

Microsoft Dynamics CRM 2015
Application Design

Master professional-level business application
designs using Microsoft Dynamics CRM 2015
and its xRM features

Mahender Pal

BIRMINGHAM - MUMBAI

Microsoft Dynamics CRM 2015 Application Design

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2015

Production reference: 1261015

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-415-8

www.packtpub.com

www.packtpub.com

Credits

Author
Mahender Pal

Reviewers
Ahmad Saad Masroor

Nishant Rana

Tanguy Touzard

James Wood

Commissioning Editor
Sarah Crofton

Acquisition Editors
James Jones

Larissa Pinto

Content Development Editor
Parita Khedekar

Technical Editor
Deepti Tuscano

Copy Editor
Stephen Copestake

Project Coordinator
Milton Dsouza

Proofreader
Safis Editing

Indexer
Tejal Soni

Graphics
Abhinash Sahu

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

About the Author

Mahender Pal is a Microsoft Dynamics CRM technology specialist, trainer, and
author. He has worked on various Microsoft technologies. He started working with
Dynamics CRM 3.0, and since then he has worked on various Microsoft Dynamics
CRM implementations. He has been a Microsoft MVP for Dynamics CRM for five
years, loves to contribute to the Dynamics CRM community, and blogs regularly
about Dynamics CRM. He wrote his first book, Microsoft Dynamics CRM 2011
Application Design, Packt Publishing, which was based on developing xRM solutions
using Dynamics CRM 2011.

He is a nature lover and loves to spend vacations in his native place, Himachal
Pradesh, India, with his family. He is the founder of HIMBAP, which is a training
and consulting company.

I would like to dedicate this book to my late father, Joginder Singh,
and my mother, Kamla Devi, because they made me who I am.
To my wife, Sonia, for supporting me during the writing of this
book, and my kids, Diksha and Arnav, because of their continued
unconditional love and amazing understanding about my work
throughout the writing of this book.

To my brothers, Jasbir and Vikram, my nephews (Himanshu, Vini,
Ayush, and Abhit), and nieces, Nishu and Kriti, for supporting me.

I would like to thank Packt Publishing for giving me the opportunity
to write this book. My special thanks go to my technical reviewers
Tanguy, Nishant Rana, James Wood, Ahmad Saad and Akashdeep
Kundu, and my content development editor for giving me their
valuable feedback for drafts.

And finally I would like to thank my friends, my team members, and
Microsoft Dynamics CRM community for their support.

About the Reviewers

Ahmad Saad Masroor is a senior solution architect for a Denmark-based
Microsoft Dynamics partner, AlfaPeople, where he is responsible for the technology
and architecture of AlfaPeople across Dubai and Saudi Arabia. He is currently in the
AlfaPeople Middle East presales team and supports sales and customer/prospect
engagements.

Ahmad completed his bachelor of information technology degree from Amity
University and has a total of 10 years experience in CRM consulting, implementing,
and supporting solutions that have diverse technologies and capabilities. He has
worked in a number of consulting roles with Microsoft, PWC, and HCL.

He is diligent and committed to the profession and is a supporter of poverty
alleviation.

By applying strong business acumen, systems acuity, and leadership talents, Ahmad
is very much at home creating operational centers of excellence. He has built a solid
foundation of corporate clients through his IT consulting and business advisory
services.

Aside from being a CRM solution architect, he is the managing partner at SattvaSoul.
It is a professionally-run charitable organization working towards revolutionizing
society with a holistic approach. Ahmad also works as a philanthropist.

You can follow him on Twitter at a_saad and write to him at saad.029@gmail.com.

I would like to express my gratitude to the many people who helped
me through this book: to all those who provided support, talked
things over, read, wrote, offered comments and allowed me to
quote their remarks, and assisted me in editing, proofreading, and
designing. I would like to dedicate this book to my parents.

I especially want to express my gratitude and deep appreciation
for my friends whose knowledge and wisdom has supported,
enlightened, and entertained me over many years.

Nishant Rana is a Microsoft Certified Professional who loves working in Microsoft
Dynamics CRM, SharePoint, and other Microsoft .NET technologies such as Azure
and ASP.NET.. He is currently working as a consultant in Microsoft, India, and
actively promotes budding professionals through his weblog, http://nishantrana.
me/

He has also been a technical reviewer for Microsoft Dynamics CRM 2011 Application
Design, Microsoft Dynamics 2011 Reporting, and CRM 2013 Quick Start.

You can follow him on twitter at https://twitter.com/nishantranaCRM or write
to him at nishant_bliss@hotmail.com

Tanguy Touzard is a technical consultant and solution architect at Javista in Paris,
France. He has been working with Microsoft Dynamics CRM for more than ten years
on various project aspects: development, consulting, and training. He has been a
Microsoft MVP for five years.

Tanguy is the creator of XrmToolBox, a set of tools that allows a nondeveloper
to customize Microsoft Dynamics CRM with less pain than these tasks normally
require. This project also allows other developers to create their own tools for
XrmToolBox. The project is available on Github at http://www.xrmtoolbox.com.

I would like to thank my wife, Emeline, who supported me, despite
our two-year-old baby boy whose care is also like a full time job,
while I did my community work for Microsoft Dynamics CRM.

http://nishantrana.me/
http://nishantrana.me/
https://twitter.com/nishantranaCRM
http://www.xrmtoolbox.com

James Wood is a solution architect at Gap Consulting with skills in the end-to-
end implementation of enterprise Microsoft Dynamics CRM solutions. He acts in
a hybrid role—that is a combination of technical and functional roles. He is also a
developer of bespoke software. He graduated from the University of Huddersfield
with a first class honours degree.

He has worked with Microsoft Dynamics CRM for over five years. He has worked on
a number of small to large implementations in sectors including local and regional
government, insurance, charitable, welfare, and health care.

Outside the workplace, James participates in the Microsoft CRM community with a
personal blog that attracts a strong following. He posts on StackOverflow where he
is a top poster on CRM-related questions, and he has technically edited a number
Microsoft CRM books published by Packt Publishing.

You can read more about James at www.woodswork.co.uk.

I would like to thank my family and friends for everything—
especially Rob, Chloё, Jamie, and Josh.

www.woodswork.co.uk

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital book library.
Here, you can search, access, and read Packt’s entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter or the Packt Enterprise Facebook page.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface	 ix
Chapter 1: Getting Started with Microsoft Dynamics CRM 2015	 1

Deployment options	 3
Microsoft Dynamics CRM on-premise versus online	 4

Database access	 4
New updates	 5
Integration	 5
Availability	 5
Security	 5
CRM add-ons	 6
Extension and customization	 6

Microsoft Dynamics CRM 2015 clients	 6
Web client	 6
Outlook client	 7
Mobile client	 7

Software and hardware requirements	 7
Upgrade options	 8

In place	 9
Migration upgrade	 9
Cleaning all 2007 endpoints	 10
Support for the Microsoft Dynamics CRM 4.0 object model	 10

Licensing model for Microsoft Dynamics CRM 2015	 10
The new features in Microsoft Dynamics CRM 2015	 11

Global search	 11
Business rules enhancement	 13
Business process flow	 15
Hierarchy visualization	 16
Hierarchical security	 18

Manager hierarchy	 18
Position	 20

Table of Contents

[ii]

New fields for calculation	 21
Calculated fields	 21
Rollup field	 22

New capability for mobile client	 24
Product catalog enhancement	 24
Field-level security enhancement	 26
Creating custom help	 27
Disabling the welcome screen	 28
Nested quick create forms	 28
New outlook configuration wizard	 29
Service Level Agreement enhancement	 30
Synchronization between CRM and Outlook or Exchange	 30

Summary	 31
Chapter 2: Customizing Microsoft Dynamics CRM 2015	 33

Training solution scope	 33
Training solution design	 34
Understanding the customization concept	 37
Customizing Microsoft Dynamics CRM 2015	 38

Understanding application navigation	 38
Understanding solutions	 40
Creating the publisher	 42
Creating our solution	 43
Adding components to our solution	 44
Customizing entities	 45

Renaming entities	 45
Data types in Microsoft Dynamics CRM 2015	 48

Single line of text	 48
Option sets	 48
Two options	 49
Images	 50
Whole numbers	 51
Floating point numbers	 51
Decimals	 51
Currency	 51
Multiple lines of text	 52
Date and time	 52
Lookup	 53

Field properties	 53
Setting data structures for a training solution	 54

Creating a new attribute	 54
Setting field mapping	 56

Table of Contents

[iii]

Customizing entity forms	 58
The main form	 59
Understanding the social pane	 61
Understanding the sub grid	 62
Mobile express forms	 64
Designing other forms	 66

Customizing application navigation	 68
Setting up a training catalog	 70
Understanding security	 76

Role-based security	 76
Record-based security	 77
Field-level security	 77

Testing customization	 78
Summary	 80

Chapter 3: Client-side Logic with Microsoft Dynamics
CRM 2015	 81

Understanding the client scripting object model	 82
Understanding web resources	 82

Creating our first web resource	 84
Accessing forms and controls using client-side code	 85

Context namespaces	 86
Data namespaces	 86
UI namespaces	 88

Understanding client-side events	 89
Form events	 89

OnLoad event	 89
OnSave event	 93

Field events	 93
Control events	 96

TabStateChange	 96
OnReadyStateComplete	 96
PreSearch	 96

Using CRM web services in client-side code	 100
OData	 100

OData query options	 101
Working with organization data services	 103
Modern SOAP	 106
OData versus Modern SOAP	 112

Understanding business rules	 112
Actions in business rules	 115

Showing error messages	 115
Setting business requirements	 116

Table of Contents

[iv]

Setting field values	 116
Setting visibility	 117
Setting default values	 117
Locking or unlocking fields	 118

Server-side versus client-side business rules	 118
Summary	 119

Chapter 4: Working with Processes	 121
Understanding processes	 122
Building a library management solution	 123

Library management solution design	 123
Adding components to solution	 124
Customizing entities	 124
Customizing member entity	 125
Creating a custom entity	 126

Entity definition	 127
Areas that display this entity	 129
Process	 129
Communication and collaboration	 129
Data services	 130
Outlook and mobile	 130
Form design	 131
Creating entity views	 132

Understanding business process flow	 137
Using stages	 139
Using branching logic	 139
Controlling and ordering business process flows	 140
Creating business process flow	 140

Understanding workflows	 142
Activating workflow	 143
Available to run	 143
Workflow job retention	 143
Automatic execution events	 143

Workflow scope	 144
Creating asynchronous workflows	 144
Creating synchronous workflows	 146

Generating Autoid using a real-time workflow	 149
Understanding dialogs	 151

Designing dialogs	 151
Calling Dialog	 152

Understanding actions	 153
Designing actions	 153
Action scopes	 153

Table of Contents

[v]

Action arguments	 154
Calling actions	 154

Business process flows versus workflows, dialogs, and actions	 154
Testing library management	 155
Summary	 157

Chapter 5: Working with CRM SDK	 159
Understanding CRM extendibility architecture	 160

CRM databases	 161
Platform layers	 161
Processes	 161
CRM Web services	 162
Plug-ins	 162
Reporting	 162
Client extensions	 163
Integrated extensions	 163

An introduction to the Microsoft Dynamics CRM SDK	 163
Knowing about CRM assemblies	 164
Understanding CRM web services	 165

Deployment service	 165
Discovery service	 166
Organization service	 166
Organization data service	 166
Early bound	 166
Late bound	 168

Using client APIs for CRM connections	 169
Working with organization web services	 171

Create	 171
Update	 174
Retrieve	 176
RetrieveMultiple	 177
Delete	 179
Associate	 179
Disassociate	 180
Execute	 180
Testing the console application	 182

Working with discovery web service	 182
Fetching data from the CRM database	 184

QueryByAttribute	 184
QueryExpression	 186

FetchXML	 189
LINQ	 190

Table of Contents

[vi]

Top five new features in 2015 Update 1 for developers	 190
Update message improvement	 191
Executing multiple operations in a single transaction	 191
Alternate keys and upsert	 192

Optimistic concurrency	 194
Tracing	 194

Integrating CRM with other systems	 196
On demand	 196
Batch processing	 197

Summary	 198
Chapter 6: Extending Microsoft Dynamics CRM 2015	 199

Introduction to plug-ins	 200
Synchronous versus a synchronous plug-ins	 200
Understanding plug-in event execution pipelines	 201

Stage 10: Pre-validation	 201
Stage 20: Pre-operation	 202
Stage 30: Main-operation	 202
Stage 40: Post-operation	 202
Plug-in events	 202

Writing your first sample plug-in	 203
Understanding plug-in registration	 204

Plug-in mode	 205
Assembly storage	 206

Database	 206
Disk	 206
GAC	 206

Registering plug-in steps	 207
Message	 207
Primary entity	 207
Secondary entity	 208
Filtering attribute	 208
Run in user's context	 208
Execution order	 209
Event	 209
Execution Mode	 209
Deployment	 209
Delete AsyncOperation if StatusCode = Successful	 209
Secured/Unsecured Configuration	 209

Understanding IPluginExecutionContext	 211
Getting organization service	 212

Getting input and output arguments	 213
Understanding shared variables	 214
Understanding plug-in images	 215

Table of Contents

[vii]

Applying validation using plug-ins	 216
Passing parameters to plug-ins	 218
Troubleshooting plug-ins	 219

Debugging plug-ins	 221
Working with custom workflows	 222

Using parameters in custom workflows	 222
Adding custom workflows in library management systems	 223
Using custom workflows	 228

Understanding actions	 229
Designing actions	 230

Summary	 234
Chapter 7: Creating a Project Tracking Application	 235

Project tracking application design	 236
Customizing CRM for the project tracking application	 237

Adding existing entities to the solution	 238
Customizing the account entity	 238
Setting up the project entity	 240
Setting up a user story entity	 240
Setting up a project tasks entity	 242

Using filtered lookups	 243
Setting up a timesheet entity	 244

Using calculated fields	 245
Setting up issue entity	 247

Using rollup fields for aggregation	 248
Completing the project entity design	 254

Understanding activity feeds	 256
Utilizing activity feeds	 258

Setting the auto post rule	 259
Getting updates	 261

Setting up teams	 262
Sharing records with a team	 264

Preparing data visualization	 266
Creating dashboard	 268

Summary	 270
Chapter 8: Introduction to Mobile Client and Microsoft
Dynamics Marketing	 271

Introduction to Microsoft Dynamics CRM mobility	 272
Accessing CRM using mobiles	 273
Accessing CRM on tablets	 277
Entities available over mobiles	 278

Table of Contents

[viii]

Customizing mobile clients	 278
New enhancements for MOCA	 280

Offline drafts	 280
Multiple dashboards	 281

Other mobile clients	 282
Resco Mobile CRM	 282
CWR Mobile CRM for Microsoft Dynamics CRM	 283

Introduction to MDM	 284
Projects	 285
Marketing execution	 285
Assets and media	 286
Budgeting	 287
Performance	 287

Setting up the Microsoft Dynamics Marketing trial	 288
Integration with CRM	 289
Summary	 290

Appendix A: Data Model for Client Entities	 291
Data model for contact entities	 294
Data model for proposal entities	 296
Data model for training request entities	 299

Appendix B: Data Model for Account Entities	 303
Data model for project entity	 306
Data model for project tasks	 308
Data model for issue entity	 309
Data model for timesheet entity	 310
Data model for user story entity	 311

Index	 313

[ix]

Preface
Microsoft Dynamics CRM 2015 released many new features that makes it a true
xRM Framework to develop custom applications. This book will help you to learn
all the new features of Microsoft Dynamics CRM 2015 and to use them to develop
real-world business applications. You will learn all the technical aspects of Microsoft
Dynamics CRM 2015 that are related to customization, extension, and integration
using sample applications.

What this book covers
Chapter 1, Getting Started with Microsoft Dynamics CRM 2015, provides the
basic details of Microsoft Dynamics CRM 2015 such as software and hardware
requirements, different deployment models, and available clients. This chapter
also provides an overview of the new features introduced in CRM 2015.

Chapter 2, Customizing Microsoft Dynamics CRM 2015, will help you to learn
customization concepts and different out-of-the-box tools to customize CRM 2015.
You will learn how to create a sample application for an IT training company.

Chapter 3, Client-side Logic with Microsoft Dynamics CRM 2015, gives the details
of the CRM 2015 client object model. You will learn about web resources using
client-side scripting, and you will access CRM web services using client-side code
and business rules.

Chapter 4, Working with Processes, explains the different type of processes with their
usages. This chapter will explain how to use these processes to automate different
business requirements. You will learn to develop a library management system
using processes.

Preface

[x]

Chapter 5, Working with CRM SDK, explains the Microsoft Dynamics CRM
extendibility architecture and the CRM SDK components. You will learn to use CRM
web services methods using the early bound and late bound programming models.

Chapter 6, Extending Microsoft Dynamics CRM 2015 will help you to learn plug-in
development in CRM 2015 and to understand how they are executed via event
execution pipelines. You will learn how to write and deploy plug-ins using
different plug-in components.

Chapter 7, Creating a Project Tracking Application, demonstrate the xRM capability of
CRM 2015. You will learn to set up another sample application to track and maintain
a project life cycle using the out-of-the-box capabilities of CRM 2015.

Chapter 8, Introduction to Mobile Client and Microsoft Dynamics Marketing, explains the
different CRM 2015 mobile clients and their features. You will also learn to set up
the Microsoft Dynamics Marketing add-on and use it.

Appendix A, Data Model for Client Entities, provides fields that we are using in our
client entity form.

Appendix B, Data Model for Account Entities, provides fields that we are using on
account entity form.

What you need for this book
You will need the following:

•	 Microsoft Dynamics CRM 2015 on premise or Online environment
•	 XrmToolBox Solution from www.xrmtoolbox.com
•	 Microsoft Windows Identity Model
•	 .Net 4.5.5
•	 Visual Studio 2012 or later and the .Net 4.5.2 developers pack
•	 Microsoft Dynamics CRM SDK for 2015

Who this book is for
This book targets skilled developers who want to build business-solution software
and are new to application development in Microsoft Dynamics CRM.

www.xrmtoolbox.com

Preface

[xi]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Microsoft Dynamics CRM 2015 application navigation is controlled by SiteMap.xml."

A block of code is set as follows:

if (typeof(HIMBAP) == "undefined") {
 HIMBAP = {
 __namespace: true
 };
}

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "In case
of CRM online, we can check the consumption of the resources by navigating to
Settings | Administration | Resources In User."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[xii]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from http://www.packtpub.com/
sites/default/files/downloads/4158EN_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/sites/default/files/downloads/4158EN_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/4158EN_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xiii]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Getting Started with Microsoft
Dynamics CRM 2015

This chapter will help you understand the basics of Microsoft Dynamics CRM 2015.
We will be discussing an overview of the new features released in CRM 2015 and
also we will be discussing the upcoming features of CRM 2015 Update 1. In a later
chapter, we will work on these features in detail and will see how we can use them
for implementing different requirements. We will discuss the following topics in this
chapter:

•	 Introduction to Microsoft Dynamics CRM 2015
•	 The deployment options available
•	 Online versus on-premise
•	 The available clients
•	 The software and hardware requirements
•	 The upgrade options
•	 The license model in Microsoft Dynamics CRM 2015
•	 The new features in Microsoft Dynamics CRM 2015

Based on the Microsoft Dynamics CRM road map presented in Microsoft Dynamics
Convergence 2014, Microsoft announced general availability of Microsoft Dynamics
CRM 2015 code name "Vega" on November 30, 2014. This is a major release for
Microsoft Dynamics CRM after Microsoft Dynamics CRM 2013 release. Microsoft
Dynamics CRM 2015 introduced many new exciting features for every type of CRM
users such as Administrators, Functional and Technical Consultants, and Developers.
Microsoft Dynamics CRM 2015 also enhanced some of the features that were released
in Microsoft Dynamics CRM 2013. After the CRM 2015 release, another release that is
lined up is CRM 2015 Update 1, which will introduce another set of exciting features.
We will be discussing more on these features in a later topic.

Getting Started with Microsoft Dynamics CRM 2015

[2]

Similar to the earlier version, this time, the Microsoft CRM development team did
not redesign the Microsoft Dynamics CRM interface. All the UI and navigation is
the same as that of Microsoft Dynamics CRM 2013, except the new navigation group
added with the advance find button and global search box on the top navigation bar.
The new navigation group has also added for accessing security features:

Microsoft Dynamics CRM 2015 mainly added features to Sales with the Dynamics
Marketing and Social Listening components. Microsoft Dynamics CRM 2015
also supports accessing its records using voice commands. Cortana, an intelligent
personal assistant, which is a part of Windows Phone 8.1, can be used for Microsoft
Dynamics CRM 2015. So, the customers who use Windows Phone 8.1 can use voice
commands to create activity records, such as appointments, tasks, phone, search and
navigate to entity records.

This app can be downloaded from http://windows.microsoft.com/
en-us/windows-8/cortana.

http://windows.microsoft.com/en-us/windows-8/cortana
http://windows.microsoft.com/en-us/windows-8/cortana

Chapter 1

[3]

Deployment options
The different Microsoft Dynamics CRM 2015 deployment options can be considered
based on the resources available. The following are the different options available for
Microsoft Dynamics CRM 2015:

•	 On-premise: Microsoft Dynamics CRM 2015 on-premise is installed on our
own server, so we need IT and infrastructure support to install and set up
CRM 2015 and the related software applications. If we have the infrastructure
that is compatible with CRM 2015, we can reuse it; otherwise, we need to set
up a new server or virtual servers based on our requirement.

Refer to the software and hardware requirement section for details
on hardware and software requirements for CRM 2015.

The Microsoft Dynamics CRM 2015 on-premise server is available with two
editions as follows:

°° Workgroup edition: This is limited to five users and one
organization.

°° Server edition: This involves unlimited users and multiple
organizations.

More information on CRM 2015 servers can be found at https://
technet.microsoft.com/en-us/library/hh699677.aspx.

•	 Online: Microsoft Dynamics CRM 2015 online, also known as cloud, is
hosted on Microsoft's data centers. All the required infrastructure is handled
by Microsoft, so we don't require any servers. Microsoft also provides
access to nonproduction instances, which can be used for development
or testing purposes based on the number of users in our production
organization. Currently, we need to have 25 or more professional USLs
to get nonproduction instances.

•	 Hosted: Hosted deployment is a mix of on-premise and online deployment.
Here, a CRM application is hosted on a third-party vendor instead of
Microsoft and the services are dependent on the service agreement with
the CRM service provider.

https://technet.microsoft.com/en-us/library/hh699677.aspx
https://technet.microsoft.com/en-us/library/hh699677.aspx

Getting Started with Microsoft Dynamics CRM 2015

[4]

Microsoft Dynamics CRM on-premise versus
online
This is a very common question that comes during the initial planning of Microsoft
Dynamics CRM implementation on the customer side. Which option should be
selected by us depends on various factors, such as cost, data storage, database
maintenance, scalability, and company size. For example, if we are a small
company with a limited number of resources, it would be easy to set up our CRM
online organization compared to on-premise, where first we need a place for
the infrastructure. In the upcoming sections we will discuss the different points
comparing on-premise and online versions.

Database access
Microsoft Dynamics CRM 2015 on-premise provides full control over the database.
Since the application is installed on our own servers, we are always free to access
the CRM database for taking backups, restoring in case of failure, profiling, SSRS
reporting, accessing records, and so on. We can increase database stores at any time,
if required.

A direct update to the CRM table is not supported by Microsoft Dynamics
CRM 2015.

However, in the case of Microsoft Dynamics CRM 2015 online, we don't get
flexibility. We cannot access our CRM database, so backup and any type of database
troubleshooting is not possible directly; we need to always work with Microsoft
support for these activities. Our database might be also hosted outside of our
country because there are limited datacentres available. You can check CRM online
datacenter lists from https://www.microsoft.com/online/legal/v2/en-us/MOS_
PTC_Geo_Boundaries.htm. Microsoft Dynamics CRM 2015 online provides a default
size of 5 GB, which is increased by 2.5 GB for every professional user's subscription
at no extra cost until 50 GB. If we need more space after that, we need to pay for
every GB.

In the case of CRM online, we can check the consumption of the resources
by navigating to Settings | Administration | Resources In User.

https://www.microsoft.com/online/legal/v2/en-us/MOS_PTC_Geo_Boundaries.htm
https://www.microsoft.com/online/legal/v2/en-us/MOS_PTC_Geo_Boundaries.htm

Chapter 1

[5]

New updates
In case of Microsoft Dynamics CRM on-premise deployment, we have full control
over installing new updates, patches, and upgrades. So, if you are using an older
version and want to continue using the same version, you have the choice. However,
you will not be able to use the new features that are introduced with the latest version.
In case of online, we don't need to take care of installing the new updates. All the new
updates, patches installation and upgrades are done by Microsoft. In case of major
updates, we can schedule a specific date when we want to update our organization.
CRM admins first need to approve the update before the update can occur, whereas
all the rollups or hotfixes are applied without any schedule information.

It is recommend to keep your organization updated with
the latest updates.

Integration
Both online and on-premise deployments provide great flexibility to integrate with
other applications. We can utilize Microsoft Dynamics CRM web services/SDK for
integration. We have the option to run our server side code known as plug-in full
trust and partial trust (also known as sandbox) in on-premise, but online deployment
only supports partial trust. In case of online deployment, we can only use HTTP and
HTTPS protocol to access web resources, whereas in case of on-premise, we don't
have any restrictions.

Availability
In any business application, availability is a very critical factor. Microsoft Dynamics
CRM on-premise availability is totally dependent on our network resources, whereas
Microsoft provides a 99.9 percent uptime service-level agreement, so we don't need
to bother about our network downtime.

Security
Microsoft provides a very secure and reliable environment for online deployment.
There are security policies applied through Microsoft security programme to keep
customer's data highly secure and threat free. To maintain the physical security of
the data, multiple security checks are applied at different levels. You can refer to
further details about how CRM online maintains security at https://technet.
microsoft.com/en-us/library/jj134081.aspx. However, in the case of CRM
on-premise, we are responsible for the implementation of the security measures for
unauthorized data access and privacy.

https://technet.microsoft.com/en-us/library/jj134081.aspx
https://technet.microsoft.com/en-us/library/jj134081.aspx

Getting Started with Microsoft Dynamics CRM 2015

[6]

CRM add-ons
Microsoft Dynamics CRM online deployment comes with some free add-ons such as
free Bing Maps key, inside view, and social listening. But we need to pay for these
add-ons in the case of on-premise deployment.

Social listening will be replaced with social engagement, which will
provide new and enhanced social media tools.

Extension and customization
Both Microsoft Dynamics CRM on-premise and online provide great flexibility for
customizing and extending its capabilities. We can utilize the solutions for deploying
changes from one environment to another easily. Microsoft Dynamics CRM provides
many out-of-the-box business entities, but if required we can create custom entities
to fulfil our specific business requirement. We can create an unlimited number of
entities in case of on-premise, but Microsoft Dynamics CRM online only supports
300 custom entities per organization. We can create up to 200 workflows/dialogs in
case of online deployment, but there is no limitation in on-premise.

Microsoft Dynamics CRM 2015 clients
The Microsoft Dynamics CRM 2015 application can be accessed using different types
of clients with different versions. These clients provide a unique set of features with
the common features available to all clients. We will now take look at the clients
available for CRM 2015.

Web client
The Microsoft Dynamics CRM 2015 web client provides access to CRM applications
through browsers. The following are the web clients that are supported by Microsoft
Dynamics CRM 2015:

•	 Internet explorer 10 and 11
•	 Mozilla Firefox (latest publicly released version)
•	 Google Chrome (latest publicly released version)
•	 Apple Safari (latest publicly released version)

Chapter 1

[7]

Outlook client
One of the most important reasons for easy adaptability of Microsoft Dynamics CRM
is the out-of-the-box integration with Microsoft Office outlook. Microsoft Dynamics
CRM 2015 provides flexibility to access CRM 2015 applications using the office
outlook client. There are two types of clients available for outlook:

•	 Online client
•	 Offline client

For CRM 2015,the following outlook versions are supported:

•	 Microsoft office 2010
•	 Microsoft office 2013

Mobile client
We can also access Microsoft Dynamics CRM 2015 using mobile and tablet devices.
There are different clients available for different mobile devices:

•	 Windows mobile client (MOCA)
•	 iPhone client
•	 Android client
•	 Tablet client

Some of the apps for mobile clients are provided by Microsoft and some of the apps
are provided by other vendors. We will be discussing mobile client in the last chapter
of this book.

Software and hardware requirements
Microsoft Dynamics CRM 2015 does not support many software applications such
as Windows Server 2008 and 2008 R2 server with all the versions of Windows
Small Business Servers. It also does not support Internet Explorer 8 and 9. Just like
its earlier version, Microsoft Dynamics CRM 2015 also supports 64-bit machines.
The following table provides minimum software and hardware requirements for
Microsoft Dynamics CRM 2015:

Getting Started with Microsoft Dynamics CRM 2015

[8]

The hardware requirements are as follows:

Component Minimum Recommended
Processor This needs a x64 architecture

or compatible dual-core 1.5
GHz processor

A quad-core x64 architecture
2 GHz CPU or higher

Memory A 2 GB RAM An 8 GB RAM or more
Hard disk 10 GM space 40 GM or more

The software requirements are articulated in the following table:

Components Version and Edition
Windows Server Windows Server 2012 64 bit (Standard, Developer)

Windows Server 2012 R2 64 bit (Standard,
Datacenter)

SQL Server 2008 64-bit SQL Server 2012 64-bit
Developer
Standard
Enterprise
Datacenter
Business Intelligence

Microsoft SQL Server
Reporting Services

This is based on supported Microsoft SQL
Server editions

Internet Information Services 8.0,8.5

You can refer to https://technet.microsoft.com/en-us/
library/hh699671.aspx to get complete details on hardware
and software requirements.

Upgrade options
Microsoft Dynamics CRM 2015 provides different upgrade options based on the
deployment used. In the case of on-premise, the following are the options available:

•	 In place
•	 Migration upgrade

https://technet.microsoft.com/en-us/library/hh699671.aspx
https://technet.microsoft.com/en-us/library/hh699671.aspx

Chapter 1

[9]

In place
If we are using Microsoft Dynamics CRM 2015 compatible servers, we can go
with the in place upgrade option, but this option is not recommended for upgrade
because it involves a great risk of downtime in case of any issues occurring during
upgrade. It can also corrupt the complete database, so it is always recommended that
you create a VM from the existing CRM deployment and do a trial upgrade there
instead of directly upgrading the real CRM servers. Also, we should always keep a
complete copy of the CRM database before planning an upgrade.

Migration upgrade
This option requires a different server setup, but still this is the recommended
method of doing an upgrade because it involves less downtime. We can use two
methods of migration upgrade. One option is to use different servers for the CRM
application and CRM database. The other option is to use different servers for
CRM application and use the existing CRM database server that is compatible
with Microsoft Dynamics CRM 2015 SQL server requirements.

We can select the upgrade option based on the infrastructure, but the only possible
upgrade path to Microsoft Dynamics CRM 2015 is from Microsoft Dynamics CRM
2013 Service Pack 1 (SP1). This means if we are using Microsoft Dynamics CRM
version earlier then 2013, we need to first upgrade to Microsoft Dynamics CRM 2013:

So, let's say if you are using Microsoft Dynamics CRM 4.0 and want to upgrade to
Microsoft Dynamics CRM 2015, you need to follow sequential setups explained in
the preceding screenshot to upgrade. It is recommended to clean the organization's
data before upgrading to CRM 2015. Some of the upcoming functionality depreciated
from CRM 2013 version, so if we are upgrading to CRM 2015 from CRM 2011, we
need to clean the organization's data based on these points.

Getting Started with Microsoft Dynamics CRM 2015

[10]

Cleaning all 2007 endpoints
Support for Microsoft Dynamics CRM 4.0 web service endpoints (known as 2007
endpoints) is not supported by CRM 2015, so if you are using 2007 endpoints in your
code, you need to update your code to use OData endpoints or SOAP using 2011
WCF endpoints before upgrade.

You can use the legacy tool to detect 2007 endpoints in your organization.
You can download the legacy tool from http://go.microsoft.com/
fwlink/p/?LinkID=309565.

Support for the Microsoft Dynamics CRM 4.0
object model
Microsoft Dynamics CRM 2015 does not support the CRM 4.0 object model. So, if
there is any client-side code written using the CRM 4.0 object model that needs to be
changed to a similar CRM 2015 object model, we can use the CRM 2013 custom code
validate tool to detect scripting, which is written using CRM 4.0 standards.

You can download the Microsoft Dynamics CRM 2013 custom code
validation tool from http://www.microsoft.com/en-in/download/
details.aspx?id=30151.

Licensing model for Microsoft Dynamics
CRM 2015
Microsoft Dynamics CRM 2015 have a flexible licensing model for both on-premise
and online customers, which enables customers to mix and match new licenses based
on how they use the CRM 2015 functionality. CRM 2015 on-premise and online
deployment offers the following types of licenses:

•	 Enterprise (online only)
•	 Basic
•	 Professional
•	 Essential

http://go.microsoft.com/fwlink/p/?LinkID=309565
http://go.microsoft.com/fwlink/p/?LinkID=309565
http://www.microsoft.com/en-in/download/details.aspx?id=30151
http://www.microsoft.com/en-in/download/details.aspx?id=30151

Chapter 1

[11]

The following table provides details about these license-type features:

License type Description
Enterprise This license provides full access to Sales, Marketing and Service

features, Microsoft Dynamics Marketing, and Parature.
Basic This license is essential and provides access to system entities, such

as accounts, contact, case, lead, reporting, and personal dashboard.
Professional This license provides full access to Microsoft Dynamics CRM 2013

functionality and any custom application.
Essential This license includes access to the Microsoft Dynamics CRM 2013

system, activities, custom entities, and any custom application.
This license also provides access to SDK.

Access to Microsoft Dynamics CRM 2015 using different clients is available in all
license types. Now, in CRM 2015, there is no need to buy external user licenses for
external users (the users who are not employees or affiliates) unless they are not
using Microsoft Dynamics CRM 2015 clients to access applications, an external user
license is covered under server license for on-premise. So, if we are required to
develop any portal application to expose CRM data to our customers, it can be done
without an external user license.

You can download the licensing guide from PartnerSource at
https://www.microsoft.com/en-us/download/details.
aspx?id=45904.

The new features in Microsoft Dynamics
CRM 2015
Microsoft Dynamics CRM 2015 introduced many new features with some new
enhancements to the existing features, such as business rules, business process flow,
dashboard capability in the tablet client, and global search for web and outlook clients.

Global search
Although this feature was originally introduced in Microsoft Dynamics CRM 2013
for CRM for the tablet client, Microsoft Dynamics CRM 2015 made it available to
the web and outlook clients. Global search is based on the old method of searching
CRM records using the quick find view, where we can add find columns in the quick
find view on the basis of the columns we want to search the entity record using
global search.

https://www.microsoft.com/en-us/download/details.aspx?id=45904
https://www.microsoft.com/en-us/download/details.aspx?id=45904

Getting Started with Microsoft Dynamics CRM 2015

[12]

We can use global search using the search textbox under the top navigation bar in the
web client and using the Search option under the Home tab in CRM for the outlook
client. At present, the maximum number of entities allowed in search is 10. We can
configure it by navigating to Settings | Administration | System Settings | Set up
Quick Find:

We can also configure the quick find record limit using Enable Quick Find record
limits under Settings | Administration | System Settings | Set up Quick Find.
By default, Yes is selected; this means when more than 10,000 records are found
during search, it will display a message box to make the search more selective.
Once we have the result, we can also filter it based on a specific entity using the
Filter With drop-down menu:

Chapter 1

[13]

Once the result is listed, you can open the entity record by simply selecting the
record or can create the new entity record using the plus sign.

Business rules enhancement
This feature was also released in Microsoft Dynamics CRM 2013 initially, which
helps nontechnical CRM users to implement no code business logic. While working
on different business requirements, we need to implement many business-specific
validations. But still, there are some generic data validations, such as hide/show
form fields, making fields based on some business logic, and setting the field's
default values. The business rules help us to implement these types of validation
from CRM UI. The business rules can be added/modified by navigating to Settings
| Solution | Components | Entities | Entity | Business Rules. We can also create/
modify the business rules from the entity form editor using the Business Rules
button under the Home tab in the entity form:

Getting Started with Microsoft Dynamics CRM 2015

[14]

The business rule in Microsoft Dynamics CRM 2015 now provides the following
features:

•	 Support for both server and client-side logic
•	 Both AND and OR logical operators are available now
•	 If and else conditionals for branching
•	 It supports the following actions:

°° Show an error message
°° Set the field value
°° Set the business required
°° Set visibility
°° Set the default value
°° Lock or unload the field:

Once the business rule is defined, we need to set up its scope. A new option,
Entity, is added under the scope drop down to make business logic available on
the server side. If the entity option is selected, the business logic will fire on the
server during the operation on the records from all the clients including any
custom integration code.

Chapter 1

[15]

Property exception handling should be implemented in the server side
code, if Show error message is used in the business rules actions.

Business process flow
Every business has some predefined business process workflows that they follow
in day-to-day business. Let's take a very common scenario of the approval process.
Let's assume you are a technical consultant and working in a multinational company.
You need to apply for a one week vacation. As soon as you apply for leave, it will
initiate a leave approval behind the scenes, which may contain different stages and
subapproval of your team lead, your project manager, your project delivery manager.
We can implement similar business requirements in Microsoft Dynamics CRM 2015
using the business process flow. The business process flow was introduced in CRM
2011 Polaris release initially and enhanced in Microsoft Dynamics CRM 2015. Business
process flow is basically a guided approach to complete any business process, which
may have different stages based on business requirements. Microsoft Dynamics CRM
2015 provides a rich editor to design for designing business process flow. You can
create a business process flow by navigating to Settings | Process | New and selecting
Business Process Flow under the Category drop-down menu. We can have up to 30
stages and 30 steps per business process flow:

Getting Started with Microsoft Dynamics CRM 2015

[16]

We can include multiple entities in the same business process flow and take
the process flow from one entity to another entity. We can include up to five
maximum entities in the business process flow. The following is the screenshot
of the out-of-the-box Lead to Opportunity Sales Process business process flow:

Microsoft Dynamics CRM 2015 added support for branching logic, which allows us
to switching the process stage using if conditions, the logical AND and OR operator
support, which allows us to group multiple conditions and support for interacting
with the business process flow using client-side scripting for developers.

You can access https://msdn.microsoft.com/en-us/library/
dn817874.aspx to get details about the scripting method available for
the business process flow.

Hierarchy visualization
Another new feature added in Microsoft Dynamics CRM 2015 is hierarchy
visualization of your data. In Microsoft Dynamics CRM, we can associate entities
using entity relationships. Hierarchical visualization provides logical visualization
of the 1:N relationship or self-relationship between entities. At present, we can
have only one hierarchical relationship per entity. While setting up a relationship,
we can select whether we want to use this relationship as hierarchical using the
Hierarchical dropdown.

Once the relationship is set up, we can navigate to Hierarchy Settings | New under
the entity node to create the hierarchy setting. As soon as the hierarchy setting is
created per entity, the new button will not be available anymore because we can set
up only one hierarchy setting per entity:

https://msdn.microsoft.com/en-us/library/dn817874.aspx
https://msdn.microsoft.com/en-us/library/dn817874.aspx

Chapter 1

[17]

Once the hierarchy setting is set up and the record is associated, we can see a logical
relationship visualization using the hierarchy icon on the entity grid view or entity
form. The following screen represents the hierarchy visualization for the parent
account. We can see that Adventure Works (Sample) is a parent account and it has
two child accounts. Data is represented in tiles, where a maximum of four fields are
allowed. The data fields are represented from a default quick view form. If it has
more than four fields, then only the first four fields are used for display:

Getting Started with Microsoft Dynamics CRM 2015

[18]

Two new query operators are also added for querying hierarchical data, which are
explained as follows:

•	 Under: This is used to get the list of entities, which are child entities of a
specific entity, for example, list out all subaccounts under a particular account

•	 Note Under: This is used for reverse of the under operator

Hierarchical security
Microsoft Dynamics CRM provides a robust security model, but sometimes
developers still need to write custom extensions to the security model to fulfil
complex business requirements. Microsoft Dynamics CRM 2015 introduced a
new hierarchical security feature that works with the existing security model and
reduces the development and maintenance costs for implementing complex security
requirements. There are two security models available in hierarchical security
in Microsoft Dynamics CRM 2015, which are as follows:

•	 Manager
•	 Position

Manager hierarchy
The manager hierarchical security model is based on the reporting hierarchy that can
be implemented using the manager lookup in the system user entity:

This security model facilitates managers to access the data that their reports have
access to. Let's take an example of two business users Mahender Pal and Vikram
Singh. Both are in the same business unit and Vikram Singh is a sales person who has
user level create and read access on the account entity. Now, let's say to implement
the reporting hierarchy, we need to assign Vikram as the manager of Mahender.

Chapter 1

[19]

However, since Vikram has only user level read access on the account entity, he can't
access entity records owned by Mahender's unless it is shared or assigned to him or
a team where he is a member. So, if he tries to access Active Accounts, it will only
show records owned by him. Now, let's enable the hierarchy security by navigating
to Settings | Security and then click on Save and Close:

As soon as the manager hierarchical security model is applied, Vikram will be able to
access the record owned by his report:

Getting Started with Microsoft Dynamics CRM 2015

[20]

Now, Vikram will have Read, Write, Update, Append, AppendTo access to
Mahender's data, who is direct report to Vikram, and read only access to Dev Test's
data, who is non direct report to Vikram. While configuring the hierarchy security
settings, we can define the depth property, which decides up to what level we can
access the records.

Position
The position hierarchy security model is based on the new position hierarchy that
is added in Microsoft Dynamics CRM 2015. A CRM admin can define different job
positions based on the business requirement and can assign the user from a different
business unit to a particular position. We can add multiple users to any position,
but any user can be associated with only one position. A higher position user can
access the data of a lower position user similar to manager hierarchy security model
irrespective of their business units. So, the higher positions will have Read, Write,
Update, Append, AppendTo access to the lower positions' data and nondirect
higher positions will have read-only access to the lower positions' data. We can
define positions by navigating to Settings | Security | Position:

Once the positions are defined, we can configure the position hierarchy security
module by selecting Custom Position Hierarchy as shown in the preceding screenshot.

Chapter 1

[21]

New fields for calculation
While working on business requirements, most of the time we need to calculate
values using different attributes and need to store them in other fields. For these
type of requirements, CRM admins need to depend on CRM developers to write
code. However, with the release of Microsoft Dynamics CRM 2015, CRM admins
can utilize calculated and rollup fields for calculation. Next, we will introduce two
new types of fields.

Calculated fields
Calculated fields are very useful to set the calculated value to any field. Calculated
fields can be used with the following data types:

•	 Single Line of Text
•	 Option Set
•	 Two Options
•	 Whole Number
•	 Decimal Number
•	 Currency
•	 Date and Time

While we create a new field, we can select Field Type as Calculated to set up a
calculated field, as shown in the following screenshot:

To set up a calculated formula first, we need to save the field definition and then
we can click on the Edit button to set up the formula. Calculated provides an editor
similar to the business rules. Let's take a scenario where we are a service-based
company and allow our customers to set trail for thirty days. So, we can create
two fields: trail start and trail end.

Getting Started with Microsoft Dynamics CRM 2015

[22]

Now, we want to implement the logic when the trial date is saved, trial end data
should be calculated automatically with an addition of 30 days. We can easily
implement this using the calculated field, so we can set the trail end date as the
calculated field and can use the formula as shown in the following screenshot
to calculate the value of the trail end date field:

The calculated fields are calculated in a synchronous manner. So, as soon as we
create our entity record, if the trail start date is there, the trail end date will be
calculated automatically. The calculated fields are always read only:

We can refer to the calculated fields in charts and view, but at present we can only
use up to 10 calculated attributes in charts and views. The calculated fields are also
not available offline at present.

Rollup field
This is another type of calculated field added in Microsoft Dynamics CRM 2015,
which is used for record-level aggregation from related entities record. Rollup
fields are calculated using asynchronous system jobs after a 12-hour interval. If the
required system administrator can configure it to run during a different interval,
we can use the rollup field with the following data types:

•	 Whole Number
•	 Decimal Number
•	 Currency
•	 Date and Time

Chapter 1

[23]

Rollup fields can be created similar to the calculated fields. We just need to select
Rollup under the Field Type dropdown as shown in the following screenshot:

Microsoft Dynamics CRM 2015 automatically adds two more fields for every rollup
field that is created:

•	 <Field SchemaName>_Date: This is a date time field, which stores the
date/time information when the rollup field was last calculated

•	 <Field SchemaName>_State: This is the integer field that stores the state
of the rollup field

Rollup fields are also available as read only in entity form. Once the rollup field is
created, we can click on the Edit button to set up the formula for the rollup field. The
rollup field can be used in different scenarios, for example, let's say we want to count
the number of contacts for a particular account. We can simply create a rollup field
and setup the formula as shown in the following screenshot:

Getting Started with Microsoft Dynamics CRM 2015

[24]

We can have 100 rollup fields per Microsoft Dynamics CRM 2015 organization
and the entity can have up to 10 rollup fields, which can be used in charts, views,
and reports.

New capability for mobile client
With the release of CRM 2015, new offline capabilities are added in CRM for the
mobile client. This feature allows us to create the record in draft mode, which is not
saved to the server yet. When the device is connected to server, the record will be
synched to the server. The new dashboard support is also added to tablets. We will
be discussing more on the mobile client in a later chapter.

Product catalog enhancement
Microsoft Dynamics CRM also provides a product catalog to store the product or
service information. This product catalog provides different out-of-the-box features
such as configuring products, defining discount list, setting unit groups, and
maintaining a price list based on the different scenarios.

With CRM 2015, many new product catalog enhancement features have been
released such as:

•	 Support for Product Families
•	 Define Product Properties at Family level
•	 Define Product Bundles
•	 Price List based on Territory
•	 New System Setting for Product
•	 Custom Price Calculation
•	 Support for Cross Sell and Up Sell

With CRM 2015, we can use the product family for grouping. The product family
allows us to define product properties as well, which is inherited by products when
added to the product family. The product family is useful especially when we want
to combine similar category products in one group:

Chapter 1

[25]

In the preceding screenshot, we can see an example of the product family, where we
have different properties such as base language and max users. Another enhancement
in the product catalog is the product bundle which is similar to product kits. The
bundle provides more flexibility than kits used in the earlier version. We can configure
if the product is required or not while selling the bundle.

Microsoft Dynamics CRM 2015 added another feature to set up product suggestions
that can be used for cross sell and up sell. While setting the product, we can
add related products and define their Sales Relationship Type as shown in
the following screenshot:

Getting Started with Microsoft Dynamics CRM 2015

[26]

When the product is added in opportunity or quote or order, all the related products
available under the suggestion box can be displayed by clicking on the Suggestion
link. Microsoft Dynamics CRM 2015 also added new settings for the product catalog.
For example, we can configure to set the default pricelist based on the in-built rule,
which will set the pricelist based on the default price list defined for territories:

Microsoft Dynamics CRM 2015 also added a new method to define the custom
pricing. Now CRM developers can write SDK code to use custom pricing, when
the default system pricing is overridden.

Field-level security enhancement
Sometimes we may want to hide some specific field values from a specific CRM
user or group of users. Field-level security helps us to implement this requirement.
This feature was initially released with Microsoft Dynamics CRM 2011, but it was
applicable to custom fields only. With the release of Microsoft Dynamics CRM 2015,
we can now use field-level security with the system field as well. We manage field-
level security by creating field-level security profile and adding user or team to that
profile. We will find a default System Administrator profile, which has access to all
the secured fields:

Chapter 1

[27]

By default, all users with the system administrator role are added to this profile
automatically. This profile can't be modified or deleted.

Creating custom help
Microsoft Dynamics CRM 2015 added another true xRM feature, which allows the
CRM admin to configure custom help URL in CRM UI. We can navigate to Settings
| Administration | System Settings | General and configure custom help URLs:

Once this is configured, when a user clicks on the Help button from any entity record
or grid, a new tab opens that displays the custom help dialog. We can also configure
entity-level custom help URL settings by navigating to Settings | Customizations |
Customize the System:

Getting Started with Microsoft Dynamics CRM 2015

[28]

This is where we can select our entity where we want to use our Use custom
Help dialog. First, we need to enable the Use custom Help option as shown in the
preceding screenshot. After this, when the CRM user clicks on the Help button for
that entity, your custom help will be displayed.

Disabling the welcome screen
Microsoft Dynamics CRM provides an overview wizard with the welcome screen
for the user when they start Microsoft Dynamics CRM the first time. Although the
welcome screen contains an option to select Don't show me this again, it will still
appear if you start CRM from another machine or use a new browser window:

Microsoft Dynamics CRM 2015 introduced a new setting, which can be used to disable
this screen for complete organization. We can navigate to Settings | Administration |
System settings | General | Set whether users see navigation tour.

Nested quick create forms
The quick create form feature was also released with CRM 2013, which allows us to
create entity records quickly by entering key fields, which we can customize. We can
use a quick create form using the Create button on the top navigation bar and New
button from the lookup and subgrids.

Chapter 1

[29]

Quick create forms support form scripts and business rules.

By default, quick create forms are only enabled for some of the entities, such as
account, case, contact, competitor, lead, and opportunity. We can enable the quick
create feature by navigating to Settings | Customizations | Customize the System.
This action will open the default solution and then we can select our entity definition
under Components | Entities and enabling the option Allow quick create under the
Data Services section. Once this option is available, our entity will be visible under
the quick create entity lists:

Microsoft Dynamics CRM 2015 enhanced the quick create feature by allowing nested
quick create options. Let's take an example. If we are creating the account record
and want to create a primary contact record on the fly, we can select the New option
under the lookup window and it will open a new quick create form for the contact
instead of opening the contact's main entity form.

New outlook configuration wizard
Microsoft Dynamics CRM 2015 introduced a new redesigned outlook configuration
wizard. This configuration process is similar to the process in the previous version,
but it is a more simplified version to CRM for outlook installation.

You can download CRM for outlook from http://www.
microsoft.com/en-us/download/details.aspx?id=45015.

http://www.microsoft.com/en-us/download/details.aspx?id=45015
http://www.microsoft.com/en-us/download/details.aspx?id=45015

Getting Started with Microsoft Dynamics CRM 2015

[30]

Service Level Agreement enhancement
Microsoft Dynamics CRM 2015 also added a new enhancement to Service Level
Agreement (SLA). In Microsoft Dynamics CRM 2015, the new option pause and
resume added SLA with timer support. This helps to track how long a case was
on-hold or awaiting a customer response.

We can configure the status of the cases when SLA will be paused. To check this
status, navigate to Settings | Administration | System Settings and configure
the settings as shown in the following screenshot:

As we configured to status On Hold and Waiting for Details, the SLA timer will be
paused during these statuses and when the status will be moved back to In Progress
or Researching, the SLA timer will again start working.

Synchronization between CRM and Outlook
or Exchange
Microsoft Dynamics CRM 2015 also added new fields for configuring the
synchronization setting. New fields for appointment attachments, additional
contact, and tasks can be configured as shown in the following screenshot:

Chapter 1

[31]

Navigate to Settings | Email Configuration | Email Configuration Settings to
configure the additional fields.

Summary
In this chapter, we learned about new Microsoft Dynamics CRM 2015 features
such as nested quick create enhanced business process flow and business rule
enhancement. We discussed different deployment options with clients that we can
use to access CRM 2015. We also discussed software and hardware requirements
for CRM 2015 with different upgrade options. Finally, we discussed the new license
model introduced in CRM 2015.

In the next chapter, we will learn the customization feature in MS CRM 2015 and
start creating a sample application for the training company.

[33]

Customizing Microsoft
Dynamics CRM 2015

This chapter is going to help you learn the customization features of Microsoft
Dynamics CRM 2015. We will discuss different customization concepts and we will
learn how we can customize Microsoft Dynamics CRM 2015 using tools available in
the CRM UI. In this chapter we will be creating a sample application for a training
company. We will discuss the following topics:

•	 Training solution scope
•	 Training solution design
•	 Understanding the customization concept
•	 Customizing Microsoft Dynamics CRM 2015
•	 Setting up a training catalog
•	 Understanding security
•	 Testing customization

Training solution scope
In this chapter, we are going to create a solution for a training company called
Diksha Trainers. Diksha Trainers specialize in Microsoft technologies. They run
different online and corporate training programs on different Microsoft technologies
such as .Net, ASP.NET, Testing Automation, Microsoft Dynamics CRM, Ax, and GP
trainings. They want to use Microsoft Dynamics CRM 2015 to manage their different
training programs and other training requirements.

Customizing Microsoft Dynamics CRM 2015

[34]

HIMBAP, a team of Dynamics CRM experts, is going to help Diksha Trainers and
will use Microsoft Dynamics CRM as a platform to build a solution for them. We will
be using Microsoft Dynamics CRM 2015 out-of-the-box features to customize and
implement training application requirements. In the initial solution they want the
following features:

•	 Capture training requests using e-mail, phone, and direct entry
•	 Should able to attach course contents to training requests
•	 Maintain a list of the corporate clients
•	 Maintain a list of the contacts from clients
•	 Maintain a list of trainers
•	 Maintain different technology training
•	 Send notification to client and trainers
•	 Complete solution for executing training requests

Training solution design
Microsoft Dynamics CRM 2015 provides a set of generic business entities, which
provides specific attributes to map business requirements. For example, CRM
contains an account entity that provides set of attributes best suited to storing
data related to company, individual, clients, vendors, advertisers, agencies and so
on. Similarly their CRM also has other out-of-the-box entities that can be reused to
store different types of data. It is always recommended to first analyze customizable
out-of-the-box entities to map our requirements, instead of creating new custom
entities. Some out-of-the-box entities are also available that can be reused but
can't be customized.

All of the required features for training solutions can be accomplished using out-of-
the-box features only, so we are going to customize out-of-the-box entities to capture
training-related information. We are going to map the following business entities
with a custom training solution requirement.

Chapter 2

[35]

Business entities are out-of-the-box entities that are available in the
Microsoft Dynamics CRM default installation without any customization.

We have mapped these entities based on the existing out-of-the-box fields and
functionality. A Lead entity is used to capture basic information about the customer
and their requirement details. We have different ways to collect this information;
for example it can be collected from a sales person directly, who is working with the
customer to win this sale. It can be also collected from the company website, most
of the time via the contact us page. Apart from this, the lead can be also created
from other communication channels such as phone calls or e-mails. Once the lead
is qualified it can be converted to an Opportunity, which is a potential sale. In an
Opportunity, we can attach a quotation for the project or service that we are going to
sell to our customer. We are using leads to capture our training requirement-related
information such as proposed timings for training, company details, number of
attendees, technology in which training is required, and other basic details. Once the
training request is qualified, we will be converting it to a proposal (opportunity) to
add training- and pricing-related information. Once training is done we can close the
proposal as Won.

Microsoft Dynamics CRM 2015 provides three status options for
Opportunity: Open, Won, and Lost.

Customizing Microsoft Dynamics CRM 2015

[36]

The Account and Contact entities in Microsoft Dynamics CRM 2015 are used to
store customer information, where Account represents a particular organization
or individual. So for example if we want to store any company details in Microsoft
Dynamics CRM 2015, we can use an account entity and it has out-of-the-box fields
to define company information. The Contact entity is used to store individual
information: who is normally associated with company and works as an intermediate
between vendor and company. We will be using the Account entity to store our client
information and Contact entity will be used to store individuals from the company
and other vendor information.

Microsoft Dynamics CRM 2015 allows us to store product or service-related
information under the Product catalog. We are going to utilize the Product
catalog to store our different training programs and pricing information.

The following diagram provides the training program process flow that we
are going to implement in our training solution.

Chapter 2

[37]

Training requests will be created from different sources to record the training
requirements of the client. While creating the training request, we will be selecting a
client from an existing lookup (if we are getting the new training requirement from
an existing client); otherwise, if it's a new client, we will record their details. We will
be also setting existing contact lookups if we are going to deal with an individual
who is already part of our database for this training opportunity.

After the training request is qualified, we will create a training proposal and will
add a training program to this proposal. We will be also adding a quotation to this
proposal and will share this with client; once they agree on the pricing, we will
execute training sessions. Once the training session is completed we will be closing
the proposal record by changing the status to Won.

Understanding the customization concept
The customization feature in any business application helps us to modify it without
writing any code. Just like earlier versions, Microsoft Dynamics CRM 2015 also
provides great flexibility to System Customizers and System Administrators to
customize CRM application capability and behavior using out-of-the-box tools. Just
like other business applications available on the market, Microsoft is also making
their CRM product more and more customizable for business users, who are
basically non-technical users.

Most of the new features introduced in Microsoft Dynamics CRM 2015 can be
customized from out-of-the-box designers available in the application and don't
require any coding skills. If you are a Microsoft Dynamics CRM developer and
have worked in it since the earlier versions, you might have noticed how Microsoft
Dynamics CRM is moving to no-code customization. For example, using business
rules a business user can define simple form field validation using an out-of-the-box
designer, business process flow can be designed using the process designer, and
global searches can be configured to search data in multiple entities.

While working in Microsoft Dynamics CRM 2015 we customize different
components to map these components with our specific business processes. The
following are the components that can be modified from the Microsoft Dynamics
CRM 2015 application:

•	 Entity metadata, business rules, and solutions
•	 Business process flow, workflow, dialogs, and actions
•	 Dashboards, reports, and charts
•	 Sitemaps and command buttons

Customizing Microsoft Dynamics CRM 2015

[38]

•	 Field-level security profiles and security roles
•	 Templates
•	 Web resources

You need to have the System Customizer or System Administrator role to
customize the Microsoft Dynamics CRM 2015 application.

We will be working on customization features in later topics, where we will learn
how we can change the Microsoft Dynamics CRM 2015 application UI, navigation,
and other components.

Customizing Microsoft Dynamics
CRM 2015
Now we have our design ready for our training solution, so we are going to
customize Microsoft Dynamics CRM 2015 components. We will be customizing
different components from those we discussed in the first topic.

Understanding application navigation
Microsoft Dynamics CRM 2015 has an easy user-friendly navigation. Microsoft
Dynamics CRM 2015 follows the single-window concept, which means you don't
need to switch your window to navigate to other parts of the application. We can
use the top navigation bar in order to switch to different areas of the application.

Microsoft Dynamics CRM 2015 application navigation is controlled by SiteMap.xml,
which defines the complete structure of application. Microsoft Dynamics CRM 2015's
top navigation bar is divided in nodes called Areas.

Chapter 2

[39]

In the earlier screenshot, Sales, Service, Marketing, Settings and Help Center
all are examples of default areas. We can also set up our own custom area or can
modify existing areas based on project requirements; a common example is to hide
unwanted areas and give existing area more business-specific names.

Areas are further divided in Groups and Sub Areas. In the following screenshot,
My Work and Customers are examples of groups and Dashboards, What's New,
Activities, Clients, and Contacts are examples of sub areas.

You can also add your own custom groups and sub areas, or modify properties or
existing groups or sub areas. You can refer to the Site Map XML from https://
msdn.microsoft.com/en-us/library/gg334430.aspx to get for more details on
Site Map structure.

The visibility of sub areas in the Site Map can be controlled using security roles and
privilege. If all the sub areas of the group will be hidden, CRM will not show the
corresponding group in navigation.

You can refer to https://msdn.microsoft.com/en-us/library/
gg309286.aspx for details on controlling sub areas using privileges.

We will be modifying Microsoft Dynamics CRM 2015 application navigation in
a later topic.

https://msdn.microsoft.com/en-us/library/gg334430.aspx
https://msdn.microsoft.com/en-us/library/gg334430.aspx
https://msdn.microsoft.com/en-us/library/gg309286.aspx
https://msdn.microsoft.com/en-us/library/gg309286.aspx

Customizing Microsoft Dynamics CRM 2015

[40]

Understanding solutions
Solution is a basic component of Microsoft Dynamics CRM 2015 and acts like a
container for all customizable components.

We can consider solution as a packager, used to take all of our customization and
other customization components from one environment to another environment.
Every Microsoft Dynamics CRM 2015 organization has one default solution that
contains all the components that can be customized. Being a base solution all the
customization done on the components is also reflected in the default solution.

Let's take an example. Say, we are working in a Microsoft Dynamics CRM 2015
implementation and we have set up three environments: development, QA and
production. It is always recommended to create our own custom solution and do all
of our customizing in our own solution, so that we can easily take only customized
components from one environment to another.

There are two types of solution: managed and unmanaged. Unmanaged solutions
allow us to create new and add existing components for customization. Once all the
customization is done we can export our solution in a managed or unmanaged state.

Chapter 2

[41]

Managed solutions can be uninstalled easily but there is no direct
way to uninstall unmanaged solutions. While uninstalling or deleting
unmanaged solution components, we need to keep in mind that data from
related components will be deleted by CRM, so make sure you back-up
your data first.

Managed solutions are normally locked solutions, which does not allow adding or
modifying any new components, which is part of the managed solution. We can
configure Managed Property for all unmanaged components (custom components
created by System Customizer or System Administrator), as in the following
screenshot.

If we have selected Can be Customized as False, System Customizer and System
Administrator won't be able to customize this component when it is exported as
a managed solution.

Managed solutions are only recommended if you are an independent
software vendor. But if you are developing solutions for yourself, it is
recommended to use unmanaged solutions while transferring solutions
from one environment to another—for example, from development
environments to QA environments.

Customizing Microsoft Dynamics CRM 2015

[42]

Currently, solutions also supports compatibility with earlier versions, so solutions
exported from Microsoft Dynamics CRM 2013 or later can be imported into later
CRM versions, but can't be imported in earlier versions of Microsoft Dynamics
CRM—for example Microsoft Dynamics CRM 2011.

You can get detailed information about solution compatibility from
https://msdn.microsoft.com/en-in/library/gg334576.aspx

Creating the publisher
Before creating a solution, let's set up publisher. Publisher basically helps us to
differentiate our customization from other vendors. It is required for creating
solutions. Every organization contains a default publisher with the name of the
organization. Solution publisher is also very critical in solution release management. A
managed solution can only be updated with the same publisher. Let's take an example.
Say we developed a solution in our development environment A and imported
it as a managed solution into our QA environment. Now, if we want to do some
more enhancements to our existing solution, we can edit our existing solution in the
development environment. Once our change is done we can export it as a managed
solution and import it to our QA environment only if the same publisher is used; we
can't update our QA solution with a different publisher. While creating solutions we
can define the following properties:

Property Required Description
Display Name Y Display label of the solution
Name Y Logical name of solution, used in programming
Description Details about publisher
Prefix Y Customization prefix that we want to use
Option Value
Prefix

Y Used for option set values; it is generated
automatically based on prefix characters

You can't use mscrm as a prefix; it is a reserved keyword.

https://msdn.microsoft.com/en-in/library/gg334576.aspx

Chapter 2

[43]

Use the following steps to create our publisher:

1.	 Navigate to Settings | Customizations | Publishers | New.

2.	 Use the following properties to create our publisher:
°° Display Name: HIMBAP
°° Name: himbap (It will be filled automatically after tabbing out from

the display name field.)
°° Prefix: him
°° Option Value Prefix: Keep it default.

3.	 Click Save and Close.

Creating our solution
It is always recommended to create our custom solution and do all the customization
there instead of customizing directly into the default solution. While creating the
solution, we need to define some required properties. The following table provides
a list of solution properties:

Property Required Description
Display Name Y User-friendly name of the solution.
Name Y Logical name of the solution that is used in code.
Publisher Y An entity that identifies the vendor of the solution. In

publisher we can set up our unique prefix property
with which we want to prefix all the custom objects
and attributes created by us.

Configuration
Page

A custom web resource to provide more detailed
information about solutions.

Version Y Version information of the solution; we can define
version up to four numbers separated by decimals and
this version will be appended to the solution name
when exported.

Customizing Microsoft Dynamics CRM 2015

[44]

Property Required Description
Description Details about solutions.
Installed On Date information when the solution is installed or

created.
Package Type State of solution: managed or unmanaged.
Market Place Market place information, if the solution is available on

Microsoft market place.

Use the following steps to create your training solution:

1.	 Navigate to Settings | Solutions | New from the top navigation bar.
2.	 Enter the following solution properties:

°° Display Name: Training Solution
°° Name: TrainingSolution (It will be filled automatically, after tabbing

out from the display name field)
°° Publisher: HIMBAP
°° Version: 1.0.0.0

3.	 Click on Save.

Adding components to our solution
Once our solution is created, we can create new or add existing components to our
solution. Let's first add an account entity to our solution so that we can customize it
to store our client information. Follow these steps to add an account entity:

1.	 Select Entities and click on the Add Existing button.

2.	 Select the Account entity under the entity list and click on the Ok button.
3.	 Select the No, do not include required components option in the Missing

Required Components dialog and click on Ok.

Chapter 2

[45]

When an existing component is added to a custom solution, CRM automatically
detects related components and will display a dialog listing all the related
components corresponding to the selected component. When a solution is imported
into the target organization, all the related components should exist in the target
system, as the account entity is available in every CRM installation, so we don't
need to include dependencies But if any of the related components are missing
from the target organization and are also not available in the source solution, the
import process will fail. So, if related components are not available in the target
organization, we should include them in our solution.

We can also include required components using the Add Required
Components button in the solution command bar.

While exporting solutions, CRM will also show the Missing Required Components
dialog if the current solution is missing any related components.

Customizing entities
We need to do a different customization to entities, such as renaming the entity,
changing entity form layouts, customizing fields or creating new fields, and changing
navigations. So let's start customizing our out-of-the-box entities one by one.

Renaming entities
First we are going to rename all of our selected business entities based on the entity
mapping diagram; for example we need to rename account to client, lead to training
request, product to training, and opportunity entity to proposal. While renaming
an entity, we need to modify the entity reference from all places such as entity
information, in the attribute list if there is an attribute referencing entity name, all
entity forms, entity views, entity-related messages (these messages are used by CRM
to display information to the user; we can check entity messages by navigating to
Entity | Messages under the solution), reports, and the navigation area.

We could rename entity references globally one by one or the other option we have is
to use translations. We could export a translation XML file from Microsoft Dynamics
CRM 2015 and rename labels based on the mapping table; we can re-import it back
to Microsoft Dynamics CRM 2015.

Customizing Microsoft Dynamics CRM 2015

[46]

Use the following step to use translation to rename business entities:

1.	 Navigate to Settings | Solution under the top navigation bar.
2.	 Double-click on Training Solution to open it.
3.	 Click on the Export Translations button solution command bar and save the

file when prompted.
4.	 Extract the CrmTranslations folder, open CrmTranslations.xml and select

the Display Strings sheet.
5.	 Click on the Unprotect Sheet ribbon button under the Changes group in the

REVIEW menu.
6.	 Select column C and press Ctrl + f to open the Find and Replace dialog.
7.	 Search all entities one by one and rename them based on the Entity

Mapping diagram.

8.	 Follow steps 7 to 9 on the Localized Labels sheet as well.

Chapter 2

[47]

9.	 Select all the files under the CrmTranslations folder and ZIP them;
we need to keep the name of the ZIP file the same as the exported
CrmTranslations folder.

10.	 Navigate to Training Solution and click on the Import Translation button to
import our modified translations ZIP file.

Make sure you review the translation file before import to verify all
references are changed—for example, account to client and accounts
to clients.

After completing the earlier steps make sure you click on Publish All Customization
in the solution command bar to publish your changes. This operation will change the
entity references; you could also include reports if you want to rename them as well.

Renaming entities will change the display name and plural name where
applicable, but it won't change the name (also known as logical name)
field; this field is used during coding.

We can also edit components individually one by one; for example, we can rename
entity forms using the Form Properties button on the entity editor ribbon bar. In a
similar manner we can rename entity views through their definition. We can open
the view definition using the steps in the following screenshot.

After that we can change the view name using the View Properties button available
under Common Tasks.

After renaming entities, let's set up our entity data structure training solution.

Customizing Microsoft Dynamics CRM 2015

[48]

Data types in Microsoft Dynamics CRM 2015
Microsoft Dynamics CRM 2015 provides different data type options to handle
different types of information. We are going to use out-of-the-box entities to
implement our training process, but we will be also creating some new fields, so
let's discuss what the data types available in Microsoft Dynamics CRM 2015 are.
The following table represents Microsoft Dynamics CRM 2015 data types:

Single line of text
Single line of text is used for single lines of text information—for example, first name,
last name, city, state and any other information where we need to capture one line
of input. This field supports a maximum of 4,000 characters. While creating this field
we can also define the following formatting options:

•	 Email: This option validates text for a valid e-mail address. It also makes
e-mail addresses hyperlink-enabled, which opens the default e-mail
software when clicked.

•	 Text: Provides a simple text field.
•	 Text area: This option also provides a simple text field but with

scrolling support.
•	 URL: This option allows you to store URLs with hyperlink-enabled.
•	 Ticker Symbol: This option is used to store a stock ticker symbol.
•	 Phone: This option provides a phone integration option with Skype and Lync

when the country code is prefixed with a phone number.

Option sets
An Option Set in Microsoft Dynamics CRM 2015 is like a drop-down that can be
used to provide different options for selection. Only one value can be selected at a
time. This field stores text and corresponding index values for the text. Entity table
just stores index values of this field and all other details related to the option set are
stored in the stringmap table. We can create two types of option sets:

•	 Global: This option is created directly from solutions and can be referenced
while creating a local option set in all entities

Chapter 2

[49]

•	 Local: This option set is limited to a specific entity only

While creating a local option set, we can select Use Existing Option Set if we want to
reference a global option set. We can also set default values for an option set, which
will be selected as default while we create a new entity record.

Two options
Two options are used to store Boolean type values. By default two options have Yes
and No options, but if required we can rename them as needed. We can also set up
a default selected option. Once this field is created we can change the two option
set control type after placing the field form; we can double-click on the two options
field to open the field property and can set the Control Formatting option under the
Formatting tab.

The Two radio buttons option does not display a radio button control. It
is displayed like a label, which works like a toggle button.

Customizing Microsoft Dynamics CRM 2015

[50]

Images
Image field is used to store an image of the entity record. We can only create one
image field per entity. Currently there are 24 system entities where an image field is
available. We can't add an image field to a system entity, but we can create an image
field for our custom entity.

We can upload images in the following formats:

•	 BMP
•	 GIF
•	 JPG
•	 JPEG
•	 PNG
•	 TIFF
•	 TIF

We can upload images up to 5120 KB by default based on the CRM configuration.
Once an image field is added to our custom entity, we can set the property of the
entity form to display an image placeholder. We can open the Form Property dialog
and select the Show Image in the form checkbox under the Display tab. More
information on the image field can be obtained from https://technet.microsoft.
com/en-us/library/dn531187.aspx#BKMK_ImageFields

All the images stored in the image entity and image field act like a lookup
to store image references.

https://technet.microsoft.com/en-us/library/dn531187.aspx#BKMK_ImageFields
https://technet.microsoft.com/en-us/library/dn531187.aspx#BKMK_ImageFields

Chapter 2

[51]

Whole numbers
This data type is used to store whole integer values. This field allows us to store
integer value between -2147483648 and +2147483647. This field also provide the
following different formatting options:

•	 None: This is the default integer format.
•	 Duration: This option provides a drop-down field with value options for

minutes, hours, and days; this option should be only used when we want
to represent time: durationTime zone. We can use this formatting option
to provide different time zone options.

•	 Language: This option can be used to select language options based on the
language packs installed.

Floating point numbers
The floating point numbers field is used to store fraction values. We can store up to
five decimal numbers in the range from -100000000000 to +100000000000.

Decimals
The decimal field also allows us to store decimal numbers, but we can store up to
10 decimal numbers between -100,000,000,000.00 and 100,000,000,000.00.

Currency
The currency field is used to store money values. We can store up to four decimal
numbers between -922,337,203,685,477.0000 and 922,337,203,685,477.0000. When a
currency field is added to an entity for the first time, CRM creates the following
four fields:

•	 prefix_fieldname: This field is used to store the value entered by the user
•	 Currency: A lookup field is created for currency, which allows us to select

configured currencies
•	 ExchangerateStores: The exchange rate value, based on the currency setup
•	 Prefix_fieldname_base: The value of the amount that is entered in the first

field in the base currency

Base currency is configured while setting up a new organization in
Microsoft Dynamics CRM 2015.

Customizing Microsoft Dynamics CRM 2015

[52]

Multiple lines of text
This data type is used to capture multiple lines of text. While creating this, we can set
up the maximum length of the field. This field can be used to store up to 1,048,576
characters of text.

If we have a requirement to store long text, we can use notes to store this
information instead of the multiple line of text field.

Date and time
The date and time type field is used to capture date and time information such as the
training start date and training end date. It provides calendar control. We have the
following formatting options in this field:

•	 Date Only: We can set up this format to capture only the date part
•	 Date Time: This format is used to capture both date and time

Microsoft Dynamics CRM 2015 stores date and time information in the Coordinated
Universal Time (UTC) format but for display purposes it is automatically converted
to the date and time format selected in the user's personal settings.

We can access the user's personal settings by selecting Options from the Setting
button over the top navigation bar.

Chapter 2

[53]

You can refer to https://technet.microsoft.com/
library/73d691c7-344e-4c96-8979-c661c290bf81.aspx
for more details on the date time field format.

Lookup
The lookup data type is used to setup n:1 relationships between entities. We can
select our target entity to set a relationship and, once lookup is created, it is available
as a lookup control that provides a list of available and related records for selection
when clicked.

Field properties
While creating fields, there are some basic properties that we need to configure for
entity fields. The main properties are as follows:

•	 Display Name: The label of the field, visible in all the places where field is
referenced such as forms, views, and reports.

•	 Name: The logical name of the field; it is used while coding for Microsoft
Dynamics CRM 2015.

•	 Description: This is used to provide additional information or setup tooltips
for the field.

•	 Field Requirement: The requirement level of the fields. It has three options:
Business Required, which is mandatory; Business Recommended, which
means it is recommended for business: and Optional.

•	 Searchable: This property defines whether we can query the entity record
based on this field or not using advanced find.

•	 Field Security: Used to protect fields based on the field level security profile;
we can configure the field level security for both custom and system fields.

•	 Auditing: Used to keep track of the changes in field value; provides two
options, Enable or Disable.

•	 Date Type: Available data types in Microsoft Dynamics CRM 2015; we can
select them based on the data that we want to store in a field.

•	 Field Type: Dependent on the data type selected. It has three options:
Simple, Calculated, and Rollup. We will discuss this in greater detail
in a later topic.

•	 Format: Allows us to format fields based on the data type selected.

https://technet.microsoft.com/library/73d691c7-344e-4c96-8979-c661c290bf81.aspx
https://technet.microsoft.com/library/73d691c7-344e-4c96-8979-c661c290bf81.aspx

Customizing Microsoft Dynamics CRM 2015

[54]

Setting data structures for a training solution
Now we are going to set up a data structure for a training solution. We are going
to map some of the existing fields with our training solution requirement and
will just change their display names. Please refer to Appendix B, Data Model for
Account Entities for data structure details.

Creating a new attribute
Every entity in Microsoft Dynamics CRM 2015 represents a table in the SQL server
and every attribute of each entity represents a column. Microsoft Dynamics CRM 2015
allows us to set up entity fields from the UI, instead of doing it from a database, and
all the attributes are available as a control to place over entity forms. We will learn
how to place fields on entity forms while discussing the form customization topic.

Let's create new attributes for a training request entity. Use the following steps to
create a new attribute:

1.	 Open Training Solution and navigate to Entities | Training Request |
Fields.

2.	 Click on the New button on the field toolbar.
3.	 Enter properties in line with the following screenshot:

°° Display Name: Proposed Start
°° Field Requirement: Business Required
°° Name: him_proposedstart (after tabbing out from the

Display Name field)
°° Searchable: Yes
°° Field Security: Disable
°° Auditing: Disable
°° Data Type: Date and Time
°° Field Type: Simple
°° Format: Date Only
°° IME Mode: auto

Chapter 2

[55]

4.	 Click on Save to create the field.

Input Method Editor (IME) is basically used for entering Chinese,
Japanese, and Korean characters.

After entering the preceding properties, the Field window should look like following:

Customizing Microsoft Dynamics CRM 2015

[56]

We are using contact entity to represent three types of contacts: employee, trainer
and client contact. We will be providing a lookup control over a training request
entity to select proposed trainer, so let's create a lookup on the training request
entity. Follow the next steps to create a lookup field:

1.	 Click on the New button on the field toolbar.
2.	 Enter properties in line with the following screenshot. Click on

Save and Close.

We need to create the same field in our proposal entity as well, so follow the earlier
steps to create the same relationship in the proposal entity. However, let's keep the
field name as Trainer instead of Proposed Trainer.

Setting field mapping
When two entities are related we can use field mapping to map data from the source
entity to the target entity. Let's say we have a 1:n relationship between the contact
and the training request entity. While creating a 1:n to a relationship we get lookup
control on the related entity (n side entity). In the primary entity we get an associated
view, where we can see a list of related entity records that is associated with the
current primary entity record instance.

Chapter 2

[57]

Associated view provides us with the option to create related entity records from
the primary entity itself. If we want to carry some of the primary entity information
to the related entity while creating a record we can set up field mapping. In our
solution we want to carry the selected proposed trainer from the training request
entity to the proposal entity, when the training request is converted to the proposal.
We can do that using field mapping. Follow the next steps to set field mapping
between proposed trainer in the training request entity and trainer in the proposal
entity that we created in the last step:

1.	 Navigate to Training Request under our Training Solution and select 1:N
relationship.

2.	 Double-click on the opportunity_originating_lead relationship to open it.

3.	 Select Mapping | New and select source the him_proposedtrainer and
target him_trainer fields and click on OK.

Customizing Microsoft Dynamics CRM 2015

[58]

4.	 Click on the Save and Close button and publish your changes.

We can follow the same steps to create other custom fields for our training request
entity; please refer to Appendix B, Data Model for Account Entities for the complete
data structure of the training request entity.

To customize existing fields we can double-click on them to open their definition.
We can modify the following properties for existing fields:

•	 Display Name
•	 Field Requirement
•	 Searchable
•	 Field Security
•	 Auditing
•	 Description
•	 Maximum Length
•	 IME Mode

There are other field-specific properties that can be also changed; for example, in the
case of an option set we can add or remove option set items. But while removing
option set values we should keep in mind that there should not be records refereeing
that value.

Using the following procedure we can create and modify the data structure for all of
our business entities. Please refer to Appendix B, Data Model for Account Entities for the
data structure for other required entities.

Customizing entity forms
Now we have our data structure ready, let's modify our entity forms. Microsoft
Dynamics CRM 2015 allows us to set up multiple forms for entity. Microsoft
Dynamics CRM 2015 forms provide a responsive web design experience, which
means Microsoft Dynamics CRM 2015 screens will be adjusted according to the
screen resolution of the device used to access the application. So the same entity
form can be used for a variety of devices without any changes.

Chapter 2

[59]

If we have multiple forms, we can control their visibility based on user security roles.
We can define which form will be visible to which type of users. For example we
can create one main form for the Sales Person security role and another for System
Administrator roles. We can also set a default fall-back form that will be displayed
to the user when there is no form associated with the user's security role.

We can create the following types of forms for Microsoft Dynamics CRM 2015:

•	 Main Form: This is the form that is used for Web, Outlook, and CRM for
tablet clients

•	 Mobile Express: This form is used for mobile express clients
•	 Quick Create: This form is available when users try to create a record using

the Quick Create button over the top navigation bar
•	 Quick View: This form is associated with the lookup field and shows

parent-related information in the child entity form

The main form
Every updated entity in Microsoft Dynamics CRM 2015 has one default main form
available with the name of the entity. For example, in account we have one Account
main form. Main forms are used for Microsoft Dynamics CRM 2015 web clients,
Outlook clients, CRM for phone, and for tablet clients. If required we can create
multiple forms by navigating to the New button under the Forms toolbar.

While designing the main form we can place different types of controls such as tabs,
sections, sub grids, iframes, web resources, fields, and spacer. We can add these
field from the Insert tab in the form editor.

Customizing Microsoft Dynamics CRM 2015

[60]

The following is the default main form editor for the lead entity.

We can simply drag-and-drop fields from Field Explorer to the appropriate section.
We can also select an existing field and double-click on it in Field Explorer; then it
will be added after the selected field section. The Remove button is used to remove
any unwanted control from an entity form.

While designing the form, we can select different areas such as Body, Header,
Footer, and Navigation to place controls in the respective area. The Form Properties
button can be used to configure different settings such as managing form and field
events and setting the form's display properties with other settings. The Merge
Forms button can used to place controls from other forms.

Make sure you have created and customized existing fields based on
Appendix B, Data Model for Account Entities before starting to design
entity forms.

Chapter 2

[61]

Understanding the social pane
The social pane is basically a tab control that act as a center point for interaction with
the customer. It includes four tabs:

•	 Post: This tab provides record activity feed details, just like our social
network feeds

•	 Activities: Lists all the activities related to the current record
•	 Notes: A free text area; we can also attach documents from here
•	 Yammer (if configured): Provides yammer feed details

We can't change the order of the Social Pane tab, but if required we can set up a
default tab for social pane. Also we can change social pane's default size; if we have
a requirement to reduce the size of the social pane we need to remove the default
social pane and add it again to the form. While doing so, we can change Default tab
property under the Display tab and Row Layout under the Formatting tab.

Select a control and click on the Change Properties button under the form
editor's ribbon button bar to change properties for any control.

Customizing Microsoft Dynamics CRM 2015

[62]

Understanding the sub grid
The sub grid control is a list control that displays data from a related or non-related
entity. By configuring the sub grid property we can select if we want to see a list of
the data or a chart under the sub grid, but we can see one at a time. We can add a sub
grid via the INSERT tab in the form editor.

While adding a sub grid we can define its data source. We can specify if we want
to see only a list of the records associated with the current record or we want to see
all the records. We can also add searching capability to the sub grid by selecting the
Display Search Box check box button under Additional Options.

The Display Index provide an A to Z index at the bottom of the sub grid to filter
data based on the letter selected. This option is only available in classic forms
(old entity forms that lacks the new layout and controls such as command bar,
process control, and the Quick View form), We can also configure if we want to
show a specific view or allow users to change views in the sub grid using the
View Selector option.

Chapter 2

[63]

Let's design our training request entity main form. Use the following steps to
customize the main form:

1.	 Navigate to Components | Entities | Training Request | Forms and
double-click on the Training Form to open the form editor under our
Training Solution.

2.	 Double-click on the header area and remove all existing fields. We
need to add the Proposed Start, Proposed End, Budget Amount and
Technology fields.

3.	 Rearrange sections and fields in the Summary tab based on the following
screenshot.

4.	 Double-click on the Details tab and re-label it to Requirement Details.
5.	 Customize the existing section and rearrange the fields based on the

following screenshot.

Customizing Microsoft Dynamics CRM 2015

[64]

6.	 Double-click on Footer and add the Created By, Created On and Modified
By fields.

7.	 Click on the Form Properties button under the ribbon bar and deselect the
Show image in the form checkbox under the Display tab.

8.	 Click on the Save and Publish button.

We can preview forms using Preview under the ribbon bar to preview
form changes before publishing.

Mobile express forms
Mobile express forms are used by Microsoft Dynamics CRM 2015 for mobile express
clients. There is one default mobile express form available per entity but if required
we can add more than one mobile express form. In mobile express forms we can't
place any control; we can just add a list of the fields under the Selected Attributes
list that we want to see over mobile forms. We are not going to use Microsoft
Dynamics CRM 2015 for mobile express clients so we are not going to modify
mobile forms for our training solution.

Quick create forms
Quick create forms provide an option to create an entity record quickly with critical
information. We can also create multiple types of Quick Create forms. While
designing a Quick Create form, we are limited to placing a single tab with three
columns. We can only place one single column section in each column of the tab and
these sections can contain a field and spacer only. The following is an example of an
account Quick Create form.

Chapter 2

[65]

We can quickly create forms using the New button over the forms toolbar. There is
an existing quick create form in the training request entity called Lead Quick Create;
we are going to modify this form. Use quick create following steps to modify it:

1.	 Double-click on the Lead Quick Create form to open it.
2.	 Click on Form Properties and change Form Name and Description

to Training Request Quick Create under the Display tab.
3.	 Remove and add fields to the form based on the following screenshot.

The size of the multiple line of text field can be increased or decreased by
modifying the Number of Rows property under the Formatting tab.

4.	 Click on Save and Close and click on Publish All Customizations to publish
all the changes.

Quick view forms
Quick view form is associated with lookup control and used to see additional
information for the related record. Quick view form can be only added to the main
form type. It is available as a control and can be place on the form from the Insert tab
under the entity editor ribbon bar. Quick view form provides read-only information
that can't be edited.

Customizing Microsoft Dynamics CRM 2015

[66]

While designing a quick view form we can't place all types of control over it. We are
limited to including one tab that has one column and that column can contain one or
more single-column sections. We can only include fields, spacers, and a sub grid on
quick view forms.

Designing other forms
We have completed the design of our training request entity forms; now we need to
follow the same process for our other business entities. We need to customize other
forms based on the following designs.

Client main form design
Customize the existing main form of a client entity based on the following screenshot:

We can rename existing tabs and sections by changing their properties,
instead of adding new tabs and sections.

Chapter 2

[67]

Client quick create form design
Customize an existing client quick create form based on the following screenshot.

Contact main form design
Customize the existing main form of a contact entity based on the following
screenshot.

Customizing Microsoft Dynamics CRM 2015

[68]

Proposal main form design
Follow the next screenshot to customize an existing proposal (opportunity)
main form:

We are going to use all other entity forms without modification.

Customizing application navigation
Microsoft Dynamics CRM 2015 navigation can be easily modified by customizing
the sitemap file. We can modify a sitemap manually in any XML or text editor such
as Notepad++ or Visual Studio; alternatively, we can use custom tools. We are going
to use XrmToolBox, which is an excellent (and free) tool developed by Tanguy
Touzard, Microsoft Dynamics CRM MVP. This tool is available at: http://www.
xrmtoolbox.com or can be downloaded from https://github.com/MscrmTools/
XrmToolBox.

http://www.xrmtoolbox.com
http://www.xrmtoolbox.com
https://github.com/MscrmTools/XrmToolBox
https://github.com/MscrmTools/XrmToolBox

Chapter 2

[69]

Name Action Description
Sales Rename to Training solution
Marketing Hide
Service Hide
Setting Rename to Configuration

Download XrmToolBox from the preceding location and unblock the ZIP file first. To
unblock the file, right-click on the ZIP file then click on Properties. After that click on
the Unblock button, then extract the ZIP file. After extraction, use the following steps
to customize navigation:

1.	 Run the XrmToolBox.exe file and click on Connect to CRM.
2.	 Click on New Connection and enter your organization's details.
3.	 Click on the Get Orgs button to get your organization, select your

Organization drop-down and click OK.
4.	 Click on SiteMap Editor and the Load SiteMap button.
5.	 Select Area (SFA) and change Title and Description as follows:

Title: Training Solution
Description: Training Solution Application

6.	 Click on Save to save the changes.
7.	 Right-click on the following Group, Area and select Disable.

Name Location
Group (MyWork) Area (SFA)
SubArea (nav_comps) Area (SFA) | Group (SFA)
SubArea (nav_orders) Area (SFA) | Group (Collateral)
SubArea (nav_invoices) Area (SFA) | Group (Collateral)
SubArea (nav_saleslit) Area (SFA) | Group (Collateral)
Group (MA) Area (SFA)
Group (Goals) Area (SFA)
Group (Tools) Area (SFA)
Area (CS)
Area (MA)*

Customizing Microsoft Dynamics CRM 2015

[70]

8.	 Select Area (Settings) and the following settings from the right-hand side of
the property window:
Title: Configuration
Description: To configure training solution

9.	 Select SubArea (nav_productcatalog) under Area (Settings) | Group
(Business_Setting) and change the following setting from the right-hand
side of the property window:
Title: Training Catalog
Description: To configure training catalog

10.	 Click on the Update SiteMap button to update the changes in Microsoft
Dynamics CRM 2015.

Refresh the Microsoft Dynamics CRM 2015 application and we should be able to see
changes like the following:

Setting up a training catalog
Microsoft Dynamics CRM 2015 allows us to store our product or service information
under a product catalog. We have mapped the product entity with the training
entity, which will store information and price details about training. Microsoft
Dynamics CRM 2015 provides different options to set up products or services. We
can set up a discount list for different discount options depending on the quantity
of sale. We can set up a multiple discount list and, while creating a product, we
can select which discount list we want to apply. We can set up discount list by
navigating to Configuration | Training Catalog.

Chapter 2

[71]

A unit group is a group of all the measurement units in which we can sell our
product or service. While creating unit groups, we need a primary unit that acts as
base for all unit groups—for example, gram is the primary unit for kilogram. We
are developing a solution for a training company, so we will be setting up our unit
groups to measure training service in term of hours, days and weeks. Follow the next
steps to configure unit groups:

1.	 Navigate to CONFIGURATION | Training Catalog and click on Unit
Groups.

2.	 Click on the New button and enter the following details in the Create Unit
Group dialog:
Name: Training Service
Primary Unit: Hour

Customizing Microsoft Dynamics CRM 2015

[72]

3.	 Click on Units | Add New Unit and enter the following details; click on the
Save and Close button.

4.	 Follow the same steps to set up other units as follows:
Name: Week
Quantity: 40
Base Unit: Hour

Once unit groups are defined we can set up our products or services. Microsoft
Dynamics CRM 2015 allows us to set up standalone products or product groups as a
product family, which shares common features. We can use different product families
to categorize them in different groups. We can also add product properties at the
product family level, which helps us to differentiate a product from another product.
When a product is added to a product family it inherits all the properties from the
product family. We can set up a product hierarchy using the product family and
can visualize it using the hierarchy visualization feature. Let's set up our Microsoft
Dynamics training family for our training programs based on the following table:

Name Members
Microsoft Dynamics Microsoft Dynamics CRM Function,

Microsoft Dynamics CRM Customization ,
Microsoft Dynamics CRM Extending
Microsoft Dynamics Ax Function ,
Microsoft Dynamics Ax Technical
Microsoft Dynamics GP Functional,
Microsoft Dynamics GP Technical

Chapter 2

[73]

1.	 Navigate to CONFIGURATION | Training Catalog and click on Families
and Training.

2.	 Click on ADD FAMILY to enter the following details and click on the
Save button:

There is no out-of-the-box business logic available in Microsoft Dynamics
CRM 2015 to expire a product family after the Valid To date.

Now we have added our training family, let's add the following common properties
to our Microsoft Dynamics family:

Name Data type Value Description
Level Drop down Level I, Level II,

Level III
Training level

Category Drop down Online, On the Job Training type

Use the following steps to add the properties:

1.	 Open a Microsoft Dynamics family record and click on the + sign on the
property's sub grid to create a property.

2.	 Enter the following details and click on the Save button.
Name: Level
Required: Yes
Description: Training Level

Customizing Microsoft Dynamics CRM 2015

[74]

3.	 Click on the + sign on the Property Option Set Items sub grid and enter the
following details:

4.	 Close the property window.
5.	 Follow steps 1-3 to set up the category property.

All the pricing-related information for products or services is configured using
another entity called Price List. We can set up different price lists for different
scenarios; for example, we may have different price lists for different regions or for
different retailers or wholesalers. Once a price list is created, we can set up a price list
item for different units. We can also set up a price list item from the product entity.
Use the following steps to create a price list for our CRM training.

1.	 Navigate to CONFIGURATION | TRAINING Catalog and select Price
Lists.

2.	 Click on the +New command button, enter the following details, and
click on Save.

3.	 Close the price list window.

Chapter 2

[75]

We can also set default price list to Territory, if you are doing business
based on territories.

Use the following steps to add training to training family:

1.	 Navigate to CONFIGURATION | TRAINING Catalog and select Families
and Trainings.

2.	 Select the Microsoft Dynamics family record and click on the ADD
TRAINING button over the command bar.

3.	 Enter the following details and click on the Save command button.

4.	 Click on the + sign on PRICE LIST ITEMS under ADDITIONAL DETAILS
and enter the following information and lead keep fields as default:
Price List: CRM Online Training
Unit: Day
Amount: 5000

5.	 Click on Save & Close.

We can follow the same steps to add another price list item based on a different
unit—for example, week. Use the earlier steps to set up other training and price lists
based as required.

Customizing Microsoft Dynamics CRM 2015

[76]

Once we have added our products we need to publish them so that we can use them
while creating opportunities. A product can be published individually or with the
product family using Publish | Publish Hierarchy under the product family record.
Perform the following steps to publish our Microsoft Dynamics family:

1.	 Navigate to CONFIGURATION | TRAINING Catalog and select Families
and Trainings.

2.	 Open the Microsoft Dynamics family record.
3.	 Select Publish Hierarchy under the Publish drop-down button.

Understanding security
User management is an essential part of any business application. Microsoft
Dynamics CRM 2015 provides out-of-the-box support for user management and
security. If you are using Microsoft Dynamics CRM 2015 on premise, a user can be
added to Microsoft Dynamics CRM 2015 after being added in Active Directory. In
the case of Microsoft Dynamics CRM 2015, online users can be managed using
Office 356 portal.

Access to the Microsoft Dynamics CRM 2015 application can be managed using an
entity called Security Role. Once a user is added to Microsoft Dynamics CRM 2015
he should have at least one security role or should be part of the owner team
(the owner team should have at least one security role assigned). User security
is handled in Microsoft Dynamics CRM 2015 in three ways:

•	 Role-based security
•	 Record-based security
•	 Field-level security

You can refer to https://msdn.microsoft.com/en-us/library/
gg309524.aspx to get more information about the CRM 2015 security
model.

Role-based security
Role-based security is handled by security roles, which are basically a grouping of
a set of privileges and five access levels. Privileges define which action a user can
perform on a specific entity; for example, we can configure whether a user can create
an account entity record or not. Access level defines up to what level the user can
perform a particular action on a specific entity; for example, if a user can read data
created by himself, created under his business unit, from a child business unit of his
business unit, or from the organization level.

https://msdn.microsoft.com/en-us/library/gg309524.aspx
https://msdn.microsoft.com/en-us/library/gg309524.aspx

Chapter 2

[77]

The business unit is a base of the security model, which is a group of
users and a team. Every organization contains one root business unit.
We can set up parent and child business units to map the security
requirements of the organization.

Record-based security
Record-based security is used to control security for specific entity records using
access rights. Access rights work on the basis of privileges only, so an access right
will only work if users have appropriate privileges on a specific entity; for example,
a user can only access a record that is shared with him if he has read privileges.

Field-level security
Field-level security allows us to control specific field security on the basis of the field
level security profile. In field-level security, we can define read, create, and update
access to a particular field in which the field level security is enabled. In Microsoft
Dynamics CRM 2015 we can enable field-level security for both system and custom
fields. We will cover field-level security in detail in a later chapter.

Customizing Microsoft Dynamics CRM 2015

[78]

For our training solution application, we are going to use the following three
security roles:

Name Description
Sales Person, Sales Manager To create and manage training requests and

execute training programs
System Customizer To implement any changes in training solutions
System Administrator For the power admin user

You can refer to https://technet.microsoft.com/en-us/
library/hh699698.aspx to get more details on Microsoft Dynamics
CRM 2015 security management.

Testing customization
We can test our entity form designs and fields that we have created. We can start
capturing training request information by creating a new training request record by
navigating to TRAINING SOLUTION | Training Requests.

Perform the following steps to test a training solution:

1.	 Create a Training Request record and enter the following details. As we are
creating a request for a new client we won't be selecting Existing Client? and
Existing Contact?.

https://technet.microsoft.com/en-us/library/hh699698.aspx
https://technet.microsoft.com/en-us/library/hh699698.aspx

Chapter 2

[79]

We can capture additional information and attach a file in
the NOTES tab in the social pane.

We will see the default business process flow while creating a record.
Business process flows help us to implement a guided approach to following
any business-specific process flow. We have not yet modified business
process flows (we will be working with these in detail in the next chapter).

2.	 After completing the required fields, click on the Save button and then click
on the Qualify button over the command bar.

3.	 This action will create a Proposal record from the Training Request record
and will map all the entered fields. It will close the Training Request record.

4.	 Select our CRM Online Training Price List and click on the Save button
available at the bottom-right of the record status bar.

Use the Next Stage button at the end of the business process
flow to move to the next stage in the business process flow.

5.	 Click on the + sign on the Training Line items sub grid to add Training.

A price list is required to add a product in Opportunity.

Customizing Microsoft Dynamics CRM 2015

[80]

6.	 Set up Training properties using the Edit button in the editable grid view
and enter a Quantity value.

7.	 Click on the + sign on the Proposal Quote sub grid to create a quote for
the proposal.

8.	 Enter a billing address and click on the Activate Proposal Quote button.
9.	 Click on Close Proposal Quote, select Do not revise Proposal Quote, and

click on OK.
10.	 Complete the business process flow and click on the CLOSE AS WON

button on the command bar to close the proposal.

Summary
In this chapter we learned about Microsoft Dynamics CRM 2015 customization
features. We learned about different components and how to customize them. We
also created a sample application for managing training, where we utilized only
out-of-the-box features. We discussed various data types available in Microsoft
Dynamics CRM 2015 with their different formatting options. We also discussed the
security mode of Microsoft Dynamics CRM 2015. In our sample application, we also
learned how to work with the Microsoft Dynamics CRM 2015 product catalog, using
the out of product catalog feature to manage our training programs.

In the next chapter we will be learning about implementing client-side logic in
Microsoft Dynamics CRM 2015 and we will also enhance our training solution
application.

[81]

Client-side Logic with
Microsoft Dynamics

CRM 2015
In this chapter, we will learn about implementing client-side logic in Microsoft
Dynamics CRM 2015. We are going to learn about various client-side extensions in
Microsoft Dynamics CRM 2015. We will start by creating JavaScript Web resources
and will learn about consuming CRM web services using client-side code. We
will also discuss business rules in Microsoft Dynamics CRM 2015 with their new
enhancements and we will keep working on our training solution that we created
in the previous chapter.

In this chapter we will be discussing the following topics:

•	 Understanding the client scripting object model
•	 Understanding web resources
•	 Accessing forms and controls using client-side code
•	 Understanding client-side events
•	 Using CRM web services in client-side code
•	 Understanding Business Rules

Client-side Logic with Microsoft Dynamics CRM 2015

[82]

Understanding the client scripting
object model
In the client scripting object model, we utilize client-side programming to write
code that runs on browsers. We can embed our client-side code in different places
in Microsoft Dynamics CRM 2015. We can write client-side code to interact with
entity forms and their controls. To work with client scripting object models, there
are events exposed for forms and controls that we will be discussing in later topics.

Using client scripting object model, we can customize the behavior of command
buttons; for example, let's say that we want to enable a command button for specific
security role users or we may want to show a button when a specific value is entered
in a text box. These types of requirement can be implemented by writing custom
JavaScript actions for command buttons with enable and display rules.

We can refer to https://msdn.microsoft.com/en-us/library/
gg309639.aspx to get details about enabling and displaying rules.

We can also write our client-side code or create a client-side library using web
resources. We will be discussing web resources in later topic. Once web resources
are saved and published, we can attach a reference to them in entity forms and
command bar buttons by modifying RibbonDiffXML, and in other web resources.
Client-side object models can also be used to create HTML web resources to develop
custom web pages.

The RibbonDiffXML file is an XML file that is used to customize
command button definitions. Refer to https://msdn.microsoft.
com/en-us/library/gg328409.aspx for more details on
RibbonDiffXML.

Understanding web resources
Web resources are reusable components that are stored as files in Microsoft Dynamics
CRM 2015. We have different choices for creating web resources; once created, they
can be called using their unique URL. They can be referenced in multiple places such
as in sitemaps, in entity forms, in dashboards, and command buttons.

https://msdn.microsoft.com/en-us/library/gg309639.aspx
https://msdn.microsoft.com/en-us/library/gg309639.aspx
https://msdn.microsoft.com/en-us/library/gg328409.aspx
https://msdn.microsoft.com/en-us/library/gg328409.aspx

Chapter 3

[83]

We can create the following different types of web resources in Microsoft Dynamics
CRM 2015:

Web Resource Type Extensions Descriptions
Webpage (HTML) .htm or .html Used to create HTML Web pages
Style Sheet (CSS) .css Can be used to create a style sheet to refer to in

other web resources
Script (JScript) .js Used to create scripting Web resources
Data (XML) .xml Can be used to store some data using XML

strings
Image (PNG) .png Used to upload Portable Network Graphics
Image (JPG) .jpg Used to upload Joint Photographic Expert

Group graphics
Image (GIF) .gif Used to upload Graphic Interchange Format

graphics
Silverlight (XAP) .xap For creating Silverlight web resources
StyleSheet (XSL) .xsl, .xslt Web resources to transform XML data
Image (ICO) .ico Used to upload icon images

Web resources can be referenced via absolute and relative paths. But it is always
recommended to use relative paths. While adding web resources you are advised to
set a virtual directory structure for different components; for example, for scripts we
can use /Scripts/Account.js and for images we can use something like /Images/
SMS_16.png.

While adding web resources an automatic prefix is applied by CRM based on the
publisher setup. So, if we want to follow the preceding virtual directory structure,
the name of the web resource will be something like prefix_/Scripts/Account.
js. It is not required to append a file extension at the end of a web resource but it is
recommended to follow this practice. Please refer to Chapter 2, Customizing Microsoft
Dynamics CRM 2015, for details about creating the publisher.

It is common to refer to one web resource in another web resource while working on
extending a CRM application. In order to reference one web resource in another, we
should use a relative path only. So for example if we have created a JavaScript web
resource named him_/Scripts/CommonScripts.js and want to refer this in another
HTML web resource, we need to reference our JavaScript web resource as follows:

<script src="Scripts/CommonScripts.js"
 type="text/javascript"></script>

Client-side Logic with Microsoft Dynamics CRM 2015

[84]

We should use the same technique to reference other resource as well,
such as referencing HTML web resources. The maximum default size of
the file that can be uploaded as a web resource is 5 MB, but if required it
can be changed by navigating Settings | System Settings | Email | Set
Maximum file size (in kilobytes).
Always use the $webresource directive while referring to web resource
in command buttons or SiteMap because, when the $webresource
directive is used, CRM will create or update solution dependencies.

Creating our first web resource
Let us create our first web resource. It is always recommended to create your web
resource in a custom solution so that it can be easily exported and deployed to other
environments. We can create web resources by carrying out the following steps:

1.	 Open our demo solution and navigate to Components | Web Resources |
New.

2.	 Enter the following details:
Name: Helloworld.js
Display Name: Helloworld.js
Type: Webpage (HTML)
Language: English

A prefix will be added to Name automatically based on
publisher being selected while creating the solution.

3.	 Click on the Text Editor button to open the editor.
4.	 Design your first HTML web page contents in the Rich Text editor.
5.	 Use the Rich Text editor toolbar to modify the content style.

Chapter 3

[85]

6.	 Click on Ok to close the Text Editor.
7.	 Click on the Save and Publish buttons.
8.	 Click on the PREVIEW button on the top to preview our HTML web resource.

Accessing forms and controls using
client-side code
In order to work with the client object model, first we need to understand the
Xrm.Page object model. The Xrm.Page object is used to interact with forms and
related controls. It is a top hierarchal object that has three namespaces:

•	 Context
•	 Data
•	 UI

The following namespaces provide different methods that we can use to manipulate
data at different levels.

Image source: msdn.microsoft.com

Client-side Logic with Microsoft Dynamics CRM 2015

[86]

Context namespaces
Context namespaces provide different methods to access client-side contexts. These
methods help us to get different contextual information related to the organization,
user, client, and other details. We can utilize these methods to write generic code; for
example, if we need an organization name in our JavaScript program, we can utilize
the getOrgUniqueName method to get the current organization instead of hard-
coding the organization name. In a similar way, if we need to know the current user
security roles using client-side code, then we can utilize the getUserRoles method.
The following table provides common methods for context namespaces.

Method Description
Xrm.Page.context.getClientUrl() This method is used to get the URL

of the server
Xrm.Page.context.getOrgUniqueName() This method is used to get the

unique name of the organization
Xrm.Page.context.getUserId() This method is used to access current

user GUID
Xrm.Page.context.getUserName() This method provides the current

user's full name
Xrm.Page.context.getUserRoles() This method is used to get current

user security roles
Xrm.Page.context.getClient() This method is used to get the client

name where the script is executing—
for example browser, Outlook or
mobile

You can get more details about client-side contexts from
https://msdn.microsoft.com/en-us/library/gg334511.aspx.

Data namespaces
Data namespaces help us to get entity-related information and provide a method to
get data on entity forms.

https://msdn.microsoft.com/en-us/library/gg334511.aspx

Chapter 3

[87]

The following table provides common methods for entity objects:

Method Description
Xrm.Page.data.entity.getEntityName() This method is used to get the

logical name of the current entity
Xrm.Page.data.entity.save() We can utilize this method to save

entity form data
Xrm.Page.data.entity.getId() This method is used to get the

current record GUID

Xrm.Page.data.entity.getIsDirty() This method is used to detect if a
form is modified or not

You can refer to https://msdn.microsoft.com/en-us/library/
gg334720(v=crm.6).aspx for more details on entity methods.

Microsoft Dynamics CRM 2015 includes support for handling processes using
client-side code. Following is a list of common methods that we use to interact with
business process flow:

Method Description
Xrm.Page.data.process.
getActiveProcess()

We can utilize this method to get
active processes

Xrm.Page.data.process.
setActiveStage(staged,
callbackfunctionname)

We can utilize this method to set the
active stage

Xrm.Page.data.process.
getActivePath()

To get a collection of stages in the active path

Xrm.Page.data.process.
addOnStageChange(function name)

Used to call a method when the stage
changes

Xrm.Page.data.process.
addOnStageSelected(function
name)

Used to call a method when a stage is
selected

More information about business process flow methods can be found at
https://msdn.microsoft.com/en-in/library/dn817874.aspx.

https://msdn.microsoft.com/en-us/library/gg334720(v=crm.6).aspx
https://msdn.microsoft.com/en-us/library/gg334720(v=crm.6).aspx
https://msdn.microsoft.com/en-in/library/dn817874.aspx

Client-side Logic with Microsoft Dynamics CRM 2015

[88]

We can access form data using attribute collections or the getAttribute
shortcut method. Next is the common method used to access form data
using the getAttribute shortcut:

Method Description
Xrm.Page.getAttribute("FieldName").
getRequiredLevel()

Used to get the requirement of the
field; possible options are: none,
required, recommended

Xrm.Page.getAttribute("FieldName").
setRequiredLevel(Requirement Level)

Used to set the requirement level of
the field; possible parameter are: none,
required, recommended

Xrm.Page.getAttribute("FieldName").
getSubmitMode()

Used to check if field will be
submitted or not when record is saved

Xrm.Page.getAttribute("FieldName").
setSubmitMode(parameter)

Used to set submitted mode based
on parameter

Xrm.Page.getAttribute("FieldName").
getValue()

Used to get the value of a field

Xrm.Page.getAttribute("FieldName").
setValue(Value)

Used to set the value of a field

Xrm.Page.getAttribute("FieldName").
addOnChange(function name)

Used to associate the method with on
change event

Xrm.Page.getAttribute("FieldName").
removeOnChange(function name)

Used to remove the method from on
change event

Xrm.Page.getAttribute("FieldName").
fireOnChange()

Used to fire on change event on a field

More information on attribute methods can be found at https://msdn.
microsoft.com/en-us/library/jj602964(v=crm.6).aspx.

UI namespaces
This namespace contains methods that can be used to fetch data about user
interfaces. Following are the common methods used:

Syntax Description
Xrm.Page.ui.close() Used to close entity forms
Xrm.Page.ui.getFormType() Used to get the entity

form type
Xrm.Page.ui.setFormNotification(message,
level, uniqueid);

Used to show custom
notification of entity forms

https://msdn.microsoft.com/en-us/library/jj602964(v=crm.6).aspx
https://msdn.microsoft.com/en-us/library/jj602964(v=crm.6).aspx

Chapter 3

[89]

Syntax Description
Xrm.Page.ui.clearFormNotification(unique
id)

Used to clear form
notifications

Xrm.Page.ui.refreshRibbon() Used to refresh the
command bar

You can refer to https://msdn.microsoft.com/en-us/library/
gg327828(v=crm.6).aspx for more details on UI methods.

Understanding client-side events
Microsoft Dynamics CRM 2015 exposes events for forms, fields, and other controls.
These are the event handlers where we can call our custom JavaScript methods.
We can configure our client-side code to execute on specific events or dynamically
associate our method to a corresponding event. Let's first understand events related
to forms.

Form events
Two events—OnLoad and OnSave—are exposed for entity forms where we can write
our client-side code.

OnLoad event
The OnLoad event handler executes code when the entity form is loaded. We can
utilize this event for controlling the behavior of entity forms and this event is useful
for different scenarios. For example, we may want to hide/disable some fields based
on other fields or based on the user security role. Business rules also utilize the OnLoad
event to execute logic. We will be discussing business rules in a later topic. If we are
not working in updated entity forms then OnLoad is executed whenever the form is
loaded—for example, at the time of initial creation and after data is saved. But if we
are using updated entities then the OnLoad event is only executed at the time of initial
creation. Let's take an example; say we want to set a default credit limit of 50,000 while
creating our new clients in our training solution. We can write a simple JavaScript to
implement this example.

Updated entities are those entities that provides a new form
layout with command buttons instead of ribbon buttons.

https://msdn.microsoft.com/en-us/library/gg327828(v=crm.6).aspx
https://msdn.microsoft.com/en-us/library/gg327828(v=crm.6).aspx

Client-side Logic with Microsoft Dynamics CRM 2015

[90]

We can create an individual web resource or a common JavaScript library where we
can add all of our common methods. Let's add this library in the training solution
that we created in Chapter 2, Customizing Microsoft Dynamics CRM 2015. Open our
training solution by navigating CONFIGURATION | Solutions and perform the
following steps to create our JavaScript Web resource:

1.	 Click on Web Resources | New and enter the following properties:
Name: him_/Scripts/Common.js
Display Name: Common.js
TypeL Script: (JScript)

2.	 Click on Text Editor and use the following code.
To create a JavaScript library, it is always a best practice to use namespaces.
Namespaces allow us to group our code under one unit and help us to avoid
any confusion. We can create namespaces using the following code:
if (typeof(HIMBAP) == "undefined") {
 HIMBAP = {
 __namespace: true
 };
}

The preceding code will define the HIMBAP namespace if it is not defined
already. Now we can add the following generic method, which will take
two parameters for the field name and default value. We can write our
methods as follows:
//Common methods for
HIMBAP.CommonScripts= {
//Method to set default field value
SetDefaultValue(): function(fieldName,defaultValue)
{
 //Set value
 Xrm.Page.getAttribute(fieldName).setValue(defaultValue);
},
__namespace: true
};

Chapter 3

[91]

It is always a best practice to add fields under the Non-Event
Dependencies list under Form Properties referenced in the script.

3.	 Click on Ok and Save and Publish our web resource.
Now we need to add a web resource for our client entity where will be
utilizing our common JavaScript library. Perform the following steps to
add a Web resource for the client entity:

4.	 Click on Web Resources | New and enter the following properties:
Name: him_/Scripts/Client.js
Display Name: Client.js
Type: Script (JScript)

5.	 Click on Text Editor and use the following code:
//Set credit limit to 50000
function SetCreditLimitDefault() {
 //Call method from common library
 HIMBAP.CommonScripts.setDefaultValue("creditlimit", 50000);
}

6.	 Click on Ok and save and publish the web resource.
Now we can add these web resources to our client entity form and use them.
Perform the following steps to utilize these web resources:

7.	 Navigate to Components | Entities | Client | Forms and double-click on
the Client main form to open the form editor.

8.	 Click on the Form Properties button under the form editor ribbon bar and
click on the Add button under Form Libraries.

9.	 Search for our web resources and click on Add.

We can use our publisher prefix to search for
web resources quickly.

Client-side Logic with Microsoft Dynamics CRM 2015

[92]

10.	 Click on the Add button under Event Handler, select our Client.js web
resource library, and use our function name under Function text box.
It should look like this:

11.	 Click on Ok. The Events table should look like the following:

12.	 Click on Ok and save and publish our client form.

Chapter 3

[93]

Now, when we create a new client record, it will set a default value of 50000 in the
Credit Limit field.

OnSave event
The OnSave event is executed when the entity form is saved; for example it is
executed when the user clicks on the Save button in the lower-right corner of the
screen. It is also executed automatically after 30 seconds if auto-save is enabled.

It can also be executed using the following methods:

Xrm.Page.data.entity.save
Xrm.Page.data.save
Xrm.Page.data.refresh

We can also stop the save event, if required. Let's take an example. When all the
data has been entered on the entity form and the user wants to save it to the CRM
database, but before sending it to the server, let's say we want to validate the data by
the user; if the validation fails, you can cancel the save event. We can use following
code to cancel the save event:

Xrm.Page.context.getEventArgs().preventDefault();

This method will only cancel the save event if all other events will
be executed accordingly. You can find details about save events at
https://msdn.microsoft.com/en-us/library/gg509060.aspx.

Field events
All entity fields have one event exposed: the OnChange event. The OnChange event
fires when focus from the field is lost. So, as soon as we tab out from a CRM field
by entering or selecting some value, our custom JavaScript code associated with the
OnChange event will fire.

This statement is not true for set value fields if they are formatted as a radio button
or checkbox. The OnChange event for these fields fires immediately instead of
executing after the focus is lost.

https://msdn.microsoft.com/en-us/library/gg509060.aspx

Client-side Logic with Microsoft Dynamics CRM 2015

[94]

Let's say we want to implement a validation on our proposed start and proposed end
dates in a training request entity form. We want to make sure that the user should
not select a proposed end date before a proposed start date. It should also validate
this when the user tries to change value from the proposed start date if the proposed
end date is available. We can add a new method in our common library as follows
for this validation. Perform the following steps to update the common.js library:

1.	 Click on Web Resources under Training Solution and double-click on
Common.js to open it.

2.	 Click on Text Editor to add the following method between the last method
and the __namespace: true line.
ValidateProposedDates: function(startDate, endDate) {
 var startDateValue = Xrm.Page.getAttribute(startDate).
getValue();
 var endDateValue = Xrm.Page.getAttribute(endDate).getValue();
 if (startDateValue > endDateValue) {
 alert("End Date Should be greater than Start Date")
 Xrm.Page.getAttribute(endDate).setValue(null);
 //Set focus on end date field
 Xrm.Page.getControl(endDate).setFocus();
 }
}

3.	 Save and Publish the web resource.
This method will take two parameters: startDate and endDate. This method
will also clear the value from the end date field and will set the focus on the
end date if validation fails. To call this method we need to create another
local web resource for the training request entity as for the client entity.
We can create a new JavaScript web resource and use the following code
to call this method:
//To validate dates
function ValidateProposedDates() {
 HIMBAP.CommonScripts.ValidateProposedDates
 ("him_proposedstart", "him_proposedend");
}

Once we have saved and published our web resource, we need to attach
both web resources to our training request entity form and call our
ValidateProposedDates method on the OnChange event handler for both
the him_proposedstart and him_proposedend fields. After attaching these
web resources to our training request entity form, it should look as follows:

Chapter 3

[95]

4.	 Save and publish the training request entity and form. Now, if we try to
select an end date smaller than the start date, we will get an alert:

Client-side Logic with Microsoft Dynamics CRM 2015

[96]

Control events
Apart from form and field events, there are specific control events that we can use for
implementing client-side logic. Following are the other common events.

TabStateChange
The TabStateChange event is associated with the display state of tab control, so it
fires when the tab control display state changes. We can use this event to control
fields and other controls such as loading the IFRAME control.

OnReadyStateComplete
This event is associated with the IFRAME control and occurs when the content of the
IFRAME is loaded fully.

PreSearch
This event is associated with lookup controls. We can utilize this to filter lookup
controls based on our specific requirements. We can't configure this event through
the UI; instead, we use addPreSearch and removePreSearch to associate our
JavaScript function with the PreSearch event.

We are using the contact entity in our training solution to represent multiple types
of record client contact (employee, trainer, and vendor) and we have trainer lookup
over the proposal entity form. By default, when we click on Trainer lookup it will
show all types of contact records:

Chapter 3

[97]

Let's say we want to filter this lookup to show only the trainer type of contact.
We can use the PreSearch event to filter this lookup. We can pass our custom
filter string to the addCustomFilter method. This filter string can be designed
by ourselves or we can utilize Advanced Find to get this filter. Advanced Find is
an out-of-the-box query engine that we can use to design our query criteria.
Once designed, we can execute this query to get the result and it can be also
exported as a FetchXML string.

Perform the following steps to design our query:

1.	 Click on the ADVANCED FIND button on the top navigation bar.
2.	 Select the Contact entity under the Look For drop-down and select [new]

in the Use Saved View: drop-down.
3.	 Select Contact Type in the field drop-down and make sure the Equals

operator is selected.
4.	 Select the Trainer option by clicking on the ellipses and click on Results.
5.	 Click on the Download Fetch XML button.

Client-side Logic with Microsoft Dynamics CRM 2015

[98]

6.	 Open the FetchXML file in any XML editor and copy the filter part.

Now we have our filter string to filter the trainer lookup control, so we can
add a new method in our common library and call the method from another
JavaScript web resource that we will create for the proposal entity.
FilterLookup: function(LookupControl, Filter) {
 Xrm.Page.getControl(LookupControl).addPreSearch(function() {
 Xrm.Page.getControl(LookupControl).
addCustomFilter(Filter);
 });

},

These methods will take two parameters: lookup control name and filter
string. After that we use the addPreSearch method to call the custom
method, which will use addCustomFilter to lookup the control. Once
this method is added to our common.js library, save and publish the
web resource.
Now we need to create another web resource for our proposal entity.
Use the following properties to set up a new JavaScript web resource
as we did earlier:

7.	 Click on Web Resources | New and enter the following properties:
Name: him_/Scripts/Proposal.js
Display Name: Common.js
Type: Script (JScript)

Chapter 3

[99]

8.	 Click on Text Editor and use the following code:
//to filter trainer lookup
function AddLookupFilter() {
 HIMBAP.CommonScripts.FilterLookup("him_trainer",
"<filter type='and'><condition attribute='new_contacttype'
operator='eq' value='100000001'/></filter>");
}

Now we need to associate our common.js and proposal.js library with
the proposal entity form. We will be calling our AddLookupFilter method
in OnLoad for the proposal entity form. After the web resource is added to
our form, when we click the Form Properties button under the entity editor
ribbon button, it should look like the following:

Client-side Logic with Microsoft Dynamics CRM 2015

[100]

After saving and publishing the proposal entity form, when we click on Trainer
lookup on the proposal form it will only show records where the contact type is
equal to trainer, as follows:

Using CRM web services in client-side
code
Apart from interacting with entity forms, fields, and controls, we can also use client
code to access the CRM database. This is especially necessary when we want to
fetch data from another related or non-related entity. We can work with CRM web
services using the client-side to get and post data to CRM. We have two endpoints
available to work with Microsoft Dynamics CRM 2015:

•	 OData
•	 Modern SOAP

OData
According to OData's official website (http://www.odata.org/)

"An open protocol to allow the creation and consumption of queryable and
interoperable RESTful APIs in a simple and standard way."

REST stands for Representational State Transfer, which is based on the principle
that everything is a resource and can be accessed by using a unique URI. OData can
use ATOM or JavaScript Object Notation (JSON) to send and receive data.

http://www.odata.org/

Chapter 3

[101]

ATOM is an XML language used for RSS feeds. We can use ATOM to access entity
records feeds. We can append EntitySchemanName + Set to an organization data
service to access specific entity record feeds. For example, for an account it will be
as follows:

Server URL /XRMServices/2011/OrganizationData.svc/AccountSet

We can find the organization service URL under Settings |
Customization | Developer Resources | Organization Data Service.

JSON is a lightweight data interchangeable format. We use JSON to serialize
JavaScript objects. We will be using JSON in our OData query samples.

We have to use the schema name of the entity and fields in
an OData query and we need to keep in mind that schema
names are case-sensitive.

OData query options
While writing an OData query, we can use different options. For example, we can
define filter criteria to retrieve records based on condition. We can use the following
options while writing our query.

$select
Using this option we can limit the number of columns returned from the entity. We
can define which specific columns we want to fetch instead of unnecessarily fetching
all the columns. The following is an example of using the $select option:

/AccountSet?$select=Name,Address1_City,Address1_Country

This statement will fetch Name,Address1_City,Address1_Country fields from the
account entity.

$filter
We can use this option to specify a conditional expression to fetch data. We can use
logical and conditional operators in our filter expression. The following are some
filter expressions:

Query Filter Syntax
Get proposal entity records based
on trainer lookup ID

/OpportunitySet?$filter=him_Trainer/
Id eq (guid'" + Trainer GUID + "')

Client-side Logic with Microsoft Dynamics CRM 2015

[102]

Query Filter Syntax
Get training request records where
state equals Himachal Pradesh

/LeadSet?$filter=StateFieldSchemaName
eq 'Himachal Pradesh'

Get contact records where contact
type is equal to trainer

/ContactSet?$filter=new_ContactType/
Value eq 100000001

To get client records where the
credit limit is greater than 50,000

/AccountSet?$filter=CreditLimit/Value
gt 50000

$top
This option is used to limit the number of records in the result set. For example,
if we just want to fetch the top 10 records from the account entity, we can use code
as follows:

/AccountSet?$top=10

OData returns 50 record per page; if we have more than 50 records
in our entity we need to use the Next link to return additional pages.
This is used to get the next page in the result set returned.

$orderby
This option is used to return results in a specific order such as ascending or
descending. If no order is specified externally it will return data in ascending
order. While writing an OData query we can specify one or more column names
under order by. For example, if we want to return client data in descending order
by name and city, we can write our statement as follows:

/AccountSet?$select=Address1_City,Name&$orderby=Name,Address1_City
desc

$skip
This option is used to skip some entries while fetching the result set. We can define a
number in this option and this is also used for paging results.

$expand
This option is used to fetch data from a related entity. To fetch related records
we require the relationship name that we can check under the relationship view.
The following is an example of fetching contact records related to an account:

/AccountSet?$expand=contact_customer_accounts

In the preceding query, contact_customer_accounts is the name of the
relationship between account and contact.

Chapter 3

[103]

We can get more details about OData query options from https://msdn.
microsoft.com/en-us/library/gg309461.aspx.

Working with organization data services
We can use organization data services via JavaScript, AJAX, and JQuery. We can
write our own custom JavaScript libraries to get data from CRM databases or we
can use existing libraries that come with Microsoft Dynamics CRM 2015 SDK.

Microsoft Dynamics CRM 2015 SDK comes with the SDK.REST.js library, which
contains all CRUD (create, retrieve, update, and delete) methods. We can upload
this library as a web resource and can consume it in our JavaScript methods. We
are going to write our own methods for consuming organization data services.

We can find SDK.REST.js in the SDK\SampleCode\JS\
RESTEndpoint\JavaScriptRESTDataOperations\
JavaScriptRESTDataOperations\Scripts location
in Microsoft Dynamics CRM 2015 SDK.

Let's take a common requirement to auto-populate fields in a child entity from
a parent entity based on parent entity lookup selection. Let's say we want to
auto-populate address information on a contact entity from a client based on the
Company Name selected in the contact record. To fulfill this requirement, we need
to consume organization data services to get data from the client entity based on
the client ID that we can get from the Company Name lookup on the contact entity
form. Let's first write a JavaScript function to get the client id from the company
name lookup.

//Get client details
function GetClientID() {
 if (Xrm.Page.getAttribute("parentcustomerid").getValue() != null)
{
 var clientID =
Xrm.Page.getAttribute("parentcustomerid").getValue()[0].id;
 PopulateAddressInformationBasedOnAccount(clientID);
 }
}

https://msdn.microsoft.com/en-us/library/gg309461.aspx
https://msdn.microsoft.com/en-us/library/gg309461.aspx

Client-side Logic with Microsoft Dynamics CRM 2015

[104]

In the preceding function, we are validating if the parentcustomerid field value
not equal to null and we are reading its value. The Lookup field represents an
array that contains three properties: ID, name, and entitytype. ID is the GUID of
the record, name is the value of name field in the record selected, and entitytype
represents the lookup source entity. Now we need to write our next function
PopulateAddressInformationBasedOnAccount where we will be passing our
client record ID.

function PopulateAddressInformationBasedOnAccount(clientID) {
 var clientUrl = Xrm.Page.context.getClientUrl();
 var odataPath = clientUrl + "/XRMServices/2011/OrganizationData.
svc/";
 //Make sure to use schema name
 var type = "AccountSet";
 var req = new XMLHttpRequest();
 req.open("GET", odataPath + type + "(guid'" + clientID + "')",
true);
 req.setRequestHeader("Accept", "application/json");
 req.setRequestHeader("Content-Type", "application/json;
charset=utf-8");
 req.onreadystatechange = function() {
 if (this.readyState == 4 /* complete */) {
 req.onreadystatechange = null;
 if (this.status == 200) {
 successCallback(JSON.parse(this.responseText).d);
 } else {
 alert("Error while fetching client data");
 }
 }
 };
 req.send();
}

In these methods we are using the getClientUrl method to get the server URL.
When retrieving data based on primary key fields we can use this syntax:

/EntitySchemaName+Set(guid'" +primaryid+ "')

You can also use the codeplex utility to write OData request:
https://crmrestbuilder.codeplex.com/.

https://crmrestbuilder.codeplex.com/

Chapter 3

[105]

Now we need to write our last method where we will be processing our result set.
You will notice here that, on the left-hand side we are using the logical name of the
entity form and on the right-hand side we are using the schema name of the field
because we use schema names in OData.

function successCallback(ResultSet) {
 Xrm.Page.getAttribute("address1_line1").setValue(ResultSet.Address
1_Line1 != null ? ResultSet.Address1_Line1 : null);
 Xrm.Page.getAttribute("address1_line2").setValue(ResultSet.Address
1_Line2 != null ? ResultSet.Address1_Line2 : null);
 Xrm.Page.getAttribute("address1_city").setValue(ResultSet.Address1
_City != null ? ResultSet.Address1_City : null);
 Xrm.Page.getAttribute("address1_country").setValue(ResultSet.Addre
ss1_Country != null ? ResultSet.Address1_Country : null);
 Xrm.Page.getAttribute("address1_stateorprovince").setValue(ResultS
et.Address1_StateOrProvience != null ?
ResultSet.Address1_StateOrProvience : null);
 Xrm.Page.getAttribute("address1_postalcode").setValue(ResultSet.Ad
dress1_PostalCode != null ? ResultSet.Address1_PostalCode : null);
}

Now we can create our web resource for the contact entity and paste the earlier
methods. We need to call our GetClientID method on the OnChange option of the
parentcustomerid field and it should look as follows:

Client-side Logic with Microsoft Dynamics CRM 2015

[106]

Once all our changes are saved and published when we select Company Name in
the contact entity form, it will populate address information from the selected client
in the contact form.

Modern SOAP
We can also use modern Simple Object Access Protocol (SOAP) endpoints to access
Microsoft Dynamics CRM 2015 data. In modern SOAP we use organization services
and all organization service methods can be implemented using modern SOAP.

SOAP is an XML-based protocol and it uses XML request and response for
communication. Similarly to REST.SDK.js, the modern SOAP.SDK.js can be
downloaded from https://code.msdn.microsoft.com/SdkSoapjs-9b51b99a.
We can use this library or can write our own SOAP requests.

Microsoft Dynamics CRM 2015 SDK comes with the SOAPLogger utility, which
can be used to convert server-side code to a SOAP request. This is a .net console
application, so we need Visual Studio 2010 or later with .Net 4.5.2 to work with
this utility. We are going to demonstrate how we can use this utility to write
SOAP requests.

Let's say we want to write our earlier example using a SOAP request; perform the
following steps to create a SOAP request using SOAPLogger:

1.	 Navigate to SDK\SampleCode\CS\Client\SOAPLogger and open the
solution file.

2.	 Open the SOAPLogger.cs file and navigate to the Run method; we need
to paste our code in the using block.

https://code.msdn.microsoft.com/SdkSoapjs-9b51b99a

Chapter 3

[107]

3.	 We need to paste the following code here:
Guid accountID = new Guid("8F029291-F0B9-E411-80DB-
C4346BADB590");
Entity _account = slos.Retrieve("account", accountID, new
ColumnSet(new string[] { "name", "address1_line1",
"address1_line2", "address1_city", "address1_country",
"address1_postalcode", "address1_sateorprovince"}));

In this code we need to pass the GUID of the account record. We can get the account
ID in different ways. One is to select the client account and use the Copy a Link
option from the account view.

When prompted, select Allow access for clipboard prompt. Open any text editor
and copy the GUID part as follows:

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Client-side Logic with Microsoft Dynamics CRM 2015

[108]

We are using the Retrieve method for organization web services; we will be
working on organization web services in detail in later chapters. The Retrieve
method is used to fetch data based in the primary key.

1.	 Build SOAPLogger and run it.
2.	 It will ask for your server and credentials as follows:

3.	 After executing the application it will write an equivalent SOAP request in
SDK\SampleCode\CS\Client\SOAPLogger\SOAPLogger\bin\Debug.

4.	 Copy the complete SOAP envelope as follows:
<s:Envelope xmlns:s="http://schemas.xmlsoap.org/SOAP/envelope/">
 <s:Body>
 <Retrieve xmlns="http://schemas.microsoft.com/xrm/2011/
Contracts/Services" xmlns:i="http://www.w3.org/2001/XMLSchema-
instance">
 <entityName>account</entityName>
 <id>8f029291-f0b9-e411-80db-c4346badb590</id>
 <columnSet xmlns:a="http://schemas.microsoft.com/
xrm/2011/Contracts">
 <a:AllColumns>false</a:AllColumns>
 <a:Columns xmlns:b="http://schemas.microsoft.
com/2003/10/Serialization/Arrays">
 <b:string>name</b:string>
 <b:string>address1_line1</b:string>
 <b:string>address1_line2</b:string>
 <b:string>address1_city</b:string>
 <b:string>address1_country</b:string>
 <b:string>address1_postalcode</b:string>
 <b:string>address1_stateorprovince</b:string>
 </a:Columns>
 </columnSet>
 </Retrieve>
 </s:Body>
</s:Envelope>

Chapter 3

[109]

5.	 Now we need to prepare the SOAP request and send it as follows:
function GetClientInformation() {
 //get client id
 var id = Xrm.Page.getAttribute("parentcustomerid").getValue()
[0].id;
 var clientUrl = Xrm.Page.context.getClientUrl();
 //set organization service URL
 var ServiceURL = clientUrl + "/XRMServices/2011/Organization.
svc/Web";
 var requestMain = ""
 requestMain += "<s:Envelope xmlns:s=\"http://schemas.xmlsoap.
org/SOAP/envelope/\">";
 requestMain += " <s:Body>";
 requestMain += " <Retrieve xmlns=\"http://schemas.
microsoft.com/xrm/2011/Contracts/Services\" xmlns:i=\"http://www.
w3.org/2001/XMLSchema-instance\">";
 requestMain += " <entityName>account</entityName>";
 requestMain += " <id>" + id + "</id>";
 requestMain += " <columnSet xmlns:a=\"http://schemas.
microsoft.com/xrm/2011/Contracts\">";
 requestMain += " <a:AllColumns>false</a:AllColumns>";
 requestMain += " <a:Columns xmlns:b=\"http://schemas.
microsoft.com/2003/10/Serialization/Arrays\">";
 requestMain += " <b:string>name</b:string>";
 requestMain += " <b:string>address1_line1</
b:string>";
 requestMain += " <b:string>address1_line2</
b:string>";
 requestMain += " <b:string>address1_city</b:string>";
 requestMain += " <b:string>address1_country</
b:string>";
 requestMain += " <b:string>address1_postalcode</
b:string>";
 requestMain += " <b:string>address1_stateorprovince</
b:string>";
 requestMain += " </a:Columns>";
 requestMain += " </columnSet>";
 requestMain += " </Retrieve>";
 requestMain += " </s:Body>";
 requestMain += "</s:Envelope>";
 var req = new XMLHttpRequest();
 req.open("POST", ServiceURL, true)
 // Responses will return XML. It isn't possible to return
JSON.
 req.setRequestHeader("Accept", "application/xml, text/xml,
/");
 req.setRequestHeader("Content-Type", "text/xml;
charset=utf-8");

Client-side Logic with Microsoft Dynamics CRM 2015

[110]

 req.setRequestHeader("SOAPAction", "http://schemas.microsoft.
com/xrm/2011/Contracts/Services/IOrganizationService/Retrieve");
 req.onreadystatechange = function() {
 successCallback(req);
 };
 req.send(requestMain);
}

In the preceding methods, first we get the selected client ID record and
then prepare the service URL. You will notice that this time we are using
the organization service URL instead of the organization data service
URL, because we are writing a SOAP request. Now we need to write our
successCallBack method where will process the result set. We need to
use the following code:
function successCallback(req) {
 //if request is execution completed
 if (req.readyState == 4) {
 //if status is OK
 if (req.status == 200) {
 //load data in xml document object
 var xmlDoc = new ActiveXObject("Microsoft.XMLDOM");
 xmlDoc.async = "false";
 xmlDoc.loadXML(req.responseXML.xml);
 var KeyValuePairs = xmlDoc.getElementsByTagName("a:Key
ValuePairOfstringanyType");

 //clear address fields
 Xrm.Page.getAttribute("address1_line1").
setValue(null);
 Xrm.Page.getAttribute("address1_line2").
setValue(null);
 Xrm.Page.getAttribute("address1_city").setValue(null);
 Xrm.Page.getAttribute("address1_stateorprovince").
setValue(null);
 Xrm.Page.getAttribute("address1_postalcode").
setValue(null);
 //traverse resultset
 for (i = 0; i < KeyValuePairs.length; i++) {
 //compare address fields and get corresponding
value
 if (KeyValuePairs[i].childNodes[0].text ==
"address1_line1")
 Xrm.Page.getAttribute("address1_line1").
setValue(KeyValuePairs[i].childNodes[1].text);
 if (KeyValuePairs[i].childNodes[0].text ==
"address1_line2")
 Xrm.Page.getAttribute("address1_line2").
setValue(KeyValuePairs[i].childNodes[1].text);

Chapter 3

[111]

 if (KeyValuePairs[i].childNodes[0].text ==
"address1_city")
 Xrm.Page.getAttribute("address1_city").
setValue(KeyValuePairs[i].childNodes[1].text);
 if (KeyValuePairs[i].childNodes[0].text ==
"address1_stateorprovince")
 Xrm.Page.getAttribute("address1_
stateorprovince").setValue(KeyValuePairs[i].childNodes[1].text);
 if (KeyValuePairs[i].childNodes[0].text ==
"address1_postalcode")
 Xrm.Page.getAttribute("address1_postalcode").
setValue(KeyValuePairs[i].childNodes[1].text);
 }
 } else {
 alert("Error while retrieving client record");
 }
 }
}

6.	 Now we can create the JavaScript web resource and can paste our earlier
code there.

7.	 Attach the web resource to the contact form and call GetClientInformation
OnChange in the parentcustomerid field in the contact entity.

8.	 Save and Publish changes.

Client-side Logic with Microsoft Dynamics CRM 2015

[112]

You can also use SOAP.SDK.js to work with modern
SOAP endpoints. You can find it here at http://code.
msdn.microsoft.com/SdkSoapjs-9b51b99a.

OData versus Modern SOAP
We can use both endpoints to get data from Microsoft Dynamics CRM 2015
databases. Although SOAP supports more methods, OData is easy to develop with.
The following table shows the differences between OData and Modern SOAP:

OData Modern SOAP
Only supports CURD, Associate and
Disassociate methods

Supports all methods

Can't access metadata Metadata can be accessed
Returns 50 records per page Returns 5,000 records per page
Schema names used for entities and fields
while writing queries

Logical names used while writing queries

Easy to write and provides a better
development experience

Comparatively hard to write

Understanding business rules
Business rules help us to implement business logic without any coding requirement.
System administrators or business users can use the out-of-the-box business rule
designer to design business specific validations in a declarative manner.

Business rules were initially released in Microsoft Dynamics CRM 2013, but we got
new enhancements in Microsoft Dynamics CRM 2015. Business rules can be used for
simply setting default value or doing complex calculations using formulas. While
creating a business rule, we can define its scope. We have the flexibility of applying
business rules to specific entity forms or all entity forms (if we are using multiple
entity forms).

http://code.msdn.microsoft.com/SdkSoapjs-9b51b99a
http://code.msdn.microsoft.com/SdkSoapjs-9b51b99a

Chapter 3

[113]

Business rules are portable so we can take them from one environment to another.
When we include our entity in the solution, business rules are also included in it.
We can create business rules from different places such as from entity forms, field
property forms, and entity trees.

While creating business rules we will be getting the business rule designer
as follows, where we can define conditions and their corresponding actions.
We can use the Scope drop-down to select options for our business rule scope.

Business rules can be applied to quick create forms specifically;
when the business rule scope is selected as All Forms, it is also
applied on quick create forms.

Client-side Logic with Microsoft Dynamics CRM 2015

[114]

Business rules can be only applied to entity fields, currently we can't use business rules
for other controls. Microsoft Dynamics CRM 2015 allow us to write both server-side
and client-side business rules. We will be discussing more on this in later topic. Client-
side business rules are executed on OnChange of the field and OnLoad of entity form.

A client-side business rule will only be executed if the field
is available on entity forms.

Chapter 3

[115]

Actions in business rules
We can use business rules for different requirements. Following are the six business
rule actions that we can use for applying business validations.

Showing error messages
We can show an error message using a business rule when any business-specific
validations fails. Let's take an example in our training solution: the Job Title field
should be completed by the user if Contact Type is employee. We can design our
business rule like following to display an error message on the Job Title field:

Once activated, it will show an error message as follows if the Job Title is blank
for an employee.

Client-side Logic with Microsoft Dynamics CRM 2015

[116]

Setting business requirements
We can also send business requirements using business rules. It may be that, if a
specific field is selected, we dynamically want to make some another field required.
For instance, in the previous example we can add another action to make the Job
Title field required. But we also need to remove the requirement level if Contact
Type is not Employee as follows:

Now it will also show an error message and will remove the requirement level if
Contact Type is not Employee or Job Title is completed by the user.

Setting field values
Business rules also contain actions for setting field values. To set a field value we
can utilize three options—value, field, or formula—based on the field datatype.
We can assign specific values to the target field or we can select a field option to
copy another similar datatype field value to the target field. We can set values
using the following options:

Chapter 3

[117]

Setting visibility
Now we don't need to write JavaScript to hide the field; we can use business rules to
set the visibility of the field based on a condition.

Setting default values
Another new enhancement was added in Microsoft Dynamics CRM 2015 to business
rules. We can use business rules to set up default values when a record is created. For
example you may want to set a pricelist as the default. Keep in mind, while you are
deploying business rules from one environment to another, that the default lookup
will only work if a source record exists in the target system with the same GUID.

You can import data in Microsoft Dynamics CRM 2015 from one
environment to another and can keep the same record GUID.

Client-side Logic with Microsoft Dynamics CRM 2015

[118]

Locking or unlocking fields
This option is used to disable or enabled a field based on a condition.

Showing error messages and setting value actions can't be used
without conditions.

Server-side versus client-side business rules
Initially, business rules were only available to run on the client-side, but Microsoft
Dynamics CRM 2015 added the ability to run business rules on the server-side as
well. If business rules are activated using the Entity scope they are executed on both
the server-side and client-side.

For example if we have created a business rule to set up some fields and activated
our business rule using the Entity option, it will be executed when we try to create
a record using the CRM SDK or through any other server-side process.

When any business rule scope is set to Entity and an entity record is created or
edited using entity forms, the business rule will be executed twice, the first time
on the client and the second time on the server. Because of this, CRM won't allow
us to create a circular reference to the field if the business scope is Entity.

Chapter 3

[119]

For example, in the preceding example we are using the Annual Revenue field on
both sides and the scope of the business rule is Entity. This will double the value
of the Annual Revenue field, so CRM won't allow us to activate this business rule.
When we try to activate this rule, it will show an error as follows:

Summary
In this chapter we learned about the Microsoft Dynamics CRM 2015 client-side model.
We learned about creating different web resources and using them in entity forms. We
discussed the Xrm.Page object mode and its object methods. We discussed how can we
consume OData endpoints and SOAP endpoints to get Microsoft Dynamics CRM 2015
data using the client-side. We also discussed business rules and new enhancements
in Microsoft Dynamics CRM 2015. In the next chapter, we are going to create a new
sample application for library management using Microsoft Dynamics CRM 2015.

Chapter 4

[121]

Working with Processes
Microsoft Dynamics CRM 2015 provides different automation options to automate
business-specific processes. In this chapter we are going to learn about processes
and their use. We will be discussing different processes and new enhancements to
them. We are going to create a new sample application for library management.
We will demonstrate how we can leverage CRM 2015 processes to automate library
management activities. Following are the topics that we are going to discuss in
this chapter:

•	 Understanding processes
•	 Building library management solutions
•	 Understanding business process flow
•	 Understanding workflows
•	 Creating asynchronous workflows
•	 Creating synchronous workflows
•	 Understanding dialogs
•	 Understanding actions
•	 Business process flows versus workflows, dialogs, and actions
•	 Testing library management solutions

Working with Processes

[122]

Understanding processes
Automation is a critical requirement for any business application. Every business
has predefined business activities that they want to automate. Microsoft Dynamics
CRM 2015 helps us to automate our business-specific requirements using different
types of processes.

Workflows are based on a Windows Workflow Foundation (WF) framework; this
provides the required framework for writing workflows. It basically includes the
run time engine, which is responsible for the overall process execution.

Refer to https://msdn.microsoft.com/en-us/library/
versustudio/ms734631%28v=versus.90%29.aspx for more
details on Windows Workflow Foundation.

Workflow can be set up as synchronous or asynchronous. Asynchronous processes
help us to run our automation in the background. Asynchronous processes work
with the asynchronous queue manager, which is responsible for the execution of
asynchronous processes based on event execution order. They can be executed
after a short delay or can take longer to execute, depending on the number of
asynchronous processes in the queue manager.

Synchronous processes do not execute in the background; instead they are
executed instantly. If you are looking for instant results, you should consider using
synchronous processes for implementing your automations. We can use workflows,
dialogs, and actions for implementing synchronous processes in Microsoft Dynamics
CRM 2015.

https://msdn.microsoft.com/en-us/library/versustudio/ms734631%28v=versus.90%29.aspx
https://msdn.microsoft.com/en-us/library/versustudio/ms734631%28v=versus.90%29.aspx

Chapter 4

[123]

Dialogs provide the flexibility to execute processes with user interaction. During
execution we can take some input and provide output to the user if required. These
processes are always synchronous in nature.

Business process flows are graphical representations of our process that help us to
track the status of our process at different levels. We can also use branching logic to
change business processes based on some user input.

Actions are a way of defining our custom events like out-of-the-box events; then we
can call them using client-side code or server-side code. We can also register our
custom logic on these events. We will be discussing actions in a later chapter.

Building a library management solution
We will be building a library management system solution in this chapter, where
we will utilize our out-of-the-box entities such as Contact and System User and will
also create custom entities to map different requirements of the library management
system. We will be utilizing different processes to automate our requirements. We
will be implementing the following functionality in our solution:

•	 Maintaining records of members, books, and book issue/return details
•	 Automating processes to generate an auto ID for books, members, and for

book issue/return
•	 Providing interactive ways to check the book inventory before issuing books
•	 Maintaining the book inventory at the time of book issue/return
•	 Setting default values for specific fields

Library management solution design
We will be customizing some of the existing entities and will be creating new custom
entities. The following table shows the entities and their mapping information:

Name Mapped With Description
Contact Member To store library user information
Book Custom entity To store book details
Book issue Custom entity To store issue and return details
Auto number configuration Custom entity To store details about auto numbering
Employee User To store employee details

Working with Processes

[124]

Let's first create our solution by following these steps:

1.	 Navigate to Settings | Solutions | New from the top navigation bar.
2.	 Enter the following solution properties and click on Save:

Display Name: Library Management
Name: TrainingSolution (it will be filled automatically, after tabbing out
from the display name field)
Publisher: HIMBAP
Version: 7.0.1.128

We need to set up HIMBAP publisher first; please follow the steps in
the Creating publisher section in Chapter 2, Customizing Microsoft Dynamics
CRM 2015.

Adding components to solution
Let's add our existing entities to the solution so that we can keep our customization
in a separate solution and export it easily. We need to add the Contact and User
entities to our solution. We can follow these steps to do this:

1.	 Select Entities and click on the Add Existing button.
2.	 Select the Contact and User entities and click on OK.
3.	 Select the No, do not include required components option under the

Missing Required Components dialog and click on OK.

Customizing entities
Let's first rename our existing entities, views and other places. We
can follow the same approach that we used in Chapter 2, Customizing
Microsoft Dynamics CRM 2015 in the Renaming entities section to
rename entities using translations. Please follow the same steps to
rename entities based on the following screens.

Chapter 4

[125]

After renaming the entities, let's create our custom entities. We need to create three
custom entities: book, book issue, and auto number configuration. We will use
the book issue entity to store book issues and return details. In the auto number
configuration entity we will store configuration about the auto number setup for
the book and member entities.

Customizing member entity
We are using the contact entity to store library member information. We will be
reusing all the out-of-the-box fields of the contact entity. We will just be customizing
the Main Form and Member Card quick view forms. Follow these steps to customize
the member entity form:

1.	 Navigate to Entities | Member | Forms under our library solution and
double-click on the Main Form.

2.	 We need to rearrange fields based on the following design:

3.	 Click on the Save and Close button on the entity editor command bar.

Working with Processes

[126]

We also need to modify the Member Card form; we will be using this form in our
book issue/return entity. Double-click on the Member Card form and rearrange
the fields as follows; then click on the Save and Close button. After that we need to
publish the member entity.

Creating a custom entity
We can create a custom entity in Microsoft Dynamics CRM 2015 to map our custom
business requirements. But it always recommended to consider using out-of-the-box
entities before a creating custom entity. Custom entities can be created as a standard
custom entity or activity type custom entity. A standard custom entity is similar to
an out-of-the-box business entity such as account, contact, lead, and opportunity.
When custom entities are created, the system creates some default attributes and
views. We can't delete these attributes such as createdon and modifiedon and
views such as lookup and associated views but we can further customize entities
and can add custom attributes and custom views if required.

While creating a standard custom entity we have the option to set up ownership
as User or Team or Organizations. By default our custom entity is available only
for the System Administrator role so we need to configure individual security roles
to provide access to our custom entity. We can configure them under the Custom
Entities tab in security role editor.

Chapter 4

[127]

We can also configure the Managed Property of a custom entity to restrict
customization on it when exported as part of Managed Solution.

Custom activity type entities are similar to existing activity entities such as e-mail,
task, phone call, and others. When we create a custom activity type entity some
standard activity-related fields are created such as actualstart and actualend,
subject, duration, scheduledon, to, from, bcc, cc and others. In the
custom activity type entity we always have the subject as the primary field; we can't
change it.

Actually, all of the activity type entities are connected to one special type of system
entity called ActivityPointer, which provides common activity fields and views. We
can only set ownership of the custom activity type entity as Organizations; if we
try to create a custom entity with organization ownership, we will get the error "A
custom entity defined as an activity must be user or team owned". All activity type
entities share the same set of privileges, so we can't configure individual custom
activity type entity privileges. When a custom activity type entity is created it is
available to other users who have access to other existing activity type entities.

While creating an entity we need to configure the following areas.

Entity definition
This section stores basic entity definition details such as the display name of the
entity; based on the display name, the logical name is auto-populated. It also has
a field to select a primary image. To set the primary image first we need to create
image type attributes in our entity and then we can update this field. In the entity
definition we can select if we want to create a standard or activity type entity.

Working with Processes

[128]

A prefix key word based on the publisher selected is prefixed before
the entity name for custom entities.

We need to also define ownership of the entity, which helps us to implement security
requirements. We have the two following options:

•	 User or team
•	 Organization

When an entity is created with ownership as User or Team, an additional field
is added to handle ownership for the team and user. We also have the option
to set privileges using five access levels: none, user, business unit, parent child
business unit, and organization. But when an entity is created with ownership as
Organization, we can set two access levels: none or organization.

Let's look at the different levels in the preceding image:

•	 Organization: Using this access level, data from a complete organization can
be accessed

•	 Parent Child Business Unit: Using this access level, data from current and
child business units can be accessed

Chapter 4

[129]

•	 Business Unit: Using this access level, data from the current business can
be accessed

•	 User: Using this access level, data created by the user, shared to that user,
and assigned to that user can be accessed

•	 None: Using this access level, no data access is available

You can refer to https://msdn.microsoft.
com/en-us/library/gg334717.aspx for more
details on access levels.

Areas that display this entity
Under this section we can select in which module we want to show our entity. We
can select any individual module or select all modules if we want to show our entity
in all modules.

Process
Under this section we can configure if we want to use business process flows for our
entity. We will be discussing business process flows in detail in later topics. If this
option is selected, a different process field is created. Once this option is selected it
can't be disabled.

Communication and collaboration
Under this section we can configure different options used for different communication
methods such as Activities, Notes, Sending e-mails. and other options.

Setting Description
Notes (includes
attachments) +

Enabling this options allows us to add notes using the free text area to
entity records; we can also attach documents using this option

Activities + Enabling this options allows to create different types of activity record
(such as e-mail, task, and phone call) for entity records

Connections + When this option is enabled it allows us to relate entity records with
other entity records

https://msdn.microsoft.com/en-us/library/gg334717.aspx
https://msdn.microsoft.com/en-us/library/gg334717.aspx

Working with Processes

[130]

Setting Description
Sending e-mail Allows us to send direct e-mails to entity records; enabling this option

creates one e-mail field if it is not already created for the entity
Mail merge If enabled this entity can be used in mail merges
Document
management

Allows us to store documents related to the entity in SharePoint.
To enable SharePoint integration refer to: https://technet.
microsoft.com/en-us/library/dn531154.aspx

Access Teams To enable this entity for access teams
Queues + To enable this entity for queue management

All the options with a + sign can't be disabled once they are enabled, so we can leave
these options and enable them later, if required.

Data services
Under this section we can select if we want to use quick create forms for our custom
entity. Even if we created a quick created form, the form won't be listed in the
quick create bar unless this option is not selected. We can also enable the duplicate
detection and auditing features from this section.

Outlook and mobile
This section allows us to enable our entity for Outlook and mobile clients. We can
also enable the entity for CRM for tablet clients as well.

https://technet.microsoft.com/en-us/library/dn531154.aspx
https://technet.microsoft.com/en-us/library/dn531154.aspx

Chapter 4

[131]

Now let's create our custom entity; we need to navigate to our library management
solution and follow these steps to create our custom entity.

1.	 Navigate to Entities under our solution and select the New option.
2.	 Enter the following properties:

Display Name: Book Issue/Return
Plural Name: Book Issue/Return
Name: him_bookissue
Ownership: User or Team
Areas that display this entity: Sales
Business process flows: Selected
Notes: Selected
Activities: Deselected

3.	 Keep all other options as defaults and click on the Save button.

Now we need to set up a data structure for the entity. Please refer to Appendix A,
Data Model for Client Entities and Appendix B, Data Model for Account Entities setup
field for our entity.

Form design
Once our data structure is set up, we need to customize the Main Form of the entity
and place the field over the form. Use the following steps to customize the form:

1.	 Navigate to Entities | Book Issue/Return | Forms under our library solution
and double-click on the Main Form.

2.	 Double-click on the Header tab to activate it and drag the following fields
from Field Explorer to the Header tab:
Book Issue ID
Issue To
Issue On
Returned Date

3.	 Double-click on the body area to activate it and rename the General section
to Details.

Working with Processes

[132]

4.	 Select the Details section and click on Quick View Form under INSERT.
5.	 Select the quick view properties as follows and click on Ok. After that we

need to save and publish our changes.

We need to add another quick view for book information based on the book lookup.
We will design that view while creating the book entity.

Creating entity views
Views are basically a list of records for a specific entity. For example if we navigate
to the account entity we will see the default public view My Active Accounts, which
basically display a list of records that include records owned by current user and
records assigned to current user. We can customize views and change their different
properties based on requirements such as columns, sorting records based on specific
fields, and changing view filter criteria, and so on.

We can configure sorting for any view up two fields from the
primary entity only.

Chapter 4

[133]

When we create a new custom entity, different system and public views are created
automatically. The following is a list of the views for the book issue /return entity.

•	 Active Book Issue: This is the default view of the book issue entity. Every
entity contains one default public view that is available when we try to access
that entity record.

•	 Book Issue Advance Find View: This view is presented when users try to
search records based on different conditions under the advanced find view.

•	 Book Issue Associated View: This view is available in the parent entity
record and used to show all related child records under parent entity records.
For example if the A and B entities are related with a 1:N relationship then
the associated view will be available under entity A to show all related B
entity records.

•	 Book Issue Lookup View: This view is associated with the lookup field and
presented when the lookup field is clicked. This view lists all the records that
can be associated with the target entity.

•	 Inactive Book Issue: This view display all the disabled records of the entity.
•	 Quick Find Active Book Issue: As the name suggest, this view is used to

find quick records based on the field configured under find columns.

Let's set up two views, Issues Books and Returned Books, for our entity. Perform the
following steps to set up the views:

1.	 Navigate to Entities | Book Issue/Return | Views under our library solution
and click on the New button.

2.	 Enter the following properties and click on OK:
Name: Issued Books
Description: View for issued books

Working with Processes

[134]

3.	 Click on Add Columns and add the following fields:
Book
Book Category
Issued On
Issued To
Status

4.	 Click on Edit Filter Criteria to add a condition as follows and click on OK:

5.	 Click on the Save and Close button.
6.	 Repeat the preceding steps to set up another view with the name

Returned Book.
7.	 Configure criteria to check the status is equal to Returned with the

following fields:
Book
Book Category
Issued On
Issued To
Returned Date
Status

8.	 Click on Publish All Customization to publish changes.

In a similar way we can also customize existing views to add the preceding columns
to them.

Creating book entity
We need to follow the preceding steps and create our book entity to store book
information. Use the following information to create the book entity and keep
the other settings at their defaults:

Title Value
Display name Book
Plural name Books

Chapter 4

[135]

Title Value
Name him_book
Area Sales
Communication and collaboration, Data
services, Outlook and mobile, Help

Deselect all options

Once the entity is created we need to refer Appendix A, Data Model for Client Entities and
Appendix B, Data Model for Account Entities to create data structure for book entity.

Form design
After setting up the data structure we need to place book entity fields into the main
form as follows:

1.	 Double-click on the Book# field, select Field is read-only under Field
Behavior, and click on OK.

2.	 Double-click on the Autoid field and deselect the Visible by default option.
3.	 Save and publish your changes.

Creating an auto number configuration entity
We need to set up another custom entity to store auto number configuration details.
Use the following details to set up this entity just like we set up our previous entity.

Title Value
Display name Auto number configuration
Plural name Auto number configurations

Working with Processes

[136]

Title Value
Name him_autonumberconfiguration
Area Settings
Communication and collaboration, Data
services, Outlook and mobile, Help

Deselect all options

Setting a relationship with the member and book entities
We want to implement auto numbering functionality in the member and book
entities to set a unique identification number for both of these entities records.
For that we need to set up a N:1 relationship between the member, book, and auto
number configuration entities. Perform the following steps to set up the relationship:

1.	 Navigate to Entities | Auto Number Configuration | 1:N Relationships.
2.	 Click on New 1-to-Many Relationship and enter the Relationship

Definition and Lookup Field properties as follows (and keep the other
details as defaults):

3.	 Click on Save and Close.
4.	 Repeat step 2 to set up a 1:N relationship with Book and enter Relationship

Definition and Look Field properties as follows (and keep the other details
as defaults):

Chapter 4

[137]

5.	 Click on Save and Close and click on Publish All Customization to publish
our changes.

A new him_autoid field will be created in member and
book entity, we need to place this field over member
and book entity form, we will be using this field while
creating workflow.

Understanding business process flow
Business processes are a very critical part of any business application. Business
process flow is one of the business process implementation tools in CRM 2015 that
allows us to implement different kinds of processes with different stages. So we can
divide our processes into small stages such as qualify, develop, process, and close.
We can enable business processes for system entities as well as for custom entities.
The following screenshot displays the out-of-the-box Lead to Opportunity Sales
Process; this process is enabled by default for the lead entity.

Working with Processes

[138]

Microsoft Dynamics CRM 2015 comes with three out-of-the-box business process:

•	 Lead to Opportunity Sales Process
•	 Opportunity Sales Process
•	 Phone to Case Process

But we can also design our own custom business process flow. Business process
flow is designed by using the out-of-the-box process designer. We can navigate to
Settings | Process | New and select Business Process Flow as a category to create a
new business process flow. We can only create a business process flow for an entity if
the Business Process Flow option is selected under the entity definition.

As soon as this option is enabled for an entity, CRM creates two fields named
Process Id (to store the unique business process flow GUID) and Stage Id (to store
the unique business process stage GUID). Currently we can create a new business
process flow for 27 system entities and our custom entities. CRM allows us to
create an unlimited number of business processes but we can only activate up to 10
business process flows per entity. We can also create multi-entity business process
flows where more than one entity will be used in the business process flow; for
example the Lead to Opportunity Sales Process is a multi-entity business process
flow that will start from lead and will be redirected to opportunity once lead is
qualified. We can use a maximum of five entities per business process flow.

You can get a list of system entities enabled for business process
flow from: https://technet.microsoft.com/en-us/
library/dn531164.aspx.

Business process flow is designed by using the out-of-the-box process designer;
we can navigate to Settings | Process | New and select Business Process Flow
as a category.

https://technet.microsoft.com/en-us/library/dn531164.aspx
https://technet.microsoft.com/en-us/library/dn531164.aspx

Chapter 4

[139]

Using stages
Every business process flow consists of one or more stages, which logically divide
our business process flow into different sub processes. We can create up to 30 stages
per entity.

Every stage contains a set of fields that should be considered before moving on to the
next stage. We can also make them required just like other entity form fields. Using
these stages we can easily identify the current status of the business process flow.

Using branching logic
New enhancements in business process flow now allow us to use branching in the
business process flow to jump from one stage to another based on criteria. While
designing business process flows, we can define criteria to change the stage. We can
also use branching to change the stage from one entity to another entity using a 1:N
relationship. So, for example, in the following screen based on the Relationship Type
selection, we can jump to a different state where the main entity is Appointment.

Working with Processes

[140]

Controlling and ordering business process
flows
If we have designed multiple business process flows for an entity, we can control
their order using the Order Process Flow command button and select which process
will be visible to the user first. We can also control the visibility of the business
process flow by associating a security role with the business process flow; for
example we can enable one business process flow for a sales person and another
for a sales manager.

We can change business process flow using the Switch Process
button available under the more commands (…) option in the
entity record command bar.

Creating business process flow
Now we have an understanding of business process flows, so let's set one up for
our book issue/return entity, so that we can manage the issue and return process.
Perform the following steps to create a business process flow:

1.	 Navigate to Components | Processes | New in our solution.
2.	 Enter the following properties and click on OK:

Process name: Book Issue Return Process
Category: Business Process Flow
Entity: Book Issue/Return
Type: New blank process

Chapter 4

[141]

3.	 Enter Issue Book under Stage Name and click on Select to enter a data field
under Value to select entity fields. We need to select the following fields:

4.	 Click on the Add branch link and enter the following condition:

5.	 Set the Return stage based on the following screenshot:

6.	 Click on the Save button and then the Activate button.

Working with Processes

[142]

Now, when we try to create a book issue/return record, our form should look like
the following screenshot:

Understanding workflows
As discussed earlier, we can create two types of workflow: asynchronous and
synchronous. Asynchronous workflows are best suited for long-running jobs such
as sending bulk e-mails and long-running business logic whereas synchronous
workflows are most applicable where we want to run our logic quickly.

The following screenshot shows the asynchronous workflow editor:

While creating workflows, we need to configure the different properties shown
below that define workflow behavior.

Chapter 4

[143]

Activating workflow
Workflows can be activated using the following two options:

•	 Process: Used to activate workflows as a standard process
•	 Process Template: Used to activate workflows as templates. so that they can

be reused to create similar workflows

Available to run
While creating a workflow we can define the workflow execution option. We can
select the Run this workflow in the background (recommended) option if we want
to create an asynchronous workflow. This option is deselected for synchronous
workflows. Workflow can be initiated manually if the As an on-demand process
option is selected. We can also call a workflow from another workflow if the As a
child process option is selected.

Workflow job retention
This property is very important for cleaning all completed workflows jobs from
the CRM database. We can select Automatically delete completed workflow jobs
(to save disk space) to delete completed system jobs.

Automatic execution events
We have the following different events to start our workflow with automatically:

•	 Record is created: This event is used to execute the workflow when an entity
record is created.

•	 Record status change: This event is used to execute the workflow as a
record's status is changed—for example, active to inactive.

•	 Record is assigned: This event is initiated when an entity record is assigned
a user or team.

Working with Processes

[144]

•	 Record fields change: This option help us to execute workflows when
selected fields are updated.

•	 Record is deleted: This event is used to execute workflow when an entity
record is deleted.

Workflow scope
Workflow scope defines the target record set on which a workflow can be executed.
Following are the scope options available for workflows:

•	 User: If set to this option only records owned by the user will be affected
by the workflow

•	 Business Unit: If set to this option records owned by the user's business unit
will be affected by the workflow

•	 Parent Child Business Unit: If set to this option records will be affected by
workflows from the user's business unit as well as child business units

•	 Organization: If set to this option all organization records will be affected
by the workflow

The preceding scopes are similar to the access level that we discussed in the Entity
Definition topic while creating a custom entity.

Creating asynchronous workflows
Let's say we want to implement a simple book inventory update; when a book is
issued, we need to decrease the quantity on hand field in the associated book record
by 1 and when a book is returned we need to increase the quantity on hand by 1.

Chapter 4

[145]

We can do this using a workflow, so perform the following steps to create one:

1.	 Navigate to Components | Process | New.
2.	 Enter the following properties and click on OK:

Process name: Update Book Inventory
Category: Workflow
Entity: Book Issue/Return
Keep New blank process option selected
Keep Run this workflow in background option selected

3.	 Select the Record is created and Record fields change options, click on the
Select button, and select the him_status field from available fields.

4.	 Click on the Add Step drop-down and select Check Condition, click on
Click to configure for the hyperlink.

5.	 Add a condition such as the following by selecting the corresponding option
from the select drop-down and click on Save and Close.

6.	 Click on Select this row, click Add Step line, and select Update Record
under the Add Step drop-down. We need to select Book under the Update
drop-down button and need to click on the Set Properties button.

7.	 Select the Quantity On Hand field and select the following properties from
Form Assistant. Then click on OK and Save and Close:
Operator: Decrement by
Default value: 1

8.	 Select the if condition block and select Default Action under Add Step,
click on Click to configure for the hyperlink.

9.	 Follow step 5 to check the condition as follows:

Working with Processes

[146]

10.	 Follow steps 6 and 7, with the following properties from the Form Assistant:

Operator: Increment by
Default value: 1

After all these steps, our workflow should look like following screen:

When the book is issued or returned, the preceding workflow will update the
quantity on hand value accordingly.

Creating synchronous workflows
Real-time workflows were introduced in Microsoft Dynamics CRM 2013. They
provide us with the flexibility to run our business logic before and after the core
operation just like plug-ins. It also executes logic in transactions so, in the case of
failure, all the modifications will be rolled back. They also introduced some new
steps that are not available in asynchronous workflows.

Chapter 4

[147]

Let's take an example. We want to implement a business requirement where, before a
book can be issued, we want to validate the book inventory. So we want to check if the
quantity on hand is greater than 0; if it is equal to 0, we want to show an error message
to the user. This requirement can't be implemented using asynchronous workflows
because we need to show an error message to the user and also need to check the
quantity on hand value quickly. To implement this requirement we need to create a
real-time workflow. Perform the following steps to set up a real-time workflow:

1.	 Navigate to Components | Process | New.
2.	 Enter the following properties and click on OK:

Process name: Validate Book Inventory
Category: Workflow
Entity: Book Issue/Return
Keep New blank process option selected
Deselect Run this workflow in background option

3.	 Select the Record is created option under Start when.
4.	 Click on Add Step and add two conditions such as the following:

Working with Processes

[148]

5.	 Select the drop-down sign before both conditions one by one and click on the
Select Row option from drop-down.

6.	 Click on the Group OR button once both conditions are selected.
7.	 Click on Select this row, click the Add Step line and select Stop Workflow

under the Add Step drop-down.
8.	 Select the Canceled option under the drop-down, click on the Set Properties

button, and enter "Book is not available. Please try another book" under the
value text box. Click on Save and Close.

After following all the preceding steps our workflow should look like the following:

Now when we try to issue a book that is not available, it will show an error message
like the following screen:

Chapter 4

[149]

Generating Autoid using a real-time workflow
As synchronous workflows execute at that movement only, we can also use them to
generate an auto ID for entity records. Let's say we want to use real-time workflows
to generate an auto ID for our member, book, and book issue/return entities. Before
creating the workflow we need to make sure our custom auto number configuration
entity is created with a relationship with the preceding entities and we need to create
a record for all three entities with a starting value. See the following screen:

Now perform the following steps to create a real-time workflow to generate an auto
ID for our member entity when a new record is created for the member entity:

1.	 Navigate to Components | Process | New.
2.	 Enter the following properties and click on OK:

Process name: MemberID
Category: Workflow
Entity: Member
Keep New blank process option selected
Deselect Run this workflow in background option

3.	 Select Record is created under the Start when option.
4.	 Add the update step from the Add Step drop-down button and select the

Member entity from the drop-down.
5.	 Click on the Set Properties button and look for the Autoid lookup in the

member form. We need to select our Member record under this lookup,
to associate the member entity record with an existing auto number
configuration record for the member. Click on Save and Close.

Working with Processes

[150]

6.	 Add another update step from the Add Step drop-down button, again select
the Member entity, and click on the Set Properties button.

7.	 Select the Member ID field and click on OK after setting the following
properties in Form Assistant. Then select Save and Close:

8.	 Add another update step and this time select the Autoid (Auto Number
Configuration) option from the drop down and click on the Set Properties
button.

9.	 Select the Auto ID field and click on OK in the Form Assistant after entering
the following properties. Click on Save and Close:

Operator: Increment by
Default value: 1

Chapter 4

[151]

After these steps our workflow should look like following:

By following the preceding steps we can create another two real-time workflows for
the book and book issue/return entities. But make sure you create an auto number
configuration entity record with the initial start number first so that the records can
be referenced in the workflow.

Understanding dialogs
If we have any requirement to design a user-interactive process we can use a dialog.
Dialogs help us to design wizard-like processes, where we can design multiple
screens called pages. We can interact with the user with the help of prompts and
responses. We don't have the flexibility to customize dialog screens. Mostly, we use
dialogs to help the user to complete some process; for example we can use them to
design a process for a call center customer support representative to log a case for a
customer after getting and verifying some details from the calling user.

Designing dialogs
We can design dialogs using the out-of-the-box process designer. We can navigate to
Settings | Process and select Dialog under a category to design them.

Working with Processes

[152]

We can add single or multiple pages to a dialog, each of which represents a screen.
A page can have one or more prompts and responses where we can get input from
users and can store the response value. We can also query data from CRM using the
Query step. For example, we can display a list of the books to a user based on the
book category selected by the user.

Responses capture from user can be stored into variables using Assign step available
under Add Step drop-down or we can directly reference response in another dialogs
step. While designing prompt and response, we can also define tips and call script,
which can help CRM user to fill response fields

Calling Dialog
Dialogs are synchronous in nature and can't be started automatically. We need to
manually execute dialogs by using the Start Dialog button under more commands
(…) or we can call them using JavaScript. Also we can't customize dialog screens.

Chapter 4

[153]

Understanding actions
Actions were introduced in CRM 2013; they allow us to design our custom messages
like out-of-the-box events to execute our custom business logic. We can use actions
to define our complex logic. Before actions there was no direct way to call server-side
logic using client-side scripting. But actions allow us to define our own messages
and call them using a SOAP request. We can't call them using OData end points.
Once an action is defined, we can also register a plug-in on the action. We will
discuss plug-ins in a later chapter.

Designing actions
Actions can be designed using the process designer; we can navigate to Settings |
Processes to create a new action. Actions can be associated with a single entity or can
be global, where they can be used with any entity. As soon as an action is created,
CRM creates a corresponding synchronous workflow.

Action scopes
Actions always run under an organization scope, so we can't bind an action to run
under other scopes such as user and business unit, and they always execute in the
security context of the calling user.

Working with Processes

[154]

Action arguments
Actions also allow us to use input and output arguments, so while designing we can
configure an input or output argument that can used while calling actions.

Calling actions
 Once an action is designed we can call it in three ways:

•	 Using server-side code
•	 Using client-side code
•	 From a workflow

Calling actions from workflows is the new feature added in CRM 2015. Actions are
synchronous and are executed under stage 30 of the execution pipeline. We will be
discussing execution pipeline in greater detail in a later chapter, but if you want you
can refer to https://msdn.microsoft.com/en-us/library/gg327941.aspx now.

We will be working with actions in more detail in a later chapter.

Business process flows versus
workflows, dialogs, and actions
The following table will help us to understand the differences between all
these processes.

Business process
flow

Workflow Dialog Actions

Business logic Does not support
complex logic

Supports
complex logic

Supports
complex logic

Supports
complex logic

Chapter 4

[155]

Business process
flow

Workflow Dialog Actions

Execution
mode

Support for
asynchronous
or synchronous
business logic

Supports
synchronous
business logic

Supports
synchronous
business logic

Trigger Available as soon
as entity record is
opened

Can be
associated with
triggers or on
demand

Always on
demand

Can be
associated with
triggers or on
demand

Interactive Simple branching
logic can be applied

Runs in
background

Supports user
interaction

Runs in
background

SDK Support Supports client-side
logic

Provides SDK
support

Provides SDK
support

Supports SDK

Customization Created from CRM
application

Can be
customized
using Visual
Studio

Can be
customized
only in CRM
application

Can be
customized in
Visual Studio

Testing library management
Now our solution is ready for testing. We need to also do navigation changes by
modifying the sitemap. Please refer to Chapter 3, Client-side Logic with Microsoft
Dynamics CRM 2015, for how to modify sitemaps using XrmToolBox. We can
modify it based the following screenshot:

We need to set up book records. We can create our book records or can import book
records using the data import utility in Microsoft Dynamics CRM 2015.

You can get details about data import from https://msdn.
microsoft.com/en-us/library/gg328321.aspx.

https://msdn.microsoft.com/en-us/library/gg328321.aspx
https://msdn.microsoft.com/en-us/library/gg328321.aspx

Working with Processes

[156]

Once book data is available we can test for book issue/return processes; we can also
create one business rule to set the default value for due data, by adding five days to
issued on data in the book issue/return entity.

As soon as the issue on date is completed, it will auto-populate the due date field.

Please refer to Chapter 2, Customizing Microsoft Dynamics
CRM 2015, for how to work with business rules.

When we try to create a record of the book issue/return entity, it will look like
the following.

The corresponding workflow will update the book inventory based on the book
status and the real-time workflow will generate an auto ID for us based on the auto
number configuration records.

Chapter 4

[157]

Summary
In this chapter we learned about Microsoft Dynamics CRM 2015 processes and their
categories. We learned about creating custom entities and views. We also discussed
the different access levels. We talked about creating business process flows and how
we can create and use them. We worked with both asynchronous and synchronous
flows for our library system solution. We will be updating our solution in a later
chapter. In the next chapter, we will be working with Microsoft Dynamics CRM SDK.

Chapter 5

[159]

Working with CRM SDK
In this chapter we are going to learn about using CRM extendibility architecture
and its main components. We will discuss the CRM 2015 software development kit
(SDK) and its resources. This chapter will help us to learn about CRM APIs and Web
resources. We will be discussing different CRM Web services and their methods with
examples. We will also write a console application using the CRM client API. We will
also be discussing new enhancements for developers in CRM 2015. We will cover:

•	 Understanding CRM extendibility architecture
•	 Introduction to Microsoft Dynamics CRM SDK
•	 Knowing about CRM assemblies
•	 Understanding CRM web services
•	 Using client API for CRM connection
•	 Working with organization web service
•	 Working with discovery web service
•	 Fetching data from CRM database
•	 Top five new features in 2015 update 1 for developers
•	 Integrating CRM with other system

Working with CRM SDK

[160]

Understanding CRM extendibility
architecture
Microsoft Dynamics CRM is a highly extendable business application, which means
that we can always extend CRM using its APIs. It provides different component, that
can be greatly extended to map with our custom business requirements. Although
CRM provides a rich set of features that help us to execute different business
operations without any modification, we still can extend its behavior and capabilities
with supported customizations.

The following is the extendibility architecture of CRM 2015, where we can see
how different components interact with each other and which components can be
extended with the help of CRM APIs.

Extendibility architecture

Let's discuss these components one by one and possible extendibility options for them.

Chapter 5

[161]

CRM databases
During installation of CRM, two databases (the organization and configuration
databases) are created. The organization database is named organization_MSCRM
and the configuration database is called MSCRM_CONFIG. The organization
database contains the complete organization-related data stored on different
entities. For every entity in CRM there is a corresponding table with the name of
Entityname+"Base". Although technically it is possible, direct data modification in
these tables is not supported. Any changes to CRM data should be done by using
CRM APIs only.

Adding indexes to CRM databases is supported; you can refer to
https://msdn.microsoft.com/en-us/library/gg328350.aspx
for more details on supported customizations.

Apart from tables, CRM also creates special views for every entity called
Filtered+Entityname. These views provide data based on the user security role
so, for example, if you are a sales person you will only get data while querying
the filtered view based on the sales person role. We use filtered views for writing
custom reports for CRM. You can find more details on filtered views from https://
technet.microsoft.com/en-us/library/dn531182.aspx.

An entity relationship diagram for CRM 2015 can be downloaded from
https://msdn.microsoft.com/en-us/library/jj602918.aspx.

Platform layers
Platform layers work as middleware between the CRM UI and database; it is
responsible for executing inbuilt and custom business logic and moving data back
and forth. When we browse CRM applications, the platform layer presents data that
is available based on the current user security roles. We develop and deploy custom
components on top of the platform layer.

Processes
We discussed the different process categories in an earlier chapter. A process is a
way to implement automation in CRM. We can set up processes using the process
designer and also develop custom assemblies to enhance the capability for the
workflow designer and include custom steps.

https://msdn.microsoft.com/en-us/library/gg328350.aspx
https://technet.microsoft.com/en-us/library/dn531182.aspx
https://technet.microsoft.com/en-us/library/dn531182.aspx
https://msdn.microsoft.com/en-us/library/jj602918.aspx

Working with CRM SDK

[162]

CRM Web services
CRM provides the Windows Communication Foundation (WCF)-based Web
service, which helps us to interact with organization data and metadata; thus,
whenever we want to create or modify entity data or to customize CRM component
metadata, we need to utilize these Web services. We can also develop custom Web
services with the help of CRM Web services if required. We will be discussing CRM
Web services in detail in a later topic.

Plug-ins
Plug-ins are another way to extend CRM capability. These are .NET assemblies that
help us to implement our custom business logic in the CRM platform. They help us
to execute our business logic before or after the main platform operation. We can
also run our plug-in on transactions, similarly to SQL transactions, which means
that, if any operation fails, all the changes will rollback. We can set up asynchronous
and synchronous plug-ins. We will be discussing plug-in development in the
next chapter.

Reporting
CRM provides rich reporting capabilities. We have many out-of-the-box reports for
every module such as sales, marketing, and service. We can also create new reports
and customize existing reports in Visual Studio. While working with reports we
always utilize the entity-specific filtered view so that data can be exposed based
on the user security role. We should never use CRM tables while writing reports.
Custom reports can be developed using the out-of-the-box report wizard or using
Visual Studio. The Report wizard helps us to create reports by following a couple
of screens where we can select entity and filter criteria for our report with different
rendering and formatting options. We can create two type of reports in Visual
Studio: SSRS and FetchXML. Custom SSRS reports are supported on CRM on-
premise deployments whereas CRM online only supports FetchXML.

You can refer to https://technet.microsoft.com/en-us/
library/dn531183.aspx for more details on report development.

https://technet.microsoft.com/en-us/library/dn531183.aspx
https://technet.microsoft.com/en-us/library/dn531183.aspx

Chapter 5

[163]

Client extensions
We can also extend CRM applications from the Web and Outlook clients. We can
also develop custom utility tools for these. Sitemap and Command bar editor add-
ons are examples of such applications. We can modify different CRM components
such as entity structure, Web resources, business rules, different type of Web
resources, and other components. CRM Web services can be utilized to map custom
requirements. We can do navigation changes from CRM clients by modifying
sitemap and command bar definitions.

Integrated extensions
We can also develop custom extensions in terms of the custom utility and middle
layer to interact with CRM using APIs. It can be a portal application or any .NET or
non-.NET utility. CRM SDK comes with many tools that help us to develop these
integrated applications. We will be discussing custom integration with CRM in a
later topic.

An introduction to the Microsoft
Dynamics CRM SDK
The Microsoft Dynamics CRM SDK contains resources that help us to develop code
for CRM. It includes different CRM APIs and helpful resources such as sample code
(both server-side and client-side) and a list of tools to facilitate CRM development.
It provides complete documentation of API methods and their uses, so if you are a
CRM developer, technical consultant, or solution architect, the first thing you need to
do is download the latest CRM SDK.

You can download the latest version of CRM SDK from http://www.
microsoft.com/en-us/download/details.aspx?id=44567.

The following table provides different resources that come with CRM SDK:

Name Descriptions
Bin This folder contains all the assemblies of CRM.
Resources This folder contains different resources such as data

import maps, default entity ribbon XML definitions,
and image icons of CRM applications.

http://www.microsoft.com/en-us/download/details.aspx?id=44567
http://www.microsoft.com/en-us/download/details.aspx?id=44567

Working with CRM SDK

[164]

Name Descriptions
SampleCode This folder contains all the server-side and client

sample code that can help you to get started with
CRM development. This folder also contains sample
PowerShell commands.

Schemas This folder contains XML schemas for CRM entities,
command bars, and sitemaps. These schemas can be
imported in Visual Studio while editing customization
XML files manually.

Solutions This folder contains a CRM 2015 solution compatibility
chart and one portal solution.

Templates This folder contains Visual Studio templates used to
develop components for unified service desk and CRM
package deployment.

Tools This folder contains tools shipped with CRM SDK such
as a metadata browser that can used to get CRM entity
metadata, a plug-in registration tool, a Web resource
utility, and others.

Walkthroughs This folder contains console and Web portal
applications.

CrmSdk2015 This is the .chm help file
EntityMetadata This file contains entity metadata information.
Message-entity support
for plug-ins

This is a very important file that will help you to
understand events available for entities for writing
custom business logic (plug-ins)

Knowing about CRM assemblies
CRM SDK ships with different assemblies under a bin folder that we can use
to write CRM application extensions. We can utilize them to interact with CRM
metadata and organization data. The following table provides details about the most
common CRM assemblies:

Name Details
Microsoft.Xrm.Sdk.
Deployment

This assembly is used to work with CRM
organizations. We can create, update, and delete
organizations via these assembly methods.

Chapter 5

[165]

Name Details
Microsoft.Xrm.Sdk This is a very important assembly as it contains

the core methods and their details; this is a must-
have assembly for every CRM extension. This
assembly contains different namespaces for different
functionality—for example, query, which contains
different classes to query CRM DB; metadata, which
helps us to interact with metadata of CRM applications;
discovery, which helps us to interact with discovery
services (we will be discussing discovery services in
a later topic); and messages, which provides classes
for all CURD operation requests and responses with
metadata classes.

Microsoft.Xrm.Sdk.
Workflow

This assembly help us to extend CRM workflow
capability. It contains methods and types required for
writing a custom workflow activity. This assembly
contains the activities namespace, which is used by
CRM workflow designer.

Microsoft.Crm.Sdk.Proxy This assembly contains all non-core request and
response messages.

Microsoft.Xrm.Tooling This is a new assembly added in SDK. This assembly
helps us to write Windows client applications for CRM.

Microsoft.Xrm.Portal This assembly provides methods for portal
development that include security management, cache
management, and content management.

Microsoft.Xrm.Client This is another assembly that is used in CRM client
applications to communicate with CRM from the
application. It contains connection classes that we
can use to set up connection using different CRM
authentication methods.

We will be working with these APIs in later topics.

Understanding CRM web services
Microsoft Dynamics CRM provides web service support that can be used to work
with CRM data or metadata. CRM has the following web services:

Deployment service
Deployment service helps us to work with organizations, so using this web service
we can create new organizations and delete or update existing organizations.

Working with CRM SDK

[166]

Discovery service
This is used to identify correct web service endpoints based on the user. Let's take an
example where we have multiple CRM organizations, and we want to get a list of the
organizations where current users have access; we can utilize the discovery service
to find out the unique organization ID, endpoint URLs, and other details. We will be
working with discovery service in a later topic.

Organization service
This is used to work with CRM organization data and metadata. It has CRUD (create,
retrieve, update, and delete) methods and other request and response messages.
For example, if we want to create or modify any existing entity record we can use
organization service methods.

Organization data service
Organization data service is a RESTful service that we can use to get data from CRM.
We can use this service's CRUD methods to work with data, but we can't use this
service to work with CRM metadata.

To work with CRM web services, we can use the following two programming models:

•	 Late bound
•	 Early bound

Early bound
In early bound classes we use proxy classes generated by CrmSvcUtil.exe. This
utility is included in CRM SDK under the SDK\Bin path. This utility generates classes
for every entity available in the CRM system. In this programming model schema,
names are used to refer to the entity and its attributes and it provides intelligence
support, so we don't need to remember the entity and attribute name; as soon as we
type the first letter of the entity name, it will show all entities with that name.

Chapter 5

[167]

We can use the following syntax to generate proxy classes for CRM on-premise:

CrmSvcUtil.exe
/url:http://<ServerName>/<organizationName>/XRMServices/2011/
Organization.svc/out:proxyfilename.cs /username:<username>
/password:<password> /domain:<domainName>
/namespace:<outputNamespace>
/serviceContextName:<serviceContextName>

And the following code generate a proxy for CRM online:

CrmSvcUtil.exe
/url:https://orgname.api.crm.dynamics.com/XRMServices/2011/
Organization.svc /out:proxyfilename.cs
/username:"myname@myorg.onmicrosoft.com" /password:"myp@ssword!"

The Organization service URL can be obtained by navigating to Settings |
Customization | Developer Resources. We are using CRM online for our demo, in
case the CRM online organization service URL is dependent on the region where
your organization is hosted. You can refer https://msdn.microsoft.com/en-us/
library/gg328127.aspx to get details about different CRM online regions.

https://msdn.microsoft.com/en-us/library/gg328127.aspx
https://msdn.microsoft.com/en-us/library/gg328127.aspx

Working with CRM SDK

[168]

We can perform the following steps to generate a proxy class for CRM online:

1.	 Navigate to the Developer Command Prompt under Visual Studio Tools on
the development machine where Visual Studio is installed.

2.	 Go to the Bin folder under CRM SDK and paste in the following command:

CrmSvcUtil.exe
/url:https://ORGName.api.crm5.dynamics.com/XRMServices/2011/
Organization.svc /out:Xrm.cs
/username:"user@ORGName.onmicrosoft.com" /password:"password"

CrmSVCUtil

Once this file is generated we can add this file to our Visual Studio solution.

Late bound
In the late bound programming model, we use a generic Entity object to refer to
our entities, which means that we can also refer to an entity that is not yet part of
the CRM. In this programming model, we need to use the logical name to refer to an
entity and its attribute. No support is available during code development in the case
of late bound. Next is an example of using the Entity class:

Entity AccountObj = new Entity("account");

Chapter 5

[169]

Using client APIs for CRM connections
CRM client APIs help us to connect with CRM easily from .NET applications. It
simplifies setting up connections with CRM using a simplified connection string.
We can use this connection string to create organization service objects.

Perform the following setup on the console application for demo purposes:

1.	 Connect to Visual Studio and select File | New | Project.
2.	 Select Visual C# | Console Application and enter CRMConnectiondemo in

the Name textbox:

console app

Make sure you have installed the .NET 4.5.2 and
the NET 4.5.2 developer pack before creating the
sample application.

3.	 Right-click on References and add the following CRM SDK:
Microsoft.Xrm.SDK

Microsoft.Xrm.Client

We also need to add the following .NET assemblies:

System.Runtime.Serialization

System.Configuration

Working with CRM SDK

[170]

4.	 Make sure to add the App.config file if not available in the project. We
need to right-click on the project name and select Add Item, and add the
application configuration file as follows:

app.configfile

5.	 We need to add a connection string to our app.config file as follows. We are
using CRM online for our demo application, so we will be using following
connection string:
<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <connectionStrings>

 <add name="OrganizationService"
connectionString="Url=https://CRMOnlineServerURL;
Username=User@ORGNAME.onmicrosoft.com; Password=Password;" />

 </connectionStrings>

</configuration>

6.	 Right-click on the project, select Add Existing File, and browse our proxy file
that we generated in an earlier step, to add it to our console application.

7.	 Now we can add two classes in our application—one early bound and
another late bound—and let's name them Earlybound.cs and Latebound.cs

You can refer to https://msdn.microsoft.
com/en-us/library/jj602970.aspx to access a
connection string for other deployment types, if not
using CRM online.

https://msdn.microsoft.com/en-us/library/jj602970.aspx
https://msdn.microsoft.com/en-us/library/jj602970.aspx

Chapter 5

[171]

After adding the preceding classes our solution structure should look like
the following:

Working with organization web services
Whenever we need to interact with CRM SDK, we need to use CRM web services.
Most of the time we will be working with the organization service to create and
modify data. Organization services contains the following methods to interact with
metadata and organization data; we will add these methods in our corresponding
Earlybound.cs and Latebound.cs files in our console application.

Create
This method is used to create entity records: system or custom. We can use create
method when we want to create an entity record using CRM SDK—for example,
if we need to develop a utility for data importing we can use this method or if we
want to create a lead record dynamically from a custom Web site. This methods
takes the entity object as a parameter and returns the GUID of the record created.
The following is an example of creating an account record, early and late bound,
with different data types. We are setting some of the basic account entity fields in
the following code:

•	 Early bound:
private void CreateAccount()
 {
 using (OrganizationService crmService = new
 OrganizationService("OrganizationService"))

Working with CRM SDK

[172]

 {
 Account accountObject = new Account
 {
 Name = "HIMBAP Early",
 Address1_City = "Delhi",
 CustomerTypeCode = new OptionSetValue(3),
 DoNotEMail = false,
 Revenue = new Money(5000),
 NumberOfEmployees = 50,
 LastUsedInCampaign = new DateTime(2015, 3, 2)
 };
 crmService.Create(accountObject);
 }
 }

•	 Late bound:

private void Create()
 {
 using (OrganizationService crmService = new
 OrganizationService("OrganizationService"))
 {
 Entity accountObj = new Entity("account");
 //setting string value
 accountObj["name"] = "HIMBAP";
 accountObj["address1_city"] = "Delhi";
 accountObj["accountnumber"] = "101";
 //setting optionsetvalue
 accountObj["customertypecode"] = new
 OptionSetValue(3);
 //setting boolean
 accountObj["donotemail"] = false;
 //setting money
 accountObj["revenue"] = new Money(5000);
 //setting entity reference/lookup
 accountObj["primarycontactid"] = new
 EntityReference("contact", new Guid
 ("F6954457-6005-E511-80F4-C4346BADC5F4"));
 //setting integer
 accountObj["numberofemployees"] = 50;

Chapter 5

[173]

 //Date Time
 accountObj["lastusedincampaign"] = new
 DateTime(2015, 05, 13);
 Guid AccountID = crmService.Create(accountObj);
 }
 }

You can get the GUID from CRM. Please refer to Chapter 3, Client-side
Logic with Microsoft Dynamics CRM 2015, for how to get the GUID of an
entity record.

We can also use the create method to create primary and related entities in a single
call; for example, in the following call we are creating an account and a related
contact record in a single call:

private void CreateRecordwithRelatedEntity()
 {
 using (OrganizationService crmService = new
 OrganizationService("OrganizationService"))
 {
 Entity accountEntity = new Entity("account");
 accountEntity["name"] = "HIMBAP Technology";
 Entity relatedContact = new Entity("contact");
 relatedContact["firstname"] = "Vikram";
 relatedContact["lastname"] = "Singh";
 EntityCollection Related = new EntityCollection();
 Related.Entities.Add(relatedContact);
 Relationship accountcontactRel = new
 Relationship("contact_customer_accounts");
 accountEntity.RelatedEntities.Add(accountcontactRel,
 Related);
 crmService.Create(accountEntity);
 }
 }

In the preceding code, first we created an accountEntity object and then created
an object of the relatedContact entity and added it to the Entity collection. After
that we added the related entity collection to the primary entity with an entity
relationship name; in this case it is contact_customer_accounts.

Working with CRM SDK

[174]

After that we passed our account entity object to the create method to create
the account and related contact record. We will run this code to create an account
as follows:

relatedrecord

Update
This method is used to update existing record properties; for example we may want
to change the account city or any other address information. This methods takes the
entity object as a parameter, but we need to make sure to update the primary key
field to update any records. The following are example of updating the account city
and setting the state property:

•	 Early bound:
private void Update()
 {
 using (OrganizationService crmService = new
 OrganizationService("OrganizationService"))
 {
 Account accountUpdate = new Account
 {
 AccountId = new Guid("85A882EE-A500-E511-80F9-
 C4346BAC0E7C"),
 Address1_City = "Mandi",
 Address1_StateOrProvince = "Himachal Pradesh"
 };
 crmService.Update(accountUpdate);
 }
 }

•	 Late bound:

private void Update()
 {
 using (OrganizationService crmService = new
 OrganizationService("OrganizationService"))

Chapter 5

[175]

 {
 Entity accountUpdate = new Entity("account");
 accountUpdate["accountid"] = new Guid("85A882EE-
 A500-E511-80F9-C4346BAC0E7C");
 accountUpdate["address1_city"] = "Mandi";
 accountUpdate["address1_stateorprovince"] =
 "Himachal Pradesh";
 crmService.Update(accountUpdate);
 }
 }

Similarly, to create a method, we can also use the update method to update the
primary entity and the related entity in a single call, as follows:

private void Updateprimaryentitywithrelatedentity()
 {
 using (OrganizationService crmService = new
 OrganizationService("OrganizationService"))
 {
 Entity accountToUpdate = new Entity("account");
 accountToUpdate["name"] = "HIMBAP Technology";
 accountToUpdate["websiteurl"] = "www.himbap.com";
 accountToUpdate["accountid"] = new Guid("29FC3E74-B30B-
 E511-80FC-C4346BAD26CC");
 Entity relatedContact = new Entity("contact");
 relatedContact["firstname"] = "Vikram";
 relatedContact["lastname"] = "Singh";
 relatedContact["jobtitle"] = "Sr Consultant";
 relatedContact["contactid"] = new Guid("2AFC3E74-B30B-
 E511-80FC-C4346BAD26CC");
 EntityCollection Related = new EntityCollection();
 Related.Entities.Add(relatedContact);
 Relationship accountcontactRel = new
 Relationship("contact_customer_accounts");
 accountToUpdate.RelatedEntities.Add(accountcontactRel,
 Related);
 crmService.Update(accountToUpdate);
 }
 }

Working with CRM SDK

[176]

Retrieve
This method is used to get data from the CRM based on the primary field, which
means this will only return one record at a time. This method takes three parameters:

•	 Entity: We need to pass the logical name of the entity as the first parameter
•	 ID: We need to pass the primary id of the record that we want to query
•	 Columnset: We need to specify a list of the fields list that we want to fetch

The following are examples of using the Retrieve method

•	 Early bound:
private void Retrieve()
 {
 using (OrganizationService crmService = new
 OrganizationService("OrganizationService"))
 {
 Account retrievedAccount =
 (Account)crmService.Retrieve(Account.EntityLogicalName,
 new Guid("7D5E187C-9344-4267-9EAC-DD32A0AB1A30"), new
 ColumnSet(new string[] { "name" }));
 }
 }

•	 Late bound:

private void Retrieve()
 {
 using (OrganizationService crmService = new
 OrganizationService("OrganizationService"))
 {
 Entity retrievedAccount = (Entity)
 crmService.Retrieve ("account", new
 Guid("7D5E187C-9344-4267-9EAC-DD32A0AB1A30"), new
 ColumnSet(new string[] { "name"}));
 }

 }

Chapter 5

[177]

RetrieveMultiple
The RetrieveMultiple method provides options to define our query object where
we can define criteria to fetch records from the primary and related entity. This
method takes the query object as a parameter and returns an entity collection as the
response. The following are examples of using RetrieveMulitple with both early
and late bound:

•	 Late Bound
private void RetrieveMultiple()
 {
 using (OrganizationService crmService = new
 OrganizationService("OrganizationService"))
 {
 QueryExpression query = new QueryExpression
 {
 EntityName = "account",
 ColumnSet = new ColumnSet("name",
 "accountnumber"),
 Criteria =
 {
 FilterOperator = LogicalOperator.Or,
 Conditions =
 {
 new ConditionExpression
 {
 AttributeName = "address1_
city",
 Operator = ConditionOperator.
Equal,
 Values={"Delhi"}
 },
 new ConditionExpression
 {
 AttributeName="accountnumber",
 Operator=ConditionOperator.
NotNull
 }
 }
 }
 };
 EntityCollection entityCollection = crmService.
RetrieveMultiple(query);

Working with CRM SDK

[178]

 foreach (Entity result in entityCollection.
Entities)
 {
 if (result.Contains("name"))
 {
 Console.WriteLine("name ->" + result.GetAt
tributeValue<string>("name").ToString());
 }
 }
 }

•	 Early Bound:

private void RetrieveMultiple()
 {
 using (OrganizationService crmService = new OrganizationServic
e("OrganizationService"))
 {
 QueryExpression RetrieveAccountsQuery = new
 QueryExpression
 {
 EntityName = Account.EntityLogicalName,
 ColumnSet = new ColumnSet("name",
 "accountnumber"),
 Criteria = new FilterExpression
 {
 Conditions =
 {
 new ConditionExpression
 {
 AttributeName = "address1_city",
 Operator = ConditionOperator.Equal,
 Values = { "Delhi" }
 }
 }
 }
 };
 EntityCollection entityCollection =
 crmService.RetrieveMultiple(RetrieveAccountsQuery);
 foreach (Entity result in entityCollection.Entities)
 {
 if (result.Contains("name"))
 {
 Console.WriteLine("name ->" +
 result.GetAttributeValue<string>
 ("name").ToString());

Chapter 5

[179]

 }
 }
 }
 }

Delete
This method is used to delete entity records from the CRM database. This method
takes the entity name and primary ID fields as parameters:

public void Delete()
 {
 using (OrganizationService crmService = new
 OrganizationService("OrganizationService"))
 {
 crmService.Delete("account", new Guid("85A882EE-A500-E511-
 80F9-C4346BAC0E7C"));
 }
 }

Associate
This method is used to set up a link between two related entities. It takes the
following parameters:

•	 Entity Name: The logical name of the primary entity
•	 Entity Id: This is the primary entity records ID field.
•	 Relationship: Name of the relationship between two entities
•	 Related Entities: This is the correction of references

The following is an example of using this method with early bound.

public void Associate()
 {
 using (OrganizationService crmService = new
 OrganizationService("OrganizationService"))
 {
 EntityReferenceCollection referenceEntities = new
 EntityReferenceCollection();
 referenceEntities.Add(new EntityReference("account", new
 Guid("38FC3E74-B30B-E511-80FC-C4346BAD26CC")));
 // Create an object that defines the relationship between
 the contact and account (we want to set up primary contact)

Working with CRM SDK

[180]

 Relationship relationship = new
 Relationship("account_primary_contact");
 //Associate the contact with the accounts.
 crmService.Associate("contact", new Guid("38FC3E74-B30B-
 E511-80FC-C4346BAD26CC "), relationship,
 referenceEntities);
 }
 }

Disassociate
This method is the reverse of associate. It is used to remove links between two entity
records. This method takes the same parameter setup as the associate method takes.
The following is an example of disassociate account and contact records:

public void Disassociate()
 {
 using (OrganizationService crmService = new
 OrganizationService("OrganizationService"))
 {
 EntityReferenceCollection referenceEntities = new
 EntityReferenceCollection();
 referenceEntities.Add(new EntityReference("account", new
 Guid("38FC3E74-B30B-E511-80FC-C4346BAD26CC ")));
 // Create an object that defines the relationship between
 the contact and account.
 Relationship relationship = new
 Relationship("account_primary_contact");
 //Disassociate the records.
 crmService.Disassociate("contact", new Guid("15FC3E74-
 B30B-E511-80FC-C4346BAD26CC "), relationship,
 referenceEntities);
 }
 }

Execute
Apart from the common methods that we discussed, the Execute method helps
to execute requests that are not available as a direct method. This method takes a
request as a parameter and returns a response as result. All the common methods
that we used earlier can be also used as a request with the Execute method. The
following is an example of working with metadata and creating a custom event
entity using the Execute method:

public void Usingmetadata()
 {

Chapter 5

[181]

 using (OrganizationService crmService = new
 OrganizationService("OrganizationService"))
 {
 CreateEntityRequest createRequest = new CreateEntityRequest
 {
 Entity = new EntityMetadata
 {
 SchemaName = "him_event",
 DisplayName = new Label("Event", 1033),
 DisplayCollectionName = new Label("Events", 1033),
 Description = new Label("Custom entity demo", 1033),
 OwnershipType = OwnershipTypes.UserOwned,
 IsActivity = false,
 },
 PrimaryAttribute = new StringAttributeMetadata
 {
 SchemaName = "him_eventname",
 RequiredLevel = new
 AttributeRequiredLevelManagedProperty
 (AttributeRequiredLevel.None),
 MaxLength = 100,
 FormatName = StringFormatName.Text,
 DisplayName = new Label("Event Name", 1033),
 Description = new Label("Primary attribute demo",
1033)
 }
 };
 crmService.Execute(createRequest);
 }
 }

In the preceding code we utilized the CreateEntityRequest class, which is used to
create a custom entity. After executing the preceding code, we can check our entity
and the default solution by navigating to Settings | Customizations | Customize
the System.

You can refer to https://msdn.microsoft.com/en-us/
library/gg309553.aspx to see other requests that we can use
with the Execute method.

https://msdn.microsoft.com/en-us/library/gg309553.aspx
https://msdn.microsoft.com/en-us/library/gg309553.aspx

Working with CRM SDK

[182]

Testing the console application
After adding the preceding methods we can test our console application by writing
a simple test method where we can all our CRUD methods. For the testing we have
added the following method in our Earlybound.cs file:

public void EarlyboundTesting()
 {
 Console.WriteLine("Creating Account Record.....");
 CreateAccount();
 Console.WriteLine("Updating Account Record.....");
 Update();
 Console.WriteLine("Retriving Account Record.....");
 Retrieve();
 Console.WriteLine("Deleting Account Record.....");
 Delete();
 }

After that we can call this method in the Main method of the Program.cs file
as follows:

static void Main(string[] args)
 {
 Earlybound obj = new Earlybound();
 Console.WriteLine("Testing Early bound");
 obj.EarlyboundTesting();
 }

Press F5 to run our console application.

Working with discovery web service
Discovery web service helps us to get details of the organizations that belong to a
user. To connect to the discovery server, we can set up another connection string, just
like we did for organization services. We can navigate to Settings | Customization
| Developer Resources to get the discovery URL and can add the following
connection string in the app.config f﻿﻿ile:

<add name ="Discovery" connectionString ="Url=https://disco.crm5.
dynamics.com/XRMServices/2011/Discovery.svc;
 Username=mpal@himbapb5.onmicrosoft.com; Password=Himbap123;"/
>undefined</connectionStrings>

Chapter 5

[183]

Similar to the organization service URL, the discovery service URL is also dependent
on the region where your organization is hosted. For complete online region URLs,
you can refer to: https://msdn.microsoft.com/en-us/library/gg328127.aspx.

The following is sample code to reads all organizations and organization service URLs:

private void WorkingWithDiscovery()
 {
 using (DiscoveryService discoveryService = new
 DiscoveryService("DiscoveryService"))
 {
 RetrieveOrganizationsRequest request = new
 RetrieveOrganizationsRequest();
 RetrieveOrganizationsResponse response =
 (RetrieveOrganizationsResponse)discoveryService
 .Execute(request);
 foreach (OrganizationDetail orgDetail in response.Details)
 {
 Console.WriteLine("Your Organization Name is " +
 orgDetail.FriendlyName);
 foreach (var endpoint in orgDetail.Endpoints)
 {
 Console.WriteLine(" Name: {0}", endpoint.Key);
 Console.WriteLine(" URL: {0}", endpoint.Value);
 }
 Console.ReadLine();
 }
 }
 }

After we have executed the preceding method, it should look like the following:

https://msdn.microsoft.com/en-us/library/gg328127.aspx

Working with CRM SDK

[184]

Fetching data from the CRM database
As we discussed in an earlier topic, we have two direct methods available to get data
from CRM: Retrieve and RetrieveMultiple. The Retrieve method only fetches
a single record based on the primary key passed to it, but RetrieveMultiple can
fetch one or more records based on the query passed to it. To write a query for the
RetrieveMultiple method we can use the following different options:

•	 QueryByAttribute

•	 QueryExpression

•	 FetchXML

QueryByAttribute
QueryByAttribute is the simplest way to build your query to fetch data. But it
does not provide options to define complex criteria to get data from the CRM.
For example, the QueryByAttribute class can't be used to get data based on a
conditional operator such as: fetch account where annual revenue > 50000, or
something similar. It only checks for the equality operator and fetches data where
the specified attribute/attributes match with the specified value/values. While using
QueryByAttribute, we can use the following properties:

Name Description Example
EntityName Entity name,

which data we
want to fetch

QueryByAttribute query = new
QueryByAttribute ("EntityName");

Use the entity's logical name in the case of late bound or
use the entity schema name in the case of early bound

ColumnSet List the
column that
we want to
retrieve

query.ColumnSet.AddColumns("Firstfield1",
"secondfield"…);

or
query.ColumnSet=new ColumnSet(new
string[]{"fieldname"});

Attributes Conditional
attribute

query.Attributes.
AddRange("conditionfield");

Values Conditional
attribute value

query.Values.AddRange("Valuetocheck");

Orders Sorting
result set in
Ascending/
order

query.OrderType =
OrderType.Descending;

Chapter 5

[185]

Name Description Example
PageInfo Used to set

number of
pages and the
number of
records per
page that we
want to return
from the
query

query.PageInfo = new PagingInfo();
query.PageInfo.Count = 10;
query.PageInfo.PageNumber = 1;

For more details on paging, you can refer to: https://msdn.
microsoft.com/en-us/library/gg327917.aspx.

The following is an example of fetching account records based on the country India:

using (OrganizationService crmService = new
 OrganizationService("OrganizationService"))
 {
 QueryByAttribute queryByAttribute = new
 QueryByAttribute("account");
 queryByAttribute.ColumnSet = new ColumnSet("name",
 "address1_country");
 queryByAttribute.Attributes.AddRange("address1_country");
 queryByAttribute.Values.AddRange("US");
 EntityCollection retrieved =
 crmService.RetrieveMultiple(queryByAttribute);
 Console.WriteLine("Number of Clients from US is {0}",
 retrieved.Entities.Count);
 }

The query will only return non-null columns from the list of the
columns defined under the column set property.

https://msdn.microsoft.com/en-us/library/gg327917.aspx
https://msdn.microsoft.com/en-us/library/gg327917.aspx

Working with CRM SDK

[186]

QueryExpression
The QueryExpression class is used to retrieve multiple data based on complex
queries. It gives us the flexibility to define different options to filter our query. The
following are the properties that we can use while building our QueryExpression:

Name Description Example
EntityName Used to set the

source entity
that we want to
query

QueryExpression query = new
QueryExpression("EntityName");

//use entity logical name in the case of late bound
or use entity schema name in the case of early bound

ColumnSet Used to define
the set of
attributes that
we want to fetch

query.ColumnSet.
AddColumns("Firstfield1",
"secondfield");

or
query.ColumnSet=new ColumnSet(new
string[]{"fieldname"});

Criteria Used to define
our conditions

query.Criteria.
AddCondition("Fieldname",
ConditionOperator.Equal, "value");

Distinct Used to work
with duplicate
records

Query.Distinct=true;

LinKEntities Used to work
with related
entities

query.LinkEntities.Add(new
LinkEntity("primary entity",
"relatedentity",
"lookupfieldonprimaryentity",
"primarykeyofrelatedentity",
JoinOperator.Inner));

Order Setting ordering
options

query.OrderType = OrderType.Descending;

PageInfo Used to set
the number of
the pages and
the number of
records

query.PageInfo = new PagingInfo();

query.PageInfo.Count = 10;

query.PageInfo.PageNumber = 1;

Now let's say we want to get all the accounts from CRM created in the last 30
minutes. The following sample code does this:

QueryExpression query = new QueryExpression
 {
 EntityName = "account",

Chapter 5

[187]

 ColumnSet = new ColumnSet(new string[] { "name",
 "accountnumber" }),
 Criteria =
 {
 Conditions =
 {
 new ConditionExpression
 {
 AttributeName = "createdon",
 Operator = ConditionOperator.OnOrAfter,
 Values={DateTime.UtcNow.AddMinutes(-30)}
 },
 }
 }
 };
EntityCollection _Result = crmService.RetrieveMultiple(query);
 foreach (Entity Acc in _Result.Entities)
 {
 Console.WriteLine(Acc["name"].ToString());
 }
 }

If we want to fetch data using multiple conditions, we can use FilterExpression to
combine multiple conditions, as follows:

using (OrganizationService crmService = new
 OrganizationService("OrganizationService"))
 {
 QueryExpression query = new QueryExpression
 {
 EntityName = "account",
 ColumnSet = new ColumnSet("name", "accountnumber"),
 Criteria =
 {
 FilterOperator = LogicalOperator.Or,
 Conditions =
 {
 new ConditionExpression
 {
 AttributeName = "address1_city",
 Operator = ConditionOperator.Equal,
 Values={"Delhi"}
 },

Working with CRM SDK

[188]

 new ConditionExpression
 {
 AttributeName="accountnumber",
 Operator=ConditionOperator.NotNull
 }
 }
 };
 EntityCollection entityCollection =
 crmService.RetrieveMultiple(query);

In the preceding example we have combined two conditions using FilterExpression;
we are comparing these two conditions based on the Or logical operator, so it will
return data where either the account city is equal to Delhi or the account number
does contain data.

The following is an example of using the link entity in query expressions; in this code
we are fetching account data based on the primary contact ID:

Guid _Contactid = new Guid("E8954457-6005-E511-80F4-
 C4346BADC5F4");
//mention contact id which is used as primary contact in account
using(OrganizationService crmService=new
 OrganizationService("OrganizationService"))
 {
 QueryExpression _QueryLinkEntity = new QueryExpression();
 _QueryLinkEntity.EntityName = "account";
 QueryLinkEntity.ColumnSet = new ColumnSet(true);
 _QueryLinkEntity.LinkEntities.Add
 (
 new LinkEntity
 {
 LinkFromEntityName = "account",
 LinkToEntityName = "contact",
 LinkToAttributeName = "contactid",
 LinkFromAttributeName = "primarycontactid",
 LinkCriteria = new FilterExpression
 {
 Conditions =
 {
 new ConditionExpression
 ("contactid",ConditionOperator.Equal,_Contactid)
 }
 }
 }
);

Chapter 5

[189]

 EntityCollection _LinkResult =
 crmService.RetrieveMultiple(_QueryLinkEntity);
 foreach (Entity Acc in _LinkResult.Entities)
 {
 Console.WriteLine(Acc["name"].ToString());
 }
 }

FetchXML
Another way of writing our query for QueryExpression is to use the FetchXML
language. We can write our FetchXML query string, which is based on the FetchXML
schema. All views in CRM internally use FetchXML to store a query for the view data
source. All the properties in the QueryExpression class can be used with FetchXML
as well. We can write out FetchXML query manually or get it from Advanced Find.
Please refer to an earlier chapter for how to get queries from Advanced Find.

We can also use add-ons available in the marketplace to write FetchXML
queries—for example: http://fxb.xrmtoolbox.com/.

The following is an example of a FetchXML query to fetch all accounts where the city
is Delhi:

string fetchxml = @"<fetch version='1.0' output-format='xml-
platform' mapping='logical' distinct='false' aggregate='true'>
<entity name='account'>
//<attribute name='address1_city' aggregate='COUNT' alias='Citycount'
/>
<filter type='and'>
<condition attribute='address1_city' operator='eq' value='Delhi' />
</filter>
</entity>
</fetch>";
using (OrganizationService crmService = new
 OrganizationService("OrganizationService"))
 {
 EntityCollection results =
 crmService.RetrieveMultiple
 (new FetchExpression(fetchxml));
 if (results.Entities.Count > 0)
 {
 Entity result = results.Entities[0];

http://fxb.xrmtoolbox.com/

Working with CRM SDK

[190]

 AliasedValue Total =
 (AliasedValue)result["Citycount"];
 Console.WriteLine("Total City Count=>"+Total.Value);
 }
 }

Please refer to https://msdn.microsoft.com/en-us/
library/gg328117.aspx for more query samples.

LINQ
We can also use the LINQ query to fetch data from the CRM. LINQ allows us to
write our query in SQL-like syntax; we can query different types of data using LINQ.
If you are new to LINQ refer to https://msdn.microsoft.com/en-us/library/
bb397926.aspx to learn the basics of LINQ.

The following is the sample code:

using (OrganizationService crmService = new
 OrganizationService("OrganizationService"))
 {
 HIMBAPDev serviceContext = new HIMBAPDev(crmService);
 var accounts = (from a in serviceContext.AccountSet
 select new Account
 { Name = a.Name });
 foreach (var account in accounts)
 { Console.WriteLine(account.Name);}}

While generating early bound proxy classes, we used HIMBAPDev as the name of the
service context, so in the preceding code we are passing an OrganizationService
object to the service context and we can use that object to query CRM data.

For more sample code for LINQ, please refer to: https://msdn.
microsoft.com/en-us/library/gg328028.aspx.

Top five new features in 2015 Update 1
for developers
Microsoft Dynamics CRM 2015 Update 1 introduced new capabilities to the CRM
SDK. The following are the new enhancements.

https://msdn.microsoft.com/en-us/library/gg328117.aspx
https://msdn.microsoft.com/en-us/library/gg328117.aspx
https://msdn.microsoft.com/en-us/library/bb397926.aspx
https://msdn.microsoft.com/en-us/library/bb397926.aspx
https://msdn.microsoft.com/en-us/library/gg328028.aspx
https://msdn.microsoft.com/en-us/library/gg328028.aspx

Chapter 5

[191]

Update message improvement
CRM 2015 enhanced capability of update method not we can use the Update
method to apply special operations for which we had separate requests earlier.
For example, earlier we had to use a special request to perform assignment, status
changes, and other special operations, but now we can set these properties in the
update method only. The following is an example of using the Update method
for assignment:

using (OrganizationService crmService = new OrganizationService("Organ
izationService"))
 {
 Entity accountToUpdate = new Entity("account");
 accountToUpdate["ownerid"] = new EntityReference("systemuser",
 new Guid("38FC3E74-B30B-E511-80FC-C4346BAD26CC "));
 crmService.Update(accountToUpdate);
 }

In the preceding code we are changing the owner of the record, which means we are
assigning this record to another CRM user.

Executing multiple operations in a single
transaction
New messages have been introduced to improve performance, where we can execute
multiple options under a single transactions. This is very important when we are
doing integration with another system (such as a financial management system) and
performing multiple dependent changes, where we want to commit all of them or
none. CRM 2015 Update 1 introduced ExecuteTransactionRequest, which helps us
to combine multiple entity operations under one transaction; they will be executed
based on the order in the collection. If any operation fails, it will rollback all the
changes. ExecuteTransactionFault helps us to identify the operation that caused
the fault. The following is an example of creating multiple account records:

using (OrganizationService crmService = new OrganizationService("Organ
izationService"))
{
 ExecuteTransactionRequest request = new ExecuteTransactionRequest()
 {
 Requests = new OrganizationRequestCollection()
 };
 for (int i = 1; i <= 10; i++)
 {
 Entity account = new Entity("account");

Working with CRM SDK

[192]

 account["name"] = string.Format("Account Transaction
 Demo {0}", i);
 CreateRequest createRequest = new CreateRequest() {
 Target = account };
 request.Requests.Add(createRequest);
 }
 ExecuteTransactionResponse response =
 (ExecuteTransactionResponse)crmService.Execute(request);
}

In the preceding code we have created 10 account demo records in a single
transaction; once this code is executed we can see 10 records created in the CRM:

accountlist

Alternate keys and upsert
Now we have the flexibility to define our own custom keys using the Keys option
for our entities. This new feature helps us to uniquely identify our entity records
using these key fields, which means that we now don't need to depend on the
primary key attribute for record updates. On the basis of these custom keys, we
update our entity record.

Chapter 5

[193]

We can define alternate keys by following these steps:

1.	 Navigate to Settings | Customization | Customize the System.
2.	 Expand the Entities | Account entity and select Keys | New.
3.	 Complete AccountID under Display Name and select Account Number

from the Available Attributes section. Click on the Add> button.
4.	 Click on Publish All Customizations.

Custom keys

Upsert is another new enhancement that helps us to integrate CRM with other
applications easily, especially if we are doing data synchronization between CRM
and other applications. Sometimes we are not sure if a particular record exists in the
CRM or not. The Upsert request helps us to create a record in the CRM database if it
does not exist after validating the custom key; if the record exists, it will update with
the latest values applied. The following is an example of executing Upsert over our
member entity:

using (OrganizationService crmService = new
 OrganizationService("OrganizationService"))
 {
 Entity account = new Entity("account")
 {
 KeyAttributes = new KeyAttributeCollection
 {
 {"accountnumber", "1234" }
 }
 };

Working with CRM SDK

[194]

 account["name"] = "Upsert Example";
 UpsertRequest request = new UpsertRequest() { Target =
 account };
UpsertResponse response =
(UpsertResponse)crmService.Execute(request);
 }

This code will first check if there are any member records with the preceding
member id value. If not, it will create a new member record with this value;
otherwise, it will update the existing records.

Optimistic concurrency
The optimistic concurrency feature helps us to avoid any type of data inconsistency
when many concurrent users are working. For example let's say that, once we have
retrieved the entity record, we need to work on another calculation; then we need to
update the same record. But if during that this time another user has updated that
entity record it can lead to data inconsistency. To avoid this situation, now we can
check the record's RowVersion and can apply the logic to update it is the same as
before while updating the entity record.

You can refer to https://msdn.microsoft.com/en-us/
library/dn707955.aspx for more detail on optimistic concurrency.

Tracing
If you are a developer, then most of the time you will be using tracing to
troubleshoot development issues and for debugging your code. When exceptions
are thrown by CRM or through the code, we can get tracing information by
downloading the log file (it may be available under system jobs). We will discuss
how to use tracing in our code in a later chapter.

https://msdn.microsoft.com/en-us/library/dn707955.aspx
https://msdn.microsoft.com/en-us/library/dn707955.aspx

Chapter 5

[195]

CRM 2015 Update 1 released a new plug-in tracing feature, where we can write our
log in the plugintracelog entity so that later it can be viewed from the CRM UI.

plug-In Trace

These logs will be written only when using the ITracingService service. By default
this feature is disabled; we can enable it by navigating to Settings | Administration
| System Settings | Customization.

Working with CRM SDK

[196]

You can get details about ITracingService from: https://
msdn.microsoft.com/en-us/library/microsoft.xrm.
sdk.itracingservice.aspx.

Integrating CRM with other systems
Integrating CRM with other applications is a very common requirement nowadays.
Depending on the business model, every company requires some sort of application
to manage their accounting, financial, inventory, retail management, communication,
and other requirements. Although we can customize CRM to have these features, it
can't be built at the enterprise level. Then it becomes a requirement to integrate CRM
with another application system that provides these inbuilt features, such as Microsoft
Dynamics Great Plains (GP), Microsoft Dynamics Axapta (Ax), Microsoft Dynamics
Navision (NAV), and others. For example, we may want to process the send sales
order and line item details from CRM to Ax to maintain the inventory or we may
want to send invoices to GP so that payment and related taxes can be handled.

While talking about data integration, we move data back and forth between different
applications using two broad categories:

•	 On demand
•	 Batch processing

On demand
In the case of on demand integration, we want to bring or send data to other
applications once only; for example we may have one button to validate the
inventory while adding product on orders, or we may want to validate address
information using any third-party address verification tools, so the data moves
between the two applications synchronously. The most common way of
implementing these types of integration is using a plug-in in the CRM. Plug-ins are
server-side components associated with specific events and execute a particular
business logic when that event happens. We will be working with plug-ins in the
next chapter. In the case of CRM on-premise we can easily integrate plug-ins with
other applications, but in the case of online we need to keep security restrictions in
mind. You can refer to https://msdn.microsoft.com/en-us/library/gg334752.
aspx for more details on security.

https://msdn.microsoft.com/en-us/library/microsoft.xrm.sdk.itracingservice.aspx
https://msdn.microsoft.com/en-us/library/microsoft.xrm.sdk.itracingservice.aspx
https://msdn.microsoft.com/en-us/library/microsoft.xrm.sdk.itracingservice.aspx
https://msdn.microsoft.com/en-us/library/gg334752.aspx
https://msdn.microsoft.com/en-us/library/gg334752.aspx

Chapter 5

[197]

Batch processing
In batch processing we integrate data between two systems in bulk, mostly
asynchronously. Normally we develop jobs that are a combination of different
options and are submitted to the queue manager responsible for their execution.
These jobs can be executed after a specified time periodically. For these types of
requirement, we can develop Windows services, asynchronous plug-ins, and custom
workflows. We can also have a utility that can work with Windows scheduler.

We can implement integration between CRM and other systems by using
connectors/add-ons available on the market or can write our own custom connector
utilities. For example if we want to connect to other Microsoft Dynamics products we
can utilize the Dynamics connector released by Microsoft on customer source.

The following are the URLs for downloading the connector from
customer source:

•	 https://mbs.microsoft.com/customersource/
northamerica/AX/downloads/service-packs/mdax_
dynamicsconnector

•	 https://mbs.microsoft.com/customersource/
northamerica/GP/downloads/service-packs/mdgp_
dynamicsconnector

•	 https://mbs.microsoft.com/customersource/
northamerica/NAV/downloads/service-packs/mdnav_
dynamicsconnector

•	 https://mbs.microsoft.com/customersource/
northamerica/SL/downloads/service-packs/mdsl_
dynamicsconnector

https://mbs.microsoft.com/customersource/northamerica/AX/downloads/service-packs/mdax_dynamicsconnector
https://mbs.microsoft.com/customersource/northamerica/AX/downloads/service-packs/mdax_dynamicsconnector
https://mbs.microsoft.com/customersource/northamerica/AX/downloads/service-packs/mdax_dynamicsconnector
https://mbs.microsoft.com/customersource/northamerica/GP/downloads/service-packs/mdgp_dynamicsconnector
https://mbs.microsoft.com/customersource/northamerica/GP/downloads/service-packs/mdgp_dynamicsconnector
https://mbs.microsoft.com/customersource/northamerica/GP/downloads/service-packs/mdgp_dynamicsconnector
https://mbs.microsoft.com/customersource/northamerica/NAV/downloads/service-packs/mdnav_dynamicsconnector
https://mbs.microsoft.com/customersource/northamerica/NAV/downloads/service-packs/mdnav_dynamicsconnector
https://mbs.microsoft.com/customersource/northamerica/NAV/downloads/service-packs/mdnav_dynamicsconnector
https://mbs.microsoft.com/customersource/northamerica/SL/downloads/service-packs/mdsl_dynamicsconnector
https://mbs.microsoft.com/customersource/northamerica/SL/downloads/service-packs/mdsl_dynamicsconnector
https://mbs.microsoft.com/customersource/northamerica/SL/downloads/service-packs/mdsl_dynamicsconnector

Working with CRM SDK

[198]

These connectors provide default data mapping between the source and target
systems. For example, the following screenshot shows the default mapping
between Microsoft Dynamics Ax and CRM:

connectorAxtoCRM

Apart from the preceding connector, there are other third-party connectors available.
Apart from these connectors, we have other options such as scribe (http://www.
scribesoft.com/microsoft_dynamics_crm) and Kingsway's SSIS connector
(http://www.kingswaysoft.com/products/ssis-integration-toolkit-for-
microsoft-dynamics-crm). We can also check for different connectors in Microsoft
Pinpoint (https://pinpoint.microsoft.com/en-ae).

Summary
In this chapter, we learned about the Microsoft Dynamics CRM 2015 SDK feature.
We discussed various tools that come with the CRM SDK. We learned about the
different CRM APIs and their uses. We learned about different programming models
in CRM to work with the CRM SDK, using different methods in CRM web services.
We also discussed new enhancements for developers in CRM 2015 update 1. In this
chapter we created a console application using a client API. Finally, we discussed
various options for integrating CRM with other ERPs and custom web sites. In the
next chapter, we will learn about creating plug-ins and custom workflows.

http://www.scribesoft.com/microsoft_dynamics_crm
http://www.scribesoft.com/microsoft_dynamics_crm
http://www.kingswaysoft.com/products/ssis-integration-toolkit-for-microsoft-dynamics-crm
http://www.kingswaysoft.com/products/ssis-integration-toolkit-for-microsoft-dynamics-crm
https://pinpoint.microsoft.com/en-ae

[199]

Extending Microsoft
Dynamics CRM 2015

In this chapter, we are going to extend the CRM's capabilities by writing custom
plug-ins, workflows, and actions. We will learn the complete details of plug-in
development with code samples. We will also be discussing how to create custom
workflow assemblies and using input and output arguments to pass data to custom
workflows. Finally, we will be creating custom messages using actions and we will
learn how to use actions in workflows and plug-ins.

In this chapter, we will cover the following topics:

•	 Introduction to plug-ins
•	 Synchronous versus asynchronous plug-ins
•	 Understanding plug-in event execution pipelines
•	 Writing sample plug-ins
•	 Understanding plug-in registration
•	 Understanding iPlug-inExecutionContext
•	 Applying validation using plug-ins
•	 Passing parameters to plug-ins
•	 Troubleshooting plug-ins
•	 Working with custom workflows
•	 Working with actions

Extending Microsoft Dynamics CRM 2015

[200]

Introduction to plug-ins
Plug-ins are an essential component of CRM applications and help us to write our
custom logic and bind it to specific events for execution. Although we do have
other ways to implement our business logic, the flexibility of using CRM SDK and
the association with the events that plug-ins provide are not provided by other
components. If you are a .NET developer or know .NET development, you can easily
start working with plug-ins. A plug-in is basically a .NET assembly developed using
CRM SDK, which we discussed in an earlier chapter.

Synchronous versus a synchronous
plug-ins
We can write two types of plug-in: synchronous and asynchronous. Synchronous
plug-ins are most suited where you need to execute your business logic
immediately—for example, implementing any calculation logic or integration
with another system where you may want to bring an output parameter once data
is integrated. Synchronous plug-ins keep the CRM platform busy until executed
completely. Synchronous plug-ins also support transactions, which means that, if
you are doing multiple actions in your plug-in, everything will either be committed
successfully or rolled back in the event of an error:

The plug-in execution

Chapter 6

[201]

Asynchronous plug-ins are well suited for any logic that can be executed in the
background and is not required to show output immediately—for example, updating
an entity based on another entity in background, sending e-mails, integrating data to
another system where you don't need any output parameters, such as sending syncing
billing information to ERP from CRM. Asynchronous plug-ins are executed by the
asynchronous queue manager, so all the asynchronous plug-ins are queued under an
asynchronous queue and executed one by one, or in parallel if multi-threaded.

But, while developing both synchronous and asynchronous plug-ins, we need to
make sure we write code that executes faster. It should not take more than two
minutes of execution time, which is the execution limit of plug-ins, otherwise the
CRM execution platform will throw a time-out error.

Understanding plug-in event execution
pipelines
Every plug-in that we register is dependent on the event execution pipeline. Event
plug-ins are divided into the following four stages, where each stage has its own
significance.

Stage 10: Pre-validation
This is the first stage where we can register our plug-in. In this stage our business
logic runs before the system main operation which means that, up to this point, there
is no validation done for the user who is responsible for code execution; for example
no security checks are done for the user if he has the privileges to perform the action
that he is trying to do through the plug-in. Plug-ins at this stage fire only once if a
compound operation is involved; for example we have the business logic to set
up a related contact record when an account is created:

Plug-in pipeline

Extending Microsoft Dynamics CRM 2015

[202]

Stage 20: Pre-operation
This is the second stage where we can register our plug-in. Up to this stage, all
validation and security checks for the user are done. They also execute before the
main system operation. At this stage our business logic runs under the database
transaction, so any business logic that we want to execute before the main system
operation (such as auto-generation of unique IDs, financial calculations, and so on)
should be registered at this stage.

Stage 30: Main-operation
 This is the stage where the main core operations are executed by the CRM platform.
So all the operations such as create, update, delete, and so on, are appended at this
stage. There aren't any options to register our business logic at this stage.

Stage 40: Post-operation
This is the last stage where we can register our custom code. Plug-ins registered
at this stage run after the main system operation, so any logic that we want to run
after the main system operation can be registered here—for example, if we want
to pass information from the CRM system to the ERP system once the operation
is completed in the CRM, we can utilize this stage to do so.

Plug-in events
A plug-in is always bound to a specific event. Any plug-in registered under an event
will be executed if the corresponding request is sent to the CRM platform using the
CRM UI or any other server-side utility. For example, let's say we have an account
where a create plug-in is registered; this plug-in will fire every time an organization
service create request is executed from the CRM UI, such as a create and import
operation or any other Web service call.

Microsoft Dynamics CRM SDK comes with a file of a complete list of possible
plug-in events that can be used for registering custom logic. This file can be found
in SDK\ Message-entity support for plug-ins in CRM 2015 SDK.

Chapter 6

[203]

Writing your first sample plug-in
As we said, a plug-in is basically a .NET assembly, so we need Visual Studio to write
one. We need Microsoft Visual Studio 2012 or 2013 or later with .NET Framework
4.5.2 to use the CRM SDK for writing plug-ins. While writing plug-ins, we need to
add references to the CRM SDK. While writing plug-ins we inherit the IPlug-in
interface, which is available in the Microsoft.Xrm.Sdk namespace. This interface
exposes only one Execute method that we need to implement while writing
plug-ins. Our plug-in execution starts from this method.

Let's write our first sample plug-in by performing the following instructions:

1.	 Open Visual Studio and navigate to File | New | Project.
2.	 Select New Project with the following settings:

SampleVS

3.	 Right-click on Reference | Add Reference and select the following
assemblies:

°° Microsoft.Xrm.Sdk
°° System.Runtime.Serialization
°° System.ServiceModel

4.	 Right-click on SamplePlugin and select Properties | Signing.
5.	 Click on the Sign assembly checkbox and select New from the drop-down.
6.	 Enter a value in the Key file name textbox and uncheck Protect my key file

with a password.
7.	 Click on Ok and close the Properties dialog box.

Extending Microsoft Dynamics CRM 2015

[204]

8.	 Double-click on Class1.cs and enter the following code:
using Microsoft.Xrm.Sdk;
namespace SamplePlugin
{
 public class Class1:IPlugin
 {
 public void Execute(IServiceProvider serviceProvider)
 {
 throw new InvalidPluginExecutionException("Welcome to
 Plugin");
 }
 }
}

9.	 Navigate to the Build menu and select Build Solution.

Now our sample code is ready. As you can see in the preceding code, we have
implemented the Execute methods of IPlugin, which have one argument of the
IServiceProvider type and provide useful service information about the execution
of the plug-in. In this plug-in we are throwing a plug-in execution exception, using
the InvalidPluginExecutionException method and passing a string parameter.
Now this plug-in can be deployed to CRM.

Make sure to sign your assembly otherwise you will get an Error
registering plug-ins and/or workflows. Public Assembly must have
public key error while trying to register an unsigned assembly.

Understanding plug-in registration
Once our code is ready, we need to register it to the CRM platform, so that it can
execute on corresponding events. We can register our plug-in using SDK or we
can use the plug-in registration tool that comes with CRM SDK. We can find this
registration tool under the \SDK\Tools\PluginRegistration location. We can
run the PluginRegistration.exe file to register our plug-in.

Chapter 6

[205]

Perform the following steps to set up a connection with the CRM server:

1.	 Double-click on the PluginRegistration.exe file and click on the + Create
New Connection button.

2.	 Select Deployment Type (for our demo we are connecting to CRM Online):

Plug-in connect

We need to specify region information while connecting to CRM Online.
If you don't have any idea about your organization region, you can
select the Don't Know option under Online Region; then you will find
organizations in all regions.

3.	 Click on the Login button to connect to the CRM server.

Once is it connected it will display the already registered assembly list, if any.
Now we can register our plug-in. To register the plug-in we need to understand
the concepts discussed in the following sections.

Plug-in mode
While registering a plug-in we have the option to register our plug-in in isolation
mode, also known as sandbox mode, or none. Plug-ins registered in isolation mode
run with limited resource access; they can't access file systems, the registry, certain
protocols, and event log information. CRM Online only allows us to register plug-ins
and custom workflows in isolation mode, so any plug-in or custom workflow
registered on CRM Online can't use the preceding resources. But if required, we can
use plug-ins and custom workflows for the integration. We can use custom Web
services, deployed on a standard secured port (80 or 443), or on Microsoft Azure.
Plug-ins registered in non-isolation mode don't have such restrictions and they make
full use of resources.

Extending Microsoft Dynamics CRM 2015

[206]

Assembly storage
During the plug-in registration we also need to specify assembly storage; we have
three options for plug-in storage: Database, Disk, and GAC.

Database
This is the recommended option for storing plug-in assembly. There are positive
reasons for storing plug-ins in a database, such as recovery assembly; if the source
code is damaged, we can get the assembly from the database. The benefit of storing
assemblies in a database is that, when we are working on a multi server deployment,
we don't need to keep our assembly in all the servers.

You can refer to http://nishantrana.me/2011/01/17/get-the-
plugin-assembly-stored-in-database-in-crm/for for more on
how to get plug-in assemblies from the CRM database.

Disk
If you select the disk option for plug-in storage, you need to keep your assembly in
the bin folder under CRM installation path: \Server\bin in CRM server. So if you
are using multi server deployment, then you need to keep this in every CRM server.

GAC
If you select the GAC option, plug-in assembly should be registered in the Global
Assembly Cache (GAC) of every CRM server.

Let's register our sample code using the following options:

1.	 Click on the Register drop-down and select Register New Assembly.
2.	 Click on the ellipse (…) under Step 1: and browse the sample plug-in

assembly.
3.	 Keep the other options at their defaults and click on the Register Selected

Plugins button.

http://nishantrana.me/2011/01/17/get-the-plugin-assembly-stored-in-database-in-crm/for
http://nishantrana.me/2011/01/17/get-the-plugin-assembly-stored-in-database-in-crm/for

Chapter 6

[207]

4.	 Verify our assembly is available under the registered assemblies list:

Registered plug-in

Registering plug-in steps
Now our plug-in is registered in the CRM platform, the next thing we need to do is
to bind our plug-in with a specific event. We need to register new steps, so let's first
understand the options available for step registration.

Message
Messages are the events that we need to use to trigger our plug-in—for example,
create, update, delete, retrieve, retrievemultiple, and so on. As soon as you
start typing the initial character it will show you the possible events available for
plug-in registration. We will get all system events provided by the CRM platform
and custom events that we can create using actions. We will be working on custom
actions in a later topic.

Primary entity
Primary entity defines the source entity, if we want to trigger our plug-in on a
specific entity on a specific message. So, for example, if we want to execute our
business logic on an account entity record creation then our primary entity will be
the account and the message will be create. But if you want to execute your business
logic for all the entities, you can leave this field blank, so your message will trigger
for all the entities. For example, if we register our plug-in on a retrieve message and
don't specify the primary entity, it will run when any entity record is opened, but
these types of scenario should be avoided because they can lead to performance
issues.

Extending Microsoft Dynamics CRM 2015

[208]

Secondary entity
This option is not used normally; we complete the secondary entity only when
two entities are required for any message—for example, the SetRelated and
RemoveRelated messages. The following is a list of the primary and secondary
entities supported for SetRelated:

Filtering attribute
The Filtering Attribute is very useful to avoid running our business logic on
unnecessary changes. Let's say we need to run some custom business logic when
the annual revenue of the account is changed, then we need to register the updated
plug-in on the account entity. If during the registering plug-in step All Attributes is
selected, our plug-in will first update any account entity fields, but if we just select the
annual revenue field under the filtering attribute, our plug-in will only update those
specific fields. This option is also useful for avoiding infinite loops in update plug-ins.

Run in user's context
This options allows us to set an impersonation option for our plug-in during
registration. By default, plug-ins will be executing the security context of the calling
user (who is responsible for the plug-in's execution), but we can impersonate our
plug-in by selecting another user from this drop-down.

Chapter 6

[209]

Execution order
Every plug-in runs in a specific order. This option is used to specify the order of
execution for the plug-in if we have multiple plug-ins registered on the same event.

Event
In the event execution pipeline, we select the Pre-validation, Pre-operation,
or Post-operation options. Please refer the earlier topic for the plug-in execution
pipeline.

Execution Mode
This option allows us to configure whether our plug-in will work asynchronously
or synchronously.

Deployment
This option allows us to configure if we want to run our plug-in on the server or if
we also want to configure it to run for the Outlook offline client. We can select one
or both options depending on our requirements.

Delete AsyncOperation if StatusCode = Successful
This option allows us to delete the record of the system job if our asynchronous
plug-in is completed successfully.

The system job entity is used to store information about asynchronous
plug-ins, workflows, and other asynchronous operations by the CRM.
You can get more details here: https://msdn.microsoft.com/
en-us/library/gg328118.aspx.

Secured/Unsecured Configuration
This option is used to pass configuration information to plug-ins; we will be working
on this in later topics.

https://msdn.microsoft.com/en-us/library/gg328118.aspx
https://msdn.microsoft.com/en-us/library/gg328118.aspx

Extending Microsoft Dynamics CRM 2015

[210]

So let's register our plug-in in line with the following screen:

1.	 Right-click on our sample plug-in and select Register New Step.
2.	 Enter the following information:

The sample plug-in step

3.	 Now our sample plug-in is ready for testing. When we try to create the
account entity record, we should see the following message:

Exception

Chapter 6

[211]

Understanding IPluginExecutionContext
IPluginExecutionContext can be considered the heart of a plug-in assembly
because it supplies all the required information to the plug-in. It contains all the
CRM context information, such as the entity the plug-in is executing, the user who
is responsible for plug-in execution, and various input and output parameters
with other related information. We can get IPluginExectuionCotext from
IServiceProvider, as follows:

public void Execute(IServiceProvider serviceProvider)
{
 // Obtain the execution context
 IPluginExecutionContext context = (IPluginExecutionContext)
 serviceProvider.GetService(typeof(IPluginExecutionContext));
}

It contains many members that help us to get information for our plug-in. The
following are the most used members of IPluginExecutionContext:

Name Details
BusinessUnitId Get business unit of the current user who is running the plug-in
CorrelationId Used to track plug-in or custom workflow
Depth Provides information about the call-stage depth; this is very

useful to avoid infinite loop
InitiatingUserId User who has initiated the plug-in execution

InputParameters
All the input parameters supplied by the user—for example,
all dirty fields over the entity form

IsExecutingOffline
To check if the plug-in is executing from the offline Outlook
client

IsInTransaction To check if the plug-in is part of the transaction or not

IsOfflinePlayback
To check if the plug-in is fired because of the synchronization
from offline to online

IsolationMode Is the plug-in working in sandbox mode?

MessageName
Provides details about the message name of the plug-in: create,
update, delete, and so on

Mode Provides details about the plug-in execution mode
OrganizationId Provides the current organization GUID
OrganizationName Provides the name of the current organization

OutputParameters
Lists the parameters returned by the CRM platform, such as
the record GUID after the record is created

PostEntityImages
A snapshot of the entity data after changes (need to register it
separately under the plug-in step)

Extending Microsoft Dynamics CRM 2015

[212]

Name Details

PreEntityImages
Snapshot of the entity data before any changes (need to
register it separately under plug-in step)

PrimaryEntityId Provides the primary entity record ID

PrimaryEntityName
Provides details about the primary entity on which the plug-in
is executing

SecondaryEntityName
Provides the name of the secondary entity if used while
registering

SharedVariables Lists variables shared between two plug-ins
Stage The plug-in execution pipeline where the plug-in is registered
UserId Provides the current user ID

You can refer to https://msdn.microsoft.com/en-us/library/
microsoft.xrm.sdk.ipluginexecutioncontext_members.aspx
for more details on IPluginExecutionContext members.

Getting organization service
In order to perform operations on data and metadata we need to get organization
services. We can get the organization service object from IServiceProvider using
the following code:

IOrganizationServiceFactory serviceFactory =
 (IOrganizationServiceFactory)serviceProvider.GetService(
 typeof(IOrganizationServiceFactory));

IOrganizationService service =
 serviceFactory.CreateOrganizationService(context.UserId);

In the preceding code, we are getting the IOganizationService object by passing
the current user ID, but if we pass a null value to the CreateOrganizationService
method then the IOgranizationService object is created using the system user
account, which has all privileges.

We can also impersonate the user using the code instead of the plug-in registration
tool that we discussed earlier. To impersonate the user we can simply use the
following code, after creating the organization service object. After using the
following statement, the CRM will be reacting on the entire request based on the
current user ID instead of the user used for authentication:

serviceProxy.CallerId = new Guid("GUID of the user");

https://msdn.microsoft.com/en-us/library/microsoft.xrm.sdk.ipluginexecutioncontext_members.aspx
https://msdn.microsoft.com/en-us/library/microsoft.xrm.sdk.ipluginexecutioncontext_members.aspx

Chapter 6

[213]

But keep in mind that impersonation is only possible if the user has the Act on
Behalf of Another User privilege; by default this privilege is configured in the
Delegate security role, so in our case the authenticated user should have this security
role assigned or should have the Act on Behalf of Another User privilege configured
in their role.

You can also refer to: https://www.develop1.NET/public/post/
User-Impersonation-in-Plugins-Workflow-and-Dialogs.
aspx to get more information about impersonation.

Getting input and output arguments
The input argument collections store all the data modified by the user and other
entity information. Input argument collection is available by using context; we can
get it using the following line of code:

context.InputParameters["Key"]

But every message has its own input and output parameters; what information
is available on the input parameter and how we can get it are completely dependent
on the plug-in message. So, for example, in the case of the create plug-in on the
account entity, we will get Target as a key, so we can use the following to get the
entity object:

if (context.InputParameters.Contains("Target") &&
 context.InputParameters["Target"] is Entity)
{
 Entity entity = (Entity)context.InputParameters["Target"];
}

You can refer to a list of input and output parameters here: http://
www.patrickverbeeten.com/Blog/2008/01/25/CRM-40-Plug-
in-message-input-parameters. Although CRM 4.0 is referenced
here, it's the same for CRM 2015.

It is always recommended that you first check the availability of the key using the
Contains method and throwing an error if it's not available under the property beg
instead of directly accessing it. After that we can get the entity object as earlier. If we
have a requirement to write a plug-in on the setstage message we won't get Target
as a key; instead we will get EntityReference as follows:

if (context.InputParameters.Contains("Target") && context.
InputParameters["Target"] is EntityReference)

https://www.develop1.NET/public/post/User-Impersonation-in-Plugins-Workflow-and-Dialogs.aspx
https://www.develop1.NET/public/post/User-Impersonation-in-Plugins-Workflow-and-Dialogs.aspx
https://www.develop1.NET/public/post/User-Impersonation-in-Plugins-Workflow-and-Dialogs.aspx
http://www.patrickverbeeten.com/Blog/2008/01/25/CRM-40-Plug-in-message-input-parameters
http://www.patrickverbeeten.com/Blog/2008/01/25/CRM-40-Plug-in-message-input-parameters
http://www.patrickverbeeten.com/Blog/2008/01/25/CRM-40-Plug-in-message-input-parameters

Extending Microsoft Dynamics CRM 2015

[214]

{
 EntityReference entityReference =
 (EntityReference)context.InputParameters["Target"];
 string entityName = entityReference.LogicalName;
}

Similarly, output operations can be obtained from context depending on the
message used; for example in the case of create, we can get the record ID from
the output parameters as follows:

if (context.OutputParameters.Contains("id"))
{
 Guid AccountId = context.OutputParameters["id"];
}

Understanding shared variables
Sometimes, while working on business logic we may need to share variables between
plug-ins because we don't want to store these values in the CRM database; instead
we can store them in an entity and can read from that entity. We have the option
available to share data between plug-ins using shared variables. Shared variables are
basically collections of key-value pairs that can be added in one plug-in and can be
collected from another plug-in:

The shared variables

Let's take an example where we have pre- and post-plug-ins on the account entity,
and we have some logic to check if approval is required for the account. So we can
use the following code to add shared variables in our pre-create account plug-in:

context.SharedVariables.Add("ApprovalRequired", true);

Now in our post plug-in we can simply check if any shared variable exists under
context; if yes, we can get it as follows:

if (context.SharedVariables.ContainsKey("ApprovalRequired"))
{
 bool isApprovalRequired = (bool)context.SharedVariables[
 "ApprovalRequired"];
}

Chapter 6

[215]

Understanding plug-in images
Plug-in images allow us to capture specific or all fields of an entity on some events.
They help us to get the entity field value before or after changes. We can register pre
and post images in our plug-in. Which image we can use in our plug-in depends
on the message. For example we can't register pre images on create messages and
similarly we can't use post images for delete messages, but in update message we
can use both pre and post images. So, for example, it may be that we want to keep
a copy of the data before an update event and want to compare it with the data
available after the update event. So we can register both pre and post images and do
a data comparison between them. It is recommended that you get data from plug-in
images instead of making service calls and getting it from the CRM database.

Plug-in images are registered after registering the step using Register New Image.
We can store all entity fields under plug-in images, but it is recommended that you
store only required fields to improve plug-in performance. We can select fields by
clicking on the ellipse (…) next to the Parameters textbox:

Plug-in image

Once the image is registered, we can access it using the input property beg as in the
following code:

if (context.PreEntityImages.Contains("Pre")) //name of the
 //Entity Alias used
{
 Entity preImage = (Entity)context.PreEntityImages["Pre"];
}

Now we can get fields from the preImage object just like we can get them from the
entity object, as in the following code:

if(preImage.Contains("address1_city"))
{
 string city = preImage.GetAttributeValue<string>(
 "address1_city");
}

Extending Microsoft Dynamics CRM 2015

[216]

Applying validation using plug-ins
Let's say we want to implement a business scenario for a member entity in our
library management system. When any CRM admin tries to delete the member entity
record, we will be validating whether a book has been issued to this member or not;
if yes, we won't allow them to delete the record.

We need to register our plug-in on the pre delete event and we will be using a pre
image to get the attribute of the entity. Perform the following steps to implement
our requirement:

1.	 Set up a new assembly project and the required assemblies as we did in our
sample plug-in.

2.	 Right-click on Class1 and rename it to ValidateMember.
3.	 Inherit IPlugin and implement the Execute method.

First, we need to get context from the service provider and the organization service
object. Since we are going to register the pre image, we will get our entity object
from the pre image as follows:

public void Execute(IServiceProvider serviceProvider)
{
 try
 { //get context
 IPluginExecutionContext context = (IPluginExecutionContext)
 serviceProvider.GetService(typeof(IPluginExecutionContext));
 //create service factory object
 IOrganizationServiceFactory serviceFactory =
 (IOrganizationServiceFactory)serviceProvider.GetService(
 typeof(IOrganizationServiceFactory));
 //get service object from service factory
 IOrganizationService service =
 serviceFactory.CreateOrganizationService(context.UserId);

 if (context.PreEntityImages.Contains("preImage"))
 {
 Entity prememberEntity =
 (Entity)context.PreEntityImages["preImage"];
 if (BookIssueValidation(prememberEntity.Id,service))
 {
 throw new InvalidPluginExecutionException("This is book
 issued for this Member, so it can't be deleted");
 }
 }
 }

Chapter 6

[217]

 catch (FaultException<OrganizationServiceFault> ex)
 {
 throw new InvalidPluginExecutionException("An error occurred
 in the validtion plug-in.", ex);
 }
}

After that, we need to pass the member ID and service object to another function to
validate if there are any books issued to this user; it use return true else return false:

private bool BookIssueValidation(Guid MemberId,
 IOrganizationService service)
{
 //query bookissue entity based on member id
 QueryExpression query = new QueryExpression
 {
 EntityName = "him_bookissue",
 ColumnSet = new ColumnSet(true),
 Criteria = new FilterExpression
 {
 Conditions =
 {
 new ConditionExpression
 {
 AttributeName = "him_issuedto",
 Operator = ConditionOperator.Equal,
 Values = { MemberId }
 },
 new ConditionExpression
 {
 AttributeName = "him_status",
 Operator = ConditionOperator.Equal,
 Values = { 1 }
 }
 }
 }
 };
 return (service.RetrieveMultiple(query).Entities.Count > 0 ?
 true : false);
}

Extending Microsoft Dynamics CRM 2015

[218]

Passing parameters to plug-ins
While working with plug-ins, sometimes we need additional information; it may
be related to another entity or some form of configuration data. If we need to read
information from any other entity, we can simply use organization service methods
to fetch data from the CRM. In the case of configuration, we can also create a
configuration entity in the CRM and store data there, which can be read easily in
plug-ins. Apart from that, we could also create XML Web resources to store this data
and read it into the plug-in.

Another option available in plug-ins to pass configuration data is to use secured
configurations and unsecured configurations. A secured configuration is only
accessible by the CRM Administrator, other users can't read this information in
plug-ins, whereas an unsecured configuration is available to every user. Apart from
that, a secure configuration is not available in new environments if a plug-in having
a plug-in step with a secure configuration is imported as part of a managed solution;
but an unsecure configuration will be available in the new environment. We can pass
our configuration data while registering plug-in steps in terms of an XML string. We
can be read by plug-in constructors as follows:

public class SamplePlugin : IPlugin
{
 string FirstName = string.Empty;
 string LastName = string.Empty;
 public SamplePlugin(string unsecureConfig, string secureConfig)
 {
 FirstName = !string.IsNullOrEmpty(unsecureConfig) ?
 unsecureConfig : string.Empty;
 LastName = !string.IsNullOrEmpty(secureConfig) ?
 secureConfig : string.Empty;
 }
}

Chapter 6

[219]

These configurations can be defined in the Unsecure Configuration and Secure
Configuration sections under the plug-in step as follows:

Plug-in step configuration

Troubleshooting plug-ins
During plug-in development, we need to troubleshoot our plug-in code for different
errors that we may face during execution of the code. It is always a good practice
to have your code well documented with proper exception handling. We can
troubleshoot plug-in code in three ways:

1.	 Using the ITracingService service.
2.	 Using debugging.
3.	 Writing logs to text files.

ITracingService helps us to generate logging information that we may want
to do at different steps. This is especially useful when we don't have debugging
tools available and need logging information to troubleshoot our code. We can get
ITracingService from the service provider object as follows:

//Extract the tracing service for use in debugging sandboxed plug-ins.
ITracingService tracingService =
 (ITracingService)serviceProvider.GetService(typeof(
 ITracingService));

ITracingService has one method Trace that we can use to create logs as follows:

//adding log information
tracingService.Trace("Logging Message");

Extending Microsoft Dynamics CRM 2015

[220]

All the tracing information generated in plug-ins can be accessed in the
following ways:

•	 Using the Download Log File button in the Business Process Error dialog
•	 Using the Plug-in Trace log available under Settings | Plug-In Trace Log
•	 Using log files generated in the CRM installation path:

\ Microsoft Dynamics CRM\Trace

Plug-in tracing in CRM applications is not enabled by default; we need to enable it
from the Customization tab by navigating to Settings | System Settings. Once this
setting is enabled we can see tracing information in the CRM as follows:

We can also get tracing information into log files at the server level if tracing is
enabled in the CRM server. To enable tracing in the CRM server you can refer to:
https://technet.microsoft.com/en-us/library/hh699694.aspx#BKMKserver_
level_tracing.

https://technet.microsoft.com/en-us/library/hh699694.aspx#BKMKserver_level_tracing
https://technet.microsoft.com/en-us/library/hh699694.aspx#BKMKserver_level_tracing

Chapter 6

[221]

Debugging plug-ins
Debugging is the process where we execute our code line by line in order to identify
runtime errors and fix them. We can debug both non-isolation and isolation plug-ins;
in the case of non-isolation plug-ins, we need to copy the PDB and DLL files to the
server\bin\assembly folder on the CRM server and we need to attach the service
process based on the plug-in type in Visual Studio. The following table presents the
different services that we need to attach:

Plug-in Type Process Name
Online w3wp

Offline microsoft.crm.application.hoster

Asynchronous plug-in and workflow Crmasyncservice

You need to perform the following steps to debug your on-premise plug-in, where
Visual Studio is installed on the CRM server:

1.	 Build your code and keep the PDB and DLL files in server\bin\assembly.
2.	 Register the updated code to the CRM.
3.	 Attach the w3wp process in Visual Studio (make sure you are logged in with

admin rights).
4.	 Add a breakpoint in your source code.
5.	 Execute your event in the CRM.

If Visual Studio is not installed on the CRM server
then we need to use remote debugging. You can refer
to https://community.dynamics.com/crm/b/
zhongchenzhoustipstricksandportaldevelopment/
archive/2012/05/16/dynamics-crm-remote-debugging-
step-by-step for the steps required for remote debugging.

In the case of sandbox plug-ins, we need to copy the PDB and DLL files under
server\bin\assembly folder on the server running the sandbox worker process
(the Sandbox Processing Service role server). In the case of the sandbox server, we
need to attach Microsoft.Crm.Sandbox.WorkerProcess for debugging.

https://community.dynamics.com/crm/b/zhongchenzhoustipstricksandportaldevelopment/archive/2012/05/16/dynamics-crm-remote-debugging-step-by-step
https://community.dynamics.com/crm/b/zhongchenzhoustipstricksandportaldevelopment/archive/2012/05/16/dynamics-crm-remote-debugging-step-by-step
https://community.dynamics.com/crm/b/zhongchenzhoustipstricksandportaldevelopment/archive/2012/05/16/dynamics-crm-remote-debugging-step-by-step
https://community.dynamics.com/crm/b/zhongchenzhoustipstricksandportaldevelopment/archive/2012/05/16/dynamics-crm-remote-debugging-step-by-step

Extending Microsoft Dynamics CRM 2015

[222]

We can also debug our plug-in using the plug-in registration
tool; this is especially useful when you are working with CRM
Online deployment. Please refer to: http://nishantrana.
me/2014/07/02/debugging-online-plugin-in-crm-2013/.

Working with custom workflows
We can extend the CRM process capability by writing custom .NET assemblies
known as custom workflows. Similar to plug-ins, we can also write custom workflows
using Visual Studio and register them in the CRM platform; then our assembly will
be available as a custom step in workflow designer. In the case of workflows, we can
only register our custom assembly; we cannot register our steps and images just like
plug-ins. We need to use our custom functionality with the existing steps in workflow
designer. We can create custom workflows similarly using Visual Studio and use the
CRM SDK just like a plug-in.

Using parameters in custom workflows
In custom workflows, we can use input and output parameters. We can use the input
parameter to pass information to a workflow that can be used in the code for our
custom logic. The following is an example of declaring the input type parameter:

[Input("Name of Parameter")]
[Default("Default value")]
public InArgument<Datatype> NameofinputProperty { get; set; }

The following code declares the integer type of parameter:

[Input("Total Value")]
[Default("500")]
public InArgument<int> IntotalvalueParameter { get; set; }

Similarly, we can define an output parameter that will be available in the form
assistant in the workflow designer. The following is an example of an integer
output variable:

[Output("Account Name")]
[Default("Primary Account")]
public OutArgument<string> PrimaryAccountName { get; set; }

http://nishantrana.me/2014/07/02/debugging-online-plugin-in-crm-2013/
http://nishantrana.me/2014/07/02/debugging-online-plugin-in-crm-2013/

Chapter 6

[223]

We can also define properties for both in and out arguments, as follows:

[Input("Total Value Input")]
[Output("Total Value Output")]
[Default("500")]
public InOutArgument<int> InOutParameter { get; set; }

In some of the properties, we need to provide some additional reference information.
For example, the following is the code for declaring the reference and option set type
of parameters:

[Input("EntityReference input")]
[ReferenceTarget("account")]
public InArgument<EntityReference> AccountName { get; set; }

[Input("Custom Category")]
[AttributeTarget("account", "customertypecode >")]
public InArgument<OptionSetValue> CustomerCategoryCode{ get; set; }

Adding custom workflows in library
management systems
We have a requirement to create a marketing list to promote the new books added
in a library management system. We need to provide members with the option to
select whether they are interested in book promotions. If a member is interested, we
need to add the member to the marketing list automatically. Let's implement this
requirement using a custom workflow.

First, we need to set up a marketing list in the CRM. Currently, we don't have access
to the marketing list entity because we modified the sitemap to hide everything other
than the required entity links, so we need to add a new link for the marketing list.
Perform the following steps to add a new link for the marketing list:

1.	 Connect to XrmToolBox.
2.	 Click on the Load SiteMap button, right-click on Group (Extensions), and

select Add New Sub Area.
3.	 Select the Marketing list entity by clicking on the Select entity button.

Extending Microsoft Dynamics CRM 2015

[224]

4.	 Click on Save and then click on Update SiteMap:

The marketing list

Now we need to create the marketing list for the book promotion. Perform the
following steps:

1.	 Connect to the Library Management System application and click on the
Main area.

2.	 Select Marketing Lists and click on the + New button:

The Marketing Lists icon

Chapter 6

[225]

3.	 Enter the following information and click on the Save and Close button:

Name: New Book Promotion
List Type: Static
Targeted At: Contact

Now let's write our workflow by performing the following steps:

1.	 Start Microsoft Visual Studio and navigate to File | New | Project.
2.	 Select Visual C# and Workflow | Activity Library in the Installed

Templates pane.
3.	 Specify a name and location for the solution, and then click on OK.
4.	 Make sure .NET Framework 4.5.2 is selected as the target framework.
5.	 Right-click on the project name and add a reference to the following

assemblies:
Microsoft.Xrm.Sdk.dll
Microsoft.Xrm.Workflow.dll
Microsoft.Crm.Sdk.Proxy

6.	 Delete the Activity1.xaml file in the project; right-click on the project and add
a new class to it.

7.	 Open the class file and add the following using directives:
using System.Activities;
using Microsoft.Xrm.Sdk;
using Microsoft.Xrm.Sdk.Workflow;
using Microsoft.Crm.Sdk.Messages;
using Microsoft.Xrm.Sdk.Query

8.	 Now we need to inherit CodeActivity and declare an input argument to
accept the name of the marketing list, as follows:
class AddmemberToMarketingList:CodeActivity
{
 [Input("Marketing List")]
 [ReferenceTarget("list")]
 public InArgument<EntityReference> MarketingList
 {get;set;}

Extending Microsoft Dynamics CRM 2015

[226]

We need to add a new two-option set field in our member entity to
get this member's preferences on book promotion. So we have added
a two-option set field called him_interestedinbookpromotions
in the member entity, where they can select the Yes or No option.

In the workflow, we override the Execute method available under the
CodeActivity class, as follows. This will provide access to the workflow execution
context and organization service access:

protected override void Execute(CodeActivityContext executionContext)
{
 //Create the tracing service
 ITracingService tracingService = executionContext.GetExtension
 <ITracingService>();
 try
 {
 //Create the context
 IWorkflowContext context = executionContext.GetExtension
 <IWorkflowContext>();
 IOrganizationServiceFactory serviceFactory =
 xecutionContext.GetExtension<IOrganizationServiceFactory>();
 IOrganizationService service =
 serviceFactory.CreateOrganizationService(context.UserId);
 //get entity id and query interested in book promotion
 tracingService.Trace("Reading data from member entity");
 Entity member = service.Retrieve("contact",
 context.PrimaryEntityId, new ColumnSet(
 "him_interestedinbookpromotions"));
 //updating tracing
 tracingService.Trace("Validating if member is interested in
 book promotions");
 if (member.Contains("him_interestedinbookpromotions") &&
 member.GetAttributeValue<bool>(
 "him_interestedinbookpromotions"))
 {
 //add member to promolist
 AddToMarktingList(member.Id, service, executionContext);
 }
 tracingService.Trace("Execution Completed");
 }
 catch (Exception Ex)
 {

Chapter 6

[227]

 tracingService.Trace("There is any error in adding member to
 marketing list" + Ex.Message);
 throw new InvalidPluginExecutionException(Ex.Message);
 }
}

In the workflow, the entity object is not available under the workflow execution
context, so we are getting the primary entity ID and retrieving the contact entity
attribute him_interestedinbookpromitions; we are validating whether the user
has selected this option.

To add a member to our marketing list we need to use AddMemberListRequest,
which we will be passing to the Execute method of the organization service; this
request has two parameters: the record ID and the ID of the list record:

private void AddToMarktingList(Guid Memberid, IOrganizationService
 service, CodeActivityContext contxt)
{
 AddMemberListRequest req = new AddMemberListRequest();
 req.EntityId = Memberid;
 req.ListId = MarketingList.Get<EntityReference>(contxt).Id;
 AddMemberListResponse resp =
 (AddMemberListResponse)service.Execute(req);
}

Now our workflow is ready, build the solution by navigating to Build Solution
under the BUILD menu. Now we can connect to the plug-in registration tool and can
register our workflow assembly just like we registered our plug-in in earlier topics.
After the workflow is registered, we can set the workflow group and step name,
using properties in the plug-in registration tool as follows. Now our custom steps
will be available under the Custom Workflow group in workflow designer:

The Workflow properties

Extending Microsoft Dynamics CRM 2015

[228]

Using custom workflows
Now let's use our custom workflow. Perform the following steps to create a book
promotion workflow:

1.	 Navigate to Components | Processes and click on New from the right-hand
process toolbar in the LibraryManagement solution that we created earlier.

2.	 Enter the following details and click on Ok:
Process Name: Add Member to Book Promotion
Entity: Member
Category: Workflow
Run this workflow in the background (recommended): Selected

3.	 Select Record is created and Record fields change and click on the Select
button to select vInterestedinbookpromotions field in the field list under
Start When.

4.	 Click on Add Step and select our custom assembly:

Custom workflow step

Assemblies are cached by the CRM so you may have to restart
the CRM website to see the new or updated deployed assembly.

5.	 Click on Set Properties and select our marketing list record as follows:

Selecting the Marketing List option

Chapter 6

[229]

6.	 Click on Activate and then close the workflow dialog.

Now when we create our update, a new member with Interested in book
Promotions select members will automatically be added to the marketing list
as follows:

The marketing list members

For CRM development using Visual Studio, we can also use the
Developer toolkit. At the time of writing, the CRM 2015 Developer toolkit
has not been released, but the CRM 2013 Developer toolkit can be also
used for CRM 2015. Refer to: https://msdn.microsoft.com/en-us/
library/hh547400(v=crm.6).aspx for details on using the CRM
2013 Developer toolkit.

Understanding actions
Have you ever thought of creating your own events just like we have out-of-the-box
events available in organization services? If yes, then actions can help you. Actions
were released in CRM 2013 initially, to allow us to define our own custom messages
that can be called using server-side code or client-side code. If you are working with
2013 you can just access actions using SDK calls alone, but with the new enhancements
in CRM 2015, we can call actions through workflows and dialogs as well.

https://msdn.microsoft.com/en-us/library/hh547400(v=crm.6).aspx
https://msdn.microsoft.com/en-us/library/hh547400(v=crm.6).aspx

Extending Microsoft Dynamics CRM 2015

[230]

Actions can be created for a particular entity or can be global; they are always
synchronous and run on the current user security context. Thus, similar to
synchronous plug-ins, actions are also transactional. Once an action is activated,
it is available like messages and we can register plug-ins on them.

Designing actions
Let's take an example where we want to set up a custom message to calculate the
fine on a book issued if it is submitted after five days. We will create an action that
will take the issue date, return the date as an input argument, and will calculate the
output based on the date difference. To implement this requirement, first we will
design our action so it just holds the definition of our custom message and then we
will register a plug-in on our action to calculate the fine. Perform the following steps
to create actions:

1.	 Navigate to Components | Process and click on the New button from the
process toolbar.

2.	 Enter the following properties and click on Ok:
Process Name: Fine Calculation
Category: Action
Entity: Book Issue or Return

3.	 Click on the + sign to add a new argument and change the properties of the
argument as follows:
Name: IssueDate
Type: DateTime
Required: Selected
Direction: Input

4.	 Repeat Step 3 to add two other arguments using the following properties:

Name Type Required Direction
ReturnDate DateTime Selected Input

Fine Integer Unselected Output

Chapter 6

[231]

5.	 After adding all the arguments, you should see:

The action arguments

6.	 Click on Activate and then the Close button.

Our action is ready; as soon as it is activated, it is available as a custom message,
which can be called from SDK and can be used for plug-in registration. Now let's
develop our fine calculation plug-in that we will be registering in our custom action.
Perform the following steps:

1.	 Add a New Class Library project that is similar to earlier examples that we
did for custom workflows.

2.	 Rename class1 to CalculateFineAmt, add a Microsoft.Xrm.Sdk assembly to
the project, and sign the assembly like we did earlier.

3.	 Add the following code to the CalculateFineAmt.cs file:
public void Execute(IServiceProvider serviceProvider)
{
 // Obtain the execution context IPluginExecutionContext
 context = (IPluginExecutionContext)
 serviceProvider.GetService(typeof(
 IPluginExecutionContext));
 if (context.InputParameters.Contains("IssuedDate") &&
 context.InputParameters.Contains("ReturnDate"))
 {
 //read input arguments
 DateTime issueDate = (DateTime)context.InputParameters
 ["IssuedDate"];
 DateTime ReturnDate = (DateTime)context.InputParameters
 ["ReturnDate"];
 //calcuate date
 double TotalDays = (ReturnDate - issueDate).TotalDays;
 if (TotalDays > 5)
 {

Extending Microsoft Dynamics CRM 2015

[232]

 //set output argument
 context.OutputParameters["Fine"] =
 Convert.ToInt32((TotalDays - 5) * 5);
 }
 }
}

In the preceding code, first we are reading action input arguments, they will be
accessible by the input argument, and then we are calculating the difference
between the start and end date; if it is greater than five days, we calculate the
fine by multiplying by five:

1.	 Build the assembly and connect to the plug-in registration tool.
2.	 Register our assembly just like we did for the plug-in example.
3.	 Register New Step and select our custom message for the him_bookissue

entity (as for the Post operation) as follows:

Now we have our custom message available with the fine calculation logic, we
can simply use it by creating a real-time workflow and passing the required input
arguments as follows:

1.	 Create a real-time workflow using the following properties:
Name: Calling Custom Calculation Action
Category: Workflow
Entity: Book Issue/Return
Run this workflow in background (recommended): Unselected

2.	 Configure it to start when Record is created and when Return date is
changed (select the return date field under the Selection option for the
Record field changes).

Chapter 6

[233]

3.	 Click on Add Step | Perform Action and select our action name from the
drop-down button.

4.	 Click on the Set Properties button and set action arguments as follows using
Form Assistant available on the right hand side:

The custom action values

5.	 Add the update step and click on the Set Properties button to set the fine
field as follows:

Action calling

6.	 Save and activate the workflow.

Extending Microsoft Dynamics CRM 2015

[234]

Now let's test our actions. Open any book issue or return entity record, where the
book is issued, and complete Return Date. Once we save the book issue or return
record, it will calculate the fine using our custom action as follows:

We can also call actions using server-side and client-side calls. You can
refer to: http://a33ik.blogspot.ae/2013/10/custom-actions-
walkthrough-for-net-and.html for information on using actions
with server-side and client-side code.

Summary
In this chapter we learned about extending the CRM using plug-ins, custom
workflows, and actions. We discussed all the options available in plug-ins and
workflows. In this chapter we enhanced our library management system by adding
new plug-in validation. We developed a custom workflow to add members to the
book promotion marketing list. We learned how can we design actions and call
them using workflows. We also discussed how we can register plug-ins on custom
messages created using actions. In the next chapter, we are going to build an
application tracking system.

http://a33ik.blogspot.ae/2013/10/custom-actions-walkthrough-for-net-and.html
http://a33ik.blogspot.ae/2013/10/custom-actions-walkthrough-for-net-and.html

[235]

Creating a Project
Tracking Application

In this chapter, we will be creating a sample project tracking application utilizing
different Microsoft Dynamics CRM features. We will be setting up custom entities
for our application and will learn how to use rollup fields to show aggregations
from child entities. We will also see how we can use calculated field for performing
calculations using formulas. We will learn about the activity feed feature in CRM
2015 and will learn about configuring activity feeds for entities and activity feed
rules as follows.

•	 Creating a project tracking application
•	 Project tracking application design
•	 Customizing CRM 2015 for the project tracking application
•	 Using rollup fields for aggregation
•	 Understanding activity feeds
•	 Configuring activity feeds
•	 Setting up teams
•	 Creating charts and dashboards

In this chapter we are going to develop a custom solution for a project tracking
application. In this solution, we are going to develop features required by project
management software. Project tracking applications are used by companies to create
the main project life cycle. A traditional project tracking application provides the
following features:

•	 Ability to maintain project catalogs
•	 Maintain a list of the project user stories and project tasks

Creating a Project Tracking Application

[236]

•	 Ensure visibility of the project task status
•	 Manage project timesheet entries
•	 Clear view of project issues submitted and resolved
•	 Maintain project teams
•	 Ability to maintain project-related documents
•	 Ability to schedule project meetings
•	 Data visualization for the projects status

All the preceding features can be implemented using CRM 2015's out-of-the-box
capabilities; we will be customizing CRM 2015 to achieve all the preceding
requirements for our custom solution. We will be using the CRM 2015 online
trial for this application. You can set up the CRM 2015 online trial using the
http://www.microsoft.com/en-sg/dynamics/Default.aspx link.

Project tracking application design
To map our application requirements, we will be using some out-of-the-box entities
and creating some custom entities to capture project-related information. The
following table provides information about the entities that we will be using:

Name Type Description
Account System Account entity is used to store client information
Project Custom A custom entity to store project details
User stories Custom Custom entities used to store user store/use cases of the project
Project
tasks

Custom This entity is used to store the project task details

Issue Custom This entity is used to store project issue details
User System To store project team members
Team System To store project team details
Activity
entities

System We will be using activity entities such as tasks, e-mails, and
appointment for maintaining different activities

We need to set up a parent child relationship for the preceding entities; for example
one account can have any number of projects, and similarly one project can have any
number of project tasks and user stories. So we need to set up a 1: N relationship
between these entities.

http://www.microsoft.com/en-sg/dynamics/Default.aspx

Chapter 7

[237]

The following diagram represents the relationship between these entities:

Customizing CRM for the project tracking
application
In order to customize CRM 2015 for our application, let's first set up our custom
solution like we did in earlier chapters. We have created a custom publisher with
the name of HIMBAP for our solution and we will be using this publisher for our
solution. Refer to Chapter 2, Customizing Microsoft Dynamics CRM 2015, to create a
new solution with the name of ProjectTrackingSystem as follows:

Creating a Project Tracking Application

[238]

Adding existing entities to the solution
First we will be adding our existing entities to the solution so that we can customize
their look and feel based on our application requirements. Perform the following
steps to add existing entities:

1.	 Navigate to Components | Entities and click on the Add Existing button
from the right-hand side command bar.

2.	 Select the following entities from the list to add them to our solution:
°° Account
°° Appointment
°° Email
°° Task
°° User
°° Team

3.	 Select No in the Missing Dependency dialog.

Customizing the account entity
Now we have an account entity as part of our solution so let's quickly customize it.
We will use existing fields in the account entity for our application and will add one
field to assign the account manager to the account. Perform the following steps to
customize the account entity:

1.	 Expand Entities | Account, select Fields | New, and create the following
field using the following settings (keep the other settings at their defaults):

Property Description
Display name Account Manager

Name him_accountmanager

Data type Lookup

Target record type User

Chapter 7

[239]

2.	 Open the Account main form and rearrange the body field, header fields, and
sections based on the following screenshot:

3.	 Rearrange the Details tab as follows and remove all other fields and sections.

4.	 Click on Save and Close.

Creating a Project Tracking Application

[240]

Setting up the project entity
We will create a standard custom entity to store project-related information. This
entity will act as the parent entity for other entities such as user stories, project tasks,
issues, and timesheets. At this point we will just create the project entity so that it can
be used to define relationships in child entities. Use the following configuration to set
up the project entity:

1.	 Navigate to Components | Entities under our solution and click on the New
button to create the entity.

2.	 Enter the following properties:
Display Name: Project
Plural Name: Projects
Name: him_project
Ownership: User or Team
Areas that display this entity: Sales
Notes: Selected
Duplicate Detection: Selected
Activities: Selected

3.	 Deselect all other option and click on the Save button.

We will be updating this entity with some additional rollup fields that we are going
to set up in later topics. You can refer to Chapter 1 , Getting Started with Microsoft
Dynamics CRM 2015 for rollup fields.

Setting up a user story entity
Every project is divided into multiple user stories or use cases. So we will set up
a custom entity for the user story and the entity will store project user stories/use
cases name and descriptions with other details like parent project.

Perform the following steps to set up a project task entity:

1.	 Navigate to Components | Entities under our solution and click on the New
button to create an entity.

2.	 Enter the following properties:
Display Name: User Story
Plural Name: User Stories
Name: him_userstory

Chapter 7

[241]

Ownership: User or Team
Areas that display this entity: Sales
Notes: Selected
Duplicate Detection: Selected

3.	 Deselect all other option and click on the Save button.

Once the entity is created we need to set up its data structure; please refer to
Appendix A, Data Model for Client Entities and create fields for the project task entity
by navigating to User Story | Fields or from the main form. Once the field is created
we need to place it over the main user story form as in the following screen:

Now let's add our custom fields to the default Active UserStories view. Perform the
following steps to do this:

1.	 Navigate to User Story | Views.
2.	 Double-click on the Active UserStories view to open it.
3.	 Click on Add Columns under Common Tasks and add the following field

to the view:

4.	 Click on Save and Close.

Creating a Project Tracking Application

[242]

Setting up a project tasks entity
We will create another custom entity to store project task details. This entity will
contain information about the parent project and user story with other task-related
details such as the start date, end date status, and assigned to.

Perform the following steps to set up the project task entity:

1.	 Navigate to Entities under our solution and click on the New button to
create the entity.

2.	 Enter the following properties:
Display Name: Project Task
Plural Name: Project Tasks
Name: him_projecttask
Ownership: User or Team
Areas that display this entity: Sales
Notes: Selected
Duplicate Detection: Selected

3.	 Deselect all other option and click on the Save button.

Now we need to set up the data structure for our project task entity; please refer to
Appendix A, Data Model for Client Entities and create fields for the project task entity
by navigating to Project Task | Fields or from the main form. Once the field is
created we need to place it over the main project task form as in the following screen:

Chapter 7

[243]

Using filtered lookups
The filtered lookup feature was initially introduced in CRM 2011 and allows us
to filter lookups based on other lookup values using a simple configuration and
using JavaScript. So for example, we just want to show User Story related to the
project selected in the Project lookup. Perform the following steps to implement
this requirement:

1.	 Double-click on the User Story lookup field to open the field property
window.

2.	 Set up the Related Records Filtering section as follows and click OK.

Apart from the simple lookup filtering configuration we can also use the SDK for
complex lookup filtering.

Please refer to Chapter 3, Client-side Logic with Microsoft Dynamics CRM
2015, to filter lookups using JavaScript.

Now we need to set up views for the project task entity just like we did for the user
story entity. Let's first modify the Active Project Tasks view based on the following
information:

View Name Customization Fields
Active project tasks Add/remove column Task name, Assigned to, Start

date, End date, Task ID

Creating a Project Tracking Application

[244]

Once the preceding changes are done we can set up another view where we
need similar fields; let's setup another view for completed project tasks using
the following steps:

1.	 Double-click on the Active Project Tasks view to open it.
2.	 Click on the Save As command button on the view command bar and name

it Completed Project Tasks. Click on OK.
3.	 Click on Edit Filter Criteria under the Common Tasks area and add criteria

as follows:

4.	 Click on OK and Save and Close the view definition.

Setting up a timesheet entity
We want to also keep track of the time used to work on project activities so we will
create one custom entity to store timesheet details related to the project. This entity
will store information about how much time the user spends on project tasks. This
entity will contain information about the parent project and user story and project
tasks with other timesheet-related details such as start date, end date status, and
total hours.

Perform the following steps to set up the project task entity:

1.	 Navigate to Entities under our solution and click on New to create the entity.
2.	 Enter the following properties:

Display Name: Timesheet
Plural Name: Timesheets
Name: him_timesheet
Ownership: User or Team
Areas that display this entity: Sales
Notes: Selected
Duplicate Detection: Selected

3.	 Deselect all other options and click on Save.

Chapter 7

[245]

Now we need to set up the data structure for our timesheet entity; please refer to
Appendix A, Data Model for Client Entities and create fields for the project task entity
by navigating to Timesheet | Fields or from the main form.

Using calculated fields
Another exciting feature added in CRM 2015 is support for calculated fields,
which we discussed in Chapter 1, Getting Started with Microsoft Dynamics CRM 2015.
Calculated fields allow us to automate calculation by simply defining its property.
Calculation is done in real time and we can also refer to other data type fields in the
formulas of calculated fields but we can't refer to them in their own formula.

We can only reference current entity fields in calculated fields; there is no
way to reference related entity fields under calculated fields.

We are going to use calculated fields in our timesheet entity to calculate the total
hours used to complete project tasks. Perform the following steps to create a
calculated field:

1.	 Navigate to Timesheet | Fields | New.
2.	 Enter the following information in the field property window:

Display Name: Total Hours
Name: him_totalhours
Data Type: Whole Number
Field Type: Calculated

3.	 Click on the Edit button next to Field Type.
4.	 Click on ACTION and configure it as follows. Click on Save and Close:

Creating a Project Tracking Application

[246]

You can find more details about calculated fields at https://technet.
microsoft.com/en-us/library/dn832103.aspx.

Once fields are created we need to place them over the main timesheet form like the
following screen:

Now we can set up lookup filtering in User Story and Task like we did in an
earlier step. First we need to filter User Story based on Project and then we can do
the configuration to filter Task based on the User Story, based on the following
information:

Filtering User Story Based on Project
Only show records where: Project (Timesheets)
Contains Project (User Stories)
Filtering Task Based on User Story
Only show records where: User Story (Timesheets)
Contains User Story (User Stories)

We also need to customize the default Active Timesheets view like we did in an
earlier step based on the following information:

View Name Customization Fields
Active Timesheets Add/Remove column Name, Project, Task, Start, End,

Total hours, Created on

https://technet.microsoft.com/en-us/library/dn832103.aspx
https://technet.microsoft.com/en-us/library/dn832103.aspx

Chapter 7

[247]

Setting up issue entity
We need to set up another entity that will be storing issues related to project tasks.
In this entity we will store information such as submitted by, assigned to, parent
project, parent task and so on.

Perform the following steps to set up a project issue entity:

1.	 Navigate to Entities under our solution and click on New to create the entity.
2.	 Enter the following properties:

Display Name: Issue
Plural Name: Issues
Name: him_issue
Ownership: User or Team
Areas that display this entity: Sales
Notes: Selected
Duplicate Detection: Selected

3.	 Deselect all other options and click on Save.

After the issue entity is created we need to set up the data structure for it; please
refer to Appendix A, Data Model for Client Entities and create fields for the project
task entity by navigating to Issue | Fields or from the main form. Once the field
is created we need to place it over the main issue form like the following screen:

Creating a Project Tracking Application

[248]

We can set up lookup filtering for Task ID based on the project like we did in an
earlier step. Use the following information to set up a filter lookup:

Filtering Task ID based on Project
Only show records where: Project (Issues)
Contains Project (Project tasks)

We also need to customize the default Active Issues view like we did in an earlier
step based on the following information:

View Name Customization Fields
Active issues Add/Remove column Name, Submitted on, Assigned to,

Issue status, Issue type, Submitted
by, Task ID

We also need to add additional criteria to the active issues view to show issues
where the status is open or reopen, so add another criterion as follows using
the Edit Filter Criteria option under Common Tasks:

We can also set up another view by using the Save As option like we did in an earlier
steps to create another view to show fixed tasks, where we need to check for Issue
Status Equals to Fixed.

Using rollup fields for aggregation
Microsoft Dynamics CRM 2015 introduced rollup fields. We discussed these features
in Chapter 1, Getting Started with Microsoft Dynamics CRM 2015. We use rollup fields for
aggregation basically. For example, if we want to count child entity records or show
the total of any money field available in the child entity in the parent entity form,
we can use rollup fields. All these aggregations are done by recurring asynchronous
system jobs, which by default run 12 hours after a field is created or updated.

Chapter 7

[249]

If you are a System Administrator, you can modify rollup system job behavior. You
can navigate to Settings | System Jobs and can select Recurring System Jobs to
display all the recurring rollup jobs. We can select a job and can select an action
from the More Actions drop-down as follows:

Now let's use rollup fields in our project tracking application. In our application the
project entity will act like a parent and we want to show aggregation of the related
project tasks, issues, user stories, and timesheets.

We will be showing the following rollup fields in the project entity:

Name Description
Total User Stories Total count of the user stories for current project
Total Project Tasks Total count of project tasks
Total Completed
Tasks

This field will show how many project tasks are completed

Total Issues This field will count total issues reported for particular project
Solved Issues This field will count total issues fixed for project
Total Time Entered This field will sum all the hours entered for project

This information will help us to know the updated project status. So let's first add
aggregation details about the user stories in the project entity.

Creating a Project Tracking Application

[250]

Perform the following steps to add rollup fields in the project entity to show the total
count of the project user stories:

1.	 Navigate to Entities | Project | Fields in our solution and click on New
under the field's command bar.

2.	 Enter the following information under the field definition window:
Display Name: Total User Stories
Name: him_totaluserstories
Data Type: Whole Number
Field Type: Rollup

3.	 Click on the Edit button next to Field Type.
4.	 Select User Stories (Project) under the Related drop-down.

5.	 Select COUNT under Aggregate Function and Project Task under the
Aggregated Related Entity Field. Click on the tick mark sign.

After we have completed all the steps, our rollup field definition should look
as follows:

Chapter 7

[251]

6.	 Click on Save and Close in both the windows.

The rollup field is calculated based on the system job called Mass
Calculate Rollup Fields; by default it runs after 12 hours. If required
you can run it before 12 hours by using More Actions | Postpone after
selecting this system job under Settings | System Jobs.

Now let's add a similar type of field to display the total count of the project tasks:

1.	 Click on New under the field's command bar.
2.	 Enter the following information under the field definition window:

Display Name: Total Project Tasks
Name: him_totaltasks
Data Type: Whole Number
Field Type: Rollup

3.	 Click on the Edit button next to Field Type.
4.	 Select Project Tasks (Project Id) under Related drop-down and click on the

tick mark sign.
5.	 Select COUNT under Aggregate Function and Project Task under

Aggregated Related Entity Field and click on the tick mark sign.

When completed, it should look as follows:

6.	 Click on Save and Close in both dialogs to close the field definition window.

Creating a Project Tracking Application

[252]

Apart from the total project tasks that it will show, we also want to show the total
completed project tasks to know how many project tasks are completed. Perform
the following steps to create another field to show the total completed tasks count:

1.	 Click on New under the field's command bar.
2.	 Enter the following information under the field definition window:

Display Name: Total completed Tasks
Name: him_totalcompletedtasks
Data Type: Whole Number
Field Type: Rollup

3.	 Click on Edit next to Field Type.
4.	 Select Project Tasks (Project Id) under the Related drop-down and click on

the tick mark sign.
5.	 Click on the Add Condition link and add a filter as follows:

6.	 Select COUNT under Aggregate Function and Project Task under
Aggregated Related Entity Field and click on the tick mark sign.

7.	 Click on Save and Close in both dialogs to close the field definition window.

Now we need to add a rollup field for the total time entered for project tasks;
perform the following steps to do this:

1.	 Click on New under the field's command bar.
2.	 Enter the following information under the field definition window:

Display Name: Total Time Entered
Name: him_totaltimeentered
Data Type: Whole Number
Field Type: Rollup

Chapter 7

[253]

3.	 Click on the Edit button next to Field Type.
4.	 Select Timesheets (Project) under the Related drop-down and click on the

tick mark sign.
5.	 Click on the AGGREGATION link and add selected details as follows:

6.	 Click on Save and Close in both dialogs to close the field definition window.

Similarly, we need to set up another two rollup fields for project issues. Use the
following information to set up these fields, like we did for project tasks:

Display
Name

Entity Name Data
Type

Field
Type

Rollup Definition

Total
issues

Project him_totalissues Whole
number

Rollup •	 Related Entity:
Issues (Project)

•	 Aggregate
Function:
COUNT

•	 Aggregated
Related Entity
Field: Issue

Solved
issues

Project him_solvedissues Whole
Number

Rollup •	 Related Entity:
Issues (Project)

•	 FILTERS
•	 Field: Issue

Status
•	 Operator:

Equals
•	 Type: Value
•	 Value: Fixed
•	 Aggregate

Function:
COUNT

•	 Aggregated
Related Entity
Field: Issue

Creating a Project Tracking Application

[254]

Display
Name

Entity Name Data
Type

Field
Type

Rollup Definition

Total
project

Account him_totalproject Whole
number

Rollup •	 Related:
Projects
(Client)

•	 Aggregate
Function:
COUNT

•	 Aggregated
Related Entity
Field: Project

We need to place the Total Project rollup field in the Account header section.

Completing the project entity design
After adding all the rollup fields we need to add other simple lookup field to the
project entity. Please refer to Appendix A, Data model for Client Entities and create fields
for the project entity by navigating to Project | Fields or from the main project form.
Once the field is created we need to put it in the project entity form. We also need to
add sub-grids for the related entities. Perform the following steps to add a user story
entity sub-grid:

1.	 Select on the INSERT tab and click on Sub-Grid.
2.	 Enter the details as follows in the Sub-Grid property dialog (keep all other

details at their defaults) and click on the Set button:

Chapter 7

[255]

Similarly to this we need to add sub-grids for other entities using the following
information and keep the other details at their default:

Name Records Entity Default View
Issuesdetails Only Related Records Issues (Project) Active Issues
Tasks Only Related Records Project Tasks

(Project Id)
Active Project
Tasks

Now let's rearrange project General tab and Header section of main entity form
design like following screen:

We need to rearrange the Details tab like the following screen:

Creating a Project Tracking Application

[256]

Understanding activity feeds
Microsoft Dynamics CRM has a very cool activity feed feature that was introduced
in CRM 2011. This feature is similar to getting updates in social media tools such as
Facebook, LinkedIn, and Yammer. We can also follow records and like/unlike posts
as we do in social media. In our project tracking application we are going to use this
feature so that the entire internal project team members can be up-to-date about the
project status.

You can refer to https://technet.microsoft.com/en-us/
library/dn659847.aspx for details on social media integration

Most business entities are enabled for activity feeds; we can see activity feeds on
What's New dashboards and in the Social Pane in the respective entity. For example,
in the following screen we can see posts related to account and related entity updates:

POSTS can be selected as the default tab from the Social Page property
by selecting Default Tab as Post under Display tab.

https://technet.microsoft.com/en-us/library/dn659847.aspx
https://technet.microsoft.com/en-us/library/dn659847.aspx

Chapter 7

[257]

Activity feeds are available in entity records, personal walls in social panes, or in
What's New dashboards. We can see two types of post in the wall:

•	 User: This post is basically created by the user, if the user wants to provide
some updates on the record or any other information. In our case, let's say
the testing team just tested a critical showstopper issue and want to convey
a message that this issue is fixed; they can simply post this message over the
project record.

•	 Auto Post: Auto posts are generated by the CRM based on the predefined
auto post rules. So, for example, there can be an auto post rule to post a
message over the project record wall that a new issue is submitted. While
posting messages, we can post the entity record information as well.

Activity feeds are not available for all entities, whereas the entity posts we can see
depend on two configurations, basically:

•	 Activity Feed Configuration: We can access this configuration by navigating
to Settings | Activity Feed Configuration. This is the place where activity
feeds for the entities are enabled. This view will show all the entities that can
be enabled for activity feeds; only some of the system entities are available
for this. A record of the configuration is created by the CRM. When we
create a custom entity, the CRM generates a record for the activity feed
configuration for those entities; for example, the following screenshot shows
a list of the entities that we created for our solution:

We can select a record and click on the ACTIVATE and DEACTIVATE
buttons to enable or disable activity feed configuration. To enable the Wall
Enabled option we need to open the record and select the Wall Enabled
checkbox.

Creating a Project Tracking Application

[258]

•	 Activity Feed Rules: We can access this configuration by navigating to
Settings | Activity Feed Rules. Activity feed rules defines when activity
feeds will be generated for the activity feed-enabled entities. There are
pre-defined rules for the system entities for some events such as account
create, opportunity won or lost, and so on. But there are no activity feed rules
for custom entities, so if we want to enable activity feeds for a custom entity
first we need to enable the etc activity feed configuration record for our
custom entity and then we need to set up a workflow to create post records
on the wall.

You can refer to https://msdn.microsoft.com/en-us/
library/hh547452.aspx for more detail on activity feeds

Utilizing activity feeds
We want to utilize activity feeds for our project tracking application and want to
ensure that every member of the project team is up-to-date with the project status.
To enable activity feeds for the project entity we will enable the activity feed
configuration record for the project entity and then we will set up a workflow to auto
post on the corresponding project record wall about the child entity's status. Perform
the following steps to enable this configuration:

1.	 Navigate to Settings | Activity Feed Configuration.
2.	 Select the him_project record and click on the ACTIVATE button to

enable it.

https://msdn.microsoft.com/en-us/library/hh547452.aspx
https://msdn.microsoft.com/en-us/library/hh547452.aspx

Chapter 7

[259]

3.	 Double-click on the same record and open it.
4.	 Select the Enable walls for this option, click on the Save button, and close

the record.

Setting the auto post rule
We can directly write user posts on the wall but unfortunately there is no direct way to
create an auto post rule for activity feeds. As a workaround we can set up a workflow
for auto post. So let's say we want to post messages on the project wall as soon as a
project issue is submitted. Perform the following steps to set up this workflow:

1.	 Navigate to Settings | Process | New.
2.	 Enter the following details and click on OK:

Process Name: AutoIssuePost
Activity As: Process
Entity: Issue
Category: Workflow

3.	 Set the workflow scope to Organization and select Record is created under
Start when.

4.	 Click on the Add Step | Create Record option and select Post under the
Create drop-down. Click on Set Properties.

5.	 Click on Text Field and write A new Issue. Select Record URL(Dynamic)
and click on Add and then OK as follows:

Creating a Project Tracking Application

[260]

6.	 Similarly, use other dynamic fields from Look For and complete the post
message as follows:

7.	 Click on Save and Close and activate the workflow.

We need to set up another workflow to post when the issue is resolved. Perform the
following steps to set it up:

1.	 Navigate to Components | Processes | New under our solution.
2.	 Enter the following details and click on OK:

Process Name: AutoPostIssueFixed
Activity As: Process
Entity: Issue
Category: Workflow

3.	 Set the workflow scope to Organization and select Record fields change
under Start when.

4.	 Click on the Select button next to Record fields change and select the Issue
Status field. Click on OK.

5.	 Click on Add Step | Check Condition and click on the condition to check if
the issue status is equal to fixed.

6.	 Select the row under condition and select Add Step | Create Record. We
need to select Post under the Create drop-down and click on Set Properties.

Chapter 7

[261]

7.	 Click on Text field and write a message, using dynamic values from Look
For under Form Assistant.

8.	 Click on Save and Close and activate the workflow.

Similarly, we can set up other workflows to do posts for other related entities such
as project tasks—for example, when a project task is completed, a time sheet entered,
and so on.

Getting updates
By default activity feeds are available on the entity record and the What's New wall,
but if we want to get updates on a personal wall, we need to follow that record using
the FOLLOW button on activity-feed enabled entities. The following screenshot
shows the other available buttons apart from the FOLLOW button:

Creating a Project Tracking Application

[262]

Once we start following records, we will be able to get all the updates for the
followed records in our personal wall as follows:

When any entity is enabled for activity feeds, new views are created by the system
to display records listed as followed by us. We can also query these records using
Advanced Find.

Setting up teams
As in CRM, users can access data based on security roles, so it may be that in our
development team some user will have a user level security role so they won't be
able to access entity records created by others unless they are shared with them
or assigned to them. Teams provide the best option to share records with a group
instead of sharing records with individual members of the team.

CRM 2015 provides us with the functionality to define access teams and owner teams.
Access teams are considered lightweight teams as they don't require security role
assignments; thus, they can't own entity records. In the case of access teams, individual
entity records are shared with team members so individual record access is provided
to team members using different access rights such as Delete, Write, Assign, Append,
Append To, Share, and Read. To use access teams first we need to define an access
team template based on the entity. We can only a create an access team template for
an entity if the Access Teams option is checked under the entity definition.

Chapter 7

[263]

Once it is done we can define access teams by navigating to Settings | Security |
Access Team Templates. After that we use the access team template in our entity
by adding a sub-grid for the user entity.

You can find more details on how to create and use access teams from:
http://www.microsoft.com/en-us/dynamics/crm-customer-
center/create-a-team-template-and-add-to-an-entity-
form.aspx.

As the name suggests, owner teams can own entity records and so require security
role assignment. While creating owner teams, we need to assign a security role to the
team and all the team members will automatically inherit this security role. The team
members will be able to access data based on the team security role even if a less
privileged security role is assigned to them.

In our application we need to set up two owner teams to work on the project. We
are going to set up a development team. This team will include different technical
and function consultants, with developers and team leads. We need another team
that will be responsible for the QA testing and deployment; this team will include
members who will be testing the project and will be responsible for the deployment
from one server to another.

Let's set up our two teams. Perform the following steps:

1.	 Navigate to Settings | Security | Teams.
2.	 Click on the New command button and use the following information to set

up a development team:
Team Name: CRM Dev Team
Business Unit: Keep as default

http://www.microsoft.com/en-us/dynamics/crm-customer-center/create-a-team-template-and-add-to-an-entity-form.aspx
http://www.microsoft.com/en-us/dynamics/crm-customer-center/create-a-team-template-and-add-to-an-entity-form.aspx
http://www.microsoft.com/en-us/dynamics/crm-customer-center/create-a-team-template-and-add-to-an-entity-form.aspx

Creating a Project Tracking Application

[264]

Administrator: Select the user who we want to make admin of the teams
Team Type: Owner

3.	 Click on the Save button to save the team. Once the team is saved we can
click the + sign under the Team members sub-grid to add a member to
our team.

Similarly we need to set up our QA team and the members in it.

Sharing records with a team
Now our team is ready, so let's implement this requirement. As soon as any team is
added to the project, we want to share that project with all the team members, so that
they will have access to the project. There is no out-of-the-box way to share entity
records with teams, but we could implement this requirement with the help of a
custom development. Instead of developing this solution, we are going to use a free
solution, Dynamics CRM 2015 Workflow Tools, which is available in CodePlex. This
utility was developed by my colleague MVP Demian Adolfo Raschkovan.

Perform the following steps to use this utility:

1.	 Download the utility from: https://msdyncrmworkflowtools.codeplex.
com/releases/view/612295.

2.	 Import it to our CRM application by navigating to the Settings | Solution |
Import option.

3.	 Navigate to Settings | Processes and click on the New button to create a
new workflow.

4.	 Enter the following details:
Process Name: Share Project
Category: Workflow
Entity: Project
Keep other setting as default and click on OK.

5.	 Select Record is Created and Record fields change (select the Development
Team field using the Select button).

https://msdyncrmworkflowtools.codeplex.com/releases/view/612295
https://msdyncrmworkflowtools.codeplex.com/releases/view/612295

Chapter 7

[265]

6.	 Click on Add Step and select the msdyncrmWorkflowTools.
ShareRecordWithTeam option under msdyncrmWorkflowTools
custom group as follows:

7.	 Click on the Set Properties button and set the input arguments as follows:

8.	 Save and Close. Now activate our workflow.

We need to set up a similar workflow for the QA team as well. This workflow will
share the record with the Development and QA teams when a project record will be
created or updated with these team lookup filled. We can set up our custom security
roles where we can provide user level access to our custom entities. Then we can
assign that security role to our development and QA team.

Creating a Project Tracking Application

[266]

Preparing data visualization
Now our entities are ready for our solution so let's set up a couple of charts that
we can use for the application dashboard. CRM 2015 has rich out-of-the-box data
visualization tools; we can utilize out-of-the-box charts or can create our own
custom charts to represent different types of information. Similarly, we can use the
out-of-the-box dashboard or we can create our own custom dashboards for data
visualization. The out-of-the-box entity contains some charts but for our custom
entities we need to create a chart. Both charts and dashboards can be of two types:
user and system. User charts and dashboards are only available to the user who has
created them unless they are shared with other members. But system charts and
dashboards are available to every user and are created using solutions.

You can get more information on data visualization from:
https://msdn.microsoft.com/en-us/library/gg328110.aspx.

For our application we will be setting up the following charts:

•	 Estimated Revenue by Technology: This chart will help us to provide
the total estimated revenue based on the different technology project we
are using

•	 Total Time Entered versus Total Estimation/hrs: This chart will provide us
with details about the total project estimation versus the total time for the
project so far

•	 Issue Type versus Issue Status: To see total issues based on their type

Perform the following steps to create the earlier charts in the project entity:

1.	 Navigate to Entities | Project | Charts | New.
2.	 Select Active Projects under the View used for chart preview drop-down.
3.	 Call the chart Estimated Revenue by Technology.
4.	 Click on the drop-down under the Bar chart and select the Bar option.

https://msdn.microsoft.com/en-us/library/gg328110.aspx

Chapter 7

[267]

5.	 Select Series and Category as follows:

6.	 Click on Save and Close.

Similarly, design other charts using the following steps:

1.	 Navigate to Charts | New.
2.	 Select Active Projects under the View used for chart preview drop-down.
3.	 Call the chart Total Time Entered versus Total Estimation/hrs.
4.	 Click on the drop-down under the Column chart and select the

Column option.
5.	 Select Series and Category as follows:

We can also set up another chart to see issue details by following the following steps:

1.	 Navigate to Issue | Charts | New.
2.	 Select Active Issues under the View used for chart preview drop-down.
3.	 Call the chart Issue Type versus Issue Status.

Creating a Project Tracking Application

[268]

4.	 Click on the Pie chart and select Series and Category as follows:

Creating dashboard
Microsoft Dynamics CRM 2015 contains many dashboards for every module and
it allows us to create dashboards using out-of-the-box tools, so let's set up a new
dashboard for our application. Perform the following steps to create the dashboard:

1.	 Navigate to Components | Dashboard | New.
2.	 Select 2-Column Regular Dashboard under the layout options and click

on Create.
3.	 Click on the Insert Chart option available under the first section and select

options as follows:
Record Type: Issue
View: Active Issues
Chart: Issue Type Vs Issue Status

Similarly, add another two charts that we created for the project entity and in the
last section add an active timesheet view. Click on Publish to publish our changes.
After refreshing the CRM browser window we should be able to access our project
tracking application dashboard from the dashboard drop-down as follows:

Chapter 7

[269]

Further, we can customize the navigation of our application like we did in
earlier chapters and remove the unwanted areas from the CRM navigation.
Real-time workflows can be set up for generating auto IDs for the entities used
in the application.

Creating a Project Tracking Application

[270]

We can utilize the out-of-the-box note attachment functionality in CRM 2015 to
attach documents related to the project and we could also enable out-of-the-box
SharePoint integration to further use the full document management potential
in SharePoint.

Apart from that we can also use the out-of-the-box appointment tool to set up status
calls and other meetings.

Summary
In this chapter we learned about creating a complete solution for our project tracking
application. We utilized different Microsoft Dynamics CRM 2015 features to set up
the various functionality required for the project tracking application. We learned
about how to use calculated fields and rollup fields. We also learned about the
activity feed feature in CRM 2015 and learned how to create activity feed rules
using workflows.

In next chapter we are going to discuss the Microsoft CRM 2015 mobile client and
will learn to set up trial for Microsoft Dynamics Marketing.

Chapter 8

[271]

Introduction to Mobile Client
and Microsoft Dynamics

Marketing
In this chapter, we are going to learn about the mobility options for Microsoft
Dynamics CRM 2015 and Microsoft Dynamics Marketing (MDM). We will be
discussing the free mobile, tablet, and paid clients available on the market from
other vendors. This chapter will also help you to understand the MDM tool used
for additional marketing features not present in the out-of-the-box CRM marketing
module. We will learn to set up a trial account for MDM.

The following topics will be discussed in this chapter:

•	 Microsoft Dynamics CRM Mobility Introduction
•	 Accessing CRM using mobiles
•	 Access CRM using tablets
•	 Entities available over mobiles
•	 Customization for mobile clients
•	 New enhancements for MOCA
•	 Other mobile clients
•	 Introduction to Microsoft Dynamics Marketing
•	 Setting up Microsoft Dynamics Marketing trial
•	 Integration with CRM

Introduction to Mobile Client and Microsoft Dynamics Marketing

[272]

Introduction to Microsoft Dynamics CRM
mobility
We are living in an era where the number of mobile users is increasing rapidly. Now
we are more interested in accessing every application from mobile devices instead
of using desktops or laptops. In the following diagram we can see the number of
mobile users increasing every year.

This screenshot was taken from: http://www.smartinsights.
com/mobile-marketing/mobile-marketing-analytics/
mobile-marketing-statistics/.

So we can say that accessing business applications using mobile devices is becoming
a key requirement nowadays for a wide category of business users, such as sales
persons who want to quickly view sales-related information from CRM systems or
maybe an executive who wants to see the sales performance for this month. Keeping
these requirements in mind, Microsoft has provided support for mobile and tablet
devices to access the CRM application. Just like Web clients and the Outlook client,
Microsoft Dynamics CRM 2015 can also be accessed using mobile and tablet devices.

http://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/mobile-marketing-statistics/
http://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/mobile-marketing-statistics/
http://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/mobile-marketing-statistics/

Chapter 8

[273]

Accessing CRM using mobiles
We have different options to access the CRM application based on the deployment
model. To access the CRM application from mobile devices our CRM should be
accessible from the extranet; so for example if we are working with CRM Online,
we can access our organization using mobile devices without any configuration. We
have different options; for example, we can directly browse CRM URLs from mobile
browsers or can download native apps but, if we are using CRM on-premise or in a
hosted deployment, we need to set up IFD (Internet Facing Deployment) to access
our CRM application from mobiles first and then we can access it in the same way as
in CRM Online.

You can get information about setting up IFD for CRM 2015
from https://technet.microsoft.com/en-us/library/
dn609803.aspx.

So we can say that we have basically two ways to access the CRM application using
mobile devices:

•	 Using mobiles apps
•	 Using mobile browsers

There are multiple mobile apps available depending on the mobile device that can
be used to access CRM 2015; the following table lists download links for the different
mobile types:

Device Type Download Link
iPhone https://itunes.apple.com/us/app/microsoft-

dynamics-crm-for/id723891307?mt=8

Android https://play.google.com/store/apps/
details?id=com.microsoft.crm.crmhost

Windows https://www.microsoft.com/en-us/store/apps/
dynamics-crm-for-phones-express/9wzdncrdtbnx

With the release of CRM 2015 Update 1, a new CRM phone app was introduced
called CRM for Phones, but if you are using CRM 2013 and CRM 2015, you can still
use the older CRM app called now CRM for Phones Express. This is the same app
that was present earlier as Mobile Express and can be used for earlier clients. CRM
for Phones can only be used with CRM 2015 Online Update 1; we can't use this
app with the older CRM Online and on-premise versions. The new app provides
a similar experience to the CRM for Tablet Clients in CRM for Phones. We can use
this app for phone and tablet devices.

https://technet.microsoft.com/en-us/library/dn609803.aspx
https://technet.microsoft.com/en-us/library/dn609803.aspx
https://itunes.apple.com/us/app/microsoft-dynamics-crm-for/id723891307?mt=8
https://itunes.apple.com/us/app/microsoft-dynamics-crm-for/id723891307?mt=8
https://play.google.com/store/apps/details?id=com.microsoft.crm.crmhost
https://play.google.com/store/apps/details?id=com.microsoft.crm.crmhost
https://www.microsoft.com/en-us/store/apps/dynamics-crm-for-phones-express/9wzdncrdtbnx
https://www.microsoft.com/en-us/store/apps/dynamics-crm-for-phones-express/9wzdncrdtbnx

Introduction to Mobile Client and Microsoft Dynamics Marketing

[274]

Now when we try to search for the phone app in the corresponding phone app store
we will see two apps as follows:

We can perform the following steps to connect to CRM using the mobile app:

1.	 Download Dynamics CRM for Phone.
2.	 Select the CRM app under the available apps list in our mobile.
3.	 Enter the CRM organization server URL.
4.	 Enter user credentials when prompted.
5.	 Let it configure the app completely, and you should get the following screen

once the configuration has completed:

Chapter 8

[275]

6.	 Click on the menu and select an individual sub area for navigation, as shown
in the following screenshot:

We can click on the ellipse icon to pin any individual item to the home page
as follows:

Introduction to Mobile Client and Microsoft Dynamics Marketing

[276]

In addition to using mobile apps, we can also access CRM 2015 via mobile browsers.
We can also test CRM for Phones Express from our desktop or laptop using the
https://Orgname.crm5.dynamics.com/m URL for CRM Online. As you can see in
the URL we have appended /m, which will instruct CRM to render its UI like a phone
client. The following screenshot is an example of accessing CRM for Phones Express
using a Web browser:

Please note that the CRM Online organization's URL is dependent on
the data center where it is hosted. Please refer to: https://msdn.
microsoft.com/en-us/library/gg328127.aspx to see the
CRM Online URL for your region.

In order to access the CRM application from mobile devices, the user should have
the required permissions. You can enable/disable these permissions from the user
security roles by navigating to Settings | Security | Security Role | Business
Management.

You can refer to https://technet.microsoft.com/en-us/
library/dn832105.aspx for more details on setting up mobile clients.

https://Orgname.crm5.dynamics.com/m
https://msdn.microsoft.com/en-us/library/gg328127.aspx
https://msdn.microsoft.com/en-us/library/gg328127.aspx
https://technet.microsoft.com/en-us/library/dn832105.aspx
https://technet.microsoft.com/en-us/library/dn832105.aspx

Chapter 8

[277]

Accessing CRM on tablets
CRM 2015 can also use tablet devices, with a similar experience. It can also connect
to both CRM Online organizations and CRM on-premises deployments. Just like
earlier versions, it displays the same main form in the tablet client with a different
rendering, so we don't need to set up or customize another form for tablet clients.

CRM for tablet clients presents elements of the main application in an optimized
way for tablets. So tabs in CRM forms are arranged horizontally. And all the related
entities are displayed in the left section of the form instead of the top navigation bar.

In the case of multiple forms, users will get the first form in the form
order based on his security role.

CRM for tablet clients only renders the first five tabs or the first 75 fields on entity
forms. We can also display up to 10 sub-grids in tablet clients.

Introduction to Mobile Client and Microsoft Dynamics Marketing

[278]

Entities available over mobiles
Not all the system entities are enabled for mobile and tablet phones. We can navigate
to Settings | Customization | Customize the system | Components | Entities and
can select an entity name to verify if the entity is enabled for mobile phones or not,
as shown:

But we can enable this feature for all of our custom entities. Following is a list of
the system entities that are enabled for Phone Express and mobile; we can enable
or disable these entities using the earlier options: Account, Activity, Appointment,
Attachment, Case, Competitor, Connection, Contact, Email, Entitlement, Knowledge
Base, Lead, Note, Opportunity, Opportunity Product, Phone Call, Product, Queue,
Queue Item, Social Activity, Social Profile, SLA, Task, Team, User, and Web Resource.

Customizing mobile clients
We don't need to do additional customization for CRM for Phones and tablet clients
because they share the same updated entity form like the Web and Outlook client.
We need to select which fields we want to show for Phone Express. We can add the
required fields through the Mobile-express form. We can open the Mobile-express
form and can add fields under Selected Attributes using the Add button. Fields are
present in the same order as they appear in the Selected Attributes section. We can
use the Move Up and Move Down buttons to rearrange the field order. We can also
make fields read-only using the Read Only button.

Chapter 8

[279]

Once fields are added we can save and publish our changes. We can create more
than one Mobile-express form just like other entity form types. Following is a
screenshot of the access account record using Mobile Express:

Introduction to Mobile Client and Microsoft Dynamics Marketing

[280]

We can also use JavaScript for mobile clients although the Mobile-express client
does not support JavaScript; however, CRM for Phones and CRM for tablets clients
support JavaScript. There are some methods that do not support CRM for tablets
clients; you can find more details about using JavaScript for CRM for tablets clients
here: https://msdn.microsoft.com/en-us/library/dn481572.aspx.

New enhancements for MOCA
Windows Mobile Client Application (MOCA) is a native tablet client for CRM.
Initially it was released for CRM 2013, but with the release of CRM 2015 there are
some enhancements for the MOCA client. In the following sections we will discuss
a few of these.

Offline drafts
One new feature in the MOCA client allows us to access and edit records in offline
mode created while offline. We can create and update entity records in draft mode
while offline; these will be synchronized to the server when we connect. All the
records created or updated in draft mode are available in the Draft Records area.

We can access all the draft records and can do further changes if required.

https://msdn.microsoft.com/en-us/library/dn481572.aspx

Chapter 8

[281]

Please note that all draft records will be deleted when the user
signs out of MOCA.

Multiple dashboards
Another enhancement in MOCA allows us to add any number of dashboards from
the system or personal category. Previously, only the sales dashboard was exposed,
but now we can add any type of dashboard whether personal or system. We can
also pin dashboards to the home page.

To make any dashboard available for mobile and tablet clients, we can edit its
property and can set Availability options as in the following screen.

Introduction to Mobile Client and Microsoft Dynamics Marketing

[282]

Other mobile clients
Apart from CRM for Phones and CRM for Phone Express, there are other vendors
who have created mobile clients for CRM. These mobile clients provide some
additional features.

Resco Mobile CRM
Resco.net is a leading mobile software development company that provides a mobile
client for Microsoft Dynamics CRM. This client supports different CRM versions
such as 4.0/2011/2013/2015 and also provides support for all CRM deployments.

You can get more information on the Resco mobile client from its
website: http://www.resco.net/mobilecrm/.

This application can be downloaded from different online stores depending on the
type of mobile device being used, such as Android, iPhone, or Windows. We can
download a trial version for this client. Following are some of the features provided
by the Resco Mobile CRM:

•	 Accessing the CRM application from offline
•	 Adding signatures
•	 Camera support

http://www.resco.net/mobilecrm/

Chapter 8

[283]

•	 Barcode support
•	 Attachments to entity records
•	 SharePoint integration
•	 Reporting
•	 Support for color themes
•	 Support for custom views
•	 Support for SMS integration
•	 Reminder support

You can refer to http://blog.resco.net/2013/11/12/
microsoft-vs-resco/ for a comparison between Resco
and CRM Phone for mobiles.

CWR Mobile CRM for Microsoft Dynamics
CRM
Another mobile client called CWR Mobile CRM is available from CWR Mobility.
This client supports all types of device such as Android, BlackBerry, iPhone, iPad,
and Windows phones with all the CRM deployment models.

We can get a trial version from the CWR Mobility site at: http://www.cwrmobility.
com/#footer URL. It provides a configure section to customize CWR Mobility
according to our requirements. We can navigate to the configuration section via
Settings | CWR Mobile CRM. This client also supports creating user profiles,
which allows us to select forms and views based on user profiles.

Following are some of the features in the CWR Mobile client:

•	 Offline data access support
•	 Dashboard support

http://blog.resco.net/2013/11/12/microsoft-vs-resco/
http://blog.resco.net/2013/11/12/microsoft-vs-resco/
http://www.cwrmobility.com/#footer URL
http://www.cwrmobility.com/#footer URL

Introduction to Mobile Client and Microsoft Dynamics Marketing

[284]

•	 Support for background synchronization
•	 Support for accessing SharePoint and other applications within the app
•	 Multi-device access support for users
•	 Mapping and navigation
•	 Background synchronization.
•	 Multi Device Access
•	 Easy deployment

You can get more information on CWR from their
website: http://www.cwrmobility.com/.

Introduction to MDM
Microsoft Dynamics Marketing is a marketing tool from Microsoft that can be used
with CRM 2015 to enhance its marketing capabilities. It is actually an enhanced version
of the Marketing Pilot product that Microsoft acquired back in 2012 and it is a separate
application. MDM is available only in the cloud model but can be integrated with
both cloud and on-premise CRM deployments. Although the out-of-the-box CRM
marketing module provides the functionality to design and execute our campaign
effectively, MDM provides more features to analyze our campaign with additional
options for automation, collaboration, and social media integration.

MDM's functionalities are mainly in the areas discussed in the following sections.

http://www.cwrmobility.com/

Chapter 8

[285]

Projects
This section is about how organizations can handle different projects internally. This
area mainly provides the functionality to maintain jobs and their approval, check job
status, and work with the tasks and notes. Apart from this there are different reports
to analyze information for different jobs.

Marketing execution
This area provides MDM core features such as managing customers, marketing lists,
designing campaigns, landing pages, and forms. This area also provides options to
create and manage events and manage social media, websites, and calendars.

Introduction to Mobile Client and Microsoft Dynamics Marketing

[286]

We can use the management console to design our campaigns easily by drag-and-
drop campaign activities. With the release of CRM 2015, the campaign management
console is enhanced; now it supports multi-condition triggers, and embedded
cross-campaign offers. The new email editor enables the MDM user to use existing
templates or design new emails using a drag-and-drop build process or an advanced
editor for the CSS and HTML experts.

Assets and media
As the name suggests, this area provides options for resource management and
media planning. Under the Files area, we can upload documents to MDM records,
just like using SharePoint integration in CRM. It provides the same sort of file
management features as Share Point.

Chapter 8

[287]

Apart from that, we can use the media section to maintain media-related
requirements such as serving media outlets, placing ads, and maintaining
rate card details.

Budgeting
Budgeting is the key factor while working on marketing functionality, so this
section provides different financial tools to maintain expenses, orders, payments,
and invoices.

Performance
This area provides access to the reporting capability of MDM; using this area we can
track the performance of the different marketing activities. We can track our project's
performance and review the marketing results and campaign performance; this
information can be also downloaded into Excel files using the Export to Excel option.

Introduction to Mobile Client and Microsoft Dynamics Marketing

[288]

Setting up the Microsoft Dynamics
Marketing trial
Microsoft allows us to set up a trial MDM online account, based on the user role
selected; it is valid for 30 days, so we can perform the following steps to set up the
MDM trial:

1.	 Navigate to the following URL for the trial account: https://www.
microsoft.com/en-us/dynamics/crm-test-drive-start.aspx.

2.	 Select your role and click on the Start Test Drive button.
3.	 Once the test drive is completed, click on the Start Free Trial button.
4.	 Enter your location and company details and click on the Next button.
5.	 Enter your user name and password.
6.	 Enter your valid phone number and, once the unique id has been received on

your mobile, enter it to complete the free trial.
7.	 Click on the Office 365 link and the link is ready. We can check if the MDM

setup is complete or not by navigating to the menu as follows:

8.	 Once the MDM setup has been completed, the icon should change to
Marketing as follows:

https://www.microsoft.com/en-us/dynamics/crm-test-drive-start.aspx
https://www.microsoft.com/en-us/dynamics/crm-test-drive-start.aspx

Chapter 8

[289]

Once our trial is set up, we can navigate to MDM and can start entering our customer
data and using it for different marketing activities.

Integration with CRM
MDM provides out-of-the-box integration options with CRM. We can configure
integration by navigating to Settings | Administration | Integration Options.
Afterwards, the integration option data can be synchronized between CRM and
MDM. We can set up this connector for both online and on-premise deployment.
Some of the objects can be synchronized back and forth, whereas some objects can be
synchronized only in one way. The following table lists the object synchronization
mapping between MDM and CRM 2015:

MDM CRM Synchronization Option
Companies Accounts Both Side
Contacts Contacts Both Side
Marketing List Marketing List Both Side
Leads Leads MDM to CRM
Opportunity Opportunity CRM to MDM
Campaigns Campaigns MDM to CRM
Notes Notes Both Side
Tasks Task MDM to CRM

Perform the following high-level steps to set up integration between CRM and MDM:

1.	 Download and install the MDM connector from: https://www.microsoft.
com/en-us/download/details.aspx?id=43108.

2.	 Start the CRM application, from which we want to synchronize data to MDM.
3.	 Navigate to Settings | Customizations | Solutions and click on the Import

button on the ribbon command bar.
4.	 Browse to Program Files (x86)\Microsoft Dynamics Marketing\

Connector for Microsoft Dynamics CRM\Solutions and import the
DynamicsMarketingConnector_for_CRM2015_managed.zip solution
to CRM.

5.	 Start the MDM application and navigate to Settings | Administration |
Integration Options.

6.	 Navigate to the CRM Service Section and click on the button to enable the
CRM service.

https://www.microsoft.com/en-us/download/details.aspx?id=43108
https://www.microsoft.com/en-us/download/details.aspx?id=43108

Introduction to Mobile Client and Microsoft Dynamics Marketing

[290]

7.	 Navigate to the CRM Endpoint section and click on the following button to
configure CRM service endpoints:

8.	 To connect to our CRM Online instance use the following:

9.	 Click on the Submit button.

Refer to http://blogs.technet.com/b/lystavlen/
archive/2014/07/02/connecting-dynamics-
marketing-to-dynamics-crm.aspx for more detailed
information on configuring integration.

Once the connector is set up, data synchronization will happen between CRM and
MDM based on the pre-defined mapping. If required, we can disable a specific
mapping. We can get more details about integration connector mapping at:
https://www.microsoft.com/en-us/dynamics/marketing-customer-center/
configure-the-sdk-and-dynamics-crm-connector.aspx.

Summary
In this chapter we learned about the Microsoft CRM 2015 mobile client and apps
available for mobile phones and tablet clients. We discussed the different features
available on different apps. We also discussed the Microsoft Dynamics Marketing
tool and its features. We discussed how we can set up a trial for MDM and set
integration with Microsoft Dynamics CRM.

http://blogs.technet.com/b/lystavlen/archive/2014/07/02/connecting-dynamics-marketing-to-dynamics-crm.aspx
http://blogs.technet.com/b/lystavlen/archive/2014/07/02/connecting-dynamics-marketing-to-dynamics-crm.aspx
http://blogs.technet.com/b/lystavlen/archive/2014/07/02/connecting-dynamics-marketing-to-dynamics-crm.aspx
https://www.microsoft.com/en-us/dynamics/marketing-customer-center/configure-the-sdk-and-dynamics-crm-connector.aspx
https://www.microsoft.com/en-us/dynamics/marketing-customer-center/configure-the-sdk-and-dynamics-crm-connector.aspx

Appendix A

[291]

Data Model for Client Entities
The following table provides fields that we are using in our client entity form. We
have not created any custom fields:

Logical Name Display
Name

Type Custom? Additional data

emailaddress1 Email String False Format: Email

Max length: 100

modifiedon Modified
On

DateTime False Format: DateAndTime

websiteurl Website String False Format: Url

Max length: 200

donotpostalmail Do not
allow Mails

Boolean False True: Do Not Allow

False: Allow

Default Value: False

paymenttermscode Billing
Cycle

Picklist False Options:

1: Weekly

2: Monthly

3: Quarterly

4: Yearly

Default: 1

creditlimit Credit Limit Money False Minimum value: 0

Maximum value:
10,00,00,00,00,00,000

Precision: 2
numberofemployees No. of

Employees
Integer False Minimum value: 0

Maximum value: 1,00,00,00,000
name Client

Name
String False Format: Text

Max length: 160

Data Model for Client Entities

[292]

Logical Name Display
Name

Type Custom? Additional data

revenue Annual
Revenue

Money False Minimum value: 0

Maximum value:
10,00,00,00,00,00,000

Precision: 2
primarycontactid Primary

Contact
Lookup False Targets: contact

parentaccountid Parent
Client

Lookup False Targets: account

createdon Created On DateTime False Format: DateAndTime
donotbulkemail Do not

allow Bulk
Emails

Boolean False True: Do Not Allow

False: Allow

Default Value: False

donotfax Do not
allow Faxes

Boolean False True: Do Not Allow

False: Allow

Default Value: False

address1_composite Address 1 Memo False Format: TextArea

Max length: 1000

ownershipcode Ownership Picklist False Options:

1: Public

2: Private

3: Subsidiary

4: Other

Default: 1

description Description Memo False Format: TextArea

Max length: 2,000

donotemail Do not
allow
Emails

Boolean False True: Do Not Allow

False: Allow

Default Value: False

Appendix A

[293]

Logical Name Display
Name

Type Custom? Additional data

industrycode Industry Picklist False Options:
1: Clienting
2: Agriculture and Non-petrol
Natural Resource Extraction
3: Broadcasting, Printing, and
Publishing
4: Brokers
5: Building Supply Retail
6: Business Services
7: Consulting
8: Consumer Services
9: Design, Direction, and Creative
Management
10: Distributors, Dispatchers, and
Processors
11: Doctors' Offices and Clinics
12: Durable Manufacturing
13: Eating and Drinking Places
14: Entertainment Retail
15: Equipment Rental and
Leasing
16: Financial
17: Food and Tobacco Processing
18: Inbound Capital Intensive
Processing
19: Inbound Repair and Services
20: Insurance
21: Legal Services
22: Non-Durable Merchandise
Retail
23: Outbound Consumer Service
24: Petrochemical Extraction and
Distribution
25: Service Retail
26: SIG Affiliations
27: Social Services
28: Special Outbound Trade
Contractors
29: Specialty Realty
30: Transportation
31: Utility Creation and
Distribution
32: Vehicle Retail
33: Wholesale
Default: 1

Data Model for Client Entities

[294]

Logical Name Display
Name

Type Custom? Additional data

transactioncurrencyid Currency Lookup False Targets: transactioncurrency
fax Fax String False Format: Text

Max length: 50

ownerid Owner Owner False

accountnumber Client
Number

String False Format: Text

Max length: 20

donotphone Do not
allow
Phone Calls

Boolean False True: Do Not Allow

False: Allow

Default Value: False

createdby Created By Lookup False Targets: systemuser
preferredcontact
methodcode

Preferred
Method of
Contact

Picklist False Options:

1: Any

2: Email

3: Phone

4: Fax

5: Mail

Default: 1

telephone2 Other
Phone

String False Format: Text

Max length: 50

Data model for contact entities
The following table provides fields that we are using for our contact entity. Most of
the fields are out-of-the-box fields only, we just need to rearrange them on a form
based on the design:

Logical Name Display Name Type Custom? Additional data
emailaddress1 Email String False Format: Email

Max length: 100

donotpostalmail Do not allow
Mails

Boolean False True: Do Not
Allow

False: Allow

Default Value:
False

Appendix A

[295]

Logical Name Display Name Type Custom? Additional data
gendercode Gender Picklist False Options:

1: Male

2: Female

Default: 1

mobilephone Mobile Phone String False Format: Text

Max length: 50

birthdate Birthday DateTime False Format: DateOnly
telephone1 Business Phone String False Format: Text

Max length: 50

preferredcontact
methodcode

Preferred
Method of
Contact

Picklist False Options:

1: Any

2: Email

3: Phone

4: Fax

5: Mail

Default: 1

donotbulkemail Do not allow
Bulk Emails

Boolean False True: Do Not
Allow

False: Allow

Default Value:
False

donotfax Do not allow
Faxes

Boolean False True: Do Not
Allow

False: Allow

Default Value:
False

address1_composite Address 1 Memo False Format: TextArea

Max length: 1,000

description Description Memo False Format: TextArea

Max length: 2,000

donotemail Do not allow
Emails

Boolean False True: Do Not
Allow

False: Allow

Default Value:
False

Data Model for Client Entities

[296]

Logical Name Display Name Type Custom? Additional data
him_contacttype Contact Type Picklist True Options:

10,00,00,000:
Employee

10,00,00,001:
Trainer

10,00,00,002: Client
Contact

100000003: Vendor

Default: -1
donotphon Do not allow

Phone Calls
Boolean False True: Do Not

Allow

False: Allow

Default Value:
False

jobtitle Job Title String False Format: Text

Max length: 100

fax Fax String False Format: Text

Max length: 50

ownerid Owner Owner False
parentcustomerid Company Name Customer False
anniversary Anniversary DateTime False Format: DateOnly
familystatuscode Marital Status Picklist False Options:

1: Single

2: Married

3: Divorced

4: Widowed

Default: 1

fullname Full Name String False Format: Text

Max length: 160

Data model for proposal entities
We are using the following fields for the proposal entity. Most of the fields are
out-of-the-box only. We just need to create the field where the Custom column
is True.

Appendix A

[297]

Logical Name Display
Name

Type Custom? Additional data

isrevenuesystem
calculated

Revenue Boolean False True: System Calculated

False: User Provided

Default Value: False
freightamount Freight

Amount
Money False Minimum value: 0

Maximum value:
10,00,00,00,00,000

Precision: 2
parentcontactid Contact Lookup False Targets:

contact

statuscode Status
Reason

Status False States:

1: In Progress

2: On Hold

3: Won

4: Canceled

5: Out-Sold

estimatedclosedate Est. Close
Date

DateTime False Format: DateOnly

parentaccountid Client Lookup False Targets:

account

pricelevelid Price List Lookup False Targets:

pricelevel

description Description Memo False Format: TextArea

Max length: 2000

estimatedvalue Est. Revenue Money False Minimum value:
10,00,00,00,00,000

Maximum value:
10,00,00,00,00,000

Precision: 2
totalamountless
freight

Total Pre-
Freight
Amount

Money False Minimum value:
-92,23,37,20,36,85,477

Maximum value:
92,23,37,20,36,85,477

Precision: 2
customerid Potential

Customer
Customer False

Data Model for Client Entities

[298]

Logical Name Display
Name

Type Custom? Additional data

totallineitema
mount

Total Detail
Amount

Money False Minimum value:
922337203685477

Maximum value:
922337203685477

Precision: 2
transaction
currencyid

Currency Lookup False Targets:

transactioncurrency

customerneed Specific
Topics

Memo False Format: TextArea

Max length: 2000

ownerid Owner Owner False
discountpercentage Proposal

Discount (%)
Decimal False Minimum value: 0

Maximum value: 100

Precision: 2
him_trainer Trainer Lookup True Targets:

contact

purchasetimeframe Purchase
Timeframe

Picklist False Options:

0: Immediate

1: This Quarter

2: Next Quarter

3: This Year

4: Unknown

Default: 1

budgetamount Budget
Amount

Money False Minimum value: 0

Maximum value:
10,00,00,00,00,000

Precision: 2
name Topic String False Format: Text

Max length: 300

totalamount Total
Amount

Money False Minimum value:
92,23,37,20,36,85,477

Maximum value:
92,23,37,20,36,85,477

Precision: 2
totaltax Total Tax Money False Minimum value:

92,23,37,20,36,85,477

Maximum value:
92,23,37,20,36,85,477

Precision: 2

Appendix A

[299]

Logical Name Display
Name

Type Custom? Additional data

him_technology Technology Picklist True Options:

1: .Net

2: ASP.Net

3: SQL Server

4: SharePoint

5: Microsoft Dynamics CRM

6: Microsoft Dynamics Ax

7: Microsoft Dynamics GP

8: Automated Testing

Default: 1
discountamount Proposal

Discount
Amount

Money False Minimum value: 0

Maximum value:
10,00,00,00,00,000

Precision: 2
purchaseprocess Purchase

Process
Picklist False Options:

0: Individual

1: Committee

2: Unknown

Default: 1

currentsituation More Details Memo False Format: TextArea

Max length: 2000

Data model for training request entities
We are using the following fields for the training request entity. Most of the fields are
out-of-the-box only. We just need to create a field where the Custom column is True.

Logical Name Display
Name

Type Custom
Attribute

Additional data

emailaddress1 Email String False Format: Email

Max length: 100

websiteurl Website String False Format: Url

Max length: 200

him_
isstudymaterial
required

Study
Material
Required

Boolean True True: Yes

False: No

Default Value: False

Data Model for Client Entities

[300]

Logical Name Display
Name

Type Custom
Attribute

Additional data

mobilephone Mobile
Phone

String False Format: Text

Max length: 20

numberofemployees No. of
Attendee

Integer False Minimum value: 0

Maximum value: 10,00,000
him_proposedend Proposed

End
DateTime True Format: DateOnly

companyname Client Name String False Format: Text

Max length: 100

createdon Created On DateTime False Format: DateAndTime
him_
proposedtrainer

Proposed
Trainer

Lookup True Targets:

contact

address1_
composite

Training
Address

Memo False Format: TextArea

Max length: 1000

evaluatefit Evaluation
Required

Boolean False True: No

False: Yes

Default Value: False

qualification
comments

Specific
Topics

Memo False Format: TextArea

Max length: 2000

description More
Details

Memo False Format: TextArea

Max length: 2000

modifiedby Modified By Lookup False Targets:

systemuser

him_proposedstart Proposed
Start

DateTime True Format: DateOnly

subject Description String False Format: Text

Max length: 300

Appendix A

[301]

Logical Name Display
Name

Type Custom
Attribute

Additional data

industrycode Industry Picklist False Options:

1: Clienting
2: Agriculture and Non-petrol Natural
Resource Extraction
3: Broadcasting Printing and
Publishing
4: Brokers
5: Building Supply Retail
6: Business Services
7: Consulting
8: Consumer Services
9: Design, Direction, and Creative
Management
10: Distributors, Dispatchers, and
Processors
11: Doctors' Offices and Clinics
12: Durable Manufacturing
13: Eating and Drinking Places
14: Entertainment Retail
15: Equipment Rental and Leasing
16: Financial
17: Food and Tobacco Processing
18: Inbound Capital Intensive
Processing
19: Inbound Repair and Services
20: Insurance
21: Legal Services
22: Non-Durable Merchandise Retail
23: Outbound Consumer Service
24: Petrochemical Extraction and
Distribution
25: Service Retail
26: SIG Affiliations
27: Social Services
28: Special Outbound Trade
Contractors
29: Specialty Realty
30: Transportation
31: Utility Creation and Distribution
32: Vehicle Retail
33: Wholesale
Default: 1

schedulefollowup
_qualify

Evaluation
Date

DateTime False Format: DateAndTime

Data Model for Client Entities

[302]

Logical Name Display
Name

Type Custom
Attribute

Additional data

jobtitle Version String False Format: Text

Max length: 10

transaction
currencyid

Currency Lookup False Targets:

transactioncurrency

him_technology Technology Picklist True Options:

1: .Net

2: ASP.Net

3: SQL Server

4: SharePoint

5: Microsoft Dynamics CRM

6: Microsoft Dynamics Ax

7: Microsoft Dynamics GP

8: Automated Testing

Default: 1
budgetamount Budget

Amount
Money False Minimum value: 0

Maximum value: 10,00,00,00,00,000

Precision: 2
createdby Created By Lookup False Targets:

systemuser

him_traininglevel Training
Level

Picklist True Options:

1: Level 1

2: Level 2

3: Level 3

Default: 1

telephone1 Business
Phone

String False Format: Text

Max length: 50

fullname Vendor String False Format: Text

Max length: 160

Appendix B

[303]

Data Model for
Account Entities

The following table provides fields that we are using on account entity form:

Logical Name Display
Name

Type Custom? Additional data

emailaddress1 Email String False Format: Email

Max length: 100
websiteurl Website String False Format: Url

Max length: 200
donotpostalmail Do not allow

Mail
Boolean False True: Do Not Allow

False: Allow

Default Value: False
creditonhold Credit Hold Boolean False True: Yes

False: No

Default Value: False
paymenttermscode Payment

Terms
Picklist False Options:

1: Net 30

2: 2% 10, Net 30

3: Net 45

4: Net 60

Default: 1
creditlimit Credit Limit Money False Minimum value: 0

Maximum value:
10,00,00,00,00,00,000

Precision: 2
name Account

Name
String False Format: Text

Max length: 160

Data Model for Account Entities

[304]

Logical Name Display
Name

Type Custom? Additional data

him_accountmanager Account
Manager

Lookup True Targets:

systemuser
primarycontactid Primary

Contact
Lookup False Targets:

contact
parentaccountid Parent

Account
Lookup False Targets:

account
donotbulkemail Do not allow

Bulk Emails
Boolean False True: Do Not Allow

False: Allow

Default Value: False
donotfax Do not allow

Faxes
Boolean False True: Do Not Allow

False: Allow

Default Value: False
address1_composite Address 1 Memo False Format: TextArea

Max length: 1,000
ownershipcode Ownership Picklist False Options:

1: Public

2: Private

3: Subsidiary

4: Other

Default: 1
description Description Memo False Format: TextArea

Max length: 2,000
donotemail Do not allow

Emails
Boolean False True: Do Not Allow

False: Allow

Default Value: False

Appendix B

[305]

Logical Name Display
Name

Type Custom? Additional data

 industrycode Industry Picklist False Options:
1: Accounting
2: Agriculture and Non-petrol
Natural Resource Extraction
3: Broadcasting, Printing, and
Publishing
4: Brokers
5: Building Supply Retail
6: Business Services
7: Consulting
8: Consumer Services
9: Design, Direction, and Creative
Management
10: Distributors, Dispatchers, and
Processors
11: Doctors' Offices and Clinics
12: Durable Manufacturing
13: Eating and Drinking Places
14: Entertainment Retail
15: Equipment Rental and Leasing
16: Financial
17: Food and Tobacco Processing
18: Inbound Capital Intensive
Processing
19: Inbound Repair and Services
20: Insurance
21: Legal Services
22: Non-Durable Merchandise
Retail
23: Outbound Consumer Service
24: Petrochemical Extraction and
Distribution
25: Service Retail
26: SIG Affiliations
27: Social Services
28: Special Outbound Trade
Contractors
29: Specialty Realty
30: Transportation
31: Utility Creation and
Distribution
32: Vehicle Retail
33: Wholesale
Default: 1

Data Model for Account Entities

[306]

Logical Name Display
Name

Type Custom? Additional data

transactioncurrency
id

Currency Lookup False Targets:

transactioncurrency
fax Fax String False Format: Text

Max length: 50
ownerid Owner Owner False

accountnumber Account
Number

String False Format: Text

Max length: 20
donotphone Do not allow

Phone Calls
Boolean False True: Do Not Allow

False: Allow

Default Value: False
him_totalproject Total Project Integer True Minimum value: 2,14,74,83,648

Maximum value: 2,14,74,83,647
preferredcontact
methodcode

Preferred
Method of
Contact

Picklist False Options:

1: Any

2: Email

3: Phone

4: Fax

5: Mail

Default: 1
telephone2 Other Phone String False Format: Text

Max length: 50
telephone1 Main Phone String False Format: Text

Max length: 50

Data model for project entity
The following are the list of fields which is used for project entity:

Logical Name Display Name Type Custom? Additional data

him_totalcompleted
tasks

Total completed
Tasks

Integer True Minimum value:
2,14,74,83,648

Maximum value:
2,14,74,83,647

him_proposedstart Proposed Start DateTime True Format: DateOnly
him_name Project Name String True Format: Text

Max length: 100

Appendix B

[307]

Logical Name Display Name Type Custom? Additional data

him_totalissues Total Issues Integer True Minimum value:
2,14,74,83,648

Maximum value:
2,14,74,83,647

him_accountmanager Account Manager Lookup True Targets:

systemuser

him_enddate End Date DateTime True Format: DateOnly
him_proposedend Proposed End DateTime True Format: DateOnly
him_developmentteam Development

Team
Lookup True Targets:

team

him_estimatedrevenue Estimated Revenue Money True Minimum value: 0

Maximum value:
92,23,37,20,36,85,477

Precision: 4
him_totalestimation Total Estimation/

hrs
Integer True Minimum value: 0

Maximum value:
2,14,74,83,647

him_startdate Start Date DateTime True Format: DateOnly
ownerid Owner Owner False

him_projectcode Project Code Integer True Minimum value: 0

Maximum value:
2,14,74,83,647

him_qateam QA Team Lookup True Targets:

team

him_solvedissues Solved Issues Integer True Minimum value:
2,14,74,83,648

Maximum value:
2,14,74,83,647

him_client Client Lookup True Targets:

account

him_projectstatus Project Status Picklist True Options:

4: Live

1: In Progress

3: Not Started

2: Completed

Default: 1

transactioncurrencyid Currency Lookup False Targets:

transactioncurrency

Data Model for Account Entities

[308]

Logical Name Display Name Type Custom? Additional data

him_totaluserstories Total User Stories Integer True Minimum value:
2,14,74,83,648

Maximum value:
2,14,74,83,647

him_totaltasks Total Tasks Integer True Minimum value:
2,14,74,83,648

Maximum value:
2,14,74,83,647

him_projectmanager PM Lookup True Targets:

systemuser

him_totaltimeentered Total Time Entered Integer True Minimum value:
2,14,74,83,648

Maximum value:
2,14,74,83,647

him_technology Technology Picklist True Options:

1: .Net

2: ASP.NET

3: SharePoint

4: Dynamics CRM

5: Dynamics Ax

6: Dynamics GP

Default: 1

Data model for project tasks
The following table provides fields for project task entity:

Logical Name Display Name Type Custom ? Additional data
him_userstory User Story Lookup True Targets:

him_userstory
him_startdate Start Date DateTime True Format: DateOnly
him_description Description Memo True Format: Text

Max length: 2,000
him_taskid Task Id Integer True Minimum value: 0

Maximum value:
2,14,74,83,647

him_assignedto Assigned To Lookup True Targets:
systemuser

Appendix B

[309]

Logical Name Display Name Type Custom ? Additional data
him_projectid Project Lookup True Targets:

him_project
him_enddate End Date DateTime True Format: DateOnly
him_name Task Name String True Format: Text

Max length: 100
him_taskstatus Task Status Picklist True Options:

4: Live
1: In Progress
3: Not Started
2: Completed
Default: 1

ownerid Owner Owner False

Data model for issue entity
The following are the list of the fields which is used for issue entity:

Logical Name Display Name Type Custom
Attribute

Additional data

him_taskid Task Id Lookup True Targets:
him_projecttask

him_issuenumber Issue Number Integer True Minimum value: 0
Maximum value:
2,14,74,83,647

him_issuetype Issue Type Picklist True Options:
1: Minor
2: Major
3: Show Stopper
Default: 1

him_assignedto Assigned To Lookup True Targets:
systemuser

him_name Name String True Format: Text
Max length: 100

him_project Project Lookup True Targets:
him_project

Data Model for Account Entities

[310]

Logical Name Display Name Type Custom
Attribute

Additional data

him_issuestatus Issue Status Picklist True Options:
1: Fixed
2: Open
3: Reopen
Default: 2

ownerid Submitted By Owner False

Data model for timesheet entity
The following table provides list of the fields used for timesheet entity:

Logical Name Display
Name

Type Custom? Additional data

him_userstory User Story Lookup True Targets:
him_userstory

him_description Description Memo True Format: Text
Max length: 2,000

him_task Task Lookup True Targets:
him_projecttask

him_timesheetcode Timesheet
Code

Integer True Minimum value: 0
Maximum value:
2,14,74,83,647

him_starttime Start DateTime True Format: DateAndTime
ownerid Owner Owner False

him_name Name String True Format: Text
Max length: 100

him_totalhours Total Hours Integer True Minimum value:
2,14,74,83,648
Maximum value:
2,14,74,83,647

him_end End DateTime True Format: DateAndTime
him_project Project Lookup True Targets:

him_project

Appendix B

[311]

Data model for user story entity
Following are the fields that we need to setup for user story entity:

Logical Name Display Name Type Custom? Additional data
him_story Story Memo True Format: Text

Max length: 2,000
him_code User Story Id Integer True Minimum value: 0

Maximum value:
2,14,74,83,647

him_status Status Boolean True True: Approved
False: Draft
Default Value: False

him_name Name String True Format: Text
Max length: 100

him_project Project Lookup True Targets:
him_project

ownerid Owner Owner False

[313]

Index
A
access levels

Business Unit 129
None 129
Organization 128
Parent Child Business Unit 128
reference link 129
User 129

access teams
reference link 263

actions
about 123, 153, 229
arguments 154
calling 154
designing 153, 230-234
scopes 153

actions, in business rules
about 115
business requirements, setting 116
default values, setting 117
error messages, displaying 115
fields, locking 118
fields, unlocking 118
field values, setting 116
visibility, setting 117

activity feeds
about 256-258
Auto Post Rule, setting 259-261
reference link 258
updates, obtaining 261, 262
utilizing 258

ActivityPointer 127
aggregation

rollup fields, using for 248-254

application navigation
about 38, 39
customizing 68-70

assembly storage, plug-in registration
about 206
database 206
disk 206
GAC 206

asynchronous plug-ins
versus synchronous plug-ins 200, 201

asynchronous workflows
creating 144-146

ATOM 101
attribute methods

about 88
reference link 88

Autoid
generating, real-time workflow

 used 149-151
automation 122

B
base solution 40
business process flow

about 15, 16, 123, 137
branching logic, using 139
controlling 140
creating 140-142
ordering 140
reference link 138
stages, using 139
versus actions 154
versus dialogs 154
versus workflow 154

[314]

business process flow methods
about 87
reference link 87

business rules
about 112
actions 115
creating 113
enhancement 13, 14

C
calculated fields

about 21, 22
using 245, 246

client APIs
using, for CRM connections 169-171

client entity
data model 291-294

client extensions 163
Client Main Form design 66
Client Quick Create Form design 67
client scripting object model

about 82
using 82

client-side business rules
versus server-side business rules 118, 119

client-side code
CRM Web services, using in 100
used, for accessing controls 85
used, for accessing forms 85

client-side contexts
reference link 86

client-side events
about 89
control events 96
field events 93-95
form events 89

clients, Microsoft Dynamics CRM 2015
about 6
mobile client 7
Outlook client 7
web client 6

codeplex utility, OData request
reference link 104

components
adding, to library management

solution 124
adding, to solution 44, 45

connection string, for deployment type
reference link 170

contact entities
data model 294-296

Contact Main Form design 67
context namespaces

about 86
methods 86

control events
about 96
OnReadyStateComplete 96
PreSearch 96-100
TabStateChange 96

controls
accessing, client-side code used 85

Cortana
about 2
URL 2

CRM
accessing, mobiles used 273-276
accessing, on tablets 277
customizing, for project tracking

application 237
CRM 2015 online trial

URL 236
CRM 2015 security model

URL 76
CRM 2015 servers

URL 3
CRM assemblies

about 164
Microsoft.Crm.Sdk.Proxy 165
Microsoft.Xrm.Client 165
Microsoft.Xrm.Portal 165
Microsoft.Xrm.Sdk 165
Microsoft.Xrm.Sdk.Deployment 164
Microsoft.Xrm.Sdk.Workflow 165
Microsoft.Xrm.Tooling 165

CRM connections
client APIs, using for 169-171

[315]

CRM databases
about 161
reference link 161

CRM extendibility architecture
about 160
client extensions 163
CRM databases 161
CRM Web services 162
integrated extensions 163
platform layers 161
plug-ins 162
processes 161
reporting 162

CRM integration, with other systems
about 196
batch processing 197, 198
on demand 196

CRM online datacenter lists
URL 4

CRM online regions
reference link 167

CRM server
reference link 220

CRM web services
about 165
deployment service 165
discovery service 166
early bound 166, 167
late bound 168
organization data service 166
organization service 166
using, in client-side code 100

custom code validation tool, Microsoft
 Dynamics CRM 2013

reference link 10
custom entity, creating

Communication and
Collaboration 129, 130

Data Services 130
entity definitions 127, 128
entity, displaying 129
Form Design 131, 132
Outlook and Mobile 130, 131
Process 129

custom help
creating 27, 28

customization
testing 78-80

customization, Microsoft Dynamics
CRM 2015

about 37, 38
application navigation 38, 39
application navigation, customizing 68-70
components, adding to solution 44, 45
data structures, setting for training

 solution 54
data types 48
entities, customizing 45
entities, renaming 45, 46
entity forms, customizing 58, 59
field properties 53
publisher, creating 42
Publisher, creating 43
solution 40, 41
solution, creating 43, 44

custom workflows
adding, in library management

 systems 223-227
parameters, using in 222
using 228, 229
working with 222

CWR Mobile CRM
about 283
features 283
reference link 283

D
dashboards

creating 268-270
data, fetching from CRM database

about 184
FetchXML 189
LINQ query 190
QueryByAttribute 184, 185
QueryExpression 186-188

data import
reference link 155

data model, for client entity 291-294
data model, for contact entities 294-296
data model, for issue entity 309
data model, for project entity 306-308

[316]

data model, for project task 308, 309
data model, for proposal entities 296-299
data model, for timesheet entity 310
data model, for training request

entities 299-302
data model, for user story entity 311
data namespaces 86
data structures, setting for training

solution
about 54
field mapping, setting 56-58
new attribute, creating 54-56

data types, Microsoft Dynamics CRM 2015
about 48
currency 51
date time field 52
decimal 51
floating point numbers 51
image 50
lookup 53
multiple lines of text 52
option sets 48, 49
single line of text 48
two options 49
whole numbers 51

data visualization
preparing 266, 267
reference link 266

date time field 52
decimal field 51
default solution 40
deployment options, Microsoft Dynamics

CRM 2015
about 3
hosted 3
online 3
on-premise 3

deployment service 165
dialogs

about 123, 151
designing 151, 152

Diksha Trainers 33
discovery 165
discovery service 166
discovery web service

working with 182, 183

Dynamics CRM 2015 Workflow Tools 264
Dynamics Marketing component 2

E
early bound programming model 166-168
enhancements, Microsoft Dynamics CRM

2015 Update 1
alternate keys 192-194
message improvement, updating 191
multiple operations, executing in single

transaction 191, 192
upsert 192-194

entities
customizing 45
renaming 45-47

entities, available over mobiles 278
entity forms

customizing 58
Main Form 59, 60
Mobile Express 64
Social Pane 61
Sub Grid 62-64

entity methods
reference link 87

entity objects
methods 87

entity relationship diagram, CRM 2015
reference link 161

entity views, creating
about 132-134
auto number configuration entity,

 creating 135
book entities, creating 134, 135
form design 135
relationship, setting with member and book

entities 136, 137

F
FetchXML 189
field events 93-95
field-level security 77
field-level security enhancement 26, 27
field properties 53

[317]

filtered lookups
using 243, 244

filtered views
reference link 161

floating point numbers 51
formatting options, single line of text

email 48
phone 48
text 48
text area 48
Ticker Symbol 48
URL 48

formatting options, whole numbers
Duration 51
Language 51
None 51

form design
Client Main Form design 66
Client Quick Create Form design 67
Contact Main Form design 67
Proposal Main Form design 68

form events
about 89
OnLoad event 89-93
OnSave event 93

forms
accessing, client-side code used 85
designing 66

functionalities, MDM
assets and media 286
budgeting 287
marketing execution 285, 286
performance 287
projects 285

G
global search 11-13

H
hardware requisites, Microsoft Dynamics

CRM 2015
hard disk 8
memory 8
processor 8
reference link 8

hierarchical security
about 18
manager hierarchy 18-20
position hierarchy 20

hierarchy visualization 16-18
HIMBAP 34, 237

I
IFD setup, from CRM 2015

URL 273
image field

about 50
reference link 50

Input Method Editor (IME) 55
integrated extensions 163
integration connector mapping

reference link 290
IPluginExecutionContext

about 211
members 211, 212
organization services, obtaining 212, 213
plug-in images 215
reference link 212
shared variables 214

issue entity
data model 309, 310

J
JavaScript Object Notation (JSON) 100

L
late bound programming model 168
Lead entity 35
legacy tool, for detecting 2007 endpoints

reference link 10
library management solution

building 123
component, adding to 124
design 123, 124
entities, customizing 125
member entities, customizing 125-127
testing 155, 156

library management systems
custom workflows, adding in 223-227

[318]

license-type features, Microsoft Dynamics
CRM 2015

Basic 11
Enterprise 11
Essential 11
Professional 11

licensing guide, PartnerSource
reference link 11

licensing model, Microsoft Dynamics
CRM 2015 10

LINQ
about 190
reference link 190

lookup data type 53

M
Main Form 59, 60
managed solutions 41
manager hierarchy 18-20
MDM

about 271, 284
functionalities 285-287
integration, with CRM 289, 290

MDM connector
URL 289

MDM trial
setting up 288, 289
URL 288

messages 165
metadata 165
Microsoft Dynamics CRM

mobility 272
Microsoft Dynamics CRM 2015

clients 6, 7
customizing 38
data types 48
deployment options 3
hardware requisites 8
licensing model 10
new features 11
software requisites 8
upgrade options 8, 9

Microsoft Dynamics CRM 2015 Update 1
enhancements 190

Microsoft Dynamics CRM SDK
about 163
resources 163, 164
URL, for latest version 163

mobile client, Microsoft Dynamics
 CRM 2015 7

mobile clients
about 282
customizing 278, 280
CWR Mobile CRM 283
reference link 276
Resco Mobile CRM 282, 283

Mobile Express
about 64
Quick Create Form 64, 65
Quick View Form 65

mobile
used, for accessing CRM 273-276

mobility, Microsoft Dynamics CRM 272
MOCA

new enhancements 280
Modern SOAP

about 106
versus OData 112

mscrm 42
multiple dashboards 281
multiple lines of text 52

N
new enhancements, MOCA

multiple dashboards 281
offline drafts 280

new features, Microsoft Dynamics
CRM 2015

business process flow 15, 16
business rules enhancement 13, 14
custom help 27, 28
field-level security enhancement 26, 27
global search 11-13
hierarchical security 18
hierarchy visualization 16-18
nested quick create forms 28
new capability, for mobile client 24
new fields, for calculation 21
new outlook configuration wizard 29

[319]

product catalog enhancement 24-26
Service Level Agreement (SLA) 30
synchronization, between CRM and

Outlook or Exchange 30
welcome screen, disabling 28

O
OData

about 100
URL 100
versus Modern SOAP 112

OData endpoints 10
OData, query options

$expand 102
$filter 101, 102
$orderby 102
$select 101
$skip 102
$top 102
about 101
reference link 103

offline drafts 280, 281
online region URLs

reference link 183
OnLoad event 89-93
on-premise server, Microsoft Dynamics

CRM 2015
server edition 3
workgroup edition 3

on-premise versus online, Microsoft
 Dynamics CRM 2015

about 4
availability 5
CRM add-ons 6
customization 6
database access 4
extension 6
integration 5
new updates 5
security 5

OnReadyStateComplete event 96
OnSave event

about 93
reference link 93

optimistic concurrency feature
about 194
reference link 194

option sets
about 48
Global 48
Local 49

organization data services
about 166
working with 103-106

organization service 166
organization web services

about 171
associate method 179
console application, testing 182
create method 171-173
delete method 179
disassociate method 180
execute method 180, 181
retrieve method 176
RetrieveMultiple method 177, 178
update method 174, 175

Outlook client, Microsoft Dynamics
CRM 2015 7

P
paging

reference link 185
parameters

passing, to plug-ins 218
using, in custom workflows 222

platform layers 161
plug-in assemblies, CRM database

reference link 206
plug-in event execution pipelines

about 201
main-operation 202
post-operation 202
pre-operation 202
pre-validation 201

plug-in events 202
plug-in images 215
plug-in registration

about 204, 205
assembly storage 206
plug-in mode 205

[320]

plug-in registration steps
about 207
Delete AsyncOperation if

StatusCode = Successful 209
Deployment 209
Event 209
Execution Mode 209
Execution Order 209
Filtering Attribute 208
message 207
primary entity 207
Run in User's Context 208
secondary entity 208
Secured/Unsecured Configuration 209, 210

plug-ins
about 162, 200
debugging 221
parameters, passing to 218
troubleshooting 219, 220
used, for applying validation 216, 217

position hierarchy 20
PreSearch event 96-100
processes 122, 161
Product catalog 36
product catalog enhancement 24-26
project entity

data model 306-308
project task

data model 308, 309
project tracking application

account entity, customizing 238, 239
CRM, customizing for 237
design 236
existing entities, adding 238
issue entities, setting up 247, 248
project entity design, completing 254, 255
project entity, setting up 240
project tasks entity, setting up 242
timesheet entity, setting up 244, 245
user story entity, setting up 240, 241

proposal entities
data model 296-299

Proposal Main Form design 68
publisher

creating 42, 43

Q
query 165
QueryByAttribute 184, 185
QueryExpression 186-188
query operators, hierarchical data

Note Under 18
Under 18

R
real-time workflow

used, for generating Autoid 149-151
record-based security 77
records

sharing, with teams 264, 265
remote debugging

reference link 221
report development

reference link 162
reporting 162
Resco Mobile CRM

about 282
features 282, 283
URL 282

resources, Microsoft Dynamics CRM SDK
Bin 163
CrmSdk2015 164
EntityMetadata 164
Message-entity support for plug-ins 164
Resources 163
SampleCode 164
Schemas 164
Solutions 164
Templates 164
Tools 164
Walkthroughs 164

REST 100
RibbonDiffXML file

reference link 82
role-based security 76
rollup fields

using, for aggregation 248-254

[321]

S
sample plug-in

writing 203, 204
scripting method, business process flow

reference link 16
SDK.REST.js

reference link 103
security

about 76
field-level security 77
record-based security 77
reference link 196
role-based security 76

security, CRM online
URL 5

security management
reference link 78

server-side business rules
versus client-side business rules 118, 119

Service Level Agreement (SLA) 30
Show error message 15
Site Map structure

reference link 39
SOAP 106
SOAPLogger

used, for creating SOAP request 106-111
SOAP request

creating, SOAPLogger used 106-111
SOAP.SDK.js

reference link 112
SOAP, using 2011 WCF endpoints 10
Social Listening component 2
social media integration

reference link 256
Social Pane 61
software requisites, Microsoft Dynamics

CRM 2015
Internet Information Services 8
Microsoft SQL Server Reporting Services 8
reference link 8
SQL Server 2008 64-bit 8
Windows Server 8

solution
about 40
components, adding to 44, 45
creating 43, 44

solution compatibility
reference link 42

sub areas
reference link 39

Sub Grid 62-64
synchronous plug-ins

versus asynchronous plug-ins 200, 201
synchronous processes 122
synchronous workflows

creating 146-148
System Administrators 37
System Customizers 37

T
tablets

CRM, accessing on 277
TabStateChange event 96
teams

records, sharing with 264, 265
setting up 262-264

timesheet entity
data model 310

tracing
using 194, 195

Training Catalog
setting up 70-76

training request entities
data model 299-302

Training Solution Design 34-37
Training Solution Scope 33, 34

U
UI namespaces

about 88
methods 88
methods, reference link 89

unmanaged solutions 40

[322]

upgrade options, Microsoft Dynamics
CRM 2015

all 2007 endpoints, cleaning 10
in place 9
migration upgrade 9
support, for Microsoft Dynamics CRM 4.0

object model 10
user story entity

data model 311

V
validation

applying, plug-ins used 216, 217

W
web client, Microsoft Dynamics

 CRM 2015 6
Web resources

about 82
creating 84, 85
Data (XML) 83
Image (GIF) 83
Image (ICO) 83
Image (JPG) 83
Image (PNG) 83
Script (Jscript) 83
Silverlight (XAP) 83
Style Sheet (CSS) 83
StyleSheet (XSL) 83
Webpage (HTML) 83

welcome screen
disabling 28

whole numbers
about 51
formatting options 51

Windows
URL, for download link 273

Windows Communication Foundation
(WCF) 162

Windows Workflow Foundation
URL 122

Workflow Foundation (WF) 122
workflows

about 142
activating 143
automatic execution events 143
Available to Run 143
job retention 143
scope 144

X
XrmToolBox

about 68, 155
references 68

Thank you for buying
Microsoft Dynamics CRM 2015 Application Design

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly
focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including
(but not limited to) IBM, Microsoft, and Oracle, often for use in other corporations. Its titles
will offer information relevant to a range of users of this software, including administrators,
developers, architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Microsoft Dynamics CRM 2011
Cookbook
ISBN: 978-1-84968-452-1 Paperback: 406 pages

Includes over 75 incredible recipes for deploying,
configuring, and customizing your CRM application

1.	 Step-by-step guide to deploy Dynamics CRM
2011 components, configuring claim-based
authentication and IFD deployment.

2.	 Focus on Dynamics CRM 2011 server
maintenance and optimization techniques.

3.	 Learn advanced Dynamics CRM 2011
administration techniques.

Microsoft Dynamics CRM 2011
Reporting
ISBN: 978-1-84968-230-5 Paperback: 308 pages

Everything you need to know to work with reports in
Dynamics CRM 2011

1.	 Create reports with SQL Reporting Services
for CRM.

2.	 Empower your reports with the different
Report Wizards and dashboards.

3.	 Troubleshoot and optimize your reports for
better performance.

Please check www.PacktPub.com for information on our titles

Microsoft Dynamics CRM 2011
Customization & Configuration
(MB2-866) Certification Guide
ISBN: 978-1-84968-580-1 Paperback: 306 pages

A practical guide to customizing and configuring
Microsoft Dynamics CRM 2011 focused on helping
you pass the certification exam

1.	 Based on the official syllabus for course 80294B
to help prepare you for the MB2-866 exam.

2.	 Filled with all the procedures you need to know
to pass the exam including screenshots.

3.	 Take the practice exam with 75 sample
questions to assess your knowledge before you
sit the real exam.

Applied Architecture Patterns
on the Microsoft Platform
Second Edition
ISBN: 978-1-84968-912-0 Paperback: 456 pages

Work with various Microsoft technologies using
Applied Architecture Patterns

1.	 Updated to include the most recent
technologies, including .NET and SQL Server.

2.	 Provides an architectural methodology for
choosing Microsoft application platform
technologies to meet the requirements of your
solution.

3.	 Presents solutions for messaging, workflow,
data processing, and performance scenarios.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Conventions

	Chapter 1: Getting Started with Microsoft Dynamics CRM 2015
	Deployment options
	Microsoft Dynamics CRM on-premise versus online
	Database access
	New updates
	Integration
	Availability
	Security
	CRM add-ons
	Extension and customization

	Microsoft Dynamics CRM 2015 clients
	Web client
	Outlook client
	Mobile client

	Software and hardware requirements
	Upgrade options
	In place
	Migration upgrade
	Cleaning all 2007 endpoints
	Support for the Microsoft Dynamics CRM 4.0 object model

	Licensing model for Microsoft Dynamics CRM 2015
	The new features in Microsoft Dynamics
CRM 2015
	Global search
	Business rules enhancement
	Business process flow
	Hierarchy visualization
	Hierarchical security
	Manager hierarchy
	Position

	New fields for calculation
	Calculated fields
	Rollup field

	New capability for mobile client
	Product catalog enhancement
	Field-level security enhancement
	Creating custom help
	Disabling the welcome screen
	Nested quick create forms
	New outlook configuration wizard
	Service Level Agreement enhancement
	Synchronization between CRM and Outlook
or Exchange

	Summary

	Chapter 2: Customizing Microsoft Dynamics CRM 2015
	Training solution scope
	Training solution design
	Understanding the customization concept
	Customizing Microsoft Dynamics
CRM 2015
	Understanding application navigation
	Understanding solutions
	Creating the publisher
	Creating our solution
	Adding components to our solution
	Customizing entities
	Renaming entities

	Data types in Microsoft Dynamics CRM 2015
	Single line of text
	Option sets
	Two options
	Images
	Whole numbers
	Floating point numbers
	Decimals
	Currency
	Multiple lines of text
	Date and time
	Lookup

	Field properties
	Setting data structures for a training solution
	Creating a new attribute
	Setting field mapping

	Customizing entity forms
	The main form
	Understanding the social pane
	Understanding the sub grid
	Mobile express forms
	Designing other forms

	Customizing application navigation

	Setting up a training catalog
	Understanding security
	Role-based security
	Record-based security
	Field-level security

	Testing customization
	Summary

	Chapter 3: Client-side Logic with Microsoft Dynamics CRM 2015
	Understanding the client scripting
object model
	Understanding web resources
	Creating our first web resource

	Accessing forms and controls using client-side code
	Context namespaces
	Data namespaces
	UI namespaces

	Understanding client-side events
	Form events
	OnLoad event
	OnSave event

	Field events
	Control events
	TabStateChange
	OnReadyStateComplete
	PreSearch

	Using CRM web services in client-side code
	OData
	OData query options

	Working with organization data services
	Modern SOAP
	OData versus Modern SOAP

	Understanding business rules
	Actions in business rules
	Showing error messages
	Setting business requirements
	Setting field values
	Setting visibility
	Setting default values
	Locking or unlocking fields

	Server-side versus client-side business rules

	Summary

	Chapter 4: Working with Processes
	Understanding processes
	Building a library management solution
	Library management solution design
	Adding components to solution
	Customizing entities
	Customizing member entity
	Creating a custom entity
	Entity definition
	Areas that display this entity
	Process
	Communication and collaboration
	Data services
	Outlook and mobile
	Form design
	Creating entity views

	Understanding business process flow
	Using stages
	Using branching logic
	Controlling and ordering business process flows
	Creating business process flow

	Understanding workflows
	Activating workflow
	Available to run
	Workflow job retention
	Automatic execution events
	Workflow scope

	Creating asynchronous workflows
	Creating synchronous workflows
	Generating Autoid using a real-time workflow

	Understanding dialogs
	Designing dialogs
	Calling Dialog

	Understanding actions
	Designing actions
	Action scopes
	Action arguments
	Calling actions

	Business process flows versus workflows, dialogs, and actions
	Testing library management
	Summary

	Chapter 5: Working with CRM SDK
	Understanding CRM extendibility architecture
	CRM databases
	Platform layers
	Processes
	CRM Web services
	Plugins
	Reporting
	Client extensions
	Integrated extensions

	An introduction to the Microsoft Dynamics CRM SDK
	Knowing about CRM assemblies
	Understanding CRM web services
	Deployment service
	Discovery service
	Organization service
	Organization data service
	Early bound
	Late bound

	Using client APIs for CRM connections
	Working with organization web services
	Create
	Update
	Retrieve
	RetrieveMultiple
	Delete
	Associate
	Disassociate
	Execute
	Testing the console application

	Working with discovery web service
	Fetching data from the CRM database
	QueryByAttribute
	QueryExpression
	FetchXML
	LINQ

	Top five new features in 2015 Update 1 for developers
	Update message improvement
	Executing multiple operations in a single transaction
	Alternate keys and upsert
	Optimistic concurrency
	Tracing

	Integrating CRM with other systems
	On demand
	Batch processing

	Summary

	Chapter 6: Extending Microsoft Dynamics CRM 2015
	Introduction to plug-ins
	Synchronous versus a synchronous plug-ins
	Understanding plug-in event execution pipelines
	Stage 10: Pre-validation
	Stage 20: Pre-operation
	Stage 30: Main-operation
	Stage 40: Post-operation
	Plug-in events

	Writing your first sample plug-in
	Understanding plug-in registration
	Plug-in mode
	Assembly storage
	Database
	Disk
	GAC

	Registering plug-in steps
	Message
	Primary entity
	Secondary entity
	Filtering attribute
	Run in user's context
	Execution order
	Event
	Execution Mode
	Deployment
	Delete AsyncOperation if StatusCode = Successful
	Secured/Unsecured Configuration

	Understanding IPluginExecutionContext
	Getting organization service
	Getting input and output arguments

	Understanding shared variables
	Understanding plug-in images

	Applying validation using plug-ins
	Passing parameters to plug-ins
	Troubleshooting plug-ins
	Debugging plug-ins

	Working with custom workflows
	Using parameters in custom workflows
	Adding custom workflows in library management systems
	Using custom workflows

	Understanding actions
	Designing actions

	Summary

	Chapter 7: Creating a Project
Tracking Application
	Project tracking application design
	Customizing CRM for the project tracking application
	Adding existing entities to the solution
	Customizing the account entity
	Setting up the project entity
	Setting up a user story entity
	Setting up a project tasks entity
	Using filtered lookups

	Setting up a timesheet entity
	Using calculated fields

	Setting up issue entity

	Using rollup fields for aggregation
	Completing the project entity design

	Understanding activity feeds
	Utilizing activity feeds
	Setting the auto post rule

	Getting updates

	Setting up teams
	Sharing records with a team

	Preparing data visualization
	Creating dashboard

	Summary

	Chapter 8: Introduction to Mobile Client and Microsoft Dynamics Marketing
	Introduction to Microsoft Dynamics CRM mobility
	Accessing CRM using mobiles
	Accessing CRM on tablets
	Entities available over mobiles
	Customizing mobile clients
	New enhancements for MOCA
	Offline drafts
	Multiple dashboards

	Other mobile clients
	Resco Mobile CRM
	CWR Mobile CRM for Microsoft Dynamics CRM

	Introduction to MDM
	Projects
	Marketing execution
	Assets and media
	Budgeting
	Performance

	Setting up the Microsoft Dynamics Marketing trial
	Integration with CRM
	Summary

	Appendix A: Data Model for Client Entities
	Data model for contact entities
	Data model for proposal entities
	Data model for training request entities

	Appendix B: Data model for
Account Entities
	Data model for project entity
	Data model for project tasks
	Data model for issue entity
	Data model for timesheet entity
	Data model for user story entity

	Index

