
decisions — increases the difficulty of making changes.

International distribution International distribution may lead to data consistency, availability, and 
latency challenges.

For example, Hailo wanted to expand internationally — which would’ve been chal-
lenging with their original architecture — but also increase their pace of feature deliv-
ery.2 SoundCloud wanted to be more productive, as the complexity of their original 
monolithic application was holding them back.3 Sometimes, the shift coincided with a 
change in business priority: Netflix famously moved from physical DVD distribution to 
content streaming. Some of these companies completely decommissioned their origi-
nal monolith. But for many, this is an ongoing process, with a monolith surrounded by 
a constellation of smaller services.

As microservice architecture has been more widely popularized — and as early 
adopters have open sourced, blogged, and presented the practices that worked for 
them — teams have increasingly begun greenfield projects using microservices, rather 
than building a single application first. For example, Monzo started with microservices 
as part of its mission to build a better and more scalable bank.4 

1	 Martin Fowler expands on this pattern: “MonolithFirst,” June 3, 2015,  http://martinfowler.com/
bliki/MonolithFirst.html.

2	 See Matt Heath, “A Long Journey into a Microservice World,” Medium, May 30, 2015, http://mng.bz/
XAOG.

3	 See Phil Calçado, “How we ended up with microservices,” September 8, 2015, http://mng.bz/Qzhi.
4	  See Matt Heath, “Building microservice architectures in Go,” June 18, 2015, http://mng.bz/9L83.

 

http://martinfowler.com/bliki/MonolithFirst.html
http://martinfowler.com/bliki/MonolithFirst.html
http://mng.bz/XAOG
http://mng.bz/Qzhi
http://mng.bz/9L83
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1.1.4	 Why are microservices a good choice?

Plenty of successful businesses are built on monolithic software — Basecamp,5 Stack-
Overflow, and Etsy spring to mind. And in monolithic applications, a wealth of ortho-
dox, long-established software development practice and knowledge exists. Why 
choose microservices?

Technical heterogeneity leads to microservices

In some companies, technical heterogeneity makes microservices an obvious choice. 
At Onfido, we started building microservices when we introduced a product driven by 
machine learning — not a great fit for our original Ruby stack! Even if you’re not fully 
committed to a microservice approach, applying microservice principles gives you a 
greater range of technical choices to solve business problems. Nevertheless, it’s not 
always so clear-cut.

Development friction increases as complex systems grow

It comes down to the nature of complex systems. At the beginning of the chapter, we 
mentioned that software developers strive to craft effective and timely solutions to com-
plex problems. But the software systems we build are inherently complex. No methodol-
ogy or architecture can eliminate the essential complexity at the heart of such a system.

But that’s no reason to get downhearted! You can ensure that the development 
approaches you take result in good complex systems, free from accidental complexity.

 Take a moment and consider what you’re trying to achieve as an enterprise software 
developer. Dan North puts it well:

The goal of software development is to sustainably minimize lead time to positive business 
impact.

The hard part in complex software systems is to deliver sustainable value in the face of 
change: to continue to deliver with agility, pace, and safety even as the system becomes 
larger and more complex. Therefore, we believe a good complex system is one where 
two factors are minimized throughout the system’s lifecycle: friction and risk.

Friction and risk limit your velocity and agility, and therefore your ability to deliver 
business impact. As a monolith grows, the following factors may lead to friction:

¡	Change cycles are coupled together, leading to higher coordination barriers and 
higher risk of regression.

¡	Soft module and context boundaries invite chaos in undisciplined teams, lead-
ing to tight or unanticipated coupling between components.

¡	Size alone can be painful: continuous integration jobs and releases — even local 
application startup — become slower.

These qualities aren’t true for all monoliths, but unfortunately they’re true for most 
that we’ve encountered. Likewise, these types of challenges are a common thread in 
the stories of the companies we mentioned.

5	  David Heinemeier Hansson coined the term “Majestic Monolith” to describe how 37signals built 
Basecamp: Signal v. Noise, February 29, 2016, http://mng.bz/1p3I.

 

http://mng.bz/1p3I
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Microservices reduce friction and risk

Microservices help reduce friction and risk in three ways:

¡	Isolating and minimizing dependencies at build time
¡	Allowing developers to reason about cohesive individual components, rather 

than an entire system
¡	Enabling the continuous delivery of small, independent changes

Isolating and minimizing dependencies at build time — whether between teams or on 
existing code — allows developers to move faster. Development can move in parallel, 
with reduced long-term dependency on past decisions made in a monolithic applica-
tion. Technical debt is naturally limited to service boundaries.

Microservices are individually easier to build and reason about than monolithic 
applications. This is beneficial for the productivity of development in a growing orga-
nization. It also provides a compelling and flexible paradigm for coping with increased 
scale or smoothly introducing new technologies.

Small services are also a great enabler of continuous delivery. Deployments in large 
applications can be risky and involve lengthy regression and verification cycles. By 
deploying smaller elements of functionality, you better isolate changes to your active 
system, reducing the potential risk of an individual deployment.

At this point, we can come to two conclusions:

¡	Developing small, autonomous services can reduce friction in the development 
of long-running complex systems.

¡	By delivering cohesive and independent pieces of functionality, you can build a 
system that’s malleable and resilient in the face of change, helping you to deliver 
sustainable business impact with reduced risk.

That doesn’t mean everyone should build microservices. It’d be wonderful if there 
was an objective answer to the question “Do I need microservices?” but unfortunately 
you can only say “It depends” — on your team, on your company, and on the nature of 
the system you’re building. If the scope of your system is trivial, then it’s unlikely you’ll 
gain benefits that outweigh the added complexity of building and running this type of 
fine-grained application. But if you’ve faced any of the challenges we mentioned ear-
lier in this section, then microservices are a compelling solution.

A cautionary tale
We once heard a story about a microservice implementation gone wrong. The startup 
in question had begun to scale, and the CTO had decided that the only solution was 
to rebuild the application as microservices. If you’re not worried by that sentence, you 
should be!

The engineering team set out to rebuild their application. This took them five months, 
during which time they released zero new features, nor did they release any of their micro-
services to production. The team proceeded to launch their new microservice application 
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during the busiest month for the business, causing absolute chaos and necessitating a 
rollback to the original monolith.

This type of migration gives microservices a bad name. Few businesses have the luxury 
of a feature freeze for several months nor can they indulge a big-bang launch of a new 
architecture. Although the sample set is small, most successful microservice migrations 
that we’ve observed have been piecemeal, balancing architectural vision with business 
needs, priorities, and resource constraints. Although it’ll take longer and require more 
engineering effort, hopefully you’ll never recognize your team being mentioned in a cau-
tionary tale!

 

1.2	 What makes microservices challenging?
Let’s dig a little deeper and explore the costs and complexity of designing and run-
ning microservices. Microservices aren’t the only architecture that have promised nir-
vana through decomposition and distribution, but those past attempts, such as SOA,6 
are widely considered unsuccessful. No technique is a silver bullet. For example, as 
we’ve mentioned, microservices drastically increase the number of moving parts in a 
system. By distributing functionality and data ownership across multiple autonomous 
services, you likewise distribute responsibility for stability and sane operation of your 
application.

You’ll encounter many challenges when designing and running a microservice 
application:

¡	Scoping and identifying microservices requires substantial domain knowledge.
¡	The right boundaries and contracts between services are difficult to identify and, 

once you’ve established them, can be time-consuming to change.
¡	Microservices are distributed systems and therefore require different assumptions 

to be made about state, consistency, and network reliability.
¡	By distributing system components across networks, and increasing technical 

heterogeneity, microservices introduce new modes of failure.
¡	It’s more challenging to understand and verify what should happen in normal 

operation.

1.2.1	 Design challenges

How do these challenges impact the design and runtime phases of microservice devel-
opment? Earlier we introduced the five key principles underlying microservice develop-
ment. The first of those was autonomy. For your services to be autonomous, you need to 
design them such that, together, they’re loosely coupled, and, individually, they encap-
sulate highly cohesive elements of functionality. This is an evolutionary process. The 

6	 SOA is a wooly term. Although many principles of SOA are similar to microservices, the definition 
of the former is inextricably associated with heavyweight, enterprise vendor tools, such as ESBs.

(continued)
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scope of your services may change over time, and you’ll often choose to carve out new 
functionality from — or even retire — existing services.

Making those choices is challenging, and even more so at the start of developing 
an application! The primary driver of loose coupling is the boundaries you establish 
between services; getting those wrong will lead to services that are resistant to change 
and, overall, a less malleable and flexible application.

Scoping microservices requires domain knowledge 
Each microservice is responsible for a single capability. Identifying these capabilities 
requires knowledge of the business domain of your application. Early in an application’s 
lifetime, your domain knowledge might be at best incomplete, or at worst, incorrect.

Inadequate understanding of your problem domain can result in poor design 
choices. In a microservice application, the increased rigidity of a service boundary  
when compared to a module within a monolithic application means the downstream 
cost of poor scoping decisions is likely to be higher:

¡	You may need to refactor across multiple distinct codebases.
¡	You may need to migrate data from one service’s database to another.
¡	You may not have identified implicit dependencies between services, which could 

lead to errors or incompatibility on deployment.

These activities are illustrated in figure 1.5.

Database

Consumers Consumers

Service AService A Service B Service B

Database

Service A depends on closely related functionality
in Service B.

Refactoring this relationship requires the
coordination of multiple changes.

Data needs to be
migrated.

Functionality is moved
to new services.

Consumers need to
move to a new

service.

Database Database

Figure 1.5    Incorrect service scoping decisions may require complex and costly refactoring across 
service boundaries.
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But making design decisions based on insufficient domain knowledge is hardly 
unique to microservices! The difference is in the impact of those decisions.

NOTE     In chapters 2 and 4, we’ll discuss best practices for identifying and scop-
ing services, using an example application.

Maintaining contracts between services

Each microservice should be independent of the implementation of other services. 
This enables technical heterogeneity and autonomy. For this to work, each microser-
vice should expose a contract  — analogous to an interface in object-oriented design —  
defining the messages it expects to receive and respond with. A good contract should be

¡	Complete  — Defines the full scope of an interaction
¡	Succinct  — Takes in no more information than is necessary, so that consumers 

can construct messages within reasonable bounds
¡	Predictable  — Accurately reflects the real behavior of any implementation

Anyone who’s designed an API might know how hard these properties are to achieve. 
Contracts become the glue between services. Over time, contracts may need to evolve 
while also needing to maintain backwards compatibility for existing collaborators. 
These twin tensions — between stability and change — are challenging to navigate.

Microservice applications are designed by teams

In larger organizations, it’s likely that multiple teams will build and run a microser-
vice application, each taking responsibility for different microservices. Each team may 
have its own goals, way of working, and delivery lifecycle. It can be difficult to design a 
cohesive system when you also need to reconcile the timelines and priorities of other 
independent teams. Coordinating the development of any substantial microservice 
application therefore will require the agreement and reconciliation of priorities and 
practices across multiple teams.

Microservice applications are distributed systems

Designing microservice applications means designing distributed systems. Many falla-
cies occur in the design of distributed systems,7 including

¡	The network is reliable.
¡	Latency is zero.
¡	Bandwidth is infinite.
¡	Transport cost is zero.

Clearly, assumptions you might make in nondistributed systems — such as the speed 
and reliability of method calls — are no longer appropriate and can lead to poor, unsta-
ble implementation. You must consider latency, reliability, and the consistency of state 
across your application.

7	 See Arnon Rotem-Gal-Oz, “Fallacies of Distributed Computing Explained,” https://pages.cs.wisc 
.edu/~zuyu/files/fallacies.pdf.

 

https://pages.cs.wisc.edu/~zuyu/files/fallacies.pdf
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Once the application is distributed — where the application’s underlying state 
data is spread across a multitude of places — consistency becomes challenging. You 
may not have guarantees of the order of operations. It won’t be possible to maintain 
ACID-like transactional guarantees when actions take place across multiple services. 
This will affect design at the application level: you’ll need to consider how a service 
might operate in an inconsistent state and how to roll back in the event of transaction 
failure.

1.2.2	 Operational challenges

A microservice approach will inherently multiply the possible points of failure in a 
system. To illustrate this, let’s return to the investment tool we mentioned earlier. Fig-
ure 1.6 identifies possible points of failure in this application. You can see that some-
thing could go wrong in multiple places, and that could affect the normal processing 
of an order.

Consider the questions you might need to answer when this application is in 
production:

¡	If something goes wrong and your user’s order isn’t placed, how would you deter-
mine where the fault occurred?

¡	How do you deploy a new version of a service without affecting order placement?
¡	How do you know which services were meant to be called?
¡	How do you test that this behavior is working correctly across multiple services?
¡	What happens if a service is unavailable?

Rather than eliminating risk, microservices move that cost to later in the lifecycle of 
your system: reducing friction in development but increasing the complexity of how 
you deploy, verify, and observe your application in operation.

User

Overload
Service instances become

saturated with requests and fail
to respond or pass timeout limits.

Network/routing failure
Network issues cause request routing

between users/services/dependencies to fail.

Hardward failure
The hardware running the

database or service instances
fails.

Downstream failure
Service dependencies may fail

or respond slowly.

Third party failure
Requests to third party
dependencies may fail.

Third-party
providers

Other
microservices

Database

Order service

Figure 1.6    Possible points of failure when placing a sell order
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A microservices approach suggests an evolutionary approach to system design: you 
can add new features independently without changing existing services. This minimizes 
the cost and risk of change.

But in a decoupled system that constantly changes, it can be extremely difficult to 
keep track of the big picture, which makes issue diagnosis and support more challeng-
ing. When something goes wrong, you need to have some way of tracing how the system 
did behave (what services it called, in which order, and what the outcome was), but you 
also need some way of knowing how the system should have behaved.

Ultimately, you face two operational challenges in microservices: observability and 
multiple points of failure. Let’s focus on each of those in turn.

Observability is difficult to achieve

We touched on the importance of transparency back in section 1.1.2. But why is it 
harder in microservice applications? It’s harder because you need to understand the 
big picture. You need to assemble that big picture from multiple jigsaw pieces, to cor-
relate and link together the data each service produces to ensure you understand what 
each service does within the wider context of delivering some business output. Indi-
vidual service logs provide a partial view of system operation, which is helpful, but you 
need to use both a microscope and a wide-angle lens to understand the system in full.

Likewise, because you’re running multiple applications, depending on how you 
choose to deploy them, a less obvious correlation may exist between underlying infra-
structural metrics — like memory and CPU usage — and the application. These metrics 
are still useful but are less of a focus than they might be in a monolithic system.

Multiplying services multiplies points of failure

We’re probably not being too pessimistic if we say that everything that can fail will fail. 
It’s important that you start with that mindset: if you assume weakness and fragility 
in the multiple services forming your system, that can better inform how you design, 
deploy, and monitor that system — rather than getting too surprised when something 
does go wrong.

You need to consider how your system will continue operating despite the failures 
of individual components. This implies that, individually, services will need to become 
more robust — considering error checking, failover, and recovery — but also that the 
whole system should act reliably, even when individual components are never 100% 
reliable.

1.3	 Microservice development lifecycle
At an individual level, each microservice should look familiar to you — even if it’s a bit 
smaller. To build a microservice, you’ll use many of the same frameworks and tech-
niques that you’d normally apply in building an application: web application frame-
works, SQL databases, unit tests, libraries, and so on.

At a system level, choosing a microservice architecture will have a significant impact 
on how you design and run your application. Throughout this book, we’ll focus on these 
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three key stages in the development lifecycle of a microservice application: designing 
services, deploying them to production, and observing their behavior. This cycle is illus-
trated in figure 1.7.

Making well-reasoned decisions in each of these three stages will help you build 
applications that are resilient, even in the face of changing requirements and increas-
ing complexity. Let’s walk through each stage and consider the steps you’ll take to 
deliver an application with microservices.

1.3.1	 Designing microservices

You’ll need to make several design decisions when building a microservice application 
that you wouldn’t have encountered building monolithic apps. The latter often fol-
low well-known patterns or frameworks, such as three-tier architecture or model-view 
controller (MVC). But techniques for designing microservices are still in their relative 
infancy. You’ll need to consider

¡	Whether to start with a monolith or commit to microservices up front
¡	The overall architecture of your application and the façade it presents to outside 

consumers
¡	How to identify and scope the boundaries of your services
¡	How your services communicate with each other, whether synchronously or 

asynchronously
¡	How to achieve resiliency in services

That’s quite a lot of ground to cover. For now, we’ll touch on each of these consid-
erations so you can see why paying attention to all of them is vital to a well-designed 
microservice application.

Monolith first?
You’ll find two opposing trends to starting with microservices: monolith first or micro-
services only. Advocates of the former reason that you should always start with a mono-
lith, as you won’t understand the component boundaries in your system at an early 
stage, and the cost of getting these wrong is much higher in a microservice application. 
On the other hand, the boundaries you choose in a monolith aren’t necessarily the 
same ones you’d choose in a well-designed microservice application.

Design Deploy Observe

Figure 1.7    The key iterative stages — design, deploy, and observe — in the microservice development 
lifecycle
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Although the speed of development may be slower to begin with, microservices will 
reduce friction and risk in future development. Likewise, as tooling and frameworks 
mature, microservices best practice is becoming increasingly less daunting to pick 
up. Either way you want to go, the advice in this book should be useful, regardless of 
whether you’re thinking of migrating away from your monolith or starting afresh.

Scoping services

Choosing the right level of responsibility for each service — its scope — is one of the 
most difficult challenges in designing a microservice application. You’ll need to model 
services based on the business capabilities they provide to an organization.

Let’s extend the example from the beginning of this chapter. How might your ser-
vices change if you wanted to introduce a new, special type of order? You have three 
options to solve this problem (figure 1.8):

1	 Extend the existing service interface

2	 Add a new service endpoint

3	 Add a new service

Each of these options has pros and cons that will impact the cohesiveness and coupling 
between services in your application.

Orders service exposes an
operation to create an order To support a new type of order, we could...

Orders service Orders service

Orders service

Orders service

Special order
service

Add a new service for the new order type

Alter the operation contract to
accept new fields

Add a new operation to the
existing orders service

Figure 1.8. To scope functionality, you need to make decisions about whether capabilities belong in 
existing services or if you need to design new services.
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NOTE     In chapters 2 and 4, we’ll explore service scoping and how to make opti-
mal decisions about service responsibility.

Communication

Communication between services may be asynchronous or synchronous. Although 
synchronous systems are easier to reason through, asynchronous systems are highly 
decoupled — reducing the risk of change — and potentially more resilient. But the 
complexity of such a system is high. In a microservice application, you need to balance 
synchronous and asynchronous messaging to choreograph and coordinate the actions 
of multiple microservices effectively.

Resiliency

In a distributed system, a service can’t trust its collaborators, not necessarily because 
they’re coded poorly or because of human error, but because you can’t safely assume 
the network between or behavior of those services is reliable or predictable. Services 
need to be resilient in the face of failure. To achieve this, you need to design your 
services to work defensively by backing off in the event of errors, limiting request rates 
from poor collaborators, and dynamically finding healthy services.

1.3.2	 Deploying microservices

Development and operations must be closely intertwined when building microservices. 
It’s not going to work if you build something and throw it over the fence for someone 
else to deploy and operate it. In a system composed of numerous, autonomous ser-
vices, if you build it, you should run it. Understanding how your services run will in 
turn help you make better design decisions as your system grows. 

Remember, what’s special about your application is the business impact it deliv-
ers. That emerges from collaboration between multiple services. In fact, you could 
standardize or abstract away anything outside of the unique capability each service 
offers — ensuring teams are focused on business value. Ultimately, you should reach 
a stage where there’s no ceremony involved in deploying a new service. Without this, 
you’ll invest all your energy in plumbing, rather than creating value for customers.

In this book, we’ll teach you how to construct a reliable road to production for exist-
ing and new services. The cost of deploying new services must be negligible to enable 
rapid innovation. Likewise, you should standardize this process to simplify system oper-
ation and ensure consistency across services. To achieve this, you’ll need to

¡	Standardize microservice deployment artifacts
¡	Implement continuous delivery pipelines

We’ve heard reliable deployment described as boring, not in the sense that it’s unex-
citing, but that it’s incident-free. Unfortunately, we’ve seen too many teams where the 
opposite is true: deploying software is stressful and encourages unhealthy all-hands-on-
deck behavior. This is bad enough for one service — if you’re deploying any number 

 



22 Chapter 1  Designing and running microservices 

of services, the anxiety alone will drive you mad! Let’s look at how these steps lead to 
stable and reliable microservice deployments. 

Standardize microservice deployment artifacts

It often seems like every language and framework has its own deployment tool. Python 
has Fabric, Ruby has Capistrano, Elixir has exrm, and so on. And then the deployment 
environment itself is complex: 

¡	What server does an application run on? 
¡	What are the application’s dependencies on other tools? 
¡	How do you start that application? 

At runtime, an application’s dependencies (figure 1.9) are broad and might include 
libraries, binaries and OS packages (such as ImageMagick or libc), and OS processes 
(such as cron or fluentd).

Technically, heterogeneity is a fantastic benefit of service autonomy. But it doesn’t 
make life easy for deployment. Without consistency, you won’t be able to standardize 
your approach to taking services to production, which increases the cost of managing 
deployments and introducing new technology. At worst, each team reinvents the wheel, 
coming up with different approaches for managing dependencies, packing builds, get-
ting them onto servers, and operating the application itself.

An application exposes an
operational API. Restart

Start

Application
Supporting
processes,

for example,
logging,

cron

Operating system

Application libraries

Binary dependencies, for
example, ImageMagick

Stop
An application has multiple
points of explicit and implicit

dependency.

Figure 1.9    An application exposes an operational API and has many types of dependencies, including 
libraries, binary dependencies, and supporting processes.
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Our experience suggests the best tools for this job are containers. A container is an 
operating system-level virtualization method that supports running isolated sys-
tems on a host, each with its own network and process space, sharing the same ker-
nel. A container is quicker to build and quicker to start up than a virtual machine 
(seconds, rather than minutes). You can run multiple containers on one machine, 
which simplifies local development and can help to optimize resource usage in cloud 
environments.

Containers standardize the packaging of an application, and the runtime interface 
to it, and provide immutability of both operating environment and code. This makes 
them powerful building blocks for higher level composition. By using them, you can 
define and isolate the full execution environment of any service.

Although many implementations of containers are available (and the concept exists 
outside of Linux, such as jails in FreeBSD and zones in Solaris), the most mature and 
approachable tooling that we’ve used so far is Docker. We’ll use that tool later in this book.

Implement continuous delivery pipelines

Continuous delivery is a practice in which developers produce software that they 
can reliably release to production at any time. Imagine a factory production line: 
to continuously deliver software, you build similar pipelines to take your code from 
commit to live operation. Figure 1.10 illustrates a simple pipeline. Each stage of 
the pipeline provides feedback to the development team on the correctness of 
their code.

Earlier, we mentioned that microservices are an ideal enabler of continuous 
delivery because their smaller size means you can develop them quickly and release 
them independently. But continuous delivery doesn’t automatically follow from 
developing microservices. To continuously deliver software, you need to focus on 
two goals:

¡	Building a set of validations that your software has to pass through. At each 
stage of your deployment process, you should be able to prove the correctness 
of your code.

¡	Automating the pipeline that delivers your code from commit to production. 

Code commit Build Unit test Package Production

Quality uncertain

Deployment pipeline

Quality proven

Integration
test

Acceptance
test

Figure 1.10    A high-level deployment pipeline for a microservice
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Building a provably correct deployment pipeline will allow developers to work safely 
and at pace as they iteratively develop services. Such a pipeline is a repeatable and reli-
able process for delivering new features. Ideally, you should be able to standardize the 
validations and steps in your pipeline and use them across multiple services, further 
reducing the cost of deploying new services. 

Continuous delivery also reduces risk, because the quality of the software produced 
and the team’s agility in delivering changes are both increased. From a product per-
spective, this may mean you can work in a leaner fashion — rapidly validating your 
assumptions and iterating on them.

NOTE     In part 3, we’ll build a continuous delivery pipeline using the Pipe-
line feature of the freely available Jenkins continuous integration tool. We’ll 
also explore different deployment patterns, such as canaries and blue-green 
deployments.

1.3.3	 Observing microservices

We’ve discussed transparency and observability throughout this chapter. In produc-
tion, you need to know what’s going on. The importance of this is twofold: 

¡	You want to proactively identify and refactor fragile implementation in your 
system.

¡	You need to understand how your system is behaving. 

Thorough monitoring is significantly more difficult in a microservice application 
because single transactions may span multiple distinct services; technically heteroge-
neous services might produce data in irreconcilable formats; and the total volume of 
operational data is likely to be much higher than that of a single monolithic applica-
tion. But if you’re able to understand how your system operates — and observe that 
closely — despite this complexity, you’ll be better placed to make effective changes to 
your system.

Identify and refactor potentially fragile implementation

Systems will fail, whether because of bugs introduced, runtime errors, network failures, 
or hardware problems.8 Over time, the cost of eliminating unknown bugs and errors 
becomes higher than the cost of being able to react quickly and effectively when they 
occur.

Monitoring and alerting systems allow you to diagnose problems and determine 
what causes failures. You may have automated mechanisms reacting to the alerts that’ll 
spawn new container instances in different data centers or react to load issues by 
increasing the number of running instances of a service.

To minimize the consequences of those failures, and prevent them cascading through-
out the system, you need to be able to architect dependencies between services in ways 

8	 You even have to watch out for squirrels: Rich Miller, “Surviving Electric Squirrels and UPS Fail-
ures,” DataCenter Knowledge, July 9, 2012, http://mng.bz/rmbF.
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that’ll allow for partial degradation. One service going down shouldn’t bring down the 
whole application. It’s important to think about the possible failure points of your appli-
cations, recognize that failure will always happen, and prepare accordingly.

Understand behavior across hundreds of services

You need to prioritize transparency in design and implementation to understand 
behavior across your services. Collecting logs and metrics — and unifying them for ana-
lytical and alerting purposes — allows you to build a single source of truth to resort to 
when monitoring and investigating the behavior of your system.

As we mentioned in section 1.3.2, you can standardize and abstract anything outside 
of the unique capability each service offers. You can think of each service as an onion. 
At the center of that onion, you have the unique business capability offered by that 
service. Surrounding that, you have layers of instrumentation — business metrics, appli-
cation logs, operational metrics, and infrastructure metrics — that make that capability 
observable. You can then trace each request to the system through these layers. You’d 
then push the data you collected from these layers to an operational data store for ana-
lytics and alerting. This is illustrated in figure 1.11.

NOTE    In part 4 of this book, we’ll discuss how to build a monitoring system 
for microservices, collect appropriate data, and use that data to produce a live 
model for a complex microservice application.

Requests Responses

Infrastructure metrics

Operational metrics

Application logs

Business metrics

Business
capability

Operational data store

 

Figure 1.11    A business capability microservice surrounded by layers of instrumentation, through which 
pass requests to the microservice and its responses, with data collected from the process going to an 
operational data store
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1.4	 Responsible and operationally aware engineering 
culture
It’d be a mistake to examine the technical nature of microservices in isolation from 
how an engineering team works to develop them. Building an application out of small, 
independent services will drastically change how an organization approaches engi-
neering, so guiding the culture and priorities of your team will be a significant factor in 
whether you successfully deliver a microservice application.

It can be difficult to separate cause and effect in organizations that have successfully 
built microservices. Was the development of fine-grained services a logical outcome of 
their organizational structure and the behavior of their teams? Or did that structure 
and behavior arise from their experiences building fine-grained services?

The answer is a bit of both. A long-running system isn’t only an accumulation of 
features requested, designed, and built. It also reflects the preferences, opinions, and 
objectives of its builders and operators. Conway’s Law expresses this to some degree:

organizations which design systems ... are constrained to produce designs which are copies 
of the communication structures of these organizations.

“Constrained” might suggest that these communication structures will limit and con-
strict the effective development of a system. In fact, microservices practice implies the 
opposite: that a powerful way to avoid friction and tension in building systems is to 
design an organization in the shape of the system you intend to build.

Deliberate symbiosis with organizational structure is one example of common 
microservices practice. To be able to realize benefits from microservices and adequately 
manage their complexity, you need to develop working principles and practices that are 
effective for that type of application, rather than using the same techniques that you 
used to build monoliths.

Summary

¡	Microservices are both an architectural style and a set of cultural practices, 
underpinned by five key principles: autonomy, resilience, transparency, automa-
tion, and alignment.

¡	Microservices reduce friction in development, enabling autonomy, technical 
flexibility, and loose coupling.

¡	Designing microservices can be challenging because of the need for adequate 
domain knowledge and balancing priorities across teams.

¡	Services expose contracts to other services. Good contracts are succinct, com-
plete, and predictable. 

¡	Complexity in long-running software systems is unavoidable, but you can deliver 
value sustainably in these systems if you make choices that minimize friction and risk.

¡	Reliably incident-free (“boring”) deployment reduces the risk of microservices 
by making releases automated and provable.
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¡	Containers abstract away differences between services at runtime, simplifying 
large-scale management of heterogeneous microservices.

¡	Failure is inevitable: microservices need to be transparent and observable for 
teams to proactively manage, understand, and own service operation ... and the 
lack thereof.

¡	Teams adopting microservices need to be operationally mature and focus on the 
entire lifecycle of a service, not only on the design and build stages.
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2Microservices at  
SimpleBank

This chapter covers
¡	Introducing SimpleBank, a company adopting 

microservices

¡	Designing a new feature with microservices

¡	How to expose microservice-based features to 
the world

¡	Ensuring features are production ready

¡	Challenges faced in scaling up microservice 
development

In Chapter 1, you learned about the key principles of microservices and why they’re 
a compelling approach for sustainably delivering software value. We also introduced 
the design and development practices that underpin microservices development. In 
this chapter, we’ll explore how you can apply those principles and practices to devel-
oping new product features with microservices.

Over the course of this chapter, we’ll introduce the fictitious company of  
SimpleBank. They’re a company with big plans to change the world of investment, 
and you’re working for them as an engineer. The engineering team at Simple-
Bank wants to be able to deliver new features rapidly while ensuring scalability and 
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2
stability — after all, they’re dealing with people’s money! Microservices might be exactly 
what they need.

Building and running an application made up of independently deployable and 
autonomous services is a vastly different challenge from building that application as 
a single monolithic unit. We’ll begin by considering why a microservice architecture 
might be a good fit for SimpleBank and then walk you through the design of a new fea-
ture using microservices. Finally, we’ll identify the steps needed to develop that proof of 
concept into a production-grade application. Let’s get started.

2.1	 What does SimpleBank do?
The team at SimpleBank wants to make smart financial investment available to every-
one, no matter how much money they have. They believe that buying shares, selling 
funds, or trading currency should be as simple as opening a savings account.

That’s a compelling mission, but not an easy one. Financial products have multiple 
dimensions of complexity: SimpleBank will need to make sense of market rules and 
intricate regulations, as well as integrate with existing industry systems, all while meet-
ing stringent accuracy requirements.

In the previous chapter, we identified some of the functionality that SimpleBank 
could offer its customers: opening accounts, managing payments, placing orders, and 
modeling risk. Let’s expand on those possibilities and look at how they might fit within 
the wider domain of an investment tool. Figure 2.1 illustrates the different elements of 
this domain.

As the figure shows, an investment tool will need to do more than offer customer- 
facing features, like the ability to open accounts and manage a financial portfolio. It 
also will need to manage custody, which is how the bank holds assets on behalf of cus-
tomers and moves them in or out of their possession, and manufacture, which is the 
creation of financial products appropriate to customer needs.

Account
management

Customer management
Managing accounts, tax,
regulatory requirements

Custody
Underlying banking services and

interaction with other market entities,
for example, brokerages, other banks

Product manufacture
The development and maintenance

of financial products, for example,
funds consisting of other funds

Portfolio
reporting

Financial
predictions and

advice
Fees Tax Order placement

Trade &
market

execution
Asset transfersPayment

processing

Corporate actions,
for example,

dividends

Ownership
& custody

Market data,
for example,
share prices

Aggregated
trading

TaxBulk ordersRisk analysis Pricing Ownership

Figure 2.1    A high-level (and by no means exhaustive) model of functionality that SimpleBank might build
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As you can see, it’s not so simple! You can begin to see some of the business capabilities 
that SimpleBank might implement: portfolio management, market data integrations, 
order management, fund manufacture, and portfolio analysis. Each of the business 
areas identified might consist of any number of services that collaborate with each 
other or services in other areas.

This type of high-level domain model is a useful first step when approaching any sys-
tem, but it’s crucial when building microservices. Without understanding your domain, 
you might make incorrect decisions about the boundaries of your services. You don’t 
want to build services that are anemic — existing only to perform trivial create, read, update, 
delete (CRUD) operations. These often become a source of tight coupling within an application. At 
the same time, you want to avoid pushing too much responsibility into a single service. Less cohesive 
services make software changes slower and riskier — exactly what you’re trying to avoid.

Lastly, without this perspective, you might fall prey to overengineering — choosing 
microservices where they’re not justified by the real complexity of your product or domain.

2.2	 Are microservices the right choice?
The engineers at SimpleBank believe that microservices are the best choice to tackle 
the complexity of their domain and be flexible in the face of complex and changing 
requirements. They anticipate that as their business grows, microservices will reduce the 
risk of individual software changes, leading to a better product and happier customers.

As an example, let’s say they need to process every buy or sell transaction to calculate 
tax implications. But tax rules work differently in every country — and those rules tend 
to change frequently. In a monolithic application, you’d need to make coordinated, 
time-sensitive releases to the entire platform, even if you only wanted to make changes 
for one country. In a microservice application, you could build autonomous tax-han-
dling services (whether by country, type of tax, or type of account) and deploy changes 
to them independently.

Is SimpleBank making the right choice? Architecting software always involves ten-
sion between pragmatism and idealism — balancing product needs, the pressures of 
growth, and the capabilities of a team. Poor choices may not be immediately apparent, 
as the needs of a system vary over its lifetime. Table 2.1 expands on the factors to con-
sider when choosing microservices.

Table 2.1    Factors to consider when choosing a microservice architecture

Factor Impact

Domain complexity It’s difficult to objectively evaluate the complexity of a domain, but microservices 
can address complexity in systems driven by competing pressures, such as regu-
latory requirements and market breadth.

Technical requirements You can build different components of a system using different programming 
languages (and associated technical ecosystems). Microservices enable hetero-
geneous technical choices.
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Factor Impact

Organizational growth Rapidly growing engineering organizations may benefit from microservices 
because lowering dependency on existing codebases enables rapid ramp-up 
and productivity for new engineers.

Team knowledge Many engineers lack experience in microservices and distributed systems. If the 
team lacks confidence or knowledge, it may be appropriate to build a proof-of-
concept microservice before fully committing to implementation.

Using these factors, you can evaluate whether microservices will help you deliver sus-
tainable value in the face of increasing application complexity.

2.2.1	 Risk and inertia in financial software

Let’s take a moment to look at how SimpleBank’s competitors build software. Most 
banks aren’t ahead of the curve in terms of technological innovation. There’s an ele-
ment of inertia that’s typical of larger organizations, although that’s not unique to the 
finance industry. Two primary factors limit innovation and flexibility:

¡	Aversion to risk  — Financial companies are heavily regulated and tend to build 
top-down systems of change control to avoid risk by limiting the frequency and 
impact of software changes.

¡	Reliance on complex legacy systems  — Most core banking systems were built pre-1970. 
In addition, mergers, acquisitions, and outsourcing have led to software systems 
that are poorly integrated and contain substantial technical debt.

But limiting change and relying on existing systems hasn’t prevented software prob-
lems from leading to pain for customers or the finance companies themselves. The 
Royal Bank of Scotland was fined £56 million in 2014 when an outage caused payments 
to fail for 6.5 million customers. That’s on top of the £250 million it was already spend-
ing every year on its IT systems.1

That approach also hasn’t led to better products. Financial technology startups, such 
as Monzo and Transferwise, are building features at a pace most banks can only dream of.

2.2.2	 Reducing friction and delivering sustainable value

Can you do any better? By any measure, the banking industry is a complex and com-
petitive domain. A bank needs to be both resilient and agile, even when the lifetime of 
a banking system is measured in decades. The increasing size of a monolithic applica-
tion is antithetical to this goal. If a bank wants to launch a new product, it shouldn’t be 

1	 See Sean Farrell and Carmen Fishwick, “RBS could take until weekend to make 600,000 missing 
payments after glitch,” The Guardian, June 17, 2015, http://mng.bz/kxQY, and Chad Bray, “Royal 
Bank of Scotland Fined $88 Million Over Technology Failure,” Dealbook, The New York Times, No-
vember 20, 2014, http://mng.bz/hn8D.

Table 2.1    Factors to consider when choosing a microservice architecture  (continued)
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bogged down by the legacy of previous builds2 or require outsize effort and investment 
to prevent regression in existing functionality.

A well-designed microservice architecture can solve these challenges. As we estab-
lished earlier, this type of architecture avoids many of the characteristics that, in mono-
lithic applications, slow velocity in development. Individual teams can move forward 
with increased confidence as

¡	Change cycles are decoupled from other teams.
¡	Interaction between collaborating components is disciplined.
¡	Continuous delivery of small, isolated changes limits the risk of breaking 

functionality.

These factors reduce friction in the development of a complex system but maintain 
resiliency. As such, they reduce risk without stifling innovation through bureaucracy.

This isn’t only a short-term solution. Microservices aid engineering teams in deliv-
ering sustainable value throughout the lifecycle of an application by placing natural 
bounds on the conceptual and implementation complexity of individual components.

2.3	 Building a new feature
Now that we’ve established that microservices are a good choice for SimpleBank, 
let’s look at how it might use them to build new features. Building a minimum via-
ble product — an MVP — is a great first step to ensure that a team understands the 
constraints and requirements of the microservices style. We’ll start by exploring one 
of the features that SimpleBank needs to build and the design choices the team will 
make, working through the lifecycle we illustrated in chapter 1 (figure 2.2).

In chapter 1, we touched on how services might collaborate to place a sell order. An 
overview of this process is shown in figure 2.3.

Let’s look at how you’d approach building this feature. You need to answer several 
questions:

¡	Which services do you need to build?
¡	How do those services collaborate with each other?
¡	How do you expose their functionality to the world?

Design Deploy Observe

Figure 2.2    The key iterative stages — design, deploy, and observe — in the microservice development 
lifecycle

2	 How bad can it get? I once encountered a financial software company that maintained over 10 
distinct monolithic codebases, each surpassing 2 million lines of code!
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User requests
sale of stock

Is stock
available?

Stock is
reserved
against
account

Wait to place
order

No

Market open? Yes Place order to
market

Fee is charged
to account

Yes

No

Figure 2.3    The process of placing an order to sell a financial position from an account at SimpleBank

These may be similar to the questions you might ask yourself when designing a feature 
in a monolithic application, but they have different implications. For example, the 
effort required to deploy a new service is inherently higher than creating a new mod-
ule. In scoping microservices, you need to ensure that the benefits of dividing up your 
system aren’t outweighed by added complexity.

NOTE    As the application evolves, these questions will take on added dimen-
sions. Later, we’ll also ask whether to add functionality to existing services or 
carve those services up. We’ll explore this further in chapters 4 and 5.

As we discussed earlier, each service should be responsible for a single capability. Your 
first step will be to identify the distinct business capabilities you want to implement and 
the relationship between those capabilities.

2.3.1	 Identifying microservices by modeling the domain

To identify the business capabilities you want, you need to develop your understand-
ing of the domain where you’re building software. This is normally the hard work of 
product discovery or business analysis: research; prototyping; and talking to customers, 
colleagues, or other end users.

Let’s start by exploring the order placement example from figure 2.3. What value are 
you trying to deliver? At a high level, a customer wants to be able to place an order. So, 
an obvious business capability will be the ability to store and manage the state of those 
orders. This is your first microservice candidate.

Continuing our exploration of the example, you can identify other functionalities 
your application needs to offer. To sell something, you need to own it, so you need some 
way of representing a customer’s current holdings resulting from the transactions that 
have occurred against their account. Your system needs to send an order to a broker —  
the application needs to be able to interact with that third party. In fact, this one feature, 
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placing a sell order, will require SimpleBank’s application to support all of the follow-
ing functionality:

¡	Record the status and history of sell orders
¡	Charge fees to the customer for placing an order
¡	Record transactions against the customer’s account
¡	Place an order onto a market
¡	Provide valuation of holdings and order to customer

It’s not a given that each function maps to a single microservice. You need to deter-
mine which functions are cohesive — they belong together. For example, transactions 
resulting from orders will be similar to transactions resulting from other events, such 
as dividends being paid on a share. Together, a group of functions forms a capability 
that one service may offer. 

Let’s map these functions to business capabilities — what the business does. You can 
see this mapping in figure 2.4. Some functions cross multiple domains, such as fees.

Order management
Recording status and

history of orders

Function Business capabilities

Placing an order to
market

Charging a fee

Recording transactions
against customer

account

Value positions held in
an account

Market execution

Fees

Transaction ledger

Market data

Figure 2.4    The relationship between application functionality and capabilities within SimpleBank’s 
business
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You can start by mapping these capabilities directly to microservices. Each service 
should reflect a capability that the business offers — this results in a good balance of 
size versus responsibility. You also should consider what would drive a microservice 
to change in the future — whether it truly has single responsibility. For example, you 
could argue that market execution is a subset of order management and therefore 
shouldn’t be a separate service. But the drivers for change in that area are the behavior 
and scope of the markets you’re supporting, whereas order management relates more 
closely to the types of product and the account being used to trade. These two areas 
don’t change together. By separating them, you isolate areas of volatility and maximize 
cohesiveness (figure 2.5).

Some microservice practitioners would argue that microservices should more closely 
reflect single functions, rather than single capabilities. Some have even suggested that 
microservices are “append only” and that it’s always better to write new services than to 
add to existing ones.

We disagree. Decomposing too much can lead to services that lack cohesiveness and 
tight coupling between closely related collaborators. Likewise, deploying and monitor-
ing many services might be beyond the abilities of the engineering team in the early 
days of a microservice implementation. A useful rule of thumb is to err on the side of 
larger services; it’s often easier to carve out functionality later if it becomes more spe-
cialized or more clearly belongs in an independent service.

Lastly, keep in mind that understanding your domain isn’t a one-off process! Over 
time, you’ll continue to iterate on your understanding of the domain; your users’ needs 
will change, and your product will continue to evolve. As this understanding changes, 
your system itself will change to meet those needs. Luckily, as we discussed in chap-
ter 1, coping with changing needs and requirements is a strength of the microservices 
approach.

Order management

Recording status and
history of orders

Placing an order to
market

Market gateway

2. Separating areas of
independent change

promotes loose coupling and
increases cohesiveness.

New types of order;
different account rules;

promotions...

New types of order;
different market rules;

new markets...

1. These areas are likely to
change independently.

Service

Function

Reasons to change

Figure 2.5    Services should isolate reasons to change to promote loose coupling and single 
responsibility.
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2.3.2	 Service collaboration

We’ve identified several microservice candidates. These services need to collaborate 
with each other to do something useful for SimpleBank’s customers.

As you may already know, service collaboration can be either point-to-point or event-
driven. Point-to-point communication is typically synchronous, whereas event-driven 
communication is asynchronous. Many microservice applications begin by using syn-
chronous communication. The motivations for doing so are twofold:

¡	Synchronous calls are typically simpler and more explicit to reason through than 
asynchronous interaction. That said, don’t fall into the trap of thinking they 
share the same characteristics as local, in-process function calls — requests across 
a network are significantly slower and more unreliable.

¡	Most, if not all, programming ecosystems already support a simple, language- 
agnostic transport mechanism with wide developer mindshare: HTTP, which is 
mainly used for synchronous calls but you can also use asynchronously.

Consider SimpleBank’s order placement process. The orders service is responsible for 
recording and placing an order to market. To do this, it needs to interact with your mar-
ket, fees, and account transaction services. This collaboration is illustrated in figure 2.6.

Transaction
database

User

1. Places order to sell
100 units of Stock A
from account ABC

2. Records order
details in database

3. Requests reservation
of 100 units of Stock A
against account ABC

4. Records reserved
stock position against
account ABC

5. Requests calculation
of fee

6. Requests placement
of order to market

7. Places order onto
stock exchange

Account
transactions

service

Orders service

Fees service

Fee rules
database

Market service Stock exchange
Order

database

Figure 2.6    The orders service orchestrates the behavior of several other services to place an order to market.
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Earlier, we pointed out that microservices should be autonomous, and to achieve that, ser-
vices should be loosely coupled. You achieve this partly through the design of your services, 
“[gathering] together the things that change for the same reasons” to minimize the chance 
that changes to one service require changes to its upstream or downstream collaborators. 
You also need to consider service contracts and service responsibility.

Service contracts

The messages that each service accepts, and the responses it returns, form a contract 
between that service and the services that rely on it, which you can call upstream collabo-
rators. Contracts allow each service to be treated as a black box by its collaborators: you 
send a request and you get something back. If that happens without errors, the service 
is doing what it’s meant to do.

Although the implementation of a service may change over time, maintaining 
contract-level compatibility ensures two things:

1	 Those changes are less likely to break consumers.

2	 Dependencies between services are explicitly identifiable and manageable.

In our experience, contracts are often implicit in naïve or early microservice imple-
mentations; they’re suggested by documentation and practice, rather than explicitly 
codified. As the number of services grows, you can realize significant benefit from stan-
dardizing the interfaces between them in a machine-readable format. For example, 
REST APIs may use Swagger/OpenAPI. As well as aiding the conformance testing of 
individual services, publishing standardized contracts will help engineers within an 
organization understand how to use available services.

Service responsibility

You can see in figure 2.6 that the orders service has a lot of responsibility. It directly 
orchestrates the actions of every other service involved in the process of placing an 
order. This is conceptually simple, but it has downsides. At worst, our other services 
become anemic, with many dumb services controlled by a small number of smart ser-
vices, and those smart services grow larger

This approach can lead to tighter coupling. If you want to introduce a new part of this 
process — let’s say you want to notify a customer’s account manager when a large order 
is placed — you’re forced to deploy new changes to the orders service. This increases 
the cost of change. In theory, if the orders service doesn’t need to synchronously con-
firm the result of an action — only that it’s received a request — then it shouldn’t need 
to have any knowledge of those downstream actions.

2.3.3	 Service choreography

Within a microservice application, services will naturally have differing levels of responsi-
bility. But you should balance orchestration with choreography. In a choreographed system, 
a service doesn’t need to directly command and trigger actions in other services. Instead, 
each service owns specific responsibilities, which it performs in reaction to other events.
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Let’s revisit the earlier design and make a few tweaks:

1	 When someone creates an order, the market might not currently be open. There-
fore, you need to record what status an order is in: created or placed. Placement 
of an order doesn’t need to be synchronous.

2	 You’ll only charge a fee once an order is placed, so charging fees doesn’t need 
to be synchronous. In fact, it should happen in reaction to the market service, 
rather than being orchestrated by the orders service.

Figure 2.7 illustrates the changed design. Adding events adds an architectural con-
cern: you need some way of storing them and exposing them to other applications. 
We’d recommend using a message queue for that purpose, such as RabbitMQ or SQS.

In this design, we’ve removed the following responsibility from the orders service:

¡	Charging fees  — The orders service has no awareness that a fee is being charged 
once an order is being placed to market.

¡	Placing orders  — The orders service has no direct interaction with the market ser-
vice. You could easily replace this with a different implementation, or even a service 
per market, without needing to change the orders service itself.

Transaction
database
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1. Places order to sell
100 units of Stock A
from account ABC

2. Records order
details in database

3. Requests reservation
of 100 units of Stock A
against account ABC

8. Orders service
subscribes to
OrderPlaced events

6. Trigger event
OrderPlaced

4. Market order
service subscribes
to OrderCreated
events

7. Fees service
subscribes to
OrderPlaced events

3. Triggers event
OrderCreated

9. Orders service
updates status of
order to placed

4. Records reserved
stock position against
account ABC

5. Places order onto
stock exchange

Account
transactions

service

Orders service

Fees service

Fee rules
database

Market service

Event queue

Stock exchange

Order
database

Figure 2.7    You choreograph the behavior of other services through events, reducing the coordinating 
role of the orders service. Note that some actions, for example, the two actions numbered “3.,” happen 
concurrently.
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The orders service itself also reacts to the behavior of other services by subscribing to the 
OrderPlaced event emitted by the market service. You can easily extend this to further 
requirements; for example, the orders service might subscribe to TradeExecuted events 
to record when the sale has been completed on the market or OrderExpired events if the 
sale can’t be made within a certain timeframe.

This setup is more complex than the original synchronous collaboration. But by 
favoring choreography where possible, you’ll build services that are highly decoupled 
and therefore independently deployable and amenable to change. These benefits do 
come at a cost: a message queue is another piece of infrastructure to manage and scale 
and itself can become a single point of failure.

The design we’ve come up with also has some benefit in terms of resiliency. For 
example, failure in the market service is isolated from failure in the orders service. If 
placing an order fails, you can replay that event3 later, once the service is available, or 
expire it if too much time passes. On the other hand, it’s now more difficult to trace the 
full activity of the system, which you’ll need to consider when you think about how to 
monitor these services in production.

2.4	 Exposing services to the world
So far, we’ve explored how services collaborate to achieve some business goal. How do 
you expose this functionality to a real user application?

SimpleBank wants to build both web and mobile products. To do this, the engineering 
team have decided to build an API gateway as a façade over these services. This abstracts 
away backend concerns from the consuming application, ensuring it doesn’t need to 
have any awareness of underlying microservices, or how those services interact with each 
other to deliver functionality. An API gateway delegates requests to underlying services 
and transforms or combines their responses as appropriate to the needs of a public API.

Imagine the user interface of a place order screen. It has four key functions:

¡	Displaying information about the current holdings within a customer’s account, 
including both quantity and value

¡	Displaying market data showing prices and market movements for a holding
¡	Inputting orders, including cost calculation
¡	Requesting execution of those orders against the specified holdings

Figure 2.8 illustrates how an API gateway serves that functionality, and how that gate-
way collaborates with underlying services.

The API gateway pattern is elegant but has a few downsides. Because it acts as a single 
composition point for multiple services, it’ll become large and possibly unwieldy. It may 
be a temptation to add business logic in the gateway, rather than treating it as a proxy 
alone. It can suffer from trying to be all things to all applications: whereas a mobile cus-
tomer application may want a smaller, cut-down payload, but an internal administration 
web application might require significantly more data. It can be hard to balance these 
competing forces while building a cohesive API.

3	 Assuming the queue itself is persistent.
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Orders

Holdings

Transactions

Market data

Backend servicesAPI gatewayUser interface

Holdings

Market data

Input

Submit

GET /holdings

GET /market/{id}

POST /orders

Figure 2.8    A user interface, such as a web page or mobile app, interacts with the REST API that an API 
gateway exposes. The gateway provides a façade over underlying microservices and proxies requests to 
appropriate backend services.

NOTE    We’ll revisit the API gateway pattern and discuss alternative approaches 
in chapter 3.

2.5	 Taking your feature to production
You’ve designed a feature for SimpleBank that involves the interaction of multiple ser-
vices, an event queue, and an API gateway. Let’s say you’ve taken the next step: you’ve 
built those services and now the CEO is pushing you to get them into production.

In public clouds like AWS, Azure, or GCE, the obvious solution is to deploy each ser-
vice to a group of virtual machines. You could use load balancers to spread load evenly 
across instances of each web-facing service, or you could use a managed event queue, 
such as AWS’s Simple Queue Service, to distribute events between services.

NOTE    An in-depth discussion of effective infrastructure automation and man-
agement is outside the scope of this book. Most cloud providers provide this 
capability through custom tooling, such as AWS’s CloudFormation or Elastic 
Beanstalk. Alternatively, you could consider open source tools, such as Chef or 
Terraform.

Anyway — you compiled that code, FTP’d it onto those VMs, got the databases up and 
running, and tried some test requests. This took a few days. Figure 2.9 shows your pro-
duction infrastructure.

For a few weeks, that didn’t work too badly. You made a few changes and pushed out 
the new code. But soon you started to run into trouble. It was hard to tell if the services 
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were working as expected. Worse, you were the only person at SimpleBank who knew 
how to release a new version. Even worse than that, the guy who wrote the transaction 
service went on vacation for a few weeks, and no one knew how the service was deployed. 
These services would have a bus factor of 1 — suggesting they wouldn’t survive the disap-
pearance of any team member.

DEFINITION    bus factor is a measurement of the risk of knowledge not being 
shared between multiple team members, from the phrase “in case they get hit by 
a bus.” It’s also known as truck factor. The lower bus factors are, the worse they are.

Something was definitely wrong. You remembered that in your last job at GiantBank, 
the infrastructure team managed releases. You’d log a ticket, argue back and forth, 
and after a few weeks, you’d have what you needed…or sometimes not, so you’d log 
another ticket. That doesn’t seem like the right approach either. In fact, you were glad 
that using microservices allowed you to manage deployment.
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database

HTTP requests are
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service instances.

Each service is deployed on
multiple VMs.

Account
transactions

Orders
service

Load
balancer

Load
balancer

Load
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service

Event queueGateway

User
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Fee rules
database
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service

Order
database

Figure 2.9    In a simple microservices deployment, requests to each service are load balanced across 
multiple instances, running across multiple virtual machines. Likewise, multiple instances of a service 
may subscribe to a queue.
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It’s safe to say that your services weren’t ready for production. Running microservices 
requires a level of operational awareness and maturity from an engineering team 
beyond what’s typical in a monolithic application. You can only say a service is produc-
tion ready if you can confidently trust it to serve production workloads.

How can you be confident a service is trustworthy? Let’s start with a list of questions 
you might need to consider to achieve production readiness:

¡	Reliability  — Is your service available and error free? Can you rely on your 
deployment process to push out new features without introducing instability 
or defects?

¡	Scalability  — Do you understand the resource and capacity needs of a service? 
How will you maintain responsiveness under load?

¡	Transparency  — Can you observe a service in operation through logs and metrics? 
If something goes wrong, is someone notified?

¡	Fault tolerance  — Have you mitigated single points of failure? How do you cope 
with the failure of other service dependencies?

At this early stage in the lifetime of a microservice application, you need to establish 
three fundamentals:

¡	Quality-controlled and automated deployments
¡	Resilience
¡	Transparency

Let’s examine how these fundamentals will help you address the problems that Simple-
Bank has encountered.

2.5.1	 Quality-controlled and automated deployment

You’ll lose the added development speed you gain from microservices if you can’t get 
them to production rapidly and reliably. The pain of unstable deployments — such as 
introducing a serious error — will eliminate those speed gains.

Traditional organizations often seek stability by introducing (often bureaucratic) 
change control and approval processes. They’re designed to manage and limit change. 
This isn’t an unreasonable impulse: if changes introduce most bugs4 — costing the com-
pany thousands (or millions) of dollars of engineering effort and lost revenue — then 
you should closely control those changes.

In a microservice architecture, this won’t work, because the system will be in a state 
of continuous evolution; it’s this freedom that gives rise to tangible innovation. But 
to ensure that freedom doesn’t lead to errors and outages, you need to be able to 
trust your development process and deployment. Equally, to enable such freedom in 
the first place, you also need to minimize the effort required to release a new service 

4	 "SRE has found that roughly 70% of outages are due to changes in a live system." Benjamin Treynor 
Sloss, Chapter 1, Site Reliability Engineering, 2017, O’Reilly Media, http://mng.bz/7Mm4.
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or change an existing one. You can achieve stability through standardization and 
automation:

¡	You should standardize the development process. You should review code changes, write 
appropriate tests, and maintain version control of the source code. We hope this 
doesn’t surprise anyone!

¡	You should standardize and automate the deployment process. You should thoroughly 
validate the delivery of a code change to production, and it should require mini-
mal intervention from an engineer. This is a deployment pipeline.

2.5.2	 Resilience

Ensuring a software system is resilient in the face of failure is a complicated task. The 
infrastructure underpinning your systems is inherently unreliable; even if your code is 
perfect, network calls will fail and servers will go down. As part of designing a service, 
you need to consider how it and its dependencies may fail and proactively work to 
avoid — or minimize the impact of — those failure scenarios.

Table 2.2 examines the potential areas of risk in the system that SimpleBank has 
deployed. You can see that even a relatively simple microservice application introduces 
several areas of potential risk and complexity.

Table 2.2    Areas of risk in SimpleBank’s microservice application

Area Possible failures

Hardware Hosts, data center components, physical network

Communication between services Network, firewall, DNS errors

Dependencies Timeouts, external dependencies, internal failures, for example,  
supporting databases

NOTE    Chapter 6 will investigate techniques for maximizing service resilience.

2.5.3	 Transparency

The behavior and state of a microservice should be observable: at any time, you should 
be able to determine whether the service is healthy and whether it’s processing its 
workload in the way you expect. If something affects a key metric — say, orders are 
taking too long to be placed to market — this should send an actionable alert to the 
engineering team.

We’ll illustrate this with an example. Last week, there was an outage at SimpleBank. A 
customer called and told you she was unable to submit orders. Quick investigation turned 
up that this was affecting every customer: requests made to the order creation service 
were timing out. Figure 2.10 illustrates the possible points of failure within that service.
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Figure 2.10    A service timeout may be due to several underlying reasons: network issues, problems with 
service-internal dependencies — such as databases — or unhealthy behavior from other services.

It was clear that you had a major operational problem: you lacked logging to determine 
exactly what went wrong and where things were falling apart. Through manual testing, 
you managed to isolate the problem: the account transaction service was unresponsive. 
Meanwhile, your customers had been unable to place orders for several hours. They 
weren’t happy.

To avoid such problems in the future, you need to add thorough instrumentation to 
your microservices. Collecting data about application activity — at all layers — is vital to 
understanding the present and past operational behavior of a microservice application.

As a first step, SimpleBank set up infrastructure to aggregate the basic logs that your 
services produced, sending them to a service that allowed you to tag and search them.5 
Figure 2.11 illustrates this approach. By doing this, the next time a service failed, the 
engineering team could use those logs to identify the point where the system began to 
fail and diagnose the issue precisely where it occurred.

But inadequate logging wasn’t the only problem. It was embarrassing that SimpleBank 
only identified an issue once a customer called. The company should have had alerting in 
place to ensure that each service was meeting its responsibilities and service goals.

In such cases, in its most simple form, you should have a recurring heartbeat check 
that happening on each service to alert the team if a service becomes completely unre-
sponsive. Beyond that, a team should commit to operational guarantees for each ser-
vice. For example, for a critical service, you might aim for 95% of requests to return 
in under 100ms with 99.99% uptime. Failing to meet these thresholds should result in 
alerts being sent to the service owners.

5	 Several managed services exist for log aggregation, including Loggly, Splunk, and Sumo Logic.  
You also can run this function in-house using the well-known ELK (Elasticsearch, Logstash, Kibana) 
tool stack.

 



	 45Scaling up microservice development

An agent runs on each VM to
collect log data from running

services, such as requests made.

Transactions logs

VM

Agent

Log store

Each agent ships logs to a
dedicated store.

You can be index and search
logs to investigate service
issues, build reports, or

trigger alerts.

Search

EngineersOrders logs

VM

Agent

Figure 2.11    You install a logging collection agent on each instance. This ships application log data to a 
central repository where you can index, search, and analyze it further.

Building thorough monitoring for a microservice application is a complex task. The 
depth of monitoring you apply will evolve as your system increases in complexity and 
number of services. As well as the operational metrics and logging we’ve described, 
a mature microservice monitoring solution will address business metrics, interservice 
tracing, and infrastructure metrics. If you are to trust your services, you need to con-
stantly work at making sense of that data.

NOTE    In part 4 of this book, we’ll discuss monitoring in detail, and how to 
use tools like Prometheus to trigger alerts and build health dashboards for 
microservices.

2.6	 Scaling up microservice development
The technical flexibility of microservices is a blessing for the speed of development 
and the effective scalability of a system. But that same flexibility also leads to organiza-
tional challenges that change the nature of how an engineering team works at scale. 
You’ll quickly encounter two challenges: technical divergence and isolation.

2.6.1	 Technical divergence

Imagine SimpleBank has built a large microservice system of say 1,000 services. A small 
team of engineers owns each service, with each team using their preferred languages, 
their favorite tools, their own deployment scripts, their favored design principles, their 
preferred external libraries,6 and so on.

Take a moment to recoil in terror at the sheer weight of effort involved in main-
taining and supporting so many different approaches. Although microservices make it 
possible to choose different languages and frameworks for different services, it’s easy to 

6	 Unfortunately, this isn’t only an issue in microservices, although it’s exacerbated by hard compo-
nent boundaries and explicit service ownership. Earlier in my career, I encountered a single Ruby 
project that used six different HTTP client libraries!
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see that without choosing reasonable standards and limits, the system will become an 
unimaginable and fragile sprawl.

It’s easy to see this frustration emerge on a smaller scale. Consider two ser-
vices — account transactions and orders — that two different teams own. The first ser-
vice produces well-structured log output for every request, including helpful diagnostic 
information such as timings, a request ID, and the currently released revision ID:

service=api
git_commit=d670460b4b4aece5915caf5c68d12f560a9fe3e4
request_id=55f10e07-ec6c
request_ip=1.2.3.4
request_path=/users
response_status=500
error_id=a323-da321
parameters={ id: 1 }
user_id=123
timing_total_ms=223

The second service produces anemic messages in a difficult to parse format:

Processed /users in 223ms with response 500

You can see that even in this simple example of log message format, consistency and 
standardization would make it easier to adequately diagnose issues and trace requests 
across multiple services. It’s crucial to agree on reasonable standards at all layers of 
your microservice system to manage divergence and sprawl.

2.6.2	 Isolation

In chapter 1, we mentioned Conway’s Law. In an organization that works with micro
services, the inverse of this law is likely to be true: the structure of the company is deter-
mined by the architecture of its product.

This suggests that development teams will increasingly reflect microservices: they’ll 
be highly specialized to do one thing well. Each team will own and be accountable for 
several closely related microservices. Taken collectively, the developers will know every-
thing there is to know about a system, but individually they’ll have a narrow area of 
specialization. As SimpleBank’s customer base and product complexity grow, this spe-
cialization will deepen.

This configuration can be immensely challenging. Microservices have limited 
value by themselves and don’t function in isolation. Therefore, these independent 
teams must collaborate closely to build an application that runs seamlessly, even 
though their goals as a team likely relate to their own narrower area of ownership. 
Likewise, a narrow focus may tempt a team to optimize for their local problems and 
preferences, rather than the needs of the whole organization. At its worst, this could 
lead to conflict between teams, in turn leading to slower deployment and a less reli-
able product.
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2.7	 What’s next?
In this chapter, we established that microservices were a good fit for SimpleBank, 
designed a new feature, and considered how you might make that feature production 
ready. We hope this case study has shown that a microservice-driven approach to appli-
cation development is both compelling and challenging!

Throughout the rest of this book, we’ll teach you the techniques and tools you need 
to know to run a great microservice application. Although microservices can lead to 
both flexible and highly productive development, running multiple distributed ser-
vices is much more demanding than running a single application. To avoid instability, 
you need be able to design and deploy services that are production ready: transparent, 
fault-tolerant, reliable, and scalable.

In part 2, we’ll focus on design. Effectively designing a system of distributed, inter-
dependent services requires careful consideration of your system domain and how 
those services interact. Being able to identify the right boundaries between responsibil-
ities — and therefore build highly cohesive and loosely coupled services — is one of the 
most valuable skills for any microservice practitioner.

Summary

¡	Microservices are highly applicable in systems with multiple dimensions of com-
plexity — for example, breadth of product offering, global deployment, and reg-
ulatory pressures.

¡	It’s crucial to understand the product domain when designing microservices.
¡	Service interactions may be orchestrated or choreographed. The latter adds 

complexity but can lead to a more loosely coupled system.
¡	API gateways are a common pattern for abstracting away the complexity of a 

microservice architecture for front-end or external consumers.
¡	You can say a service is production ready if you can trust it to serve production 

workloads.
¡	You can be more confident in a service if you can reliably deploy and monitor it.
¡	Service monitoring should include log aggregation and service-level health 

checks.
¡	Microservices can fail because of problems with hardware, communication, and 

dependencies, not just defects in code.
¡	Collecting business metrics, logs, and interservice traces is vital to understanding 

the present and past operational behavior of a microservice application.
¡	Technical divergence and isolation will become increasingly challenging for 

an engineering organization as the number of microservices (and supporting 
teams) increases.

¡	Avoiding divergence and isolation requires standards and best practices to be 
similar across multiple teams, regardless of technical underpinnings.

 



 



Part 2

Design

In this part of the book, we’ll explore the design of microservice applications. 
We’ll start with a big-picture view — the architecture of an entire application — and 
then drill down to explore how to scope services and connect them together. You’ll 
learn how to design services that are reliable and a microservice framework that’s 
reusable.
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3Architecture of  
a microservice application

This chapter covers
¡	The big picture view of a microservice 

application

¡	The four tiers of microservice architecture: 
platform, service, boundary, and client

¡	Patterns for service communication

¡	Designing API gateways and consumer-driven 
façades as application boundaries

In chapter 2, we designed a new feature for SimpleBank as a set of microservices and 
discovered that deep understanding of the application domain is one of the keys to 
a successful implementation. In this chapter, we’ll look at the bigger picture and 
consider the design and architecture of an entire application made up of microser-
vices. We can’t give you a deep understanding of the domain your own application 
lives in, but we can show you how having such an understanding will help you build 
a system that’s flexible enough to grow and evolve over time.

You’ll see how a microservice application is typically designed to have four 
tiers — platform, service, boundary, and client — and you’ll learn what they are and 
how they combine to deliver customer-facing applications. We’ll also highlight the 
role of an event backbone in building a large-scale microservice application and 
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discuss different patterns for building application boundaries, such as API gateways. 
Lastly, we’ll touch on recent trends in building user interfaces for microservice applica-
tions, such as micro-frontends and frontend composition.

3.1	 Architecture as a whole
As a software designer, you want to build software that’s amenable to change. Many 
forces put pressure on your software: new requirements, defects, market demands, new 
customers, growth, and so on. Ideally, you can respond to these pressures at a steady 
pace and with confidence. For you to be able to do that, your development approach 
should reduce friction and minimize risk.

Your engineering organization will want to remove any roadblocks to development 
as time goes by and the system evolves. You want to be able to quickly and seamlessly 
replace any system’s component that becomes obsolete. You want to have teams in place 
that can become completely autonomous and responsible for portions of a larger sys-
tem. And you want those teams to coexist without the need for constant synchroniza-
tion and without blocking other teams. For that, you need to think about architecture: 
your plan for building an application.

3.1.1	 From monolith to microservices

With a monolithic application, your primary deliverable is a single application. That 
application is split horizontally into different technical layers — in a typical three-tier 
application, they’d be data, logic, and presentation (figure 3.1) — and vertically into dif-
ferent business domains. Patterns like MVC and frameworks like Rails and Django 
reflect the three-tier model. Each tier provides services to the tier above: the data tier 
provides persistent state; the logic tier executes useful work; and the presentation layer 
presents the results back to the end user.

An individual microservice is similar to a monolith: it stores data, performs some busi-
ness logic, and returns data and outcomes to consumers through APIs. Each microser-
vice owns a business or technical capability of the application and interacts with other 
microservices to execute work. Figure 3.2 illustrates the high-level architecture of an 
individual service.

NOTE    Chapter 4 discusses microservice scoping — how to define the boundar-
ies and responsibilities of a microservice — in detail.

In a monolithic application, your architecture is limited to the boundaries of the appli-
cation itself. In a microservice application, you’re planning for something that’ll keep 
evolving both in size and breadth. Think of it like a city: building a monolith is like 
building a skyscraper; whereas building a microservice application is like building a 
neighborhood: you need to build infrastructure (plumbing, roads, cables) and plan 
for growth (zone for small businesses versus houses).

This analogy highlights the importance of considering not only the components them-
selves, but also the way they connect, where they’re placed, and how you can build them 
concurrently. You want your plan to encourage growth along good lines, rather than dic-
tate or enforce a certain structure on your overall application.
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Figure 3.1    The architecture of a typical three-tier monolithic application
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Figure 3.2    The high-level architecture of an individual microservice
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Mostly importantly, you don’t run microservices in isolation; each microservice lives 
in an environment that enables you to build, deploy, and run it, in concert with 
other microservices. Your application architecture should encompass that whole 
environment.

3.1.2	 The role of an architect

Where do software architects fit in? Many enterprises employ software architects, 
although the effectiveness of and the approach to this role varies wildly.

Microservice applications enable rapid change: they evolve over time as teams build 
new services, decommission existing services, refactor existing functionality, and so on. 
As an architect or technical lead, your job is to enable evolution, rather than dictate 
design. If the microservice application is a city, then you’re a planner for the city council.

An architect’s role is to make sure the technical foundations of the application sup-
port a fast pace and fluidity. An architect should have a global perspective and make 
sure the global needs of the application are met, guiding its evolution so that

¡	The application is aligned to the wider strategic goals of the organization.
¡	Teams share a common set of technical values and expectations.
¡	Cross-cutting concerns — such as observability, deployment, and interservice 

communication — meet the needs of multiple teams.
¡	The whole application is flexible and malleable in the face of change.

To achieve these things, an architect should guide development in two ways:

¡	Principles  — Guidelines that the team should follow to achieve higher level tech-
nical or organizational goals

¡	Conceptual models  — High-level models of system relationships and application- 
level patterns

3.1.3	 Architectural principles

Principles are guidelines (or sometimes rules) that teams should follow to achieve 
higher level goals. They inform team practice. Figure 3.3 illustrates this model. For 
example, if your product goal is to sell to privacy- and security-sensitive enterprises, you 
might set the following principles:

¡	Development practices must comply with recognized external standards (for 
example, ISO 27001).

¡	All data must be portable and stored with retention limits in mind.
¡	Personal information must be clearly tracked and traceable through the application.

Principles are flexible. They can and should change to reflect the priorities of the busi-
ness and the technical evolution of your application. For example, early development 
might prioritize validating product-market fit, whereas a more mature application 
might require a focus on performance and scalability.

 



	 55Architecture as a whole

Company and product goals

Technical principles

Team practices and decisions

Inform

Achieve

Figure 3.3    An architectural approach based on technical principles

3.1.4	 The four tiers of a microservice application

Architecture should reflect a clear high-level conceptual model. A model is a useful 
tool for reasoning about an application’s technical structure. A multi-tiered model, 
like the three-tier model outlined in figure 3.1, is a common approach to applica-
tion structure, reflecting layers of abstraction and responsibility within an overall 
system.

In the rest of this chapter, we’ll explore a four-tier model for a microservice 
application:

¡	Platform  — A microservice platform provides tooling, infrastructure, and high-
level primitives to support the rapid development, operation, and deployment 
of microservices. A mature platform layer enables engineers to focus on building 
features, not plumbing.

¡	Services  — In this tier, the services that you build interact with each other to pro-
vide business and technical capabilities, supported by the underlying platform.

¡	Boundary  — Clients will interact with your application through a defined bound-
ary that exposes underlying functionality to meet the needs of outside consumers.

¡	Client  — Client applications, such as websites and mobile applications, interact 
with your microservice backend.

Figure 3.4 illustrates these architectural layers. You should be able to apply them to any 
microservice application, regardless of underlying technology choices.
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Figure 3.4    A four-tiered model of microservice application architecture

Each layer is built on the capabilities of the layers below; for example, individual ser-
vices take advantage of deployment pipelines, infrastructure, and communication 
mechanisms that the underlying microservice platform provides. A well-designed 
microservice application requires sophistication and investment at all layers.

Great! So now you have a model you can work with. In the next five sections, we’ll 
walk through each layer in this architectural model and discuss how it contributes to 
building sustainable, flexible, and evolutionary microservice applications.

3.2	 A microservice platform
Microservices don’t live in isolation. A microservice is supported by infrastructure:

¡	A deployment target where services are run, including infrastructure primitives, 
such as load balancers and virtual machines

¡	Logging and monitoring aggregation to observe service operation
¡	Consistent and repeatable deployment pipelines to test and release new services 

and versions
¡	Support for secure operation, such as network controls, secret management, and 

application hardening
¡	Communication channels and service discovery to support service interaction

Figure 3.5 illustrates these capabilities and how they relate to the service layer of the 
application. If each microservice is a house, then the platform provides roads, water, 
electricity, and telephone cables.
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Figure 3.5    The capabilities of a microservice platform

A robust platform layer decreases overall implementation cost, increases overall sta-
bility, and enables rapid service development. Without this platform, product devel-
opers would need to repeatedly write plumbing code themselves, taking energy away 
from delivering new features and business impact. The average developer shouldn’t 
need to be an expert in the intricacies of every layer of the application. Ultimately, a 
semi-independent, specialist team can develop the platform layer to meet the needs 
of multiple teams working in the service layer of the application.

3.2.1	 Mapping your runtime platform

A microservice platform will help you be confident that you can trust the services your 
team writes to serve production workloads and be resilient, transparent, and scalable. 
Figure 3.6 maps out a runtime platform for a microservice.

A runtime platform (or deployment target) — for example, a cloud environment like 
AWS or a platform as a service (PaaS) like Heroku — provides infrastructure primitives 
necessary to run multiple service instances and route requests between them. In addition, 
it provides mechanisms for providing configuration — secrets and environment-specific 
variables — to service instances.

You build the other elements of a microservice platform on top of this foundation. 
Observability tools collect and correlate data from services and underlying infrastruc-
ture. Deployment pipelines manage the upgrade (or rollback) of this stack.
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Figure 3.6    A deployment configuration for a microservice running in a typical cloud environment

3.3	 Services
The service layer has perhaps the most self-explanatory name — this is where your ser-
vices live. At this tier, services interact to perform useful work, relying on the under-
lying platform abstractions for reliable operation and communication and exposing 
their work through the boundary layer to application clients. We also consider compo-
nents that are logically internal to a service, such as data stores, to be part of this tier.

The structure of your service tier will differ widely depending on the nature of your 
business. In this section, we’ll discuss some of the common patterns you’ll encounter:

¡	Business and technical capabilities
¡	Aggregation and higher order services
¡	Services on critical and noncritical paths

3.3.1	 Capabilities

The services you write will implement different capabilities:

¡	A business capability is something that an organization does to generate value and 
meet business goals. Microservices that you scope to business capabilities directly 
reflect business goals.
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Figure 3.7    Microservices implementing business or technical capabilities

¡	A technical capability supports other services by implementing a shared technical 
feature.

Figure 3.7 compares these two types of capability. SimpleBank’s orders service exposes 
a capability for managing order execution — this is a business capability. The market 
service is a technical capability; it provides a gateway to a third party that other services 
(such as exposing market information or settling trades) can reuse.

NOTE    We’ll explore when to use business and technical capabilities and how 
you map them to individual services in the next chapter.

3.3.2	 Aggregation and higher order services

In the early days of a microservice application, your services are likely to be flat; each 
service is likely to have a similar level of responsibility. For example, the services in 
chapter 2 — orders, fees, transactions, and accounts — are scoped at a roughly equiva-
lent level of abstraction.

As the application grows, you’ll encounter two pressures on the growth of services:

¡	Aggregating data from multiple services to serve client requests for denormal-
ized data (for example, returning orders and fees together)

¡	Providing specialized business logic that takes advantage of underlying capabili-
ties (for example, placing a specific type of order)

Over time, these two pressures will lead to a hierarchy of services. Services that are closer 
to the system boundary will interact with several services to aggregate their output —  
let’s call those aggregators (figure 3.8). In addition, specialized services may act as coordi-
nators for the work of multiple lower order services.
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Figure 3.8    An aggregator serves queries by joining data from underlying services, and a coordinator 
orchestrates behavior by issuing commands to downstream services.

The challenge you’ll face is to determine when new data requirements or new appli-
cation behavior requires a new service, rather than changes to an existing service. Cre-
ating a new service increases overall complexity and may result in tight coupling, but 
adding functionality to an existing service may make it less cohesive and more difficult 
to replace. That would bend a fundamental microservice principle.

3.3.3	 Critical and noncritical paths

As your system evolves, some functions will naturally become more critical to your 
customer needs — and the successful operation of your business — than others. For 
example, at SimpleBank, the orders service is on the critical path for order placement. 
Without this service operating correctly, you can’t execute customer orders. Con-
versely, other services are less important; if the customer profile service is unavailable, 
it’s less likely to affect a critical, revenue-generating component of your offering. Fig-
ure 3.9 illustrates example paths at SimpleBank.

This is a double-edged sword. The more services on a critical path, the more likely 
failure will occur. Because no service is 100% reliable, the cumulative reliability of a ser-
vice is the product of the reliability of its dependencies.

But microservices allow you to clearly identify these paths and treat them inde-
pendently, investing more engineering effort to maximize the resiliency and scalability 
of these paths than you invest in less crucial system areas.

3.4	 Communication
Communication is a fundamental element of a microservice application. Microser-
vices communicate with each other to perform useful work. Your chosen methods for 
microservices to instruct and request action from other microservices determine the 
shape of the application you build.
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Figure 3.9    Chains of services serve capabilities. Many services will participate in multiple paths.

TIP    Network communication is also a primary source of unreliability in a 
microservice application. In chapter 6, we’ll explore techniques for maximiz-
ing the reliability of service-to-service communication.

Communication isn’t an independent architectural layer, but we’ve pulled this out into 
a separate section because it blurs the boundary between the service and platform lay-
ers. Some elements — such as communication brokers — are part of the platform layer. 
But services themselves are responsible for constructing and sending messages. You 
want to build smart endpoints but dumb pipes.

In this section, we’ll discuss common patterns for microservice communication 
and how they impact the flexibility and evolution of a microservice application. Most 
mature microservice applications will mix both synchronous and asynchronous inter-
action styles.

3.4.1	 When to use synchronous messages

Synchronous messages are often the first design approach that comes to mind. They’re 
well-suited to scenarios where an action’s results — or acknowledgement of success or 
failure — are required before proceeding with another action.

Figure 3.10 illustrates a request–response pattern for synchronous messages. The 
first service constructs an appropriate message to a collaborator, which the application 
sends using a transport mechanism, such as HTTP. The destination service receives this 
message and responds accordingly.
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Figure 3.10    A synchronous request–response lifecycle between two communicating services

Choosing a transport

The choice of transport — RESTful HTTP, an RPC library, or something else — will 
impact the design of your services. Each transport has different properties of latency, 
language support, and strictness. For example, gRPC provides generated client/server 
API contracts using Protobufs, whereas HTTP is agnostic to the context of messages. 
Across your application, using a single method of synchronous transport has econo-
mies of scale; it’s easier to reason through, monitor, and support with tooling.

Separation of concerns within microservices is also important. You should separate 
your choice of transport mechanism from the business logic of your service, which 
shouldn’t need to know about HTTP status codes or gRPC response streams. Doing 
so makes it easier to swap out different mechanisms in the future if your application’s 
needs evolve.

Drawbacks

Synchronous messages have limitations:

¡	They create tighter coupling between services, as services must be aware of their 
collaborators.

¡	They don’t have a strong model for broadcast or publish-subscribe models, limit-
ing your capability to perform parallel work.

¡	They block code execution while waiting on responses. In a thread- or process- 
based server model, this can exhaust capacity and trigger cascading failures.

¡	Overuse of synchronous messages can build deep dependency chains, which 
increases the overall fragility of a call path.

3.4.2	 When to use asynchronous messages

An asynchronous style of messaging is more flexible. By announcing events, you make 
it easy to extend the system to handle new requirements, because services no longer 
need to have knowledge of their downstream consumers. New services can consume 
existing events without changing existing services.
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TIP    Events represent post-hoc state changes. OrderCreated, OrderPlaced, 
and OrderCanceled are examples of events that the SimpleBank orders service 
might emit.

This style enables more fluid evolution and creates looser coupling between services. 
This does come at a cost: asynchronous interactions are more difficult to reason 
through, because overall system behavior is no longer explicitly encoded into linear 
sequences. System behavior will become increasingly emergent — developing unpredict-
ably from interactions between services — requiring investment in monitoring to ade-
quately trace what’s happening.

NOTE    Events enable different styles of persistence and querying, such as event 
sourcing and command query responsibility segregation (CQRS). These aren’t 
a prerequisite for microservices but have some synergies with a microservice 
approach. We’ll explore them in chapter 5.

Asynchronous messaging typically requires a communication broker, an independent sys-
tem component that receives events and distributes them to event consumers. This is 
sometimes called an event backbone, which indicates how central to your application this 
component becomes (figure 3.11). Tools commonly used as brokers include Kafka, 
RabbitMQ, and Redis. The semantics of these tools differ: Kafka specializes in high-vol-
ume, replayable event storage, whereas RabbitMQ provides higher level messaging 
middleware (based on the AMQP protocol (https://www.amqp.org/)).

3.4.3	 Asynchronous communication patterns

Let’s look at the two most common event-based patterns: job queue and publish-subscribe. 
You’ll encounter these patterns a lot when architecting microservices — most higher level 
interaction patterns are built on one of these two primitives.

Job queue

In this pattern, workers take jobs from a queue and execute them (figure 3.12). A job 
should only be processed once, regardless of how many worker instances you operate. 
This pattern is also known as winner takes all.

Service Publishes
events

Event producers are unaware
of event consumers.

Events indicate something “interesting”
has happened, for example, state change.

Event Event Event Event

Event broker Listen for
events

Listen for
events

Service C

Service B

Consumers are unaware of
which service emits events.

Figure 3.11    Event-driven asynchronous communication between services
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Figure 3.12    A job queue distributes work to 1 to n consumers

Your market gateway could operate in this fashion. Each order that the orders service 
creates will trigger an OrderCreated event, which will be queued for the market gate-
way service to place it. This pattern is useful where

¡	A 1:1 relationship exists between an event and work to be done in response to 
that event.

¡	The work that needs to be done is complex or time-consuming, so it should be 
done out-of-band from the triggering event.

By default, this approach doesn’t require sophisticated event delivery. Many task queue 
libraries are available that use commodity data stores, such as Redis (Resque, Celery, 
Sidekiq) or SQL databases.

Publish-subscribe

In publish-subscribe, services trigger events for arbitrary listeners. All listeners that 
receive the event act on it appropriately. In some ways, this is the ideal microservice 
pattern: a service can send arbitrary events out into the world without caring who acts 
on them (figure 3.13).
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listeners at any point.

Notify

Event
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Figure 3.13    How publish-subscribe sends events out to subscribers
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For example, imagine you need to trigger other downstream actions once an order has 
been placed. You might send a push notification to the customer or use it to feed your 
order statistics and recommendation feature. These features can all listen for the same 
event.

3.4.4	 Locating other services

To wrap up this section, let’s take a moment to examine service discovery. For services to 
communicate, they need to be able to discover each other. The platform layer should 
offer this capability.

A rudimentary approach to service discovery is to use load balancers (figure 3.14). 
For example, an elastic load balancer (ELB) on AWS is assigned a DNS name and man-
ages health checking of underlying nodes, based on their membership in a group of 
virtual machines (an auto-scaling group on AWS).

This works but doesn’t handle more complex scenarios. What if you want to route 
traffic to different versions of your code to enable canary deployments or dark launches, 
or if you want to route traffic across different data centers?

A more sophisticated approach is to use a registry, such as Consul (https://www.consul.io). 
Service instances announce themselves to a registry, which provides an API — either through 
DNS or a custom mechanism for resolving requests for those services. Figure 3.15 illustrates 
this approach.

Your service discovery needs will depend on the complexity of your deployed applica-
tion’s topology. More complex deployments, such as geographical distribution, require 
more robust service discovery architecture.1

NOTE    When you deploy to Kubernetes in chapter 9, you’ll learn about services, 
the mechanism that Kubernetes uses to provide discovery.

Orders

Forwards request
to service
instances

On creation, notifies name server

Name server

Returns IP
192.8.1.2

orders.simple-bank
.internal

Requests 192.8.1.2Service A

Looks up DNS for
orders.simple-bank.internal

LB

Orders

Figure 3.14    Service discovery using load balancers and known DNS names

1	 bit.ly/2o86ShQ is a great place to start if you’re interested in further exploring different types of 
proxies and load balancing.
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Figure 3.15    Service discovery using a service registry as a source of truth

3.5	 The application boundary
A boundary layer provides a façade over the complex interactions of your internal ser-
vices. Clients, such as mobile apps, web-based user interfaces, or IoT devices, may inter-
act with a microservice application. (You might build these clients yourself, or third 
parties consuming a public API to your application may build them.) For example, 
SimpleBank has internal admin tools, an investment website, iOS and Android apps, 
and a public API, as depicted in figure 3.16.

The boundary layer provides an abstraction over internal complexity and change (fig-
ure 3.17). For example, you might provide a consistent interface for a client to list all 
historic orders, but, over time, you might completely refactor the internal implementa-
tion of that functionality. Without this layer, clients would require too much knowledge 
of individual services, becoming tightly coupled to your system implementation.

Microservice
application

Admin UI

Public API

Investment
website

iOS app

Android app

Figure 3.16    Client applications at SimpleBank
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Figure 3.17    A boundary provides a façade over the service layer to hide internal complexity from a 
consumer.

Second, the boundary tier provides access to data and functionality using a transport 
and content type appropriate to the consumer. For example, whereas services might 
communicate between each other with gRPC, a façade can expose an HTTP API to 
external consumers, which is much more appropriate for external applications to 
consume.

Combining these roles allows your application to become a black box, performing 
whatever (unknown to the client) operations to deliver functionality. You also can make 
changes to the service layer with more confidence, because the client interfaces with it 
through a single point.

The boundary layer also may implement other client-facing capabilities:

¡	Authentication and authorization  — To verify the identity and claims of an API client
¡	Rate limiting  — To provide defense against client abuse
¡	Caching  — To reduce overall load on the backend
¡	Collect logs and metrics  — To allow analysis and monitoring of client requests

Placing these edge capabilities in the boundary layer provides clear separation of 
concerns — without a boundary, backend services would need to individually 
implement these concerns, increasing their complexity.

You might also use boundaries within your service tier to separate domains. For exam-
ple, an order placement process might consist of several services, but only one of those 
services should expose an entry point that other domains can access (figure 3.18).

NOTE    Internal service boundaries often reflect bounded contexts: cohesive, 
bounded subsets of the overall application domain. We’ll explore them more 
in the next chapter.

That provides an overview for how you can use boundaries. Let’s get more specific and 
explore three different (albeit related) patterns for application boundaries: API gate-
ways, backends for frontends, and consumer-driven gateways.
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Figure 3.18    Boundaries might be present between different contexts within a microservice application.

3.5.1	 API gateways

We introduced the API gateway pattern in chapter 2. An API gateway provides a single 
client-entry point over a service-oriented backend. It proxies requests to underlying 
services and transforms their responses. An API gateway might handle other cross-cut-
ting client concerns, such as authentication and request signing.

TIP    API gateways that are available include such open source options as 
Mashape’s Kong, as well as commercial offerings, such as AWS API Gateway.

Figure 3.19 illustrates an API gateway. The gateway authenticates a request, and if that 
succeeds, it proxies the request to an appropriate backend service. It transforms the 
results it receives so that when it returns them, they’re palatable for your consuming 
clients.

API gateway

gRPC

gRPC

The gateway authenticates, routes,
and transforms a client request.

Service

Authentication Routing Transformation

Transformation

HTTP

HTTP

Client

Figure 3.19    An API gateway serving a client request

 



	 69The application boundary

A gateway also allows you to minimize the exposed area of your system from a security 
perspective by deploying internal services in a private network and restricting ingress 
to all but the gateway.

WARNING    Sometimes an API gateway might perform API composition: com-
posing responses from multiple services into a single response. The line 
between this and service layer aggregation is fuzzy. It’s best to be cautious and 
try to avoid business logic bleeding into the gateway itself, which can overly 
increase coupling between the gateway and underlying services.

3.5.2	 Backends for frontends

The backends for frontends (BFF) pattern is a variation on the API gateway approach. 
Although the API gateway approach is elegant, it has a few downsides. If the API gate-
way acts as a composition point for multiple applications, it’ll begin to take on more 
responsibility.

For example, imagine you serve both desktop and mobile applications. Mobile 
devices have different needs, displaying less data with less available bandwidth, and dif-
ferent user features, such as location and context awareness. In practice, this means 
desktop and mobile API needs diverge, which increases the breadth of functionality 
you need to integrate into a gateway. Different needs, such as the amount of data (and 
therefore payload size) returned for a given resource, may also conflict. It can be hard 
to balance these competing forces while building a cohesive and optimized API.

In a BFF approach, you use an API gateway for each consuming client type. To take 
the earlier example from SimpleBank, each user service they offered would have a 
unique gateway (figure 3.20).

Admin UI iOS app Android app

Admin gateway Website gateway iOS gateway Android gateway

Each client has a
specialized API

backend.

Investment
website

Microservice
application

Figure 3.20    The backends for frontends pattern for SimpleBank’s client applications
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Doing so allows the gateway to be highly specific and responsive to the needs of its 
consumer without bloat or conflict. This results in smaller, simpler gateways and more 
focused development.

3.5.3	 Consumer-driven gateways

In both previous patterns, the API gateway determines the structure of the data it 
returns to your consumer. To serve different clients, you might build unique backends. 
Let’s flip this around. What if you could build a gateway that allowed consumers to 
express exactly what data they needed from your service? Think of this like an evolu-
tion of the BFF approach: rather than building multiple APIs, you can build a single 
“super-set” API that allows consumers to define the shape of response they require.

You can achieve this using GraphQL. GraphQL is a query language for APIs that 
allows consumers to specify which data fields they want and to multiplex different 
resources into a single request. For example, you might expose the following schema 
for SimpleBank clients.

Listing 3.1    Basic GraphQL schema for SimpleBank

type Account { 
  id: ID! 
  name: String!
  currentHoldings: [Holding]! 
  orders: [Order]!
}

type Order {
  id: ID!
  status: String!
  asset: Asset!
  quantity: Float!
}

type Holding {
  asset: Asset!
  quantity: Float!
}

type Asset {
  id: ID!
  name: String!
  type: String!
  price: Float!
}

type Root {
  accounts: [Account]! 
  account(id: ID): Account 
}

schema: {
  query: Root 
}

The ! indicates the field is non-nullable.

An account contains lists of Holding and Order.

Returns all accounts or an account by its ID

The schema has a single entry point for queries.
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This schema exposes a customer’s accounts, as well as orders and holdings against each 
of those accounts. Clients then execute queries against this schema. If a mobile app 
screen shows holdings and outstanding orders for an account, you could retrieve that 
data in a single request, as shown in the following listing.

Listing 3.2    Request body using GraphQL

{
  account(id: "101") { 
    orders 
    currentHoldings 
  }
}

In the backend, your GraphQL server would act like an API gateway, proxying and 
composing that data from multiple backend services (in this case, orders and hold-
ings). We won’t drill into GraphQL in further detail in this book, but if you’re inter-
ested, the official documentation (http://graphql.org/) is a great place to start. We’ve 
also had some success using Apollo (https://www.apollographql.com/) to provide a 
GraphQL API façade over RESTful backend services.

3.6	 Clients
The client tier, like the presentation layer in the three-tier architecture, presents to 
your users an interface to your application. Separating this layer from those below it 
allows you to develop user interfaces in a granular fashion and to serve the needs of 
different types of clients. This also means you can develop the frontend independently 
from backend features. As mentioned in the previous section, your application may 
need to serve many different clients — mobile devices, websites, both internal and 
external — each with different technology choices and constraints.

It’s unusual for a single microservice to serve its own user interface. Typically, the 
functionality exposed to a given set of users is broader than the capabilities of a single 
service. For example, administrative staff at SimpleBank might deal with order manage-
ment, account setup, reconciliation, tax, and so on. And this comes with cross-cutting 
concerns — authentication, audit logging, user management — that are clearly not the 
responsibility of an orders or account setup service.

3.6.1	 Frontend monoliths

Your backend is straightforward to split into independently deployable and maintain-
able services — well, relatively, you still have another 10 chapters to go. But this can be 
challenging to achieve on the frontend. A typical frontend over a microservice applica-
tion might still be a monolith that’s deployed and changed as a single unit (figure 3.21). 
Specialist frontends, particularly mobile applications, often demand dedicated teams, 
making end-to-end feature ownership difficult to practically achieve.

NOTE    We’ll talk more about end-to-end ownership (and why it’s desirable and 
beneficial when developing microservice applications) in chapter 13.

Filters by account ID

Requests specific member fields in response

 

http://graphql.org/
https://www.apollographql.com/
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...regardless of
the backend

decomposition.

API gateway Backend servicesFrontend

Orders

Fees

Accounts

Customers

Tax

All functionality gets
added to the same

frontend application...

Figure 3.21    A typical frontend client in a microservice application can become monolithic.

3.6.2	 Micro-frontends

As frontend applications grow larger, they begin to encounter the same coordination 
and friction issues that plague large-scale backend development. It’d be great if you 
could split frontend development in the same way you can split your backend services. 
An emerging trend in web applications is micro-frontends — serving fragments of a 
UI as independently packaged and deployable components that you can compose 
together. Figure 3.22 illustrates this approach.

This would allow each microservice team to deliver functionality end to end. For 
example, if you had an orders team, it could independently deliver both order manage-
ment microservices and the web interface required to place and manage orders.

Shared/generic
components, such as

navigation

Independent
components

Components may
communicate with

each other.

Figure 3.22    A user interface composed from independent fragments
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Although promising, this approach has many challenges:

¡	Visual and interaction consistency across different components requires 
nontrivial effort to build and maintain common components and design 
principles.

¡	Bundle size (and therefore load time) can be difficult to manage when loading 
JavaScript code from multiple sources.

¡	Interface reloads and redraws can cause overall performance to suffer.

Micro-frontends aren’t yet commonplace, but people are using several different tech-
nical approaches in the wild, including

¡	Serving UI fragments as web components with a clear, event-driven API
¡	Integrating fragments using client-side includes
¡	Using iframes to serve micro-apps into separate screen sections
¡	Integrating components at the cache layer using edge side includes (ESI)

If you’re interested in learning more, Micro Frontends (https://micro-frontends.org/) 
and Zalando’s Project Mosaic (https://www.mosaic9.org/) are great starting points.

Summary

¡	Individually, microservices are similar internally to monolithic applications.
¡	A microservice application is like a neighborhood: its final shape isn’t prescribed 

but instead guided by principles and a high-level conceptual model.
¡	The principles that guide microservice architecture reflect organizational goals 

and inform team practices.
¡	Your architectural plan should encourage growth along good lines, rather than 

dictate approaches for your overall application.
¡	A microservice application consists of four layers: platform, service, boundary, 

and client.
¡	The platform layer provides tooling, plumbing, and infrastructure to support the 

development of product-oriented microservices.
¡	Synchronous communication is often the first choice in a microservice applica-

tion and is best suited to command-type interactions, but it has drawbacks and 
can increase coupling and fragility.

¡	Asynchronous communication is more flexible and amenable to rapid system 
evolution, at the cost of added complexity.

¡	Common asynchronous communication patterns include queues and 
publish-subscribe.

¡	The boundary layer provides a façade over your microservice application that’s 
appropriate for external consumers.

 

https://micro-frontends.org/
https://www.mosaic9.org/
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¡	Common types of boundaries include API gateways and consumer-driven gate-
ways, such as GraphQL.

¡	Client applications, such as websites and mobile applications, interact with your 
mobile backend through the boundary layer.

¡	Clients risk becoming monolithic, but techniques are beginning to emerge for 
applying microservice principles to frontend applications.

 



75

4Designing new features

This chapter covers
¡	Scoping microservices based on business 

capabilities and use cases

¡	When to scope microservices to reflect 
technical capabilities

¡	Making design choices when service 
boundaries are unclear

¡	Scoping effectively when multiple teams own 
microservices

Designing a new feature in a microservice application requires careful and well-reasoned 
scoping of microservices. You need to decide when to build new services or extend 
existing services, where boundaries lie between those services, and how those services 
should collaborate.

Well-designed services have three key characteristics: they’re responsible for a 
single capability, independently deployable, and replaceable. If your microservices 
have the wrong boundaries, or are too small, they can become tightly coupled, mak-
ing them challenging to deploy independently or replace. Tight coupling increases 
the impact, and therefore the risk, of change. If your services are too large — taking 
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on too much responsibility — they become less cohesive, increasing friction in ongoing 
development.

 Even if you get it right the first time, you need to keep in mind that the requirements 
and needs of most complex software applications will evolve over time, and approaches 
that worked early in that application’s lifetime may not always remain suitable. No 
design is perfect forever. 

You’ll face additional challenges in longer running applications (and larger engi-
neering organizations). Your services may rely on a web of dependencies managed by 
multiple teams — as an engineer in one team, you’ll need to design cohesive function-
ality while relying on services that won’t necessarily be under your control. And you’ll 
need to know when to retire and migrate away from services that no longer meet the 
needs of the wider system.

In this chapter, we’ll walk you through designing a new feature using microservices. 
We’ll use that example to explore techniques and practices that you can use to guide 
the design of maintainable microservices in both new and longer running microservice 
applications.

4.1	 A new feature for SimpleBank
Remember SimpleBank? The team is doing well — customers love their product! But 
SimpleBank has discovered that most of those customers don’t want to pick their own 
investments — they’d much rather have SimpleBank do the hard work for them. Let’s 
take this problem and work out how to solve it with a microservice application. In the 
next few sections, we’ll develop the design in four stages:

1	 Understanding the business problem, use cases, and potential solution

2	 Identifying the different entities and business capabilities your services should 
support

3	 Scoping services that are responsible for those capabilities

4	 Validating your design against current and potential future requirements

This will build on the small collection of services we explored in chapters 2 and 3: 
orders, market gateway, account transactions, fees, market data, and holdings.

First, let’s understand the business problem you’re trying to solve. In the real 
world, you could carry out the discovery and analysis of business problems using sev-
eral techniques, such as market research, customer interviews, or impact mapping. 
As well as understanding the problem, you’d need to decide whether it was one your 
company should solve. Luckily, this isn’t a book about product management — you 
can skip that part.

NOTE    We haven’t tried to extrapolate a general approach to understanding 
business problems — that’s another book altogether. 

Ultimately, SimpleBank’s customers want to invest money, either up front or on a reg-
ular basis, and see their wealth increase, either over a defined period or to meet a 
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specific goal, such as a deposit on a house. Currently, SimpleBank’s customers need to 
choose how their money is invested — even if they don’t have a clue about investing. 
An uninformed investor might choose an asset based on high predicted returns, with-
out realizing that higher returns typically mean significantly higher risk. 

To solve this problem, SimpleBank could make investment decisions on the custom-
er’s behalf by allowing the customer to choose a premade investment strategy. An invest-
ment strategy consists of proportions of different asset types — bonds, shares, funds, 
and so on — designed for a certain level of risk and investment timeline. When a cus-
tomer adds money to their account, SimpleBank will automatically invest that money in 
line with this strategy. This setup is summarized in figure 4.1.

SimpleBank

Customer

Generate
strategy orders

Invest money

Select strategy

Create account

<<Include>>

<<Include>>

<<Include>>

Define
available
strategies

Investment strategies

Select assets

Figure 4.1    Potential use cases to support defining and selecting investment strategies 
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Based on figure 4.1, you can start to identify the use cases you need to satisfy to solve 
this problem:

¡	SimpleBank must be able to create and update available strategies.
¡	A customer must be able to create an account and elect an appropriate invest-

ment strategy.
¡	A customer must be able to invest money using a strategy, and investing in a strat-

egy generates appropriate orders.

Over the next few sections, we’ll explore these use cases. When identifying use cases in 
your own domain, you may prefer to use a more structured and exhaustive approach, 
such as behavior-driven development (BDD) scenarios. What’s important is that you 
start to establish a concrete understanding of the problem, which you then can use to 
validate an acceptable solution.

4.2	 Scoping by business capabilities
After you’ve identified your business requirements, your next step is to identify the 
technical solution: which features you need to build and how you’ll support them 
with existing and new microservices. Choosing the right scope and purpose for each 
microservice is essential to building a successful and maintainable microservice 
application.

This process is called service scoping. It’s also known as decomposition or partition-
ing. Breaking apart an application into services is challenging — as much art as science. 
In the following sections, we’ll explore three strategies for scoping services:

¡	By business capability or bounded context  — Services should correspond to relatively 
coarse-grained, but cohesive, areas of business functionality.

¡	By use case  — Services should be verbs that reflect actions that will occur in a 
system.

¡	By volatility  — Services should encapsulate areas where change is likely to occur 
in the future.

You don't necessarily use these approaches in isolation; in many microservice appli-
cations, you’ll combine scoping strategies to design services appropriate to different 
scenarios and requirements.

4.2.1	 Capabilities and domain modeling

A business capability is something that an organization does to generate value and 
meet business goals. Microservices that are scoped to business capabilities directly 
reflect business goals. In commercial software development, these goals are usually the 
primary drivers of change within a system; therefore, it’s natural to structure the system 
to encapsulate those areas of change. You’ve seen several business capabilities imple-
mented in services so far: order management, transaction ledgers, charging fees, and 
placing orders to market (figure 4.2).
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Functions

Capabilities and
services

 Place order to market Charge order fees to
accounts

Record transactions
occurring on account

Manage order status

Fees serviceMarket serviceOrders service
Account

transactions
service

Transactions Order management Fees

Figure 4.2    Functions that existing microservices provide and their relationship to business capabilities 
performed by SimpleBank

Business capabilities are closely related to a domain-driven design approach. Domain-
driven design (DDD) was popularized by Eric Evans’ book of the same name and focuses 
on building systems that reflect a shared, evolving view, or model, of a real-world domain.1 
One of the most useful concepts that Evans introduced was the notion of a bounded con-
text. Any given solution within a domain might consist of multiple bounded contexts; the 
models inside each context are highly cohesive and have the same view of the real world. 
Each context has a strong and explicit boundary between it and other contexts.

Bounded contexts are cohesive units with a clear scope and an explicit external bound-
ary. This makes them a natural starting point for scoping services. Each context demar-
cates the boundaries between different areas of your solution. This often has a close 
correspondence with organizational boundaries; for example, an e-commerce company 
will have different needs — and different teams — for shipping versus customer payments.

To begin with, a context typically maps directly to a service and an area of business 
capability. As the business grows and becomes more complex, you may end up breaking 
a context down into multiple subcapabilities, many of which you’ll implement as inde-
pendent, collaborating services. From the perspective of a client, though, the context 
may still appear as a single logical service.

TIP    The API gateway pattern we discussed in chapter 3 can be useful for estab-
lishing boundaries between different contexts (and underlying groups of ser-
vices) within your application.

4.2.2	 Creating investment strategies 

You can design services to support creating investment strategies using a business capa-
bility approach. You might want to get a sketch pad to work through this one. To help 
you work through this example and give the use case more shape, we’ve wireframed 
what the UI for this feature might look like in figure 4.3.

1	 Although many of the implementation patterns — repositories, aggregates, and factories — are quite 
specific to object-oriented programming, many of Evans’ analysis techniques — such as ubiquitous 
language — are useful in any programming paradigm.
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Figure 4.3    A user interface for an admin user to create new investment strategies

To design services by business capability, it’s best to start with a domain model: some 
description of the functions your business performs in your bounded context(s) and 
the entities that are involved. From figure 4.3, you’ve probably identified these already. 
A simple investment strategy has two components: a name and a set of assets, each with 
a percentage allocation. An administrative staff member at SimpleBank will create a 
strategy. We’ve drafted those entities in figure 4.4.

The design of these entities helps you understand the data your services own and 
persist. Only three entities, and it already looks like you’ve identified (at least) two new 
services: user management and asset information. The user and asset entities are both 
part of distinct bounded contexts:

¡	User management  — This covers features like sign-up, authentication, and 
authorization. In a banking environment, authorization for different 
resources and functionality is subject to strict controls for security, regulatory, 
and privacy reasons.
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1
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+ Allocations:List<AssetAllocation>

Investment Strategy entity Asset Allocation

Asset information service
User management service

User entity Asset entity

Investment strategies service

Figure 4.4    The first draft of a domain model made up of entities to support the creation of investment 
strategies

¡	Asset information  — This covers integration with third-party providers of market 
data, such as asset prices, categories, classification, and financial performance. 
This capability would include asset search, as required by your user interface 
(figure 4.3). 

Interestingly, these different domains reflect the organization of SimpleBank itself. 
A dedicated operational team manages asset data; likewise, user management. This 
comparability is desirable, as it means your services will reflect real-world lines of cross-
team communication.

More on that later — let’s get back to investment strategies. You know that 
you can associate them with customer accounts and use them to generate orders. 
Accounts and orders are both distinct bounded contexts, but investment strategies 
don’t belong in either one. When strategies change, the change is unlikely to affect 
accounts or orders themselves. Conversely, adding investment strategies to either of 
those existing services will hamper their replaceability, making them less cohesive 
and less amenable to change.

These factors indicate that investment strategies are a distinct business capability, 
requiring a new service. Figure 4.5 illustrates the relationships between this context and 
your existing capabilities.
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Orders

Have

Assets

Result inInvestment
strategies

User management

Manage
Admin users

Invest using

Consist of

Buy/sell

Hold positions in

Accounts

Customers

Asset information

Figure 4.5    Relationships between your new business capability and other bounded contexts within the 
SimpleBank application

You can see that some contexts are aware of information that belongs to other con-
texts. Some entities within your context are shared: they’re conceptually the same but 
carry unique associations or behavior within different contexts. For example, you use 
assets in multiple ways:

¡	The strategy context records the allocation of assets to different strategies.
¡	The orders context manages the purchase and sale of assets.
¡	The asset context stores fundamental asset information for use by multiple con-

texts, such as pricing and categorization.

The model we’ve drawn out in figure 4.5 doesn’t tell you much about the behavior of 
a service; it only tells you the business scope your services cover. Now that you have a 
firmer idea of where your service boundaries lie, you can draft out the contract that 
your service offers to other services or end users.

NOTE    Don’t worry too much about what technology you’ll use for communica-
tion at this stage. The examples in this chapter could easily apply to any point-
to-point messaging approach.

First, your investment strategies service needs to expose methods for creating and 
retrieving investment strategies. Other services or your UI can then access this data. 
Let’s draft out an endpoint that allows creating an investment strategy. The example 
shown in listing 4.1 uses the OpenAPI specification (formerly known as Swagger), 
which is a popular technique for designing and documenting REST API interfaces. If 
you’re interested in learning more, the Github page for the OpenAPI specification2 is 
a good place to start.

2	 See https://github.com/OAI/OpenAPI-Specification.

 

https://github.com/OAI/OpenAPI-Specification
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Listing 4.1    API for the investment strategies service

openapi: "3.0.0"
info: 
  title: Investment Strategies 
servers: 
  - url: https://investment-strategies.simplebank.internal 
paths:
  /strategies: 
    post: 
      summary: Create an investment strategy
      operationId: createInvestmentStrategy
      requestBody: 
        description: New strategy to create
        required: true
        content:
          application/json:
            schema:
              $ref: '#/components/schemas/NewInvestmentStrategy' 
      responses:
        '201':
          description: Created strategy
          content:
            application/json:
              schema:
                $ref: '#/components/schemas/InvestmentStrategy' 
components: 
  schemas:
    NewInvestmentStrategy: 
      required:
        - name
        - assets
      properties:
        name:
          type: string
        assets: 
          type: array 
          items: 
            $ref: '#/components/schemas/AssetAllocation' 
    AssetAllocation:
      required:
        - assetId
        - percentage
      properties:
        assetId:
          type: string
        percentage:
          type: number
          format: float
    InvestmentStrategy:
      allOf:

Starts with some metadata about your API

Defines a “POST /strategies” path

The body of this request should be 
the new investment strategy.

Refers to a location elsewhere in the 
document: the components key

Defines the response type 
in the components section

Defines reusable data types

A new investment strategy type

Contains a list of assets 
of type AssetAllocation
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        - $ref: '#/components/schemas/NewInvestmentStrategy' 
        - required:
          - id
          - createdByUserId
          - createdAt
          properties:
            id:
              type: integer
              format: int64
            createdByUserId:
              type: integer
              format: int64
            createdAt:
              type: string
              format: date-time

If you’re going to use strategies again later — and you are — you’ll need to retrieve them. 
Immediately under your paths: element in listing 4.1, add the code in the following listing.

Listing 4.2    API for retrieving strategies from the investment strategies service

  /strategies/{id}: 
    get:
      description: Returns an investment strategy by ID
      operationId: findInvestmentStrategy
      parameters: 
        - name: id 
          in: path 
          description: ID of strategy to fetch 
          required: true 
          schema: 
            type: integer 
            format: int64 
      responses:
        '200':
          description: investment strategy
          content:
            application/json:
              schema:
                $ref: '#/components/schemas/InvestmentStrategy' 

You also should consider what events this service should emit. An event-based model 
aids in decoupling services from each other, ensuring that you can choreograph long-
term interactions, rather than explicitly orchestrate them.

WARNING    Anticipating future use cases of a service is one of the most difficult ele-
ments of service design. But building flexible APIs and integration points between 
services reduces the need for future rework and coordination between teams.

The InvestmentStrategy type extends the 
NewInvestmentStrategy and adds fields, 

based on your entity model.

The path for retrieving an investment strategy

Defines the format of the ID

Returns an investment strategy
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Endpoints Events

Investment
strategies

Strategy CreatedCreate Strategy

Get Strategy

Figure 4.6    The inbound and outbound contract of your investment strategies microservice

For example, imagine that creating a strategy will trigger email notifications to poten-
tially interested customers. This is separate from the scope of the investment strate-
gies service itself; it has no knowledge of customers (or their preferences). This is an 
ideal use case for events. If a POST to /strategies post-hoc triggers an event — let’s 
call it StrategyCreated — then arbitrary microservices can listen for that event and act 
appropriately. Figure 4.6 illustrates the full scope of your service’s API.

Great work — you’ve identified all the capabilities that you require to support this 
use case. To see how this fits together, you can map the investment strategies service and 
the other capabilities you’ve identified to the wireframe (figure 4.7).

Let’s summarize what you’ve done so far:

1	 For a sample problem, you’ve identified functions the business performs to gen-
erate value and the natural seams between different areas of SimpleBank’s busi-
ness domain.

2	 You’ve used that knowledge to identify boundaries within your microservice appli-
cation, identifying entities and responsibility for different capabilities.

3	 You’ve scoped your system into services that reflect those domain boundaries.

Create strategy

Get strategy

Investment Strategies

User management

We've scoped the boundaries
of this service.

We’ve identified capabilities
that need to be implemented

in services.

Search for assets

Asset information

Get asset

Get user

Figure 4.7    Identified capabilities and services mapped to how they’d support functionality in the create 
investment strategy user interface
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This approach results in services that are relatively stable, cohesive, oriented to busi-
ness value, and loosely coupled.

4.2.3	 Nested contexts and services

Each bounded context provides an API to other contexts, while encapsulating internal 
operation. Let’s take asset information as an example (figure 4.8):

¡	It exposes methods that other contexts can use, such as searching for and retriev-
ing assets.

¡	Third-party integrations or specialist teams within SimpleBank populate asset 
data.

The private/public divide provides a useful mechanism for service evolution. Early in a 
system’s lifecycle, you might choose to build coarser services, representing a high-level 
boundary. Over time, you might decompose services further, exposing behavior from 
nested contexts. Doing this maintains replaceability and high cohesion, even as busi-
ness logic increases in complexity.

Other contexts

Interact with external interface

Public

Private

Get asset Search for asset

Pricing Classification

Investment research

Nested contexts are
potential service partitions.

Asset information

Figure 4.8    A context exposes an external interface and may itself contain nested contexts
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4.2.4	 Challenges and limitations

In the previous sections, you identified the natural seams within the organization’s 
business domain and applied them to partition your services. This approach is effec-
tive because it maps services to the functional structure of a business — directly reflect-
ing the domain in which an organization operates. But it’s not perfect.

Requires substantial business knowledge 
Partitioning by business capabilities requires having significant understanding of the 
business or problem domain. This can be difficult. If you don’t have enough infor-
mation — or you’ve made the wrong assumptions — you can’t be completely certain 
you’re making the right design decisions. Understanding the needs of any business 
problem is a complex, time-consuming and iterative process.

This problem isn’t unique to microservices, but misunderstanding the business 
scope — and reflecting it incorrectly in your services — can incur higher refactoring 
costs in this architecture, because both data and behavior can require time-consuming 
migration between services. 

Coarse-grained services keep growing

Similarly, a business capability approach is biased toward the initial development of 
coarse-grained services that cover a large business boundary — for example, orders, 
accounts, or assets. New requirements increase the breadth and depth of that area, 
increasing the scope of the service’s responsibility. These new reasons to change can 
violate the single responsibility principle. It’ll be necessary to partition that service fur-
ther to maintain an acceptable level of cohesion and replaceability.

WARNING    Service teams sometimes add functionality to existing microservices 
because it’s easy — a deployable unit already exists — rather than investing 
more time to create a new service or repartition the existing service appropri-
ately. Although teams sometimes need to make pragmatic decisions, they need 
to exercise discipline to minimize this source of technical debt.

4.3	 Scoping by use case
So far, your services have been nouns, oriented around objects and things that exist 
within the business domain. An alternative approach to scoping is to identify verbs, or 
use cases within your application, and build services to match those responsibilities. 
For example, an e-commerce site might implement a complex sign-up flow as a micro-
service that interacts with other services, such as user profile, welcome notifications, 
and special offers.

This approach can be useful when

¡	A capability doesn’t clearly belong in one domain or interacts with multiple 
domains.

¡	The use case being implemented is complex, and placing it in another service 
would violate single responsibility.
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Let’s apply this approach to SimpleBank to understand how it differs from noun-ori-
ented decomposition. Get your pencil and paper ready!

4.3.1	 Placing investment strategy orders 

A customer can invest money into an investment strategy. This will generate appropri-
ate orders; for example, if the customer invests $1,000, and the strategy specifies 20% 
should be invested in Stock ABC, an order will be generated to purchase $200 of ABC.

This raises several questions:

1	 How does SimpleBank accept money for investment? Let’s assume a customer 
can make an investment by external payment (for example, a credit card or bank 
transfer).

2	 Which service is responsible for generating orders against a strategy? How does 
this relate to your existing orders and investment strategies services?

3	 How do you keep track of orders made against strategies?

You could build this capability into your existing investment strategies service. 
But placing orders might unnecessarily widen the scope of responsibility that 

the service encapsulates. Likewise, the capability doesn’t make sense to add to the 
orders service. Coupling all possible sources of orders to that service would give it 
too many reasons to change.

You can draft out an independent service for this use case as a starting point — call it 
PlaceStrategyOrders. Figure 4.9 sketches out how you’d expect this service to behave. 

Consider the input to this service. For orders to be placed, this service needs three 
things: the account placing them, the strategy to use, and the amount to invest. You can 
formalize that input, as shown in the following listing.

Orders
Place Strategy

Orders

Input

Amount invested

Destination
account

Investment
strategy

Results inRequest

Figure 4.9    Expected behavior of a proposed PlaceStrategyOrders service
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Listing 4.3    Draft input for PlaceStrategyOrders

paths:
  /strategies/{id}/orders: 
    post:
      summary: Place strategy orders
      operationId: PlaceStrategyOrders
      parameters:
        - name: id
          in: path
          description: ID of strategy to order against
          required: true
          schema:
            type: integer
            format: int64
      requestBody:
        description: Details of order
        required: true
        content:
          application/json:
            schema:
              $ref: '#/components/schemas/StrategyOrder'
components:
  schemas:
    StrategyOrder:
      required:
        - destinationAccountId 
        - amount 
      properties:
        destinationAccountId:
          type: integer
          format: int64
        amount:
          type: number
          format: decimal

This is elegant but a little too simple. If you assume your payment is coming from an 
external source, you can’t execute orders until those funds are available. It doesn’t 
make sense for PlaceStrategyOrders to handle receipt of funds — this is clearly a dis-
tinct business capability. Instead, you can link placing strategy orders to a payment, as 
follows.

Listing 4.4    Using payment ID for PlaceStrategyOrders

components:
  schemas:
    StrategyOrder:
      required:
        - destinationAccountId
        - amount
        - paymentId 
      properties:
        destinationAccountId:

Executing an order is a subresource  
of an investment strategy.

An order requires a destination account 
and an investment amount.

Your new required field: paymentId
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          type: integer
          format: int64
        amount:
          type: number
          format: decimal
	   paymentId:
          type: integer
          format: int64

This anticipates the existence of a new service capability: payments. This capability 
should support

¡	Initiating payments by users
¡	Processing those payments by interacting with third-party payment systems
¡	Updating account positions at SimpleBank

Because you know that payments aren’t instantaneous, you’d expect this service to trig-
ger asynchronous events that other services can listen for, such as PaymentCompleted. 
Figure 4.10 illustrates this payments capability.

From the perspective of PlaceStrategyOrders, it doesn’t matter how you implement 
the payments capability, as long as something implements the interface the consumer 
expects. It might be a single service — Payments — or a collection of action-oriented 
services, for example, CompleteBankTransfer.

You can summarize what you’ve designed so far in a sequence diagram (figure 4.11).
There’s one missing element in this diagram: getting these orders to market. As men-

tioned, although this service generates orders, this capability clearly doesn’t belong 
within your existing orders service. The orders service exposes behavior that multiple 
consumers can use, including this new service (figure 4.12); although the source of 
orders differs, the process of placing them remains the same.

If the service meets this interface,
consumers don't need to be aware

of implementation details.

The payments capability should
implement a clear interface.

Payments

Payment
completedCreate payment Process payments Update positions

Interface Events

Figure 4.10    The interface that your proposed payments capability expects
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Processes
payment

UI Place Strategy Orders

Creates payment

Saves request

Confirmation

Payment details

Payment completed

Gets strategy details

Strategy details

Generates orders

Requests investment

Payments Strategies

Figure 4.11    The process of creating a payment and making an investment using the proposed 
PlaceStrategyOrders service

Lastly, you need to persist the link between these orders and the strategy and investment 
that created them. PlaceStrategyOrders should be responsible for storing any request it 
receives — it clearly owns this data. Therefore, you should record any order IDs within 
the strategy order service to preserve that foreign key relationship. You could also record 
the order source ID — the ID of this investment strategy investment request — within 
the orders service itself, although it seems less likely you’d query data in that direction.

This service manages the
lifecycle of orders.

Place Order

Other services

Place Strategy
Orders

Orders can come from
multiple sources.

End users Orders

Figure 4.12    Your orders service provides an API that multiple other services within your system  
can consume.
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The orders service emits OrderCompleted events when an order has been completed. 
Your strategy orders service can listen for these events to reflect that status against the 
overall investment request.

You can add the orders service and tie this all together as shown in figure 4.13.
Great! You’ve designed another new service. Unlike the previous section, you 

designed a service that closely represented a specific complex use case, rather than a 
broad capability.

This resulted in a service that was responsible for a single capability, replaceable, and 
independently deployable, meeting your desired characteristics for well-scoped micro-
services. In contrast, unlike if you’d focused on business capabilities, the tight focus of 
this service on a single use case limits potential for reuse in other use cases in the future. 
This inflexibility suggests that fine-grained use case services are best used in tandem 
with coarser grained services, rather than alone.

4.3.2	 Actions and stores

We’ve identified an interesting pattern in the above examples: multiple higher level 
microservices access a coarse-grained underlying business capability. This is especially 
prevalent in a verb-oriented approach, as the data needs of different actions often 
overlap.

Processes
payment

UI Place Strategy Orders

Creates payment

Saves request

Confirmation

Payment details

Order details

Place orders

Order completed

Payment completed

Gets strategy details

Strategy details

Generates orders

Records order IDs

Updates request
status

Requests investment

Payments Strategies Orders

Figure 4.13    The full process of creating an investment strategy order using your new 
PlaceStrategyOrders service
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For example, imagine you have two actions: update order and cancel order. Both oper-
ations operate against the same underlying order state, so neither can exclusively own 
that state itself, and you need to reconcile that conflict somewhere. In the previous 
examples, the orders service took care of the problem. This service is the ultimate 
owner of that subset of your application’s persistent state.

This pattern is similar3 to Bob Martin’s clean architecture4 or Alistair Cockburn’s hex-
agonal architecture. In those models, the core of an application consists of two layers:

¡	Entities  — Enterprisewide business objects and rules
¡	Use cases  — Application-specific operations that direct entities to achieve the 

goals of the use case

Around those layers, you use interface adapters to connect these business-logic con-
cerns to application-level implementation concerns, such as particular web frame-
works or database libraries. Similarly, at an intraservice level, your use cases (or 
actions) interact with underlying entities (or stores) to generate some useful outcome. 
You then wrap them in a façade, such as an API gateway, to map from your underlying 
service-to-service representations to an output friendly to an external consumer (for 
example, a RESTful API). Figure 4.14 sketches out that arrangement.

Independent UI /
application delivery

UI/consumers

Gateway

Service Service

ServiceService

Service

Adaptation of
underlying formats to
presentation & output

Use case-specific
business logic

Business objects and
enterprisewide
business rules

Clean architecture Microservice application

Frameworks

Adapters

Use cases

Entities

Figure 4.14    The architecture of a microservice application compared to Bob Martin’s clean architecture

3	 But not quite the same: Martin’s architecture is concerned with implementation detail indepen-
dence within object-oriented applications (for example, keeping business logic independent of 
the data storage solution), which isn’t particularly relevant at the intraservice level.

4	 For a more detailed explanation of Martin’s clean architecture, see Uncle Bob, “The Clean Archi-
tecture,” August 13, 2012, http://mng.bz/LJB4.
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This architecture is conceptually elegant, but you need to apply it judiciously in a 
microservice system. Treating underlying capabilities as, first and foremost, stores of 
persistent state can lead to anemic, “dumb” services. These services fail to be truly 
autonomous because they can’t take any action without being mediated by another, 
higher level service. This architecture also increases the number of remote calls and 
the length of the service chain you need to perform any useful action.

This approach also risks tight coupling between actions and underlying stores, ham-
pering your ability to deploy services independently. To avoid these pitfalls, we recom-
mend you design microservices from the inside out, building useful coarse-grained 
capabilities before building fine-grained action-oriented services.

4.3.3	 Orchestration and choreography

In chapter 2, we discussed the difference between orchestration and choreography in 
service interaction. A bias toward choreography tends to result in more flexible, auton-
omous, and maintainable services. Figure 4.15 illustrates the difference between these 
approaches.

If you scope services by use case, you might find yourself writing services that explic-
itly orchestrate the behavior of several other services. This isn’t always ideal:

¡	Orchestration can increase coupling between services and increase the risk of 
dependent deployments.

¡	Underlying services can become anemic and lack purpose, as the orchestrating 
service takes on more and more responsibility for useful business output.

When designing services that reflect use cases, it’s important to consider their place 
within a broader chain of responsibilities. For example, the PlaceStrategyOrders ser-
vice you designed earlier both orchestrates behavior (placing orders) and reacts to 
other events (payment processing). Taking a balanced approach to choosing orches-
tration or choreography reduces the risk of building services that lack autonomy.

4.4	 Scoping by volatility
In an ideal world, you could build any feature by combining existing microservices. 
This might sound impractical, but it’s interesting to consider how you maximize the 
reusability — and therefore long-term utility — of the services you build.

Services react to events,
choreographing a process.

Request Service A

Service D

Service B

Service C

Service C

Request Service A

Service D

Service B
Event

Event

Event

Request

Request

Request

Service A calls other
services, orchestrating a

process.

Figure 4.15    Orchestration versus choreography in service interaction

 



	 95Scoping by volatility

So far, we’ve taken a predominantly functional approach to decomposing services. This 
approach is effective but has limitations. Functional decomposition is biased toward 
the present needs of an application and doesn’t explicitly consider how that applica-
tion might evolve. A purely functional approach can constrain the future growth of a 
system by resulting in services that are inflexible in the face of new or evolving require-
ments, thereby increasing the risk of change.

Therefore, as well as considering the functionality of your system, you should con-
sider where that application is likely to change in the future. This is known as volatility. 
By encapsulating areas that are likely to change, you help to ensure that uncertainty 
in one area doesn’t negatively impact other areas of the application. You can find an 
analogy to this in the stable dependencies principle in object-oriented programming: 
“a package should only depend on packages that are more stable than it is.”

SimpleBank’s business domain has multiple axes of volatility. For example, placing 
an order to market is volatile: different orders need to go to different markets; Simple-
Bank might have different APIs to each market (for example, through a broker, direct 
to an exchange); and those markets might change as SimpleBank broadens its offering 
of financial assets. 

Tightly coupling market interaction as part of the orders service would lead to a high 
degree of instability. Instead, you’d split the market service and ultimately build multi-
ple services to meet the needs of each market. Figure 4.16 illustrates this approach.

Market service

FixML API

CSV over FTP

Custom API

Market state

Other provider

Other provider

The market service encapsulates potential change in placing orders to market. Over time, we might decompose further to encapsulate subareas of volatility.

Fund manufacturer

US stock broker

Market service

FixML API

CSV over FTP

Custom API

Market state

Market state

Market state

Fund market
service

US stock market
service

Fund manufacturer

US stock broker

Figure 4.16    The market service encapsulates change in how SimpleBank communicates with different 
financial market providers. Over time, this might evolve into multiple services.
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Investment
strategies

1. Notified when
new strategy
is created

4. Updates investment allocation

Strategy
optimizer

3. Evaluates strategy
against goals

2. Regularly queries
asset performance

Market data

Figure 4.17    Partitioning a distinct area of system volatility — investment strategy optimization — as a 
separate service

Let’s take one more example: imagine you have more than one type of investment 
strategy. Perhaps you have strategies that are optimized by deep learning: the perfor-
mance of assets on the market should drive adjustments to future strategy allocations.

Adding this complex behavior to your InvestmentStrategies service would signifi-
cantly broaden its reasons to change — reducing cohesiveness. Instead, you should add 
new services with responsibility for that behavior — as you can see in figure 4.17. By 
doing this, you can develop and release these services independently without unneces-
sary coupling between different features or rates of change.

Ultimately, good architecture strikes a balance between the current and future needs 
of an application. If microservices are too narrowly scoped, you might find the cost of 
change becomes higher in the future as you become increasingly constrained by earlier 
assumptions about the limits of your system. On the flipside, you should always be care-
ful to keep YAGNI — “you aren’t gonna need it” — in mind. You may not always have the 
luxury of time (or money) to anticipate and meet every possible future permutation of 
your application.

4.5	 Technical capabilities
The services you’ve designed so far have reflected actions or entities that map closely 
to your business capabilities, such as placing orders. These business-oriented services 
are the primary type you’ll build in any microservice application.

You can also design services that reflect technical capabilities. A technical capability 
indirectly contributes to a business outcome by supporting other microservices. Com-
mon examples of technical capabilities include integration with third-party systems and 
cross-cutting technical concerns, such as sending notifications.

4.5.1	 Sending notifications

Let’s work through an example. Imagine that SimpleBank would like to notify a  
customer — perhaps through email — whenever a payment has been completed. Your 
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first instinct might be to build that code within your payments service (or services). 
But that approach has three problems:

1	 The payments service has no awareness of customer contact details or prefer-
ences. You’d need to extend its interface to include customer contact data (push-
ing that obligation on to service consumers) or query another service.

2	 Other parts of your application might send notifications as well. You can easily 
picture other features — orders, account setup, marketing — that might trigger 
emails.

3	 Customers might not even want to receive emails: they might prefer SMS or push 
notifications…or even physical mail.

The first and second points suggest that this should be a separate service; the third 
point suggests you might need multiple services — one to handle each type of notifica-
tion. Figure 4.18 sketches that out. Your notification services can listen to the Payment-
Completed event that your payments service emits.

You can configure your group of notification services to listen to any events — from 
any service — that should result in a notification. Each service will need to be aware of 
a customer’s contact preferences and details to send notifications. You could store that 
information in a separate service, such as a customers service, or have each service own 
it. This area has hidden dimensions of complexity; for example, many customers might 
own the payment’s destination account, triggering multiple notifications.

You may have realized that the notification services are also responsible for generat-
ing appropriate message content based on each event, which suggests they could grow 
significantly in the future, in line with the potential number of notifications. It eventu-
ally might be necessary to split message content from message delivery to reduce this 
complexity.

Payments
Emits
event

Payment
Completed Listens

Listens

Notifies

Notifies

Notifies

CustomerListens

SMS
notifications

Email
notifications

Push
notifications

Figure 4.18    Supporting technical microservices for notifications
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This example illustrates that implementing technical capabilities maximizes reusabil-
ity while simplifying your business services, decoupling them from nontrivial technical 
concerns.

4.5.2	 When to use technical capabilities

You should use a technical capability to support and simplify other microservices, limit-
ing the size and complexity of your business capabilities. Partitioning these capabilities 
is desirable when

¡	Including the capability within a business-oriented service will make that service 
unreasonably complex, complicating any future replacement.

¡	A technical capability is required by multiple services — for example, sending 
email notifications.

¡	A technical capability changes independently of the business capability — for 
example, a nontrivial third-party integration.

Encapsulating these capabilities in separate services captures axes of volatility — areas 
that are likely to change independently — and maximizes service reusability.

In certain scenarios, it’s unwise to partition a technical capability. In some situations, 
extracting a capability will reduce the cohesiveness of a service. For example, in classic 
SOA, systems were often decomposed horizontally, in the belief that splitting data stor-
age from business functionality would maximize reusability. Figure 4.19 illustrates how 
requests would be serviced in this approach.

Unfortunately, the intended reusability came at a high cost. Splitting those layers 
of an application led to tight coupling between different deployable units, as deliver-
ing individual features required simultaneous change across multiple applications (fig-
ure 4.20). When you have to coordinate changes to distinct components, this leads to 
error-prone, lock-step deployments — a distributed monolith.

If you focus on business capabilities first, you’ll avoid these pitfalls. But you should 
carefully scope any technical capability to ensure it’s truly autonomous and indepen-
dent from other services.

Requests
Create
order

Create
order

Create
order

Order data
access Order store

Order
business
service

Figure 4.19    Lifecycle of a create order request in a horizontally partitioned service application 
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Change 2 Change 3

Change 1

New features require coordinated changes across multiple deployable units. New features lead to change in a single
deployable unit.

Order UI
Order

business
service

Order data
access Order store Order store

OrdersCreate
order

Create
order

Create
order

Create
order

Horizontal partitioning 

New feature
New feature

Business capability partitioning

Figure 4.20 The impact of change in a horizontally partitioned service versus a service scoped to 
business capability

4.6	 Dealing with ambiguity
Scoping microservices is as much art as science. A large part of software design is find-
ing effective ways to achieve the best solution when faced with ambiguity:

¡	Your understanding of the problem domain might be incomplete or incorrect. 
Understanding the needs of any business problem is a complex, time-consuming, 
and iterative process.

¡	You need to anticipate how you might need to use a service in the future, rather 
than only right now. But you’ll often run into tension between short-term feature 
needs and long-term service malleability.

Suboptimal service partitioning in microservices can be costly: it adds friction to devel-
opment and extra effort to refactoring.

NOTE    Understanding a business domain is hardly unique to microservices — or 
even the engineering process itself. Most modern product engineering meth-
odologies aim to maintain flexibility and agility when facing an evolving 
understanding of requirements. For that reason, we strongly recommend fol-
lowing an iterative and lean development process when building a microservice 
application.

4.6.1	 Start with coarse-grained services

In this section, we’ll explore a few approaches you can use to make practical service 
decisions when the right solution isn’t obvious. To start, we’ve talked a lot about the 
importance of keeping the responsibility of a service focused, cohesive, and limited, so 
what I’m about to say might sound a little counterintuitive. Sometimes, when in doubt 
about service boundaries, it’s better to build larger services.
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If you err on the side of building services that are too small, it can lead to tight cou-
pling between different services that should be combined in one service. This indicates 
you’ve decomposed a business capability too far, making responsibility unclear and 
making it more difficult — and costly — to refactor this element of functionality.

If instead you combine that functionality into a larger service, you reduce the cost of 
future refactoring, as well as avoiding intractable cross-service dependencies. Likewise, 
one of the most expensive costs you’ll incur in a microservice application is changing a 
public interface; reducing the breadth of interfaces between components aids in main-
taining flexibility, especially in early stages of development.

Understand that making a service larger also incurs a cost, because larger services 
become more resistant to change and difficult to replace. But at the beginning of its 
life, a service will be small. The costs associated with a service being too large are less 
than the costs of complexity that decomposing too far introduces. You need to care-
fully observe both service size and complexity to ensure you’re not building more 
monoliths.

Here, it’s useful to apply a key principle of lean software development: decide as late 
as possible. Because building a service incurs cost in both implementation and opera-
tion, avoiding premature decomposition when faced with uncertainty can give you time 
to develop your understanding of the problem space. It also will ensure you’re making 
well-informed decisions about the shape of the application as it grows.

4.6.2	 Prepare for further decomposition

The modeling and scoping techniques from earlier in this chapter will help you identify 
when a service has become too large. Often, you’ll be able to identify possible seams 
quite early in the lifetime of a service. If so, you should endeavor to design your service 
internals to reflect them, whether through class and namespace design or as a separate 
library. 

Maintaining disciplined internal module boundaries, with a clear public API, is gen-
erally sound software design. In a microservice, it reduces the cost of future refactoring 
by reducing the chance that code becomes highly coupled and difficult to untangle. 
That said, be careful — an API that’s well-designed in the context of a code library may 
not always be ideal as the interface to a microservice. 

4.6.3	 Retirement and migration

We’ve talked about planning for future decomposition, but we also should talk about 
service retirement. Microservice development requires a certain degree of ruthless-
ness. It’s important to remember that it’s what your application does that matters, not 
the code. Over time — and especially if you start with larger services — you’ll find it 
necessary to either carve out new microservices from existing services or retire micro
services altogether.
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This process can be difficult. Most importantly, you need to ensure that consum-
ing services don’t get broken and that they migrate in a timely way to any replacement 
service.

To carve out new services, you should apply the expand-migrate-contract pattern. 
Imagine you’re carving out a new service from your orders service. When you first built 
the orders service, you were confident that it’d fit the needs of all order types, so you 
built it as a single service. But one order type has turned out to be different from the 
others, and supporting it has bloated your original service.

First, you need to expand — pulling the target functionality into a new service (fig-
ure 4.21). Next, you need to migrate consumers of your old service to the new service 
(figure 4.22). If access is through an API gateway, you can redirect appropriate requests 
to your new service.

But if other services call the orders service, you need to migrate those usages. Telling 
other teams to migrate doesn’t always work (competing priorities, release cycles, and 
risk). Instead, you need to either make sure your new service is compelling — make 
people want to invest effort in migration — or do that migration for them.

To complete the process, you have one last step. Finally, you can contract the original 
service, removing the now obsolete code (figure 4.23).

Place order

API gateway API gateway

We expand by pulling that
code into a new service.

Place order Place order B

Our service contains
code we want to split.

Order data Order data

Orders Orders Orders B

Order data

Figure 4.21    Expanding functionality from one service into a new service
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Orders B

Place order B

Orders

Migrate calls from
other services.

Migrate calls at the
gateway layer.

API gateway

Existing data may need
migration. Order data Order data

Other services

Figure 4.22    Migrating existing consumers to the new service

API gateway
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service.

Order data

Place order

Figure 4.23    In the final state of your service migration, you’ve contracted your service to remove 
functionality that now resides in the new service
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Great, you made it! This measured, multistep process systematically retires or migrates 
functionality while reducing the risk of breaking existing service consumers.

4.7	 Service ownership in organizations
The examples so far have mostly assumed that a single team is responsible for building 
and changing microservices. In a large organization, different teams will own different 
microservices. This isn’t a bad thing — it’s an important part of scaling as an engineer-
ing team.

As we pointed out earlier, bounded contexts themselves are an effective way of 
splitting application ownership across different teams in an organization. Forming 
teams that own services in specific bounded contexts takes advantage of the inverse 
version of Conway’s Law: if systems reflect the organizational structure that produces 
them, you can attain a desirable system architecture by first shaping the structure and 
responsibilities of your organization. Figure 4.24 illustrates how SimpleBank might 
organize its engineering teams around the services and bounded contexts you’ve 
identified so far.

Splitting ownership and delivery of services across teams has three implications:

¡	Limited control  — You might not have full control over the interface or perfor-
mance of your service dependencies. For example, payments are vital to placing 
investment strategy orders, but the team model in figure 4.24 means that another 
team is responsible for the behavior of that dependency.

¡	Design constraints  — The needs of consuming services will constrain your service 
contracts; you need to ensure service changes don’t leave consumers behind. 
Likewise, the possibilities that other existing services offer will constrain your 
potential designs.

¡	Multispeed development  — Services that different teams own will evolve and change 
at different rates, depending on that team’s size, efficiency, and priorities. A fea-
ture request from the investment team to the customers team may not make it to 
the top of the customers team’s priority list.

Customers

Customers Accounts

Strategies

PlaceStrategyOrders

Investment
strategies

Asset information Payments

Orders

Orders

Market gateway

Investment Market &
research Cash

Responsible
team

Contexts and
services

Figure 4.24    A possible model of service and capability ownership by different engineering teams as the 
size of SimpleBank’s engineering organization grows
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These implications can present an immense challenge, but applying a few tactics can 
help:

¡	Openness  — Ensuring that all engineers can view and change all code reduces 
protectiveness, helps different teams understand each other’s work, and can 
reduce blockers.

¡	Explicit interfaces  — Providing explicit, documented interfaces for services reduces 
communication overhead and improves overall quality.

¡	Worry less about DRY  — A microservice approach is biased toward delivery pace, 
rather than efficiency. Although engineers want to practice DRY (don’t repeat 
yourself), you should expect some duplication of work in a microservice approach. 

¡	Clear expectations  — Teams should set clear expectations about the expected per-
formance, availability, and characteristics of their production services.

These sorts of tactics touch on the people side of microservices. This is a substantial 
topic by itself, which we’ll explore in depth in the final chapter of this book.

Summary

¡	You scope services through a process of understanding the business problem, 
identifying entities and use cases, and partitioning service responsibility.

¡	You can partition services in several ways: by business capability, use case, or vola-
tility. And you can combine these approaches.

¡	Good scoping decisions result in services that meet three key microservice char-
acteristics: responsible for a single capability, replaceable, and independently 
deployable.

¡	Bounded contexts often align with service boundaries and provide a useful way 
of considering future service evolution.

¡	By considering areas of volatility, you can encapsulate areas that change together 
and increase future amenability to change.

¡	Poor scoping decisions can become costly to rectify, as the effort involved in 
refactoring is higher across multiple codebases.

¡	Services may also encapsulate technical capabilities, which simplify and support 
business capabilities and maximize reusability.

¡	If service boundaries are ambiguous, you should err on the side of coarse-grained 
services but use internal modules to actively prepare for future decomposition.

¡	Retiring services is challenging, but you’ll need to do it as a microservice applica-
tion evolves.

¡	Splitting ownership across teams is necessary in larger organizations but causes 
new problems: limited control, design constraints, and multispeed development.

¡	Code openness, explicit interfaces, continual communication, and a relaxed 
approach to the DRY principle can alleviate tension between teams.
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5Transactions and  
queries in microservices 

This chapter covers
¡	The challenges of consistency in a distributed 

application

¡	Synchronous and asynchronous 
communication

¡	Using sagas to develop business logic across 
multiple services

¡	API composition and CQRS for microservice 
queries

Many monolithic applications rely on transactions to guarantee consistency and 
isolation when changing application state. Obtaining these properties is straight-
forward: an application typically interacts with a single database, with strong consis-
tency guarantees, using frameworks that provide support for starting, committing, 
or rolling back transactional operations. Each logical transaction might involve sev-
eral distinct entities; for example, placing an order will update transactions, reserve 
stock positions, and charge fees.

You’re not so lucky in a microservice application. As you learned earlier, each inde-
pendent service is responsible for a specific capability. Data ownership is decentralized, 
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ensuring a single owner for each “source of truth.” This level of decoupling helps you gain 
autonomy, but you sacrifice some of the safety you were previously afforded, making con-
sistency an application-level problem. Decentralized data ownership also makes retrieving 
data more complex. Queries that previously used database-level joins now require calls to 
multiple services. This is acceptable for some use cases but painful for large data sets.

Availability also impacts your application design. Interactions between services might 
fail, causing business processes to halt, leaving your system in an inconsistent state. 

In this chapter, you’ll learn how to use sagas to coordinate complex transactions 
across multiple services and explore best practices for efficiently querying data. Along 
the way, we’ll examine different types of event-based architectures, such as event sourc-
ing, and their applicability to microservice applications.

5.1	 Consistent transactions in distributed applications
Imagine you’re a customer at SimpleBank and you want to sell some stock. If you recall 
chapter 2, this involves several operations (figure 5.1):

1	 You create an order.

2	 The application validates and reserves the stock position.

3	 The application charges you a fee.

4	 The application places the order to the market.

From your perspective as a customer, this operation appears to be atomic: charging a 
fee, reserving stock, and creating an order happen at the same time, and you can’t sell 
stock that you don’t have or sell a stock you do have more than once.

In many monolithic applications,1 those requirements are easy to meet: you can wrap 
your database operations in an ACID transaction and rest easy in the knowledge that 
errors will cause an invalid state to be rolled back.

User requests
sale of stock

Is stock 
available?

No

No

Yes Yes

Stock is reserved
against account

Fee is charged
to account

Market open?

Wait to place
order

Place order to
market

Figure 5.1    Placing a sell order

1	 At least, those with a typical three-tier architecture and a single persistent data store.
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User Orders Fees

reserve stock

confirm reservation

charge fee

Reserve
position

Save pending
order

create order

Account
Transactions

Figure 5.2    Failure occurs when charging a fee in your cross-service order placement process

By contrast, in your microservice application, each of the actions in figure 5.1 is per-
formed by a distinct service responsible for a subset of application state. Decentral-
ized data ownership helps ensure services are independent and loosely coupled, but it 
forces you to build application-level mechanisms to maintain overall data consistency.

Let’s say an orders service is responsible for coordinating the process of selling a 
stock. It calls account transactions to reserve stock and then the fees service to charge 
the customer. But that transaction fails. (See figure 5.2.)

At this stage, your system is in an inconsistent state: stock is reserved, an order is cre-
ated, but you haven’t charged the customer. You can’t leave it like this — so the implemen-
tation of orders needs to initiate corrective action, instructing the account transactions 
service to compensate and remove the stock reservation. This might look simple, but 
it becomes increasingly complex when many services are involved, transactions are 
long-running, or an action triggers further interleaved downstream transactions.

5.1.1	 Why can’t you use distributed transactions?

Faced with this problem, your first impulse might be to design a system that achieves 
transactional guarantees across multiple services. A common approach is to use the two-
phase commit (2PC) protocol.2 In this approach, you use a transaction manager to split 
operations across multiple resources into two phases: prepare and commit (figure 5.3).

2	 See https://en.wikipedia.org/wiki/Two-phase_commit_protocol for more information.

 

https://en.wikipedia.org/wiki/Two-phase_commit_protocol
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Transaction
Manager

Resource A

Resource B

Transaction
Manager

Resource A

Resource B

prepare

prepare

success/failure

success/failure

commit

commit

In the prepare phase, the transaction manager
instructs resources to prepare their relevant action.

In the commit phase, the transaction manager instructs
resources to commit or abort the prepared action.

initiateaction

Figure 5.3    The prepare and commit phases of a 2PC protocol

This sounds great — like what you’re used to. Unfortunately, this approach is flawed. 
First, 2PC implies synchronicity of communication between the transaction manager 
and resources. If a resource is unavailable, the transaction can’t be committed and 
must roll back. This in turn increases the volume of retries and decreases the avail-
ability of the overall system. To support asynchronous service interactions, you would 
need to support 2PC with services and the messaging layer between them, limiting your 
technical choices.

NOTE    In a microservice application, availability is the product of all microser-
vices involved in processing a given action. Because no service is 100% reliable, 
involving more services lessens overall reliability, increasing the probability of 
failure. We’ll explore this in detail in the next chapter.

Handing off significant orchestration responsibility to a transaction manager also vio-
lates one of the core principles of microservices: service autonomy. At worst, you’d end 
up with dumb services representing CRUD operations against data, with transaction 
managers wholly encapsulating the interesting behavior of your system.

Finally, a distributed transaction places a lock on the resources under transaction 
to ensure isolation. This makes it inappropriate for long-running operations, as it 
increases the risk of contention and deadlock. What should you do instead?

5.2	 Event-based communication
Earlier in this book, we discussed using events emitted by services as a communica-
tion mechanism. Asynchronous events aid in decoupling services from each other and 
increase overall system availability, but they also encourage service authors to think in 
terms of eventual consistency. In an eventually consistent system, you design complex 
outcomes to result from several independent local transactions over time, which leads 
you to explicitly design underlying resources to represent tentative states. From the 
perspective of Eric Brewer’s CAP theorem,3 this design approach prioritizes the avail-
ability of underlying data.

3	 Consistency, availability, partition tolerance—see Eric Brewer, “CAP Twelve Years Later: How the 
“Rules” Have Changed,” InfoQ, May 30, 2012, http://mng.bz/HGA3, for more information.

 

http://mng.bz/HGA3


	 109Event-based communication

User Orders

create order

reserve stocks

confirm reservation

confirm charge

order placed

confirm placement

place to market

charge fee

Account
Transactions

Fees Market

Figure 5.4    The synchronous process of placing a sell order 

To illustrate the difference between a synchronous and an asynchronous approach, 
let’s return to the sell order example. In a synchronous approach (figure 5.4), the 
orders service orchestrates the behavior of other services, invoking a sequence of steps 
until the order is placed to the market. If any steps fail, the orders service is responsible 
for initiating rollback action with other services, such as reversing the charge.
In this approach, the orders service takes on substantial responsibility:

¡	It knows which services it needs to call, as well as their order.
¡	It needs to know what to do in case any downstream service produces an error or 

can’t proceed due to business rules.

Although this type of interaction is easy to reason through — as the call graph is log-
ical and sequential — this level of responsibility tightly couples the orders service to 
other services, limiting its independence and increasing the difficulty of making future 
changes. 

5.2.1	 Events and choreography

You can redesign this scenario to use events (figure 5.5). Each service subscribes to 
events that interest it to know when it must perform some work:

1	 When the user issues a sell request via the UI, the application publishes an  
OrderRequested event.

2	 The orders service picks up this event, processes it, and publishes back to the 
event queue an OrderCreated event. 
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3	 Both the transaction and fees services then pick up this event. Each one of them 
performs its work and publishes back events to notify about the completion. 

4	 The market service in turn is waiting for a pair of events notifying it of the 
charging of fees and the reservation of stocks. When both arrive, it knows it can 
place the order against the stock exchange. Once that’s finished, the market ser-
vice publishes a final event back to the queue.

Events allow you to take an optimistic approach to availability. For example, if the fees 
service were down, the orders service would still be able to create orders. When the 
fees service came back online, it could continue processing a backlog of events. You 
can extend this to rollback: if the fees service fails to charge because of insufficient 
funds, it could emit a ChargeFailed event, which other services would then consume 
to cancel order placement.

This interaction is choreographed: each service reacts to events, acting independently 
without knowledge of the overall outcome of the process. These services are like danc-
ers: they know the steps and what to do in each section of a musical piece, and they react 
accordingly without you needing to explicitly invoke or command them. In turn, this 
design decouples services from each other, increasing their independence and making 
it easier to deploy changes independently.

Order Created

Market

Fees

Account
Transactions

Orders

Stock Reserved

Order Createdemitsconsumes

emits

consumes

emitsconsumes

emits

consumes

Order Requested

Fee Charged

Order Placed

Figure 5.5    Services consuming and emitting events for order placement
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Events and the monolith
An event-oriented approach to service communication shines when migrating a mono-
lithic application to microservices. By emitting events from the monolith, you consume 
them in microservices that you’re developing in parallel. This way, you can build new fea-
tures without tightly coupling your monolith to your new services.

Think about it: you emit an event, and that’s the only change you need to implement on 
the monolith to make an external system work alongside the current one, lowering risk 
and enabling safer experimentation on new services.

 

5.3	 Sagas
The choreographed approach is a basic example of the saga pattern. A saga is a coordi-
nated series of local transactions; a previous step triggers each step in the saga.

The concept itself significantly predates the microservice approach. Hector Garcia- 
Molina and Kenneth Salem originally described sagas in a 1987 paper4 as an approach 
toward long-lived transactions in database systems. As with distributed transactions, lock-
ing in long-lived transactions reduces availability — a saga solves this as a sequence of 
interleaved, individual transactions. 

As each local transaction is atomic — but not the saga as a whole — a developer must write 
their code to ensure that the system ultimately reaches a consistent state, even if individual 
transactions fail. Pat Helland’s famous paper, “Life Beyond Distributed Transactions,”5 sug-
gests that you can think of this as uncertainty — an interaction across multiple services may 
not have a guaranteed outcome. In a distributed transaction, you manage uncertainty using 
locks on data; without transactions, you manage uncertainty through semantically appro-
priate workflows that confirm, cancel, or compensate for actions as they occur.

Before we talk about sell orders and services, let’s look at a simple real-world saga: 
purchasing a cup of coffee.6 Typically, this might involve four steps: ordering, payment, 
preparation, and delivery (figure 5.6). In the normal outcome, the customer pays for 
and receives the coffee they ordered.

Order coffee Pay for coffee Prepare coffee Deliver coffee

Figure 5.6    The process of purchasing a cup of coffee

4	 See Hector Garcia-Molina and Kenneth Salem, “Sagas,” http://mng.bz/Qdot, for the original 
paper.

5	 See Pat Helland, “Life Beyond Distributed Transactions,” acmqueue, December 12, 2016, http://
queue.acm.org/detail.cfm?id=3025012.

6	 Adapted from Gregor Hohpe, “Compensating Action,” Enterprise Integration Patterns, http://mng 
.bz/5FcG.
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Pay for coffee

Order
coffee

payment failed

success Prepare coffee

bad coffee

can’t make coffee

Refund customer

Deliver coffee

wrong coffee/wrong person

Mmm,
coffee

No
coffee

Figure 5.7    Purchasing a cup of coffee with compensating actions

This can go wrong! The coffee shop machine might break; the barista might make 
a cappuccino, but I wanted a flat white; they might give my coffee to the wrong cus-
tomer; and so on. If one of these events occurs, the barista will naturally compensate: 
they might make my coffee again or refund my payment (figure 5.7). In most cases, I’ll 
eventually get my coffee.

You use compensating actions in sagas to undo previous operations and return 
your system to a more consistent state. The system isn’t guaranteed to be returned to 
the original state; the appropriate actions depend on business semantics. This design 
approach makes writing business logic more complex — because you need to consider 
a wide range of potential scenarios — but is a great tool for building reliable interac-
tions between distributed services.

5.3.1	 Choreographed sagas

Let’s return to the earlier example — sell orders — to better understand how you 
can apply the saga pattern to your microservices. The actions in this saga are choreo-
graphed: each action, TX, is performed in response to another, but without an overall 
conductor or orchestrator. You can break this task into five subtasks:

¡	T1 — Create the order. 
¡	T2 — Reserve the stock position, which the account transaction service 

implements.
¡	T3 — Calculate and charge the fee, which the fees service implements.
¡	T4 — Place the purchase order to the market, which the market service implements.
¡	T5 — Update the status of the order to be placed.

Figure 5.8 illustrates the optimistic — most likely — path of this interaction.
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Orders Order Created

Order Placed Market

Account
Transactions

Fees Fee Charged

Stock Reserved

T1
T2

T5

T4

T3

Figure 5.8    A saga for processing a sell order

Let’s explain the five steps of this process:

1	 The orders service performs T1 and emits an OrderCreated event.

2	 The fees, account transactions, and market services consume this event.

3	 The fees and account transactions services perform appropriate actions (T2 and 
T3) and emit events, and the market service consumes them.

4	 When the prerequisites for the order are met, the market service places the order 
(T4) to the market and emits an OrderPlaced event.

5	 Lastly, the orders service consumes that event and updates the status of the 
order (T5).

Each of these tasks might fail — in which case, your application should roll back to a 
sane, consistent state. Each of your tasks has a compensating action:

¡	C1 — Cancel the order that the customer created.
¡	C2 — Reverse the reservation of stock positions.
¡	C3 — Revert the fee charge, refunding the customer.
¡	C4 — Cancel the order placed to market.
¡	C5 — Reverse the state of the order.

What triggers these actions? You guessed it — events! For example, imagine that plac-
ing the order to market fails. The market service will cancel the order by emitting an 
event — OrderFailed — that each other service involved in this saga consumes. When 
receiving the event, each service will act appropriately: the orders service will cancel 
the customer’s order; the transaction service will cancel the stock reservation; and the 
fees service will reverse the fee charged, executing actions C1, C2, and C3, respectively. 
This is shown in figure 5.9.
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Market Order Failed

Orders

Account
Transactions

Fees
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charged

Figure 5.9    The market service emits a failure event is to initiate a rollback process across multiple 
services.

This form of rollback is intended to make the system semantically, not mathematically 
consistent. Your system on rollback of an operation may not be able to return to the 
exact same initial state. Imagine one of the tasks executed on calculating the fees was 
sending out an email. You can’t unsend an email, so you’d instead send another one 
acknowledging the error and saying the amount that the fees service had charged was 
deposited back to the account.

Every action involved in a process might have one or more appropriate compensat-
ing actions. This approach adds to system complexity — both in anticipating scenar-
ios and in coding for them and testing them — especially because the more services 
involved in an interaction, the greater the possible intricacy of rolling back.

 Anticipating failure scenarios is a crucial part of building services that reflect real-world 
circumstance, rather than operating in isolation. When designing microservices, you need 
to take compensation into account to ensure that the wider application is resilient.

Advantages and drawbacks

The choreographed style of interaction is helpful because participating services don’t 
need to explicitly know about each other, which ensures they’re loosely coupled. In 
turn, this increases the autonomy of each service. Unfortunately, it’s not perfect. 

No single piece of your code knows how to execute a sell order. This can make valida-
tion challenging, spreading those rules across multiple distinct services. It also increases 
the complexity of state management: each service needs to reflect distinct states in the 
processing of an order. For example, the orders service must track whether an order 
has been created, placed, canceled, rejected, and so on. This additional complexity 
increases the difficulty of reasoning about your system.

Choreography also introduces cyclic dependencies between services: the orders ser-
vice emits events that the market service consumes, but, in turn, it also consumes events 
that the market service emits. These types of dependencies can lead to release time 
coupling between services.

Generally, when opting for an asynchronous communication style, you must invest 
in monitoring and tracing to be able to follow the execution flow of your system. In case 
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of an error, or if you need to debug a distributed system, the monitoring and tracing 
capabilities act as a flight recorder. You should have all that happens stored there so you 
can later investigate every single event to make sense of what happened in a multitude 
of systems. This capability is crucial for choreographed interactions.

NOTE    Chapters 11 and 12 will explore how to achieve observability through 
logging, tracing, and monitoring in microservice applications.

A choreographed approach makes it difficult to know how far along a process is. Like-
wise, the order of rollback might be important; this isn’t guaranteed by choreography, 
which has looser time guarantees than an orchestrated or synchronous approach. For 
simple, near-instant workflows, knowing where you’re at is often irrelevant, but many 
business processes aren’t instant — they might take multiple days and involve disparate 
systems, people, and organizations.

5.3.2	 Orchestrated sagas

Instead of choreography, you can use orchestration to implement sagas. In an orches-
trated saga, a service takes on the role of orchestrator (or coordinator): a process that 
executes and tracks the outcome of a saga across multiple services. An orchestrator 
might be an independent service — recall the verb-oriented services from chapter 
4 — or a capability of an existing service.

The sole responsibility of the orchestrator is to manage the execution of the saga. It 
may interact with participants in the saga via asynchronous events or request/response 
messages. Most importantly, it should track the state of execution for each stage in the 
process; this is sometimes called the saga log.

Let’s make the orders service a saga coordinator. Figure 5.10 illustrates the happy 
path where a customer places an order successfully.

Saga
log

Orders

T0: order requested

T1: fee charged

T2: stock reserved

T3: order ready

T4: order placed

Fee Charged

Order Created

Stock Reserved

Order Prepared Market

Account
Transactions

Fees

Order Placed

Figure 5.10    An orchestrated saga for placing an order
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You’ll quickly see the key difference between this and the choreographed example 
from figure 5.8: the orders service tracks the execution of each substep in the process 
of placing an order. It’s useful to think of the coordinator as a state machine: a series of 
states and transitions between those states. Each response from a collaborator triggers 
a state change, moving the orchestrator toward the saga outcome.

As you know, a saga won’t always be successful. In an orchestrated saga, the coordina-
tor is responsible for initiating appropriate reconciliation actions to return the entities 
affected by the failed transaction to a valid, consistent state.

Like you did earlier, imagine the market service can’t place the order to market. The 
orchestrating service will initiate compensating actions:

1	 It’ll issue a request to the account transaction service to reverse the lock placed 
on the holdings to be sold.

2	 It’ll issue a request to cancel the fee that was charged to the customer.

3	 It may change the state of the order to reflect the outcome of the saga — for 
example, to rejected or failed. This depends on the business logic (and whether 
failed orders should be shown to the customer or retried).

In turn, the orchestrator also could track the outcome of actions 1 and 2. Figure 5.11 
illustrates this failure scenario.

Orders

T0: order requested

T1: fee charged

T2: stock reserved

T3: order ready

T4: order failed

T5: rollback lock

T6: rollback fee

T7: update order

Market

Account
Transactions

Fees

Account
Transactions

Fees

Fee Charged

Order Created

Stock Reserved

Order Prepared

Order Failed

Order Cancelled

Triggers compensating actions
to be performed by saga

participants

Failure occurs in market
placement

Fee Cancelled

Lock Cancelled

ABORT!

3

1

2

Figure 5.11    In this unsuccessful saga, a failure by the market service results in the orchestrator 
triggering compensating actions.
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TIP    Don’t forget that compensating actions might not all happen instanta-
neously or at the same time. For example, if the fee was charged to a customer’s 
debit card, it might take a week for their bank to reverse the charge. 

But if the desired actions you want to happen can fail, the compensating actions — or 
the orchestrator itself — also could fail. You should design compensating actions to 
be safe to retry without unintentional side effects (for example, double refunds). At 
worst, repeated failure during rollback might require manual intervention. Thorough 
error monitoring should catch these scenarios.

Advantages and drawbacks

Centralizing the saga’s sequencing logic in a single service makes it significantly 
easier to reason about the outcome and progress of that saga, as well as change 
the sequencing in one place. In turn, this can simplify individual services, reduc-
ing the complexity of states they need to manage, because that logic moves to the 
coordinator.

This approach does run the risk of moving too much logic to the coordinator. At 
worst, this makes the other services anemic wrappers for data storage, rather than 
autonomous and independently responsible business capabilities.

Many microservice practitioners advocate peer-to-peer choreography over orches-
tration, as they see this approach to reflect the “smart endpoints, dumb pipes” aim of 
microservice architecture, in contrast to the heavy workflow tools (such as WS-BPEL) 
people often used in enterprise SOA. But orchestrated approaches are becoming 
increasingly popular in the community, especially for building long-running inter-
actions, as seen by the popularity of projects like Netflix Conductor and AWS Step 
Workflows.

5.3.3	 Interwoven sagas

Unlike ACID transactions, sagas aren’t isolated. The result of each local transaction is 
immediately visible to other transactions affecting that entity. This visibility means that 
a given entity might get simultaneously involved in multiple, concurrent sagas. As such, 
you need to design your business logic to expect and handle intermediate states. The 
complexity of the interleaving required primarily depends on the nature of the under-
lying business logic.

For now, imagine that a customer placed an order by accident and wanted to cancel 
it. If they issued their request before the order was placed to market, the order place-
ment saga would still be in progress, and this new instruction would potentially need to 
interrupt it  (figure 5.12).

Three common strategies for handling interwoven sagas are available: short-circuiting, 
locking, and interruption.
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Figure 5.12    Steps in sagas may be interwoven

Short-circuiting

You could prevent the new saga from being initiated while the order is still within 
another saga. For example, the customer couldn't cancel the order until after the mar-
ket service attempted to place it to the market. This isn’t great for a user but is probably 
the easiest strategy!

Locking

You could use locks to control access to an entity. Different sagas that want to change 
the state of the entity would wait to obtain the lock. You’ve already seen an example of 
this in action: you place a reservation — or lock — on a stock balance to ensure that a 
customer can’t sell a holding twice if it’s involved in an active order. 

This can lead to deadlocks if multiple sagas block each other trying to access the 
lock, requiring you to implement deadlock monitoring and timeouts to make sure the 
system doesn’t grind to a halt.

Interruption

Lastly, you could choose to interrupt the actions taking place. For example, you could 
update the order status to “failed.” When receiving a message to send an order to mar-
ket, the market gateway could revalidate the latest order status to ensure the order was 
still valid to send, and in this case it would see a “failed” status. This approach increases 
the complexity of business logic but avoids the risk of deadlocks.

5.3.4	 Consistency patterns

Although sagas rely heavily on compensating actions, they’re not the only approach 
you might use to achieve consistency in service interactions. So far, we’ve encountered 
two patterns for dealing with failure: compensating actions (refund my coffee pay-
ment) and retries (try to make the coffee again). Table 5.1 outlines other strategies.
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Table 5.1    Consistency strategies in microservice applications

# Name Strategy

1 Compensating action Perform an action that undoes prior action(s)

2 Retry Retry until success or timeout

3 Ignore Do nothing in the event of errors

4 Restart Reset to the original state and start again

5 Tentative operation Perform a tentative operation and confirm (or cancel) later

The use of these strategies will depend on the business semantics of your service 
interaction. For example, when processing a large data set, it might make sense to 
ignore individual failures (applying strategy #3), because the cost of processing the 
overall data set is large. When interacting with a warehouse — for example, to fulfill 
orders — it’d be reasonable to place a tentative hold (strategy #5) on a stock item in a 
customer’s basket to reduce the possibility of overselling.

5.3.5	 Event sourcing

So far, we’ve assumed that entity state and events are distinct: the former is stored in an 
appropriate transactional store, whereas the latter are published independently (fig-
ure 5.13).

An alternative to this approach is the event sourcing pattern: rather than publishing 
events about entity state, you represent state entirely as a sequence of events that have 
happened to an object. To get the state of an entity at a specific time, you aggregate 
events before that date. For example, imagine your orders service:

¡	In the traditional persistence approaches we’ve assumed so far, a database would 
store the latest state of the order.

¡	In event sourcing, you’d store the events that happened to change the state of 
the order. You could materialize the current state of the order by replaying those 
events.

Service

publishes

Events

updates
state

queries
state

Store

Figure 5.13    A service storing state in a data store and publishing events, in two distinct actions
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Order @12:59 Order @01:01

Order Event Order Event Order Event Order Event

Figure 5.14    An order, stored as a sequence of events

Figure 5.14 illustrates the event sourcing approach for tracking an order’s history.
This architecture solves a common problem in enterprise applications: understand-

ing how you reached your current state. It removes the division between state and 
events; you don’t need to stick events on top of your business logic, because your busi-
ness logic inherently generates and manipulates events. On the other hand, it makes 
complex queries more difficult: you’d need to materialize views to perform joins or 
filter by field values, as your event storage format would only support retrieving entities 
by their primary key. 

Event sourcing isn’t a requirement for a microservice application, but using events 
to store application state can be a particularly elegant tool, especially for applications 
involving complex sagas where tracking the history of state transitions is vital. If you’re 
interested in learning more about event sourcing, Nick Chamberlain’s awesome-ddd 
list (https://github.com/heynickc/awesome-ddd) has a great collection of resources 
and further reading. 

5.4	 Queries in a distributed world
Decentralized data ownership also makes retrieving data more challenging, as it’s no 
longer possible to aggregate related data at, or close to, the database level — for exam-
ple, through joins. Presenting data from disparate services is often necessary at the UI 
layer of an application.

For example, imagine you’re building an administrative UI that shows a list of cus-
tomers, together with their current open orders. In a SQL database, you’d join these 
two tables in a single query, returning one dataset. In a microservice application, this 
composition would typically take place at the API level: a service or an API gateway could 
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perform this (figure 5.15). Correlation IDs  — roughly analogous to foreign keys in a rela-
tional database — identify relationships between data that each service owns; for exam-
ple, each order would record the associated customer ID.

The two-step approach in figure 5.15 works well for single entities or small datasets 
but will scale poorly for bulk requests. If the first query returns N customers, then the 
second query will be performed N times, which could quickly get out of hand. If we 
were querying a SQL database, this would be trivial to solve with a join, but because our 
data is spread across multiple data stores, an easy solution like using a join isn’t possible.

We could improve this query by introducing bulk request endpoints and paging, as 
in listing 5.1. Rather than getting every customer, you’d get the first page; rather than 
retrieving customer orders one-by-one, you could retrieve them with a list of IDs. You 
should note, though, that if each customer had thousands of orders, having to page 
those as well would add substantial overhead.

Listing 5.1    Different endpoints for data retrieval

/customers?page=1&size=20 

/orders?customerIds=4,5,10,20 

API composition is simple and intuitive, and for many use cases, such as individual 
aggregates or small enumerables, the performance of this approach will be acceptable. 
For others, such as the following, performance will be inefficient and far from ideal:

¡	Queries that return and join substantial data, such as reporting  — “I want all customer 
orders from the last year.”

¡	Queries that aggregate or perform analytics across multiple services  — “I want to know the 
average order value of emerging market stocks purchased by customers over 35.”

¡	Queries that aren’t optimally supported by the service’s own database  — For example, 
complex search patterns are often difficult to optimize in relational databases.

Customers

Orders

API gateway
user interface

consuming service

1. get all customers

2. for each customer,
get all orders

queries

queries

Each order stores the customer_id as a correlation id

Figure 5.15    Data composition at the API level

You should page large datasets.

You should retrieve children using “IN” 
semantics rather than individually.
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Lastly, API composition is impacted by availability. Composition requires synchronous 
calls to underlying services, so the total availability of a query path is the product of 
the availability of all services involved in that path. For example, if the two services and 
the API gateway in figure 5.15 each have an availability of 99%, their availability when 
called together would be 99%^3: 97.02%. Over the next three sections, we’ll discuss 
how you also can use events to build efficient queries in microservice applications.

NOTE    We’ll discuss service availability and reliability, and techniques for maxi-
mizing those properties in the following chapter.

5.4.1	 Storing copies of data

You can elect to have services store or cache data that they receive from other services 
via events. For example, in figure 5.16, when the fees service receives an OrderCreated 
message, it might elect to store additional detail about the order, beyond the correla-
tion ID. This service can now handle queries like “What was the value of this order?” 
without needing to retrieve that data with an additional call to the orders service.

This technique can be quite useful but risky:

¡	Maintaining multiple copies of data increases overall application and service 
complexity (and possibly, overall storage cost).

¡	Breaking schema changes in events is extremely tricky to manage, as services 
become increasingly coupled to event content.

¡	Cache invalidation is notoriously hard.7

Order Created

publishes consumes Fees

processes fee

Fee Id

1

Value

£3.04

Order Id

45

Order Value

£521.01

A correlation ID can be
derived from the event.

Additional data can be stored
or cached from the event.

stores

DatabaseOrders

Figure 5.16    You can use events to share, and therefore replicate, state across multiple services

7	 See Martin Fowler, “TwoHardThings,” July 14, 2009, https://martinfowler.com/bliki 
/TwoHardThings.html, and Mark Heath, “Troubleshooting Caching Problems,” SoundCode, 
January 23, 2018, http://mng.bz/M2J7.
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By maintaining canonical data in multiple locations — updated via asynchronous 
events, which could be delayed, or fail, or be delivered multiple times — you have to 
cope with eventual consistency and the chance that the copies of data you retrieve have 
become stale.

Whether it’s fine for data to be stale sometimes is down to the business semantics of 
the particular feature. But it’s a hard tradeoff. The CAP theorem8 says that you can’t 
have things both ways: you need to choose between availability — returning a successful 
result, without a guarantee that data is fresh — and consistency — returning the most 
recent state, or an error. 

Guaranteeing consistency tends to result in increased coordination between  
systems — such as distributed locks — which hampers transaction speed. In contrast, 
a system that maximizes availability ultimately relies on compensating actions and 
retries — a lot like sagas. From an architectural perspective, availability is usually 
easier to achieve and, because of the reduced coordination cost, more amenable to 
building scalable applications.

Prioritizing availability
Building systems that prioritize availability might require you to avoid the instinctual, con-
sistency-oriented solution to a problem. Even systems that seem like they should priori-
tize consistency often make availability tradeoffs to maximize successful use.

A great example is an automated teller machine (ATM) — prioritizing availability increases 
bank revenue. If an ATM can’t connect to the bank backend, or the wider ATM network, 
it’ll still allow withdrawals, but cap them, ensuring risk of overdraft is limited. If a with-
drawal does place a customer in overdraft, the bank can recoup that with a fee.

A recent article from Eric Brewer — http://mng.bz/HGA3 — has a great overview of this 
scenario.

 

5.4.2	 Separating queries and commands

You can generalize the previous approach — using events to build views — further. 
In many systems, queries are substantially different from writes: whereas writes affect 
singular, highly normalized entities, queries often retrieve denormalized data from a 
range of sources. Some query patterns might benefit from completely different data 
stores than writes; for example, you might use PostgreSQL as a persistent transactional 
store but Elasticsearch for indexing search queries. The command-query responsibility 
segregation pattern (CQRS) is a general model for managing these scenarios by explic-
itly separating reads (queries) from writes (commands) within your system.9

8	 This is a fantastic, “plain English” explanation of the CAP theorem: ksat.me/a-plain-english 
-introduction-to-cap-theorem/, by Kaushik Sathupadi.

9	 You need to use CQRS if you implement an event-sourcing architecture.
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NOTE    We won’t go into specific technical detail about implementing CQRS, 
but you can explore frameworks in many languages, such as Commanded 
(Elixir), CQRS.net (.NET), Lagom (Java and Scala), and Broadway (PHP).

CQRS architecture

Let’s sketch out this architecture. In figure 5.17, you can see that CQRS partitions com-
mands and queries:

¡	The command side of an application performs updates to a system — creates, 
updates and deletes. Commands emit events, either in-band or to a distinct event 
bus, such as RabbitMQ or Kafka.

¡	Event handlers consume events to build appropriate query or read models.
¡	A separate data store may support each side of the system.

You can apply this pattern both within services and across your whole applica-
tion — using events to build dedicated query services that own and maintain complex 
views of application data. For example, imagine you wanted to aggregate order fees 
across your entire customer base, potentially slicing them by multiple attributes (for 
example, type of order, asset categories, payment method). This wouldn’t be possible 
at a service level, because neither the fees, orders, nor customers service has all the 
data needed to filter those attributes. 

Instead, as figure 5.18 illustrates, you could build a query service, CustomerOrders, 
to construct appropriate views. A query service is a good way to handle views that don’t 
clearly belong to any other services, ensuring a reasonable separation of concerns.

read

create
update
delete

commands

event handlers

queries

Service

events

reads

updates

updates Command
store

Query store

Figure 5.17    CQRS partitions a service into command and query sides, each accessing separate data 
stores.
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Orders

Fees

Customers Customer...

Fee Charged

Order Created

event handlers queries

updates reads

Query store

Customer Orders

get

Figure 5.18    Query services can construct complex views from events that multiple services emit.

TIP    You don’t need to use only CQRS within your application. Using different 
query styles in different scenarios can help achieve a good balance of complex-
ity, implementation speed, and customer value.

So far, this all sounds great! In a microservices application, CQRS offers two key benefits:

¡	You can optimize the query model for specific queries to improve their perfor-
mance and remove the need for cross-service joins.

¡	It aids in separation of concerns, both within services and at an application level.

But it’s not without drawbacks. Let’s explore those now.

5.4.3	 CQRS challenges

Like the data caching example, CQRS requires you to consider eventual consistency 
because of replication lag : inherently, the command state of a service will be updated 
before the query state. Because events update query models, someone querying that 
data might receive an out of date view. This might be a frustrating user experience (fig-
ure 5.19). Imagine you update the value of an order, but on clicking Confirm, you see 
the details of the original order! Web UIs that use a POST/redirect/GET10 pattern will 
often suffer from this problem.

10	 See https://en.wikipedia.org/wiki/Post/Redirect/Get for more information.
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UI Orders

Queries made before
the view is updated

can’t find the new order.

Updating the query
view takes time to

perform.

create order

confirm

get order

no order found!

order created

update view

Order Query

Figure 5.19    Lag in updating a query view leads to inconsistent results when making a request.

In some systems, this might not matter. For example, delayed updates are common for 
activity feeds11 — if I post an update on Twitter, it doesn’t matter if my followers don’t 
all receive it at the same time. And in fact, attempting to achieve greater consistency 
can lead to substantial scalability challenges that might not be worth it.

In other systems, it’ll be important to ensure you don’t query invalid state. You can 
apply three strategies (figure 5.20) in these scenarios: optimistic updates, polling, or 
publish-subscribe.

Optimistic updates

You could update the UI optimistically, based on the expected result of a command. If 
the command fails, you can roll back the UI state. For example, imagine you like a post 
on Instagram. The app will show a red heart before the Instagram backend saves that 
change. If that save fails, Instagram will roll back the optimistic UI change, and you’ll 
have to like it again for it to show a red heart.

This approach relies on having — or being able to derive — all the information you 
need to update the UI from the command input, so it works best when working with 
simple entities.

11	 If you’re interested in the architecture behind activity streams, https://github.com/tschellenbach/ 
Stream-Framework is a good place to start.
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1. request 3. confirm or rollback

2. update to reflect

1. request
version X

2. poll until
version X

2. request 1. subscribe 3. publish

Command

UI UI UI

Command Query QueryCommand

Optimistic update Polling Publish-subscribe

Figure 5.20    Three strategies for dealing with query-side replication lag in CQRS

Polling

The UI could poll the query API until an expected change has occurred. When ini-
tiating a command, the client would set a version, such as a timestamp. For subse-
quent queries, the client would continue to poll until the version number was equal 
or greater to the version number specified, indicating that the query model had been 
updated to reflect the new state.

Publish-subscribe

Instead of polling for changes, a UI could subscribe to events on a query model — for 
example, over a web socket channel. In this case, the UI would only update when the 
read model published an “updated” event.

As you can see, it’s challenging to reason through CQRS, and it requires a different 
mindset from what you’d have when dealing with normal CRUD APIs. But it can be 
useful in a microservice application. Done right, CQRS helps to ensure performance 
and availability in queries, even as you distribute data and responsibility across multiple 
distinct services and data stores. 

5.4.4	 Analytics and reporting

You can generalize the CQRS technique to other use cases, such as analytics and 
reporting. You can transform a stream of microservice events and store them in a data 
warehouse, such as Amazon Redshift or Google BigQuery (figure 5.21). A transforma-
tion stage may involve mapping events to the semantics and data model of the target 
warehouse or combining events with data from other microservices. If you don’t yet 
know how you want to treat or query events, you can store them in commodity stor-
age, such as Amazon S3, for later querying or reprocessing with big data tools such as 
Apache Spark or Presto.
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event stream

Transform

Storage
Analytic tools e.g.

Spark

Data
warehouse

events

events

Figure 5.21    You can use microservice events to populate data warehouses or other analytic stores.	

5.5	 Further reading
We’ve covered a lot of ground in this chapter, but some topics, like sagas, event sourc-
ing, and CQRS, can each fill entire books. In case you’re interested in knowing more 
about those topics, we recommend the following books:

¡	Reactive Application Development, by Duncan K. DeVore, Sean Walsh, and Brian 
Hanafee, https://www.manning.com/books/reactive-application-development 
(ISBN 9781617292460)

¡	Microservices Patterns, by Chris Richardson, https://www.manning.com/books/
microservices-patterns (ISBN 9781617294549)

¡	Event Streams in Action, by Alexander Dean, https://www.manning.com/books/
event-streams-in-action (ISBN 9781617292347)

Summary

¡	ACID properties are difficult to achieve in interactions across multiple services; 
microservices require different approaches to achieve consistency.

¡	Coordination approaches, such as two-phase commit, introduce locking and 
don’t scale well.

¡	An event-based architecture decouples independent components and provides a 
foundation for scalable business logic and queries in a microservice application.

¡	Biasing towards availability, rather than consistency, tends to lead to a more scal-
able architecture.

¡	Sagas are global actions composed from message-driven, independent local 
transactions. They achieve consistency by using compensating actions to roll 
back incorrect state.

¡	Anticipating failure scenarios is a crucial element of building services that reflect 
real-world circumstance, rather than operating in isolation.

¡	You typically implement queries across microservices by composing results from 
multiple APIs.

¡	Efficient complex queries should use the CQRS pattern to materialize read mod-
els, especially where those query patterns require alternative data stores.

 

https://www.manning.com/books/reactive-application-development
https://www.manning.com/books/microservices-patterns
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6Designing reliable services

This chapter covers
¡	The impact of service availability on application 

reliability

¡	Designing microservices that defend against 
faults in their dependencies

¡	Applying retries, rate limits, circuit breakers, 
health checks, and caching to mitigate 
interservice communication issues

¡	Applying safe communication standards across 
many services

No microservice is an island; each one plays a small part in a much larger system. Most ser-
vices that you build will have other services that rely on them — upstream collaborators —  
and in turn themselves will depend on other services — downstream collaborators — to 
perform useful functions. For a service to reliably and consistently perform its job, it 
needs to be able to trust these collaborators.

This is easier said than done. Failures are inevitable in any complex system. An indi-
vidual microservice might fail for a variety of reasons. Bugs can be introduced into code. 
Deployments can be unstable. Underlying infrastructure might let you down: resources 
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might be saturated by load; underlying nodes might become unhealthy; even entire data 
centers can fail. As we discussed in chapter 5, you can’t even trust that the network between 
your services is reliable — believing otherwise is a well-known fallacy of distributed comput-
ing.1 Lastly, human error can lead to major failures. For example, I’m writing this chapter a 
week after an engineer’s mistake in running a maintenance script led to a severe outage in 
Amazon S3, affecting thousands of well-known websites.

It’s impossible to eliminate failure in microservice applications — the cost of that 
would be infinite! Instead, your focus needs to be on designing microservices that are 
tolerant of dependency failures and able to gracefully recover from them or mitigate 
the impact of those failures on their own responsibilities.

In this chapter, we’ll introduce the concept of service availability, discuss the impact of 
failure in microservice applications, and explore approaches to designing reliable com-
munication between services. We’ll also discuss two different tactics — frameworks and 
proxies — for ensuring all microservices in an application interact safely. Using these 
techniques will help you maximize the reliability of your microservice application — and 
keep your users happy.

6.1	 Defining reliability
Let’s start by figuring out how to measure the reliability of a microservice. Consider a simple 
microservice system: a service, holdings, calls two dependencies, transactions and market-data. 
Those services in turn call further dependencies. Figure 6.1 illustrates this relationship.

For any of those services, you can assume that they spent some time performing work 
successfully. This is known as uptime. Likewise, you can safely assume — because failure 
is inevitable — that they spent some time failing to complete work. This is known as 
downtime. You can use uptime and downtime to calculate availability: the percentage of 
operational time during which the service was working correctly. A service’s availability 
is a measure of how reliable you can expect it to be.

Requests Holdings

D

E

C

Market-data

Transactions

Figure 6.1    A simple microservice system, illustrating dependencies between collaborating services

1	 Peter Deutsch originally posited the eight fallacies of distributed computing in 1994. A good over-
view is available here: http://mng.bz/9T5F.

 

http://mng.bz/9T5F


	 131Defining reliability

A typical shorthand for high availability is “nines:” for example, two nines is 99%, 
whereas five nines is 99.999%. It’d be highly unusual for critical production-facing ser-
vices to be less reliable than this.

To illustrate how availability works, imagine that calls from holdings to market-data 
are successful 99.9% of the time. This might sound quite reliable, but downtime of 
0.1% quickly becomes pronounced as volumes increase: only one failure per 1,000 
requests, but 1,000 failures per million. These failures will directly affect your calling 
service unless you can design that service to mitigate the impact of dependency failure.

Microservice dependency chains can quickly become complex. If those dependen-
cies can fail, what’s the probability of failure within your whole system? You can treat 
your availability figure as the probability of a request being successful — by multiplying 
together the availability figures for the parts of the chain, you can estimate the failure 
rate across your entire system.

Say you expand the previous example to specify that you have six services with the 
same success rate for calls. For any request to your system, you can expect one of four 
outcomes: all services work correctly, one service fails, multiple services fail, or all ser-
vices fail.

Because calls to each microservice are successful 99.9% of the time, combined reli-
ability of the system will be 0.9996 = 0.994 = 99.4%. Although this is a simple model, 
you can see that the whole application will always be less reliable than its independent 
components; the maximum availability you can achieve is a product of the availability of 
a service’s dependencies.

To illustrate, imagine that service D’s availability is degraded to 95%. Although this 
won’t affect transactions — because it’s not part of that call hierarchy — it will reduce 
the reliability of both market-data and holdings. Figure 6.2 illustrates this impact.

Holdings

D

E

C

Market-data

Transactions

Requests

The reliability of holdings is
the combined reliability of
itself and its collaborators.

The reliability of market-data
is the combined reliability of

itself, D, and E.

A reduction in D’s reliability
affects all upstream services.

99.9%

99.9%

99.9%

95%

99.9% * 95% * 99.9% =
94.8%

99.9% * 94.8% * 99.9% *
99.9% = 94.5%

Figure 6.2    The impact of service dependency availability on reliability in a microservice application
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It’s crucial to maximize service availability — or isolate the impact of unreliability — to 
ensure the availability of your entire application. Measuring availability won’t tell you 
how to make your services reliable, but it gives you a target to aim for or, more specifi-
cally, a goal to guide both the development of services and the expectations of consum-
ing services and engineers.

NOTE    How do you monitor availability? We’ll explore approaches to monitor-
ing service availability in a microservice application in part 4 of this book.

If you can’t trust the network, your hardware, other services, or even your own services 
to be 100% reliable, how can you maximize availability? You need to design defensively 
to meet three goals:

¡	Reduce the incidence of avoidable failures
¡	Limit the cascading and system-wide impact of unpredictable failures
¡	Recover quickly — and ideally automatically — when failures do occur

Achieving these goals will ultimately maximize the uptime and availability of your 
services.

6.2	 What could go wrong?
As we’ve stated, failure is inevitable in a complex system. Over the lifetime of an appli-
cation, it’s incredibly likely that any catastrophe that could happen, will happen. Con-
sequently, you need to understand the different types of failures that your application 
might be susceptible to. Understanding the nature of these risks and their likelihood 
is fundamental to both architecting appropriate mitigation strategies and reacting rap-
idly when incidents do occur.

Balancing risk and cost
It’s important to be pragmatic: you can neither anticipate nor eliminate every possible 
cause of failure. When you’re designing for resilience, you need to balance the risk of a 
failure against what you can reasonably defend against given time and cost constraints:

¡	The cost to design, build, deploy, and operate a defensive solution
¡	The nature of your business and expectations of your customers

To put that in perspective, consider the S3 outage I mentioned earlier. You could defend 
against that error by replicating data across multiple regions in AWS or across multiple 
clouds. But given that S3 failures of that magnitude are exceptionally rare, that solution 
wouldn’t make economic sense for many organizations because it would significantly 
increase operational costs and complexity.

 

As a responsible service designer, you need to identify possible types of failure within 
your microservice application, rank them by anticipated frequency and impact, and 
decide how you’ll mitigate their impact. In this section, we’ll walk you through some 
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common failure scenarios in microservice applications and how they arise. We’ll also 
explore cascading failures — a common catastrophic scenario in a distributed system.

6.2.1	 Sources of failure

Let’s examine a microservice to understand where failure might arise, using one of Sim-
pleBank’s services as an example. You can assume a few things about the market-data 
service:

¡	The service will run on hardware — likely a virtualized host — that ultimately 
depends on a physical data center.

¡	Other upstream services depend on the capabilities of this service.
¡	This service stores data in some store — for example, a SQL database.
¡	It retrieves data from third-party data sources through APIs and file uploads.
¡	It may call other downstream SimpleBank microservices.

Figure 6.3 illustrates the service and its relationship to other components.

Data store

Stores &
retrieves
data

Host

Third-party
dependencies

Makes requests

Make requests

Market-data

Upstream collaborators

Downstream collaborators

Makes requests

Figure 6.3    Relationships between the market-data microservice and other components of the 
application
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Every point of interaction between your service and another component indicates a 
possible area of failure. Failures could occur in four major areas:

¡	Hardware  — The underlying physical and virtual infrastructure on which a ser-
vice operates

¡	Communication  — Collaboration between different services and/or third parties
¡	Dependencies  — Failure within dependencies of a service
¡	Internal  — Errors within the code of the service itself, such as defects introduced 

by engineers

Let’s explore each category in turn.

Hardware

Regardless of whether you run your services in a public cloud, on-premise, or using 
a PaaS, the reliability of the services will ultimately depend on the physical and vir-
tual infrastructure that underpins them, whether that’s server racks, virtual machines, 
operating systems, or physical networks. Table 6.1 illustrates some of the causes of fail-
ure within the hardware layer of a microservice application.

Table 6.1    Sources of failure within the hardware layer of a microservice application

Source of failure Frequency Description

Host Often Individual hosts (physical or virtual) may fail.

Data center Rare Data centers or components within them may fail.

Host configuration Occasionally Hosts may be misconfigured —  for example, through errors in 
provisioning tools.

Physical network Rare Physical networking (within or between data centers) may fail.

Operating system and 
resource isolation 

Occasionally The OS or the isolation system — for example, Docker — may fail 
to operate correctly.

The range of possible failures at this layer of your application are diverse and unfortu-
nately, often the most catastrophic because hardware component failure may affect the 
operation of multiple services within an organization.

Typically, you can mitigate the impact of most hardware failures by designing appro-
priate levels of redundancy into a system. For example, if you’re deploying an applica-
tion in a public cloud, such as AWS, you’d typically spread replicas of a service across 
multiple zones — geographically distinct data centers within a wider region — to reduce 
the impact of failure within a single center.

It’s important to note that hardware redundancy can incur additional operational 
cost. Some solutions may be complex to architect and run — or just plain expensive. 
Choosing the right level of redundancy for an application requires careful consider-
ation of the frequency and impact of failure versus the cost of mitigating against poten-
tially rare events.
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Communication

Communication between services can fail: network, DNS, messaging, and firewalls are 
all possible sources of failure. Table 6.2 details possible communication failures.

Table 6.2    Sources of communication failure within a microservice application

Source of failure Description

Network Network connectivity may not be possible.

Firewall Configuration management can set security rules inappropriately.

DNS errors Hostnames may not be correctly propagated or resolved across an application.

Messaging Messaging systems — for example, RPC — can fail.

Inadequate health 
checks

Health checks may not adequately represent instance state, causing requests to be 
routed to broken instances.

Communication failures can affect both internal and external network calls. For exam-
ple, connectivity between the market-data service and the external APIs it relies on 
could degrade, leading to failure.

Network and DNS failures are reasonably common, whether caused by changes in 
firewall rules, IP address assignment, or DNS hostname propagation in a system. Net-
work issues can be challenging to mitigate, but because they’re often caused by human 
intervention (whether through service releases or configuration changes), the best way 
to avoid many of them is to ensure that you test configuration changes robustly, and 
that they’re easy to roll back if issues occur.

Dependencies

Failure can occur in other services that a microservice depends on, or within that 
microservice’s internal dependencies (such as databases). For example, the database 
that market-data relies on to save and retrieve data might fail because of underlying 
hardware failure or hitting scalability limits — it wouldn’t be unheard of for a database 
to run out of disk space!

As we outlined earlier, such failures have a drastic effect on overall system availability. 
Table 6.3 outlines possible sources of failure.

Table 6.3    Sources of dependency-related failure

Source of failure Description

Timeouts Requests to services may time out, resulting in erroneous behavior.

Decommissioned or nonbackwards- 
compatible functionality

Design doesn’t take service dependencies into account, unexpect-
edly changing or removing functionality.

Internal component failures Problems with databases or caches prevent services from working 
correctly.

External dependencies Services may have dependencies outside of the application that 
don’t work correctly or as expected — for example, third-party APIs.
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In addition to operational sources of failure, such as timeouts and service outages, depen-
dencies are prone to errors caused by design and build failures. For example, a service 
may rely on an endpoint in another service that’s changed in a nonbackwards-compatible 
way or, even worse, removed completely without appropriate decommissioning.

Service practices

Lastly, inadequate or limited engineering practices when developing and deploying ser-
vices may lead to failure in production. Services may be poorly designed, inadequately 
tested, or deployed incorrectly. You may not catch errors in testing, or a team may not 
adequately monitor the behavior of their service in production. A service might scale 
ineffectively: hitting memory, disk, or CPU limits on its provisioned hardware such that 
performance is degraded — or the service becomes completely unresponsive.

Because each service contributes to the effectiveness of the whole system, one poor 
quality service can have a detrimental effect on the availability of swathes of function-
ality. Hopefully the practices we outline throughout this book will help you avoid 
this — unfortunately common — source of failure!

6.2.2	 Cascading failures

You should now understand how failure in different areas can affect a single micro-
service. But the impact of failure doesn’t stop there. Because your applications are 
composed of multiple microservices that continually interact with each other, failure 
in one service can spread across an entire system.

Cascading failures are a common mode of failure in distributed applications. A cas-
cading failure is an example of positive feedback: an event disturbs a system, leading to 
some effect, which in turn increases the magnitude of the initial disturbance. In this 
case, positive means that the effect increases — not that the outcome is beneficial.

You can observe this phenomenon in several real-world domains, such as financial 
markets, biological processes, or nuclear power stations. Consider a stampede in a herd 
of animals: panic causes an animal to run, which in turn spreads panic to other animals, 
which causes them to run, and so on. In a microservice application, overload can cause 
a domino effect: failure in one service increases failure in upstream services, and in 
turn their upstream services. At worst, the result is widespread unavailability.

Let’s work through an example to illustrate how overload can result in a cascading 
failure. Imagine that SimpleBank built a UI to show a user their current financial hold-
ings (or positions) in an account. That might look something like figure 6.4.

Each financial position is the sum of the transactions — purchases and sales of a 
stock — made to date, multiplied by the current price. Retrieving these values relies on 
collaboration between three services:

¡	Market-data  — A service responsible for retrieving and processing price and mar-
ket information for financial instruments, such as stocks

¡	Transactions  — A service responsible for representing transactions occurring 
within an account

¡	Holdings  — A service responsible for aggregating transactions and market-data to 
report financial positions
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Figure 6.4    A user interface that reports financial holdings in an account

Figure 6.5 outlines the production configuration of these services. For each service, 
load is balanced across multiple replicas.

Suppose that holdings are being retrieved 1,000 times per second (QPS). If you have 
two replicas of your holdings service, each replica will receive 500 QPS (figure 6.6).

UI 1. Retrieves
holdings

LB

LB

LB Data store

Data storeQueries

Queries

The transactions
and market-data
services “own”

data within their
domains.

Holdings

Load is balanced
across multiple
replicas of each

microservice.

2. Retrieves transactions

3. Retrieves prices

Market-data

Transactions

Figure 6.5    Production configuration and collaboration between services to populate the “current 
financial holdings” user interface

UI 1000 QPS

500 QPS

LB

500 QPS

Holdings

Holdings

Figure 6.6    Queries made to a service are split across multiple replicas.
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Your holdings service subsequently queries transactions and market-data to construct 
the response. Each call to holdings will generate two calls: one to transactions and one 
to market-data.

Now, let’s say a failure occurs that takes down one of your transactions replicas. Your 
load balancer reroutes that load to the remaining replica, which now needs to service 
1,000 QPS (figure 6.7).

But that reduced capacity is unable to handle the level of demand to your service. 
Depending on how you’ve deployed your service — the characteristics of your web 
server — the change in load might first lead to increased latency as requests are queued. 
In turn, increased latency might start exceeding the maximum wait time that the hold-
ings service expects for that query. Alternatively, the transactions service may begin 
dropping requests.

It’s not unreasonable for a service to retry a request to a collaborator when it fails. 
Now, imagine that the holdings service will retry any request to transactions that times 
out or fails. This will further increase the load on your remaining transactions resource, 
which now needs to handle both the regular request volume and the heightened retry 
volume (figure 6.8). In turn, the holdings service takes longer to respond while it waits 
on its collaborator.

LB

Holdings

Holdings

Transactions

Transactions

1000 QPS

500 QPS

500 QPS

Figure 6.7    One replica of a collaborating service fails, sending all load to the remaining instance.
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Figure 6.8    Overload on transactions causes some requests to fail, in turn causing holdings to retry 
those requests, which starts to degrade holdings’ response time.
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Figure 6.9    Overload in a service leads to complete failure. Unhealthy retry behavior is repeated across 
dependency chains as service performance progressively degrades, leading to further overloads.

This feedback loop — failed requests lead to a higher volume of subsequent requests, 
leading to a higher rate of failure — continues to escalate. Your whole system is unable to 
complete work, as other services that rely on transactions or holdings begin to fail. Your 
initial failure in a single service causes a domino effect, worsening response times and 
availability across several services. At worst, the cumulative impact on the transactions ser-
vice causes it to fail completely. Figure 6.9 illustrates this final stage of a cascading failure.

Cascading failures aren’t only caused by overload — although this is one of the most 
common root causes. In general, increased error rates or slower response times can 
lead to unhealthy service behavior, increasing the chance of failure across multiple ser-
vices that depend on each other.

You can use several approaches to limit the occurrence of cascading failures in micro
service applications: circuit breakers; fallbacks; load testing and capacity planning; back-off 
and retries; and appropriate timeouts. We’ll explore these approaches in the next section.

6.3	 Designing reliable communication
Earlier, we emphasized the importance of collaboration in a microservice application. 
Dependency chains of multiple microservices will achieve most useful capabilities in 
an application. When one microservice fails, how does that impact its collaborators 
and ultimately, the application’s end customers?

If failure is inevitable, you need to design and build your services to maximize avail-
ability, correct operation, and rapid recovery when failure does occur. This is funda-
mental to achieving resiliency. In this section, we’ll explore several techniques for 
ensuring that services behave appropriately — maximizing correct operation — when 
their collaborators are unavailable:

¡	Retries
¡	Fallbacks, caching, and graceful degradation
¡	Timeouts and deadlines
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¡	Circuit breakers
¡	Communication brokers

Before we start, let’s get a simple service running that we can use to illustrate the concepts 
in this section. You can find these examples in the book’s Github repository (http://
mng.bz/7eN9). Clone the repository to your computer and open the chapter-6 direc-
tory. This directory contains some basic services — holdings and market-data — which 
you’ll run inside Docker containers (figure 6.10). The holdings service exposes a GET 
/holdings endpoint, which makes a JSON API request to retrieve price information 
from market-data.

To run these, you’ll need docker-compose installed (directions online: https://docs 
.docker.com/compose/install/). If you’re ready to go, type the following at the com-
mand line:

$ docker-compose up

This will build Docker images for each service and start them as isolated containers on 
your machine. Now let’s dive in!

6.3.1	 Retries

In this section, we’ll explore how to use retries when failed requests occur. To under-
stand these techniques, let’s start by examining communication from the perspective 
of your upstream service, holdings.

Imagine that a call from the holdings service to retrieve prices fails, returning an 
error. From the perspective of the calling service, it’s not clear yet whether this failure 
is isolated — repeating that call is likely to succeed, or systemic — the next call has a 
high likelihood of failing. You expect calls to retrieve data to be idempotent  — to have no 
effect on the state of the target system and therefore be repeatable.2

As a result, your first instinct might be to retry the request. In Python, you can use 
an open source library — tenacity — to decorate the appropriate method of your 
API client (the MarketDataClient class in holdings/clients.py) and perform retries if 
the method throws an exception. The following listing shows the class with retry code 
added.

Holdings

Holdings

Requests
Market-data

Market-data

Figure 6.10    Docker containers for working with microservice requests

2	 Requests that effect some system change aren’t typically idempotent. One strategy for guaranteeing 
“exactly once” semantics is to implement idempotency keys. See Brandur Leach, “Designing robust 
and predictable APIs with idempotency,” February 22, 2017, https://stripe.com/blog/idempotency.

 

http://mng.bz/7eN9
http://mng.bz/7eN9
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://stripe.com/blog/idempotency
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Listing 6.1    Adding a retry to a service call

import requests
import logging
from tenacity import retry, stop, before 

class MarketDataClient(object):

    logger = logging.getLogger(__name__)
    base_url = 'http://market-data:8000'

    def _make_request(self, url):
        response = requests.get(f"{self.base_url}/{url}", 
                                headers={'content-type': 'application/json'})
        return response.json()

    @retry(stop=stop_after_attempt(3), 
           before=before_log(logger, logging.DEBUG)) 
    def all_prices(self):
        return self._make_request("prices")

Let’s call the holdings service to see how it behaves. In another terminal window, make 
the following request:

curl -I http://{DOCKER_HOST}/holdings

This will return a 500 error, but if you follow the logs from the market-data service, you 
can see a request being made to GET /prices three times, before the holdings service 
gives up.

If you read the previous section, you should be wary at this point. Failure might be 
isolated or persistent, but the holdings service can’t know which one is the case based 
on one call.

If the failure is isolated and transient, then a retry is a reasonable option. This helps 
to minimize direct impact to end users — and explicit intervention from operational 
staff — when abnormal behavior occurs. It’s important to consider your budget for 
retries: if each retry takes a certain number of milliseconds, then the consuming service 
can only absorb so many retries before it surpasses a reasonable response time.

But if the failure is persistent — for example, if the capacity of market-data is 
reduced — then subsequent calls may worsen the issue and further destabilize the 
system. Suppose you retry each failed request to market-data five times. Every failed 
request you make to this service potentially results in another five requests; the volume 
of retries continues to grow. The entire service is doing less useful work as it attempts 
to service a high volume of retries. At worst, retries suffocate your market-data service, 
magnifying your original failure. Figure 6.11 illustrates this growth of requests.

Imports relevant functions 
from the library

Retries the query up to three times

Logs each retry  
before execution
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Figure 6.11    Growth of load on your unstable market-data service resulting from failed requests being 
retried

How can you use retries to improve your resiliency in the face of intermittent failures 
without contributing to wider system failure if persistent failures occur? First, you 
could use a variable time between successive retries to try to spread them out evenly 
and reduce the frequency of retry-based load. This is known as an exponential back-off 
strategy and is intended to give a system under load time to recover. You can change 
the retry strategy you used earlier, as shown in the following listing. Afterwards, by curl-
ing the /holdings endpoint, you can observe the retry behavior of the service.

Listing 6.2    Changing your retry strategy to exponential back-off

@retry(wait=wait_exponential(multiplier=1, max=5), 
       stop=stop_after_delay(5)) 
def all_prices(self):
    return self._make_request("prices")

Unfortunately, exponential back-off can lead to another instance of curious emergent 
behavior. Imagine that a momentary failure interrupts several calls to market-data, 
leading to retries. Exponential back-off can cause the service to schedule those retries 
together so they further amplify themselves, like the ripples from throwing a stone in 
a pond.

Instead, back-off should include a random element — jitter — to spread out retries to 
a more constant rate and avoid thundering herds of synchronized retries.3 The follow-
ing listing shows how to adjust your strategy again.

Waits 2^x * 1 second 
between each retry

Stops after five seconds

3	 A great article by Marc Brooker about exponential back-off and the importance of jitter is avail-
able on the AWS Architecture Blog, March 4, 2015, http://mng.bz/TRk5.
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Listing 6.3    Adding jitter to an exponential back-off

@retry(wait=wait_exponential(multiplier=1, max=5) + wait_random(0, 1), 
       stop=stop_after_delay(5)) 
def all_prices(self):
    return self._make_request("prices")

This strategy will ensure that retries are less likely to happen in synchronization across 
multiple waiting clients.

Retries are an effective strategy for tolerating intermittent dependency faults, but 
you need to use them carefully to avoid exacerbating the underlying issue or consum-
ing unnecessary resources:

¡	Always limit the total number of retries.
¡	Use exponential back-off with jitter to smoothly distribute retry requests and 

avoid compounding load.
¡	Consider which error conditions should trigger a retry and, therefore, which 

retries are unlikely to, or will never, succeed.

When your service meets retry limits or can’t retry a request, you can either accept 
failure or find an alternative way to serve the request. In the next section, we’ll explore 
fallbacks.

6.3.2	 Fallbacks

If a service’s dependencies fail, you can explore four fallback options:

¡	Graceful degradation
¡	Caching
¡	Functional redundancy
¡	Stubbed data

Graceful Degradation

Let’s return to the problem with the holdings service: if market-data fails, the applica-
tion may not be able to provide valuations to end customers. To resolve this issue, you 
might be able to design an acceptable degradation of service. For example, you could 
show holding quantities without valuations. This limits the richness of your UI but is 
better than showing nothing — or an error. You can see techniques like this in other 
domains. For example, an e-commerce site could still allow purchases to be made, 
even if the site’s order dispatch isn’t functioning correctly.

Caching

Alternatively, you could cache the results of past queries for prices, reducing the need 
to query the market-data service at all. Say a price is valid for five minutes. If so, the 
holdings service could cache pricing data for up to five minutes, either locally or in 

Exponentially backs off, adding a random 
wait between zero and one second

Stops after five seconds
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a dedicated cache (for example, Memcached or Redis). This solution would both 
improve performance and provide contingency in the event of a temporary outage.

Let’s try out this technique. You’ll use a library called cachetools, which provides an 
implementation of a time-to-live cache. As you did earlier with retries, you’ll decorate 
your client method, as shown in the following listing.

Listing 6.4    Adding in-process caching to a client call

import requests
import logging
from cachetools import cached, TTLCache

class MarketDataClient(object):

    logger = logging.getLogger(__name__)
    cache = TTLCache(maxsize=10, ttl=5*60) 
    base_url = 'http://market-data:8000'

    def _make_request(self, url):
        response = requests.get(f"{self.base_url}/{url}", 
                                headers={'content-type': 'application/json'})
        return response.json()

    @cached(cache) 
    def all_prices(self):
        logger.debug("Making request to get all_prices")
        return self._make_request("prices")

Subsequent calls made to GET /holdings should retrieve price information from 
the cache, rather than by making calls to market-data. If you used an external cache 
instead, multiple instances could use the cache, further reducing load on market-data 
and providing greater resiliency for all holdings replicas, albeit at the cost of maintain-
ing an additional infrastructural component.

Functional redundancy

Similarly, you might be able to fall back to other services to achieve the same func-
tionality. Imagine that you could purchase market data from multiple sources, each 
covering a different set of instruments at a different cost. If source A failed, you could 
instead make requests to source B (figure 6.12).

Functional redundancy within a system has many drivers: external integrations; algo-
rithms for producing similar results with varying performance characteristics; and even 
older features that remain operational but have been superseded. In a globally distrib-
uted deployment, you could even fall back on services hosted in another region.4

Only some failure scenarios would allow the use of an alternative service. If the cause 
of failure was a code defect or resource overload in your original service, then rerouting 
to another service would make sense. But a general network failure could affect multi-
ple services, including ones you might try rerouting to.

Instantiates a cache

Decorates your method to  
store results using your cache

4	 At the ultimate end of this scale, Netflix can serve a given customer from any of their global data 
centers, conveying an impressive degree of resilience.
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Requests to market-data-A failNormal operation

Figure 6.12    If service failure occurs, you may be able to serve the same capability with other services.

Stubbed data

Lastly, although it wouldn’t be appropriate in this specific scenario, you could use 
stubbed data for fallbacks. Picture the “recommended to you” section on Amazon: if 
the backend was unable for some reason to retrieve those personalized recommenda-
tions, it’d be more graceful to fall back to a nonpersonalized data set than to show a 
blank section on the UI.

6.3.3	 Timeouts

When the holdings service sends a request to market-data, that service consumes 
resources waiting for a reply. Setting an appropriate deadline for that interaction limits 
the time those resources are consumed.

You can set a timeout within your HTTP request function. For HTTP calls, you want 
to timeout if you haven’t received any response, but not if the response itself is slow to 
download. Try the following listing to add a timeout.

Listing 6.5    Adding a timeout to an HTTP call

def _make_request(self, url):
    response = requests.get(f"{self.base_url}/{url}",
                           headers={'content-type': 'application/json'},
                           timeout=5) 
    return response.json()

In a computational sense, network communication is slow, so the speed of failures is 
important. In a distributed system, some errors might happen almost instantly. For 
example, a dependent service may rapidly fail in the event of an internal bug. But many 
failures are slow. For example, a service that’s overloaded by requests may respond 
sluggishly, in turn consuming the resources of the calling service while it waits for a 
response that may never come.

Sets a timeout of five seconds before 
receiving data from market-data

 



146 Chapter 6  Designing reliable services

Slow failures illustrate the importance of setting appropriate deadlines — timing out 
in a reasonable timeframe — for communication between microservices. If you don’t 
set upper bounds, it’s easy for unresponsiveness to spread through entire microservice 
dependency chains. In fact, lack of deadlines can extend the impact of issues because a 
server consumes resources while it waits forever for an issue to be resolved.

Picking a deadline can be difficult. If they’re too long, they can consume unnecessary 
resources for a calling service if a service is unresponsive. If they’re too short, they can cause 
higher levels of failure for expensive requests. Figure 6.13 illustrates these constraints.

For many microservice applications, you set deadlines at the level of individual inter-
actions; for example, a call from holdings to market-data may always have a deadline of 
10 seconds. A more elegant approach is to apply an absolute deadline across an entire 
operation and propagate the remaining time across collaborators.

Without propagating deadlines, it can be difficult to make them consistent across a 
request. For example, holdings could waste resources waiting for market-data far beyond 
the overall deadline imposed by a higher level of the stack, such as an API gateway.

Imagine a chain of dependencies between multiple services. Each service takes a cer-
tain amount of time to do its work and expects its collaborators to take some time. If any 
of those times vary, static expectations may no longer be correct (figure 6.14).

If your service interactions are over HTTP, you could propagate deadlines using a 
custom HTTP header, such as X-Deadline: 1000, passing that value to set read timeout 
values on subsequent HTTP client calls. Many RPC frameworks, such as gRPC, explic-
itly implement mechanisms for propagating deadlines within a request context.

6.3.4	 Circuit breakers

You can combine some of the techniques we've discussed so far. You can consider an 
interaction between holdings and market-data as analogous to an electrical circuit. In 
electrical wiring, circuit breakers perform a protective role — preventing spikes in cur-
rent from damaging a wider system. Similarly, a circuit breaker is a pattern for pausing 
requests made to a failing service to prevent cascading failures.

Unresponsive

Typical response

Lengthy deadlines lead
to wasted resource
consumption when

failure occurs.

Short deadlines
contribute to failure if
responses often take

longer.

Short deadline

Long deadline

Time

Figure 6.13    Choosing the right deadline requires balancing time constraints to maximize the window of 
successful requests.
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Figure 6.14    Services may set expectations about how long they expect calls to collaborators to take; 
varying widely because of failure or latency can exacerbate the impact of those failures.

How does it work? Two principles, both of which we touched on in the previous sec-
tion, inform the design of a circuit breaker:

1	 Remote communication should fail quickly in the event of an issue, rather than 
wasting resources waiting for a response that might never come.

2	 If a dependency is failing consistently, it’s better to stop making further requests 
until that dependency recovers.

When making a request to a service, you can track the number of times that request 
succeeds or fails. You might track this number within each running instance of a ser-
vice or share that state (using an external cache) across multiple services. In this nor-
mal operation, we consider the circuit to be closed.

If the number of failures seen or the rate of failures within a certain time window 
passes a threshold, then the circuit is opened. Rather than attempting to send requests 
to your collaborating service, you should short-circuit requests and, where possible, 
perform an appropriate fallback — returning a stubbed message, routing to a different 
service, or returning a cached response. Figure 6.15 illustrates the lifecycle of a request 
using a circuit breaker.

Setting the time window and threshold requires careful consideration of both 
the expected reliability of the target service and the volume of interactions between 
services. If requests are relatively sparse, then a circuit breaker may not be effective, 
because a large time window might be required to obtain a representative sample of 
requests. For service interactions with contrasting busy and quiet periods, you may want 
to introduce a minimum throughput to ensure a circuit only reacts when load is statis-
tically significant.
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Figure 6.15    A circuit breaker controls the flow of requests between two services and opens when the 
number of failed requests surpasses a threshold.

NOTE    You should monitor when circuits are opened and closed, as well as 
potentially alerting the team responsible, especially if the circuit is frequently 
opened. We’ll discuss this further in part 4.

Once the circuit has opened, you probably don’t want to leave it that way. When avail-
ability returns to normal, the circuit should be closed. The circuit breaker needs to 
send a trial request to determine whether the connection has returned to a healthy 
state. In this trial state, the circuit breaker is half open: if the call succeeds, the circuit 
will be closed; otherwise, it will remain open. As with other retries, you should sched-
ule these attempts with an exponential back-off with jitter. Figure 6.16 shows the three 
distinct states of a circuit breaker.

Several libraries are available that provide implementations of the circuit breaker 
pattern in different languages, such as Hystrix (Java), CB2 (Ruby), or Polly (.NET).

TIP    Don’t forget that closed is the good state for a circuit breaker! The use of 
open and closed to represent, respectively, negative and positive states may seem 
counterintuitive but reflects the real-world behavior of an electrical circuit.

 



	 149Designing reliable communication

Successful requests

In this state, requests fail quickly.

1. If failure thresholds aren’t
met, the circuit stays closed.

Open

Half open

Closed

2. If the failure threshold
is exceeded, the circuit
is opened.

3. After a delay,
the circuit attemps to close.

5. If closing is successful,
the circuit returns to closed.

4. If this fails,
the circuit returns to open.

Figure 6.16    A circuit breaker transitions between three stages: open, closed, and half open.

6.3.5	 Asynchronous communication

So far, we’ve focused on failure in synchronous, point-to-point communication 
between services. As we outlined in the first section, the more services in a chain, the 
lower overall availability you can guarantee for that path.

Designing asynchronous service interactions, using a communication broker like a 
message queue, is another technique you can use to maximize reliability. Figure 6.17 
illustrates this approach.

Where you don’t need immediate, consistent responses, you can use this tech-
nique to reduce the number of direct service interactions, in turn increasing overall 
availability — albeit at the expense of making business logic more complex. As we 
mentioned elsewhere in this book, a communication broker becomes a single point 
of failure that will require careful attention for you to scale, monitor, and operate 
effectively.
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Figure 6.17    Using a message queue to decouple services from direct interaction

6.4	 Maximizing service reliability
In the previous sections, we explored techniques to ensure a service can tolerate faults 
in interactions with its collaborators. Now, let’s consider how you can maximize avail-
ability and fault tolerance within an individual service. In this section, we’ll explore 
two techniques — health checks and rate limits — as well as methods for validating the 
resilience of services.

6.4.1	 Load balancing and service health

In production, you deploy multiple instances of your market-data service to ensure 
redundancy and horizontal scalability. A load balancer will distribute requests from 
other services between these instances. In this scenario, the load balancer plays two roles:

1	 Identifying which underlying instances are healthy and able to serve requests

2	 Routing requests to different underlying instances of the service

A load balancer is responsible for executing or consuming the results of health checks. 
In the previous section, you could ascertain the health of a dependency at the point 
of interaction — when requests were being made. But that’s not entirely adequate. You 
should have some way of understanding the application’s readiness to serve requests at 
any time, rather than when it’s actively being queried.

Every service you design and deploy should implement an appropriate health check. If 
a service instance becomes unhealthy, that instance should no longer receive traffic from 
other services. For synchronous RPC-facing services, a load balancer will typically query 
each instance’s health check endpoint on an interval basis. Similarly, asynchronous services 
may use a heartbeat mechanism to test connectivity between the queue and consumers.

TIP    It’s often desirable for repeated or systematic instance failures, as detected 
by health checks, to trigger alerts to an operations team — a little human inter-
vention can be helpful. We’ll explore that further in part 4 of this book.
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You can classify health checks based on two criteria: liveness and readiness. A live-
ness check is typically a simple check that the application has started and is running 
correctly. For example, an HTTP service should expose an endpoint — commonly  
/health, /ping, or /heartbeat — that returns a 200 OK response once the service is 
running (figure 6.18). If an instance is unresponsive, or returns an error message, the 
load balancer will no longer deliver requests there.

In contrast, a readiness check indicates whether a service is ready to serve traffic, 
because being alive may still not indicate that requests will be successful. A service might 
have many dependencies — databases, third-party services, configuration, caches — so 
you can use a readiness check to see if these constituent components are in the correct 
state to serve requests. Both of the example services implement a simple HTTP liveness 
check, as shown in the following listing.

Listing 6.6    Flask handler for an HTTP liveness check

@app.route('/ping', methods=["GET"])
def ping():
    return 'OK'

Health checks are binary: either an instance is available or it isn’t. This works well with 
typical round-robin load balancing, where requests are distributed to each replica in 
turn. But in some circumstances the functioning of a service may be degraded and 
exhibit increased latency or error rates without a health check reflecting this status. 
As such, it can be beneficial to use load balancers that are aware of latency and able 
to route requests to instances that are performing better, or those that are under less 
load, to achieve more consistent service behavior. This is a typical feature of a microser-
vice proxy, which we’ll touch on later in this chapter.

LB

4xx/5xx200

200

Holdings

Holdings

LB

200

Holdings

Holdings

Figure 6.18    Load balancers continuously query service instances to check their health. If an instance 
is unhealthy, the load balancer will no longer route requests to that instance until it recovers.
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6.4.2	 Rate limits

Unhealthy service usage patterns can sometimes arise in large microservice appli-
cations. Upstream dependencies might make several calls, where a single batch call 
would be more appropriate, or available resources may not be distributed equitably 
among all callers. Similarly, a service with third-party dependencies could be limited by 
restrictions that those dependencies impose.

An appropriate solution is to explicitly limit the rate of requests or total requests 
available to collaborating services in a timeframe. This helps to ensure that a service —  
particularly when it has many collaborators — isn’t overloaded. The limiting might be 
indiscriminate (drop all requests above a certain volume) or more sophisticated (drop 
requests from infrequent service clients, prioritize requests for critical endpoints, and 
drop low-priority requests). Table 6.4 outlines different rate-limiting strategies.

Table 6.4    Common rate-limiting strategies

Strategy Description

Drop requests above volume Drop consumer requests above a specified volume

Prioritize critical traffic Drop requests to low-priority endpoints to prioritize resources for critical 
traffic

Drop uncommon clients Prioritize frequent consumers of the service over infrequent users

Limit concurrent requests Limit the overall number of requests an upstream service can make over 
a time period

Rate limits can be shared with a service’s clients at design time or, better, at runtime. A 
service might return a header to a consumer that indicates the remaining volume of 
requests available. On receipt, the upstream collaborator should take this into account 
and adjust its rate of outbound requests. This technique is known as back pressure.

6.4.3	 Validating reliability and fault tolerance

Applying the tactics and patterns we’ve covered will put you on a good path toward 
maximizing availability. But it’s not enough to plan and design for resiliency: you need 
to validate that your services can tolerate faults and recover gracefully.

Thorough testing provides assurance that your chosen design is effective when 
both predicted and unpredictable failures occur. Testing requires the application of  
load testing and chaos testing. Although it’s likely you’re familiar with code testing — such 
as unit and acceptance testing to validate implementation, usually in a controlled 
environment — you might not know that load and chaos testing are intended to val-
idate service limits by closely replicating the turbulence of production operation. 
Although testing isn’t the primary focus of this book, it’s useful to understand how 
these different testing techniques can help you build a robust microservice application.
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Load testing

As a service developer, you can usually be confident that the number of requests made 
to your service will increase over time. When developing a service, you should

1	 Model the expected growth and shape of service traffic to ensure that you under-
stand the likely usage of your service

2	 Estimate the capacity required to service that traffic

3	 Validate the deployed capacity of the service by load testing against those limits

4	 Use business and service metrics as appropriate to re-estimate capacity

Imagine you’re considering how much capacity the market-data service requires. First, 
what do you know about the service’s usage patterns? You know that holdings queries 
the service, but it may be called from elsewhere too — pricing data is used throughout 
SimpleBank’s product.

Let’s assume that queries to market-data grow roughly in line with the number of 
active users on the platform, but you may experience spikes (for example, when the 
market opens in the morning). You can plan capacity based on predictions of your busi-
ness growth. Table 6.5 outlines a simple estimation of the QPS that you can expect this 
service to receive over a three-month period.

Table 6.5    Estimate of calls to a service per second based on growth in average active users over a three-
month period

Jun Jul Aug

Total Users 4000 5600 7840

Expected Growth 40% 40% 40%

Active Users Average 20% 800 1120 1568

Peak 70% 2800 3920 5488

Service Calls Average

Per User/Minute 30 24000 33600 47040

Per User/Second 0.5 400 560 784

Peak

Per User/Minute 30 84000 117600 164640

Per User/Second 0.5 1400 1960 2744

Identifying the qualitative factors that drive growth in service utilization is vital to good 
design and optimizing capacity. Once you’ve done that, you can determine how much 
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capacity to deploy. For example, the table suggests you need to be able to service 400 
requests per second in normal operation, growing by 40% month on month, with 
spikes in peak usage to 1,400 requests per second.

TIP    An in-depth review of capacity and scale planning techniques is outside the 
scope of this book, but a great overview is available in Abbott and Fisher’s The 
Art of Scalability (Addison-Wesley Professional, 2015) (ISBN 978-0134032801).

Once you’ve established a baseline capacity for your service, you can then iteratively 
test that capacity against expected traffic patterns. Along with validating the traffic lim-
its of a microservice configuration, load testing can identify potential bottlenecks or 
design flaws that aren’t apparent at lower levels of load. Load testing can provide you 
with highly effective insight into the limitations of your services.

At the level of individual services, you should automate the load testing of each ser-
vice as part of its delivery pipeline — something we’ll explore in part 3 of this book. 
Along with this systematic load testing, you should perform exploratory load testing to 
identify limits and test your assumptions about the load that services can handle.

You also should load test services together. This can aid in identifying unusual load 
patterns and bottlenecks based on service interaction. For example, you could write a 
load test that exercises all the services in the GET /holdings example.

Chaos testing

Many failures in a microservice application don’t arise from within the microservices 
themselves. Networks fail, virtual machines fail, databases become unresponsive — failure 
is everywhere! To test for these types of failure scenarios, you need to apply chaos testing.

Chaos testing pushes your microservice application to fail in production. By intro-
ducing instability and failure, it accurately mimics real system failures, as well as train-
ing an engineering team to be able to react to those failures. This should ultimately 
build your confidence in the system’s capability to withstand real chaos because you’ll 
be gradually improving the resiliency of your system and reducing the possible number 
of events that would cause operational impact.

As explained on the “Principles of Chaos Engineering” website (https://principlesof 
chaos.org/), you can think of chaos testing as “the facilitation of experiments to 
uncover systemic weaknesses.” The website lays out this approach:

1	 Define a measurable steady state of normal system operation.

2	 Hypothesize that behavior in an experimental and control group will remain 
steady; the system will be resilient to the failure introduced.

3	 Introduce variables that reflect real-world failure events — for example, removing 
servers, severing network connections, or introducing higher levels of latency.

4	 Attempt to disprove the hypothesis you defined in (2).

 

https://principlesofchaos.org/
https://principlesofchaos.org/


	 155Maximizing service reliability

Recall how the holdings, transactions, and market-data services were deployed in fig-
ure 6.5. In this case, you expect steady operation to return holdings data within a rea-
sonable response time. A chaos test could introduce several variables:

1	 Killing nodes running market-data or transactions, either partially or completely

2	 Reducing capacity by killing holdings instances at random

3	 Severing the network connection — for example, between holdings and down-
stream services or between services and their data stores

Figure 6.19 illustrates these options.
Companies with mature chaos testing practices might even perform testing on both 

a systematic and random basis against live production environments. This might sound 
terrifying; real outages can be stressful enough, let alone actively working to make them 
happen. But without taking this approach, it’s incredibly difficult to know that your 
system is truly resilient in the ways that you expect. In any organization, you should 
start small, by introducing a limited set of possible failures, or only running scheduled, 
rather than random, tests. Although you can also perform chaos tests in a staging envi-
ronment, you’ll need to carefully consider whether that environment is truly represen-
tative of or equivalent to your production configuration.

TIP    Chaos Toolkit (http://chaostoolkit.org/) is a great tool to start with if 
you’d like to practice chaos engineering techniques.

Ultimately, by regularly and systematically validating your system against chaotic events 
and resolving the issues you encounter, you and your team will be able to achieve a sig-
nificant level of confidence in your application’s resilience to failure.
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Figure 6.19    Potential variables to introduce in a chaos test to reflect real-world failure events
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6.5	 Safety by default
Critical paths in your microservice application will only be as resilient and available as 
their weakest link. Given the impact that individual services can have overall availabil-
ity, it’s imperative to avoid emergencies where introducing new services or changes in 
a service dependency chain significantly degrade that measure. Likewise, you don’t 
want to find out that crucial functionality can’t tolerate faults when that fault happens.

When applications are technically heterogeneous, or distinct teams deliver underly-
ing services, it can be exceptionally difficult to maintain consistent approaches to reli-
able interaction. We touched on this back in chapter 2 when we discussed isolation and 
technical divergence. Teams are under different delivery pressures and different ser-
vices have different needs — at worst, developers might forget to follow good resiliency 
practices.

Any change in service topology can have a negative impact. Figure 6.20 illustrates 
two examples: adding a new collaborator downstream from market-data might decrease 
market-data’s availability, whereas adding a new consumer might reduce the overall 
capacity of the market-data service, reducing service for existing consumers.

Frameworks and proxies are two different technical approaches to applying com-
munication standards across multiple services that make it easy for engineers to fall 
into doing the right thing by ensuring services communicate resiliently and safely by 
default.

6.5.1	 Frameworks

A common approach for ensuring services always communicate appropriately is to 
mandate the use of specific libraries implementing common interaction patterns like 
circuit breakers, retries, and fallbacks. Standardizing these interactions across all ser-
vices using a library has the following advantages:

1	 Increases the overall reliability of your application by avoiding roll-your-own 
approaches to service interaction

2	 Simplifies the process of rolling out improvements or optimizations to communi-
cation across any number of services

3	 Clearly and consistently distinguishes network calls from local calls within code

4	 Can be extended to provide supporting functionality, such as collecting metrics 
on service interactions

This approach tends to be more effective when a company uses one language (or few 
languages) for writing code; for example, Hystrix, which we mentioned earlier, was 
intended to provide a standardized way — across all Java-based services in Netflix’s 
organization — of controlling interactions between distributed services.

NOTE    Standardizing communication is a crucial element of building a 
microservice chassis, which we’ll explore in the next chapter.
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Figure 6.20    Availability impact of new services in a dependency chain

6.5.2	 Service mesh

Alternatively, you could introduce a service mesh, such as Linkerd (https://linkerd.io) 
or Envoy (www.envoyproxy.io), between your services to control retries, fallbacks, and 
circuit breakers, rather than making this behavior part of each individual service. A 
service mesh acts as a proxy. Figure 6.21 illustrates how a service mesh handles commu-
nication between services.

Instead of services communicating directly with other services, service communica-
tion passes through the service mesh application, typically deployed as a separate pro-
cess on the same host as the service. You then can configure the proxy to manage that 
traffic appropriately — retrying requests, managing timeouts, or balancing load across 
different services. From the caller’s perspective, the mesh doesn’t exist — it makes 
HTTP or RPC calls to another service as normal.
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Figure 6.21    Communication between services using a service mesh
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Although this may make the treatment of service interaction less explicit to an engi-
neer working on a service, it can simplify defensive communication in applications 
that are heterogeneous. Otherwise, consistent communication can require significant 
time investment to achieve across different languages, because ecosystems and librar-
ies may have unequal capabilities or support for resiliency features.

Summary

¡	Failure is inevitable in complex distributed systems — you have to consider fault 
tolerance when you’re designing them.

¡	The availability of individual services affects the availability of the wider 
application.

¡	Choosing the right level of risk mitigation for an application requires careful 
consideration of the frequency and impact of failure versus the cost of mitigating 
against potentially rare events.

¡	Most failures occur in one of four areas: hardware, communication, dependen-
cies, or internally.

¡	Cascading failures result from positive feedback and are a common failure mode 
in a microservice application. They’re most commonly caused by server overload.

¡	You can use retries and deadlines to mitigate against faults in service interactions. 
You need to apply retries carefully to avoid exacerbating failure in other services.

¡	You can use fallbacks — such as caching, alternative services, and default 
results — to return successful responses, even when service dependencies fail.

¡	You should propagate deadlines between services to ensure they’re consistent 
across a system and to minimize wasted work.

¡	Circuit breakers between services protect against cascading failures by failing 
quickly when a high threshold of errors is encountered.

¡	Services can use rate limits to protect themselves from spikes in load beyond their 
capacity to service.

¡	Individual services should expose health checks for load balancers and monitor-
ing to be able to use.

¡	You can effectively validate resiliency by practicing both load and chaos testing.
¡	You can apply standards — whether through proxies or frameworks — to help 

engineers “fall into the pit of success” and build services that tolerate faults by 
default.
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7 Building a reusable  
microservice framework

This chapter covers
¡	Building a microservice chassis

¡	Advantages of enforcing uniform practices 
across teams

¡	Abstracting common concerns in a reusable 
framework

Once an organization fully embraces microservices and teams grow in number, it’s 
quite likely that each of those teams will start specializing in a given set of program-
ming languages and tools. Sometimes, even when using the same programming lan-
guage, different teams will choose a different combination of tools to achieve the 
same purpose. Although nothing is wrong with this, it may lead to an increased 
challenge for engineers moving between different teams. The ritual to set up new 
services, as well as the code structure, may be quite different. Even if teams eventu-
ally end up solving the same challenges in different ways, we believe this potential 
duplication is better than having to add a synchronization layer.
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Having strict rules on the tools and languages that teams can use and enforcing a 
canonical way of setting up new services across all teams may harm speed and inno-
vation and will eventually lead to the use of the same tools for every problem. Fortu-
nately, you can enforce some common practices while keeping things rather free for 
teams to choose the programming language for specific services. You can encapsu-
late a set of tools for each adopted language while making sure that engineers have 
access to resources that’ll make it easy to abide by the practices across all teams. If 
team A decides to go with Elixir to create a service for managing notifications and 
team B decides to use Python for an image analysis service, they should both have the 
tools that allow those two services to emit metrics to the common metrics collection 
infrastructure.

You should centralize logs in the same place and with the same format, and things 
like circuit breakers, feature flags, or the ability to share the same event bus should be 
available. That way, teams can make choices but also have the tools to become aligned 
with the infrastructure available to run their services. These tools form a chassis, a foun-
dation, that you can build new services on without much up-front investigation and 
ceremony. Let's consider how to build a chassis for your services—one that abstracts 
common concerns and architectural choices while at the same time enables teams to 
quickly bootstrap new services.

7.1	 A microservice chassis
Imagine an organization has eight different engineering teams and four engineers on 
each team. Now imagine one engineer on each team is responsible for bootstrapping a 
new service in Python, Java, or C#. Those languages, like most mainstream languages, 
have a lot of options in the form of available libraries. From http clients to logging 
libraries, the choice is plentiful. What would be the odds of two teams selecting the 
same language ending up with the same combination of libraries? I’d say pretty nar-
row! This issue isn’t exclusive to microservice applications; for a monolithic applica-
tion I worked on, different programmers were using three distinct http client libraries!

In figures 7.1 to 7.3, you can see the choices a team may face while choosing compo-
nents to use in a new project.

As you can see in figures 7.1–7.3, the choice isn’t easy! No matter which language 
you choose, options are plentiful, so the time you take to select components can 
increase, along with the risk of picking up a less than ideal library. An organization 
most likely will settle with two or three languages as the widely adopted ones, depend-
ing on the problems they need to solve. As a result, teams using the same language will 
coexist. Once one team gains some experience with a set of libraries, why wouldn’t you 
use that experience to the benefit of other teams? You can provide a set of libraries and 
tools already used in production that people bootstrapping new projects could choose 
from without the burden of having to dig deeply into each library to weigh the pros 
and cons.
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Figure 7.1    Search results for object-relational mapping (ORM) libraries for the .NET ecosystem

To make the job easier for your teams to create new services, it’s worth your while to 
provide basic structure and a set of vetted tools for each of the languages your orga-
nization uses to build and operate services. You also should make sure that structure 
abides with your standards regarding observability and the abstraction of infrastruc-
ture-related code and it reflects your architectural choices regarding communication 
between services. An example of this, if the organization favors asynchronous commu-
nication between services, would be providing the needed libraries for using an event 
bus infrastructure that’s already in place.

Not only would you be able to soft-enforce some practices, you also could make it eas-
ier to spawn new services quickly and allow fast prototyping. After all, it wouldn't make 
sense to take longer to bootstrap a service than to write the business logic that powers it.
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Figure 7.2    Search for Advanced Message Queuing Protocol (AMQP) libraries for the Java ecosystem

Figure 7.3. Search for circuit breaker libraries for Python
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The chassis structure allows teams to select a tech stack (language + libraries) and 
quickly set up a service. You might ask yourself: how hard is it to bootstrap a service 
without this so-called chassis? It can be easy, if you don’t have concerns like

¡	Enabling deployments in the container scheduler from day one (CI/CD)
¡	Setting up log aggregation
¡	Collecting metrics
¡	Having a mechanism for synchronous and asynchronous communication
¡	Error reporting

At SimpleBank, no matter what programming language or tech stack a team chooses, 
services should be providing all the functionality described in the list above. This type 
of setup isn’t trivial to achieve, and, depending on the stack you chose, it can take more 
than a day to set up. Also, the combination of libraries two teams would choose for the 
same purpose could be quite different. You mitigate any issues related to that differ-
ence by providing a microservice chassis, so each team can focus on delivering features 
that SimpleBank customers will be using.

7.2	 What’s the purpose of a microservice chassis?
The purpose of a microservice chassis is to allow you to make services easier to create 
while ensuring you have a set of standards that all services abide by, no matter which 
team owns a service. Let’s look into some of the advantages of having a microservices 
chassis in place:

¡	Making it easier to onboard team members
¡	Getting a good understanding of the code structure and concerns regarding the 

tech stack that an engineering team uses
¡	Limiting the scope of experimentation for production systems as the team builds 

common knowledge, even if not always in the same tech stack
¡	Helping to adhere to best practices

Having a predictable code structure and commonly used libraries will make it easier 
for team members to quickly understand a service’s implementation. They’ll only 
need to bother with the business logic implementation, because any other code will be 
pretty much common throughout all services. For example, common code will include 
code to deal with or configure

¡	Logging
¡	Configuration fetching
¡	Metrics collection
¡	Data store setup
¡	Health checks
¡	Service registry and discovery
¡	The chosen transport-related boilerplate (AMQP, HTTP)
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If common code has already taken care of those concerns when someone is creating a 
new service, the need to write boilerplate is reduced or eliminated, and developers will 
less likely have to reinvent the wheel. Good practices within the organization will also 
be easier to enforce.

From a knowledge sharing perspective, having a microservice chassis will also enable 
easy code reviews by members of different teams. If they’re using the same chassis, 
they’ll be familiar with the code structure and how things are done. This will increase 
visibility and allow you to gather opinions from engineers from other teams. It’s always 
desirable to have a different view on the problems a specific team is working on solving.

7.2.1	 Reduced risk

By providing a microservice chassis, you reduce the risk you face, because you’ll have 
less of a chance of picking a combination of language and libraries that won’t work 
for a particular need. Imagine a service you’re creating needs to fully communicate 
asynchronously with other services using an already existing event bus. If your chassis 
already covers that use case, you’re not likely to end up with a setup that you need to 
tweak and eventually won’t work well. You can cover that asynchronous communica-
tion use case as well as the synchronous one so you don’t need to expend further effort 
to find a working solution.

The chassis can be constantly evolving to incorporate the findings of different teams, 
allowing you to be always up to date with the organization’s practices and experience 
dealing with multiple use cases. All in all, there will be less chance for a team to face a 
challenge that other teams haven’t solved before. And in case no one has solved that 
type of challenge yet, only one team needs to solve it; then you can incorporate the solu-
tion into the chassis, reducing the risks other teams have to take in the future.

Having a microservice chassis that already selects a set of libraries for use will limit the 
management of dependencies an engineering team will have to deal with. Referring to 
figures 7.1 to 7.3, if you have available one ORM, one AMQP, and one circuit breaker 
library, those will eventually be well known across multiple teams, and if someone finds 
a vulnerability in any of those libraries, you’ll be able to update them with ease.

7.2.2	 Faster bootstrapping

It makes little sense to spend one or two days bootstrapping a service when it could 
take far less time to implement the business logic. Also, wiring the needed components 
that form a service is a repetitive task that can be error prone. Why make people have 
to go and set up components all over again every time they create a new service? Using, 
maintaining, and updating a microservice chassis will lead to a setup that’s sound, 
tested, and reusable. This will allow for faster service bootstrapping. Then you could 
use the extra time you gained by not having to write boilerplate code to develop, test, 
and deploy your features.
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Having a sound foundation that teams use widely and know well allows you to exper-
iment a lot more without worrying too much about the initial effort. If you can quickly 
turn a concept into a deployable service, you can easily validate it and decide to proceed 
with it or abandon it altogether. The key notion here is to be fast and to have it as easy 
as possible to create new functionality. Having a chassis in place also can significantly 
lower the entry barrier for new team members, because it’ll be quicker for them to 
jump into any project once they learn the structure that’s common to all services in 
each language.

7.3	 Designing a chassis
At SimpleBank, the team responsible for implementing the purchasing and selling of 
stocks decided to create a chassis for the wider engineering team to use—they had 
faced a couple of challenges and want to share their experiences. We described a fea-
ture for selling stocks in chapter 2, figure 2.7. Let’s look at a flow diagram to better 
understand it (figure 7.4).

To sell stocks, a user issues a request via the web or a mobile application. An API gate-
way will pick up the request and will act as the interface between the user-facing applica-
tion and all internal services that’ll collaborate to provide the functionality.
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Record order details
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Figure 7.4    The flow for selling stocks involves both synchronous and asynchronous communication 
between the intervening services.
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Given that it can take a while to place the order to the stock exchange, most operations 
will be asynchronous, and you’ll return a message to the client indicating their request 
will be processed as soon as possible. Let’s look into the interactions between services 
and the type of communication:

1	 The gateway passes the user request to the orders service.

2	 The orders service sends an OrderCreated event to the event queue.

3	 The orders service requests the reservation of a stock position to the account 
transaction service.

4	 The orders service replies to the initial call from the gateway, then the gateway  
informs the user that the order is being processed.

5	 The market service consumes the OrderCreated event and places the order to 
the stock exchange.

6	 The market service emits an OrderPlaced event to the event queue.

7	 Both the fees service and the orders service consume the OrderPlaced event; 
they then charge the fees for the operation and update the status of the order to 
“placed,” respectively.

For this feature, you have four internal services collaborating, interactions with an 
external entity (stock exchange), and communication that’s a mix of synchronous and 
asynchronous. The use of the event queue allows other systems to react to changes; 
for instance, a service responsible for emailing or real-time notifications to clients can 
easily consume the OrderPlaced event, allowing it to send notifications of the placed 
order.

Given that the team owning this feature was comfortable with using Python, they cre-
ated the initial prototype using the nameko framework (https://github.com/nameko/
nameko). This framework offers, out of the box, a few things:

¡	AMQP RPC and events (pub-sub)
¡	HTTP GET, POST, and websockets
¡	CLI for easy and rapid development
¡	Utilities for unit and integration testing

But a few things were missing, like circuit breakers, error reporting, feature flags, and 
emitting metrics, so the team decided to create a code repository with libraries to take 
care of those concerns. They also created a Dockerfile and Docker compose file to 
allow building and running the feature with minimum effort and to offer a base for 
other teams to use when developing in Python. The code for the initial Python chassis 
(http://mng.bz/s4B2) and for the described feature (http://mng.bz/D19l) is avail-
able at the book code repository.

We’ll now look with more detail at how the built chassis deals with service discovery, 
observability, transport, and balancing and limiting.

 

https://github.com/nameko/nameko
https://github.com/nameko/nameko
http://mng.bz/s4B2
http://mng.bz/D19l
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7.3.1	 Service discovery

Service discovery for the Python chassis that emerged from implementing the feature 
we previously described is quite simple. The communication between the services 
involved occurs either synchronously via RPC calls or asynchronously by publishing 
events. SimpleBank uses RabbitMQ (www.rabbitmq.com) as the message broker, so this 
indirectly provides a way of registering services for both the asynchronous and synchro-
nous use case. RabbitMQ allows the use of synchronous request/response communica-
tion implementing RPC over queues, and it’ll also load balance the consumers using 
a round-robin algorithm (https://en.wikipedia.org/wiki/Round-robin_scheduling) by 
default. This allows you to use the messaging infrastructure to register services as well 
as to automatically distribute load between multiple instances of the same service. Fig-
ure 7.5 shows the RPC exchange your different services connect to.

Figure 7.5    Services communicating via RPC register in an exchange. Multiple instances for a given 
service use the same routing key, and RabbitMQ will route the incoming requests between those 
instances.

 

www.rabbitmq.com
https://en.wikipedia.org/wiki/Round-robin_scheduling
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All running services register themselves in this exchange. This will allow for them to 
communicate seamlessly without the need for each one to know explicitly where any 
service is located. This is also the case for RPC communication over the AMQP proto-
col, which allows you to have the same request/response behavior you’d get by using 
HTTP.

Let’s take a look on how easy it is to have this feature available to you by using the 
capacities that the chassis provides, in this case by using the nameko framework, as 
shown in the following listing.

Listing 7.1    microservices-in-action/chapter-7/chassis/rpc_demo.py

from nameko.rpc import rpc, RpcProxy

class RpcResponderDemoService:
    name = "rpc_responder_demo_service" 

    @rpc 
    def hello(self, name):
        return "Hello, {}!".format(name)

class RpcCallerDemoService:
    name = "rpc_caller_demo_service”

    remote = RpcProxy("rpc_responder_demo_service") 

    @rpc
    def remote_hello(self, value="John Doe"):
        res = u"{}".format(value)
        return self.remote.hello(res)

In this example, we’ve defined two classes, a responder and a caller. In each class, we 
also defined a name variable that holds the identifier for the service. Use of the @rpc 
annotation will decorate the function. This decoration will allow you to transform what 
seems an ordinary function into something that’ll make use of the underlying AMQP 
infrastructure (that RabbitMQ offers) to invoke a method in a service running else-
where. Calling the remote_hello method from the RpcCallerDemoService class will 
result in invoking the hello function in the RpcResponderDemoService, because that 
service is registered as remote via a RpcProxy that the framework provides.

Once you run this example code, RabbitMQ will display something like figure 7.6.
In Figure  7.6, you can observe that once you boot the services that rpc_demo.py 
defines, each one registers in a queue scoped to the service name: rpc-rpc_caller_
demo_service and rpc-rpc_responder_demo_service. Two other queues—rpc.
reply-rpc_caller_demo_service* and rpc.reply-standalone_rpc_proxy*—also 
appear, and they’ll relay back the responses to the caller service. This is a way of imple-
menting blocking synchronous communication in RabbitMQ (http://mng.bz/4blSh).

Assigns the service name a variable—This 
is the name that a particular service 
registers to allow others to call it.

Allows nameko to set up the RabbitMQ queues 
necessary to perform a request/response type of 
call—The rpc call will behave synchronously.

Creates an RPC Proxy for service 
that’ll be invoked via RPC—You pass 
the name of the remote service.

Calls the remote service via the RpcProxy—This will execute  
the hello function on the RpcResponderDemoService class.

 

http://mng.bz/4blSh
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Figure 7.6    Caller and responder demo services registered in RabbitMQ queues

Your chassis makes it super easy to access this functionality so you can use the same 
infrastructure for both synchronous and asynchronous communication between ser-
vices. This setup brings you huge speed gains while prototyping solutions, because the 
team can spend its time developing new features instead of having to build all the 
functionality from scratch. If you opt for an orchestrated behavior, with blocking calls 
between services, a choreographed behavior where all communication is asynchro-
nous, or a mix between the two, you can use the same infrastructure and library.

The following listing shows an example on how to use full asynchronous communi-
cation between services by using the functionality of the chassis.

Listing 7.2    microservices-in-action/chapter-7/chassis/events_demo.py

from nameko.events import EventDispatcher, event_handler
from nameko.rpc import rpc
from nameko.timer import timer

class EventPublisherService:
    name = "publisher_service" 

    dispatch = EventDispatcher()

    @rpc
    def publish(self, event_type, payload):
        self.dispatch(event_type, payload)

class AnEventListenerService:

Registers the service name, which allows 
you to refer to it on other services

Allows this service to create events 
that’ll be routed to a queue in RabbitMQ
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    name = "an_event_listener_service" 

    @event_handler("publisher_service", "an_event") 
    def consume_an_event(self, payload):
        print("service {} received:".format(self.name), payload)

class AnotherEventListenerService:
    name = "another_event_listener_service"

    @event_handler("publisher_service", "another_event")
    def consume_another_event(self, payload):
        print("service {} received:".format(self.name), payload)

class ListenBothEventsService:
    name = "listen_both_events_service" 

    @event_handler("publisher_service", "an_event") 
    def consume_an_event(self, payload):
        print("service {} received:".format(self.name), payload)

    @event_handler("publisher_service", "another_event") 
    def consume_another_event(self, payload):
        print("service {} received:".format(self.name), payload)

As with the previous code example, each service a Python class implements declares a name 
variable that the framework will use to set up the underlying queues that allow communi-
cation. When running the services that each class in this file defines, RabbitMQ will create 
four queues, one for each service. As you can see in figure 7.7, the publisher service reg-
isters an RPC queue, without reply queue setup, contrary to the previous example that 
figure 7.6 illustrated. The other listener services register a queue per consumed event.

Figure 7.7    The queues that RabbitMQ creates when you run the services defined in events_demo.py

Registers the service name, which allows 
you to refer to it on other services

By using this annotation, ListenBothEventsService will execute 
the function when the publisher service issues an event. The 
first argument of the annotation is the name of the service 
whose events will be listened to, and the second argument of 
the annotation is the name of the event.
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The team chose nameko to be part of the microservice chassis because it makes it easy 
to abstract from the details of implementing and setting up these two types of commu-
nication over the existing message broker. In section 7.3.3, we’ll also look into another 
advantage that comes out of the box, because the message broker also takes care of 
load balancing.

7.3.2	 Observability

To operate and maintain services, you need to be aware of what’s going on in produc-
tion at all times. As a result, you’ll want the services to emit metrics to reflect the way 
they’re operating, report errors, and aggregate logs in a usable format. In part 4 of the 
book, we’ll focus on all these topics in more detail. But for now, let’s keep in mind that 
services should address these concerns from day one. Operating and maintaining ser-
vices is as important as writing them in the first place, and, in most cases, they’ll spend 
a lot more time running than being developed.

Your microservice chassis has the dependencies shown in the following listing.

Listing 7.3    microservices-in-action/chapter-7/chassis/setup.py

(…)

    keywords='microservices chassis development',

    packages=find_packages(exclude=['contrib', 'docs', 'tests']),

    install_requires=[
        'nameko>=2.6.0',
        'statsd>=3.2.1', 
        'nameko-sentry>=0.0.5', 
        'logstash_formatter>=0.5.16', 
        'circuitbreaker>=1.0.1',
        'gutter>=0.5.0',
        'request-id>=0.2.1',
    ],

(…)

From the seven declared dependencies, you use three of them for observability pur-
poses. These libraries will allow you to collect metrics, report errors, and gather some 
contextual information around them and to adapt your logging to the format you use 
in all services deployed at SimpleBank.

Library to emit metrics in StatsD format

Library to Integrate with Sentry error reporting

Library to format the logs in logstash format
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Metrics

Let’s start with metrics collection and the use of StatsD.1 Etsy originally developed 
StatsD as a way to aggregate application metrics. It quickly became so popular that 
it’s now the de facto protocol to collect application metrics with clients in multiple pro-
gramming languages. To be able to use StatsD, you need to instrument your code to 
capture all metrics you find relevant. Then a client library, in your case statsd for 
Python, will collect those metrics and send them to an agent that listens to UDP traffic 
from client libraries, aggregates the data, and periodically sends it to a monitoring 
system. Both commercial and open source solutions are available for the monitoring 
systems.

In the code repository, you’ll be able to find a simple agent that’ll be running in its 
own Docker container to simulate metrics collection. It’s a trivial ruby script that listens 
to port 8125 over UDP and outputs to the console, as follows.

Listing 7.4    microservices-in-action/chapter-7/feature/statsd-agent/statsd-agent.rb

#!/usr/bin/env ruby
#
# This script was originally found  in a post by Lee Hambley
# (http://lee.hambley.name)
#
require 'socket'
require 'term/ansicolor'

include Term::ANSIColor

$stdout.sync = true

c = Term::ANSIColor
s = UDPSocket.new
s.bind("0.0.0.0", 8125)
while blob = s.recvfrom(1024)
  metric, value = blob.first.split(':')
  puts "StatsD Metric: #{c.blue(metric)} #{c.green(value)}"
end

This simple script allows you to simulate metrics collection while developing your 
services. Figure 7.8 shows metrics collection for services running when placing a sell 
order, the feature we use as an example for this chapter.

Using an annotation in the code for each service, you enable them to send metrics 
for some operations. Even though this is a simple example, because they’re only emit-
ting timing metrics, it serves the purpose of showing how you can instrument your code 
to collect data you find relevant. Let’s look into one of the services to see how this is 
done. Consider the listing 7.5.

1	 See Ian Malpass, “Measure Anything, Measure Everything,” Code as Craft, Etsy, http://mng 
.bz/9Tqo.

 

http://mng.bz/9Tqo
http://mng.bz/9Tqo
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Figure 7.8    StatsD agent collecting metrics that services collaborating in a place sell order operation 
have emitted

Listing 7.5    microservices-in-action/chapter-7/feature/fees/app.py

import json
import datetime
from nameko.events import EventDispatcher, event_handler
from statsd import StatsClient 

class FeesService:
    name = "fees_service"
    statsd = StatsClient('statsd-agent', 8125,
                         prefix='simplebank-demo.fees') 

    @event_handler("market_service", "order_placed")
    @statsd.timer('charge_fee') 
    def charge_fee(self, payload):
        print("[{}] {} received order_placed event ... charging fee".format(
            payload, self.name))

Imports the StatsD client so 
you can use it in the module

Configures the StatsD client 
by passing the host, the port, 

and the prefix you’ll use for 
all the emitted merics

Using this annotation enables you to collect the time it takes 
for the 'charge_fee' function to run. The StatsD library uses the 
value passed as an argument for the annotation as the metric 
name. In this case, the charge_fee function will emit the metric 
named 'simplebank-demo.fees.charge_fee'; the prefix you 
configured before will be prepended to the metric name passed 
to the annotation.
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To collect metrics using the StatsD client library, you need to initialize the client by 
passing the hostname, in this case statsd-agent, the port, and an optional prefix for 
metrics collected in this service scope. If you annotate the charge_fee method with  
@statsd.timer('charge_fee'), the library will wrap the execution of that method 
in a timer and will collect the value from the timer and send it to the agent. You can 
collect these metrics and feed them to monitoring systems that’ll allow you to observe 
your system behavior and set up alerts or even autoscale your services.

For example, imagine the fees service becomes too busy, and the execution time 
that StatsD reports increases over a threshold you set. You can automatically be alerted 
about that and immediately investigate to understand if the service is throwing errors or 
if you need to increase its capacity by adding more instances. Figure 7.9 shows an exam-
ple of a dashboard displaying metrics that StatsD collected.

Error reporting

Metrics allow you to observe how the system is behaving on an ongoing basis, but, 
unfortunately, they aren’t the only thing you need to care about. Sometimes errors 
happen, and you need to be alerted about them and, if possible, gather some infor-
mation about the context in which the error occurred. For example, you might get a 
stack trace so you can diagnose and try to replicate and solve the error. Several services 
provide alerting and aggregation of errors. It’s easy to integrate error reporting in your 
services, as shown in the following listing.

Listing 7.6    microservices-in-action/chapter-7/chassis/http_demo.py

import json
from nameko.web.handlers import http
from werkzeug.wrappers import Response
from nameko_sentry import SentryReporter 

class HttpDemoService:
    name = "http_demo_service"
    sentry = SentryReporter() 

    @http("GET", "/broken")
    def broken(self, request):
        raise ConnectionRefusedError() 

    @http('GET', '/books/<string:uuid>')
    def demo_get(self, request, uuid):
        data = {'id': uuid, 'title': 'The unbearable lightness of being',
                'author': 'Milan Kundera'}
        return Response(json.dumps({'book': data}),
                        mimetype='application/json')

    @http('POST', '/books')
    def demo_post(self, request):
        return Response(json.dumps({'book': request.data.decode()}),
                        mimetype='application/json')

Imports the error reporting module

Initializes the error reporting service

Raises an exception so you can 
test the error reporting service
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Figure 7.9    Example of a dashboard displaying metrics that StatsD collected from an application

Setting up error reporting in the chassis you assembled is simple. You initialize the 
error reporter, and it’ll take care of capturing any exceptions and sending them over 
to the error reporting service backend. It’s common for the error reporter to send 
along some context with the errors, like a stack trace. Figure 7.10 shows the dashboard 
with the error you get if you access the /broken endpoint in the demo service.

Figure 7.10    Dashboard for an error reporting service (Sentry) after accessing the /broken endpoint
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Logging

Your services output information either to log files or to the standard output. These 
files can record a given interaction, such as the result and timing of an http call or any 
other information developers find useful to record. Having multiple services running 
this recording means you potentially have multiple services logging information across 
the organization. In a microservice architecture, where interactions happen between 
multiple services, you need to make sure you can trace those interactions and have 
access to them in a consistent way.

Logging is a concern for all teams and plays an important role in any organization. 
This is the case either for compliance reasons, when you may need to keep track of 
specific operations, or for allowing you to understand the flow of execution between 
different systems. The importance of logging is a sound reason for making sure that 
teams, no matter what language they’re using to develop their services, keep logs in a 
consistent way and, preferably, aggregate them in a common place.

At SimpleBank, the log aggregation system allows complex searches in logs, so you 
agree to send logs to the same place and in the same format. You use logstash format for 
logging, so the Python chassis includes a library to emit logs in logstash format.

Logstash is an open source data processing pipeline that allows ingestion of data 
from multiple sources. The logstash format became quite popular and is widely used 
because it’s a json message with some default fields, such as the ones you can find in the 
following listing.

Listing 7.7    Logstash json formatted message

{
  "message"    => "hello world",
  "@version"   => "1",
  "@timestamp" => "2017-08-01T23:03:14.111Z",
  "type"       => "stdin",
  "host"       => "hello.local"
}

Figure 7.11 shows the log output that the gateway service generates when receiving a 
place sell order request from a client. In such cases, it generates two messages. They 
both contain a wealth of information, like the filename, module, and line executing 
code, as well as the time it took for the operation to complete. The only information 
you passed explicitly to the logger was what appears in the message fields. The library 
you’re using inserts all the other information.

By sending this information to a log aggregation tool, you can correlate data in many 
interesting ways. In this case, here are some example queries:

¡	Group by module and function name
¡	Select all entries for operations that took longer than x miliseconds
¡	Group by host
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Figure 7.11    Logstash formatted log messages that the gateway service generated

The most interesting thing is that the host, type, version, and timestamp fields will 
appear in all the messages that the services using the chassis generate, so you can cor-
relate messages from different services.

In your Python chassis, the following listing shows the code responsible for generat-
ing the log entries you can see in figure 7.11.

Listing 7.8    Logstash logger configuration in the Python chassis

import logging
from logstash_formatter import LogstashFormatterV1

logger = logging.getLogger(__name__)
handler = logging.StreamHandler()
formatter = LogstashFormatterV1()
handler.setFormatter(formatter)
logger.addHandler(handler)

(…)

# to log a message …
logger.info(“this is a sample message”)

This code is responsible for initializing the logging and adding the handler that’ll for-
mat the output in the logstash json format.

By using the microservice chassis, you create a standard way of accessing the tools to 
achieve the goal of running observable services. By choosing certain libraries, you’re 
able to enforce having all teams use the same underlying infrastructure without forcing 
any team to choose a particular language.

7.3.3	 Balancing and limiting

We mentioned in section 7.3.1 on service discovery that the message broker provided 
not only a way for services to discover each other implicitly but also a load balancing 
capability.

While benchmarking the place sell order feature, say you realize you have a bottleneck 
in your processing. The market service has to interact with an external actor, the stock 
exchange, and will only do that after a successful response creates the OrderPlaced event 
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that both the fees service and the orders service will consume. Requests are accumulat-
ing because the HTTP call to the external service is slower than the rest of the processing 
in the system. For this reason, you decide to increase the number of instances running 
the market service. You deploy three instances to compensate for the extra time that the 
order placement onto the stock exchange takes. This change is seamless, because once 
you add the new instances, they’re registered with the rpc-market_service queue in 
RabbitMQ. Figure 7.12 shows the three instances of the service connected.

As you can see, three instances are connected to the queue, each of them set to prefetch 
10 messages from the queue as soon as they arrive. Now that you have multiple instances 
consuming from the same queue, you need to make sure only one of those instances pro-
cesses each request. Once again, RabbitMQ makes your life easier because it deals with 
load balancing. By default, it’ll use a round-robin algorithm to schedule the delivery of 
messages between the service instances. This means it’ll deliver the first 10 messages to 
instance 1, then the next 10 to instance 2, and finally 10 to instance 3. It’ll keep repeating 
this over and over. This is a naïve approach to scheduling work, because one instance may 
take longer than another one, but it generally works quite well and is easy to understand.

Figure 7.12    Multiple instances of the market service registered in the RPC queue

 



	 179Designing a chassis

The only thing you need to be careful about is checking if the connected instances 
are healthy so they don’t start accumulating messages. You can do so by making use 
of metrics, using StatsD, to monitor the number of messages that each instance is 
processing and if they’re accumulating. In your code, you also can implement health 
checks so that any instance not responding to those health check requests can be 
flagged and restarted. RabbitMQ also will work as a limiting buffer, storing messages 
until the service instances can process them. According to the configuration shown in 
figure 7.12, each instance will receive ten messages to process at a time and will only 
be assigned new messages after it has finished processing previous ones.

It’s worth mentioning that in the particular case of the market service as it interacts 
with a third-party system, you also implement a circuit breaking mechanism. Let’s look 
at the service code where the call to the stock exchange is implemented, as follows.

Listing 7.9    microservices-in-action/chapter-7/feature/market/app.py

import json
import requests
(…)
from statsd import StatsClient
from circuitbreaker import circuit 

class MarketService:
    name = "market_service"
    statsd = StatsClient('statsd-agent', 8125,
                         prefix='simplebank-demo.market')

    (…)

    @statsd.timer('place_order_stock_exchange')
    @circuit(failure_threshold=5, expected_exception=
➥ConnectionError) 
    def __place_order_exchange(self, request):
        print("[{}] {} placing order to stock exchange".format(
            request, self.name))
        response = requests.get('https://jsonplaceholder.typicode.com/

posts/1')
        return json.dumps({'code': response.status_code, 'body': response.

text})

You make use of the circuit breaker library to configure the number of consecutive fail-
ures to connect that you’ll tolerate. In the example shown, if you have five consecutive 
failing calls with the ConnectionError exception, you’ll open the circuit, and no call 
will be made for 30 seconds. After those 30 seconds, you’ll enter the recovery stage, 
allowing one test call. If the call is successful, it’ll close the circuit again, resuming nor-
mal operation and allowing calls to the external service; otherwise, it’ll prevent calls 
for another 30 seconds.

Imports the circuit breaker 
functionality to use in the module

Allows you to configure how many exceptions you tolerate before 
opening the circuit and the type of exceptions that’ll count as a failure
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NOTE    Because 30 seconds is the default value the circuit breaker library sets 
for the recovery_timeout parameter, you don’t see it in listing 7.9. If you want 
to adjust this value, you can do so by passing it explicitly.

You could use this technique not only for external calls but also for calls between inter-
nal components, because it will allow you to degrade the service. In the case of the 
market service, using this technique would mean messages that services retrieved from 
the queue wouldn’t be acknowledged and would accumulate in the broker. Once the 
external service connectivity was resumed, you’d be able to start processing messages 
from the queue. You could complete the call to the stock exchange and create the 
OrderPlaced event that allows both the fees service and the orders service to complete 
the execution of a place sell order request.

7.4	 Exploring the feature implemented using the chassis
In the previous section, you saw code examples for the implementation of the place 
sell order feature. Let’s briefly look into the resulting feature prototype that you’d 
implement using the chassis. Based on the chassis code that you can find in the code 
repository under chapter7/chassis, say you’ve created five services:

¡	Gateway
¡	Orders service
¡	Market service
¡	Account transactions service
¡	Fees service

Figure 7.13 shows the project structure and a Docker Compose file that allows you to locally 
start the five components and the StatsD agent we mentioned previously. The Docker 
Compose file will allow booting the services as well as the needed infrastructure compo-
nents: RabbitMQ, Redis, and the local StatsD agent, which will simulate metrics collection.

We won’t go deep on Docker or Docker Compose right now, because we’ll cover it in 
the upcoming chapters. But if you do have Docker and Docker Compose available, you 
can boot the services by entering the feature directory and running docker-compose 
up –build. This will build a Docker container for each service and boot everything up.

Figure 7.14 shows all services running and processing a POST request to the shares/sell 
gateway endpoint.

Even though the feature makes use of both synchronous and asynchronous commu-
nication between the different components, the chassis you have in place allows you to 
quickly prototype it and run initial benchmarks using a tool that allows you to simulate 
concurrent requests, with results such as the following: (Please note that these bench-
marks ran locally on a development machine and are merely indicative.)

$ siege -c20 -t300S -H 'Content-Type: application/json' 
'http://192.168.64.3:5001/shares/sell POST'

    (benchmark running for 5 minutes …)

Lifting the server siege...

Typesetter: According to 
the author, you can re-
place the arrow icon on 
the first line below with 
something that indicates 
a console/terminal in-
put, if you normally use 
something else.  
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Transactions:		        	 12663 hits
Availability:		       	 100.00 %
Elapsed time:		       	 299.78 secs
Data transferred:	        	0.77 MB
Response time:		       	 0.21 secs
Transaction rate:	       		  42.24 trans/sec
Throughput:		         	0.00 MB/sec
Concurrency:		         	9.04
Successful transactions:       	 12663
Failed transactions:	      	 0
Longest transaction:	       	 0.52
Shortest transaction:	       	 0.08

These numbers look good, but it’s worth mentioning that once the benchmark 
stopped, the market service still needed to consume 3000 messages—almost a quar-
ter of the total requests that the gateway processed. This benchmark allows you to 
identify the bottleneck happening in the market service that we mentioned in section 
7.3.3. Referring to figure 7.4, you can see that the gateway receives a response from the 
orders service, but asynchronous processing still happens after that.

Figure 7.13    Project structure for the place sell order feature and the Docker Compose file that allows 
booting the services and the needed infrastructure components
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Figure 7.14    Services used in the place sell order running locally

The engineering team at SimpleBank certainly will continue to improve the Python 
chassis so it reflects continuous team learnings. For now though, it’s already usable to 
implement nontrivial functionality.

7.5	 Wasn’t heterogeneity one of the promises of 
microservices?
In the previous sections, we covered building and using a chassis for Python applica-
tions at SimpleBank. You can apply the principles to any language used within your 
organization though. At SimpleBank, teams also use Java, Ruby, and Elixir for building 
services. Would you go and build a chassis for each of these languages and stacks? If 
the language is widely adopted within the organization and different teams bootstrap 
more than a couple of services, I’d say sure! But it’s not imperative that you create a 
chassis. The only thing to keep in mind is that with or without a chassis, you need to 
maintain principles like observability.

One of the advantages of a microservice architecture is enabling heterogeneity of lan-
guages, paradigms, and tooling. In the end, it’ll enable teams to choose the right tool for 
the job. Although in theory the choices are limitless, the fact is, teams will specialize in a 
couple of technology stacks for their day-to-day development. They’ll naturally develop 
a deeper knowledge around one or two different languages and their supporting eco-
systems. A supporting ecosystem is also important. Independent teams, such as the ones 
you need to have in place to successfully run a microservice architecture, will also focus 
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on operations and will know about the platforms running their apps. Some examples are 
the Java virtual machine (JVM) or the Erlang virtual machine (BEAM). Knowing about 
the infrastructure will help with delivering better and more efficient apps.

Netflix is a good example because they have a deep knowledge of the JVM. This 
enables them to be a proficient contributor of open source tools, allowing the commu-
nity to benefit from the same tools they use to run their service. The fact that they have 
so many tools written targeting the JVM will make that ecosystem the first choice for 
their engineering teams. In some sense, it feels like: “You’re free to choose whatever 
you want, as long as it abides with our given set of rules and implements some inter-
faces..., or you can use this chassis that takes care of all of that!”

Having existing chassis for some of the languages and stacks an organization has 
adopted may help direct teams’ choices toward those languages and stacks. Not only 
will services be easier and faster to bootstrap, they’ll also become more maintainable 
from a risk standpoint. A chassis is a great way to indirectly enforce key concerns and 
practices of an engineering team.

TIP    DRY (don’t repeat yourself) isn’t mandatory. A chassis shouldn’t be a sort 
of shared library or dependency to be included in services and updated in a 
centralized way. You should use the chassis to bootstrap new services, but not 
necessarily to update all running services with a given feature. It’s preferable 
to repeat yourself a little than to bring in shared libraries that increase cou-
pling. Do repeat yourself if that results in keeping systems decoupled and inde-
pendently maintained and managed.

Summary

¡	A microservice chassis allows for quick bootstrapping of new services, enabling 
greater experimentation and reducing risk.

¡	The use of a chassis allows you to abstract the implementation of certain infra-
structure-related code.

¡	Service discovery, observability, and different communication protocols are con-
cerns of a microservice chassis, and it should provide them.

¡	You can quickly prototype a complex feature like the place sell order example, if 
the proper tooling exists.

¡	Although the microservice architecture is often associated with the possibility 
of building systems in any language, those systems, when in production, need to 
offer some guarantees and have mechanisms to allow their operation and main-
tenance to be manageable.

¡	A microservice chassis is a way to provide those guarantees while allowing fast 
bootstrap and quick development for you to test ideas and, if proven, deploy 
them to production.

 



 



Part 3

Deployment

An application is only useful if you can deploy it to your users. This part 
of the book will introduce you to deployment practices for microservices. We’ll 
explore deployment techniques, such as continuous delivery and packaging, 
and deployment platforms, including Google Cloud Platform and Kubernetes. 
Throughout the next few chapters, you’ll learn how to build a deployment pipe-
line to take microservice code changes safely and rapidly to production.
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This chapter covers
¡	Why it’s crucial to get deployment right in a 

microservice application

¡	The fundamental components of a microservice 
production environment

¡	Deploying a service to a public cloud

¡	Packaging a service as an immutable artifact

Mature deployment practices are crucial to building reliable and stable microservices. 
Unlike a monolithic application, where you can optimize deployment for a single use 
case, microservice deployment practices need to scale to multiple services, written in 
different languages, each with their own dependencies. You need to be able to trust 
your deployment process to push out new features — and new services — without 
harming overall availability or introducing critical defects.

As a microservice application evolves at the level of deployable units, the cost of 
deploying new services must be negligible to enable engineers to rapidly innovate and 
deliver value to users. The added development speed you gain from microservices will 
be wasted if you can’t get them to production rapidly and reliably. Automated deploy-
ments are essential to developing microservices at scale.

8Deploying microservices
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In this chapter, we’ll explore the components of a microservice production environ-
ment. Following that, we’ll look at some deployment building blocks — such as artifacts 
and rolling updates — and how they apply to microservices. Throughout the chapter, 
we’ll work with a simple service — market-data — to try out different approaches to 
packaging and deployment using a well-known cloud service, Google Cloud Platform. 
You can find a starting point for this service in the book’s repository on Github (https://
github.com/morganjbruce/microservices-in-action).

8.1	 Why is deployment important?
Deployment is the riskiest moment in the lifecycle of a software system. The closest 
real-world equivalent would be changing a tire — except the car is still moving at 100 
miles an hour. No company is immune to this risk: for example, Google’s site reliabil-
ity team identified that roughly 70% of outages are due to changes in a live system 
(https://landing.google.com/sre/book/chapters/introduction.html).

Microservices drastically increase the number of moving parts in a system, which 
increases the complexity of deployment. You’ll face four challenges when deploying 
microservices (figure 8.1):

¡	Maintaining stability when facing a high volume of releases and component 
changes

¡	Avoiding tight coupling between components leading to build- or release-time 
dependencies

¡	Releasing breaking changes to the API of a service, which may negatively impact 
that service’s clients

¡	Retiring services

When you do them well, deployments are based on simplicity and predictability. A con-
sistent build pipeline produces predictable artifacts, which you can apply atomically to 
a production environment.

XService code

Some changes
might cause errors.

Services are
interdependent.

Services may
become obsolete.Service code

Production

Figure 8.1    A high-level view of production deployment

 

https://github.com/morganjbruce/microservices-in-action
https://github.com/morganjbruce/microservices-in-action
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8.1.1	 Stability and availability

In an ideal world, deployment is “boring:” not unexciting, but incident-free. We’ve 
seen too many teams — both monolithic and microservice — that experience deploy-
ing software as incredibly stressful. But if working with microservices means you’re 
releasing more components more frequently, doesn’t that mean you’re introducing 
more risk and instability into a system?

Manual change management is costly

Traditional change management methodologies attempt to reduce deployment risk by 
introducing governance and ceremony. Changes must go through numerous quality 
gates and formal approvals, usually human-driven. Although this is intended to ensure 
that only working code reaches production, this approach is costly to apply and doesn’t 
scale well to multiple services.

Small releases reduce risk and increase predictability

The larger a release, the higher the risk of introducing defects. Naturally, microservice 
releases are smaller because the codebases are smaller. And that’s the trick — by releas-
ing smaller changes more often, you reduce the total impact of any single change. 
Rather than stopping everything for a deployment, you can design your services and 
deployment approaches with the expectation that they’ll face continuous change. 
Reducing the surface area of possible change leads to releases that are quicker, easier 
to monitor, and less disruptive to the smooth functioning of an application.

Automation drives deployment pace and consistency

Even if your releases are smaller, you still need to make sure your change sets are as 
free from defects as possible. You can achieve this by automating the process of com-
mit validation — unit tests, integration tests, linting, and so on — and the process of 
rollout — applying those changes in the production environment. This helps you to 
build systematic confidence in the code changes you’re making and apply consistent 
practices across multiple services.

TIP    Building for anti-fragility, or resilience during failure, is also an important 
element of overall application stability — don’t forget to read chapter 6!

8.2	 A microservice production environment
Deployment is a combination of process and architecture:

¡	The process of taking code, making it work, and keeping it working
¡	The architecture of the environment in which the software is operated

Production environments for running microservices vary widely, as do monolith pro-
duction environments. What’s appropriate for your application may depend on your 
organization’s existing infrastructure, technical capabilities, and attitude toward risk, 
as well as regulatory requirements.
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8.2.1	 Features of a microservice production environment

The production environment for a microservice application needs to provide several 
capabilities to support the smooth operation of multiple services. Figure 8.2 gives a 
high-level view of the capabilities of the production environment.

A microservice production environment has six fundamental capabilities:

1	 A deployment target, or runtime platform, where services are run, such as virtual 
machines (Ideally, engineers can use an API to configure, deploy, and update 
service configuration. You also could call this API the control pane, as shown in 
the figure.)

2	 Runtime management, such as autohealing and autoscaling, that allows the ser-
vice environment to respond dynamically to failure or changes in load without 
human intervention (For example, if a service instance fails, it should automati-
cally be replaced.)

3	 Logging and monitoring to observe service operation and provide insight for engi-
neers into how services are behaving

4	 Support for secure operation, such as network controls, secret management, and 
application hardening

5	 Load balancers, DNS, and other routing components to route requests from users 
and between microservices

6	 A deployment pipeline that delivers services from code, safely into operational usage 
in the production environment

These components are part of the platform layer of the microservice architecture stack.
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Figure 8.2    A microservice production environment
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8.2.2	 Automation and speed

Along with the six fundamental features, two factors are key in assessing the suitability 
of a deployment platform for a microservice application:

¡	Automation  — The bulk of infrastructural management and configuration, such 
as spinning up a new host, should be highly amenable to automation, ideally by 
the team developing services themselves.

¡	Speed  — If a significant cost is associated with every new deploy — whether obtain-
ing infrastructure resources or setting up a new deployment — then a microservice 
approach will be significantly hampered.

Although you may not always have the luxury of choosing your deployment environ-
ment, it’s important to appreciate how different platforms might affect these char-
acteristics and how you develop your microservice application. I once worked for a 
company that took six weeks to provision each new server. Suffice it to say that taking 
new services into production was an exhausting endeavor!

It’s not coincidental that the popularity of microservice architecture coincides with 
the wider adoption of DevOps practices, such as infrastructure as code, and the increasing 
use of cloud providers to run applications. These practices enable rapid iteration and 
deployment of services, which in turn makes a microservice architecture a scalable and 
feasible approach.

When possible you should aim to use a public infrastructure as a service (IaaS) cloud, 
such as Google Cloud Platform (GCP), AWS, or Microsoft Azure, for deploying any 
nontrivial microservice application. These cloud services offer a wide range of features 
and tools that ease the development of a robust microservice platform at a lower level 
of abstraction than a higher level deployment solution (such as Heroku). As such, they 
offer more flexibility. In the next section, we’ll show you how to use GCP to deploy, 
access, and scale a microservice.

8.3	 Deploying a service, the quick way
It’s time to get your hands dirty and deploy a service. You need to take your code, get 
it running on a virtual machine, and make it accessible from the outside world — as 
figure 8.3 illustrates.

Virtual machine

Outside world Requests Service Deploy as Code

Figure 8.3    A simple microservice deployment
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You’ll use Google Compute Engine (GCE) as a production environment. This is a ser-
vice on GCP that you can use to run virtual machines. You can sign up for a free trial 
GCP subscription, which will have enough credit for this chapter’s examples. Although 
the operations you’ll perform are specific to this platform, all major cloud providers, 
such as AWS and Azure, provide similar abstractions.

WARNING    This example isn’t a robust production deployment solution!

To interact with GCE, you’ll use the gcloud command-line tool. This tool interacts with 
the GCE API to perform operations on your cloud account. You can find install instruc-
tions in the GCP documentation (https://cloud.google.com/sdk/docs/quickstarts). It’s 
not the only option — you could use third-party tools like Ansible or Terraform instead.

Assuming you’ve followed the install instructions and logged in with gcloud init, 
you can create a new project:

gcloud projects create <project-id> --set-as
➥-default --enable-cloud-apis               

This project will contain the resources that’ll run your service.

TIP    Don’t forget to tear down your project when you’re done. Running gcloud 
projects delete <project-id> will do the trick.

8.3.1	 Service startup

To run your service, you’ll use a startup script, which will be executed at startup time 
when Google Cloud provisions your machine. We’ve written this for you already — you 
can find it at chapter-8/market-data/startup-script.sh.

Take your time to read through the script, which performs four key tasks:

¡	Installs binary dependencies required to run a Python application
¡	Downloads your service code from Github
¡	Installs that code’s dependencies, such as the flask library
¡	Configures a supervisor to run the Python service using the Gunicorn web server

Now, let’s try it out.

8.3.2	 Provisioning a virtual machine

You can provision a virtual machine from the command line. Change to the chapter-8/
market-data directory and run the following command:

gcloud compute instances create market-data-service \ 
  --image-family=debian-9 \ 
  --image-project=debian-cloud \ 

Replace <project-id> with the name of your choice.

The name of your machine

The base image you’ll use for the machine

 

https://cloud.google.com/sdk/docs/quickstarts
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  --machine-type=g1-small \ 
  --scopes userinfo-email,cloud-platform \
  --metadata-from-file startup-script=startup
➥-script.sh \ 
  --tags api-service \ 
  --zone=europe-west1-b 

This will create a machine and return the machine’s external IP address — something 
like figure 8.4.

This approach to startup does take a while. If you want to watch the progress of the 
startup process, you can tail the output of the virtual machine’s serial port:

gcloud compute instances tail-serial-port-output market-data-service

Once the startup process has completed, you should see a message in the log, similar 
to this example:

Mar 16 12:17:14 market-data-service-1 systemd[1]: Startup finished in
➥ 1.880s (kernel) + 1min 52.486s (userspace) = 1min 54.367s.

Great! You’ve got a running service — although you can’t call it yet. You’ll need to open 
the firewall to make an external call to this service. Running the following command 
will open up public access to port 8080 for all services with the tag api-service:

gcloud compute firewall-rules create default-allow-http-8080 \
  --allow tcp:8080 \ 
  --source-ranges 0.0.0.0/0 \ 
  --target-tags api-service \ 
  --description "Allow port 8080 access to api-service"

You can test your service by curling the external IP of the virtual machine. The external 
IP was returned when you created the instance (figure 8.4). If you didn’t note it, you can 
retrieve all instances by running gcloud compute instances list. Here’s the curl:

curl -R http://<EXTERNAL-IP>:8080/ping 

If all is going well, the response you get will be the name of the virtual machine —  
market-data-service.

Figure 8.4    Information about a newly created virtual machine

The size of the machine to provision

Starts up using your startup script

Identifies this machine’s workload

The compute zone — or data center — where this service should start

Allows tcp queries to port 8080

From any IP addressTo machines with the api-service tag

Replace EXTERNAL-IP with the 
IP address of your service.
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8.3.3	 Run multiple instances of your service

It’s unlikely you’ll ever run a single instance of a microservice:

¡	You’ll want to scale horizontally (the X-axis of scalability) by deploying multiple 
clones of the same service, each handling a proportion of requests. Although you 
could serve more requests with progressively larger machines, it’s ultimately possi-
ble to scale further using more machines.

¡	It’s important to deploy with redundancy to ensure that failures are isolated. A 
single instance of a service won’t maximize resiliency when failures occur.

Figure 8.5 illustrates a service group. Requests made to the logical service, market-data, 
are load balanced to underlying market-data instances. This is a typical production 
configuration for a stateless microservice.

NOTE    Services that consume from an event queue or message bus are also hor-
izontally scalable — you distribute message load by running multiple message 
consumers.

You can try this out. On GCE, a group of virtual machines is called an instance group 
(or on AWS, it’s an auto-scaling group). To create a group, you first need to create an 
instance template:

gcloud compute instance-templates create market-data-service-template \
  --machine-type g1-small \
  --image-family debian-9 \
  --image-project debian-cloud \
  --metadata-from-file startup-script=startup-script.sh \
  --tags api-service \
  --scopes userinfo-email,cloud-platform

Outside world Requests
Load

balancer

Requests

Requests

Requests

Virtual machine

Service

Virtual machine

Service

Virtual machine

Service

Deploy as

Deploy as

Deploy as

Code

Figure 8.5    A service group and load balancer

 



	 195Deploying a service, the quick way

Running this code will create a template to build multiple market-data-service instances 
like the one you built earlier. Once the template has been set up, create a group:

gcloud compute instance-groups managed create market-data-service-group \
  --base-instance-name market-data-service \ 
  --size 3 \ 
  --template market-data-service-template \ 
  --region europe-west1 

This will spin up three instances of your market-data service. If you open the Google 
Cloud console and navigate to Compute Engine > Instance Groups, you should see a 
list like the one in figure 8.6.

Using an instance template to build a group gives you some interesting capabilities 
out of the box: failure zones and self-healing. These two features are crucial to operat-
ing a resilient microservice.

Failure zones

First, note the zone column in figure 8.6. It lists three distinct values: europe-west1-d, 
europe-west1-c, and europe-west1-b. Each of these zones represents a distinct data 
center. If one of those data centers fails, that failure will be isolated and will only affect 
33% of your service capacity.

Self-healing

If you select one of those instances, you’ll see the option to delete that instance (figure 8.7). 
Give it a shot!

Figure 8.6    Instances within an instance group

Figure 8.7    Deleting a VM instance

The name prefix of each new instance

The number of instances in the group

The template to use
The region to start these instances in
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Deleting an instance will cause the instance group to spin up a replacement instance, 
ensuring that capacity is maintained. If you look at the operation history of the project 
(Compute Engine > Operations), you’ll see that the delete operation results in GCE 
automatically recreating the instance (figure 8.8).

The instance group will attempt to self-heal in response to any event that results in an 
instance falling out of service, such as underlying machine failure. You can improve this 
by adding a health check that also targets your application:

gcloud compute health-checks create http api-health-check \
  --port=8080 \ 
  --request-path="/ping" 

gcloud beta compute instance-groups managed set
➥-autohealing \ 
  market-data-service-group \ 
  --region=europe-west1 \ 
  --http-health-check=api-health-check 

Now, with the addition of the health check, whenever the application fails to reply to it, 
the virtual machine will be recycled.

Adding capacity

As your service is now deployed from a template, it’s trivial to add more capacity. You 
can resize the group from the command line:

gcloud compute instance-groups managed resize market-data-service-group \
--size=6 \ 
--region=europe-west1

You also can add autoscaling rules to automatically add more capacity if metrics you 
observe from your group, such as average CPU utilization, pass a given threshold.

8.3.4	 Adding a load balancer

In all that excitement, you forgot to expose your service group to the wild! In this 
case, GCE will provide your load balancer, which consists of a few interconnected com-
ponents, as outlined in figure 8.9. The load balancer uses these routing rules, prox-
ies, and maps to forward requests from the outside world to a set of healthy service 
instances.

Figure 8.8    Deleting an instance in a group results in the instance being recreated to maintain target 
capacity (from bottom to top)

The health check will make 
HTTP calls to :8080/ping.

Associates the check with 
your existing instance group

Your new target group size
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Internet Requests Forwarding rule

Forwards traffic
from a single IP

to the proxy

Proxies requests to
correct backend,
based on path

Target proxy

Checks

Defines backends
for given URL paths URL map

Backend service

Balances requests
across healthy

backend instances

Health check

Requests

Health checks

Service

Virtual machine

Figure 8.9    Request lifecycle for GCE load balancing

NOTE    Managed load balancers are a key feature for all major cloud providers. 
Outside of these environments, you may come across other software load bal-
ancers, such as HAProxy.

First, you’ll want to add a backend service, which is the most important component of 
your load balancer because it’s responsible for directing traffic optimally to underlying 
instances:

gcloud compute instance-groups managed set-named-ports \
  market-data-service-group \
  --named-ports http:8080 \
  --region europe-west1

gcloud compute backend-services create \
➥market-data-service \ 
  --protocol HTTP \
  --health-checks api-health-check \ 
  --global

This code creates two entities: a named part, identifying the port your service exposes, 
and a backend service, which uses the http health check you created earlier to test the 
health of your service.

Next, you need a URL map and a proxy:

gcloud compute url-maps create api-map \
  --default-service market-data-service 

gcloud compute target-http-proxies create api-proxy \
  --url-map api-map 

If you had more than one service, you could use the map to route different subdo-
mains to different backends. In this case, the URL map will direct all requests, regard-
less of URL, to the market-data-service you created earlier.

The name of your backend service

The health check you created earlier

Creates a URL map for your backend service

Creates a proxy that uses the new URL map
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Finally, you need to create a static IP address for your service and a forwarding rule 
that connects that IP to the HTTP proxy you’ve created:

gcloud compute addresses create market-data-service-ip \
  --ip-version=IPV4 \
  --global

export IP=`gcloud compute addresses describe market
➥-data-service-ip --global --format json | jq –raw
➥-output '.address'` 

gcloud compute forwarding-rules create \
➥api-forwarding-rule \ 
  --address $IP \ 
  --global \ 
  --target-http-proxy api-proxy \ 
  --ports 80 

printenv IP 

This code creates a public IP address and configures requests to that IP to be forwarded 
to your HTTP proxy and on to your backend service. Once run, these rules take sev-
eral minutes to propagate. After a wait, try to curl the service — curl "http://$IP/
ping?[1-100]". That will start you with 100 requests. If you see the names of differ-
ent market-data nodes being output to your terminal — terrific — you’ve deployed a 
load-balanced microservice!

NOTE    In the real world, you’d be unlikely to expose microservices directly to 
the outside world. You’re only doing it here because it makes testing much 
easier. GCE also supports internal load balancing (https://cloud.google.com/
load-balancing/docs/internal/) and Cloud Endpoints, a managed API gate-
way (https://cloud.google.com/endpoints/).

8.3.5	 What have you learned?

In these examples, you’ve built some of the key elements of a microservice deployment 
process:

¡	Using an instance template established a primitive deployment operation, mak-
ing it simple to add and remove capacity for a given service.

¡	Combining instance groups, load balancers, and health checks allowed you to 
autoscale and autoheal your microservice deployment.

¡	Deploying into independent zones helped you build bulwarks to limit the impact 
of failures.

But a few things are missing. Your releases weren’t predictable, because you pulled 
your latest code and compiled it on the machine. A new code commit could cause dif-
ferent service instances to be running inconsistent versions of the code (figure 8.10). 
Without any explicit versioning or packaging, there would be no easy way to roll your 
code forward or back.

Retrieves the IP address

Adds a forwarding rule that forwards 
from the IP address to the HTTP proxy

Outputs the IP address you created
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https://cloud.google.com/endpoints/
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The latest instances
pick up 6ae881.
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Instance 1 Instance 3

These instances start
with commit 5a43ab.

5a43abGit repository 6ae881

New code change

Figure 8.10    Releasing without packaged versions results in deploying inconsistent code.

The process of starting machines was slow because you made pulling dependencies 
part of startup, rather than baking them into your instance template. This arrange-
ment also meant that the dependencies could become inconsistent across different 
instances.

Lastly, you didn’t automate anything. Not only will a manual process not scale to 
multiple microservices, but it’s likely to be error prone. Over the next few sections and 
chapters, you can make this much better.

8.4	 Building service artifacts
In the earlier deployment example, you didn’t package your code for deployment. The 
startup script that you ran on each node pulled code from a Git repository, installed 
some dependencies, and started your application. That worked, but it was flawed:

¡	Starting up the application was slow, as each node performed the same pull and 
build steps in parallel.

¡	There was no guarantee that each node was running the same version of your 
service.

This made your deployment unpredictable — and fragile. To get the benefits you want, 
you need to build a service artifact. A service artifact is an immutable and deterministic 
package for your service. If you run the build process again for the same commit, it 
should result in an equivalent artifact.

Most technology stacks offer some sort of deployment artifact (for example, JAR files 
in Java, DLLs in .NET, gems in Ruby, and packages in Python). The runtime character-
istics of these artifacts might differ. For instance, you need to run .NET web services 
using an IIS server whereas JARs may be self-executable, embedding a server process 
like Tomcat.
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Figure 8.11    An artifact repository stores service artifacts that a build automation tool constructs and 
you can pull later for deployment.

Figure 8.11 illustrates the artifact construction, storage, and deployment process. Typi-
cally, a build automation tool (such as Jenkins or CircleCI) builds a service artifact and 
pushes it to an artifact repository. An artifact repository might be a dedicated tool — for 
example, Docker provides a registry for storing images — or a generic file storage tool, 
such as Amazon S3.

8.4.1	 What’s in an artifact?

A microservice isn’t only code; it’ll have many constituent parts:

¡	Your application code, compiled or not (depending on programming language)
¡	Application libraries
¡	Binary dependencies (for example, ImageMagick or libssl) that are installed on 

the operating system
¡	Supporting processes, such as logging or cron
¡	External dependencies, such as data stores, load balancers, or other services

Some of these dependencies, such as application libraries, are explicitly defined. Oth-
ers may be implicit; for example, language-specific package managers are often igno-
rant of binary dependencies. Figure 8.12 illustrates these different parts.

An ideal deployment artifact for a microservice would allow you to package up 
a specific version of your compiled code, specifying any binary dependencies, and 
provide a standard operational abstraction for starting and stopping that service. This 
should be environment-agnostic: you should be able to run the same artifact locally, 
in test, and in production. By abstracting out differences between languages at run-
time, you both reduce cognitive load and provide common abstractions for managing 
those services.
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Figure 8.12    A service with internal and external dependencies

8.4.2	 Immutability

We’ve touched on immutability a few times so far — let’s take a moment to look at why 
it matters. An immutable artifact, encapsulating as many dependencies of your ser-
vice as feasible, gives you the highest possible confidence that the package you tested 
throughout your deployment pipeline will be the same as what is deployed in produc-
tion. Immutability also allows you to treat your service instances as disposable — if a 
service develops a problem, you can easily replace it with a new instance of the last 
known good state. On GCE, this autohealing process was automated by the instance 
group you created.

If a build of the same code can result in a different artifact being created — for exam-
ple, pulling different versions of dependencies — you increase the risk in deployment 
and the fragility of your code because unintentional changes can be included in a 
release. Immutability increases the predictability of your system, as it’s easier to reason 
through a system’s state and recreate a historic state of your application — crucial for 
rollback.

Immutability and server management
Immutability isn’t only for service artifacts: it’s also an important principle for effective 
virtual server management.

One approach to managing the state of hosts is to apply cumulative changes over 
time — installing patches, upgrading software, changing configuration. This often means 
that the ideal current state of a server isn’t defined anywhere — there’s no known good 
state that you can use to build new servers. This approach also encourages applying live 
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fixes to servers which, counterintuitively, increases the risk of failure. These servers suf-
fer from configuration drift.

This approach might make sense if individual hosts are a scarce resource. In a cloud 
environment, where individual hosts are cheap to run and replace, immutability is a bet-
ter option. Instead of managing hosts, you should build them using a base template that 
itself is version controlled. Rather than updating older hosts, you replace them with hosts 
you build from a new version of a base template.

 

8.4.3	 Types of service artifacts

Many languages have their own packaging mechanism, and this heterogeneity makes 
deployment more complex when working with services written in different languages. 
Your deployment tools need to treat differently the interface that each deployment 
package provides to get it running on a server (or to stop it).

Better tooling can reduce these differences, but technology-specific artifacts tend 
to work at too low an abstraction level. They primarily focus on packaging code, rather 
than the broader nature of application requirements:

¡	They lack a runtime environment. As you saw earlier, you needed to separately 
install other dependencies to run your service.

¡	They don’t provide any form of resource management or isolation, which makes 
it challenging to adequately run multiple services on a single host.

Luckily, you’ve got a few options: operating system packages, server images, or contain-
ers (figure 8.13).
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Figure 8.13    The structure of different service artifact types

(continued)
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Operating system packages

You could use the packaging format of your target operating system, such as apt or 
yum in Linux. This approach standardizes the installation of an artifact, regardless of 
contents, as you can use standard operating system tools to automate the installation 
process. When you start a new host, you can pull the appropriate version of your ser-
vice package. In addition, packages can specify dependencies on other packages — for 
example, a Rails application might specify dependencies on common Linux packages, 
such as libxml, libmagic, or libssl.

NOTE    If you’re interested in exploring this approach further, you could try 
to build a deb package using py2deb (github.com/paylogic/py2deb) and the 
example service.

The OS package approach has three weaknesses:

¡	It adds a different infrastructure requirement: you’ll need to host and manage a 
package repository.

¡	These packages are often tightly coupled to a particular operating system, reduc-
ing your flexibility in using different deployment targets.

¡	The packages aren’t at quite the right level of abstraction, as you still need to exe-
cute them in a host environment.

Server images

In typical virtualized environments, each server you run is built from an image, or tem-
plate. The instance template you built in section 8.3 is an example of a server image.

You can use this image itself as a deployment artifact. Rather than pulling a package 
onto a generic machine, you could instead bake a new image for each version of your 
service that you want to deploy. A typical bake process has four steps:

1	 Select a template image as the basis for the new image.

2	 Start a VM based on the template image.

3	 Provision the new VM to the desired state.

4	 Take a snapshot of the new VM and save it as a new image template.

You can try that out using Packer.

TIP    You’ll need to set up Packer to authenticate with GCE. You can find direc-
tions for that in the Packer documentation: https://www.packer.io/docs/
builders/googlecompute.html.

First, save the following configuration file as instance-template.json.

Listing 8.1    The instance-template.json file

{
  "variables": { 
    "commit": "{{env `COMMIT`}}"

User-provided variables

 

github.com/paylogic/py2deb
https://www.packer.io/docs/builders/googlecompute.html
https://www.packer.io/docs/builders/googlecompute.html
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  },
  "builders": 
  [
    {
      "type": "googlecompute",
      "project_id": "market-data-1",
      "source_image_family": "debian-9",
      "zone": "europe-west1-b",
      "image_name": "market-data-service-{{user `commit`}}",
      "image_description": "image built for market-data
➥-service {{user `commit`}}",
      "instance_name": "market-data-service-{{uuid}}",
      "machine_type": "n1-standard-1",
      "disk_type": "pd-ssd",
      "ssh_username": "debian",
      "startup_script_file": "startup-script.sh"
    }
  ]
}

Now, run the packer build command from within the chapter-8/market-data 
directory:

packer build \
-var "commit=`git rev-parse head`" \ 
instance-template.json 

If you watch the console output, it’ll reflect the four steps I outlined above: using the 
GCE API, Packer will start an instance, run the startup script, and save the instance as a 
new template image, tagged with the source Git commit. You can use the Git commit to 
explicitly distinguish different versions of your code.

NOTE    In this case, you still pulled code directly from Git to your machine 
image. In complied languages such as Java, compilation into an executable 
should be a separate step that a build automation tool executes.

This approach builds an immutable, predictable, and self-contained artifact. This 
immutable server pattern, combined with a configuration tool like Packer, allows you 
to store a reproducible base state as code.

It has a few limitations:

¡	Images are locked to one cloud provider, making them nontransferable to other 
providers as well as to developers who want to recreate the deployed artifact on 
their machines.

¡	Image builds are often slow because of the lengthy time it takes to spin up a 
machine and take a snapshot.

¡	It’s not easy for you to use for a multiple service-per-host model.

Defines how an image will be built

Gets the latest commit hash

Uses the instance template defined in listing 8.1
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Containers

Instead of distributing entire machines, containerization tools, such as Docker or rkt, 
provide a more lightweight approach to encapsulating an application and its depen-
dencies. You can run multiple containers on one machine, isolated from each other 
but with lower resource overhead than a virtual machine because they share the kernel 
of one operating system. They avoid the overhead of virtualizing the disk and guest 
operating system of each virtual machine.

Try a quick example using Docker. (You can find instructions for installing Docker 
on the Docker website: https://docs.docker.com/install/.)  You build a Docker image 
from a Dockerfile. Add the following file to the chapter-8/market-data folder.

Listing 8.2    Dockerfile for market-data service

FROM python:3.6 
ADD . /app 
WORKDIR /app
RUN pip install -r requirements.txt 
CMD ["gunicorn", "-c", "config.py", "app:app", "--bind"
➥, "0.0.0.0:8080"] 
EXPOSE 8000 

Then, use the docker command-line tool to build the container:

$ docker build -t market-data:`git rev-parse head` .
Sending build context to Docker daemon 71.17 kB
Step 1/3 : FROM python:3.6
 ---> 74145628c331
Step 2/3 : ADD . /app
 ---> bb3608d5143f
Removing intermediate container 74c250f83f8c
Step 3/3 : WORKDIR /app
 ---> 7a595179cc39
Removing intermediate container 19d3bffa4d2a
Successfully built 7a595179cc39

This will build a container image and tag it with the name market-data:<commit ID>.
Now that you’ve built an image for the application, you can run it locally. Try it out:

$ docker run -d -p 8080:8080 market-data:`git rev-parse head`

You’ll see startup logs from gunicorn in your terminal. If you like, try to curl the service 
on port 8000. You probably noticed that startup and build time for the container was 
significantly faster than the virtual machines on GCE. This is one of the key benefits of 
using containers.

Starts from a public base 
image for Python apps

Adds your application code to the container

Installs the service’s requirements

Sets a startup command for the service

Exposes the service’s 
port from the container

 

https://docs.docker.com/install/
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In a few short steps, you can run this container image on GCE. First, you need to 
push the image to a container registry. Luckily, GCE already provides one:

TAG="market-data:$(git rev-parse head)"
PROJECT_ID=<your-project-id> 

docker tag $TAG eu.gcr.io/$PROJECT_ID/$TAG 

gcloud docker -- push eu.gcr.io/$PROJECT_ID/$TAG 

This registry acts as an artifact repository where you can store your Docker images for 
later use. After the push has completed, start an instance running this container:

gcloud beta compute instances create-with-container \
  market-data-service-c \
  --container-image eu.gcr.io/$PROJECT_ID/$TAG 
  --tags api-service

Success! You’ve deployed a container, and you’ve seen firsthand that it provides a more 
flexible — and easy-to-use — abstraction than a VM image.

As well as acting as a packaging mechanism, a container provides a runtime environ-
ment that isolates execution, effectively easing the operation of diverse containers on a 
single machine. This is compelling because it provides sane abstractions above individ-
ual hosts.

Unlike virtual machine images, container images are portable; you can run the same 
container on any infrastructure that supports the container runtime. This eases deploy-
ment in scenarios where multiple deployment targets are required, such as companies 
that run workloads in both cloud and on-premise environments. It also simplifies local 
development; running multiple containers on a typical developer machine is much 
more manageable than building and managing multiple virtual machines.

8.4.4	 Configuration

The service’s configuration is likely to differ based on deployment environment (stag-
ing, dev, production, and so on). For that and other reasons, you can’t represent all 
elements of a service within an artifact: 

¡	You can’t distribute secrets or sensitive configuration data, such as database pass-
words, in clear text or source control. You may want to retain the ability to change 
them independently of a service deployment (for example, as part of automated 
credential rotation, or worse, in the event of a security breach).

¡	Environment-specific configuration data, such as database URLs, log levels, or 
third-party service endpoints, will vary.

Replace with your GCE project ID

Renames the Docker image you created

Pushes the Docker image to GCE

You set the project ID and tag 
variables in the previous example.
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Figure 8.14    Service configuration that differ by environment

The third principle of The Twelve-Factor App manifesto (12factor.net) states that you 
should strictly separate deployment configuration from code and provide it as environ-
ment variables (figure 8.14). In practice, the deployment mechanism you choose will 
define how you store and provide environment-specific configuration. We recommend 
storing configuration in two places:

¡	In source control, version-controlled alongside the service, for nonsensitive con-
figuration (These are commonly stored in .env files.)

¡	A separate, access-restricted “vault” for secret information (such as HashiCorp’s 
perfectly named www.vaultproject.io)

The process that starts a service artifact should pull this configuration and inject it into 
the application’s environment.

Unfortunately, managing configuration separately can increase risk, as people may 
make changes to production outside of your immutable artifacts, affecting the pre-
dictability of your deployments. You should err on the side of restraint and attempt to 
include as much configuration as possible within your artifacts and rely on the speed 
and robustness of your deployment pipeline for rapidly changing configuration.

8.5	 Service to host models
In this section, we’ll review three common models for deploying services to underlying 
hosts: single service to host, multiple services to host, and container scheduling.

8.5.1	 Single service to host

In earlier examples, we’ve used a one-to-one relationship between service and underly-
ing host. This approach is easy to understand and provides a clear and explicit isolation 
between the resource needs and runtime of multiple services. Figure 8.15 illustrates this 
approach. Although the analogy is somewhat cruel, using this model lets you treat serv-
ers as cattle: indistinguishable units that you can start, stop, and destroy on command.

This model isn’t perfect. Sizing virtual instances appropriately for the needs of each 
service requires ongoing effort and evaluation. If you’re not running in the cloud, you 
may run into the limits of your data center or virtualization solution. And as we touched on 
earlier, virtual machine startup time is comparatively slow, often taking several minutes.

 

12factor.net
www.vaultproject.io
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Figure 8.15    A single service to host model

8.5.2	 Multiple static services per host

It’s possible to run multiple services per host (figure 8.16). In the static variant of this 
model, the allocation of services to hosts is manual and static; the service owner makes 
a conscious choice, predeployment, about where each service should be run.

At first glance, this approach might seem desirable. If obtaining new hosts is costly 
or hosts are scarce, then the easiest route to production would be to maximize usage of 
your existing, limited number of hosts.

But this approach has several weaknesses. It increases coupling between services: 
deploying multiple services to a host leads to coupling between services, eliminating 
your desire to release services independently. It also increases the complexity of depen-
dency management: if one service needs package v1.1, but another needs v2.0, the 
difference is difficult to reconcile. It becomes unclear which service owns the deploy-
ment environment — and therefore which team has responsibility for managing that 
configuration.
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Figure 8.16    A single virtual machine can potentially run multiple services.
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This approach also leads to challenges in monitoring and scaling services inde-
pendently. One noisy service on a box might adversely impact other services, and it can 
be difficult to monitor the resource usage (CPU, memory) of services independently.

8.5.3	 Multiple scheduled services per host

It’d be even simpler if you could avoid thinking about the underlying hosts that run 
your services altogether and focus entirely on the unique runtime environment of 
each application. This was the initial promise of platform as a service (Paas) solutions, 
such as Heroku. A PaaS provides tools for deploying and running services with min-
imal operational configuration or exposure to underlying infrastructural resources. 
Although these platforms are easy to use, they often strike a difficult balance between 
automation and control — simplifying deployment but removing customization from 
the developer’s hands — as well as being highly vendor specific.

Containers provide a more elegant abstraction:

¡	An engineer can define and distribute a holistic application artifact.
¡	A virtual machine can run multiple individual containers, isolating them from 

each other.
¡	Containers provide an operational API that you can automate using higher level 

tooling.

These three facets enable scheduling, or orchestration, of containers. A container sched-
uler is a software tool that abstracts away from underlying hosts by managing the execu-
tion of atomic, containerized applications across a shared pool of resources. Typically, a 
scheduler consists of a master node that distributes application workloads to a cluster of 
worker nodes. Developers, or a deployment automation tool, send instructions to this 
master node to perform container deployments. Figure 8.17 illustrates this setup.

Deployment tool

Deploy two instances of
service A, version 100

Scheduler master
Performs deployment

Cluster

Service A

Service D

Service B

Service A

Service D

Service B

Service C

Service D

Pulls from

Container
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Figure 8.17    A container scheduler executes containers across a cluster of nodes, balancing the 
resource needs of those nodes.
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Advantages of a scheduling model

Unlike the multiple static services per host model, the allocation of services in a sched-
uler model is dynamic and depends on the resources (CPU, disk, or memory needs) 
defined for each application. This avoids the pitfalls of the static model, as the sched-
uler aims to continually optimize resource usage within the cluster of nodes, while the 
container model preserves service independence.

By using a scheduler as a deployment platform, a service developer can focus on 
the environment of their service in isolation from the underlying needs of machine 
configuration. Operations engineers can focus on running the underlying scheduler 
platform and defining common operational standards for running services.

Container schedulers are complex

Container schedulers such as Kubernetes are complex pieces of software and require 
significant expertise to operate, especially because the tools themselves are relatively 
new. We strongly recommend them as the ideal deployment platform for microservices, 
but only if you can use a managed scheduler (such as Google’s Kubernetes Engine) 
or have the operational resources to run it in-house. If not, the single service per host 
model, combined with container artifacts, is a great and flexible fallback.

8.6	 Deploying services without downtime
So far, you’ve only deployed market-data once. But in a real application, you’ll be 
deploying services often. You need to be able to deploy new versions without downtime 
to maintain overall application stability. Every service will rely on others to be up and 
running, so you also need to maximize the availability of every service.

Three common deployment patterns are available for zero-downtime deployments:

¡	Rolling deploy  — You progressively take old instances (version N) out of service 
while you bring up new instances (version N+1), ensuring that you maintain a 
minimum percentage of capacity during deployment.

¡	Canaries  — You add a single new instance1 into service to test the reliability of 
version N+1 before continuing with a full rollout. This pattern provides an added 
measure of safety beyond a normal rolling deploy.

¡	Blue-green deploys  — You create a parallel group of services (the green set), run-
ning the new version of the code; you progressively shift requests away from the 
old version (the blue set). This can work better than canaries in scenarios where 
service consumers are highly sensitive to error rates and can’t accept the risk of 
an unhealthy canary.

All of these patterns are built on a single primitive operation. You’re taking an instance, 
moving it to a running state in an environment, and directing traffic toward it.

1	 In larger service groups, for example, >50 instances, you may need more than one canary to get 
representative feedback.

1	 In larger service groups, for example, >50 instances, you may need more than one canary to get 
representative feedback.
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8.6.1	 Canaries and rolling deploys on GCE

It’s always better when you can see things in action. You can deploy a new version of 
market-data to GCE. First, you’ll want to create a new instance template. You can use 
the container you built and pushed in section 8.4.3:

gcloud beta compute instance-templates create-with-container \
  market-data-service-template-2 \
  --container-image eu.gcr.io/$PROJECT_ID/$TAG
  --tags=api-service

Then, initiate a canary update:

gcloud beta compute instance-groups managed rolling-action start-update \
  market-data-service-group \
  --version template=market-data-service-template \
  --canary-version template=market-data-service
➥-template-2,target-size=1 \ 
  --region europe-west1

GCE will add the canary instance to the group and the backend service to begin receiv-
ing requests (figure 8.18). It’ll take a few minutes to come up. You also can see this on 
the GCE console (figure 8.19; Compute Engine > Instance Groups).

If you’re happy, you can proceed with the rolling update:

gcloud beta compute instance-groups managed rolling-action start-update \
  market-data-service-group \
  --version template=market-data-service-template-2 \
  --region europe-west1

The speed at which this update occurs depends on how much capacity you want to 
maintain during the rollout. You also can elect to surge beyond your current capac-
ity during rollout to ensure the target number of instances is always maintained. Fig-
ure 8.20 illustrates the stages of a rollout across three instances.

Canary is brought
into service

Service group

v1 v1 v1 v2

Figure 8.18    You add a new canary to the group.

Rolls out one instance 
of your new template
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Figure 8.19    Your instance group contains your original instances plus a canary instance of a new version.

If you were unhappy, you could roll back the canary:

gcloud beta compute instance-groups managed rolling-action start-update \
  market-data-service-group \
  --version template=market-data-service-template \ 
  --region europe-west1

The command for a rollback is identical to a rollout, but it goes to a previous version. 
In the real world, rollback may not be atomic. For example, the incorrect operation of 
new instances may have left data in an inconsistent state, requiring manual interven-
tion and reconciliation. Releasing small change sets and actively monitoring release 
behavior will limit the occurrence and extent of these scenarios.

Old instance is killed

New instance added

Repeated until all instances are v2

v2 v2v1v1

v2 v2 v2

v1 v2v1v1

X v2v1v1

Canary is brought
into service

Rollout approved

Figure 8.20    Stages of a rolling deploy, beginning with a canary instance

The original version
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We’ve covered a lot of ground in this chapter: you’ve deployed manually to a cloud 
provider, packaged a service as a container and a virtual machine, and practiced safe 
rollout patterns. By building immutable service artifacts and performing safe, down-
time-free deployments, you’re well on your way to building a deployment process that 
works reliably across multiple services. Ultimately, the more stable, reliable, and seam-
less your deployment process, the easier it is to standardize services, release new ser-
vices more rapidly, and deliver valuable new features without friction or risk.

Summary

¡	Deploying new applications and changes must be standardized and straightforward 
to avoid friction in microservice development.

¡	Microservices can run anywhere, but ideal deployment platforms need to sup-
port a range of features, including security, configuration management, service 
discovery, and redundancy.

¡	You deploy a typical service as a group of identical instances, connected by a load 
balancer.

¡	Instance groups, load balancers, and health checks enable autohealing and auto-
scaling of deployed services.

¡	Service artifacts must be immutable and predictable to minimize risk, reduce 
cognitive load, and simplify deployment abstractions.

¡	You can package services as language-specific packages, OS packages, virtual 
machine templates, or container images.

¡	Being able to add/remove a single instance of a microservice is a fundamental 
primitive operation that you can use to compose higher level deployment.

¡	You can use canaries or blue-green deployments to reduce the impact of unex-
pected defects on availability.
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9Deployment with  
containers and schedulers

This chapter covers
¡	Using containers to package a microservice 

into a deployable artifact

¡	How to run a microservice on Kubernetes, a 
container scheduler

¡	Core Kubernetes concepts, including pods, 
services, and replica sets

¡	Performing canary deployments and rollbacks 
on Kubernetes

Containers are an elegant abstraction for deploying and running microservices, 
offering consistent cross-language packaging, application-level isolation, and rapid 
startup time.

In turn, container schedulers provide a higher level deployment platform for con-
tainers by orchestrating and managing the execution of different workloads across a 
pool of underlying infrastructure resources. Schedulers also provide (or tightly inte-
grate with) other tools — such as networking, service discovery, load balancing, and con-
figuration management — to deliver a holistic environment for running service-based 
applications.
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9
Containers aren’t a requirement for working with microservices. You can deploy ser-

vices using many methods such as using the single service per VM model we outlined in 
the previous chapter. But together with a scheduler, containers provide a particularly ele-
gant and flexible approach that meets our two deployment goals: speed and automation.

Docker is the most commonly used container tool, although other container runtimes 
are available, such as CoreOS’s rkt. An active group — the Open Container Initiative —  
is also working to standardize container specifications.

Some of the popular container schedulers available are Docker Swarm, Kubernetes, 
and Apache Mesos; different tools and distributions are built on top of those platforms. 
Of these, Kubernetes, Google’s open source container scheduler, has the widest mind-
share and has garnered significant implementation support from other organizations, 
such as Microsoft, and the open source community. Because of this popularity and the 
ease of setting up a local installation, we’ll use Kubernetes in this book.

We significantly increased deployment velocity at our own company using Kuberne-
tes. Whereas our previous approach could take several days to get a new service deploy-
ment working smoothly, with Kubernetes, any engineer can now deploy a new service 
in a few hours.

In this chapter, you’ll get your hands dirty with Docker and Kubernetes. You’ll use 
Docker to build, store, and run a container for a new service at SimpleBank. And you’ll 
take that service to production using Kubernetes. Along with these examples, we’ll 
illustrate how a scheduler executes and manages different types of workloads and how 
familiar production concepts map to a scheduler platform. We’ll also examine the high-
level architecture of Kubernetes.

9.1	 Containerizing a service
Let’s jump right in! Over the course of this chapter, your goal will be to take one of 
SimpleBank’s Python services — market-data — and get it running in production. You 
can find a starting point for this service in the book’s repository on Github (http://
mng.bz/7eN9). Figure 9.1 illustrates the process that will occur. Docker packages ser-
vice code into a container image, which is stored in a repository.  You'll use deploy 
instructions to tell a scheduler to deploy and operate the packaged service on a cluster 
of underlying hosts.

As you know, a successful deployment is about more than running a single instance. 
For each new version, you want to build an artifact that you can deploy multiple times 
for redundancy, reliability, and horizontal scaling. In this section, you’ll learn how to do 
the following:

¡	Build an image for a service
¡	Run multiple instances — or containers — of your image
¡	Push your image to a shared repository, or registry

First things first: if you’re going to ship this, you need to figure out how to put it in 
a box. For this section, you’ll need to have Docker installed. You can find up-to-date 
instructions online at https://docs.docker.com/install.
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Figure 9.1    The process of deploying service code to a cluster scheduler

9.1.1	 Working with images

To package an application into a container, you need to build an image. The image will 
include the file system that your application needs to run — code and dependencies —  
and other metadata, such as the command that starts your application. When you run 
your application, you’ll start multiple instances of this image.

Most powerfully, images can inherit from other images. That means your application 
images can inherit from public, canonical images for different technology stacks, or 
you can build your own base images to encapsulate standards and tools you use across 
multiple services.

To get a feel for working with images, fire up the command line and try to pull a pub-
licly available Docker image:

$ docker pull python:3.6
3.6: Pulling from library/python
ef0380f84d05: Pull complete
24c170465c65: Pull complete
4f38f9d5c3c0: Pull complete
4125326b53d8: Pull complete
35de80d77198: Pull complete
ea2eeab506f8: Pull complete
1c7da8f3172e: Pull complete
e30a226be67a: Pull complete
Digest: 

sha256:210d29a06581e5cd9da346e99ee53419910ec8071d166ad499a909c49705ba9b
Status: Downloaded newer image for python:3.6

Pulling an image downloads it to your local machine, ready for you to run. In this case, 
you pulled a Python image from Docker Hub, the default public registry (or reposi-
tory) for Docker images. Running the following command will start an instance of that 
image, placing you at a Python interactive shell inside your new container:

$ docker run --interactive --tty python:3.6
Python 3.6.1 (default, Jun 17 2017, 06:29:46)
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[GCC 4.9.2] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

You should note a few things here. The –-interactive (or –i) flag indicates that the 
container should be interactive, accepting input from STDIN, whereas the –-tty (or 
–t) flag connects a terminal for user input to the Docker container. When you started 
the container, it executed the default command set within the image. You can check 
what that is by inspecting the image metadata:

$ docker image inspect python:3.6 --format="{{.Config
➥.Cmd}}" 
[python3]

You can instruct Docker to execute other commands inside your container; for exam-
ple, to enter the container at an OS shell, rather than Python, you could suffix the 
command you used to start the image instance with bash.

When you watched the output of your earlier pull command, you might’ve noticed 
that Docker downloaded multiple items, each identified by a hash — these are layers. 
An image is a union of multiple layers; when you build an image, each command you 
run (apt-get update, pip install, apt-get install –y, and so on) creates a new 
layer. You can list the commands that went into building the python:3.6 image:

$ docker image history python:3.6

Each line that this script returns represents a different command used to construct 
the python:3.6 image. In turn, some of those layers were inherited from another 
base image. Commands defined in a Dockerfile specify the layers in an image using 
a lightweight domain-specific language (DSL). If you look at the Dockerfile for this 
image — you can find it on Github (http://mng.bz/JxDj) — you’ll notice the first line:

FROM buildpack-deps:jessie

This specifies that the image should inherit from the buildpack-deps:jessie image. 
If you follow that thread on Docker Hub, you can see that your Python container has a 
deep inheritance hierarchy that installs common binary dependencies and the under-
lying Debian operating system. This is detailed in figure 9.2.

python:3.6 buildpack-deps:jessie buildpack-deps:jessie-scm buildpack-deps:jessie-curl debian:jessie

Installs base operating
system

Installs basic HTTP tools,
for example, curl, wget

Installs common SCM
packages, for example,

Git, Mercurial

Installs common binaries,
for example, make, libmagick,

libc, libpq, gcc, libxml2

Installs and configures
python and pip

Figure 9.2    The inheritance hierarchy of images used to construct the python:3.6 container on Docker Hub

The Docker image configuration is output as JSON, 
which you can parse using Go text templates.
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Other container ecosystems use different mechanisms — for example, rkt uses the 
acbuild command-line tool — but the end outcome is similar.

As well as enabling reusability, image layers optimize launch times for containers. If a 
parent layer is shared between two derivative images on one machine, you only need to 
pull it from a registry once, not twice.

9.1.2	 Building your image

This Python image is a good starting point for you to build your own application image. 
Let’s take a quick look at the dependencies of the market-data service:

1	 It needs to run on an operating system — any distribution of Linux should do.

2	 It relies on Python 3.6.x.

3	 It installs several open source dependencies from PyPI using pip, a Python pack-
age manager.

In fact, this list maps quite closely to the structure of the image that you’re going to 
build. Figure 9.3 illustrates the relationship between your image and the Python base 
image you’ve worked with so far.

To build this image, first you need to create a Dockerfile in the root of the market-data 
service directory. This should do the trick:

python:3.6 image

market-data image

Python dependencies (installed by pip)

Application code and resources

Debian

Common binaries

Python 3.6

pip

Figure 9.3    The structure of your market-data container image and its relationship to the python:3.6 
base image
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Listing 9.1    Dockerfile for application container

FROM python:3.6 
ADD . /app 
WORKDIR /app 

That’s not quite the whole picture, but try building this image and see what it looks 
like. You can use the docker build command to create an image from a Dockerfile:

$ docker build -t market-data:first-build .
Sending build context to Docker daemon 71.17 kB
Step 1/3 : FROM python:3.6
 ---> 74145628c331
Step 2/3 : ADD . /app
 ---> bb3608d5143f
Removing intermediate container 74c250f83f8c
Step 3/3 : WORKDIR /app
 ---> 7a595179cc39
Removing intermediate container 19d3bffa4d2a
Successfully built 7a595179cc39

This builds an image with the name market-data and the tag first-build. We’ll make 
more use of tagging later in this chapter. Check that you can start the container and it 
contains the files you expect:

$ docker run market-data:first-build bash -c 'ls'
Dockerfile
app.py
config.py
requirements.txt

The output of this command should match the contents of the market-data directory. 
If it did for you, that’s great! You’ve built a new container and added some files — only 
a few more steps until you have it running an application.

Although you’ve added your application code, you still need to pull down dependen-
cies and start the application up. First, you can use a RUN command within your Docker-
file to execute an arbitrary shell script:

RUN pip install -r requirements.txt

If you recall, the pip tool itself was installed as part of the python base image. If you 
were working with Ruby or Node, at this point you might call bundle install or npm 
install; if you were working with a compiled language, you might use a tool like make 
to produce compiled artifacts.

Instructs Docker to build this image 
using python:3.6 as a starting point

Copies the current code directory to a 
directory /app inside the container image

Sets the working directory 
of the container to /app
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NOTE    For more complex applications, especially for compiled languages, you 
may want to use the builder pattern or multistage builds to separate your devel-
opment and runtime Docker images: http://mng.bz/LMFr.

Next, you need to set the command that’ll be used to start your application. Add 
another line to your Dockerfile:

CMD ["gunicorn", "-c ", "config.py", "app:app"]

And a final touch: you need to instruct Docker to expose a port to your app. In this 
case, your Flask app expects traffic on port 8000. Putting that together, you get your 
final Dockerfile, as shown in the following listing. You should build the image again, 
this time tagging it as latest.

Listing 9.2    Complete Dockerfile for the market-data service

FROM python:3.6
ADD . /app
WORKDIR /app
RUN pip install -r requirements.txt
CMD ["gunicorn", "-c ", "config.py", "app:app"]
EXPOSE 8000

Public images and security
The python:3.6 image we’ve used so far is derived from debian:jessie, which 
has a reputation for being well maintained and rapidly releasing patches to disclosed 
vulnerabilities.

But, as when working with any software, it’s important to be aware that using public 
Docker images potentially increases your security risk. Many images, particularly those 
that aren’t officially maintained, aren’t regularly patched or updated, which can increase 
the threat surface of your system.

If in doubt, security scanning tools, such as Clair (https://github.com/coreos/clair), exist 
for analyzing the security stance of Docker containers. You can use these on an ad-hoc 
basis or integrate them into your continuous integration pipeline.

Maintaining your own base images is also an option but does involve an extra time invest-
ment. Deciding to take this route requires careful consideration of your team’s capabili-
ties and security expertise.

 

9.1.3	 Running containers

Now that you’ve built an image for the application, you can run it. Try it out:

$ docker run -d -p 8000:8000 --name market-data market-data:latest

This command should return a long hash to the terminal. That’s the ID of your con-
tainer — you’ve started it in detached mode, rather than in the foreground. You’ve also 
used the -p flag to map the container port so it’s accessible from the Docker host. If 
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you try and call the service — it has a health-check endpoint at /ping — you should get 
a successful response:

$ curl -I http://{DOCKER_HOST}:8000/ping 
HTTP/1.0 200 OK
Content-Type: text/plain
Server: Werkzeug/0.12.2 Python/3.6.1

You could easily run multiple instances and balance between them. Try a basic exam-
ple, using NGINX as a load balancer. Luckily you can pull an NGINX container from 
the public registry — no hard work to get that running. Figure 9.4 illustrates the con-
tainers you’re going to run.

First, start up three instances of the market-data service. Run the code below in your 
terminal:

$ docker network create market-data 

$ for i in {1..3} 
  do
    docker run -d \
      --name market-data-$i \
      -–network market-data \
      market-data:latest
  done

If you run docker ps -a, you’ll see three instances of the market-data service up and 
running.

TIP    Instead of working on the command line, you could use Docker Compose 
to define a set of containers declaratively — in a YAML file — and run them. But 
in this case, it’s better to start at a lower level so you can see what’s happening.

market-data-1

Port
5000

market-data-1

Port
5000

market-data-1

Port
5000

Requests

NGINX

Port 80

Figure 9.4    NGINX load-balances requests made to it between three market-data containers

DOCKER_HOST will depend on how you’ve 
installed Docker in your environment.

Creates a container network named market-data

Runs three containers based on the 
market-data:latest image you created earlier
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Unlike earlier, you didn’t map each container’s port to the host machine. That’s 
because you’ll only access these containers through NGINX. Instead, you created a 
network. Running on the same network will allow the NGINX container to easily dis-
cover your market-data instances, using the container name as a host name.

Now, you can set up NGINX. Unlike before, you’re not going to build your own 
image; instead, you’ll pull the official NGINX image from the public Docker registry. 
First, you’ll need to configure NGINX to load balance between three instances. Create 
a file called nginx.conf using the following code.

Listing 9.3    nginx.conf

upstream app {
    server market-data-1:8000; 
    server market-data-2:8000;
    server market-data-3:8000;
}

server {
    listen 80;

    location / {
        proxy_pass http://app; 
    }
}

Then you can start an NGINX container. You’ll use the volume flag (or –v) to 
mount your new nginx.conf file into the container, sharing it with the local filesys-
tem. This is useful for sharing secrets and configurations that aren’t — or shouldn’t 
be — built into a container image, such as encryption keys, SSL certificates, and 
environment-specific configuration files. In this case, you avoid having to build a 
separate container to include a single new configuration file. Start the container by 
entering the following:

$ docker run -d --name=nginx \
--network market-data \ 
--volume `pwd`/nginx.conf:/etc/nginx/conf.d/
➥default.conf \ 
-p 80:80 \ 
nginx

And that should do the trick. Curling http://localhost/ping should return the 
hostname — by default, the container ID — of the container instance responding to 
that request. NGINX will round-robin requests across the three nodes to (naively) 
balance load across your instances.

You configure the upstream application 
using the container name and port.

The NGINX server proxies requests received 
on port 80 to the upstream application.

Runs on the same network as 
your market-data containers

Mounts your configuration into an 
appropriate location inside the container

Maps the container port to 
port 80 on your host machine
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9.1.4	 Storing an image

Good work so far — you’ve built an image and you’ve seen that it’s easy to run multi-
ple independent instances of an application. Unfortunately, that image isn’t much use 
in the long run if it’s only on your machine. When it comes to deploying this image, 
you’ll pull it from a Docker registry. This might be Docker Hub, which you’ve already 
encountered; a managed registry, such as AWS ECR or Google Container Registry; or 
self-hosted — for example, using the Docker distribution open source project (https://
github.com/docker/distribution). When you build a continuous delivery pipeline, 
that pipeline will push to your registry on every valid commit.

NOTE    It’s also possible to save Docker images as a tarball, using the docker 
save command, although this isn’t commonly used in image distribution. In 
contrast, rkt natively uses tarballs for container distribution. This means you 
can store images in standard file stores, for example, S3, rather than using a 
custom registry.

For now, you can push your image to https://hub.docker.com. First, you’ll need to cre-
ate an account and choose a Docker ID. This will be the namespace you’ll use to store 
your containers. Once you’ve logged in, you’ll need to create a new repository — a 
store for multiple versions of the same image — using the web UI (figure 9.5).

To push to this repository, you need to tag your market-data image with an appropri-
ate name. Docker image names follow the format <registry>/<repository>:<tag>. 
Once that’s done, a simple docker push will upload your image to the registry. Try it out:

$ docker tag market-data:latest <docker id>/market-data:latest
$ docker login
$ docker push <docker id>/market-data:latest

Figure 9.5    Using the Create Repository page on Docker Hub to create a repository for market-data 
images
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Figure 9.6    The private repository page on Docker Hub shows a record of the tagged image you pushed.

That’s it! You’ve successfully pushed your image to a public repository. You can double- 
check that through the web UI (figure 9.6) by logging into https://hub.docker 
.com. Other engineers (if your repository is private, you’ll need to grant them access) 
can pull your image using docker pull [image name].

Let’s take stock for a moment:

¡	You’ve learned how to package a simple application into a lightweight, 
cross-platform artifact — a container image.

¡	We’ve explored how Docker images are built from multiple layers to support 
inheritance from common base containers and increase startup speed.

¡	You’ve run multiple isolated instances of an application container.
¡	You’ve pushed the image you built to a Docker registry.

Using these techniques in a build pipeline will ensure greater consistency and predict-
ability across a fleet of services, regardless of underlying programming language, as well 
as helping to simplify local development. Next, we’ll explore how a container sched-
uler works by taking your containerized application and deploying it with Kubernetes.

9.2	 Deploying to a cluster
A container scheduler is a software tool that abstracts away from underlying hosts by 
managing the execution of atomic, containerized applications across a shared pool of 
resources. This is possible because containers provide strong isolation of resources and 
a consistent API.

Using a scheduler is a compelling deployment platform for microservices because 
it eases the management of scaling, health checks, and releases across, in theory, any 
number of independent services. And it does so while ensuring efficient utilization of 
underlying infrastructure. At a high level, a container scheduler workflow looks some-
thing like this:

¡	Developers write declarative instructions to specify which applications they want to 
run. These workloads might vary: you might want to run a stateless, long-running 
service; a one-off job; or a stateful application, like a database.

¡	Those instructions go to a master node.
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¡	The master node executes those instructions, distributing the workloads to a 
cluster of underlying worker nodes.

¡	Worker nodes pull containers from an appropriate registry and run those appli-
cations as specified.

Figure 9.7 illustrates this scheduler architecture. To an engineer, where and how an 
application is executed is ultimately unimportant: the scheduler takes care of it. In 
addition to running containers, Kubernetes provides other functionality to support 
running applications, such as service discovery and secret management.

Engineer Instructions

2 x service A Master node

performs
deployment

Worker node Worker node

Worker node Worker node

Container
registry pulls from

service A

D

D B

D

B A C

Cluster

Figure 9.7    High-level scheduler architecture and deployment process

Many well-known cluster management tools are available, but in your case, you’re 
going to use Kubernetes, an open-source project that evolved from Google’s internal 
work on Borg and Omega (https://research.google.com/pubs/pub41684.html). It’s 
possible to run Kubernetes pretty much anywhere — public cloud, private data center, 
or as a managed service (such as Google Kubernetes Engine (GKE)).

In the next few sections, we’re going to cover a lot of ground. You’ll do the following:

¡	Learn about the unit of deployment used on Kubernetes — pods
¡	Define and deploy multiple replicas of a pod for the market-data microservice
¡	Route requests to your pods using services
¡	Deploy a new version of the market-data microservice
¡	Learn how to communicate between microservices on Kubernetes

We’ll start by using Minikube, which will run in a virtual machine on your local host. 
In a real deployment environment, the master and worker nodes would be separate 
virtual machines, but locally, the same machine will fulfill both roles. You can find an 
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installation guide for Minikube on the project’s Github page (https://github.com/
kubernetes/minikube).

TIP    If you used a private repository in section 9.1.4, you’ll need to configure 
Minikube so it can access that repository by running minikube addons con-
figure registry-creds and following the instructions onscreen.

9.2.1	 Designing and running pods

The basic building block in Kubernetes is a pod: a single container or a tightly coupled 
group of containers that are scheduled together on the same machine. A pod is the 
unit of deployment and represents a single instance of a service. Because it’s the unit of 
deployment, it’s also the unit of horizontal scalability (or replication). When you scale 
capacity up or down, you add or remove pods.

TIP    Sometimes a service is deployed as more than one container — a composite 
container. For example, Flask services running on a Gunicorn web server are 
typically served behind NGINX. Using Kubernetes, a single pod would contain 
both the service and the NGINX container. Other examples of composite con-
tainer patterns are discussed on the Kubernetes blog at (http://mng.bz/tOyC).

You can define a set of pods for your market-data service. Create a file called market- 
data-replica-set.yml in your app directory. Don’t worry if it doesn’t make much sense 
yet. Include the following code in your file.

Listing 9.4    market-data-replica-set.yml

---
kind: ReplicaSet 
apiVersion: extensions/v1beta1
metadata:
  name: market-data
spec:
  replicas: 3 
  template: 
    metadata:
      labels: 
        app: market-data 
        tier: backend 
        track: stable 
    spec:
      containers:
      - name: market-data
        image: <docker id>/market-data:latest 
        ports:
        - containerPort: 8000

In Kubernetes, you typically declare instructions to the scheduler in YAML files (or 
JSON, but YAML’s easier on the eyes). These instructions define Kubernetes objects, 

Defines a set of pods

Should contain three replicas of your market-data pod

Creates each pod using this template

Identifies pods within Kubernetes by label

Contains a single container, 
pulled from your Docker registry
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and a pod is one kind of object. These configuration files represent the desired state 
of your cluster. When you apply this configuration to Kubernetes, the scheduler will 
continually work to maintain that ideal state. In this file, you’ve defined a ReplicaSet, 
which is a Kubernetes object that manages a group of pods.

NOTE    We’ll occasionally use dot-notation to refer to paths within a *.yml file. 
For example, in listing 9.4, the path to the market-data container definition 
would be spec.template.spec.containers[0].

To apply this to your local cluster, you can use the kubectl command-line tool. When 
you started Minikube, it should have automatically configured kubectl to operate on 
your cluster. This tool interacts with an API exposed by the cluster’s master node. Give 
it a try:

$ kubectl apply -f market-data-replica-set.yml
replicaset "market-data" configured

Kubernetes will asynchronously create the objects you’ve defined. You can observe the 
status of this operation using kubectl. Running kubectl get pods (or kubectl get 
pods -l app=market-data) will show you the pods that your command has created 
(figure 9.8). They’ll take a few minutes to start up for the first time as the node down-
loads your Docker image.

You saw earlier that you didn’t create individual pods. It’s unusual to create or destroy 
pods directly; instead, pods are managed by controllers. A controller is responsible 
for taking some desired state — say, always running three instances of the market-data 
pod — and performing actions to reach that state. This observe-diff-act loop happens 
continually.

You’ve just encountered the most common type of controller: the ReplicaSet. If 
you’ve ever encountered instance groups on AWS or GCP, you might find their behav-
ior similar. A replica set aims to ensure a specific number of pods are running at any 
one time. For example, let’s say a pod dies — maybe a node in the cluster failed — the 
replica set will observe that the state of the cluster no longer matches the desired state 
and will attempt to schedule a replacement elsewhere in the cluster.

You can see this in action. Delete one of the pods you’ve just created (pods are iden-
tified by name):

$ kubectl delete pod <pod name>

The replica set will schedule a new pod to replace the one you destroyed (figure 9.9).

Figure 9.8    The results of the kubectl get pods command after creating a new replica set
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Figure 9.9    The state of running pods after one member of the replica set is deleted

This matches the ideal we laid out in chapter 8: that deploying microservice instances 
should be built on a single primitive operation. By combining controllers and 
immutable containers, you can treat pods like cattle and rely on automation to main-
tain capacity, even when the underlying infrastructure is unreliable.

WARNING    A cluster alone isn’t a complete redundancy solution; your infra-
structure design also determines this. For example, if you run a cluster in a sin-
gle data center — or one availability zone in AWS — you won’t have redundancy 
if that entire data center goes down. It’s important, where possible, to run your 
cluster(s) across multiple isolated zones of failure.

9.2.2	 Load balancing

Right, so you’re running a microservice on Kubernetes. That was pretty quick. The bad 
news is, you can’t access those pods yet. Like you did earlier with NGINX, you need to 
link them to a load balancer to route requests and expose their capabilities to other 
collaborators, either inside or outside your cluster.

In Kubernetes, a service defines a set of pods and provides a method for reaching 
them, either by other applications in the cluster or from outside the cluster. The net-
working magic that achieves this feat is outside the scope of this book, but figure 9.10 
illustrates how a service would connect to your existing pods.

Now, you’re currently running a replica set containing three market-data pods. If 
you recall from listing 9.4, your market-data pods have the labels app: market-data 
and tier: backend. That’s important, because a service forms a group of pods based 
on their labels.

To create a service, you need another YAML file, as shown in the following listing. 
This time, call it market-data-service.yml (great naming convention).

Listing 9.5    market-data-service.yml

---
apiVersion: v1
kind: Service
metadata:
  name: market-data
spec:
  type: NodePort
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  selector: 
    app: market-data 
    tier: backend 
  ports:
    - protocol: TCP
      port: 8000 
      nodePort: 30623 

Apply this configuration using the same $ kubectl apply -f  command you used to 
create the replica set before, substituting the name of your new YAML file. This will 
create a service accessible on port 30623 of your cluster, which routes requests to your 
market-data pods on port 8000.

You should be able to curl your service and send requests to your pods. Doing so will 
return the name of each pod that serves the request:

$ curl http://`minikube ip`:30623/ping 

Requests

Port

market-data
service

market-data podsapp: market-data
tier: backend
track: stable

app: market-data
tier: backend

5000

app: market-data
tier: backend
track: stable

5000

app: market-data
tier: backend
track: stable

5000

Replica set (market-data)

Figure 9.10    Requests made to a service are forwarded to pods that match the label selector of the 
service.

Defines which pods this service will access

The service will route to this port on the specified pods.

The service will be exposed as a specified port 
on the cluster. Excluding this line will assign a 
random port in range 30000-32767.

`minikube ip` returns the IP 
address of your local cluster.
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Several types of services are available, and they’re outlined in table 9.1. In this case, 
you used a NodePort service to map your service to an externally available port on 
your cluster, but if only other cluster services access your microservice, it usually makes 
more sense to use ClusterIP to keep access local to the cluster.

Table 9.1    Types of service on Kubernetes

Service type Behavior

ClusterIP Exposes the service on an IP address local to the cluster

NodePort Exposes the service on a static port accessible at the cluster’s IP address

LoadBalancer Exposes the service by provisioning an external cloud service load balancer (If you’re 
using AWS, this creates an ELB.)

The service listens for events across the cluster and will be dynamically updated if the 
group of pods changes. For example, if you kill a pod, it will be removed from the 
group, and the service will route requests to any new pod created by the replica set.

9.2.3	 A quick look under the hood

So far, this has been seamless: you send an instruction, and Kubernetes executes it! 
Let’s take a moment to learn how Kubernetes runs your pods.

If you drill down a level, you can see that the master and worker nodes on Kubernetes 
run several specialized components. Figure 9.11 illustrates these components.

Components of the master node

The master node consists of four components:

¡	The API server  — When you ran commands on kubectl, this is what it communi-
cated with to perform operations. The API server exposes an API for both exter-
nal users and other components within the cluster.

¡	The scheduler  — This is responsible for selecting an appropriate node where a pod 
will run, given priority, resource needs, and other constraints.

¡	The controller manager  — This is responsible for executing control loops: the con-
tinual observe-diff-act operation that underpins the operation of Kubernetes.

¡	A distributed key-value data store, etcd  — This stores the underlying state of the clus-
ter and thereby makes sure it persists when nodes fail or restarts are required.

Together, these components act as a control plane for the cluster. Picture this as 
something like the cockpit of an airplane. Together, these components provide the 
API and backend required to orchestrate operations across a cluster of nodes.
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Figure 9.11    Components of the master and worker nodes in a Kubernetes cluster

Components of a worker node

Each worker node uses the following components to run and monitor applications:

¡	A container runtime  — In your case, this is Docker.
¡	The kubelet  — This interacts with the Kubernetes master to start, stop, and moni-

tor containers on the node.
¡	The kube-proxy  — This provides a network proxy to direct requests to and between 

different pods across the cluster.

These components are relatively small and loosely coupled. A key design principle 
of Kubernetes is to separate concerns and ensure components can operate autono-
mously — a little like microservices!

Watches for state changes

The API server is responsible for recording the state of the cluster — and receiving 
instructions from clients — but it doesn’t explicitly tell other components what to do. 
Instead, each component works independently to orchestrate cluster behavior when 
some event or change occurs. To learn about state changes, each component watches 
the API server: a component requests to be notified by the API server when something 
interesting happens, so it can perform appropriate actions to attempt to match the 
desired state.

For example, the scheduler needs to know when it should assign new pods to nodes. 
Therefore, it connects to the API server to receive a continuous stream of events that 
relate to the pod resource. When it receives a notification about a newly created pod, it 
finds an appropriate node for that pod. Figure 9.12 shows this process.

In turn, your kubelets watch the API server to learn when a pod has been assigned to 
its node and then they start the pod appropriately. Each component watches resources 
and events that interest it; for example, the controller manager watches replica sets and 
services (among other things).
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Scheduler

1. Watches

2. Receives notification
about new pod

3. Updates pod with assigned node

API server

Pods

Figure 9.12    The scheduler watches the API server for newly created pods and determines which node 
they should run on.

Understanding how pods are run

What happens when you create a replica set? You saw earlier that this results in the 
expected number of pods being run — from your perspective, it looked simple! But in 
reality, creating your replica set through kubectl triggers a complex chain of events 
across multiple components. This chain is illustrated in figure 9.13.
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API server
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Container runtime

7. runs containers

Containers
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Figure 9.13    The series of events from creating a replica set to running pods on Kubernetes

 



	 233Deploying to a cluster

Let’s walk through each step:

1	 You instructed the API server to create a new replica set, using kubectl. The API 
server stores this new resource in etcd.

2	 The controller manager watches for creation and modification of replica sets. It 
receives a notification about the new set you created.

3	 The controller manager compares the current state of the cluster to the new 
state, determining that it needs to create new pods. It creates these pod resources 
through the API server, based on the template you provided through kubectl.

4	 The scheduler receives a notification about a new pod and assigns it an appro-
priate node, again updating the pod’s definition through the API server. At this 
point, you haven’t run any real application — the controllers and scheduler have 
only updated the state that the API server is storing.

5	 Once the pod is assigned to a node, the API server notifies the appropriate 
kubelet, and the kubelet instructs Docker to run containers. Images are down-
loaded, containers are started, and the kubelet begins to monitor their opera-
tion. At this point, your pods are running!

As you can see, each component acts independently, but together, they orchestrate a 
complex deployment action. Hopefully this has given you a useful glance under the 
cover.  Now, back to running your microservices.

9.2.4	 Health checks

You’re missing something. Unlike a typical cloud load balancer, a Kubernetes service 
doesn’t itself execute health checks on your underlying application. Instead, the ser-
vice checks the shared state of the cluster to determine if a pod is ready to receive 
requests. But how do you know if a pod is ready?

In chapter 6, we introduced two types of health check:

¡	Liveness  — Whether an application has started correctly
¡	Readiness  — Whether an application is ready to serve requests

These health checks are crucial to the resiliency of your service. They ensure that traf-
fic is routed to healthy instances of your microservice and away from instances that are 
performing poorly (or not at all).

By default, Kubernetes executes lightweight, process-based liveness checks for every 
pod you run. If one of your market-data containers fails a liveness check, Kubernetes 
will attempt to restart that container (as long as the container’s restart policy isn’t set 
to Never). The kubelet process on each worker node carries out this health check. This 
process continually queries the container runtime (in your case, the Docker daemon) 
to establish whether it needs to restart a container.
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TIP    Kubernetes performs restarts on an exponential back-off schedule; if a 
pod isn’t live after five minutes, it’ll be marked for deletion. If a replica set man-
ages the pod, the controller will attempt to schedule a new pod to maintain the 
desired service capacity.

This alone isn’t adequate, as your microservice may run into failure scenarios that 
don’t cause the container itself to fail: whether deadlocks due to request saturation, 
timeouts of underlying resources, or a plain old coding error. If the scheduler can’t 
identify this scenario, performance can deteriorate as a service routes requests to unre-
sponsive pods, potentially leading to cascading failures.

To avoid this situation, you need the scheduler to continually check the state of the 
application inside your container, ensuring it’s both live and ready. With Kubernetes, 
you can configure probes to achieve this, which you can define as part of your pod 
template. Figure 9.14 illustrates how these checks, and the previous process check, will 
be run.

Adding probes is straightforward, although you do need to add some configuration 
see the next listing to the container specification in market-data-replica-set.yml. Probes 
can be HTTP GET requests, scripts executed inside a container, or TCP socket checks. In 
this case, you’ll use a GET request, as shown in the following listing.

Kubelet

Updates

Pod status

Ready Live

Application ready?

Application live?

Container running?

Checks status

market-data
service

Routes requests

market-data container

Application

Docker
runtime

Figure 9.14    The kubelet process on each worker node runs health checks, or probes, in Kubernetes. 
Readiness probe results control routing by services.
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Listing 9.6    Liveness probe in market-data-replica-set.yml 

livenessProbe: 
  httpGet: 
    path: /ping 
    port: 8000 
  initialDelaySeconds: 10 
  timeoutSeconds: 15 
readinessProbe: 
    path: /ping 
    port: 8000 
  initialDelaySeconds: 10 
  timeoutSeconds: 15 

Reapply this configuration using kubectl to update the state of the replica set. Kuber-
netes will, to the best of its ability, use these probes to help ensure instances of your 
microservice are alive and kicking. In this example, both liveness and readiness check 
the same endpoint, but if your microservice has external dependencies, such as a 
queueing service, it makes sense to make readiness dependent on connectivity from 
your application to those dependencies.

9.2.5	 Deploying a new version

You should now understand how you use replica sets, pods, and services to run stateless 
microservices on Kubernetes. On top of these concepts, you can build a stable, seam-
less deployment process for each of your microservices. In chapter 8, you learned about 
canary deployments; in this section, you’ll try out the technique with Kubernetes.

Deployments

Before we get started, we should quickly introduce deployments. Kubernetes provides 
a higher level abstraction, the Deployment object, for orchestrating the deployment of 
new replica sets. Each time you update a deployment, the scheduler will orchestrate a 
rolling update of instances in a replica set, ensuring they’re deployed seamlessly.

You can change the original approach to use a deployment instead. First, delete your 
original replica set:

$ kubectl delete replicaset market-data

After that, create a new file, market-data-deployment.yml. This should be similar to the 
replica set you created earlier, except that the type of object should be Deployment, 
rather than ReplicaSet, as shown in the following listing.

Listing 9.7    market-data-deployment.yml

---
apiVersion: extensions/v1beta1
kind: Deployment 
metadata:
  name: market-data
spec: 
  replicas: 3 

Configures a liveness probe to query /ping on port 8000

Configures a readiness probe to query /ping on port 8000

Defines a Kubernetes deployment object

The desired number of pods to deploy
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  template: 
    metadata:
      labels:
        app: market-data
        tier: backend
        track: stable
    spec:
      containers:
      - name: market-data
        image: <docker id>/market-data:latest
        resources:
          requests:
            cpu: 100m
            memory: 100Mi
        ports:
        - containerPort: 8000
        livenessProbe:
          httpGet:
            path: /ping
            port: 8000
          initialDelaySeconds: 10
          timeoutSeconds: 15
        readinessProbe:
          httpGet:
            path: /ping
            port: 8000
          initialDelaySeconds: 10
          timeoutSeconds: 15

Use kubectl to apply this file to the cluster. This will create a deployment, which will 
create a replica set and three instances of the market-data pod.

Canaries

In a canary deploy, you deploy a single instance of a microservice to ensure that a new 
build is stable when it faces real production traffic. This instance should run alongside 
existing production instances. A canary release has four steps:

1	 You release a single instance of a new version alongside the previous version.

2	 You route some proportion of traffic to the new instance.

3	 You assess the health of the new version by, for example, monitoring error rates 
or observing behavior.

4	 If the new version is healthy, you commence a full rollout to replace other 
instances. If not, you remove the canary instance, halting the release.

On Kubernetes, you can use labels to identify a canary pod. In the first example, you 
specified a label track: stable on each pod in your replica set. To deploy a canary, 
you’ll need to deploy a new pod that’s distinguished with track: canary. The service 
you created earlier only selects on two labels (app and tier), so it’ll route requests to 
both stable and canary pods. This is illustrated in figure 9.15.

The template to use for creating each pod
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Replica set (market-data)

Figure 9.15    The service forwards requests to your new canary pod based on the service’s label selector, 
which doesn’t restrict on track.

First, you should build a new container for your new release. You’ll use tags to identify 
the new version, and don’t forget to substitute your own Docker ID:

$ docker build -t <docker id>/market-data:v2 .
$ docker push <docker id>/market-data:v2

This version is tagged as v2, although in practice it may not be appropriate to apply a 
numeric versioning scheme to your services. We’ve found tagging them with the com-
mit ID also works well. (For Git repositories, we use git rev-parse --short HEAD.)

Once you’ve pushed that new image, create a yml file specifying your canary 
deployment:

¡	It should create one replica, instead of three.
¡	It should release the v2 tag of the container, rather than latest.
¡	It should look like the following listing.

Listing 9.8    market-data-canary-deployment.yml

---
apiVersion: extensions/v1beta1
kind: Deployment
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metadata:
  name: market-data-canary
spec:
  replicas: 1 
  template:
    metadata:
      labels:
        app: market-data 
        tier: backend 
        track: canary 
    spec:
      containers:
      - name: market-data
        image: <docker id>/market-data:v2 
        resources:
          requests:
            cpu: 100m
            memory: 100Mi
        ports:
        - containerPort: 8000
        livenessProbe:
          httpGet:
            path: /ping
            port: 8000
          initialDelaySeconds: 10
          timeoutSeconds: 15
        readinessProbe:
          httpGet:
            path: /ping
            port: 8000
          initialDelaySeconds: 10
          timeoutSeconds: 15

Use kubectl to apply this to your cluster. The deployment will create a new replica set 
containing a single canary pod for v2.

Let’s take a closer look at the state of your cluster. If you run minikube dashboard on 
the command line, it’ll open the dashboard for your cluster in a browser window (fig-
ure 9.16). In the dashboard — under Workloads — you should be able to see:

¡	The canary deployment you’ve just created, as well as your original deployment
¡	Four pods: the original three, plus a canary pod
¡	Two replica sets: one each for the stable and canary tracks

So far so good! At this stage, for a real microservice, you might run some automated tests, 
or check the monitoring output of your service to ensure it’s processing work as expected. 
For now, you can safely assume your canary is healthy and performing as expected, which 
means you can safely roll out the new version, replacing all your old instances.

Edit the market-data-deployment.yml file and make two changes:

¡	Change the container used to market-data:v2.
¡	Add a strategy field to specify how pods will be updated.

You want to create one canary.

The canary deployment has 
a distinct set of labels.

This deployment will release 
market-data:v2.
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Figure 9.16    The Kubernetes dashboard after multiple deploys — stable and canary — of the market-data 
microservice

Your updated deployment file should look like the following listing.

Listing 9.9    Updated market-data-deployment.yml

---
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  name: market-data
spec:
  replicas: 3
  strategy: 
    type: RollingUpdate 
    rollingUpdate: 
      maxUnavailable: 50% 
      maxSurge: 50% 
  template:
    metadata:
      labels:
        app: market-data
        tier: backend
        track: stable
    spec:
      containers:
      - name: market-data
        image: morganjbruce/market-data:v2
        resources:
          requests:
            cpu: 100m
            memory: 100Mi

The strategy field describes how Kubernetes 
will execute the deployment of new pods.
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        ports:
        - containerPort: 8000

Applying this configuration will create a new replica set, starting instances one by one 
while removing them from the original set.  This process is illustrated in figure 9.17.

You can also observe this in the event history of the controller by running kubectl 
describe deployment/market-data (figure 9.18).

From this history, you can see how Kubernetes allows you to build higher level 
deployment operations on top of simple operations. In this case, the scheduler used 
your desired state of the world and a set of constraints to determine an appropriate 
path of deployment, but you could use replica sets and pods to build any deployment 
pattern that was appropriate for your service.

ca

Deployment

Creates a new replica set

v1 v1 v1

Replica set A Replica set B
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Figure 9.17    A new deployment creates a new replica set and progressively rolls instances between the 
old and new set.

Figure 9.18    Events Kubernetes emitted during a rolling deployment
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9.2.6	 Rolling back

Well done! You’ve smoothly deployed a new version of your microservice.  If something 
went wrong, you can also use the deployment object to undo all your hard work. First, 
check the rollout history:

$ kubectl rollout history deployment/market-data

This should return two revisions: your original deployment and your v2 deployment. 
To roll back, specify the target revision:

$ kubectl rollout undo deployment/market-data --to-revision=1

This will perform the reverse of the previous rolling update to return the underlying 
replica set to its original state.

9.2.7	 Connecting multiple services

Lastly, your microservice isn’t going to be much use by itself, and several of Simple-
Bank’s services depend on the capabilities that the market-data service provides. It’d 
be pretty much insane to hardcode a port number or an IP address into each service to 
refer to the underlying endpoint of each collaborator; you shouldn’t tightly couple any 
service to another’s internal network location. Instead, you need some way of accessing 
a collaborator by a known name.

Kubernetes integrates a local DNS service to achieve this, and it runs as a pod on 
the Kubernetes master. When new service is created, the DNS service assigns a name 
in the format {my-svc}.{my-namespace}.svc.cluster.local; for example, you 
should be able to resolve your market-data service from any other pod using the name 
market-data.default.svc.cluster.local.

Give it a shot. You can use kubectl to run an arbitrary container in your cluster — try 
busybox, which is a great little image containing several common Linux utilities, such as 
nslookup. Run the following command to open a command prompt inside a container 
running on Minikube:

$ kubectl run -i --tty lookup --image=busybox /bin/sh

Then you can try an nslookup:

/ # nslookup market-data.default.svc.cluster.local

You should get output that looks something like this:

Server:    10.0.0.10
Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.local

Name:      market-data.default.svc.cluster.local
Address 1: 10.0.0.156 market-data.default.svc.cluster.local

The IP address in the last entry should match the cluster IP assigned to your service. 
(If you don’t believe me, you can double-check by calling kubectl get services.) If 
so, success! You’ve covered a lot of ground: building and storing an image for a micro-
service, running it on Kubernetes, load-balancing multiple instances, deploying a new 
version (and rolling back), and connecting microservices together. 
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Summary

¡	Packaging microservices as immutable, executable artifacts allows you to 
orchestrate deployment through a primitive operation — adding or removing a 
container.

¡	Schedulers and containers abstract away underlying machine management for 
service development and deployment.

¡	Schedulers work by trying to match the resource needs of an application to the 
resource usage of a cluster of machines, while health-checking running services 
to ensure they’re operating correctly.

¡	Kubernetes provides ideal features of a microservice deployment platform, 
including secret management, service discovery, and horizontal scalability.

¡	A Kubernetes user defines the desired state (or specification) of their cluster ser-
vices, and Kubernetes figures out how to achieve that state, executing a continual 
loop of observe-diff-act.

¡	The logical application unit on Kubernetes is a pod: one or more containers that 
execute together.

¡	Replica sets manage the lifecycle of groups of pods, starting new pods if existing 
ones fail.

¡	Deployments on Kubernetes are designed to maintain service availability by exe-
cuting rolling updates of pods across replica sets.

¡	You can use service objects to group underlying pods and make them available to 
other applications inside and outside of the cluster.
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10Building a delivery  
pipeline for microservices

This chapter covers
¡	Designing a continuous delivery pipeline for a 

microservice

¡	Using Jenkins and Kubernetes to automate 
deployment tasks

¡	Managing staging and production 
environments

¡	Using feature flags and dark launches to 
distinguish between deployment and release

Rapidly and reliably releasing new microservices and new features to production is 
crucial to successfully maintaining a microservice application. Unlike a monolithic 
application, where you can optimize deployment for a single use case, microservice 
deployment practices need to scale to multiple services, written in different lan-
guages, and each with their own dependencies. Investing in consistent and robust 
deployment tooling and infrastructure will go a long way toward making a success of 
any microservice project.

You can achieve reliable microservice releases by applying the principles of con-
tinuous delivery. The fundamental building block of continuous delivery is a deploy-
ment pipeline. Picture a factory production line: a conveyer belt takes your software 
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from code commits to deployable artifact to running software, while continually assess-
ing the quality of the output at each stage. Doing this leads to frequent, small deploy-
ments, rather than big-bang changes, to production.

So far, you’ve built and deployed a service using Docker, Kubernetes, and com-
mand-line scripts. In this chapter, you’ll combine those steps into an end-to-end build 
pipeline, using Jenkins, a widely used open source build automation tool. Along the 
way, we’ll examine how this approach minimizes risk and increases the stability of your 
overall application. After that, we’ll examine the difference between deploying new 
code and releasing new features.

10.1	 Making deploys boring
Deploying software should be boring. You should be able to roll out changes and 
new features without peering through your fingers or obsessively watching error 
dashboards.

Unfortunately, as we mentioned in chapter 8, human error causes most issues in pro-
duction, and microservice deployments leave plenty of room for that! Consider the big 
picture: teams are developing and deploying tens — if not hundreds — of independent 
services on their own schedule, without explicit coordination or collaboration between 
teams. Any bad change to a service might have a wide-ranging impact on the perfor-
mance of other services and the wider application.

An ideal microservice deployment process should meet two goals:

¡	Safety at pace  — The faster you can deploy new services and changes, the quicker 
you can iterate and deliver value to your end users. Deployment should maxi-
mize safety: you should validate, as much as feasible, that a given change won’t 
negatively impact the stability of a service.

¡	Consistency  — Consistency of deployment process across different services, 
regardless of underlying tech stack, helps alleviate technical isolation and makes 
operations more predictable and scalable.

It’s not easy to maintain the fine balance between safety and pace. You could move 
quickly without safety by deploying code changes directly to production, but that’d 
be crazy. Likewise, you could achieve stability by investing in a time-consuming 
change-control and approval process, but that wouldn’t scale well to the high volume 
of change in a large, complex microservice application.

10.1.1	 A deployment pipeline

Continuous delivery strikes an ideal balance between reducing risk and increasing speed:

¡	Releasing smaller sets of commits increases safety by reducing the amount of 
change happening at any one time. Smaller changesets are also easier to reason 
through.

¡	An automated pipeline of commit validation increases the probability that a 
given changeset is free from defects.
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Releasing small changesets and systematically verifying their quality gives teams the 
confidence to release features rapidly. Smaller, more atomic releases are less risky. 
The continuous delivery approach empowers teams to ship services rapidly and 
independently.

One of the weaknesses of monolithic development is that releases often become 
large, coupling together disparate features at release time. Likewise, even small 
changes in a large application can have an unintentionally broad impact, particularly 
when made to cross-cutting concerns. At worst, commits in monolithic development 
become stale while waiting for a deployment; they’re no longer relevant to the needs of 
the application or business by the time they reach customers.

NOTE    Continuous delivery isn’t quite the same as continuous deployment. 
In the latter, every validated change is automatically deployed to production; 
in the former, you can deploy every change to production, but whether you 
deploy it or not is up to the engineering team and business needs.

Let’s look at an example in figure 10.1. Most of the steps in this pipeline should look 
familiar:

1	 First, an engineer commits some code to a microservice repository.

2	 Next, a build automation server builds the code.

3	 If the build is successful, the automation server runs unit tests to validate that 
code.

4	 If these tests pass, the automation server packages the service for deployment 
and stores this package in an artifact repository.

5	 The automation server deploys code to a staging environment, where you can 
test the service against other live collaborators.

6	 If this is successful, the automation server will deploy the code to a production 
environment.

Engineer

Commits

Notify

Service
code

Deployment pipeline

Failed build Failed tests

Unit testBuild Package
Deploy to
staging Test

Failed testsFailed push

Failure at a stage produces feedback.

Artifact
repository

Staging
environment

Production
environment

Deploys to Deploys toStores in

Deploy to
production

Figure 10.1    An example deployment pipeline builds, validates, and deploys a commit to production, providing 
feedback to engineers.
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Each step in this pipeline provides feedback to the engineering team on the correct-
ness of their code. For example, if step 3 fails, you’ll receive a list of failed test asser-
tions to correct.

Implementing this pipeline should make the process of deployment highly visible 
and transparent — crucial for an audit trail, or if something goes wrong. Regardless of 
the underlying language or technology, every service you deploy should be able to fol-
low a similar process.

10.2	 Building a pipeline with Jenkins
In the previous chapter, you ran command-line scripts to perform steps in deploy-
ment: building containers, publishing artifacts, and deploying code. Now you’ll use 
Jenkins — a build automation tool — to connect those steps together into a coher-
ent, reusable, and extensible deployment pipeline. We’ve picked Jenkins because 
it’s open source, is easy to get running, supports scriptable build jobs, and is widely 
used.

Unfortunately, no perfect out-of-the-box solution for deployment is available: any 
pipeline is usually a combination of multiple tools, depending on both the service’s 
tech stack and the target deployment platform. In your case, you’ll be using Jenkins to 
assemble tools you’ve (mostly) already used. Figure 10.2 illustrates the components of 
your deployment pipeline.

In the next few sections, we’re going to cover a lot of ground:

¡	Using Jenkins to script complex deployment pipelines
¡	Building a pipeline that builds, tests, and deploys your service to different 

environments
¡	Managing staging environments for microservices
¡	Reusing your deployment pipeline across multiple services

Jenkins orchestrates the pipeline, combining multiple tools.

Python-specific tools
for managing

dependencies and
running tests

Docker

PytestPypi

Build Unit test Package

Jenkins

Deploy to
staging

Test
Deploy to
production

Manual
Kubernetes,

kubectl
Kubernetes,

kubectl

You deploy services to
Kubernetes using kubectl.

You use Docker to build and
package a deployable artifact.

Figure 10.2    The deployment pipeline you’ll use, which combines multiple tools dependent on the tech stack 
and target deployment platform you’re using
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You’ll need to have access to a running Jenkins instance to run the examples in this 
chapter. The appendix walks you through Jenkins setup on a local Minikube cluster —  
we’ll assume you’re using that approach in the following sections.

10.2.1	 Configuring a build pipeline

The Jenkins application consists of a master node and, optionally, any number of 
agents. Running a Jenkins job executes scripts (using common tools, such as make 
or Maven) across these agent nodes to perform deployment activities. A job operates 
within a workspace  — a local copy of your code repository. Figure 10.3 illustrates this 
architecture.

To write your build pipeline, you’re going to use a feature called Scripted Pipe-
line. In Scripted Pipeline, you can express a build pipeline using a general-purpose 
domain-specific language (DSL) written in Groovy. This DSL defines common methods 
for writing build jobs, such as sh (for executing shell scripts) and stage (for identifying 
different parts of a build pipeline). The Scripted Pipeline approach is more powerful 
than you might think — by the end of the chapter, you’ll use it to build your own higher 
level, declarative DSL.

NOTE    At the time of writing, Jenkins Pipeline only supports Groovy as a script-
ing language. Don’t worry — if you’re comfortable with Java, Python, or Ruby, 
understanding Groovy won’t be too taxing.

Jenkins will execute build jobs by executing a pipeline script defined in a Jenkinsfile. 
Try it yourself! First, copy the contents of chapter-10/market-data into a new directory 
and push that to a Git repo. It’s easiest if you push it to somewhere public, like GitHub. 
This is the service you’ll be deploying in this chapter.

Workspace

Cloned from

Executed on

Job {scripts}

Source repo

Jenkins

Master

Agent

Workspace

Agent

Figure 10.3    A Jenkins deployment consists of a master node, which manages execution, and agents 
that perform build tasks within a workspace — a clone of the repository being built.
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Next, you’ll want to create a Jenkinsfile in the root of your repository, and it should 
look like the following listing.

Listing 10.1    A basic Jenkinsfile

stage("Build Info") { 
  node { 
    def commit = checkout scm 
    echo "Latest commit id: ${commit.GIT_COMMIT}"
  }
}

When Jenkins runs this script, the script will check out a code repository as a workspace 
and write the latest commit ID to the console.

You can try this out by setting up a pipeline job for a service. Commit the Jenkinsfile 
you just created, then push your changes to origin. Now, open the Jenkins UI. (Remem-
ber, you can do this with minikube service jenkins.) Follow these steps to create a 
multibranch pipeline job:

1	 Navigate to the Create New Jobs page.

2	 Enter an item name, market-data; select Multibranch Pipeline as the job type; 
and click OK.

3	 On the following page (see figure 10.4), select a Branch Source of Git and add 
your repository’s clone URL to the Project Repository field. If you’re using a pri-
vate Git repository, you’ll also need to configure your credentials.

4	 Elect to periodically scan the pipeline every minute. This will trigger builds if 
changes are detected.

5	 Save your changes.

Once you’ve saved your changes, Jenkins will scan your repository for branches con-
taining a Jenkinsfile. The multibranch pipeline job type will generate a unique build 
for each branch in your repository — later, this will let you treat feature branches differ-
ently from the master branch.

TIP    Instead of clicking through the UI, you can use the Jenkins Job DSL to 
generate pipeline jobs. This is (another) Groovy DSL that generates jobs in 
Jenkins’ underlying XML format. You can find examples in the project docu-
mentation (https://github.com/jenkinsci/job-dsl-plugin/wiki).

Once the indexing is complete, Jenkins will run a build for your master branch. 
Clicking on the name of the branch will take you the build history for that branch 
(figure 10.5).

Identifies a distinct phase of your pipeline
Takes a closure (or function) as a parameter, instructing 
Jenkins to execute this code on a build node

Checks out some code 
from source control

 

https://github.com/jenkinsci/job-dsl-plugin/wiki
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Figure 10.4    New project configuration screen, showing Branch Sources options

Click the build number and then Console Output. This traces the output of the build. 
Within that output, you should be able to see how your Jenkinsfile has been executed:

Agent default-q3ccc is provisioned from template Kubernetes Pod Template
Agent specification [Kubernetes Pod Template] (jenkins-jenkins-slave): 
* [jnlp] jenkins/jnlp-slave:3.10-1(resourceRequestCpu: 200m, resourceRequest
➥Memory: 256Mi, resourceLimitCpu: 200m, resourceLimitMemory: 256Mi)

Running on default-q3ccc in /home/jenkins/workspace/market-data_master
➥-27MDVADAYDBX5WJSRWQIFEL3T7GD4LWPU5CXCZNTJ4CKBDLP3LVA
[Pipeline] {
[Pipeline] checkout
Cloning the remote Git repository
Cloning with configured refspecs honoured and without tags
Cloning repository https://github.com/morganjbruce/market-data.git
 > git init /home/jenkins/workspace/market-data_master
[CA}-27MDVADAYDBX5WJSRWQIFEL3T7GD4LWPU5CXCZNTJ4CKBDLP3LVA # timeout=10
Fetching upstream changes from https://github.com/morganjbruce/
➥market-data.git
 > git --version # timeout=10
 > git fetch --no-tags --progress https://github.com/morganjbruce/
➥market-data.git +refs/heads/*:refs/remotes/origin/*
 > git config remote.origin.url https://github.com/morganjbruce/
➥market-data.git # timeout=10
 > git config --add remote.origin.fetch +refs/heads/*:refs/remotes/origin/
➥* # timeout=10
 > git config remote.origin.url https://github.com/morganjbruce/
➥market-data.git # timeout=10
Fetching without tags
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Fetching upstream changes from https://github.com/morganjbruce/
➥market-data.git
 > git fetch --no-tags --progress https://github.com/morganjbruce/
➥market-data.git +refs/heads/*:refs/remotes/origin/*
Checking out Revision 80bfb7bdc4fa0b92dcf360393e5d49e0f348b43b (master)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f 80bfb7bdc4fa0b92dcf360393e5d49e0f348b43b
Commit message: "working through ch10"
First time build. Skipping changelog.
[Pipeline] echo
Latest commit id: 80bfb7bdc4fa0b92dcf360393e5d49e0f348b43b
[Pipeline] }
[Pipeline] // node
[Pipeline] }
[Pipeline] // stage
[Pipeline] End of Pipeline
Finished: SUCCESS

Figure 10.5    Build history for the master branch of your repository
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Each [Pipeline] step traces the execution of your code. Awesome — you’ve deployed 
a build automation tool, configured it against a service repository, and run your first 
build pipeline! Next, let’s look at the first stage of your pipeline: build.

10.2.2	 Building your image

You’re going to use Docker to build and package your images. First, let’s change your 
Jenkinsfile, as shown in the following listing.

Listing 10.2    Jenkinsfile for build step

def withPod(body) { 
  podTemplate(label: 'pod', serviceAccount: 'jenkins', containers: [
      containerTemplate(name: 'docker', image: 'docker', command: 'cat', 
➥ttyEnabled: true),
      containerTemplate(name: 'kubectl', image: 'morganjbruce/kubectl', 
➥command: 'cat', ttyEnabled: true)
    ],
    volumes: [
      hostPathVolume(mountPath: '/var/run/docker.sock', hostPath: 
➥'/var/run/docker.sock'),
    ]
 ) { body() }
}

withPod {
  node('pod') { 
    def tag = "${env.BRANCH_NAME}.${env.BUILD_NUMBER}"
    def service = "market-data:${tag}"
    
    checkout scm 

    container('docker') { 
      stage('Build') { 
        sh("docker build -t ${service} .") 
      }
    }
  }
}

This script will build your service and tag the resulting Docker container with the cur-
rent build number. It’s definitely more complex than the earlier version, so let’s take a 
quick walk through what you’re doing:

1	 You define a pod template for your build, which Jenkins will use to create pods 
on Kubernetes for a build agent. This pod contains two containers — Docker and 
kubectl.

Defines a pod template to use to run your job

Requests an instance of your pod template

Checks out the latest code from Git

Enters the Docker container of your pod

Starts a new pipeline stage

Runs a docker command to build your service image
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2	 Within that pod, you check out the latest version of your code from Git.

3	 You then start a new pipeline stage, which you’ve called Build.

4	 Within that stage, you enter the Docker container and run a docker command to 
build your service image.

TIP    Jenkins also provides a Groovy DSL for Docker instead of the shell com-
mands you’ve used. For example, you could use docker.build(imageName)in 
place of the sh call in listing 10.5.

Commit this new Jenkinsfile to your Git repo and navigate to the build job on Jenkins. 
Wait for a rerun — or trigger the job manually — and in the console output, you should 
see your container image being built successfully.

10.2.3	 Running tests

Next, you should run some tests. This should be like any other continuous integration 
job: if the tests are green, deployment can proceed; if not, you halt the pipeline. At this 
stage, you aim to provide rapid and accurate feedback on the quality of a changeset. 
Fast test suites help engineers iterate quickly.

Building your code and performing unit tests are only two of the possible activities 
you might perform during this commit stage of the build pipeline. Table 10.1 outlines 
other possibilities.

Table 10.1    Possible activities in the commit stage of a deployment pipeline

Activity Description

Unit tests Code-level tests

Compilation Compiling the artifact into an executable artifact

Dependency resolution Resolving external dependencies — for example, open source packages

Static analysis Evaluating code against metrics

Linting Checking syntax and stylistic principles of code

For now, you should get your unit tests running. Add a Test stage to your Jenkinsfile, 
immediately after the Build stage as shown in the next listing.

Listing 10.3    Test stage

stage('Test') {
  sh("docker run --rm ${service} python setup.py test")
}

Commit your Jenkinsfile and run the build. This will add a new stage to your pipeline, 
which executes the test cases defined in /tests (figure 10.6).
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Figure 10.6    Your pipeline so far with Build and Test stages

Unfortunately, this code alone won’t make the results visible in the build. Only success 
or failure will do that. You can archive the XML results you’re generating by adding the 
following to your Jenskinsfile.

Listing 10.4    Archiving results from test stage

stage('Test') {
  try {
    sh("docker run -v `pwd`:/workspace --rm ${service} 
➥python setup.py test") 
  } finally {
    step([$class: 'JUnitResultArchiver', testResults: 
➥'results.xml']) 
  }
} 

Mounts the current 
workspace as a volume

Archives the results that the test job generates
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This code mounts the current workspace as a volume within the Docker container. The 
python test process will write output to that volume as /workspace/result.xml, and you 
can access those results even after Docker has stopped and removed the service con-
tainer. You use the try–finally statement to ensure you achieve results regardless of 
pass or failure.

TIP    A good build pipeline directs feedback to the responsible engineering 
team. For example, our deployment pipelines at Onfido notify commit authors 
through Slack and email if pipeline stages fail. We also emit events from our 
pipeline for monitoring tools such as PagerDuty to consume. For more on 
sending notifications, see the Jenkins documentation (http://mng.bz/C5X3).

Committing your changed Jenkinsfile and running a fresh build will store test results 
in Jenkins. You can view them on the build page. Great — you’ve validated your under-
lying code. Now you’re almost ready to deploy.

10.2.4	 Publishing artifacts

You need to publish an artifact — in this case, our Docker container image — to be able 
to deploy it. If you used a private Docker registry in chapter 9, you’ll need to configure 
your Docker credentials within Jenkins:

1	 Navigate to Credentials > System > Global Credentials > Add Credentials.

2	 Add username and password credentials, using your credentials to https://hub 
.docker.com.

3	 Set the ID as dockerhub and click OK to save these credentials.

If you’re using a public registry, you can skip this step. Either way, when you’re ready, 
add a third step to your Jenkinsfile, as follows.

Listing 10.5    Publishing artifacts

def tagToDeploy = "[your-account]/${service}" 

stage('Publish') {
  withDockerRegistry(registry: [credentialsId: 
➥'dockerhub']) { 
    sh("docker tag ${service} ${tagToDeploy}") 
    sh("docker push ${tagToDeploy}")
  }
}

The target public image tag — replace 
with your account name

Logs in to the Docker registry 
using stored credentials

Tags the image with your Docker account name
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When you have that ready, commit and run your build. Jenkins will publish your con-
tainer to the public Docker registry.

10.2.5	 Deploying to staging

At this point, you’ve tested the service internally but in complete isolation; you haven’t 
interacted with any of the service’s upstream or downstream collaborators. You could 
deploy directly to production and hope for the best, but you probably shouldn’t. Instead, 
you can deploy to a staging environment where you can run further automated and man-
ual tests against real collaborators.

You’re going to use Kubernetes namespaces to logically segregate your staging 
and production environments. To deploy your service, you’ll use kubectl, using an 
approach similar to the one you took in chapter 9. Rather than installing the tool on 
Jenkins, you can use Docker to wrap this command-line tool. This is quite a useful 
technique.

WARNING    Logical segregation isn’t always appropriate in a real-world environ-
ment. Compliance and security standards, such as PCI DSS, often mandate net-
work-level isolation between production and development workloads, which 
Kubernetes namespaces wouldn’t currently satisfy. In addition, completely 
separating staging and production infrastructure reduces the risk of a “noisy 
neighbor” in staging, such as a resource-hungry service, affecting production 
reliability.

First, let’s look at your deployment and service definition. You should save the follow-
ing listing to deploy/staging/market-data.yml within your market-data repo.

Listing 10.6    Deployment specification for market-data

---
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  name: market-data
spec:
  replicas: 3
  strategy:
    type: RollingUpdate
    rollingUpdate:
      maxUnavailable: 50%
      maxSurge: 50%
  template:
    metadata:
      labels:
        app: market-data
        tier: backend
        track: stable
    spec:
      containers:
      - name: market-data
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        image: BUILD_TAG 
        resources:
          requests:
            cpu: 100m
            memory: 100Mi
        ports:
        - containerPort: 8000
        livenessProbe:
          httpGet:
            path: /ping
            port: 8000
          initialDelaySeconds: 10
          timeoutSeconds: 15
        readinessProbe:
          httpGet:
            path: /ping
            port: 8000
          initialDelaySeconds: 10
          timeoutSeconds: 15

If you saw this in chapter 9, you’ll notice one key difference: you don’t set a specific 
image tag to deploy, only a placeholder of BUILD_TAG. You’ll replace this in your pipe-
line with the version you’re deploying. This is a little unsophisticated — as you build 
more complex deployments, you might want to explore higher level templating tools, 
such as ksonnet (https://ksonnet.io).

You’ll also want to add market-data-service.yml, as shown in the following listing, to 
the same location.

Listing 10.7    market-data service definition

---
apiVersion: v1
kind: Service
metadata:
  name: market-data
spec:
  type: NodePort
  selector:
    app: market-data
    tier: backend
  ports:
    - protocol: TCP
      port: 8000
      nodePort: 30623

Before you deploy, create distinct namespaces to segregate your workloads, using 
kubectl:

kubectl create namespace staging
kubectl create namespace canary
kubectl create namespace production

A placeholder for the 
image you want to deploy
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Now, add a deploy stage to your pipeline, as follows.

Listing 10.8    Deployment to staging (Jenkinsfile)

stage('Deploy') {
  sh("sed -i.bak 's#BUILD_TAG#${tagToDeploy}#' ./
➥deploy/staging/*.yml") 

  container('kubectl') {
    sh("kubectl --namespace=staging apply -f deploy/
➥staging/") 
  }
} 

Again, commit and run the build. This time, a Kubernetes deploy should be triggered! 
You can check the status of this deployment using kubectl rollout status:

$ kubectl rollout status –n staging deployment/market-data
Waiting for rollout to finish: 2 of 3 updated replicas are available... 
deployment "market-data" successfully rolled out

As you can see, although your build was marked as complete, the deployment itself 
takes some time to roll out. This is because kubectl apply works asynchronously and 
doesn’t wait for the cluster to finish updating to reflect the new state. If you like, you 
can add a call to the above kubectl rollout status method within the Jenkinsfile so 
that Jenkins waits for rollouts to complete before proceeding.

Either way, once the rollout is complete, you can access this service:

$ curl `minikube service --namespace staging --url market-data`/ping
HTTP/1.0 200 OK
Content-Type: text/plain
Server: Werkzeug/0.12.2 Python/3.6.1

This example service doesn’t do much. For your own services, you might trigger fur-
ther automated testing or perform further exploratory testing of the service and code 
changes you’ve just deployed. Table 10.2 outlines some of the activities you might per-
form at this stage of a deployment pipeline. For now, great work — you’ve automated 
your first microservice deployment!

Table 10.2    Possible activities to perform to validate a staging release of a microservice

Acceptance testing Automated tests Running automated tests to check expectations, either 
regression or acceptance

Manual tests Some services may require manual validation or explor-
atory testing.

Nonfunctional testing Security tests Testing the security posture of the service

Load/capacity tests Validating expectations about capacity and load on a 
service

Uses sed to replace BUILD_TAG with 
the name of your new Docker image

Applies all configuration files in deploy/staging to 
your local cluster, using the staging namespace
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10.2.6	 Staging environments

Let’s take a break for a moment to discuss staging environments. You should make any 
new release of a service to staging first. Microservices need to be tested together, and 
production isn’t the first place where that should happen.

The infrastructure configuration of your staging environment should be an exact 
copy of production, albeit with less real traffic. It doesn’t need to run at the same scale. 
The volume and type of testing you’ll use to put your services through their paces can 
determine the necessary size. As well as conducting various types of automated testing, 
you might manually validate services in staging to ensure they meet acceptance criteria.

Along with shared staging environments, you might also run isolated staging envi-
ronments for individual or small sets of closely related services. Unlike full staging, 
these environments might be ephemeral and spun up on-demand for the duration of 
testing. This is useful for testing a feature in relative isolation, with tighter control of the 
state of the environment. Figure 10.7 compares these different approaches to staging 
environments.

Although staging environments are crucial, they can be hard to manage in a micro-
service application, as well as the source of significant contention between teams. A 
microservice might have many dependencies, all of which should be present and stable 
in full staging. Although a service in staging will have passed testing, code review, and 
other quality gates, it’s still possible that services in staging will be less stable than their 
production equivalents, and that can cause chaos. Any engineer deploying to a shared 
environment needs to act as a good neighbor to ensure that issues with services they 
own don’t substantially impact another team’s ability to smoothly test (and therefore 
deliver) other services.

TIP    To further reduce friction in staging, consider building your deployment 
pipeline to allow any engineer to easily roll back the last deployment, regard-
less of whether they own that service or not.

C
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Isolated staging environments may
include a small subset of services.

Full staging includes all services
within an application.

Figure 10.7    Isolated versus full staging environments
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10.2.7	 Deploying to production

You can use what you’ve learned so far to take this service to production. Table 10.3 
outlines some of the different actions you might perform at this stage of your pipeline.

Table 10.3    Possible activities to perform in deployment

Code deployment Deploying code to a runtime environment

Rollback Rolling back code to a previous version, if errors or unexpected behavior occurs

Smoke tests Validating the behavior of a system using light-touch tests

 In this case, if a deployment to staging is successful, here’s what should happen next:

1	 Your pipeline should wait for human approval to proceed to production.

2	 When you have approval, you’ll release a canary instance first. This helps you vali-
date that your new build is stable when it faces real production traffic.

3	 If you’re happy with the performance of the canary instance, the pipeline can 
proceed to deploy the remaining instances to production.

4	 If you’re not happy, you can roll back your canary instance.

First, you should add an approval stage. In continuous delivery — unlike continuous 
deployment — you don’t necessarily want to push every commit immediately to pro-
duction. Add the following to your Jenkinsfile.

Listing 10.9    Approving a production release

stage('Approve release?') {
  input message: "Release ${tagToDeploy} to production?"
}

Running this code in Jenkins will show a dialog box in the build pipeline view, with two 
options: Proceed or Abort. Clicking Abort will cancel the build; clicking Proceed will, 
for now, cause the build to finish successfully — you haven’t added a deploy step!

First, try a production deploy without a canary instance. Copy the YAML files you 
created earlier, from listings 10.6 and 10.7, to a new deploy/production directory. Feel 
free to increase the number of replicas you’ll deploy.

Next, add the code in the next listing to your Jenkinsfile, after the approval stage. 
This is similar to the code you used in staging. Don’t worry about the code duplication 
for now — you can work on that in a moment.

Listing 10.10    Production release stage

stage('Deploy to production') {
  sh("sed -i.bak 's#BUILD_TAG#${tagToDeploy}#' ./deploy/production/*.yml")

  container('kubectl') {
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    sh("kubectl --namespace=production apply -f deploy/production/")
  }
}

As always, commit and run the build in Jenkins. If successful, you’ve released to produc-
tion! Let’s take this a few steps further and add some code to release a canary instance. 
But before you add a new stage, let’s DRY up your code a little bit. You can move your 
release-related code into a separate file called deploy.groovy, as shown in the following 
listing.

Listing 10.11    deploy.groovy

def toKubernetes(tagToDeploy, namespace, 
➥deploymentName) { 
  sh("sed -i.bak 's#BUILD_TAG#${tagToDeploy}#' ./deploy/${namespace}/*.yml")

  container('kubectl') {
    kubectl("apply -f deploy/${namespace}/")
  }
}

def kubectl(namespace, command) { 
  sh("kubectl --namespace=${namespace} ${command}") 
} 

def rollback(deploymentName) {
  kubectl("rollout undo deployment/${deploymentName}")
}

return this;

Then you can load it in your Jenkinsfile, as shown in the following listing.

Listing 10.12    Using deploy.groovy in your Jenkinsfile

def deploy = load('deploy.groovy')

stage('Deploy to staging') {
  deploy.toKubernetes(tagToDeploy, 'staging', 'market-data')
}

stage('Approve release?') {
  input "Release ${tagToDeploy} to production?"
}

stage('Deploy to production') {
  deploy.toKubernetes(tagToDeploy, 'production', 'market-data')
}

That’s much cleaner. This isn’t the only way to reuse pipeline code — we’ll discuss a 
better approach in section 10.3.

Works for any namespace and deployment

Performs any operations 
on Kubernetes
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Next, create a canary deployment file. If you’ve read through chapter 9, you’ll 
remember that you use a distinct deployment with unique labels to identify this 
instance. In deploy/canary, create a deployment YAML file like the one you used for 
production but with three changes:

1	 Add a label track: canary to the pod specification.

2	 Reduce the number of replicas to 1.

3	 Change the name of the deployment to market-data-canary.

After you’ve added that file, add a new stage to your deployment, as shown in the fol-
lowing listing, before releasing to production.

Listing 10.13    Canary release stage (Jenkinsfile)

stage('Deploy canary') {
  deploy.toKubernetes(tagToDeploy, 'canary', 'market-data-canary')

  try {
    input message: "Continue releasing ${tagToDeploy} to 
➥production?" 
  } catch (Exception e) {
    deploy.rollback('market-data-canary') 
  }
}

In this example, we’re assuming human approval for moving from canary to produc-
tion. In the real world, this might be an automated decision; for example, you could 
write code to monitor key metrics, such as error rate, for some time after a canary 
deploy.

Once you’ve committed this code, you should be able to run the whole pipeline. Fig-
ure 10.8 illustrates the full journey of your code to production.

Let’s take a breather so you can reflect on what you’ve learned:

¡	You’ve automated the delivery of code from commit to production by using  
Jenkins to build a structured deployment pipeline.

¡	You’ve built different stages to validate the quality of that code and provide 
appropriate feedback to an engineering team.

¡	You’ve learned about the importance of — and challenges in operating — a stag-
ing environment when developing microservices.

These techniques provide a consistent and reliable foundation for delivering code safely 
and rapidly to production. This helps ensure overall stability and robustness in a micro
service application. But it’s far from ideal if every microservice copies and pastes the same 
deployment code or reinvents the wheel for every new service. In the next section, we’ll 
discuss patterns for making deployment approaches reusable across a fleet of services.

Asks for human input to proceed

Rolls back your canary 
if rollout is aborted
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Figure 10.8    Successful deployment pipeline from commit to production release

10.3	 Building reusable pipeline steps
Microservices enable independence and technical homogeneity, but these advantages 
come at a cost:

¡	It’s harder for developers to move between teams, as the tech stack can vastly 
differ.

¡	It’s more complex for engineers to reason through the behavior of different 
services.

¡	You have to invest more time in different implementations of the same concerns, 
such as deployment, logging, and monitoring.

¡	People may make technical decisions in isolation, risking local, rather than 
global, optimization.

To balance these risks while maintaining technical freedom and flexibility, you should 
aggressively standardize the platform and tooling that services operate on. Doing so 
will ensure that, even if the technology stack changes, common abstractions remain as 
close as possible across different services. Figure 10.9 illustrates this approach.

NOTE    We introduced the platform layer of microservice architecture in chapter 3.

Service A

Deployment
pipeline

Deployment platform

Standardize these elements
of your application

architecture. Transport/
communication

Service B

Deployment
pipeline

Observability Observability

Unique business logic and
implementation within
services can diverge.

Figure 10.9    You can standardize many elements of a microservice application to reduce complexity, 
increase reuse, and reduce ongoing operational cost.
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Over the past few chapters, you’ve applied this thinking in a few areas:

¡	Using a microservice chassis to abstract common, nonbusiness logic functional-
ity, such as monitoring and service discovery

¡	Using containers — with Docker — as a standardized service artifact for deployment
¡	Using a container scheduler — Kubernetes — as a common deployment platform

You also can apply this approach to your deployment pipelines.

10.3.1	 Procedural versus declarative build pipelines

The pipeline scripts you’ve written so far have three weaknesses:

1	 Specific  — They’re tied to a single repository, and another repository can’t share 
them.

2	 Procedural  — They explicitly describe how you want the build to be carried out.

3	 Don’t abstract internals  — They assume a lot of knowledge about Jenkins itself, 
such as how you start nodes, run commands, and use command-line tools.

Ideally, a service deployment pipeline should be declarative: an engineer describes 
what they expect to happen (test my service, release it, and so on), and your frame-
work decides how to execute those steps. This approach also abstracts away changes 
to how those steps happen: if you want to tweak how a step works, you can change 
the underlying framework implementation. Abstracting these implementation deci-
sions away from individual services leads to greater consistency across the microservice 
application.

Compare the following script to the Jenkinsfile you wrote earlier in the chapter.

Listing 10.14    Example declarative build pipeline

service {
  name('market-data')

  stages {
    build()
    test(command: 'python setup.py test', results: 'results.xml')
    publish()
    deploy()
  }
}

This script defines some common configuration (service name) and a series of steps 
(build, test, publish, deploy) but hides the complexity of executing those steps from a 
service developer. This allows any engineer to quickly follow best practice to reliably 
and rapidly take a new service to production.

With Jenkins Pipeline, you can implement declarative pipelines using shared librar-
ies. We won’t go into detail in this chapter — not enough pages left! — but this book’s 
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Github repository includes an example pipeline library (http://mng.bz/P7hD). In 
addition, the Jenkins documentation (http://mng.bz/p3wz) provides a detailed refer-
ence on using shared libraries.

NOTE    In other build tools, such as Travis CI or DroneCI, you declare build 
configuration using YAML files. These approaches are great, especially if your 
needs are relatively straightforward. Conversely, building a DSL with a dynamic 
language can offer an extra degree of flexibility and extensibility.

10.4	 Techniques for low-impact deployment and feature 
release
Throughout the past few chapters, we’ve used the terms deployment and release inter-
changeably. But in a microservice application, it’s important to distinguish between 
the technical activity of deployment — updating the software version running in a pro-
duction environment — and the decision to release a new feature to customers or con-
suming services.

You can use two techniques — dark launches and feature flags — to complement 
your continuous delivery pipeline. These techniques will allow you to deploy new fea-
tures without impacting customers and provide a flexible mechanism for rollback.

10.4.1	 Dark launches

Dark launching is the practice of deploying a service to a production environment sig-
nificantly prior to making it available to consumers. At our company, we practice this 
regularly and try to deploy within the first few days of building a new service, regardless 
of whether it’s feature-complete. Doing this allows us to perform exploratory testing 
from an early stage, which helps us understand how a service behaves and makes a new 
service visible to our internal collaborators.

In addition, dark launching to a production environment allows you to test your 
services against real production traffic. Let’s say that SimpleBank wants to offer a new 
financial prediction algorithm as a service. By passing production traffic in parallel with 
the existing service, they can easily benchmark the new algorithm and understand how 
it performs in the real world, rather than against limited and artificial test scenarios 
(figure 10.10).

Whether you validate this output manually or automatically depends on the nature of 
the feature and the volume and distribution of requests required to adequately exhaust 
possible scenarios. The dark launch approach is also useful for testing that refactoring 
doesn’t regress sensitive functionality.1

1	 Similarly, the Ruby Scientist gem (https://github.com/github/scientist) was originally designed 
to help Github validate whether refactoring of user permissions caused authorization issues, such 
as users having incorrect access to repositories.

 

http://mng.bz/P7hD
http://mng.bz/p3wz
https://github.com/github/scientist


	 265Techniques for low-impact deployment and feature release

API gatewayRequest

Request

Request

Clients

Better
prediction

Prediction

Clients access financial prediction
through an API gateway.

By changing the gateway,
you can pass requests in parallel

to “dark-launched” services.

Response

API gatewayRequest

Request
Clients Prediction

Response

Response

Prediction
logs

You can compare the output of these
different services, for example, by

examining logs and analytics.

Figure 10.10    Dark launches enable validation of new service behavior against real production traffic 
without exposing features to customers.

10.4.2	 Feature flags

Feature flags control the availability of features to customers. Unlike dark launches, 
you can use them at any point in the lifecycle of a service, such as a feature release. A 
feature flag (or toggle) wraps a feature in conditional logic, only enabling it for a cer-
tain set of users. Many companies will use them to control rollout; for example, only 
releasing a feature for internal staff first, or progressively increasing the number of 
users who can access a feature over time.

Several libraries are available to implement feature flags, such as Flipper (http://
github.com/jnunemaker/flipper) or Togglz (http://github.com/togglz/togglz). These 
libraries typically use a persistent backing store, like Redis, to maintain the state of feature 
flags for an application. In a larger microservice application, you may find it desirable to 
have a single feature store to synchronize the rollout of features that involve the inter-
action of multiple services, rather than independently managing features per service.  
Figure 10.11 illustrates these different approaches.

Managing features per service is likely to be easier in a small microservice system 
than a larger one. As your system becomes larger, centralizing feature configuration in 
a single service reduces coordination overhead if you encounter situations where fea-
ture rollouts necessitate changes in multiple microservices.

 

http://github.com/jnunemaker/flipper
http://github.com/togglz/togglz
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Approach 1: Each service owns and maintains
a separate feature store.

Approach 2: A features service owns all feature
configuration, and other services call it.

Feature store Feature store Feature store

Queries Queries
Queries

Queries

Queries

A B

A

B

Features

Figure 10.11    You can store feature flags centrally — owned by one service — or maintain them in 
separate applications.

By controlling which users see a change, feature flags can aid in minimizing the poten-
tial impact of any change to a system, as you have partial control over code execution 
and feature availability. If errors occur, feature flags often allow for more rapid recov-
ery than typical rollback. For microservices, they can enable safer release of new func-
tionality without adversely affecting service consumers.

Summary

¡	A microservice deployment process should meet two goals: safety at pace and 
consistency.

¡	The time it takes to deploy a new service is often a barrier in microservice applications.
¡	Continuous delivery is an ideal deployment practice for microservices, reducing 

risk through the rapid delivery of small, validated changesets.
¡	A good continuous delivery pipeline ensures visibility, correctness, and rich feed-

back to an engineering team.
¡	Jenkins is a popular build automation tool that uses a scripting language to tie 

multiple tools together into a delivery pipeline.
¡	Staging environments are invaluable but can be challenging to maintain when 

they face a high volume of independent change.
¡	You can reuse declarative pipeline steps across multiple services; aggressive stan-

dardization makes deployment predictable across teams.
¡	To provide fine-grained control over rollout and rollback, you should manage 

the technical activity of deployment separately from the business activity of 
releasing a feature.

 



Part 4

Observability and ownership

Once you’ve deployed your services, you need to know what they’re actu-
ally doing. In this part, you’ll build a monitoring system — using metrics, tracing, 
and logging — to give you rich visibility into your microservice application. After 
that, we’ll conclude our microservice journey by exploring how this architectural 
approach impacts how developers work together and discussing good day-to-day 
practices for developing microservice applications.
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11Building a monitoring system

This chapter covers
¡	Understanding what signals to gather from 

running applications

¡	Building a monitoring system to collect metrics

¡	Learning how to use the collected signals to set 
up alerts

¡	Observing the behavior of individual services 
and their interactions as a system 

You’ve now set up an infrastructure to run your services and have deployed multiple 
components that you can combine to provide functionality to your users. In this 
chapter and the next, we’ll consider how you can make sure you’ll always be able to 
know how those components are interacting and how the infrastructure is behav-
ing. It’s fundamental to know as early as possible when something isn’t behaving as 
expected. In this chapter, we’ll focus on building a monitoring system so you can 
collect relevant metrics, observe the system behavior, and set up relevant alerts to 
allow you to keep your systems running smoothly by taking actions preemptively. 
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When you can’t be preemptive, you’ll at least be able to quickly pinpoint the areas that 
need your attention so you can address any issues. It’s also worth mentioning that you 
should instrument as much as possible. The collected data you may not use today may 
turn out to be useful someday.

11.1	 A robust monitoring stack
A robust monitoring stack will allow you to start gathering metrics from your services 
and infrastructure and use those metrics to gather insights from the operation of a sys-
tem. It should provide a way to collect data and store, display, and analyze it.

You should start by emitting metrics from your services, even if you have no monitor-
ing infrastructure in place. If you have those metrics stored, at any time you’ll be able to 
access, display, and interpret them. Observability is a continuous effort, and monitoring 
is a key element in that effort. Monitoring allows you to know whether a system is work-
ing, whereas observability lets you ask why it’s not working.

In this chapter, we’ll be focusing on monitoring, metrics, and alerts. We’ll explain 
logs and traces in chapter 12, and they’ll constitute the observability component.

Monitoring doesn’t only allow you to anticipate or react to issues, you can also use 
collected metrics from monitoring to predict system behavior or to provide data for 
business analytic purposes.

Multiple open source and commercial options are available for setting up a moni-
toring solution. Depending on the team size and resources available, you may find that 
a commercial solution may be easier or more convenient to use. Nonetheless, in this 
chapter you’ll be using open source tools to build your own monitoring system. Your 
stack will be made up of a metrics collector and a display and alerting component. Logs 
and traces are also essential to achieve system observability. Figure 11.1 gives an over-
view of all the components you need to be able to understand your system behavior and 
achieve observability.

In figure 11.1, we display the components of a monitoring stack:

¡	Metrics
¡	Logs
¡	Traces

Each of these components feeds into its own dashboards as an aggregation of data 
from multiple services. This allows you to set up automated alerts and look into all the 
collected data to investigate any issues or better understand system behavior. Metrics 
will enable monitoring, whereas logs and traces will enable observability.

11.1.1	 Good monitoring is layered

In chapter 3, we discussed the architecture tiers: client, boundary, services, and plat-
form. You should implement monitoring in all of these layers, because you can’t deter-
mine the behavior of a given component in total isolation. A network issue will most 
likely affect a service. If you collect metrics at the service level, the only thing you’ll be 
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able to know is that the service itself isn’t serving requests. That alone tells you nothing 
about the cause of the issue. If you also collect metrics at the infrastructure level, you 
can understand problems that’ll most likely affect multiple other components.

In figure 11.2, you can see the services that work together to allow a client to place an 
order for selling or buying shares. Multiple services are involved. Some communication 
between services is synchronous, either via RPC or HTTP, and some is asynchronous, 
using an event queue. To be able to understand how services are performing, you need 
to be able to collect multiple data points to monitor and either diagnose issues or pre-
vent them before they even arise.

Monitoring individual services will be of little to no use because services provide iso-
lation but don’t exist isolated from the outside world. Services often depend on each 
other and on the underlying infrastructure (for example, the network, databases, cache 
stores, and event queues). You can get a lot of valuable information by monitoring ser-
vices, but you need more. You need to understand what’s going on in all your layers. 
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Figure 11.1    Components of a monitoring stack — metrics, traces, and logs — each aggregated in their 
own dashboards
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Figure 11.2    Services involved in placing orders and their communication protocols

Your monitoring solution should allow you to know what is broken or degrading and 
why. You’ll be able to quickly reveal any symptoms and use the available monitors to 
determine causes.

Referring to figure 11.2, it’s worth mentioning that symptoms and causes vary 
depending on the observation point. If the market service might be having issues com-
municating with the stock exchange, you can diagnose that by measuring response 
times or HTTP status codes for that interaction. In that situation, you’ll be almost sure 
that the place order feature won’t be working as expected.

But what if you have an issue with connectivity from services to the event queue? Ser-
vices won’t be publishing messages, so downstream services won’t be consuming them. 
In that situation, no service is failing because no service is performing any work. If you 
have proper monitoring in place, it can alert you to the abnormal decrease in through-
put. You can set your monitoring solution to send you automated notifications when 
the number of messages in a given queue goes below a certain threshold.

Lack of messages isn’t the only thing that can indicate issues, though. What if you 
have messages accumulating in a given queue? Such accumulation may indicate the 
services that consume messages from the queue are either not working properly or are 
having trouble keeping up with increased demand. Monitoring allows you to identify 
issues or even predict load increases and act accordingly to maintain service quality. 
Let’s take some time for you to learn a bit more about the signals you should collect.

11.1.2	 Golden signals

You should focus on four golden signals while collecting metrics from any user-facing 
system: latency, errors, traffic, and saturation.

Latency

Latency measures how much time passes between when you make a request to a given 
service and when the service completes the request. You can determine a lot from this 
signal. For example, you can infer that the service is degrading if it shows increasing 
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latency. You need to take extra care, though, in correlating this signal with errors. 
Imagine you’re serving a request and the application responds quickly but with an 
error? Latency has a low value in this case, but the outcome isn’t the desired one. It’s 
important to keep the latency of requests that result in errors out of this equation, 
because it can be misleading.

Errors

This signal determines the number of requests that don’t result in a successful out-
come. The errors may be explicit or implicit — for example, having an HTTP 500 error 
versus having an HTTP 200 but with the wrong content. The latter isn’t trivial to mon-
itor for because you can’t rely solely on the HTTP codes, and you may only be able to 
determine the error by finding wrong content in other components. You generally 
catch these errors with end-to-end or contract tests.

Traffic

This signal measures the demand placed on a system. It can vary depending on the type 
of system being observed, the number of requests per second, network I/O, and so on.

Saturation

At a given point, this measures the capacity of the service. It mainly applies to resources 
that tend to be more constrained, like CPU, memory, and network.

11.1.3	 Types of metrics

While collecting metrics, you need to determine the type that’s best suited for a given 
resource you’re aiming to monitor.

Counters

Counters are a cumulative metric representing a single numerical value that’ll always 
increase. Examples of metrics using counters are:

¡	Number of requests
¡	Number of errors
¡	Number of each HTTP code received
¡	Bytes transmitted

You shouldn’t use a counter if the metric it represents can also decrease. For that, you 
should use a gauge instead.

Gauges

Gauges are metrics representing single numerical arbitrary values that can go up or 
down. Some examples of metrics using gauges are:

¡	Number of connections to a database
¡	Memory used
¡	CPU used
¡	Load average
¡	Number of services operating abnormally
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Histograms

You use histograms to sample observations and categorize them in configurable buck-
ets per type, time, and so on. Examples of metrics represented by histograms are:

¡	Latency of a request
¡	I/O latency
¡	Bytes per response

11.1.4	 Recommended practices

As we already mentioned, you should make sure you instrument as much as possible 
to collect as much data as you can about your services and infrastructure. You can use 
the collected data at later stages once you devise new ways to correlate and expose it. 
You can’t go back in time to collect data, but you can make data available that you pre-
viously collected. 

Keep in mind that you should go about representing that data, showing it in dash-
boards, and setting up alerts in a progression to avoid having too much information 
at once that will be hard to reason through. There is no point in throwing every single 
collected metric for a service into one dashboard. You can create several dashboards 
per service with detailed views, but keep one top-level dashboard with the most import-
ant information. This dashboard should allow you, in a glance, to determine if a ser-
vice is operating properly. It should give a high-level view of the service, and any more 
in-depth information should appear in more specialized dashboards.

When representing metrics, you should focus on the most important ones, like 
response times, errors, and traffic. These will be the foundation of your observabil-
ity capabilities. You also should focus on the right percentiles for each use case: 99th, 
95th, 75th, and so on. For a given service, it may be good enough if only 95% of your 
requests take less than x seconds, whereas on another service you may require 99% of 
the requests to be below that time. There is no fixed rule for which percentile to focus 
on — that generally depends on the business requirements.

Whenever possible, you should use tags to provide context to your metrics. Examples 
of tags to associate with metrics are:

¡	Environment: Production, Staging, QA
¡	User ID

By tagging metrics, you can group them later on and perhaps come up with some more 
insights. Take, for example, a response time you’ve tagged with the User ID; you can 
group the values by user and determine if all of the user base or only a particular group 
of users experiences an increase in response times. 

Make sure you always abide by some defined standards when you’re naming metrics. 
It’s important that you maintain a naming scheme across services. One possible way of 
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naming metrics is to use the service name, the method, and the type of metric you wish 
to collect. Here are some examples:

¡	orders_service.sell_shares.count

¡	orders_service.sell_shares.success

¡	fees_service.charge_fee.failure

¡	account_transactions_service. request_reservation.max
¡	gateway.sell_shares.avg

¡	market_service.place_order.95percentile

11.2	 Monitoring SimpleBank with Prometheus and Grafana
You need to send the metrics you collect from your services and infrastructure to a 
system capable of aggregating and displaying them. The system will use those collected 
metrics to provide alerting capabilities. For that purpose, you’ll be using Prometheus 
to collect metrics and Grafana to display them:

¡	Prometheus (https://github.com/prometheus) is an open source systems mon-
itoring and alerting toolkit originally built at SoundCloud. It’s now a standalone 
open source project and is maintained independent of any company.

¡	Grafana (https://grafana.com) is a tool that allows building dashboards on top 
of multiple metrics data sources, such as Graphite, InfluxDB, and Prometheus.

You’ll do all your setup using Docker. In chapter 7, you already added to your services 
the ability to emit metrics via StatsD. You’ll keep those services unchanged and add 
something to your setup to convert metrics from StatsD format to the format that 
Prometheus uses. You’ll also add a RabbitMQ container that’s already set up to send 
metrics to Prometheus. Figure 11.3 shows the components you’ll be adding to set up 
your monitoring system.

Service Prometheus Grafana

StatsD server
Metrics

MetricsMetrics Metrics

StatsD exporter Event queue

 

Figure 11.3    The containers you need to build your monitoring system: StatsD server, StatsD exporter, 
Prometheus, and Grafana

 

https://github.com/prometheus
https://grafana.com
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You’ll be using both Prometheus and StatsD metrics as a way to show how two types of 
metrics collection protocols can coexist. StatsD is a push-based tool, whereas Prometheus 
is a pull-based tool. Systems using StatsD will be pushing data to a collector service, 
whereas Prometheus will pull that data from the emitting systems.

11.2.1	 Setting up your metric collection infrastructure

You’ll start by adding the services described in figure 11.2 to the Docker compose file, 
then you’ll focus on configuring both the StatsD exporter and Prometheus. The last 
step will be to create the dashboards in Grafana and start monitoring the services and 
the event queue. All the code is available in the book’s code repository.

Adding components to the Docker compose file

The Docker compose file (see the next listing) will allow you to boot all the services 
and infrastructure needed for the place order feature. For the sake of brevity, we’ll 
omit the individual services and will only list the infrastructure- and monitoring-re-
lated containers.

Listing 11.1    docker-compose.yml file

(…)

rabbitmq: 
    container_name: simplebank-rabbitmq
    image: deadtrickster/rabbitmq_prometheus
    ports:
      - "5673:5672"
      - "15673:15672"

  redis:
    container_name: simplebank-redis
    image: redis
    ports:
      - "6380:6379"

  statsd_exporter: 
    image: prom/statsd-exporter
    command: "-statsd.mapping-config=/tmp/
➥statsd_mapping.conf" 
    ports:
      - "9102:9102"
      - "9125:9125/udp"
    volumes:
      - "./metrics/statsd_mapping.conf:/tmp/statsd_mapping.conf"

  prometheus: 
    image: prom/prometheus
    command: "--config.file=/tmp/prometheus.yml 
➥--web.listen-address '0.0.0.0:9090'" 
    ports:

You’ll use RabbitMQ as the event 
queue. The image used here is already 
emitting metrics in the Prometheus 
format, so you can connect it directly.

Fetches the metrics sent to the StatsD server 
and converts them to Prometheus format, so 
Prometheus can fetch them afterwards

Starts statsd_exporter with a custom command 
that’ll load the mapping configuration

Sets up the official Prometheus image

Allows you to start Prometheus, 
binding it to 0.0.0.0:9000 and 
reading a custom configuration 
file that you’ll soon see in a bit 
more detail
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      - "9090:9090"
    volumes:
      - "./metrics/prometheus.yml:/tmp/prometheus.yml"

  statsd: 
    image: dockerana/statsd
    ports:
      - "8125:8125/udp"
      - "8126:8126"
    volumes:
      - "./metrics/statsd_config.js:/src/statsd/
➥config.js" 

  grafana: 
    image: grafana/grafana
    ports:
      - "3900:3000"

Configuring StatsD exporter

As we mentioned before, the services involved in the place order feature emit metrics 
in the StatsD format. In table 11.1, we list all the services and the metrics each one 
emits. The services will all be emitting timer metrics.

Table 11.1    Timer metrics emitted by the services involved in placing an order

Service Metrics

Account transactions request_reservation

Fees charge_fee

Gateway health, sell_shares, 

Market request_reservation, place_order_stock_exchange 

Orders sell_shares, request_reservation, place_order

The mapping config file allows you to configure each metric that StatsD collects and 
add labels to it. The following listing provides the mapping you’ll create as a configura-
tion file for the statsd-exporter container.

Listing 11.2    Configuration file to map StatsD metrics to Prometheus 

simplebank-demo.account-transactions.request_reservation 
name="request_reservation" 

Sets the StatsD server that’ll collect 
metrics that the services send

Uses a custom configuration to allow repeating the received metrics 
to the statsd-exporter container — As with the Prometheus and 
statsd-exporter containers, the configuration files are located in the 
metrics folder. This folder will be mounted as a volume so the 
containers can pick up these configurations at runtime.

Starts Grafana, which will provide 
a UI for the collected metrics

Account transactions service mapping

Sets the name of the metric in Prometheus
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app="account-transactions" 
job="simplebank-demo" 

simplebank-demo.fees.charge_fee 
name="charge_fee"
app="fees"
job="simplebank-demo"

simplebank-demo.gateway.health 
name="health"
app="gateway"
job="simplebank-demo"

simplebank-demo.gateway.sell_shares
name="sell_shares"
app="gateway"
job="simplebank-demo" 

simplebank-demo.market.request_reservation 
name="request_reservation"
app="market"
job="simplebank-demo"

simplebank-demo.market.place_order_stock_exchange
name="place_order_stock_exchange"
app="market"
job="simplebank-demo" 

simplebank-demo.orders.sell_shares 
name="sell_shares"
app="orders"
job="simplebank-demo"

simplebank-demo.orders.request_reservation
name="request_reservation"
app="orders"
job="simplebank-demo"

simplebank-demo.orders.place_order
name="place_order"
app="orders"
job="simplebank-demo" 

If you don’t map the above metrics to Prometheus, they’ll still get collected, but the 
way they’ll be collected is less convenient. In the figure 11.4 example, you can see the 
difference between mapped and unmapped metrics fetched from Prometheus from 
the statsd_exporter service.

Allows differentiating between metrics that have the same 
name (For example, request_reservation is used as a name 
for a metric in both the orders and market services.)

Used to determine the 
collector in statsd_exporter

Fees service mapping

Gateway mapping

Market service mapping

Orders service mapping
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Figure 11.4    Prometheus screenshot with collected SimpleBank metrics — The top two metrics aren’t 
mapped in the statsd_mapping.conf file, whereas the last one is.

As you can observe in figure 11.4, when the unmapped create_event metrics that 
both the market and orders service emit reach Prometheus, they’re collected as:

¡	simplebank_demo_market_create_event_timer

¡	simplebank_demo_orders_create_event_timer

For the request_reservation_timer metric that the market, orders, and account 
transactions services emit, there’s only one entry, the metric is the same, and the differ-
entiation is in the metadata:

request_reservation_timer{app="*",exported_job="simplebank-demo",e
xporter="statsd",instance="statsd-exporter:9102",job="statsd_
exporter",quantile="0.5"} 

request_reservation_timer{app="*",exported_job="simplebank-demo",e
xporter="statsd",instance="statsd-exporter:9102",job="statsd_
exporter",quantile="0.9"}

Metric mapped in the statsd_exporter configuration file — The app label takes 
the values off all apps generating the request_reservation_timer metric.
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request_reservation_timer{app="*",exported_job="simplebank-demo",e
xporter="statsd",instance="statsd-exporter:9102",job="statsd_
exporter",quantile="0.99"}

simplebank_demo_market_create_event_timer{exporter="statsd",instance="statsd-
exporter:9102",job="statsd_exporter",quantile="0.5"} 

Configuring Prometheus

Now that you’ve configured the StatsD exporter, it’s time to configure Prometheus for 
it to fetch data from both the StatsD exporter and RabbitMQ, as shown in the following 
listing. Both of these sources will be available as targets for metrics data fetching.

Listing 11.3    Prometheus configuration file

global:
  scrape_interval:     5s 
  evaluation_interval: 10s
  external_labels:
      monitor: 'simplebank-demo'

alerting:
  alertmanagers:
  - static_configs:
    - targets:

scrape_configs: 
  - job_name: 'statsd_exporter' 
    static_configs:
      - targets: ['statsd-exporter:9102']
        labels:
          exporter: 'statsd'
    metrics_path: '/metrics'

  - job_name: 'rabbitmq'
    static_configs:
      - targets: ['rabbitmq:15672'] 
        labels:
          exporter: 'rabbitmq'
    metrics_path: '/api/metrics' 

Setting up Grafana

To receive metrics in Grafana, you need to set up a data source. First, you can boot your 
applications and infrastructure by using the Docker compose file. This will allow you to 
access Grafana on port 3900, as follows.

Metric not mapped in the statsd_exporter configuration 
file — There’s no app and no exported_job labels.

Sets the interval at which Prometheus will 
scrape the configured targets for metrics

Scrapes config section where each target 
is configured

Will be added as a label any time  
series scraped from the config

The target host and metrics path will be 
concatenated to determine the URL to 
collect metrics from. Given that in this case 
the scheme defaults to http, the URL will be 
'http://rabbitmq:15672/api/metrics'.
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Listing 11.4    Grafana setup in the docker-compose.yml file

  (...)
  grafana:
    image: grafana/grafana 
    ports:
      - "3900:3000" 

To start all applications and services using Docker compose, you need to get inside the 
folder containing the compose file and issue the up command:

chapter-11$ docker stop $(docker ps | grep simplebank | 
➥awk '{print $1}')
chapter-11$ docker rm $(docker ps -a | grep simplebank | 
➥awk '{print $1}')
chapter-11$ docker-compose up --build --remove-orphans  

Starting simplebank-redis ...
Starting chapter11_statsd-exporter_1 ...
Starting chapter11_statsd_1 ...
Starting simplebank-rabbitmq ...
Starting chapter11_prometheus_1 ...
Starting simplebank-rabbitmq ... done
Starting simplebank-gateway ...
Starting simplebank-fees ...
Starting simplebank-orders ...
Starting simplebank-market
Starting simplebank-account-transactions ... done
Attaching to chapter11_prometheus_1, simplebank-redis, chapter11_statsd_1, 

simplebank-rabbitmq, chapter11_statsd-exporter_1, simplebank-gateway, 
simplebank-fees, simplebank-orders, simplebank-market, simplebank-
account-transactions

(…)

The output of the docker-compose up command will allow you to understand when 
all services and applications are ready. You can reach applications using the URL 
assigned to Docker or the IP address. By appending port 3900 as configured in the 
docker-compose.yml file, you can access Grafana’s login screen as shown in figure 11.5. 
You’ll be accessing Grafana using the default login credentials: username and pass-
word are both admin.

Uses the official grafana Docker image with default settings

Grafana uses port 3000 by default. The applications and services you start 
via the compose file will be able to communicate using the default port. 
You’re mapping it to port 3900 to access it from the host machine.

Stops all SimpleBank running containers

Removes all SimpleBank 
containers so you don’t 
have any name clashes

Starts the containers defined in the 
docker-compose.yml file — The --build 

option builds images before starting the 
containers, and the --remove-orphans 

option removes any containers that 
aren’t defined in the compose file.
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Figure 11.5    Grafana login screen

Once you log in, you’ll have an Add Data Source option. Figure 11.6 shows the data 
source configuration screen, Edit Data Source. To configure a Prometheus data source 
in Grafana, you need to select Prometheus as the type and insert the URL of the run-
ning Prometheus instance, in your case http://prometheus:9090, as configured in the 
Docker compose file.

The Save & Test button will give you instant feedback on the data source status. Once 
it’s working, you’re ready to use Grafana to build dashboards for your collected metrics. 
In the next few sections, you’ll be using it to display metrics both for the services that 
enable the place orders functionality in SimpleBank and for monitoring a critical piece 
of the infrastructure, RabbitMQ, the event queue.

11.2.2	 Collecting infrastructure metrics — RabbitMQ

To set up the dashboard to monitor RabbitMQ, you’ll be using a json configuration 
file. This is a convenient and easy way to share dashboards. In the source code repos-
itory, you’ll find a grafana folder. Inside that, a RabbitMQ Metrics.json file holds the 
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configuration for both the dashboard layout and the metrics you want to collect. You 
can now import that file to have your RabbitMQ monitoring dashboard up in no time!

Figure 11.6    Configuring a Prometheus data source in Grafana

Figure 11.7 shows how you can access the import dashboard functionality in Grafana. 
By clicking Grafana’s logo, you bring up a menu; if you hover over Dashboards, the 
Import option will be available.

The import option will bring up a dialog box that enables you to either paste the json 
in a text box or upload a file. Before you can use the imported dashboard, you need to 
configure the data source that’ll feed the dashboard. In this case, you’ll be using the 
SimpleBank data source you configured previously.

That’s all it takes to have your RabbitMQ dashboard up and running. In figure 11.8 
you can see how it looks.

 



284 Chapter 11  Building a monitoring system

Figure 11.7    Importing a dashboard from a json file

Figure 11.8    RabbitMQ metrics collected via Prometheus and displayed in Grafana
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Your RabbitMQ dashboard provides you an overview of the system by displaying a mon-
itor for the server status that shows if it’s up or down, along with graphs for Exchanges, 
Channels, Consumers, Connections, Queues, Messages per Host, and Messages per 
Queue. You can hover over any graph to display details for metrics at a point in time. 
Clicking the graph’s title will bring up a context menu that allows you to edit, view, 
duplicate, or delete it.

11.2.3	 Instrumenting SimpleBank’s place order

Now that you have services up and running, along with the monitoring infrastructure, 
Prometheus and Grafana, it’s time to collect the metrics described in table 11.1. You 
can start by loading a dashboard exported as json that you can find in the source direc-
tory under the grafana folder (Place Order.json). Follow the same instructions as the 
ones in 11.2.2 for the RabbitMQ dashboard.

Figure 11.9 displays the dashboard collecting metrics for the services involved in the 
place order feature. By clicking on each of the panel titles, you can view, edit, duplicate, 
share, and delete each of the panels.

This loaded dashboard collects the time metrics and displays the 0.5, 0.9, and 0.99 
quantiles for each metric. In the top right corner, you find the manual refresh button 
as well as the period for displaying metrics. By clicking the Last 5 Minutes label, you 
can select another period for displaying metrics, as shown in figure 11.10. You can 
select one of the Quick Ranges values or create a custom one, and you can display 
stored metrics in any range you need.

Figure 11.9    Place order dashboard accessible at Grafana’s /dashboard/db/place-order endpoint
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Figure 11.10    Selecting the time range for which you want metrics to be displayed

Let’s focus on the Market | Place Order Stock Exchange panel to see in detail how you can 
configure a specific metric display. To do so, click the panel title and then select the Edit 
option. Figure 11.11 shows the edit screen for the Market | Place Order Stock Exchange.

The edit screen has a set of tabs (1) you can select to configure different options. The 
highlighted one is the Metrics tab, where you can add and edit metrics to be displayed. In 
this particular case, you’re only collecting a metric (2), namely the place_order_stock_
exchange_timer that gives you the time it took for the market service to place an order 
into the stock exchange. The default display for a metric contains metadata like the app 
name, the exported job, and the quantile. To change the way the legend is presented, 
you set a Legend Format (3). In this case, you set the name and use {{quantile}} block 
that’ll be interpolated to display the quantile in both the graph legend and the hover-
ing window next to the vertical red line. (The red line acts as a cursor when you move 
your mouse across the collected metrics.) In your dashboards, you’re displaying the min, 
max, avg, and current values for each quantile (4).

Figure 11.11    Panel edit screen for Market | Place Order Stock Exchange
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FURTHER READING    To learn more about how to use Prometheus with Grafana 
and about the Prometheus data model, visit the following documentation 
pages: http://mng.bz/ui3b and http://mng.bz/PZQ0.

The dashboard you’ve set up is quite simple, but it allows you to have an overview 
of how the system is behaving. You’re able to collect time-related metrics for several 
actions that services in your system perform.

11.2.4	 Setting up alerts

Now that you’re collecting metrics and storing them, you can set up alerts for when 
values deviate from what you consider as normal for a given metric. This can be an 
increase in the time taken to process a given request, an increase in the percent of 
errors, an abnormal variation in a counter, and so on.

In your case, you can consider the market service and set up an alert for knowing 
when the service needs to be scaled. Once you place a sell order via the gateway service, 
a lot goes on. Multiple events are fired, and you know the bottleneck tends to be the 
market service processing the place order event. The good thing is you can set up an 
alert to send a message whenever messages in the market place order queue go above a 
certain threshold. You can configure multiple channels for notifications: email, slack, 
pagerduty, pingdom, webhooks, and so on.

You’ll be setting up a webhook notification to receive a message in your alert server 
every time the number of messages goes above 100 in any message queue. For now, 
you’ll only be receiving it in an alert service made with the purpose of illustrating the 
feature. But you could easily change this service to trigger an increase in the number of 
instances of a given service to increase the capacity to process messages from a queue.

The alert service is a simple app that also booted when you started all other apps and 
services. It’ll be listening for incoming POST messages, so you can go ahead and con-
figure the alerts in Grafana. Figure 11.12 shows the activity for the market place order 
event queue with indication of alerts, both when they were triggered and when the alert 
condition ceased. When you set up alerts, Grafana will indicate as an overlay both the 
threshold set for alerting (1) and the instants when alerts were triggered (2, 4, 6) and 
resolved (3, 5, 7).

With the current setup, the alert service sends an alert message as a webhook when 
the number of messages in any queue goes over 100. The following shows you one of 
those alert messages:

alerts.alert.d26ab4ca-1642-445f-a04c-41adf84145fd: 
{
  "evalMatches": [
    {
      "value":158.33333333333334, 
      "metric":"evt-orders_service-order_created
➥--market_service.place_order", 
      "tags":{
        "__name__":"rabbitmq_queue_messages",
        "exporter":"rabbitmq",

Value for the metric at the time of the alert

The name of the metric for 
which the alert was triggered
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        "instance":"rabbitmq:15672",
        "job":"rabbitmq",
        "queue":"evt-orders_service-order_created
➥--market_service.place_order", 
        "vhost":"/"
      }
    }
  ],
  "message":"Messages accumulating in the queue",
  "ruleId":1,
  "ruleName":"High number of messages in a queue", 
  "ruleUrl":"http://localhost:3000/dashboard/db/rabbitmq-metrics?fullscreen\
➥u0026edit\u0026tab=alert\u0026panelId=2\u0026orgId=1",
  "state":"alerting", 
  "title":"[Alerting] High number of messages in a queue"
}

Figure 11.12    The message queue’s status showing alert overlays

Shows information about the queue 
where the alert was triggered

Identifies what rule 
this alert is related to

Indicates the message type — In this case, "alerting" means 
an alert was triggered and the number of messages in the 
queue is above the normal operating threshold.
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Likewise, when the number of messages in a queue goes below the value defined as the 
threshold for alerting, the service also issues a message to notify about it:

alerts.alert.209f0d07-b36a-43f4-b97c-2663daa40410: 
{
  "evalMatches":[],
  "message":"Messages accumulating in the queue",
  "ruleId":1,
  "ruleName":"High number of messages in a queue", 
  "ruleUrl":"http://localhost:3000/dashboard/db/rabbitmq-metrics?fullscreen\
➥u0026edit\u0026tab=alert\u0026panelId=2\u0026orgId=1",
  "state":"ok",
  "title":"[OK] High number of messages in a queue"
}

Let’s now see how you can set up this alert for the number of messages in queues. 
You’ll also be using Grafana for setting up the alert, because it offers this capability and 
the alerts will display on the panels they relate to. You’ll be able to both receive notifi-
cations and check the panels for previous alerts.

You’ll start by adding a notification channel that’ll you’ll use to propagate alert 
events. Figure 11.13 shows how to create a new notification channel

To set up a new notification channel in Grafana, follow these steps:

1	 Click the Grafana icon on the top left of the screen.

2	 Under the Alerting menu, select Notification Channels.

 

Figure 11.13    Setting up a new notification channel in Grafana

Identifies the rule the 
alert is related to

The "ok" state means the number of messages in the queues are all back to 
below the set threshold; the conditions for a previous alert are no longer met.
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3	 Enter the name for the channel and select the type as Webhook, then check the 
Send on All Alerts option.

4	 Enter the URL for the service receiving the alerts. In your case, you’ll be using 
the alerts service and listening for POST requests.

5	 Click the Send Test button to verify all is working, and if so, click Save to save the 
changes.

Now that you have an alert channel set up, you can go ahead and create alerts on your 
panels. You’ll be setting an alert on the messages queue panel under the RabbitMQ 
dashboard you created previously. Clicking the Messages/Queue panel title will bring 
up a menu where you can select Edit. This allows you to create a new alert under the 
Alert tab. Figure 11.14 shows how to set up a new alert.

Under the Alert Config screen, start by adding the Name for the alert as well as the fre-
quency at which you want the condition to be evaluated — in this case every 30 seconds. 
The next step is to set the Conditions for the alert. You’ll be setting an alert to notify you 
whenever the average of the values collected from query A is above 100 in the last minute.

TIP    If you click the Metrics tab, you can see query A under it, which will be the 
rabbitmq_queue_messages metric. You also have the option to test the rules 
you set by clicking the Test Rule button.

Under the Alert tab, you also can check the history of the configured alerts. Fig-
ure 11.15 shows the alert history for the number of messages in queues.

Figure 11.14    Setting up alerts on the Messages/Queue graph on the RabbitMQ Dashboard

 



	 291Raising sensible and actionable alerts

Figure 11.15    Displaying the state history for a given alert

That’s it, you’re done! You’ve set up a monitoring infrastructure to collect both metrics 
that your services already emitted and those that come from a key component that 
those services use to communicate asynchronously: the event queue. You’ve also seen 
how to create alerts to be notified whenever certain conditions in your system are met. 
Let’s now dig a bit deeper into alerts and how to use them.

11.3	 Raising sensible and actionable alerts
Having a monitoring infrastructure in place means you can measure system perfor-
mance and keep a historic record of those measures. It also means you can determine 
thresholds for your measures and automatically emit notifications when those thresh-
olds are exceeded.

One thing you need to keep in mind, though, is that it’s easy to reach a stage 
where all this information can become overwhelming. Eventually, the overload of 
information can do more harm than good (for example, if it gets so bad that peo-
ple start ignoring recurring alerts). You need to make sure that the alerts you raise 
are actionable — and actioned — and that they’re targeting the correct people in the 
organization.
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Although services may consume and take action on some of the alerts automatically; 
for example, autoscaling a service if messages are accumulating in a queue, humans 
need to consume and take action on some alerts. You want those alerts to reach the 
correct people and contain enough information so that diagnosing the cause becomes 
as easy as possible.

You also need to prioritize alerts, because most likely any issue with your services or 
infrastructure will trigger multiple alerts. Whoever is dealing with those alerts needs 
to know immediately the urgency of each one. As a rule, you should direct alerts for 
services to the teams owning those services. You should map the application into the 
organization, because this helps with determining the targets for alerts.

11.3.1	 Who needs to know when something is wrong?

In day-to-day operation, alerts should target the team who owns the service and orig-
inated it. This reflects the “you build it, you run it” mantra that should govern a 
microservices-oriented engineering team. As teams create and deploy services, it’s 
hard, if not impossible, for everyone to know about every service deployed. People 
with the most knowledge about a service will be in the best position to interpret and 
take action in response to alerts that the service generates.

Organizations also may have some on-call rotation or a dedicated team that’ll receive 
and monitor alerts and then escalate if necessary to specialized teams. When setting up 
alerts and notifications, it’s important to keep in mind that other people may consume 
them, so you should keep those alerts as concise and informative as possible. It’s also 
important that each service have some sort of documentation on common issues and 
diagnosing recipes so that on-call teams can, when they receive an alert, determine if 
they can fix the issue or if they need to escalate it.

You also should categorize alerts by levels of urgency. Not every issue will need imme-
diate attention, but some are deal breakers that you need to address as soon as you 
know about them.

Severe issues should trigger a notification to ensure someone, either an engineer 
from the team that built the service or an on-call engineer, is notified. Issues that are 
of moderate severity should generate alerts as notifications in any channels deemed 
appropriate, so those monitoring them can pick them up. You can think of this type 
of alert as something generating a queue of tasks that you need to carry out as soon as 
possible but not immediately — they don’t need to interrupt someone’s flow or wake 
someone up in the middle of the night. The lowest priority alerts are those that only 
generate a record. These alerts aren’t strictly for human consumption, because services 
can receive them and take some kind of action if needed (for example, autoscaling a 
service when response times increase).

11.3.2	 Symptoms, not causes 

Symptoms, not causes, should trigger alerts. An example of this is a user-facing error; if 
users can no longer access a service, that inability should generate an alert. You shouldn’t 
be tempted to trigger alerts for every single parameter that isn’t under the normal 
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threshold. With such partial information, you won’t be able to know what’s going on or 
what the problem is. In figure 11.2, we illustrated the flow for placing orders in the stock 
market. Four services cooperate with a gateway that works as the access point for the con-
sumer of the feature. One or more of the services may be exhibiting erroneous behavior 
or be overloaded. Given the mainly asynchronous nature of the communication between 
components, it may be hard to pinpoint why a given error may be happening.

Imagine you set an alert that relates the number of requests reaching the gateway 
and the number of issued notifications of orders placed. It’ll be simple to correlate 
those two metrics over time and determine the ratio between the two. You’ll have a 
symptom: the number of orders placed is greater than the ones completed. You can 
start from there and then try to understand which component is failing (maybe even 
multiple components). Is it the event queue or an infrastructure problem? Is the system 
under high loads and can’t cope? The symptom will be the starting point for your inves-
tigation, and from there you should follow the leads until you find the cause or causes.

TIP    Avoid alert fatigue by keeping alert notifications to a minimum and keep-
ing them actionable. Generating an alert notification for every single deviation 
from the normal behavior of the system may quickly lead to alerts being disre-
garded or deemed unimportant. Such minimizing will eventually lead to some-
thing important being overlooked.

11.4	 Observing the whole application
Correlating metrics can be a precious tool to infer and understand more than a 
per-service state of the system. Monitoring can also help you understand and reason 
through the behavior of the system under different conditions, and this can help you 
to predict and adjust your capacity by using all the collected data. The good thing 
about collecting per-service metrics is you can iteratively correlate them between dif-
ferent services and have an overall idea of the behavior of the whole application. In 
figure 11.16, you can see a possible correlation of different service metrics.

Let’s look into each of the suggested correlations:

¡	A: Creating a new visualization comparing the rate of incoming requests to the gateway and 
the orders service  — This allows you to understand if there are any issues in process-
ing the incoming requests from your users. You also can use the new correlation 
to set an alert every time that rate drops from 99%.

¡	B: Correlating the number of user requests made to the gateway with the number of order- 
created messages in the queue  — Given that you know the order service is responsible 
for publishing those messages, this will, similarly to A, allow you to understand if 
the system is working correctly and customer requests are being processed.

¡	C: Correlating the number of order-placed messages with the number of requests to the order 
service  — This will allow you to infer if the fee service is working properly.
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Figure 11.16    Correlation of metrics between different services

Combining different metrics into new dashboards and setting sensible alerts on them 
allows you to gain insights into the overall application. It’s then up to you to determine 
the desired level of detail, from a high-level view to a detailed one. 

So far, we’ve covered monitoring and alerting. You’ve set up a monitoring stack to 
be able to understand how things happened. You’re now able to understand the status 
of services, observe the metrics they emit, and determine if they’re operating within 
expected parameters. This is only part of the application observability effort. It’s a good 
starting point, but you do need more!

To be able to fully understand what’s going on, you need to invest some more in 
logging and tracing so you can have both a current view of what’s happening and a view 
of what happened before. In the next chapter, we’ll focus on logging and tracing as a 
complement to monitoring in your journey into observability. Doing so will help you to 
understand why things happened.
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Summary

¡	A robust microservice monitoring stack consists of metrics, traces, and logs.
¡	Collecting rich data from your microservices will help you identify issues, investi-

gate problems, and understand your overall application behavior.
¡	When collecting metrics, you should focus on four golden signals: latency, errors, 

traffic (or throughput), and saturation.
¡	Prometheus and StatsD are two common, language-independent tools for col-

lecting metrics from microservices.
¡	You can use Grafana to graph metric data, create human-readable dashboards, 

and trigger alerts.
¡	Alerts based on metrics are more durable and maintainable if they indicate the 

symptoms of incorrect system behavior, rather than the causes.
¡	Well-defined alerts should have a clear priority, be escalated to the right people, 

be actionable, and contain concise and useful information.
¡	Collecting and aggregating data from multiple services will allow you to correlate 

and compare distinct metrics to gain a rich overall understanding of your system.
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12Using logs and traces  
to understand behavior

This chapter covers
¡	Storing logs in a consistent and structured way 

in a machine-readable format

¡	Setting up a logging infrastructure

¡	Using traces and correlation IDs to understand 
system behavior

In the previous chapter, we focused on emitting metrics from your services and 
using those metrics to create dashboards and alerts. Metrics and alerts are only one 
part of what you need to achieve observability in your microservice architecture. 
In this chapter, we’ll focus on collecting logs and making sure you’re able to trace 
the interactions between services. This will allow you to not only have an overview 
of how the system behaves but also go back in time and retrospectively follow each 
request. Doing so is important to debug errors and to identify bottlenecks. Logs give 
you a sort of paper trail that documents the history of each request entering your 
system, whereas traces provide you a way to establish a timeline for each request, to 
understand how much time it spent in different services. 
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12
By the end of this chapter, you’ll have created a basic logging infrastructure and set 

up the tracing capability. You’ll be able to both monitor the operation of your applica-
tion and have the tools to audit and investigate in case you need to do so for particular 
requests. In addition, you’ll be able to identify performance issues by looking into trac-
ing data.

12.1	 Understanding behavior across services
In a microservices-based architecture, multiple services will be involved in providing 
functionality to users. It gets hard to understand what goes on with every request when 
you no longer have a central access point to data. Services are distributed across multi-
ple nodes, are ephemeral, and are continuously being deployed and scaled to meet the 
needs of operation. Let’s revisit the sell order use case as you might have implemented 
it if you’d needed a single application running on a single machine (figure 12.1).

Hard diskAPI
(gateway)

Orders module

Accounts module Queue

Fees module

Market module

Application log

Figure 12.1    The sell order use case implemented in a single application
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 In figure 12.1, we’ve represented each of the services that collaborate to allow a client 
to sell shares as modules in the same application. If you were to inspect a given request 
lifecycle in the system, you could log in to the machine and inspect log data stored on a 
hard drive. But you’d most likely have multiple machines running the application, for 
redundancy and availability, so things wouldn’t be as easy as logging in to one machine. 
Once you identified the request you were interested in observing, you’d have to iden-
tify which machine had run the request and then inspect it. Going through the logs 
from that machine would provide you needed insights.

Maintaining logs in a single machine is by no means easy — a server can also crash 
and become unavailable. Our aim here isn’t to talk about minimizing the complexity of 
keeping log data (or any data) safely persisted but to point out that having a single point 
for storing all the data makes it easier and more convenient to consult.

Let’s now compare the same scenario in a microservices application. Figure 12.2 
illustrates the same use case with multiple services, each with multiple copies of itself, 
running independently. 

As you can see below, you have five services running independently, and each of 
those services has three instances running. This means potentially none of the pods 
are executing on the same physical machine. A request coming into the system will 
most likely flow through multiple pods running on different physical machines, and 
you have no easy way to track down that request by accessing logs. Could you even do 
it? What guarantee do you have that any of the pods are still running once you need to 
access data?
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Figure 12.2    The sell order use case in SimpleBank with multiple services running, each with its own log data
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In figure 12.3, we illustrate the challenges you face when you try to gather data from a 
distributed system. Even if you had some sort of persistency for the log data that would 
allow it to survive after a running pod is replaced, it’d be no easy task to track down 
a request through your system. You need a better way to record what’s going on with 
your system. To be able to fully understand behavior, you need to

¡	Make sure you persist log data so it survives through service restarts and scaling
¡	Aggregate all log data from multiple services and instances of those services in a 

central location
¡	Make the stored data usable, allowing for easy searches and further processing

Our objective by the end of this chapter will be to have an infrastructure that allows 
you to collect log data from all your services, aggregating it and allowing you to per-
form searches in it so you can, at any time, reason through the behavior of the system. 
You’ll be able to use the available data to audit, debug, or even gather new insights 
by processing it further. One example of the processing you can do to augment the 
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available information is to collect the IP data stored in the logs and generate a visual-
ization showing the most common geographic areas of your users.

 To effectively store and make your log data searchable, you first need to agree on a 
format the engineering team will use. A consistent format will help to guarantee that 
you can store and process data effectively.

12.2	 Generating consistent, structured,  
human-readable logs
To be able to achieve observability, you have to collect data from multiple sources; 
not only from running services but also from your infrastructure. Defining a common 
format allows you to analyze data more easily and perform searches in that data using 
existing tools with minimal effort. Examples of the data you may collect and use are:

¡	Application logs
¡	Database logs
¡	Network logs
¡	Performance data collected from the underlying operating system

For some components, you can’t control the format, so you have to cope with their 
specificities and transform them somehow. But for now, let’s focus on what you can 
control: your services. Making sure the whole engineering team abides by a format 
and a way of doing things pays off in the long run, because data collection will become 
simpler and more effective. Let’s start by determining what you should store; then we 
can look at how to store it.

12.2.1	 Useful information to include in log entries

For your log data to be useful and effective in helping you to understand behavior in 
your systems, you need to make sure it includes certain information that will allow you 
to communicate certain things. Let’s look into what you should include as part of each 
log entry.

Timestamps

To be able to correlate data and order it appropriately, you need to make sure you 
attach timestamps to your log entries. Timestamps should be as granular and verbose 
as possible; for example, use four-digit years and the best resolution available. Each 
service should render its own timestamps, preferably in microseconds. Timestamps 
also should include a time zone, and it’s advisable that you collect data as GMT/UTC 
whenever possible.

Having these details allows you to avoid issues with correlating data from different 
services with different time zones. Ordering data by time of occurrence will become 
much easier and require less context while analyzing. Getting timestamps right is 
the first step in making sure you can understand the sequence in which events took 
place.
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Identifiers

You should use unique identifiers whenever, and as much as, possible in the data you 
intend to log. Request IDs, user IDs, and other unique identifiers are invaluable when 
you’re cross-referencing data from multiple sources. They allow you to group data 
from different sources in an effective way.

Most of the time, these IDs already exist in your system because you need to use them 
to identify resources. It’s likely they’re already being propagated through different ser-
vices, so you should make the best use out of them. Unique identifiers used alongside 
timestamps yield a powerful tool to understand the flow of events in a system.

Source

Identifying the source of a given log entry allows easier debugging when needed. Typi-
cal source data you can use includes:

¡	Host
¡	Class or module
¡	Function
¡	Filename

When adding execution times on a given function call, the information you’ve col-
lected for the source allows you to infer performance because you can extrapolate 
execution times, even if not in real time. Although this isn’t a replacement for collect-
ing metrics, it can be effective in helping to identify bottlenecks and potential perfor-
mance issues.

Level or category

Each log entry should contain a category. The category can be either the type of data 
you’re logging or the log level. Typically, the following values are used as log levels: 
ERROR, DEBUG, INFO, WARN.

The category will allow you to group data. Some tools can parse log files searching 
for messages with the ERROR level and communicate them to error reporting systems. 
This is a perfect example of how you can use the log level or category to automate the 
process of error reporting without the need for explicit instructions.

12.2.2	 Structure and readability

You want to generate log entries in a human-readable format, but at the same time 
they need to be easily parseable by a machine. What we mean by human readable is 
avoiding binary encoding of data or any type of encoding that your average human 
can’t understand. An example of this would be storing the binary representation of an 
image. You should probably use its ID, file size, and other associated data instead.

You also should avoid multiline logs because they can lead to fragmentation while 
parsing them in log aggregation tools. With such logs, it can be easy to lose some 
of the information associated with a particular log entry, like the ID, timestamp, or 
source.
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For the examples in this chapter, you’ll be using JSON to encode your log entries. 
Doing so allows you to provide human-readable and machine-parseable data, as well as 
to automatically include some of the data we mentioned in the previous section.

In chapter 7, when we were discussing a microservice chassis, we introduced a Python 
library that provides log formatting: logstash-formatter. Logstash libraries are avail-
able for different languages, so you can expect the format to be widespread and easily 
usable no matter what language you chose to code your services in.

Logstash
Logstash is a tool to collect, process, and forward events and log messages from multiple 
sources. It provides multiple plugins to configure data collecting.

We’re interested in the formatting conventions of Logstash, and you’ll be using its V1 for-
mat specification in your SimpleBank services.

 

Let’s now look into a log entry collected using the Logstash library for Python. This mes-
sage is formatted using V1 of the logstash format, and the application generated it auto-
matically when it was booting, without the need for any specific code instruction to log it:

{ 
    "source_host" : "e7003378928a", 
    "pathname" : "usrlocallibpython3.6site-packagesnamekorunners.py", 
➥"relativeCreated" : 386.46125793457031,  
    "levelno" : 20,  
    "msecs" : 118.99447441101074,  
    "process" : 1,  
    "args" : [    "orders_service"  ],
    "name" : "nameko.runners",  
    "filename" : "runners.py", 
    "funcName" : "start", 
    "module" : "runners", 
    "lineno" : 64,  
    "@timestamp" : "2018-02-02T18:42:09.119Z", 
    "@version" : 1, 
    "message" : "starting services: orders_service", 
    "levelname" : "INFO", 
    "stack_info" : null,  
    "thread" : 140612517945416,   
    "processName" : "MainProcess",  
    "threadName" : "MainThread",  
    "msg" : "starting services: %s",  
    "created" : 1520275329.1189945
}

Information about the source: the host 
running the application

Time taken to process the action

Filename, function, module, and line 
number emitting the log

Timestamp, with Z indicating 
the UTC time zone

Version of the formatter (logstash-formatter v1)

Message indicating the 
starting of the server

Log level or category, in this case the INFO level
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As you can see, the Logstash library inserts relevant information, taking that burden 
from the developer’s shoulders. In the following listing, you’ll see how an explicit log 
call in code renders a log entry.

Listing 12.1    Logstash V1 formatted log message after an explicit log instruction

# Python code for generating a log entry 
self.logger.info ({"message": "Placing sell order", 
➥"uuid": res})    

{
    "@timestamp": "2018-02-02T18:43:08.221Z",
    "@version": 1,
    "source_host": "b0c90723c58f",
    "name": "root",
    "args": [],
    "levelname": "INFO", 
    "levelno": 20,
    "pathname": "./app.py",
    "filename": "app.py",
    "module": "app",
    "stack_info": null,
    "lineno": 33,
    "funcName": "sell_shares",
    "created": 1520333830.3000789,
    "msecs": 300.0788688659668,
    "relativeCreated": 15495.944738388062,
    "thread": 140456577504064,
    "threadName": "GreenThread-2",
    "processName": "MainProcess",
    "process": 1,
    "message": "Placing sell order", 
    "uuid": "a95d17ac-f2b5-4f2c-8e8e-2a3f07c68cf2" 
}

In your explicit call to the logger, you’ve only stated the desired level and the message 
to log in the form of key-value pairs containing a message and a UUID. Logstash auto-
matically collected and added all the other information present in the log entry with-
out you having to declare it explicitly.

12.3	 Setting up a logging infrastructure for SimpleBank
Now that you’ve set a format for collecting and presenting info, you can move on to 
creating a basic logging infrastructure. In this section, you’ll be setting up the infra-
structure that’ll allow you to collect logs from all the running services and aggregate 
them. It also will provide you with search and correlation capabilities. The purpose is to 
have a central access point to all the log data like you already have for metrics. In figure 
12.4, we illustrate what you want to achieve after setting up a logging infrastructure.

The log level, the message 
field, and the uuid field

The log level determined by the call made 
to the logger module, in this case, INFO

The message field

The uuid field, which identifies 
and potentially allows correlation 
between this log entry and 
another in different services
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Figure 12.4    Services making use of centralized metrics and a centralized log for easy access to data

Once you set up the log aggregation capability, like you did for metrics in chapter 11, 
you’ll have all services sending both metrics and logs to centralized systems that’ll allow 
you to improve observability. You’ll be able to observe data about a running system and 
dig deeper to collect more information in case you need to audit or debug a particular 
request. You’ll set up a solution commonly called ELK (Elasticsearch, Logstash, and 
Kibana) and will use a data collector called Fluentd.

12.3.1	 ELK- and Fluentd-based solution

You’ll build the logging infrastructure we propose using Elasticsearch, Logstash, and 
Kibana. Also, you’ll use Fluentd for pushing logs from the apps to your centralized log-
ging solution. Before we get into more details about these technologies, have a look at 
figure 12.5 to get an overview of what we want to enable you to achieve.

In figure 12.5, you can see how you can collect the logs for multiple instances of the 
gateway service and forward them to your centralized logging system. We represent 
multiple instances of the same service, but this will work for any of the services you have 
running. Services will redirect all the log information to STDOUT (standard output), and 
an agent running the Fluentd daemon will be responsible for pushing those logs into 
Elasticsearch.

 



	 305Setting up a logging infrastructure for SimpleBank

2018-02-04T13:55:19.263380548Z {"@timestamp":
"2018-02-04T13:55:19.262Z", "@version": 1,
"source_host": "bb69db21f1eb", "name": "root", "args": [],
"levelname": "INFO", "levelno": 20, "pathname": "./app.py",
"filename": "app.py", "module": "app", "stack_info": null,
"lineno": 33, "funcName": "sell_shares", "created":
1520171719.26152, "msecs": 261.5199089050293,
"relativeCreated": 669360.3167533875, "thread":
140130358674856, "threadName": "GreenTread-13",
"processName": "MainProcess", "process": 1, "message":
"{'event': 'sell_order_received', 'uuid':
'11fcdc94-c055-4f26-988b-886165655792'}", "event":
"sell_order_received", "uuid":
"11fcdc94-c055-4f26-988b-886165655792"}

2018-02-04T13:55:19.263380548Z {"@timestamp":
"2018-02-04T13:55:19.262Z", "@version": 1,
"source_host": "bb69db21f1eb", "name": "root", "args": [],
"levelname": "INFO", "levelno": 20, "pathname": "./app.py",
"filename": "app.py", "module": "app", "stack_info": null,
"lineno": 33, "funcName": "sell_shares", "created":
1520171719.26152, "msecs": 261.5199089050293,
"relativeCreated": 669360.3167533875, "thread":
140130358674856, "threadName": "GreenTread-13",
"processName": "MainProcess", "process": 1, "message":
"{'event': 'sell_order_received', 'uuid':
'11fcdc94-c055-4f26-988b-886165655792'}", "event":
"sell_order_received", "uuid":
"11fcdc94-c055-4f26-988b-886165655792"}

Gateway

2018-02-04T13:55:19.263380548Z {"@timestamp":
"2018-02-04T13:55:19.262Z", "@version": 1,
"source_host": "bb69db21f1eb", "name": "root", "args": [],
"levelname": "INFO", "levelno": 20, "pathname": "./app.py",
"filename": "app.py", "module": "app", "stack_info": null,
"lineno": 33, "funcName": "sell_shares", "created":
1520171719.26152, "msecs": 261.5199089050293,
"relativeCreated": 669360.3167533875, "thread":
140130358674856, "threadName": "GreenTread-13",
"processName": "MainProcess", "process": 1, "message":
"{'event': 'sell_order_received', 'uuid':
'11fcdc94-c055-4f26-988b-886165655792'}", "event":
"sell_order_received", "uuid":
"11fcdc94-c055-4f26-988b-886165655792"}

Logs

Gateway

Logs

Gateway

Logs

Centralized logging
STDOUT

STDOUT Fluentd

STDOUT

Gateway service deployed in Kubernetes

Figure 12.5    Collecting logs from multiple service instances and forwarding them to a centralized location

By following this pattern when deploying any new services, you’ll make sure log data 
gets collected and indexed and becomes searchable. But before we move to imple-
mentation, we’ll take a little time to introduce each of the technologies you’ll be 
using.

Elasticsearch

Elasticsearch (www.elastic.co/products/elasticsearch) is a search and analytics engine 
that stores data centrally. It indexes data, in your case log data, and allows you to per-
form efficient search and aggregation operations on the data it has stored.

Logstash

Logstash (www.elastic.co/products/logstash) is a server-side processing pipeline that 
allows data ingestion from multiple sources and transforms that data prior to send-
ing it to Elasticsearch. In your case, you’ll be using the Logstash formatting and data 
collection capabilities by taking advantage of client libraries. In this chapter’s earlier 
examples, you already observed its ability to provide consistent data that you can send 
to Elasticsearch. But here you won’t be using Logstash to send data; you’ll be using 
Fluentd instead.

Kibana

Kibana (www.elastic.co/products/kibana) is a UI for visualizing Elasticsearch data. It’s 
a tool you can use to query data and explore its associations. In your use case, it’ll 
operate on log data. You can use Kibana to derive visualizations from gathered data, so 
it’s more than a search tool. Figure 12.6 shows an example of a dashboard powered by 
Kibana.

 

www.elastic.co/products/elasticsearch
www.elastic.co/products/logstash
www.elastic.co/products/kibana
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Figure 12.6    Kibana tutorial dashboard showing visualizations created from log data

Fluentd

Fluentd (www.fluentd.org) is an open source data collector that you’ll be using to push 
data from your services to Elasticsearch. You’ll combine the data formatting and col-
lecting capabilities of Logstash and use Fluentd to push that data. One of its advan-
tages is the fact that you can use it as a logging provider for Dockerfiles if you declare it 
in Docker compose files.

12.3.2	 Setting up your logging solution

You’ll set up your solution via the Docker compose file, like you already did in chap-
ter 11 to create the metrics collecting and alert infrastructure. You can find all the 
code used in this chapter at Github (http://mng.bz/k191). There, you’ll find the 
docker-compose.yml file, where you’ll be declaring the new dependencies. The fol-
lowing listing shows the new components added to the compose file.

 Listing 12.2 Docker compose file with Elasticsearch, Kibana, and Fluentd containers

version: '2.1'
services:

  gateway:
    container_name: simplebank-gateway
    restart: always
    build: ./gateway
    ports:

 

www.fluentd.org
http://mng.bz/k191
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      - 5001:5000
    volumes:
      - ./gateway:/usr/src/app
    links:
      - "rabbitmq:simplebank-rabbitmq"
      - "fluentd”
    logging: 
      driver: "fluentd" 
      options:
        fluentd-address: localhost:24224
        tag: simplebank.gateway

(…)
  kibana:
    image: kibana 
    links:
      - "elasticsearch" 
    ports:
      - "5601:5601"

  elasticsearch:
    image: elasticsearch 
    expose:
      - 9200
    ports:
      - "9200:9200"

  fluentd:
    build: ./fluentd 
    volumes:
      - ./fluentd/conf:/fluentd/etc 
    links:
      - "elasticsearch" 
    ports:
      - "24224:24224"
      - "24224:24224/udp"
(…)

Once you’ve added this content to the docker compose file, you’re almost ready to 
boot your logging infrastructure alongside your services. But first let’s cover the miss-
ing tweaks we mentioned previously that’ll allow you to configure Fluentd to your 
needs. The Dockerfile you use for building Fluentd follows.

Listing 12.3    Fluentd Dockerfile (Fluentd/Dockerfile)

FROM fluent/fluentd:v0.12-debian 
RUN ["gem", "install", "fluent-plugin-elasticsearch", 
➥"--no-rdoc", "--no-ri", "--version", "1.9.2"] 

Now all you need is to create a configuration file for Fluentd. The following listing 
shows the config file.

Adds a logging directive to each service to 
force Docker to push the output of each 
container running a service to Fluentd, 
which in turn will make sure data gets 
pushed to Elasticsearch

For Kibana, uses the default image in 
Docker Hub with the defaults set

Links Kibana to the Elasticsearch container, 
because it’ll consume data from it

Like you did for Kibana, uses the default 
image for Elasticsearch

Builds Fluentd from a custom Docker image

Injects the configuration for Fluentd into 
the built container, allowing you to 
tweak the default configuration

Links the Fluentd container to the Elasticsearch 
container, because it’ll be pushing data into it

Pulls the Fluentd base image

Installs the Elasticsearch 
plugin for Fluentd
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Listing 12.4    Fluentd configuration (fluentd/conf/fluent.conf)

<source> 
  @type forward 
  port 24224
  bind 0.0.0.0
</source>
<match *.**> 
  @type copy 
  <store>
    @type elasticsearch 
    host elasticsearch
    port 9200
    logstash_format true
    logstash_prefix fluentd
    logstash_dateformat %Y%m%d
    include_tag_key true
    type_name access_log
    tag_key @log_name
    flush_interval 1s
  </store>
  <store>
    @type stdout 
  </store>
</match>

 The match section in the Fluentd configuration file contains all the needed configu-
ration for connecting with elasticsearch, port, and host, as well as the format used. 
You’re using logstash format, as you may recall.

With all the needed setup done, you’re now ready to boot your services using the 
new Docker compose file. Before doing so, let’s go through your services and change 
code to enable you to send data to your centralized logging infrastructure. In the next 
section, you’ll configure your services to make use of the Logstash logger. You’ll also set 
log levels.

12.3.3	 Configure what logs to collect

In your services, you can control the log level via environment variables, so you can 
have different levels for development and production environments. Using different 
log levels allows you to enable more verbose logs in production, in case you need to 
investigate any issue.

Let’s look at your gateway service for its logging configuration and also at the service 
code to understand how you can emit log messages. The logging configuration is shown 
in the following listing.

Configures the location data comes from: port 
24224 for both TCP and UDP, as you declared 
in the Docker compose file in listing 12.2

Plugin to use for input; listens to a TCP socket 
and a UDP socket for heartbeats that work as 
a way to monitor the health of Fluentd

Indicates what Fluentd should do — In this section, 
you configure two stores: one that processes json data 
and another that processes all other stdout data.

Output plugins used in the match section: 
copy for copying events to multiple sources; 
elasticsearch to record data in Elasticsearch; 
and stdout to output all data entering Fluentd  
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Listing 12.5    Configuration file for the gateway service (gateway/config.yml)

AMQP_URI: amqp://${RABBIT_USER:guest}:${RABBIT_PASSWORD:guest}@${RABBIT_HOST:
➥localhost}:${RABBIT_PORT:5672}/
WEB_SERVER_ADDRESS: '0.0.0.0:5000'
RPC_EXCHANGE: 'simplebank-rpc'
LOGGING: 
    version: 1
    handlers:
        console:
            class: logging.StreamHandler 
    root:
        level: ${LOG_LEVEL:INFO} 
        handlers: [console] 

This configuration will allow setting the log level when the application boots. In the 
Docker compose file, you’ve set the environment variable LOG_LEVEL as INFO for all ser-
vices except for the Gateway, which has a DEBUG value. Let’s now look into the gateway 
code to set up logging, as shown in the following listing.

Listing 12.6    Enable logging in the gateway service (gateway/app.py)

import datetime
import json
import logging 
import uuid

from logstash_formatter import LogstashFormatterV1 
from nameko.rpc import RpcProxy, rpc
from nameko.web.handlers import http
from statsd import StatsClient
from werkzeug.wrappers import Request, Response

class Gateway:

    name = "gateway"
    orders = RpcProxy("orders_service")
    statsd = StatsClient('statsd', 8125,
                         prefix='simplebank-demo.gateway')

    logger = logging.getLogger() 
    handler = logging.StreamHandler() 
    formatter = LogstashFormatterV1() 

    handler.setFormatter(formatter) 
    logger.addHandler(handler) 

    @http('POST', '/shares/sell')
    @statsd.timer('sell_shares')

Logging configuration section

Defines the handler class for console logging, 
which you’ll use as the handler in listing 12.6 

Reads the log level from an environment variable 
(LOG_LEVEL) and sets a default value of INFO in 
case the environment variable isn’t defined 

Registers only a ̀ console` handler, because 
you won’t be reading from log files

Imports Python’s logging facility (https://docs.python.org/3/ 
library/logging.html)

Imports the Logstash 
Formatter so you can emit 
logs in logstash format

Initializes and configures logger
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    def sell_shares(self, request):
        req_id = uuid.uuid4()
        res = u"{}".format(req_id)

        self.logger.debug(
            "this is a debug message from gateway", 
➥extra={"uuid": res}) 

        self.logger.info("placing sell order", extra=
➥{"uuid": res}) 

        self.__sell_shares(res)

        return Response(json.dumps(
            {"ok": "sell order {} placed".format(req_id)}),
            ➥mimetype='application/json')

    @rpc
    def __sell_shares(self, uuid):
        self.logger.info("contacting orders service", extra={
            ➥"uuid": uuid}) 

        res = u"{}".format(uuid)
        return self.orders.sell_shares(res)

    @http('GET', '/health')
    @statsd.timer('health')
    def health(self, _request):
        return json.dumps({'ok': datetime.datetime.utcnow().__str__()})

In listing 12.2, you saw how to enable the Fluentd driver for logging with Docker. This 
means you’re ready to send log data generated from your services to Elasticsearch 
using Fluentd, and afterwards you’ll be able to explore that log data using Kibana. 
To start all the services, metrics, and logging infrastructure from a console in the root 
directory, execute the following command:

docker-compose up --build --remove-orphans

Once all is ready, you need to complete one last step, which is configuring Kibana 
to use the logs collected via Fluentd and stored in Elasticsearch. To do so, access the 
Kibana web dashboard (http://localhost:5601). On the first access, you’ll be redi-
rected to the management page, where you’ll need to configure an index pattern. You 
need to tell Kibana where to find your data. If you recall, in the Fluentd configuration, 
you set an option for the logstash prefix with the value fluentd. This is what you need 
to enter in the index text box presented to you. Figure 12.7 shows the Kibana dash-
board management section and the value you need to input.

After inserting fluentd-* as the index pattern and clicking the Create button, you’ll 
be ready to explore all the log data that your multiple services create. Elasticsearch will 
forward all data to a central location, and you’ll be able to access it in a convenient way.

Example of how to log a message with 
the DEBUG level — This message will 

only be sent if the application log level 
is set to DEBUG. If you set it to INFO, 

this message won’t be sent.

Examples of log messages 
emitted with the INFO log level
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Figure 12.7    The Kibana management section where you need to indicate the index pattern for it to be 
able to fetch data from Elasticsearch

To generate some log data, all you need to do is create a sell request to your gateway 
service. To do so, you need to issue a POST request to the gateway. The following shows 
presenting a request via curl, but any tool capable of generating a POST request will do:

chapter-12$ curl -X POST http://localhost:5001/shares/sell \
  -H 'cache-control: no-cache' \
  -H 'content-type: application/json' 

chapter-12$ {"ok": "sell order e11f4713-8bd8-4882-b645
➥-55f96d220e44 placed"} 

Now that you have log data collected, you can explore it using Kibana. Clicking on 
the Discover section on the left side of Kibana’s web dashboard will take you to a 
page where you can perform searches. In the search box, insert the request UUID 
you received as the sell order response. In the case of this example, you’d be using 
e11f4713-8bd8-4882-b645-55f96d220e44 as your search parameter. In the next sec-
tion, we’ll show you how to use Kibana to follow the execution of a sell request through 
the different services involved.

12.3.4	 Finding a needle in the haystack

In the code example for this chapter, you have five independent services collaborat-
ing to allow SimpleBank users to sell shares. All services are logging their operations 
and using the request UUID as a unique identifier to allow you to aggregate all log 

curl command to the gateway service

Response from the service — the UUID you receive allows you to 
identify your sell order, and you can use it as a search term on 
Kibana. (The UUID shown is randomly generated, so please use 
the one you receive as a response to the request you issued.)
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messages referring to a sell order that’s processing. You can make use of Kibana to 
explore your logs and track down the execution of a request. In figure 12.8, you use 
the order ID that the gateway service returns to perform the search.

When you use the request ID as the search parameter, Kibana filters the log data, and 
you get 11 hits that allow you to follow the execution of a request through different ser-
vices. Kibana allows you to use complex queries to be able to uncover insights. You get 
the ability to filter per service, sort by time, and even use log data — for example, exe-
cution times present in the log entries — to create dashboards to track performance. 
This use is beyond the scope of this chapter, but do feel free to explore the possibilities 
offered to get new perspectives on the collected data.

We’ll now zoom in a bit and focus on some of the log entries that your query shows. 
Figure 12.9 shows some of those entries with a bit more detail.

Figure 12.9    Detailed view of log messages in the Kibana search page

Figure 12.8    Searching the log data using a request ID
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In figure 12.9, you’ll find messages from the market and gateway services. For the latter, 
given that the log level selected was DEBUG, you’ll find both info and debug messages. 
As mentioned previously, by using the logstash-formatter library in your Python 
code, you get more information for free. You can find data regarding execution times 
and scoping of the execution by module, function, line, process, and thread. All of this 
info can be useful if you need to diagnose any issues in the future.

12.3.5	 Logging the right information

Now that you’re able to collect logs and store them, you need to be careful about what 
information you send via logs. Things like passwords, credit card numbers, ID card 
numbers, and potentially sensitive personal data that get sent will be stored and acces-
sible by anyone who can use the logging infrastructure. In your case, you’re hosting 
and controlling the logging infrastructure, but if you were using a third-party provider, 
you’d need to pay extra attention to these details. You have no easy way to delete only 
some of the data already sent. In most cases, if you want to delete something specific, it 
means deleting all the log data for a given period of time.

Data privacy is a hot topic at the moment, and with the EU General Data Protection 
Regulation (GDPR) (www.eugdpr.org) now in effect, you need to take extra care when 
considering which data to log and how to log it. We won’t explore the needed steps 
in depth here, but both Fluentd and Elasticsearch allow you to apply filtering to data 
so that any sensitive fields get masked, encrypted, or removed from the data that they 
receive and that Elasticsearch indexes. The general rule would be to log as little infor-
mation as you can, avoid any personal data in logs, and take extra care with reviewing 
what gets logged before any changes make it into the production environment. Once 
your services send data, it’s hard to erase it and doing so will have associated costs.

That said, you can and should use logs to communicate useful information to allow 
you to understand system behavior. Sending IDs that allow you to correlate actions of 
different systems and terse log messages indicating actions performed in or by systems 
can help you keep track of what’s happened.

12.4	 Tracing interactions between services
When you were setting up your log infrastructure and making the code changes to emit 
log messages, you already took care of propagating an ID field that allows you to follow 
the execution path of a request through your system. With this set up, you can group log 
entries under the same context. You may even use log data to create visualizations that’ll 
allow you to understand how much time each component took to process a request. In 
addition, you can use it to help you identify bottlenecks and places where you can improve 
your code to have extra performance. But logs aren’t the only tool available — you have 
another method at your disposal for doing this that doesn’t rely on log data.

You can do better by reconstructing the journey of requests through your microservices. 
In this section, you’ll be setting up distributed tracing to allow you to visualize the flow of 
execution between services and at the same time, provide insights on how long each oper-
ation takes. This can be valuable, not only to understand the order in which a request flows 
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through multiple services, but also to identify possible bottlenecks. For this, you’ll use Jae-
ger and libraries compatible with the OpenTracing API (http://opentracing.io). 

OpenTracing API
The OpenTracing API is a vendor-neutral open standard for distributed tracing. A lot of 
distributed tracing systems (for example, Dapper, Zipkin, HTrace, X-Trace) provide tracing 
capabilities but do so using incompatible APIs. Choosing one of those systems would 
generally mean tightly coupling systems potentially using different programming lan-
guages to a single solution. The purpose of the OpenTracing initiative is to provide a set 
of conventions and a standard API for collection of traces. Libraries are available for mul-
tiple languages and frameworks. You can find some of the supported tracer systems at 
http://mng.bz/Gvr3.

 

12.4.1	 Correlating requests: traces and spans

A trace is a direct acyclic graph (DAG) of one or more spans, where the edges of those 
spans are called references. Traces are used to aggregate and correlate execution flow 
through the system. To do so, some information needs to be propagated. A trace cap-
tures the whole flow.

Let’s look at figures 12.10 and 12.11. In these figures, we represent a trace made up 
of multiple spans, from both a dependency perspective and a temporal perspective.

Figure 12.10    A trace made up of eight different spans from a dependency perspective

 

http://opentracing.io
http://mng.bz/Gvr3
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Figure 12.11    The temporal relationships in an eight-span trace

In figure 12.10, you can observe the dependency relationship between different spans. 
These spans can be triggered either in the same application or in different ones. The 
only requirement is for the parent span ID to be propagated, so when a new span is 
triggered, it’ll hold a reference to its parent span.

In figure 12.11, you have a view of spans from a temporal perspective. By using tem-
poral information contained in spans, you can organize them in a timeline. You can 
see not only when each span happened relative to other spans but also how long each 
operation that a span encapsulates took to complete.

Each span contains the following information:

¡	An operation name
¡	A start and a finish timestamp
¡	Zero or more span tags (key value pairs)
¡	Zero or more span logs (key value pairs with a timestamp)
¡	A span context
¡	References to zero or more spans (via the span context)

The span context contains the needed data to refer to different spans, either locally or 
across service boundaries.

Let’s now move on to setting up tracing between services. You’ll be using Jaeger 
(www.jaegertracing.io), a distributed tracing system, as well as a set of Python libraries 
that are OpenTracing compatible.

12.4.2	 Setting up tracing in your services

To be able to display tracing information and correlate requests between different ser-
vices, you’ll need to set up a collector and a UI for traces, as well as including some 
libraries and setting them up in your services. The services we’ll use as an example for 
distributed tracing will be the SimpleBank profile and settings services. In figure 12.12, 
we give an overview of the interactions you’ll be tracing.

 

www.jaegertracing.io
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Profile
service

Settings
serviceGET

GET

http://ip.jsontest.com

Figure 12.12    Interactions of the profile service

The profile service will contact an external service, in this case jsontest.com, to retrieve 
its IP and will also be fetching user settings from the settings service. You’ll be setting 
up a tracing system (Jaeger) and making the code changes needed to display the trace 
and its spans and to be able to correlate those spans. Correlating them will allow you 
to understand in detail how long each operation took and how it contributed to the 
overall execution time of a call to the profile service. You’ll begin by setting up Jaeger, 
the distributed tracing system collector and UI, by adding a Docker image into your 
docker-compose.yml file (listing 12.7).

Jaeger
Inspired by Dapper and OpenZipkin, Jaeger is a distributed tracing system released as 
open source by Uber Technologies. You use it for monitoring and troubleshooting micro
service-based distributed systems.

 

Listing 12.7    Adding Jaeger to the docker-compose.yml file

(…)
jaeger:
    container_name: jaeger
    image: jaegertracing/all-in-one:latest 
    ports:
       - 5775:5775/udp 
       - 6831:6831/udp
       - 6832:6832/udp
       - 5778:5778
       - 16686:16686 
       - 14268:14268
       - 9411:9411 
    environment:
      COLLECTOR_ZIPKIN_HTTP_PORT: "9411" 

You’ll be using a jaeger image containing 
all the needed components because it’ll 
be easier to set up. This all-in-one image 
has in-memory-only storage for spans.

Port for communicating spans

Port for accessing the Jaeger UI

Port used by Zipkin, another distributed tracing system — One of the advantages of 
the OpenTracing initiative is the fact that you can use different systems without the 
need to change all implementations or be locked to a particular one.
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With the Docker image added to your docker-compose file, once you boot all the 
SimpleBank infrastructure, you’ll have a distributed tracing system in place. Now you 
need to make sure that the SimpleBank profile and settings services are able to create 
traces and spans and communicate them to Jaeger.

Let’s add the needed libraries to both the settings and profile services and initialize 
the tracer. The following listing adds the tracing libraries.

Listing 12.8    Adding the tracing libraries to the services via a requirements.txt file

Flask==0.12.0
requests==2.18.4
jaeger-client==3.7.1 
opentracing>=1.2,<2 
opentracing_instrumentation>=2.2,<3 

By adding these libraries, you’re now able to create traces and spans from both ser-
vices. To make the process easier, you can also create a module to provide a convenient 
setup function to initialize the tracer, as shown in the following listing.

Listing 12.9    Tracer initializer lib/tracing.py

import logging
from jaeger_client import Config 

def init_tracer(service): 
    logging.getLogger('').handlers = []
    logging.basicConfig(format='%(message)s', level=logging.DEBUG)

    config = Config(
        config={
            'sampler': {
                'type': 'const',
                'param': 1,
            },
            'local_agent': { 
                'reporting_host': "jaeger",
                'reporting_port': 5775,
            },
            'logging': True, 
            'reporter_batch_size': 1,
        },

        service_name=service, 
    )
    return config.initialize_tracer()

Jaeger client library that connects the 
service to the tracer system

Python OpenTracing platform library

Collection of instrumentation tools to simplify integration 
with different frameworks and applications

Imports the Jaeger client that allows 
establishing communication between 
the app and the tracing collector system

Receives the service name as an argument

Sets up both the host and the port where 
traces and spans will be sent — In the 
Docker compose file, you have Jaeger 
running as “jaeger” and receiving 
metrics via UDP on port 5775. This is 
necessary because you’ll have one 
collector agent running for all services.

In addition to collecting metrics in Jaeger, you’re 
also emitting the trace events to the logs.

Sets the service name to the one  
received as the init function argument
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The SimpleBank profile and settings services will both be using the tracer initialization 
function shown in listing 12.9. This allows them to establish the connection to Jaeger. 
As we showed in figure 12.12, the profile service contacts both an external service and 
the settings internal service. You’ll be tracing the interaction of the profile service with 
both of these collaborators. In the case of the interaction with the SimpleBank settings 
service, you’ll need to pass along the context of the initial trace so you can visualize the 
full cycle of a request.

Listing 12.10 shows the profile service code where you set up the spans for both the 
external http service and the settings service. For the former, you create a span, and for 
the latter, you pass along the current span as a header so the settings service can make 
use of it and create child spans.

Listing 12.10    Profile service code

from urlparse import urljoin

import opentracing
import requests
from flask import Flask, jsonify, request
from opentracing.ext import tags 
from opentracing.propagation import Format 
from opentracing_instrumentation.request_context import 
➥get_current_span 
from opentracing_instrumentation.request_context import 
➥span_in_context 

from lib.tracing import init_tracer 

app = Flask(__name__)
tracer = init_tracer('simplebank-profile') 

@app.route('/profile/<uuid:uuid>')
def profile(uuid):
    with tracer.start_span('settings') as span: 
        span.set_tag('uuid', uuid)
        with span_in_context(span):
            ip = get_ip(uuid)
            settings = get_user_settings(uuid)
            return jsonify({'ip': ip, 'settings': settings})

def get_ip(uuid):
    with tracer.start_span('get_ip', child_of=
➥get_current_span()) as span: 
        span.set_tag('uuid', uuid) 
        with span_in_context(span): 
            jsontest_url = "http://ip.jsontest.com/"
            r = requests.get(jsontest_url)
            return r.json()

Imports the OpenTracing libraries to 
allow you to set up spans and tags

Imports the initializer function as defined in 
listing 12.9 to set up the connection to Jaeger

Calls the tracer initializer passing 
the service name, which will 
create a tracer object you can use

Sets the initial span associated with 
the tracer — The created span will 
be the parent for spans in both the 
call to the external service and the 
call to the settings service.

Creates a new span for the call to the 
external service, a child of the parent 
span initialized above.

Wraps code execution under the newly created span
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def get_user_settings(uuid):
    settings_url = urljoin("http://settings:5000/
➥settings/", "{}".format(uuid))

    span = get_current_span() 
    span.set_tag(tags.HTTP_METHOD, 'GET') 
    span.set_tag(tags.HTTP_URL, settings_url) 
    span.set_tag(tags.SPAN_KIND, tags.SPAN_KIND_RPC
➥_CLIENT) 
    span.set_tag('uuid', uuid) 
    headers = {}
    tracer.inject(span, Format.HTTP_HEADERS, headers) 

    r = requests.get(settings_url, headers=headers)
    return r.json()

if __name__ == "__main__":
    app.run(host='0.0.0.0', port=5000)

The SimpleBank profile service initializes a trace that’ll be used to group different 
spans. It creates spans for the calls to "http://ip.jsontest.com/" and for the call to 
the SimpleBank settings service. For the former, given that you don’t own the service, 
you execute the call wrapped in a span. But for the latter, because you control it, you 
can pass on span information that’ll be used to create child spans. This will allow you to 
group all related calls in Jaeger.

Let’s now look into how you can make use of the injected span in the SimpleBank 
settings service, as shown in the following listing.

Listing 12.11    Using a parent span in the settings service

import time
from random import randint

import requests
from flask import Flask, jsonify, request
from opentracing.ext import tags
from opentracing.propagation import Format
from opentracing_instrumentation.request_context import get_current_span
from opentracing_instrumentation.request_context import span_in_context

from lib.tracing import init_tracer

app = Flask(__name__)
tracer = init_tracer('simplebank-settings') 

@app.route('/settings/<uuid:uuid>')
def settings(uuid):
    span_ctx = tracer.extract(Format.HTTP_HEADERS, 
➥request.headers) 
    span_tags = {tags.SPAN_KIND: tags.SPAN_KIND_RPC
➥_SERVER, 'uuid': uuid} 

Sets tags for the span

Injects the span context before 
the call to the SimpleBank 
settings service — The span 
context will be passed in the 
headers, and the downstream 
service will use it to initialize 
its own spans under the 
proper context.

Initializes the tracer for the service

Extracts the span context 
from the request headers

Sets up the tags for a new span
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    with tracer.start_span('settings', child_of=span
➥_ctx, tags=span_tags): 
        time.sleep(randint(0, 2))
        return jsonify({'settings': {'name': 'demo user', 'uuid': uuid}})

if __name__ == "__main__":
    app.run(host='0.0.0.0', port=5000)

By extracting the span context from the request the settings service receives, you can 
then make use of it as the parent to new spans. You can later visualize this new child 
span independently. But you’ll also be able to take advantage of the fact that Jaeger will 
show the span as both an independent span in the context of the SimpleBank settings 
service and a child span in the context of the SimpleBank profile service.

12.5	 Visualizing traces
With all the setup out of the way, all you need to do to start collecting traces is to issue 
a request to the SimpleBank profile endpoint. You can use the command line or a 
browser. To access traces via the command line, you can use curl to issue the following 
request:

$ curl http://localhost:5007/profile/26bc34c2-5959-4679-9d4d-491be0f3c0c0
{
  "ip": {
    "ip": "178.166.53.17"
  },
  "settings": {
    "settings": {
      "name": "demo user",
      "uuid": "26bc34c2-5959-4679-9d4d-491be0f3c0c0"
    }
  }
}

Here’s a brief recap of what’s going on when you hit the profile endpoint:

¡	The profile service creates a span A.
¡	The profile service contacts an external service to fetch the IP, wrapping it under 

a new span B.
¡	The profile service contacts the internal SimpleBank settings service to get user 

info under a new span C and passes the context of the parent span to the down-
stream service.

¡	Both services communicate spans to Jaeger.

Starts a new span as a child of 
the one propagated to the 
service via the request headers
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Figure 12.13    Jaeger UI search page showing the services that have traces available

To visualize the traces, you need to access the Jaeger UI that’ll be running on port 
16686. Figure  12.13 shows the Jaeger UI and the list of services that have traces 
available.

In the Service section, you see three services for which trace information is avail-
able: two SimpleBank services and one called jaeger-query. The latter gathers Jaeger 
internal traces and is of little use to you. You’re interested in the other two services 
listed: simplebank-profile and simplebank-settings. If you recall, the profile service was 
creating spans for the execution of an external call, as well as for the call to the settings 
service. Go ahead and select simplebank-profile and click Find Traces at the bottom. 
Figure 12.14 shows the traces for the profile service.

The page lists six traces, and all of them have three spans across two services. This 
means you were able to collect information about the collaboration between two inter-
nal services and to get timing information about the execution. Figure 12.15 shows a 
detailed view of one of those traces.
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Figure 12.14    The simplebank-profile traces information

Figure 12.15    The timing information and execution sequence of a call to the profile service
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In figure 12.15, you can see a timeline for the different steps of execution in a call to 
the profile service. You have information about the overall time of execution, as well 
as when each suboperation took place and for how long. The spans contain informa-
tion about the operation, the component that generated them, and their execution 
times and relative positions, both in the timeline and in regards to dependencies with 
parent spans.

This information can be invaluable in order to know what’s going on in a distrib-
uted system. You can now visualize the flow of requests through different services and 
know how long each operation takes to complete. This simple setup allows you to both 
understand the flow of execution in a microservice architecture and identify potential 
bottlenecks that you can improve.

You also can use Jaeger to understand how different components in your system 
relate to each other. The top navigation menu bar has a Dependencies link. By clicking 
it and then, in the page that comes up, selecting the DAG (direct acyclic graph) tab, you 
have access to the view illustrated in figure 12.16.

The example we used was a simple one, but it allows you to understand the power of 
tracing in a microservice architecture. Along with logging and metrics, it allows you to 
have an informed view of both the performance and the behavior of your system.

Figure 12.16    The service dependency view in the Jaeger UI
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Summary

¡	You can set up a logging infrastructure using Elasticsearch, Kibana, and Fluentd, 
and distributed tracing using Jaeger.

¡	A logging infrastructure can generate, forward, and store indexed log data that 
allows searching and correlating requests. 

¡	Distributed tracing allows you to follow the journey of execution of requests 
through different microservices.

¡	Alongside metrics collection, tracing allows you to better understand how the 
system is behaving, identify potential issues, and audit your system anytime.
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13Building microservice teams

This chapter covers
¡	How a microservice architecture affects your 

engineering culture and organization

¡	Strategies and techniques for building effective 
microservice teams

¡	Common pitfalls in microservice development

¡	Governance and best practice in large 
microservice applications

Throughout this book, we’ve focused on the technical side of microservices: how to 
design, deploy, and operate services. But it’d be a mistake to examine the technical 
nature of microservices alone. People implement software, and building great soft-
ware is as much about effective communication, alignment, and collaboration as 
implementation choices.

A microservice architecture is great for getting things done. It allows you to build 
new services and capabilities rapidly and independently of existing functionality. 
Conversely, it increases the scope and complexity of day-to-day tasks, such as oper-
ations, security, and on-call support. It can significantly change an organization’s 
technical strategy. It demands a strong culture of ownership and accountability from 
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engineers. Achieving this culture, while minimizing friction and increasing pace, is vital 
to a successful microservice implementation.

In this chapter, we’ll begin by discussing team formation in software engineering 
and the principles that make teams effective. We’ll then examine different models for 
engineering team structure and how they apply to microservice development. Lastly, 
we’ll explore recommended practices for governance and engineering culture within 
microservice teams. Throughout the chapter, we’ll touch on and explain how to miti-
gate some common pitfalls of microservice development.

Although you might not currently work as an engineering manager, a team lead, or a 
director, we think it’s essential to understand how these dynamics — and the choices you 
and your organization make — impact the pace and quality of microservice development.

13.1	 Building effective teams
Splitting engineers into independent teams is a natural outcome of organizational 
growth. Doing so is necessary to help an organization scale effectively, as limiting team 
size has several benefits:

¡	It ensures lines of communication remain manageable — figure 13.1 illustrates 
how these grow — which aids team dynamism and collaboration while easing 
conflict resolution. Many heuristics exist for “right size,” such as Jeff Bezos’ two-
pizza rule or Michael Lopp’s 7 +/– 3 formula.

¡	It clearly delineates responsibility and accountability while encouraging inde-
pendence and agility.

Small, independent teams can typically move faster than large teams. They also gel 
faster and gain effectiveness more quickly. Contrastingly, distinct engineering teams 
can also cause new problems:

¡	Teams can become culturally isolated, following and accepting different prac-
tices of quality or engineering values.

¡	Teams may need to invest extra effort to align on competing priorities when they 
collaborate with other teams.

¡	Separate teams may isolate specialist knowledge to the detriment of global 
understanding or effectiveness.

¡	Teams can duplicate work, leading to inefficiency.

Microservices can exacerbate these divisions. Different teams will likely no longer work 
on the same shared body of code. Teams will have different, competing priorities —  
and be less likely to have a global understanding of the application.

Building an effective engineering organization beyond a small group of people —  
and developing great software products — is a balancing act between these two tension 
points: autonomy and collaboration. If boundaries between teams overlap and owner-
ship is unclear, tension can increase; conversely, independent teams still need to collab-
orate to deliver the whole application.
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3 individuals
3 connections

5 individuals
10 connections

7 individuals
21 connections

Figure 13.1    Lines of communication by group size

13.1.1	 Conway’s Law

It can be difficult to separate cause and effect in organizations that have successfully 
built microservice applications. Was the development of fine-grained services a logical 
outcome of their organizational structure and the behavior of their teams? Or did that 
structure and behavior arise from their experiences building fine-grained services?

The answer is: a bit of both! A long-running system isn’t only an accumulation of 
features requested, designed, and built. It also reflects the preferences, opinions, and 
objectives of its builders and operators. This indicates that structure — what teams work 
on, what goals they set, and how they interact — will have a significant impact on how 
successfully you build and run a microservice application.
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Conway’s Law expresses this relationship between team and system:

…organizations which design systems ... are constrained to produce designs which are 
copies of the communication structures of these organizations…

“Constrained” might suggest that these communication structures limit and constrict 
the effective development of a system. But the inverse of the rule is also true: you can 
take advantage of changes to team structure to produce a desired architecture. Team 
structure and microservice architecture are symbiotic: both can and should influ-
ence each other. This is a powerful technique, which we’ll consider throughout this 
chapter.

13.1.2	 Principles for effective teams

At a macro level, it’s best to think of teams as units of achievement and communication. 
They’re how stuff gets done and how people relate to each other within an organiza-
tion. To realize benefits from microservices and adequately manage their complexity, 
your teams will need to adopt new working principles and practices, rather than using 
the same techniques they used to build monoliths.

There’s no single right, perfect way to organize your teams. You’ll always suffer from 
constraints: headcount, budget, personalities, skill sets, and priorities. Sometimes you 
can hire to fill a gap; sometimes you can’t. The nature of your application and business 
domain will demand different approaches and skills. Your organization may be lim-
ited in its capacity to change. The best approach we’ve found is to guide the formation 
of teams using a small set of shared principles: ownership, autonomy, and end-to-end 
responsibility.

NOTE    Making a move to microservices — or indeed, any large-scale architec-
tural change — in many enterprises will be challenging and disruptive. You 
won’t be successful in isolation: you’ll need to find sponsorship, build trust, 
and be prepared to argue your case — a lot! Richard Rodger’s book, The Tao of 
Microservices (ISBN 9781617293146), goes into more (if slightly cynical) detail 
on navigating these institutional politics.

Ownership

Teams with a strong sense of ownership have high intrinsic motivation and exercise a 
considerable degree of responsibility for the area they own. Because microservice appli-
cations are typically long-lived, teams that have long-term ownership of an area sup-
port the evolution of that code while developing deep understanding and knowledge.

In a monolithic application, ownership is typically n:1. Many teams own one service: 
the monolith. This ownership is often split between different layers (such as frontend 
and backend) or between functional areas (such as orders and payments). In a micro
service application, ownership is usually 1:n, meaning a team might own many services. 
Figure 13.2 depicts these ownership models.
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Figure 13.2    Team ownership in monolithic versus microservice codebases

WARNING    In the 1:n ownership model, it’s usually bad practice for multiple 
teams to own one service. This can make accountability unclear and lead to 
conflict about technical choices and feature priority.

As an organization’s codebase grows and the makeup of the engineering team fluc-
tuates, the risk of code that no one knows — or code that no one can fix when it 
breaks — increases. Clear ownership helps you avoid this risk by placing natural, rea-
sonable bounds on a team’s knowledge while ensuring that ownership is the responsi-
bility of a group, not individual developers.

Autonomy

It’s not coincidental that these three principles reflect some of the principles of micro-
services themselves. Teams that can work autonomously — with limited dependencies 
on other teams — can work with less friction. These types of teams are highly aligned 
but loosely coupled.

Autonomy is important for scale. For an engineering manager, it’s exhausting to 
control the work of multiple teams (not to mention, disempowering for the teams 
themselves); instead, you can empower teams to self-manage.

End-to-end responsibility

A development team should own the full ideate-build-run loop of a product. With con-
trol over what’s being built, a team can make rational, local priority decisions; exper-
iment; and achieve a short cycle time between coming up with an idea and validating 
that idea with real code and users.

Most software spends significantly longer in operation than it ever spent being built. 
But many software engineers focus on the build stage, throwing code over the fence for 
a separate team to run it. This ultimately results in poorer quality and slower delivery. 
How software operates — how you observe its behavior in the real world — should feed 
back into improving that software (figure 13.3). Without responsibility for operation, 
this information is often lost. This tenet is also central to the DevOps movement.
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Design Deploy Observe

Figure 13.3    Software operation should continually inform future design and build.

End-to-end responsibility correlates closely with autonomy and ownership:

¡	The fewer cross-team dependencies in a team’s path to production, the more 
likely it can control and optimize the pace of its delivery.

¡	A wider scope of ownership enables the team to reasonably and productively take 
on more responsibility for overall delivery.

13.2	 Team models
In this section, we’ll explore two approaches for structuring teams — by function or 
across function — and their benefits and disadvantages in developing microservices.

¡	In a functional approach, you group employees by specialization, with a func-
tional reporting line, and assign them to time-bound projects. Most organiza-
tions fund projects for a specific scope and length of time. They measure success 
by the on-time delivery of that scope.

¡	Teams that you build cross-functionally  — from a combination of different skill-
sets — typically are aligned to long-term product goals or aspirational missions, 
with freedom within that scope to prioritize projects and build features as needed 
to achieve those missions. You typically measure success through impact on busi-
ness key performance indicators (KPIs) and outcomes.

The latter approach is a natural fit with microservices development.

13.2.1	 Grouping by function

Traditionally, many engineering organizations have been grouped along horizontal, 
functional lines: backend engineers, frontend engineers, designers, testers, product 
(or project) management, and sysadmin/ops. Figure 13.4 illustrates this type of orga-
nization. In other cases, teams or individuals may move between any number of time-
bounded projects.

This approach optimizes for expertise:

¡	It ensures that communication loops between specialists are short, so they share 
knowledge and solutions effectively and apply their skills consistently.

¡	Similar work and approaches are grouped together, providing clear career 
growth and skill development.
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Figure 13.4    Grouping into teams by function and project

Now imagine you’re building a new feature. This functional approach almost looks 
like a chain: the analyst team gathers requirements, engineers build backend services, 
testing windows are scheduled with the QA team, and sysadmins deploy the service. 
You can see that this approach involves a high coordination burden — delivering a fea-
ture relies on synchronization across several independent teams (figure 13.5).1 This 
approach fails to meet our three principles for effective organization.

Unclear ownership

No team has clear ownership of business outcomes or value — they’re only cogs in the 
value chain. As such, ownership of individual services is unclear: once a project is fin-
ished, who maintains the services that were built? How are these iterated on, improved, 
or discarded? Work allocation based on projects tends to shortchange long-term think-
ing and encourages ownership of code by individual engineers, which you want to avoid.

Specs Build Build

Coordinate

Test Deploy FeatureIdea

Analysts Backend Frontend

PMO

Test Ops

Figure 13.5    Functional teams contributing to the implementation of a feature

1	 And lo, the organization invented project managers!
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Lack of autonomy

These teams are tightly coupled, not autonomous. Their priorities are set elsewhere, and 
every time work crosses a team boundary, the chance increases that a team will be blocked 
and development will be hampered. This leads to long lead times, rework, quality issues, 
and delays. Without alignment to the system architecture they’re building, the team will 
be unable to evolve their application without being encumbered by other teams.

No long-term responsibility

A project-oriented approach isn’t conducive to long-term responsibility for the code pro-
duced or for the quality of a product. If the team is only together for a time-bound project, 
they might hand off their code to another department to run the application, so the orig-
inal team won’t be able to iterate on their original ideas and implementation. The organi-
zation will also fail to realize benefits from knowledge retention in the original team.

Lastly, a new team requires time to normalize productive working behaviors — the 
longer people work together, the better the team gels, and the more effective it becomes. 
A team that stays together longer will maintain a longer period of high performance.

TIP    There’s also a risk that long-lived teams can become too comfortable or 
set in their ways. It’s important to balance long-term bonding and bringing 
people with new perspectives and skills into the team.

Risk of silos

Lastly, this approach also risks the formation of silos — teams diverge in goals and 
become incapable of effective, empathetic collaboration. Hopefully you’ve never 
worked someplace where the relationship between test and dev, or dev and ops, is 
almost adversarial, but it’s been known to happen.

Ultimately, it’s unlikely that a functional, project-oriented organization will deliver 
a microservice application without incurring significant friction and substantial cost.

13.2.2	 Grouping across functions

By optimizing for expertise, the functional approach aims to eliminate duplicated work 
and skill-based inefficiencies, in turn reducing overall cost. But this can cause gridlock: 
increasing friction and reducing your speed in achieving organizational goals. This isn’t 
great — your microservice architecture was meant to increase pace and reduce friction.

Let’s look at an alternative. Instead of grouping by function, you can work cross- 
functionally. A cross-functional team is made up of people with different specialties and 
roles intended to achieve a specific business goal. You could call these teams market-driven: 
they might aim toward a specific, long-term mission; build a product; or connect directly 
with the needs of their end customer. Figure 13.6 depicts a typical cross-functional team.

NOTE    We won’t cover team leadership or reporting lines in any detail in 
this book. A product owner, an engineering lead, a technical lead, a project 
manager, or a partnership between those roles might lead a cross-functional 
team. For example, at Onfido, a product manager — who focuses on what the 
team should do — and an engineering lead — who focuses on how to achieve 
it — lead our teams in partnership.
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Figure 13.6    A typical cross-functional development team

Compared to the functional approach, a cross-functional team can be more closely 
aligned with the end goal of the team’s activity. The multidisciplinary nature of the team 
is conducive to ownership. By taking on end-to-end responsibility for specification, 
deployment, and operation, the team can work autonomously to deliver features. The 
team gains clear accountability by taking on a mission that has a meaningful impact on 
the business’s success. Day-to-day partnership between different specialists eliminates 
silos, as team members share ownership for the ultimate product of the team’s work.

Designing these teams to be long-lived (for example, at least six months) is also ben-
eficial. A long-lived team builds rapport, which increases their effectiveness, and shared 
knowledge, which increases their ability to optimize and improve the system under devel-
opment. They also take long-term responsibility for the operation of the microservice 
application, rather than handing it off to another team.

The cross-functional, end-to-end approach to structuring teams is advantageous to 
microservice development:

¡	Aligning teams with business value will be reflected in the application developed; 
the teams will build services that explicitly implement business capabilities.

¡	Individual services will have clear ownership. 
¡	Service architecture will reflect low coupling and high cohesiveness of teams.
¡	Functional specialists in different teams can collaborate informally to develop 

shared practices and ways of working.

This approach is common in modern web enterprises and is often cited as a reason 
for their success. For example, Amazon’s CTO described the company’s approach to 
architecture in 2006:

In the fine grained services approach that we use at Amazon, services do not only represent 
a software structure but also the organizational structure. The services have a strong 
ownership model, which combined with the small team size is intended to make it very easy 
to innovate. In some sense you can see these services as small startups within the walls of 
a bigger company. Each of these services require a strong focus on who their customers are, 
regardless whether they are externally or internally.

-—Werner Vogels
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Perhaps most importantly, a well-formed cross-functional team will be faster at deliver-
ing features than a group of functional teams, as lines of communication are shorter, 
coordination is local, and team members are aligned. The cross-functional approach 
prioritizes pace — but not at the expense of quality!

13.2.3	 Setting team boundaries

A cross-functional team should have a mission. A mission is inspirational: it gives the 
team something to strive toward but also sets the boundaries of a team’s responsibili-
ties. Determining what a team is (and isn’t) responsible for encourages autonomy and 
ownership while helping other teams align with each other. A mission is usually a busi-
ness problem; for example, a growth team might aim to maximize recurring spend by 
customers, whereas a security team might aim to protect its codebase and data from 
known and novel threats. Based on this mission, each team prioritizes its own roadmap 
in collaboration with relevant partners within the business. Cross-cutting initiatives are 
driven by product or technical leadership.

NOTE    This type of team organization is also known as product mode  — which 
doesn’t mean each team is working on a self-contained product. Teams might 
own different vertical slices or different horizontal components of the same 
product. A particular component might be technically complex enough to 
demand a dedicated team.2

If your company offers a range of small products — that a team of 7 +/– 3 can produc-
tively work on — each team can be responsible for one product (figure 13.7). This isn’t 
the case in many companies such as those that offer a large, complex product to mar-
ket, requiring the effort of multiple teams.

For larger scale scenarios, bounded contexts — covered in chapter 4 — are an effec-
tive starting point for setting loose boundaries for different teams in an organization. 
They also have the benefit of creating teams that map closely to business teams within 
the enterprise; for example, a warehouse product team will interact closely with ware-
house operations.3 Figure 13.8 illustrates a possible model for teams within SimpleBank.

Team A Owns
Services

Product A

Team B Owns
Services

Product B

Figure 13.7    A team-per-product model

2	 A recent ThoughtWorks article describes these product-mode teams: Sriram Narayan, “Products 
Over Projects,” February 20, 2018, http://mng.bz/r0v4.

3	 Be careful about how you approach this: the organizational structure itself might be suboptimal!
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Figure 13.8    A possible model of service and capability ownership by different engineering teams for 
SimpleBank

Forming teams that own services in specific bounded contexts makes use of the inverse 
version of Conway’s Law: if systems reflect the organizational structure that produces 
them, then you can attain a desirable system architecture by first shaping the structure 
and responsibilities of your organization.

As with services themselves, the right boundaries between teams may not always be 
obvious. We keep two general rules in mind:

¡	Watch the team size. If it approaches or surpasses nine people, it’s likely that a team 
is doing too much or beginning to suffer from communication overhead.

¡	Consider coherence. Are the activities the team does cohesive and closely related? If not, 
a natural split may exist within the team between different groups of coherent work.

13.2.4	 Infrastructure, platform, and product

Although we’ve advocated strongly for end-to-end ownership, it isn’t always practical. For 
example, the underlying infrastructure — or microservice platform — of a large company 
is typically complex and requires a joined-up roadmap and dedicated effort, rather than 
loose collaboration between DevOps specialists spread across distinct teams.

As we outlined earlier in the book, building a microservice platform — deployment pro-
cesses, chassis, tooling, and monitoring — is vital to sustainably and rapidly building a great 
microservice application. When you first start working with microservices, the team build-
ing the application will usually own the task of building the platform too (figure 13.9).
Over time, this platform will need to serve the needs of multiple teams, at which stage 
you might establish a platform team (figure 13.10).

Microservice team Supports

Builds

Builds

Application

Platform

Figure 13.9    Early on, one team builds both the microservice application and the supporting platform.
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Figure 13.10    Establishing a platform team

Depending on the needs of your company and your technical choices, you might split 
this platform team further (figure 13.11) to distinguish core infrastructural concerns 
(such as cloud management and security) from specific microservice platform con-
cerns (such as deployment and cluster operation). This is especially common in com-
panies that operate their own infrastructure, rather than using a cloud provider.
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Infrastructure tier

Enables

Enables

Figure 13.11    Establishing an infrastructure team as one tier in a three-tier model
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In an even larger engineering organization, these tiers might be separated further; for 
example, different platform teams might focus on deployment tools, observability, or 
inter-service communication. This is also illustrated in figure 13.11.

The three-tier model shown in the figure provides economies of scale and special-
ization. This isn’t a service relationship, where teams log tickets to each other. Instead, 
the output of each tier is a “product” that enables teams in the layer above to be more 
effective and productive.

13.2.5	 Who’s on-call?

The DevOps movement has been a strong influence on microservice approaches. 
A DevOps mentality — breaking down the barriers between build and runtime — is 
vital for doing microservices well, as deploying and operating multiple applications 
increases the cost and complexity of operational work. This movement encourages 
a “you build it, you run it” mindset; a team that takes responsibility for the oper-
ational lifetime of their services will build a better, more stable and more reliable 
application. This includes being on-call — ready to answer alerts — for your produc-
tion services.

TIP    Chapter 11 covers best practices for triggering useful and actionable alerts 
from microservices.

For example, in the three-tier model:

¡	Engineering teams would be on-call for alerts from their own services.
¡	Platform and infrastructure teams would be on-call for issues in underlying infra-

structure or shared services, such as deployment.
¡	An escalation path would exist between those two teams to support investigation.

This on-call model is illustrated in figure 13.12.
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Infrastructure

Services

Platform

Infrastructure
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throughput, events from
application code

Errors, saturation, anomalies
from underlying cluster or tools,
for example, cluster, databases,
deployment

Errors, saturation, anomalies
from underlying infrastructure,
for example, network

Teams Application

Figure 13.12    On-call model in a three-tier microservice team structure
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Of the many changes that microservices bring, this may the most difficult to roll out: 
engineers are likely to resist being on-call, even for their own code. A successful on-call 
rotation should be

¡	Inclusive  — Everyone who can do it, should do it, including VPs and directors.
¡	Fair  — On-call work should be remunerated in addition to normal working 

hours.
¡	Sustainable  — Enough engineers should be in a rotation to avoid burnout and 

avoid disruption to work-life balance or day-to-work in the office.
¡	Reflective  — Your team should constantly review alerts and pages to ensure only 

alerts that matter wake someone up.

In this model, we split alerts across teams, because running software at scale is complex. 
Operational effort might be beyond the scope or knowledge of engineers within any 
one team. Many operational tasks — such as operating an Elasticsearch cluster, deploy-
ing a Kafka instance, or tuning a database — require specific expertise that would be 
unreasonable to expect product engineers to gain uniformly. Operational work also 
runs at a cadence different from the pace of product delivery.

WARNING    Historically, infrastructure operations teams have been responsible 
for running applications in production: keeping them stable and waking up 
when they break. This leads to tension: operations teams resent developers 
throwing unstable applications over the wall, whereas developers curse the lack 
of engineering skills in the operations team. This separate dev and ops model 
puts the onus for fixing production issues on the wrong team. Instead, if devel-
opers are responsible for how their code operates, they’ll be better able to fix 
incidents and optimize that code in the long term.

The right choice for an on-call model that balances responsibility and expertise will 
depend on the types of applications you build, the throughput of those applications, 
and the underlying architecture you choose. If you’re interested in learning more, 
Increment recently published an in-depth review (https://increment.com/on-call/ 
who-owns-on-call/) of on-call approaches used at Google, PagerDuty, Airbnb, and 
other organizations.

13.2.6	 Sharing knowledge

Although autonomous teams increase development pace, they have two downsides:

¡	Different teams may solve the same problem multiple times in different ways.
¡	Team members will have less engagement with their specialist peers on other 

teams.
¡	Team members may make local decisions without considering the global context 

or the needs of the wider organization.

 

https://increment.com/on-call/who-owns-on-call/
https://increment.com/on-call/who-owns-on-call/
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You can mitigate these issues. We’ve had success applying Spotify’s model of chapters 
and guilds.4 These are communities of practice:

¡	Chapters group people by functional specialties, for example, mobile 
development.5

¡	A guild shares practice around a cross-cutting theme, for example, performance, 
security.

Figure 13.13 depicts this model.
Comparably, some organizations use matrix management to establish a formal iden-

tity for functional units. This adds a line of management responsibility (head of QA, 
head of design…) for functions, at the cost of building a more complicated manage-
ment structure.

TIP    Most engineers have been taught to follow the DRY tenet — don’t repeat 
yourself. Within a service, this is still important — there’s no point in writing 
the same code twice! Across multiple services, this is much less of an impera-
tive because writing shared code that’s truly reusable is a costly endeavor, as is 
coordinating the rollout of that code across multiple consumers. A degree of 
duplication is acceptable if it means you can deliver features more rapidly.
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International
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Figure 13.13    The chapters, guilds, and teams model

4	 See Henrik Kniberg, “Scaling Agile @ Spotify with Tribes, Squads, Chapters & Guilds,” Crisp’s Blog, 
November 14, 2012, http://mng.bz/94Lv.

5	 In larger organizations, a chapter may group by functional specialty within an engineering divi-
sion. (Spotify calls this a tribe.)
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Either approach works well to disseminate knowledge and develop shared working 
practices. This helps to prevent the isolation that can arise in highly autonomous 
teams, ensuring teams remain aligned technically and culturally. Cross-pollination 
of ideas, solutions, and techniques also supports people moving between teams and 
reduces organization-level bus factor risks.

It’s also important to strike a balance between team lifetime and team fluidity. In the 
long run, regularly rotating engineers between teams helps to share knowledge and 
skills and is a good complement for the chapter and guild model.

13.3	 Recommended practices for microservice teams
The scale of change in a microservice application can be tremendous. It can be diffi-
cult to keep up! It’s unreasonable to expect any engineer to have a deep understand-
ing of all services and how they interact, especially because the topography of those 
services may change without warning. Likewise, grouping people into independent 
teams can be detrimental to forming a global perspective. These factors lead to some 
interesting cultural implications:

¡	Engineers will design solutions that are locally optimal — good for them or their 
team — but not always right for the wider engineering organization or company.

¡	It’s possible to build around problems rather than fixing them, or to deploy new 
services instead of correcting issues with existing services.

¡	Practices on teams might become highly local, making it difficult for engineers 
to move between teams.

¡	It’s challenging for architects or engineering leads to gain visibility and make 
effective decisions across the entire application.

Good engineering practices can help you avoid these problems. In this section, we’ll 
walk through some of the practices that your teams should follow when building and 
maintaining services.

13.3.1	 Drivers of change in microservices

Take a moment and consider the type of build items you might work on day to day. 
If you’re on a product team, the items in your backlog are primarily functional addi-
tions or changes. You want to launch a new feature; support a new request from a 
customer; enter a new market; and so on. As such, you build and change microservices 
in response to these new functional requirements. And, thankfully, microservices are 
intended to ensure your application is flexible in the face of change.

But functional requirements — changes from your business domain — aren’t the only 
driver of change in services. Each microservice will change for many reasons (figure 13.14):

¡	Underlying frameworks and dependencies (such as Rails, Spring, or Django) 
may require upgrades for performance, security, or new features.

¡	The service may no longer be fit for the purpose — for example, hitting natural 
scalability limits — and may require change or replacement.

¡	You discover defects in the service or the service’s dependencies.
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Figure 13.14    Drivers of change to a microservice

All this change increases complexity. For example, instead of tracking security vul-
nerabilities against a single monolithic application, you need to ensure your tooling 
supports static analysis and alerting across several applications (and likely several 
distinct programming languages and frameworks). Every new service generates 
more work.

Alternatively, some microservice practitioners have advocated immutable services —  
once a service is considered mature, put it under feature freeze, and add new services 
if change is required. There’s a tricky cost-benefit decision here: is the risk of breaking 
a service through modification more than the cost of building a new service? It’s a diffi-
cult question to answer definitively and will depend on both your business context and 
appetite for risk.

13.3.2	 The role of architecture

Microservice applications evolve over time: teams build new services; decommission 
existing services; refactor existing functionality; and so on. The faster pace and more 
fluid environment that microservices enable change the role of architects and techni-
cal leads.

Architects have an important role to play in guiding the scope and overall shape of 
an application. But they need to perform that role without becoming a bottleneck. A 
prescriptive and centralized approach to major technical decisions doesn’t always work 
well in a microservice application:

¡	The microservice approach and the team model we’ve outlined should empower 
local teams to make rapid, context-aware decisions without layers of approval.

¡	The fluidity of a microservice environment means that any overarching technical 
plan or desired model of the intended system will quickly pass its use-by date, as 
requirements change, services evolve, and the business itself matures.

¡	The volume of decisions increases with the number of services, which can over-
whelm an architect and make them a bottleneck.
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That doesn’t mean that architecture isn’t useful or necessary. An architect should have 
a global perspective and make sure the global needs of the application are met, guid-
ing its evolution so that

¡	The application is aligned to the wider strategic goals of the organization.
¡	Technical choices within one team don’t conflict with choices in another.
¡	Teams share a common set of technical values and expectations.
¡	Cross-cutting concerns — such as observability, deployment, and interservice 

communication — meet the needs of multiple teams.
¡	The whole application is flexible and malleable in the face of change.

The best starting point for architecture is to set principles. Principles are guidelines (or 
sometimes rules) that teams should follow to achieve higher level goals. They inform 
team practice. Figure 13.15 illustrates this model.

For example, if your product goal is to sell to privacy- and security-sensitive enter-
prises, you might set principles of compliance with recognized external standards, data 
portability, and clear tracking of personal information. If your goal is to enter a new 
market, you might mandate flexibility around regional requirements, design for multi-
ple cloud regions, and out-of-the-box support for i18n (figure 13.16).

Principles are flexible. They can and should change to reflect the priorities of the 
business and the technical evolution of your application. For example, early develop-
ment might prioritize validating product-market fit, whereas a more mature applica-
tion might require a focus on performance and scalability.

Company and product goals

Achieve

Technical principles

Inform

Team practices and decisions

Figure 13.15    An architectural approach based on technical principles

 



	 343Recommended practices for microservice teams

Goal
Enter a new market

Principles
1. Support flexible regional

requirements
2. Design for multiple cloud regions

3. Support i18n

Practices
1. Regional rules are codified

2. Use multimaster storage (for
example, Cassandra); services are
designed using 12-factor principles
3. Choose UI frameworks with good

i18n support

Achieve Inform

Figure 13.16    Principles and practices to support entering a new market

Several day-to-day practices support this evolutionary approach to architecture, such 
as design review, an inner-source model, and living documentation. We’ll discuss them 
over the next few sections.

13.3.3	 Homogeneity versus technical flexibility

A tricky decision you’ll face is which languages to use to write microservices. Although 
microservices provide for technical freedom, using a wide range of languages and 
frameworks can increase risk:

¡	Bus factor and key person dependencies may increase because of limited shared 
knowledge, making it difficult to maintain and support services.

¡	Services in new languages may not meet production readiness standards.

In practice, you’ll always encounter scenarios where you need to pick a different lan-
guage, such as specialist features or performance needs. For example, Java would be 
ill-suited to writing systems infrastructure, just as Ruby doesn’t have the depth of scien-
tific and machine learning libraries available to Python. In these scenarios, it’s import-
ant to share the development of services in new languages/frameworks across many 
team members to reduce bus factor risk: rotate team members, have a pair program, 
write documentation, and mentor new engineers.

Picking a single primary language, or a small set, allows you to better optimize prac-
tices and approach for that language. The creation of service templates, chassis, and/
or exemplars will naturally ease development in your favored language, leading more 
developers to write services using it. Lowering friction this way creates a virtuous cir-
cle. Even if you don’t explicitly choose a favored language, this can happen organically 
(although it’ll take longer).

TIP    Microservices should be replaceable. If needed, you should be able to 
rewrite any service in a more favorable programming language.

13.3.4	 Open source model

Applying open source principles to microservice code can help to alleviate contention 
and technical isolation while improving knowledge sharing. As we mentioned earlier, 
each team in a microservice organization typically owns multiple services. But each 
service you run in production must have a clear owner: a team that takes long-term 
responsibility for that service’s functionality, maintenance, and stability.
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That doesn’t mean those people must be the only contributors to that service. Other 
teams might need to tweak functionality to meet their needs or fix defects. If these 
changes all needed the same group of people to make them, those people would be at 
the mercy of their own priorities, which in turn would slow other teams down.

Instead, an inner-source model — open source within your organization — balances 
ownership and visibility:

¡	Source code should be available internally for any service.6

¡	Any engineer can submit pull requests to any service, as long as the service owner 
reviews them.

This model (figure 13.17) closely resembles most open source projects, where a core 
group of committers make most commits and key decisions, and others can submit 
changes for approval. Imagine an engineer on Team A needs to make a change to a 
service that Team B owns. They could argue for the priority of their change against 
everything else on Team A’s backlog, or they could pull the code, make the change 
themselves, and submit a pull request for Team B to review.

This approach has three benefits:

¡	Alleviates contention and priority negotiation between teams
¡	Reduces the sense of technical isolation and possessiveness that can develop 

when service work is limited to a small number of people within an organization
¡	Shares knowledge within an organization by helping engineers understand other 

teams’ services and better understand the needs of their internal consumers

Team A
Submits

Submits

Reviews

Merged
Owns

Service
codebase

Pull
requests

Team N

Team B

Figure 13.17    Applying an open source model to service development

6	 In some organizations, reasonable exceptions to this rule may apply, such as when code is highly 
sensitive.
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NOTE    Contributing across multiple services is significantly easier when those 
services follow common architectural and deployment conventions — like the 
ones we’ve discussed throughout this book!

13.3.5	 Design review

Each new microservice is a blank slate. Each service will have different performance 
characteristics; might be written in a different language; might require new infrastruc-
ture; and so on. A new feature might be possible to write in several ways: as a new ser-
vice, as many services, or within an existing service. This freedom is terrific, but a lack 
of oversight can result in

¡	Inconsistency  — For example, a service might not log requests consistently, ham-
pering common operational tasks, such as investigating defects.

¡	Suboptimal design decisions  — You might build multiple services, when a single ser-
vice would be more maintainable and perform better.

A few methods can help you get around this issue. In chapter 7, we discussed using 
service chassis and service exemplars as best practice starting points. But that’s only a 
partial solution.

In our own company — comparable to practices at Uber and Criteo — we follow a 
design review process. For any new service or substantial new feature, the engineer 
responsible produces a design document (we call this an RFC, or request for com-
ments) and asks for feedback from a group of reviewers, both in and outside of their 
own team. Table 13.1 outlines the sections in a typical design review document.

Table 13.1    Sections in a design review document for a new microservice

Section Purpose

Problem & Context What technical and/or business problem does this feature solve? Why are 
we doing this?

Solution How are you intending to solve this problem?

Dependencies & Integration How does it interact with existing or planned services/functionality/
components?

Interfaces What operations might this service expose?

Scale & Performance How does the feature scale? What are the rough operational costs?

Reliability What level of reliability are you aiming for?

Redundancy Backups, restores, deployment, fallbacks

Monitoring & Instrumentation How will you understand this service’s behavior?

Failure Scenarios How will you mitigate the impact of possible failures?

Security Threat model, protection of data, and so on

Rollout How will you launch this feature?

Risks & Open Questions What risks have you identified? What don’t you know?
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This process catches suboptimal design decisions early in the development cycle. 
Although writing a document may seem like extra effort, having a semiformal prompt 
to consider service design tends to result in faster overall development, as the team 
brings to light the full range of considerations and tradeoffs before committing to an 
implementation direction.

13.3.6	 Living documentation

As we’ve mentioned, it’s difficult to keep a microservice architecture in your head. The 
scale of a microservice application demands that your team invest time in documenta-
tion. For each service, we recommend a four-layered approach: overviews, contracts, 
runbooks, and metadata. Table 13.2 details these four layers.

Table 13.2    Recommended minimum layers for documenting microservices

Type Summary

Overview An overview of the service’s purpose, intended usage and overall architecture. Service over-
views should be an entry point for team members and service users.

Contract A service contract should describe the API that a service provides. Depending on transport 
mechanism, this can be machine-readable, for example, using Swagger (HTTP APIs) or proto-
col buffers (gRPC).

Runbooks Documented runbooks for production support detailing common operational and failure 
scenarios

Metadata Facts about a service’s technical implementation, such as the programming language, major 
framework versions, links to supporting tools, and deployment URLs

This documentation should be discoverable in a registry  — a single website where 
details for all services are available. Good microservice documentation serves many 
purposes:

¡	Developers can discover the capabilities of existing services, such as the contracts they 
expose. This speeds up development and may reduce wasted or duplicated work.

¡	On-call staff can use runbooks and service overviews to diagnose issues in pro-
duction, as different services will vary operationally.

¡	Teams can use metadata to track service infrastructure and answer questions, for 
example, “How many services are running Ruby 2.2?”

Many tools exist for writing project documentation, such as MkDocs (www.mkdocs.
org). You could combine them with service metadata approaches, as described in table 
13.2, to build a microservice registry.

TIP    Documentation is notoriously hard to keep up to date, even for a single 
application. As much as feasible, you should aim to autogenerate documenta-
tion from application state. For example, you can generate contract documen-
tation from Swagger YML files using the swagger-ui library.

 

www.mkdocs.org
www.mkdocs.org
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13.3.7	 Answering questions about your application

As a service owner or an architect, you’ll often want to get an overarching view of the 
state of your application to answer questions like

¡	How many services are written in each language?
¡	Which services have security vulnerabilities or outdated dependencies?
¡	What upstream and downstream collaborators use Service A?
¡	Which services are production-critical? Which are spikes and experiments, or 

less important to critical application paths?

At the time of this writing, few tools exist in the wild that combine this information 
to make it readily available. When it’s available, it’s typically spread across multiple 
locations:

¡	Language and framework choices require code analysis or repository tagging.
¡	Dependency management tools (for example, Dependabot) scan for outdated 

libraries.
¡	Continuous integration jobs run arbitrary static analysis tasks.
¡	Network metrics and code instrumentation surface relationships between 

services.

Similar information might be kept in spreadsheets or architectural diagrams, which, 
sadly, are often out of date.

A recent presentation from John Arthorne at Shopify7 proposed embedding a file, 
service.yml, in each code repository and using that as a source of service metadata. This 
is a promising idea, but at the time of this writing, you’ll need to roll your own.

13.4	 Further reading
Forming, growing, and improving engineering teams is a broad topic, and in this chap-
ter we’ve only scratched the surface. If you’re interested in learning more, we recom-
mend the following books as good places to start:

¡	Elastic Leadership, by Roy Osherove (ISBN 9781617293085)
¡	Managing Humans, by Michael Lopp (ISBN 9781430243144)
¡	Managing the Unmanageable, by Mickey W. Mantle and Ron Lichty (ISBN 

9780321822031)
¡	PeopleWare, by Tom DeMarco and Timothy Lister (ISBN 9780932633439)

We’ve covered a lot of ground in this chapter. Choosing a microservice engineering 
approach is great for getting things done and empowering engineers, but changing 
your technical foundation is only half the battle. Any system is deeply intertwined with 

7	 See John Arthorne, “Tracking Service Infrastructure at Scale,” SRECon San Francisco, March 13, 
2017, http://mng.bz/Z6d0.
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the people building it — successful, sustainable development requires close collabora-
tion, communication, and rigorous and responsible engineering practices.

In the end, people deliver software. Getting the best product out requires getting the 
best out of your team.

Summary

¡	Building great software is as much about effective communication, alignment, 
and collaboration as implementation choices.

¡	Application architecture and team structure have a symbiotic relationship. You 
can use the latter to change the former.

¡	If you want teams to be effective, you should organize them to maximize auton-
omy, ownership, and end-to-end responsibility.

¡	Cross-functional teams are faster and more efficient at delivering microservices 
than a traditional, functional approach.

¡	A larger engineering organization should develop a tiered model of infrastruc-
ture, platform, and product teams. Teams in lower tiers enable higher tier teams 
to work more effectively.

¡	Communities of practice, such as guilds and chapters, can share functional 
knowledge.

¡	A microservice application is difficult to fit in your head, which leads to chal-
lenges for global decision making and on-call engineers.

¡	Architects should guide and shape the evolution of an application, not dictate 
direction and outcomes.

¡	Inner-source models improve cross-team collaboration, weaken feelings of pos-
sessiveness, and reduce bus factor risks.

¡	Design reviews improve the quality, accessibility, and consistency of microservices.
¡	Microservice documentation should include overviews, runbooks, metadata, 

and service contracts.
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appendix 
Installing Jenkins on Minikube

This appendix covers
¡	Running Jenkins on Minikube

¡	A short introduction to Helm

This appendix will walk you through the process of running Jenkins on your local 
Minikube cluster, which we use in the examples in chapter 10.

Running Jenkins on Kubernetes
You can run Jenkins as another service on the local Kubernetes cluster — Minikube —  
you set up in chapter 9. If you’re working from scratch, follow the installation 
instructions on GitHub to get Minikube running (https://github.com/kubernetes/
minikube). Once you have it installed, bring up the cluster by running minikube 
start at your terminal.

The Jenkins application consists of a master node and, optionally, any number 
of agent nodes. Running a Jenkins job executes scripts (such as make) across agent 
nodes to perform deployment activities. A job operates within a workspace  — a local 
copy of your code repository. Figure A.1 illustrates this architecture.

You’ll use Helm to install an “official” Kubernetes-ready configuration of Jenkins 
on your Minikube cluster.

 

https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
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Jenkins master
Jenkins agent

WorkspaceJob Orchestrates
Pulls 
from

Code repo

Resources,
for example,
infrastructure

Interacts with

Figure A.1  A high-level Jenkins architecture

Setting up Helm

You can think of Helm (https://helm.sh/) as a package manager for Kubernetes. 
Helm’s package format is a chart, which defines a set of Kubernetes object templates. 
Community-developed charts, like the one you’ll use for Jenkins, are stored on Github 
(https://github.com/helm/charts).

Helm consists of two components:

¡	A client, which you’ll use to interact with Helm charts
¡	A server-side application (also known as Tiller), which performs installation of charts

This is illustrated in figure A.2.
Installation instructions for Helm are on Github (https://github.com/helm/helm). 

Follow them to get the Helm client running on your machine. Once you’ve installed 
Helm, you’ll need to set up Tiller on Minikube. Run helm init on the command line to 
set up this component.

Create a namespace and a volume

Before you install the Jenkins chart, you need to create two things:

¡	A new namespace to logically segregate your Jenkins objects within the cluster
¡	A persistent volume to store Jenkins configuration, even if you restart Minikube

Engineer

Helm client Helm install Tiller

Kubernetes cluster

Deploys Application

Figure A.2  Components of Helm, a package manager for Kubernetes

 

https://helm.sh/
https://github.com/helm/charts
https://github.com/helm/helm
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TIP    You can find all the templates we use in this chapter in the book’s code 
repo on Github: https://github.com/morganjbruce/microservices-in-action.

To create the namespace, apply the following template to your Minikube cluster, using 
kubectl apply -f <file_name>.

Listing A.1  jenkins-namespace.yml

---
apiVersion: v1
kind: Namespace
metadata:
  name: jenkins

And do the same again for the persistent volume, as follows.

Listing A.2  jenkins-volume.yml

---
apiVersion: v1
kind: PersistentVolume
metadata:
  name: jenkins-volume
  namespace: jenkins
spec:
  storageClassName: jenkins-volume
  accessModes:
    - ReadWriteOnce
  capacity:
    storage: 10Gi
  persistentVolumeReclaimPolicy: Retain
  hostPath:
    path: /data/jenkins/

Installing Jenkins

You’ll install Jenkins with the community Helm chart. This chart is pretty complex; 
if you’re interested, you can explore it on Github: https://github.com/helm/charts/
tree/master/stable/jenkins.

First, create a values.yml file. Helm will interpolate the following code into the Jen-
kins chart to set appropriate defaults for running on Minikube.

Listing A.3  values.yml

Master:
  ServicePort: 8080
  ServiceType: NodePort
  NodePort: 32123
  ScriptApproval:

 

https://github.com/morganjbruce/microservices-in-action
https://github.com/helm/charts/tree/master/stable/jenkins
https://github.com/helm/charts/tree/master/stable/jenkins
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    - "method groovy.json.JsonSlurperClassic parseText java.lang.String"
    - "new groovy.json.JsonSlurperClassic"
    - "staticMethod org.codehaus.groovy.runtime.DefaultGroovyMethods 

leftShift java.util.Map java.util.Map"
    - "staticMethod org.codehaus.groovy.runtime.DefaultGroovyMethods split 

java.lang.String"
  InstallPlugins:
    - kubernetes:1.7.1 
    - workflow-aggregator:2.5 
    - workflow-job:2.21 
    - credentials-binding:1.16 
    - git:3.9.1 
Agent:
  volumes:
    - type: HostPath
      hostPath: /var/run/docker.sock
      mountPath: /var/run/docker.sock

Persistence:
  Enabled: true
  StorageClass: jenkins-volume 
  Size: 10Gi

NetworkPolicy:
  Enabled: false
  ApiVersion: extensions/v1beta1

rbac:
  install: true
  serviceAccountName: default
  apiVersion: v1beta1
  roleRef: cluster-admin

Now, to install Jenkins, run the following helm command:

helm install
  --name jenkins 
  --namespace jenkins
  --values values.yml 
  stable/jenkins 

If successful, this will output a list of created resources that looks like figure A.3.
Give Jenkins a few minutes to start up. To access the server, you’ll need a password. 

You can retrieve it using the following command:

printf $(kubectl get secret --namespace jenkins jenkins -o jsonpath="{.data.
jenkins-admin-password}" | base64 --decode);echo

This default set of plugins will support 
running Jenkins Pipeline jobs.

The persistence settings refer  
to your persistent volume.

The chart to install
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Then, navigate to the login page:

minikube --namespace=jenkins service jenkins

Log in with the username “admin” and the password you retrieved. Terrific — you’ve 
set up Jenkins!

Configuring RBAC

Minikube uses RBAC — role-based access control — by default, which requires an addi-
tional configuration step to ensure Jenkins can perform operations on the Kubernetes 
cluster.

Figure A.3  Kubernetes objects that the stable/Jenkins Helm chart installed.
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To configure this appropriately on the Jenkins server:

1	 Log in to the Jenkins dashboard.

2	 Navigate to Credentials > System > Global Credentials > Add Credentials.

3	 Add a Kubernetes Service Account credential, setting the value of the ID field to 
jenkins.

4	 Save and navigate to Jenkins > Manage Jenkins > System.

5	 Under the Kubernetes section, configure the credentials to those you created in 
step 3 (figure A.4) and click Save.

Figure A.4  Kubernetes cloud credentials

Testing it all works

You can run a simple build to make sure everything’s working. First, log in to your new 
Jenkins dashboard and navigate to New Item in the left-hand column.

Create a new pipeline job named “test-job” per the configuration in figure A.5. Click 
OK to move to the next page and configure that job with the following script in the Pipe-
line Script field.

Listing A.4  Test pipeline script

podTemplate(label: 'build', containers: [
    containerTemplate(name: 'docker', image: 'docker', command: 'cat', 

ttyEnabled: true)
  ],
  volumes: [
    hostPathVolume(mountPath: '/var/run/docker.sock', hostPath: '/var/run/

docker.sock'),
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  ]
  ) {
    node('build') {
      container('docker') {
        sh 'docker version'
      }        
    }  
  }

Click Save, then, on the following page, click Build Now. This will execute your job.

TIP    The first build run may take some time!

The script you added will

1	 Create a new pod, containing a Docker container

2	 Execute the docker version command inside that container and output the 
results to the console

Figure A.5  New job page on Jenkins
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Once the build job has completed, navigate to the build’s console output 
(http://<insert Jenkins ip here>/job/test/1/console). You should see output similar 
to figure A.6, showing the output of the job script commands.

If your output looks like the figure, fantastic — everything’s in working order! If not, 
your first point of call to diagnose any issues should be the Jenkins logs: http://<insert 
Jenkins ip here>/log/all.

Figure A.6  Console output from the test build job
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