
www.allitebooks.com

http://www.allitebooks.org

(MCTS) Microsoft BizTalk
Server (70-595) Certification
and Assessment Guide
Second Edition

Including Microsoft Partner Network Technical Competency
Assessment for Application Integration (BizTalk Server 2013)
and Windows Azure BizTalk Services coverage

Johan Hedberg
Morten la Cour
Kent Weare

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

(MCTS) Microsoft BizTalk Server (70-595) Certification
and Assessment Guide
Second Edition

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2012
Second Edition: March 2014

Production Reference: 2280214

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-210-9

www.packtpub.com

Cover Image by Ankita Jha (ankitajha17@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Johan Hedberg

Morten la Cour

Kent Weare

Reviewers
Jan Eliasen

Mikael Håkansson

Todd Uhl

Steef-Jan Wiggers

Acquisition Editors
Nikhil Karkal

Mary Nadar

Content Development Editor
Vaibhav Pawar

Technical Editors
Shashank Desai

Rosmy George

Abhishek Kanade

Ankita Thakur

Copy Editors
Janbal Dharmaraj

Sayanee Mukherjee

Deepa Nambiar

Karuna Narayanan

Project Coordinator
Amey Sawant

Proofreaders
Bridget Braund

Mario Cecere

Indexer
Monica Ajmera Mehta

Graphics
Ronak Dhruv

Abhinash Sahu

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Johan Hedberg is based in Stockholm, Sweden, where he does consultancy,
solution architecture, training, mentoring, speaking, and authoring. Johan has 15
years of experience architecting and developing enterprise-grade solutions based
on Microsoft technologies. He works closely with Microsoft as a Virtual Technology
Solution Professional (V-TSP) and with the community as a Microsoft Most Valuable
Professional (MVP), and is one of the founders of the BizTalk User Group Sweden. He
blogs irregularly at http://blogical.se/blogs/johan and can be found as @JoHed
on Twitter.

I would like to say thanks to the people at Microsoft for encouraging
a second edition that would otherwise not have come to pass and to
my fellow authors, Kent and Morten, for again sharing the work.
A special thanks to my family, Maria and the boys, for their patience
as work takes up weeknights and weekends and for keeping me
balanced. To Max for the struggle still ahead.

Morten la Cour has worked with the MS BizTalk Server platform for nine years.
Besides designing and developing Integration solution for customers, he has also
worked on deployment and maintenance of BizTalk applications and BizTalk
Server environments.

Starting in 2011, he is also working with Windows Azure, Azure Service Bus,
and the new Windows Azure BizTalk Services.

He has taught several BizTalk Server courses in development, deployment,
and management.

www.allitebooks.com

http://www.allitebooks.org

Besides working with MS BizTalk Server, Morten has 15 years of experience on the
Microsoft development platform, including the .NET Framework and SQL Server.
Other experiences include XML, XSLT, XPATH, and Oracle databases.

I would like to thank my daughter (Clara) and girlfriend (Daniela)
for their patience during all the writing weekends, thus leading up
to this book.

Kent Weare was born in Regina, Saskatchewan, Canada. He developed a love for
ice hockey, football, and technology. He attended the University of Regina, where he
obtained a Degree in Computer Science. After completing his undergraduate degree,
he spent time in India completing a Post Graduate diploma in Object Oriented
Technology. Recently, Kent has decided to pursue a Master's Degree in Information
Management from Arizona State University. He currently lives in Calgary, Alberta,
Canada but remains a die-hard Saskatchewan Roughrider football fan.

Kent began his career at a small Internet startup before taking on a junior role with the
Saskatchewan Government. Since then, he has worked on projects for the Canadian
Federal Government, a multinational bank in the United States, health care projects
in Eastern and Western Canada, and has spent the last eight years employed in the
Energy/Utilities sector in Calgary. Kent's current role as a senior enterprise architect
involves setting the technical direction for the organization and is very involved in
cross-domain disciplines such as Integration and Mobility.

During Kent's time at the Federal Government, he had an opportunity to participate
in his first BizTalk project. Ten years later, he is still "hooked" on BizTalk, having
worked with every BizTalk version released since then.

In 2008, Kent was awarded his first Microsoft MVP award for BizTalk Server.
He continues to be active in the BizTalk community and recently, received his
sixth consecutive MVP award. Kent maintains active blogs at http://kentweare.
blogspot.com and http://www.MiddlewareInTheCloud.com. He may also be
seen presenting BizTalk-related material at local and international user groups.

Recently, Kent has co-authored two BizTalk books: Microsoft BizTalk 2010: Line
of Business Systems Integration and (MCTS) and BizTalk Server 2010 (70-595)
Certification Guide.

Writing a book is a very demanding activity. Writing a book while
working full time makes a person question his or her sanity. Writing
a book while working full time and pursuing a Master's degree
confirms one's sanity or lack thereof. I would not have been able to
contribute to this book without the support of my wife, Melissa, and
my two kids, Brooke and Paige. So, thank you for putting up with
this activity once again. I can't say this will be the last time I do this
but at least while pursuing a Master's degree, it will be.

During the period in which I contributed to this book, I also joined
a new organization. While at this organization, I introduced BizTalk
and could not have done so without the tremendous support
from Nipa Chakravarti and Nguyen Tran. The two of you are true
professionals, and I have benefitted so much by working with you.

Lastly, I want to thank the BizTalk community and more specifically,
the Microsoft Integration MVPs. Never in my life have I been
associated with such a quality group of individuals. Every time we
meet up, it is like a family reunion, so SKOL to Mikael, Johan, Mick,
Steef-Jan, Richard, Stephen, Saravana, Tord, Nino, Sandro, Michael,
Dan, Ben, Leonid, Bill, Rick, Dwight, Jon, and Matt.

About the Reviewers

Jan Eliasen has a Master's degree in Computer Science and has nine years of
experience using BizTalk Server, starting from BizTalk Server 2002. Jan is a five-time
and current Microsoft MVP in BizTalk Server, and he has passed all the five existing
exams in BizTalk.

Jan is a co-author of the Microsoft BizTalk Server 2010 Unleashed book.

Mikael Håkansson is employed by Breeze in Australia. He has a long-standing
commitment to the community through the contribution of free software and
components, such as BizTalk SFTP Adapter and BizTalk Benchmark Wizard. He has
been recognized as a Microsoft Most Valuable Professional (MVP). Mikael maintains
his blog at http://blogical.se/blogs/mikael, and you can also follow him on
twitter at @wmmihaa.

Todd Uhl is an IT consultant with over 15 years of experience in Microsoft
developer technologies. He has been working with all facets of BizTalk Server
since its original launch. He currently works for a large software company
supporting customers in all their endeavors with BizTalk.

I would like to thank my beautiful wife, Mechelle, for always putting
up with me and my two boys, Owen and Sebastian, for bringing a
smile to my face every day.

Steef-Jan Wiggers has over 15 years of experience as a technical lead developer,
application architect, and consultant, specializing in custom applications, enterprise
application integration (BizTalk), web services, and Windows Azure. He works for
SLTN in the Netherlands and is very active in the BizTalk community (http://
social.technet.microsoft.com/wiki/contents/articles/7141.user-page-
steef-jan-wiggers-microsoft-biztalk-server-consultant-and-mvp.aspx) as a
blogger, Wiki author/editor on forums, writer, and public speaker in the Netherlands
and Europe. For these efforts, Microsoft has recognized him as a Microsoft MVP for the
past four years. On his personal blog (http://soa-thoughts.blogspot.com/) and
BizTalk Administrators blog (http://www.biztalkadminsblogging.com/), he shares
his knowledge around SOA, Azure (ServiceBus), BizTalk Services, and BizTalk.

In addition to consulting, Steef-Jan is also an author and technical editor for Packt
Publishing. He has written the BizTalk Server 2010 Cookbook available through Packt
Publishing and was a technical reviewer for the BizTalk Server 2010 Patterns book by
Dan Rosanova and (MCTS): Microsoft BizTalk Server 2010 (70-595) Certification Guide
by Johan Hedberg, Morten la Cour, and Kent Weare.

The second edition of this book is an excellent guide for you to
prepare for either the 2010 exam or 2013 assessment. It has been
a joy reviewing it, and I like to thank the authors Johan Hedberg,
Morten la Cour, and Kent Weare for giving me the opportunity.
They have done an excellent job writing it.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise
on Twitter, or the Packt Enterprise Facebook page.

Table of Contents
Preface 1
Chapter 1: Configuring a Messaging Architecture 9

Understanding the publish or subscribe model 10
Receiving the message 11

Adapter 11
Pipeline 12
Maps 12

MessageBox 13
Subscriptions 13

Message Context Properties 14
Orchestrations 14
Sending the message 14

Maps 15
Pipeline 15
Adapter 15

Getting started with the BizTalk Platform Settings and Applications 15
BizTalk Administration Console 15

The Group Hub 15
Hosts and Host Instances 17

Creating a Host 18
Creating a Host Instance 20

Managing Adapter Handlers 22
Applications 24

Referencing another Application 24
Setting up and managing Ports 25

Receive Ports 25
Port Authentication 26
Receive Locations 28
Receive Port Maps 32

Send Ports 34
Transport Advanced Options 34

Table of Contents

[ii]

Backup transport 36
Send Port Maps 36
Configuring Filters (subscriptions) 37
Port states 38
Dynamic Send Ports 40

Send Port Groups 41
Failed message routing 42
Ordered delivery 42

Receive Locations 43
Send Ports 43

Configuring core Adapters 45
HTTP 46

Sending HTTP 46
Receiving HTTP 46

POP3 49
SMTP 50
FTP 52

Receiving FTP 53
Sending FTP 54

FILE 56
Receiving files 56
Sending files 58
Credentials 59

Configuring content-based routing 60
Creating folders and Applications 60
Creating Receive Ports and Receive Locations 62
Testing the Receive Locations 64
Debugging the messages 64
Setting up a Send Port 67
Setting up Send Port for System II and a Send Port Group 70

Implementing messaging patterns 71
Working with canonical messages 71
Debatching 72
Using the correct flow 73
Adapter independence 74

Testing your knowledge 74
Summary 76

Chapter 2: Developing BizTalk Artifacts – Creating Schemas
and Pipelines 77

Creating Schemas 78
Type of Schemas 78

XML Schemas 78
Flat File Schemas 79

Table of Contents

[iii]

Property Schemas 80
Schema Identity 80

XML Identity 80
.NET Identity 81

Promoted property and distinguished fields 82
Promoting nodes as property fields 82
Promoting a node as distinguished field 85

Creating the structure of a Schema 87
Creating recurring parts of a Schema 88
Creating Envelope Schemas 90

Data types and formatting 92
Specifying custom formatting restrictions 92
Creating reusable types 95

Creating Schema hierarchies 97
Import 98
Include 98
Redefine 98

Creating Flat File Schemas 98
Creating Pipelines 102

Pipeline Stages 103
Receive Pipelines 104

Decode 105
Disassemble 105
Validate 105
Resolve Party 105
Send Pipelines 106
Pre-Assemble 106
Assemble 106
Encode 107

Default Pipelines 107
PassThruReceive 107
XMLReceive 107
PassThruTransmit 107
XMLTransmit 108

Custom Pipelines 108
Configuring Pipelines and Pipeline components 111
Working with XML messages 113

Disassembling and parsing 114
Assembling and serializing 115
Validating data 116

Working with XML envelopes 117
Working with Flat File messages 119
Working with secure data 120

Encryption and signing 120
Decryption and signature verification 125

Custom Pipeline Components 126

Table of Contents

[iv]

Developing 126
Deploying 128

Testing your knowledge 128
Summary 129

Chapter 3: Developing BizTalk Artifacts – Creating Maps 131
Creating Maps 131

Understanding why XSLT matters 134
Using Functoids 134

Conversion Functoids 135
Cumulative Functoids 135
Database Functoids 136

Table Query Functoids 136
Cross Referencing Data Functoids 137

Date/Time Functoids 141
Logical Functoids 141
Mathematical Functoids 142
Scientific Functoids 143
String Functoids 144

Using Advanced Functoids 144
Looping 145

Index 145
Iterator 146
Nil 146
Record Count 146
Looping 147
Table Looping 148

Conditional Mapping 152
Copy-based Mapping 154
Troubleshooting 154
Scripting 154

Using external assemblies 155
Using the Inline Code 158
Using Inline XSLT 159

Maps and Orchestrations 161
Testing your knowledge 164
Summary 165

Chapter 4: Developing BizTalk Artifacts –
Creating Orchestrations 167

Developing Orchestrations 167
Basic shapes and configuration 168

Message and data handling 169
Containers 170
Flow control 171

Table of Contents

[v]

Orchestration nesting 172
Other 173

Orchestration activation 173
Activating Receive 174
Call and Start 174

Persistence 175
Dehydration and rehydration 175

Transactions 176
Transaction types 176
Scopes 177
Long Running 178
Atomic 178
Nesting 179

Transaction reach 180
Storing configuration information 180

Orchestration variables 180
Configuration placed in BTSNTSvc.exe.config 181
Configuration placed in web.config for Isolated Hosts 181
Configuration placed in machine.config 181
Some configuration can be placed on the Adapter Handlers 181
Through the message 182
Through the message context 182
Business Rules 182
SSO 182
Using a .NET helper component 183

Integrating with .NET assemblies 183
Configuring Orchestration bindings 185

Ports versus Port Types 186
Logical ports versus physical ports 186
Port binding options 187

Specify Now 187
Specify Later 192
Direct 193
Dynamic 202

Configuring correlation 205
Working with Correlation Types and Sets 206
Convoys 209

Sequential convoys 209
Parallel convoys 210

Testing your knowledge 211
Summary 212

Chapter 5: Testing, Debugging, and Exception Handling 213
Handling exceptions in Orchestrations 214

Scopes 214
Throwing exceptions 215

Table of Contents

[vi]

Catching exceptions 216
Compensation 218
Sample exception handling scenario 220
Delivery notification 232

Debugging Orchestrations 237
Handling messaging errors 242

Subscription errors 242
Transmission errors 244

Routing errors 246
Recoverable interchange processing 251

Validating and testing artifacts 256
Validating Schemas and Message Instances 256

Validate Schema 257
Validate Instance 257
Generate Instance 258

Validating, testing, and debugging Maps 258
Test Map 259
Validate Map 259
Debug Map 259

Testing Pipelines 259
Pipeline test tools 260

Unit testing 260
Unit testing Schemas 261
Unit testing Maps 263
Unit testing Pipelines 264

Testing your knowledge 265
Summary 267

Chapter 6: Deploying, Tracking, and Administrating a
BizTalk Server 2010 Solution 269

Installing and configuring a multiserver BizTalk environment 270
High Availability 270
Role of Host and Host Instances in High Availability 272
Multiple MessageBox databases 273
Installation setup 273

Installation 273
Configuration 273

Adapters 278
Active Directory Groups and Users 279

Deploying BizTalk applications 281
Sample deployment through Visual Studio 281

Preparing the solution 282
Binding Files 285

Table of Contents

[vii]

Sample deployment through an MSI package 294
Binding File dependencies 299

BizTalk Application states 300
Runtime Application states 300

Tracking events in BizTalk Server 302
Tracking Receive Ports 303
Tracking Orchestrations 304
Tracking Send Ports 307

Tracking Promoted Properties 308
Managing BizTalk applications using BizTalk
Administration Console 309

Configuration overview 310
Work in Progress 311
Suspended Items 312
Group Suspended Service Instances 313
Tracked Service Instances 314
Tracked Message Events 314

BizTalk Settings Dashboard 315
Viewing and modifying performance-tuning settings 315
Exporting and importing performance tuning settings 320

Testing your knowledge 324
Summary 327

Chapter 7: Integrating Web Services and Windows
Communication Foundation (WCF) Services 329

Out of the box WCF Adapters 330
Configuring a WCF Adapter 331

Using out of the box WCF-BasicHttp Send Adapter 332
Using out of the box WCF-BasicHttp Receive Adapter 339

Understanding Custom behaviors 344
Exposing Schemas and Orchestrations as WCF Services 347

Testing our WCF Service 355
Exposing WCF Services to Windows Azure Service Bus 357
Exposing only Service Metadata 359
Consuming WCF Services from BizTalk Server 360

Consume Sample WCF Service 361
Consuming our WCF Service from BizTalk 364
Configuring generated WCF Service artifacts 369
Testing our Custom WCF Service 376

Manually importing WSDL files 377
Handling web exceptions 378

Table of Contents

[viii]

Testing your knowledge 387
Summary 390

Chapter 8: Implementing Extended Capabilities 391
Business Rules Engine 392

Creating a BizTalk Solution with rules 392
Creating a Schema 392
Creating a Policy 393
Import a Schema as facts into the Rule Composer 394
Adding an Action 395
Testing the Policy 395
Creating an Orchestration 396
Deploying the Policy and testing 397
Deploying a new version of the Policy 398
Adding a Vocabulary 399

Electronic Data Interchange 400
Finding and deploying the EDIFACT Schema 401
Adding a reference to BizTalk EDI Application 401
Set up a Receive Port, Receive Location, and a Send Port 402
Setting up Parties and Agreements 403

Examine an unrecognized message 404
Set up the Parties and the Agreement for receiving 405
Changing the Schema 408
Set up an alternate namespace for the Agreement 409
Deploy an alternate Schema 410
Debatching and Error handling 411
Setting up a Party and Agreement for sending 412
Setting up a new Party for sending 414
Send Port control 416
Batching 417

Business Activity Monitoring 417
Creating Activities 418

Setting up the BAM Add inside Excel 420
Creating an Activity inside Excel 421
Deploy the Activity and view 426
Creating a Tracking Profile 427

Creating Continuations 433
BAM Portal 435

Testing your knowledge 436
Summary 437

Chapter 9: Using Azure BizTalk Features 439
Understanding the Windows Azure BizTalk Services 439

Setting up a Windows Azure BizTalk Service 440
Running the setup wizard in Windows Azure 441
Exporting the WABS root certificate 443

Installing Windows Azure BizTalk Services SDK 444

Table of Contents

[ix]

Creating a Bridge 447
Filter Condition and Route Ordering 451
Setting the FTP filename 452

Deploying a Bridge 453
Using PowerShell with BizTalk Services 455

Starting the bridge source 456
Restarting the BizTalk Service 456

Testing the bridge 457
Enriching data 457
Bridge Routing 458
Working with XML in bridges 459

Creating a new Schema 459
Using the BizTalk Adapter Services 461

Creating a Service Bus Namespace 462
Adding an LOB Target 463
Creating a Map 467
Applying the map and testing the solution 469

Using the WABS Portal 471
Setting up EDI partners 471
Tracking 474

Running BizTalk on a Windows Azure Virtual Machine 475
Setting up a single BizTalk Server 476
Installing a multi-Server Virtual Machine 477
Configuring multiple BizTalk Servers 478

Testing your knowledge 478
Summary 480

Chapter 10: Test-taking – Tips and Tricks 481
Understanding the difference between the exam and
the assessment 482
Preparing for taking a test 483

Preparation sources 483
Literature 484
Classes 484
Webcasts 485
Training kits 486
Windows Azure virtual machines 487
Sample code 487
Practice tests 488
Colleagues and peers 489
Forums, blogs, and other online sources 489

Getting familiar with the objectives 489
Finding time to study 490
Incentives 491

Knowledge 491

Table of Contents

[x]

Money 491
Opportunities 491

Vouchers and offers 492
Learn more 492

At the test center 492
Examining the exam structure 493

Before the exam 493
Questions 494
After the exam 494

Managing your time 496
Answering questions 497
Summary 500

Appendix A: Sample Certification Test Questions 501
Appendix B: Sample Certification Test Questions – Answers 517
Appendix C: Testing Your Knowledge – Answers 525
Index 533

Preface
This book will give you all the information you need to pass the 70-595 TS: Developing
Business Process and Integration Solutions exam using Microsoft BizTalk Server
2010. Additionally, this second edition of the book will also provide the information
needed for Microsoft Partners to complete the Microsoft Partner Network Technical
Assessment for Application Integration (BizTalk Server 2013).

The book's intent is to be as focused as possible on providing content for just what
you need to know, while still providing context to allow you to understand rather
than just remember. Coverage of additional topics that are not included in
the exam has been filtered out to reduce the noise.

Included in this book are also close to 60 sample questions that help re-enforce what
you need to know as well as let you practice the type and style of questions given in
the exam itself.

At the same time, though the book is tailored for the tests, you will not find the
actual words or questions of either in this book. This book was made to help you
strengthen your knowledge of the product and allow you to focus your learning
towards a goal. It is not a cheat sheet. However, if you understand the content of
this book, you will be fully equipped to pass the exam as well as the assessment.

The book follows an outline similar to the exam to provide a mapping towards
certification objectives. This helps you practice as well as better understand the
certification objectives that you are strong in and those which may need development.
The certification objectives are supplied at http://www.microsoft.com/learning/
en/us/exam.aspx?ID=70-595.

The objectives of the assessment are included in these chapters, in this outline, and
in the additional chapter dedicated to BizTalk Server on Azure and Windows Azure
BizTalk Services.

Preface

[2]

What this book covers
Chapter 1, Configuring a Messaging Architecture, covers the core architecture of BizTalk,
including publish/subscribe, context and content-based routing, Receive and Send
Ports, and other administrative artifacts.

Chapter 2, Developing BizTalk Artifacts – Creating Schemas and Pipelines, covers creating
rich and useful Schemas with restrictions and reusable types.

Chapter 3, Developing BizTalk Artifacts – Creating Maps, covers creating Maps and
applying logic, such as conditional mapping, looping, scripting and external
assemblies, and other map and Functoid logic.

Chapter 4, Developing BizTalk Artifacts – Creating Orchestrations, covers creating
Orchestrations and working with messages, scopes, transactions, binding,
correlation, and other shapes and processing logic.

Chapter 5, Testing, Debugging, and Exception Handling, covers handling exceptions
in messaging and Orchestration scenarios and recovering from them using catch,
compensation, and failed message routing.

Chapter 6, Deploying, Tracking, and Administrating a BizTalk Server 2010 Solution, covers
performing administrative tasks, such as installing, configuring, tuning, deploying,
maintaining, and troubleshooting BizTalk Server 2010 groups and solutions.

Chapter 7, Integrating Web Services and Windows Communication Foundation (WCF)
Services, covers working with Web Services and WCF, exposing and consuming
services, and applying custom configurations and behaviors.

Chapter 8, Implementing Extended Capabilities, covers using the additional features
in BizTalk, such as Business Rules Engine (BRE), Electronic Data Interchange (EDI),
and Business Activity Monitoring (BAM).

Chapter 9, Using Azure BizTalk Features, covers setting up and developing Windows
Azure BizTalk Services (WABS) as well as using Windows Azure Virtual Machine
Infrastructure as a Service (IaaS) capability for BizTalk Server.

Chapter 10, Test-taking – Tips and Tricks, covers additional resources for learning
tips, tricks, and strategies for preparing for and taking the certification.

Appendix A, Sample Certification Test Questions, contains additional sample
certification questions to reinforce what you learned and provide training
on the certification format.

Appendix B, Sample Certification Test Question – Answers, contains the answers and
short explanations to the sample certification questions in Appendix A.

Preface

[3]

Appendix C, Testing Your Knowledge – Answers, contains the answers and short
explanations to the questions in the Testing Your Knowledge section contained
in each chapter.

What you need for this book
This book comes with sample code to provide hands on and practical implementation
of the theory provided in the book. In some cases, the code is meant to be viewed
in Visual Studio, other times to be deployed to show the aspects of deployment,
configuration, or runtime. For the second edition of the book, we have chosen to
update all code samples to BizTalk Server 2013. All concepts and techniques shown
are, however, equally usable for BizTalk Server 2010. To view, deploy, and run the
code, the following requirements are needed:

• Windows Server 2012, Windows Server 2008 R2 SP1, Windows 8 or
Windows 7 SP1

• IIS 8.0 or IIS 7.5
• .NET Framework 4.5
• SQL Server 2008 R2 SP1 or SQL Server 2012
• Visual Studio 2012 with Visual C#.NET and Visual Web Developer
• BizTalk Server 2013 Developer edition
• Excel 2013 or Excel 2010 (for business activity monitoring)

The first edition of the book has sample code that works with BizTalk Server 2010
and Visual Studio 2010

Who this book is for
This book is for anyone wanting to achieve the certification of Microsoft Certified
Technology Specialist (MCTS): Microsoft BizTalk Server 2010 by passing the 70-595: TS:
Developing Business Process and Integration Solutions exam using Microsoft BizTalk
Server 2010 or a Microsoft Partner that wants to pass the Microsoft Partner Network
Technical Assessment for Application Integration (BizTalk Server 2013) exam.

The target audience for this book is similar as for the exam. A typical reader is
someone who works as a BizTalk developer today. You are familiar with the product
and the technology in and around it, having had at least a year or so of exposure to
developing BizTalk Server integration solutions primarily but perhaps not using all
parts of the product.

Preface

[4]

Even senior BizTalk developers aiming to get certified will benefit from this book
because of the refresh on important topics and targeted study that it provides.

This book is not for a beginner who wants to use it to learn the basics of BizTalk
Server as it will start from a level and continue at a pace where you are assumed
to be accustomed to those basics already.

The typical exam candidate listed on the certification web page suggests slightly
more than the following message:

Candidates should have at least two years of experience developing, deploying,
testing, troubleshooting and debugging BizTalk Server 2006 or later across
multiple projects and have experience using the Microsoft .NET Framework,
XML, Microsoft Visual Studio, Microsoft SQL Server, Web services, and
WCF while developing BizTalk integration solutions.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The state of a Receive Location is merely a flag inside the Receive Location table
in the Management database of the BizTalk Group."

A block of code is set as follows:

<xs:schema xmlns="http://Chapter02_Example01.Schemas.
SimplifiedCar" xmlns:b="http://schemas.microsoft.com/BizTalk/2003"
targetNamespace="http://Chapter02_Example01.Schemas.SimplifiedCar"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Car">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="RegistrationNo" type="xs:string" />
 <xs:element name="Make" type="xs:string" />
 <xs:element name="Model" type="xs:string" />
 <xs:element name="Color" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Preface

[5]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

 <xs:annotation>
 <xs:appinfo>
 <b:schemaInfo is_envelope="yes" />
 </xs:appinfo>
 </xs:annotation>
 <xs:element name="ManufacturingReport">
 <xs:annotation>
 <xs:appinfo>
 <b:recordInfo body_XPath="/*[local-
name()='ManufacturingReport' and namespace-uri()='http://Chapter02_
Example03.Schemas.CarEnvelope']/*[local-name()='Cars' and namespace-
uri()='']" />
 </xs:appinfo>
 </xs:annotation>

 Any command-line input or output is written as follows:

The 'RegistrationNo' element is invalid - The value 'RegistrationNo_0'
is invalid according to its datatype 'String' - The Pattern constraint
failed.

File 'Car02.xml' is not a valid instance of schema file 'Car02.xsd'.

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "The
Group Hub window gives the user an overview of what is currently going on
inside BizTalk".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

Preface

[6]

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

Preface

[7]

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Configuring a Messaging
Architecture

This chapter covers the Configuring a Messaging Architecture part of the exam. It will
introduce some of the basic concepts of the messaging architecture in BizTalk, and
also give the reader an insight into configuring some of the core Adapters in BizTalk.
Other areas in this chapter will be the publish/subscribe engine, port authentication,
and some discussions about implementing messaging patterns.

In this chapter, the following topics will be covered:

• The publish/subscribe mechanism
• BizTalk Platform Settings
• Ports
• Core Adapters
• Messaging patterns
• Testing your knowledge

Configuring a Messaging Architecture

[10]

Understanding the publish or subscribe
model
At its core, BizTalk is a publish/subscribe engine, nothing more nothing less.
Whenever a message is received, BizTalk will look through all subscriptions and
pass a copy of the message to all the subscribers, if any. The following are the
three kinds of artifacts inside BizTalk that can subscribe to messages:

• Send Ports
• Orchestrations
• Request-Response Receive Ports

If messages, for some reason, cannot be sent to one or more of the subscribers,
BizTalk will store the message for resuming or later analysis as to why the message
could not be delivered. When all subscribers have processed their messages, BizTalk
will no longer need to hold on to the message, and the message will be removed
from BizTalk. A new subscriber will not be able to subscribe to messages that have
already been processed and delivered inside BizTalk.

The following model shows how the BizTalk publish/subscribe mechanism works:

Chapter 1

[11]

The previous diagram shows a BizTalk Server Group. The BizTalk Server Group
consists of at least four databases, which are as follows:

• SSODB: This is used to store passwords and other configuration parameters
that should be hidden from even administrators

• BizTalkMgmtDb: This is a management database that is used to store
metadata about the BizTalk Server Group

• BizTalkDTADb: This is a Tracking database that is used to store tracking
information and actual messages of what has passed through BizTalk

• BizTalkMsgBoxDb: This is used for storing message parts, message metadata,
subscriptions, and so on, which will be covered in detail later

Receiving the message
First, BizTalk Server will receive a message through the Receive Port. A message is
received in a Receive Port through one of the Receive Locations associated with the
Port. A Receive Port contains one to many Receive Locations. Each Receive Location
contains one Adapter and one Pipeline. Each Receive Port can hold any number of
Maps, but no Map is required.

Only one Map per input message type is allowed on
each Receive Port or Send Port.

Adapter
The Adapter, responsible for communicating with the various applications/protocols
needed, receives or picks up messages or batches of messages, writes metadata to the
Context (message metadata) of the message, and sends the message to the Pipeline.

Some examples of Adapters are as follows:

• FILE
• FTP
• SQL
• HTTP
• Web Service (WCF)
• SAP
• Third party
• Custom build

Configuring a Messaging Architecture

[12]

Pipeline
The main purpose of the Pipeline, on the receive side, is to recognize the message
type and transform the native format of the message into XML, if needed. Out of
the box, two Receive Pipelines are available: PassThruReceive and XMLReceive.
Of these two Pipelines, only XMLReceive will recognize the Message Type,
whereas PassThruReceive will send the message onwards to the MessageBox
as an unknown type.

Some examples of native formats are as follows:

• XML
• Flat Files (comma separated values, positional, and so on)
• EDI (X12, EDIFACT, and so on)
• Excel *
• PDF *

* Not included in BizTalk, needs to be custom written or
purchased from third-party vendors.

The Receive Pipeline will do parts or all of the following activities:

• Decrypt the message if needed
• Convert the native format into XML
• De-batch the message
• Promote properties (write metadata to the Context of the message)
• Validate the XML message to a Schema
• Resolve the sender of the message if signed (see more about this in

Chapter 2, Developing BizTalk Artifacts – Creating Schemas and Pipelines)

Maps
Now, the message is evaluated with the Maps applied on the Receive Port (if any);
if the message matches the source message type on a Map, the Map will be applied.

If the output of the Map executed again matches the source of
another Map on the Port, this Map will not be executed; only
one Map can be applied to a message on a Port.

Chapter 1

[13]

MessageBox
The MessageBox is a SQL Server database where all messages received by BizTalk
are stored, evaluated with all subscriptions, and sent to matching subscriptions.

The main purposes of the MessageBox are as follows:

• Storing all subscriptions
• Storing all messages (both bodies and Context) entering BizTalk
• Storing all Host queues
• Evaluating subscriptions
• Distributing messages to the matching subscribers
• Storing failed and awaiting messages

Whenever a message is received by BizTalk, the receiving message agent will store
the message in the MessageBox. During the publishing of the message, the agent
will check all the subscriptions inside the MessageBox with the Context of the
message, and all matching subscribers will get a reference to the actual message
in their respective Host queues. When all subscribers have successfully processed
their messages, the message is no longer required in the MessageBox and it will be
removed. The MessageBox also consists of all the subscriptions inside the BizTalk
Group. Subscriptions are primarily made by Send Ports and Orchestrations; they
will be discussed in the following section.

Subscriptions
A subscription in BizTalk means that if certain parameters concerning the message
are met, the subscriber will get a copy of that message.

A subscription could look something similar to the following pseudo code:

((Message Type = Order) and (Customer = HP)) or (Message Type =
Invoice)

This would result in the subscriber getting all invoices entering BizTalk and also all
orders from HP.

Configuring a Messaging Architecture

[14]

Subscriptions are made by Send Ports, Orchestrations, or Request-Response Receive
Ports. If a Send Port subscription is met, the message will be sent through the Send
Port to the target system/location. If an Orchestration activation subscription is
met, a new instance of that Orchestration type will be initialized (read more about
Orchestrations in Chapter 4, Developing BizTalk Artifacts – Creating Orchestrations).
All the matching subscriptions will get a copy of the message, so a one-way message
entering the MessageBox can easily have more than one subscriber, and therefore,
be replicated to multiple subscribers.

We will further look into Send Port subscriptions in the Setting up a Send Port section
later in this chapter.

Message Context Properties
When subscribing, it is not possible to subscribe to any content of the actual messages
entering BizTalk, but only to what information is stored in the Context of the message.
The message metadata is called Context Properties; on receiving the message, the
Adapter, Pipeline, and Map will possibly add information to the Context.

Context Properties can either be Promoted or Not promoted. Properties that are
promoted can be used for subscribing to the message. However, Not promoted
properties cannot be used for subscribing to the message.

Orchestrations
An Orchestration can receive messages from the MessageBox, based on its
subscriptions. The subscriptions can either be an activating subscription (which
will start a new Orchestration) or an instance subscription (which will deliver the
message to an existing running Orchestration). If an Orchestration needs to send
or receive messages during the execution, it will happen through the MessageBox,
with the Orchestration submitting messages just as the Receive Ports and receiving
messages similar to the Send Port.

Sending the message
When a message is sent to a Send Port, the process is almost reverse of what happened
in the Receive Port, except that the location concept doesn't exist on a Send Port.

Chapter 1

[15]

Maps
First, if Maps are applied to the Port, BizTalk will try to match the type of the
message in hand with the source Message Type of the Map(s) on the Port; if a
valid Map is found, it will be applied to the message.

Just as Receive Ports, there will only be one Map
executed on a Send Port.

Pipeline
Next, the Pipeline will typically do some or all of the following activities:

• Validate the message
• Convert the message from XML to the desired target format
• Encrypt and sign the message if needed

Adapter
Finally, the Adapter will transmit the message to the destination location.

Getting started with the BizTalk Platform
Settings and Applications
This section talks about how the various BizTalk platform settings and Applications
work and are configured.

BizTalk Administration Console
In this section, we will look at the BizTalk Administration Console, which is used
for managing and configuring the BizTalk Server and to deploy, manage, monitor,
and troubleshoot BizTalk Applications.

The Group Hub
The Group Hub window gives the user an overview of what is currently going on
inside BizTalk.

Configuring a Messaging Architecture

[16]

To view the Group Hub window, open the BizTalk Administration Console and
click on BizTalk Group.

A dashboard will appear where we get an overview of Applications that are
currently running, how many running messages are currently in the MessageBox,
and how many suspended messages there are.

An overview of the dashboard can be seen in the following screenshot:

Work in progress should not be of any concern to us unless the amount of messages is
large and keeps rising; in that case, we might have a bottleneck in one of the solutions
that needs to be addressed.

Suspended Items, on the other hand, requires our attention, since they are messages
that for some reason cannot be processed further.

Suspended Items fall into two categories:

• Resumable: This contains items that can be manually resumed.

Chapter 1

[17]

• Non-resumable: This typically holds metadata and cannot be resumed.
They will either disappear when the corresponding resumable instance
is resumed, or in other cases they might need manual termination.

Hosts and Host Instances
For each BizTalk Group, multiple Hosts can be created. Creating a Host is merely
creating a logical container where various BizTalk tasks can be assigned.

A Host can have a Host Type of either In-Process or Isolated.

The In-Process type is used for most BizTalk tasks and what In-Process means is
that all the tasks performed in the Host will happen in an actual BizTalk process
(Windows Service). The Isolated Host, on the other hand, will have its work done by
someone other than BizTalk; for example, an IIS receiving service calls and processing
the messages on its own. By using various BizTalk Modules, the IIS Host will run the
received message through the same steps that would occur when using an In-Process
BizTalk service, Adapter and Pipeline processing, and mapping and storing the
message in the MessageBox.

Out of the box, the use of Isolated Hosts is limited to the following Adapters:

• HTTP Receive
• SOAP Receive
• WCF-BasicHttp Receive
• WCF-CustomIsolated Receive
• WCF-WebHttp Receive
• WCF-WSHttp Receive

What these Adapter Handlers have in common is that receiving the messages will
happen through the IIS and not from a Windows Service (when BizTalk receives
HTTP messages, the submitter will actually call a URL on an IIS residing on the
BizTalk Server).

Each Host should have at least one corresponding Host Instance running. An
In-Process Host Instance is nothing more than a Windows Service running on
one or more BizTalk Servers and it performs the tasks assigned to the Host.

Configuring a Messaging Architecture

[18]

Creating a Host
Creating a Host can be done through the BizTalk Server Administration Console
by navigating to Platform settings | Hosts | New | Host. The following screen
should appear:

Creating a new Host will result in a new entry in the Host table inside the
Management database, and also create a new Host Queue inside the MessageBox.

There are a few parameters on each Host that should be taken into consideration
when creating Hosts. The parameters are as follows:

• Name: The name of the Host is not without importance. When moving
a BizTalk Application from one environment to another by the use of
Binding files, the naming of Hosts must be the same on each environment.

• Type: This is either In-Process or Isolated.

Chapter 1

[19]

• Allow Host Tracking: This checkbox, if enabled, will allow the Host
Instances associated with this Host to perform tracking tasks such as
moving data from the MessageBox to the Tracking database. Only
one Host per BizTalk Group should have this feature enabled.

• Authentication Trusted: When a Host is set to Trusted, the identification of
the initial sender of a message will travel together with the message. If the
identification needs to stay with the message until the Send Port (possibly
for the use of Single Sign-On credential control on the Send Port), all Hosts
from receive to send needs to be Trusted.

• 32-bit only: This flag is enabled by default. If removed, the process will run
as a 64-bit process, otherwise a 32-bit process.

• Make this the default host in the group: Any BizTalk Group will always
have one default Host. If this checkbox is checked and disabled, the Host
is already the default Host.

• Windows Group: This specifies a Windows Group that will be given
access to all the Host queues tables created in the MessageBox. It is
recommended that all users running Host Instances under this Host
are members of this group.

There can be several reasons for creating multiple Hosts inside a BizTalk environment.
There is no Host setup recommendation that will fit all environments and some
considerations will need to be made based on the actual environment and the
specific requirements.

Here are a few general guidelines that we must follow:

• As best practice, it is recommended to have at least five Hosts:
 ° A Receive Host: This is used for all In-Process receiving.
 ° An Isolated Host: This is used for all IIS receive.
 ° A Processing Host: This is used for all Orchestrations.
 ° A Send Host: This is used for sending of all messages.
 ° A Tracking Host: This is a dedicated Host for moving data from

the MessageBox to the Tracking and BAM databases. As this task
can have a performance impact, the other Hosts should not be set
to Allow Host Tracking.

Configuring a Messaging Architecture

[20]

• When using Adapters that must run in a 32-bit process, 32-bit Hosts may
be needed to be created on receive and/or send side to host the 32-bit only
Adapters. Another approach could be to have the Receive Hosts and Send
Hosts running in the 32-bit mode. If 64-bit processing is required (typically
when receiving large messages), a 64-bit Host can be created for handling
the tasks where 64 bit is desired.

• Some Receive Adapters should not run in a multiserver environment such
as FTP, POP3, and MSMQ. In these cases, a special Host for hosting these
Receive Locations might be created and only run on one server. If High
Availability is required, this Host should be clustered (see more about
clustering Hosts in Chapter 6, Deploying, Tracking, and Administrating a
BizTalk Server 2010 Solution).

• Don't just make too many Hosts. The advantages of multiple Host Instances
(Windows Services) on each BizTalk Server are that they will use their own
processes, have their own queue, and so on. However, each service will also
consume resources (such as memory), thus creating too many Host Instances
that can have a negative impact. Therefore, we need to find a balance. If
we have a small BizTalk Solution with few messages running through the
BizTalk environment, chances are that performance will be fine by just
using one In-Process Host for everything.

Creating a Host Instance
Unlike creating a Host, creating a Host Instance will happen on both the BizTalk
Server and the BizTalk databases. A new Host Instance will result in a new Windows
Service running on a BizTalk Server. Only one Instance of a certain Host type can
be created on each BizTalk Server in the BizTalk Group. When creating a new Host
Instance, we are presented with the following screen:

Chapter 1

[21]

In the previous example, we are creating a new Host Instance of the Host type
ReceiveHost on server WIN-3959LG7QODF.

After selecting the correct Host and server, click on Configure to specify which user
the service should run as. This user will need access to the Host Queues/tables in the
MessageBox, and the easiest way to grant the user these privileges is to add the user
to the Windows Group that we associated with the Host when creating it.

If the recommendation of adding the user to the Host Windows Group is followed,
the service will be able to do all the tasks needed towards communication with the
MessageBox, but not necessarily with the outside world. The user running a Receive
Location by using a FILE Adapter will be the user trying to access the source file
folder, read the file, move/delete the file, and so on. When dealing with granting
the BizTalk Host Instances access to various surrounding environments, the Host
Windows Group and not the individual user should be used.

Configuring a Messaging Architecture

[22]

The following are the reasons for granting the required access to the group and not
to the users:

• It is usually recommended that only groups get permissions so that IT
operators never have to deal with individual users, but rather just add and
remove users from the relevant groups.

• In a BizTalk setup, we might have three BizTalk Servers and therefore three
different Host Instances of the same Host. These three Host Instances could
be running under three different users. Now, let's say that we configure a
FILE Receive Location to poll files from a certain folder and have it run under
our Host. Any of the three Host Instances could now be getting the task of
having to retrieve files from the folder, and therefore all three users need
the correct set of folder permissions. If we make sure that all three users are
members of the Host Windows Group and that the group is given the correct
set of credentials, we needn't worry about anything else, and at some point,
we might even add an additional BizTalk Server with a new Host Instance
and a new user, who, as long as they are added as a member of the Host
Group, will be able to access the folder immediately.

Managing Adapter Handlers
Each Adapter installed in the BizTalk Group has corresponding Receive and/or
Send Handlers that are used to link the Adapter to a certain Host.

Managing the Adapter Handler is done through the BizTalk Administration
Console, as shown in the following screenshot:

From BizTalk Administration Console, we can install new Adapters and add Receive
or Send Handlers to Adapters.

In order to add a new Handler to an Adapter, click on Adapter and right-click
somewhere in the blank space underneath the existing Handlers, or choose Actions |
[Adapter Name] | New in the right pane of the window.

Chapter 1

[23]

Each Handler will be the link between an Adapter and a Host. Only one Handler per
Adapter and Host can be created, and only Hosts for which a Handler of the correct
type exists can be chosen when choosing Adapters on either Receive Locations or
Send Ports.

Some Handlers have the ability to have some basic properties configured that will be
applied to all Adapter settings using that Host as default.

The SMTP Adapter is an example where we sometimes set up some basic
configuration on the Handler level because these properties will often be the same for
all Send Ports using the SMTP Adapter. These Handler properties can be overwritten
on the specific Send Port if required, as shown in the following screenshot:

Configuring a Messaging Architecture

[24]

As shown in the previous screenshot, we can configure some general properties
for all SMTP Adapter usage under the Host BizTalkServerApplication. For more
information, see the SMTP Adapter section later in this chapter.

Applications
Applications are logical containers inside the BizTalk Server Administration Console,
which allow us to group certain items together. The purpose of Applications is mainly
to make planning, deployment, administration, and the general overview easier when
working with BizTalk.

To create a new Application, perform the following steps:

1. Open the BizTalk Server Administration Console.
2. Right-click on Applications and choose New | Application.
3. Give the Application an appropriate name and click on OK.

When working inside an Application, we are only able to work directly with the
other artifacts in that Application. For example, if we need to use a Pipeline in a
Send Port, that Pipeline needs to be deployed in the same Application as the Port,
or we need to make a reference to the Application which contains the Pipeline.

Referencing another Application
When making a reference to another Application, right-click on the Application
that needs a reference to another Application, choose Properties, and perform the
following steps:

1. Click on Reference, and then click on Add. We now get a list of all available
Applications other than the current Application.

2. Choose the Application(s) you want to reference.
3. Click on OK twice.

BizTalk.System is already referenced in all new Applications. As a result
of this, we can work with several Pipelines as soon as the Application is
created, even though these Pipelines are deployed in the BizTalk.System
Application. The BizTalk.System Application is a read-only Application
that can neither be deleted nor used for normal BizTalk activities, since
no custom artifacts can be added to it.

Chapter 1

[25]

Setting up and managing Ports
Inside BizTalk, we have both Receive and Send Ports. Ports are entry points and
exit points in and out of BizTalk. All messages entering BizTalk will be received
through a Receive Port and almost all messages exiting BizTalk will be through a
Send Port. Even if it is possible to send out messages directly through code inside
an Orchestration, this will not be the correct approach very often.

Receive Ports
Receive Ports are the entry points for messages that enter BizTalk. Each Receive
Port contains one to many different Receive Locations (we can create Receive
Ports without any Receive Locations, but that wouldn't make much sense since
the Port would have no function).

To create a new Receive Port, perform the following steps:

1. Right-click on the Receive Ports folder in the Application where the
Port should be created, and choose New | One-way Receive Port
or Request Response Receive Port.

2. The same action can be performed in the Actions pane on the right when
Receive Ports is selected.

3. In most routing scenarios, One-Way Receive Ports are used, and the use of
Request-Response Receive Ports should be limited to flows where BizTalk
exposes services, where an actual response message is required, or the
consumer of the service needs to know if certain events have taken place
before closing the connection to BizTalk. Read more about best practice
later in this chapter in the Implementing messaging patterns section.

Configuring a Messaging Architecture

[26]

4. Next, we need to give a name to the Port, as shown in the
following screenshot:

5. Next, click on OK to create the Receive Port.

The names of the various Ports inside a BizTalk Group
must be unique, not just per Application but for the
whole Group.

Port Authentication
One way of making sure that only messages from known partners enter BizTalk
is by using the Authentication feature available on Receive Ports, as seen in the
following screenshot:

Chapter 1

[27]

When using Receive Ports, we can set up filters so that only messages from known
parties are allowed to pass through to the MessageBox. This will only work if
messages are signed and we have the public certificates of the sending parties in
store or if the Windows user who submitted the message can be located. There are
three Authentication properties on each Receive Port:

Type Description
No authentication (Default) All messages will be let through to the MessageBox

whether or not the party resolution inside the Pipeline
finds a valid sender

Drop messages if
authentication fails

If the party resolver does not match a valid sender
from the message signature, the message will be
thrown away and not submitted to the MessageBox

Configuring a Messaging Architecture

[28]

Type Description
Keep messages if
authentication fails

If the party resolver does not match a valid sender
from the message signature, the message will be
suspended inside the MessageBox and an error will
be written to the Event Log

Receive Locations
As mentioned earlier, a Receive Port with no Receive Locations doesn't have any
function. No messages can be received through that Port. So, for each Receive Port,
at least one Receive Location should be created and configured.

The reason for having multiple Receive Locations inside one Receive Port is to
have the ability to receive different messages from different locations and having
BizTalk treat them as if they were received from the same place and/or had the
same message type.

To make a new Receive Location, you can create it from within an already created
Receive Port, as you can see in the following screenshot:

Chapter 1

[29]

Another option is to right-click on the Receive Locations folder in the Application and
choose New | One-Way Receive Location or Request-Response Receive Location.
As for Receive Location types, only One-Way Receive Locations can be added to a One-
Way Receive Port, and only Request-Response Locations to a Request-Response Port.

If a Receive Location is created directly, the console will prompt for a parent Receive
Port before we can configure the location, since all locations must be a part of one
specific Port.

Choose the appropriate Receive Port; click on OK, and the Receive Location
configuration will appear.

Just as Receive Ports, Receive Locations need to be supplied with a name. Also, a
type (Adapter) needs to be selected and configured, a Receive Handler (Host) needs
to be selected, and finally, a Pipeline needs to be chosen. Read more about Pipelines
in Chapter 2, Developing BizTalk Artifacts – Creating Schemas and Pipelines.

Service windows
Each Receive Location can be scheduled to only operate at certain times.

On the Schedule page inside the Receive Location, Start date, Stop date, and Service
Window can be applied, as shown in the following screenshot:

Configuring a Messaging Architecture

[30]

As seen in the previous screenshot, each of the three parameters can be enabled or
disabled, and each enabled time period will limit the time the Receive Location is
enabled for receiving messages.

Location states
A Receive Location can have two different states, enabled or disabled. If the
location is enabled, it will receive any available messages; if disabled, no messages
will be received.

Enabling a Receive Location can be done by right-clicking on it inside the BizTalk
Administration Console and choosing enable. It can also be done through code
script or PowerShell.

The state of a Receive Location is merely a flag inside the Receive Location table
in the Management database of the BizTalk Group. It has nothing to do with whether
or not the Host Instances (Windows Services) are running. Therefore, a Receive
Location will only pick up messages if it is enabled, and at least one instance of
the Host type it is using is running.

Error threshold
If errors occur in a Receive Location (for example, access denied in a file folder, logon
failure to a database, and so on) when trying to pick up messages, the Host Instance
will start to write warning entries in the Event Log. At some point, the error threshold
(this differs for different Adapters) might be reached and the Receive Location will
become disabled. If a Receive Location becomes disabled, it will not start itself again
automatically, but instead it will write an error message in the Event Log on the
BizTalk Server where the final unsuccessful try occurred, and therefore monitoring
the Event Logs on all BizTalk Servers is critical. A disabled Receive Location results
in no messages being received by BizTalk.

Let's say that we were polling mails from a mail server by using the POP3 Receive
Adapter. The following screenshot shows the Error Threshold attribute for the
POP3 Adapter:

Chapter 1

[31]

When setting up the Adapter, we are asked for the values of Polling Interval and
Error Threshold. If set to 5 and 10, as seen in the preceding screenshot, the following
consequences would occur if the Receive Location started failing:

• BizTalk will poll mails every five minutes. At some point, the mail server
becomes unavailable and the process of logging on and retrieving mails
starts failing.

• The first time BizTalk unsuccessfully tries to access the mail server, it will
write a warning in the Event Log stating that it wasn't able to connect to the
mail server and that it will try again later.

• The second try will be five minutes later and unless the mail server becomes
available again, this will go on for an additional seven times.

• When the last retry occurs, BizTalk will no longer retry and therefore it will
stop the retrying scenario by disabling the Receive Location, writing an error
to the Event Log stating that the number of retries were reached, and leave it
to the administrators to fix the problem and enable the Receive Location again.

Configuring a Messaging Architecture

[32]

When configuring the various Receive Locations, we need to find a balance between
how many retries (error threshold) we want. If we have an unstable environment, such
as an FTP Server, residing somewhere outside our control with multiple unscheduled
service windows and general unavailability, it might be tempting to increase the error
threshold to 9,000 or similar. This way we can have long periods of unavailability, and
when the FTP Server eventually comes back online, we don't risk the Receive Location
having shut down.

This might not be the best of approaches, since it is likely that the people monitoring
BizTalk will only look at errors and not warnings in the Event Log, so nobody will
notice that we are not polling data from the source if something more critical happens
(such as our password expiring). In that case, we will not be notified until all 9,000
attempts fail and the Receive Location, after possibly months, eventually shuts down.

Receive Port Maps
Receive Port Maps are applied to a message after the message leaves the Pipeline;
at which point all messages should be in the format of XML. This is important, since
Maps can only take XML as input and also because a Map will always output XML.

Maps can only be applied if the Pipeline has discovered the message type of the
incoming message (this will happen automatically unless the PassThruReceive
Pipeline or some other custom Pipeline with no Disassemble stage is used). For
more information on Pipelines, see Chapter 2, Developing BizTalk Artifacts – Creating
Schemas and Pipelines. If the message type is not known by the time the message
leaves the Pipeline, no Map will be applied, even if a Map matching the message
is present on the Port.

The matching of a Map works as follows:

If the message type was discovered and promoted by the Receiving Pipeline, BizTalk
will look for a Map with a source type matching the message type. If such a Map is
found, it will be executed and the source message will be mapped using that Map.

It is also worth mentioning that after a Map has been executed on a Receive Port, an
XML Disassemble Pipeline Component is executed against the output XML. This is
why we can promote properties on the destination Schema of a Map executed on the
Receive Port and still have the properties promoted before the message is submitted
to the MessageBox. Also, not more than one Map will be executed even if a map-
chain exists. The following example will explain this:

Chapter 1

[33]

On a Receive Port (PortA), we have applied three different Maps:

• MessageA_to_MessageU
• MessageB_to_MessageU
• MessageU_to MessageI

If we receive Message A (and the message type is discovered in the Pipeline), the
message will be transformed to Message U. But after that, the message exits the Port,
no additional Map discovery will be done, so even though we may want Message A
to be transformed first into message U and then into message I, this will not happen.
The same goes for Message B, and only if we submit a message U will the Map
(MessageU_to_MessageI) be applied.

Maps are applied on Receive Ports by selecting Properties on the Port and then
selecting Inbound Maps, as shown in the following screenshot:

Configuring a Messaging Architecture

[34]

Under the Map section, use the drop-down list, then all Maps deployed in the
Application (or Applications that are being referenced) should appear. Choose
the Map(s) to be applied on the Receive Port; remember that multiple Maps can
be selected.

If many Maps are present in the Application and/or in the referenced
Applications, it might be difficult to find the correct Map to apply. If the
source or target document is known, it might help to first choose one of
these, since this will limit the list of available Maps.

Send Ports
Unlike Receive Ports, Send Ports do not operate with locations. Each Send Port will
point to a specific location, database, application, service, and so on, somewhere
outside of BizTalk. Just as the Receive Location, a Send Port uses one Pipeline and
one Adapter so that the desired message format and Protocol is used for transporting
the message to the target destination.

In order to create a new One-Way Send Port, click on Send Ports inside the desired
Application and choose New | Static One-Way Send Port.

When creating a new Send Port, at least three properties need to be selected and,
in some cases, configured.

First, we need to supply the Send Port with a name. A type (Adapter) also needs
to be selected and configured. Next, we can choose a Send Handler (Host) if we
don't want to use the default Host. Finally, if the default Pipeline is not adequate,
a Pipeline must be chosen and configured.

Transport Advanced Options
In Transport Advanced Options, several common parameters can be configured in
the Send Port.

The transport options consist of three parameters:

Retry count The number of tries the Send Port should
try to resend the message on failure before
giving up and suspending the message in
the MessageBox

Retry interval The number of minutes to wait between the
retries in case of failure

Chapter 1

[35]

Priority The priority given to the Send Port
subscription (1 being the highest and 10 the
lowest); the higher the priority, the faster the
Send Port will get messages it has subscribed
to from the Host Queue

Retry on a Send Port is a bit different from Receive Locations. First of all, the
behavior is per message and the Port will never disable itself after any number
of retries has been exhausted, but rather suspend the message.

What the Send Port does is try to send each message it receives the number of
times specified in the Retry count parameter, with an interval specified in the Retry
interval parameter. When the number of retries has been exhausted, the message
will be suspended and an error will be written to the Event Log. (Just as the Receive
Location, the first failure(s) results in warnings in the Event Log; only the final try,
that also causes the suspension of the message, will result in an error).

Scheduling and service window
Each Send Port created can have a scheduled service window in which messages will
be sent through the Port. The setup is done under Transport Advanced Options,
which is shown in the following screenshot:

Configuring a Messaging Architecture

[36]

Similar to Receive Locations, certain operation periods can be set up on a Send Port.
We can specify a period within the day, where messages should be sent through
the Port. At all other times, all messages going to the Port will be queued up inside
BizTalk, and when the Operation Window opens, all the queued-up messages will
be sent.

The term service window might be a bit confusing. Normally, a service window
is a time period where maintenance is going on, and therefore a period where no
messages should be sent to the system. However, in this case, the service window
is the time where messages are actually sent through the Send Port.

Backup transport
Each Send Port can have a backup transport configured, where an alternate Adapter
and/or address can be selected so that if the primary target has exceeded its retry
counts, the Send Port will try to send the message to an secondary location.

Send Port Maps
Just as Receive Ports, multiple Maps can be applied to the Send Ports in order
to transform the messages being sent from the MessageBox to the target format
requested by the target system or the format required for the Pipeline to proceed.
Also, multiple Maps may be applied to the Send Port, but only one of them will be
used, and only if the message type is known by BizTalk at the time the message is
sent from the MessageBox to the Send Port.

To apply Maps to Send Ports, open Send Port properties and click on Outbound
Maps, as shown in the following screenshot:

Chapter 1

[37]

Configuring Filters (subscriptions)
Inside the Filters page, it is possible to set up subscriptions for the Send Port.
The filters can be a combination of several Boolean expressions and include a
combination of promoted properties, operators, and values. Only promoted
properties deployed through Property Schemas in the BizTalk Server Group
will be selectable in a filter.

Configuring a Messaging Architecture

[38]

The following screenshot shows how to set up a subscription on a Send Port:

The example in the previous screenshot will subscribe to all messages that come
from the Receive Port CG0101_Receive.

Port states
A Send Port can have the following states:

• Started: The Send Port will be getting messages that match its subscriptions
and send them to the target system, if it is not outside the service window.

• Stopped: The Send Port will be getting messages that match its subscriptions,
but the messages will reside in a Send Port queue inside the MessageBox and
not be sent through the Send Port until it is started.

Chapter 1

[39]

• Unenlisted: The Send Port does not subscribe to any messages and
no messages will be sent through the Port. The Port will not be able
to get messages that are already received in the MessageBox later on.
This behavior is similar to the instance of the Port not being created
all together.

Port states can be changed by right-clicking on the Port inside the Administration
Console, as shown in the following screenshot:

Note that if we right-click on an Unenlisted Port, the
state will be named Enlist and not Stop in the menu.

The Stopped state will queue up all messages for the Send Port, and when the Port
is started again, all messages will be sent immediately through the Send Port (if no
service window is configured). This might not always be what is desired, especially
not if the Port was stopped due to some configuration error in BizTalk or on the
target system, resulting in messages failing upon arrival at the target. In that case,
sending 100 messages all at once, when we think the problem has been resolved,
might not be the best approach.

Configuring a Messaging Architecture

[40]

If we just want to send one of the 100 messages currently lying in the MessageBox
waiting for the Port to be started, we can go to the Group Hub window, find the
100 suspended messages, and resume just one of them while the Port is still in the
Stopped state. This will force the one message to be sent through the Send Port
even though the state is still set to Stopped; on acceptance that the problem is gone,
we can then start the Port and the last 99 messages (or more if more messages have
arrived in the MessageBox) will be sent automatically through the Port.

Dynamic Send Ports
Dynamic Send Ports differ from Static Ports as their Adapter and/or address is not
configured and hardcoded on the Port. Both protocol (Adapter) and address can be
set from inside BizTalk (from either Orchestrations or Pipeline components), and
therefore, the Port can send messages to different locations using different protocols
(SMTP, FTP, and so on).

They are often used for SMTP because an SMTP Send Port often requires sending
mails to different addresses that might be located somewhere in the message. This
is not possible with a static Send Port, which will always point to the same address
(as well as all other static Ports using any type of Adapters). So, to solve this
problem, Dynamic Ports can be used.

In BizTalk Server 2013, a new Handler configuration has become available. It is now
possible to choose individual Handlers (Host) for each Adapter type, so even though
the actual Adapter is not known at configuration time, potential Handlers can still be
chosen, as shown in the following screenshot:

Chapter 1

[41]

Dynamic Ports are usually combined with Orchestrations and will be discussed
further in Chapter 4, Developing BizTalk Artifacts – Creating Orchestrations.

Send Port Groups
Send Port Groups are logical subscription containers, where one or more Send
Port can join the subscription of the group. A Send Port can be a part of multiple
Send Port Groups, and also have its own local subscription, and can therefore
have multiple subscriptions.

Send Port Groups are created by right-clicking on the Send Port Group folder
inside an Application and choosing New | Send Port Group. You are then
presented with the following screen:

Configuring a Messaging Architecture

[42]

Inside the Send Port Group configuration, we can configure Filter and Send Ports
that should be a part of the group subscription.

A Send Port can be a part of many groups and have its own
subscription (Filter) on the Port. The result could be that the
same message submitted to the MessageBox can also be sent
through the Port multiple times if more than one of these
subscriptions match the Context of the message.

Failed message routing
It is possible to enable routing for failed messages on both Receive and Send Ports.
What this will do is, in case of an error occurring in the Port (could be either the
Pipeline throwing an error, mapping failure, or a Send Port that is not able to send
to the target system), the message will have all the normal Context Properties
unpromoted (written) and instead have some error-specific Context Properties
promoted (all in the ErrorReport namespace).

The examples of Error Context Properties are ErrorReport.ErrorType and
ErrorReport.ReceivePortName.

A Send Port or Orchestration can then subscribe to these error properties and
deal with the errors in some way.

To set up failed message routing on a Receive Port, go to the properties of the Port,
on the General tab, and enable the Enable routing for failed messages checkbox.

To set up failed message routing on a Send Port, go to the properties of the port
and on the Transport Advanced Options page, enable the Enable routing for
failed messages checkbox.

See more about Failed Message Routing in Chapter 5, Testing, Debugging, and
Exception Handling.

Ordered delivery
Ordered delivery might not come as easy as one might think in BizTalk. Only a
few Receive Adapters are able to provide true ordered delivery out of the box.

For example, we receive files during the day from a file drop location. Our ERP
system has requested that it receives all files in the same order as they were
submitted to the file folder, because receiving data in the wrong order could
potentially cause inconsistent data.

Chapter 1

[43]

Let's think of BizTalk as a post office. If one customer has asked the mailman to
deliver today's letter in exactly the same way he received the letters in the mailbox
on the street, the mailman immediately faces a problem. He can give the customer
the letters in the same order that he got the letters out of the mailbox, but that is not
necessarily the same order that they were put into the mailbox. The same is true for
BizTalk. We are able to send messages through a Send Port or to an Orchestration in
the same order as they were submitted to the MessageBox, but that order might not
be the same order that the original submitter intended.

Let's consider the file drop example. The FILE Adapter, just as many other Adapters,
might not submit the messages received in the same order as one might intend/
expect. The FILE Adapter doesn't look at timestamps, file sizes, or even filenames
when choosing which file to process first. There could also be more than one
Host Instance receiving batches of files at the same time from the same folder and
submitting them in the same MessageBox. In other words, if BizTalk is started and
two files are present at a certain file location, we have no way of knowing if the
oldest file is taken first, and therefore have no certain way of making a total first
in first out (FIFO) scenario using the FILE Receive Adapter. In fact, this is true for
most of the BizTalk Receive Adapters, and out of the box, only the message queue
Adapters (MSMQ, MQSeries, and WCF-NetMsmq) support true ordered delivery.
Some database Adapters and WCF Service Adapters can be set up to implement
ordered delivery, but only with certain limitations such as only one Host Instance.

Receive Locations
On the receive side, it is based on the different protocols (Adapters) if ordered delivery
is supported or not. For the very few Adapters that do support it (mainly MQ), it can
usually be enabled on the Receive Adapter.

Send Ports
Each Send Port can be set up to use ordered delivery. Setting a Send Port to ordered
delivery means that all messages will be sent through that Port in the same order
as they were received in the MessageBox. If messages are not received in the
MessageBox in the order intended, which was discussed before, using ordered
delivery on a Send Port might not have the desired result.

Using ordered delivery on a Send Port has some serious performance impacts, since
only one thread can submit messages through the Port, and each message has to wait
for the message ahead to complete before it can be processed. This can be both an
advantage and a disadvantage. The disadvantage is obvious; BizTalk will perform
slower when using ordered delivery.

Configuring a Messaging Architecture

[44]

In some cases, however, this might turn into an advantage. If, for instance, a Send
Port calls a service that cannot handle multiple calls, we might experience a lot of
messages going into a retry or even fail state, because the amount of messages being
sent to the service is exceeding the amount of messages the service can handle. In
this case, it could make sense to introduce ordered delivery to the Send Port, not
because we necessarily need the messages to be sent in a certain order, but merely
because this will result in BizTalk sending only one message at a time.

1. To set up ordered delivery on a Send Port, go to the properties of a
Send Port (either by double-clicking on Send Port or right-clicking
and choosing Properties).

2. Go to the Transport Advanced Options page and enable Ordered delivery,
as shown in the following screenshot:

Chapter 1

[45]

When enabling ordered delivery, an additional setting, Stop sending subsequent
messages on current message failure, will become active. This means that if 10
messages are currently queued up to be sent through the Sent Port (message 1 to 10),
and message 3 fails, the rest of the messages (4 to 10) will get suspended together with
message 3. If true ordered delivery is required, this option should be enabled, simply
because if it is not, the solution is not 100 percent ordered delivery. On the other hand,
if ordered delivery is nice to have, but not vital for the solution, or we are simply using
ordered delivery to slow down the Send Port, then the option should be disabled.

Ordered delivery, if used, does not work on the
backup transport.

Configuring core Adapters
When choosing an Adapter on both Receive Locations and Send Ports, the Adapters
need to be configured. To do this, choose the Configure button, as shown in the
following screenshot:

Configuring a Messaging Architecture

[46]

What will appear next depends on which type of Adapter was chosen. In this
chapter, we will look at some of the core Adapters and how they are configured.

HTTP
The HTTP section will discuss the use of the HTTP Adapter in both receive and
send scenarios.

Sending HTTP
When configuring the HTTP Send Adapter, the URL (Destination URL) of the
target HTTP site needs to be configured. The following screenshot shows the
basic configuration, and the Destination URL being configured:

Receiving HTTP
Setting up BizTalk to receive HTTP requires more work than sending HTTP. To be
able to receive HTTP, we need to use the local Internet information Services (IIS)
and have it receive the actual message for us by using an Isolated Host.

Chapter 1

[47]

First, we need to add BTSHttpReceive.dll. This file is found in the %Program
Files%\Microsoft BizTalk Server 2013\HttpReceive64 folder (HttpReceive
folder if not using a 64-bit IIS). This DLL needs to be added as an extension inside the
IIS. Open the IIS Manager by navigating to Start | Administrative Tools | Internet
Information Services(IIS) Manager, click on the computer name and double-click on
Handler Mappings. In the action pane on the right-hand side of the window, choose
Add Script Map. The following screenshot shows the Add Script Map window:

In the Request path field, type BTSHttpReceive.dll. In the Executable field,
choose the BTSHttpReceive.dll file from within program files and give the
mapping a proper name. Now click on OK.

Click on Yes in the Add Script Map dialog.

Now, we need to perform the following steps for creating a Virtual Directory
containing BTSHttpReceive.dll, as mentioned earlier:

1. Right-click on the Default Web Site folder and select Add Virtual Directory.
2. Set the Alias property to the name we want the callers of our HTTP service to

use in the URL (http://servername/Alias/BTSHTTPReceive.dll).
3. Under Physical Path, choose the folder where the BTSHTTPReceive.dll file

is located (under Program Files) and click on OK.

Configuring a Messaging Architecture

[48]

Next, we need to set up an HTTP Receive Location. The HTTP flow we are receiving
in BizTalk can be both One-Way or Request-Response (refer to the Implementing
messaging patterns section).

When configuring the HTTP Receive Adapter, we need to specify the Virtual
Directory and the DLL extension, as shown in the following screenshot:

In most cases, the Suspend failed requests option should also be enabled. What
this option does is gives BizTalk the responsibility of processing the message as
soon as it has been submitted. If this option is not enabled (default), the caller will
get an error back if the message could not be processed correctly (the Pipeline fails,
no subscribers were found, and so on). This could be a valid setup, but in most
situations it would make more sense to have the HTTP Receive Adapter handle
errors the same way as a FILE Adapter, by taking responsibility for the message as
soon as it is submitted, and not bother the caller with any problems inside BizTalk,
but rather suspend the message and deal with the problems internally and let the
caller believe that everything processed as expected. This is, of course, only the case
of one-way HTTP calls.

Chapter 1

[49]

POP3
The POP3 Adapter is used to receive e-mails. The Adapter is a receive-only Adapter
because sending something through POP3 doesn't make any sense. The send
equivalent of POP3 is usually SMTP, which we will look at in the next section.

Under certain conditions, the POP3 Adapter will not run under
a multiserver setup, and in these cases, the use of clustering
Hosts might be needed. Read more about this at http://msdn.
microsoft.com/en-us/library/gg634567.aspx.

The following screenshot shows the configuration of the POP3 Receive Adapter:

We need to set up Mail Server (from which the messages can be retrieved), User
Name, Password, and Body Part Index.

Configuring a Messaging Architecture

[50]

The Body Part Index attribute is used to choose what part of the mail will be
considered as the actual message inside BizTalk. 0 is the message body, 1 is
the first attachment, 2 is the second attachment, and so on.

Note that if Body Part Content Type is set to a specific content type,
the algorithm for choosing which part of the mail to use is a bit more
complex. For further information, visit http://msdn.microsoft.
com/en-us/library/aa560251(v=bts.80).aspx.

SMTP
The SMTP Adapter is used for sending e-mails.

To set up the SMTP Adapter, it is often a good idea to configure the general
server credentials inside the STMP Send Handler (refer to the Managing Adapter
Handlers section).

The following screenshot shows the configuration screen of the SMTP Send
Handler Adapter:

Chapter 1

[51]

On the Send Handler, the SMTP Server name and From (e-mail address)
can be configured since they will likely be the same for all SMTP Send Ports.
These parameters can be overwritten on a single Send Port, if required.

When configuring the actual SMTP Adapter on a Send Port, perform the
following steps:

1. In the General tab, type the desired e-mail address in the To: field. Also, give
a subject to the e-mail and, if needed, specify a CC address.

2. In the Compose tab, choose either the BizTalk message body part option as
the e-mail body or the Text option for standard text.

3. If a standard text is chosen, move to the Attachments tab.
4. Choose Attach only body part to have the actual message as an attachment.
5. Use the Handler Override options if the SMTP Server setup in the Adapter

handler should be overwritten.

Configuring a Messaging Architecture

[52]

FTP
The FTP Adapter can be used for both receiving and sending messages in BizTalk.
On the receive side, only single Host Instance server set up is allowed.

When configuring the FTP Adapter, there are some basic features that apply to both
sending and receiving, as shown in the following screenshot:

For all FTP configurations, at least the following four parameters should be configured:

• Server: This is the name or IP address of the FTP Server
• User Name: This is the user name of the user logging onto the FTP Server
• Password: This is the password for the user logging onto the server
• Folder: This is the folder to either download files from (receive) or upload

files to (send)

Chapter 1

[53]

Receiving FTP
When using basic configuration, the FTP Server will delete the files when they are
processed so that the same files are not processed more than once.

However, this might not always be the desired functionality since we might not be
allowed to delete the files. The server could be holding files that are not just for us,
but published for many subscribers.

In order to overcome this issue, new polling features have been introduced
in BizTalk Server 2010, and are still available in 2013, which are shown in the
following screenshot:

Configuring a Messaging Architecture

[54]

It is now possible to change the Delete After Download attribute on the FTP Receive
Adapter from Yes to No. By doing this, BizTalk will keep track of which files have
already been downloaded, and the same files will not be downloaded again even
though they are still on the FTP Server. If existing files are edited and overwritten
on the FTP Server, and we want a new copy when changes happen to the files, we
should also set the Enable Timestamp comparison attribute to Yes. By doing this,
we will not only get new files once, but also a fresh copy of any file that has been
overwritten on the FTP Server.

The interval (60 seconds in the previous example) should also be taken into
consideration when setting up the receive FTP. This is an indication of how often
BizTalk will look in the FTP folder for new messages. If set too often, we might
experience too much network traffic and problems with the FTP Server. On the
other hand, if not set often enough, we might experience that messages submitted
for BizTalk takes too long to process because they are not polled by BizTalk
often enough.

The FTP protocol does not have any proper lock mechanism. So if a large file is being
written to the folder where BizTalk is polling from, BizTalk will start downloading
the file as soon as the file is visible, and not necessarily when the file is complete.
This problem needs to be addressed by the systems uploading the files to BizTalk in
the FTP folders by creating the files with a temporarily extension (filename.xml.
tmp) and then removing the .tmp after the file is completed. In that case, we also
need to set up the File Mask property on the FTP receive to look for files with the
xml extension (*.xml).

Another way of dealing with the problem of files being downloaded by BizTalk
before the file is fully written, is having the submitter upload the file to a temporary
folder, and then moving it to the correct folder where BizTalk is polling from when
the file is completed.

Sending FTP
When sending FTP, it is basically the core configuration that is needed (server, user
name, and so on). However, there are two other properties that are often relevant to
take into consideration. These properties are shown in the following screenshot:

Chapter 1

[55]

First, we will take a look at Target File Name. This is used to specify the name that
BizTalk will give to the file written to the FTP Server. The default is %MessageID%.
xml, where %MessageID% will be replaced with an internal GUID unique for each
message so that no two files uploaded to an FTP Server from BizTalk will ever
have the same name. The use of hardcoded name (such as Order.xml) is not
recommended, as this will cause a failure on the send side if BizTalk tries to upload
File with the same name twice and the first file has not been processed by the
destination party yet. Depending on the FTP Server it might also result in the files
just being overwritten. However, there is a property called Append if exists that
can be set to Yes. This is seldom used and will only work for Flat Files and not for
XML, since the latter requires one root element.

It is also possible to use %SourceFileName% as a file mask in Target File Name. This
will give the file the same name as it had when submitted to BizTalk by either a file
or FTP. Again, we need to take into consideration whether or not two files could
end up with the same name, and therefore, cause the FTP Send Adapter to fail. Also,
this will only work if all files sent through the FTP Adapter were in fact received
into BizTalk by either the FILE or FTP Adapter (refer to the Implementing messaging
patterns section).

Configuring a Messaging Architecture

[56]

Another property that might be useful when sending FTP is Temporary Folder.
This enables the Adapter to upload the file to another folder, rather than to the
one specified in the Folder property, and move the file to the correct folder when
upload has completed. As we discussed with the receive FTP Adapter, this might
be useful because FTP doesn't have any proper locking mechanism.

FILE
The FILE Adapter is one of the most used Adapters, both for testing/demo purposes
and for communicating with several legacy systems where the only protocol supported
is exporting and importing files.

Receiving files
Configuring the Receive FILE Adapter requires a path to the folder where BizTalk
should pick up files (Receive folder) as well as a File mask, specifying which type of
files and/or filenames should be received. This folder can either be local or located
on a file server somewhere on the network. Using local folders is not recommended
when working with multiserver environments since that would cause BizTalk to
have more than one file entry-point. How many BizTalk Servers a BizTalk Group
contains should be transparent to the surrounding environments.

When using a file server, be aware that using mapped drive letters in Receive folder
might not work as intended (Z:\Inbox), since it will use the mapped drives of the
user running the Host Instance and not necessarily the mapped drives seen by the
user configuring the Port. Therefore, UNC paths are recommended (\\ServerName\
Path\Inbox). The following screenshot shows the general configuration properties
for a Receive FILE Adapter:

Chapter 1

[57]

The Receive folder can only point to a single folder. It is not possible to have
the same Receive Location probing in more than one folder. This limitation also
includes subfolders.

When working on NTFS file systems, the FILE Adapter will work using .NET File
System Events, so every time a file is submitted, BizTalk will be notified almost
immediately and will start processing the file (except if service windows are
implemented on the Receive Location).

Configuring a Messaging Architecture

[58]

Sending files
When using the FILE Adapter on the send side, the configuration looks similar to the
following screenshot:

When sending files using the FILE Adapter, we need to specify the Destination
folder and the File name. The default filename is %MessageID%.xml, which will give
the filename a unique GUID to make sure no two files are given the same name.

Just as the FTP Adapter, %SourceFileName% can also be used on the FILE Adapter,
but again we should use it with caution, since it will only work if the original
message was received through either an FTP or FILE Adapter.

It is also possible to configure how the FILE Adapter should write the file to folder
using the Copy mode option. The following are the three possible modes:

• Append: This will append the message into an existing file, if the file
is already present. It is usually used for Flat Files (comma delimited,
positional text files) and not for XML.

Chapter 1

[59]

• Create New (default): This setting is the most commonly used setting.
It will create, or try to create, a new file each time a message is sent to
the Port. When using this setting, it is recommended that the filename
is unique, which can be done by using the %MessageID% macro.

• Overwrite: This will overwrite any existing files that have the same name
as the file currently being written to a file folder. This is often used when
dealing with daily inventory reports and so on, where the old data is
obsolete as soon as new data is present.

Credentials
If no credentials are specified in the FILE Adapter configuration, it will be the user
running the Host Instance, which needs to have the correct amount of rights to the
folder it is receiving from or sending to. If the user does not have the sufficient amount
of credentials, we can supply another username and password for the FILE Adapter to
use, as shown in the following screenshot:

Configuring a Messaging Architecture

[60]

Click on the Authentication tab and specify a username and password. Now, this user
will be used instead of the Host Instance User. This can be done for both receiving and
sending files.

Configuring content-based routing
The following is a walk-through of a routing sample in BizTalk. The sample is
done by using the FILE Adapter only, and coding is not done. The next chapter
will introduce us to how to create various BizTalk artifacts inside Visual Studio,
but for now, let's look at an example showing how BizTalk routes messages.

The setup is as follows:

• We receive files from both partner A and partner B in different file folders
• These files need to be routed to both System I and System II

Creating folders and Applications
The first step is to create a Receive Port with two different Receive Locations.
We should be able to pick up messages at two different file locations:

• C:\BTS2013CertGuide\Chapter01\Example01-Messaging\FileDrop\
PartnerA\Inbox

• C:\BTS2013CertGuide\Chapter01\Example01-Messaging\FileDrop\
PartnerB\Inbox

We should be able to send messages to two different systems (file locations):

• C:\BTS2013CertGuide\Chapter01\Example01-Messaging\FileDrop\
SystemI\Outbox

• C:\BTS2013CertGuide\Chapter01\Example01-Messaging\FileDrop\
SystemII\Outbox

Make sure that the BizTalk Host user has sufficient permissions for the folders. Give
the user Full control permissions on folder C:\BTS2013CertGuide\Chapter01\
Example01-Messaging\FileDrop, as shown in the following screenshot:

Chapter 1

[61]

The user and/or group doesn't need Full control. It is sufficient
to grant the Delete subfolders and files permission found under
advanced permissions, along with read and write permissions.

Next, we need to create an Application called BTS2013CertGuide-Ch01. To do this,
we need to perform the following steps:

1. Open BizTalk Administration Console.
2. Right-click on Applications and then choose New | Application.
3. Name the new Application BTS2013CertGuide-Ch01 and click on OK.

Configuring a Messaging Architecture

[62]

Creating Receive Ports and Receive Locations
Now, we need to create a Receive Port inside our new Application and add two File
Receive Locations, one for each Partner (A and B). In order to do this, carry out the
following steps:

1. In Application BTS2013CertGuide-Ch01, right-click on Receive Ports
and choose New | One-way Receive Port.

2. Name the Receive Port as CG0101_Receive and click on OK.
3. Right-click on Receive Locations and choose New | One-Way Receive

Location.
4. Select Receive Port CG0101_Receive and click on OK.
5. Name the location CG0101_ReceiveFromPartnerA_FILE, choose FILE

in Transport Type (Adapter), and click on Configure, as shown in the
following screenshot:

Chapter 1

[63]

6. Configure the FILE Adapter, as shown in the following screenshot, and click
on OK (the Receive Folder path is C:\BTS2013CertGuide\Chapter01\
Example01-Messaging\FileDrop\PartnerA\Inbox):

7. Click on OK again.
8. Make another Receive Location from steps 3 to 7. Name it PartnerB instead

of PartnerA and choose PartnerB file folder instead of PartnerA.

In the Administration Console, our Receive Locations should now look similar to
the following screenshot:

Configuring a Messaging Architecture

[64]

Testing the Receive Locations
Now, we need to see that everything is running as intended by testing the solution.
In order to start testing, perform the following steps:

1. Create a small text file, fill it with a few characters, and copy the file into each
inbox folder of both PartnerA and PartnerB. The files must consist of at least
one character, since the FILE Adapter will throw away empty messages as
they do not make sense in a BizTalk perspective. Do not give the files a name
containing the word "Copy".

2. Verify that the BizTalk Host Instance executing the Receive Locations
is running.

3. Right-click on each Receive Location and choose Enable.
4. Check the Event Viewer and verify that no BizTalk Server errors have been

written to Windows Logs/Application when enabling the Receive Locations.
If errors are present, examine them, since they are most likely caused by the
BizTalk Host user not having sufficient permission in the folders (refer to the
Creating folders and Applications section).

5. Go to FileDrop\PartnerA\Inbox. Copy and paste the file in the same folder
so that a copy is inserted, and confirm that BizTalk deletes the file. It might
be quick, so watch closely!

6. If the file is deleted by BizTalk, our PartnerA locations are working. Do the
same test PartnerB.

Debugging the messages
Now, let's examine what happened to the messages we submitted to BizTalk.

1. Upon opening Event Viewer again, you should find four errors (two for
each message submitted).

2. Open the last error submitted in Event Viewer, it should look something
similar to the following screenshot:

Chapter 1

[65]

What BizTalk is telling us here is that even though the receive processing of the
messages was successful, the messages could not be routed because there were
no subscribers. In other words, neither Send Ports nor Orchestrations were
created with a subscription matching the Context of the messages.

Now, we will examine the Context of one of the messages that failed to be routed:

1. Go to Group Hub by clicking on the BizTalk Group folder in the
Administration Console, then press F5 to refresh the dashboard
showing in the right pane.

2. We should now see four suspended items:

3. Click on the Resumable link.

Configuring a Messaging Architecture

[66]

The Non-resumable instances are primarily there for debugging
purposes. They show the Context as it appeared after Port
processing, whereas the Resumable instances show the message
and the Context as it appeared before Port processing.
In this example, the promoted properties are the same for both
instances, and we can therefore use the Resumable instance.
If properties had been added during Pipeline processing and/or
mapping, we would need to examine the Non-resumable instance.
Also, note that the Non-resumable instance will disappear by itself
if the Resumable instance is resumed successfully.

4. Double-click on one of the suspended items.

Chapter 1

[67]

5. Choose the Messages tab, and double-click on the message.

6. Choose Context, and click on Type twice so that the promoted properties are
shown on top.

7. Examine the five promoted properties. These are the only properties we can
use for subscription for now. The best candidate for subscription might be
the ReceivePortName with the value of CG0101_Receive.

Setting up a Send Port
Now, we will perform the following steps for creating a Send Port that subscribes
to all messages where ReceivePortName has the value of CG0101_Receive in
its Context:

1. Create a new Send Port by right-clicking on the Send Port folder and
navigating to New | Static One-Way Send Port.

2. Fill in Name and Type. Click on Configure.

Configuring a Messaging Architecture

[68]

3. Fill in the Destination folder path (C:\BTS2013CertGuide\Chapter01\
Example01-Messaging\FileDrop\SystemI\Outbox) and the File name,
as shown in the following screenshot, and click on OK:

Chapter 1

[69]

4. Choose the Filters page. Select BTS.ReceivePortName in the Property
drop-down list. Leave Operator as == and type the Receive Port name
in the Value textbox.

5. Click on OK.
6. Start the Send Port by right-clicking on it and choosing Start.
7. Submit a message from either Partner A or Partner B.
8. Check that System I gets a file in the outbox folder.
9. Go back to Group Hub, choose the two resumable suspended items,

and right-click and choose Resume Instances. Click on Yes, and then
click on OK.

10. Verify that the two additional files are now in the System I folder.

Configuring a Messaging Architecture

[70]

Setting up Send Port for System II and a Send
Port Group
System II also needs a copy of all messages received by the Receive Port. So instead
of making two Send Ports with identical filters, we will make a Send Port Group
with the subscription for the Receive Port name, and then add both Send Ports to
the group.

1. Create a new Send Port for System II following the same steps we did when
creating the first Send Port, with SystemII in its name instead of SystemI.
Also, use the SystemII outbox folder instead. Don't give the new Send
Port any filter.

2. Start the Send Port.
3. Create a new Send Port Group by right-clicking on the Send Port Group

folder and choosing New | Send Port Group….

Chapter 1

[71]

4. Give the group a name, as shown in the preceding screenshot, and add the
two Send Ports to the group.

5. Give the group a filter with the Receive Port name, just as we did with the
first Send Port.

6. Click on OK.
7. Right-click on the group and start it.
8. Submit a message from one of the partners.
9. Notice how System II got one message, but System I got two. This is because

a Send Port inside a Send Port Group will have two subscriptions both its
own subscription and the Group subscription. If both of them are met, the
Port will receive the same message twice.

10. Go to the System I Send Port and remove the subscription inside the Filter
page by pressing Delete. Click on OK.

11. Test again; this time System I should only get one copy.

Implementing messaging patterns
When working with BizTalk, the design considerations are very important. A bad
design might result in poor performance, difficulty in changing the solution if the
surrounding environment changes, and redundant code.

Working with canonical messages
One of the design patterns we should always try to meet (unless there is a good reason
for doing otherwise) is the use of canonical messages inside BizTalk.

If BizTalk receives a message of type A and that message needs to be sent to another
system and transformed to type B, we should make up our own internal message
type instead of transforming directly from A to B. We do this, not by looking at the
structure of either type A or B, but rather by making a type of the message that is
independent of both types (type I).

This will require two transformations (Maps), one from type A to type I, and another
from type I to type B.

We should also make sure that only canonical/internal messages hit the MessageBox,
so Map A to I should be applied on the Receive Port, and Map I to B on the Send Port.

Configuring a Messaging Architecture

[72]

This pattern has the following advantages:

• If we receive messages from various partners/systems (type A1, A2, A3,
and so on) and we map all of these different structures to a canonical type
on the receive side, then the target system (type B) could change structure
or format and we would only have to change the solution in one place, the
transformation from the canonical type to B.

• If more subscribers are interested in the message, and we make
transformations directly from Message Type A to all of the desired formats
of the subscribers, and we start receiving the messages in other formats, we
would again need to make transformations from the new format to each of the
subscribers instead of just transforming the new format to the internal format.

This is also the case when working with Orchestrations. Try not to use the Adapter
or trading partner-specific Schemas inside the Orchestrations. Use internal versions
of the messages instead. Use these internal versions inside the Orchestrations and
then map from and to the internal Schemas in the Receive and Send Ports. By doing
this, we don't have to recompile (let alone recode) an Orchestration if a Message
Type on a Send or Receive Port is changed, or if the Adapter on a Send Port changes.
The structure of the XML sent and received from the old and new messages would
be different, but if we are only dealing with internal messages in our Orchestrations,
only the Maps on the Send and Receive Ports would need to be changed.

Debatching
Another pattern we should try to implement, for most solutions, is the use of
singular messages inside BizTalk. If we receive batches, such as several messages
inside the same file, we should debatch them into individual items on the receive
side of BizTalk (the Receive Pipeline).

The rule of thumb is that the solution should act the same way if we receive
one large file containing 10 orders, as it should if we receive 10 orders in 10 files
(one in each file).

BizTalk cannot handle the items individually if they are kept as a batch through
BizTalk Server. If we receive orders, and some subscribers are only interested in
orders containing a specific customer number, we would have no means (at least
not with normal content-based routing) of subscribing to just those messages if
all of them were kept inside a batch message.

Chapter 1

[73]

There are other cases where keeping multiple items inside a batch and not
debatching them makes sense. If a solution picks up a large batch of products,
because full inventory is done once a day, and all subscribers are interested in
seeing these products as a whole inventory report, we should not try to debatch
them. Also, note that although BizTalk comes with great debatching functionality
on the receive side, there is no automatic way of batching these items again if some
subscribers need the inventory report as it was received and others need them
individually. In this case, we would need to keep the batch inside BizTalk and then
do some extra code (possibly using Orchestrations) to make debatched copies.

In other words, a debatched message is not easily assembled again with the same
items in the same order.

Using the correct flow
We often have a decision whether to use a One-Way or Request-Response flow.
The following table describes some of the scenarios where it makes sense to use
one over the other:

Direction Type Usage
Receive Request-Response Used only if the caller submitting

messages to BizTalk needs
an answer back, such as
GetNumberOfProductsInStock,
or if it is vital to the calling system
to know that everything in the flow
went well

Receive One-Way Used for cases other than the ones
described in Request-Response

Send Request-Response Used if BizTalk calls a system and
needs an answer back from that
system

Send One-Way Used in all other cases

It is important to not use Request-Response when only One-Way is needed. If calling
a Web Service on a Send Port, it does not provide us with more reliability if we use
a Request-Response port, instead of a One-Way port. The One-Way Port will, just
as in a Request-Response scenario, wait for the service to finish and acknowledge
that everything went well until the message is removed from the MessageBox. Also,
using Request-Response when not needed, will give us less performance and less
flexibility, because a Request-Response message submitted to the MessageBox can
only have one subscriber.

Configuring a Messaging Architecture

[74]

Adapter independence
When designing a BizTalk Solution, we should try, whenever possible, not to make
it so that code and/or logic is dependent on messages being received or sent using
specific Adapters.

It might seem like a good idea to send files to an FTP Server using the
%SourceFileName% macro in the Target File Name property, because we want to
give the target server the same filename as the file had when we received it either
by FILE or FTP. If this is a requirement, then this is, of course, how the solution
should be made. However, try always to focus on the idea that the solution should
also work if we changed the Adapter. If we start receiving messages from both a file
folder and an Oracle database tomorrow, the %SourceFileName% logic on our Send
Ports will fail to work for the messages received from Oracle, simply because no
original filename exists.

On the send side, people also tend to hardcode specific Adapter properties inside
Orchestrations, which results in situations where changing the Adapter type requires
us to change and recompile the Orchestrations.

Testing your knowledge
1. HWLC Motors is sending XML orders to a file server at our place using FTP

and BizTalk picks up the messages using a FILE Adapter through a Receive
Port named ReceiveOrders. The files are currently being sent through a Send
Port (Send Port A) using an SMTP Adapter and by using the Filter BTS.
ReceivePortName == ReceiveOrders. You realize that three other Send
Ports also want to subscribe to these messages and want to do this with the
least amount of effort. What should you do (choose all that apply)?

a. Create three new Receive Ports.
b. Create three new Send Ports with no filter.
c. Create three new Send Ports with the Filter of

BTS.ReceivePortName == ReceiveOrders.
d. Create a Send Port Group and set the Filter of the Group to BTS.

ReceivePortName == ReceiveOrders.
e. Assign the three Receive Ports to the Send Port Group.
f. Assign the three Send Ports to the Send Port Group.

Chapter 1

[75]

2. We receive XML from several trading partners through Receive Port RP1.
At times, the XML is not well formed, the XMLReceive Pipelines throw
errors, and the messages are suspended. Our partner coordinator Brian has
requested that the invalid XML be sent to him in an e-mail, instead of being
suspended in BizTalk. How would you achieve this (choose all that apply)?

a. Set up e-mail alerting on the server if errors occur in the Event
Viewer with BizTalk Server as the source.

b. Create a Send Port SP1 using the SMTP Adapter and target it
to Brian's e-mail address. Set up a filter on the Send Port in the
ErrorReport.ReceivePortName == RP1 format.

c. Enable routing for failed messages on the Send Port SP1.
d. Enable routing for failed messages on the Receive Port RP1.
e. Create a Send Port SP1 using the SMTP Adapter and target it to

Brian's e-mail address. Set up a filter on the Send Port in the BTS.
ReceivePortName == RP1 format.

3. HWLC has several Send Ports that point to different internal systems, and
many of the message types flowing processed by BizTalk have multiple
Send Ports as subscribers. One of the Send Ports targets the company's ERP
system. The Adapter used is an HTTP Adapter. The ERP administrator wants
to take the system offline for the next 24 hours and no messages should be
sent to the system during that time. They do, however, want all messages
processed during those 24 hours once they are back online. How should we
accomplish this without impacting on the other subscribers?

a. Disable all Receive Locations so that no messages are received in
BizTalk for the next 24 hours.

b. Stop the ERP Send Port and start it again when the system comes
back online.

c. Unenlist the ERP Send Port and start it again when the system
comes back online.

d. Stop all in-process BizTalk Services.

4. You receive messages of type A from a Partner through a Receive Port
and send it directly to your CRM system by using a Send Port. You want
to transform the message to type C before it enters the MessageBox. What
should you do (choose all correct answers)?

a. Apply a Map (A to C) to the Receive Port.
b. Apply two Maps to the Receive Port (A to B) and (B to C).

Configuring a Messaging Architecture

[76]

c. Apply a Map (A to C) to the Send Port.
d. Apply two Maps to the Receive Port (A to B) and (B to C).

5. You are receiving messages from customers sending e-mails with one
attachment through an Exchange Server. You want BizTalk to process
the mail body as the message. How should you approach this?

a. Use the FTP Adapter to receive messages from the Exchange Server.
b. Use the FILE Adapter to receive messages from the Exchange Server.
c. Use the POP3 Adapter to receive messages from the Exchange Server,

set the Body Part Index attribute to 0.
d. Use the POP3 Adapter to receive messages from the Exchange Server,

set the Body Part Index attribute to 1.

Summary
This chapter has dealt with some of the basics of BizTalk Server 2013, looking at the
subscription engine, Ports, and Adapters. You should now have a basic knowledge of
how BizTalk works and how to navigate through the BizTalk Server Administration
Console. Next, we will look at XML, Schemas, Pipelines, and start using Visual Studio
for BizTalk.

Developing BizTalk Artifacts –
Creating Schemas

and Pipelines
This chapter maps to parts of the Developing BizTalk Artifacts section of the exam.
It is not an introduction to developing BizTalk Artifacts, instead it will point out
some of the most relevant areas where you should have a proven practice today
in your BizTalk development; these in turn are areas that you need to know about
when taking the exam.

This builds on and leverages the knowledge we acquired in the first chapter about
how to compose messaging architectures by involving Schemas and Pipelines
instead of just passing untyped messages. The objective of Developing BizTalk
Artifacts is split into three logically coherent chapters of manageable size, so that
you can focus your effort on the area where you most need to improve. This is the
first, and it covers these main areas:

• Creating Schemas
• Creating Pipelines
• Testing your knowledge

The section in the certification skills measured, called Construct Messages, does
not exist as a single self-contained section but instead is covered in different parts
of this book.

Developing BizTalk Artifacts – Creating Schemas and Pipelines

[78]

After this chapter, we will have learned how to create clear reusable Schemas. We will
practice encryption, decryption, signing, and validation of signatures. We will work
with Schemas describing a single message as well as Schemas describing envelopes.
We will work with batches and we will use Pipelines to validate Schemas and split
batches into single messages.

Schemas and Pipelines explicitly targeting EDI and AS2 are excluded from this
chapter. Information on EDI is included in Chapter 8, Implementing Extended Capabilities.

Creating Schemas
Creating Schemas is core to handling messages in BizTalk Server. It's not uncommon
to come across poorly created Schemas, without namespaces, with only string types,
with mandatory fields not specified and not followed, or simply with everything
optional. To create truly usable and explanatory Schemas that promote re-use and
coherence, we need to go further. This section helps with that.

Type of Schemas
Schemas are used in BizTalk Server for several purposes, these include:

• Describing, receiving, and parsing XML documents
• Describing, receiving, and parsing Flat Files (non-XML text files)
• Describing context properties (property Schemas)

XML Schemas
A Schema or XML Schema is a special kind of XML-formatted file that describes the
format of another XML file, using a standardized form. XML Schemas are not only
used to describe and parse XML documents. They also describe Flat File structures
as well as context properties.

Envelope Schemas
An Envelope Schema is an XML Schema that has a very special purpose; it
describes an XML document that serves as a container for one or more messages,
and although it can be otherwise empty, it often contains header-like information.
When you specify that a Schema is an Envelope Schema, you are saying that the
body content is contained in a node within the Schema, at a set XPath location.

BizTalk is capable of both receiving and sending messages with envelopes.
Envelope Schemas are covered in more depth later in the chapter.

Chapter 2

[79]

Flat File Schemas
BizTalk Server uses the XML Schema standard of annotations to include information
that helps to also explain what an instance of a Schema may look like if it were a Flat
text file instead of a structured XML file.

Flat Files may be delimited as follows:

Car,ABC123,Audi,RS6,NurburgringBlue

Car,123ABC,Corvette,ZR1,DaytonaRed

Flat Files may also be positional as follows:

Car ABC123 Audi RS6 NurburgringBlue

Car 123ABC Corvette ZR1 DaytonaRed

They may also be a combination (which in some sense is often the case with positional
files since rows of Flat Files are commonly delimited by some combination of carriage
return and linefeed characters).

Header and Trailer Schemas
Instead of Envelope Schemas, Flat File Schemas can be configured to represent
the format of text contained at the top or bottom of a text file. These are then called
Header Schemas (the top) or Trailer Schemas (the bottom). Header Schemas are often
used when text files contain information at the beginning, before a repeating record
structure, where the format of a single record is defined in another Flat File Schema.
Trailer Schemas can be used to, for example, validate that the entire intended
message has indeed been received.

An example may look like the following:

CarBatchId1234

Car,ABC123,Audi,RS6,NurburgringBlue

Car,123ABC,Corvette,ZR1,DaytonaRed

CarBatchTotalCount2

Developing BizTalk Artifacts – Creating Schemas and Pipelines

[80]

Property Schemas
Property Schemas are a special type of XML Schema. These Schemas are not created
to describe messages and instead describe context properties. They have multiple
root nodes (in the form of elements) and no hierarchy. These root nodes represent
so-called promoted properties, and you populate them by promoting values from
non-repeating SimpleContent records, elements, or attributes of Message Schemas.
The act of promotion creates associations between the fields of the Message Schema
and the fields of the Property Schema. At runtime, BizTalk Server will identify these
associations and promote the fields into the message context so that they can be used
for routing.

Schema Identity
The identity of a Schema, and subsequently that of a message, is crucial to all
message handling in BizTalk Server. There are a couple of different properties
that are important when handling the identity of a Schema. Since BizTalk lives
and operates in both the .NET and XML worlds, those identities also identify
the Schema in both these worlds.

XML Identity
The XML identity of a Schema determines the identity of the Schema file and
also the identity of a message instance based on the Schema as a separate entity.
This is true regardless of whether the Schema is then made part of a .NET BizTalk
component or not.

targetNamespace
Sometimes, there are entities that will occur multiple times within an
integration solution. To make sure they are uniquely distinguished, you use the
targetNamespace property. targetNamespace is to a Schema what a namespace
is to a .NET object. Take for example the Color object in .NET. It exists in many
different namespaces. The same thing might over time be true for objects in an
integration solution. In Schemas, it is the root node that acts as the class name in
this analogy. Perhaps a PurchaseOrder entity (root node) will be described in
multiple Schemas with small variations in their structure based on, say, the vendor
they belong to. Their targetNamespace property is then what separates them. You
should never have a Schema without targetNamespace, if you can avoid it. There
are proven Pipeline component examples of adding a namespace to a message
being sent to BizTalk Server, if it does not have one arriving to BizTalk.

Chapter 2

[81]

MessageType
In BizTalk Server, every message that is recognized and parsed by a disassembler
has a MessageType. MessageType is a combination of targetNamespace and the
root node. The MessageType determines what schema is used to disassemble the
message. MessageType is also often involved in routing and can act as the sole filter
expression in many solutions, especially in service or enterprise bus architectures.
This is one of the primary reasons why you should make sure that you have a good
targetNamespace and adequately named root node, so that the MessageType,
represented as targetNamespace#Rootnode, is unique within your system. If it is
not unique, then it will be a poor candidate for routing, and you will not be able to
disassemble a message with that MessageType unless you specifically point out the
Schema to be used.

Messages that do not have a MessageType can travel through Ports and
Orchestrations, but as they are untyped, they can never be used as an input to a Map.

BizTalk can route any type of message, even unknown binary messages,
but to process or parse them it must be possible to disassemble them
and discern their MessageType. Most commonly this is done with the
help of an XML or Flat File Schema.

.NET Identity
As mentioned, a Schema also has a .NET class representation, and, as any .NET class,
it has a namespace and a typename.

Namespace
The default namespace in a BizTalk project is that of the name of the project, but it
can be changed to anything you want.

Typename
The typename is by default the same as the filename of the Schema (and not the root
node), but again, it can be changed to anything you want.

Developing BizTalk Artifacts – Creating Schemas and Pipelines

[82]

Promoted property and distinguished fields
Promoting a node to a property field (or promoting a property for short) means to
make a node value available in the context of a message. You will typically promote
properties from a Schema that you want to use as part of your filter expression that
forms the basis of your routing logic. Or for correlation, of which you can read more
about in Chapter 4, Developing BizTalk Artifacts – Creating Orchestrations. You can
promote only parts of a Schema that are not recurring (that have their Max Occurs
value set to 1 or 0. 1 is the default if nothing is set). You may also feel tempted
to promote properties, so that you can more easily access them in places such as
Orchestrations or in Pipeline components. Don't. For easy access in Orchestrations,
you use distinguished fields that allow you easy and familiar IntelliSense and dot
notation in expressions. Other good reasons to promote a property is when there
is information not contained in the body of the message, say header or envelope
information that you want accessible later on. Also, when you set up correlation,
which implicitly means setting up routing logic, the property that you wish to
correlate on must be promoted.

Not all context properties are promoted, and not all context properties
come from Schemas. Many parts of the BizTalk infrastructure, such as
adapters and Pipeline components, write to the context. One example
of this is ReceivedFileName (http://schemas.microsoft.
com/BizTalk/2003/file-properties#ReceivedFileName) or
FILE.ReceivedFileName that the FILE adapter writes to the context.
Another example is MessageType (http://schemas.microsoft.
com/BizTalk/2003/system-properties#MessageType) or
BTS.MessageType that the XML Disassembler promotes.

Promoting nodes as property fields
To promote a node as a property field, perform the following steps in Visual Studio:

1. Create or locate a Property Schema.
2. Create or identify the element in the Property Schema that you wish to

promote a property to.
3. Open your Schema. In this case, we are using a SimplifiedCar Schema,

as follows:
<xs:schema xmlns="http://Chapter02_Example01.Schemas.
SimplifiedCar" xmlns:b="http://schemas.microsoft.com/BizTalk/2003"
targetNamespace="http://Chapter02_Example01.Schemas.SimplifiedCar"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Car">

http://schemas.microsoft.com/BizTalk/2003/file-properties#ReceivedFileName
http://schemas.microsoft.com/BizTalk/2003/file-properties#ReceivedFileName
http://schemas.microsoft.com/BizTalk/2003/system-properties#MessageType
http://schemas.microsoft.com/BizTalk/2003/system-properties#MessageType

Chapter 2

[83]

 <xs:complexType>
 <xs:sequence>
 <xs:element name="RegistrationNo" type="xs:string" />
 <xs:element name="Make" type="xs:string" />
 <xs:element name="Model" type="xs:string" />
 <xs:element name="Color" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Downloading the example code
You can download the example code files for
all Packt books you have purchased from your
account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit
http://www.packtpub.com/support and
register to have the files e-mailed directly to you.

4. Bring up the context menu for the Schema and select Promote | Show
Promotions…, to bring up the Promote Properties dialog as shown in
the following screenshot:

Developing BizTalk Artifacts – Creating Schemas and Pipelines

[84]

5. Select the Property Fields tab and click on the button that looks like a folder,
to bring up BizTalk Type Picker as shown in the following screenshot:

6. Locate your Property Schema. You need to have one already created that
holds a property that you wish to promote the field to.

7. In the Schema view, on the left-hand side, in the Promote Properties dialog,
select the (non-repeating) node in the Schema that you wish to promote.

8. Click on the Add >> button to promote the node as Property Fields.
9. Select the property in the Property Schema that you wish to promote the

node to; in this case, the Property Schema has a property called Color,
as shown in the following screenshot:

Chapter 2

[85]

10. Complete the process by clicking on the OK button in the lower-right corner.

All Schemas used in examples in this section can be found in the
solution C:\BTS2013CertGuide\Chapter02\Example01-
SchemaConstructs\Chapter02-Example01\Chapter02-
Example01.sln.

Quick Promotion
The Quick Promotion option that is available, if we bring up the context menu for
a selected node in the Schema Editor, is a faster way to promote properties, should
you be ok with some default behavior. Choosing to Quick Promote a property will
do the following:

1. Create a new Property Schema (if it does not already exist) in the
projects root folder using the name specified on the Schema files
properties in the Default Property Schemas property, which by
default is PropertySchema.xsd.

2. Place a new property in that Property Schema, named the same as
the node we are promoting (unless that property already exists in
the Property Schema, in which case it will not create a new node, but
instead assume that you meant to promote to the existing property).

3. Promote the field that you choose to quick promote to that property.

When using Quick Promote, you will always get a node called
Property1 in the Property Schema with the first property
you promote; you have to manually remove this or update it
to a name and type you can use.

Promoting a node as distinguished field
Promoting a node in a Schema makes that node value appear as a promoted
property and enables you to use it for routing whereas distinguishing a node does
none of that. Instead, it enables you to use dot syntax (root.subrecord.node) to
access the value of a node within an Orchestration. It is an alternative to using an
XPath statement.

Developing BizTalk Artifacts – Creating Schemas and Pipelines

[86]

Had we made the Color property a distinguished field instead of a promoted
property, it would have meant that we could have addressed it as Car.Color,
which in turn would have aliased this XPath statement.

/*[local-name()='Car' and namespace-uri()='http://Chapter02_Example01.
Schemas.SimplifiedCar']/*[local-name()='Color' and namespace-uri()='']

Let's look at the process to do this. To promote a node to a distinguished field, you
perform the following steps:

1. Open your Schema.
2. Bring up the context menu for the Schema and select Promote | Show

Promotions… to bring up the Promote Properties dialog.
3. Select the Distinguished Fields tab.
4. In the Schema view, on the left-hand side in the Promote Properties dialog,

select the (non-repeating) node in the Schema that you wish to promote.
5. Click on the Add >> button to promote the node as a Distinguished Field

as shown in the following screenshot:

6. Complete the process by clicking on the OK button in the lower-right corner.

Chapter 2

[87]

Creating the structure of a Schema
In BizTalk Server, Schemas are made up of records, elements, and attributes.

A sample structure may look like the following code:

RootNode
|
+-SubRecord1
| @attribute1
| element1
|
\-SubRecord2
 element2

As XML, it would look like the following code:

<RootNode>
 <SubRecord1 attribute1="">
 <element1 />
 </SubRecord1>
 <SubRecord2>
 <element2 />
 </SubRecord2>
</RootNode>

A record is a container node that can contain a collection of elements that are of one
of the following types:

• Complex types: They include other records or groups (Sequence, Choice,
or All)

• Simple types: They include strings and ints contained in child elements
or attributes

• Any node: It is in the form of an Any element or an Any attribute
• Attribute Groups

Elements and attributes are, in contrast, simple types, such as string or int.
There are a few things to consider when choosing whether to use an element
or an attribute, such as max occurrence, sequence, length, and size of values.
Another difference between them is how they are visually represented in a
Schema or an XML document instance.

Developing BizTalk Artifacts – Creating Schemas and Pipelines

[88]

Here is a sample Schema shown in the BizTalk Schema Editor that uses a mix
of records, elements, and attributes:

To best describe the format of a message, you will most likely combine records,
elements, and attributes. You should also set their namespaces as well as define
types, multiplicity, restrictions, and other properties, according to how they are
used. This produces clear and usable Schemas that represent the actual rules
applied to the content and not just the structure.

Creating recurring parts of a Schema
Often in Schemas, there are certain parts of it that need to occur more than once.
Take for example Car, which is made up of multiple Component nodes, as shown
in the following code:

<xs:schema xmlns="http://Chapter02_Example01.Schemas.
CarComponents" xmlns:b="http://schemas.microsoft.com/BizTalk/2003"
targetNamespace="http://Chapter02_Example01.Schemas.CarComponents"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

Chapter 2

[89]

 <xs:element name="Car">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Components">
 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs="unbounded" name="Component">
 <xs:complexType>
 <xs:attribute name="Code" type="xs:string" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

In this case, the Component element has its maxOccurs property set to Unbounded
(which can also be written as * in BizTalk server's Visual Studio Schema Editors).
The XML document matching this Schema may look like the following:

<ns0:Car xmlns:ns0="http://Chapter02_Example01.Schemas.CarComponents">
 <Components>
 <Component Code="01" />
 <Component Code="02" />
 <Component Code="03" />
 </Components>
</ns0:Car>

There are also occasions where you may prefer to describe that the group of nodes
beneath a record may appear multiple times, even though the node itself does not.
The preceding Car XML document may as well have been created and will validate
equally well against the following Schema:

<xs:schema xmlns="http://Chapter02_Example01.Schemas.
CarComponents" xmlns:b="http://schemas.microsoft.com/BizTalk/2003"
targetNamespace="http://Chapter02_Example01.Schemas.CarComponents"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Car">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Components">
 <xs:complexType>

Developing BizTalk Artifacts – Creating Schemas and Pipelines

[90]

 <xs:sequence maxOccurs="unbounded">
 <xs:element name="Component">
 <xs:complexType>
 <xs:attribute name="Code" type="xs:string" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

It's hard to give a clear example of when one is more preferable to the other. In any
case, as XML is inheritably hierarchical, creating Hierarchical Schemas is preferable
to keeping the structure flat.

Creating Envelope Schemas
Creating envelopes is not so much a part of creating the structure of a single message
as it is about creating the structure of a batch of messages. When we create an envelope,
we are saying that this Schema (the envelope) will contain one or more messages that
are based on other Schemas.

The following steps are required to create an Envelope Schema, once you have a
BizTalk project that you want to create in it:

1. Select Add … | New Item from the context menu of the project,
and choose to add a new Schema. Name it CarEnvelope.

2. Select the root node, and rename it ManufacturingReport.
3. Create an attribute below ManufacturingReport, call it BatchNo,

and make it an int type.
4. Create a record below ManufacturingReport and call it Cars.
5. Create an Any element below Cars.
6. Now select the Schema node, and in the Properties window,

change the value of the Envelope property to Yes.
7. Select the root node ManufacturingReport, and in the Property window,

change the value of the Body XPath property to point to the Cars node.
The finished Envelope Schema looks like the following screenshot:

Chapter 2

[91]

Now we have created an Envelope Schema with an Any node. We can use it to send
in any number of documents within it.

The Envelope Schema we just created is available in the
Chapter02-Example03 sample. This sample is expanded
in the Pipeline section of this chapter to show the Pipeline
configuration used with envelopes when splitting messages
and configuring recoverable interchange processing.

Flat File Envelopes
Messages based on Flat File Schemas can be received in
batches as well. The concepts of envelopes applies just as
equally to Flat Files as it does to XML messages; however,
it is configured slightly differently and instead includes
configuring Header Schemas, Document Schemas, and
Trailer Schemas. The preceding process applies to XML
Schemas only.

Developing BizTalk Artifacts – Creating Schemas and Pipelines

[92]

Data types and formatting
To create a usable and descriptive Schema, it is important to not only create the
correct structure, but also to describe the content of all nodes as best as possible.

One of the basics of describing a Schema field is to set the field's data type correctly.
The default data type is string, which arguably is the most commonly used, but
there are many different types to choose from, of which other commonly used ones
are int, decimal, date, and Boolean. One of the first things to do is to make sure
to select appropriate data types, as shown in the following screenshot:

Specifying custom formatting restrictions
You may, and should, choose to apply additional restrictions or derivation of the
basic data type, so that the Schema becomes really descriptive of what the expected
content could look like.

Restricting string values
Say for example that we wanted to create a restriction on a registration for a car so
that it matches the format of a Swedish license plate—three uppercase letters (A-Z)
followed by three integers (0-9). This can be accomplished by the following steps:

1. Set Base Data Type to xs:string.
2. Set (leave the default) Derived By property to Restriction.
3. Set the Pattern property by adding a regular expression in a suitable pattern

to the list of allowed patterns. In this case, a regular expression of ^[A-Z]
{3}\d{3}$ would do the trick. This will produce the following Schema:

Chapter 2

[93]

When you try to validate a file that does not match the criteria, you will get
something similar to the following exception inside Visual Studio (paths and
filenames omitted for brevity):

The 'RegistrationNo' element is invalid - The value 'RegistrationNo_0'
is invalid according to its datatype 'String' - The Pattern constraint
failed.
File 'Car02.xml' is not a valid instance of schema file 'Car02.xsd'.

Controlling date formats
Say that we wanted to create a date format that matches the pattern yyyyMMdd, for
example, 20110203 (February 3, 2011). In this case, you do not have much flexibility
out of an XML file adhering to an XML Schema, and only the ISO 8601-derived
format of CCYY-MM-DD is allowed. You can add a pattern to restrict what values
you allow in these fields, but you cannot change the format. Should you use other
date formats in XML, you must treat those fields as strings.

If you are accepting Flat Files on the other hand, more flexibility is given. Due to the
inherent legacy nature of Flat Files, you can specify a Custom Date/Time Format
when using a date or time data type in a Flat File Schema. The steps to do this are
as follows:

1. Create a Schema with Flat File extensions.
2. Create an element or attribute field under the root node.

Developing BizTalk Artifacts – Creating Schemas and Pipelines

[94]

3. Set the Data Type of the field to xs:date.
4. Choose one of the values for Custom Date/Time Format out of the drop-

down box or enter your own, which is shown as follows:

If you cannot see the Custom Date/Time Format property,
remember that it is only available for Flat File Schemas.

Restricting integer formats
Say that we have an integer, such as the maximum number of allowed passengers
in a car, and we want to illustrate in the Schema that (by an imaginary law) cars can
have a minimum of zero passengers and a maximum of seven passengers, or else
the vehicle is filed as a bus. One of the ways to do this would be to use the same
procedure as described in the section about controlling registration numbers and to
use a pattern restriction. Another option would be to take the following steps:

1. Set Base Data Type to xs:int.
2. Set MinFacet Value to 0, and accept the default value of Inclusive for

MinFacet Type, meaning that the allowed values must be greater than
or equal to this value.

Chapter 2

[95]

3. Set MaxFacet Value to 7, and accept the default value of Inclusive for
MaxFacet Type, as shown in the following screenshot:

The MinFacet and MaxFacet properties are only available for
data types that are value-based, that is, they are not available
for the string data type, but they are also available to, for
example, the date data type.

Creating reusable types
Often when you apply a pattern restriction to a node, that node is not alone in
having those restrictions. If you, for example, have a Schema with several dates, say
PurchaseDate and RegistrationDate, that need to conform to the same format, it
makes sense to create that restriction once, instead of on each and every node. The
same goes for if you have things that are more complex, say a customer and the
customer's address; these are something that you want as reusable types, so that
you can use them again in different constructs, in different Schemas.

Developing BizTalk Artifacts – Creating Schemas and Pipelines

[96]

Simple types
With simpleType, the way to create a reusable type is as follows:

1. Create an element (or attribute).
2. Select a Base Data Type.
3. Optionally apply meaningful restrictions to it.
4. Select the Data Type property, and enter a name for your new reusable type.

Doing this creates a new simpleType element at the bottom of the Schema; name it
according to the naming convention you adopted, and set the current element to be
of that type.

If you want to create a second element that has the same properties, all you have to
do is create a new element and set its Data Type to be of the type you just created:

Alternatively, you could also select the second element's Base Data Type, and select
the newly created type. You would do that if you are to apply further restrictions.

Chapter 2

[97]

Complex types
With complexType, the procedure to create a reusable type is very similar, though
not exactly the same as with simpleType:

1. Create a record.
2. Fill it with other records, elements, and attributes, so that it creates a

reusable unit.
3. Select the Data Structure Type property, and enter a name for your new

reusable type.

Doing this will create a new element named complexType, at the bottom of the
Schema, and set the current record to be of that type. In the following example,
I did this for the entire car definition:

If you want to create a second record that has the same structure and content, all
you have to do is create a new record and set its Data Structure Type to be of the type
you just created. You could also select the second record's Base Data Type and select
the newly created type. You would do that if you are to apply further restrictions.

Creating Schema hierarchies
While creating reusable types is useful, that re-use is limited if the scope is limited
to a single Schema file. It is possible, both likely and common, and preferable that
re-use of common types will be most useful when done across Schema files. For that
reason, we have import, include, and redefine that allow us to do just that.

Developing BizTalk Artifacts – Creating Schemas and Pipelines

[98]

Import
XSD Import is arguably the most common re-use of a Schema. Import is often used
when you want to build new Schemas that re-use already defined types:

• Allows use of types defined in another Schema
• Types must be in another targetNamespace
• Uses types as defined; cannot make additional restrictions on included types
• Can define new types based on imported types

Include
XSD Include is very similar to Import, the difference being the targetNamespace rules.
Include is often used when you want to extend an existing Schema with new types.

• Allows use of types defined in another Schema
• Types must be in same targetNamespace, or both Schemas have no

targetNamespace

• Uses types as defined; cannot make additional restrictions on included types
• Can define new types based on imported types

Redefine
XSD Redefine is very similar to Include, the difference being the ability to specify
additional changes to the included types without having to create new derived types.
Redefine is often used when you want to redefine existing types to suit your needs.

• Allows use of types defined in another Schema
• Types must be in the same targetNamespace or have no targetNamespace
• Uses types as defined, makes changes to them, or creates new types based on

included types

Creating Flat File Schemas
Just like XML Schemas, Flat File Schemas can be created by manually building up
records, elements, and attributes from scratch. Just like XML Schemas, this is not the
most common of scenarios. While there are many different tools that allow you to
generate XML Schemas, there is only one tool to generate a Flat File Schema. The Flat
File Schema Wizard allows the generation of a BizTalk Flat File Schema from a Flat
File message instance. The process below walks you through the creation of a Flat
File Schema using the Flat File Schema Wizard.

Chapter 2

[99]

1. Identify the Flat File message instance. In this case, we will use a simple file
that represents a list of cars. We have shown it previously in this chapter. It
looks like the following:
Car,ABC123,Audi,RS6,NurburgringBlue

Car,123ABC,Corvette,ZR1,DaytonaRed

2. On the BizTalk project, select Add | New Item....
3. Choose Flat File Schema Wizard and name it SimplifiedCarsFF.xsd
4. Select the Instance file that contains the data mentioned previously, set the

Record name to Cars and keep the defaults. This record will be the root
record of the schema. This is shown in the following screenshot:

5. For the Select Document Data option, keep the defaults of all
text selected.

6. For the Select Record Format screen, keep the default of By delimiter symbol.

Developing BizTalk Artifacts – Creating Schemas and Pipelines

[100]

7. For the Delimited Record screen, keep the default of {CR}{LF} as the
delimiter without configuring a Tag identifier.

8. For the Child Elements screen, select the first row, set the Element Name to
Car and set the Element Type to Repeating Record. Select the second row
and set the Element Type to Ignore as shown in the following screenshot:

9. When Next is clicked, the wizard will present a Schema View screen that
shows a hierarchy of what has so far been configured and what is next to
be configured.

10. Next we will configure the Car record. This will iterate over the same screens
as in steps from 6-9.

11. For the first two screens, Select Document Data and Select Record Format,
keep the defaults.

12. On the Delimited Record screen, change Child delimiter to a comma, and
select the Record has a tag identifier checkbox and configure Tag to be Car
as shown in the following screenshot:

Chapter 2

[101]

13. On the Child Elements screen, configure the elements of the Car record as
RegistrationNo, Make, Model, and Color as in the following screenshot:

Developing BizTalk Artifacts – Creating Schemas and Pipelines

[102]

14. Click on Next and Finish to end the wizard and view the resulting Schema. It
will look like the following screenshot:

15. The actual .xsd file will be an XML Schema filled with annotations for
BizTalk on how to interpret the Flat File Schema.

The Flat File Schema we just created is available in the
Chapter02, Example01 sample of the downloadable
code. It is called SimplifiedCarsFF.xsd. This sample
is expanded in the Pipeline section of this chapter to
show the Pipeline configuration used with the Flat File
Disassembler component.

Creating Pipelines
Pipelines are meant for pre- or post-processing of messages as they enter or leave
BizTalk Server. In special cases, they may also be used from within BizTalk Server
Orchestrations to perform specialized tasks, such as splitting or aggregating a
message. Pipelines execute between the Adapter and the Map, or vice versa for
Send Ports, as shown in the following diagram:

Chapter 2

[103]

When receiving a message into BizTalk, the components displayed in the preceding
diagram are triggered in the order Receive Port, Receive Location, Adapter, Pipeline,
Map—MessageBox (- Subscription(s))—Send Port, Map, Pipeline, Adapter.

There are two approaches to Pipelines in the BizTalk Server development; use the
out of the box ones available when you install or create your own. Although the first
approach will, and should be your starting point, you will often end up creating
your own. When you do, it's important that you know which Pipeline components
are available. Knowledge of Pipeline components and what possibilities the built-in
ones provide, as well as the possibilities and limitations of creating custom Pipeline
components, is key to creating a successful integration design and deciding which
task is best performed where.

Pipeline Stages
A Pipeline is made up of a predetermined number of stages that differ between
Receive and Send Pipelines. Stages put limitations on the type of Pipeline component
that can be used there and on the execution of Pipeline components.

The Receive Pipeline has four stages: Decode, Disassemble, Validate, and Resolve
Party. The Send Pipeline has three stages: Pre-Assemble, Assemble, and Encode.

A stage has three notable properties besides its name: Execution mode, Maximum
components, and Minimum components.

The execution mode can be either All or FirstMatch. The All mode means that all
Pipeline components are executed sequentially. The FirstMatch mode means that
they are executed sequentially until a component is found that accepts the processing
of a message, in which case, the chain stops and that component gets handed the
message, and the next component to execute is the first component of the next stage.

All stages except the Disassemble stage have the execution mode All. The Disassemble
stage is FirstMatch.

All stages take a minimum of zero components and a maximum of 255 components,
except the Assemble stage that has a maximum of one.

Developing BizTalk Artifacts – Creating Schemas and Pipelines

[104]

Receive Pipelines
Receive Pipelines are meant for preprocessing the message such as parsing a Flat
File or XML file, decrypting or verifying the signature of a message and validating
full conformance to a Schema. They consist of four stages: Decode, Disassemble,
Validate, and ResolveParty, as shown in the following diagram:

Chapter 2

[105]

Decode
The Decode stage is meant for Pipeline components that perform decoding
or decryption of the message, or verification. The MIME/SMIME decoder
component fits this stage.

The Decode stage can also be used by any custom component
that needs to act on the message before it reaches the Disassemble
stage. Examples of such processing could be adding an XML
namespace or correcting known faulty data.

Disassemble
The Disassemble stage is meant for disassembling a message into XML. This stage can
be resolved in more than one message being delivered to the next component. The
components here can have a Probe method that looks at the message to determine
whether the component is configured to parse the message or not. Only the first
component that gives a true return to the Probe call will be executed. The components
in this stage also handle property promotion and, optionally, message validation. The
XML Disassembler or Flat File Disassembler components fit this stage.

Validate
This stage is used to validate the XML contents of the message; for example, to verify
Schema conformance. The XML Validator Pipeline component fits this stage.

Resolve Party
This stage is meant for the Party Resolution Pipeline component, but it can also be
used for any component that needs to run after the Validate stage.

Developing BizTalk Artifacts – Creating Schemas and Pipelines

[106]

Send Pipelines
Send Pipelines are meant for post-processing, for processing the message before it
gets sent out by the adapter. The common scenarios include transforming XML into
Flat File format, adding a signature, or encrypting the message. They consist of three
stages: Pre-Assemble, Assemble, and Encode, as follows:

Pre-Assemble
This stage is meant for any component that needs to perform some form of processing
on the message before it is assembled, such as inspecting or modifying the XML. This
is the only step for which there are no out of the box Pipeline components to place in.
It is meant for custom Pipeline components.

Assemble
This stage is meant for components that assemble or format the message, say
by converting it to a Flat File. The XML Assembler and the Flat File Assembler
components fit this stage.

Chapter 2

[107]

Encode
This stage is meant for components that encode or encrypt the message, or to add
a signature or do any other form of processing needed on the message after it is
assembled. The MIME/SMIME encoder component fits this stage.

By default, the Pipeline templates used by Visual Studio are
empty. You can change them by altering the template files that
are located in the <BizTalk Install Folder>\Developer
Tools\BizTalkProjectItems folder. Pipelines have a file
extension of BTP.

Default Pipelines
When you install BizTalk Server, you will get access to four Pipelines to use, two
Receive and two Send. They are PassThruReceive and XMLReceive for Receive
Pipelines, and PassThruTransmit and XMLTransmit for Send Pipelines. They are
meant to get you started and to allow simple scenarios to be built without the need
for any custom Pipeline development. If you have installed the EDI part of BizTalk,
you will also have EDI and AS2 Pipelines. These are not covered in this chapter.

PassThruReceive
The PassThruReceive Pipeline has no components. It does no processing of the
message and only passes it on to the MessageBox for transportation and/or for
later processing in BizTalk Server.

Although BizTalk Server can accept any message in any format,
it can only transform or access data in messages that have been
disassembled into XML. That includes messages that consist of
XML. They must be disassembled using the XML Disassembler
as well for them to be recognized by BizTalk.

XMLReceive
The XMLReceive Pipeline contains the XML Disassembler and the Party Resolution
component.

PassThruTransmit
As with the PassThruReceive Pipeline, this has no components and performs no
message processing before the message is sent out by the adapter.

Developing BizTalk Artifacts – Creating Schemas and Pipelines

[108]

XMLTransmit
The XMLTransmit Pipeline contains the XML Assembler component.

You do not need to use the XMLTransmit Pipeline just because you are sending out
XML. Using PassThruTransmit for that is perfectly reasonable and in many cases,
the best choice. Use XMLTransmit when you want further processing of the message,
such as adding an envelope, influence encoding, demoting properties from the
context into the message, or adding (InfoPath or other) processing instructions.

Custom Pipelines
Developing custom Pipelines is about adding Pipeline components to the Pipeline
stages discussed earlier to form new Pipelines that conform to the capabilities
you need out of your solution. You can use either the out of the box available
components or custom Pipeline components.

You create custom Pipelines using Pipeline Designer inside Visual Studio.
We can derive, from looking at the Default Pipelines, that all the Pipeline
components installed with BizTalk are not included in the Default Pipelines.

The following is a list of the standard Pipeline components that are listed in the
toolbox in Visual Studio that you can use to create a custom Pipeline:

Name Pipeline Type Target Stage Short Description
BizTalk Framework
Disassembler

Receive Disassembler The BizTalk
Framework (BTF) is
an approach to doing
exactly one guaranteed
delivery using HTTP
or SMTP, mainly using
acknowledgements.
The components parse
the BTF envelope and
context properties and
act according to BTF
rules.

Chapter 2

[109]

Name Pipeline Type Target Stage Short Description
BizTalk Framework
Assembler

Send Assemble The component
is responsible for
assembling BTF
messages using
envelope and
context properties,
and for resending
messages should an
acknowledgement not
have arrived before
timeout.

Flat File
Disassembler

Receive Disassemble The component
handles flat text
file parsing, using
Schema annotations
to disassemble the
message into XML.

Flat File Assembler Send Assemble The component
serializes an XML
message into its Flat
File format.

XML Disassembler Receive Disassemble The component
parses inbound XML
messages.

XML Assembler Send Assemble The component
serializes outbound
XML messages.

Developing BizTalk Artifacts – Creating Schemas and Pipelines

[110]

Name Pipeline Type Target Stage Short Description
MIME/SMIME
Decoder

Receive Decode The component is used
to decrypt and verify
signatures on inbound
messages. It can also
be used with the POP3
adapter to handle
attachments.

MIME/SMIME
Encoder

Send Encode The component is
used to encrypt or sign
outbound messages.
It can also be used
to send multipart
messages.

XML Validator Receive or Send All except
Assemble or
Disassemble

The component
validates that the
message conforms to
its Schema.

Party Resolution Receive Resolve Party The component uses
the sender's certificate
or Security Identifier
(SID) to resolve a
BizTalk Party.

The XML Disassembler, the XML Assembler, the MIME/SMIME
Decoder, and the MIME/SMIME Encoder will be covered in more
depth later in this chapter.
EDI and AS2 add additional Pipeline components, namely EDI
Disassembler, BatchMarker, AS2 Decoder, AS2 Disassembler,
EDI Assembler, and AS2 Encoder. EDI will be covered later in
the book, in Chapter 8, Implementing Extended Capabilities.

Chapter 2

[111]

Configuring Pipelines and Pipeline
components
Pipelines have two places where you can edit their configuration: BizTalk Server
Pipeline Designer in Visual Studio or BizTalk Server Administration Console. The
values entered in the Properties dialog of the Pipeline Designer act as your Pipeline's
default settings, which are as follows:

Developing BizTalk Artifacts – Creating Schemas and Pipelines

[112]

Once you deploy your Pipeline, you will be able to see it and select it among
the available Pipelines when configuring a Send Port or Receive Location in the
Administration Console, as shown in the following screenshot:

If you click on the ellipsis to the right of the drop-down box, this will bring up the
Configure Pipeline dialog, where you have the option to override some or all of
your default settings with new runtime settings. From a user interface perspective,
those overridden runtime settings will then be shown in bold, as shown in the
following screenshot:

Chapter 2

[113]

The alternative to overriding settings in runtime is creating additional Pipelines,
which can result in many more Pipelines than actually needed.

The RcvFF Pipeline that uses a dummy Schema as a default
setting for the Flat File Disassembler component is available
in Chapter02-Example02.

Working with XML messages
Working with XML messages is not always as easy as using the XMLReceive
Pipeline, with default settings to receive the message and PassThruTransmit
to send it out, although it could be. It's useful to know the capabilities of the
components that process XML messages, among which we can find: XML
Disassembler, XML Assembler, and XML Validator.

Developing BizTalk Artifacts – Creating Schemas and Pipelines

[114]

Disassembling and parsing
Disassembling and parsing an XML message is done in the XML Disassembler
to ensure that the Schema of the message is deployed to the BizTalk Server and
that the message contains valid XML data, has the correct number of matching
start and end tags, and so on. By default, the component does not validate that the
message conforms to its Schema, only that the received messages MessageType has
a corresponding Schema deployed in BizTalk Server. It can, however, be configured
to do do a full Schema validation, including validating that the correct type and
number of elements and attributes exist. The XML Disassembler component has
properties that are explained in the following sections.

Allow unrecognized messages
Default: False

This property allows you to accept messages that have an unrecognized format to
pass through the disassembler. Setting this to True allows processing of messages
that are recognized, for which we will get property promotion and so on, while still
allowing unrecognized messages that do not conform to any deployed Schema to
pass through.

Document Schemas
Default: Empty

The Empty option means that it is not limited to a specific Schema or Schemas and
will accept messages matching any deployed Schema (or any message, depending
on the setting of Allow unrecognized messages).

This property allows you to specify what Schemas are expected, and therefore
authorized, to pass through this Pipeline.

Envelope Schemas
Default: Empty

The Empty option means that it will inspect the message for any deployed Schema
marked as being an Envelope Schema and will try to remove the envelope if found.

This property allows you to specify which Envelope Schemas are expected, and
therefore authorized to pass through this Pipeline.

Chapter 2

[115]

Recoverable interchange processing
Default: False

This property is only interesting when the Disassemble stage forwards more than
one message to the next stage, such as when an envelope is used and the message
is split into several messages within the interchange. It allows you to indicate that
the Pipeline is to use recoverable interchange processing.

If the value is set to False, the entire interchange is treated as a transactional
unit against MessageBox. It will not recover (if that helps you remember) from an
exception that occurs in the processing of any single message—if one of the split
messages fail, the entire interchange fails.

If it is set to True, it means that each message within the interchange is treated in
isolation and the interchange can recover and be processed completely even if any
one or many messages get suspended.

Validate document structure
Default: False.

The False option means that there is no validation outside of the well-formed
XML and that any received message with a MessageType that matches a deployed
Schema will be accepted, regardless of whether the rest of the content matches the
Schema or not.

True means that validation for Document and Envelope Schema conformance will
be performed as applicable. If you set this property to True, you must also supply
the Document Schemas that validation should be performed against.

Assembling and serializing
The XML Assembler has properties that are explained in the following sections.

Add processing instructions text, Add processing
instructions, Processing instruction scope
These properties specify the processing instructions' text to Append (default), Create
New (overwrite) or Ignore (clear) at the Envelope or Document (default) level.

Processing instructions are instructions directed at the application for processing
of the XML document on how to interpret it, visualize it, authorize it, and so on.
A closely related application that uses this is InfoPath.

Developing BizTalk Artifacts – Creating Schemas and Pipelines

[116]

Add XML declaration
Default: True.
Determines if an XML declaration, such as <?xml version='1.0'
encoding='UTF-8'>, should be available in the outbound document.

Preserve Byte Order
Default: True.
This property determines whether a byte order mark should be prepended to the
outbound message. A byte order mark is a Unicode character placed first in the
stream to indicate which Unicode representation the text is encoded in.

Target charset
Default: Empty.
It allows you to define a specific character set to encode outbound messages.

Envelope Schemas
Default: Empty.

This property allows you to specify which Envelope Schemas are to be expected
when assembling the document.

Working with XML envelopes is covered in more depth later in this chapter.

Document Schemas
Default: Empty.
This property allows you to specify which Schema the processed messages are
expected to belong to. If left empty, it will accept any valid message that belongs
to any deployed Schema.

Validating data
Sometimes, there are scenarios where you need to insert document validation
without it being performed by the XML Disassembler; for example, the XML or Flat
File Assemblers do not perform Schema validation. If you want to enable outbound
message Schema validation, a suitable option is to place an XML Validator component
in the Pre-Assemble stage of a Send Pipeline. It could also be placed in the Validate
stage of a Receive Pipeline. This could be useful, say, when you want to validate the
pieces of an interchange after it's been split into several messages.

Chapter 2

[117]

The XML Validator only has two properties:

• Document Schemas: It indicates which Schemas are valid for messages.
It also uses Schema information to validate messages against Schema for
conformance. If left empty, messages matching any deployed Schema are
valid to be processed through the Pipeline.

• Recoverable Interchange Processing: If the component is located in a Receive
Pipeline and you set recoverable interchange processing to True on the XML
Disassembler, you must also set recoverable interchange processing to True
on this component, if you want them to follow the same pattern.

Working with XML envelopes
Working with envelopes is a common scenario that we are going to look at a bit more
closely. We are going to use an Envelope Schema and, with the help of that Schema
and a Pipeline, split an enveloped batch message into its part and send them through
BizTalk. The Schema has the following structure:

<xs:schema xmlns="http://Chapter02_Example03.Schemas.CarEnvelope"
xmlns:b="http://schemas.microsoft.com/BizTalk/2003"
targetNamespace="http://Chapter02_Example03.Schemas.CarEnvelope"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:annotation>
 <xs:appinfo>
 <b:schemaInfo is_envelope="yes" />
 </xs:appinfo>
 </xs:annotation>
 <xs:element name="ManufacturingReport">
 <xs:annotation>
 <xs:appinfo>
 <b:recordInfo body_XPath="/*[local-
name()='ManufacturingReport' and namespace-uri()='http://Chapter02_
Example03.Schemas.CarEnvelope']/*[local-name()='Cars' and namespace-
uri()='']" />
 </xs:appinfo>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Cars">
 <xs:complexType>
 <xs:sequence>
 <xs:any maxOccurs="unbounded" />
 </xs:sequence>

Developing BizTalk Artifacts – Creating Schemas and Pipelines

[118]

 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="BatchNo" type="xs:int" />
 </xs:complexType>
 </xs:element>
</xs:schema>

Note the recordInfo annotation with its body_XPath attribute that contains an
XPath that points out the Schema node that contains the message body.

To make sure we have a Schema to represent a message that we can send inside the
envelope, a copy of the SimplifiedCar Schema created earlier in this chapter has
been placed in the solution.

Let's examine what we must do to split the incoming envelope message into its
document parts.

The following is the instance message we are sending through BizTalk:

<ns0:ManufacturingReport BatchNo="10" xmlns:ns0="http://Chapter02_
Example03.Schemas.CarEnvelope">
 <Cars>
 <ns0:Car xmlns:ns0="http://Chapter02_Example03.Schemas.
SimplifiedCar">
 <RegistrationNo>ABC123</RegistrationNo>
 <Make>Audi</Make>
 <Model>RS6</Model>
 <Color>NurburgringBlue</Color>
 </ns0:Car>
 <ns0:Car xmlns:ns0="http://Chapter02_Example03.Schemas.
SimplifiedCar">
 <RegistrationNo>XYZ789</RegistrationNo>
 <Make>Corvette</Make>
 <Model>ZR1</Model>
 <Color>DaytonaRed</Color>
 </ns0:Car>
 </Cars>
</ns0:ManufacturingReport>

No custom Pipelines are needed to complete this exercise—the Default Pipelines will
do the job. These are the steps needed to configure the Pipelines to receive and split
the message:

1. Make sure the project has a key file and a string name, and deploy it to
BizTalk Server.

2. Configure a Receive Port and Receive Location.

Chapter 2

[119]

3. In Receive Location, make sure you select XMLReceive Pipeline.
No further configuration is needed.

4. Create a Send Port that has a Filter property that subscribes to messages
from the Receive Port. No further configuration is needed on Send Port.

5. Enable Receive Location and start the Send Port.
6. Send the message.

The result is two messages sent from the Disassemble stage, on to the Send Port and
out to the location we choose.

This sample is available in the C:\BTS2013CertGuide\
Chapter02\Example02-Envelope\Chapter02-Example03\
Chapter02-Example03.sln solution, and the bindings are
available in C:\BTS2013CertGuide\Chapter02\Example03-
Envelope\BTS2013CertGuide-Ch02-Envelope.XML file.

Flat File Envelopes
Flat Files can be received in batches as well. The concept of envelopes
applies just as equally to Flat Files as it does to XML messages.
However, a Flat File is configured slightly differently and instead
includes configuring Header Schemas, Document Schemas, and Trailer
Schemas in the Flat File Disassembler component. Flat File Envelopes
are not covered in this book. The Envelope Processing BizTalk Server
sample is found in the <BizTalkInstall>\ SDK\Samples\
Pipelines\AssemblerDisassembler\EnvelopeProcessing
folder; the article at http://msdn.microsoft.com/en-us/
library/aa578216.aspx discusses this further.

Working with Flat File messages
In an earlier section of this chapter titled Creating Flat File Schemas, we created a
Schema that describes a Flat File with a combination of delimiters and tag identifiers.
Now we will look at the next step to receive messages into BizTalk Server using this
Schema—using the Flat File disassembler in a Receive Pipeline. The following steps
walk you through this process:

1. In the BizTalk project, select Add | New Item....
2. Select Receive Pipeline and name it RcvCars.btp.
3. When Pipeline Designer is shown, open Toolbox and drop a Flat File

disassembler component in the Disassemble stage.

http://msdn.microsoft.com/en-us/library/aa578216.aspx
http://msdn.microsoft.com/en-us/library/aa578216.aspx

Developing BizTalk Artifacts – Creating Schemas and Pipelines

[120]

4. In the Document Schema property of the Flat File disassembler component,
select the Chapter02_Example02.Pipelines.SimplifiedCarsFF Schema.

5. Build and Deploy the project to BizTalk Server.
6. To be able to start receiving files using the Pipeline, in BizTalk Server

Administrator, create a new Receive Port and Receive Location.
7. Configure Receive Location to use the RcvCars Pipeline. This will enable

disassembling of Flat Files into their XML equivalent and further processing
in BizTalk Server.

The SimplifiedCarsFF.xsd Schema and the RcvCars.btp
pipeline are available in the C:\BTS2013CertGuide\Chapter02\
Example02-Envelope\Chapter02-Example03\Chapter02-
Example03.sln solution and can be deployed, configured, and
examined as needed.

Working with secure data
Sometimes there is a need to secure the conversation between BizTalk Server and
the systems it uses to communicate. For those situations, you can use the MIME/
SMIME Pipeline components in either Receive or Send Pipelines and take on the
job of verifying digital signature and decrypting messages, and signing and
encrypting messages.

The following process assumes that you have certificates installed
in the correct locations in Windows Certificate Store. Refer
to http://technet.microsoft.com/en-us/library/
aa559322(v=bts.80).aspx to learn how to set that infrastructure
up or refer to http://social.technet.microsoft.com/wiki/
contents/articles/18846.biztalk-server-importing-
certificates.aspx.

Encryption and signing
To use the MIME/SMIME Pipeline component to encrypt a message, create a
configuration along the following steps:

1. First, we need to create a custom Send Pipeline to contain the MIME/SMIME
encoder component. All component properties are left at their defaults at this
point, as shown in the following screenshot:

http://technet.microsoft.com/en-us/library/aa559322(v=bts.80).aspx
http://technet.microsoft.com/en-us/library/aa559322(v=bts.80).aspx
http://social.technet.microsoft.com/wiki/contents/articles/18846.biztalk-server-importing-certificates.aspx
http://social.technet.microsoft.com/wiki/contents/articles/18846.biztalk-server-importing-certificates.aspx
http://social.technet.microsoft.com/wiki/contents/articles/18846.biztalk-server-importing-certificates.aspx

Chapter 2

[121]

2. Next, we deploy the Pipeline to BizTalk Server.
3. Then, we need to create Receive Port to receive a cleartext message, just so

that we have something to encrypt.
4. Create a Send Port that subscribes to the Receive Port.
5. Configure the Port with an Encryption certificate (the partner public key of

the encryption certificate needs to be installed in the Local Computer\Other
People store), as shown in the following screenshot:

Developing BizTalk Artifacts – Creating Schemas and Pipelines

[122]

6. Configure the Send Port to use the SndSecureMessage Pipeline.
7. Configure the Pipeline and the MIME/SMIME component by setting

EnableEncryption to True. We could also choose one of DES3 (0), DES (1),
or RC2 (2) as our encryption algorithm. DES3 is default.

Now to test the configuration, we create a cleartext message that holds the text
BTS2010CertGuide in a text file, as follows:

Chapter 2

[123]

We make the Receive Port pick it up so that it gets routed to the Send Port
and out comes an encrypted file, the content of which looks similar to the
following screenshot:

If instead we wanted to sign the message, we would change the configuration of the
Send Pipeline and the MIME/SMIME component. The following is a screenshot of a
possible configuration where we are using the ClearSign (1) option:

Developing BizTalk Artifacts – Creating Schemas and Pipelines

[124]

It's also possible to both encrypt and sign, in which case the signature would be
made using the BlobSign (2) option.

Signing requires our private key certificate to be in the Host Instance User\
Personal store and configured at the BizTalk Server Group level.

Now if we supply the same cleartext message, the output has a new look, as in
the following screenshot:

The sample Chapter02\Example04-Security contains
a Send Pipeline configured with a MIME/SMIME Encoder
named SndSecureMessage.
It also contains a Receive Port included in the bindings named
Ch02Ex04_ClearTextReceive, as well as a Send Port
named Ch02Ex04_SecureSend_FILE configured to use the
SndSecureMessage Pipeline.
Please note that you need to create and deploy a certificate
and update the sample with your own certificate's thumbprint,
where applicable.

Chapter 2

[125]

Decryption and signature verification
Now that we have encrypted and signed messages in the previous section, let's look
at how to go about decrypting the message to get back to the cleartext representation:

1. First, we need to create a custom Receive Pipeline to contain the MIME/
SMIME Decoder component. All component properties are left at their
defaults. In fact, there are no meaningful properties for us to change to
affect either signature verification or decryption:

2. Next, we deploy the Pipeline to BizTalk Server.
3. Then, we need to create a Receive Port to receive secure messages.
4. We configure the Receive Port to use the RcvSecureMessage Pipeline.
5. Since we already established that the MIME/SMIME Decoder component

had no properties we needed to alter to be able to receive encrypted or
signed messages, we do not need to do any configuration.

6. We also create a Send Port that subscribes to the Receive Port, to be able
to see the end result.

Developing BizTalk Artifacts – Creating Schemas and Pipelines

[126]

Now to test the configuration, we will send in the encrypted and signed messages
we created in the previous section. It is sufficient to say that it will result in
cleartext messages.

To decrypt encrypted messages, we need to configure our certificate
to use at the Host level and have the private key installed in the Host
Instance User\Personal store (the same store as when signing
messages). For verifying signatures, we need to have the partner's public
key deployed to the Local Computer\Other People store (the same
store as when encrypting outbound messages). No additional BizTalk
configuration is necessary.
The sample Chapter02\Example04-Security contains a Receive
Pipeline configured with the MIME/SMIME Decoder named
RcvSecureMessage.
It also contains a Receive Port included in the bindings named
Ch02Ex04_SecureReceive, as well as a Send Port named Ch02Ex04_
ClearTextSend_FILE using the PassThruTransmit Pipeline.

Custom Pipeline Components
There are many scenarios where the built-in Pipelines and Pipeline components
are not enough. In this case BizTalk offers additional extensibility through the
development of Custom Pipeline Components.

Developing
Pipelines components are developed using Visual Studio. There are four types of
Pipeline components categorized based on the work they will perform. They are
as follows:

• General Pipeline Component: This component can be used in the Decode,
Validate, or Resolve Party stages of a Receive Pipeline or the Pre-Assemble or
Encode stages of a Send Pipeline. This type of component receives a message
and returns the same or another message to be passed to the next component.

• Disassemble Pipeline Component: This component can be used in the
Disassemble Pipeline stage of a Receive Pipeline. This type of component
receives a message and returns one or more messages.

• Assemble Pipeline Component: This component can be used in the
Assemble Pipeline stage of a Send Pipeline. This type of component
takes one or more messages as input and produces a single output.

Chapter 2

[127]

• Probing Pipeline Component: If a Pipeline component intended for a
FirstMatch Pipeline component stage needs to probe the message, they
can implement the IProbeMessage interface to decide if they want to
process the message or not.

BizTalk Server SDK's, and in particular the Microsoft.BizTalk.Component
assembly, and the Microsoft.BizTalk.Component.Interop namespace contains
a number of interfaces that you need to implement to create a Custom Pipeline
Component. Those interfaces are as follows:

Name Members Short Description
IComponent IBaseMessage

Execute(IPipelineContext
pContext, IBaseMessage
pInMsg)

Contains the method
that is triggered when
a General Pipeline
Component executes.

IBaseComponent Name Description Version Contains properties that
expose information about
the component.

IPersistPropertyBag GetClassID(…) InitNew()
Load(…) Save(…)

Contains methods for
loading and saving
configuration information.

IComponentUI IconValidate(…) Contains the Icon property
to supply an icon for
Visual Studio Toolbox
and the Validate method
where custom compilation
validation can be
implemented.

IDisassembler
Component

Disassemble(…)
IBaseMessage GetNext(…)

Contains methods to
aid in disassembling the
incoming message and
outputting the resulting
messages.

IAssembler
Component

AddDocument(…)
IBaseMessage Assemble(…)

Contains methods for
adding one or more input
message and assembling
an output message.

IProbeMessage bool Probe(…) Contains a method for
receiving a message and
determining if it should
be processed by the
component or not.

Developing BizTalk Artifacts – Creating Schemas and Pipelines

[128]

Deploying
Once you have developed your Pipeline components and want to use them in your
Custom Pipelines you need to deploy them to BizTalk Server. This is done by adding
the component to the \Pipeline Components sub-folder of the BizTalk Server
installation directory. The binary files must be present in this folder on all the
servers where the component will be executed.

Testing your knowledge
1. Rob, a developer at HWLC motors, is working with a Schema that is to hold

supplier contact details. Just the other week, the team finished work on a
Customer Schema. Both have e-mail addresses. While working with the
Customer Schema, they created an EmailAddress type with a restriction for
e-mail addresses that he would like to reuse in the Supplier Schema. The
Customer and Supplier Schemas are in different namespaces. What should
he do?

a. Import the Customer Schema to the Supplier Schema, and set the
Data Type of all e-mail addresses in the Supplier Schema to the
EmailAddress type defined in the Customer Schema.

b. Include the Customer Schema in the Supplier Schema to be able to set
the EmailAddress type as the Data Type of the e-mail addresses in
the Supplier Schema.

c. Import the Supplier Schema to the Customer Schema, and set the
Data Type property of all e-mail addresses in the Supplier Schema to
the EmailAddress type defined in the Customer Schema.

d. Define a new Schema named EmailAddress, to hold the definition of
the EmailAddress type.

2. You are configuring a secure communication with signed messages with a
partner to ensure that messages are not tampered with while in transmission.
You need to make sure that you can receive the messages and that the
signature used is valid. What do you do?

a. Create a Pipeline using the MIME/SMIME Encoder component.
Install that partner's private key to the Certificate store of the
computer, and configure the Host to use it.

b. Create a Pipeline using the MIME/SMIME Decoder component.
Install that partner's private key to the Certificate store of the
computer, and configure the Host to use it.

Chapter 2

[129]

c. Create a Pipeline using the MIME/SMIME Encoder component.
Install that partner's public key to the Certificate store of the
computer.

d. Create a Pipeline using the MIME/SMIME Decoder component.
Install that partner's public key to the Certificate store of the
computer.

Summary
In this chapter, we learned about Schemas and Pipelines. We looked at how to create
Schemas. We created hierarchies in and between Schemas. We investigated how we
can control the format for Schema nodes and how to re-use those formats as types.
We looked at property promotion and discussed its use. We then continued to learn
about creating Pipelines and how they can enable us to secure our interchanges and
work with our messages in different ways. We also examined how to build Custom
Pipelines and Custom Pipeline Components. In the next chapter, we will look at the
Developing BizTalk Artifacts – Creating Maps section of the exam.

Developing BizTalk Artifacts –
Creating Maps

This chapter will discuss how to transform messages between Schema formats using
Maps. This chapter will cover the following main areas:

• Creating Maps
• Using Functoids
• Using Advanced Functoids
• Maps and Orchestrations
• Testing your knowledge

The sections on Functoids will include a closer look at how to use them to
incorporate the conditional logic, to control looping behavior and external
assemblies, and to include scripting of different sorts in our maps.

The chapter will conclude with a discussion on how Maps and Orchestrations work
together to enable multipart Schemas as the source or destinations in Maps.

Creating Maps
Mapping is one of the areas that has got the biggest attention in BizTalk Server 2010
in terms of user interface. In BizTalk Server 2013, it was improved behind the scenes
where the runtime was updated to use XslCompiledTransform, which increases the
performance of Map execution.

Most integrations will use one or more maps as a part of processing the message.
Being skilled at creating well-performing, change-friendly, and maintainable maps
is therefore one of the most sought-after skills among the BizTalk developers.

Developing BizTalk Artifacts – Creating Maps

[132]

Maps range from simple to very complex, where the user interface changes have
really improved the usability around complex maps.

Simple maps may only include connecting a few elements together using simple
direct links as shown in the following screenshot.

There are several ways a Map can be implemented:

• Links
• Functoids
• External XSLT script
• A combination of links, Functoids, and inline XSLT

All samples and Map images used throughout the this chapter can be
found in the C:\BTS2013CertGuide\Chapter03\Example01-
Mapping\Chapter03-Example01\Chapter03-Example01.sln
solution.
Note that the sample code in this chapter is not built to be deployed,
but only to illustrate the concepts, so there are no bindings.

Chapter 3

[133]

More complex Maps may include a lot of Functoids and complex logic. The following
screenshot is an example of a more complex Map from a real-life project (though far
more complex and mapping-intense transformations than these are not uncommon):

Making Maps maintainable is important and the designing and housekeeping of the
mapping surface play into that.

Developing BizTalk Artifacts – Creating Maps

[134]

Understanding why XSLT matters
XSLT (Extensible Stylesheet Language Transformations) is a declarative,
XML-based language to describe the transformation of an input format to a
different or the same output format.

Although mapping in BizTalk Server and Visual Studio is overlaid with a nice
design to abstract you away from the fact, XSLT is something that forms the
foundation of mapping in BizTalk. Maps are XSLT scripts or at least get compiled
into them. Advanced Maps can contain parts that have pure XSLT (through the
Scripting Functoid) or fully raw XSLT through the CustomXSLT property (where
the mapping design surface is empty). Advanced troubleshooting will often mean
running the Validate Map command in Visual Studio to look at, and sometimes
debug the generated XSLT that represents the logic of the Map. Getting used to and
understanding what kind of XSLT the designer creates in different situations can be
really helpful in these situations, where experimenting with links and Functoids to
reach the desired result is not quite enough.

It is outside the scope of this book to cover details
on XSLT. For a detailed walkthrough of XSLT,
go to http://www.w3.org/TR/xslt.html.

We will look at some sample XSLT when we review the Scripting Functoid.

Using Functoids
Once you get past the simplest of mapping constructs, where simply connecting
source and target Schemas using direct links is not enough, you will start using
Functoids. Functoids are small reusable snippets of code that execute predefined
logic based on parameters (inputs from source Schema or other Functoids in the
Map). Referring to XSLT, Functoids will inject functions and function calls into
the generated XSLT script. Functoids typically take zero to many inputs and
deliver one output, with a few exceptions.

There are nine different categories of Functoids, which are as follows:

• Conversion
• Cumulative
• Database
• Date and Time
• Logical

Chapter 3

[135]

• Mathematical
• Scientific
• String
• Advanced

As someone preparing to take the certification, you should be well aware of
the available Functoids as they are important in the overall BizTalk and Map
development. Most Functoids are however easy to use and quite self-explanatory,
and an in-depth description of their use would be useless to the target audience of
this book.

On top of the existing Functoids, custom Functoids can be created by developers
extending the Functoid toolbox with the custom functionality.

Conversion Functoids
The Conversion Functoids do what the name says, that is, they convert between
different formats. The available out of the box conversion Functoids are as follows:

• Character to ASCII: It converts a character to an ASCII value
• ASCII to Character: It converts an ASCII value to a character
• Hexadecimal: It converts a decimal number to a hexadecimal value
• Octal: It converts a decimal number to an octal value

Cumulative Functoids
All Cumulative Functoids accept the same two input parameters as follows:

• The source value to accumulate
• The scope of accumulation as follows:

 ° 0 means entire message
 ° 1 means values that have the same parent
 ° 2 means values that have the same parent's parent
 ° 3 means values that have the same parent's parent's parent, and so on

Developing BizTalk Artifacts – Creating Maps

[136]

Except for the Cumulative String Functoid, all Cumulative Functoids accept only
numeric values and will ignore any non-numeric values received. The following
types of accumulations can be made:

• Average: It returns the average value of all the values
• Concatenate: It returns a string, that is, the concatenation of all the values
• Maximum: It returns the maximum value of all the values
• Minimum: It returns the minimum value of all the values
• Sum: It returns the accumulated sum of all the values

Database Functoids
The Database Functoids merit something of an explanation besides a list explaining
their individual meaning. First, under the Database Functoids category, there are
Functoids that are divided into two areas; Table Query and Lookup Functoids, and
Cross Reference ID or Cross Reference Value Lookup Functoids.

Table Query Functoids
These Functoids enable us to query tables and supply lookup columns to look for
an equally supplied value. The return is a single row from that table to extract the
values. This is quite a limited database query functionality, and stored procedures
cannot be called, as shown in the following table.

If you are not careful using the Database Lookup Functoid, it
can easily become a bottleneck in your process, especially if you
handle large files that end up making tens of thousands of calls
to the database.

Chapter 3

[137]

Functoid Input and output

 Database Lookup • Input: The following are the inputs:
 ° A lookup value
 ° A connection string
 ° Name of table
 ° Name of column

• Output: The first row that matches the query
(in an ADO recordset)

 Value Extractor • Input: The following are the inputs:
 ° A link from the Database Lookup

Functoid—an ADO recordset—
containing a row

 ° The name of the column to extract the
value from

• Output: The value from the configured column

 Error Return • Input: A link from the Database Lookup
Functoid

• Output: A string of the error that occurred,
if any

Cross Referencing Data Functoids
The Cross Reference Functoids is one way by which you can fulfill the often-
occurring requirement of cross-referencing the data, the need to translate values
from one system identifier or value to another.

How it works is that you use either the BizTalk Server Cross Reference Import
Tool (BTSXRefImport.exe) to import data defined in a series of XML files into your
database or you use SQL statements to manipulate the tables directly. The tooling in
this case is quite crude and if you are serious about using this built-in feature for data
cross-referencing, you are often better off designing an alternative strategy. We are
not going to cover the underlying database structures that data ends up in any depth.

Developing BizTalk Artifacts – Creating Maps

[138]

Let us just assume that the data is in there and look at getting it out. To help in
understanding the relationship between the data, let us look at the relationship
between tables and the entities in play, as shown in the following diagram:

Application Type
Ex SAP

Has 0-X Application
Instance

Ex SAP Swedish installation

ValueXRedData
Ex. For SAP the State
Green has a Common
Value equivalent of OK

ValueXRedID
Ex. For SAP Swedish

Installation the
BusinessUnit A123 has a
Common ID equivalent of

BU123

ValueXRef
Ex State

IDXRef
Ex BusinessUnit

Working with application IDs
A part of Cross Referencing Functoids is about working with IDs that differ between
application instances. They are unique identifiers in their respective application
instances. These are often not IDs of things such as Order or Invoice but of something
a bit more limited, say the ID of types, for example, BusinessUnit or CostCenter.
Since they are IDs, they are suitable candidates for a one-to-one mapping relationship,
that is, the ID of an application instance will always have (and map to) one and only
one common ID. Similarly, one common ID will always map to one and only one
application instance ID. Since it is moving data, a new BusinessUnit ID may appear
at any given time. There is also logic available to handle new or removed IDs.

Chapter 3

[139]

In the middle of cross-referencing of data between two applications, there is a
common ID, which is something that you map to and from, to map between
application instance IDs, as shown in the following table:

Functoid Input and output

 Get Common ID • Input: The following are the inputs:
 ° Type of object
 ° The application instance we are

mapping from
 ° The application instance's ID

• Output: The common ID equivalent to
the application's ID

 Get Application ID • Input: The following are the inputs:
 ° Type of object
 ° The application instance we are

mapping to
 ° The common ID

• Output: The application instance ID
equivalent to the common ID

There are also ways for you to administer IDs in runtime when you find new IDs
or find a situation that suggests you remove application IDs, which are as follows:

Functoid Input and output

 Set Common ID • Input: The following are the inputs:
 ° Type of object
 ° The application instance we are

mapping from
 ° The application instance ID
 ° An optional common ID, if this is

not supplied then a new unique
identifier is generated

• Output: The common ID that is the same
as parameter 4, or the generated ID

Developing BizTalk Artifacts – Creating Maps

[140]

Functoid Input and output

 Remove Application ID • Input: The following are the inputs
 ° Type of object
 ° The application instance we are

mapping to
 ° The common ID

• Output: The application instance ID
equivalent to the common ID; the
application instance ID that is being
removed

Working with application values
Application values stand in relation to the application type rather than the instance
of an application. They are mostly used for values such as enumerations or other
static values such as states or types that are steadier in their nature. Therefore, there
are no Functoids available to add or remove values at runtime. It is a one-to-many
mapping relationship; for example, one application can have the states as green,
yellow, orange, and red, while another has only green, yellow, and red. In this case,
both yellow and orange may result in a mapping to yellow. This is explained in the
following table:

Functoid Input and output

 Set Common Value • Input: The following are the inputs:
 ° Type of object
 ° The application type we are

mapping from
 ° The application value

• Output: The common value

 Get Application Value • Input: The following are the inputs:
 ° Type of object
 ° The application type we are

mapping to
 ° The common value

• Output: The application value equivalent
to the common value

Chapter 3

[141]

Date/Time Functoids
The Date/Time Functoids help in determining the current date and time as well as
providing some simple date calculation. They are as follows:

• Add Days: It either takes a date or datetime string and adds X number of
days to it and returns the new date

• Date: It returns the current date
• Date And Time: It returns the current date and time
• Time: It returns the current time

All dates are ISO 8601-compliant values, meaning that a date is
represented as YYYY-MM-DD, time as a 24-hour hh:mm:ss format,
and datetime as YYYY-MM-DDThh:mm:ss. Optionally, you can
specify a timezone by suffixing either a Z for UTC or by adding
a positive or negative time, such as +hh:mm. For example, 2011-
11-10T14:02:02+02:00.

Logical Functoids
The Logical Functoids category is arguably the most used and useful Functoid
category. The Functoids in this category can take a wide variety of data types
as input and even perform comparisons between parameters of different types
in some cases. They all yield a Boolean output, representing whether or not the
operation or comparison that the Functoid performed resulted in a true or false
value. Since it is Boolean, the output should be used as input to other Functoids
or nodes that can accept a Boolean value. It should not be used as an input to a
Functoid or a destination node expecting to get a string such as true.

While connecting the output of a Logical Functoid to a
destination node, the result determines whether or not
we can output that node, depending on the values being
true or false. It is a very useful and common operation.

The following Functoids compare two input values to produce a Boolean result:

• Equal
• Not equal
• Greater than

Developing BizTalk Artifacts – Creating Maps

[142]

• Greater than or equal to
• Less than
• Less than or equal to

The rest of the Functoids in the category are explained in the list that follows:

• Logical Existence: This Functoid must be connected to a source node and
checks to see whether or not the message contains that node.

• IsNil: This Functoid can be used to inspect whether a node that exists is nil.
A node that does not exist is not evaluated as nil since this Functoid checks
if the node has an xsi:nil attribute set to true.

• Logical String: This Functoid evaluates whether or not a value can be
interpreted as a string. This will return false if the value is null; for
example, if the node does not exist or if the value is an empty string. This in
the case of an empty node, that is, <x></x>.

• Logical Numeric and Logical Date: These Functoids basically work in the
same way. The only difference is that they test to see whether the value can
be interpreted as numeric or date respectively.

• Logical AND: These Functoids accept 2 to 100 inputs that are evaluated
as either true or false and then combined to return a single Boolean value.
An AND operation means that all values given must evaluate to true for a
Boolean value of true to be returned. If only a single value is evaluated as
false, then the value returned is false.

• Logical OR: This Functoid works in the opposite manner. It evaluates
all inputs, and if at least one evaluates to true, the Functoid will return
a Boolean value as true.

• Logical NOT: This Functoid is used to negate the input within it, that is, if it
is given a value that is evaluated as true, it will return false and vice versa.

Mathematical Functoids
The Mathematical Functoids allow us to use some common mathematical operations
on the data in our map. This ranges from what is extremely common, say addition or
subtraction, to the lesser used ones such as square root. The full list of Mathematical
Functoids supplied is as follows:

• Addition: This returns the result of adding between 1 and 100 inputs.
• Subtraction: This returns the result of subtracting 1 to 99 values from the

first value. This works as P1-P2 [-P3…-Pn].

Chapter 3

[143]

• Multiplication: This returns the result of multiplying 2 to 100 values.
• Division: This returns the result of dividing 2 values.
• Absolute Value: This returns the absolute value of the input. An absolute

value is a positive value or a value with disregard for its sign; for example,
input 7 will return 7 and input -7 will also return 7.

• Integer: This returns the integer portion of a decimal value without doing
any rounding, for example, input 4.67 will return 4.

• Modulo: This returns the remainder of an integer division, a division that
results in a non-decimal result; for example, inputs 5 and 2 will result in 1
(5 cannot be divided by 2 to produce an integer result, but 4 can, and so the
remainder is 1).

• Round: This returns the rounded value as given by the first parameter,
rounded to the number of decimals given in the second. The round to
nearest, round to even (or banker rounding) is used, that is, if the second
parameter is 0 or missing, 1.5 rounds to 2, while 4.5 rounds to 4.

• Square Root: This returns the square root of the supplied value.

Scientific Functoids
Using the Scientific Functoids built on mathematical concepts is basically the same
as switching between the regular and scientific calculator in Windows. It adds
a number of calculations that are considered outside the regular mathematical
operations. They cover trigonometric, logarithmic, and exponential operations
and are as follows:

• 10^n: This returns 10 raised to the specified power
• ArcTangentFunctoid: This returns the arc tangent of a number
• Base-specified Logarithm: This returns the base-specified logarithm of a value
• Common Logarithm: This returns the base 10 logarithm of a value
• Cosine: It returns the cosine of an angle
• Natural Exponential Function: This returns e raised to the specified power
• Natural Logarithm: This returns the base e logarithm of a value
• Sine: This returns the sine of an angle
• Tangent: This returns the tangent of an angle
• X^Y: This returns the specified value, raised to the power of a specified

second value

All Functoids take one argument with the exception of the Base-specified Logarithm
and the X^Y Functoids, which take two.

Developing BizTalk Artifacts – Creating Maps

[144]

String Functoids
The String Functoids are relatively simple but extremely useful string manipulation
or exploratory Functoids. They are as follows:

• Lowercase
• Uppercase
• String Concatenate
• String Left
• String Right
• String Left Trim
• String Right Trim
• String Find
• String Extract
• Size

Most Functoids in this category map to the corresponding .NET functions such as
ToLower, ToUpper, Substring, TrimStart, TrimEnd, IndexOf, and Length.

String Functoids that refer to a position within the string
will refer to the first character as position 1 and not 0.

Using Advanced Functoids
The Advanced Functoids help in five areas, which are as follows:

• Looping
• Conditional Mapping (which also makes use of the Logical Functoids)
• Copy-based Mapping
• Troubleshooting and Testing
• Scripting is done using external assemblies, inline code, or XSLT

In Visual Studio Toolbox, these Functoids are all under the Advanced Functoids
category, there are no subcategories. In this book, we will use the preceding use
cases to highlight some of the areas where these Functoids are valuable.

Chapter 3

[145]

Looping
Most of the advanced Functoids deal with looping. In this subcategory, these Functoids
exist as follows:

• Index
• Iteration
• Nil Value
• Record Count
• Looping
• Table Looping
• Table Extractor

Index
The Index Functoid will return a specific node in a looping node structure; for
example, the second Component node in the Components structure is always
the engine. The following Map gets the Code attribute of the Component record
corresponding to Engine by supplying the Code attribute as the first parameter
and 2 as the second parameter.

Developing BizTalk Artifacts – Creating Maps

[146]

Iterator
The Iteration Functoid will tell you what the index of the current nodes is in a
looping node structure. The same sample as the one in the preceding screenshot
can be used to show a sample use of the Iteration Functoid, which is as follows:

The sample gets the current iteration or index, uses a Logical Equals Functoid that
compares the current index to the value 2, the index of the engine, and returns a
Boolean value that controls the output of the CoreData node.

All Functoids that return a Boolean value can be used this way
to control the output.

Nil
The Nil Value Functoid will give a record a null value, that is, it will give it a
xsi:nil attribute set to true.

Record Count
The Record Count Functoid will tell you how many nodes of the input type are
under the same parent node. In the preceding screenshot, it could tell you how
many Component nodes there are.

Chapter 3

[147]

Looping
The Looping Functoid will help the mapper understand how you want looping to
occur. The Mapper automatically understands that it needs to loop if you are mapping
from one simple looping structure to another. It will automatically insert code to do the
looping and extract the values. However, in cases where several loops are involved,
it needs guidance. For example, if you want to combine multiple input elements into
a single output element or loop over and combine multiple source looping structures
while you create the output, you need to convey that instruction to the Mapper by
using a Looping Functoid. The latter is shown in the following screenshot:

The previous example works only due to the use of the Looping Functoids. Had it
not been for the Looping Functoids, only the Audi license would be outputted, and
we would get a warning in our Output window in Visual Studio, which is as follows:

CarBrands1_to_Carbrands2_Looping.btm: warning btm1030: The destination
node "Car" has multiple source loop paths.

CarBrands1_to_Carbrands2_Looping.btm: warning btm1004: The destination
node "License" has multiple inputs. For a destination node to have
multiple inputs, one of its ancestors should be connected to a looping
functoid.

You can create conditional looping logic by connecting a Logical
Functoid to the same destination node as the Looping Functoid.

Developing BizTalk Artifacts – Creating Maps

[148]

Table Looping
The Table Looping Functoid is another way of controlling the looping structures.
It lets us configure an internal table and the columns within it and fills the rows
of that table using data such as nodes from the input Schema, links from other
Functoids, or constants.

It allows you to create multiple output rows from one input row.

Creating many output nodes from one input node can be done in many different
ways. For example, if we map from Carbrands2 to Carbrands1 we can once again
use Logical Functoids to control our output, as shown in the following screenshot:

This will work fine. It is when you need to create two rows in the same destination
structure based on only the single input that it gets difficult.

Let us look at a sample in which the use of Table Looping Functoid solves a mapping
challenge. The car manufacturer HWLC Motors is selling directly to consumers
as well as leasing firms and dealerships. As a part of the process for selling a car,
HWLC needs to update the customer relationship management (CRM) system.
It keeps information on cars sold, who the current owner is, and who the actual
person using the car is (which is important for leasing, but not so for consumers).

Chapter 3

[149]

In the case of a consumer, the buyer of the car will be both the owner and the user.
Let us go through the steps to complete this Map:

1. Create a new Map with the appropriate Schemas, as shown in the
following screenshot:

2. Drag-and-drop a Table Looping Functoid onto the mapping surface.
3. Link the Buyer node to the Table Looping Functoid to create a scoping link,

and connect the Table Looping Functoid to the Affiliations destination node.
4. Right-click on the Table Looping Functoid, and select Configure Functoid

Inputs.
5. Enter 2 as the second input for two columns.
6. Enter the string Owner as the value for the third parameter.
7. Create a fourth parameter, and enter the string User as the value.
8. Click on OK to close the Functoid configuration.
9. Link the Name column to the Table Looping Functoid.
10. Right-click on the Table Looping Functoid, and select Configure Table

Looping Grid.

Developing BizTalk Artifacts – Creating Maps

[150]

11. Create two rows, one with Name and Owner, and one with Name and User,
as shown in the following screenshot:

12. Click on OK to close the Functoid configuration.
Next, to get anything out of the Table Looping Functoid, we need to use
Table Extractor. It takes two inputs: the Table Looping Functoid and the
number of columns to retrieve the value from. In this case, we need two
Functoids, one for each of our columns.

13. Drop two Table Extractor Functoids onto the Mapper, and connect both
of them to the Table Looping Functoid.

14. Configure the first Functoid to use Column 1 and the second to use
Column 2.

15. Connect them to Name and Type in the destination respectively.
16. The finished result should be similar to the following screenshot:

Chapter 3

[151]

17. The input looks like the following code snippet:
<ns0:DealDetails
 MLns:ns0="http://Chapter03_Example01_Schemas.CarDeal">
<Buyer Name="Felix" />
</ns0:DealDetails>

18. We will have an output that looks like the following code snippet:
<ns0:RegistrationDetails
 XMLns:ns0=
 "http://Chapter03_Example01_Schemas.CarRegistry">
<Affiliations Name="Felix" Type="Owner"></Affiliations>
<Affiliations Name="Felix" Type="User"></Affiliations>
</ns0:RegistrationDetails>

Developing BizTalk Artifacts – Creating Maps

[152]

Conditional Mapping
We have already seen samples of conditional mapping, conditional looping, and
controlling output. These samples were using a Logical Functoid connected directly
to the output. The Functoids that fall under Conditional Mapping Functoids in
the advanced category are the Value Mapping Functoid and the Value Mapping
(Flattening) Functoid.

The Value Mapping Functoid is often used in conjunction with the
Looping Functoid. The Value Mapping (Flattening) Functoid, on the other
hand, should not be used in conjunction with the Looping Functoid.

The main difference between the two is that while the Value Mapping Functoid will
create one output for each input row, the Value Mapping (Flattening) Functoid will
flatten the input into a single output row, as you will see in the following example.

We will use the same CarRegistry Schema that we created in the Table Looping
sample for input and for output. Let us assume that we need to transform that to
a more typed registry, where the Owner and User of the car exist as nodes.

The input is as follows:

<ns0:RegistrationDetails
 XMLns:ns0="http://Chapter03_Example01_Schemas.CarRegistry">
<Affiliations Name="Felix" Type="Owner"></Affiliations>
<Affiliations Name="Felix" Type="User"></Affiliations>
</ns0:RegistrationDetails>

The Map used is shown in the following screenshot:

Chapter 3

[153]

Using the Value Mapping Functoid, we will get the following output:

<ns0:RegistrationDetails
 XMLns:ns0=
 "http://Chapter03_Example01_Schemas.CarRegistryTyped1">
<Affiliations>
<Owner>Felix</Owner>
</Affiliations>
<Affiliations>
<User>Felix</User>
</Affiliations>
</ns0:RegistrationDetails>

Now on the other hand, if we create a new Map that looks exactly the same, with the
only difference being that we replace the Value Mapping Functoid with the Value
Mapping (Flattening) Functoid, we will get a different result. The Map is shown in
the following screenshot:

Our (flattened) output is as follows:

<ns0:RegistrationDetails
 XMLns:ns0=
 "http://Chapter03_Example01_Schemas.CarRegistryTyped1">
<Affiliations>
<Owner>Felix</Owner>
<User>Felix</User>
</Affiliations>
</ns0:RegistrationDetails>

As you can see, it no longer creates two rows for the output but instead compacts
both of them into one.

Developing BizTalk Artifacts – Creating Maps

[154]

Copy-based Mapping
The Copy-based messaging subcategory, or the simple mapping category as the
BizTalk Server documentation calls it, consists of one single Functoid, that is, the
Mass Copy Functoid. It does something very simple by recreating the linked input
node and everything beneath it at the specified location in the output. It can simplify
the Schema development, where only the parts of a large Schema structure that are
used need to be defined. The rest can be hidden under an xs:any node as unknown
content. It is also useful while mapping between two Schemas with the same
structure, or even the same Schema when you want to do some small calculation
or a similar small operation, yet do not want to relink all the nodes.

Troubleshooting
This category holds the Assert Functoid. It takes three parameters. The first is a
Boolean value that indicates Error or Success. The second is the string thrown in
an exception if the first parameter is false. It will do so only when the project is
built in debug configuration. The third is the value returned if the first parameter
evaluates to true. If the project is built in release configuration, the third parameter
will always be returned.

Since the first parameter is Boolean, the Assert Functoids are often used together
with the Logical Functoids.

The Assert Functoid must still, like any other Functoid, be either
directly or indirectly connected to an output node for it to trigger.

Scripting
The Scripting Functoid is the most advanced Functoid available. It gives you
a multitude of options on how to extend and expand on the functionality of
BizTalk Mapper. You have the following options:

• External Assembly (default)
• Inline C#
• Inline JScript
• Inline Visual Basic .NET
• Inline XSLT
• Inline XSLT Call Template

Chapter 3

[155]

Most of the things, if not everything, that you can do with other Functoids, can be
done with the Scripting Functoids. Through the use of external assemblies and inline
code, you will be able to chain and make use of multiple Scripting Functoids that
save values in internal .NET variables for inter-Functoid communication, and gain
the access to the full array of the .NET functionality coupled with the full power of
going directly to XSLT, when you need it. The Scripting Functoid really does offer
endless possibilities.

"With great power comes great responsibility". Even though you
can use Scripting Functoids to do just about everything, you
should not. Designing and developing a good maintainable Map
is all about visibility and comprehension in your modeling. One
of the unique selling points of BizTalk Mapper is the fact that it is
a model. It is easy to change as it is all really visual. Over-using
Scripting Functoids will seriously cripple that intention.

Using external assemblies
There are a lot of benefits of storing code outside your Map. The rule of thumb is that
anything bigger than the editing window will benefit from being stored outside the
Map. Placing the code in a library makes it easier to unit test, maintain and update,
and debug, and also enables code sharing. It also gives you an extra component to
deploy and manage. The bigger-than-editor-window rule is a bit crude, but if you
follow regular common sense, it will usually be okay.

These are the steps required to call an external assembly using the Scripting Functoid:

1. Identify or create an external assembly that has a method that you would
like to call. In this example, we are using a method that has the following
signature:
public static string Reverse(string s)
{
 return new string(s.Reverse().ToArray());
}

2. Drop a Scripting Functoid onto the Map.

Developing BizTalk Artifacts – Creating Maps

[156]

3. Configure the Scripting Functoid to use an External Assembly, and set
Script assembly, Script class, and Script method according to your needs;
for example, using a HelperLibrary assembly with a CodeHelper class and
a Reverse method, as shown in the following screenshot:

4. Click on OK and connect the Scripting Functoid according to the input
parameters of the method and to a destination node in the output or a
subsequent Functoid, as shown in the following screenshot:

Chapter 3

[157]

Before we test the Map, we need to make sure that
HelperLibrary is in the Global Assembly Cache (GAC).
We can develop without it but cannot run Test Map.

5. We test the Map using the following input:
<ns0:Car
 XMLns:ns0=
 "http://Chapter03_Example01.Schemas.SimplifiedCar">
<RegistrationNo>RegistrationNo_0</RegistrationNo>
</ns0:Car>

6. We get the following output, that is, my external component has been called
and executed correctly:
<ns0:Car
 XMLns:ns0=
 "http://Chapter03_Example01.Schemas.SimplifiedCar">
<RegistrationNo>0_oNnoitartsigeR</RegistrationNo>
</ns0:Car>

Developing BizTalk Artifacts – Creating Maps

[158]

Using the Inline Code
The way the Scripting Functoid works while using Inline C#, Inline JScript, or Inline
Visual Basic .NET is similar to using an external assembly. The main difference is
that the code is stored within the Map instead and the configuration looks different.
You also don't have access to the full power of the .NET framework in Inline Code
but are limited to only a few namespaces.

The following screenshot is an example of configuring the Scripting Functoid using
Inline C# and a method that transforms an input string to uppercase:

Chapter 3

[159]

The preceding example serves as an example of how to use the
Scripting Functoid with Inline C# and at the same time serves
as an anti-pattern that people fall into too often. You should not
implement something with the Scripting Functoid that already
exists. In this case, the Uppercase Functoid should have been
used instead.

Besides the code contained within the method signature, choosing the inline code
also allows us to declare global variables outside the method declaration. These are
accessible throughout the Map from within all Inline Code Scripting Functoids.

Just like when it is configured to use an external assembly, the Scripting Functoid
used with the inline code can take its input from several sources, such as input
nodes or other Functoids, and its output may be linked to output nodes or to other
Functoids similarly.

Using Inline XSLT
Using Inline XSLT allows us to use the power of XSLT directly. This gives us more
freedom in accessing the full document in a way that other Functoids normally are
not capable of doing.

Since we are running XSLT, the Scripting Functoid using any of the XSLT options
can only be connected to an output node as it explicitly creates an XML structure.

The difference between the two options, that is, Inline XSLT and Inline XSLT Call
Template, is that while the former is not allowed to take inputs, the latter is.

In advanced scenarios, XSLT Scripts may access global variables created in the inline
code as well as call the inline code methods and external assemblies.

Developing BizTalk Artifacts – Creating Maps

[160]

Let us look at a simple example of using XSLT inside a Map. In the following Inline
XSLT sample, the XSLT has the same effect as a direct link, but XSLT can do so much
more. Even if the example itself is simple, it does show one of XSLT's many powerful
features: the ability to access any part of the source document regardless of the
context. In this case, it finds the RegistrationNo node and outputs its value to the
destination, as shown in the following screenshot:

Chapter 3

[161]

The Map looks similar to the following screenshot:

If we were to use an Inline XSLT Call Template instead, we would be able to take in a
parameter but other than this, it behaves exactly the same and has the same benefits
and limitations.

There is also the possibility of sidestepping the BizTalk Mapper
altogether by using the Custom XSLT property on a Map. It allows
us to point to a file that contains a fully custom XSLT Script that is
then responsible for the full Map. While opinions differ, it is generally
agreed that this option should not be taken unless performance
optimization or specific requirements such as sorting or grouping
make it a much better and perhaps even the only option.

Maps and Orchestrations
Maps are normally configured to run in one of the three places: Receive Ports,
Send Ports, or Orchestrations. There are some Maps that can only be created inside
Orchestrations, specifically the Maps using multiple input messages to produce their
output or though more uncommon, Maps that create multiple outputs.

XSLT only works with one input message and one output. The way Orchestration
Designer works around this is by creating a temporary multipart message that is
used as an input to the Map, where each of the parts contains the message details
of the messages used. This is configured through the Transform shape. Should you
need multiple outputs, the same concept will apply.

Developing BizTalk Artifacts – Creating Maps

[162]

You can also use the concept of multipart messages to pass parameters
to a Map by creating a Schema for the parameter and a message to hold
it and using it as one of the input messages to the map.

Orchestrations are covered in Chapter 4, Developing BizTalk Artifacts – Creating
Orchestrations. So let us focus just on how to configure the Transform shape to
perform a Map with multiple input messages, which is as follows:

1. Create an Orchestration.
2. Create the messages and Receive and Send Ports that you need to gather

the information.
3. Drop a Transform shape into Orchestration Designer.
4. Configure the Construct shape and select the message that will be created

by the map.
5. Open the Transform shape configuration, and select the messages that

you need to use as input. Each message will become part of the multipart
message, as shown in the following screenshot:

Chapter 3

[163]

6. Click on OK to open the Mapper.
7. You can now see the multipart message; each selected message is contained

within the parts; for example, messages such as Car, DMVData, and
CarValue are shown in the following screenshot:

Developing BizTalk Artifacts – Creating Maps

[164]

8. Complete the Map as shown in the following screenshot:

Testing your knowledge
Based upon what you have learned in this chapter, answer the following questions:

1. As part of a transformation, you need to re-use a piece of business logic
previously defined in a method in a .NET component. You need to do this
without writing any additional lines of code. What do you need to do to
call the method from the transformation?

a. Use the Expression shape and call the component using a XLANG
statement.

b. Use the Scripting Functoid, configure it to use Inline C#, and call the
method using a C# statement.

c. Use the Scripting Functoid, configure it to use an External Assembly,
and call the method by pointing out the assembly, class and method.

Chapter 3

[165]

d. Drag-and-drop the activity created when you add a reference
to the component to the mapping surface, and configure inputs
and outputs.

2. HWLC Motors is starting a marketing campaign and wants to target strong
customers that bought high-end cars. You are developing a Map that is going
to process an input Schema that contains a list of customer nodes containing
CustomerID and CarValue as child nodes. The output document is the same
as the input document. You want to only include those customers whose cars
had a value above $70,000 in the output. What do you need to do?

a. Add an Equal Functoid. Link CarValue as the first input, and set the
second input to 70000. Connect the output to the Customer node in
the destination Schema.

b. Add a Greater Than Functoid. Link the CarValue node as the first
input, and set the second input to 70000. Connect the output to the
Customer node in the destination Schema.

c. Add a Less Than Functoid. Link the CarValue node as the first
input, and set the second input to 70000. Connect the output to the
Customer node in the destination Schema.

d. Add a Value Mapping Functoid. Connect the CarValue node as the
first input, and set the second input to 70000. Connect the output to
the CarValue node in the destination Schema.

Summary
In this chapter, we learned about creating Maps and using Functoids. We took
a closer look at connecting to a database as well as controlling looping, doing
conditional mapping, and other advanced Functoids. The Scripting Functoid
was examined closely and the options it enabled for integrating with external
assemblies and writing XSLT Scripts. We also looked at using Maps from within
Orchestrations to enable multipart Schema maps and talked about what options
there are for testing the Maps. The next chapter is about developing the BizTalk
artifacts—creating Orchestrations—as a part of the exam.

Developing BizTalk Artifacts –
Creating Orchestrations

This chapter covers Orchestrations and Orchestration shapes and logic. It will
provide an overview of all shapes and go into the details of a couple of them, such
as using the Expression shapes to call additional logic in .NET components. It talks
about how an Orchestration gets activated by subscribing to messages, getting called
or started as well as dives deep into the port bindings that are available, and how
to use them. We will also take a closer look at persistence, transactions, and scopes,
though using scopes for exception handling and compensation will be covered in the
next chapter. This chapter will cover the following:

• Developing Orchestrations
• Configuring Orchestration bindings
• Configuring correlation
• Testing your knowledge

Developing Orchestrations
Many integrations are based on pure messaging scenarios, that is, they do not need
Orchestrations. They consist of receiving a message through an adapter, applying
some form of transformations to the message, routing it to one or more subscribers,
and sending them out again, using the same or another adapter. They might also
require a response. In cases where that response is synchronous, and the ports are
configured with the request-response message exchange pattern, this can be handled
without an Orchestration. However, as soon as you require more control, you use
an Orchestration. This could, for example, be when you want more control over
exception handling or when an integration implies more than one logical step.

Developing BizTalk Artifacts – Creating Orchestrations

[168]

It is usually stated that Orchestrations exist to coordinate business processes.
You could drop the word "business" from that. In a nutshell, the Orchestration
engine is the workflow engine employed by BizTalk Server to allow you to handle
various processes, whether they have their roots based in business or technology.
Orchestrations are based on the C#-like language named XLANG/s. Though you
sometimes resort to writing XLANG/s statements directly, you most often work
with modeling your process using Orchestration shapes and setting properties.

Basic shapes and configuration
Orchestrations and the executable processes they implement are modeled using a
sequence of shapes. Each shape has a distinct meaning and usage. The shapes can be
divided into five areas, as follows:

• Message and data handling
• Containers
• Flow Control
• Orchestration nesting
• Other

The available shapes are the ones you have to work with. Orchestration shapes
are not an area of extensibility. You do, however, like with the Scripting Functoid
for Maps, have a way of writing code or calling external components to perform
processing. In Orchestrations, this has the form of the Expression shape.

Chapter 4

[169]

Message and data handling
Within this category, there are shapes that help to receive, send, construct, transform,
or assign message variables as follows:

Shape Description

Receive

Used to receive a message.
A selection of its properties is as follows:

• Activate
• Initializing Correlation Sets
• Following Correlation Sets

Send

Used to send a message.
A selection of its properties is as follows:

• Initializing Correlation Sets
• Following Correlation Sets

Construct Message

Used as a parent container to any of the two message-
constructing shapes.
The possible nested shapes are as follows:

• Message Assignment
• Transform

A selected property is as follows:
• Messages Constructed

Message Assignment

Used to assign a value to a message or to part of a message;
for example, assignment to a node through the use of
a distinguished field. It is also used to assign values
to context available as promoted properties as well as
anything you can do in an Expression shape.
A selected property is as follows:

• Expression

Transform

Used to apply a Map to transform a message constructing a
new message.
A selection of its properties is as follows:

• Input Messages
• Output Messages
• Map Name

Developing BizTalk Artifacts – Creating Orchestrations

[170]

Some shapes require nesting, such as the Assign and Transform shapes, which
always need to be put into a Construct shape, as shown in the following diagram:

Containers
Containers are shapes that, either visually or technically, group other shapes,
as follows:

Shape Description

Group

Used to visually group shapes together and be able to expand and
collapse that view in Orchestration Designer.
These are also not part of the code at all (similar to a region in C#).

Scope

Used to divide logic into units of work or transactions that may make
use of exception handling or compensation. Scopes are diversified
and have many interesting properties. Scopes are similar to the
combination of TransactionScope and a try/catch block in C#.

Chapter 4

[171]

Flow control
Orchestrations are technical implementations of processes. The flow of information
contained in messages is core to that implementation, and there are many shapes
available to handle that flow, which are as follows:

Shape Description

Decide

Used to create different branches of logic, based on if, else if
(..., else if, ...), and else types of conditions.
Each if branch takes an XLANG/s expression evaluating to
true or false.
Only one of the branches will execute.

Delay

Used to create a delay based on TimeSpan in your Orchestration.
A selected property is as follows:

• Delay allows you to create a new TimeSpan object to
configure the delay.

Listen

Used to create different branches of logic, based on messages
received or a timeout value. A Delay shape is used to configure
the timeout.
Only one of the branches will execute.

Loop

Used to create a looping logic similar to a while statement,
where an XLANG/s statement that must be true before each
execution of the contained logic is evaluated.

Parallel actions

Used to perform two or more independent branches of logic
where all branches execute before continuing to the next shape
after the Parallel shape.

Suspend

Used to suspend an Orchestration instance to allow
administrative action to be taken. An administrator can then
either resume or terminate the Orchestration instance. If Resume
is chosen, execution will continue from the next shape.
A selected property is as follows:

• Error Message

Developing BizTalk Artifacts – Creating Orchestrations

[172]

Shape Description

Terminate

Used to end the execution of the Orchestration instance. It is often
used after handling an exception and possibly (although less
often) while ending up in a branch of logic where no more work
is required by the Orchestration.
A selected property is as follows:

• Error Message

Throw Exception

Used to forcefully throw an exception, for example, after
evaluating data or some logical condition.
A selected property is as follows:

• Exception Object, referring to a variable of base type
Exception caught within an exception block or created in
an expression

Compensate

Used to call the compensation block of nested scopes. One
compensation shape is required per nested compensation block to
be called.

Orchestration nesting
Orchestrations can be nested and called from other Orchestrations, similar to
methods in .NET. The shapes that control that are as follows:

Shape Description

Call Orchestration

Allows to synchronously start another Orchestration and hold
additional execution until it is completed.
A selection of its properties is as follows:

• Called Orchestration
• Parameters (in and out)

Start Orchestration

Allows to asynchronously start another Orchestration.
Processing in the calling Orchestration will continue to the
next shape as soon as the Orchestration has been started and
will not await the outcome.
A selection of its properties are as follows:

• Called Orchestration
• Parameters (in only)

Chapter 4

[173]

Other
These shapes are dynamic and either allow for advanced message processing,
decision making, or actions through calling Business Rules, or allow for making
arbitrary XLANG/s statements through calling .NET helper components. The shapes
are as follows:

Shape Description

Call Rules

Allows calling of Business Rules from within
Orchestrations. Uses of Business Rules will be covered in
a later chapter.

Expression

Allows to write XLANG/s statements that provide
C#-syntax like inline coding capabilities. You can
read message and context properties, read or write
Orchestration variables, or access .NET class members.
But you cannot do more complex statements or flow
controlling logic such as if statements or for loops,
unless inside a called .NET component.

More information about the limitations and structure of the
XLANG/s language can be found at http://msdn.microsoft.
com/en-us/library/aa577463(v=BTS.70).aspx.

Orchestration activation
Orchestrations can be activated in one of two ways: by a message that matches the
Orchestrations activation subscription or by the Orchestration that is called from
another Orchestration. The Orchestrations activation subscription is created based
on the configuration of the activating Receive Port. This activation process is not
arbitrary. Instead, you need to determine how an Orchestration should be activated
when you design it. The next section will examine this process closer.

Developing BizTalk Artifacts – Creating Orchestrations

[174]

Activating Receive
An activating Receive shape is used when the Orchestration is first constructed. It
is fulfilled by a message publication matching the activation subscription. This port
can be of any binding type. The two main differentiators from any other port in the
Orchestration are as follows:

1. The port is triggered by an activation subscription, based on design-time-
determined filter criteria.

2. The Receive shape connected to the port is marked with Activate set to True,
as shown in the following screenshot:

In this case, the Filter criteria for the subscription have not been set explicitly. We
will examine when it is needed, and when it is not, later in this chapter, as we discuss
port binding options. However, an activating Receive shape is the only shape that
can include an explicit Filter expression.

Call and Start
Call or Start Orchestration is used when an Orchestration is used in the same way as
a .NET method, that is, when it is called from another Orchestration directly using
design-time coupling. Parameters are used to relay information. Such parameters
might be variables, ports, messages, and so on.

Call is a direct synchronous instantiation that does not rely on message publication
through the MessageBox. It waits for the called Orchestration to complete and then
returns the control back to the caller. Start is a fire-and-forget style asynchronous
instantiation that uses message publication through the MessageBox. A called
Orchestration can return a response in the form of out or updated reference
parameters, while a started Orchestration cannot return a result through parameters
to its starter. However, it can use ports to receive a result.

Chapter 4

[175]

Persistence
During the execution of an Orchestration, the state of the process is saved or
persisted. This enables the Orchestration to recover from failures and retry or restart
from a previous point of execution.

Persistence may occur at the following occasions:

• After the execution of a Send Port
• After the execution of a Start Orchestration shape
• After the successful execution (commit) of a transactional scope
• When the Orchestration instance is suspended
• When the Orchestration instance is completed
• When the Orchestration engine shuts down gracefully
• When a debugging breakpoint is hit
• When dehydration is determined appropriate by the engine

Persistence and serialization of the entire Orchestration, including all messages,
variables, and state information, brings with it the requirement that everything used
within an Orchestration must be serializable.

If a class used within an Orchestration is not serializable, you
must use it within a transactional scope marked as Atomic.

Dehydration and rehydration
Persistence also enables dehydration and rehydration, saving on precious processing
resources by removing an Orchestration from active memory and serializing it to
the database awaiting its next step (dehydration). For example, the correlation of a
response message.

MsgBox

Dehydrate

Rehydrate

Developing BizTalk Artifacts – Creating Orchestrations

[176]

Once that event occurs, usually in the form of a message being published to the
MessageBox, the Orchestration is rehydrated and the processing is continued.

The scenarios in which dehydration is considered by the engine are as follows:

• When the Orchestration instance is waiting for a response message
• When the Orchestration is listening for a message using the Listen shape
• When the Orchestration engine determines that it has reached an idle

delay threshold

The algorithm that the engine uses to determine dehydrations is based on
the last 10 delays at that point in the Orchestration, and compared with
a runtime calculated value that differs depending on available resources
and other factors, but is between a configurable minimum and maximum
time (that by default is 0 and 1800 seconds respectively).

Transactions
Orchestrations employ the use of transactions to compose operations in units or
work, isolated from others, and to recover from failures.

Transactions in BizTalk Server can be either Long Running or Atomic.

Transaction types
Long Running transactions are Long Running units of work for which you want
to have the ability to define custom compensating logic and exception handling,
or those that need to serve as an umbrella for nested transactions. Long Running
transactions persists state, and send operations are committed to the MessageBox
and seen by subscribers immediately.

Atomic transactions are transactional and follow the Atomicity, Consistency,
Isolation, and Durability (ACID) rules. Either everything within the transaction is
correctly committed or none of it is. The persisted state of the Orchestration is either
the state before the transaction began or the state after all operations are committed.
The changes performed by any operation during the transaction, such as a message
being published to the MessageBox, is not visible to anyone during the transaction
but only after they are committed. Any changes, once committed, are persisted so
that they are available, even if the system fails after the transaction is committed.

Chapter 4

[177]

Read more on the ACID rules of transactions at the following URL:
http://en.wikipedia.org/wiki/ACID#Characteristics

Scopes
Scopes are the way to handle transactions within the Orchestrations.

All scopes have the following properties:

• Synchronized
• Transaction Type

Synchronized scopes ensures that the data being read is not simultaneously written
to by other branches in a parallel shape. Scopes are, by default, not synchronized,
though Atomic scopes are implicitly synchronized, regardless of the property value.

A scope can be marked as transactional by the Transaction Type property being
set to either Long Running or Atomic. The third option for the Transaction Type
property is None, as shown in the following screenshot:

Developing BizTalk Artifacts – Creating Orchestrations

[178]

Long Running
While configuring the Long Running Transaction Type, the following additional
properties (over a non-transactional scope) will become available:

• Compensation
• Timeout
• Transaction Identifier

Compensation can be Default or Custom. Setting it to Custom has the same effect as
selecting to add a new Compensation Block to the scope. Compensation is covered
further in Chapter 5, Testing, Debugging, and Exception Handling.

The Timeout property specifies the amount of time spent in the scope before
TimeoutException is raised.

Atomic
While configuring the Atomic Transaction Type, the following additional properties
(over a non-transactional scope) will become available:

• Compensation
• Isolation level
• Retry
• Timeout
• Transaction Identifier

For Atomic transaction, the Timeout value indicates the amount of time that passes
before the transaction is marked as failed and is rolled back, but only if it was
coordinated in a transaction together with another resource, by the Distributed
Transaction Coordinator (DTC).

The Retry value indicates whether PersistenceException (caused by database
connectivity issues) and RetryTransactionException (explicitly thrown in the
Orchestration) should cause the transaction to be retried. Only these exceptions will
be affected by the Retry flag. All other exceptions will cause the transaction to fail.

Chapter 4

[179]

Isolation levels
Isolation levels control the locking levels used in the database by the engine while
dealing with reads and writes for the actions performed by shapes in the scope.
These transaction levels are available as follows:

• Read Committed: This reads only committed rows and prevents reading
changes that are not yet committed by other transactions, but it does not
prevent data it has read from being changed by other transactions before it is
completed.

• Repeatable Read: This prevents updates to rows read by this scope until the
transaction is completed.

• Serializable: This prevents data being committed by other transactions in
such a way that queries used by this transaction would give a different result
than when executed.

The default isolation level is Serializable.

Nesting
Long Running transactions can contain other transactions, either Long Running or
Atomic. Atomic transactions can contain no other transactions.

Orchestration

Scope
Long Running

Scope
Atomic

Scope
Atomic

Scope
Atomic

Conceptually, when it comes to transactions and nesting, you can look at the
Orchestration level as a scope; that is, the Orchestration can be marked as a
transaction in the same way as a scope. If you want to put an Atomic transactional
scope directly inside the Orchestration, the Orchestration needs to be configured as
Long Running.

Developing BizTalk Artifacts – Creating Orchestrations

[180]

Transaction reach
Another important concept about transactions in BizTalk Server is their reach.
Transactions initiated in Orchestrations end in the MessageBox. This means
that marking a scope as atomically transactional does not allow you to have a
transactional conversation with the intended recipient of the message through the
MessageBox from within the Orchestration. The reach of a transaction is depicted in
the following diagram:

System A System B
COM+

component

Receive Port

Adapter

Send Port

Adapter

Orchestration

MsgBox

As the diagram shows, it is possible to extend the reach
of a transaction from an Orchestration to a COM+
(Enterprise Services-managed) component.

Storing configuration information
Many Orchestrations may rely on configuration parameters. There are different ways
of supplying configuration to an Orchestration. We will examine some of these and
look for the pros and cons.

Orchestration variables
Orchestration variables are a very static place to have configuration values.
If variables point to a class, the default constructor of that class can be called
automatically to instantiate the variable. If anything other than the default
constructor is called, this would need to be done in an Expression shape.
Also when Orchestrations are called or started, the caller can supply the
initial values for parameters. However, they have to originate from somewhere.

Chapter 4

[181]

Configuration placed in BTSNTSvc.exe.config
The BTSNTSvc.exe file is an executable file used by all BizTalk in-process Host
Instances. As a .NET executable, it reads its configuration from the BTSNTSvc.
exe.config file at startup. It is possible to place custom configuration into that
file. The issue with this approach is that any addition or change to a configuration
value requires the Host Instance to be restarted. Since the introduction of 64-bit
processes, there is also a BTSNTSvc64.exe file with a corresponding configuration
file. This requires configuration to be duplicated in two places (and on as many
BizTalk Servers as there are in the group). Also, any configuration property supplied
in this file is not available to the Isolated Hosts, though that is not an issue with
Orchestrations since they only run in process. Accessing files under the Program
Files folder might also be restricted in some organizations.

Configuration placed in web.config for
Isolated Hosts
For Isolated Hosts, it is possible to place configuration in web.config, in the
directory of the web service being called. In the end, this is just a bad practice
resulting in many configuration duplications and maintenance challenges, not to
mention configuration being overwritten and removed if the service is republished.

Configuration placed in machine.config
Configuration in machine.config solves the issue of having different places for
in-process or Isolated Hosts. There is still the issue of whether to choose 32- or
64-bit, which will have their machine configs in C:\Windows\Microsoft.NET\
Framework\v4.0.30319\Config\machine.config and C:\Windows\Microsoft.
NET\Framework64\v4.0.30319\Config\machine.config respectively. Also, as
with BTSNTSvc.exe.config, if your BizTalk environment consists of more than one
server, you will need to apply settings to all machines. The machine.config settings
are also only read when the process is initiated, so this placement also requires Host
restart for updates or new additions. Accessing the machine.config file is also often
restricted in many organizations.

Some configuration can be placed on the
Adapter Handlers
Specifically, WCF extension configuration can be placed in the Send and Receive
Handlers for the WCF-Custom Adapter. This is detailed in Chapter 7, Integrating Web
Services and Windows Communication Foundation (WCF) Services.

Developing BizTalk Artifacts – Creating Orchestrations

[182]

Through the message
Configuration values can be sent in as part of the message. It is not uncommon to
determine the outcome of a process, based on the content of the message. However,
sending in pure configuration values through the message is uncommon.

Through the message context
Configuration values can be part of the message context. A common place to
configure values to be placed in the context is through the use of a custom Pipeline
component, whose job is to write (or promote) the appropriate values to the
context. Configuration can then be done in the Pipeline on a per-instance runtime
configuration. The downside of this is that Orchestrations that can get their messages
from more than one Receive Location must have those properties configured in all
the locations. Also, more than one value (that is, either two Pipeline components or
an untyped one) needs to be put into the context, where it is hard to keep track of the
format for inputting configuration values.

The ESB Toolkit uses a variation of this approach where
the "itinerary" is included in the message context.

Business Rules
For configuration values that change often, or for those you would like an out of the
box-versioned user interface for Business Rules are a good choice. They are centrally
stored in the database, and as such are available on all machines to all types of Hosts.
Business Rules can be, in some cases, a cumbersome addition to the solution just for
the sake of configuration properties from some perspectives, but they are definitely
a good viable option. There are also Application Programming Interfaces (APIs)
available in the form of the Call Rules Orchestration shape that allows you to call
Business Rules easily.

SSO
Single Sign-on (SSO) can be used as a centralized data store for configuration
values. Besides storing user account mappings, it also stores custom configuration
for adapters and can be used for secure storage of custom configuration for custom
logic as well. Although there are no easy, out of the box options for using SSO this
way, there are samples in the documentation and tooling available from BizTalk
Community that makes this relatively easy.

Chapter 4

[183]

Using a .NET helper component
If you decide to use a .NET helper component to store and retrieve your configuration,
you can get the configuration from anywhere, say a file or a database. File storage
will have its drawbacks, but it is certainly possible. In many cases, using a custom
component may seem easy, but you should strive to use the built-in functionality and
features wherever possible if you want to minimize maintenance costs.

Integrating with .NET assemblies
Sometimes there are methods or logic contained within .NET helper components that
you would like to use from within an Orchestration. Even though there is no option
to call an external assembly, such as with the Scripting Functoid, doing so is easy. It
requires an assembly reference added to the project, a variable of that type, and an
Expression shape. The following are the steps required to call a .NET assembly from
an Orchestration:

1. Create a .NET assembly. In this sample, we will use a Helper component
that uses directory services to find the full name of the sales representative
that created a sales order for a car. The ADHelper class is contained in the
Chapter04-Example01.ClassLibary project. The code looks as follows:
namespace Chapter04_Example01.ClassLibrary
{
 public class ADHelper
 {
 public static string GetFullname(string username)
 {
 // Lookup code goes here
 return "Max Mooremountain";
 }
 }
}

Developing BizTalk Artifacts – Creating Orchestrations

[184]

2. Create an Orchestration that will call the assembly. The Orchestration
SalesOrderProcess is implemented in Chapter04-Example01.
Orchestrations in Chapter04-Example01.sln for this sample look similar to
the following screenshot:

3. The expression in the CreateSOOut Message Assignment shape looks similar
to that in the following screenshot:

Chapter 4

[185]

4. Build the solution.
5. Add the Chapter04-Example01.ClassLibary assembly to the

Global Assembly Cache (GAC) so that it can be located and used
from BizTalk Server.

6. Deploy the Orchestration.
7. Create ports. For simplicity, a Binding File is located at C:\

BTS2013CertGuide\Chapter04\Example01- Orchestrations\
BTS2013CertGuide-Ch02- Orchestrations.xml.

8. Configure the Orchestration.
9. Start and test the Orchestration.

In step 2, the expression is using a static method. Therefore
no variable of type ADHelper is required, and the method
can be called outside an Atomic scope, even if the class is not
marked as serializable.

Configuring Orchestration bindings
Orchestrations subscribe and publish messages to the MessageBox. They can do
this in a number of different ways dependent on what messaging pattern the
developer wants to use. Orchestrations can be bound directly to the MessageBox,
bound to Receive and Send Ports or configured to route messages between
Orchestration instances. The only time the MessageBox is not involved is when you
use the Call Orchestration shape to initiate execution of another Orchestration, as
explained earlier in this chapter. For the next few sections we are going to examine
Orchestration Ports and Subscription patterns.

Developing BizTalk Artifacts – Creating Orchestrations

[186]

Ports versus Port Types
Ports in Orchestrations describe how the Orchestration will communicate with the
MessageBox and the direction of that communication, inbound or outbound. Ports
are based on Port Types. The Port Type describes the Communication Pattern (one-
way or request-response) and MessageType communicated. A Port Type can have a
one-to-many relationship with ports. Ports can be thought of as an instance of a Port
Type. Ports define the Communication Direction and Binding, as well as define
if the Port should use Ordered Delivery. Port Types can be re-used throughout a
solution. For that purpose, Port Types has a Type Modifier property that controls
the scope of the type, which are as follows:

• Private: Only ports in the same Orchestration may use it
• Internal: Only ports in Orchestrations in the same project may use it.

This is the default
• Public: Any port in an Orchestration project that references this project or

assembly may use it

Logical ports versus physical ports
Ports in Orchestration Designer are logical ports; they describe the logic of the
operation and the direction of the communication to the MessageBox. Depending on
the binding mode specified within the Orchestration (excluding Direct binding), the
logical ports have to correlate to the physical ports (Receive and Send Ports). This
process is also known as binding an Orchestration.

Using the Specify Now binding mode, you can also create the actual port
configuration at the same time as you create the Orchestration, although that
procedure is not recommended.

A selection of the properties of ports is as follows:

• Port Type
• Communication Direction
• Binding
• Ordered Delivery (on ports with Communication Direction Receive)
• Delivery Notification (on ports with Communication Direction Send)

There are more properties that become available depending on the binding
option chosen.

Chapter 4

[187]

Port binding options
There are several ways that logical ports can be bound to the MessageBox and
physical ports. The most common are Specify Later or Direct (MessageBox).

MsgBox

Logical Receive Port

Specify Later binding

Physical Receive
Port

Physical Send
Port

Logical Send Port

Specify Later binding

Orchestration

Direct binding

The complete list of available Port Binding options is as follows:

• Specify Now
• Specify Later
• Direct

 ° MessageBox
 ° Self Correlating
 ° Partner Orchestration

• Dynamic (for Send Ports only)

While Specify Later and Direct MessageBox are both common, Self Correlating is not
as widely used and understood, and Partner Orchestration is something that even
experienced developers are often uncertain of how and when to use.

Specify Now
The Specify Now binding is utilized when the Receive or Send Port locations are
defined at design time. This is typically not recommended.

The configuration interface has fewer options than the port configuration in the
BizTalk Administration Console.

Developing BizTalk Artifacts – Creating Orchestrations

[188]

Using Specify now in the Port Configuration Wizard for a port with the Receive
Communication Pattern allows the usage of adapters, HTTP, SOAP, and FILE as
Transport and requires the URI and Receive pipeline to be specified, as shown in
the following screenshot:

Chapter 4

[189]

Using Specify Now in the Port Configuration Wizard for a port with a Send
Communication Pattern allows the usage of HTTP, FILE, and SMTP as
Transport and requires the URI and Receive pipeline to be specified, as shown in
the following screenshot:

Developing BizTalk Artifacts – Creating Orchestrations

[190]

Regardless of what binding option you choose in the Port Configuration Wizard,
the port can be reconfigured later during design time by going to Port Properties, as
shown in the following screenshot:

By deploying an Orchestration with Specify Now bindings, the Receive or/and Send
Ports would be created with the properties specified within the Orchestration using
automatically generated names. The logical to physical port association, known as
binding, would be deployed as well, as shown in the following screenshot:

Chapter 4

[191]

Be careful while using this option since changes made to ports, once deployed, will
be overwritten when the Orchestration is redeployed, as with reapplying a Binding
File. You will also get less control over the settings such as Handler, which when
deployed will be configured to use the default handler for the Adapter. If you
want to keep your Orchestration Design and Deployment separate from your Port
Configuration, using the Specify Later binding option is a better choice.

Developing BizTalk Artifacts – Creating Orchestrations

[192]

Specify Later
The Specify Later binding allows you to make the connection between a logical
port and physical port once the Orchestration is deployed. You will need to create
the physical port on your own as it will not be created for you during deployment.
On the upside, any changes made to the port will be durable across Orchestration
change and redeployment.

Using Specify Later makes no additional Port Configuration properties available in
Orchestration Designer since all properties are configured on the physical port. Once
deployed, the Orchestration's logical ports are bound to the physical ports.

Chapter 4

[193]

This still does not mean that messages bypass the MessageBox; it is just a shortcut
to create very explicit subscriptions between Orchestration and its ports. Inspecting
our Orchestration's subscription shows us that it is indeed activated by an explicitly
identified Receive Port, as shown in the following screenshot:

Direct
Direct Bound Ports are ports that are not configured to physical ports using
the Administration Console Orchestration Binding GUI. Instead, they use the
MessageBox and different kinds of pub or sub patterns and subscription filters to
achieve their goal. Messages can be delivered to both ports and other Orchestrations.
In fact, some binding types are directly aimed at Orchestration to Orchestration
communication. The three types of Direct bindings that you have to choose from are
as follows:

• MessageBox (filter-based)
• Self Correlating
• Partner Orchestration

On an activating Receive Port, the filter can be explicit, but for any other Receive
instance, subscriptions are based on the message type and the correlation. We will take
a closer look at correlations in the Configuring correlation section later in the chapter.

Developing BizTalk Artifacts – Creating Orchestrations

[194]

MessageBox (filter-based)
Direct Bound Ports are closest to the concept of pub or sub architecture. They allow
you to deliver a message to the MessageBox without knowing the recipient and
allow you to subscribe to messages without knowing the sender. There could be one
recipient or many, something that, although it is also possible with Specify Later
Ports, might not be as apparent and is not the purpose of that binding.

When configuring a Receive Port in an Orchestration to have MessageBox Direct
Binding, the Port Configuration in the Orchestration Designer will set the Binding
to Direct and the Partner Orchestration Port to Message Box, as shown in the
following screenshot:

The configuration of an Orchestration Send Port will differ slightly as far as available
properties go, but for these two properties they will look the same.

We should also specify a filter criterion on the Receive shape. If we do not, we will
have created an Orchestration that subscribes to all messages that match the message
type of the message that the Receive shape expects.

Chapter 4

[195]

Filters should be made as detailed as possible to avoid
subscribing to unwanted messages.

Once a Direct MessageBox Port is deployed, there will be no configuration of
ports needed or possible. As the following screenshot shows, the only thing left to
configure (if all ports are Direct) is Host under which the Orchestration should run:

Self Correlating
By configuring a port with Direct Self Correlating Direct binding and passing it
as a parameter to an Orchestration, you enable the Orchestration to send messages
back to its caller without the use of a Correlation Set through the use of the Start
Orchestration shape. The following diagram illustrates that process:

Orch BOrch A

MsgBox

Start()porttype

Receive
(using same porttype)

Send
(using same porttype)

Instead, Self-correlated Ports generate an instance-specific (unique) correlation token,
stored using the PartnerService promoted property. That property (among others)
is then used to create a correlation.

Developing BizTalk Artifacts – Creating Orchestrations

[196]

We will cover correlation later in this chapter. In short, a
correlation token is required when you need to be able to get
a response back to the correct Orchestration instance.

To use a Self-correlated Port, follow these steps:

1. Create and implement an Orchestration A.
2. Identify the use case in the processing logic to start another Orchestration

asynchronously and generate a response.
3. In Orchestration A, create a new Port and Port Type and select Direct as

Binding and Self Correlating as Partner Orchestration.
4. Create an Orchestration B designed to be started.
5. Add a Configured Port Parameter, select the previously created Port Type

(in A), and select Send as Communication Direction.
6. Create the logic required in Orchestration B.
7. Send the result back through the Configured Port.
8. A very simple implementation of Orchestration B, named

DirectSelfCorrelatingChild.odx, showing the concepts can be found
in Chapter04-Example01.sln. The Orchestration can be seen in the
following screenshot:

Chapter 4

[197]

9. The preceding screenshot highlights the OperationResponse Port
Parameter. Defining a Port Parameter places a port on the Port Surface of an
Orchestration. In this case, the Orchestration also takes a Message Parameter,
and all it does is send the same message back using the Port Parameter.

10. Use the Start Orchestration shape in A to call B, and supply the parameters
needed including the port (Port Type).

11. After starting the Orchestration, use a Receive shape to block the reception of
the response from Orchestration B through the Configured Receive Port.

Developing BizTalk Artifacts – Creating Orchestrations

[198]

12. A very simple implementation of Orchestration A named
DirectSelfCorrelatingParent.odx showing the concepts can be
found in Chapter01-Example04.sln. The Orchestration can be seen
in the following screenshot:

13. The previous screenshot highlights the Port Type previously created, how
it is the same as the one used in Orchestration B—ChildResponsePortType,
and that the port is Direct and Self Correlating.

If we run the sample, we can catch the instance subscription created by the parent
while it is waiting for the started child to publish a message to the MessageBox, using
the Self-correlated Port sent in as a parameter, as shown in the following screenshot:

Chapter 4

[199]

As you can see, it is based upon the unique PartnerService property, together with
the PartnerPort property, which tell us PartnerPort is selfCorrelated and that
the operation used is named as Operation_1 (which is the default name given to the
operation of the port by BizTalk).

Partner Orchestration
The Partner Orchestration option allows us to implement two patterns: Forward
Partner Orchestration Direct Binding and Inverse Partner Orchestration Direct
Binding. Basically, this means either receiving messages in one Orchestration
from other Orchestrations or sending messages from one Orchestration to other
Orchestrations.

One of the differences between using Direct MessageBox binding and using Direct
Partner Orchestration binding is that, like with Self-correlated Ports, you use the Port
Type to connect the Orchestrations together and one side sends the message and
another side receives it. The main difference is that this is not solved through passing
the port as a parameter in runtime; instead, it is a pure design-time configuration.

Developing BizTalk Artifacts – Creating Orchestrations

[200]

With Forward Partner Orchestration Direct Binding, the Receiver Orchestration can
have many senders. With this pattern, the receiver is the owner of the Port Type.
Other Orchestrations use that Port Type to send messages to the receiver.
The receiver has no forehand knowledge of who is sending it. This is the most
commonly used pattern of the two methods and is shown in the following diagram:

Receiver

PortType

Sender 1

Sender n
MsgBox

If we look at a sample subscription in a Receiver Orchestration, it looks similar to the
following screenshot:

Chapter 4

[201]

As you can see, the PartnerService property, as set by the sender(s), will have a
direct binding with tight coupling to the receiver.

With Inverse Partner Orchestration Direct Binding, a single sender can have
multiple receivers. With this pattern, the sender is the owner of the Port Type. Other
Orchestrations connect to that Port Type to receive messages. The sender has no
forehand knowledge of who the receivers are, as shown in the following diagram:

Sender

PortType

Receiver 1

Receiver n
MsgBox

If we look again at a sample in one of the receivers connected to the sender, it looks
similar to the following screenshot:

Developing BizTalk Artifacts – Creating Orchestrations

[202]

The big difference here is that the receiver is connected to the sender, and as such the
sender owns the Port Type and the receiver is the one that has a direct binding with
tight coupling to the sender.

Dynamic
A Dynamic Send Port is a port where you do not specify the address and transport
type in the static configuration, as shown in the following screenshot:

Instead, you are expected to supply it in runtime. This does not need to be through
the use of an Orchestration, although it often is, when talking about the out of the
box capabilities.

You could easily use a Dynamic Send Port by populating the same
properties through the use of Pipeline components—something that
the ESB Toolkit relies heavily on.

To use a Dynamic Send Port in an Orchestration, these are the steps we need to
follow:

1. Create a new logical Send Port using the Port Configuration Wizard.

Chapter 4

[203]

2. When selecting Port Binding, select Dynamic, and select an appropriate
Pipeline (you can always change this later in the Properties window for the
port), as shown in the following screenshot:

Developing BizTalk Artifacts – Creating Orchestrations

[204]

3. In the Expression shape, set the Microsoft.XLANGs.BaseTypes.Address
property of the port. For a file transport, this may be C:\BTS2013CertGuide\
Chapter04\Example01-Orchestrations\FileDrop\%MessageID%.xml, as
shown in the following screenshot:

4. Use a Send shape, and connect it to the logical Send Port to send the message
to MessageBox and the physical Dynamic Send Port.

Chapter 4

[205]

The adapter BizTalk used in a Dynamic Send Port is chosen based on the first part
of the address, FILE://. For some addresses and transport types, you may have to
set additional properties; for example, if you use an HTTP address, you will have
to specify Microsoft.XLANGs.BaseTypes.TransportType to ensure that BizTalk
selects the adapter that you wanted, since the WCF-BasicHTTP, WCF-WsHTTP,
WCF-Custom, and the HTTP adapter all handle HTTP addresses.

Also, some adapters may need additional configuration after that, such as for
usernames, passwords, configuration, and binding information—everything that
you would normally change from the defaults in the adapter configuration in the
physical Send Port.

Once deployed, a Dynamic Port acts like a Specify Now Port, and a port is
automatically created.

Configuring correlation
Correlation is used throughout BizTalk Server Messaging and Orchestration engines.
In many cases, it is automatic and there is little or nothing you need to do to take
advantage of it. BizTalk promotes the required properties for you without you
having to explicitly configure which properties from which property schemas to
use. Such examples are when using a Request-Response or Solicit-Response Port,
when using a Self-correlated Binding or Partner Orchestration Binding. In these
cases, correlations are created for you, in the engine, without you explicitly having to
define the properties and the values of those properties needed to make sure that the
second message gets routed back.

Correlation subscriptions are instance subscriptions, that is, they do not exist in
sync with the status of an Orchestration (when it is Stopped or Started), and the
Orchestration does not activate a new instance when met; instead, it exists only until
it is fulfilled and the message gets back to the Orchestration instance that created the
subscription.

The typical case is asynchronous responses, where we need to instruct BizTalk
on how to route (by a separate Receive Port or Orchestration) the reply message
published to the MessageBox back to the correct Orchestration instance. However,
not all correlations are about receiving a response. Other common correlation uses
are convoys.

Developing BizTalk Artifacts – Creating Orchestrations

[206]

Working with Correlation Types and Sets
Creating correlations in Orchestrations is based on Correlation Types that define the
properties the correlation consists of. A Correlation Type is made up of one or more
properties from Property Schemas, either out of the box BizTalk Property Schemas or
your own. A Correlation Type is instantiated by creating a Correlation Set.

The following screenshot shows a simple Orchestration using correlation:

These instructions illustrate the relevant steps to enable correlation in an
Orchestration:

1. Make sure that the message sent out as well as the one received back in
have at least one promoted property that can be used for correlation. In this
sample, we are using a SalesOrder Schema with an OrderNo node promoted
to an OrderNo property in a Property Schema that we will use for correlation.

2. Choose to create a new Correlation Type and configure it by selecting the
OrderNo property from our Property Schema and clicking on the Add button,
as per the following screenshot:

Chapter 4

[207]

3. Create a new Correlation Set and configure it to be of the Correlation Type
created in the preceding step, as shown in the following screenshot:

Developing BizTalk Artifacts – Creating Orchestrations

[208]

4. In the Send shape, select the Correlation Set created in the Initializing
Correlation Sets property as shown in the following screenshot:

5. In the Receive shape following the Send shape, select the same Correlation
Set as the Following Correlation Sets property instead.

Once the Orchestration is deployed, bound, and started, whenever it sends out a
message through the Send Port, it will initiate an instance correlation waiting to
receive the response and correlate the message back to the correct Orchestration
instance. This instance subscription will look similar to the following screenshot:

Chapter 4

[209]

The ReceivePortID property is there only because the Port Binding used in this
sample was Specify Later and the logical Orchestration Port is bound to a Receive
Port. The MessageType is always there when working with typed messages in
Orchestrations. The circled part is what we get from using the Correlation Set.
That part defines the specific value that the OrderNo promoted property had
when we sent the message. This same promoted property having that same value
must be present in a received message to match the subscription of this particular
Orchestration instance, which is what the preceding screenshot shows.

Had the receiver of a message been another Orchestration that would receive the
message through the MessageBox, do some work, and then return a response (much
like what a Self-correlated Port accomplishes, except through the MessageBox and
not by using Start Orchestration), then that Orchestration would have defined
a Correlation Type and Set that would have been configured in the Initializing
Correlation Set on the Receive shape and in the Following Correlation Set on the
Send shape.

Convoys
Convoys are about receiving multiple messages in sequence or in parallel to achieve
a goal. There are two types of convoy scenarios that you can implement using
Orchestrations:

• Sequential convoys
• Parallel convoys

Sequential convoys
A convoy is sequential when multiple messages must be received in a predetermined
order. An out-of-context example is how, to enter a room, you must unlock three
doors, one after another. A BizTalk example might be three orders that must be
received in order, batched, and delivered to a backend store in a predetermined time.

Developing BizTalk Artifacts – Creating Orchestrations

[210]

The first Receive order is set to initialize the Correlation Set and the other
Receive orders in the Convoy Set to follow that Correlation Set, as shown in the
following diagram:

Rcv 1

Rcv ...

Rcv n

For more information on Sequential Convoys, you can read
further at the following URL:
http://msdn.microsoft.com/en-us/library/
aa561843(v=BTS.70).aspx

Parallel convoys
A convoy is parallel when multiple messages must be received to achieve a goal,
but the order that they are received in is not important. An out-of-context example
is how, to enter a room, you must unlock all three locks on its door, which you can
do in any order. A BizTalk example might be that, when receiving scanned invoices,
you will receive invoices both as scanned images as well as XML files describing
the content. Both must be received before billing can be performed, as shown in the
following diagram:

Rcv 1 Rcv ... Rcv n

All the parallel Receive orders are set to initialize the Correlation Set.

For more information on Parallel Convoys, you can read
further at the following URL:
http://msdn.microsoft.com/en-us/library/
aa546782(v=BTS.70).aspx

Chapter 4

[211]

Testing your knowledge
1. An Orchestration is currently configured with a Specify Later binding and is

meant to be connected to a port that sends messages using the FILE Adapter.
The requirements are that the folder and name of the file need to be specified
at runtime, based on the data in the message. What should you do?

a. Configure the port binding to be Dynamic, and in a Message
Assignment shape, set the Microsoft.XLANGs.BaseTypes.Address
field for the message to point to the correct folder and name of the
file.

b. Configure the port binding to be Dynamic, and in an Expression
shape, set the Microsoft.XLANGs.BaseTypes.Address field for the
message to point to the correct folder and name of the file.

c. Configure the port binding to be Dynamic and in an Expression
shape, set the Microsoft.XLANGs.BaseTypes.Address field for the
port to point to the correct folder and name of the file.

d. In a Message Assignment shape, set the BTS.ReceivedFileName
context property of the message to point to the correct folder and
filename. Leave the port binding as it is.

2. A big Orchestration contains a smaller part of the logic that either needs
to succeed fully, or if something fails, nothing is to be committed to the
MessageBox. The Orchestration has neither any transaction type nor any
scope. What do you need to do?

a. Configure the Orchestration as an Atomic transaction and set it to
have a timeout of 90 seconds.

b. Configure the Orchestration as a Long Running transaction. Use a
scope configured as an Atomic transaction, and place the logic within
the scope.

c. Configure the Orchestration as a Long Running transaction. Use
a scope configured as a Long Running transaction, and place the
logic within the scope. Add a Compensation Block and an Exception
Handler Block. If anything fails, call the code in the Compensation
Block.

d. Set the Synchronized property of all shapes included in the logic
to true.

Developing BizTalk Artifacts – Creating Orchestrations

[212]

Summary
In this chapter, we learned about Orchestrations and focused on scopes, activating,
nesting, and connecting Orchestrations, and using Call and Start shapes as well as
bindings. We also learned core concepts, such as persistence and dehydration, and
transaction support. We examined alternatives for storing configuration information
and saw how to integrate with .NET assemblies.

In the next chapter, we will examine how we can handle errors as they occur
throughout our solutions and messaging as well as Orchestration.

Testing, Debugging,
and Exception Handling

This chapter maps to the debugging and exception handling parts of the exam,
which include testing.

In the previous chapters, we have seen how to configure BizTalk Server to create
a basic routing architecture and extended that architecture with identifying,
transforming, orchestrating, and correlating requests and responses in that
architecture. So far we have not discussed the errors that you might encounter while
doing that or how you debug and troubleshoot the solution when that happens.

This chapter will cover the important concepts and topics that you need to know
about to be able to efficiently debug and handle exceptions in your integration
solution, while focusing on the areas in which you need to succeed in the exam.

This chapter covers the following main areas:

• Handling exceptions in Orchestrations
• Debugging Orchestrations
• Handling messaging errors
• Routing errors
• Validating and testing artifacts
• Testing your knowledge

Testing, Debugging, and Exception Handling

[214]

After this chapter, we will have dived deeper into concepts introduced in the
previous chapter, such as scopes, how to throw and handle exceptions, and how
to do compensation. We will also handle exceptions outside of Orchestrations as
they occur in our messaging architecture, and look at which ones are common and
how we can handle them by routing them when they occur to enable programmatic
handling instead of requiring administrative handling of suspended messages.

In order to examine why an exception occurred, we will also look at how we can
do debugging, both of Orchestrations, and in the form of Schemas and Maps by
validation and testing in Visual Studio.

Handling exceptions in Orchestrations
Following up from the last chapter where we dealt with developing Orchestrations,
let's look at how to handle exceptions as they occur in Orchestrations.

Scopes
In the previous chapter, we looked at how we could use scopes to configure and use
transactions, whether Long Running or Atomic. The other two major uses for the
Scope shape are to handle exceptions and to trigger compensating logic. These two
uses are in a way intertwined with the use of transactions.

A Scope shape configured with a Transaction Type of None or Long Running scope
can have exception handling blocks added, but atomic scopes cannot. The rationale
is that atomic scopes either complete, or they do not. If they do not, all state is reset to
how it looked before the scope was initiated, and it is the initiator of the Atomic scope,
usually a Long Running scope that should decide what action is to be performed.

A Scope shape configured as Atomic or Long Running can have Compensation
blocks added, but scopes that are configured with no Transaction Type cannot. The
rationale is that only transactional scopes that consider the steps performed to be
part of a unit of work will need to compensate that work should it be required.

Chapter 5

[215]

The following screenshot shows how exception handling and Compensation blocks
can be added to Scopes with different Transaction Types:

Throwing exceptions
Although the majority of all exception handling in BizTalk is about catching
exceptions thrown by other parts in or outside BizTalk, sometimes you can also
explicitly throw exceptions.

Throwing an exception may be a valid action, for example, in the
following situations:

• When you reach a situation from which you cannot recover
• When a fatal error is relayed as part of a response rather than an exception
• When a Listen shape ends in a timeout
• When you discover an error situation in an atomic scope and want to make

sure that the transaction is rolled back

In order to throw an exception, perform the following basic steps:

1. Define a variable with the type set to the exception class you wish to
throw (in this example, the variable is called sysEx and is of the type
System.Exception).

2. Instantiate it and set any value according to the error conditions.

Testing, Debugging, and Exception Handling

[216]

3. Use the Throw Exception shape and configure it with the Exception Object
(in the following screenshot, it is sysEx):

Catching exceptions
In order to catch an exception, you use an exception handling block. The exception
block has two properties of interest, which are shown in the following screenshot:

• Exception Object Name
• Exception Object Type

Chapter 5

[217]

They allow you to define the type of exception to catch and a name by which you
can access the caught exception. As far as exception handling goes, you can think
of scopes and exception blocks in the same way that you would with the .NET
equivalent; this is shown in the following code snippet:

try
{
 //code equivalent to shapes inside the scope goes here
}
catch (Microsoft.XLANGs.BaseTypes.XLANGsException ex)
{
 //code equivalent to shapes inside the
 //exception block goes here
}
catch (System.Exception exAll)
{
 //code to handle all .NET based exceptions goes here
}

When an exception is thrown, the engine will check for the closest exception
handling block that can handle it. They are considered the way you would expect,
that is, inside out, sequentially. Like in .NET, the exception handlers should be
specified from the most detailed exception type to the least detailed, with System.
Exception as the least detailed catch-all base type. When determining which
exception handler to trigger it first checks the scope that the exception occurred in for
an exception handling block. Then any parent scopes in the scope hierarchy. Then if
the Orchestration was initiated though a Call Orchestration shape it checks the scope
that contained the Call Orchestration shape, and so on up its scope hierarchy and
calling Orchestration.

If an exception handler is found, processing will continue in that exception handling
block. If no exception handler is found, the default exception handler is triggered.
This means that the Compensation block for any nested scopes will be triggered,
after which the exception is rethrown and the Orchestration will become suspended.

Also as in .NET, when an exception handling scope completes successfully, the
Orchestration continues after the scope that held it, if nothing else is specified, such
as ending the Orchestration using a Terminate shape or rethrowing the exception
using a Throw Exception shape.

Testing, Debugging, and Exception Handling

[218]

Compensation
If a transaction has completed (execution has left the scope) and an exception occurs
in the Orchestration, the process might be in a state where, although technically
coherent, it is logically incorrect. In such a situation, the actions performed in an
already committed transactional scope might need to be compensated. This is done
by adding a Compensation block.

Adding a Compensation block is the same thing
as setting up the Compensation property of a
transactional scope to custom.

The Compensation block has no properties that control its behavior. It exists as a
container for compensating logic. The following screenshot shows the Properties
window for a Compensation block:

The Report To Analyst property exists on many shapes.
Regardless of the value it is given, it has no effect on the
behavior of your Orchestration. It is a property used to integrate
with the Orchestration Designer for Business Analysts (ODBA)
Visio plugin. If set to false, then that shape is considered a low-
level detail that will not be visible in the Visio designer.

Although Atomic scopes do have the functionality of automatic rollback, if an
exception occurs inside the scope, there is no such functionality once the scope
has committed.

Chapter 5

[219]

The default exception handler, if triggered, will initiate the compensation by calling
the Compensation blocks for any nested scopes, but if you catch an exception in
a custom exception handler, you must explicitly do the compensation. When you
do explicit compensation, you need to use one or more Compensate shapes and
configure them to compensate either the current scope or a selected nested scope.

The Compensate shape can only be used inside an exception handling or another
Compensation block. When choosing to compensate the current scope, the
Compensate shape will trigger the default compensation handler, and not the
compensation code that may be defined by the scope (since the transaction will not
be complete by then). Explicit use of the Compensate shape to compensate nested
transactions allows us to specify the order in which to compensate transactions if
the default order does not fit our logic. One Compensate shape is used to trigger one
Compensation block, and thus the way to specify the order is by the use of multiple
sequentially ordered compensate shapes.

If you have not added a custom Compensation block, default compensation will
be performed. In the same way as the default exception handler, this will call
the Compensation blocks of any nested scopes, starting with the most recently
completed one and working its way back.

Compensation blocks are possible in scopes that have
their Transaction Type set to Long Running or Atomic.
However, not for scopes that have their Transaction
Type set to None. Such scopes cannot be compensated.

Although default compensation is triggered, if no Compensation blocks are added
anywhere, nothing will be performed. Compensation is explicit; you must add the
logic that compensates the actions performed, and you can use any shape you want
inside the Compensation block to achieve this.

If the Orchestration is set to Long Running, you can also set Compensation to
Custom on an Orchestration level. This will give you a Compensation block tab that
is accessible at the bottom of the Orchestration window.

Regardless of whether you are handling Compensation at the scope or Orchestration
level, the Compensation block can contain any Orchestration shape and perform any
logic, without restriction.

Testing, Debugging, and Exception Handling

[220]

Sample exception handling scenario
We are going to look at a scenario that incorporates the concepts of exception
handling and compensation and see how they work in practice.

The completed sample is available in the Chapter05-Example01 solution.

Let's start with a simple process. We will receive a SimplifiedCar Schema equipped
with the FuelTankCapacity, FuelConsumption, and OperationalRange fields. The
message will contain only the first two values and we need to calculate the last one.
Inside a Scope, we will have a Send shape that sends the same message out again, for
archival, and after that we will create a new message so that we can calculate and fill
out the correct value for the OperationalRange field of the car. This is done by calling
a .NET helper component that returns the value by dividing FuelTankCapacity
by FuelConsumption. If the FuelConsumption field's value is 0, a divide by zero
exception will occur. When we start out, no transactions are configured on the scope
or on the Orchestration; the Transaction Type is None, which is the default.

We are using a static method on the .NET component. Had
we been using an instance method, the class would have to
be instantiated and it would either have to be marked
as serializable or used only from within an atomic scope
(as no persistence is done while inside an atomic scope).

The Orchestration looks like the following screenshot:

Chapter 5

[221]

We could just as easily have done the simple division directly in the XLANG
expression in the Message Assignment shape, but there is a lesson in doing it in
a helper class—to show what we must do to handle the exceptions thrown by
a .NET component.

The Assign_CarOut shape contains the code snippet that you can see in the
following screenshot:

Let's run the following sample code. If you want to follow along, this state of the
Orchestration is contained in the ThrowCatchCompensate.odx file. We will build
upon this sample.

We will start by sending in a SimplifiedCar message that looks like the following
code snippet:

<ns0:Car xmlns:ns0="http://Chapter05_Example01.Schemas.SimplifiedCar">
 <RegistrationNo>ABC123</RegistrationNo>
 <FuelTankCapacity>60</FuelTankCapacity>
 <FuelConsumption>0.7</FuelConsumption>
 <OperationalRange></OperationalRange>
</ns0:Car>

Testing, Debugging, and Exception Handling

[222]

This will not cause an exception and we will get an output for both the
SendShipNotice and SendCarOut sends respectively as shown in the following
screenshot of the output folder:

In the case of the SendCarOut shape, the output will contain a correctly calculated
operational range. But what if we update the value of the FuelConsumption field
to hold the number 0 instead? (Except for making that one cheap car to drive). With
this input, the output folder contains only the ShipNotice file as shown in the
following screenshot:

The Orchestration is not outputting the CarOut message. When the expected output
is missing and we suspect that a divide by zero (or any other type of) exception
could have happened in BizTalk Server, the first thing to do is to open up the
BizTalk Server Administration Console. The first page that comes up after you
select your BizTalk Group is the Group Overview page. This page holds a number
of default queries and the current number of message or service instances that match
that query, as shown in the following screenshot:

Chapter 5

[223]

An example of such a query is Suspended service instances, which is marked red
in the previous screenshot. Clicking on the Suspended service instances text
executes the query and displays the results with more details as shown in the
following screenshot:

From here you can open the instance of the Orchestration that is Suspended and
look at the Error Information tab as shown in the following screenshot:

Testing, Debugging, and Exception Handling

[224]

The Orchestration instance is resumable, but if we try to resume, it will continue
from its last persistence point, which in this case is after the SendShipNotice shape,
and all that will end up happening is that it will call the .NET helper component
and get the same exception again. There is no fix to be made to the component to
correct its behavior; it's the content of the messages that is creating the error. But,
we can fix the code to check for the parameter being 0 (and for example return -1),
compile the helper component, and deploy a new version. Then, when we resume
the Orchestration, it will execute the new code which will execute successfully.

In this scenario, even though we got an exception, the Orchestration still created the
ShipNotice file. This happens because the scope that contains the SendShipNotice
Send shape and the Assign_CarOut Message Assignment shape, which makes
the call to the .NET helper component, is not transactional. In order to make them
succeed or fail, we need to set the Transaction Type of the scope to Atomic.

Once we do that no output will be created when the .NET helper component fails.
This state of the Orchestration is contained in the ThrowCatchCompensate1.odx file.

To be able to set the scopes' Transaction Type to
Atomic, the Orchestration that contains it must have
its Transaction Type set to Long Running.

Let's make two additional changes to the Orchestration. One, let's move the
Construct shape outside of the atomic scope, and two, let's add another scope around
both the scope and the Construct Message shape that holds the Message Assignment
shape calling the .NET component. After making that outer scope a Long Running,
the Orchestration will look like the one seen in the following screenshot:

Chapter 5

[225]

This state of the Orchestration is contained in the ThrowCatchCompensate2.odx file.

When we have done this, and run the sample, we will once again get the
SendShipNotice shape outputted to disk because it is contained in an Atomic Scope
that has been committed before the exception happens. The output folder will show
an outputted file such as the one that can be seen in the following screenshot:

Testing, Debugging, and Exception Handling

[226]

In this situation, we could well imagine that some compensating logic would be
required for the SendArchive operation when an exception happens later in the
Orchestration. Let's look at how to implement that.

If we select the atomic scope, we can right-click on it and select New Compensation
Block, or we can set Compensation to Custom in its properties window. We can
add any logic we need within the Compensation block. In this case, to compensate
for the SendShipNotice operation, we need to send a new message to retract the
ShipNotice file. The RetractShipNotice send operation represents that.

This state of the Orchestration is contained in the ThrowCatchCompensate3.odx file
that is seen in the following screenshot:

Chapter 5

[227]

If we send the SimplifiedCar.xml message that does not contain an error, the
messages outputted are a CarOut and a ShipNotice message.

What if we send the CarSimplified_zero.xml file that causes a divide by zero
exception? The output will look like the one seen in the following screenshot:

We get a ShipNotice message and then a RetractShipNotice message. Why?

The Atomic scope completes, thus sending out the ShipNotice message. Then an
exception occurs. Remember, when we have no explicit exception handler that
can handle the exception, the default exception handler kicks in. It automatically
calls the Compensation blocks of any nested scopes that have completed; in this
case, the CompensateShipNotice block that makes the RetractShipNotice send
its message out. Then it rethrows the exception. In this case, it means that the
Orchestration is suspended.

The next step is that when we get an exception, we want to notify a car shipment
clerk by sending him/her a message about the car that failed shipment processing.
That means implementing a custom exception handler. We do that by right-clicking
on the Long Running shape and selecting New Exception Block.

We could be very specific in the exceptions we catch, which in this case means
that if we suspect we could get a divide by zero exception, or any other exception
that requires special handling, we could catch that specifically, as shown in the
following screenshot:

Testing, Debugging, and Exception Handling

[228]

In this case, no exception requires special treatment. They should all result in a
processing-error notification being sent; so, we'll create a catch-all exception handler
as seen in the following screenshot:

If we just leave it like that, we will now get an exception: Use of unconstructed
message 'CarOut'. This is due to the fact that, as the logic stands, an exception could
occur (and in our test of the exception handling it will occur) before the construction
of the CarOut message. As we are now handling that exception, execution will
continue to the Send shape after the scope that is configured to send the CarOut
message, which in this case can potentially be unconstructed. We will solve this by
moving the SendCarOut shape inside the Long Running.

This state of the Orchestration is contained in the ThrowCatchCompensate4.odx file
that is seen in the following screenshot. As the Orchestration is now beginning to
grow, the Construct shape has been minimized to save the space.

Chapter 5

[229]

Now, let's deploy and test this scenario. A correct message will create the same two
outputs as it always has: the ShipNotification and CarOut message. However, what
about a message resulting in the divide by zero exception in the Construct/Message
Assignment shape?

Testing, Debugging, and Exception Handling

[230]

We will get a ShipNotice and ErrorNotifcation messages in the output folder as seen
in the following screenshot:

The explanation for this is that the ShipNotice message is sent in the atomic scope,
which completes successfully and sends out the message. After that an exception
occurs. However, as it is no longer the default exception handler that catches it, but
our own custom exception handler instead, no automatic compensation will occur.
Instead, the logic implemented by us in our custom handler will take place. In this
case, the sending of the ErrorNotification message. Also, in this scenario, unlike when
we have been notified of an error in previous scenarios, we will not have a suspended
Orchestration instance as we are handling the error. If we would have liked to handle
the exception and suspend the Orchestration instance, we could have used the Throw
Exception shape within our exception handler to rethrow the exception.

As a final step in this scenario, we will add back logic to allow the compensation to
be explicitly triggered. In order to do that, we need to use the Compensate shape.

When we configure the Compensate shape that we place inside the exception
handler, we have a choice of either compensating an atomic transaction or the long
running transaction. The following screenshot displays their identifiers:

Chapter 5

[231]

As we are in the long-running transaction's exception handler, choosing the
LongRunningTx option, in this case, means compensating the current scope, which
has a special meaning. This will automatically compensate for all nested transactions
in a last-completed, first-compensated manner. If we want to choose the transactions
we compensate, or dictate the order, we need to use Compensate shapes. Each
Compensate shape can be configured to compensate for one transaction. This means
we will execute the Scopes Compensation block. However, in this case, we will choose
to compensate the current transaction and trigger the default compensation handling.

This state of the Orchestration is contained in the ThrowCatchCompensate5.odx file
that is seen in the following screenshot. As the Orchestration has become larger than
can be comfortably visualized in one page, the AtomicScope and Construct shapes
have been minimized to save space.

Testing, Debugging, and Exception Handling

[232]

At this point, the output (in case of an exception in the Construct/Message
Assignment shape) is the ShipNotice, ErrorNotification, and RetractShipNotice
messages, in the chronological order as shown in the following screenshot:

Delivery notification
BizTalk Server is built on a publish-subscribe architecture. Messages always go to
the MessageBox before being delivered to a port. With a two-way port, a correlated
response or another response aware pattern, you will potentially be aware of an
error occurring somewhere after you sent the message from the Orchestration. With
a one-way Send Port, you may not be aware when an exception occurs. This is true
even for an Atomic scope that will happily complete even though the message may
never reach its intended destination. This is because the transaction initiated by the
atomic transaction scope commits to the MessageBox; the successful delivery by the
intended Send Port is not included in the transaction.

We will use the Simple Orchestration contained in the DeliveryNotification.odx
Orchestration as a starting point; it has the components needed for this illustration:

Chapter 5

[233]

Without making any changes to the Orchestration, let's alter the
SendShipNotification physical port so that it sends message to an invalid location as
shown in the following screenshot:

In other words, it is configured to fail. Now let's try the scenario. If you skipped the
previous section, the correct behavior should result in two messages: the ShipNotice
and CarOut messages in the chronological order. The output, however, looks like the
one seen in the following screenshot:

Testing, Debugging, and Exception Handling

[234]

At the same time, we will have a suspended message on the SendShipNotice_FILE
Send Port. As expected, it could not send out our message. The Error Information
tab of the Service Details window is shown in the following screenshot:

Still, the Orchestration continues, the scope completes without exceptions, and the
Orchestration sends the CarOut message and completes successfully.

If this was not the intended behavior and you would like to be sure that the
ShipNotification message has indeed been delivered, you can use the
Delivery Notification.

The Delivery Notification is a property available on Send Ports in the Orchestration
designer, as you can see in the following screenshot:

Chapter 5

[235]

When set to Transmitted, the Orchestration waits for an acknowledgement from
the physical Send Port before completing the scope. Should the Send Port not be
successful, a DeliveryFailureException will be thrown that can be caught to
handle the exception. An example of the properties of an exception handling block
that handles such an exception is shown in the following screenshot:

The DeliveryFailureException is thrown once all retries of a Send Port
are exhausted.

The Delivery Notification property can be used with
atomic scopes as well, but as they cannot have exception
handling blocks, the DeliveryFailureException
exception would have to be caught in a parent scope. In
order to simplify, we are using a Long Running directly
in the previous sample.

Testing, Debugging, and Exception Handling

[236]

This state of the Orchestration after configuring Delivery Notification
to Transmitted and adding an exception handling block to handle the
DeliveryFailureNotification is contained in the DeliveryNotification1.odx
file that is seen in the following screenshot. We also moved the SendCarOut shape
into the scope to avoid the use of unconstructed message build error as explained in
the previous section on error handling.

Chapter 5

[237]

Now let's try out the scenario, with the same faulty configuration on the physical
Send Port that the ShipNoticeSend Port is bound to.

This time we will get a single output again, but in the form of an ErrorNotification
message sent from the exception handling block, as shown in the following screenshot:

Also, as the exception is handled, we will get no suspended Orchestration instances.
You will however get a Suspended Message Instance on the Send Port.

In order to get rid of that, you can use failed message routing,
which we will discuss later in this chapter in the Routing
errors section.

Debugging Orchestrations
When exceptions are thrown, it's useful and often an absolutely necessary pattern
to handle them using exception handling blocks. For exception, we can anticipate
and would like to handle separately. We apply the pattern of more detailed to less
detailed exception catch blocks. But, we simply can't have exception handlers for
each and every exception type that we can potentially get. For example, a divide by
zero can happen in our Orchestration process in a place that we were not expecting.
It's a runtime error, not a deterministic business error that we should have been
able to anticipate and handle specifically. A divide by zero exception will then most
likely end up in a catch-all exception handling block. The difficult part now is to find
out exactly what and why it happened. We are going to take a look at some of the
options you have for debugging Orchestration execution.

First, although probably well known for anyone looking to take the BizTalk Server
2010 certification or BizTalk 2013 assessment, let's get the simple yet long-time
annoyance out of the way: You cannot debug Orchestrations using Visual Studio. At
least, not in the traditional sense of stepping through the shapes of the designer and
getting access to variables, messages, and the Orchestration state. There are things
you can do with the generated C# classes, but those are out of the scope of this book
and certification.

Testing, Debugging, and Exception Handling

[238]

You need to use the BizTalk Server Administration Console. First, let's use the Group
Overview window and create a new query to get some tracked service instances
with service class of type Orchestration, as shown in the following screenshot:

The Orchestration debugger is available through the context menu of any of the
tracked Orchestration instances. Let's bring it up for the final state of the exception
handling and compensation sample ThrowCatchCompensate5.odx, which we
walked through in a previous section (if you have just read the section on Delivery
Notification, for your information, the SendShipNotice port has been set back to its
correct path).

Chapter 5

[239]

Using the Orchestration debugger, we can step through the tracking that the
Orchestration left behind, and see what happened. You can see exactly what
shapes have been triggered and in what order. The numbers on the Orchestration
surface in the following screenshot are an addition to aid the visualization in this
book. They correlate to the numbers on the left-hand side. They are not there in the
Orchestration debugger.

Testing, Debugging, and Exception Handling

[240]

Using the Orchestration debugger in this after-the-fact manner can be very useful.
In the Tracked Events pane, if you expand it to the right, you will also see the date
and time of each event.

The level of information available is dependent on the level
of tracking configured. By default, only the Orchestration
start and end, message send and receive, and shape start
and end are configured.

You can also get access to any exception that has occurred by going to the Debug
menu and choosing Show Tracked Exceptions, which brings up the exception dialog
shown in the following screenshot:

However, it does not give you access to the variables, messages, or state of the
Orchestration as part of the tool experience. Hence, you can't really troubleshoot why
it happened. Not even if you apply all the tracking possible (having done that, the
information will be available to you through other queries, but that's beside the point
for this walkthrough).

What you can do in the Orchestration debugger is to set a breakpoint. You do this by
right-clicking on a shape and selecting Set Breakpoint on Class. After you have done
this, you can close the Orchestration Debugger window. The next time an instance
of the Orchestration runs, it will break on the spot you placed the breakpoint and
the Orchestration instance will be in an In Breakpoint (Active) state as shown in the
following screenshot:

Chapter 5

[241]

If you launch the Orchestration debugger for this instance, you will have the
option on the Debug menu to attach to the Orchestration instance. This will bring
you to the breakpoint and you will have access to state, variables, and messages in
the Orchestration.

Testing, Debugging, and Exception Handling

[242]

From here you can step through the Orchestration and observe the changes as they
occur. You can't really step through as you would have expected from a Visual Studio
experience, but you can set new breakpoints (which are applied to that instance only)
and choose to continue, which is the equivalent of F5 or Run when you debug in
Visual Studio. Execution will then halt once it reaches the next breakpoint.

Orchestrations will keep ending up In Breakpoint (Active) until you remove the
breakpoint on the class level. You can only add and remove breakpoints to the class
level when you are viewing an Orchestration while not attached.

Handling messaging errors
Now that we have looked at handling exceptions in Orchestrations, we are going to
change focus to messaging solutions and examine some of the common exceptions that
can occur and how we can eliminate or handle those exceptions through configuration.

Subscription errors
Failure in subscriptions usually comes from one of the following two main
problem areas:

• Incorrectly configured subscribers, such as incorrect filters or an enlisted state
• Faulty messages or message handling resulting in the required promoted

message context properties not being available

Regardless of this, the exception that occurs when the BizTalk Server cannot find
a configured subscriber after evaluation of a message is: The published message
could not be routed because no subscribers were found. This is shown in the
following screenshot:

Chapter 5

[243]

The message will (most of the time) be in a Suspended (resumable) state.

The problem with this Suspended service instance is that when an error occurs,
BizTalk will always abort the current transaction and the message will have the form
that it had before the operation was attempted. This means that you could have
big difficulties in determining why the error occurred; since all states including the
message context will also be reset to the state before the operation was attempted.
For example, in a Receive Pipeline, many of the properties that will be used for
routing, at least when that routing is based on any form of information that is the
result of a disassembler component parsing the message, will not be available in that
earlier form because what creates them has not yet occurred at that point. For this
reason, BizTalk Server also creates another service instance, Routing Failure Report,
in a Suspended (not resumable) state.

This service instance allows you to review the state of the message and its context as
it was when the messaging engine evaluated it against any subscribers.

Testing, Debugging, and Exception Handling

[244]

You can use it to troubleshoot the reason the message was suspended and take
necessary action. One such action could be to configure a Send Port with the
correct filters to cause a subscription match. Such a subscription could be based
on the MessageType property of the received message as shown in the following
screenshot, or any other promoted properties:

You could also use the Routing Failure Report instance to review the actual
message, which could potentially be very different after the Receive Pipeline has
triggered; especially, if the original message was a flat file or a Map was applied on
the Receive Port.

Transmission errors
In transmission errors, all errors are included that are the result of a send adapter call
failing and resulting in Suspended service instance. Transmission errors can occur
under many different conditions, all depending on the adapter being used and the
system or transport you wish to connect with. Common examples might be:

• A file share is unavailable or the BizTalk Host Instance user is not authorized
• A WCF call results in a Connection that was actively refused exception
• An application adapter gets a runtime exception from the system it connects

to, for example, a SAP system
• A connection to an FTP Server cannot be made

Chapter 5

[245]

Regardless of what the exception is, BizTalk Server has a built-in retry capability. By
default, this will be configured to retry the operation three times with five minutes in
between as the following screenshot shows:

This configuration means that it will take 15 minutes before a message
gets suspended.

In a situation where the message needs to suspend or switch
to the backup transport option (if configured) immediately,
you should configure the Retry count option to 0. This is
also a suitable development setting.

Testing, Debugging, and Exception Handling

[246]

Send Ports also have the possibility of configuring a backup transport that will
trigger instead of the message being suspended once the retry attempts are
exhausted. The Backup Transport tab has some of the same configuration as
the primary transport has as can be seen in the following screenshot:

You can configure the backup transport with the same or another adapter, whichever
suits your needs. You could even configure it against the same exact URI with
different retry options if you wish to continue retrying, for example, once an hour for
12 hours if the initial retries fail.

Routing errors
Orchestrations allow for try, catch, and compensate patterns. For subscriptions,
routing exceptions, failing adapters, handling exceptions that occur in interchanges
with many parts, or in Maps or Schema validation, a feature known as Failed
Message Routing is utilized.

Chapter 5

[247]

When an exception occurs in a port, one of the following actions is performed by
BizTalk Server Runtime:

• The port has retries left; so, it will wait to retry (only possible in Send Ports)
• The port has no retries configured but has a backup transport configured and

will fall back to that (again, only possible in Send Ports)
• The service instance gets suspended
• Failed Message Routing kicks in

A message ends up in a suspended state when all retries and backup transport
options have been evaluated and no Failed Message Routing has been implemented.

The Failed Message Routing option is available on both Receive and Send Ports. On
Receive Ports, it is available on the General tab:

Testing, Debugging, and Exception Handling

[248]

While on Send Ports, it is available on the Transport Advanced Options tab:

If the Enable routing for failed messages checkbox is checked, the service instance
will not become suspended in the case of an exception. Instead, the following events
will happen:

• A clone of the message is created
• All current promoted message context properties are demoted
• Additional properties describing the error condition are promoted to allow

for routing of the error

Chapter 5

[249]

The properties promoted from the ErrorReport namespace (http://schemas.
microsoft.com/BizTalk/2006/error-report) are shown in the following table:

Name Promoted Description
FailureCode Yes A hexadecimal value. The same value that is

visible in the Admin console if the message
is suspended, for example, 0xC0C01680.

FailureCategory Yes Not used, for example, (always) 0.
MessageType Yes/No Only available if known, for example, when

an XML message fails on a Send Port such
as http://Chapter05_Example01.
Schemas.SimplifiedCar#Car.

ReceivePortName Yes/No Name of Receive Port. Promoted if
exception occurred on a Receive Port, for
example, ReceiveCar.

InboundTransportLocation Yes/No URI of Receive Location. Promoted
if an exception occurred on a
Receive Port, for example, C:\
BTS2013CertGuide\Chapter05\
Example01-ExceptionHandling\
FileDrop*copy*.

SendPortName Yes/No Name of Send Port. Available and
promoted if exception occurred on a Send
Port, for example, MessagingSendCar_
FILE.

OutboundTransportLocation Yes/No URI of Send Port. Available and promoted
if exception occurred on a Send Port,
for example, C:\BTS2013CertGuide\
Chapter05\Example01-
ExceptionHandling\FileDropX\
MessagingCarOut_%MessageID%.xml.

ErrorType Yes The type of message that the error contains,
for example, (always) FailedMessage.

ProcessingServer Yes Name of the server where the error
occurred, for example, BTSSRV01.

Testing, Debugging, and Exception Handling

[250]

Additionally, the following properties are also available:

Name Promoted Description
Description No Error description. Also visible in the event log.

For example, the published message could not be
routed because no subscribers were found.

RoutingFailureReportID No Contains the ID of the routing failure report if
the error occurred due to a routing failure, for
example, Empty or a GUID.

FailureAdapter No Name of the adapter that failed, for example,
FILE.

FailureInstanceID No ID (GUID) of the service that failed.
FailureMessageID No ID (GUID) of the message that failed.
FailureTime No The time of failure, for example, 2010-06-08

10:00:00.

Let's look at a scenario for using Failed Message Routing. For this scenario,
we have a simple messaging integration. We will use a ReceiveCar Port and a
MessagingSendCar_FILE Send Port connected by a simple BTS.ReceivePortName
filter and see what happens when we experience errors on those and how we can
route the exception that occurs. Both ports are configured with Failed Message
Routing as per the previous screenshots.

We will begin looking at how we can handle an error on the Receive Port. When that
error occurs, it will be routed instead of becoming suspended so we need to set up a
port (or Orchestration) to handle the Failed Message Routing message (or we will get
a routing failure for the Failed Message Routing message).

In order to receive failed messages from the Receive Port, we will configure
an additional port to receive those messages with the filter shown in the
following screenshot:

Chapter 5

[251]

We can use only the properties under the ErrorReport
Schema as those are the only properties promoted.

What if the error occurred on a Send Port instead? The configuration is very similar.
We will add an additional filter to the same port using an Or statement:

We could just as easily have used different ports for handling Receive and Send Port
errors had we wished to.

Earlier in this chapter, we had an Orchestration that had Delivery Notification =
Transmitted configured. In that case, the Orchestration handled the exception that
resulted in no suspended Orchestration instances. Yet, the suspended Send Port
remained even though the exception was handled. The way to get rid of it is to use
Failed Message Routing as explained earlier. You can select any of the promoted
properties under the ErrorReport Schema to configure a filter on a Send Port you
wish to send the failed messages to.

Recoverable interchange processing
In Chapter 2, Developing BizTalk Artifacts – Creating Schemas and Pipelines, we looked
at how to create an Envelope Schema, and how to configure a Pipeline to accept a
message that contains an envelope and split the contained message into its parts.

This sample builds on what we learned by looking at what happens if one of the
messages contained within the envelope is incorrect.

Let's start by setting the stage. The code for this sample is contained in the
Chapter05-Example01 solution within the Chapter05-Example01.Schemas project.

Testing, Debugging, and Exception Handling

[252]

The project contains the following Envelope Schema:

Where the Envelope property on the <Schema> node is set to Yes, and the Body
XPath property on the CarEnvelope node is set to the XPath of the Cars node.

/*[local-name()='CarEnvelope' and namespace-uri()='http://Chapter05_
Example01.Schemas.CarEnvelope']/*[local-name()='Cars' and namespace-
uri()='']

Chapter 5

[253]

It also contains the SimplifiedCar Schema that we have worked with in many
previous samples:

In Chapter 2, Developing BizTalk Artifacts – Creating Schemas and Pipelines, we
established that when sending in an envelope message using the XmlReceive
Pipeline, it was split into its containing parts automatically by the XML
Disassembler, without us having to do any custom configuration. This time though,
we are going to send in a message that does not match one of the element types
specified in the Schema.

The following code snippet is the instance envelope message we are sending
through BizTalk:

<ns0:CarEnvelope xmlns:ns0="http://Chapter05_Example01.Schemas.
CarEnvelope">
 <Cars>
 <ns0:Car xmlns:ns0="http://Chapter05_Example01.Schemas.
SimplifiedCar">
 <RegistrationNo>ABC123</RegistrationNo>
 <FuelTankCapacity>60</FuelTankCapacity>
 <FuelConsumption>0.7</FuelConsumption>
 <OperationalRange>86</OperationalRange>
 </ns0:Car>
 <ns0:Car xmlns:ns0="http://Chapter05_Example01.Schemas.
SimplifiedCar">

Testing, Debugging, and Exception Handling

[254]

 <RegistrationNo>XYZ789</RegistrationNo>
 <FuelTankCapacity>70</FuelTankCapacity>
 <FuelConsumption>ERROR</FuelConsumption>
 <OperationalRange>88</OperationalRange>
 </ns0:Car>
 </Cars>
</ns0:CarEnvelope>

What will happen if we send in this faulty message? What will be the output?

The output will be two messages. Why? Remember, by default no Schema validation
is performed, only that the message belongs to a valid Schema and is of a well-
formed XML.

In order to enable Schema validation in the XMLReceive Pipeline and make the XML
disassembler component validate documents against their Schemas, we must set the
ValidateDocument property to True.

We will also configure the Document Schema to use for validation as shown in the
following screenshot:

Chapter 5

[255]

Now, if we send in the messages again, we will get no output! If we inspect our
suspended messages, we will see that the entire interchange has failed with error
information that says, The Messaging Engine encountered an error during the
processing of one or more inbound messages.

In order to enable the successful delivery of the correct message, we need to enable
RecoverableInterchangeProcessing as shown in the following screenshot:

Now, with recoverable interchange processing enabled, if we submit our message
once again, one of the two included body documents will be sent through the
Send Port.

The other will become suspended with error information as follows:

An output message of the component "Unknown" in receive pipeline "Microsoft.
BizTalk.DefaultPipelines.XMLReceive, Microsoft.BizTalk.DefaultPipelines,
Version=3.0.1.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" is
suspended due to the following error:

The 'FuelConsumption' element has an invalid value according to its data type.

Testing, Debugging, and Exception Handling

[256]

The sequence number of the suspended message is 2.

Referring back to our sample instance message, this is the second car that had the
text ERROR in its FuelConsumption element.

This message does not need to be suspended. Instead, Failed Message Routing
could be configured to route the failing messages for further processing as described
previously in this chapter.

Validating and testing artifacts
This section will look at how you can validate and test Schemas and Maps using the
Visual Studio user interface and make a brief introduction to unit testing.

Validating Schemas and Message Instances
In Visual Studio, when you develop Schema artifacts, you have three options to test
or validate this Schema through the UI. They are available through the context menu
of a Schema in the Visual Studio Solution Explorer.

The options are as follows:

• Validate Schema
• Validate Instance
• Generate Instance

Chapter 5

[257]

Validate Schema
The Validate Schema option can be useful; for example, if you receive a Schema from
a third-party or after you have completed work on a Schema that you built yourself. It
will validate that the structure and implementation of the Schema is correct.

Validate Instance
The Validate Instance option allows you to validate a sample input message against
the Schema. This is a very useful option; for example, in situations where messages
fail the disassemble stage in a production environment and it is not entirely clear
why that is or where the error in the input is, more so for flat files than XML files,
which input message to use is configured through the properties of the Schema.

These properties also allow you to specify where to place a message that you
generate from the Schema.

By default, Visual Studio will want to validate an XML file. To validate a flat file, the
Validate Input Instance Type property must be set to Native.

Testing, Debugging, and Exception Handling

[258]

Generate Instance
When you generate an instance, if you do not specify a location to place the instance
to generate in, it will be placed in the current user's temp folder. The instance
generation procedure is not very advanced, so it may well produce outputs that
will not validate, especially if you have put restrictions in the form of patterns on
your fields. The data that it fills the instance with will be sample data that does not
necessarily adhere to the rules of the field.

By default, Visual Studio will generate an XML message. To generate a flat file, the
property Output Instance Type must be set to Native.

Validating, testing, and debugging Maps
When you develop Maps, you have three options to validate, test, or debug this
Map using the UI. These are available from the context menu of a Map in the Visual
Studio Solution Explorer.

The options are as follows:

• Test Map
• Validate Map
• Debug Map

Chapter 5

[259]

Test Map
The Test Map option allows you to supply an input and let Visual Studio run the
Map and produce an output. This allows you to test and validate that your mapping
logic is doing what you expect. It is a good way to test common input files and edge
cases while developing. Both input and output messages can be (and are by default)
validated against their Schemas. Note that this is a feature offered by Visual Studio
only. In runtime, message instances are not validated against their Schemas as part of
Map processing.

Validate Map
The Validate Map option, on top of validating the links and Functoid configuration
of the Map, creates the resulting XSLT script and makes it available for viewing.
Looking at the generated XSLT, it can teach you a thing or two about how the
BizTalk Mapper works. It also helps you understand why your sequence of
Functoids is not resulting in the output you expect. Validation does not execute the
Map and no input is needed and no output created (apart from the XSLT file).

Debug Map
The Debug Map option combines the Validate Map and Test Map options. It gives
you the possibility to debug the creation of the output by stepping through the XSLT
script and viewing the input file getting processed and the output file getting built
element by element. You can also set breakpoints. Debugging the Map is useful for
more advanced troubleshooting scenarios.

Although all of these are highly useful and should be on your To Learn list, if you
do not master them fully, it is outside of the scope of this book to go into any more
detailed depth on any of these.

Testing Pipelines
There are several options available for testing Pipelines, and testing Pipeline
Components. But, for Pipelines, Visual Studio provides no test methods equal to
those available for Schemas or Maps. You do, however, have access to unit testing,
covered later in this chapter, or the Pipeline test tools. These tools are located in the
BizTalk Server SDK and allow you to perform command line testing of Pipelines.
The next section will examine these tools in a little more detail.

Testing, Debugging, and Exception Handling

[260]

Pipeline test tools
The following table lists tools that are available in the \SDK\Utilities\
PipelineTools subfolder of BizTalk Servers installation directory that aids
in testing Pipelines:

Name Purpose
FFAsm.exe It invokes the Flat File Assembler to create a Flat

File message from one or more XML messages
FFDasm.exe It invokes the Flat File Disassembler to create one

or more XML messages from a Flat File message
XMLAsm.exe It invokes the XML Assembler to create an XML

message from one or more XML messages.
XMLDasm.exe It invokes the XML Disassembler to create one or

more XML messages from an XML message
Pipeline.exe It runs a specified Pipeline, received or sent, to

create one or more output documents given one or
more input documents, and specified Schemas

There is also DSDump.exe that helps troubleshooting parsing errors, but it does not
test a Pipeline.

None of these tools require the Pipeline to be deployed
to BizTalk Server.

Unit testing
If you are serious about testing in your BizTalk projects, as you should be, then doing
manual tests through the UI isn't really sufficient. You want automated tests and
tests that can be run during nightly builds using Team Foundation Server (TFS) or
tests you can trigger when the solution has undergone some rework. Such testing is
done by implementing unit tests.

In the case of BizTalk Server, the units that you can test are as follows:

• Schemas
• Maps
• Pipelines

This section will describe what is needed to unit test these artifacts.

Chapter 5

[261]

Unit testing Schemas
When you unit test a Schema, you use the ValidateInstance method and supply it
with the path to an input XML (or a flat file) document and you specify which one of
those you have supplied, as shown in the following code snippet:

[TestMethod()]
public void ValidateSimplifiedCarInstanceTest()
{
 SimplifiedCar target = new SimplifiedCar();
 bool success = target.ValidateInstance(
 @"C:\BTS2013CertGuide\Chapter05\Example02-UnitTesting\
SimplifiedCar.xml",
 Microsoft.BizTalk.TestTools.Schema.OutputInstanceType.XML);
 Assert.IsTrue(success);
}

For the ValidateInstance method to be available, you must set Enable Unit
Testing to True on the project that the Schema belongs to:

Testing, Debugging, and Exception Handling

[262]

When you set this property to True, another base class will be injected in the
inheritance hierarchy of the Schema, the TestableSchemaBase class that holds the
ValidateInstance method.

The references needed on the project level for unit testing to work are the
Microsoft.BizTalk.TestTools and Microsoft.XLANGs.BaseTypes assemblies.
However, these are added by default when you create a new empty project for
BizTalk Server in Visual Studio. If you are upgrading a project or have previously
removed them, you may need to make sure they are there.

Chapter 5

[263]

Unit testing Maps
Similarly, as when testing Schemas, testing Maps is done using a method that
becomes available when you set Enable Unit Testing to True on the project that
holds the Map. For Maps, this method is called TestMap. A sample usage is seen in
the following code snippet:

[TestMethod()]
public void Map1OutputTest()
{
 Map1 target = new Map1();
 string input = @"C:\BTS2013CertGuide\Chapter05\Example02-
UnitTesting\SimplifiedCar.xml";
 string output = @"C:\BTS2013CertGuide\Chapter05\Example02-
UnitTesting\SimplifiedCar_MapOut.xml";
 target.TestMap(
 input,
 Microsoft.BizTalk.TestTools.Schema.InputInstanceType.Xml,
 output,
 Microsoft.BizTalk.TestTools.Schema.OutputInstanceType.XML);
 Assert.IsTrue(File.Exists(output));
}

Unlike the ValidateSchema method, the TestMap method has a void return. The
way to validate that the Map executed successfully is to validate that the output
was created. After that you will usually have a series of tests on the content of the
output file to validate that the mapping logic did what we expected, given the input
is provided.

As with Schemas, enabling unit tests injects a new base class into the inheritance
hierarchy of the Map, the TestableMapBase class that contains the TestMap method.

Testing, Debugging, and Exception Handling

[264]

The same two references for testing Schemas are needed: Microsoft.BizTalk.
TestTools and Microsoft.XLANGs.BaseTypes. No additional references are needed
to test Maps.

Unit testing Pipelines
For Pipelines, the TestPipeline method is available on the
TestableReceivePipeline or TestableSendPipeline classes. Your Pipelines will
inherit from these when you enable unit testing in the property pages of a BizTalk
project. It allows you to execute a Pipeline, supplying input and produce output,
from the code. The following code snippet shows a sample test method for a Receive
Pipeline called RcvCar:

[TestMethod()]
public void RcvCarTest()
{
RcvCar target = new RcvCar();
target.TestPipeline(
 new StringCollection() { "SimplifiedCar.xml" }, // documents
 new StringCollection(), // parts
 new Dictionary<string, string>()
 { { "Chapter05_Example02.Schemas.SimplifiedCar",
"SimplifiedCard.xsd" } }); // schemas
Assert.IsTrue(Directory.GetFiles(testContextInstance.TestDir +
 "\\out", "Message*.out").Length > 0);
}

Like when testing Maps and using the TestMap method, using the TestPipeline
method has a return type of void. The code calls the method by supplying the
input document, any additional message parts (in addition to the body part) that
the pipeline needs and a dictionary list over which Schema files to use. Note that
the example code is simplified in that it does not supply full paths to files, which
is typically needed in any working code. After having called the method, the code
checks whether the output was produced. You could, and should, then check to make
sure that the output is the expected, for example, by validating it against its Schema
using the ValidateInstance method. This was left out of the code for brevity.

Chapter 5

[265]

Testing your knowledge
1. HWLC Motors is having problems with a .NET component developed

to calculate a car's fuel efficiency. Sometimes the component throws an
exception. The class used from the component is marked as serializable. The
Orchestration has no scopes configured. What two things must you do to be
able to catch and handle the exception that occurs?

a. Set the Orchestrations Compensation property to Custom.
b. Add a scope shape to the Orchestration and move the call to the .NET

component within the scope. Set Transaction Type to None.
c. Configure the Orchestrations Transaction Type to Long Running.
d. Add an exception block to the scope and handle the exception there.
e. Add a scope shape to the Orchestration and move the call to the .NET

component within the scope. Set Transaction Type to Atomic.
f. Add a Compensation block to the scope and add logic to compensate

for exceptions that occur.

2. HWLC Motors are developing a BizTalk Server solution to handle order
fulfillment. As part of the Orchestration is a piece of logic that places an
order to the factory to start construction on a new car, the logic is placed
in an atomic scope. The Orchestration has no other scopes. Later in the
solution, the customer is billed a down-payment for the car. HWLC has
experienced problems with the customer having insufficient funds, which
causes exceptions. What must you do to make sure that if that happens, a
cancellation is sent to the factory?

a. Set the Compensation property to Custom for the scope and
implement logic to send a cancellation.

b. Add a new scope and place the existing scope inside the new scope.
Add a Compensation block to the new scope and implement logic to
send a cancellation.

c. Configure the Transaction Type of the Orchestration to be Long
Running and implement logic to send a cancellation in the
Orchestrations' Compensation block.

d. Add a new scope and place the existing scope inside the new scope.
Add an exception handling block to the new scope and implement
logic to send a cancellation.

Testing, Debugging, and Exception Handling

[266]

3. As part of a BizTalk Server solution for customer services, HWLC Motors
have implemented an Orchestration that submits a warranty claim to a
subcontractor through a logical one-way port configured to use a Specify
Later binding. The send is placed inside a Long Running. You need to
make sure that the warranty claim has been successfully sent before the
Orchestration continues processing. What must you do?

a. Do nothing. As the logical port is configured with a binding of
Specify Later, the physical port is synchronously called by the
Orchestration and processing will not continue until port processing
is done.

b. Configure the physical port to use failed message routing.
c. Configure the logical ports' Delivery Notification property to

Transmitted and add Exception Handler to the scope to catch
DeliveryFailureException.

d. Set the scopes' Synchronized property to True.

4. HWLC Motors are monitoring insurance claims. As soon as a claim arrives
that is above $10,000, it must immediately be sent to the claims department
for priority assessment. The claims department uses a mainframe that
receives files through a file share. If the Send Port fails to deliver the message
to the primary file share, the port must immediately fail over to a secondary
share. What should you do to enable this scenario?

a. Configure the port with a backup transport. Set the Retry Count
option of the backup transport to 0.

b. Configure the port with a backup transport. Set the Retry Count
option of the Transport Advanced Options tab to 0.

c. Configure the port with a backup transport. Set the Priority option of
the backup transport to 1.

d. Configure the port for Ordered Delivery and to stop sending
subsequent messages on current message failure.

Chapter 5

[267]

5. HWLC Motors has a BizTalk Server solution developed to route orders
from a partner to an in-house system based on a filter on the MessageType
property of the message. When the solution is deployed and messages start
to arrive, they get suspended with the error information: The published
message could not be routed because no subscribers were found. This error
occurs if the subscribing Orchestration or Send Port has not been enlisted, or
if some of the message properties necessary for subscription evaluation have
not been promoted. You should use the BizTalk Administration console to
troubleshoot this failure. What must you do?

a. Configure the Send Port to filter on ErrorReport.ReceivePortName.
b. Configure the Send Port to use the XmlTransmit Pipeline.
c. Configure the Receive Location to use the XmlReceive Pipeline.
d. Use the BizTalk Server Administration console to edit the message

context and then resume it.

Summary
In this chapter, we have looked at handling errors and exceptions, both in
Orchestrations and in messaging solutions. We have also examined how we can
compensate committed transactions in Orchestrations by adding Compensation
blocks. We have seen how compensation is triggered, either automatically or
explicitly. We have also looked at utilizing the Delivery Notification property. For
messaging solutions, we have looked at common sources of errors, why they occur,
and how we can handle them using failed message routing. Finally, we looked at
recoverable interchange processing for recovering from errors in debatched messages
and discussed what options are available to validate and test during development to
mitigate errors occurring in runtime.

In the next chapter, we will cover administrative concepts and tasks such as
installation and configuration, application state and deployment, message, port,
Orchestration tracking, and other uses of the administration console.

Deploying, Tracking, and
Administrating a BizTalk

Server 2010 Solution
In the previous chapter, we discussed how to debug your BizTalk applications and
how to manage exceptions. In this chapter, we are going to change gears and focus
on administrating our BizTalk applications.

Managing and maintaining a BizTalk Solution requires the same diligence as
developing BizTalk applications. Administering these solutions can sometimes be a
challenging endeavor if the developer has not provided sufficient documentation or
has implemented questionable design patterns.

BizTalk Server is often used to support mission-critical integration processes, which
means there are often high-pressure situations when things do not go as planned.
These situations may include BizTalk entering a throttled state or dependent systems
being unavailable. Understanding the tools that BizTalk Administration Console
provides gives BizTalk Administrators an edge when these support issues occur.
In some cases, using the BizTalk Administration Console correctly may prevent
issues from occurring in the first place.

The goal of this chapter is to review the features and tools that aid a BizTalk
Administrator in ensuring that their BizTalk environment is supportable,
maintainable, and performs well.

Deploying, Tracking, and Administrating a BizTalk Server 2010 Solution

[270]

The topics that are included in this chapter are as follows:

• Installing and configuring a multiserver BizTalk environment
• Deploying BizTalk applications
• BizTalk application states (started, partially started, stopped)
• Configuring tracking
• Managing BizTalk Solutions using Administration Console
• BizTalk Settings Dashboard
• Testing your knowledge

Installing and configuring a multiserver
BizTalk environment
For BizTalk Administrators that are used for single server deployments, installing
BizTalk in a multiserver environment can lead to some confusion. Many BizTalk
resources are familiar with setting up a single node environment, such as a
local desktop. Introducing multiple nodes may include complex infrastructure
components, such as Clustering and Load Balancing. The following sections
will reduce some of this confusion and give you insight into some of the decisions
that you need to make while building a multiserver environment.

High Availability
Every BizTalk Server that you would like to participate in this BizTalk Group
requires the BizTalk Runtime to be installed. Each of these BizTalk Servers will also
require the Enterprise Single Sign-on Service to be installed and configured. As a
result, we need to designate a Master Secret Server, preferably the one that provides
redundancy through Microsoft Windows Clustering. It is generally recommended
to have the Master Secret Server hosted on the same cluster that the SQL Server is
running on when High Availability is required. The last major component we need
to address is a common SQL Server backend that all BizTalk Servers will use as
MessageBox, tracking, and configuration databases.

The following diagram shows a typical two-node BizTalk environment with a
Clustered SQL Server backend. In each of our BizTalk Servers, we are going to install
BizTalk Runtime, the Administration Console, and Enterprise Single Sign-on. In
the event we have requirements to host WCF or Web Services, we will also require
Internet Information Services (IIS) to be installed. If one of our BizTalk Servers
suffers a catastrophic failure, the remaining node(s) will pick up the work of the
problematic server, provided the required Host Instances exist on the healthy server.

Chapter 6

[271]

In order to have a redundant data store, we need to leverage Windows Clustering
Services to host a SQL Server instance, Enterprise Single Sign-on Service, which will
act as our Master Secret Server, and Microsoft Distributed Transaction Coordinator
(MSDTC). In the event of a catastrophic failure in our database tier, a passive node
will be able to host these database services with little disruption to BizTalk.

Due to its role as a Master Secret Server, configuring Enterprise Single Sign-on for
High Availability is very important since the Single Sign-On database contains
passwords and other sensitive data.

An excellent post-configuration Database Optimization guide exists on
MSDN at:
http://msdn.microsoft.com/en-us/library/
ee377048(v=bts.70).aspx

This article provides advice on how to get better performance out of
your SQL Server environment.

Deploying, Tracking, and Administrating a BizTalk Server 2010 Solution

[272]

Role of Host and Host Instances in High
Availability
A BizTalk Host may be defined as a logical container where our BizTalk artifacts will
run. We can then think of Host Instances as the physical implementation of those
logical containers. More specifically, a Host Instance is a Windows Service that will
run our In-process BizTalk Services and act as a work process for our applications.

In the previous section, we discussed what is required from an infrastructure
perspective in order to support High Availability. From a BizTalk perspective, we
need to configure a server in such a way that we can take advantage of our redundant
infrastructure. More specifically, if we have two BizTalk Servers that are going to
run our applications, then we need to ensure that we have created the appropriate
Host and Host Instances on these servers. A prerequisite for High Availability to be
realized is to create a Host Instance on each BizTalk Server that our application will be
running on. For instance, if we have two servers called Server A and Server B and we
subsequently create a host called Process Host, we need to create a Process Host and
Host Instance on both Server A and Server B. This will allow our application to run
on both servers, and therefore, we will achieve High Availability.

In some situations, we may have a need to cluster a BizTalk Host Instance. Clustering
a BizTalk Host Instance is not a prerequisite in order to achieve High Availability.
However, it is required by some adapters to ensure the processes that are relying
upon these adapters, as they do have High Availability but do not process duplicate
messages. Consider a situation such as receiving a file from an FTP Server. If
you have two BizTalk Servers, where each server contains a Host Instance that is
supporting a BizTalk application receiving a file, you run the risk of processing
duplicate files. The FTP/SFTP adapters, in particular, are prone to this symptom. In
order to address this situation, Microsoft Clustering can be used to support a BizTalk
Clustered Host. Clustering a BizTalk Host ensures that only one instance of the Host
is online at any particular time. In the event that the server that is actively hosting
this Host Instance goes offline, an active instance will appear on the other node
within the Windows Cluster.

Chapter 6

[273]

Multiple MessageBox databases
Scaling out with BizTalk Server is relatively easy as we can continue to add new
BizTalk Servers to our group. At some point, the amount of Servers participating
in the BizTalk farm will exceed the capabilities of a single MessageBox, and our
Database Server now becomes a bottleneck. In the event that this occurs, we do
have the ability to introduce multiple MessageBox databases in order to increase
throughput in our database tier.

Configuring multiple MessageBox databases is outside the scope of this book, but it
should be a concept that we are aware of in order to increase the performance of our
BizTalk environment. For further information, please refer to the following MSDN
article at http://blogs.msdn.com/b/biztalknotes/archive/2013/08/06/how-to-
add-multiple-message-box-database-in-an-existing-biztalk-group.aspx.

Installation setup
The order and method in which we install and configure our BizTalk Servers is very
important. As with many server products by Microsoft, installing BizTalk is a two-
step process, as follows:

• Installation
• Configuration

Installation
The first step that we need to take is to install BizTalk prerequisites, BizTalk
Runtime, and related components on the chosen BizTalk Server(s). This software
can be installed even without the existence of an SQL Server. A detailed installation
guide, which includes a list of prerequisite components, may be found at:

http://www.microsoft.com/download/en/details.aspx?id=11503

Configuration
Configuring a multinode BizTalk Group will involve making some decisions that
we do not need to make in a single-node deployment. Some of these decisions
include which server(s) will support our BizTalk Databases and Single Sign-On
(SSO) System.

Deploying, Tracking, and Administrating a BizTalk Server 2010 Solution

[274]

While configuring a multinode BizTalk Group, we need to select Custom
configuration in the Microsoft BizTalk Server 2010 Configuration wizard,
as shown in the following screenshot:

Chapter 6

[275]

Configuring SSO
The configuration aspect of establishing a BizTalk environment requires a little
more planning. Only one BizTalk node should be configured at a time. For the first
node that is being configured, we will select Create a new SSO system. For any
subsequent nodes, we should select Join an existing SSO system, as shown in the
following screenshot:

Deploying, Tracking, and Administrating a BizTalk Server 2010 Solution

[276]

Setting up a BizTalk Group
Configuring a BizTalk Group is very similar to configuring an SSO System. The
reason for this is that the first node that is being configured will select Create a new
BizTalk Group, whereas the subsequent nodes will select Join an existing BizTalk
Group, as shown in the following screenshot:

Configuring Runtime settings
When it comes to the BizTalk Runtime screen, we have the ability to create default
In-process and Isolated Hosts and specify the accounts and groups that will support
these Hosts. If we are installing BizTalk on a 64-bit system, we will have the
opportunity to specify whether we want to create our default Hosts as 32-bit
or 64-bit Hosts.

Chapter 6

[277]

We also have the ability to specify whether or not to mark these Hosts as Trusted.
Trusted Hosts are used to establish a trusted relationship between MessageBox
and consuming services for authorization and outbound party-resolution purposes.
For the purpose of this chapter, we will use the default settings and create Non-
trusted Hosts.

If we would like to re-use this existing configuration in another environment or
server, we have the ability to export our configuration by clicking on the Export
Configuration button. If we decide to use this feature, then we will need to set our
passwords in the new environment as these details are not included in the exported
XML file, as shown in the following screenshot:

Deploying, Tracking, and Administrating a BizTalk Server 2010 Solution

[278]

The remaining screens in the configuration wizard pertain to non-core
components and therefore, are out of the scope of this chapter. For more
information pertaining to installing BizTalk in a multiserver environment,
please refer to the Microsoft installation guide, which can be found at:
http://www.microsoft.com/download/en/details.
aspx?id=11503

Adapters
After we have installed and configured BizTalk, we will discover that a variety of out
of the box adapters have been automatically included for us. These adapters include
the FILE, FTP, and WCF Adapters to name a few. The SB-Messaging adapter is new
for BizTalk Server 2013. It can be used to connect to Windows Azure Service Bus
Queues and Topics.

These are not the only adapters available to us out of the box. On the installation
media, another set of adapters called the BizTalk Adapter Pack are included.
Adapters within the BizTalk Adapter Pack allow us to connect to Line of
Business Systems such as the following:

• SAP
• SQL Server
• Oracle DB
• Oracle EBS
• Siebel

The adapters included in the BizTalk Adapter Pack have been highlighted in the
following screenshot. The rest of the adapters are installed as part of the default
installation procedure.

Chapter 6

[279]

Active Directory Groups and Users
When establishing a multiserver BizTalk environment, Active Directory Users
and Groups must be used. The following table lists the necessary groups and a
brief description of each group function. If you would like to see a more detailed
explanation of these various roles, please refer to the following MSDN web page:

http://msdn.microsoft.com/en-us/library/aa577661.aspx

Deploying, Tracking, and Administrating a BizTalk Server 2010 Solution

[280]

Group Group Description
SSO Administrators This group has sufficient permissions to administer the

Enterprise Single Sign-on Service. The account on which we
plan to run our Enterprise Single Sign-on Service(s) needs to be
a member of this group.

SSO Affiliate
Administrators

An SSO Affiliate application is used to provide credential
mapping for Single Sign-on Services. Since we can have many
different systems involved in Single Sign-on scenarios, we have
the ability to create Affiliate applications. This allows for some
segregation of administration between different subsystems.
We can use this group to add administrators for these different
affiliate applications.

BizTalk Server
Administrators

This group represents one of the more powerful groups in the
BizTalk Platform. Having membership in this group provides
us with the ability to install and manage applications, perform
a message inspection and resolution activities in Group Hub,
and manipulate Send and Receive Handlers for adapters.
Members of this group must also be a part of the SSO Affiliate
Administrators Group.

BizTalk Server
Operators

This group is targeted towards people with administration-like
responsibilities that do not require the same level of permissions
that are needed by those in the BizTalk Server Administrators
Group. Some of these activities include stopping and starting
applications, viewing service state and message flow, and
terminating or resuming service instances. This group does
not have the ability to view message context or content and
manipulate an application's configuration.

BizTalk Application
Users

This is the default name of the BizTalk Host Group that the
user for the BizTalk Server Application Host Instance needs to
belong to. Microsoft recommends that for each Host that you
create, you should also create a related Active Directory BizTalk
Host Group.

BizTalk Isolated Host
Users

Similar to BizTalk Application Users, this group is the default
Host Group for accounts that run the BizTalk Server Isolated
Host Instance(s). An example of using an Isolated Host would
include a solution that has exposed a WCF Service through IIS.
In our Receive Location for this WCF Service, we would specify
an Isolated Host.

EDI Subsystem Users Users within this group have access to the EDI database.
BAM Portal Users

BizTalk SharePoint Adapter Enabled Hosts

BizTalk B2B Operators Group

Chapter 6

[281]

Members of this group have access to the BAM Portal website. However, it is
important to note that even though these users can access the BAM Portal website, it
does not mean that these users have access to all views within the BAM Portal. Those
permissions still need to be provided through the BAM "bm" command-line tool.

Users within this group have access to the Windows SharePoint Services Adapter
Web Service.

A new BizTalk role, which has been created in BizTalk 2010, allows members to
perform all party-management operations.

Deploying BizTalk applications
In this section, we are going to discuss how to deploy BizTalk applications.
There are several ways to deploy BizTalk applications, including the following:

• Deploying from Visual Studio
• Building a Microsoft Installer (MSI) package that can be exported or

imported between environments
• Using command line-based tools, such as MSBuild and BtsTask
• Leveraging community frameworks, such as BizTalk Deployment

Framework and NANT

Using command-line or third party-based deployment tools are out of the scope of
both the exam and this chapter, so we are not going to go into any detail in these
areas. Instead, we will focus on deploying BizTalk applications from Visual Studio
and using MSI packages.

Sample deployment through Visual Studio
In order to walk properly through the deployment scenarios, we need a sample
solution. A sample solution called Example01-Deployment.sln can be found in the
C:\BTS2013CertGuide\Chapter06\ Example01-Deployment folder. The business
process behind this sample is that we have a business partner who has signed a
contract to use some of our parts in the production of their vehicles. The name of this
fictitious company is MBW Motors. When our company, HWLC Motors, discovers
a recall, we require our partner companies, such as MBW Motors, to request
replacement parts for the related recall.

Deploying, Tracking, and Administrating a BizTalk Server 2010 Solution

[282]

Our simple solution will receive a recall request from MBW and transform it into a
format that our recall system can support, as shown in the following diagram. We
will then deliver this message to a file's folder that our recall system can access.

Preparing the solution
In order to deploy a BizTalk application from Visual Studio, there are a few things
that we need to take care of first. They are as follows:

1. Right-click on our BizTalk Project and select Properties.
2. Click on the Signing label and then select <New…>, as shown in the

following screenshot:

Chapter 6

[283]

3. When prompted, provide the name, Example01-Deployment.snk, and
clear the Protect my key file with a password checkbox, as shown in the
following screenshot:

All BizTalk assemblies and helper assemblies that may be
called from BizTalk must be deployed to the Global Assembly
Cache (GAC). In order to allow assemblies to be installed in
the GAC, they must have Strong Name keys. Strong Name
keys may be created from Visual Studio or through the
sn–k<strongname>.snk command-line statement.

Deploying, Tracking, and Administrating a BizTalk Server 2010 Solution

[284]

4. In BizTalk 2006, Microsoft introduced the concept of a BizTalk application.
This is based around the idea that it would be nice to manage BizTalk
interfaces that are logically related as one application. For instance, if we
have an application for a specific department within a company, we could
include the department name as a part of the BizTalk Application Name.
We can then easily identify it when performing administrative tasks. With
this in mind, we need to click on the Deployment label and then look for
the Application Name textbox. For the purpose of this book, we are simply
going to call our application Chapter06-Example01. Once this is complete,
we can close this Property page, as shown in the following screenshot:

5. In the event we want to deploy our BizTalk application to a system other
than the current local system, we do have the ability to provide an alternative
Server Name in the Server field. In order to perform this action, we need to
ensure that we have the appropriate level of permissions on that server for
the account under which we are currently running Visual Studio.

6. We are now ready to deploy our application and can do so by right-clicking
on our Visual Studio Solution and then clicking on Deploy Solution, as
shown in the following screenshot:

Chapter 6

[285]

7. Provided our application has been deployed successfully, we can now
launch BizTalk Administration Console and discover if our application
exists. If the application exists, we will realize that it is pretty empty. We
will discover our Orchestration in the Orchestrations folder, but we will
not have any Receive Ports, Receive Locations, or Send Ports, as shown
in the following screenshot:

Binding Files
Binding Files are extremely important artifacts that can sometimes be difficult to
manage. The Files provide BizTalk Solutions with a lot of portability and bind all
of the major components together. Within a Binding File, we will be able to link
our logical and physical Send Ports and Receive Ports to our Orchestrations. We
can also include our URIs and other information required to connect to remote
systems. Binding Files also allow us to move our BizTalk applications between
the Development, Test, Quality Assurance, and Production environments with a
reduced need for manual configuration.

Deploying, Tracking, and Administrating a BizTalk Server 2010 Solution

[286]

There are many ways to manage Binding Files. In this section, we will discuss one
of the methods. There are some Binding File Management Solutions, such as the
BizTalk Deployment Framework, that aid in the management of Binding Files. Since
third-party tools are out of scope in terms of the certification exam, we will not be
discussing these methods. Instead, we will focus on a more manual approach.

To create a Binding File, we must first create our required Receive Location(s) and
Send Port(s). Once we have completely configured our solution, we can export our
configuration as a Binding File. Here are the steps that we need to perform:

1. Launch the BizTalk Administration Console and expand the
Chapter06-Example01 application.

2. On the Receive Ports label, right-click and navigate to New | One-way
Receive Port..., as shown in the following screenshot:

3. In the Name: textbox, enter ReceiveRecall, as shown in the following
screenshot, and then click on the OK button:

4. We now need to add a Receive Location by right-clicking on the Receive
Locations label and navigating to New | One-way Receive Location…, as
shown in the following screenshot:

Chapter 6

[287]

5. When prompted, click on the ReceiveRecall Receive Port and then on the
OK button.

6. Provide a Name: ReceiveRecallMBWRecall, Type: of FILE under Transport,
a URI: of C:\BTS2013CertGuide\Chapter06\FileDrop\DEV\MBW*. Copy.
xml, a Receive handler: of BizTalkServerApplication and a Receive
Pipeline: of XMLReceive. Once this information has been populated, as
shown in the following screenshot, we can click on the OK button:

Deploying, Tracking, and Administrating a BizTalk Server 2010 Solution

[288]

7. We now need to configure a Send Port. To do so, navigate to Send Ports |
New | Static One-way Send Port…, as shown in the following screenshot:

8. Provide a Name: of SendRecallToHWLC, a Transport Type: of
FILE, a URI: of C:\BTS2013CertGuide\Chapter06\FileDrop\
DEV\HWLCRecall%MessageID%.xml, a Send handler: of
BizTalkServerApplication, and a Send pipeline of PassThruTransmit.
Once this information has been populated, as shown in the following
screenshot, we can click on the OK button:

Chapter 6

[289]

9. We now need to bind our Orchestration to our Receive and Send Ports.
We can do so by double-clicking on Orchestrations, right-clicking on
Orchestrations, and then clicking on Properties…, as shown in the
following screenshot:

10. To finish binding our Orchestration to our ports, click on the Bindings label.
Next, we need to set our Host: to BizTalkServerApplication, MBWRecallIN
to ReceiveRecall, and HWLCRecallOUT to SendRecallToHWLC, as shown
in the following screenshot:

Deploying, Tracking, and Administrating a BizTalk Server 2010 Solution

[290]

11. At this point, we have configured the application and are now in a position
to export our configuration to a Binding File. To do so, we will simply right-
click on the name of our BizTalk application, Chapter06-Example01, and
navigate to Export | Bindings…, as shown in the following screenshot:

12. When prompted, we will navigate to Export | Bindings... from the current
application and save our file as C:\BTS2013CertGuide\Chapter06\
Bindings\Chapter06-Example01.DEV.Binding.xml.

13. The Binding File that we just created represents a Binding File that could be
used in a Development environment. For convenience, Test Binding File called
Chapter06-Example01.TEST.Binding.xml.has also been provided in the C:\
BTS2013CertGuide\Chapter06\Bindings\ folder. This new file represents
a Binding File that we can use in a TEST environment. The only difference
between the DEV and TEST files is that we use the appropriate subfolder called
Test in the C:\BTS2013CertGuide\Chapter06\FileDrop folder.

14. Now that we have multiple Binding Files, we are going to add these files to
our BizTalk application as resources. We can do so by right-clicking on our
BizTalk application, Chapter06-Example01, and then navigating to Add |
Resources…, as shown in the following screenshot:

Chapter 6

[291]

15. In the Add Resources dialog, we want to add both of our Binding Files
that can be found in the C:\BTS2013CertGuide\Chapter06\Bindings
folder of this chapter's sample code. We now want to specify which Target
Environment each of these Binding Files belongs to. So, we can select the
first file, Chapter06-Example01.DEV.Binding.xml, and then specify a
Target Environment: of DEV. We want to perform this same action with
our Chapter06-Example01.TEST.Binding.xml file, providing a Target
Environment of TEST this time. Optionally, we can specify the Overwrite
all checkbox in the event we have added these resources to our BizTalk
application previously, as shown in the following screenshot:

Deploying, Tracking, and Administrating a BizTalk Server 2010 Solution

[292]

16. Now that we have added our Binding Files to our BizTalk application as
resources, we can export our application as an MSI file. To do so, we need
to right-click on our BizTalk application, Chapter06-Example01, and then
navigate to Export | MSI file..., as shown in the following screenshot:

17. On the Welcome screen, click on Next to proceed to the next screen.
18. When prompted, we want to ensure that all of the artifacts we are interested

in, including the ones in our MSI package, are checked. This includes our
BizTalk assembly and Binding Files, as shown in the following screenshot:

Chapter 6

[293]

Our sample application does not use Trading Partner
Management and Global Parties. If our application did,
we could include Global Parties in our MSI package.

19. Since we are not hosting any Web or WCF Services, we can skip the Specify
IIS Hosts screen by clicking on Next.

20. On the Dependencies screen, click on Next to proceed. In the Destination
screen, provide a Destination application name: of Chapter06-Example01.
In the MSI file to generate: textbox, enter C:\BTS2013CertGuide\
Chapter06\MSI\Chapter06-Example01.msi. Finally, click on the Export
button to write the MSI file to the disk, as shown in the following screenshot:

21. Click on the Finish button to close the Summary screen.

Deploying, Tracking, and Administrating a BizTalk Server 2010 Solution

[294]

Sample deployment through an MSI
package
When the time comes to deploy our application to a different environment, we
will have an MSI package that contains multiple Binding Files. For this purpose,
in the next section, we are going to pretend that we are deploying our MSI
package to a TEST environment, and we will, therefore, use the TEST Binding File
when prompted. To keep things simple, we will just re-use our existing BizTalk
environment and delete our existing BizTalk application, as follows:

The following section requires that the C:\BTS2013CertGuide\
Chapter06\FileDrop\TEST folder exist. If you have extracted the
sample source code that has been provided with this book, then this
folder exists on your machine. If you have not extracted the source code,
please create this folder to ensure this sample functions correctly.

1. We need to delete our existing BizTalk application for this chapter and can
do so by right-clicking on Chapter06-Example01 and then clicking on Delete.
Should the Delete option be disabled, it is probably because our application
is currently started; it must be stopped before this command can be executed,
as shown in the following screenshot:

2. When asked whether you are sure you want to delete this application, click
on the Yes button.

Chapter 6

[295]

3. Deploying a BizTalk application, in most cases, is a two-step process. The
first step is to run the MSI package, which will register the application with
the Windows Operating System, from Windows and then load any related
assemblies in the Global Assembly Cache (GAC). To do this, we want to
find our MSI package in the C:\BTS2013CertGuide\Chapter06\MSI folder,
right-click on it, and then select Install, as shown in the following screenshot:

4. The installation wizard is straightforward, and we can simply accept
the defaults.

5. Once we have completed the MSI package installation, we still need to
import this MSI package in BizTalk Administration Console. At this point,
the Windows Operating System is aware of our BizTalk application but
BizTalk itself is not. To import our MSI package, we can right-click on the
Applications label and then navigate to Import | MSI file…, as shown in
the following screenshot:

Deploying, Tracking, and Administrating a BizTalk Server 2010 Solution

[296]

6. We now need to provide the location of our MSI package to the Import
MSI Wizard. We can find our MSI package in the C:\BTS2013CertGuide\
Chapter06\MSI folder, as shown in the following screenshot:

7. We now have the opportunity to provide an Application name. We will just
accept the default value, which is Chapter06-Example01, as shown in the
following screenshot:

Chapter 6

[297]

If we were redeploying an application, we would want
to select Overwrite resources, but since we deleted our
application prior to running the Import MSI Wizard, it
is not required.

8. We now have the opportunity to specify our Target Staging Environment.

Deploying, Tracking, and Administrating a BizTalk Server 2010 Solution

[298]

9. Since this walkthrough is focusing on a deployment to our TEST
environment, we will select TEST from the drop-down, as shown
in the following screenshot:

When we added Binding Files as resources in the previous
section, we specified a Target environment. If we did not provide
a Target environment, then we would want to select Default in
this previous screen. A Binding File that does not have a Target
environment will be used when Default is selected as the Target
Staging Environment, when importing an MSI file.

10. On the Import Summary screen, select Import and once that is done, click
on the Finish button. We will now discover that our application has been
successfully imported.

Chapter 6

[299]

It is important to note that for each server on which we would like our BizTalk
application to run, we need to install this MSI package on each Server, where a Host
Instance exists for this BizTalk Application. For example, if our application will
be using a Host called Process Host and this Host has instances on Server A and
Server B, then we need to install this MSI package on both Server A and Server B.
The reason for this is that our BizTalk assemblies must be installed in the Global
Assembly Cache (GAC) on each server where our application will run. This is in
addition to the MSI package being imported via BizTalk Administration Console,
which will subsequently update our BizTalk Management database.

Binding File dependencies
When importing Binding Files into a BizTalk environment, it is very important to
ensure that any assemblies and artifacts that the Binding File is referencing exist. For
instance, if we try to import a Binding File that references a particular Host, that Host
must exist for the import to be successful.

Another area to be cautious about is specifying a Host within a Send Port
configuration within our Binding File. A Host that is specified in a Send Port or
Receive Location for that matter, must also exist in the handler configuration of an
adapter. The following screenshot shows how this configuration should be set up.
Suppose we have a Send Port that is going to use the FILE Adapter and will use a
Host called HWLCSend. In order to configure this correctly, we need to navigate to
the Platform Settings node and then expand the Adapters node. We can now right-
click on the FILE Adapter and click on New Send Handler. We now have the ability
to specify HWLCSend as a Send Handler. The next time we import a Binding File
that is going to use the HWLCSend Host in a Send Port that uses the FILE Adapter
(as shown in the following screenshot), we will not receive any errors:

Deploying, Tracking, and Administrating a BizTalk Server 2010 Solution

[300]

BizTalk Application states
BizTalk has many different application states. Understanding these states can be
the difference between being a genius and a scapegoat. Modification of a BizTalk
state is usually the result of an action that has taken place. In many cases, altering
these states is due to an upcoming deployment, and we need to ensure that we
allow messages that are currently being processed to complete without letting
new messages into the BizTalk application. I am sure there are many horror stories
out there about an inexperienced admin who accidently terminated some inflight
messages because they did not understand these states.

Runtime Application states
There are three Runtime Application states. Setting these states is usually based upon
explicit actions by an administrator, but can also occur if system resource(s), such as
a source system, is not available. Do note that the following states do not account for
Host Instances being online or offline. We can have an application that is started, but
if we have Host Instances that are offline, this application will not function properly.

The following table describes these Runtime states in more detail:

State Description
Started In this state, all BizTalk application artifacts are enabled and ready to

perform processing.

Partially Started When an application is Partially Started, it means that some of the
application artifacts and resources are online. An application may be
placed into this state either explicitly by an administrator, or it may
be the result of some dependent system resource(s) being offline.
Consider a situation where we have a Receive Location that uses the
FILE Adapter to connect to a network file system that is currently
offline. In this situation, we will have a Receive Location that
automatically gets disabled, and therefore, the state of our application
will flip from Started to Partially Started.
We may have another situation where we have been asked to hold
or queue messages because a destination system is either down or
currently under maintenance. In this case, we want to stop the related
Send Port, but leave the Send Port enlisted. This will allow BizTalk
to queue these messages without sending them. It also results in the
application state flipping to Partially Started.

Stopped The final state is when an application is completely offline. This
means we have no Receive Locations, Orchestrations, or Send Ports
enlisted or capable of processing messages. An application enters this
state through the actions of an administrator.

Chapter 6

[301]

The following screenshot shows the working of these Runtime states:

When stopping an application, BizTalk provides us with some options that allow
us to control how the application will be stopped. Much like the Runtime states,
stopping an application will affect the state of a Host. The following table will
further explain each option when shutting down an application:

State Description

Partial Stop - Allow running
instances to continue

This option is ideal when you have inflight messages
that have a short duration. By stopping an application
that is using this mode, we will have all of our Receive
Locations disabled. Meanwhile, our Orchestration(s)
and Send Port(s) will continue to function. This allows
us to drain our application. No new messages can enter
the application, but messages that are currently in flight
have the opportunity to complete.

Partial Stop - Suspend running
instances

When we select Partial Stop - Suspend running
instances, it is like pressing the pause button on the
application. We cannot receive any new messages,
and any Messages/Service instances that are currently
being processed will be suspended. These messages/
service instances may be resumed if we attempt to start
our application. Using this option is ideal when we
have some Long Running processes, and it may not be
feasible to wait for any active instances to complete.

Deploying, Tracking, and Administrating a BizTalk Server 2010 Solution

[302]

State Description

Full Stop - Terminate instances This is the most destructive option of the three. When
this method is used, any messages or service instances,
will be terminated. This means that if we are in the
middle of processing a million-dollar purchase order
and we choose to stop an application using this mode,
we will lose this purchase order. This method needs to
be used selectively and by an administrator who clearly
understands the impact of performing this action.

The following screenshot shows options when shutting down an application:

Tracking events in BizTalk Server
Tracking events in BizTalk Server can be an expensive but valuable endeavor. This
activity is expensive as BizTalk will now need to look for specific properties or
message bodies within Message or Orchestration instances and record this data.
This activity can reduce the throughput of BizTalk Server but can become extremely
beneficial in support scenarios. If you have ever participated in a BizTalk Project that
involved multiple teams, you will inevitably have been asked "What happened with
message XYZ?" The tracking capabilities of BizTalk allow you to solve the mystery
much more easily.

Chapter 6

[303]

In this section, we are going to discuss some of the different ways in which a BizTalk
Administrator can track events as they occur inside BizTalk.

Tracking Receive Ports
We can enable our tracking properties on a Receive Port by right-clicking on the
Receive Port and then selecting Properties. Once you go into the Property screen of
the Receive Port, we need to click on the Tracking label.

We will discover the properties that we can set. The following table will elaborate on
each of these properties and its purpose:

Property Description
Track Message Bodies These options are related to saving a copy

of the message that has been received at two
different stages.

Request message before port processing When enabled, the content of the message
will be saved before passing through any
Pipeline.

Request message after port processing Enable this option when you want to save
the content of an inbound message after the
message has passed through a Pipeline.

Track Message Properties Use this option to track promoted properties
at two different stages of
receiving a message.

Request message before port processing Setting this property allows us to track a
promoted property when a message has been
received and before the message enters a
Pipeline.

Request message after port processing When enabled, promoted properties will be
tracked after a message has been through
a Pipeline. This option is very beneficial
in situations where a custom Pipeline
component has promoted a property
inside a custom Pipeline.

Deploying, Tracking, and Administrating a BizTalk Server 2010 Solution

[304]

The following screenshot shows the properties:

Tracking Orchestrations
Tracking an Orchestration is very similar to tracking a Receive Port. Much like a
Receive Port, each Orchestration has its own tracking properties. To enable tracking
on an Orchestration, right-click on it and then select Properties. Once you see this
Property screen, click on the Tracking label.

However, we have a few more options that we can set; they are further discussed in
the following table:

Property Description
Track Events These options are set by default and aid in

identifying the Orchestration events so that we can
query these events in the BizTalk Administration
Console.

Orchestration start and end Having this setting allows us to identify when an
Orchestration started and finished inside the BizTalk
Administration Console.

Chapter 6

[305]

Property Description
Message send and receive If we want to be able to record the time when a

message was sent or received, then we need to enable
this option.

Shape start and end When enabled, this setting can help troubleshoot
performance bottlenecks. When we are debugging
an Orchestration, we will be able to determine the
amount of time each shape took to execute.

Track Message Bodies These properties are very similar to the properties
that exist in a Receive or Send Port. It allows us to
save a copy of the message content as messages are
making their way through our Orchestration.

Before Orchestration processing This property and the remaining ones are only
enabled if Message send and receive—Track Event
is enabled. When enabled, the message content will
be saved prior to it, thus entering an Orchestration.
This property becomes extremely useful in situations
where we are using Direct Bound Ports and have
not received a message through a traditional
Receive Port.

After Orchestration processing The content of a message, after it has been processed
by an Orchestration, will be saved when this option
is enabled. Once again, this property is very useful in
Direct Bound Port situations. Otherwise, we would
not have a Physical Send Port that we could enable
message body tracking on.

Track Message Properties Much like Receive Ports, we can track promoted
properties for both incoming and outgoing messages.
This time around, properties are tracked when a
message enters or exits an Orchestration.

Incoming messages When this option is enabled, the properties will be
promoted when a message enters an Orchestration.

Outgoing messages When this option is enabled, we are able to track
promoted properties after a message has left an
Orchestration.

Deploying, Tracking, and Administrating a BizTalk Server 2010 Solution

[306]

The following screenshot shows the Tracking properties:

As you can see, there are a lot of events that can be tracked within a BizTalk
Orchestration. These events can be aggregated when we view the Orchestration
Debugger for an articular Service Instance. As we proceed from one step to another,
we can see exactly when the event began and concluded. While the list of tracking
events may seem to be comprehensive, there is one area that is lacking and that is
in the area of tracking how long it takes for a Map to execute. We do have visibility
into how long a message takes to construct, but if we have multiple events occurring
within a Construct Message shape, then we lose some granularity, as depicted in the
following screenshot:

Chapter 6

[307]

Tracking Send Ports
Tracking Send Ports works the same way as Tracking Receive Ports, the difference
being Tracking Send Ports will track messages entering and exiting a Send Port as
opposed to a Receive Port. The following table describes our tracking properties in
more detail:

Property Description

Track Message Bodies These options are related to saving a copy of
the message that is about to be sent at two
different stages.

Request message before port processing When this option is enabled, the content of the
message will be saved before passing through
any Pipeline.

Request message after port processing Enable this option when you want to save
the content of an outbound message after the
message has passed through a Pipeline.

Track Message Properties Use these options to track promoted
properties at two different stages of sending
a message.

Deploying, Tracking, and Administrating a BizTalk Server 2010 Solution

[308]

Property Description

Request message before port processing Setting this property allows us to track a
promoted property when a message is about
to be sent, but before the message enters a
Pipeline.

Request message after port processing When enabled, promoted properties will be
tracked after a message has been through a
Pipeline.

The following screenshot shows Tracking properties:

Tracking Promoted Properties
We also have the ability to track promoted properties and subsequently query
instances that match our criteria. In order to track a promoted property, we need
to select our Property Schema from within our Schemas folder that is within our
BizTalk application. We then need to view its properties and check the promoted
property that we are interested in tracking. This feature will be very beneficial in
content-based routing situations, where we are interested in messages that contain a
specific value, for example an Order Number, a location or a unique identifier. The
following screenshot shows where we can enable tracking of promoted properties:

Chapter 6

[309]

Provided we have promoted properties before deploying our application,
we can enable and disable these tracking properties as required.
However, we cannot retroactively obtain details about an Orchestration
or message if we do not have the tracking settings enabled. By setting
these tracking options, any message or Orchestration processed, going
forward, will be tracked.

Managing BizTalk applications using
BizTalk Administration Console
The BizTalk Administration Console is a very rich tool that allows us to manage
all aspects of our BizTalk applications. We have already touched upon some of its
capabilities, including managing Binding Files and MSI packages, in addition to
managing Hosts and adapter Handlers. This section is going to focus more on the
tools that allow us to determine the real-time health of our applications.

Deploying, Tracking, and Administrating a BizTalk Server 2010 Solution

[310]

This section has been broken down into the following six sections:

• Configuration Overview
• Work in Progress
• Suspended Items
• Grouped Service Instances
• Tracked Service Instances
• Tracked Message Events

Each of these functions is a core component of what is referred to as the BizTalk
Group Hub. When testing a BizTalk Application, if we do not get the outcome
that we expect, checking the BizTalk Group Hub is the preferred destination when
looking at troubleshooting the issue. The BizTalk Group Hub provides the broadest
level of coverage for our BizTalk Solutions.

Within the BizTalk Administration Console, each of these different sections provides
links to queries that we can run against our MessageBox and Tracking databases.
We also have the ability to create our own queries and save them so that we can re-
use them at a later time.

Configuration overview
In this section of Group Hub, we will discover our Group name, the name of our
Server, and the name of our management Database. More importantly, we get a
quick overview of the health of our BizTalk environment. We can see how many
Applications have been installed and the summary of their health. There are three
different states that are represented by icons. If all of our applications are stopped,
this icon will be red. If we have some applications started and some partially started
or stopped, the icon will be blue. If all applications are started, the icon will be green.

The next area to dive into is the Host Instances state view. If all of our Host Instances
are stopped, then this icon will be red. If we have some Host Instances started and
some stopped, then we will see an icon with a red exclamation mark (!). Finally, if
all Host Instances are online, the icon will be a green check mark, as shown in the
following screenshot:

Chapter 6

[311]

In the event that your environment contains Clustered Host
Instances, the BizTalk Administration Console is smart
enough to detect this situation and will correctly display the
state of our Host Instances, taking into account Active or
Passive Host Instances.

Work in Progress
This area deals with active processes that have not entered an exception or
suspended state. The Running service instances link provides a query that
will display the total amount of running instances.

Dehydrated orchestrations refer to Orchestrations that are currently sitting idle.
These Orchestrations may have just sent out a message to a destination system
and may now be waiting for a response back.

The messages that were not successfully sent to a downstream system and have their
Send Port configured to Retry will show up in the Retrying and idle ports link.

A message that has been found by a subscription but cannot be sent out due to a
Host Instance being offline will end up as Ready service instances. For instance,
suppose we have a message that was received through a ReceiveMessages Host
Instance. The Send Port that subscribes to this message uses a Host Instance called
SendMessages, but this Host Instance is currently offline. This message will remain
in this Ready service instances state until the SendMessages Host Instance comes
back online.

The last state that we are going to discuss is called Scheduled service instances.

Deploying, Tracking, and Administrating a BizTalk Server 2010 Solution

[312]

In some situations, we may want to save our messages until a certain part of the day,
and then release them. We can do so by setting a service window on a Send Port. The
number of messages that are currently in this state will be reflected here, as shown in
the following screenshot:

Setting a service window is not limited to Send Ports. We can also set
a service window on Receive Locations that prevents BizTalk from
receiving messages during a specific timeframe.

Suspended Items
At the top of the Suspended Items section, we will discover a summary of all of the
different Suspended service instances. There are two different types of Suspended
service instances: Resumable and Non-resumable. Resumable instances can be
restarted by a BizTalk Administrator. Messages may enter this state for a variety
of reasons, but a frequent way in which messages enter this state is when Retry
Thresholds of a Send Port have been exceeded.

Message Instances that cannot be restarted will remain in a Non-resumable state.
Messages may enter this state for many reasons, including whether a message
is experiencing a routing failure or whether an Orchestration has encountered a
catastrophic failure.

In the event that an Orchestration has encountered an unhandled exception, we can
expect our service instance to be in our Suspended service instances list, as shown
in the following screenshot:

Chapter 6

[313]

Group Suspended Service Instances
Within this section, we will discover four different links to queries. Each link will
take us to a Query Results view, but the information will be grouped depending
upon the link we clicked on.

The first link is called Grouped by Application. When selected, this link will take us
to a Query Results page that will group all of the Suspended Instances based upon
the BizTalk application they belong to. This feature becomes very useful if we are
only concerned with errors that belong to a specific application. It also declutters
some unrelated Suspended Messages that you may not immediately be interested in.

The second Suspended Instance Group that we are interested in is Grouped by Error
Code. When this link is clicked, we will see all Suspended Instances grouped by
their Error Code, regardless of which application they belong to. This type of query
is good when you are trying to troubleshoot the issue, whether or not an underlying
shared component is causing an issue.

When the Grouped by Service Name link is clicked upon, it will display all
Suspended Instances that are grouped by their Service Name. A Service Name may
include the name of a Receive Port, Orchestration, Send Port, or as in the following
example, a Routing Failure.

The Grouped by URI link will take us to a Query Results screen that will group our
exceptions by the URI that it is related to, as shown in the following screenshot. This
may be a Universal Naming Convention (UNC) path, Web Service URL, or even a
Database Connection String, Tracked Service Instances, and so on.

Deploying, Tracking, and Administrating a BizTalk Server 2010 Solution

[314]

Tracked Service Instances
Tracked Service Instances is a good way to search for particular service instances
that may have been successful or terminated. Service Instance includes messages
that were received, sent, or Orchestrations. If we want to search for both these
conditions, we can click on Completed instances, whereas if we want to only find
Terminated Instances, we can click on the Terminated instances link, as shown in
the following screenshot:

Tracked Message Events
If we are just interested in Message Events, we can click on the Tracked Message
Events link. Message Events include Send and Receive Events. If we are only
interested in Transmission failure events, we can click on this link. An example
of a Transmission failure could include a Message Instance that has exceeded the
threshold of a Send Port. The following screenshot shows the Tracked Message
Events list:

As you have seen, every time we click on one of these links, it runs a
query in the background. We also have the ability to create our own
queries. Manually recreating these queries each time can become a
tedious and labor-intensive endeavor. In order to reduce the manual
effort, we do have the ability to save our queries. If we decide to save
our queries in a central location, teammates can also take advantage
of these queries and become more productive.

Chapter 6

[315]

BizTalk Settings Dashboard
A common complaint with the earlier versions of BizTalk included a lack of
consistency when carrying out performance tuning. Tuning performance in
these earlier versions of BizTalk usually involved tweaking the registry settings,
configuration files, and modifying settings in the BizTalk Administration Console.

Another common complaint was that modified settings were often applied to the
entire BizTalk Group instead of more granular artifacts, such as Hosts. Microsoft.
made some significant enhancements to their performance-tuning story in BizTalk
2010. We do not need to visit as many locations to tweak performance any longer.
Instead, we will find a BizTalk Settings Dashboard that will allow us to make
performance tweaks to our BizTalk Group and Hosts from a central location.
Another beneficial feature is the ability to import and export our settings, which
allows for better consistency and portability across our BizTalk environments.

Viewing and modifying performance-tuning
settings
In order to view and modify the BizTalk Settings Dashboard, we need to perform the
following steps:

1. Within the BizTalk Administration Console, right-click on our BizTalk
Group and then select Settings, as shown in the following screenshot:

2. Within this BizTalk Settings Dashboard, we have settings related to our
BizTalk Group, our Hosts, and our Host Instances. Going through each of
these individual settings in detail is not within the scope of this chapter or
the exam. We will concentrate on some of the more frequently used settings.

Deploying, Tracking, and Administrating a BizTalk Server 2010 Solution

[316]

3. In the Group section of this dashboard, we will find global settings
pertaining to our BizTalk Group. Some of the more important settings
are shown in the following table:

Property Description

Configuration refresh interval Every time we make a change to our messaging
configuration, there is always a delay before it takes
effect. The default value is 60 seconds, which means if
we make a change to a Receive Location, these changes
will not take effect for these many seconds. Often,
administrators get frustrated when they make a change to
a configuration setting and become impatient. They then
start performing unnecessary actions such as restarting
Host Instances thinking that these actions have resolved
their issue. Instead, they just need to wait for the next
Configuration refresh interval.

Large message size In BizTalk 2006, Microsoft introduced a streaming
approach to transform large messages. This threshold
will determine whether to try and transform complete
messages or break the message up into a series of batches.

Chapter 6

[317]

4. In the Hosts section of the Dashboard, we have the ability to isolate settings
on a per-host basis. We have the ability to specify different configurations
for each Host that we have configured in our BizTalk Group. We can isolate
a Host by selecting our Host from the Host: drop-down, as shown in the
following screenshot:

5. Once we have selected the Host that we want to manipulate, we have many
different tabs where we can apply these settings, including the following:

 ° General
 ° Resource-based Throttling
 ° Rate-based Throttling
 ° Orchestration Throttling

6. The most compelling settings can be found on the General tab. On this tab,
we will find the Polling Intervals section. One of the strengths of BizTalk is
its ability to provide durable messaging. This means that while BizTalk is
processing messages, they will be published to our BizTalk MessageBox.

7. When this publishing occurs, BizTalk Subscriptions are evaluated. If a
subscription is determined, the subscriber will pick up the Message Instance
during its next Poll cycle. Both Orchestrations and Messaging, such as
Send Ports, can pick up these messages from a Host Work Queue. While
this type of architecture is very reliable, it does come at a cost. The default
Polling Intervals are set for 500 milliseconds (ms), which means that if we
have a Send Port that wants to send out a message, a check will be made
twice a second to see whether a message is available to be sent. For many
organizations, checking a Host Work Queue twice a second more than
satisfies their performance requirements. However, for some, this is just not
fast enough. For these organizations, we can tune the Hosts that have more
demanding performance requirements which need to be checked more often
than the default settings permit. However, you do need to be careful in these
situations since polling more frequently can also put more stress on your
SQL Servers.

Deploying, Tracking, and Administrating a BizTalk Server 2010 Solution

[318]

8. The opposite scenario also applies. Consider we have a batch that runs
infrequently, perhaps outside of the core business hours. In this situation,
there is no point checking our Host Work Queue so often. So, we can actually
tune our BizTalk Host to check less frequently than the default setting, as
shown in the following screenshot:

9. The final screen that we are going to discuss is the Host Instances screen.
In the previous screen, we had the ability to specify Host-specific settings.
We now have the opportunity to get even more granular by specifying a
particular Host Instance setting. We can choose which Host Instance we want
to manipulate and on which server we want to manipulate it by selecting it
from the Host Instance: drop-down list.

10. So, why would we want to change settings at the Host Instance level?
Perhaps we have different sets of hardware within our BizTalk Group.
Consider having a Host called BizTalkServerApplication that has Host
Instances on two nodes: A and B. Node A has more memory than Node
B, so we may want to tune Node B differently due to the differences in the
memory foot print, as shown in the following screenshot:

Chapter 6

[319]

11. Once we have chosen our Host Instance, we now have the ability to modify
the settings related to the following, as shown in the following screenshot:

 ° .NET CLR
 ° Orchestration Memory Throttling

For more information related to performance tuning for BizTalk, please
visit the following link: http://msdn.microsoft.com/en-us/
library/ff629706.aspx.

Deploying, Tracking, and Administrating a BizTalk Server 2010 Solution

[320]

Exporting and importing performance tuning
settings
Now that Microsoft has provided access to Performance Tuning Settings from a
single dashboard, they have also provided a convenient way to import and export
these settings. This is a really valuable feature. It allows us to make changes to our
BizTalk Group in a Quality Assurance (QA) or TEST environment. Once we have
tested our application and are happy, we can export these settings from this QA or
TEST environment and promote them to a Production environment.

To export our BizTalk Dashboard Settings, we need to perform the following steps:

1. While in the BizTalk Settings Dashboard, click on the Export button from
the Group, Host, or Host Instance screen and then click on the OK button, as
shown in the following screenshot:

Chapter 6

[321]

2. We are now prompted to provide a folder and a filename for our
configuration to be stored in. Once we have provided this information, we
should see a confirmation similar to the one in the following screenshot:

3. We now have an export of our settings from our current environment. If we
want to import these settings to another environment, we can launch the
BizTalk Settings Dashboard and click on the Import button, as shown
in the following screenshot:

4. Upon clicking on the Import button, we are prompted for the location of our
file that contains our settings from our previous environment. Once we have
provided our file, we can click on the Next button to continue.

Deploying, Tracking, and Administrating a BizTalk Server 2010 Solution

[322]

5. In the event that the environment where we generated our settings file is
not an exact match to our Destination environment, BizTalk provides us
with a Host Mapping tool. This tool will allow us to copy settings from
any Host in our source file and map it to a Destination Host. We can find
an example of this feature in the following screenshot. In this example, we
set the HWLCSend settings to both the BizTalkServerApplication and
HWLCSend Hosts in the Destination environment. Once we have completed
our mapping, we can click on the Next button to continue, as shown in the
following screenshot:

6. We also have the ability to perform Host Instance Mapping much like we
have done with Hosts. Once we have completed this mapping, we can click
on the Next button to continue, as shown in the following screenshot:

Chapter 6

[323]

7. We now have an opportunity to review our settings. Once we are happy with
them, we can click on the Import button to have these settings applied in our
Destination environment, as shown in the following screenshot:

Deploying, Tracking, and Administrating a BizTalk Server 2010 Solution

[324]

8. Once BizTalk has finished importing our settings, we will be prompted
with a Summary Report. We can now click on the Finish button to close
this wizard, as shown in the following screenshot:

Testing your knowledge
1. Yossi, a BizTalk Server Administrator at HWLC Motors, has been asked to

shut down the Part Recall BizTalk application at 12 a.m. He is not supposed
to allow any new Part Recall requests into the system after 12 am but
needs to ensure that any messages from the previous day are completed
before completely turning off the application. Upon launching the BizTalk
Administration Console, he discovers that there are five messages that are
currently being processed that were received at 11:59 p.m. from the previous
day. What should Yossi do to prevent losing these five messages while not
allowing any new messages into the system?

a. Stop the BizTalkServer Application Host Instance(s).
b. Stop the Part Recall Application with the option Partial

Stop—Suspend running instances.
c. Stop all Receive Locations and then immediately stop the application

with the option Full Stop—Terminate instances.
d. Stop all Receive Locations, wait for the active instances to complete,

and perform Full Stop—Terminate instances.

Chapter 6

[325]

2. A new version of the HWLC Motors—Part Recall Application has been built
by a new developer named Mick. Mick has added the functionality to receive
Part Recall requests from another automobile manufacturer named MGC.
Since MGC will be sending in Flat File versions of the requests, Mick has
instructed Brooke, a BizTalk Administrator, to track only message bodies for
the Flat File versions of the inbound messages. How should Brooke configure
tracking to support this scenario?

a. In the tracking settings for this Orchestration that processes
these Recall requests, enable Track Message Bodies—Before
Orchestration processing.

b. In the Receive Port that supports receiving these Recall requests,
enable Track Message Bodies—Request message before
port processing.

c. Brooke does not need to perform any action. All Receive Ports have
message body tracking enabled by default.

d. In the tracking settings for the Orchestration that processes
these Recall requests, enable Track Message Bodies—After
Orchestration processing.

3. HWLC Motors has just successfully tested a new Credit Application System
in their QA environment. Paige, a BizTalk Administrator with HWLC
Motors has updated a copy of the existing QA Binding File with the new
URIs for both Receive Locations and Send Ports. BizTalk will communicate
with all of these URIs using the FILE Adapter. Within the QA Binding File,
all Receive Locations and Send Ports were configured to use a Host called
HWLCSendReceive. Paige has gone ahead and created these Host and Host
Instance(s) in the Production environment. However, when she goes to
import the updated Binding File, she gets an error and is unable to complete
the operation. What could be wrong?

a. The user account that the HWLCSendReceive Host Instance(s) uses/
use does not have appropriate access to the URIs that the Receive
Locations and Send Port are trying to access.

b. The FILE Adapter's Send and Receive Handlers have not been
configured to use the HWLCSendReceive Host.

c. When Paige imported the BizTalk Dashboard Settings from the QA
environment, she must have made a mistake when performing the
Host Mapping.

d. The default Host, BizTalkServer Application, has not been added to
the FILE Adapter's Send and Receive Handlers.

Deploying, Tracking, and Administrating a BizTalk Server 2010 Solution

[326]

4. The Credit Application System that was recently deployed to production
consumes a third-party web service. During some high volume periods, there
are some warnings in the Event Viewer indicating that the web service is
not currently available. Winson, a BizTalk Administrator at HWLC Motors,
has determined that during these situations, BizTalk is unable to submit
all messages to this server in its first try. To ensure that messages are not
suspended, Winson has increased the Retry Count in the Send Port that
communicates with this Web Service. Winson's boss, Steef-Jan, has asked him
how many messages are currently being processed and were not successfully
submitted on the first attempt. What steps should Winson take in order to
provide his boss with the correct answer?

a. In the BizTalk Group Hub, Winson should click on the Suspended
service instances—Non-resumable link.

b. In the BizTalk Group Hub, Winson should click on the Running
service instances—Ready service instances link.

c. In the BizTalk Group Hub, Winson should click on the Running
service instances—Retrying and idle ports link.

d. In the BizTalk Group hub, Winson should click on the Running
service instances—Scheduled service instances link.

5. Saravana, a BizTalk developer at HWLC Motors, needs to prepare an MSI
package for the BizTalk Administration team so that they can deploy the
MSI package in production. Saravana needs to include a proper Binding
File in this MSI package. When he added his Binding File as a resource
to his application, he forgot to include a Target environment. When the
administrator installed the MSI package, there was not a Binding File that
had a Target environment of production. The administrator just installed
it using the <Default> Target Staging environment and default settings.
What can Saravana expect his BizTalk application to look like after the
administrator completes its activities?:

a. Saravana's BizTalk application will be deployed but will not have
any Receive Locations, Send Ports, or bound Orchestrations.

b. Saravana's application assemblies will be found in the Global
Assembly Cache, but there will not be a BizTalk Application
found in the BizTalk Administration Console.

c. The default BizTalk application has been updated to include all
of Saravana's Receive Locations and Send Ports that he specified
in his Binding File.

d. Saravana's BizTalk application will exist and will have been
configured using the settings that he provided in his Binding
File, which was added as a resource to his BizTalk application.

Chapter 6

[327]

Summary
In this chapter, we discussed many topics related to administrating a BizTalk
environment. Some of these concepts were new to BizTalk 2010, such as the BizTalk
Settings Dashboard. Others, such as adding Hosts to Send and Receive Handlers for
a particular adapter, go back to the older versions.

In the exam, you can expect around 16 percent of the questions to pertain to BizTalk
Server 2010 Administration. A thorough understanding of the content in this chapter
should put you in a good position to do well in this section in the exam.

In the 2013 Partner Assessment exam, you can also expect a similar proportion of
questions related to BizTalk Administration activities.

We are now going to switch gears and get into a more developer-focused topic:
"Integrating Web Services and Windows Communication Foundation (WCF)
Services". In this chapter, we will learn how to expose and consume WCF Services.

Integrating Web Services and
Windows Communication

Foundation (WCF) Services
In the previous chapter, we were focused on administration concepts that allow
us to deploy and manage our applications. In this chapter, we are going to focus
on integrating Web Services and Windows Communication Foundation (WCF)
services.

Service Oriented Architecture-based solutions (SOA) have been increasing in
popularity over the past decade. In the Microsoft technology stack, WCF has played
an important role in SOA solutions. With this in mind, an entire section has been
included in the Microsoft BizTalk Server 2010 exam that deals specifically with WCF.

The WCF framework is very rich and supports many different integration scenarios,
including synchronous and asynchronous messaging, encryption, reliability,
interoperability with other Web Service platforms, transactions, message durability,
and extensibility.

The extensibility features of WCF create many opportunities for both BizTalk
and non-BizTalk applications that leverage WCF. As WCF continues to evolve,
these new investments that Microsoft makes in the technology suddenly are
made available to BizTalk without massive rework or invasive software upgrades.
An example of this is the ability to communicate with Azure Service Bus. When
Microsoft added capabilities to WCF in order to support this communication,
BizTalk benefitted as well.

Starting with BizTalk Server 2006 R2, Microsoft shipped BizTalk with a set of
WCF-based adapters for communicating with WCF-based applications and
traditional Web Service-based applications.

Integrating Web Services and Windows Communication Foundation (WCF) Services

[330]

Now that we have established some base information about WCF Adapters, it is time
to take a deeper dive into other WCF topics:

• Out of the box WCF Adapters
• Configuring a WCF Adapter
• Custom behaviors
• Exposing Schemas and Orchestrations by using publishing wizard
• Consuming WCF Services
• Handling web exceptions
• Testing your knowledge

Out of the box WCF Adapters
In BizTalk 2010, Microsoft shipped five physical adapters that have preconfigured
bindings, including BasicHttpBinding, WsHttpBinding, NetTcpBinding,
NetNamedPipeBinding, and NetMsmqBinding. Two custom adapters are also
included: one is called WCF-Custom, which is an in-process adapter and WCF-
CustomIsolated, which is an out-of-process Adapter.

The following table includes a brief description of each of these adapters:

Adapter name Adapter description

BasicHttpBinding This adapter conforms to the WS-Interoperability (WS-I) basic
profile. It is one of the more interoperable bindings that allows
communication with WCF and traditional Web Services.

WsHttpBinding This adapter provides more security-related features than other
adapters. It conforms to the WS-Security and WS-Transaction
specifications while supporting both text and Message
Transmission Optimization Mechanism (MTOM) encoding.

NetTcpBinding The NetTcpBinding adapter supports both WS-Security and
WS-Transaction specifications such as WsHttpBinding. The
difference being that NetTcpBinding does so over the TCP
protocol and uses Binary message encoding.

Chapter 7

[331]

Adapter name Adapter description

NetNamedPipeBinding This adapter provides a cross-process communication in a
secure and optimized manner. Transport security is used for
the security model, named pipes for message delivery, and
Binary for message encoding such as NetTcpBinding.

NetMsmqBinding This adapter provides the ability to connect to MSMQ queues
from a BizTalk Server so that we can build loosely coupled
solutions and address disconnected client scenarios.

WCF-Custom The WCF-Custom adapter takes advantage of WCF
extensibility features by allowing us to plug in custom
bindings. If you are familiar with the BizTalk Adapter Pack,
this is how Microsoft has provided WCF-based adapters for
connecting to Line of Business systems such as SAP, Oracle,
and SQL Server.

WCF-Custom Isolated This adapter allows us to use the extensibility features of WCF
in an Isolated Host such as Internet Information Services (IIS).

If you are interested in learning more about the WCF-Custom
Adapter and how you can leverage the BizTalk Adapter Pack to
communicate with Line of Business Systems, please see http://
www.packtpub.com/microsoft-biztalk-2010-line-of-
business-systems-integration/book for more details.

Configuring a WCF Adapter
In this section, we are going to discuss how to configure the WCF-BasicHttp
Adapter and then, how to configure the WCF-Custom Adapter that will
use wsHttpBinding. When we configure the WCF-Custom adapter to use
wsHttpBinding, we will discover some of the extensibility features that were
discussed in the previous section.

Integrating Web Services and Windows Communication Foundation (WCF) Services

[332]

Using out of the box WCF-BasicHttp Send
Adapter
In this example, we are going to create a new Send Port that will use the WCF-
BasicHttp Adapter and then, we will explore the various configurations provided
in the adapter. In order to do so, there are a few steps that we need to follow:

1. Create a BizTalk Application and then, add a Send Port by navigating to
Send Ports | New | Static Solicit-Response Send Port, as shown in the
following screenshot:

2. From the Type drop-down list, select WCF-BasicHttp and then, click on the
Configure button.

Chapter 7

[333]

3. The first area that we want to configure is the Address (URI) textbox. In this
textbox, we need to provide the location of the Web Service endpoint that we
are going to be communicating with. The URI depicted in the next screenshot
represents a fictitious Credit Check service.

4. The second area that we want to focus on is the SOAP Action header.
The purpose of this text area is to provide a mapping between the name
of the operation in our logical Send Port within an Orchestration and the
BTS Operation property so that we can submit the right message to the
Web method.

It is important to note that when we consume WCF Services and import the
Binding Files, which are generated by the wizard, the SOAP Action header
values in the Binding File match the value that exists in the Logical Port that
was also generated for us. If we change the name of the operation in our
logical Send Port, we will have a mismatch between our new value and the
value that exists in the Binding File. If we make a change to the operation
name in our Orchestration, then we will also have to make a change to our
Send Port to ensure we do not have unexpected run-time errors. If you are
interested in reading more on this topic please refer to the following URL:
http://blogs.msdn.com/b/ adapters/archive/2007/12/26/
why-does-the-adapter-say- action-is-not-understood-
even-though-i-am-using-the- binding-file-generated-by-
the-consume-adapter-service- wizard.aspx

Integrating Web Services and Windows Communication Foundation (WCF) Services

[334]

5. The next tab that we want to explore is the Binding tab. Some properties of
interest include the timeout settings and are explained in the following table:

Property name Property description
Open timeout This property represents the amount of time a channel open operation

has to complete.

Send timeout Use this property to set the amount of time that a send operation has
to complete. When used as part of a solicit-response scenario, this
value encompasses the total amount of time for the interaction to
complete. If we are sending a large message, we may need to increase
this timeout to allow for the request and response messages to be
processed within this window.

Close timeout A timespan that is used to indicate the amount of time that a channel
close operation has to complete.

The following screenshot illustrates the properties that were discussed in the
preceding table:

Chapter 7

[335]

6. The next tab is the Security tab. Within this tab, we have many different
security modes that we can utilize. These are shown in the following table:

Security mode Description
None No credentials will be passed. This is the equivalent

of providing anonymous credentials.

Transport Secures the transport (communication) for the
mutual authentication and the message protection.
Messages will not be secure from an end-to-end
perspective if there are any hops in between the
source and destination systems.

Message Uses the WS-Security specification to secure
messages. Each message is self-contained to allow
for the contents to be confidential while being able
to be authenticated. Message level security allows
messages to remain secure across network hops that
may exist between source and destination systems.

TransportWithMessageCredential This mode is only available with some
bindings including BasicHttpBinding,
WSFederationHttpBinding, NetPeerTCPBinding,
and WSHttpBinding. It provides the performance
benefits of using the Transport Mode with the
flexibility that the Message Security Mode provides.
This allows a message(s) to be secure including hops
between the source and destination systems.

TransportCredentialsOnly This security mode will provide credentials to a
WCF Service but does not provide protection when
sending these credentials. In order to securely pass
credentials across service calls, another means is
required such as using Internet Protocol Security
(IPsec).

Integrating Web Services and Windows Communication Foundation (WCF) Services

[336]

The following screenshot illustrates the properties that were discussed in the
preceding table:

7. The Proxy tab is used to provide configuration information related to a Proxy
Server. Some organizations implement Proxy Servers that filter out HTTP
requests based upon a URL. Chances are if you work for a large organization,
your web browser is configured to use a Proxy Server. From my experience,
this tab is not used very often but is definitely beneficial should your
organization implement Proxy Servers that filter outbound traffic.

Proxy settings Setting description
Use send handler proxy settings For a particular send handler or Adapter, we have the

ability to specify a global value that will be used for
any Send Port that uses this default value. If the send
handler does not have a value populated, then no
proxy server will be used.

Do not use proxy In the event we have populated a send handler to
include Proxy Server information, and if we do not
want to use a Proxy Server for this particular interface,
we can override this global value by specifying do not
use proxy.

Use proxy Use this option if you need to provide a proxy setting
and want to override the value that exists in the send
handler.

Chapter 7

[337]

The following screenshot illustrates the properties that were discussed in the
preceding table:

8. The last tab that we want to focus on is the Messages tab. In the
Outbound WCF message body section, we have two options with two
different behaviors. The following table describes the differences between
these two options:

Option Description
Body—BizTalk request message body This is the default option and is usually

sufficient in most use cases. When this
option is selected, BizTalk will use the
message body that has been passed to the
Port as the message body of the outgoing
SOAP message.

Template—content specified by template This option can be used to add XML
nodes that wrap around our BizTalk
message. For instance, if we needed to
wrap our BizTalk message in a new root
node, create a standard message body or
provide a namespace; we can do so by
selecting this option.

Integrating Web Services and Windows Communication Foundation (WCF) Services

[338]

9. In the Inbound BizTalk message body section, we have a few options when
it comes to receiving the inbound message for a Solicit Response Send Port.
The following table will describe these three options:

Option Description
Envelope--entire <soap:Envelope> When this option is selected, the entire

soap:Envelope and contents will be used as
the BizTalk message body.

Body--contents of <soap:Body> element This is the default value and satisfies most
use cases. When this value is selected, only
the contents of the soap:Body will be used
as the BizTalk Message Body.

Path--content located by body path This option can be used to extract a portion
of the response message that BizTalk is
receiving and use it as the incoming BizTalk
message. What is interesting about this
option is that you can have multiple Xpath
statements separated by the '|' character.

10. The last section that we are going to explore is Error handling. If we select
the Propagate fault message checkbox, this fault message will be published
to subscribing applications. If we do not enable this feature, any fault
messages will end up being suspended and are available in the BizTalk
Administration Console:

Chapter 7

[339]

Using out of the box WCF-BasicHttp
Receive Adapter
This chapter would not be complete if we only focused on the Send Port Adapter.
However, you will discover that the Receive and Send Adapters share some common
properties. Properties that have already been covered in the Send Port have been
omitted unless the behavior is different in Receive scenarios. We will further
investigate some of these common properties:

1. In the initial screen of our Receive Location, we will select the WCF-
BasicHttp Transport Type. In this case, we will select the default
BizTalkServerIsolatedHost Receive handler. What is important to understand
about this handler is that it is running out of process, which means it is
a process that BizTalk does not control. In this case, the Host is Internet
Information Services (IIS). For our Pipelines, we want to select XMLReceive
as our Receive Pipeline, so the necessary properties can be used in the
subscription evaluation process. Since we do not have any special processing
when providing a response, we will stick with the PassThruTransmit in the
Send Pipeline field.

2. In order to further explore the remaining settings, we need to click on the
Configure button:

Integrating Web Services and Windows Communication Foundation (WCF) Services

[340]

3. Once we have clicked on the Configure button, we will discover that a new
dialog appears with four tabs. The first tab that we are going to discuss is the
General tab. The primary configuration that needs to be made on this tab is
providing the local address of the web service in the Address (URI): textbox.
In this case, we do not need to provide the name of the server or protocol
(http://). The address is relative to the default website that exists in IIS.

Chapter 7

[341]

4. On the Binding tab, we have the ability to specify the following properties:

Property Description
Open timeout This property represents the amount of

time that a channel open operation has to
complete.

Send timeout Use this property to set the amount of time
that a send operation has to complete. When
used as part of a solicit-response scenario,
this value encompasses the total amount of
time for the interaction to complete. If we
are sending a large message, we may need to
increase this timeout to allow for the request
and response messages to be processed
within this window.

Close timeout A timespan is used to indicate the amount
of time that a channel close operation has to
complete.

Maximum received message size (bytes) This is the default value for the maximum
size a message can be in order to be
processed. In some scenarios, where you will
be receiving larger messages, this value will
need to be increased.

Message encoding Within this dropdown, we have the ability
to specify whether or not we will use Text or
MTOM for our Message encoding.
Services that involve receiving XML should
use the Text value whereas if we need to
receive any binary data such as images or
PDFs, you will want to use MTOM.

Text encoding Provided we have chosen Text as our
Message encoding type, we have the ability to
specify how that text should be encoded. Our
options include utf-8, utf-16, or utf-16BE.

Maximum concurrent calls Indicates the maximum number of service
calls being processed across a Service Host
object.

Integrating Web Services and Windows Communication Foundation (WCF) Services

[342]

The following screenshot illustrates the properties that were discussed in the
preceding table:

5. In the Security tab, we will discover options that are very similar to those
exposed in the WCF Send Ports. As we have already discussed many of those
options, we will focus on an option that is not included in the Send Port
configuration.

6. When a Security mode, other than None is selected, the Use Single Sign-On
checkbox will become visible/enabled. By enabling this checkbox, the WCF
Adapter can now issue an SSO ticket. The WCF Adapter requires credentials
that will be associated with the ticket. Using this feature allows user context
to be passed from source applications to destination. This then allows
BizTalk to execute operations on other systems on behalf of this user.

Chapter 7

[343]

7. The final tab that we will discuss is the Messages tab. Once again, this tab
is very similar to the Messages tab that exists on WCF Send Ports. We will
focus on the properties that have not already been covered in this chapter.

8. The area we are going to focus on is the Error handling section. Within this
section, we have the ability to enable the following options:

Property Description
Suspend request message on failure When enabled, if there is a Receive Pipeline

error or routing failure, BizTalk will suspend
the incoming message, and it will be available in
the BizTalk Administration Console. The client
will consider the transmission of this message to
be successful but will not receive an exception
message back by default.

Include exception detail in faults If the client does require exception information
to be passed back, then this property needs to be
checked. The end result is that a SOAP fault will
be returned back to the caller.

Integrating Web Services and Windows Communication Foundation (WCF) Services

[344]

The following screenshot illustrates the properties that were discussed in the
preceding table:

Understanding Custom behaviors
One of the benefits of using the WCF-Custom or WCF-CustomIsolated Adapters is
the ability to specify a Custom behavior. A Custom behavior acts as an interceptor
and can be used in both Receive and Send scenarios. If you are not familiar with
custom behaviors, you are probably wondering why they exist since we have BizTalk
Pipelines. Remember, WCF is not a technology that is exclusively used by BizTalk.
WCF can be used outside of BizTalk and therefore Custom behaviors benefit non-
BizTalk Solutions as well. The ability to intercept messages as they are being received
or sent is something that other Web Service technologies do not provide. So having
this capability is one reason to use WCF Adapters over the classic SOAP Adapter.

Once you have compiled a custom behavior and placed it in the Global Assembly
Cache (GAC), it now needs to be registered. In WCF applications that do not involve
BizTalk, Custom behaviors need to be registered inside the server's machine.config
file. You can generally find the machine.config file here c:\<windows>\ Microsoft.
NET\Framework\<version>\config\machine.config. Another option that we have
when registering Custom behaviors is to do so in the adapter's handler configuration.

Chapter 7

[345]

To register a Custom behavior in a handler's configuration, go through the
following steps:

1. Navigate to Adapters and then, select WCF-Custom as shown in the
following screenshot:

2. In the center pane, you should see all of the available handlers available
for this adapter. Double-click on the Send or Receive handler of the
BizTalkServerApplication.

Integrating Web Services and Windows Communication Foundation (WCF) Services

[346]

3. Now click on the Properties button.

4. We now have the ability to import a file that contains our registration
information for our Custom behavior assembly. We can do so by clicking on
the Import button and then, select our configuration file.

So which location is a better place to store Custom behavior registrations? In many
situations, it is a personal preference, but it is important to understand that you can
have the configuration of a custom behavior in only one location.

Chapter 7

[347]

If you have a mixture of Custom WCF and BizTalk, then perhaps using the machine.
config file is a better place to store this configuration as it will all be in one place. If
you do not have a mixture of Custom WCF and BizTalk, perhaps you would want
to store your Custom behavior configuration in BizTalk. In the event that you have
multiple BizTalk Servers, storing this information inside your BizTalk configuration
may also reduce maintenance complexity.

Some organizations have restrictions on editing files that exist
underneath the C:\Windows folder. In these situations, you can
leverage the adapter's handler configuration instead.

Exposing Schemas and Orchestrations
as WCF Services
In this section, we are going to move away from some of the theoretical aspects
of WCF and actually expose a BizTalk process as a WCF Service so that it can be
consumed by client applications. When it comes to exposing BizTalk Services, we
have two options to exhibit BizTalk processes as WCF Services:

• Schemas
• Orchestrations

There are a few subtle differences between these two operations:

• Exposing Schemas can be used in message-only solutions and processes
that include Orchestrations. A few additional steps, including naming Web
Method operations and manually selecting Schemas is required, but you get
more control in return.

• Exposing Orchestrations gives you less flexibility when naming your Web
Method operations and automatically selects the Schemas that will be used in
our WSDL contract. This method speeds up the process of exposing a BizTalk
process as a service but provides us with less flexibility.

In order to demonstrate this functionality, a solution has been provided in this
chapter's sample code called Example01-ExposeWCFService. The purpose of this
sample is to determine whether or not a customer is eligible for financing from
our car dealership. In order to keep things simple, we will keep all our business
logic that will determine their eligibility in BizTalk as opposed to a database or
Business Rules Engine.

Integrating Web Services and Windows Communication Foundation (WCF) Services

[348]

The focus of this example is discussing how to expose a WCF Service, so we will not
go into extensive details around other aspects of the BizTalk Solution.

Within our solution, we will find three different BizTalk Projects: one that will
be used to include our Maps, another for our Orchestration, and finally one for
our Schemas. Here are some additional details about the artifacts that make up
our solution:

Artifact name Artifact description

FinanceRequest_to_
DealerFinanceApprovedResponse.btm

This map will perform the transformation
when a customer's credit rating has been
approved.

FinanceRequest_to_
DealerFinanceRejectedResponse.btm

This map will perform the transformation
when a customer's credit rating has been
rejected.

processCustomerFinanceRequests.
odx

The BizTalk Orchestration that will
manage our business process.

CustomerFinanceRequest.xsd The Schema for the message that we are
expecting from a client application.

CustomerFinanceResponse.xsd The Schema for the message we will be
providing back to our client once we have
determined whether our client has been
approved for financing.

The following screenshot illustrates the BizTalk Solution that was discussed in the
preceding table:

Chapter 7

[349]

If we further examine our BizTalk Orchestration, we will discover the
following logic:

1. Receiving an instance of our CustomerFinanceRequest.xsd message
through a Logical Port that has been configured to receive a request and send
a response.

2. A Decide shape will determine whether this customer's finance request will
be approved. The business rule is if the customer has a Credit Score that is
greater than five and had a greater income than the loan amount, they will
be approved. In order to easily facilitate this logic, some of the elements
included in the CustomerFinanceRequest.xsd message have been marked
as distinguished fields.

3. If the customer has acceptable credit, then we will call the FinanceRequest_
to_DealerFinanceApprovedResponse.btm map.

4. Should the customer not have acceptable credit then we need to call the
FinanceRequest_to_DealerFinanceRejectedResponse.btm map.

5. Finally, we need to send an instance of our CustomerFinanceResponse.xsd
message back to the calling client.

The following screenshot illustrates the steps that were previously described:

Integrating Web Services and Windows Communication Foundation (WCF) Services

[350]

At this point, we can deploy our application into an application called Chapter07-
Example01. Once our deployment is complete, we can focus on our second activity,
which is exposing our two Schemas as WCF Services. Choosing to expose our
Schemas, as opposed to Orchestrations, gives us more flexibility into how our
artifacts are named and also gives us more flexibility should we need to modify
our Schemas in the future.

In order to expose our Schemas as a WCF Service, we need to perform the
following steps:

1. From the Tools menu in Visual Studio, click on BizTalk WCF Service
Publishing Wizard, as shown in the following screenshot:

2. Within this step of the wizard, we have a few options that we need to consider:

Feature Description

Service endpoint Select this value if you are interested in exposing
a service. When you do so, it will enable the three
following additional properties that we can manipulate.

Adapter name (Transport type) By setting this property, we have the ability to specify
which adapter we want to use when exposing this
service. The options include WCF-BasicHttp, WCF-
WSHttp, and WCF-CustomIsolated.

Chapter 7

[351]

Feature Description

Enable metadata endpoint If we want to expose metadata so that the client code
can be generated through tools such as ServiceUtil.
exe, we need to enable this property.

Create BizTalk receive
locations in the following
application

By enabling this feature and specifying a BizTalk
Application, this wizard will automatically create a
Receive Port and Receive Location in the application
that we specify. This is part of the reason why we
previously deployed our BizTalk Application so that we
would have an application available during this part of
the wizard.

Metadata only endpoint (MEX) If we were only interested in exposing metadata, then
we would select this property.

The following screenshot illustrates the properties that were discussed in the
preceding table:

If we decide that we want to change the adapter for this service after
we have published our WCF Service, the only way to do so is to run
this wizard again and republish our service using the adapter that we
would like to use.

Integrating Web Services and Windows Communication Foundation (WCF) Services

[352]

Since we want to publish Schemas as a WCF Service, we can execute the following
steps:

1. Select Publish schemas as WCF Service and then, click on the Next button.

2. We now have the ability to specify the name of our virtual directory that
will be created inside of IIS, the name of our Service, the name of our Web
Method and provide both the request and response Schemas. After we have
provided this information, we can then click on the Next button.

Chapter 7

[353]

3. The next property that we have the ability to manipulate is the
Target namespace of WCF Service. In our solution, we will provide
http://Chapter07.Example01/ and then, click on the Next button.

4. We now need to provide the location or URL for our service that will be
deployed to the local machine. What we will discover later on is that a virtual
directory called Chapter07Example01 will be added to our default website in
IIS. The other property we can manipulate is called Allow anonymous access
to WCF Service. For the purpose of this demonstration, we will enable this
property and click on the Next button:

Integrating Web Services and Windows Communication Foundation (WCF) Services

[354]

5. Our last step to complete is to review our metadata that is about to be
exposed and then, click on the Create button provided we are satisfied.

6. Provided everything executes correctly, we should see the confirmation
message indicating that our service has been created successfully.

Chapter 7

[355]

7. If we launch IIS now, we will discover that our WCF Service has been
created, and we now have our Example01.svc and Web.config files, as
shown in the following screenshot:

By default, when this virtual directory is created, it will use the Default
Application Pool identity to run this web application. By default, this
Application Pool identity will not have the access to BizTalk resources
and therefore, you will get an error when you try to browse this service
via a web browser. In order to fix this issue, create an Application Pool
that has an identity of the BizTalk Isolated Host Instance user and then,
configure this web application to use this newly created Application Pool.

Testing our WCF Service
Before we can test our application, we need to ensure that we have our application
fully configured, started, and that we have a Host Instance enabled for our
Orchestration.

In order to simplify our test, we are going to leverage a tool called WCFTestClient,
which is available as part of our Visual Studio installation. For 64-bit systems, we can
find the application here C:\Program Files (x86)\Microsoft Visual Studio
10.0\Common7\IDE\ WcfTestClient.exe.

For 32-bit systems, we can find it here C:\Program Files\Microsoft Visual
Studio 10.0\Common7\IDE\ WcfTestClient.exe.

With our WCFTestClient application open, we need to perform the following steps:

1. Right-click on My Service Projects and then, click on Add Service as shown
in the following screenshot:

:

Integrating Web Services and Windows Communication Foundation (WCF) Services

[356]

2. Now we need to specify our WCF Service URI, which in this case happens to
be http://localhost/Chapter07Example01/Example01.svc, and click on
the OK button.

3. Our Request message needs to be populated and then, we can click on the
Invoke button. After a few seconds, we should receive a reply and have it
displayed in our Response section.

Chapter 7

[357]

Exposing WCF Services to Windows
Azure Service Bus
The ability to expose BizTalk endpoints to Windows Azure Service Bus was
introduced in BizTalk Server 2010 as a feature add-in. In BizTalk Server 2013,
the ability to expose endpoints to Windows Azure Service Bus is an out of the
box feature.

To enable this feature, we continue to use the BizTalk WCF Service Publishing
Wizard much like we did for the previous example. The difference is that a few
new screens have been introduced.

After we have selected the adapter that we would like to use to support our WCF
Service, we have the opportunity to use the Add a Service Bus endpoint option
as illustrated in the following screenshot:

After we have chosen to Add a Service Bus endpoint, we will go through the
regular process of choosing between exposing an Orchestration or Schema as a WCF
Service. We also need to name our Service and Operation and select the appropriate
Orchestration or Schema that we would like to expose.

Integrating Web Services and Windows Communication Foundation (WCF) Services

[358]

Another new screen that has been introduced into this wizard is the Service Bus
Endpoint Configuration. The first configuration option we have to choose is
the appropriate Relay Binding. We can choose between NetTcpRelayBinding,
BasicHttpRelayBinding, or WS2007HttpRelayBinding. The next area that we need
to populate is our Service Namespace and indicate whether we want to allow our
endpoint to be discoverable and whether we want to include a metadata exchange
on the cloud.

Our Service Namespace is something that we need to create in the Windows Azure
Portal. The portal is available at http://www.windowsazure.com. We have the
ability to provide any name that we like, provided it is not already in use. The
following screenshot illustrates how we can populate this screen:

A core concept within Azure Service Bus is the idea of an Issuer Name and Issuer
Key. These two properties act as our credentials when accessing Windows Azure
Service Bus. Once again, we will be able to retrieve these values from the Windows
Azure portal. Once we have them, we need to populate the fields that are shown
in the following screenshot. Within this screen, we also have the ability to enforce
a client to provide credentials when accessing our service and whether we want
clients to provide credentials when accessing the metadata exchange.

Chapter 7

[359]

Once we have provided our credentials to access the Service Bus, we can complete
the wizard in the same manner that we did earlier in this chapter.

When exposing endpoints to outside parties, it is important to
consider interoperability. Not every organization that consumes
your service is running on a Windows platform. For instance, if
you are expected to expose an endpoint that conforms to the WS-I
Basic Profile 1.1, then we want to ensure that we select the WCF-
BasicHTTPRelay Adapter as it conforms to this standard.

Exposing only Service Metadata
Consider a situation where we have a service that has already been exposed. In this
case, it is an in-process service that does not rely upon IIS to host the endpoint. An
example of this situation may be a NetTCP endpoint hosted by BizTalk. In this case,
how can we provide a service contract to a consuming application that it could use
in order to conform to the message formats we are expecting? The answer can be
found in the BizTalk WCF Service Publishing Wizard!

Integrating Web Services and Windows Communication Foundation (WCF) Services

[360]

When we launch the BizTalk WCF Service Publishing Wizard, we have the
opportunity to create an endpoint or we have the ability to publish metadata
exchange (MEX) endpoint. Utilizing this process will allow us to select an existing
Receive Location and then generate a MEX endpoint for that Receive Location.
The following screenshot provides an illustration of the screen that we will use to
generate this metadata. Once the metadata endpoint has been published, we can
provide this endpoint to our consuming application. They would use this endpoint
to generate their Schemas but would send messages to our in-process endpoint
which could be a NetTCP endpoint.

Consuming WCF Services from BizTalk
Server
In the previous section, we discussed how BizTalk can expose WCF Services that can
be consumed by client applications. In this section, we are going to turn our previous
scenario around and have BizTalk be the client and consume a WCF Service.

Chapter 7

[361]

Our business process in our previous example was a finance service that a car
manufacturer provides to its customers. This car manufacturer has some strict
financing rules that require the customer to have a Credit Score that is greater than
five and an income that is greater than the loan amount. As the car manufacturer
wants to sell more cars but does not want to take on additional financing risks, they
have established an agreement with a third-party financing agency. So, if a customer
does not fit the financing criteria of the car manufacturer, they can try to get the
credit from this third-party agency. The third-party agency has looser requirements
than the car manufacturer but in turn charges more interest.

Consume Sample WCF Service
In order for the third-party agency to facilitate financing requests, they have
exposed a WCF Service that can be called from the car manufacturer's BizTalk
Server. This WCF Service is included in this chapter's sample code in the folder:
C:\BTS2013CertGuide\Chapter07\Example02-ConsumeWCFService\Example02-
ThirdPartyFinanceService

In the ThirdPartyFinanceService.cs file, we will discover our interface
called IThirdPartyFinanceService, which contains one operation called
ThirdPartyFinanceApproval. This operation requires that a business object of type
FinanceRequest is provided and in turn, a business object of type FinanceResponse
will be returned. Both of these business objects are defined in the following code:

namespace Example02_ThirdPartyFinanceService
{

 [ServiceContract]
 public interface IThirdPartyFinanceService
 {
 [OperationContract]
 FinanceResponse ThirdPartyFinanceApproval
 (FinanceRequest fRequest);
 }

 [DataContract]
 public class FinanceRequest
 {
 string customerName ="";
 int customerCreditScore = 0;
 double financeAmount = 0;
 double income = 0;

Integrating Web Services and Windows Communication Foundation (WCF) Services

[362]

 [DataMember]
 public string CustomerName
 {
 get { return customerName; }
 set { customerName = value; }
 }
 [DataMember]
 public int CustomerCreditScore
 {
 get { return customerCreditScore; }
 set { customerCreditScore = value; }
 }
 [DataMember]
 public double FinanceAmount
 {
 get { return financeAmount; }
 set { financeAmount = value; }
 }
 [DataMember]
 public double Income
 {
 get { return income; }
 set { income = value; }
 }
 }
 [DataContract]
 public class FinanceResponse
 {
 bool isApproved = false;
 double financeAmount = 0;
 string customerName = "";
 string financeCompany = "";

 [DataMember]
 public bool IsApproved
 {
 get { return isApproved; }
 set { isApproved = value; }
 }

 [DataMember]
 public double FinanceAmount
 {
 get { return financeAmount; }

Chapter 7

[363]

 set { financeAmount = value; }
 }
 [DataMember]
 public string CustomerName
 {
 get { return customerName; }
 set { customerName = value; }
 }
 [DataMember]
 public string FinanceCompany
 {
 get { return financeCompany; }
 set { financeCompany = value; }
 }
 }
}

In the ThirdPartyFinanceService.svc.cs file, we will find the implementation of
the ThirdPartyFinanceApproval operation that was declared in the previous code
listing. This operation may be found inside the ThirdPartyFinanceService class,
which implements our interface called IThirdPartyFinanceService.

The ThirdPartyFinanceService class has less restrictive financing requirements
than the car manufacturer's BizTalk Solution. In this service, a customer's financing
will be approved if their Credit Score is greater than two and they have an income
that is greater than $10,000:

namespace Example02_ThirdPartyFinanceService
{

 public class ThirdPartyFinanceService :
 IThirdPartyFinanceService
 {

 public FinanceResponse
 ThirdPartyFinanceApproval(FinanceReque st fRequest)
 {
 FinanceResponse fResponse = new FinanceResponse();

 fResponse.CustomerName = fRequest.CustomerName;
 fResponse.FinanceCompany = "Wearsy Inc.";
 fResponse.FinanceAmount = fRequest.FinanceAmount;

 if (fRequest.CustomerCreditScore > 2 &&
 fRequest.Income > 10000)

Integrating Web Services and Windows Communication Foundation (WCF) Services

[364]

 {
 fResponse.IsApproved = true;
 }
 else
 {
 fResponse.IsApproved = false;
 }
 return fResponse;
 }
 }
}

Consuming our WCF Service from BizTalk
We need a published endpoint that we can consume from our BizTalk Solution
inside of Visual Studio in order to generate our required Schemas and Logical Port.
The following steps will allow us to consume the Third Party Finance WCF Service
that is available in this chapter's source code:

1. One way to publish this WCF Service is to simply start the debugger in our
C# - WCF Service Project. In order to do this, we simply press the F5 key or
click on the green arrow as shown in the following screenshot:

2. Once we have pressed the F5 key or clicked on the green arrow, we will
discover that a local development server instance has been initialized. We now
need to double-click on the yellow icon as shown in the following screenshot:

Chapter 7

[365]

3. After we have clicked on this icon, the following dialog will be displayed.
Click on the hyperlink shown in the dialog to display the contents of this
directory:

4. In this directory listing, we will discover our service called
ThirdPartyFinanceService.svc. If we click on this link, we will launch the
landing page for our service.

Integrating Web Services and Windows Communication Foundation (WCF) Services

[366]

5. We now have a URL that we can use from within our BizTalk Solution.

As we are going to build upon the solution that we built in the
previous example, a copy of that solution has been made available
in the folder: C:\BTS2013CertGuide\Chapter07\Example02-
ConsumeWCFService\Example02-ConsumeWCFService. This
will allow us to simply redeploy our application that will contain the
changes we are about to make without forcing us to republish our
WCF Service that we built in the previous example.

6. From our BizTalk Solution, we now need to generate Schemas that are based
upon our WCF Service's request and response message types that we just
built. In order to do this, we need to right-click on our Chapter04-Example01.
Schemas project, select Add, and then select Add Generated Items.

Chapter 7

[367]

7. We will now select the Consume WCF Service label, click on the Consume
WCF Service label, and click on the Add button:

8. The Welcome to the BizTalk WCF Service Consuming Wizard dialog
should now appear. Click on the Next button to proceed.

9. We will now select Metadata Exchange (MEX) endpoint and click on
the Next button. This will allow us to provide the URL of the third-party
financing service that we just launched.

Integrating Web Services and Windows Communication Foundation (WCF) Services

[368]

10. We will now provide the Metadata URL that we discovered in step 5. Next,
we will need to click on the Get button, and we will discover that our Service
Description page will load within this dialog. Now, we click on the Next
button to continue.

11. We now have the opportunity to modify the target namespace, but we will
just leave it as is. In order to import the Schemas of our service, we need to
click on the Import button.

12. We can now click on the Finish button to complete the wizard.

Chapter 7

[369]

Configuring generated WCF Service artifacts
In the previous section, we consumed a WCF Service. The result of this action is that
we now have several artifacts in our BizTalk Solution including an Orchestration,
Schemas, and Binding Files. We now need to configure these artifacts by performing
the following steps:

1. If we examine our Schemas Project, we will discover several new artifacts
have been added to our solution including:

 ° A Binding File, called ThirdPartyFinanceService.BindingInfo.
xml that includes a Send Port based upon the WCF-BasicHttp
Adapter. We can import this Binding File into our Application within
the BizTalk Administration Console.

 ° A Binding File, called thirdPartyFinanceService_Custom.
BindingInfo.xml that includes a Send Port based upon the
WCF-Custom Adapter. We can import this Binding File into our
application within the BizTalk Administration Console.

 ° An Orchestration that contains a preconfigured logical port type
and multipart messages that we can leverage to call this third-party
service.

 ° Schemas that represent the structures we can expect to send and
receive.

2. We now need to recompile our Schemas project so that the Orchestrations
project will be able to access these newly added artifacts.

Integrating Web Services and Windows Communication Foundation (WCF) Services

[370]

3. Once we have compiled our Schemas project, we should be able to create a
new Multi-part Message Type in our processCustomerFinanceRequests.
odx Orchestration based upon our Schemas that were added to our Schemas
project.

4. With our multipart messages created, we now need to create a request and
response message based upon these new multipart types.

.

5. Next, we need to add a map called FinanceRequest_to_
ThirdPartyFinanceRequest.btm, which will transform our incoming
CustomerFinanceRequest into a ThirdPartyFinanceApproval request that
we can send to our third-party agency.

Chapter 7

[371]

6. We also want to add a map that will deal with the responses generated from
the third-party financing company called ThirdPartyFinanceResponse_to_
FinanceResponse.btm.

7. In order for our Orchestration project to access these new maps, we need to
recompile our Maps project.

8. Since we are going to leverage a third-party finance service for
customers who do not qualify for dealer financing, we can remove the
ConstructMessage_msgFinanceResponse shape.

Integrating Web Services and Windows Communication Foundation (WCF) Services

[372]

9. We now want to insert the FinanceRequest_to_
ThirdPartyFinanceRequest. btm map that we created in step 5 of this
section in the Else branch.

10. After inserting this map, we need to add both Send and Receive shapes.
In the Send shape, we want to specify msgThirdPartyRequest and in the
Receive shape, we want to specify msgThirdPartyResponse.

11. The next item that we need to address is adding a logical port that will
support sending and receiving messages to and from the WCF Service. In this
case, we want to leverage the logical Port Type that was created for us when
we used the wizard to consume our third-party service. However, since
we specified our Schemas project when we ran this wizard, we now have
an Orchestration in our Schemas project. Even though we have a reference
from our Orchestration project to our Schemas project, we cannot access this
logical Port Type by default. By default, the Type Modifier is set to Internal.
If we want to use this logical Port Type in our Orchestration project, we need
to set our Type Modifier to be Public.

Chapter 7

[373]

Also pay attention to the Type Modifier property when exposing
Orchestrations as WCF Services. You cannot expose an Orchestration
unless the Type Modifier property has been set to Public.

12. We also need to modify our Multi-part Message Types so that they also have
a Type Modifer of Public. By doing so, our Port Type is available to other
Orchestrations within our project.

Integrating Web Services and Windows Communication Foundation (WCF) Services

[374]

Another option that we have is to exclude this Orchestration that was
generated by the Consume WCF Service Wizard and add it to our
Orchestration project. Once we have added it to our Orchestration
project, we would need to modify our .NET Namespace so that it is
conformed to the rest of the project.

13. Once we have modified our logical Port Type so that it can be accessed
from other projects, we now want to recompile our Schemas project so that
we can access this logical Port Type by dragging a Port shape onto our
processCustomerFinanceRequests.odx Orchestration. When we do this,
a Port Configuration Wizard will launch. In the Port Configuration Wizard
dialog, provide a name for this Port such as Port_ThirdPartyService and
then, click on the Next button.

14. When prompted to select a Port Type, choose Use an existing Port Type, and
then, select our ThirdPartyFinanceService Port Type:

Chapter 7

[375]

15. When prompted to select a Port direction of communication, choose I'll be
sending a request and receiving a response. The type of Port binding that
we need to choose is Specify later.

16. Click on Finish to complete the wizard and then, drag lines from our newly
added Send and Receive shapes to this new logical Port.

17. We now need to add our ThirdPartyFinanceResponse_to_
FinanceResponse.btm map that we created in step 6 of this section so that
we can transform our response from our third-party service into the response
type that we return back to our calling client.

18. The end result is that our Else branch will look similar to the following
screenshot:

Integrating Web Services and Windows Communication Foundation (WCF) Services

[376]

19. We can now deploy our application and then, import the
ThirdPartyFinanceService.BindingInfo.xml Binding File that was
generated by the Consume WCF Service Wizard. Once we have imported this
Binding File, we will discover that the following Send Port has been created.

20. In preparation of testing our new application, we need to restart the Host
Instance that supports our Orchestration and messaging processes. In this
scenario, we will use the BizTalkServerApplication Host Instance.

21. We also need to bind and start our application.

Testing our Custom WCF Service
Once again we are going to leverage the WCF Test tool as our client application. This
time we are going to send a message into BizTalk that will not satisfy the dealer's
financing requirements but will satisfy our third-party financing requirements. This
means that our customer Credit Score should be less than five, but greater than two
and our income should be greater than $10,000.

Chapter 7

[377]

In our response document, the FinanceCompany being returned should be Wearsy
Inc., which indicates that it was our third-party service responding, as shown in the
following screenshot:

Manually importing WSDL files
In the previous example, we were able to generate artifacts required to support
calling a WCF Service by consuming a WSDL, or metadata exchange endpoint by
specifying the URL for these artifacts. In some situations, this may not be possible
if we are integrating with another party and network boundaries prevent us from
accessing their service during the early development phase(s). When this situation
arises, we do have the ability to import a WSDL file manually without having the
access to the service.

Integrating Web Services and Windows Communication Foundation (WCF) Services

[378]

In the previous example, when we were presented with the following screen, we
chose to select Metadata Exchange (MEX) endpoint. If we want to select a WSDL file
that has been provided to us via email or some other means, we can select Metadata
Files (WSDL and XSD) instead. This will allow us to generate the required artifacts
to call another service without having real-time access to the service.

Handling web exceptions
When BizTalk consumes WCF Services, the opportunity exists for exceptions to be
thrown. When this event occurs, we need to catch these exceptions and deal with
them gracefully. If we do not handle them properly, we can expect suspended-
service instances inside the BizTalk Administration Console.

The scenario that we are about to walk through will demonstrate how BizTalk can
handle Typed Exceptions that have been thrown from a Custom WCF Service. The
business scenario is that some customers at our car dealership may want to have
custom paint applied to their new or used car. The car dealership will leverage an
external Autobody shop to perform this work. However, some cars and colors are
not valid to have this work done. This service will validate whether the car can have
custom paint applied to it. In situations where a desired color has not been passed in,
the WCF Service will throw a typed exception called PaintServiceException.

Chapter 7

[379]

The source code for this demonstration can be found in the C:\BTS2013CertGuide\
Chapter07\Example03-Exceptions, which is part of this book's sample code
download. Within this folder, we will discover a folder called Example03-
CustomPaintService. This folder contains our Custom WCF Service project called
Example03-CustomPaintService.csproj. If we open this project, we will discover
the following:

1. We are storing our operation and data contracts in a file called
ICustomPaintService.cs. Within this file, we will discover that we
have an operation contract called CheckCustomPaintAvailability.
This method has been decorated with FaultContract that is of the type
PaintServiceException:
namespace Example03_CustomPaintService
{
 [ServiceContract(Namespace="http://Chapter07-
 Example03")] public interface ICustomPaintService
 {
 //Our Web Method that contains a Fault Contract
 attribute
 [OperationContract]
 [FaultContract(typeof(PaintServiceException))]
 CarResponse CheckCustomPaintAvailability(Car car);
 }

2. Our first data contract represents our request object, which happens to be a
car. Within this object, we have three properties including a car model, car
year, and a desired color:
 [DataContract]
 public class Car
 {
 string carModel = "";
 int carYear = 0;
 string desiredColor = "";

 [DataMember]
 public string CarModel
 {
 get { return carModel; }
 set { carModel = value; }
 }
 [DataMember]
 public string DesiredColor
 {

Integrating Web Services and Windows Communication Foundation (WCF) Services

[380]

 get { return desiredColor; }
 set { desiredColor = value; }
 }
 [DataMember]
 public int CarYear
 {
 get { return carYear; }
 set { carYear = value; }
 }
 }

3. Our response object is called CarResponse and has two properties including
whether the service request is valid, from a business perspective, and the
desired color being returned:
 [DataContract]
 public class CarResponse
 {
 bool isValid = false;
 string desiredColor = "";

 [DataMember]
 public bool IsValid
 {
 get { return isValid; }
 set { isValid = value; }
 }

 [DataMember]
 public string DesiredColor
 {
 get { return desiredColor; }
 set { desiredColor = value; }
 }
 }

4. The last data contract that we need to deal with is the one that
represents our Typed Exception. We are calling this typed exception
PaintServiceException, and it has three properties including an error
code, error message, and details:
 [DataContract]
 public class PaintServiceException
 {

Chapter 7

[381]

 int errorcode=0;
 string errormessage="";
 string details="";
 public PaintServiceException()
 {

 }
 [DataMember]
 public int ErrorCode
 {
 get { return errorcode; }
 set { errorcode = value; }
 }

 [DataMember]
 public string ErrorMessage
 {
 get { return errormessage; }
 set { errormessage = value; }
 }
 [DataMember]
 public string Details
 {
 get { return details; }
 set { details = value; }
 }
 }
}

5. The next file that we want to look at is called CustomPaintService.
svc. cs. Within this file, we will discover our Web Method that we
declared in the previous steps. An area that we want to focus on is where
we determine the following code line is: car.DesiredColor == null ||
car.DesiredColor=="". If either of these situations exists, we want to
populate our Typed Fault Exception object called pse and then, throw a new
FaultException, passing in our pse object. Otherwise, if all information has
been processed, we will construct a CarResponse object and indicate whether
this is a valid scenario:
namespace Example03_CustomPaintService
{

 public class CustomPaintService : ICustomPaintService
 {

Integrating Web Services and Windows Communication Foundation (WCF) Services

[382]

 public CarResponse CheckCustomPaintAvailability
 (Car car)
 {
 try
 {
 CarResponse carResponse = new
 CarResponse();

 if (car.DesiredColor == null
 ||car.DesiredColor =="")
 {
 PaintServiceException pse =
 new PaintServiceException();
 pse.ErrorCode = 123;
 pse.ErrorMessage = "A Desired Color
 must be provided";
 pse.Details =
 "CheckCustomPaintAvailability
 Method is missing a required
 parameter";
 throw new FaultException
 <PaintServiceException>
 (pse,new FaultReason
 ("CheckCustomPaintAvailability
 Method raised an Exception"));
 }

 if (car.CarYear > 2010 && car.DesiredColor
 != "Hot Pink")
 {
 carResponse.DesiredColor=car.DesiredColor;
 carResponse.IsValid = true;
 }

Chapter 7

[383]

 else
 {
 carResponse.DesiredColor =
 car.DesiredColor;
 carResponse.IsValid = false;
 }
 return carResponse;
 }
 catch (Exception ex)
 {
 throw ex;
 }
 }
 }
}

6. Once we have built our Custom WCF Service, we will need to consume it
from BizTalk much like we did earlier in this chapter. You can find a BizTalk
Solution called Chapter07-Example03.sln in the C:\BTS2013CertGuide\
Chapter07\Example03-Exceptions folder that has this step already
completed.

7. When we consume our WCF Service this time, we will discover a difference.
This time around we will add a Configured Port to our Orchestration that
will include a PaintServiceExceptionFault operation:

Integrating Web Services and Windows Communication Foundation (WCF) Services

[384]

8. We will not connect this operation to a Send or Receive shape. Instead, we
need to wrap our Send/Receive shapes that communicate with our WCF
Service around a Scope so that we can add an Exception Handler. For the
purpose of our scenario, this Scope shape can have its Transaction Type
set to None:

9. When we go to configure our Exception Handler, we can actually use
this PaintServiceExceptionFault operation as our Exception type:

Chapter 7

[385]

10. If an exception is raised, the Exception Handler will catch it and process it. In
this case, we want to simply write out the result to a File Drop. It is important
to note that when a typed exception is caught, we will have an instance of the
Exception Object that we configured in our Exception Handler. If we want
to actually send that message, we need to assign this object to an instance of
our PaintServiceExceptionFault message:

Integrating Web Services and Windows Communication Foundation (WCF) Services

[386]

11. Once we have made these changes, we need to deploy our application. Once
our application has been deployed, we need to make a modification to our
WCF Send Port so that we can handle our Typed Exception message being
returned from our WCF Service. On the Messages tab, we need to modify
some properties in the Inbound BizTalk message body section. Select the
Path – content located by body path radio button. Then, we need to modify
the Body path expression and set it to /*[local-name()='CheckCus
tomPaintAvailabilityResponse' and namespace-uri()='http://
Chapter07- Example03']|/*[local-name()='Fault']/*[local-
name()='detail']/*[local-nam e()='PaintServiceException']. We
also need to ensure that Propagate fault message remains enabled so that
our application will be aware when faults have been raised.

By specifying an Xpath expression, we have the ability to receive either
a valid response or a typed exception from the WCF Service. While
somewhat discrete, BizTalk does support the ability to provide multiple
Xpath statements by separating them using a delimiter.

12. Sample files exist in the C:\BTS2013CertGuide\Chapter07\Example03-
Exceptions\FileDrop folder that allows us to test both the successful and
unsuccessful scenarios. In the case of our unsuccessful scenario, BizTalk will
catch a typed exception and write the results to disk.

Chapter 7

[387]

Testing your knowledge
The following questions will test your knowledge of Web Services and WCF Services
Integration. These questions will reinforce the concepts that were previously
discussed in this chapter:

1. A car manufacturer, HWLC Motors, has outfitted its Sport Utility Vehicle
(SUV) lineup with FireBridge tires. Unfortunately, this line of FireBridge
tires had a factory recall on them due to factory defects. The FireBridge
Company has exposed a WCF Service that car manufacturers can use to
order replacement tires. Due to the popularity of these FireBridge tires, their
WCF Service is very busy and service requests are taking longer to complete.
HWLC Motors is using BizTalk and have noticed that they are receiving
some client-side timeouts as a result of the increase in service execution time.
What should HWLC do to their BizTalk configuration?

Integrating Web Services and Windows Communication Foundation (WCF) Services

[388]

a. In the WCF Send Port, they should increase the Open
timeout property.

b. In the WCF Send Port, they should decrease the Send
timeout property.

c. In the WCF Send Port, they should increase the Send
timeout property.

d. In the BTSNTSvc.exe.config file, the ServiceCallTimeOut
property value should be increased.

2. Tom, a developer for HWLC Motors, has been given strict BizTalk naming
conventions by his boss Mikael. Tom has just consumed the third-party
financing WCF Service in BizTalk using the WCF-BasicHttp Binding. In order
to comply with Mikael's naming convention, Tom renames the operation
on the logical port used to communicate with the WCF Service, from
ThirdPartyFinanceApproval to External_ ThirdPartyFinanceApproval.
Tom then compiles/deploys his application and then, imports the Binding
File that was generated during the Consume WCF Service Wizard. Upon
running the service for the first time, Tom discovers a runtime error and
attributes it to the mismatch between his logical port naming and the SOAP
Action header that is configured in his WCF Send Port. What must he do to
resolve the problem?

a. Rerun the Consume WCF Service Wizard and specify an operation
name of External_ ThirdPartyFinanceApproval.

b. Ask the makers of the third-party financing service to add the
UseCustomOperation property to the services' web.config.

c. In the WCF Send Port, remove the SOAP Action header entirely.
BizTalk will then rely upon its Pub/Sub architecture to route the
message.

d. Update the WCF Send Port's SOAP Action header and change the
operation name to External_ ThirdPartyFinanceApproval.

3. Richard, another developer at HWLC Motors has consumed the Custom
Paint Service from his BizTalk Orchestration using the WCF-BasicHttp
Binding. He has configured this application to catch Typed Exceptions from
the Paint Service. However, when a Paint Service exception is thrown, it ends
up getting suspended inside the BizTalk Administration Console and never
makes it back into his BizTalk Application. How should he fix it?

Chapter 7

[389]

a. In the WCF Send Port, he should enable the Propagate fault
message property.

b. He should change his WCF Send Port to use the WCF-Custom
Adapter instead due to its additional exception handling capabilities.

c. In his WCF Send Port, he should modify the Outbound WCF
message body to use a template. In this template, he will provide the
name of the Paint Service Exception he expects to receive back from
the service.

d. He needs to run the Consume WCF Adapter Wizard again this time
enabling the Use Custom Exceptions feature.

4. Tom has exposed an Orchestration as a WCF Service and has chosen to
use the WCF-BasicHttp Adapter when running the BizTalk WCF Service
Publishing Wizard. He has successfully deployed and configured his
application. Mikael, his boss, has decided he would like to use the WCF-
WSHttp Adapter instead due to the additional security features that are
available. What must Tom do in order to successfully use the WCF-WSHttp
Adapter?

a. In the BizTalk Administration Console, Tom needs to modify his
WCF Receive Location to use the WCF-WSHttp Adapter instead.

b. Run the BizTalk WCF Service Publishing Wizard again, this time
selecting the WCF-WSHttp Adapter.

c. In the BizTalk Administration Console, Tom needs to modify his
WCF Receive Location to use the WCF-Custom Adapter. Inside
the Receive Location's configuration, he must set the binding to
WsHttpBinding.

d. No change is required. The WCF-BasicHttp Adapter can also
leverage the WCF-WSHttp security features.

5. HWLC has changed its policy around processing orders from individual
dealerships. Dealerships used to be able to submit order requests throughout
the day. Now dealerships are being asked to submit orders once a day. It is
expected that some busy dealerships may be sending messages that are more
than 10,48,576 bytes (1 MB). What setting(s) needs to be changed inside of
HWLC's WCF two-way Receive Location?

Integrating Web Services and Windows Communication Foundation (WCF) Services

[390]

a. WCF two-way Receive Locations cannot accept messages that large.
Instead, a one-way Receive Location and a one-way Send Port should
be used instead.

b. The Open timeout needs to be increased to satisfy these new
requirements.

c. The Maximum received message size needs to be increased to satisfy
these new requirements.

d. All dealerships must increase the Send timeout in their client
applications in order to satisfy these new requirements.

Summary
In this chapter, we were introduced to some of the concepts involved with WCF
and WCF Adapters. We then covered Exposing and Consuming WCF and Web
Services. As you have probably noticed, WCF is an extremely large and complicated
topic. Luckily for BizTalk developers, Microsoft has provided wizards and the
BizTalk Administration Console to reduce the complexities involved in building
and consuming these types of services.

On the exam, you can expect around 14 percent of the questions to be centered
around WCF and Web Services. A thorough understanding of this chapter will
put you in a good position to do well in the examination.

In the next chapter, we will investigate a set of diverse technologies including
Business Activity Monitoring (BAM), Business Rules Engine (BRE), Radio
Frequency Identification (RFID), and Electronic Data Interchange (EDI). These
technologies make up Chapter 8, Implementing Extended Capabilities, which aligns
to the same set of competencies that will be tested in the exam.

Implementing Extended
Capabilities

In this chapter, we will look at additional features that come with the BizTalk Server
Product and also other products that ship with the BizTalk License.

Along with the BizTalk Server, several other features are available with the
BizTalk Server License. The Business Rules Engine (BRE) helps implementing
and maintaining complex business rules in both BizTalk and other applications.
Electronic Data Interchange (EDI) is a BizTalk feature that allows receiving and
sending EDI messages, and Business Activity Monitoring (BAM) is used both in
BizTalk and other applications to collect data and present them to business users.

In this chapter, we will discuss the following topics:

• Business Rules Engine
• Electronic Data Interchange
• Business Activity Monitoring
• Testing your knowledge

Implementing Extended Capabilities

[392]

Business Rules Engine
The Business Rules Engine is an engine used for controlling and maintaining rules
for both BizTalk and other applications. It is mainly used for ever changing rules that
need to be deployed without having to alter an existing BizTalk (or .NET) application.

Creating a BizTalk Solution with rules
In the following example, we will create a small BizTalk Solution and have it call
rules inside the BRE, and based on the rules and content of messages, either approve
or deny a loan application.

The first step will be to add a Policy determining if a loan application is approved.

We will need a Schema that represents the loan application entering BizTalk and
the BRE.

Creating a Schema
To create a Schema, you will need to complete the following steps:

1. Create a Solution named Chapter08.Example01.
2. Create a Project named Chapter08.Example01.Schemas and a Schema

named LoanApp.xsd.
3. Make the Schema look similar to the following screenshot, set the Data Type

of LoanAmount to xs:int, and make the Status element distinguished as
shown in the following screenshot:

4. Build the Project.

Now, we need to set up a Policy in BRE for approving loan applications. We want to
look at the LoanAmount element and set the Status element to Approved, if the loan
is approved.

Chapter 8

[393]

Creating a Policy
To create a Policy, you will need to complete the following steps:

1. Open the Microsoft Business Rule Composer.
2. In the Policy Explorer, right-click on Policies, and choose Add New Policy.

3. Name the Policy Chapter08.Example01.ApproveLoan.
4. Right-click on Version 1.0 (not saved), and select Add New Rule.

5. Name the rule Rule ApprovedByAmount.
6. On the right-hand side, right-click on Conditions, and select

Predicates->LessThan.
7. We now need to make a condition saying that if the LoanAmount on the

Loan Application is less than 100, then we will automatically approve the
loan. Click on argument2, and type in 100.

8. To insert argument1, we need the Composer to be familiar with the
LoanApp Schema.

Implementing Extended Capabilities

[394]

Import a Schema as facts into the Rule Composer
When working with the BRE, there are three types of sources that can be imported,
which are as follows:

• XML Schemas
• Databases
• .NET classes

To import a Schema into the Business Rule Composer, you will need to complete the
following steps:

1. In the Facts Explorer window, choose the XML Schemas tab.
2. Right-click on Schemas, and choose Browse.
3. Locate the LoanApp.xsd file created previously in Visual Studio.
4. Choose the Schema, and click on Open.
5. Expand the LoanApp Schema.

6. Drag the LoanAmount element into argument1 in the IF window as seen in
the following screenshot:

Chapter 8

[395]

As you may be considering, this statement is not very readable because the
LoanAmount element contains a long XPath expression. Since the Rule Composer
is supposed to be used by other than IT people, we will later look at how to make it
appear more human readable.

For now, let us keep the condition as it is, and tell the engine what to do with the
Status element, if the condition is met.

Adding an Action
Now that we have specified a condition, we need to add the action(s) that will occur
when the condition is met. In order to do this, perform the following steps:

1. Drag the Status element from the Schema onto Actions under THEN.
2. Click on <enter a value> and type Approved. Again, this does not look very

readable and contains XPath expressions, but we will deal with that later.

3. Save the Policy by right-clicking on Version 1.0(not saved) and selecting Save.

Testing the Policy
Now, we will test the Policy we have created with both a LoanApp instance where
the condition is met (approved) and another where the condition is not met (not
approved) as follows:

1. Generated from the Schema, create two XML instances of type
LoanApp. Give both of them <Status>New</Status>, and give
one of them <LoanAmount>200</LoanAmount> and the other
<LoanAmount>20</LoanAmount>.

2. Place them in an easily accessible file folder, and test that they are both
valid XML instances by viewing them in Internet Explorer.

3. Right-click on Chapter08.Example01.ApproveLoan | Version 1.0 inside
the Composer, and select Test Policy.

Implementing Extended Capabilities

[396]

4. Under XML Documents, select the Schema, and choose Add instance.
5. Locate the document with a loan amount of 20, and select it.
6. Click on Test. A large trace will now be shown in the Composer. This has

to do with the Rule Engine using the Rete algorithm, where everything is
analyzed in a special kind of network. This book will not dig deeper into
this behavior.

7. Open the XML file tested, and verify that Status was changed to Approved.
Change it back to New.

8. Test the other XML document with Amount set to 200 by selecting the other
document. Remove the old instance before clicking on Test.

9. Verify that this time the Status did not change since the condition was not met.
10. Publish the Policy by right-clicking on Version 1.0, and selecting Publish.

Publishing the policy will allow us to work with it outside the Composer. From here
it will be immutable, meaning that after it has been published, it cannot be altered.
If we need to change it, we will be required to make a new version.

The Rule Composer does not hold any ELSE logic that allows us
to set Status to Denied, if the condition is not met. If we were to
do that, we would need to create a new Rule, and negate the first
one (in this case, greater than or equal to 100). This is because of
the way the Rete algorithm is executed.

So, with the Policy working, we will now build a small Orchestration inside BizTalk
that can test it.

Creating an Orchestration
We will not go into detail about how to create Orchestrations. For a more detailed
Orchestration description, refer to Chapter 4, Developing BizTalk Artifacts – Creating
Orchestrations. Let's perform the following steps to create an Orchestration:

1. Create an Orchestration that resembles the following screenshot:

Chapter 8

[397]

2. The Orchestration must have the following features:
a. Receives a LoanApp instance.

The Approved decide shape uses the Boolean expression:
LoanAppMessage.Status == "Approved"

3. Double-click on the ApproveLoan (Call Rules) shape, and select the
Policy ApproveLoan.

4. In Parameter Name, select the LoanApp message received in the
ReceiveLoanApp Receive shape.

5. Deploy the Orchestration, create and bind all the required ports.

Deploying the Policy and testing
We now need to deploy the Policy in order to test that the Orchestration can use the
Policy. In order to do this, perform the following steps:

1. Test the solution by submitting one of the XML documents previously created
to the Orchestration.

2. Check the Event Viewer. The error No versions of rule set "Chapter08.
Example01.ApproveLoan" are deployed should appear. This is because
a rule called from an Orchestration must be deployed. The error message
also shows that the Orchestrations do not call a specific version of the rule
set but rather the deployed version with the highest version number.

Implementing Extended Capabilities

[398]

3. In the Composer, deploy Version 1.0, ensure that the status changes from
Published to Deployed.

4. Test the flow again.

When changing the state of policies inside the Composer, it might
be necessary to restart both the BizTalk Host Instance(s) and the
RuleEngineUpdateService.exe because all of these services
caches information.

The Orchestration combined with the Policy deployed should now result in one of the
XML instances being sent to the Approved Send Port and another one sent to Denied.

Deploying a new version of the Policy
We are now asked to change the approved limit from 100 to 1000 (in which case
both XML documents will be approved). As we discussed earlier, we cannot change
an existing version of a Policy already published; so, in order to meet the new
requirement, we must create a new version of the Policy. If we create Version 1.1 of
the Policy and deploy it, the Orchestration will automatically start using the new
and higher version. Let's carry out the following steps to deploy a new version of
the Policy:

1. In the Rule Composer, right-click on Chapter08.Example01.ApproveLoan
Policy, and choose Add New Version.

2. A red Version 1.1 should now appear as shown in the following screenshot:

3. Right-click on Version 1.0 | ApprovedByAmount and select Copy.
4. Right-click on Version 1.1 (not saved), and select Paste.
5. In the new ApprovedByAmount element, change 100 to 1000.
6. Publish and deploy Version 1.1.
7. Restart Hosts and the Rule service.
8. Test the documents.

Now, both of the test documents should be approved.

Chapter 8

[399]

Adding a Vocabulary
As we discussed previously, we can make the conditions and actions appear more
human readable in the Composer, so that it becomes easier for non-IT personnel to
create and change rules.

To do this, we use Vocabulary. In this exercise, we will create a better name for the
LoanAmount and Status fields as follows:

1. Under Vocabularies, right-click on Vocabularies, and select Add
New Vocabulary.

2. Name the new Vocabulary as Loan.
3. Right-click on Version 1.0, and choose Add new definition.
4. Choose XML Document Element or Attribute and click on Next.
5. Click on the Browse button.
6. Locate the LoanApp Schema and click on Open.
7. Expand the Schema, select LoanAmount and click on OK.
8. Name the definition Total Loan Amount.
9. Choose Perform "Get" operation, and set Display name to Total

Loan Amount.
10. Click on Finish.
11. Make a new version of the ApproveLoan Policy, and copy and paste

the old ApprovedByAmount to the new version.
12. Delete the left-hand side of the condition by selecting it and pressing

Delete so that argument1 appears again.
13. Publish Version 1.0 of the Loan Vocabulary (note that Vocabularies do

not need to be deployed but must be published before they can be used
in a Policy).

14. Drag Total Loan Amount to argument1.

Now, we have a better appearance of the condition, and it will be easier for non-IT
personnel to make Rule changes in the Composer, especially if the rules become
more complex.

Implementing Extended Capabilities

[400]

Electronic Data Interchange
Since BizTalk Server 2006 R2, Microsoft has implemented out of the box EDI
capabilities in BizTalk.

EDI documents are like Flat Files, which we discussed in an earlier chapter.
However, there are two major differences, which are as follows:

• EDI is standardized, the Schemas are already created
• EDI deals with the header information not found in the actual message

(Schema) but must be configured using Parties and Agreements

Out of the box, BizTalk ships with numerous Schemas for the following
EDI standards:

• X12
• EDIFACT
• HIPAA
• EANCOM

In this chapter, we will use EDIFACT as an example, but most of the mechanisms
surrounding the BizTalk EDI capabilities will be the same, whether the standard
used is X12, EDIFACT, or any other standard.

We will try and process an EDIFACT Order version D96A.

The order looks similar to the following screenshot:

Chapter 8

[401]

What we will do is receive the document in a Receive Location that uses the
EdiReceive Pipeline, and by using the already created Schema for EDIFACT
Order D96A, the Pipeline should be able to create an EDI XML message.

Finding and deploying the EDIFACT Schema
When starting an EDI Project, the first thing we need to do is get the Schemas needed
for parsing/creating the documents we will receive and/or send. To find these
Schemas, perform the following steps:

1. With developer tools installed on the BizTalk environment, go to the folder
%Program Files%\Microsoft BizTalk Server 2013\XSD_Schema\EDI,
and locate the self-extracting file named MicrosoftEdiXSDTemplates.exe.

2. Extract the file by double-clicking on it. This has to be done only once.
3. A new folder named MicrosoftEdiXSDTemplates is created. In this folder,

locate the EDIFACT\D96A\EFACT_D96A_ORDERS.xsd file.
4. Create a BizTalk Visual Studio Project, and name it Chapter08.Example02.

Schemas.
5. Add an existing item, and add the EFACT_D96A_ORDERS.xsd file

located earlier.
6. Sign the assembly, and deploy it to a BizTalk Application named

BTS2013CertGuide-Ch08.

Adding a reference to BizTalk EDI Application
With the EDIFACT Schema deployed, we now need to set up a Receive Port with
a Receive Location that uses the EdiReceive Pipeline. The Pipeline is located in the
BizTalk EDI Application, and therefore our BTS2013CertGuide-Ch08 Application
needs a reference to BizTalk EDI Application. In order to do this, let's perform the
following steps:

1. Right-click on the BTS2010CertGuide-Ch08 Application, and select Properties.

Implementing Extended Capabilities

[402]

2. Select References, and click on Add, select BizTalk EDI Application, and
click on OK.

3. Refresh the Application.

Set up a Receive Port, Receive Location, and
a Send Port
For the next step, we need to set up both a Receive and a Send Port so that we can
monitor messages going through BizTalk and how the EDI functionality works:

1. Set up a new Receive Port (CG0802_Receive) and a Receive Location
(CG0802_Receive_File) using the FILE Adapter that points to a new file
folder, and select the EdiReceive Pipeline.

2. Set up a Send Port (CG0802_Send_File) that subscribes to all messages
from the Receive Port (BTS.ReceivePortName == CG0102_Receive),
use a FILE Adapter and point it to an output folder. This port should
use the default PassThruTransmit Pipeline.

3. Start your Application (when the BizTalk EDI Application is referenced,
starting the Application will suggest starting the EDI Application as well;
this is not needed right now and should be unchecked).

4. Run the sample EDIFACT Order through the Application. The result
should be a file sent through the Send Port.

5. Examine the XML sent from the Send Port as shown in the
following screenshot:

Chapter 8

[403]

The top of the XML output should look similar to the preceding screenshot. Note
the namespace and the root element and how they match the root element and the
namespace of the EDIFACT Order Schema we deployed earlier from Visual Studio
as shown in the following screenshot:

Setting up Parties and Agreements
As of now, BizTalk can process an incoming EDIFACT message and convert it to
XML. The EDIFACT document is being accepted by the EdiReceive Pipeline and
is transformed to XML so that further processing can take place.

At some point (especially when sending EDI documents), we might need to set up
Parties so that the EdiReceive and EdiSend Pipelines know which trading partners
the message came from or is being sent to.

Implementing Extended Capabilities

[404]

Examine an unrecognized message
To set up Parties for receiving EDIFACT, we must tell the EdiReceive Pipeline how
to identity who sent the document.

To do this, we use the UNB segment (ISA for X12 document), where information about
the sender and receiver is stored as shown in the following screenshot:

In the example file, the UNB segement contains the following two parties:

• Sender: 57000000001232 (EAN number code 14) (MyPartner)
• Receiver: 57000000001230 (EAN number code 14) (MySelf)

So, what we need to do now is set up two parties; the sender and the receiver.

The first thing we will do is examine how the Context of an EDI message appears
when parties are not recognized:

1. Stop the Send Port (not Unenlist, just Stop).
2. Send an order through the Application.
3. Go to the Group Hub window in the BizTalk Administration Console,

and click on Suspended Items | Resumable.
4. Examine the Context Properties of the message most recently suspended,

as shown in the following screenshot:

Chapter 8

[405]

Note that ReceivePartyName and SenderPartyName do not have any meaningful
values. This indicates that the EdiDisassembler Pipeline Component did not find
any matching Agreement between the two Parties in the UNB segment, so we need
to set up such an Agreement.

Set up the Parties and the Agreement for receiving
For BizTalk to know which partner-specific properties should be applied for the
incoming and outgoing EDI messages, we need to set up Parties and Agreements
as follows:

1. In the BizTalk Administration Console, go to Parties.
2. Right-click and choose New | Party.
3. Name the Party as MySelf, and click on OK.
4. Expand the MySelf Party, and find the profile MySelf_Profile.
5. Double-click on the profile.

Implementing Extended Capabilities

[406]

6. Under Identities, in the Name drop-down list, choose EAN (European Article
Numbering Association). Note that the Qualifier 14 is automatically selected.

7. In Value, type in 57000000001230.

8. Click on OK, and do the same for party: MyPartner with EAN number:
57000000001232. We now need to set up an Agreement between the
two parties.

Note that a Party can have several profiles if the Party
has several identities and/or using different EDI formats
(EDIFACT, X12, HIPAA, and so on).

Chapter 8

[407]

9. Right-click on MyPartner_Profile, and choose New | Agreement.
10. Name the Agreement AgreementWithMyPartner.
11. Choose EDIFACT as Protocol.
12. Choose MySelf as Second Party.
13. Two new tabs, MyPartner->MySelf and MySelf->MyPartner (known as

Agreement parts), should now appear as shown in the following screenshot:

14. Click on the MyPartner->MySelf tab.
15. Click on Interchange Settings | Identifiers.
16. Verify that UNB2.1 is the EAN number of the sender and UNB3.1 is the EAN

number of the receiver, and click on OK.

Implementing Extended Capabilities

[408]

17. Restart your Host Instance(s). This needs to be done every time something
changes in the Party section in BizTalk.

18. Send an EDIFACT Order through BizTalk; make sure that the Send Port is
still in a Stopped state.

19. Examine the Context, the AgreementName, the SenderPartyName, and the
ReceiverPartyName should now be populated with the correct data. This
indicates that the Parties are now recognized on reception of the message.

20. Start the Send Port again.

Changing the Schema
Often when working with EDI, trading partners are going to send invalid EDI, which
is EDI not conforming 100 percent to the standard.

All the Schemas available in BizTalk will, per default, only allow EDI documents
to pass through the EDIDisassembler Pipeline Component and be transformed
to XML, if the document complies with the standard.

For example, we receive orders as shown before; however, in the DTM (DateTime)
segment, instead of code 137 (Document Date), the sender sends 70 as the code. This
is not allowed according to the UN specification available at http://www.unece.
org/trade/untdid/d96a/uncl/uncl2005.htm.

Let us test this:

1. Make a copy of the EDIFACT document, and change DTM+137 to DTM+70.
2. Run it through BizTalk, and check the Event Log.

An error similar to the following screenshot should now be present in the
Event Viewer:

This is because 70 is not allowed in this field. If we are to allow MyPartner to send
DTM+70 in the documents (even though the preferred approach would be to ask the
partner to send valid EDI, this is not always possible), we need to give the partner its
own Schema representation of EFACT_D96A_ORDERS.

Chapter 8

[409]

Now, since we cannot change the root element name of the Schema as that has to
comply with certain patterns, the only way to create a new Schema is to change
TargetNamespace.

Fortunately, this can be set up in Agreements as well.

Set up an alternate namespace for the Agreement
We now need to set up a new namespace to be used for the MyPartner->MySelf
Agreement so that the messages being received with this Agreement will be given
another namespace, and therefore, will be validated using an alternative Schema.
We will do this using the following steps:

1. Under Parties, click on MyPartner, and double-click on
AgreementWithMyPartner.

2. Go to the MyPartner | MySelf tab.
3. Under Transaction Set Settings | Local Host Settings, scroll to the

right and locate TargetNamespace.
4. Change the TargetNamespace from http://schemas.microsoft.com/

BizTalk/EDI/EDIFACT/2006 to http://schemas.microsoft.com/
BizTalk/EDI/EDIFACT/2006/MyPartner.

Note that the TargetNamespace drop-down list suggests
http://schemas.microsoft.com/BizTalk/EDI/
Edifact without capitalized EDIFACT. This will NOT
work, so make sure EDIFACT is capitalized.

5. Click on OK, and restart your Host Instance(s).
6. Run the DTM+70 document through the application, and again

check the Event Log.

You should now see the following error:

Finding the document specification by message type "http://schemas.microsoft.
com/BizTalk/EDI/EDIFACT/2006/MyPartner#EFACT_D96A_ORDERS" failed.

So, we need to deploy such a Schema and allow the value 70 in the DTM segments.

Implementing Extended Capabilities

[410]

Deploy an alternate Schema
Now, we need to create an alternate Schema with the new namespace and where
DTM+70 is allowed in the DTM segment. In order to do this, let's perform the
following steps:

1. Go to the Visual Studio Project created earlier that contains the original
order Schema.

2. Change the TargetNamespace of the Schema to the new namespace
specified in the Agreement.

3. Go to the DTM record, and expand it.
4. Expand C507.
5. Select the C50701 element, and choose Enumeration under

Properties.
6. Add 70 to the list.

7. Rebuild the solution, click on OK to any information about clean up that
might appear.

Chapter 8

[411]

8. Deploy the solution, and restart the Host Instance(s).
9. Start your Send Port again (this might cause several old suspended

items to be sent to your out folder).
10. Submit the new order with DTM+70.
11. Verify that a new XML file was submitted to the out folder without any

problems. Examine the XML file as shown in the following screenshot:

As shown in the previous screenshot, the XML now has a custom namespace
(…/MyPartner), and we have allowed DTM to hold the qualifying value of 70.

Debatching and Error handling
EDI documents are envelopes of, potentially, several different messages of the
same or even different types.

When receiving EDI, the user needs to take into consideration if these documents
should be split (debatched) into individual messages or the whole batch should
continue onwards in BizTalk as one batched document.

In the Agreement part, there are four different options (found under the Interchange
Settings | Local Host Settings | Inbound batch processing option).

Implementing Extended Capabilities

[412]

Here are the four different options:

Name Description
Split Interchange as Transaction Sets
– suspend Transaction Sets on Error
(Default)

Debatch the document and suspend only the
messages that fail validation

Split Interchange as Transaction Sets
– suspend Interchange on Error

Debatch the document and suspend the whole
document if just one message fails validation

Preserve Interchange – suspend
Interchange on Error

Keep the document as a whole and suspend
the whole thing if messages fail validation

Preserve Interchange – suspend
Transaction Sets on Error

Keep the document as a whole but suspend
individual messages that fail validation, and
remove them from the Interchange that is
passed onward

Setting up a Party and Agreement for sending
When sending EDIFACT, more information must be provided to BizTalk through
the Parties and Agreements in order for BizTalk to know how the partner expects
the EDI to be structured.

The way EDI really differs here from XML, Flat Files, and so on is that the metadata
structure and envelope of an EDI document cannot be determined, neither from the
XML message entering the Assembler Pipeline Component (EdiAssembler) nor from
the Schema.

If we take our previous example where we received an EDIFACT Order and
transformed it to XML, we can now try and take the same XML, send it through
the EdiSend Pipeline, and configure it to yet another party (MyPartner2).

Chapter 8

[413]

Again have a look at our order example as shown in the following screenshot:

The UNA segment is metadata about how the document is delimited, how decimal
numbers are presented, and how to escape a reserved character.

The UNB segment tells the encoding of the document, the sender and the receiver,
and several other document metadata.

None of these metadata can be created from the EDI Schema or the XML being sent
to the Send Port because they will be partner-specific.

So, what must be done is that these properties must be set up in a Partner Agreement,
and then the Send Port must be connected to that Agreement (as opposed to when
receiving EDI, the Send Pipeline will have no way of knowing which Party to use
without being explicitly told).

Implementing Extended Capabilities

[414]

Setting up a new Party for sending
We will now make yet another Party for sending so that the differences in EDI
properties can be examined as follows:

1. Make a new File Send Port named CG0802_SendToPartner2_File. Make a
subscription identical with the first Send Port (BTS.ReceivePortName ==
CG0802_Receive), and select the EdiSend Pipeline. Make the file extension
%MessageID%.txt instead of %MessageID%.xml.

2. Make a new Party called MyPartner2.
3. Give the Party profile the EAN number 57000000001233, the same way it

was done in the previous exercise.
4. Right-click on MyPartner2_Profile, and select New | Agreement.
5. Name it as AgreementWithMyPartner2, choose EDIFACT, and select

Myself as Second Party.
6. Select the MySelf->MyPartner2 tab.
7. Check the Identifiers, both UNB2 and UNB3 should be filled out with

EAN numbers, and Code Qualifiers as 14.
8. In Envelopes, check the Apply UNA Segment.
9. Under Character set and separators, select the following (UNA5 holds a space):

Chapter 8

[415]

10. Most of the values are left as default, but choosing UNOC for Identifier
will encode the document with western European character set (ISO-8859
-1). Most EDIFACT partners use a space in UNA5, so make sure to put a
space instead of *, and we will also set Suffix to CR LF, which will make
the EDIFACT more readable because this will present each segment as a
separate line.

11. Go to Send Port, and choose CG0802_SendToPartner2_File.
12. Click on OK, and restart the Host Instance(s).
13. Submit a new message in the Application. Examine the output from

SendToPartner2 Send Port which is as follows:

Note that the UNA segment has a comma (,), which indicates that decimal numbers
should be presented with commas. Also, note that PRI+AAA:1388,9 is a decimal
number with commas. If we change the Agreement UNA3 from comma to decimal,
all decimal numbers in the document will be presented using decimals instead.

Also, note that the UNB segment is using the correct sender and receiver EANs, and
that each segment is separated by carriage returns, as specified in the Agreement.

Implementing Extended Capabilities

[416]

Send Port control
In the previous exercise, we made a link between the Agreement and the Send
Port used for sending the EDIFACT. This hardcoded link does not always meet our
business requirement since the Agreement resolution might happen because of the
data from within the message or the Context, and also, there is the possibility that
the same Send Port is sending to many different Agreements.

Instead of setting up a Send Port in an Agreement, we have the ability, using the
Context Properties, to manipulate and configure what Agreement an EdiAssembler
Pipeline Component will use. Here are the three options:

• Write to the AgreementPartIDForSend Context Property in the
http://schemas.microsoft.com/Edi/PropertySchema namespace
with the Agreement Part ID you want the Assembler to use. This is
mostly used internally because getting the ID requires some selection
from the database tables inside the Management database.

• Write to the three Context Properties, AgreementNameForSend,
SenderPartyNameForSend, and ReceiverPartyNameForSend, in the
http://schemas.microsoft.com/Edi/PropertySchema namespace,
where the first is the Agreement name, the second is the name of the
sender Party, and the third is the receiver Party name. The reason that
the name of the Agreement is not sufficient is because the Agreement
holds two parts; one for each direction.

• Write to the DestinationPartyName Context Property in the
http://schemas.microsoft.com/Edi/PropertySchema namespace.
This is for legacy support before Agreements were introduced to Parties
in BizTalk, and this will only work in BizTalk Server 2010 and in versions
earlier to this. In 2010, it also requires the same Party name set up in the
Agreement part under Identifiers | Additional Agreement Resolvers |
DestinationPartyName.

Even though the DestinationPartyName set up in the
Agreement is still available in BizTalk Server 2013, it
has no function. The DestinationPartyName Context
Property has been removed for the Property Schema
and EdiAssembler will not use it.
When using one of the templates listed earlier, it is
important that the Context Properties are written to
the Context of the message before the message enters
EdiAssemble stage of the Send Port.

Chapter 8

[417]

Batching
When sending EDI, batching is often a requirement, meaning a specific Party might
require that messages meant for him should be gathered into a large document and
sent once every night, or once every 2 hours, and so on.

The EDI capabilities in BizTalk provide out of the box batching capabilities, and
batching can be set up in the Agreement parts under Interchange Settings | Batch
Configuration. When batching is set up for an Agreement, an Orchestration will
be started, picking up all messages with certain properties set in Context, and then
release the whole batch in the interval selected in the Agreement.

These Context Properties are typically set by the Batch Marker Pipeline Component,
in the EdiReceive Pipeline.

The Batch Marker Component can also be used for non EDI messages, if other
XML documents are mapped to EDI XML later on in the process but still require
the batching Properties to be set. To do this, the Component has a Property named
IgnoreMessageEncoding that, if set to true, will allow the Component to set the
batching Properties and not try to resolve the EDI message type.

Business Activity Monitoring
BAM is typically used for bringing BizTalk to the world, in the sense that it is often
somewhat transparent to the outside world what goes on inside BizTalk. If errors
occur in BizTalk, these will be handled both by BizTalk and the operators, but what
about all the stuff that did not fail? BAM is typically used to show just that.

Here are some examples of questions that BAM could provide answers to:

• How many orders did we receive last month?
• Was the order with ID 1005 ever received, and when did BizTalk send it

to the ERP system?

Out of the box, there is no easy way of supplying these answers to the business
outside BizTalk. By using the built-in tracking, we could give the answers, but
that would both be very tedious, and would require a field, such as OrderID,
to be promoted (see Chapter 2, Developing BizTalk Artifacts – Creating Schemas
and Pipelines, for more information about promotions).

BAM, on the other hand, can do all this easily without requiring certain features,
such as Promotion, to be present in the BizTalk Solution.

Implementing Extended Capabilities

[418]

BAM is non-intrusive, which means we can apply BAM to an existing BizTalk
Application without BAM making any changes or performance impact to that
solution. This means that BAM can easily be applied after a solution is already
deployed and running in production. Also, even if BAM is failing, if it had been
developed with errors or the BAM databases were unavailable, and so on, the
BAM solution would not cause the actual BizTalk Solution to fail.

When using BAM together with BizTalk, we are able to receive information from
the following places in the BizTalk flow:

• Receive Pipelines
• Orchestration shapes
• Send Pipelines

Each time a message enters one of the previously mentioned items inside BizTalk,
BAM is able to collect data from this event. The examples of data from such events
could be:

• Time of event
• Data from the actual message
• Data from the Context of the message
• Various message properties such as MessageID and InstanceID

The information collected will be stored in SQL tables (when working with BAM
known as Activities).

Creating Activities
A BAM Activity is somewhat similar to an SQL table. The examples of Activities
inside BAM could be:

• Order Received
• Order Processed
• Invoice Processed
• Order Sent
• Invoice Sent

Chapter 8

[419]

If we have a BizTalk setup where orders are received and processed and maybe
sent to multiple applications or systems we could have a one-to-many relationship
between processing an order and sending it, because processing it could result in
sending it to three systems and we want to track all the three events. In that case,
we would need two BAM Activities (two tables), an Order Processed Activity and
an Order Sent Activity.

As mentioned earlier, each Activity will be represented by SQL tables. If an Activity
named TestBAM is created, the following five Activity tables will be created in the
primary BAM database named BAMPrimaryImport:

• bam_TestBAM_Active

• bam_TestBAM_ActiveRelationships

• bam_TestBAM_Completed

• bam_TestBAM_CompletedRelationships

• bam_TestBAM_Continuations

Along with the tables, each Activity also implements a package, called BAM_DM_
TestBAM, in Integration Services. This package should be scheduled to run frequently
to maintain and archive the Activity data. When this package is run, the Completed
and CompletedRelationships tables will be split into subtables with internal unique
names. So, as time goes by, more and more tables will appear, but the applications
reading the BAM Activity data will not notice this because they should only access the
data through views, and the views are updated each time a new subtable is created
using the SQL Union statement.

Here is an example of how a BAM Activity would be represented in the
BAMPrimaryImport database after the maintenance package has run for the first time:

The tables we will pay the closest attention to are _Active and _Completed.
The _Active table is where Activity instances reside before the Activity profile
has completed, where they will be moved to the _Completed table.

Activities are created by using Microsoft Excel.

Implementing Extended Capabilities

[420]

Setting up the BAM Add inside Excel
Microsoft Excel needs to be installed on a BizTalk Development machine in order to
create Activities. It is only necessary to have Excel installed on development servers,
and it should not be installed on production or test environments.

BAM Client, found under Additional Software when installing BizTalk, should
also be installed on the developing machine; this will result in an Add-Ins menu
being installed in Excel, and this Add-Ins can now be activated by selecting File
| Options | Add Ins | Go as shown in the following screenshot:

Make sure that Business Activity Monitoring is selected.

Now, BAM should be visible under the menu Add-Ins.

Chapter 8

[421]

Creating an Activity inside Excel
We are going to make an Activity that extracts both the internal BizTalk metadata
and the data from the actual XML message sent through BizTalk. For that, we will
need to deploy a Schema and set up a Receive Port receiving the messages and a
Send Port that subscribes to all the messages coming from the Receive Port.

The Schema should look as shown in the following screenshot (note that no Promotion
of any kind is needed):

The Schema and XML documents used in this example do not have to be identical
with the previous Schema. The two elements we will be working with are, OrderID
and OrderTotal, both of which we want to collect to the BAM Activity we create.

Deploy the Schema and generate an instance of an XML document that matches the
Schema. Set up a Receive Port and Send Port flow in BizTalk, use the XMLReceive
Pipeline on the receive side, and verify that the flow is working.

Now, we will make an Activity called ReceiveOrder as follows:

1. Open Excel, and create a new Activity by clicking on Add Ins | BAM |
BAM Activity as shown in the following screenshot:

2. Select New Activity.

Implementing Extended Capabilities

[422]

3. In Activity name, write ReceiveOrder.
4. Click on New Item, and create OrderID as shown in the following screenshot:

5. Create three more items as shown in the following screenshot:

Chapter 8

[423]

6. Click on OK twice.
7. A welcome screen for creating views is now shown. If no views are

needed, we can click on Cancel at this time, but often at least one view
per Activity is needed if the data is to be used in the BAM Portal.

8. Click on Next.
9. Click on Next again (Create a new view should be selected).
10. Enter a view name (vwReceiveOrder), and select the ReceiveOrder Activity.
11. Click on Next.
12. Select all items to be present in the view.
13. Click on New Duration. Since our Activity has two milestones (ReceiveTime

and SendTime), we can create a duration called TimeInBizTalk which will be
the difference between the two milestones. Make sure that Time resolution is
Second as shown in the following screenshot:

14. Click on OK and then Next.
15. In the Aggregation Dimensions and Measures window, we will

create a pivot table that shows the number of orders received, grouped
by the CustomerID and also the average order total per customer.

16. First, we will create the customer as a dimension. Select New Dimension.

Implementing Extended Capabilities

[424]

17. Name the dimension as Customer, select Data dimension, and add
CustomerID, as shown in the following screenshot:

18. Click on OK.
19. Now, we need two measures: the total number of orders received and

the average order total.
20. Click on New Measure.
21. In Measure name, type in TotalReceived, select Count, and set Base

activity to ReceiveOrder as shown in the following screenshot:

Chapter 8

[425]

22. Click on OK.
23. Now, create another measure for the order total average. Select New Measure.
24. Name the measure as AverageTotal. Choose Aggregation Type as Average

and Base data item as OrderTotal (ReceiveOrder).
25. Click on OK.
26. Click on Next, Next, and Finish.
27. The pivot table now needs to be dimensioned.
28. On the right-hand side, under PivotTable Field List, check Customer,

TotalReceived, and then AverageTotal.

Implementing Extended Capabilities

[426]

29. Select BAM | Export XML as shown in the following screenshot:

30. Save the XML file in an appropriate location, and name it as Chapter08.
Example03.OrderActivity_v10.xml.

It is good practice to never overwrite an existing Activity file
but rather give them a new version number every time changes
have been made, because the original file might be needed
to remove Activities and views (see the Remove-all option
described in the next part of the chapter).

Deploy the Activity and view
When Activities and views are saved as XML, they can be deployed in the BAM
databases by using the bm.exe command-line tool.

If the BAM client tools are installed, the bm.exe tool can be located in the following
folder %Program Files%\Microsoft BizTalk Server 2013\Tracking.

If we need to work with the tool a lot, it is recommended that the path is made into
a system path so that it can be accessed by the command line, no matter where you
are located.

The bm.exe command-line tool has three main options which are as follows:

• Deploy-all (deploy all Activities and views from scratch)
• Update-all (only deploy new Activities and/or views; updating existing

Activities and/or views are only allowed if no existing items are updated
or deleted)

• Remove-all (removes all Activities and views previously deployed;
the XML file used must match the Activities and views in the database)

Chapter 8

[427]

1. For deploying the Activity and view created earlier, locate the XML file that
was exported from Excel, and run the following command (remember that
the Tracking folder needs to be in the system path for easy access):

2. Once the Activity and view have been created, go to the BAMPrimaryImport
database, and verify that five tables were created starting with the name
bam_ReceiveOrder, and that five to seven views exist starting with bam_
vwReceiveOrder.

3. With the Activity created, we now need to map the Activity items to
the events and data inside our BizTalk flow so that BAM will pick up
data and write it to our tables at certain points inside BizTalk.

Creating a Tracking Profile
To map the Activity to the events inside BizTalk, we use the Tracking Profile Editor
tool that ships with BizTalk as follows:

1. Open the Tracking Profile Editor.
2. Select Click here to import a BAM Activity Definition.

Implementing Extended Capabilities

[428]

3. Find the ReceiveOrder Activity in the list, use Filter if needed as shown in
the following screenshot:

4. Select ReceiveOrder, and click on OK. We are now back in the Tracking
Profile Editors main page, and the left-hand side should now contain our
ReceiveOrder Activity with the items that need to be mapped. (Note that
the ActivityID item is not required for what we are doing right now. It is
primarily used for performing BAM relationships which are out of scope
for this book). For now, we will map the following four items (all of them
from the Receive Port):

 ° CustomerID (taken from the message)
 ° OrderID (taken from the message)
 ° OrderTotal (taken from the message)

Chapter 8

[429]

 ° ReceiveTime (taken from the Receive port)

We will not map the SendTime milestone for now.

The first step will be to map the three items that are taken from the message. To do
this, we will perform the following steps:

1. Click on Select Event Source, and select Select Messaging Payload.
2. A list of all deployed BizTalk assemblies that contain Schemas are now

shown. Find the assembly previously deployed with the Order Schema,
and click on Next.

3. Now, a list of Schemas inside the assembly is listed. In this case, there
should be only one Schema; select the Schema and then click on OK.

4. The Tracking Profile Editor page should now look similar to the screen in
the following screenshot:

5. Three items, OrderID, OrderTotal and CustomerID, can now be mapped
to the correct elements in the Schema. Carry out the following steps for all
three items:

a. Drag OrderID from the right-hand side (the Schema) to OrderID
on the left-hand side (the Activity).

b. Right-click on OrderID in the Activity, and select Set Port
Mappings as shown in the following screenshot:

Implementing Extended Capabilities

[430]

c. In the Select Ports window, find the Receive Port created earlier and
add it to the right-hand side, as shown in the following screenshot:

d. Click on OK.
e. Do the same for OrderTotal and CustomerID.

6. Now, we need to map ReceiveTime from the Port. This information is not
found in the Order Schema but on the messaging properties in BizTalk.

7. Click on Select Event Source, and select Select Messaging Property.
8. Expand MessageProperties, and drag PortStartTime to ReceiveTime

on the Activity.

Chapter 8

[431]

9. Map the Port as we did with the previous three items. The Tracking Profile
Activity window should now look similar to the following screenshot.

10. Save the Tracking Profile in the same folder where the Activity was exported
to and name it Chapter08.Example03.ReceiveOrder_Tracking_v10.btt.

11. Go to the command line, and execute the following statement in the folder
where the .btt file was saved:

Implementing Extended Capabilities

[432]

12. We are now ready to test the solution. Before sending messages through
our BizTalk Application, verify that all Activity tables are empty by opening
SQL Server Management Studio, and execute the following query in the
BAMPrimaryImport database:
select * from
dbo.bam_ReceiveOrder_AllInstances

The select statement should return zero rows. Before starting
this test, ensure that at least one Host Instance of a Host with
Allow Host Tracking enabled is running because a Tracking
Host Instance is required to move data to the BAM tables.

The _AllInstances view is a union of the _Active and _Completed tables.

13. Submit a message through the Receive Port, and verify that a single row
was inserted in our Activity table by executing the previously mentioned
SQL again. Now, we need to map the last item, SendTime, in our Activity.
Start by removing the Tracking Profile so that we can edit it and redeploy it.
When removing a Tracking Profile in a production environment, all Receive
Locations running in the affected applications should be disabled so that no
BAM data will be lost.

14. Remove the Tracking Profile by typing the following command in the
command prompt, as shown in the following screenshot:

Chapter 8

[433]

Now that the Tracking Profile is removed, we can change the existing profile file.

1. Open the Tracking Profile Editor application again, and open the tracking
file (.btt) saved before.

2. Open Messaging Properties, and drag PortEndTime to SendTime on the
Activity.

3. Map PortEndTime to the Send Port of our Application.
4. Save the profile, and deploy it using bttdeploy just as we did earlier.

Now, test the solution again by submitting another message through BizTalk.
Note that two rows are now inserted; one when the message went through the
Receive Port, which also holds the data from the actual message, and another
from the Send Port, which only holds SendTime and some internal data.

This is not what we wanted. The purpose of the Activity was to create one row
every time an order entered our system and have some data written in the Receive
Port and some data in the Send Port.

The reason this is happening is because the Receive and the Send Ports are different
instances inside BizTalk, and BAM will see a new instance as a new row unless we
tell it otherwise. What we need to do is to set up a Continuation.

Creating Continuations
What we will do now is tell BAM that the two instances (Receive and Send Ports)
should be considered as one Activity entry, by using OrderID for correlating
between the two instances as follows:

1. Remove the Tracking Profile created earlier.
2. Clear the Activity table by executing the following SQL statement

in the BAMPrimaryImport database:
delete from
dbo.bam_ReceiveOrder_Completed

3. Open the Tracking Profile Editor application.
4. Right-click on the ReceiveOrder folder in the top left-hand side,

and add a new Continuation and a new ContinuationID.

Implementing Extended Capabilities

[434]

5. Rename both, and give them identical names as shown in the following
screenshot:

6. On the right-hand side, select the Order Schema (if not already chosen).
Select the OrderID element.

7. Right-click on Continuation, and select Associate Selected Data. The
OrderID should now appear as a child.

8. Do the same for the ContinuationID as shown in the following screenshot:

9. Map OrderID inside Continuation (icon with no key) to the Receive Port.
10. Map OrderID inside the ContinuationID (icon with a key) to the Send Port.
11. Save and deploy the Tracking Profile.

When testing the solution now, we should get a result with only one row being
inserted in the Activity table with all five items populated. Verify that this is the case.

We can also check the view created earlier to see the duration (TimeInBizTalk).

Run the following SQL statement in the BAMPrimaryImport database:

select * from
dbo.bam_vwReceiveOrder_ViewReceiveOrder_View

There should now be a new column TimeInBizTalk, which should hold a very small
number in seconds.

Chapter 8

[435]

BAM Portal
Once the data starts being populated in the Activity tables, the BAM Portal can be
used to track the data and view aggregations.

The BAM Portal ships with the BizTalk installation, and when set up correctly,
should be accessible from a web browser by typing http://BizTalkServerName/
BAM/default.aspx.

The URL may vary because the default website could be
configured to another port other than 80.

In the Portal, only created views (with or without aggregations) will be shown.
The BAM Activities are not intended to have its data utilized directly but only
through the views created in Excel.

The main reason for creating and using views are so that different business people can
view the data relevant for them and also be given aliases for item names, and so on.

It is also possible to restrict the view of views to certain Windows Groups.

When opening the Portal, the user should be presented with the views that the user
currently has access to.

The views are located on the left-hand side under My Views as shown in the
following screenshot:

Implementing Extended Capabilities

[436]

Testing your knowledge
1. You have two customers, Customer1 and Customer2, who both receive EDI

invoices. Both of them have agreed to receive invoices in a format decided by
your company, so the same Map can be applied to each of their Send Ports.
However, they do have different requirements concerning the metadata and
envelope of the documents. What should you do?

a. Make a new Schema and a new Map for Customer2. Deploy the
Schema and Map, and use it on the Customer2 Send Port.

b. Set up Agreements for Customer1 and Customer2 under BizTalk
Parties, and link the Agreements to each Send Port.

c. Create a Pipeline Component that can change the structure of the
messages, and deploy it in a Pipeline before the EdiAssembler
Pipeline has executed.

d. Set up a Send Port Group, and add both Send Ports to the Group.

2. You have deployed a Policy in the Business Rule Composer that is being
used by several BizTalk Orchestrations. You now need to change the Policy,
and use some different values and boundaries. What should you do?

a. In the Rule Composer, un-deploy, then un-publish the Policy, change
it to the new values and boundaries, and republish and redeploy it.

b. Make a new version of the Policy and publish it.
c. Make a new version of the Policy and deploy it.
d. Make a new version of the Policy and publish it. Make all

Orchestrations that call the Policy point to the new version.

3. You need to create a BAM Activity for receiving invoices. The Business
Managers have given you a list of required fields from the invoice messages
they would like to extract. How should you create the Activity?

a. In Excel, use the BAM Add-in to create an Activity file. Deploy the
Activity by using the bm.exe command-line tool.

b. In Excel, use the BAM Add-in to create an Activity file. Deploy the
Activity by using the bttdeploy.exe command-line tool.

c. In the Tracking Profile Editor application, select an Activity,
and deploy it using the bttdeploy.exe command-line tool.

d. In the Tracking Profile Editor application, select an Activity,
and deploy it using the bm.exe command-line tool.

Chapter 8

[437]

4. You have created and deployed a BAM Activity but no data is being inserted
when messages runs through BizTalk. What should you do?

a. In Excel, use the BAM Add-in to create a new Activity, and deploy
it using the bm.exe command-line tool.

b. In the Tracking Profile Editor application, link the Activity to the
events and messages in BizTalk, and deploy the profile by using the
bm.exe command-line tool.

c. In Excel, use the BAM Add-in to create a new Activity, and deploy
it using the bttdeploy.exe command-line tool.

d. In the Tracking Profile Editor application, link the Activity to the
events and messages in BizTalk, and deploy the profile by using the
bttdeploy.exe command-line tool.

5. One of your customers is sending X12 EDI documents. You want BizTalk to
process the documents. How should you approach this?

a. Use the EdiSend Pipeline, EDI Schemas, and the
Party/Agreement setup.

b. Create a Flat File Schema for processing the X12 documents.
Create a Flat File Pipeline and deploy both.

c. Use the EdiReceive Pipeline, EDI Schemas and the
Party/Agreement setup.

d. Create a Custom X12 Assembler Pipeline Component.

Summary
This chapter has dealt with some of the extended capabilities of BizTalk by looking
at Business Activity Monitoring, Business Rules Engine, and the EDI capabilities in
BizTalk Server. This chapter should prepare the reader for the questions that might
be asked regarding these topics.

Using Azure BizTalk Features
This chapter covers the Identify the processes used to run a BizTalk Server environment
as a Windows Azure Virtual Machine and Identify the processes used to enable integration
using Windows Azure BizTalk Services part of the Assessment. It will introduce the
reader to some basic concepts of Microsoft Windows Azure as well as cover both
running BizTalk in a virtual image on Azure and using the new Windows Azure
BizTalk Services (WABS). Using the new mapper, XML, and Flat File bridges
as well as using the EDI Portal for receiving X12 documents will also be covered.

The following topics will be discussed:

• Setting up WABS
• Creating Bridges and Maps
• Sources and destinations in WABS
• The WABS Portal
• Using Virtual Machines
• Setting up BizTalk in a virtual environment (both single-server and

multi-server farm)
• The EDI Portal

Understanding the Windows Azure
BizTalk Services
WABS is not a new BizTalk Server in the cloud. It does, however, bear a lot
of resemblance to the classic BizTalk Server Product and, as we shall see in this
chapter, many of the BizTalk Server mechanisms have been ported to this new
integration tool residing purely in the Cloud (Azure).

Using Azure BizTalk Features

[440]

The product consists of the following main artifacts:

Artifact Description
WABS Portal A portal used for receiving and sending EDI

documents from/to trading partners. As of
now only X12 is supported, but support for
EDIFACT has been announced by Microsoft.
The Portal is also used for Tracking and
maintenance of other artifacts.

Itinerary Surface or canvas inside Visual Studio used
for placing Bridges, Sources, Destinations,
and connections between these.

Bridges Used for receiving messages in Azure,
processing them, transforming them,
promoting properties, and routing the
messages onwards.

Sources Entry points for receiving messages. FTP,
SFTP, and HTTP(S) are currently supported.

Destinations Targets for delivering messages. Bridges,
Services, FTP, SFTP, Topics/Queues (Azure
Service Bus), Azure Blobs and on-premise
systems (LOB Services) can be targets.

BizTalk Adapter Services Used for targeting on-premise systems from
WABS.

Schemas Used the same way as in BizTalk Server;
XML, Flat Files, and EDI is supported out
of the box.

Maps Used for transforming one Schema structure
to another. As used in BizTalk, but heavily
changed with many new features.

Let us first have a look at how to set up a BizTalk Service in Windows Azure.

Setting up a Windows Azure BizTalk Service
For setting up and using WABS, a Windows Azure account is required. It is out of
scope for this chapter to discuss how this is obtained, so from here on it is assumed
that the reader has such an account.

Chapter 9

[441]

When setting up a BizTalk Service, the following underlying Windows Azure
services are used by WABS:

• A SQL Azure Database for storing Tracking information
• An Azure Storage Account for Tracking messages and so on
• An Access Control Namespace used for security for accessing the

BizTalk Service

The SQL Azure Database and the Azure Storage Account can
either be created up front, or you can have the BizTalk Service
Setup Wizard create them for you.

Running the setup wizard in Windows Azure
As mentioned earlier, before running the setup, you will need an existing SQL Azure
Database and an Azure Storage account, or you can have the setup wizard create this
for you. This chapter will not go into details about these Azure Services. Also note
that the use of these will result in the account being charged fees for using them.

1. In the Windows Azure Portal, choose BIZTALK SERVICES and click on NEW.
2. Navigate to APP SERVICES | BIZTALK SERVICE | CUSTOM CREATE.

Using Azure BizTalk Features

[442]

3. Enter a unique name in the BIZTALK SERVICE NAME block and verify that
this name is not already in use (the green check mark). Leave the DOMAIN
URL as it is and choose EDITION, REGION, and whether you are using
an existing TRACKING DATABASE or creating a new. Also select the
appropriate SUBSCRIPTION.

Please note that the different editions are charged per month. Please
refer to the pricing details for further information at the following site:
http://www.windowsazure.com/en-us/pricing/details/
biztalk-services/

Also, it is possible to use custom domain names if needed, read more
at the following site:
http://blogs.msdn.com/b/biztalk_server_team_blog/
archive/2013/07/11/custom-domain-names-with-biztalk-
services.aspx

4. Click on Next. Choose either an existing Database Server or a new. Provide a
SERVER LOGIN NAME and SERVER LOGIN PASSWORD, and click on
Next again, as shown in the following screenshot:

Chapter 9

[443]

5. Choose either an existing storage account or create a new one, and then click
on Complete.

After completion of the setup wizard, the BizTalk Service will be created. It might
take a few minutes before the service creation is completed.

Exporting the WABS root certificate
The creation wizard has automatically created a self-signed certificate used
for the SSL traffic (HTTPS) between developers, partners, and the WABS. For
communicating with our BizTalk Service, we will now need to export a public
version of this certificate and place it in the root certificate store of all machines
needing to communicate with our WABS using HTTPS. To do this, perform the
following steps:

1. In the Windows Azure Portal, choose BIZTALK SERVICES and select the
newly created service.

2. The DASHBOARD dialog box should now appear (you may have to scroll
down a bit):

Using Azure BizTalk Features

[444]

3. Take a note of the ACCESS CONTROL NAMESPACE generated while
setting up the WABS, you will need it later.

4. Click on Download SSL Certificate and store the certificate for later usage.
5. Click on CONNECTION INFORMATION at the bottom of the Portal.
6. Copy the DEFAULT ISSUER (should be owner) and DEFAULT KEY and

save them for later usage.

Installing Windows Azure BizTalk Services
SDK
For developing artifacts in WABS, Visual Studio and the Windows Azure BizTalk
Services SDK are required. To download the SDK, go to the following website:

http://www.microsoft.com/en-us/download/details.aspx?id=39087

Here you will find the SDK setup needed for your development environment:

• WindowsAzureBizTalkServicesSetup-x64.exe (for 64 bit environment)
• WindowsAzureBizTalkServicesSetup-x86.exe (for 32 bit environment)

Download the appropriate setup file for your environment. Notice that apart from
the setup files, there are some additional migration tools and EDI Schemas.

Tool File Description
MicrosoftEdiXSDTemplates MicrosoftEdiXSDTemplates.

zip
Contains all X12
Schemas from
version 204 to 503

BTMMigrationTool Tools.zip Migration
tool used for
migrating BizTalk
Maps to the new
WABS Maps

TPMMigrationTool Tools.zip Migration
tool used for
migrating existing
Partners and EDI
setup to the new
WABS EDI Portal

Download these two zip files also, as we will need EDI Schemas later on in
this chapter.

Chapter 9

[445]

We will now run the setup wizard for setting up the SDK.

The SDK contains the following features:

• Microsoft WCF LOB Adapter SDK
• Microsoft BizTalk Adapter Pack (Both 32 and 64 bit will be installed

if running on a 64 bit environment)
• Windows Azure BizTalk Services ASK
• Microsoft BizTalk Adapter Service
• PowerShell extensions for Microsoft BizTalk Adapter Service and

Windows Azure BizTalk Service

Before installing the SDK, you also need to make sure that .NET Framework 3.5.1
features are enabled and that .NET Framework 4.5 is installed. As we will also
examine the use of the LOB Adapters later on, a local SQL Server 2012 is required.

The latest SDK requires Visual Studio 2012; this is likely to change, and support for
2013 should be expected soon.

If you already have a previous version of the WABS SDK installed, you will first
need to uninstall it.

Install the SDK by taking the following steps:

1. Extract the appropriate setup file.
2. The setup file should start automatically, otherwise start it manually

(WindowsAzureBizTalkServicesSetup.exe).
3. Accept the license terms and click on Next.
4. Select all three features (Developer SDK, Runtime, Tools).
5. Click on Install.
6. After installation has completed, we will be prompted to configure a

Management Service. (If you had installed a previous version of the SDK, the
Management Service might already be configured, and you will therefore not
be prompted for these next steps, just click on Finish).

7. For the identity of the Application Pool used by this service, choose Network
Service and click on Next.

8. Specify your local SQL Server name and leave Windows Authentication
enabled if your user has permissions to create a database, otherwise specify
a user that has.

Using Azure BizTalk Features

[446]

9. Click on Next and choose a Master key password for recovering the key
used for encrypting sensitive data stored in the local configuration database
(such as passwords). Click on Next.

10. Leave the Port at 8080 and uncheck Use SSL to secure the management
service. Click on Next.

11. Configure the Management Service; the configuration wizard should now
be completed.

To verify that the SDK is installed and working properly, open Visual Studio and
make sure that you are able to choose the new BizTalk Service project type and
perform the following steps:

1. Open Visual Studio 2012 and select New Project ….
2. Navigate to Installed | Templates | Visual C# and verify that the BizTalk

Services category is present, as shown in the following screenshot:

Chapter 9

[447]

Creating a Bridge
In WABS, a bridge is used for transporting a message from one place to another.
Unlike BizTalk Server, a message entering a bridge will always be routed to one
destination only.

All bridges have an HTTPS entry point. Additional entry points, such as FTP and
SFTP, can be added.

The following is a list of what can happen in a bridge:

• Receiving a message (message format could be XML, Flat File, or any
custom format such as JSON, since custom Message Inspectors can be
created). Message Inspectors are not covered in this book, but several
examples can be found on the Internet. Refer to the following link on
how to include custom code in bridges:
http://msdn.microsoft.com/en-us/library/windowsazure/dn232389.
aspx

• Decode the message to XML (from Flat File or custom formats).
• Validate the message with the Schemas specified in the bridge.
• Enrich the message by writing metadata to the message (similar to

Property Promotion in BizTalk Server).
• Transform the message using Maps.
• Encode the message from XML to the target format (Flat File or

custom format).

A bridge can also send messages to another bridge for further processing. A bridge
will always act as one whole step, meaning that if a bridge cannot submit to its
destination, the message will not be removed from the source.

Let us create a very simple bridge that picks up a text message from an FTP folder
and drops the file in another FTP location.

For this example you will need an FTP site and three folders:

• In: This is used for submitting files to the bridge
• Out: This is used for dropping files from the bridge
• AltOut: This is used as an alternative file drop from the bridge

Using Azure BizTalk Features

[448]

Also, a username that has full access to these folders and a corresponding password
will be required.

1. Open Visual Studio, create a new project, and choose Visual C# | BizTalk
Services | BizTalk Service.

2. Choose the Location C:\BTS2013CertGuide\Chapter09\Projects, name
the Solution Chapter09.Example01, and name the Project Chapter09.
Example01.SimpleBridge.

3. Click on OK.
4. You should now have a project with a blank canvas where a text reads Drag

a bridge to this diagram…, and a toolbox that resembles the following
screenshot:

5. Drag a Pass-Through Bridge from the toolbox to the empty canvas.

Chapter 9

[449]

6. Check the Properties for the created bridge and notice that the default
Entity Name and Relative Address have been given the name
PassThroughBridge1.

7. Change both names to MySimpleBridge.
8. We now need to create an FTP source so that the bridge will automatically

pick up messages, whenever they are submitted from this source. In the
toolbox, choose Sources | FTP Source and drag it onto the canvas to the
left of your bridge.

9. Once dragged onto the canvas, notice that the source has a yellow
exclamation mark, indicating that the source needs to be connected to a
bridge. To do this, choose Bridges | Connector in the toolbox.

10. The connector is not used by dragging it to the canvas, but rather just
selecting it and then dragging and connecting from the FTP Source to the
bridge. You need to be precise when doing this, connecting from the red
dot to the other red dot, as shown in the following screenshot:

11. Rename the FTPSource1 by selecting it, and change FTPSource1
to MySimpleFTPPickup under Properties | Entity Name.

12. We now need to configure the FTP Source; select the source and
configure the following properties.

Parameter Value
File Mask *.*
Folder Path In
Initial Status Stop
Password [The FTP User's password]
Server Address [The FTP Server address]

Using Azure BizTalk Features

[450]

Parameter Value
Use SSL False
Username [The FTP Username]

13. Your FTP Source properties should now look somewhat similar to this:

Note that the Initial Status is by default Start, which will have
the source polling from the FTP folder as soon as the project
is deployed. To gain better control of when the polling starts,
we will set it to Stop instead and then manually start it using
a PowerShell command.

14. In the toolbox, choose Destinations | FTP Destination and drag it onto the
canvas on the right side of the bridge.

15. Connect the bridge to the destination.
16. Change the name of the FTP Destination from FTPDestination1 to

MySimpleMainFTPDest.
17. Set the appropriate properties, making it point to the Out folder; with a few

variations your properties should resemble the following:

Chapter 9

[451]

As of now, the only place we can configure the FTP properties
are in Visual Studio. In the future, other configuration options
in the Azure Portal might be possible. This also means that, for
now, if a password changes, you will need to change this in the
Visual Studio project, and then redeploy the project.

18. Try building your project. You should receive a warning about the FTP
destination name not being set and two errors stating something about
filter conditions. Let's fix these issues.

Filter Condition and Route Ordering
A bridge can have from one to many destinations. Unlike a publish-subscribe engine,
the message will only be routed to one of these destinations. This is done by setting
a filter condition on each connection to the destinations and then prioritizing the
destinations in the bridge's Route Ordering Table property.

All destination connections need a filter condition (which is also the reason
we received the two errors before), and a bridge will always have each of its
destinations in a prioritized Route Ordering Table.

When a message leaves the bridge, the filter condition for the destination connections
will be evaluated in the order they appear in the Route Ordering Table. The first
positive match will get the message, and the algorithm will stop, so that no more
than one destination will get the message.

Using Azure BizTalk Features

[452]

In our rather simple example from before, all we have is one destination, and we
naturally want all messages to evaluate to that destination's Filter Condition.

1. Select the connection from the bridge to the FTP destination and locate the
Filter Condition property.

2. Click on the ellipsis of the Filter Condition property, and click on the Match
All radio button.

3. Click on OK. Notice that the Filter Condition now reads 1 = 1, which will
naturally always evaluate to true!

Setting the FTP filename
We are now left with a single warning message when building the project:

FTP Filename property needs to be specified at the Route Action stage

Although this is only a warning and the project will build and deploy, the solution
would not work since the FTP destination will not have any name to assign to the
file it is writing to the Out folder.

For now, we will just hardcode the output.txt filename. Later, we will change
the solution so that the original filename is used, by using the Enrich feature in
the bridge.

To set the FTP filename used by the FTP destination, we need to create a Route Action
on the connection to the destination, by using the following steps:

1. Select the connection from the bridge to the FTP destination and locate
the Route Action property.

2. Click on the ellipsis, and then click on Add.
3. In Property (Read From), select Expression and type 'output.txt'.

Notice that single quotes are needed around the name.
4. In Property (Write To), choose Ftp and FileName.

Chapter 9

[453]

5. Click on OK twice.
6. Build the project again, and verify that we are left with no warnings.

Deploying a Bridge
To deploy a project to the BizTalk Service in Azure, we need the following:

• The name of the BizTalk Service
• The name of the Access Control Namespace gathered earlier
• The Default Issuer
• The Default Key

To deploy, perform the following steps:

1. Click somewhere on an empty space on the canvas where the bridge,
FTP source, and destination reside.

2. Under Properties, locate the BizTalk Service URL.
3. Replace servicename with the name of your BizTalk Service.

Using Azure BizTalk Features

[454]

4. Right-click on the project and click on Deploy.

5. In Acs Namespace, type the namespace of the Acs.
6. Set Shared Secret to the token fetched previously from the Azure Portal.
7. Leave the Refresh server after… checkbox unchecked, as we will refresh

the service manually from PowerShell if needed.
8. Click on Deploy.

The certificate we downloaded earlier needs to reside in the
certificate store Local Machine/Trusted Root Certification
Authorities, since it was a self-signed certificate. If the certificate
is not imported to this store, you will receive an error about not
being able to establish trust relationship. To do this, you can use
the following PowerShell command:

Import-Certificate -FilePath [The path of the .cer
file] -CertStoreLocation Cert:\LocalMachine\root

9. Confirm that two items were successfully deployed (the bridge and
the source).

Now we need to verify that the bridge and the source have been deployed in the
WABS, and then start the source so that it will commence picking up files from
the In FTP folder.

Chapter 9

[455]

Using PowerShell with BizTalk Services
When the Windows Azure BizTalk Services SDK is installed, a PowerShell module
is also installed. We will utilize this module now to list our bridges and the source
of these bridges. We will then check the source state and see how to start and stop
the sources, by using the following steps:

1. Open PowerShell as administrator and import the BizTalk Service module,
by executing the following syntax:
import-module "C:\Program Files\Windows Azure BizTalk Services
Tools\Microsoft.BizTalk.Services.Powershell.dll"

2. Verify that you now have several BizTalk Services commands by typing:

Get-Command -Module Microsoft.BizTalk.Services.Powershell

We will be looking at several of these commands in this chapter. The first command
we will use is Get-AzureBizTalkBridge to get a list of all bridges deployed in the
BizTalk Service.

First, let us set a couple of variables that we will re-use several times:

$acsns = '[Name of the ACS Namespace]'

$in = '[The default issuer (owner)]'

$ik = '[The default key]'

$du = 'https://[The Biztalk Service name].biztalk.windows.net/
default'

The loading of the module and the setting of these variables is only
in scope as long as the PowerShell window is open. They will need
to be executed again whenever PowerShell is started.

Using Azure BizTalk Features

[456]

With all the parameters in place, we should now be able to list the bridges deployed.

Get-AzureBizTalkBridge –AcsNamespace $acsns -IssuerName $in -IssuerKey
$ik –DeploymentUri $du

Verify that the bridge MYSIMPLEBRIDGE is listed.

Now, let's list the sources of the bridge; in our case we just have one, namely,
MySimpleFTPPickup.

Get-AzureBizTalkBridgeSource –AcsNamespace $acsns -IssuerName $in
-IssuerKey $ik –DeploymentUri $du -bridgepath MYSIMPLEBRIDGE

Verify that the source was listed and Status is False (Stop).

Starting the bridge source
Now start the source by running the following command:

Start-AzureBizTalkBridgeSource –AcsNamespace $acsns -IssuerName $in
-IssuerKey $ik –DeploymentUri $du –BridgePath MYSIMPLEBRIDGE

You should receive a status saying:

All the sources in the pipeline '……' have been started.

Verify that the status is now True (Start) by running the
Get-AzureBizTalkBridgeSource command from before.

To stop the source(s) again, run the following command:
Stop-AzureBizTalkBridgeSource –AcsNamespace $acsns
-IssuerName $in -IssuerKey $ik –DeploymentUri $du –
BridgePath MYSIMPLEBRIDGE

Restarting the BizTalk Service
After redeploying existing artifacts (bridges, schemas, maps, and so on) to a BizTalk
Service, a restart may be required for the changes to take place. To do this run the
following command:

Restart-AzureBizTalkService –AcsNamespace $acsns -IssuerName $in
-IssuerKey $ik –DeploymentUri $d

Restarting the Service takes a while and is not always required. Therefore, first try to
validate if the changes have taken effect before doing a restart.

Chapter 9

[457]

Testing the bridge
Now that the source has started, we are ready to submit a file to the In folder and
verify that the file is sent to the Out folder. Place a file in the In folder and verify
that the file is removed and another file (output.txt) is placed in the Out folder.

If the file is not removed within approx. one minute, then it is likely
that something is wrong (wrong credentials or some misspelling when
configuring either the source or destination FTP in Visual Studio).
To debug this, we need the WABS Portal associated with the BizTalk
Service (refer to Using the WABS Portal | Tracking for further details).

If you don't want the source to keep polling from the In folder continuously, stop it
by using the PowerShell command described earlier.

Enriching data
Now let us write the incoming filename to a metadata property on the message, and
use this property both for the destination filename and for routing.

1. If not already open, open your project created before. On the canvas,
double-click on the bridge and select the inner Enrich.

2. Under Properties, click on the ellipsis of the Property Definitions.
3. Click on Add.
4. Fill in the Add Property screen as follows (this will fetch the filename from

the FTP source and place it in a custom property named OriginalFileName):

Using Azure BizTalk Features

[458]

5. Click on OK twice.
6. Build the project.

This is only an example used to show how the various
aspects of the bridge work. It might not be the best choice to
assume that a message came from an FTP source, since other
means of transportation (for example, HTTPS) could have
been delivering the message. In that case we would not get
anything written to the OriginalFileName property.

7. Back at the canvas, select the destination connection, and choose Route Action.
8. Edit the existing route action and change Property (Write To) from

Expression to Property Name, and choose OriginalFileName.
9. Click on OK twice.
10. Make sure the source is in a stopped state.
11. Redeploy the project to Azure, start the source again.
12. Delete the output.txt file in the Out folder and submit a new file named

Hello.txt.
13. Verify that the file is picked up (within a minute) and that the Out folder

now contains a file named Hello.txt.

Bridge Routing
As mentioned earlier, it is possible to have several destinations from a single bridge,
and based upon routing conditions, route the message to one of these destinations.

Let us now create a second destination on our already created bridge. Make that
destination point to the AltOut folder, and route all files named Alt.txt to this
folder and all others to the original Out folder.

1. Create a second FTP destination called MySimpleSecondFTPDest.
2. Give the new destination the same properties as the first destination created,

but use the FTP AltOut folder instead of Out.
3. Connect the bridge to the new destination.
4. In the connection's Route Action, write to the FTP filename from the

OriginalFileName metadata property just as we did with the first destination.
5. In the connection's Filter Condition, specify the following:

OriginalFileName = 'Alt.txt'

Chapter 9

[459]

6. Click the bridge and choose the Route Ordering Table property.
7. Make sure that MySimpleSecondFTPDest is placed first in the table so that

it will be evaluated first.
8. Build the project.
9. Stop the source in PowerShell.
10. Redeploy (remember that restarting the BizTalk Service might sometimes

be required for the changes to take effect, but not always).
11. Start the source again.
12. Clear the Out folder if any files are present.
13. Drop a file (Hello.txt) to the In folder and verify that it is picked up and

sent to the Out folder.
14. Now drop a file (Alt.txt) to the In folder and verify that this time it is sent

to the AltOut folder instead.
15. Stop the source again so that it doesn't poll continuously.

Working with XML in bridges
Let us now turn the attention onto working with XML. We will be working with the
following XML and Schema. Refer to Chapter 2, Developing BizTalk Artifacts – Creating
Schemas and Pipelines, for more information about working with XML and creating
Schemas based on XML.

Creating a new Schema
We will now add a Schema to the existing BizTalk Service project for receiving XML
messages in an Xml bridge by using the following steps:

1. In your BizTalk Service project, add a new Item and choose Schema.
2. Give your Schema an appropriate name and make it match the XML shown

in the previous screenshot. Note that the Amount element should have a
numeric type, int, or decimal.

3. Build your project.

Using Azure BizTalk Features

[460]

Your Schema should resemble the following structure and types:

With a Schema in the project, we can now introduce an Xml One-Way Bridge.
An Xml bridge typically takes either XML or Flat File as input and requires that
the Schema representation for the messages received is configured in the bridge.

We now need to add an Xml bridge, associate the newly created Schema with
the bridge, make sure that the bridge only picks up XML files from our In folder,
and that the existing bridge only picks up text files.

1. From the toolbox, drag an Xml One-Way Bridge onto the canvas.
2. Change both Entity Name and Relative Address to MyXmlBridge.
3. Make a connection from the new bridge to MySimpleMainFTPDest,

and choose Match All for Filter Condition.
4. In Route Action, set the FTP filename to 'output.xml'.
5. Double-click on the Xml Bridge. Click on the big plus-sign inside

Message Types.
6. Select the LoanApp Schema and click on the right arrow to add the Schema.
7. Click on OK.
8. Create a new FTP Source and name it MyXmlFTPPickup.
9. Connect the Source to the Xml Bridge.
10. Change the existing MySimpleFTPPickup's File Mask from *.* to *.txt.
11. Configure the new Source with the same properties as the original one,

change the File Mask from *.txt to *.xml. Also change the Content Type
from Text to Xml.

Chapter 9

[461]

Your canvas should appear similar to the following diagram:

12. Redeploy the project.
13. Start the new Source and drop a valid XML file matching the Schema in the

In folder.
14. Verify that the file is processed and dropped in the Out folder.
15. Delete all files from the Out folder.

Using the BizTalk Adapter Services
The BizTalk Service introduces the ability to connect from Azure onto local on-
premise systems by using the following components:

• The BizTalk Adapter Pack (5 Adapter types are available, which are exposed
as a local service and can therefore be used to send message to the system(s)).

 ° SQL Server
 ° Siebel
 ° SAP
 ° Oracle DB
 ° Oracle EBS

Using Azure BizTalk Features

[462]

• Azure Service Bus Relay Service (used for exposing an on-premise service in
Azure, used for the bridge to communicate with the local LOB Service when
using the LOB Services in BizTalk Services).

To do the following exercise, you will need the following:

• A Service Bus Namespace in your Azure account and the owner's token.
• A local SQL Server with a database containing a table for submitting Loan

Applications. Also, a SQL user with db_owner rights for the database and
the password for the user. The table we will be working with can be created
as follows:
create table dbo.LoanApp
(
 ID int identity(1,1) primary key,
 ApplicationID varchar(50),
 CustomerID varchar(50),
 Amount decimal(18,2),
 Inserted DateTime
)

Creating a Service Bus Namespace
In the following walk-through, we will create a Service Bus Namespace and fetch
the owner's token.

1. In the Windows Azure Portal, select SERVICE BUS and click on CREATE.
2. In NAMESPACE NAME, type a new unique namespace and verify that it

is indeed unique.
3. Select an appropriate REGION, and click on the check mark.
4. The namespace might take a second or two to complete.
5. Once completed, click on the newly created namespace.
6. Select CONNECTION INFORMATION.
7. Copy the DEFAULT KEY for later use.
8. Close the popup again.

Everything created in Azure has a price model and
will cause the account owner charges.

Chapter 9

[463]

Adding an LOB Target
To add an LOB Target, do the following:

1. In the previously created project, open the Server Explorer.
2. Right-click on BizTalk Adapter Services and choose Add BizTalk

Adapter Service.
3. Change [host] to your local computer name.
4. Click on OK.
5. Expand the newly created service and locate SQL under LOB Types.
6. Right-click on SQL and choose Add SQL Target.

7. Click on Next> on the welcome screen.
8. Specify the name of the SQL Server, the Instance if needed, and the Catalog

(Database).
9. Select Use the following username and password and specify the db_owner

user and password.
10. Click on Next>.
11. Expand the icon under Select operations and expand Tables.

Using Azure BizTalk Features

[464]

12. Select [dbo].[LoanApp] and click on the right arrow to select the table.

13. Click on Next> twice.
14. Under Deployment, create a new relay target and specify your service

bus account and the owner and token created earlier. Also specify
a path and sub-path, as shown in the following screenshot:

Chapter 9

[465]

15. Click on Next> and then click on Create.
16. When completed, click on Finish.
17. In the Server Explorer under the SQL LOB Type, there should now be a

Enabled icon (green arrow) with the name servicebus_namespace/lobsql/
loanapp.

18. Drag the newly created type onto the canvas to the right of MyXmlBridge.
19. In the Solution Explorer, expand the MessageFlowItinerary.bcs file and

locate the lobsql_loanapp.config file.
20. Double-click on the config file.
21. The XML configuration should now appear. Locate [Specify issuer name]

and replace it with owner.
22. Locate [Specify issuer secret] and replace with the service bus owner token.
23. Save the config file and close it again.

Using Azure BizTalk Features

[466]

We now want to connect the Xml Bridge (MyXmlBridge) to the AppLoan
LOB Service, route all loan application with an amount less than 1000
directly to the SQL table, and all others will need to still be routed to
our Out FTP folder.

24. Double-click on the Xml bridge. Select the inner Enrich between Validate
and Transform.

25. Under Properties, select Property Definitions and click on Add.
26. Select Xpath as Type. In Identifier, specify the following Xpath (or similar

if your Schema does not match this):
/*[local-name()='LoanApp' and namespace-uri()='http://
Chapter09_Example02.Schemas']/*[local-name()='Amount' and
namespace-uri()='http://Chapter09_Example02.Schemas']

27. Select the LoanApp Message Type and Write To of the LoanAmount
property of the Double type.

What we have done now is made sure that the bridge will write the Amount
element taken from the LoanApp XML into the metadata property of
LoanAmount. We will then use this property to decide whether to send the
message directly to our SQL Server, or to send it to the FTP folder. When
sending to the LOB Service, we will need to convert the LoanApp XML into
XML understood by the SQL LOB Service. We will do this by creating a new
SQL Bridge, and applying a transformation (Map) to this bridge, map from
our LoanApp format to the SQL Service format.

Chapter 9

[467]

28. Drag a new Xml One-Way Bridge onto the canvas to the right of
MyXmlBridge.

29. Name both Entity Name and Relative Address as MySqlBridge.
30. Make a connection between MySqlBridge and lobsql_loanapp.
31. Select Filter Condition for the connection and choose Match All.
32. Make a connection between MyXmlBridge to MySqlBridge.
33. Select Filter Condition for the newly created connection and specify the

LoanAmount < 1000 condition.
34. In the Route Ordering Table of MyXmlBridge, make sure that the

Endpoint Alias of lobsql_loanapp is evaluated first by moving it
to the top of the list.

Creating a Map
We now need a map that transforms a LoanApp to the XML expected by the
LOB Service to insert data into the LoanApp table.

First we need a Schema representation of the XML expected by the SQL Service.

1. In Server Explorer, right-click on the SQL Service created earlier and select
Add schemas to….

2. Click on OK. Your project should now have a folder named LOB Schemas.
3. Locate the Schema that contains the phrase TableOperation and examine it.
4. Notice that we have a Delete, Insert, Select, and Update operation

that we can utilize for manipulating data in the LoanApp table.
We will be using the Insert operation.

5. Add a new Map to your existing project and name it LoanApp_to_
InsertSQLLoanApp.trfm.

6. Click on Open Source Schema, and select the LoanApp Schema created
previously.

7. Click on Open Destination Schema, and select the LOB Schema containing
TableOperation.

8. Select Insert and click on OK.
9. Expand both Schemas.
10. Map ApplicationID from the Source to the same element in the destination

Schema by dragging it.

Using Azure BizTalk Features

[468]

11. Do the same for CustomerID and Amount.
12. For the element Inserted, we will need a Functoid for inserting today's date

and time.
13. In the toolbox, locate Date / Time Operations and select the Generate

Date Time Functoid, dragging it onto the canvas between the source
and destination Schema.

14. Double-click on the Functoid on the canvas and type the following
in Format: yyyy-MM-ddThh:mm:ss

15. Connect the Functoid to the Inserted element on the target Schema.
16. Close the Map and build the project.

Notice that we left the ID element on the target side blank.
This is because it is an identity column and will be seeded
automatically by SQL Server.

New Functoids
Although the new mapper bears a lot of resemblance to the classic BizTalk mapper,
the Functoid toolbox has been changed quite a bit. We will not go into details with
all the new tools introduced, but merely describe a few of the quite innovative new
Functoids.

Before starting work with the new mapper, there are a few things to bear in mind:

• The new mapper is not backward compatible; new maps will, therefore,
not work with BizTalk Server.

• There is still the possibility to drop the mapper altogether and use custom
XSLT. Here you also have the ability to select Compiled Transformation for
better performance (something that was also introduced in BizTalk Server
2013, but here the developer can control whether it should be used or not).

• Reusing existing BizTalk Server maps is possible, and a migration tool has
been introduced (BTMMigrationTool).

Chapter 9

[469]

Here is a list of some of the new Functoids introduced with the new mapper.
The functiods mentioned here are by no means all of the new Functoids introduced,
but just a few of the interesting new ones. This chapter will not go into details about
the usage of these.

Functoid Category Description
DateTime Reformat Date/Time Operations Converts from one date

time syntax to another.
For example, 31/01/2013
to 2013-01-31.

Generate Id Misc Operations Inserts a random generated
ID into an element on the
target side. The length can
vary from 12 to 32 characters.

Get Context Property Misc Operations Retrieves a metadata
(context) property from the
message.

MapEach Loop Loop Operations Iterates through a
multioccurence record and
gives the user the ability
to filter (hence, only maps
records that meet certain
conditions).

If-Then-Else-Expression Expressions The much-needed Functoid
that never made it to the
BizTalk mapper. Gives
the user the ability to map
something if a certain criteria
is met, otherwise maps
something else.

Applying the map and testing the solution
For applying the map and testing the solution, go through the following steps:

1. Go back to the itinerary canvas and double-click on the MySqlBridge.
2. In Message Types, select the LoanApp Schema.
3. Click on Xml Transform inside the Transform shape.
4. Under Properties, select Maps.
5. Select the LoanApp_to… map and click on OK.

Using Azure BizTalk Features

[470]

Your itinerary should now look like the following diagram:

6. Before deploying, we also need to set the SOAP Action property when
calling the LOB Service. Click on the connection from MySqlBridge to
lobsql_loanapp and choose Route Action.

7. Add a new action and set the action as follows (again notice that single
quotes are needed surrounding the action):

8. Save everything.

Chapter 9

[471]

9. Deploy the project.
10. Make sure your Out folder is empty.
11. Start the MyXmlFTPPickup source.
12. Submit a loan application with an amount larger than 1000. This file should

be transmitted to the Out folder with the name of Output.xml.
13. Now submit an application with a loan amount smaller than 1000. The result

should be an inserted row in the LoanApp table.

Using the WABS Portal
The Windows Azure Portal also comes with a BizTalk Service Portal, where additional
setup and information can be done and gathered.

To open the portal, select your BizTalk Service in the Windows Azure Portal, and
select MANAGE.

When using it for the first time, you will be required to register your BizTalk Service
account to the portal. To do this, type in the name of the BizTalk Service owner as
ACS Issuer name and the token used when creating the WABS.

As default, the owner and ManagementClient have the
same token in ACS.

Once inside the Portal, we have the following options:

• Managing EDI Partners and Agreements
• Adding and deleting resources (Schema, Maps, Certificates, and so on)
• Viewing and deleting existing bridges
• Viewing Tracking

Setting up EDI partners
When working with EDI (as of now, the North American format X12 is the only
supported format, but EDIFACT is likely to follow), we need to set up the partners we
are exchanging EDI documents with (including ourselves). For each of the partners, we
then need to set up an agreement between them and us and specify message formats,
mapping (if needed), and Receive and Send Pipelines (entry/exit points).

Using Azure BizTalk Features

[472]

To create and use EDI using WABS, do the following:

1. Download the MicrosoftEdiXSDTemplates zip file from the Windows
Azure BizTalk Services SDK download page.

2. Extract the file and locate the X12_00501_840.XSD file.
3. In the Portal, select PARTNERS and create two partners (Partner name

MySelf, and MyPartner). Create the partners by selecting ADD. Partner
name is the only required field and the rest can be left blank.

4. Choose AGREEMENTS and click on ADD.
5. Fill in the page as follows:

6. Click on Continue.
7. In Receive Settings | Transport, set up an appropriate FTP receive folder,

use *.txt as File mask.

Chapter 9

[473]

8. In Receive Settings | Protocol, click on UPLOAD to upload the X12 Schema
located earlier.

9. In Receive Settings | Route, click on ADD to add a Route Setting.
10. Select Use advanced definitions and specify 1=1 to have all successful

processed messages routed to the same place. Name the rule Everything.
11. Under Route destination, choose Azure BizTalk Bridge and type

mysimplebridge in the URL text box.
12. Click on SAVE.
13. Under Message Suspension Settings, again choose Azure BizTalk Bridge

and specify mysimplebridge.
This means that we will now send both successful and failed messages to
our MySimpleBridge bridge and forward them to our AltOut FTP folder.

14. Under SEND SETTINGS, all we will set up is our partner's two destinations
(successful and failed). For now, we will just use mysimplebridge for both of
these.

15. We also need to specify a Schema under SEND SETTINGS | Protocol.
Click on the plus sign and select the Schema uploaded previously.

16. Click on DEPLOY.

To re-use our MySimpleBridge, for this purpose, we need to remove
the Enrichment of the FTP filename, since the message will now come
from an EDI Agreement and not directly from an FTP Source. You
will also need to remove the OriginalFileName = 'Alt.txt'
from the connection to MySimpleSecondFTPDest. Replace this with
1=1 / Match All. Also, the Route Action on each of the outgoing
connections from the bridge needs to use the expression EDI.XML
instead of the MyFileName metadata property. Redeploy your
project after these changes.

17. Use the EDI.txt file that ships with this chapter and submit it to your
Agreement FTP Receive source.

18. Confirm that the AltOut folder now contains an EDI XML document.

What we have done here is set up an Agreement that receives EDI documents from
a trading partner. In our example, we just dropped the raw EDI XML into an FTP
folder. In real life we would process it in a bridge, maybe route it based upon certain
values, and then send it onwards to our ERP system, using different techniques
(maybe using the LOB Services).

Using Azure BizTalk Features

[474]

Tracking
All tracking in WABS is stored in the Azure SQL Server in several tables, and
the actual message bodies (if tracked) are stored in the Azure Storage account
associated with the WABS.

Out of the box only EDI messages have their bodies tracked.

Viewing these data can be done by querying these tables and storage, but the WABS
Portal also contains a Tracking view that shows a lot of these data.

To view the Tracking part of the Portal, select the TRACKING option on the left pane.

Check the events created when we submitted an X12 document through an
Agreement and onto a bridge (mysimplebridge).

In my example, my created agreement was assigned an ID of 2.
This may vary on your setup. Since my ID is 2, my agreement
has an endpoint URL of /agreements/2/receive.

The highest entries show what happened when we submitted an X12 document.
We have one error and three information entries. Let us examine the error by
using the following steps:

1. Select the error reading EDI Disassembler Activity: CustomRecord.
2. At the bottom of the Portal, click on DETAILS.
3. Notice that the message info holds information about the Event Level,

End Point, RequestId, and TrackId, and in what stage the error occurred.
It does not, however, tell us what the error was. For this we need to look
into the PROTOCOL tab.

Chapter 9

[475]

4. Close the message info and select the PROTOCOL tab.
5. Select SEARCH to refresh the board.
6. Select the top entry and click on DETAILS.
7. The error description should read Invalid Segment Terminator.
8. Let us download the actual message received and examine it (this is possible

because we choose Archive messages when setting up the Agreement).
9. In the Select an entry drop-down list, select incoming X12 Message and click

on Download.
10. Choose an appropriate location and give your file a valid name and save it.
11. Locate the file and change the extension to .txt so that it can easily be

opened.
12. Verify that WABS did archive your actual incoming message and allowed

you to retrieve it again.
13. The reason we received the error was that the last line was not ended

with a carriage return. Delete the file in the AltOut folder, alter your
X12 document with the extra carriage return, and resubmit the file.

14. You should now see information entries in Tracking without any errors.
(Click on Search to refresh the tracking board).

Running BizTalk on a Windows Azure
Virtual Machine
As of BizTalk Server 2013, we can now choose to either run our BizTalk Server(s)
on-premise as before, or run them on a virtual server in Azure.

Running your BizTalk environment in the cloud has several advantages:

• You can access your servers from anywhere, if you have Internet access.
• Your images are backed up by Microsoft.
• No hardware is needed, therefore no hardware maintenance is required.
• Fast deployment of new servers. In about an hour, you can have a brand

new BizTalk environment installed, configured, and ready for use.

Besides the actual benefits of hosting your BizTalk Server(s) in the cloud, it is also
possible to connect your cloud servers to your on-premise network or domain by
setting up a Virtual Network in Azure.

Using Azure BizTalk Features

[476]

Setting up a single BizTalk Server
We will now set up a standalone BizTalk Server evaluation edition that also has
SQL Server evaluation edition installed, as follows:

The evaluation edition will only work for 120 days.

1. In the Windows Azure Portal, navigate to NEW | COMPUTE | VIRTUAL
MACHINE | FROM GALLERY.

2. In Choose an Image, select BIZTALK SERVER.

A developer image with both Visual Studio 2012 and BizTalk
Server 2013 is due to be added in the future, but it is not yet
here as this chapter is being written.

3. Under FEATURED, select BizTalk Server 2013 Evaluation.
4. Click on the next arrow.

Chapter 9

[477]

5. Give the Virtual Machine an appropriate name, set the Size required,
and create a new Administrator user (The username Administrator is
not allowed).

6. Click on the next arrow.
7. Choose an appropriate REGION and leave the rest of the parameters

as they are.
8. Click on the next arrow.
9. Note the TCP Ports assigned to Remote Desktop and PowerShell.
10. Click on Complete.

The Server will now take a few minutes to complete. Once completed,
we can access it using Remote Desktop.

11. Click the newly created Server, and select CONNECT.
12. Click on OK and open the .rdp file.
13. Click on Connect if a warning is received.
14. Enter your credentials ServerName\Your Administrator created in the

Wizard, and then the password.
15. You should now be able to access the remote virtual machine. BizTalk

can be configured on the local SQL Server, just as you would a local
BizTalk Server.

Installing a multi-Server Virtual Machine
To install a multi-Server environment in Azure, you will need multiple servers that
can communicate with each other. A SQL Server and x number of BizTalk Server(s)
Enterprise editions (images that do not contain SQL Server).

To do this, you need to either create a Domain Controller hosted in Windows Azure
or use an on-premise Domain Controller before you create the virtual machines. The
latter requires your BizTalk Servers to be joined to the local networks and domain.
Refer to the following link for more information:

http://msdn.microsoft.com/library/windowsazure/jj156090.aspx

Windows Azure does not currently support Windows Clustering,
sometimes used together with BizTalk Hosts.

Using Azure BizTalk Features

[478]

If you need to join your on-premise Domain, you will need to create Virtual
Network. Refer to the following link for more information:

https://www.windowsazure.com/en-us/manage/services/networking/create-
a-virtual-network/

Configuring multiple BizTalk Servers
When needing to configure multiple BizTalk Servers in Azure the same way, a new
tool, BizTalk Provisioning tool, can be used. The tool is automatically installed on all
BizTalk Server 2013 virtual machines and can be used locally, giving the user a fast
way to configure the Servers remotely.

This approach is done by creating local users and groups on each server, and then
creating a configuration XML file that contains all information needed for setting
up the BizTalk Group.

When this is done, the Provisioning tool can be executed; the tool can be found in
any of the virtual BizTalk Servers in the folder C:\BizTalk_Provisioning.

Refer to the following link for more information:

http://msdn.microsoft.com/en-us/library/dn133605(v=bts.80).aspx

Testing your knowledge
1. You want to create a Windows Azure BizTalk Service in the Windows

Azure Portal. Which of the following components are used by WABS
(choose all that apply):

a. A local SQL Server
b. An Azure SQL Server
c. A local BizTalk Server
d. A virtual machine BizTalk Server in Azure
e. An Azure Storage Account
f. An Access Control Namespace

2. You receive messages through an Xml one-way bridge. You want to write
the Receiver ID from the message to the context of the message for routing
purposes. Where should you do this:

a. In the Validate Stage

Chapter 9

[479]

b. In the Transform Stage
c. In the Decode Stage
d. In the Enrich Stage

3. You need to route everything from a bridge to an FTP destination. You have
created the bridge and the destination, what should you do:

a. Create a Pass-Through Bridge between your bridge and the FTP
destination.

b. Connect your bridge to the FTP destination and create a Route
Action. Set FTP | ServerAddress to All.

c. Connect your bridge to the FTP destination and create a Filter
Condition. Set the Filter to Message = All.

d. Connect your bridge to the FTP destination and create a Filter
Condition. Select Match All.

4. What types of LOB Adapters are available in the BizTalk Adapter Pack
(choose all that apply):

a. FTP
b. SQL Server
c. DB2
d. Oracle
e. Siebel
f. SAP
g. SOAP

5. You need to track an EDI message sent through a bridge, where is the
tracking information stored?

a. In the Windows Azure Portal
b. In the bridge used for transporting the message
c. In SQL Azure
d. In Azure Storage

Using Azure BizTalk Features

[480]

Summary
This chapter has dealt with some of the basics of BizTalk Server and BizTalk Services
in Azure. We have seen how to create accounts and Servers in Azure, how to use them,
how to set up an EDI agreement for exchanging messages with partners in the cloud,
and even how to route messages from Azure to your local on-premise applications.

Test-taking – Tips and Tricks
Since the second edition of this book targets both the Exam 70-595: MCTS: Developing
Business Process and Integration Solutions by Using Microsoft BizTalk Server 2010 and
the Microsoft Partner Network Technical Assessment for Application Integration (BizTalk
Server 2013), this chapter uses the word Test when discussing topics that are relevant
to both. It only uses the terms Exam or Assessment when the content truly only
applies to that.

This chapter intends to go beyond providing content that educates you, the reader,
on important technical information, concepts, and techniques, and provide you
with a better understanding of what the process of taking a test is like, starting
with preparation, what to expect through the actual test itself, and the follow-up
once done. Due to this, while the other chapters of the book are to the point and
technical, this chapter is less so. The following areas are discussed in this chapter:

• Understanding the difference between the exam and the assessment
• Preparing for taking a test
• At the test center (BizTalk Server 2010)
• Test structure
• Time management
• Answering questions

Test-taking – Tips and Tricks

[482]

Understanding the difference between
the exam and the assessment
This section will explain how the exam and assessment are alike, and how they differ.

Historically, there has not been an exam available for every version of BizTalk
Server. For example, BizTalk Server 2009 never got an associated exam. There is an
exam for BizTalk Server 2010. The exam is available to all professionals, partners as
well as customers or otherwise, to take. This exam was the focus for the first edition
of this book, and for the most part still is for the second edition. Since writing the first
edition of this book, BizTalk Server 2013 has become available. There is no associated
exam for BizTalk Server 2013. There is however a Microsoft Partner Network
Technical Assessment, a requirement for professionals employed at partners who
wish to pursue the Application Integration competency. The assessment is targeted
at and accessible to Microsoft Partners only.

Both tests test an individual's skill in BizTalk Server. Both tests follow the Microsoft
exam question and answer multiple choice formats. Both tests require the same basic
skills and knowledge, although the BizTalk Server 2013 assessment has a slightly
wider target area than the exam, including Windows Azure Virtual Machines and
BizTalk Services, as well as other 2013 news in the skills measured.

The exam is taken on-site at a test center where you book a seat for a specific time.
You need to show up on time, identify yourself, and enter a room together with
others where you access the exam under controlled forms through a locked down
PC with access only to the test software.

The assessment, however, can be accessed at any time and from any computer
by following the link available in the Microsoft Partner Network web portal. Also,
unlike the exam, you have access to anything and everything that you normally
have access to from your PC.

The exam has a retake policy, which means you cannot try again immediately
(after your first attempt the wait is a minimum of 24 hours, and after the second
and consecutive attempts it is 14 days). With the assessment you can just try again
if you fail.

Chapter 10

[483]

Since the rules around the assessment are different from those for the exam, the
approach to studying for it will likely be different in reality. For both the exam and
the assessment, as a rule, you can always try taking the test even if you are not sure
that you are a hundred percent ready. Failing an exam is not a total failure. It is part
of the learning process and often gives you great feedback to continue with focused
studies. While the exam enforces retake policies and infers cost, the assessment does
not. It is free to take and you can retake it immediately. For this reason it is likely,
and wise, not to study as much for it in comparison to the exam.

The exam is still, in this book's opinion, the primary and most up-to-date test
available for all individual BizTalk Server professionals that wish to prove their
worth. However, if you are a Microsoft Partner, the assessment is a must have if
you are aspiring to achieve the Application Integration competency. Therefore, it is
crucially important to partner companies to have employees pass the assessment;
likely more so than have them pass the certification.

As explained in this section, the assessment is a different entity from the exam.
For the most part however, the concepts, ideas, and information in this chapter
apply equally to both, although they were mostly written with the exam in mind.

Preparing for taking a test
We all learn in different ways. The preparation that works best for one of us does
not necessarily work for someone else. You need to find the way that you learn the
best, and learn the way you learn. At the same time, it is a proven fact that while
we are different, we all learn best when we get information through more than one
channel and more than one experience. Reading, hearing, seeing, trying, perhaps
even showing or teaching, all adds to your understanding of a topic. There is simply
nothing that measures up to the experience built up by different kinds of exposure
over time, but being prepared and knowing what will happen and being aware of
the process as well as the technology might just be the thing that tips the scale in
your favor.

Preparation sources
The following are examples of different kinds of material you can use to prepare:

• Literature
• Classes
• Webcasts
• Labs

Test-taking – Tips and Tricks

[484]

• Training kits
• Sample code
• Practice tests
• Colleagues and peers
• Forums, blogs, and other online sources such as Microsoft Developer

Network (MSDN) documentation and TechNet Wiki

We will go through these and try to highlight what and when each of these is good
to use.

Literature
If reading is your thing, read this book from cover to cover. Having been written
specifically to help you pass the certification, it covers the topics needed to get you
up to date on the certification objectives. However, it is not written for the BizTalk
beginner. Should you crave more basic and introductory content, as well as simply
more, there are a lot of good BizTalk books out there.

You can, of course, also read the BizTalk documentation, although it is not meant to
be read cover to cover as a book. It serves as a good reference, but is little like a book.
You can turn to the documentation once you have closely narrowed down the topics
on which you lack knowledge or need improvement.

For most of us, having read something does not lend expertise, but it does help to
strengthen the knowledge that is already there, store new knowledge to be recollected,
and tickle the senses at the right time.

Classes
Although Microsoft has not released a Microsoft Official Curriculum (MOC) course
for BizTalk Server since BizTalk was in its 2006 version, there are many training
providers that have kept up to date with BizTalk Server versions. You should be able
to find at least one training provider in your area that has training for BizTalk Server
2010 or 2013. If you cannot, there is BizTalk Server 2010 or 2013 training available
online from companies such as Pluralsight and Quicklearn, among others.

Classes will give you different kinds of exposure to BizTalk. You will hear the trainer
talk about it, you will see him demonstrate it, and you will get a chance to try it on
your own, under controlled and well-prepared circumstances during labs. You will
probably not get as effective and well-rounded training elsewhere as the hours spent
in class while doing it on your own.

Chapter 10

[485]

Classes tend to be most effective for beginners or less-experienced BizTalk developers.
Experienced developers will most likely find classes to contain things they already
know well, mixed with new and previously forgotten knowledge. For experienced
developers, other sources to prepare for certification are often more effective.

Webcasts
Webcasts often have a shorter format and are made to cover a specific topic. Some
webcasts are very general in nature and do not provide much value as certification
preparation, but there are also webcasts that are made specifically to cover a part
of BizTalk in more detail. These webcasts are great, if they cover an area you need
improvement in. Many BizTalk developers are not closely accustomed to all parts of
BizTalk; most often, the extended capabilities such as Business Activity Monitoring
(BAM), Business Rules Engine (BRE), Electronic Data Interchange (EDI), and Radio
Frequency Identification (RFID) are areas where there are gaps in exposure. For those
specific areas, getting up to date with a targeted webcast is very useful. The places that
contain or link to BizTalk Server webcasts and videos include the following:

• BizTalk Server Developer Center webcasts: http://msdn.microsoft.com/
en-us/biztalk/aa937645

• BizTalk Server Developeztalk/dd849956.aspx
• Cloudcasts BizTalk community webcasts: http://www.cloudcasts.net/

Default.aspx?category=BizTalk

• Cloudcasts BizTalk community webcasts, the Light and Easy series: http://
www.cloudcasts.net/Default.aspx?category=BizTalk+Light+and+Easy

• Cloudcasts BizTalk community webcasts, ESB Toolkit: http://www.
cloudcasts.net/Default.aspx?category=BizTalk+ESB+Toolkit

• BizTalk247 BizTalk Server webcasts: http://www.biztalk247.com/
webcasts.aspx

• BizTalk247 BizTalk Server videos: http://www.biztalk247.com/videos.
aspx

Although many new features have been added and much
improvement has been made, much of the BizTalk Server still
remains relatively unchanged since BizTalk Server 2004. This
means that any content that covers earlier versions of BizTalk
may very well still be valid. However, some specifics such
as EDI have changed dramatically, so be alert when viewing
webcasts made for previous versions.

Test-taking – Tips and Tricks

[486]

There are also quite a few websites around that try to keep updated lists of BizTalk
presentations and recordings, examples of such are as follows:

• Technet Wiki: http://social.technet.microsoft.com/wiki/contents/
articles/18829.biztalk-server-webcasts-and-videos.aspx

• BizTalk Events: http://biztalkevents.com/presentations/

The resources linked to can contain material around topics
not required by the exam or the assessment. Be mindful of
the objectives as you study. For example, the ESB Toolkit is
not one of the objectives for the exam or the assessment.

Training kits
If you have a machine and want more time to play around with the topics than you
are given in the virtual lab, and if you want to be able to come back to the content
more than once and not lose your progress, you might be better off downloading
and installing one of the available training kits. Most of these do not come as a
bunch of word documents alone, but include a complete virtual machine for you
to use. Some of them are as follows:

• What's new in BizTalk Server 2010 Training Kit: http://www.microsoft.
com/download/en/details.aspx?id=17956

• BizTalk Server 2010 VHD (with the What's new in BizTalk Server 2010
Training Kit preinstalled): http://www.microsoft.com/download/en/
details.aspx?id=13624

• BizTalk Server 2010 Developer Training Kit (including VHD): http://www.
microsoft.com/download/en/details.aspx?id=14865

• BizTalk Server 2010 Administrator Training Kit (including VHD): http://
www.microsoft.com/download/en/details.aspx?id=27148

• BizTalk Server 2009 BAM Training Kit: http://www.microsoft.com/en-us/
download/details.aspx?id=5416

• BizTalk Server 2010 ESB Training Kit (including. VHD): http://www.
microsoft.com/download/en/details.aspx?id=27151

The ESB Toolkit is not one of the objectives for the exam or
the assessment. However, familiarizing yourself with it serves
both to better understand BizTalk Server and to better prepare
yourself for the exam, the assessment, and work scenarios.

Chapter 10

[487]

You could also download the required software and build a virtual machine
yourself. You will gain additional insight into the BizTalk Server by going through
the installation and configuration required. If you have the required access to MSDN,
you can download and install a full non-expiring version of the software. If you don't
have any such subscription, you can still download trial versions that usually have a
limited amount of time that you are allowed to use them for.

BizTalk Server 2010 had a Developer Edition that was free
for everyone. With BizTalk Server 2013, this version is free
for MSDN subscribers, but for everyone else there is a small
cost (the exact amount still depends on the agreement type
and level but is below the $50 mark).

Windows Azure virtual machines
You may have noticed that most of the links in the prior section were for previous
versions of BizTalk Server rather than BizTalk Server 2013. The reason is that, so far,
the amount of available downloadable images and samples for BizTalk Server 2013
has been few. To a large extent the explanation for this is Windows Azure and the
possibility to use BizTalk Server in the Windows Azure Infrastructure as a Service
(IaaS) virtual machines environment. You can easily activate your Windows Azure
MSDN benefit or start a free trial that will allow you to provision a BizTalk Server
2013 server in Windows Azure that you can log in to and try out. At the moment,
the Windows Azure gallery virtual machine images do not contain Visual Studio,
so these machines are not development ready, although a trial of Visual Studio can
be freely and easily installed. This topic is covered in more depth in Chapter 9, Using
Azure BizTalk Features.

Sample code
If you don't want a full training kit but just want to get your hands on code that
shows some specific feature, there are a lot of samples available for download:

• BizTalk Server 2010 SDK samples (also available in your BizTalk
install folder): http://msdn.microsoft.com/en-us/library/
aa560186(v=bts.70).aspx

• BizTalk Server 2013 SDK samples (also available in your BizTalk
install folder): http://msdn.microsoft.com/en-us/library/
aa560186(v=bts.80).aspx

• BizTalk Server code samples: http://msdn.microsoft.com/en-us/
biztalk/aa937647.aspx

Test-taking – Tips and Tricks

[488]

• BizTalk Server 2010 Adapter Pack samples: http://msdn.microsoft.com/
en-us/biztalk/gg491395.aspx

The BizTalk Server adapter pack is not one of the objectives
for the exam, but it is a small part of the assessment.

Blogs are also a great resource for samples, but there are too many of them to point
out, and since the content varies greatly in quality and quantity over time and is not
something that has been verified as part of the process of this book, no links will be
added to point to blogs.

Besides sample code that is limited to showing specific features, there are also
tutorials and scenarios that show complete architectures, as follows:

• BizTalk Server 2010 Tutorials: http://msdn.microsoft.com/en-us/
library/aa560270(v=bts.70).aspx

• BizTalk Server 2013 Tutorials: http://msdn.microsoft.com/en-us/
library/aa560270(v=bts.80).aspx

• BizTalk Server 2010 Scenarios for Business Solutions: http://msdn.
microsoft.com/en-us/library/aa561965(v=bts.70).aspx

• BizTalk Server 2013 Scenarios for Business Solutions: http://msdn.
microsoft.com/en-us/library/aa561965(v=bts.80).aspx

Again, there are more places than this. A simple search on any search engine using
words such as "BizTalk Server Tutorials" will turn up a number of hits.

Practice tests
Practice tests are useful as they make you comfortable with the functionality and
working of the test engine. Recommended practice test providers are those that have
a good spread of questions that are not copies of the exam itself, but cover similar
topics. They also have explanations of which answers are correct and which are
incorrect, and why, similar to the Testing your knowledge section in this book. At the
time of writing this book, no practice tests are currently available for the BizTalk
Server 2010 Exam or for the BizTalk Server 2013 Assessment. However, there are
practice tests available for previous versions of BizTalk and the exams that cover
those versions, for example, the BizTalk Server 2006 Exam. Those tests will serve
the purpose of making you comfortable with the format to a large extent, and at
the same time the content they cover is mostly viable for BizTalk Server 2010 and
BizTalk Server 2013 as well. They will, however, not cover all the topics.

Chapter 10

[489]

This book is also a very good source of practice with the type and style of questions,
although you will not get them framed in a test engine similar to the live one.

Colleagues and peers
If you know someone who is experienced in BizTalk, take the opportunity to pick
their brain on the topics that you feel hesitant about. Even if they have taken the
tests themselves, they would not be able to give you direct insight into the questions
or the topics covered, since they will have committed themselves to an NDA when
taking the exam. However, they will be able to give you general directions and help.
No such NDA is explicitly presented for acceptance for the assessment.

Forums, blogs, and other online sources
BizTalk Server, in its current core architecture, has been around for many years and
has a large user base. As such, there is a large community out there that writes articles
and blogs and staffs many forums. You are almost guaranteed to find someone out
there who has had the same or similar problem or questions. One place that allows the
community to contribute to the documentation provided by Microsoft is the TechNet
Wiki; the page at http://social.technet.microsoft.com/wiki/contents/
articles/2240.biztalk-server-resources-on-the-technet-wiki.aspx
summarizes the articles that focus on BizTalk Server.

If you do not find what you are looking for, there are places you can ask your
questions and get them answered, for example, the MSDN BizTalk Server forums:
http://social.msdn.microsoft.com/Forums/en-US/category/biztalkserver.

Getting familiar with the objectives
One of the main things about studying for the exam is of course to know what the
exam covers. If the exam is your objective, do not overstudy. Learning is fun, and the
risk of learning too much is virtually non-existent. However, the possibility that you
will end up learning more than you need to pass the exam is equally large. Often, if
you study towards a goal, you can be more focused, get a learning path, and be more
selective in what you need to learn right now. You should study the exam objectives
which can be found at http://www.microsoft.com/learning/en/us/exam.
aspx?ID=70-595#tab2.

There is currently no web page that details the objectives for the assessment in the
same way. They are, however, more or less the same.

Test-taking – Tips and Tricks

[490]

Finding time to study
Set aside time to study. Many of us are lucky enough to be able to work and study
at once, since what we do all day is architecting, developing, or administrating
BizTalk Server solutions. Usually though, even in those situations, our daily routines
and what we do does not touch each and every part of BizTalk Server. Since feeling
confident about ourselves when taking the tests helps, even though it might not be
altogether necessary to get a passing score, try to find time to at least briefly look at
the topics that you are not that familiar with, to build that confidence.

Depending on the way you study best, here are a few suggestions on how you can
sneak that study time into your daily routines:

• Commute: If reading is your choice, the time that you are commuting—using
public transportation (not while driving!)—is prime time. Many of us can
easily find an hour or more each day, during which we would not be doing
much anyway. Some, even more.

• As part of your work role: If you can find time at work, you will easily get
many hours of study done daily during paid work time. Perhaps you can
enforce concepts or incorporate techniques from this book or ideas brought
forward in the test objectives as part of your solutions. Hands-on is a good
way to learn!

• Expanding your horizons at work: If it does not fit your daily routine,
perhaps volunteer to take part in an EDI prestudy, or a PoC, on how to allow
business users to best interact with your BizTalk Server solutions by define
rules in the Business Rules Composer, or how you should configure your
solution using the new settings dashboard to best handle your combination
of integrations. This combines research with hands-on learning!

• Before or after work: Take the first 20 minutes when you get to work to look
at something new, or re-enforce a lesser-known topic. Getting to work 20
minutes early can usually be worked into a new routine, and if you are there
20 minutes before the others, it is also usually a very quiet and focused time
of the day.

• At home: Instead of channel zapping or viewing that useless TV show that
neither educates nor enriches you, do a lab!

• Before bed: Although you should not do this if you are tired, if you spend
the last 30 minutes before going to bed with BizTalk topics, not only will you
be able to wind down, you will also think BizTalk when you go to sleep.

Chapter 10

[491]

As you learn how you can best fit time to study into your schedule and your routines,
set goals. Decide what you need to learn before taking the exam or assessment, and
plan that across the days leading up to it. Leave enough room in the schedule to make
sure you have time for everything that you feel you need to. Better to look at some
things twice, rather than finding that the day of the test is upon you and that you
have not had time to finish your studies. Remember, build confidence.

Incentives
Many of us work better with a good incentive—find yours. It could be anything.
Here are a few common ones.

Knowledge
Here are some points that cover knowledge:

• To know more
• To become a better (more knowledgeable) developer or architect or

consultant or employee

Money
Here are some points that cover money:

• To earn more—to be able to bill more or get a better salary
• An employer-supplied gratification or gift

Opportunities
Here are some points that cover opportunities:

• To get a new job, a more fun job, or more challenging work
• To be more sought after and have more choices
• To get new opportunities or new roles

If you cannot find a goal, or one does not really fit your situation, give yourself an
incentive, perhaps something along the lines of "When I pass the test, I will…

• ...go out to a really nice dinner at restaurant X."
• ...go to see X play the Y at the Z."
• ...go to the city of AABC over the weekend."
• ...visit that spa I pass when I drive to work for a new treatment."

Test-taking – Tips and Tricks

[492]

Vouchers and offers
Take advantage of offers and vouchers for test takers. Microsoft and Prometric
(the exam provider) will often have valid offers for you to take advantage of,
for example:

• Second chance free
• Discounted exam costs
• Two-for-one

Current offers are listed at the following link: http://www.microsoft.com/
learning/en-us/offers.aspx

There are also Microsoft Partner Network discounts from time to time, but no
relevant ones are available at the time of writing, so there is no URL, but it is
worth checking when it's time for you to book an appointment.

Finally, you can also turn to your Microsoft Certified Trainer (MCT) and ask
them for a voucher that will get you a discount on the certification.

Learn more
Microsoft maintains Exam policies and FAQ section at http://www.microsoft.
com/learning/en-us/certification-exam-policies.aspx#faq.

If you are a Microsoft partner, the Microsoft partner learning paths are available
at https://mspartnerlp.mspartner.microsoft.com/LearningPath.

At the test center
Prometric is the current exam provider for Microsoft certifications at the time of
writing this book. Usually, your Certified Provider of Learning Solutions (CPLS)
or Learning Partner will be a Prometric test center where you take the exam. You can
usually contact either the test center or Prometric. The test center can add a handling
fee on top of the certification fee. On the other hand, it will often be able to bill your
company or employer directly, while you will have to supply a credit card when
registering directly with Prometric. Some test centers require you to contact them
directly or you will find yourself without a seat once you arrive to take the exam.

Chapter 10

[493]

On the day of the certification, these are the most important points that you should
keep in mind when arriving at and taking the exam at the test center:

• Be on time. However, if you are not, most of the time this will not be an
issue; you are still allowed to take the exam, should you arrive late.

• Bring photo ID. You will need to be able to prove who you are. You should
bring two ID proofs (though they need not be two photo ID proofs).

• You will not be allowed to bring anything into the test room. No phones,
no books, and no notes.

• You will be supplied a scratch pad on which you can make notes on anything
you want during the exam. This will have to be turned in once you are done.

• You will be monitored during the exam through video surveillance.
• The computer on which you do the exam has very limited functionality—

you will only have access to the test itself, no Internet, no help files, and no
development environment.

• You are allowed to take breaks (though the time does not stop counting down).

Prometric maintains a FAQ section at the following link:

https://www.prometric.com/en-us/for-test-takers/prepare-for-test-day/
frequently-asked-questions/pages/default.aspx.

Examining the exam structure
The exam itself has a simple structure that is divided into three parts.

Before the exam
Before starting the exam, you will go through a series of informational screens,
including information on how much time you have, in all, to complete the exam
and information on the Non-disclosure Agreement (NDA) that you must agree
to before being allowed to take the exam. This agreement prohibits you from
discussing the content of the exam or the questions. Reviewing the agreement
is not included in the time you have to complete the exam.

Test-taking – Tips and Tricks

[494]

Questions
A Microsoft exam will have somewhere between 35 and 80 questions. The norm is 40
to 50, but part of the NDA is the exact number of questions for this particular exam,
so this book will not disclose it.

A question screen of the exam will have the following general appearance:

Questions are single- or multiple-choice questions.

You will always be able to keep track of the time you have left, and which question
you are on, out of the total number of questions. You will also be able to mark the
question for review and navigate between questions, either by going to the next or
previous questions.

After the last question, you will come to a review screen where you will see which
questions you have marked for review and will be able to return to them, or any
other question you choose, easily.

After the exam
Whenever you decide you are done with answering and reviewing questions, you
can choose to end the exam. At this point, you will get a chance to give comments
on the certification material or any of the questions. You will also get your score
immediately, once done, and learn whether you passed or not.

Chapter 10

[495]

With it, you will get a report on how you did on the different areas. You will get it
printed and can take it home regardless of the fact you passed or failed. This will
help you understand which areas you were strong in and which need development.
If you passed, you passed; there is no coming back to take the exam again to improve
your score. But, if you did not pass, take careful note of this report. The certification
report will generally look something like this:

Once done, you leave the exam room and need to hand in the scratch pad and
sign out.

The assessment does not offer an equally helpful report. You need to guess (or have
a feeling for) which areas you need improvement in and which you were strong in.

Test-taking – Tips and Tricks

[496]

Managing your time
For most certification test takers, having too little time to complete the test is not an
issue. The total time for the exam is around three hours. However, if the exam is not
available in your native language, you will get additional time added to your exam
time to compensate for that fact.

Even so, managing your time during the certification can help you reduce the feeling
that time is running out.

The assessment is simply one and a half hours; roughly half the time.

Do not spend too much time on any one question. If you feel you cannot answer a
question after reading the questions and the suggested answers, mark it for review.
Do not overthink on it. Do not turn it every other way, and do not feel bad. Very
few will ace them all.

For example, say that we have 50 questions and three hours. That means an average of
3.6 minutes per question. You will, without a doubt, find some questions easy. Those
will be answered quickly, leaving time for the ones where you need to think more.

Do not spend too little time on any question. Do not speed through. Be thorough.
There will be no bonus points given out if you complete in record time.

Take advantage of the fact that you are allowed to take breaks. If you feel your
concentration is failing you or you are feeling tired, take a break. Many test centers
provide free drinks and snacks.

Interviewing experienced BizTalk developers that have
taken the exam shows that they typically need between
about 45 and 90 minutes.

However, you should not benchmark yourself against others.

If your colleague, who has taken the exam, did it in 60 minutes and you are in your
70th minute and are only on question 32, do not worry. You will probably score
better than they did.

If the other eight people who were in the room doing exams at the same time as you
are done and have left, and you are still in your 140th minute and on question 40, do
not worry. They are probably not even taking the same exam that you are.

Chapter 10

[497]

Answering questions
There are a few cardinal rules to answering exam questions. The foremost one
is answer the question. You will get no reduction in score for incorrect answers,
but you will absolutely get no points if you do not answer. Always answer.

Besides that, consider these points as you address questions:

• Always make sure you have read the question thoroughly
• Do not assume that you know the question before you have read it all through
• Do not assume you know the answer before you have read the question
• Make sure that you have read and understood all requirements
• There is no trickery
• There are no hidden requirements
• Only take into account what is stated
• Take into account all that is stated
• Do not read other things into the question than stated
• Do not make assumptions about circumstances not stated
• Do not try to put your own requirements or preferences into the question

There is also a set of rules that applies to the answers in the exam that is good to keep
in mind:

• Only one answer is correct
• Only one answer can solve all the requirements
• No second answer can fulfill the requirements or solve the problem even if it

presents a really silly and stupid way to do it
• You will not be asked what the quickest or most direct answer is (since only

one answer is allowed to solve the problem)
• You will not be asked which answer is the best answer (since only one

answer is allowed to solve the problem)
• All answers are real and possible to perform
• No answer is impossible or illegal
• No answer may present a series of steps, properties, settings, concepts, or

otherwise, that cannot be found or done in BizTalk Server
• No answer may present an illegal combination or faulty context (goes back

to "no answer is impossible or illegal")

Test-taking – Tips and Tricks

[498]

Keeping in mind the time management, if you feel that after having read the
question as stated and looking at the answers that you do not know the answer,
mark the question for review and move on.

If, on the other hand, you think that two answers are equally possible, read the
question and review the answers again, perhaps there is a requirement in an
aspect of the answer that you missed. If you still feel that two answers are equally
plausible, choose the one that makes the most sense, based on what you know of
BizTalk Server best practice, technology, and services.

Not all questions have the same style. A team of experts have been involved
in making sure that the questions cover topics that are important and have the
right combination of answers. However, they are written by different people,
and different people have slightly different styles. So there are some guidelines
that apply to most questions.

Most questions will have four alternative answers. Out of those four, two can often
be discounted without deep knowledge and using common sense, for example:

1. Mooremountain Motors is a big dealership that offers many different kinds
of brands. As a result, they are receiving invoices from many different car
manufacturers. Jill, a developer at Mooremountain Motors, has developed
an Orchestration that handles a canonical version of an invoice. She has
also developed Maps from each of the manufacturers' Invoice Schemas to
the Canonical Schema. What must she do to ensure that the Orchestration
receives the canonical message and not the manufacturers' formats?

a. In the Orchestration, after the initiating Receive shape, configure a
Transform shape with the Maps.

b. Create a Send Port Group and a Send Port for each of the
manufacturers. Configure the Send Ports with the Maps.

c. Create a Receive Port and Receive Location. Configure the
Receive Port with the Maps.

d. Configure a Receive Port and Receive Location. Configure the
Receive Pipeline to be the Xml Receive Pipeline and set the
Validate document structure property to true.

Chapter 10

[499]

In the preceding question, based on very basic knowledge about how BizTalk
Server works, you will be able to rule out configuring Send Port Group and
Send Ports, since the requirement is that the Orchestration should get the
canonical formatted invoices. Also, for that same reason, the transformation
cannot occur in the Orchestration, since that is too late. The two remaining
options both talk about the Receive side. Configuring a Pipeline and the XML
Disassemblers Validate document structure property has very little to do with
canonical formats and transformations. So, you can rule that out. Finally, you
are down to receiving and Maps, which is the only option that fits.
However, sometimes it might not be that easy, and sometimes you might not
have the knowledge necessary to decide which of the last two is correct. When
you are down to two options, it is a matter of knowing or having had enough
exposure to BizTalk to have a feeling or hunch about the correct answer.
Knowing which answers are incorrect is often as useful in these situations as
knowing which is correct.
You can also find help in unexpected places. One question can contain the
answer to a previous question.

2. HWLC Motors is receiving XML documents in a Receive Port. The Port is
configured with a map to transform the incoming documents to a canonical
format before triggering the correct Orchestration, based on the content of
the document. Once in a while, a document arrives that cannot be routed to
a subscribing Orchestration. Roger, an administrator, is tasked to set up a
Send Port that outputs the failing incoming documents from this port in
their original format. What must he do?

a. Enable Failed Message Routing on the Receive Port. Create a second
Receive Port to receive the failed messages.

b. Enable Failed Message Routing on the Receive Port. Create a Send
Port to receive the failed messages.

c. Enable Failed Message Routing on the Receive Port. Create a Send
Port to receive the failed messages, and configure it to Map from
the canonical format to the original format.

d. Create a Send Port to subscribe to all messages so that a subscriber
can always be found to get rid of the routing errors.

Now, obviously, if you read this question once you have read the previous
one, had you been ever so slightly hesitant on whether having Maps on the
Receive Port was the correct choice, you will now know and can return to
the previous question and easily supply the correct answer.

Test-taking – Tips and Tricks

[500]

Test makers do their best to avoid this from happening, but subtle references
can still be found, and even though they might not always contain the answer,
they might jog your memory enough to make a difference.
Once you are done, you will reach the review screen and can make a pass
over the questions again, perhaps even all questions, and not just the questions
marked for review. This can help finding cross-references between questions
that will help you solve those final questions.

Summary
In this chapter, we examined what you need to know about taking any of the tests
themselves. We talked about how the exam and the assessment differ. We also talked
about preparing for the test, including giving tips about additional resources outside
of this book as well as strategies during the test.

The following appendices hold answers to the questions that appear at the end of
each chapter as well as additional questions and answers on top of those provided
in the chapters.

Sample Certification
Test Questions

This chapter holds additional sample exam questions. They are categorized to align to
their exam skill area. This allows you to measure your skill in the areas most relevant
to you, so that you can pinpoint where you need improvement.

Answers to the questions in this chapter are in Appendix B, Sample Certification Test
Questions – Answers.

Configuring a Messaging Architecture
1. You have two Send Ports, both of which wish to subscribe to all the Order

messages from the ERP system. What should you do?
a. Create two Receive Locations in one Receive Port and make both

Receive Locations receive orders from the ERP system. Create one
Send Port and make the Send Port subscribe to all orders.

b. Create two Receive Ports with one Receive Location in each and
make both Receive Locations receive orders from the ERP system.
Create one Send Port and make the Send Port subscribe to all orders.

c. Create one Send Port. Configure transport options for one of
the destinations and backup transport for the other destination.
Set the filter to BTS.MessageType == Order.

d. Create one Receive Port with one Receive Location in it and make
the location receive orders from the ERP system. Create a Send Port
Group. Make the Group subscribe to orders. Create two Send Ports
and add the Send Ports to the Group.

Sample Certification Test Questions

[502]

2. You need to send invoices to a partner using the FTP Adapter. The partner
has requested a special XML format that differs in structure from the canonical
invoice format that you use in your Application. What should you do (choose
all that apply)?

a. Use the PassThruReceive Pipeline on the Receive Port
b. Use the PassThruTransmit Pipeline on the Send Port
c. Create a Map from the partner format to the Canonical invoice
d. Create a Map from the Canonical invoice format to the desired

partner format
e. Apply a Map on the Send Port

3. HWLC Motors uses two BizTalk Servers, but only one Host (HostA) and
one Host Instance per Server. High Availability is a requirement and this
is the reason that two BizTalk Servers were set up. We want to ensure
that FTP Receive only happens on one of the servers. What should you
do (choose all that apply)?

a. Turn off the Host Instance for HostA on one of the servers
b. Create a new Host (HostB)
c. Cluster HostB
d. Create a Receive Handler for the FTP Adapter for HostB, and delete

the Receive Handler for HostA
e. Make all Receive Locations using the FTP Handler run under HostB

4. You have several Pipelines, both Receive and Send, deployed in a BizTalk
Application Common. The Pipelines will be needed in several Applications.
You create a new Application ApplicationA, and start to create Receive Ports
and Receive Locations. When choosing a Pipeline for your Receive Location,
you notice that the Pipelines deployed in the Common Application do not
appear in the drop-down list of available Receive Pipelines. What should
you do?

a. Make a reference to the default BizTalk Application in ApplicationA
b. Redeploy all the Pipelines in the ApplicationA Application
c. Make a reference to the Common Application in ApplicationA
d. Make a reference to ApplicationA in Common

Appendix A

[503]

5. You want to make sure that all Receive Locations in the entire BizTalk Group
are disabled. What should you do?

a. Stop all running Host Instances.
b. In the BizTalk Administration Console, open the Group Hub and

choose New Query. Query the Running Service Instances and
make sure that the query doesn't return any rows.

c. In the BizTalk Administration Console, open the Group Hub and
select Applications. Check that all Applications are in a stopped state.

d. In the BizTalk Administration Console, choose the All Artifacts
Application and open Receive Locations. Check that all locations
are disabled.

6. You are deploying a Receive Port in your production environment. You do
not want it to automatically start processing messages until June 5, 2014.
How do you enable this?

a. In the Receive Port, enable the Service Window and set it to
stop at 05:00 (5 am) and start at 20:14 (8:14 pm)

b. In the Receive Port, configure the Schedule Stop date to
June 5, 2014

c. In the Receive Port, configure the Schedule Start date to
June 5, 2014

d. In the Receive Port, enable the Service Window and set it to
start at 05:00 (5 am) and stop at 20:14 (8:14 pm)

Developing BizTalk Artifacts
1. HWLC Motors is receiving shipment content details from their suppliers.

They receive many each day. They need to manually audit some of them.
You need to make sure that they can separate out all shipments that have
a TotalSum value of $1 million or more. You set up a Send Port to receive
shipments. What must you do before you can subscribe to orders equal to
or greater than a TotalSum value of $1 million?

a. Make TotalSum a distinguished field
b. Promote the TotalSum field
c. On the root node of the Schema, configure Body XPath to point to

the TotalSum field
d. On the file properties of the Schema, set the Default Property

Schema Name value to GreaterThanOrEqualTo

Sample Certification Test Questions

[504]

2. As part of the integration with a major investment bank, HWLC Motors
needs to exchange data with an old legacy system. Unfortunately, the
system creates incorrect XML, which would cause the disassemble and
validation exceptions. A component has been developed to correct the
XML on arrival to mitigate errors in later processing. In what Pipeline
stage must the component be placed?

a. The Pre-assemble stage
b. The Assemble stage
c. The Disassemble stage
d. The Decode stage

3. Mooremountain Motors is a big dealership that offers different kinds
of brands. As a result, they receive invoices from many different car
manufacturers. Jill, a developer at Mooremountain Motors, has developed
an Orchestration that handles a Canonical version of an invoice. She has
also developed Maps from each of the manufacturer's invoice Schemas to
the Canonical Schema. What must she do to ensure that the Orchestration
receives the Canonical message?

a. Create a Receive Port and Receive Location. Configure the Receive
Port with Maps that transform from the Canonical format to the
manufacturer formats.

b. Create a Send Port for each of the manufacturers. Configure the
Send Ports with Maps that transform from the Canonical format
to each of the manufacturer formats.

c. Create a Receive Port and Receive Location. Configure the Receive
Port with Maps that transform from the manufacturer formats to
the Canonical formats.

d. Configure a Receive Port and Receive Location. Configure the
Receive Pipeline to be the XmlReceive Pipeline and set the
Validate document structure property to True.

4. HWLC Motors is having problems with an Orchestration in the production.
The Orchestration has plenty of trace statements that can be turned on or
off to output meaningful information that would help the troubleshooting
process. The server processes must remain active at all times; Host Instances
cannot be restarted. What would be a suitable location to store the state of
the trace output flag?

a. Create an external .NET component to store the value. Update the
.NET component in the GAC to change the value when needed.

Appendix A

[505]

b. Create a configuration value in BizTalk's configuration file to store
the value. Update the value in the config file whenever needed.

c. Create an Orchestration variable to hold the value. Re-deploy the
Orchestration to change the value when needed.

d. Create an SSO Application to hold the value. Update the value in
the SSO application to change the value when needed.

5. Bo, a developer for HWLC Motors, is developing an integration that will
exchange purchase-order messages in an asynchronous request-response
pattern over MSMQ. The request is sent out on one queue and the response
arrives at another queue. The OrderId is unique and included in both the
request and response messages. Requirements dictate that the response must
be handled by the same Orchestration that sent the request. What must you
do in the Orchestration to enable this scenario?

a. Create a Correlation Set. Configure the Send shape to initialize the
Correlation Set and the Receive shape to follow the Correlation Set.

b. Set Ordered Delivery to True on the Orchestrations Receive Port.
c. Create a Correlation Set. Configure the Receive shape to initialize the

Correlation Set and the Send shape to follow the Correlation Set.
d. Place the Receive and Send shapes in a scope. Make sure that the

scope's Synchronized property is set to True.

6. HWLC Motors are receiving batched information about cars. They need
to design an Envelope Schema to enable the batch to be split. The envelope
has the conceptual structure ManufacturingReport/Cars under which
many Car nodes, whose definitions are in another Schema, will be received.
What configuration must be present for the Envelope Schema?

a. In the Envelope Schema, set the Envelope property of the Schema
to Yes and then set Body XPath of the root node to point to
ManufacturingReport/Cars

b. In the Envelope Schema set the Envelope property of the schema
to Yes and then set Body XPath of the root node to point to
ManufacturingReport/Cars/Car

c. In the Envelope Schema set the Root Reference property to
ManufacturingReport

d. In the Car Schema set the Root Reference property to Car

Sample Certification Test Questions

[506]

Debugging and exception handling
1. Elisa is an administrator for HWLC's BizTalk Server 2010 platform.

She is receiving messages through the ReceiveNewCustomer Receive
Port. She wants to route any message that fails processing to the
SendFailureNotification Send Port that is configured to use SMTP
to send the failed messages by mail to her. How must she configure the
SendFailureNotification Send Port to receive failures that occurred
on the ReceiveNewCustomer Receive Port?

a. Enable Failed Message Routing for the ReceiveNewCustomer port.
Configure the SendFailureNotification Send Port to have a filter
on BTS.ReceivePortName = ReceiveNewCustomer.

b. Enable Failed Message Routing for the SendFailureNotification
port. Configure the SendFailureNotification port to filter on BTS.
ReceivePortName = ReceiveNewCustomer.

c. Enable Failed Message Routing for the SendFailureNotification
port. Configure the SendFailureNotification Send Port to have a
filter on ErrorReport.ReceivePortName = ReceiveNewCustomer.

d. Enable Failed Message Routing for the ReceiveNewCustomer port.
Configure the SendFailureNotification Send Port to have a filter
on ErrorReport.ReceivePortName = ReceiveNewCustomer.

2. HWLC have nightly batch loads of customer information from a legacy
system into a new RDMS system. The new system has very strict rules set up,
and does not allow null values for vital fields or strings in integer fields. The
Schema used to receive data from the legacy system in BizTalk Server 2010
has implemented those rules. The legacy system has not implemented these
rules and HWLC is experiencing customers arriving with incorrect data.
The customer batch is de-batched in the Receive Pipeline's XmlDisassembler
component and entered into the new system one by one. HWLC wants all
correctly formatted customers to be entered into the new system and wants
only the incorrectly-formatted customers to be suspended, and not the whole
batch. What must be done to allow the correct messages to proceed?

a. On the Receive Port from the legacy system, enable Ordered Delivery
and make sure that Stop sending subsequent messages on current
message failure is not enabled

b. On the Send Port to the RDMS system, enable Ordered Delivery
and make sure that Stop sending subsequent messages on current
message failure is not enabled

Appendix A

[507]

c. On the Receive Port from the legacy system, set
RecoverableInterchangeProcessing to True on
the XMLDisassembler component

d. On the Send Port to the RDMS system, set
ProcessingInstructionsOptions to 1 on the
XMLAssembler component

3. Carly, a developer at HWLC, has been tasked with creating unit tests for
a BizTalk Server 2010 solution. A senior developer has told her to use the
ValidateInstance method to unit test Schemas. She instantiates the Schema
class, but can find no such method. What must she do to be able to use the
ValidateInstance method?

a. Manually add references to Microsoft.BizTalk.TestTools and
Microsoft.XLANGs.BaseTypes

b. Set the project's Enable Unit Testing option to True
c. Cast the Schema class to a TestableSchemaBase class
d. Configure the Input Instance Filename property of the

Schema file to point to the instance to validate

4. HWLC has implemented an Orchestration that processes the sensor data.
The sensor data is delivered once every second. The next message to arrive
makes the previous message obsolete. Suspending the instance in case of
failure is not meaningful. The requirement is that a warning needs to be
logged to the EventLog and then the Orchestration should end without
leaving any suspended instances. What must be done to the Orchestration
to allow this behavior?

a. Implement the Orchestration without using any scopes. Ensure that
the Report to Analyst property of the Orchestration is set to True.

b. Implement the Orchestration using a scope to encapsulate all the
logic. Ensure that the Report to Analyst property of the scope is set
to True.

c. Implement the Orchestration using a scope to encapsulate all logic.
Add an exception block to catch the exception. Use the EventLog
class to write to the EventLog. Use the Throw Exception shape to
re-throw the exception and end the Orchestration.

d. On the Receive Port where the sensor data message is first received
by BizTalk, select Enable routing for failed messages.

Sample Certification Test Questions

[508]

5. HWLC has implemented a process that receives sensor data from an engine
performance test bench system. The data is sent to a downstream service for
further processing through a solicit-response port. At occasions the service
is unavailable. The Orchestration has encapsulated all its logic inside a scope
and has implemented an exception block to catch the exception and use a
Terminate shape to end gracefully without suspending the Orchestration
instance. When the Orchestration terminates, there are still suspended
messages left on the Send Port. What must you do so there are no messages
suspended on the port when errors occur?

a. Enable Failed Message Routing on the Send port. Configure an
Orchestration to filter on the ErrorReport.SendPortName property.

b. Enable Failed Message Routing on the Send port. Configure
an Orchestration to Filter on BTS.AckType = NACK and BTS.
AckSendPortName.

c. Configure an Orchestration to Filter on BTS.AckType = NACK
and BTS.AckSendPortName.

d. Configure the logical port in the Orchestration with Delivery
Notification so that the Orchestration waits for the port processing
to complete and throws a DeliveryFailureException if there
are failures.

6. HWLC is currently considering implementing unit testing. Which BizTalk
artifacts have unit testing APIs?

a. Schemas, Maps, and Pipeline components
b. Schemas, Maps, and Pipelines
c. Schemas Maps, and Orchestrations
d. Orchestrations

Deploying, tracking, and supporting a
BizTalk Solution

1. Nicki has just optimized HWLC's QA environment by setting Messaging
and Orchestration polling settings that will improve performance of
the environment. She now needs to get these settings into a Production
environment. What should she do?

a. Request a database backup of BizTalkMgmtDB and have it restored
in the Production environment.

b. Copy the BTSNTSVC.exe.config file from the QA server and place it
in the correct folder on the Production server.

Appendix A

[509]

c. Launch the BizTalk settings dashboard and export settings from
the QA environment. Import these settings into the Production
environment using the BizTalk settings dashboard.

d. Export the SSOConfig database from the QA environment and
restore this database in Production.

2. HWLC has just built a two-node BizTalk farm. Juan, who is new to the
company, is ready to deploy his first application. What steps must he
take to ensure that his application can run on both the BizTalk nodes?

a. He must first create a Clustered Host Instance and then import his
MSI package on both the nodes.

b. He must run the installation program of his application on the first
node, so his assemblies are installed in the GAC. He only needs to
import his MSI package using the BizTalk Administration Console
on the second node.

c. He must run the installation program of his application on both
nodes so that his assemblies are installed in the GAC. He must
then import his MSI package on either node.

d. He must run the installation program of his application on the
first node. He must then import his MSI package using the
BizTalk Administration Console on the first node.

3. HWLC's Human Resources department has asked that no messages be sent
to their Payroll system until 10 tonight due to system maintenance. At 10 pm,
all outstanding messages need to be sent. Jose is planning on attending the
big game tonight. What steps can Jose perform to solve this problem?

a. Jose can stop the Send Port that is used to communicate with the
Payroll system before he leaves work. When he arrives in the
morning, he can start the Send Port.

b. In the Send Port, that is used to communicate with the Payroll
system, Jose can enable a service window that won't send any
messages until 10 pm.

c. Jose can do nothing and let BizTalk's retry mechanism take care of
resubmitting messages that need to be sent. The Send Port that is
used to communicate with the Payroll system currently is using
the default Retry count and Retry interval settings.

d. Jose should stop his application using the Partial Stop - Allow
running instances to continue option. The next morning, he can
just start his application.

Sample Certification Test Questions

[510]

4. Nick is working in his local development environment. He has a bug that
has resulted in 10 suspended messages. Nick has addressed the bug and
now wants to re-deploy his application, but can't. What step must he take
before he can re-deploy it successfully?

a. Stop his application with the Partial Stop - Suspend running
instances option

b. Restart his Host Instances
c. Stop his application with the Full Stop - Terminate instances option
d. Stop his Host Instances

5. HWLC has an Orchestration deployed that uses a Direct bound port for
receiving messages. Erin would like to track message bodies for these
incoming messages. Where should she enable tracking message bodies
for these messages?

a. In the Direct Bound Receive Port, she should enable Track Message
bodies Request before Port Processing

b. In the Orchestration's Tracking options, she should enable Track
Message Bodies – Before Orchestration processing

c. In the Orchestration's Tracking options, she should enable Track
Message Bodies – After Orchestration processing

d. In the Direct Bound Receive Port, she should enable Track Message
bodies Request after Port Processing

6. As per the recommendations of the BizTalk Server Administrator, HWLC's
BizTalk Server environment is configured with a single host that has Allow
Host Tracking set to true. What is one of the tasks performed by this host?

a. Move configuration data from the BizTalkMgmtDb database to the
BizTalkMsgBoxDb database

b. Move BAM tracking data from the BAMPrimaryImport database to
the BizTalkDTADb database

c. Move protected data from the SSODB database to the BizTalkMgmtDb
database

d. Move tracking data from the BizTalkMsgBoxDb database to the
BizTalkDTADb database

Appendix A

[511]

Integrating Web Services and Windows
Communication Foundation (WCF)
Services

1. Stephen has just deployed a new application in HWLC's Production
environment. This particular application uses a Custom Behavior to
authenticate the service requests from a third-party Customer Relationship
System (CRM). He needs to specify this endpoint behavior for this service,
but is unable to modify the server's machine.config file. Where else can he
register this endpoint behavior?

a. Registry
b. BTSNTSvc.exe.config

c. WCF Send Handler
d. Web.config

2. Kim, an HWLC BizTalk developer, has been asked to consume a third-party
Web Service over the Internet that is written in Java hosted on the Unix
platform. Which WCF binding do you suggest her to use?

a. BasicHttpBinding

b. NetTcpBinding

c. NetNamedPipeBinding

d. NetPeerTcpBinding

3. Alan has just developed a BizTalk Application that will communicate with
a third-party financing WCF Service. At the last minute, the third-party
financing company added a new root node to their existing Request Schema.
Alan's application has just gone live and he is receiving errors due to a
mismatch between the message that he is sending, and the message that
the third-party financing application is expecting. What should Alan do
to solve this problem without deploying any application(s)?

a. Re-consume the WCF Service from Visual Studio, recompile, and
deploy the application

b. In the Send Port, specify an Outbound WCF Message Body Template
and include this new root node

c. Change the existing Send Port to use the PassThruTransmit Pipeline
d. Build another WCF Service to intercept the BizTalk request and then

pass through a request that conforms to the third-party financing
application's specification

Sample Certification Test Questions

[512]

4. You have just exposed a BizTalk Orchestration as a WCF Service to IIS
and have enabled anonymous access to the service. You have started the
application in the BizTalk Administration Console and all the required
Host Instances have been started. When you browse to your WCF Service's
URL in a Web Browser, you are presented with an error. What could the
problem be? Here are few options:

a. You have not restarted IIS.
b. You need to add your username to the authorization section of

the service's Web.config.
c. The Default Application Pool's identity does not have sufficient

permissions. You need to create and use an Application Pool that
uses the same identity as the BizTalk Isolated Host Instance.

d. WCF Services cannot have anonymous access enabled.

5. Javid has just finished exposing his BizTalk Orchestration as a WCF Service
using the BizTalk WCF Service Publishing Wizard. He has also deployed
his application to his BizTalk Server and ensured all related assemblies have
been added to the Global Assembly Cache. Calvin, a business analyst with
HWLC, has just informed Javid that he needs to add another field to his Web
Service Request Schema called DateRequiredBy. Javid has added this field
to his Web Service Request Schema, compiled his BizTalk Solution, and has
then re-run the BizTalk WCF Service Publishing Wizard. When prompted,
he selects the updated BizTalk assembly that includes his Web Service
Request Schema and new DateRequiredBy field. In Javid's test application,
he consumes his updated Web Service to discover that his DateRequiredBy
field has not been published. What must he do in order to have the
DateRequiredBy field published?

a. Before re-running the BizTalk WCF Service Publishing Wizard,
he needs to restart his Host Instance that he has configured his
Orchestration to use

b. He must restart Internet Information Services (IIS) after re-publishing
his WCF Service

c. Before re-running the BizTalk WCF Service Publishing Wizard, Javid
must add his updated assembly that contains his Schema to the GAC

d. In order to update a WCF Service that has been exposed by the BizTalk
WCF Service Publishing Wizard, he must delete the original Virtual
Directory from IIS

Appendix A

[513]

6. Fred needs to expose a web service from BizTalk Server 2013 that must
be securely accessible to partners using the service from the Internet.
The service must be using the most interoperable binding. How should
Fred accomplish this?

a. He should use WCF-BasicHttp
b. He should use WCF-NetTcpRelay
c. He should use WCF-BasicHttpRelay
d. He should use WCF-WebHttpRelay

Implementing extended capabilities
1. You want to remove a BAM Activity act1, which is already deployed.

What should you do?
a. Go to the BAMPrimaryImport database and delete all the tables and

views that contain the name act1.
b. Use the command-line tool bm.exe with the Remove all option.
c. Use the command-line tool bttdeploy.exe with the Remove option.
d. Create an empty Activity in Excel with the name act1. Export the

Activity to XML. Use the bm.exe tool with the update all option and
the newly created xml file to delete the Activity.

2. You have set up a BizTalk RFID Server that receives the RFID tags from
your warehouse. The BizTalk Server team already has an existing BizTalk
Application where FILE, FTP, WCF-SQL, and HTTP Adapters are used.
You would like to have the tag information submitted to BizTalk. What
should you do?

a. Write an RFID WCF binding and use the WCF-Custom Receive
Adapter in BizTalk to receive the tags.

b. Write a custom processing Pipeline that writes files to a shared
folder and deploy it to the RFID server. Make the BizTalk Server
poll the files by using a FILE Receive Adapter.

c. Set up the SqlServerSink Event Handler in RFID. Create a
WCF-SQL Receive Location in BizTalk and poll from the rfidsink
database created by the Event Handler.

d. Set up the SqlServerSink Event Handler in RFID. Create a trigger
on the relevant rfidsink tables that pushes data from the tables to a
file share. Use the FILE Adapter in BizTalk to pick up the messages.

Sample Certification Test Questions

[514]

3. The managers want to know what is happening in BizTalk on a weekly basis.
How many orders we received, what the average order size was, and so on.
How should you implement this capability?

a. Set up an additional Send Port that subscribes to all messages,
use the SMTP Adapter, and mail the messages to the managers

b. Use BAM Activities and tracking profiles to populate BAM
Activities, extract the required information from the orders,
and build reports on top of the Activities

c. Use the Rules Engine to set up RuleSets, where a condition is met
every time an order is received

d. Enable Tracking on the Receive Ports and have the managers use
the Group Hub to query Tracked Service Instances

4. You have set up several rules for your BizTalk Application inside the Rules
Engine Composer. These rules need to be altered several times a year, and this
process should be handled by the non-IT staff. What should you do to make
the rules appear more human-readable when the users update the Rules?

a. Create new Schemas inside BizTalk that uses non-IT terms
b. Create a vocabulary inside the Rules Engine Composer using

non-technical phrases
c. Create a new rule and apply synonyms for each rule term
d. Create a new version of the existing rules and apply synonyms

for all technical phrases

5. You receive EDIFACT Orders from several partners through the same FTP
Receive Location. When receiving an order 96A EDIFACT message from
a partner, you realize that the message does not conform to the EDIFACT
standard, and a segment that allows only numbers one to five contains
the number six. You talk to the business and you agree that the partner
should continue to send a six in that segment, as you don't use the value
for anything. You agree that only this partner and only this particular extra
rule will be allowed. How should you make BizTalk accept the particular
field to allow one to six instead of one to five?

a. In the Party Agreement for the partner, deselect Perform EDI Data
Type Validation.

b. On the Receive Locations EDIReceive Pipeline, set Validate
document to False.

c. Alter the order 96A Schema and extend the Enumeration for the
segment with a six.

Appendix A

[515]

d. Create a new Order 96A Schema and extend the Enumeration for
the Segment with a six. Give the Schema a new Namespace and
set up the Namespace on the specific partners Agreement.

e. Write a custom Pipeline Component that replaces the six with a five.

6. You have developed and deployed an Orchestration that makes the use of
a Business Rule Policy. When you submit a message to the Orchestration,
you get a runtime error caused by the Policy not being available to the
Orchestration. What must you do?

a. Ensure that the Policy is published
b. Ensure that the Policy is deployed
c. Ensure that the Orchestration is started
d. Ensure that the Policy is in the same Application as the Orchestration

Using Azure BizTalk features
1. You want to exchange X12 documents with partners using Windows Azure

BizTalk Services. What would be the minimum requirement of the setup
(choose all that apply)?

a. A BizTalk Service Map
b. An X12 Schema
c. A BizTalk Service Bridge
d. Partners
e. Agreements
f. An FTP Source
g. A destination

2. You need to check the message content of messages sent through your
WABS. Where is the message content stored?

a. In the Windows Azure Portal
b. In the bridge used for transporting the message
c. In SQL Server Azure
d. In Azure Storage

Sample Certification Test Questions

[516]

3. When using the Mapper in WABS, you want to map only order lines with
a quantity element larger than 100. Which Functoid should you use?

a. ForEach
b. MapEach
c. If-then-Else
d. CSharp Scripting

4. You want to receive Json format through an XML bridge. How would you
accomplish this?

a. Create a custom Flat File Schema matching the Json format
b. Create a Message Inspector that transforms Json to XML
c. Create a Message Inspector that transforms XML to Json
d. Create a Map that maps from Json to XML

5. You are using the LOB Adapter Services for communication between a
bridge and your local database. You realize that you also need a Windows
Azure Service Bus Namespace for this to work. What part of the Service
Bus is used together with the LOB Services?

a. Queues
b. Topics
c. Relay
d. Notification

6. You want to connect your BizTalk Server running in a virtual machine on
Azure to your local domain. What technique should you use?

a. Access Control Service
b. Virtual Network
c. Azure Domain Controller
d. FTP

Sample Certification
Test Questions – Answers

In order to allow the reader to consider the answers to the questions in Appendix A,
Sample Certification Test Questions, the answers are separated from the questions.
This appendix holds the answers. Also, Appendix C, Testing Your Knowledge Answers,
holds the answers to the additional Testing your knowledge section of the chapters.

In order to help to have better understanding of the answers, a very brief explanation
is given as to why the answer is correct and in cases where it's relevant, why the
other options are not.

Configuring a messaging architecture
1. Answer: d

If multiple Ports need to implement the same subscription, Send Port Groups
should be used so that the subscription only needs to be implemented once
and any changes to the subscription can be maintained in one place.

2. Answers: b, d, e
PassThruReceive on the receive side will cause BizTalk to not recognize
the MessageType and therefore, we will not be able to Map on the Send Port.
The Map should be from the canonical format to the partner format.

3. Answers: b, c, d, e
We need a new Host so that HostA will still do all the work except receiving
FTP. The new Host needs to be clustered so that if one server fails, a Host
Instance will start on the other Server.

Sample Certification Test Questions – Answers

[518]

4. Answer: c
This should be done using references and it is in the Application, which
needs to access artifacts from another Application, the reference needs to
be made. The same Pipelines cannot be redeployed in another Application
in BizTalk when already residing in another Application.

5. Answer: d
By choosing All artifacts, we can get an overview of everything inside
BizTalk, not limited to a certain Application. The other answers either stops
too much or otherwise doesn't fulfill the requirement of disabling all the
locations.

6. Answer: c
You should use the Schedule Start Date to allow the Port to start at a later
date. Setting the stop date does not allow you to control the start date.
Setting the service window controls what time of the day the Port runs
but says nothing about which day it should start.

Developing BizTalk Artifacts
1. Answer: b

A distinguished field is used only to create an alias for xpath statements for
expressions in Orchestrations. The Body xpath property of the root node is
used with Envelope Schemas to point out the node that contains the body
of the document. Changing the Default Property Schema Name property
on the Schema file only affects what the filename of the created Property
Schema will be, when you do a Quick Promotion.

2. Answer: d
The Pre-assemble and Assemble stages are stages in a Send Pipeline and
would do nothing to affect the XML in a Receive Pipeline. Therefore the
Decode stage, the Receive Pipeline stage before the Disassemble stage,
which throws the exception, is correct.

3. Answer: c
Maps are configured on Receive Ports. As the Orchestration needs the
canonical format, you need a Map that transforms to the canonical format.
As the files are received into BizTalk, configuring a Send Port is pointless.
Pipelines in general, the XMLReceive Pipeline or the Validate document
structure property of the XML Disassembler, have nothing to do with Maps.

Appendix B

[519]

4. Answer: d
As both, the external component and the Orchestration, are the .NET
components, they will load into the Host Instances memory. When they
are updated on disk or in the GAC, they will not be refreshed unless the
Host Instances are restarted (or a sufficient amount of time passes for the
assemblies to unload). Storing the value in BizTalk's configuration file also
requires a Host Instance restart for the BizTalk Server to retrieve the new
value as the config file is read only when the service starts.

5. Answer: a
Scope and their Synchronized property ensure that data being read is
not simultaneously written to by other branches of a Parallel shape. It has
nothing to do with this scenario. As we are sending a message out and
receiving a response, we need to initialize the correlation set on the Receive
shape and follow it on the Send shape. The Ordered Delivery property
makes sure that messages are delivered to the Orchestration in the same
order that they were written to the MessageBox.

6. Answer: a
You need to set Envelope to Yes and point out the node that will contain the
nodes to be split; that is, you need to point out the Cars node. Specifying the
Root Reference does not hurt but it does not help.

Debugging and exception handling
1. Answer: d

You must enable Failed Message Routing on the Receive Port
where processing fails and you must add a filter on ErrorReport.
ReceivePortName to the SendFailureNotification Port. The BTS.
ReceivePortName property is available but will not be promoted in
a failed message and cannot be used for routing.

2. Answer: c
RecoverableInterchangeProcessing is a property on the XMLDisassembler
component. When configured to True, it allows successfully processed
messages from a batch to pass through while suspending only the incorrect
ones. By default the property is False, which means that one incorrectly
formatted message fails the entire batch. Ordered Delivery does not help
with this nor does processing instructions.

Sample Certification Test Questions – Answers

[520]

3. Answer: b
You need to set Enable Unit Testing to True. References to Microsoft.
BizTalk.TestTools and Microsoft.XLANGs.BaseTypes are needed, but you
do not need to add them manually. Also, when setting Enable Unit Testing
to True, the Schema will get the TestableSchemaBase as its base class, which
surfaces the ValidateInstance method on the Schema class. You cannot cast
a Schema that does not inherit from the TestableSchemaBase class to that
class and use the ValidateInstance method.

4. Answer: d
You need to use a scope with an exception block to be able to catch
the exception. Once caught, the Orchestration will terminate without
suspending. The Throw Exception shape will rethrow the exception and
cause the Orchestration to become suspended. The Report to Analyst
option is connected to the Orchestration Designer for Business Analysts
(ODBA) and has nothing to do with exception handling.

5. Answer: a
In order to get rid of suspended messages on a Send Port that fails
processing, you must enable Failed Message Routing and create a
subscription that matches any of the ErrorReport properties, for example
SendPortName. Subscribing to BTS.AckType and BTS.AckSendPortName
will get you the NACK message (the exception), but you will not avoid the
suspended message. Also, Delivery Notification does not help you avoid
suspended messages either.

6. Answer: b
You can unit test Schemas, Maps and Pipelines. You cannot easily unit test
the Pipeline components by themselves, only inside a Pipeline, since they
require the context of a Pipeline. Orchestrations must be deployed to be
run and tested.

Appendix B

[521]

Deploying, tracking, and supporting a
BizTalk Solution

1. Answer: c
The BizTalk Settings Dashboard provides us with the ability to import
and export our settings allowing for a very portable solution between
BizTalk environments.

2. Answer: c
When dealing with multiple BizTalk nodes, all related assemblies must be
installed in the Global Assembly Cache. Our MSI package only needs to be
imported on one node.

3. Answer: b
The best solution is to take advantage of the service window of the Send
Port. This way, we will have our messages queued and in a Scheduled
service instances state. When the clock strikes 10 p.m., our messages will
automatically be delivered. We also will not be actively communicating
with the Payroll system, as this was one of the requirements of the solution.

4. Answer: c
If we have suspended instances, we cannot redeploy an Application.
As this is just a development environment, it is safe just to terminate
them. Of the options listed, the only way to terminate these messages is
through stopping the Application using the Terminate instances option.

5. Answer: b
As Direct Bound Ports do not show up as physical Ports in the BizTalk
Administration Console, we must rely upon using Orchestration tracking.
As we want to track the message body as it is received, then we need to
use the Track Message Bodies - Before Orchestration processing.

6. Answer: d
Tracking information is temporarily stored in the BizTalkMsgBoxDb
database while waiting to be transferred to either the BAMPrimaryImportDb
or BizTalkDTADb database. No tracking data is moved in the other direction
or between the BAMPrimaryImportDb and BizTalkDTADb databases.
The BizTalkMgmtDb database contains only configuration data.

Sample Certification Test Questions – Answers

[522]

Integrating Web Services and Windows
Communication Foundation (WCF)
Services

1. Answer: c
The WCF Send Handler provides the ability to import a WCF Extension/
Custom Behavior. We can access this function by clicking on the Properties
button inside the WCF Custom Send Handler.

2. Answer: a
Of the answers available for this question, the BasicHttpBinding is the
most interoperable binding.

3. Answer: b
WCF-based Send Ports provide the ability to alter an outbound message
by specifying an XML template. By using this template, we can wrap our
message with additional XML tags that will conform to the third party
financing the company's specification.

4. Answer: c
When the BizTalk WCF Service Publishing Wizard runs, it will create a
Web Application inside IIS. The problem is that the Web Application will
use the Default Application pool. Unless this Default Application pool
has been modified to use the identity of the BizTalk Isolated Host Instance
account, the Application Pool will not have sufficient BizTalk rights to
launch our Web Service in a browser.

5. Answer: c
The BizTalk WCF Service Publishing Wizard will use the latest version of
our Schema's assembly that is in the GAC. It is not enough to just recompile
our Application and then select the most recent assembly.

6. Answer: d
He needs to create a relay Port since he needs to use Windows Azure Service
Bus to securely expose his service to the Internet. Although BasicHttp is fairly
interoperable, the WebHttp binding or REST is even more so.

Appendix B

[523]

Implementing extended capabilities
1. Answer: b

Bm.exe is the tool used for deploying, updating, and removing activities.
The commands are:

 ° Deploy-all
 ° Update-all
 ° Remove-all

2. Answer: c
Out of the box, the RFID server ships with a SQL Server Event Handler,
which will automatically create a Database and polling Stored Procedures
and submit data to the tables.

3. Answer: b
For exposing business data to the rest of the business, BAM is used.
The Rules Engine will not work for this and tracking and sending mail
will not give the ability to view averages, and so on.

4. Answer: b
Vocabularies inside the Rules Engine Composer are used for giving the
rules a more human-readable language.

5. Answer: d
We should not disable the validation altogether, because there could be
other problems with the documents received, which we do not want to
allow. Writing a custom Pipeline component will work, but it will work
for all partners, so will changing the original Order 96A Schema.

6. Answer: b

A Policy must be (at least) published to be visible and usable inside an
Orchestration in Visual Studio. However, for it to be able to execute in
runtime, it must be Deployed. The Policy does not have to reside in the
same BizTalk application. Although the Orchestration must be started
for it to be able to execute at all, it has nothing to do with the solution.

Sample Certification Test Questions – Answers

[524]

Using Azure BizTalk features
1. Answers: b, d, e

For making the reception of X12 documents work, all that is needed are
partners, Agreements, a Schema, and a destination where to send the
X12 XML. An FTP Source could be needed but is not required since all
Agreements has an HTTP(S) endpoint url as default.

2. Answer: d
The message body is stored in the Azure Storage account.

3. Answer: b
The MapEach Functoid is used for conditional mapping of a repeating
record and will be the optimal choice here.

4. Answer: b
When processing custom formats in a bridge, Message Inspectors are
used. As we are receiving Json, we want to convert from Json to XML.
Json is not Flat File and a Map can only convert from XML to XML.

5. Answer: c
The communication between Azure and the on-premise LOB services
requires relaying.

6. Answer: b
For connecting your virtual machines to local domains, Virtual Networks
are used.

Testing Your Knowledge –
Answers

To allow the reader to consider the answers to the questions in the Testing Your
Knowledge section of the chapters, the answers are separated from the questions.
This appendix holds the answers. A second appendix holds the answers to the
additional Sample Certification Test Questions chapter.

In order to have better understanding of the answers, a very brief explanation
is given as to why the answer is correct, and in cases where it's relevant why
the other options are not.

Chapter 1: Configuring a Messaging
Architecture

1. Answers: b, d, f
When using the same Filter for multiple Send Ports, a Send Port Group
should be used so that maintaining the Filter only needs to be done at
one place. The actual Send Ports should have no Filter themselves since
that will cause the messages to be sent more than once.

2. Answers: b, d
In this case, routing for failed messages needs to be set up on the Receive
Port (there will be no Send Port activity when a message fails on the receive
side). When failed message routing is enabled, all normal Context Properties
such as BTS.ReceivePortName are Unpromoted (written), and only Context
Properties in the ErrorReport namespace can be used for routing.

Testing Your Knowledge – Answers

[526]

3. Answer: b
Receive Locations should still be enabled and the BizTalk service(s) should
still be running so that others subscribers will still get their messages. Setting
a Send Port state to the Unenlisted state will cause the Send Port to stop
subscribing to the messages and will, therefore, never receive the messages
received in BizTalk while the state was Unenlisted. Setting the Port to a
stopped state will allow the Port to receive all the messages intended for
the Port and not send them, until the Port is started again.

4. Answer: a
Only option a will work. We cannot use the Send Port since the requirement
clearly states that the transformation should happen before the message enters
the MessageBox. Also option b doesn't work since no chained mapping is
allowed in BizTalk.

5. Answer: c
POP3 is the the only out of the box adapter that has the capabilities of receiving
emails from an exchange server. Also the Body Part Index should be 0, because
the actual mail body is required as the message part.

Chapter 2: Developing BizTalk Artifacts –
Creating Schemas and Pipelines

1. Answer: a
Rob needs to import the Customer Schema to Supplier Schema since it
has a different namespace and the Customer Schema holds the type that he
wants to use in the Supplier Schema. Include should be used if it is the same
namespace. Defining a new Schema will not help us re-use the existing type.

2. Answer: d
In a Public Key Infrastructure (PKI), the partner will distribute his public
key to allow the signature created using the private key to be validated.
The MIME/SMIME Decoder component is used to validate signed
messages in a Receive Pipeline.

Appendix C

[527]

Chapter 3: Developing BizTalk Artifacts –
Creating Maps

1. Answer: c
The Scripting Functoid should be used to call a .NET component from
within a Map. It should be configured to call an external assembly. Although
inline C# can technically be used to call a method in an external assembly
that violates the statement that no additional code should be written. The
Expression shape cannot be used in maps since it is an Orchestration shape.
Activities are Windows Workflow artifacts, not BizTalk.

2. Answer: b
The Greater Than Functoid should be used since you want to output
the nodes with value greater than $70000, not equal to or less than this.
Conditional Mapping using Logical Functoids can be used to control the
output of a node. Although a Value Mapping Functoid is also capable of
that, it takes a Boolean as its first input and the value as its second input.

Chapter 4: Developing BizTalk Artifacts –
Creating Orchestrations

1. Answer: c
The Microsoft.XLANGs.BaseTypes.Address is a property that must be set
on the Port for a Port with Dynamic binding. It cannot be set on the message.
Whether you do it in a Message Assignment shape or an Expression shape is
not important. There is no BTS.ReceivedFileName property.

2. Answer: b
To configure a block of logic so that either everything commits or nothing
commits, you should place the logic within an Atomic scope. To be able to
use an Atomic scope, the Orchestration must be configured to have a Long
Running transaction type. Although configuring the Orchestration as Atomic,
will treat the logic as a unit; it will also treat the entire Orchestration as a unit
which was not the goal, and might not be possible.

Testing Your Knowledge – Answers

[528]

Chapter 5: Testing, Debugging, and
Exception Handling

1. Answers: b, d
A scope is needed to handle an exception within an Orchestration. To be able
to catch an exception, the scope does not have to be transactional, but it must
have an exception block. Transactional scopes cause additional persistence
points and should be avoided if they are not needed.

2. Answer: a
If no exception handler is implemented, the default exception handler will
trigger. The default exception handler will trigger the compensation block
of any nested scopes, if they have one; therefore, a compensation block must
be added to the scope to allow compensation to be made. Compensation for
what happened inside the scope should be done in that scope's compensation
block, not in a parent scope or an Orchestration's compensation block. Also
compensating the logic should be placed in the compensation block, not an
exception block.

3. Answer: c
Port processing halts while delivering to the MessageBox only. What
happens after a physical Send Port processes messages matching its
subscription is, by default, nothing the Orchestration is aware of. Delivery
Notification can be configured to Transmitted on a logical Send Port
in the Orchestration to halt the processing until the Physical Send Ports
processing is successful before completing a Scope. If the physical Port fails,
DeliveryFailureException will be raised. Failed message routing routes
the message in case of Port failure but does nothing to affect Orchestration
processing. The Synchronized property has nothing to do with this behavior.

4. Answer: b
For a Port to fail processing on its first attempt (immediately), the Retry
Count on the Transport Advanced Options pane must be set to 0. It will
then try to use the backup transport. Configuring the Retry Count or
Priority of the backup transport does not affect the primary transport
behavior. This scenario has nothing to do with Ordered Delivery.

Appendix C

[529]

5. Answer: c
Although there are several things that could potentially be wrong, of the
possible answers only option c will affect how the message is interpreted
or how it is routed and potentially solves the problem. Messages cannot be
edited in the Administration Console and reconfiguring Send Port does not
affect how the message is processed by the Receive Port and Pipeline.

Chapter 6: Deploying, Tracking, and
Administrating a BizTalk Server 2010
Solution

1. Answer: d
We need to let our application drain by not allowing any new message
instances to be received while any existing messages can complete. By
stopping all Receive Locations we cannot receive any new messages and
by waiting for any active instances to complete, we can safely perform a
Full stop once we know there are no messages currently being processed.

2. Answer: b
Since we are interested in tracking just the Flat File that BizTalk received,
we want to enable Track Message Bodies – Request message before Port
processing. By doing so, we are capturing a copy of the message before
our flat file reaches our custom Pipeline that will include our flat file
disassembler.

3. Answer: b
Whenever we configure a new Host in an environment, we need to be
sensitive to the Adapters that will be using this new Host. When this occurs,
we need to add this Host as a Send and/or Receive handler depending upon
whether we will use our Host in a Send Port or Receive Location.

4. Answer: c
In this scenario, we want to see how many message instances are currently
retrying. In order to discover this, we need to run Running service instances
– Retrying and idle Ports query from BizTalk Group Hub.

Testing Your Knowledge – Answers

[530]

5. Answer: d
When we need to export an MSI file from a BizTalk application, we have
the ability to add Binding Files as resources. We can tag these binding files
with a Target Environment that will allow us to distinguish one binding file
from another. If we do not provide a binding file with a Target Environment,
this binding file will be treated as the default binding file. So when we go to
use this MSI package in another environment, we will only see the default
binding file.

Chapter 7: Integrating Web Services and
Windows Communication Foundation
(WCF) Services

1. Answer: c
When a service is taking a longer time than we expect to complete, we need
to increase the Send timeout property, which will allow our Send Port to
wait longer before throwing a timeout exception.

2. Answer: d
Since we changed our logical Port's Operation name inside of our
Orchestration and deployed it, our only option is to update the Physical
Send Port's SOAP Action header so that it matches the value that we
specified inside our Orchestration.

3. Answer: a
We need to configure our Send Port to pass on the exception that we
received from the Custom Paint service. In order to do this, we need to
enable the Propagate fault message inside our Send Port's configuration.

4. Answer: b
Our only option in this case is to actually rerun the BizTalk WCF Service
Publishing wizard. The reason for this is that when this wizard generates
our WCF Service and the related folder in the c:\inetpub folder, references
to the Adapter we selected in the wizard exist.

5. Answer: c

The default message size that a WCF Receive Location can handle is 65,536
bytes. If we are planning on receiving a message that is larger than this value,
we need to increase the Maximum received message size value.

Appendix C

[531]

Chapter 8: Implementing Extended
Capabilities

1. Answer: b
Agreements is what is used to set up various customer specific EDI properties.

2. Answer: c
We cannot unpublish an existing rule, and for a new rule to take effect in
BizTalk, it needs to be deployed. Changes in the Orchestrations are not
needed, because they will always use the highest version deployed.

3. Answer: a
Excel and bm.exe are the tools used for creating Activities. Bttdeploy.exe
is the tool used for deploying the Tracking Profiles.

4. Answer: d
After deploying an activity, a tracking profile needs to be set up so that BAM
can map the activity items to items/events in BizTalk. Bttdeploy.exe is the
tool used to deploy the tracking profile created in the tracking profile editor.

5. Answer: c
It is on the receive side (Disassemble) that BizTalk needs to process the
incoming EDI messages.

Chapter 9: Using Azure BizTalk Features
1. Answers: b, e, f

When creating a WABS, an Azure SQL Server, an Azure Storage account,
and an ACS are required. Neither a BizTalk Server nor any other on-premise
prerequisites are required.

2. Answer: d
Writing to the Context (Metadata) of a message in a bridge is done in the
Enrich Stage.

3. Answer: d
To make the connection match everything, we choose Match All, which is
equivalent to 1=1.

Testing Your Knowledge – Answers

[532]

4. Answers: b, d, e, f
The Adapter pack contains a SQL Server Adapter, Oracle (both DB and
EBS), Siebel, and SAP.

5. Answer: c
Tracking information is stored in the Azure SQL Server associated with
the WABS. The actual messages are stored in the Storage account.

Index
Symbols
10^n 143
.NET helper component

using 183
.NET Identity

about 81
namespace 81
Typename 81

A
absolute value 143
actions

adding 395
activity

creating, in Excel 421-424
Activity and view

deploying 426, 427
Adapter Handlers

about 181
managing 22, 23

Adapter independence 74
adapters 278
adapter, Send Port 15
adapter, Receive Port 11
Add inside Excel, BAM

setting up 420
addition 142
ADHelper class 183
Advanced Functoids

about 144
Conditional Mapping 152, 153
Copy-based Mapping 154
Iteration Functoid 145, 146
Looping Functoid 145, 147

Nil Value Functoid 146
Record Count Functoid 146
Scripting Functoid 154, 155
Table Looping Functoid 148-151
troubleshooting 154

After Orchestration processing property 305
agreement

alternate namespace, setting up 409
alternate Schema

deploying 410, 411
answers

about 525
Sample Certification Test Questions 517
Testing Your Knowledge 525

Application Programming Interfaces (APIs)
182

applications
about 24
another application, referencing 24

ArcTangentFunctoid 143
ASCII to Character 135
Assemble Pipeline Component 126
Assemble stage 106
Assign_CarOut shape 221
Atomicity, Consistency, Isolation, and

Durability (ACID) rules 176
atomic transaction type 176-178
Azure BizTalk

features, using 515, 516, 524, 531

B
BAM. See Business Activity Monitoring
Base-specified Logarithm 143
BasicHttpBinding adapter 330
BasicHttp Receive Adapter 339-343

[534]

BasicHttp Send Adapter 332-338
Before Orchestration processing

property 305
binding files

about 285-293
dependencies 299

BizTalk
configuration 273
host 272
installation 273
multiserver BizTalk environment,

configuring 270
multiserver BizTalk environment, installing

270
subscriptions 13, 14
WCF Service, consuming from 364-368

BizTalk247 BizTalk Server
URL 485

BizTalk247 BizTalk Server webcasts
URL 485

BizTalk Adapter Services
about 440
LOB Target, adding 463-467
map, applying 469-471
map, creating 467, 468
new Functoids 468, 469
Service Bus Namespace, creating 462
solution, testing 469-471
using 461, 462

BizTalk Administration Console
about 15, 309, 310
Configuration overview section 310, 311
Grouped by Application 313
Group Hub 15-17
Group Suspended Service Instances

section 313
Suspended Items section 312
Tracked Message Events link 314
Tracked Service Instances 314
Work in Progress section 311

BizTalk applications, deploying
about 281
binding files 285-293
solution, preparing 282-285
through MSI package 294
through Visual Studio 281

BizTalk applications, states 300

BizTalk Application Users 280
BizTalk Artifacts

developing 503-505, 518, 519
BizTalk B2B 280
BizTalkDTADb 11
BizTalk EDI Application

reference, adding to 401, 402
BizTalk Events

URL 486
BizTalk Framework Assembler 109
BizTalk Framework Disassembler 108
BizTalk Group

setting up 276
BizTalk Host Instance 272
BizTalk Isolated Host Users 280
BizTalkMgmtDb 11
BizTalkMsgBoxDb 11
BizTalk Server

about 269
events, tracking 302
message, receiving 11
WCF Services, consuming 360

BizTalk Server 2009 BAM Training Kit
URL 486

BizTalk Server 2010 Adapter Pack samples
URL 488

BizTalk Server 2010 Administrator Training
Kit 486

BizTalk Server 2010 Developer Training Kit
URL 486

BizTalk Server 2010 ESB Training Kit
URL 486

BizTalk Server 2010 Scenarios for Business
Solutions

URL 488
BizTalk Server 2010 SDK samples

URL 487
BizTalk Server 2010 Training Kit

URL 486
BizTalk Server 2010 Tutorials

URL 488
BizTalk Server 2010 VHD

URL 486
BizTalk Server 2013 Scenarios for Business

Solutions
URL 488

BizTalk Server 2013 SDK samples

[535]

URL 487
BizTalk Server 2013 Tutorials

URL 488
BizTalk Server Administrators 280
BizTalk Server Developer Center webcasts

URL 485
BizTalk Server Developeztalk/dd849956.

aspx 485
BizTalk Server Group

BizTalkDTADb 11
BizTalkMgmtDb 11
BizTalkMsgBoxDb 11
SSODB 11

BizTalk Server Operators 280
BizTalk Service

restarting 456
BizTalk Settings Dashboard

about 315
exporting 320-324
importing 320-324
modifying 315-319
viewing 315-319

BizTalk SharePoint 280
BizTalk Solution

about 508-510, 521, 529, 530
creating, with rules 392

BRE. See Business Rules Engine
bridge

about 440, 451
creating 447-451
deploying 453, 454
new Schema, creating 459-461
testing 457
XML, working with 459

bridge routing 458
bridge source

starting 456
BTMMigrationTool 444
BTSNTSvc.exe.config

Orchestrations placed in 181
BTS Operation property 333
Business Activity Monitoring

about 417, 418
Activity and view, deploying 426, 427
activity, creating 418, 419
activity, creating inside Excel 421-426
Add inside Excel, setting up 420

Continuations, creating 433, 434
portal 435
Tracking Profile, creating 427-433

Business Rules Engine
about 392
action, adding 395
Orchestration, creating 396, 397
policy, creating 393
policy, deploying 397, 398
policy new version, deploying 398
policy, testing 395, 396
Schema, creating 392
Schema, importing as facts in Rule

Composer 395
Schema, importing as facts in Rule

Composer 394
testing, deploying 397
vocabulary, adding 399

C
call Orchestration shape 172
Call or Start Orchestration 174
call rules shape 173
canonical messages 71, 72
CarOut message 222
Certified Provider of Learning Solutions

(CPLS) 492
Character to ASCII 135
Close timeout property 334, 341
Cloudcasts BizTalk community webcasts

URL 485
Cloudcasts BizTalk community webcasts,

ESB Toolkit
URL 485

Cloudcasts BizTalk community webcasts,
the Light and Easy series

URL 485
colleagues 489
Color property 86
Common Logarithm 143
compensate shape 172
compensation block 218, 219
complexType 97
Conditional Mapping 152, 153
Configuration overview 310, 311
configuration values

[536]

.NET assemblies, integrating with 183-185
business rules 182
Orchestration variables 180
passing, to Orchestration 180
placed in Adapter Handlers 181
placed in machine.config 181
sent through message 182
sent through message context 182

construct message shape 169
containers 170
content-based routing

about 60
folders and applications, creating 60, 61
messages, debugging 64-67
Receive Locations, creating 62, 63
Receive Locations, testing 64
Receive Ports, creating 62, 63
Send Port, setting up 67, 69
Send Port, setting up for Send Port

Group 70, 71
Send Port, setting up for System II 70

Context Properties 14
Continuations

creating 433, 434
Conversion Functoids

about 135
ASCII to Character 135
Character to ASCII 135
Hexadecimal 135
Octal 135

convoys
about 209
parallel convoy 210
sequential convoy 209

Copy-based Mapping 154
core Adapters

configuring 45, 46
FILE Adapter 56
FTP Adapter 52
HTTP 46
POP3 Adapter 49
SMTP Adapter 50, 51

correct flow
using 73

correlation
configuring 205
types 206-209

cosine 143
Cross Referencing Data Functoids

about 137
application IDs 138, 139
application values 140

Cumulative Functoids
about 135
average value 136
concatenate 136
maximum value 136
minimum value 136
sum 136

custom behavior
registering, in handlers

configuration 345-347
customer relationship management (CRM)

system 148

D
data

enriching 457, 458
validating 116

Database Functoids 136
Database Lookup Functoid 137
date formats

controlling 93
Date/Time Functoids 141
debatching 72, 73
debug map option 259
decide shape 171
decode stage 105
Default Property Schemas property 85
delay shape 171
DeliveryFailureException exception 235
delivery notification 232-237
Delivery Notification property 235
destinations 440
Direct Bound Ports

about 193
Direct Self Correlating Direct

binding 195-199
MessageBox (filter-based) 194
Partner Orchestration 199-202

Direct Self Correlating Direct
binding 195-197

Disassemble Pipeline Component 126

[537]

Disassemble stage 105
distinguished field

node, promoting as 85, 86
Distributed Transaction Coordinator (DTC)

178
division 143
Do not use proxy settings 336
Dynamic Send Port 40, 41, 202-205

E
EDI. See Electronic Data Interchange
EDIFACT Schema

finding 401
EDI partners

setting up 471-473
EDI Subsystem Users 280
Electronic Data Interchange

about 400
alternate namespace, setting up for

agreement 409
alternate Schema, deploying 410, 411
debatching and error handling 411, 412
EDIFACT Schema, deploying 401
EDIFACT Schema, finding 401
new party, setting up for sending 414, 415
Parties and Agreements, setting up 403
Party and Agreement, setting up for

sending 412, 413
Receive Location, setting up 402, 403
Receive Port, setting up 402, 403
reference, adding to BizTalk EDI

Application 401, 402
Schema, changing 408
Send Port control 416, 417
Send Port, setting up 402, 403
unrecognized message, examining 404
unrecognized message, setting up for

receiving 405-408
Electronic Data Interchange For

Administration, Commerce,
and Transport (EDIFACT) 440

Empty option 114
Encode stage 107
Envelope Schemas

about 78
creating 90

ErrorNotifcation message 230
Error Return Functoid 137
ErrorType 249
events

in BizTalk Server, tracking 302, 303
exam

after exam 494, 495
and assessment, differences 482, 483
before exam 493
questions 494
structure 493

exception handling
and debugging 506-508, 519, 520
ans debugging 528

exceptions
about 214
catching 216, 217
compensation 218, 219
delivery notification 232-237
handling scenario, sample 220-232
scopes 214
throwing 215

expression shape 173
extended capabilities

implementing 513-515, 523, 531
Extensible Stylesheet Language

Transformations. See XSLT

F
Failed message routing 42, 246-248
FailureAdapter 250
FailureCategory 249
FailureCode 249
FailureInstanceID 250
FailureMessageID 250
FailureTime 250
False option 115
FFAsm.exe 260
FFDasm.exe 260
FILE Adapter

about 56
credentials 59
files. receiving 56
files, sending 58, 59

FILE.ReceivedFileName
URL 82

[538]

Filters (subscriptions)
configuring 37

Flat File Assembler 109
Flat File Envelopes 91
Flat File messages 119, 120
Flat File Schemas

about 79
creating 98-102

flow control 171, 172
formatting restrictions

specifying 92
Forward Partner Orchestration Direct

Binding 199
FTP Adapter

about 52
receiving 53, 54
sending 54, 55

FTP filename
setting 452, 453

Full Stop - Terminate instances state 302
Functoids

about 134, 468, 469
Advanced Functoids 144
Conversion Functoids 135
Cross Referencing Data Functoids 137-139
Cumulative Functoids 135
Database Functoids 136
DateTime Reformat 469
Date/Time Functoids 141
Generate Id 469
Get Context Property 469
If-Then-Else-Expression 469
Logical Functoids 141, 142
MapEach Loop 469
Mathematical Functoids 142
Scientific Functoids 143
String Functoids 144
Table Query Functoids 136

G
General Pipeline Component 126
Get Application ID Functoid 139
Get Application Value Functoid 140
Get Common ID Functoid 139
Global Assembly Cache (GAC) 157, 295,

299, 344

Group Hub 16
group shape 170
Group Suspended Service Instances 313

H
Header and Trailer Schemas 79
Hexadecimal 135
High Availability 270
Host

about 17
creating 18-20

Host Instance
creating 20-2

HTTP
receiving 46-48
sending 46

I
IAssembler Component 127
IBaseComponent 127
IComponent 127
IComponentUI 127
IDisassembler Component 127
InboundTransportLocation 249
incentives 491
Include exception detail in faults

property 343
Incoming messages property 305
Index Functoid 145
Infrastructure as a Service (IaaS) 487
Inline Code

using 158, 159
Inline XSLT

using 159, 161
instance

generating 258
validating 257

integer 143
integer formats

restricting 94, 95
Internet Information Services (IIS) 46, 270
Internet Protocol Security (IPsec) 335
Inverse Partner Orchestration Direct

Binding 199
IPersistPropertyBag 127
IProbeMessage 127

[539]

IsNil Functoid 142
isolation levels

about 179
read committed 179
repeatable read 179
serializable 179

Issuer Key 358
Issuer Name 358
Iteration Functoid 146

L
listen shape 171
LOB Target

adding 463-467
Logical AND Functoid 142
Logical Existence Functoid 142
Logical Functoids

about 141
IsNil Functoid 142
Logical AND Functoid 142
Logical Existence Functoid 142
Logical NOT Functoid 142
Logical OR Functoid 142
Logical String Functoid 142

Logical NOT Functoid 142
Logical Numeric and Logical Date

Functoid 142
Logical OR Functoid 142
logical ports

versus physical ports 186
Logical String Functoid 142
long running transaction type 176, 178
Looping Functoid 147
loop shape 171

M
maps

about 131, 161, 440, 467, 468
creating 527
debugging 258
implementing 132, 133
testing 258
validating 258

maps, Receive Ports 12
maps, Send Port 15
Mathematical Functoids

about 142
absolute value 143
addition 142
division 143
integer 143
modulo 143
multiplication 143
round 143
square root 143
subtraction 142

MaxFacet property 95
Maximum concurrent calls property 341
Maximum received message size (bytes)

property 341
message and data handling 169, 170
message assignment shape 169
MessageBox 13
MessageBox Direct Binding, Direct

Bound Ports 194
Message encoding property 341
message security 335
Message send and receive property 305
MessageType

URL 82
MessageType property 244 249
MessageType, XML Identity 81
messaging architecture

configuring 517, 518, 525, 526
messaging errors

handling 242
subscription errors 242-244
transmission errors 244-246

messaging patterns
implementing 71

Metadata only endpoint (MEX) 351
Microsoft Certified Trainer (MCT) 492
Microsoft Developer Network (MSDN) 484
Microsoft Distributed Transaction Coordi-

nator (MSDTC) 271
MicrosoftEdiXSDTemplates tool 444
Microsoft Official Curriculum (MOC) 484
MIME/SMIME Decoder 110
MIME/SMIME Encoder 110
MinFacet property 95
modulo 143
MSI package

used, for deploying BizTalk applications

[540]

294-298
multiple MessageBox databases 273
multiplication 143
multiserver BizTalk environment

about 270
Active Directory Users and Groups 279-281
BizTalk Group, setting up 276
configuration 273
High Availability 270, 271
installation 273
installation setup 273
multiple MessageBox databases 273
Runtime settings, configuring 276-278
SSO, configuring 275

N
namespace, .NET Identity 81
Natural Exponential Function 143
Natural Logarithm 143
nesting 179
NetMsmqBinding adapter 331
NetNamedPipeBinding adapter 331
NetTcpBinding adapter 330
node

promoting, as distinguished fields 85, 86
promoting, as property fields 82-85
promoting, to property field 82

Non-disclosure Agreement (NDA) 493
Non-resumable instance 66

O
Octal 135
offers 492
Open timeout property 334, 341
Orchestration Designer for Business

Analysts (ODBA) Visio plugin 218
Orchestrations

.NET assemblies, integrating with 183-185
about 14, 162-168
activating 173
bindings, configuring 185
configuration information, storing 180
configuration, placed in BTSNTSvc.exe.

config 181
configuration, placed in web.config, for

isolated Hosts 181

creating 396, 397, 527
debugging 237-242
exceptions, handling 214
nesting 172
others 173
persistence 175
placed in machine.config 181
ports 186
properties 304, 305
Schemas, exposing as 347-355
shapes 168
tracking 304-306
transaction reach 180
transactions 176
variables 180

Orchestrations, activating
Call or Start Orchestration 174

Orchestrations, shapes
containers 170
flow control 171, 172
message and data handling 169, 170

Orchestration start and end property 304
Ordered delivery

about 42, 43
Receive Locations 43
Send Ports 43

OriginalFileName property 458
OutboundTransportLocation 249
Outgoing messages property 305
Out of the box WCF Adapters

about 330
BasicHttpBinding adapter 330
NetMsmqBinding adapter 331
NetNamedPipeBinding adapter 331
NetTcpBinding adapter 330
WCF-Custom adapter 331
WCF-Custom Isolated adapter 331
WsHttpBinding adapter 330

P
PaintServiceException 378
parallel actions shape 171
parallel convoy 210
partially started state 300
Partial Stop - Allow running instances to

continue state 301

[541]

Partial Stop - Suspend running instances
state 301

Parties and Agreements
setting up 403

Partner Orchestration 199
PartnerService promoted property 195
Party and Agreement

setting up, to receive 405-408
setting up, to send 412, 413

Party Resolution 110
PassThruReceive 12
PassThruReceive Pipeline 107
peers 489
persistence 175, 176
physical ports

versus logical ports 186
Pipeline components

about 126
deploying 128
developing 126, 127

Pipeline.exe 260
Pipeline, Receive Ports 12
Pipelines

about 102, 103
configuring 111-113
creating 526
custom 108
default 107
Receive Pipelines 104
stages 103
testing 259
test tools 260

Pipelines, custom
about 108
BizTalk Framework Assembler 109
BizTalk Framework Disassembler 108
Flat File Assembler 109
MIME/SMIME Decoder 110
MIME/SMIME Encoder 110
Party Resolution 110
XML Assembler 109
XML Disassembler 109
XML Validator 110

Pipelines, default
about 107
PassThruReceive Pipeline 107
XMLReceive Pipeline 107

XMLTransmit Pipeline 108
Pipeline, Send Port 15
policy

creating 393
testing 395, 396

Policy and testing
deploying 397

POP3 Adapter 49, 50
Port Authentication 26, 27
port binding, options

about 187
Dynamic Send Port 202-205
Specify Later binding 192, 193
Specify Now binding 187-191

ports
about 25
authentication 26, 27
Failed message routing 42
Receive Locations 28, 29
Receive Port Maps 32, 33
receiving 25, 26
Send Port Groups 41
Send Ports 34
versus port types 186

PowerShell
bridge source, starting 456
using, with WABS 455, 456

practice tests 488, 489
Pre-Assemble stage 106
Probing Pipeline Component 127
ProcessingServer 249
Prometric

about 492
FAQ section 493

Promoted Properties
tracking 308, 309

Propagate fault message checkbox 338
property field

node, promoting as 82-85
node, promoting to 82

Property Schemas 80
publish or subscribe model 10, 11

Q
Quality Assurance (QA) 320
questions

[542]

answering 497-500
Sample Certification Test 501

Quick Promotion 85

R
read committed 179
ReceivedFileName

URL 82
Receive Locations

about 28, 29
Error threshold 30-32
Service windows 29, 30
setting up 402
states 30
testing 64

Receive Pipelines
about 104
decode stage 105
disassemble stage 105
resolve party stage 105
validate stage 105

Receive Port
setting up 402

ReceivePortID property 209
Receive Port Maps 32-34
ReceivePortName 249
Receive Ports

about 25, 26
Adapter 11
Maps 12
Pipeline 12
Port Authentication 26, 27
Properties 303
Receive Locations 28, 29
Tracking 303

Receive shape
about 169
activating 174

record 87
Record Count Functoid 146
recordInfo annotation 118
Remove Application ID Functoid 140
repeatable read 179
Report To Analyst property 218
Request message after port processing

property 303, 307, 308

Request message before port processing
property 303, 307, 308

Resolve Party stage 105
Resumable instance 66
RetractShipNotice message 227
RetractShipNotice operation 226
reusable types

Complex types 97
creating 95
Simple types 96

root certificate
exporting 443, 444

round 143
routing errors

about 246-251
interchange processing 251-256

RoutingFailureReportID 250
Rule Composer

Schemas, importing as facts 394
Runtime application, states

about 300
Full Stop - Terminate instances state 302
partially started state 300
Partial Stop - Allow running instances to

continue state 301
Partial Stop - Suspend running instances

state 301
started state 300
stopped state 300

Runtime settings
configuring 277, 278

S
Sample Certification Test questions

about 501
Azure BizTalk features, using 515, 516
BizTalk Artifacts, developing 503-505
BizTalk Solution 508-510
exception handling and debugging 506-508
extended capabilities,

implementing 513-515
messaging architecture,

configuring 501-503
Web Services and Windows

Communication Foundation (WCF)
Services, integrating 511-513

[543]

Sample Certification Test Questions
answers 517

Schema, hierarchies
import 98
include 98
redefine 98

Schemas
about 440
changing 408, 409
creating 78, 392, 526
Envelope Schemas, creating 90, 91
exporting, as WCF services 352-355
exposing, as WCF services 347-350
Flat File Schemas, creating 98-102
hierarchies, creating 97
identity 80
importing, as facts into Rule Composer 394,

395
recurring parts, creating 88-90
structure, creating 87, 88
types 78
validating 256, 257

Schemas, identity
.NET Identity 81
about 80
XML Identity 80

Schemas, types
about 78
Envelope Schemas 78
Flat File schemas 79
Header and Trailer Schemas 79
Property Schemas 80
XML Schemas 78

Scientific Functoids
10^n 143
about 143
ArcTangentFunctoid 143
Base-specified Logarithm 143
Common Logarithm 143
cosine 143
Natural Exponential Function 143
Natural Logarithm 143
sine 143
tangent 143
X^Y 143

scopes
about 177

atomic transaction type 178
long running transaction type 178
synchronized scope 177
transaction type 177

scope shape 170 214
Scripting Functoid

about 154, 155
external assemblies, using 155-157
Inline Code, using 158, 159
Inline XSLT, using 159-161

secure data
about 120
message, decrypting 125, 126
message, encrypting 120-124

SendArchive operation 226
SendCarOut shape 222
Send Pipelines

about 106
Assemble stage 106
Encode stage 107
Pre-Assemble stage 106

Send Port
about 14
Adapter 15
Maps 15
Pipeline 15
setting up 67-69, 402

Send Port control 416, 417
Send Port Maps 36
SendPortName 249
Send Ports

about 34
Backup transport 36
Configuring Filters (subscriptions) 37
Dynamic Send Ports 40, 41
groups 41, 42
properties 307, 308
scheduling and service window 35
Send Port Maps 36
states 38-40
tracking 307, 308
Transport Advanced Options 34

Send Port, states
started state 38
stopped state 38
unenlisted state 39

send shape 169

[544]

SendShipNotice shape 224
Send timeout property 334, 341
sequential convoy 209
serializable 179
Service Bus Namespace

creating 462
Service Metadata

exposing 359, 360
Service Oriented Architecture-based

solutions (SOA) 329
Set Common ID Functoid 139
Set Common Value Functoid 140
setup wizard

running, in Windows Azure 441, 442
Shape start and end property 305
ShipNotice message 230
simpleType 96
sine 143
Single Sign-on (SSO) 182
SMTP Adapter 50, 51
SOAP Action header 333
sources 440
Specify Later binding 192
Specify Now binding 187-191
SSO

configuring 275
SSO Administrators 280
SSO Affiliate Administrators 280
SSODB 11
start 174
started state 38, 300
Start Orchestration. See Call or Start

Orchestration
start Orchestration shape 172
stopped state 38, 300
String Functoids 144
string values

restricting 92, 93
subscription errors 242-244
subscriptions

about 13, 14
Message Context Properties 14

subtraction 142
Suspended Items 16, 312
Suspend request message on failure

property 343
suspend shape 171

synchronized scope 177
sysEx 215
System II

Send Port, setting up 70, 71

T
Table Looping Functoid 148-151
Table Query Functoids

about 136
Database Lookup 137
Error Return 137
Value Extractor 137

tangent 143
Target File Name property 74
targetNamespace, XML Identity 80
Team Foundation Server (TFS) 260
Technet Wiki

URL 486
TechNet Wiki

URL 489
terminate shape 172
test

preparation, sources 483
preparing for 483

Testing Your Knowledge
about 74-76
answers 525
questions 324-326, 387-390, 478, 479

test map option 259
test preparation, sources

about 483
blogs 489
classes 484
colleagues and peers 489
forums 489
literature 484
online sources 489
practice tests 488
training kits 486
webcasts 485
Windows Azure virtual machines 487

Text encoding property 341
ThirdPartyFinanceService.BindingInfo. xml

369
ThirdPartyFinanceService class 363
throw exception shape 172

[545]

time
finding, to study 490, 491
managing 496

Timeout property 178
TPMMigrationTool 444
Tracked Message Events 314
Tracked Service Instances 314
Track Events processing property 304
Tracking Profile

creating 427-433
Track Message Bodies property 303-307
Track Message Properties property 303-307
training kits 486, 487
transaction reach 180
transactions

about 176
atomic transactions 176
long running transactions 176
nesting 179

transaction type 177
transmission errors 244-246
Transport Advanced Options

about 34
scheduling and service window 35

TransportCredentialsOnly security 335
transport security 335
TransportWithMessageCredential

security 335
Type Modifier property 373
typename, .NET Identity 81

U
unenlisted state 39
unit testing

about 260
Maps 263
Pipelines 264
Schemas 261, 262

unrecognized message
examining 404

Use proxy settings 336
Use send handler proxy settings 336

V
ValidateDocument property 254
ValidateInstance method 261

Validate Instance option 257
validate map option 259
ValidateSchema method 263
Validate Schema option 257
validate stage 105
Value Extractor Functoid 137
Visual Studio

used, for deploying BizTalk
applications 281

vocabulary
adding 399

vouchers 492

W
WABS

about 439
bridge, creating 447-451
bridge, deploying 453, 454
PowerShell, using 455, 456
restarting 456
root certificate, exporting 443, 444
SDK, installing 444-446
setting up 440, 441
setup wizard, running 441, 442

WABS Portal
about 440
EDI partners, setting up 471-473
tracking 474, 475
using 471

WCF Adapter
configuring 331

WCF-Custom adapter 330, 331
WCF-Custom Isolated 331
WCF Service

about 329
consuming, from BizTalk 364-368
consuming, from BizTalk Server 360
custom WCF service, testing 376
exposing, to Windows Azure Service

Bus 357-359
generated WCF Service artifacts, configur-

ing 369-376
Sample WCF Service, consuming 361-363
Schemas, exposing as 347
testing 355, 356

webcasts 485, 486

[546]

web.config for Isolated Hosts
Orchestrations placed in 181

web exceptions
handling 378-386

Web Services
and Windows Communication Foundation

(WCF) Services, integrating 530
and Windows Communication Foundation

(WCF)Services, integrating 511, 512,
522

Windows Azure BizTalk Services.
See WABS

Windows Azure Service Bus
WCF services, exposing to 357-359

Windows Azure Virtual Machine
about 487
BizTalk, running on 475
multiple BizTalk Servers, configuring 478
multi-Server Virtual Machine, installing

477
single BizTalk Server, setting up 476, 477

Windows Certificate Store
URL 120

Windows Communication Foundation.
See WCF Service

Work in Progress 311
WSDL files

importing manually 377
WsHttpBinding adapter 330

X
XML 459
XMLAsm.exe 260
XML Assembler 109
XMLDasm.exe 260
XML Disassembler 109
XML envelopes 117-119
XML Identity

about 80
MessageType 81
targetNamespace 80

XML messages
about 113
assembling 115
disassembling 114
Document Schemas 114-116

Envelope Schemas 114, 116
instruction scope, processing 115
parsing 114
Preserve Byte Order 116
processing instructions, adding 115
processing instructions text, adding 115
Recoverable interchange processing 115
Target charset 116
unrecognized messages, allowing 114
Validate document structure 115
XML declaration, adding 116

XMLReceive 12
XMLReceive Pipeline 107
XML Schemas 78
XMLTransmit Pipeline 108
XML Validator 110

properties 117
XSD Import 98
XSD Include 98
XSD Redefine 98
XSLT 134
X^Y 143

Thank you for buying
(MCTS) Microsoft BizTalk Server (70-595) Certification

and Assessment Guide Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including
(but not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles
will offer information relevant to a range of users of this software, including administrators,
developers, architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and
you would like to discuss it first before writing a formal book proposal, contact us; one of
our commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

(MCTS): Microsoft BizTalk Server
2010 (70-595) Certification Guide
ISBN: 978-1-84968-492-7 Paperback: 476 pages

A compact certification guide to help you prepare
for and pass exam 70-595: TS: Developing Business
Process and Integration Solutions by using Microsoft
BizTalk Server 2010

1. This book and e-book will provide all that
you need to know in order to pass the (70-595)
Developing Business Process and Integration
Solutions exam by Using Microsoft BizTalk
Server 2010 book.

2. Includes a comprehensive set of test questions
and answers that will prepare you for the
actual exam.

3. The layout and content of the book closely
matches that of the skills measured by the
exam, which makes it easy to focus your
learning and maximize your study time in
areas where you need improvement.

BizTalk Server 2010 Cookbook
ISBN: 978-1-84968-434-7 Paperback: 368 pages

Over 50 recipes for developers and administrators
looking to deliver well-built BizTalk solutions and
environments

1. Enhance your implementation skills with
practically proven patterns.

2. Written by a BizTalk expert and MVP,
Steef-Jan Wiggers, the book is filled
with practical advice.

3. Learn best practices for deploying BizTalk
2010 solutions.

Please check www.PacktPub.com for information on our titles

Microsoft BizTalk ESB Toolkit 2.1
ISBN: 978-1-84968-864-2 Paperback: 130 pages

Discover innovative ways to solve your mission-
critical integration problems with the ESB Toolkit

1. A comprehensive guide to implementing quality
integration solutions.

2. Instructs you about the best practices for the
ESB and also advises you on what not to do
with this tool.

3. A sneak view of what's new in the ESB
Toolkit 2.2.

Microsoft BizTalk Server
2010 Patterns
ISBN: 978-1-84968-460-6 Paperback: 396 pages

Create effective, scalable solutions with Microsoft
BizTalk Server 2010

1. Provides a unified example from the beginning
to end of a real world solution.

2. A starter guide expecting little or no
previous BizTalk experience, but offering
advanced concepts and techniques.

3. Provides in-depth background and introduction
to the platform and technology.

4. Written by a Biztalk architecture MVP.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Configuring a Messaging Architecture
	Understanding the publish or subscribe model
	Receiving the message
	Adapter
	Pipeline
	Maps

	MessageBox
	Subscriptions
	Message Context Properties

	Orchestrations
	Sending the message
	Maps
	Pipeline
	Adapter

	Getting started with the BizTalk Platform Settings and Applications
	BizTalk Administration Console
	The Group Hub

	Hosts and Host Instances
	Creating a Host
	Creating a Host Instance

	Managing Adapter Handlers
	Applications
	Referencing another Application

	Setting up and managing Ports
	Receive Ports
	Port Authentication
	Receive Locations
	Receive Port Maps

	Send Ports
	Transport Advanced Options
	Backup transport
	Send Port Maps
	Configuring Filters (subscriptions)
	Port states
	Dynamic Send Ports

	Send Port Groups
	Failed message routing
	Ordered delivery
	Receive Locations
	Send Ports

	Configuring core Adapters
	HTTP
	Sending HTTP
	Receiving HTTP

	POP3
	SMTP
	FTP
	Receiving FTP
	Sending FTP

	FILE
	Receiving files
	Sending files
	Credentials

	Configuring content-based routing
	Creating folders and Applications
	Creating Receive Ports and Receive Locations
	Testing the Receive Locations
	Debugging the messages
	Setting up a Send Port
	Setting up Send Port for System II and a Send Port Group

	Implementing messaging patterns
	Working with canonical messages
	Debatching
	Using the correct flow
	Adapter independence

	Testing your knowledge
	Summary

	Chapter 2: Developing BizTalk Artifacts – Creating Schemas
and Pipelines
	Creating Schemas
	Type of Schemas
	XML Schemas
	Flat File Schemas
	Property Schemas

	Schema Identity
	XML Identity
	.NET Identity

	Promoted property and distinguished fields
	Promoting nodes as property fields
	Promoting a node as distinguished field

	Creating the structure of a Schema
	Creating recurring parts of a Schema
	Creating Envelope Schemas

	Data types and formatting
	Specifying custom formatting restrictions
	Creating reusable types

	Creating Schema hierarchies
	Import
	Include
	Redefine

	Creating Flat File Schemas

	Creating Pipelines
	Pipeline Stages
	Receive Pipelines
	Decode
	Disassemble
	Validate
	Resolve Party
	Send Pipelines
	Pre-Assemble
	Assemble
	Encode

	Default Pipelines
	PassThruReceive
	XMLReceive
	PassThruTransmit
	XMLTransmit

	Custom Pipelines
	Configuring Pipelines and Pipeline components
	Working with XML messages
	Disassembling and parsing
	Assembling and serializing
	Validating data

	Working with XML envelopes
	Working with Flat File messages
	Working with secure data
	Encryption and signing
	Decryption and signature verification

	Custom Pipeline Components
	Developing
	Deploying

	Testing your knowledge
	Summary

	Chapter 3: Developing BizTalk Artifacts – Creating Maps
	Creating Maps
	Understanding why XSLT matters

	Using Functoids
	Conversion Functoids
	Cumulative Functoids
	Database Functoids
	Table Query Functoids
	Cross Referencing Data Functoids

	Date/Time Functoids
	Logical Functoids
	Mathematical Functoids
	Scientific Functoids
	String Functoids

	Using Advanced Functoids
	Looping
	Index
	Iterator
	Nil
	Record Count
	Looping
	Table Looping

	Conditional Mapping
	Copy-based Mapping
	Troubleshooting
	Scripting
	Using external assemblies
	Using the Inline Code
	Using Inline XSLT

	Maps and Orchestrations
	Testing your knowledge
	Summary

	Chapter 4: Developing BizTalk Artifacts – Creating Orchestrations
	Developing Orchestrations
	Basic shapes and configuration
	Message and data handling
	Containers
	Flow control
	Orchestration nesting
	Other

	Orchestration activation
	Activating Receive
	Call and Start

	Persistence
	Dehydration and rehydration

	Transactions
	Transaction types
	Scopes
	Long Running
	Atomic
	Nesting

	Transaction reach
	Storing configuration information
	Orchestration variables
	Configuration placed in BTSNTSvc.exe.config
	Configuration placed in web.config for
Isolated Hosts
	Configuration placed in machine.config
	Some configuration can be placed on the
Adapter Handlers
	Through the message
	Through the message context
	Business Rules
	SSO
	Using a .NET helper component

	Integrating with .NET assemblies

	Configuring Orchestration bindings
	Ports versus Port Types
	Logical ports versus physical ports
	Port binding options
	Specify Now
	Specify Later
	Direct
	Dynamic

	Configuring correlation
	Working with Correlation Types and Sets
	Convoys
	Sequential convoys
	Parallel convoys

	Testing your knowledge
	Summary

	Chapter 5: Testing, Debugging,
and Exception Handling
	Handling exceptions in Orchestrations
	Scopes
	Throwing exceptions
	Catching exceptions
	Compensation
	Sample exception handling scenario
	Delivery notification

	Debugging Orchestrations
	Handling messaging errors
	Subscription errors
	Transmission errors

	Routing errors
	Recoverable interchange processing

	Validating and testing artifacts
	Validating Schemas and Message Instances
	Validate Schema
	Validate Instance
	Generate Instance

	Validating, testing, and debugging Maps
	Test Map
	Validate Map
	Debug Map

	Testing Pipelines
	Pipeline test tools

	Unit testing
	Unit testing Schemas
	Unit testing Maps
	Unit testing Pipelines

	Testing your knowledge
	Summary

	Chapter 6: Deploying, Tracking, and Administrating a BizTalk Server 2010 Solution
	Installing and configuring a multiserver BizTalk environment
	High Availability
	Role of Host and Host Instances in High Availability
	Multiple MessageBox databases
	Installation setup
	Installation
	Configuration

	Adapters
	Active Directory Groups and Users

	Deploying BizTalk applications
	Sample deployment through Visual Studio
	Preparing the solution

	Binding Files

	Sample deployment through an MSI package
	Binding File dependencies

	BizTalk Application states
	Runtime Application states

	Tracking events in BizTalk Server
	Tracking Receive Ports
	Tracking Orchestrations
	Tracking Send Ports

	Tracking Promoted Properties
	Managing BizTalk applications using BizTalk Administration Console
	Configuration overview
	Work in Progress
	Suspended Items
	Group Suspended Service Instances
	Tracked Service Instances
	Tracked Message Events

	BizTalk Settings Dashboard
	Viewing and modifying performance-tuning settings
	Exporting and importing performance tuning settings

	Testing your knowledge
	Summary

	Chapter 7: Integrating Web Services and Windows Communication Foundation (WCF) Services
	Out of the box WCF Adapters
	Configuring a WCF Adapter
	Using out of the box WCF-BasicHttp Send Adapter
	Using out of the box WCF-BasicHttp
Receive Adapter

	Understanding Custom behaviors
	Exposing Schemas and Orchestrations as WCF Services
	Testing our WCF Service

	Exposing WCF Services to Windows Azure Service Bus
	Exposing only Service Metadata
	Consuming WCF Services from BizTalk Server
	Consume Sample WCF Service
	Consuming our WCF Service from BizTalk
	Configuring generated WCF Service artifacts
	Testing our Custom WCF Service

	Manually importing WSDL files
	Handling web exceptions
	Testing your knowledge
	Summary

	Chapter 8: Implementing Extended Capabilities
	Business Rules Engine
	Creating a BizTalk Solution with rules
	Creating a Schema
	Creating a Policy
	Import a Schema as facts into the Rule Composer
	Adding an Action
	Testing the Policy
	Creating an Orchestration
	Deploying the Policy and testing
	Deploying a new version of the Policy
	Adding a Vocabulary

	Electronic Data Interchange
	Finding and deploying the EDIFACT Schema
	Adding a reference to BizTalk EDI Application
	Set up a Receive Port, Receive Location, and a Send Port
	Setting up Parties and Agreements
	Examine an unrecognized message
	Set up the Parties and the Agreement for receiving
	Changing the Schema
	Set up an alternate namespace for the Agreement
	Deploy an alternate Schema
	Debatching and Error handling
	Setting up a Party and Agreement for sending
	Setting up a new Party for sending
	Send Port control
	Batching

	Business Activity Monitoring
	Creating Activities
	Setting up the BAM Add inside Excel
	Creating an Activity inside Excel
	Deploy the Activity and view
	Creating a Tracking Profile

	Creating Continuations
	BAM Portal

	Testing your knowledge
	Summary

	Chapter 9: Using Azure BizTalk Features
	Understanding the Windows Azure BizTalk Services
	Setting up a Windows Azure BizTalk Service
	Running the setup wizard in Windows Azure
	Exporting the WABS root certificate

	Installing Windows Azure BizTalk Services SDK
	Creating a Bridge
	Filter Condition and Route Ordering
	Setting the FTP filename

	Deploying a Bridge
	Using PowerShell with BizTalk Services
	Starting the bridge source
	Restarting the BizTalk Service

	Testing the bridge
	Enriching data
	Bridge Routing
	Working with XML in bridges
	Creating a new Schema

	Using the BizTalk Adapter Services
	Creating a Service Bus Namespace
	Adding an LOB Target
	Creating a Map
	Applying the map and testing the solution

	Using the WABS Portal
	Setting up EDI partners
	Tracking

	Running BizTalk on a Windows Azure Virtual Machine
	Setting up a single BizTalk Server
	Installing a multi-Server Virtual Machine
	Configuring multiple BizTalk Servers

	Testing your knowledge
	Summary

	Chapter 10: Test-taking – Tips and Tricks
	Understanding the difference between the exam and the assessment
	Preparing for taking a test
	Preparation sources
	Literature
	Classes
	Webcasts
	Training kits
	Windows Azure virtual machines
	Sample code
	Practice tests
	Colleagues and peers
	Forums, blogs, and other online sources

	Getting familiar with the objectives
	Finding time to study
	Incentives
	Knowledge
	Money
	Opportunities

	Vouchers and offers
	Learn more

	At the test center
	Examining the exam structure
	Before the exam
	Questions
	After the exam

	Managing your time
	Answering questions
	Summary

	Appendix A: Sample Certification
Test Questions
	Appendix B: Sample Certification
Test Questions – Answers
	Appendix C: Testing Your Knowledge – Answers
	Index

